In Denmark, around 50 percent of electricity comes from renewable sources, mostly wind power. Our mandate is to increase that to 100 percent by 2030. This creates some challenges for Energinet, Denmark’s electric transmission systems operator, because renewable energy always fluctuates. We have to manage the grid carefully to maintain the security of supply.

We’ve developed tools to manage the amount of renewable energy we have today, but as it increases, we’ll need new and better tools. Otherwise, we’ll likely have to make costly infrastructure investments or face brownouts and blackouts.Our current control room tools are good at modeling the grid to simulate error conditions, but the simulations and live data feeds generate big data that remains untapped. That led us to wonder whether an analytical tool could discover insights to improve grid management.

Big data and AI: Advancing grid management decision making

To test the concept, we collaborated with IBM Services on a pilot project. The result was a real technological leap for Energinet—a multicloud solution that gleans operational predictions from big data using AI.

Accessing the system from a web interface, operators get help answering questions like, “What would happen if we took equipment out of service at this time?” or “Based on past experience, which assets are at risk of failing?” It’s a huge step forward in decision support.

An important use case is helping operators evaluate planned maintenance. If the maintenance team wants to take down a line or transformer, operators need to assess the risks. The system’s predictions are likely to be more accurate than their intuitions. Other uses include assessing grid operations, understanding system bottlenecks and suggesting cost-effective investments.

From design to proof of concept in three months

Energinet personnel had the idea for the solution, but participating in design thinking sessions helped us understand what is possible and how to do it. Then, with an agile approach we developed the proof of concept in just three months. That’s very fast and cost effective compared to traditional systems development for the control room.

Key to the analytical power is preparing the big data for AI. Systems running on the Microsoft Azure cloud first create simulation and real-time datasets. IBM Cloud Pak for Data on Azure allows users to query the system and AI generates the analysis.

Of course, the usefulness depends on operators trusting the AI. The pilot addressed this by offering explanations for its predictions. We tested the capability by simulating outages with known causes and remedies. Experienced operators easily recognized what to do and why, and then compared their thinking to the AI analysis. The fact that they generally agreed increased trust in the system.

A positive step for a green future

In conceiving the solution, we aimed to help operators understand the risks of removing equipment from the grid. The project proved that possibility and more.

In the future, we plan to advance the concept to where we can look ahead, perhaps over the next 24 hours, to suggest actions that prevent a cascade of problems that might come later. Such AI capabilities can help assure a secure and cost-effective renewable energy supply.

Watch Einar Ritterbusch discuss about moving to renewable energy in a cost-effective way:

More from Cloud

Hybrid cloud examples, applications and use cases

7 min read - To keep pace with the dynamic environment of digitally-driven business, organizations continue to embrace hybrid cloud, which combines and unifies public cloud, private cloud and on-premises infrastructure, while providing orchestration, management and application portability across all three. According to the IBM Transformation Index: State of Cloud, a 2022 survey commissioned by IBM and conducted by an independent research firm, more than 77% of business and IT professionals say they have adopted a hybrid cloud approach. By creating an agile, flexible and…

Tokens and login sessions in IBM Cloud

9 min read - IBM Cloud authentication and authorization relies on the industry-standard protocol OAuth 2.0. You can read more about OAuth 2.0 in RFC 6749—The OAuth 2.0 Authorization Framework. Like most adopters of OAuth 2.0, IBM has also extended some of OAuth 2.0 functionality to meet the requirements of IBM Cloud and its customers. Access and refresh tokens As specified in RFC 6749, applications are getting an access token to represent the identity that has been authenticated and its permissions. Additionally, in IBM…

How to move from IBM Cloud Functions to IBM Code Engine

5 min read - When migrating off IBM Cloud Functions, IBM Cloud Code Engine is one of the possible deployment targets. Code Engine offers apps, jobs and (recently function) that you can (or need) to pick from. In this post, we provide some discussion points and share tips and tricks on how to work with Code Engine functions. IBM Cloud Code Engine is a fully managed, serverless platform to (not only) run your containerized workloads. It has evolved a lot since March 2021, when…

Sensors, signals and synergy: Enhancing Downer’s data exploration with IBM

3 min read - In the realm of urban transportation, precision is pivotal. Downer, a leading provider of integrated services in Australia and New Zealand, considers itself a guardian of the elaborate transportation matrix, and it continually seeks to enhance its operational efficiency. With over 200 trains and a multitude of sensors, Downer has accumulated a vast amount of data. While Downer regularly uncovers actionable insights from their data, their partnership with IBM® Client Engineering aimed to explore the additional potential of this vast dataset,…

IBM Newsletters

Get our newsletters and topic updates that deliver the latest thought leadership and insights on emerging trends.
Subscribe now More newsletters