Physics

Exploring quantum spin liquids as a reservoir for atomic-scale electronics

In “Probing resonating valence bond states in artificial quantum magnets,” we show that quantum spin liquids can be built and probed with atomic precision.

Continue reading

Silicon waveguides move us closer to faster computers that use light

Our Zurich-based team of researchers has just managed to efficiently guide visible light through a silicon wire – an important milestone towards faster, more efficient integrated circuits. Our low-loss silicon waveguide could enable new photonic chip designs for applications that rely on visible light, and could lead to more efficient lasers and modulators used in telecoms.

Continue reading

Light and in-memory computing help AI achieve ultra-low latency

Ever noticed that annoying lag that sometimes happens during the internet streaming from, say, your favorite football game? Called latency, this brief delay between a camera capturing an event and the event being shown to viewers is surely annoying during the decisive goal at a World Cup final. But it could be deadly for a […]

Continue reading

European Research Council funds research into single-molecule devices by atom manipulation

A team formed by IBM Research scientist Dr. Leo Gross, University Regensburg professor Dr. Jascha Repp, and University Santiago de Compostela professor Dr. Diego Peña Gil has received a European Research Center (ERC) Synergy Grant for their project “Single Molecular Devices by Atom Manipulation” (MolDAM).

Continue reading

Continuing the journey to frictionless quantum software: Qiskit Chemistry module & Gradients framework

We’ve taken another important step on our path towards frictionless quantum computing: A new release of Qiskit with a completely overhauled Qiskit Chemistry module, as well as a brand new Qiskit Gradients framework. Both enhancements pave the way for quantum application software that serves the needs of domain experts and quantum algorithm researchers.

Continue reading

Using machine learning to solve a dense hydrogen conundrum

Hydrogen is the simplest element in the universe, yet its behavior in extreme conditions such as very high pressure and temperature is still far from being well understood. Dense hydrogen constitutes the bulk of the content of giant gas planets and brown dwarf stars and it’s a material of interest for both fundamental physics and […]

Continue reading

Harnessing Gallium Phosphide for Future Information Technology

In the paper “Integrated gallium phosphide nonlinear photonics”, recently published in the peer-reviewed journal Nature Photonics, we report on the development of high-performance photonic devices made of the crystalline semiconductor gallium phosphide. This work represents a breakthrough in the manipulation of light with semiconductor materials integrated on a chip. It opens the door to a […]

Continue reading

Unlocking a 140-year-old Secret in Physics

In a new study in the journal Nature, an IBM Research-led collaboration describes an exciting breakthrough in a 140-year-old mystery in physics — one that enables us to unlock the physical characteristics of semiconductors in much greater detail and aid in the development of new and improved semiconductor materials.

Continue reading

Becoming Quantum Ready in Africa

Classical computing has served society incredibly well. It gave us the Internet and cashless commerce. It sent humans to the moon, put robots on Mars and smartphones in our pockets. But many of the world’s biggest mysteries and potentially greatest opportunities remain beyond the grasp of classical computers forever. To continue the pace of progress, […]

Continue reading

World’s First Ultrafast All-Optical Room Temperature Transistor

Modern digital computers have changed our lives in a variety of ways, but the technology on which they are built has still some room for improvement. As computational workloads continue to grow due to massive amounts of data and techniques like artificial intelligence, more powerful computing technologies become of paramount importance. Two of the main […]

Continue reading

Tuning Infrared Antennas with Cavity Quantum Electrodynamics

In cavity quantum electrodynamics (QED), light and matter lose their distinct characteristics.

Continue reading