How-tos

Create Swift mobile apps with IBM Watson services, part 1: Sentiment Analysis

Share this post:

If you are a Swift developer looking to learn how you can build cognitive applications, then you are luck! A new 3-part course titled, “Create Swift mobile apps with IBM Watson services,” has been developed to help.

This 3-hour course on IBM’s developerWorks, provides a great overview of three of the most commonly used Watson services: Alchemy API; Visual Recognition; and Text to Speech. It then provides a step-by-step tutorial on how to use each service and extend the functionality of Swift-based, mobile apps. In this blog series, we will explore each service and tutorial so you can understand how and where it might be applicable to you.

The Alchemy API

So let’s start by looking at the Alchemy API. In the first part of the course, you will build a cognitive mobile application using Sentiment Analysis via the Alchemy API.

As you can see in the video above, this is not as difficult as it may seem. While the video shows the app built at an accelerated pace, most developers find it to be almost as easy as it looks.

As described, the Alchemy API offers a set of services that enable you to build apps which understand the content and context of text in webpages, news articles, and blogs. One of the most common use cases for cognitive applications is to build in functionality that will allow for personalization based on this understanding. To achieve this, the Sentiment Analysis capabilities of the Alchemy API are used.

We start with the Alchemy API and Sentiment Analysis first for two reasons:

  • it is an easier service to quickly started with
  • it provides a foundation for using the other Watson services and building more advanced functionality into your own apps

Demonstrating Sentiment Analysis

So what kind of things can you do with Sentiment Analysis? Let explore two demos and see for ourselves.

The first, is a simple Text Analysis Demo which allows you to analyze a text block or URL. Then determine whether the text and subjects represented in the text or content on the page are positive or negative. It is simple, but provide a quick illustration of how the service works.

The second, Your Celebrity Match takes this a bit further. It extracts content from social media feeds. Then, compares it against those of other individuals to compare and determine which feeds are most similar and most different.  It is fun, but more importantly shows how you can take known data, analyze it and use it to influence how you interact with them.

Using this, you could predict behaviors and preferences based on this analysis. A retailer could make more personalized recommendations to their customers. And using existing data sources in your own databases, you can increase the accuracy.

In the part 2 of this blog series, we will discuss the Visual Recognition service and tutorial.

More How-tos stories

Deploying to IBM Cloud Private 2.1.0.2 with IBM Cloud Developer Tools CLI

IBM Cloud Private is an application platform for developing and managing on-premises, containerized applications. It is an integrated environment for managing containers that includes the container orchestrator Kubernetes, a private image repository, a management console, and monitoring frameworks.

Continue reading

IBM Cloud Garage Method Field Guide

What does it mean to behave like a startup? How can you transform your business? Field-tested answers to these questions and others are found in the IBM Cloud Garage Method Field Guide. Presented in a fun and visual format, the Field Guide introduces the method and its related practices and architectures that you need to quickly develop quality products.

Continue reading

Hands-on time with IBM Cloud Private

To give you an idea of the IBM Cloud Private environment, the IBM Cloud Garage Method site hosts a hands-on demonstration using actual private servers, allocated on demand for your evaluation. The brief 10 minute demo guides you through the steps of installing a storefront shopping application defined by several Kurbernetes-based microservices. Once installed, you’ll see how to monitor its deployment and running status.

Continue reading