New to IBM Maximo? Read this three-part primer that explores its critical role in many of the world’s asset-intensive industries, and what it can do for your organization.

Each Industrial Revolution has been catalyzed by the convergence of technologies from multiple domains. Industry 4.0 is no different.

Machines were first introduced into a manual manufacturing process between 1760 and 1820.  But, it was the concurrent introduction of means to power machines that led to the First Industrial Revolution. An example is the first commercially viable Textile Power Loom which was introduced by Edmund Cartwright in England. It used water-power at first. But in two short years water-powered looms were replaced with looms powered with the steam-engines created by James Watts. The relatively smaller steam-engines allowed textile looms to be deployed in many sites enabling persons to be employed in factories.

Multiple innovations such as new manufacturing methods, electricity, steel, and machine tools ushered in the era of mass manufacturing and the Second Industrial Revolution. Henry Ford’s River Rouge Complex in Michigan, completed in 1928, deployed these modern inventions and was the largest integrated factory in the world at that time. The era of mass manufacturing subsequently brought about an explosion in the consumption of goods by households.

The Third Industrial Revolution improved Automation and Controls across many industries through the use of Programmable Logic Controllers (PLCs). PLCs were first introduced by Modicon in 1969. PLC-based automation and controls were introduced to a mostly mechanical world, and helped improve yields and decrease manufacturing costs. This revolution helped provide cheaper products.

Fast forward to the Industry 4.0 Revolution made possible by the synergistic combination of expertise from the worlds of Operating Technologies (OT) and Information Technologies (IT). The current revolution is bringing about intelligent, interconnected and autonomous manufacturing equipment and systems. This is by augmenting deep domain expertise within OT companies with IT technologies such as artificial intelligence (AI), big data, cloud computing and ubiquitous connectivity.

The widespread use of open protocols across heterogeneous equipment makes it feasible to optimize horizontally across previously disjointed processes. In addition, owner/operators of assets can more easily link the shop-floor to the top-floor. Connections across multiple layers of the ISA-95/Purdue Model stack provides greater vertical visibility and added ability to optimize processes.

The increased integration brings together both OT data (from sensors, PLCs, DCS, SCADA systems) and IT data (from MES, ERP systems). However, this integration has different impacts on different functions such as operations, engineering, quality, reliability, and maintenance.

To learn more about how the integration positively impacts the organization, read the next installment in this series to see how you can bridge the gap between OT and IT teams to improve production resilience.

Read Part Two.

 

Was this article helpful?
YesNo

More from Cloud

Enhance your data security posture with a no-code approach to application-level encryption

4 min read - Data is the lifeblood of every organization. As your organization’s data footprint expands across the clouds and between your own business lines to drive value, it is essential to secure data at all stages of the cloud adoption and throughout the data lifecycle. While there are different mechanisms available to encrypt data throughout its lifecycle (in transit, at rest and in use), application-level encryption (ALE) provides an additional layer of protection by encrypting data at its source. ALE can enhance…

Attention new clients: exciting financial incentives for VMware Cloud Foundation on IBM Cloud

4 min read - New client specials: Get up to 50% off when you commit to a 1- or 3-year term contract on new VCF-as-a-Service offerings, plus an additional value of up to USD 200K in credits through 30 June 2025 when you migrate your VMware workloads to IBM Cloud®.1 Low starting prices: On-demand VCF-as-a-Service deployments begin under USD 200 per month.2 The IBM Cloud benefit: See the potential for a 201%3 return on investment (ROI) over 3 years with reduced downtime, cost and…

The history of the central processing unit (CPU)

10 min read - The central processing unit (CPU) is the computer’s brain. It handles the assignment and processing of tasks, in addition to functions that make a computer run. There’s no way to overstate the importance of the CPU to computing. Virtually all computer systems contain, at the least, some type of basic CPU. Regardless of whether they’re used in personal computers (PCs), laptops, tablets, smartphones or even in supercomputers whose output is so strong it must be measured in floating-point operations per…

IBM Newsletters

Get our newsletters and topic updates that deliver the latest thought leadership and insights on emerging trends.
Subscribe now More newsletters