IBM Research-Africa

AI Pilot to Address Transboundary Water Challenges in Southern Africa Launches

Share this post:

Worldwide, more than 263 watersheds and 300 aquifers are known as transboundary, meaning they cross the political boundaries of two or more countries. The people who rely on these water sources are intrinsically linked locally across borders and regional with intensive urban and industrial water uses, thus creating a system of hydrological, economical and social interdependence.

For example, over-abstraction in a country upstream can lead to water shortages for both downstream people and their ecosystems. Additionally, pollutants can be carried from one country to another which is particularly troubling in areas where urban and rural systems coexists with variable distances. Climate change further complicates such challenges because of increasingly erratic rainfall volumes, patterns and variability, leading to droughts and floods. Countries may also differ in socio-economic development, water-use regulations and management capacity, making the effective management of transboundary waters further complicated.

Despite these challenges, a range of useful tools based on artificial intelligence techniques (AI) e.g. machine learning and deep learning, are increasingly available to improve the management of transboundary water. Up- to-date information systems on water availability and demand can help increase the accuracy of models for determining the impacts of potential changes in the management and use of shared watersheds and aquifers. Starting this month, experts at IBM Research, Wits University, University of the Western Cape, Umvoto Africa and Delta-H, who know how to deploy these technologies in South Africa, are starting a new pilot to develop news techniques, which are more user-friendly in the regional context.

Pilot Launching

The Ramotswa Aquifer between South Africa and Botswana has been identified for a new pilot project which kicked off in January thanks to grants from USAID, the Department of Science and Technology of South Africa, and the SADC Groundwater Management Institute.  The location is an ideal transboundary water resource to which AI techniques can be applied to improved databases to reveal the patterns for water sustainability, leading to improved management of the resource and contribute towards harmonized policy. The region is in a semi-arid and water-stressed area and supports industries, as well as a significant population in both countries.

AI techniques are useful for the analysis of big data that can be obtained from transboundary groundwater resources such as the Ramotswa Aquifer. Underlying patterns and trends within the data can be revealed to assist with decision making and improved management.

Changes in water chemistry and quality in such water resources can also reveal spatial and temporal activities that span large areas and time scales. Samples collected at various boreholes across the area would usually reflect local chemistry and/or transitions that have occurred in the water over space and time.

More specifically, the team of researchers from IBM and the four research awardees will focus on:

  • Creation of an AI-ready databased for integrated decision-making of the Ramotswa Aquifer;
  • Time series forecasting from sampling points with deep learning;
  • Classification and clustering of large water datasets using semi-supervised and unsupervised machine learning techniques may provide interesting patterns that are important in shedding more light into the behaviour and relationships of the water through space and time;
  • Evidence base for decision making based on transboundary water resource models at local and regional scale;
  • Create an applicable Transboundary Water Sustainability Strategy applicable to other regional shared water basins.

At the end of 2020, experts will use the findings to provide a platform for the science-policy-practice nexus, which will inform policy formulation, decision making, risk assessment and potential design of response strategies in the event of any contamination of the transboundary water resource. This platform will be presented at the 2021 Symposium organised by the Water Research Council of South Africa for the Collaboration.

The research will be carried out by researchers and students located in both South Africa and Botswana, with a three-month internship programme offered by the IBM Research is located, starting this month.

Manager at IBM Research – Africa

Dr. Clara Bocchino

Program Coordinator Big Data & Transboundary Water Collaboration Southern Africa, Sustainable Water Partnership: Winrock International

More IBM Research-Africa stories

This ship has no crew and it will transform our understanding of the ocean. Here’s how

IBM is supporting marine research organization ProMare to provide the technologies for the Mayflower Autonomous Ship (MAS). Named after another famous ship from history but very much future focussed, the new Mayflower uses AI and energy from the sun to independently traverse the ocean, gathering vital data to expand our understanding of the factors influencing its health.

Continue reading

Data-Driven Aquaculture Management

Aquaculture requires innovative solutions to address challenges including population growth, climate change and limited natural resources.

Continue reading

No Farms, No Food

AI-powered technology will help farmers health-check soil and water Agriculture consumes more than 70 percent of the world’s annual water usage. With small farms producing nearly 80 percent of food for the developing world, ensuring the quality and safety of our water supply is critical. Environmental analysis for agriculture often relies on expensive and time-consuming […]

Continue reading