Balancing the trade-offs of cloud management

Share this post:

How can cloud administrators manage the trade-off between overcommitting shared infrastructure and keeping users satisfied? This is a major issue for all cloud owners.

Overcommitting shared infrastructure is a basic part of the cloud model. It lets us do more work with fewer resources, thereby reducing the total cost of ownership for cloud providers. But that resource overcommitment can come with a cost, if not managed correctly. Overcommitting resources implies a risk of resource contention, a situation in which customers aren’t getting what they need, when they need it. To control customer dissatisfaction, cloud administrators need to balance overcommitment risks with overcommitment ratios.

In short, the overcommitment risk increases when the overcommitment ratio increases. Higher overcommitment ratios can reduce costs, but they increase the risk of congestion and customer dissatisfaction. On the other hand, overcommitment ratios that are smaller than necessary keep customers happy, but they also make cloud management inefficient and uneconomical.

The IBM Cloud Capacity Analyzer fills this gap. This first-of-a-kind tool from IBM Research provides recommendations for cost-efficient cloud capacity configurations that balance the trade-off between overcommitment risk, user experience and cost of configuration. A unique property of IBM Cloud Capacity Analyzer is that it reliably analyzes and helps plan capacity in the presence of the constantly changing population of virtual machines, coping with highly dynamic cloud environments. With Cloud Capacity Analyzer, infrastructure costs are reduced and user satisfaction is increased, bringing about improved productivity.

To learn more about IBM Cloud Capacity Analyzer, view the tool demo below:

What are your thoughts about balancing overcommitment risks and ratios? Leave a comment below.


About the Authors

Dr. David Breitgand is a research staff member at IBM Research – Haifa and has over fifteen years of experience in the areas of network, system and services management; fault-tolerant and distributed computing; and performance modeling and analysis. David is a technical leader of the Cloud Operating System Technologies group and an active contributor to the IBM Compute Cloud Reference Architecture.

Dr. Amir Epstein is a research staff member at IBM Research – Haifa. Amir is a member of the Cloud Operating System Technologies group. His research interests include cloud computing, approximation methods, online algorithms, algorithmic game theory, scheduling and load balancing.

More stories

Why we added new map tools to Netcool

I had the opportunity to visit a number of telecommunications clients using IBM Netcool over the last year. We frequently discussed the benefits of have a geographically mapped view of topology. Not just because it was nice “eye candy” in the Network Operations Center (NOC), but because it gives an important geographically-based view of network […]

Continue reading

How to streamline continuous delivery through better auditing

IT managers, does this sound familiar? Just when everything is running smoothly, you encounter the release management process in place for upgrading business applications in the production environment. You get an error notification in one of the workflows running the release management process. It can be especially frustrating when the error is coming from the […]

Continue reading

Want to see the latest from WebSphere Liberty? Join our webcast

We just released the latest release of WebSphere Liberty, It includes many new enhancements to its security, database management and overall performance. Interested in what’s new? Join our webcast on January 11, 2017. Why? Read on. I used to take time to reflect on the year behind me as the calendar year closed out, […]

Continue reading