Health and medicine

Data and more data: how IoT could impact the lives those with diabetes

Share this post:

If you think about it, the life of a Type 1 diabetic (T1D) abounds with data. For example, it is recommended that most Type 1 diabetics test their blood glucose (BG) at least 5-6 times a day. So that’s 5-6 data points each day.

I’ve been a T1D for over thirty-three years. I can’t say that I’ve always done what was recommended, but, if I averaged 3 finger sticks per day, that would be 36,135 total drops of blood (and 36,135 test strips). Ouch! But more importantly, there are more than 36,135 data points with those 36,135 drops of blood and those 36,135 measurements of blood glucose.

There are a lot of other factors involved in managing your diabetes on a day to day basis. Basal rate, insulin sensitivity, carbohydrate to insulin ratio, and carbohydrate intake are just a few of the factors that can be specified and/or measured.  And there’s a plethora of other factors that are less measurable – stress, hormones, activity, illness, sleep etc.

You can imagine the difficulty of trying to correlate all of these dimensions, analyze them, and then make informed decisions based on them. My head spins sometimes just thinking about it (even though I have to do this every day).  Here are some examples of the data I am collecting and sharing with my endocrinologist in between visits.

Even with all of this data at my fingertips (pun intended), managing my diabetes is not easy and it is far from predictable. I could do the exact same thing, eat the exact same thing at the very same time and treat it with the exact same amount of insulin – and I can just about guarantee you that I will not get the same results. There are times when my blood glucose levels truly surprise me, especially the very lows – and those are the dangerous ones.

IBM Watson and diabetes

IBM is partnering with medical device leader Medtronic on a predictive diabetes management solution. In a pilot to see how Watson can help people with diabetes, Medtronic and IBM took 600 past patient cases and applied cognitive analytics to the data from Medtronic insulin pumps and glucose monitors. Watson was able to predict hypoglycemia – extreme low blood sugar – up to three hours in advance of onset — early enough so a person could take action to prevent a potentially dangerous health event.

WOW – three hours in advance so that I could do something about it. Wouldn’t this be sweet (pun intended again)?

IBM and Medtronic unveiled this partnership at CES 2016 earlier this year:

This is one of the most exciting developments in diabetes management that I can remember. (In full disclosure, I use a Medtronic insulin pump).

When I moved from 6 shots a day to my pump, I kept asking myself – why didn’t I do this sooner?  And when I added a continuous glucose monitor to the mix, I had a similar revelation. All of this technology is amazing, don’t get me wrong. But a lot of the data correlation is still pretty manual (on my part and on my doctor’s part), and there is surprisingly little insight gleaned from this data (and there is so much data).

I can picture the dialog now (although note that this is only my vision of how this solution would work and not a depiction of the eventual solution):

Me: “Watson, I’m going to mow the lawn.”

Watson: (understanding how I’ve reacted to this type of strenuous exercise in the South Florida heat, what my current blood glucose and active insulin levels are, what I’ve eaten and probably so much more).

That’s great, Kimberlee. I’ve set a temporary basal for the next hour and a half – and I really think you should eat 30 grams of carbohydrates before you get started. And don’t forget to hydrate.”

Me: “You got it.”

I, of course, would happily do what Watson recommended because I want to keep my blood glucose levels in range and get on with my life in as “normal” a fashion as I can.

And let me tell you: Such insight and advice would truly transform this Type 1 diabetics life. Talk to me below on how you think Watson could change the way you manage your T1D.

More Health and medicine stories
By Mark Swinson on February 19, 2019

The 3 Ps of customer engagements: getting started with IoT

When you're ready to make the most of your data through an IoT Platform, you have options on how to get started. This article will help you determine if you need a Proof of Concept (PoC), a pilot or a full production instance of the IoT Platform

Continue reading

By Mark Swinson on February 5, 2019

Rethinking your business with IoT: your product “as a Service”

The more you embed sensors and actuators into physical assets, the more potential you have to change the business models for those physical things. This article will explore the implications of these changes and what they mean in our new "as a Service" world as we progress from purely physical assets to a purely digital ones.

Continue reading

By Jiani Zhang on January 22, 2019

Having data versus using data from your platform

Data is the lifeblood of the Internet of Things. However, there’s a huge difference between having data and using data. That’s why this post explores the value of smarter data. Previously, we talked about the fundamentals of data management. Analytics is the next step in the journey. Not too long ago, IoT meant “connect things […]

Continue reading