Data Analytics

IBM Analytics Engine is now available in the London DC

Share this post:

The IBM Analytics Engine team is excited to announce the General Availability (GA) of IBM Analytics Engine, the next generation of IBM’s Apache Spark and Apache Hadoop cloud service in the London DC.

IBM Analytics Engine is a cloud-based service that enables data scientists to rapidly provision, manage, run and retire Apache Hadoop and Apache Spark clusters. The solution is designed to solve the key pain points that organizations currently experience as they try to build up their big data analytics capabilities.

The primary motivation of IBM Analytics Engine is to give your business a quick and simple way to deploy analytics applications.

As a data scientist or data engineer, you can log into the intuitive web interface from anywhere, and can spin up a Spark cluster or a Hadoop cluster with Hive, HBase, and other Hadoop ecosystem components within minutes.

Meanwhile, for application developers, IBM Analytics Engine also makes it easy to embed Hadoop or Spark capabilities into your code. The solution’s REST APIs and command line interface make it possible for your applications to provision and manage clusters programmatically. As a result, it’s easy to operationalize your apps with predictive modeling capabilities and integrate new levels of insight into your everyday operations.

Increasing flexibility by separating compute from storage

Unlike a traditional Hadoop architecture, IBM Analytics Engine keeps compute and storage infrastructure separate. The data is stored in IBM’s Cloud Object Storage Service , and the Hadoop and Spark clusters connect to the object storage repository when they need to access it.

This separation of concerns gives you much greater flexibility and reliability. Because the clusters themselves are not involved in data storage, you can spin up a cluster environment for the duration of a single job, and delete it on completion—with no risk of data loss. Moreover, you can write a configuration script once and pass it to IBM Analytics Engine as you create new clusters, to apply the exact same configuration as your previous clusters.

Only pay for what you use

Separating compute from storage also makes the solution more cost-effective than a permanent Hadoop cluster. With IBM Analytics Engine, you no longer have to keep a compute cluster running if you are not using it. Instead, you can deprovision it as soon as your job is finished, and spin up a new cluster the next time you need one.

As a result, IBM’s flexible cloud delivery model only requires you to pay for the compute resources that you are actually using—there is no longer any need for your organization to bear the costs of a fixed Hadoop infrastructure that may spend much of its time idle.

Take the next step

IBM Analytics Engine offers you the power to revolutionize your approach to big data analytics, and deliver a fast return on investment to your business. To find out how, please click here for more information.

IBM Cloud Marketing Manager, Global

More stories
April 30, 2019

Introducing IBM Analytics Engine v1.2 and Announcing the Deprecation of IBM Analytics Engine v1.0

We are excited to inform you about the new version of IBM Analytics Engine v1.2 that will be available starting May 15, 2019. Along with this release, Analytics Engine v1.0 will be retired.

Continue reading

April 16, 2019

Announcing the Deprecation of the Decision Optimization Beta Service

The End of Beta date for the Decision Optimization service is May 17, 2019. The End of Beta Support date is June 20, 2019.

Continue reading

April 2, 2019

Data Refinery and Profiling Changes in Watson Studio and Watson Knowledge Catalog

We'd like to announce data refinery and profiling changes related to Watson Studio and Watson Knowledge Catalog that will take effect on May 17, 2019.

Continue reading