To simplify data access and empower users to leverage trusted information, organizations need a better approach that provides better insights and business outcomes faster, without sacrificing data access controls. There are many different approaches, but you’ll want an architecture that can be used regardless of your data estate. A data fabric is an architectural approach that enables organizations to simplify data access and data governance across a hybrid multicloud landscape for better 360-degree views of the customer and enhanced MLOps and trustworthy AI. In other words, the obstacles of data access, data integration and data protection are minimized, rendering maximum flexibility to the end users.

With this approach, organizations don’t have to move all their data to a single location or data store, nor do they have to take a completely decentralized approach. Instead, a data fabric architecture implies a balance between what needs to be logically or physically decentralized and what needs to be centralized.

Thanks to that balance, there is no limitation to the number of purpose-fit data stores that can participate in the data fabric ecosystem. This means you get a global data catalog that serves as an abstraction layer, single source of truth and single point of data access with infused governance.

 Check out the Data Differentiator to learn more about Data Fabric. 

Six core capabilities are essential for a data fabric architecture:

  1. A knowledge catalog: This abstraction layer provides a common business understanding of the data for 360-degree customer views, which allows for transparency and collaboration. The knowledge catalog serves as a library with insights about your data. To help you understand your data, the catalog contains a business glossary, taxonomies, data assets (data products) with relevant information like quality scores, business terms associated with each data elements, data owners, activity information, related assets and more.
  2. Automated data enrichment: To create the knowledge catalog, you need automated data stewardship services. These services include the ability to auto-discover and classify data, to detect sensitive information, to analyze data quality, to link business terms to technical metadata and to publish data to the knowledge catalog. To deal with such a large volume of data within the enterprise, automated data enrichment requires intelligent services driven by machine learning.
  3. Self-service governed data access: These services enable users to easily find, understand, manipulate and use the data with key governance capabilities like data profiling, data preview, adding tags and annotations to datasets, collaborate in projects and access data anywhere using SQL interfaces or APIs.
  4. Smart integration: Data integration capabilities are crucial to extract, ingest, stream, virtualize and transform data regardless of where it’s located. Using data policies designed to simultaneously maximize performance and minimize storage and egress costs, smart integration helps ensure that data privacy. Protection is applied on each data pipeline.
  5. Data governance, security, and compliance: With a data fabric, there’s a unified and centralized way to create policies and rules. The ability to automatically link these policies and rules to the various data assets through metadata, such as data classifications, business terms, user groups, roles and more are easily accessible. These policies and rules, which include data access controls, data privacy, data protection and data quality, can then be applied and enforced in large scale across all the data during data access or data movement.
  6. Unified lifecycle: End-to-end lifecycle to composes, builds, tests, deploys, orchestrates, observes and manages the various aspects of the data fabric, such as a data pipeline, in a unified experience using MLOps and AI.

These six crucial capabilities of a data fabric architecture enable data citizens to use data with greater trust and confidence. Irrespective of what that data is, or where it resides — whether in a traditional datacenter or a hybrid cloud environment, in a conventional database or Hadoop, object store or elsewhere — the data fabric architecture provides a simple and integrated approach for data access and use, empowering users with self-service and enabling enterprises to use data to maximize their value chain.

Learn more about a data fabric approach and how it applies to governance and privacy, multicloud data integration, 360-degree customer views and MLOps and trustworthy AI use cases.

Was this article helpful?

More from Cloud

IBM Tech Now: April 8, 2024

< 1 min read - ​Welcome IBM Tech Now, our video web series featuring the latest and greatest news and announcements in the world of technology. Make sure you subscribe to our YouTube channel to be notified every time a new IBM Tech Now video is published. IBM Tech Now: Episode 96 On this episode, we're covering the following topics: IBM Cloud Logs A collaboration with IBM and Anaconda IBM offerings in the G2 Spring Reports Stay plugged in You can check out the…

The advantages and disadvantages of private cloud 

6 min read - The popularity of private cloud is growing, primarily driven by the need for greater data security. Across industries like education, retail and government, organizations are choosing private cloud settings to conduct business use cases involving workloads with sensitive information and to comply with data privacy and compliance needs. In a report from Technavio (link resides outside, the private cloud services market size is estimated to grow at a CAGR of 26.71% between 2023 and 2028, and it is forecast to increase by…

Optimize observability with IBM Cloud Logs to help improve infrastructure and app performance

5 min read - There is a dilemma facing infrastructure and app performance—as workloads generate an expanding amount of observability data, it puts increased pressure on collection tool abilities to process it all. The resulting data stress becomes expensive to manage and makes it harder to obtain actionable insights from the data itself, making it harder to have fast, effective, and cost-efficient performance management. A recent IDC study found that 57% of large enterprises are either collecting too much or too little observability data.…

IBM Newsletters

Get our newsletters and topic updates that deliver the latest thought leadership and insights on emerging trends.
Subscribe now More newsletters