Manufacturing

From reactive to proactive quality management with IoT

Share this post:

In 9 ways the IoT is Redefining Manufacturing, Brian Buntz succinctly enumerates examples of companies who are implementing or benefiting from IoT capabilities. Each example shows how IoT is reshaping or redefining industry practices. One example of particular interest is Proactive Quality Assurance, enabled by placement of sensing and measuring devices in critical areas throughout the supply chain and production process.

The promise of significant cost reduction

With IoT, the ability to monitor and analyze process and product quality at critical points in the supply chain and production processes, and detect when sub-standard materials are introduced or product attributes deviate from specifications promises significant cost reductions.

Consider examples where improved monitoring of supplies, manufacturing processes, and even products in usage by customers can contribute to improved product and process quality. First, IBM has long been a practitioner of proactive quality management, developing the Quality Early Warning System (QEWS) algorithms for earlier, more definitive detection of problems throughout its own supply chain. The QEWS algorithms have been incorporated into the IBM Prescriptive Quality on Cloud offering to help manufacturers detect problems in supplier materials as well as in production processes.

The added assurance of detecting quality problems at source

Through instrumentation and monitoring of production equipment manufacturers can detect when equipment calibration is drifting beyond the required settings which could result in assemblies, components or products that do not meet specifications. For example, a gradual change in actuator speed could result in component misalignment. Concurrently, products can be tested or measured after key manufacturing steps to determine if attributes are within specifications. The ability to monitor both equipment settings and results of a completed manufacturing step gives manufacturers added assurance of detecting quality problems at the source.

Beyond monitoring, many manufactures are beginning to employ robotics as a means to improve process quality. The ability for robots to execute processes more accurately and efficiently and apply cognitive to continually learn to improve, or automatically adapt to variations in manufacturing requirements, will significantly enhance quality and throughput. IBM’s new report How the Emergence of Adaptive Robotics and IoT Transforms Businesses cites the role of robots in improving quality control and customization, and provides numerous use-case examples of the impact of robotics across industries.

Beyond the factory, with an increasing number of products imbued with sensors, intelligence and connectivity, the ability to monitor usage “in the field” can provide accurate and detailed perspective regarding product performance, potentially alerting customer service, warranty management, and even product design to shortcomings in product performance or unusual or unanticipated usage. Early detection of impending trends enables companies to proactively address and remedy problems before they become unmanageable and potentially ruin corporate reputation.

An earlier, more definitive detection of problems

A key benefit of the QEWS algorithm employed in IBM Prescriptive Quality on Cloud is the earlier, more definitive detection of  problems, often using fewer data points and avoiding false alarms associated with traditional statistical process control methods. Additionally, considering the volume of data generated by applying IoT capabilities to process and product quality, the solution prioritizes alerts to enable lines of business to address those problems needing immediate attention while making it easy to quickly evaluate status of all activities being monitored.

With capabilities made available via the IoT to capture and analyze data throughout the supply chain and manufacturing processes, there’s never been a better time to adopt a proactive quality management strategy.

More Manufacturing stories
By Lauren Longhi on November 9, 2018

The top 5 takeaways from the Industrial IoT World conference

From October 29-30, companies from across industries gathered in Atlanta, GA for the Industrial IoT World conference to accelerate their projects “from inspiration to implementation.” As a leader in the IIoT space, IBM was invited to share its expertise. I joined IBM five months ago, and was excited to see our capabilities in person. Here […]

Continue reading

By Bruce D Baron on November 6, 2018

How UCSF Health is putting patients first with facilities management

If buildings are getting smarter, then medical facilities have to be brilliant. That’s why University of California, San Francisco (UCSF) Health is working with IBM Maximo to create cutting-edge health facilities that aim to keep the patient care environment safe. It started when UCSF Health and IBM partnered to optimize the management of existing health […]

Continue reading

By Joe Lonjin on October 30, 2018

The struggle for data quality is real for asset and facilities management leaders

Today’s facilities are swiftly moving towards a smarter ecosystem, with thousands of physical asset attributes to maintain and manage. To support this complex infrastructure, data management is crucial, and has conventionally been a major issue for higher education facilities. Without quality data management, organizations will struggle to define mission-critical information and achieve supported decision making. […]

Continue reading