AI

Exploring Frontiers of AI at ICLR 2018

Share this post:

IBM Research is a pioneer across many aspects of AI. At the 6th International Conference on Learning Representations (ICLR 2018), our team will share recent discoveries in learning data representations, techniques that are key to the success of machine learning algorithms. These techniques enable machine learning systems to automatically discover how to represent raw data for subsequent analysis. Learning data representations is an important learning task that powers computer vision, speech recognition, natural language processing, drug design, and other advances in AI. At ICLR 2018, IBM Research will present technical papers on adversarial learning, self-organizing networks for multi-task learning, open-domain question answering, disentanglement of representations, reinforcement learning, and deep learning for graphical data. Below are details on the papers IBM Research will be presenting at ICLR 2018.

In one paper, IBM Research will be introducing the concept of a “routing network,” a kind of self-organizing neural network consisting of two components: a router and a set of function blocks. Given an input, the router makes a routing decision, choosing a function block to apply and passing the output back to the router recursively. This allows similar tasks to share layers, while enabling differing tasks to choose distinct layers. Routing networks perform much better than alternative approaches on a set of multi-task learning benchmarks.

Another IBM AI project featured at ICLR 2018 involves a new metric called CLEVER that can be used to evaluate the robustness of a neural network against attack. The CLEVER score calculates the minimum strength that an adversarial attack would need in order to succeed at deceiving the neural network. Higher scores indicate more robust neural networks. The scores are attack-agnostic, meaning they can be applied to existing and unseen attacks, and are computationally feasible for large neural networks. CLEVER scores can be used to compare the robustness of different network designs and training procedures to help researchers build more reliable AI systems.

IBM Research is a gold sponsor of ICLR 18. We will be at the conference expo at booth #500, where you can try your hand at attacking imaginary banks’ AI check image processing systems by distorting check digits and using CLEVER scores to guide your decisions and maximize your profits.
Big Check demo

Accepted papers at ICLR 2018

Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, Luca Daniel

Sobolev GAN
Youssef Mroueh, Chun-Liang Li, Tom Sercu, Anant Raj, Yu Cheng

Routing Networks: Adaptive Selection of Non-linear Functions for Multi-Task Learning
Clemens Rosenbaum, Tim Klinger, Matthew Riemer

Evidence Aggregation for Answer Re-Ranking in Open-Domain Question Answering
Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang, Xiaoxiao Guo, Shiyu Chang, Zhiguo Wang, Tim Klinger, Gerald Tesauro, Murray Campbell

Variational Inference of Disentangled Latent Concepts from Unlabeled Observations
Abhishek Kumar, Prasanna Sattigeri, Avinash Balakrishnan

Eigenoption Discovery through the Deep Successor Representation
Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, Murray Campbell

FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling
Jie Chen, Tengfei Ma, Cao Xiao

More AI stories

We’ve moved! The IBM Research blog has a new home

In an effort better integrate the IBM Research blog with the IBM Research web experience, we have migrated to a new landing page: https://research.ibm.com/blog

Continue reading

Pushing the boundaries of human-AI interaction at IUI 2021

At the 2021 virtual edition of the ACM International Conference on Intelligent User Interfaces (IUI), researchers at IBM will present five full papers, two workshop papers, and two demos.

Continue reading

From HPC Consortium’s success to National Strategic Computing Reserve

Founded in March 2020 just as the pandemic’s wave was starting to wash over the world, the Consortium has brought together 43 members with supercomputing resources. Private and public enterprises, academia, government and technology companies, many of whom are typically rivals. “It is simply unprecedented,” said Dario Gil, Senior Vice President and Director of IBM Research, one of the founding organizations. “The outcomes we’ve achieved, the lessons we’ve learned, and the next steps we have to pursue are all the result of the collective efforts of these Consortium’s community.” The next step? Creating the National Strategic Computing Reserve to help the world be better prepared for future global emergencies.

Continue reading