December 29, 2021 By Hemankita Perabathini 4 min read

Deploy lightweight, simple and fast Java microservices to Red Hat OpenShift.

Once you have a hypothesis and some spare time, what do you do? You perform an experiment! That is exactly what our Go To Markets – Assets and Architecture team did.

Throughout this blog series, you’ll learn about how our team implemented the StoreFront application using the latest and greatest capabilities from Quarkus and deployed it on Red Hat OpenShift. With the StoreFront application, we have created a microservices-based reference architecture that gives users a digital storefront experience and CI/CD pipelines to build and deploy the containers it is made up of on Red Hat OpenShift.

In this blog series, we will examine common and edge-case scenarios when implementing standard microservices projects with the Quarkus framework. Furthermore, we will also walk you through different deployment options. This includes deploying the microservices locally on your workstation and utilizing the most advanced techniques — such as CI/CD with GitOps to deploy them onto a Red Hat OpenShift cluster. 

You won’t want to miss this blog series if you are currently developing Java-based microservices. 

Topics we plan to cover

  • Our journey with Quarkus
  • Application security: Keycloak is our go-to solution
  • Application security: IBM Security Verify
  • Deploy StoreFront locally using Docker
  • Deploy StoreFront to Red Hat OpenShift using Quarkus
    • Part 1: StoreFront with Keycloak integration.
    • Part 2: StoreFront with IBM Security Verify integration
  • Let’s adopt Tekton: CI pipelines for StoreFront
  • Kickoff continuous delivery for StoreFront using ArgoCD
  • Our GitOps way for StoreFront: OpenShift, Tekton and ArgoCD

If interested, you can find additional information about the StoreFront application and Java microservices architectures in the following resources:

You can also browse the Quarkus guides to become a Quarkus expert.

How did it all begin?

There is no doubt that things are moving pretty fast. For years, Java has been widely used around the world and still is one of the most popular languages. On the other hand, Java is also known for being slow and memory-intensive. Recently, there has been a lot of talk about Quarkus, a Java framework designed to address these issues. Quarkus is also particularly well suited for cloud environments. 

We decided to evaluate the features of Quarkus by adopting it to implement and containerize the different microservices of which the StoreFront application is comprised. After successfully deploying these microservices locally using Docker, we realized that containers provide agility unlike anything we’ve experienced before. At this point, we had already gained enough confidence to port the StoreFront application to Red Hat OpenShift:

There is a lot of buzz around CI/CD nowadays, which results in more than tens of options, tools and technologies to implement a CI/CD strategy. In our opinion, CI/CD is not only about being able to deliver code at high speed but also doing it reliably. As a result, we decided to use Tekton, a powerful and flexible open-source framework for creating CI/CD systems that is a project included in the Cloud Native Computing Foundation (CNCF) and also natively leveraged by the Red Hat OpenShift Pipelines.

But is this enough? Fortunately, we didn’t stop there. We went a step further and found GitOps to be the best way to implement continuous deployment for cloud native applications. By utilizing established and emerging tools — including Git, Tekton and ArgoCD — we are looking forward to enabling a developer-centric experience when operating infrastructure:

Our journey so far was exciting and full of rewards. Take a ride with us as we share this blog post that will become a part of a larger series.

A glimpse of the StoreFront reference application

This is a simple store front shopping application that displays a catalog of vintage computing devices, where users can search and purchase products. To interact with the backend data, it uses separate BFF (Backend for Frontend) services:

In this architecture, there are several components:

  • In this omnichannel application, an AngularJS web application is integrated.
  • To fetch data, the web application invokes its own backend microservice — also known as a BFF or Backend for Frontend — that follows the Backend for Frontend pattern. A frontend developer usually writes backend logic for the frontend in this layer. Node.js Express Framework is used to implement the Web BFF. These microservices are packaged in Docker containers, and they are managed by a Kubernetes cluster.
  • The BFFs invoke another layer of reusable Java microservices. The reusable microservices are written using Quarkus. 
  • Below are the Java microservices we used in StoreFront:
  • All these microservices run inside a Kubernetes cluster — for example, the IBM Cloud Kubernetes Service or Red Hat OpenShift — using Docker.


You’ll find this multi-part series to be very helpful if you’re interested in learning about scalable, secure, resilient and all-around better Java microservices and deploying them to Red Hat OpenShift using the latest and greatest tools and techniques available out there. We will cover a DevOps pipeline that will encompass more than just CI/CD and, along with that, you will also get a chance to see how testing tools, security scans and more are implemented for our StoreFront application. 

Additionally, if you would like some hands-on experience with Quarkus, check out guides. There are over a dozen Quarkus-specific tutorials for deploying Java applications on the world’s most flexible, open-source application runtime, built for cloud native and microservices. Also, we have an awesome collection of open-source assets that help you to quickly deliver to Red Hat OpenShift. If you are interested, don’t forget to check out the Cloud Native Toolkit and our IBM Garage Methodology Practices.

Was this article helpful?

More from Cloud

IBM Tech Now: April 8, 2024

< 1 min read - ​Welcome IBM Tech Now, our video web series featuring the latest and greatest news and announcements in the world of technology. Make sure you subscribe to our YouTube channel to be notified every time a new IBM Tech Now video is published. IBM Tech Now: Episode 96 On this episode, we're covering the following topics: IBM Cloud Logs A collaboration with IBM and Anaconda IBM offerings in the G2 Spring Reports Stay plugged in You can check out the…

The advantages and disadvantages of private cloud 

6 min read - The popularity of private cloud is growing, primarily driven by the need for greater data security. Across industries like education, retail and government, organizations are choosing private cloud settings to conduct business use cases involving workloads with sensitive information and to comply with data privacy and compliance needs. In a report from Technavio (link resides outside, the private cloud services market size is estimated to grow at a CAGR of 26.71% between 2023 and 2028, and it is forecast to increase by…

Optimize observability with IBM Cloud Logs to help improve infrastructure and app performance

5 min read - There is a dilemma facing infrastructure and app performance—as workloads generate an expanding amount of observability data, it puts increased pressure on collection tool abilities to process it all. The resulting data stress becomes expensive to manage and makes it harder to obtain actionable insights from the data itself, making it harder to have fast, effective, and cost-efficient performance management. A recent IDC study found that 57% of large enterprises are either collecting too much or too little observability data.…

IBM Newsletters

Get our newsletters and topic updates that deliver the latest thought leadership and insights on emerging trends.
Subscribe now More newsletters