IBM Celebrates 20th Anniversary of Moving Atoms

Share this post:

On September 28, 1989, Don Eigler became the first person in history to move and control an individual atom. Shortly thereafter, with the help of a custom-built microscope, he and his team spelled out the letters I-B-M using individual atoms, signaling a quantum leap forward in the field of nanotechnology.

Eigler built his scanning tunneling microscope (STM) in order to visualize and experiment with individual molecules and atoms. As he experimented, he discovered that it was possible to pick up individual atoms and move them using the tip of his STM. To demonstrate this ability, he created the worlds tiniest IBM logo, made out of 35 Xenon atoms.

Because of Dr. Eiglers seminal work, scientists continue making breakthroughs that continue driving the field of nanotechnology, the exploration of building structures and devices out of ultra-tiny components as small as a few atoms or molecules. Such devices might be used as future computer chips, storage devices, biosensors, and things nobody has even imagined.

More stories

A new supercomputing-powered weather model may ready us for Exascale

In the U.S. alone, extreme weather caused some 297 deaths and $53.5 billion in economic damage in 2016. Globally, natural disasters caused $175 billion in damage. It’s essential for governments, business and people to receive advance warning of wild weather in order to minimize its impact, yet today the information we get is limited. Current […]

Continue reading

DREAM Challenge results: Can machine learning help improve accuracy in breast cancer screening?

        Breast Cancer is the most common cancer in women. It is estimated that one out of eight women will be diagnosed with breast cancer in their lifetime. The good news is that 99 percent of women whose breast cancer was detected early (stage 1 or 0) survive beyond five years after […]

Continue reading

Computational Neuroscience

New Issue of the IBM Journal of Research and Development   Understanding the brain’s dynamics is of central importance to neuroscience. Our ability to observe, model, and infer from neuroscientific data the principles and mechanisms of brain dynamics determines our ability to understand the brain’s unusual cognitive and behavioral capabilities. Our guest editors, James Kozloski, […]

Continue reading