Healthcare

New Microfluidic Chip Boosts the Sensitivity of Immunoassays by >1000x

Share this post:

Cover of Analytical Chemistry, Volume 89, Issue 14

Proteins are one of the most important classes of biomarkers – biological molecules indicative of a disease or health of an individual. The detection of proteins is critical in a variety of tests; from the diagnosis of malaria, through the detection of  heart attacks, to cancer screening and monitoring.  The most common way to detect these biomarkers is to use a biochemical test known as an immunoassay, which is the basis of any pregnancy test.

As with any test, improving accuracy, means more precise results and now appearing on the cover of the peer-reviewed journal Analytical Chemistry scientists have made a significant improvement.

The achievement comes from an international team of scientists from Technion – Israel Institute of Technology and IBM Research in Zurich who have jointly developed a technique which can improve the sensitivity of protein detection in immunoassays by more than 1,000-fold, when compared to a standard immunoassay implementation. The team’s method is based on a simple piece of hardware – a microfluidic chip containing flow channels the width of a human hair.

What makes this technique particularly important is that it works incredibly well when protein biomarkers are present in extremely small numbers, as is the situation during the early stages of a disease.

Moran Bercovici, assistant professor at the faculty of Mechanical Engineering at Technion said, “We use an old focusing technique called isotachophoresis (ITP) in a new way – using a combination of electric fields and specialized chemistry. This enables us to collect proteins into a tiny volume and precisely deliver them to react with detection antibodies patterned on the surface of the microchannel”.

“We essentially fool the detector,” adds Federico Paratore, a joint PhD student between the groups, and the lead author on the work. “We present to a standard detector a protein concentration that is 10,000-fold higher than in the original sample, and get the detector to respond accordingly.”

 

Paratore explains the simplicity of the test, “A few drops of the sample are introduced into the microfluidic chip, and an electric field is turned on. Remarkably the proteins are compressed to a volume of approximately 50 pico-liters – about 1 million times smaller than the volume of a human tear drop and in just a few minutes, the result is visible.”

 

Paratore is part of a joint European Union project, Virtual Vials, and works across both sites combining the strengths of Technion’s team in electrokinetics and fluid mechanics, with IBM’s expertise in microtechnology and diagnostics. At Technion, Paratore collaborated with Tal Zeidman‑Kalman and Tally Rosenfeld, who are co-authors of this paper.

Dr. Govind Kaigala, scientist at IBM Research adds, “The elegance of this approach is in its simplicity and of course the immense enhancement in assay sensitivity that could be applied to a range of immunoassay. We strongly believe such a technology will help to fill the gaps in existing immunoassay technology and be applied directly to biological samples such as blood, saliva, or urine.”

The team’s approach may enable simple devices capable of analyzing small samples (such as a drop of blood), replacing the large and sophisticated laboratory equipment required today.

More Healthcare stories

Driving the usefulness of AI in healthcare: IBM Research showcases work at AMIA 2020

Researchers from our IBM Research labs around the world and from IBM Watson Health have contributed a total of 47 workshops, papers, posters and panels that will be presented at AMIA 2020. These contributions cover a wide range of topics but reflect our overarching goal of driving the usefulness of AI in Healthcare.

Continue reading

Advancing the Potential of AI in Medical Imaging at MICCAI 2020

I believe one of the most promising areas for AI to make an impact is in the field of medical imaging. Through advancements in AI that allow for more intelligent and accurate analysis of video and still images, there is hope that clinicians will soon be able to widely augment the data and information they […]

Continue reading

AI Data Tracker Encourages Scientific Research into COVID-19 Non-Pharmaceutical Interventions

What impact do measures such as shelter-in-place, mask wearing, and social distancing have on the number of COVID-19 cases? How do the COVID-19 quarantine measures that have been implemented by North American countries compare to South American countries? These are just a few questions about the wide range of non-pharmaceutical interventions (NPIs) that have been applied by governments, globally.

Continue reading