AI

Open standards for deep learning to simplify development of neural networks

Share this post:

Among the various fields of exploration in artificial intelligence, deep learning is an exciting and increasingly important area of research that holds great potential for helping computers understand and extract meaning from data, e.g. deciphering images and sounds.

To help further the creation and adoption of interoperable deep learning models, IBM joined the Open Neural Network Exchange (ONNX), a new industry ecosystem that was established by Facebook and Microsoft in September. ONNX provides a common open format to represent deep learning models. The ONNX initiative envisions the flexibility to move deep learning models seamlessly between open-source frameworks to accelerate development for data scientists.

ONNX can free developers from the burden and constraints of having to commit to a specific deep learning framework during the research and development phase, and provide engineers and researchers the freedom to explore a variety of possibilities, enable them to more easily move between different deep learning frameworks and computational mediums, and choose the option that has the features best suited for their project.

We have already begun exploring the possibilities that ONNX can provide to developers and quickly recognized that our work on a common tensor output format could have a broader and more rapid impact if incorporated into ONNX. Our deep learning research team is already exploring other ways that ONNX can help data scientists bring their deep learning models to market.

IBM has long supported and actively encourages the adoption of open standards and collaborative innovation. ONNX will help encourage interoperability and foster an environment of deep learning systems that spur AI innovation and accelerate the development and use of neural networks in a wide range of research projects, products and solutions.

More AI stories

Quantum-Inspired Logical Embedding for Knowledge Representation

In our new paper, to be presented at NeurIPS 2019, we develop a new knowledge representation, which we call “quantum embedding”, that represents conceptual knowledge using a vector space representation that preserves its logical structure and allows reasoning tasks to be solved accurately and efficiently.

Continue reading

Learning and Characterizing Causal Graphs with Latent Variables

Researchers from the MIT-IBM Watson AI Lab developed a new approach to characterize the set of plausible causal graphs from observational and interventional data that has latent variables.

Continue reading

More Is Less: Learning Efficient Video Representations

IBM researchers developed a novel low memory footprint and efficient architecture for spatio-temporal analysis of video. The results show strong performance on several benchmarks – and allow training of deeper models using larger sequences of input frames, which will lead to higher accuracy on video action recognition tasks.

Continue reading