AI/Watson

Advancing medical imaging research with deep learning

Share this post:

With the rise of connected healthcare, medical data is proliferating at an exponential rate. Sources such as electronic health record (EHR) systems, clinical trials, genetic sequencing, research studies and radiologic imaging all generate useful data, but the sheer volume has the potential to overwhelm physicians hoping to better serve their patients.

Recent gains in computing power enable us to process more data than ever before. Still, we need help making sense of it. That’s why medical researchers are using AI technologies such as deep learning to glean beneficial insights.

Our research at Washington University St. Louis and Vanderbilt University starts at this confluence of processing power, deep learning and the extreme volume of medical data.

We are applying deep learning to a predictive solution for sharpening the detail of images from magnetic resonance imaging (MRI) scans of the brain. The goal is to help physicians interpret the images to better diagnose tumors and assess responses to treatment.

Putting deep learning to work

If you’ve ever had an MRI, you know that scans can be noisy and slow, and you’re confined to a narrow, tube-like space that can be quite uncomfortable. Clinical engineers have developed techniques to reduce scanning time by producing undersampled, or incomplete, images. The problem is, such images can contain distortions that hinder accurate diagnoses.

Deep learning helps us reconstruct the raw images. Once we create the data model and populate it with thousands of known images, the system can learn what a normal brain looks like. Then, when we apply deep learning to the undersampled images, the solution fills in the gaps. Although our research concerns MRI scans of the brain, it is relevant to other specialties as well.

Such solutions will only be useful if they are user friendly to physicians who are expert in medicine but not computer science. After all, it is physicians with clinical expertise, rather than computer engineers, who best understand the connection between MRI images and the patient’s condition. We envision physicians accessing our solution from the cloud on their desktop PCs.

Powering a predictive solution

Advancing this vision requires a computing platform that is both powerful and easy to use. That’s where IBM plays a critical role. We use an IBM Power8 Server, the first generation of IBM servers designed to efficiently process big data in the cloud. This system forms the computational backbone of our research.

We also use IBM Spectrum Conductor Deep Learning Impact software, which made it easy for us to develop our first deep learning solution by breaking the design into discrete steps. The software also helps automate and accelerate system resource management, distributed processing and prototyping using our clinical data.

The IBM platform enables us to quickly test innovative ideas. And IBM’s timely technical support is essential to our work.

The solution we are developing can shorten physicians’ learning curve to utilize the most sophisticated analytical tools available. Patients everywhere will benefit from their ability to enhance image identification and improve diagnoses and treatments.

  

Watch Xiaoyu Jiang and Yong Wang discuss deep learning medical innovation:

Research Fellow, Vanderbilt University Institute of Imaging Science

Yong Wang

Assistant Professor of Gynecology and Obstetrics, Radiology and Biomedical Engineering at Washington University St. Louis

More AI/Watson stories

How to make campus life better with AI technology

In many organizations, business intelligence is the exclusive province of IT specialists and business analysts. However, those of us at Michigan State University (MSU) have a different approach. At MSU’s Division of Residential and Hospitality Services (RHS), we put IBM Watson Analytics into the hands of our operations managers. Its ease of use gives them […]

Continue reading

How to build trust in AI with blockchain technology

Machine learning and AI are all about data. We give AI-powered systems massive amounts of data to ingest and analyze, and then we trust the results. But I want to know how we can ensure the integrity of those systems, from the algorithms to the data sources. Solving the AI data-integrity issue I believe the […]

Continue reading

How AI technology can help make city life easier for all

My company, Shimizu Corp., has long followed the management principles of Shibusawa Eiichi, who held that economic activity and morality are inseparable. This harmony can be seen in the experimental system we developed with IBM Research to help people, including those who are disabled, enjoy barrier-free urban exploration through voice navigation on their iPhones. We […]

Continue reading