In recent years, the rapid adoption of Kubernetes has emerged as a transformative force in the world of cloud computing. Organizations across industries have been drawn to Kubernetes’ promises of scalability, flexibility and streamlined application deployment. However, while Kubernetes offers an array of benefits in terms of application management and development efficiency, its implementation is not without challenges. As more businesses migrate to Kubernetes-driven environments, an unintended consequence has become increasingly apparent: a surge in cloud costs. The very features that make Kubernetes so attractive are also contributing to a complex and dynamic cloud infrastructure, leading to new cost drivers that demand careful attention and optimization strategies.

For example, inaccurate resource requests set on workload resources in Kubernetes can lead to massive over-provisioning of resources, causing significant increases in cloud costs. When resource requirements are overestimated, Kubernetes will scale the underlying infrastructure, leading to waste. This inefficient utilization can create workload scheduling issues, hamper cluster performance and trigger additional scaling events, further amplifying expenses. Mitigating these issues, particularly at scale, has proven to be a tremendous challenge.

Furthermore, right-sizing workload resources in Kubernetes is challenging at scale due to the sheer volume and diversity of applications. Each has varying resource demands, making it complex to accurately determine optimal resource allocations for efficient utilization and cost-effectiveness. As the number of deployments increases, manual monitoring and adjustment become impractical, necessitating automated tools and strategies to achieve effective right-sizing across the entire cluster.

Modernization requires continuous optimization

To continuously right-size Kubernetes workload resources at scale, three key elements are crucial. First, resource utilization needs to be continuously tracked across all workloads deployed on a cluster, enabling continuous assessment of resource needs accurately. Next, machine learning capabilities play a vital role in optimizing resource allocations by analyzing historical data and predicting future resource demands for each deployment. Lastly, automation is needed to proactively deploy changes and reduce toil on developers. These technologies ensure that Kubernetes resources are efficiently utilized, leading to cost-effectiveness and optimal workload performance across the entire infrastructure.

StormForge Optimize Live delivers intelligent, autonomous optimization at scale

StormForge Optimize Live combines automated workload analysis with machine learning and automation to continuously optimize workload resource configurations at enterprise scale.

Optimize Live is deployed as a simple agent, automatically scans your Kubernetes cluster for all workload types and analyzes their usage and settings with machine learning. Right-sizing recommendations are generated as patches and are updated continuously as new recommendations come in.

These recommendations can be implemented quickly and easily by integrating the recommendations into your configuration pipeline, or they can be implemented automatically, putting resource management on your Kubernetes cluster on autopilot.

StormForge users see much-improved ROI in their cloud-native investments while eliminating manual tuning toil—freeing up engineering bandwidth for higher-value initiatives.

Now available in the IBM Cloud catalog

Sign up for a 30-day free trial of StormForge Optimize Live to get started.

Deploy StormForge Optimize Live on IBM Cloud Kubernetes Service clusters via the IBM Cloud catalog


More from Cloud

Kubernetes version 1.28 now available in IBM Cloud Kubernetes Service

2 min read - We are excited to announce the availability of Kubernetes version 1.28 for your clusters that are running in IBM Cloud Kubernetes Service. This is our 23rd release of Kubernetes. With our Kubernetes service, you can easily upgrade your clusters without the need for deep Kubernetes knowledge. When you deploy new clusters, the default Kubernetes version remains 1.27 (soon to be 1.28); you can also choose to immediately deploy version 1.28. Learn more about deploying clusters here. Kubernetes version 1.28 In…

Temenos brings innovative payments capabilities to IBM Cloud to help banks transform

3 min read - The payments ecosystem is at an inflection point for transformation, and we believe now is the time for change. As banks look to modernize their payments journeys, Temenos Payments Hub has become the first dedicated payments solution to deliver innovative payments capabilities on the IBM Cloud for Financial Services®—an industry-specific platform designed to accelerate financial institutions' digital transformations with security at the forefront. This is the latest initiative in our long history together helping clients transform. With the Temenos Payments…

Foundational models at the edge

7 min read - Foundational models (FMs) are marking the beginning of a new era in machine learning (ML) and artificial intelligence (AI), which is leading to faster development of AI that can be adapted to a wide range of downstream tasks and fine-tuned for an array of applications.  With the increasing importance of processing data where work is being performed, serving AI models at the enterprise edge enables near-real-time predictions, while abiding by data sovereignty and privacy requirements. By combining the IBM watsonx data…

The next wave of payments modernization: Minimizing complexity to elevate customer experience

3 min read - The payments ecosystem is at an inflection point for transformation, especially as we see the rise of disruptive digital entrants who are introducing new payment methods, such as cryptocurrency and central bank digital currencies (CDBC). With more choices for customers, capturing share of wallet is becoming more competitive for traditional banks. This is just one of many examples that show how the payments space has evolved. At the same time, we are increasingly seeing regulators more closely monitor the industry’s…