

WebSphere Process Server 6.1:
Business Process Choreographer

query() and queryAll()
How to access processes, tasks and work items through the API and JDBC

Rolf Bäurle, Frank Neumann
IBM Development Lab Boeblingen, Germany

December 2007

© IBM Corporation, 2007

Business Process Choreographer: query() and queryAll()

Table of Contents

1 Introduction...5

2 Business Process Choreographer API ...5

3 Work item management and authorization...6
3.1 How and when work items get created ..7
3.2 Database tables for work items..9
3.3 Published queryable views ... 10
3.4 Group work items... 11
3.5 Authority for business process admin and reader.. 11
3.6 Authorization for the queryAll() API call ... 11

4 Query clauses.. 12
4.1 Select clause ... 12
4.2 Where clause.. 13
4.3 Order-by clause ... 13
4.4 Applying a threshold .. 14
4.5 Skipping tuples .. 14
4.6 Timestamps and time zones.. 15
4.7 Current date ... 16
4.8 Object IDs ... 17
4.9 Syntax for constant values ... 17
4.10 Complex queries.. 18

5 Query processing ... 19
5.1 Parameter markers and prepared statements .. 20
5.2 Correlation names... 20
5.3 From clause, join algorithm, join hierarchy .. 20

5.3.1 Outer join for optional data.. 22

5.3.2 Multiple references to a view.. 22
5.4 Adding the authorization term – the system administrator role........................ 23
5.5 Query execution isolation level ... 24

6 The QueryResultSet... 24
6.1 Reading QueryResultSet data .. 25
6.2 QueryResultSet meta data.. 27

7 Stored queries ... 28

8 People assignment expiration and caching .. 28
8.1 Refresh people query results using the administrative console.......................... 29

 2

Business Process Choreographer: query and queryAll()

8.2 Refresh people query results using administrative commands........................... 29
8.3 Refresh people query results using the refresh daemon...................................... 29

9 queryProcessTemplates() and queryTaskTemplates() .. 29

10 Using views with JDBC .. 30
10.1 Retrieving a database connection ... 30
10.2 Running a JDBC select statement .. 31

11 Including custom tables or views .. 32
11.1 An example .. 32
11.2 Defining a custom table ... 33
11.3 Registering a custom table ... 34

12 Related references.. 35

13 About the authors.. 35

14 Trademarks ... 35

 3

Business Process Choreographer: query() and queryAll()

Abstract
Business Process Choreographer is the process and human task engine in WebSphere®
Process Server version 6.

Business processes are defined using WS-BPEL (Business Process Execution Language)
and are deployed as part of a J2EE application in a WebSphere Process Server.

The Business Process Choreographer API offers access to entities (such as processes and
tasks), stored in a runtime database.

This document explains technical details for the query() and queryAll() API functions
and provides best practices on how to use them.

© Copyright International Business Machines Corporation 2007. All rights reserved.

 4

Business Process Choreographer: query and queryAll()

1 Introduction
During deployment of business process and human task applications in WebSphere
Process Server, template information for entities, such as business processes, activities
and tasks are created in the Business Choreographer runtime database (sometimes
referred to as “BPEDB”).

At runtime, Business Process Choreographer creates corresponding instance entities and
manages these throughout their lifecycle.

A user may interact with an application based on Business Process Choreographer in
order to retrieve a “todo” list of tasks that are ready to be claimed or to list process
instance information. Therefore, the system must maintain a relationship between
accessed objects (such as tasks) and the logged-in user.

This relationship between a person (or a group of persons), an entity and a particular
reason is called a work item.

In addition to work list management, Business Process Choreographer leverages work
items also for authorization and access control.

Understanding the concept of work items in Business Process Choreographer is
therefore critical when interacting with the API, particularly with the query() and
queryAll() API functions.

The Javadoc in the WebSphere Process Server Info Center [InfoCenter] and additional
papers on the Business Process Choreographer programming model provide a good
overview of the general concepts. The BPC Samples page [BPCSamples] has ready-to-
use code samples that demonstrate interaction with Business Process Choreographer

This document provides conceptual and technical details for the query() and queryAll()
implementation. Note however that the implementation of some details described in this
document may change in future versions of the product without further notice.

2 Business Process Choreographer API
The Business Process Choreographer API comes in several renderings and is accessible
from EJB-, Web Service- or JMS clients.

Examples in this document are based on the generic session EJB interface for the human
task manager and the business flow manager, respectively.

In addition to API functions, a number of database views are published for direct access
to entities and work items through a customer program, for example using JDBC or
SQLJ.

Note that the human task manager API primarily offers access to task-related
information and operations while the business flow manager API is designed to handle
business process related requests. Because authorization and work items is a concept that
spans both components, the respective APIs both include query() and queryAll()
functions with comparable functionality.

 5

Business Process Choreographer: query() and queryAll()

The query() API call is designed to return information about entities in the context of
an existing work item. You typically don’t get entities that are not associated with work
items. If multiple entities are referenced in a single query() API call, a defined order
determines which entity must be correlated with a work item and thereby determines if a
specific combination of entities is returned in the result set.

The queryAll() API call is designed to return information about all entities, regardless
of an existing work item. This is particularly useful for monitoring or administrator
purposes. Users calling this API function must be in a specific J2EE role (refer to 5.4).

Both the query() and queryAll() API operate in a SQL-like way on the underlying
runtime database and return, quite similar to JDBC, a query result set with rows and
columns (see section 6, The QueryResultSet).

The purpose of these API functions is to offer a programming model that is as close as
possible to SQL and adds enhancements to shield the user from either database specific
implementations or coherences internal to Business Process Choreographer.

A set of additional API functions are available that return entities and work items as
Java™ objects. Please refer to the Javadoc in the Information Center [InfoCenter] for
more details on related function such as getAllWorkItems() and getAllActivities().

3 Work item management and authorization
Work items in Business Process Choreographer describe a relationship between an entity,
a person (or a group or persons) and also include a particular reason.

The WORK_ITEM database view or the com.ibm.task.api.WorkItem interface gives a
overview of the attributes (and also available values) of a work item.

They include

• A unique ID for the work item. As with other entities in the Business Process
Choreographer API, an implementation of the OID interface is used to identify
objects exposed through the API.

• The ID and type of the referenced entity. See the following section for details
about which entities can have work items.

• The ID and type of an associated entity. This typically identifies an enclosing
object (such as the business process) and is used, for example, for efficient
cleanup purposed when a business process is deleted.

• Either one attribute of “owner id”, “group name” and “everybody” is set to
describe the relationship to the person(s) this work item is dedicated to.

Work items are used by Business Process Choreographer to allow access to entities, such
as tasks and business processes.

 6

Business Process Choreographer: query and queryAll()

If the principal name of a user who is logged onto WebSphere Process Server has at least
one work item for an entity, the user is allowed to access its content.

A work item is considered to be assigned to a specific user if either

• The owner_id field of the work item contains the user’s name

• The everybody attribute is set for a work item

• The group_name field contains the group name of a group the user belongs to
(only valid if group work items are used)

Further checks in the Business Process Choreographer API and navigation engine for
processes and tasks can restrict additional operations depending on the reason of a work
item, however, to retrieve information using a query() operation, the existence of any
work item is sufficient.

Note that the major difference between query() and queryAll() is the way how they
handle authorization. While query() implements instance-based authentication with the
help of work items, the queryAll() call requires membership in certain J2EE roles for
authorization (refer to 5.4).

3.1 How and when work items get created
Work items are created for entities with a defined people assignment expression for
human interaction. An example for such an assignment would be members of a certain
LDAP group as the potential owners of a modeled human task.

In addition to modeled people assignment expressions, Business Process Choreographer
also creates work items whenever human interaction is required. An example would be
an error condition where an administrator needs to manually restart a process activity
and therefore receives a work item.

Additional work items get created based on conceptual correlation between entities. For
example:

• If an administrator of a business process should be able to manage its enclosed
activities as well, additional work items for these activities are created.

• Inline human tasks (that is, tasks modeled in a business process) play both the
role of tasks and activities. Creation of an additional activity work item allows the
task administrator to manage the corresponding activity entity as well.

In general, Business Process Choreographer creates work items for the following entities:

• Human task (both inline and standalone)

• Human task templates

• Human task escalations

• Human task escalation templates

• Business processes

• Activities in a business process

 7

Business Process Choreographer: query() and queryAll()

• Events

Work items based on modeled people assignment expressions are created when the
entity is created or enters the ready state.

Additional work items get created in the context of API interaction or subsequent
processing of processes and task, where required.

People assignment expressions define, who (a person or a group of people) can perform
a certain role for an entity. When an entity is activated, a work item with a corresponding
reason is created for each qualifying user or group:

Reason Human
Task

Escalation Business
Process

Activity Event

Potential Starter X - X - -

Potential Owner X X - - -

Instance Creator X - X - -

Administrator*) X - X - -

Editor X - X - -

Reader X - X -

Potential Sender - - - - X

Escalation
Receiver

- X - - -

In addition to these work items, the Business Process Choreographer navigation engine
creates the following dedicated work items:

Reason Human
Task

Escalation Business
Process

Activity Event

Starter X - X - -

Originator X . - - -

Administrator*) X - - X -

*) An administrator work item for an inline human task is created for persons receiving
an administrator work item for the enclosing business process. If an invoke activity goes
into an error state, an administrator work item is created as well.

Since work items are used to implement authorization (the right to access and read the
data for a certain entity), the additional administrator work items for an inline human
task also allow the business process administrators to access the enclosed human task.
See section 5.4Error! Reference source not found. for details.

 8

Business Process Choreographer: query and queryAll()

3.2 Database tables for work items
During configuration of Business Process Choreographer, a relational database is
associated with the business process container (sometime referred to as “BPEDB”). The
database stores all template (model) and instance (run-time) data necessary to manage the
business processes and tasks.

The Business Process Choreographer database schema contains tables that are used
internally and published views (see section 3.3, Published queryable views).

Data relating to work items is stored in the following tables (note that table names in the
Business Process Choreographer database schema usually end with _T, while views do
not have this convention, also please note that names and content of internal tables are
subject to change in future versions without further notice) :

• WORK_ITEM_T
This table contains one row for a relationship between an entity (for example, a
human task) and a person or a group of people. If more than one reason results
in this relationship (for example, if a person is both administrator and starter of a
process), one row is created for each reason.

• RETRIEVED_USER_T

If the relationship is between an entity and a group of people (usually the result
of a people assignment expression for a task), this table contains all qualifying
users retrieved from the people directory provider for a certain people
assignment expression.

• WI_ASSOC_OID_T

Due to the hybrid way of dealing with inline human tasks as both tasks and
process activities, this table is used to associate work items for human task to
corresponding activities in a BPEL process. This table is also used to manage
authorization for dependent entities.

• STAFF_QUERY_TEMPLATE_T
During the deployment of tasks with people assignment expressions, the
expressions are stored in a precompiled format in this table. If a process defines
the same people assignment expression more than once, there is only one entry
for this expression in the table, that is, if people assignment expressions are
syntactically identical, they are shared in this table (if post-processing is disabled
or sharing is explicitly enabled).

• STAFF_QUERY_INSTANCE_T

If a people assignment expression is evaluated during task and business process
lifecycle, an instance of the expression is created together with a timestamp when
it expires. If the result of the people assignment evaluation is a single person or a
group of people the user IDs are inserted into the RETRIEVED_USER_T table.
Otherwise the everybody or group name information is stored in the
WORK_ITEM_table. Subsequent instances of the same task or business process
reuses the same staff query instance as long as it is independent from specific
context or post-processing.

T

 9

Business Process Choreographer: query() and queryAll()

The WORK_ITEM view is defined as a join of the tables WORK_ITEM_T, WI_ASSOC_OID_T and
RETRIEVED_USER_T to contain again one row per relationship and user, even if a group of
people is assigned to a certain role. This view (together with additional published views)
is the foundation for the query() API function.

3.3 Published queryable views
Since not only the work items themselves are of interest but also information about the
referenced objects, such as human tasks and business processes, the query() API
function also provides access to this information.

In order to do so (and to introduce an additional abstraction layer that allows the
underlying tables to be changed in future versions of Business Process Choreographer), a
couple of additional views are defined to be queryable by the query() and queryAll()
API functions:
View name correlation name (see 5.2)
--

WORK_ITEM WI

TASK TA

TASK_DESCR TAD

TASK_CPROP TACP

TASK_TEMPL TT

TASK_TEMPL_DESC TTD

TASK_TEMPL_CPROP TTCP

ESCALATION ESC

ESCALATION_DESC ESCD

ESCALAION_CPROP ESCCP

ESCALATION_TEMPL ESCT

ESC_TEMPL_DESC ETD

ESC_TEMPL_CPROP ETCP

APPLICATION_COMPONENT AC

PROCESS_TEMPLATE PT

PROCESS_TEMPL_ATTR PTA

PROCESS_INSTANCE PI

PROCESS_ATTRIBUTE PA

ACTIVITY AI

ACTIVITY_ATTRIBUTE AA

ACTIVITY_SERVICE AV

EVENT EI

QUERY_PROPERTY QP

For a detailed list of the available columns/attributes for those views, see [InfoCenter].

The query() and queryAll() API calls care about the way and order how views are
combined by adding appropriate join predicates. In order to return typed objects in the
result set, further information about database column types are required by the
underlying implementation.

If an application based on Business Process Choreographer wishes to reference custom
tables or views in query() or queryAll() API calls, these custom tables need to be
declared and registered with WebSphere Process Server. See chapter 11, Including
custom tables or views, for more details.

 10

Business Process Choreographer: query and queryAll()

3.4 Group work items
The previously described concept of assigning work items to persons results in a single
entry in the work item view per qualifying user. This is a reasonable and efficient
approach if only few users qualify for defined roles in a task people assignment
expression and if membership of users to groups does not change frequently. Even in
cases where a fair amount of users qualify, but the set of qualifying users is shared
between multiple process instances, this is a reasonable approach because the amount of
data created is limited.

If, on the other hand, thousands of users typically qualify for a task, assignment of users
to groups change frequently or context variables in people assignment expressions
prevent the resulting user list from being shared, the built-in concept of group work
items is indicated.

With this option enabled in the human task container property page of the WebSphere
admin console, the group_name column for work items is included and considered for
work item queries.

Note that during process and task modeling in WebSphere Integration Developer, the
corresponding people expression criteria must be used.

When deciding for group work items, a trade-off must be made between the number of
users qualifying for a task and the number of groups the user belongs to. Due to a SQL
IN predicate for the group_name column that is generated when processing work item
queries, performance is impacted when a user belongs to many groups. In general,
however, the group work item feature still outperforms regular people assignments when
many users qualify for an entity’s role.

3.5 Authority for business process admin and reader
While it may be obvious that a people assignment expression for a task results in
corresponding work items for this object and for the particular reason, there are also
cases where the creation of a single work item triggers creation of additional ones.

Users in the business process administrator and business process reader role also have
“inherited” rights on the enclosed activities. Business Process Choreographer handles
this in to ways: in some cases, additional work items are created for dependent objects
(such as activities in a business process), in other cases additional predicates for the
authorization term (see 5.4, Adding the authorization term – the system administrator
role) are created to ensure that queries asking for both business process and activity data
return results even if the logged-in user does not have a corresponding work item for the
activity itself.

3.6 Authorization for the queryAll() API call
The queryAll() API call can only be invoked by users that are in the J2EE role
BPESystemAdministrator, BPESystemMonitor, TaskSystemAdministrator or
TaskSystemMonitor. Mapping of users or groups to these roles is defined during

 11

Business Process Choreographer: query() and queryAll()

installation and configuration of Business Process Choreographer and is a system wide
setting. The WebSphere administrative console may be used to change the mapping for
the business process and human task container.

4 Query clauses

4.1 Select clause
As in SQL, the select clause specifies which information is to be retrieved from the
database system. The view and column names that are available are listed in [InfoCenter].

The select clause in Process Choreographer's query() API call must conform to the
following syntax (for a complete description please refer to the JavaDoc [InfoCenter]) :

• The select clause can contain one or more column specifications, each of which
describes one column of a queryable view.

• Multiple column specifications are separated by a comma ",".

• Each column specification must contain exactly one token of the form
view.column, where view is one of the queryable views listed previously, and
column is a column in this view. Each expression in the select clause containing a
period "." is assumed to be a view-column token.

• The view.column token can be surrounded by any SQL "decoration" that is
understood by the database system. This decoration, however, must not change
the returned type. Aggregation functions (MIN, MAX), for example, change the
returned type and are therefore not supported. The COUNT() function however is
supported and returns the number of qualified records as a numerical value.

If the table or column name is not recognized, a QueryUnknownTableException or
QueryUnknownColumnException is thrown.

Examples of valid select clauses are:

• Get all work item IDs
"WORK_ITEM.WIID"

• Get distinct task IDs and corresponding work item reason
"DISTINCT TASK.TKIID, WORK_ITEM.REASON"

• Get process name and creation time
"PROCESS_INSTANCE.NAME, PROCESS_INSTANCE.CREATED"

• Basic arithmetic, as long as it does not change the resulting column type and the
database system supports the operation
"TASK.PRIORITY * 10"

• Column aliases
"WORK_ITEM.REASON AS ROLE"

Samples of invalid select clauses are:

• Aggregation functions (except count)
"MIN(ACTIVITY.CREATED)"

 12

Business Process Choreographer: query and queryAll()

• Type conversion (casting) that results in incompatible types
"CAST (ACTIVITY.CREATED AS CHAR)"

• Unknown table or column names in a view.column token
"WORK_ITEM.DOES_NOT_EXIST"
"MYVIEW.VALUE"

• Expressions without a valid view.column, for example, returning a constant
value, calling a stored procedure or user defined function
"WORK_ITEM.WIID, 'text', myfunction(xy)"

4.2 Where clause
The where clause restricts the result set of the query and specifies filter criteria.

It is an optional parameter. If this parameter is null no filter is applied.

The where clause is processed in a similar way to the select clause. You must follow certain
rules and most of the syntax of the underlying database system can be used for the
expressions (for a complete description please refer to the JavaDoc [InfoCenter]):

• Each view.column token must refer to a known queryable view and column - as
described in section 4.1, Select clause. If the table or column name is not
recognized, a QueryUnknownTableException or QueryUnknownColumnException is
thrown.

• The operands can be combined using the standard logical operators AND and OR.

• Subselects, which perform another full query in the where clause, are not generally
supported. However, see section 4.10, Complex queries, for ways to get around
this limitation.

Examples of valid where clauses are:

• Restrict query to all tasks in state READY
"TASK.STATE = TASK.STATE.STATE_READY"

where the syntax for the value on the right hand side is explained in section 4.9.

• Restrict query to all tasks in state READY and to work items with reason
POTENTIAL_OWNER – the latter information is redundant because tasks in state
READY always have a work item with reason POTENTIAL_OWNER but it might
improve the query performance due to an additional filter
"TASK.STATE = TASK.STATE.STATE_READY AND WORK_ITEM.REASON =
WORK_ITEM.REASON.REASON_POTENTIAL_OWNER"

Note: Certain column types, such as object IDs and timestamps, require a special syntax
that is described later in this paper.

4.3 Order-by clause
The order-by clause can specify one or more columns that are used for ordering the result
set. This is an optional parameter, and ordering is not applied if the parameter is null.

Processing the order clause is similar to what happens with the select clause, and the same
syntactical restrictions apply.

 13

Business Process Choreographer: query() and queryAll()

You can specify the order direction by adding descending or ascending tokens.

The ordering operation is completely processed by the underlying database system,
which means that the character order for certain locales (collation) and code pages must
be specified there. Business Process Choreographer performs no post-processing when it
creates the query result set.

4.4 Applying a threshold
Optionally, the number of rows fetched and returned in the QueryResultSet (refer to
chapter 6) can be limited.

You should consider using this when the expected result is large and it is acceptable to
limit the number of rows returned.

The implementation differs, and depends on what the underlying database system
supports – see below.

Here are some examples that show how Business Process Choreographer uses this value
to restrict the result set:

• For DB2 Universal Database® (DB2 UDB®), the resulting SELECT statement is
restricted by a
"FETCH xxx FIRST ROWS ONLY"

• For Oracle®, the where clause of the SELECT statement is extended by T

"AND ROWNUM <= xxx"

In case a order-by clause is specified as well the resulting SQL statement for Oracle
will be of the following form:
"SELECT * FROM (SELECT … ORDER BY YYY) WHERE ROWNUM <= xxx"

This way the result set will be ordered first and then the threshold will be applied.

• For all other database systems, the result set limitation is specified on the JDBC
result set, which is, for example, the recommended way for Apache Derby.

4.5 Skipping tuples
The skipTuples parameter specifies the number of records from the beginning of a
result set that are skipped and are not returned in the QueryResultSet object.

If the JDBC driver of the database system supports the absolute() method for the
java.sq.ResultSet class the cursor on the result set can be moved to the given row
number. Otherwise the cursor is moved using the next() method without materializing
the row.
This parameter can be used together with the threshold parameter to implement paging
in a client application, for example, to retrieve the first 20 items, then the next 20 items,
and so on.

This is an optional parameter and no rows are skipped if this parameter is set to null.

 14

Business Process Choreographer: query and queryAll()

4.6 Timestamps and time zones
The representation of times and dates normally depends on the current locale and time
zone settings.

To support a multi-time zone environment, where a client application, the WebSphere
Process Server, and the database back end can each reside in a different time zone,
Business Process Choreographer has to take the different time zones into account, and
provides ways to perform any necessary conversions.

Time information in the Business Process Choreographer database is stored in UTC
(Universal Time Coordinated) in order to allow correlation of data written by multiple
WebSphere Process Servers (potentially running in different time zones). A conversion
might be required both before presenting time information on a user interface, and after
getting time information from a user interface.

This conversion affects query(), queryAll() and getTimestamp() on the query result
set.

The query() and queryAll() API calls expect timestamps in where clauses to be passed
using a TS('') pseudo function, optionally a time zone can be specified. If no time zone
is given (the parameter is null), timestamps are assumed to be in UTC and are stored in
the database without any conversion.

Sample for passing a timestamp in UTC using the TS() function (bfm denotes the remote
object for the business flow manager EJB API):
bfm.queryAll("ACTIVITY.AIID",

 "ACTIVITY.STARTED > TS('2007-10-01T10:01:07')",

 (String) null, (Integer) null, (Integer) null, (TimeZone) null);

The same sample if the timestamp is in Pacific Standard Timezone (PST):
bfm.queryAll("ACTIVITY.AIID",

 "ACTIVITY.STARTED > TS('2007-10-01T10:01:07')", (String) null,

 (Integer) null, (Integer) null, TimeZone.getTimeZone("PST"));

That is all you need to do in terms of time zone conversion to pass timestamp
information from a client environment to Business Process Choreographer. The API
functions convert the timestamp to UTC and continue working with the converted value.

The timestamp in the TS('') function is expected to be in the format:
YYYY-MM-DDThh:mm.ss

Everything except the year is optional, that is, can be omitted and is then set with default
values. Thus, a timestamp expression only specifying the date part TS('2007-10-01') is
valid, too.

Keep in mind, that if your multi-tier application runs on a process server processing
requests from a remote web client, you must get the time zone information from the
user's Web browser when passing it to the Query API.

The getTimestamp() function of the QueryResultSet returns a java.util.Calendar
object that contains both time and time zone information. The time is always in UTC,
independent of the time zone information. The time zone, that is set in the Calendar
object is either UTC or the one passed in the previous query() or queryAll() call.

 15

Business Process Choreographer: query() and queryAll()

If you have a multi-tier environment where a Web client may have a different time zone
setting compared to the machines where your JSP runs, this time zone information can
help with the following conversion. If your code is running on the client machine, you
can also ignore the time zone setting in the Calendar object and use the local settings.

To display time stamp information, you have to implement the proper time zone
conversion and use a formatter class, such as java.text.DateFormat or
java.text.SimpleDateFormat. The following sample shows how the value in a Calendar
object can be displayed taking into account the time zone information that comes with
the Calendar object (note that htm denotes the remote object of the human task manager
EJB API):
resultSet = htm.query("TASK.COMPLETED ", null, null, null, null,

 TimeZone.getTimeZone("Europe/Berlin"));

 while(resultSet.next())

 {

 Calendar cal = resultSet.getTimestamp(1);

 // target timezone as specified in query() (or UTC if null)

 // in this example, “Europe/Berlin”

 TimeZone tz = cal.getTimeZone();

 // Use either DateFormat or SimpleDateFormat

 DateFormat fmt = DateFormat.getDateTimeInstance(

 DateFormat.LONG, DateFormat.LONG);

 fmt.setTimeZone(tz);

 // Print the resulting

 System.out.println("Task completed: " + fmt.format(cal.getTime()));

 }

The way that Business Process Choreographer fills the Calendar object when using a
QueryResultSet object is the same for API objects like ActivityInstanceData, returned
by an API call like getActivityInstance(AIID). Since you do not pass a time zone
parameter to this call, the Calendar object has the current local time zone set as a default.

4.7 Current date
Instead of explicitly passing the current date into a TS() function call of a where clause,
the CURRENT_DATE token can be used to express this. This is important for defining work
lists that should return a result that depends on the current time.

Most database systems also support arithmetic with timestamp columns. Because the
CURRENT_DATE token is replaced with a parameter marker (please refer to section 5.1) in
further processing, adding and subtracting time to the CURRENT_DATE token is not
supported, however, you can specify additional time information with the comparing
column.

The following example shows how to use CURRENT_DATE in where clauses with DB2
Universal Database syntax (the syntax for other database systems might differ):
"... TASK.COMPLETED + 3 DAYS > CURRENT_DATE ..."

Example of invalid use:
"... TASK.COMPLETED > CURRENT_DATE − 3 DAYS"

 16

Business Process Choreographer: query and queryAll()

Note that CURRENT_DATE is a token that is interpreted by Business Process Choreographer
and replaced with the current timestamp (in UTC) on the WebSphere Process Server.
Similar expressions such as CURRENT_TIMESTAMP are provided by database systems like
DB2 UDB and are resolved with the current (local) system time on the database server.

4.8 Object IDs
To identify application objects, such as activities or business processes, identifiers (IDs)
are introduced for most of these objects. In the database, IDs are represented as 16 bytes
of raw (binary) data.

To handle IDs in application programs, there is also a string representation that can be
used in a where clause. A process instance, for example, can be identified by an ID, such
as:
_PI:800300f3.9aee33.9e1ced53.530c00a0

To pass this ID in a qualifying where clause of a query() or queryAll() call, it has to be
specified using the ID() pseudo function:
… AND PROCESS_INSTANCE.PIID = ID('_PI:800300f3.9aee33.9e1ced53.530c00a0') .

The ID() pseudo function translates the ID string representation back to its binary
format and passes it to the underlying database system. Again, the corresponding SQL
statement uses parameter markers and replaces correlation names:
… AND PI.PIID = ?

If an ID is selected in the result set, either getOID() or getString() can be applied to
the result set. The first returns an OID object, the second returns the corresponding string
representation. If you have the choice of working either with OID objects or with strings,
you should use the OID representation, because passing an object is considerably faster
than transforming a string representation.

Note: If you omit the ID() pseudo function for object IDs, and the database system
performs an implicit type conversion from an object ID string to the binary database
representation, you do not get an SQL error. In this case, you will only notice that the
result set is empty and no rows are returned.

It is important to check your where clauses carefully to ensure object IDs are handled
correctly.

4.9 Syntax for constant values
Some columns in queryable views are defined as numeric, but should only contain certain,
distinct values. This is comparable to an enumeration in programming languages.

Instead of comparing these column values with the concrete integer value, it is good
practice to compare these values against predefined constants.

For example, the WORK_ITEM.REASON column has one of the following values:

• REASON_POTENTIAL_OWNER=1

• REASON_EDITOR=2

• REASON_READER=3

 17

Business Process Choreographer: query() and queryAll()

• REASON_OWNER=4

• REASON_POTENTIAL_STARTER=5

• REASON_STARTER=6

• REASON_ADMINISTRATOR=7

• REASON_POTENTIAL_SENDER=8

• REASON_ORIGINATOR=9

• REASON_ESCALATION_RECEIVER=10

• REASON_POTENTIAL_INSTANCE_CREATOR=11

Assume you are interested in all work items for objects for which you have an owner
work item (the ones you claimed).

A valid where clause for this query would be:
" ... WORK_ITEM.REASON = 4 ..."

Since this obscures the meaning, it is recommended that you use the predefined constant
values with the following syntax:
" ...WORK_ITEM.REASON = WORK_ITEM.REASON.REASON_OWNER ..."

Note: The constant expression on the right is constructed according to the format:
<view>.<column>.<constant name>

The constant name must be fully qualified in the sense that it is has to be scoped by
view.column to avoid problems with constants defined for other columns.

Another way to replace fixed numerical values by the more flexible named constants is to
use the values defined in the corresponding API object:
" ... WORK_ITEM.REASON = " + WorkItemData.REASON_OWNER + "..."

The corresponding API objects does not only contain all defined constant expressions as
integer values, but also have additional valuable information for all columns.

You may check out the entity class (for example, WorkItemData) in the Java
documentation or explore the defined symbolic names in WebSphere Integration
Developer by inspecting the corresponding Java class.

4.10 Complex queries
As already mentioned, sub queries are, in general, not supported. However, if you know
the rules and algorithms used, you can run sub queries.

Consider the common requirement for querying the currently valid business process
template.

Each process template includes a VALID_FROM field that specifies the timestamp when the
template becomes valid. To discover which template is selected by Business Process
Choreographer if a new process with name processTempl1 is started, see the following
example. It shows a where clause passed to a queryProcessTemplate() API call (see 9,
queryProcessTemplates() and queryTaskTemplates()), which is very similar to the query()
API call except that it returns ProcessTemplate API objects rather than a
QueryResultSet:
"PROCESS_TEMPLATE.NAME = 'processTempl1' AND PROCESS_TEMPLATE.VALID_FROM =

(SELECT MAX(VALID_FROM) FROM PROCESS_TEMPLATE WHERE

NAME=PROCESS_TEMPLATE.NAME AND VALID_FROM <= CURRENT_DATE)"

 18

Business Process Choreographer: query and queryAll()

The subselect clause returns the maximum value of VALID_FROM, not later than the
current date. Understanding how the name comparison, NAME=PROCESS_TEMPLATE.NAME
works, requires knowledge from the previous sections of this document: This clause gets
transformed using the PT alias for the PROCESS_TEMPLATE view and parameter markers:
"PT.NAME = ? AND PT.VALID_FROM = (SELECT MAX(VALID_FROM) FROM

PROCESS_TEMPLATE WHERE NAME=PT.NAME AND VALID_FROM <= ?)"

Note that the VALID_FROM column in MAX() and NAME column at the end are not replaced
because they are not recognized and do not contain a period ".". The same is true for
the table name PROCESS_TEMPLATE in the from clause.
Also note that the MAX()function can be used here because it is placed inside the
subselect and therefore it does not change the returned type (refer to 4.1).

Because PROCESS_TEMPLATE.NAME is replaced by PT.NAME, the query returns the desired
result.

5 Query processing
The parameters of the query() and queryAll() API call in Business Process
Choreographer are designed to be as similar as possible to SQL syntax. Deviations and
enhancements are mainly to assist in describing Business Process Choreographer
specifics (such as ID handling).

The implementation in Business Process Choreographer does no full SQL parsing but
rather applies an efficient scanning of the passed parameters.

The resulting SQL statement can be introspected by enable traces for Business Process
Choreographer (the generated JDBC statements are actually pretty close to what is
specified in the parameters for query() and queryAll()).

In general, processing of query calls includes the following steps:

• Collecting referenced views and replacing view names with defined correlation
names (see 5.2)

• Replacing literals (strings and numbers) and constant values with parameter
markers

• Parsing timestamps and IDs, and converting them to JDBC values in a prepared
statement

• Adding an appropriate from clause to the SQL statement

• Adding join information between the referenced views (either inner join or left
outer join)

• Optionally adding a result set limitation threshold value (depending on the
database system)

The result is a JDBC prepared statement that is processed by the database system.

The details of these steps are discussed later in this document.

 19

Business Process Choreographer: query() and queryAll()

If the optional skipTuples parameter is used, appropriate steps are applied to skip rows
in the JDBC result set. Depending on the capabilities of the JDBC driver, skipping rows
is supported natively or must be emulated by just reading but not materializing rows of
the JDBC result set.

It is important to be aware that Business Process Choreographer does not parse the
clauses passed to it because parsing is performed by the database system. This allows the
SQL syntax that is available for the database system to be fully exploited, rather than
requiring a restricted subset supported by all possible database systems.

5.1 Parameter markers and prepared statements
Each literal expression, such as a string or a numerical constant value, that is found in the
where clause of a query() API call is replaced by a parameter marker.

For example, the following comparison expression in a where clause:
"... TASK.ORIGINATOR = 'Frank' ..."

is replaced using a parameter marker:
"... TASK.ORIGINATOR = ? ..."

Applications, such as a Web client, normally run a limited set of queries, differing only in
string literals (for example, consider a query to retrieve all work items belonging to the
logged in user).

Without the use of prepared statements, these queries would have to be compiled in the
database system for each user, causing a significant performance impact.

After replacing parameter markers, however, these queries are syntactically identical, and
the database system only needs to build an access plan once, and can reuse it for
subsequent queries.

5.2 Correlation names
 4.10To shorten the SQL statement and to allow for complex queries (see), correlation

names are assigned to all queryable views (refer to list in chapter 3.3).

A query, such as
queryAll(“TASK.NAME”, “TASK.ORIGINATOR = ‘Frank’”, (String) null,

 (Integer) null, (Integer) null, (TimeZone) null);

will result in the following SQL statement:
SELECT TA.NAME FROM TASK TA WHERE TA.ORIGINATOR = ?

where the parameter marker will be set with the given value ‘Frank’ when the SQL
statement is executed.

5.3 From clause, join algorithm, join hierarchy
For those familiar with SQL, it might seem strange that select clauses and where clauses
must be given to the query() API call, while the from clause is omitted.

 20

Business Process Choreographer: query and queryAll()

The reason is that the from clause, which specifies the views to be queried is computed
based on the referenced views in the select, where, and order-by clauses. While these clauses
are scanned, the set of referenced views is built that becomes the basis for the from clause.

For the query() API call, the WORK_ITEM view plays a special role in this process because
it is always added to the set of views, even if none of the query() parameters references it
explicitly.

In addition to computing the from clause of the resulting SQL statement, the necessary
join predicates for these views are added to the where clause. Business Process
Choreographer uses internally defined dependencies of views and the matching join
columns to compile the join predicate. The where clause of a query() API call must
typically not contain join predicates – they either collide with the ones that are
automatically generated or are (in the best case) just superfluous.

For example, consider the following select clause (assuming both where and orderBy clauses
are not set) where a user wants to query the state of all tasks for which she/he has a work
item, using the query() API call:
selectClause = "TASK.STATE"

Internally, the SQL from clause is formed by all referenced views, which in this example is
only TASK, plus the WORK_ITEM view:
fromClause = "WORK_ITEM WI, TASK TA"

The where clause gets the proper join predicate appended – in this case, leveraging the
knowledge that the work item object id for referenced task entities contains the task’s
TKIID:
whereClause = "WI.OBJECT_ID = TA.TKIID"

While this appears to be a rather straightforward operation, it can become more complex
if multiple entities are involved.

Consider the following select clause (again for simplicity, the where clause is assumed to be
not set) where the user wants to do the same query as above but is also interested in the
name of the enclosing process instance for inline human tasks:
selectClause = "TASK.STATE, PROCESS_INSTANCE.NAME"

The SQL from clause becomes:
fromClause = "WORK_ITEM WI, TASK TA, PROCESS_INSTANCE PI"

However, what about the additional join predicates for the where clause?

Business Process Choreographer uses a built-in hierarchy of entities (the so-called join
level) and knowledge about which columns to use for the join predicate that fits the user's
expectation:
whereClause = "WI.OBJECT_ID = TA.TKIID AND

 TA. CONTAINMENT_CTXT_ID = PI.PIID”

An alternative (rejected) join predicate could have been:
"WI.OBJECT_ID=PI.PIID AND PI.PIID=TA. CONTAINMENT_CTXT_ID"

However, this would have returned information about all tasks where the user has a work
item for the enclosing process rather than having a work item for the task, which is

 21

Business Process Choreographer: query() and queryAll()

undesirable and does not fit the authorization concept in Business Process
Choreographer.

5.3.1 Outer join for optional data
By default, Business Process Choreographer adds join predicates for referenced database
views using an inner join. This is desirable if the result should contain attributes from
multiple views and the result only makes sense if a corresponding entry exists for all
referenced views. As an example, a query referencing both (inline) human tasks attributes
and business process attributes is expected to return a result if an inline task and its
corresponding business process can be found.

However, there are view combinations where additional information (such as a task’s
description in a specific language) is optional.

If the desired user interface contains both attributes from the task view and the task’s
description for a given language, the result should return the task information, even if no
corresponding description exists. Hence, the expected behavior is different and depends
on the views that are joined.

Technically speaking, for join predicates with optional data, a SQL outer join is generated.
Business Process Choreographer defines a couple of views that are considered to be
optional join partners (mainly process, activity and task attributes, query properties and
descriptions for tasks and escalations) and automatically generates outer joins for these in
the right way.

5.3.2 Multiple references to a view
Now think about how to generate a query that returns information about processes for
that two given custom attributes are set, for example Street and City. Using the following
where clause
where =”PROCESS_ATTRIBUTE.NAME=’Street’ AND PROCESS_ATTRIBUTE.NAME=’City’;

 a SQL statement is generated that – when executed - will not return the expected result
because there is no attribute that is named Street and City as well (an attribute can only
have a single name).

To solve this problem the custom attribute view has to be referenced twice for this
example, once for the attribute Street and once for the attribute City.

In order to reference such multiple occurrences of a view in the select, where and order
clauses, an index number must be added at the end of the view name.

For example, the following select and where clause can be used to query process instance
information along with values of custom property Street (referenced with index 1) and
City (referenced with index 2).
selectClause =”DISTINCT PROCESS_INSTANCE.PIID,

 PROCESS_ATTRIBUTE1.VALUE, PROCESS_ATTRIBUTE2.VALUE”;

whereClause =”PROCESS_ATTRIBUTE1.NAME=’Street’ AND

 PROCESS_ATTRIBUTE2.NAME=’City’;

 22

Business Process Choreographer: query and queryAll()

5.4 Adding the authorization term – the system administrator
role

 3As described in section , Work item management and authorization, work items are
used for both authorization and assignment of “todos”.

Technically, this authorization concept is realized by adding corresponding SQL
predicates to the where clause that make sure that:

WORK_ITEM.OWNER_ID equals to the principal name of the logged in user

or

WORK_ITEM.EVERYBODY is set to true

or

WORK_ITEM.GROUP_NAME is included in the security context of the logged in user1.

With the previously described mechanism of adding the WORK_ITEM view and proper join
predicates, this completes the instance-based authorization concept for the query() API
call in Business Process Choreographer.

This concept implies that regular users solely get associated data for which they have
work items. If the user does not have a work item assigned for the object, no
corresponding data can be retrieved using the query() API call.

There is however an exception to this rule: for users in J2EE role
BPESystemAdministrator or TaskSystemAdministrator, the previously mentioned
authorization term is not added. As a result, a work item (actually, any work item) must
still exist, but it may be assigned to any user, not necessarily the one in J2EE role
BPESystemAdministrator or TaskSystemAdministrator. The concept is, that users in
these special roles administer the system and therefore need to access all entities in the
system, even those for which they are not explicitly authorized.

It is important not to confuse the roles assigned during modeling (such as
“administrator” or “potential owner”) with the J2EE roles assigned during deployment.
Process/task model roles are defined on per process/task basis while the J2EE role
assignments are defined for the Business Process Choreographer J2EE applications and
also grant enhanced access to additional API functions.

Because Process Choreographer uses the principal name of the user logged on to
WebSphere Process Server for database comparisons, you must be careful if the
Application Server uses a case-insensitive directory for authentication, for example, the
user registry with an Application Server running on Windows. Although the user can log
on to the server with different case spellings of her logon name, the query() call might
return no results because the underlying database system performs a case-sensitive
comparison for the principal name. In such an environment, you must either handle this

1 This part is only added if the group work item feature is enabled.

 23

Business Process Choreographer: query() and queryAll()

in the client code, or make the users aware of the need to match cases exactly when
entering their logon user ID.

5.5 Query execution isolation level
For internal process or task navigation Business Process Choreographer uses the JDBC
transaction isolation level TRANSACTION_REPEATABLE_READ (for DB2 UDB that matches
to ‘Read Stability’) to execute nearly all of its SQL statements to guarantee data
consistency.

On the other hand a common work item query might read a lot of records in the
database tables and therefore this transaction isolation level would establish many
database locks and thus increase the risk for lock waits or deadlocks.

To minimize the impact for the process and task navigation Business Process
Choreographer uses the transaction isolation level TRANSACTION_READ_UNCOMMITTED for
work item queries – this approach guarantees best query performance and a minimum of
database locks.

6 The QueryResultSet
Both the query() and queryAll() functions of the human task manager and business
flow manager APIs return a query result set comprising rows and columns of the
requested result.

Example of a query() API call and result set processing:
import com.ibm.task.api.*;

 ...

 InitialContext initialContext = new InitialContext();

 // lookup the EJB home interface

 Object object =

 initialContext.lookup("com/ibm/task/api/HumanTaskManager");

 HumanTaskManagerHome htmHome = (HumanTaskManagerHome)

 javax.rmi.PortableRemoteObject.narrow(object,

 HumanTaskManagerHome.class);

 // get the remote interface

 HumanTaskManager htm = htmHome.create();

 // query all tasks that are ready to be claimed

 // and the enclosing process instance’s name

 QueryResultSet resultSet = htm.query(

 // select clause - what do we want to get?

 "PROCESS_INSTANCE.NAME, TASK.NAME",

 // where clause - what are the qualifying rows?

 "WORK_ITEM.REASON=WORK_ITEM.REASON.REASON_POTENTIAL_OWNER AND " +

 "TASK.STATE = TASK.STATE.STATE_READY",

 // order clause - specify the sort order

 "PROCESS_INSTANCE.NAME",

 // threshold - return first 10 entries only

 new Integer(10),

 24

Business Process Choreographer: query and queryAll()

 // no timezone specified

 (TimeZone)null

);

 // loop over results in the result set

 while(resultSet.next())

 {

 // print out selected columns,

 // keep in mind column indexes start with "1"

 System.out.println("Process instance name = " +

 resultSet.getString(1));

 System.out.println("Task name = " + resultSet.getString(2));

 }

Note, that a QueryResultSet is similar to a JDBC ResultSet object, particularly with
regard to cursor-driven navigation and column indexes starting with "1" instead of "0":

• After a query() or queryAll() call, the result set cursor is positioned before the
first entry.

• Applying next() moves the cursor one line down and returns false if the end of
the result set is reached.

• first() and last() can be used to revisit already read entries.

• size() returns the number of rows in the result set

However, in contrast to a JDBC ResultSet, a QueryResultSet object is serializable and
can be sent to a remote client. It also includes Business Process Choreographer specific
enhancements, such as ID and timestamp handling.

Navigating a QueryResultSet is always based on an in-memory copy of the result;
therefore the returned result set does not change when moving forward and backward,
even if the underlying data in the database is modified concurrently.

6.1 Reading QueryResultSet data
The QueryResultSet knows seven column types, defined in class QueryColumnInfo:

• TYPE_STRING
For any text string columns, this type is also used for columns stored in CLOBs.

• TYPE_NUMBER
For any numerical data, such as short, integer, or big integer.

• TYPE_TIMESTAMP

For any timestamp data. The resolution is normally milliseconds (where
supported by the database system).

• TYPE_BINARY
For binary strings and BLOB data.

• TYPE_BOOLEAN

For storing boolean values (true or false), the database representation is a
smallint column.

 25

Business Process Choreographer: query() and queryAll()

• TYPE_ID
For entity identifiers – each entity is identified by one or more of these identifiers,
for example, process instance ID (PIID) and activity instance ID (AIID). They are
stored in the database as a 16 byte long binary field.

• TYPE_DECIMAL

For any numerical data that can be represented as a floating point number, such
as double, integer etc.

The QueryResultSet provides functions to read data from the current cursor position

• byte [] getBinary()
Returns a column of TYPE_BINARY. For example, a VARBINARY column.

• Boolean getBoolean()

Returns "true", "false", or null. This function can also be applied to any numeric
column type and returns true for any non-null value.

• Integer getInteger(), Long getLong(), Short getShort(), Double
getDouble()

Returns the corresponding numerical value or null.
Note: These functions can be applied to all numerical types, however, if the
underlying data type is different, its type is "casted" which might result in a loss in
precision.

• Object getObject()

Returns a generic object for a column value. You can use this function if you do
not know the type or if it is only needed to be passed to another function.

• OID getOID()

If the column is an identifier, this function returns an OID object that is needed
for other API calls. You may have to cast the OID (base interface) to the more
specific OID class, such as PIID or AIID.

• String getString()
Returns a string representation of the specified column. This function is not only
applicable to character based database columns, it can also be used to get a string
representation of numerical values, timestamps, and OID values. For constant
values, this function returns the descriptive name of the constant rather than the
numerical value.

• Calendar getTimestamp()

Returns the timestamp value for the specified column. This function takes into
account the current client time zone setting. For details, see Timestamps and time
zones.

If a column index is specified that is outside the range of the number of columns, an
IndexOutOfBoundsException (runtime) exception is thrown.

If the function is not applicable to the corresponding column type, a
ClassCastException is thrown.

The safest way to avoid these exceptions is to examine the column types first and then
call the appropriate data accessor function on the query result set.

 26

Business Process Choreographer: query and queryAll()

6.2 QueryResultSet meta data
Normally, a program calling the query() API function knows which column in the
database it wants to query. However, if a user is allowed to specify arbitrary columns, a
generic GUI application must find out what the result set contains before it displays the
data.

For this purpose, the QueryResultSet class offers the following functions to get meta
data about the selected columns:

• numberColumns()
Returns the number of columns in the select clause.

• getColumnDisplayName(int columnIndex)
Returns the name of the column, which is useful for displaying headings on a
result table.

• getTableDisplayName(int columnIndex)
Returns the name of the table or view. This is useful for displaying headings on a
result table or to clarify to which view a column belongs.

• getColumnType(int columnIndex)
Returns the type of the column. This function returns one of the constants
defined for column types in the QueryColumnInfo interface: TYPE_STRING,
TYPE_NUMBER, TYPE_TIMESTAMP, TYPE_BINARY, TYPE_BOOLEAN, TYPE_ID,

TYPE_DECIMAL.

• size()
Returns the number of entries in the result set. This can be useful for allocating
memory before reading the result set data.

The following sample demonstrates how to display result set contents where the
structure (columns) are unknown because, for example, the query clauses have been
passed dynamically from user input. Note that an enhanced approach could also
investigate the column type and use the typed accessors of the QueryResultSet object
instead.
void displayResultSet(QueryResultSet resultSet)

 {

 // Print table heading

 for(int i=0; i<resultSet.numberColumns(); i++)

 {

 System.out.print(resultSet.getColumnDisplayName(i));

 System.out.print("\t");

 }

 System.out.println();

 // Print row data (String representations)

 while(resultSet.next())

 {

 for(int i=0; i<resultSet.numberColumns(); i++)

 {

 System.out.print(resultSet.getString(i));

 System.out.print("\t");

 }

 System.out.println();

 27

Business Process Choreographer: query() and queryAll()

 }

 }

7 Stored queries
Stored queries are pre-defined queries that are stored in the Business Process
Choreographer database. When they are processed they behave like any other ordinary
query that is run by the query() API.
There are two kinds of stored queries:

• public stored queries are visible and available to all users.
If different users run the same public stored query they usually will get different
result sets depending on the objects they are authorized to see - that is, they have
work items for.

• private stored queries are owned by a specific user and can only be executed by
this owner and the system administrator.

A stored query is identified by its name and ownership. This way a public and a private
stored query can have the same name. Also private stored queries that are owned by
different users can have the same name.

Stored queries can be augmented with parameters to increase reusability. These
parameters are resolved at runtime when the stored query is processed.

For example, the following where clause will query tasks that are named ‘MyTask’:
"TASK.NAME = ‘MyTask’

To make this query reusable so that you can also search for other task names you can
define the query using parameters:
"TASK.NAME = ‘@param1’

The parameter will be resolved at runtime by the parameter value that is passed to the
query method.

8 People assignment expiration and caching
For performance reasons, Business Process Choreographer caches the user IDs retrieved
from the registered and configured people directory provider during the evaluation of
people queries. In addition to this, the results of syntactically equivalent people queries
are shared within one process model (for further details please refer to [InfoCenter]).

By default, the list of cached user IDs is assumed to be valid for one hour. After this
duration a result is considered to be expired. It is also possible to override the default
expiration time for cached people query results of one hour.

The cached people query results are kept as long as the corresponding task or process
template exists in the database. Once a business process application is uninstalled and
thus the containing task and/or process templates are removed from the database the
people query results are deleted as well.

 28

Business Process Choreographer: query and queryAll()

If context variables are used in a people assignment criteria that prevent the results from
being shared or work items are frequently transferred the cached result list might become
that huge that query performance is negatively impacted. For those scenarios the
cleanupUnsedStaffQueryInstances.py script should be called regularly to remove all
people query results from the database that are currently not referenced by any work
item.

The same caching applies if the same people assignment expression was defined for
multiple inline human tasks within a business process, for example, where there are two
tasks, and the same group of people is allowed to claim the task.

There are several ways to refresh the people query results in the database.

8.1 Refresh people query results using the administrative
console

On the configuration tab of the Human Task container you can refresh all cached people
query results in the database. Note that this might cause high load on your database
system depending on the number of people assignments that are cached in the database.

8.2 Refresh people query results using administrative
commands

Using the refreshStaffQuery.py administration script you can refresh cached people
query results that satisfy some criteria.

For example, it is possible to refresh only those people query results that belong to a
certain task template or that contain some specified user names.

 8.1It is also possible to refresh all cached results as described in

8.3 Refresh people query results using the refresh daemon
The refresh daemon is a process that checks all cached people query results regularly for
currency. All cached people query results that are expired are refreshed.
The refresh daemon can be configured on the Human Task container. You can specify
the schedule by a WebSphere CRON calendar entry.

9 queryProcessTemplates() and queryTaskTemplates()
The query() and queryAll() API calls described previously are designed to query work
items and/or associated instance objects such as process instances and human task
instances.

To get information about business process and task templates, Business Process
Choreographer provides the queryProcessTemplates() and queryTaskTemplates()
methods.

 29

Business Process Choreographer: query() and queryAll()

The reason for providing additional API calls for business process templates and task
templates is because work items are typically not created for template data. Thus,
evaluating the access rights for a process template (mainly the
REASON_POTENTIAL_STARTER) is computed differently and do not require a join operation
with the WORK_ITEM view.

Furthermore, the queryProcessTemplates() and queryTaskTemplates() API calls are
simpler than query(), because they return the entire ProcessTemplateData respectively
TaskTemplateData API objects and not just the columns and attributes specified in a
select clause.

The where and order-by clauses, threshold, and timezone parameters are processed in the same
way as in the query() API call, though.

10 Using views with JDBC
In addition to access Business Process Choreographer data through the API, the
published database views can also be directly accessed with JDBC Java programs (or any
other technology, such as SQLJ).

Advantages running JDBC queries include:

• More flexibility in the way how views can be aggregated and joined

• Support for native database system functions, such as UDFs and stored
procedures

• May run in environments with no Business Process Choreographer access

• May run in J2SE environments

• Inclusion of and reference to database objects not belonging to Business Process
Choreographer’s known database schema

Downsides of using JDBC rather than query():

• No automatic joining of views

• No built-in security concept based on work items

• No database-system independent interface (SQL syntax slightly varies between
database systems)

10.1 Retrieving a database connection
When running in the context of a WebSphere Process Server, a JNDI lookup is used to
retrieve the datasource for Business Process Choreographer’s runtime database
(“BPEDB”). Within a J2EE environment, J2EE applications should define and use
resource references in order to access a data source.

Authorization may be defined via authentication alias on the data source or by passing
user credentials in the database connect request.

 30

Business Process Choreographer: query and queryAll()

Following the resource reference of the Business Process Choreographer data source as
defined in the deployment descriptor of the business process respective task container:
<resource-ref>

 <res-ref-name>jdbc/BPEDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Application</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

Referring to this entry a data source handle can be obtained via a JNDI lookup call, e.g.:
// JNDI lookup via comp/env

InitialContext ic = new InitialContext();

javax.sql.DataSource ds =

 (javax.sql.DataSource) ic.lookup(“java:comp/env/jdbc/BPEDB”);

// get a connection from the datasource

java.sql.Connection con = ds.getConnection();

It is important to use the J2EE programming model provided by the WebSphere
Application server in order to benefit from quality of service, such as connection pooling
and participation in global transaction.

If your application runs in a J2SE environment, either the data source class of the JDBC
driver or an instance of DriverManager may be used to retrieve a connection to the
database.

The above example illustrates how the existing Business Process Choreographer data
source could be used for your own application. If you plan to change data source settings,
it is highly recommended to define another dedicated data source for your client
application to avoid any impact on workflow or task processing.

10.2 Running a JDBC select statement
Following a sample for a simple JDBC based query that retrieves all tasks that have been
started by a given user ID:
// get a JDBC connection to the Business Process Choreographer

// runtime database (“BPEDB”)

java.sql.Connection con = ds.getConnection();

// create SQL statement string

String sql = "SELECT TA.NAME FROM TASK TA WHERE TA.STARTER = ?";

// prepare a JDBC statement

java.sql.PreparedStatement stmt = con.prepareStatement(sql);

// set the parameter value

stmt.setString(1, "Rolf");

// execute the query

java.sql.ResultSet result = stmt.executeQuery();

// loop over result set and print task name to stdout

while (result.next())

{7

 System.out.println(result.getString(1));

}

result.close();

stmt.close();

con.close();

 31

Business Process Choreographer: query() and queryAll()

Note that the above sample code does not include the logic to retrieve the data source
handle (refer to 10.1) nor does it demonstrate appropriate exception and error condition
handling.

11 Including custom tables or views
This section describes how own custom tables or views can be registered and used with
Business Process Choreographer API functions.

This might be helpful for applications combining process or task data stored in the
Business Process Choreographer runtime database with additional business data
provided by other systems or application code.

In order to fit into the existing Business Process Choreographer programming model,
both the logical structure and the correlation with published views must be defined and
declared. A custom table definition file is used to describe the layout and characteristics
of a custom table.

This custom table definition file is then registered in WebSphere Process Server.

The following sections guides through the steps of defining and registering a sample
table.

A simple scenario could just query a custom table using the queryAll() API function.
This table might be populated using triggers based on tables in the same database. The
benefit over direct JDBC access to the table is a common programming model and
database-independent helper functions, such as ID- and timestamp handling.

A more complex scenario could also include multiple custom tables that are combined
with multiple Business Process Choreographer views.

11.1 An example
For this document, we assume that an additional table named CUSTOM_DATA is created in
the Business Process Choreographer runtime database, for example using the following
DDL statement in DB2 UDB syntax:
CREATE TABLE CUSTOM_DATA (

 ID CHAR (16) FOR BIT DATA NOT NULL,
 NAME VARCHAR (128),

 STREET VARCHAR (128),

 ZIP INTEGER,

 CITY VARCHAR (128)

)

This CUSTOM_DATA table is populated by another application and we assume that the ID
column contains the process instance ID (PIID) of a running business process in Business
Process Choreographer.

A queryAll() API call is used to retrieve a process instance list that contains both
Business Process Choreographer runtime data as well as data extracted from the
CUSTOM_DATA table. The following code snippet assumes that a remote EJB interface to
the business flow manager API (bfm) has been retrieved before.

 32

Business Process Choreographer: query and queryAll()

String selectClause = “PROCESS_INSTANCE.NAME,

 PROCESS_INSTANCE.STARTER,

 CUSTOM_DATA.NAME, CUSTOM_DATA.CITY”;

String whereClause = “CUSTOM_DATA.ZIP = ‘71034’”;

QueryResultSet result = bfm.queryAll(selectClause, whereClause, …);

During processing of the queryAll() API call, Business Process Choreographer adds a
join predicate that includes the PIID column for PROCESS_INSTANCE and the ID column
for CUSTOM_DATA. The result set therefore contains data for process instance and
corresponding additional attributes from the CUSTOM_DATA table.

11.2 Defining a custom table
The structure of the table to register must be described in an XML file based on the
schema definition in bpecommon.jar/com/ibm/bpe/database/customtable.xsd. For the
example in the previous section, such a custom table definition file might be created as
follows:
<?xml version="1.0" encoding="UTF-8"?>

<customtable xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/schemas/workflow/wswf/customtable
http://www.ibm.com/schemas/workflow/wswf/customtable"
xmlns="http://www.ibm.com/schemas/workflow/wswf/customtable">

<querytableinfo tablename="CUSTOM_DATA" aliasname="CD" joinlevel="3">

 <joincolumn column="ID"/>

 <joincolumn column="ID" target="PROCESS_INSTANCE "/>

 <querycolumninfo

 columnname="ID" type="TYPE_ID" isNullable="false"/>

 <querycolumninfo

 columnname="NAME" type="TYPE_STRING" isNullable="true"/>

 <querycolumninfo

 columnname="STREET" type="TYPE_STRING" isNullable="true"/>

 <querycolumninfo

 columnname="ZIP" type="TYPE_NUMBER" isNullable="true"/>

 <querycolumninfo

 columnname="NUMBER" type="TYPE_STRING" isNullable="true"/>

 </querytableinfo>

</customtable>

The attributes in the <querytableinfo> element describe the custom table’s name and an
alias name that is used in the resulting SQL statement.

If multiple views are referenced in a query() or queryAll() API call, the joinlevel
attribute helps to find the view that should be used for a join with the custom table.

The following table lists recommended values for specific scenarios:

Join with Business Process Choreographer view Recommended joinlevel value

Process instance attribute 1

Process instance 3

 33

Business Process Choreographer: query() and queryAll()

Task instance 8

Work item 9

In addition to the joinlevel value, registration requires specification of the column used
to generate a corresponding join predicate. The <joincolumn> element defines the
column name that is generally used for join predicates. Additional <joincolumn>
elements with a target attributes may be used to specify the column to be used for a
specific target view.

In our example, we wish to combine process instance data with our custom data and
therefore use a joinlevel attribute of 3 and specify ID as the columns that should be
used to join with the PROCESS_INSTANCE view.

The <querycolumninfo> tags declare columns of the table or view that can be referenced
in the query()/queryAll() API call. Note that not all columns of a table need to be
registered. In our example, we choose to declare all columns (ID, Name, Street, ZIP
and City) of the CUSTOM_DATA table.

The available type attribute values (such as TYPE_ID, TYPE_STRING) are defined in class
QueryColumnInfo (see Javadoc in the WebSphere Process Server InfoCenter). Both type
and isNullable attribute values and must match the underlying table or view definition.

The custom table definition file may contain multiple custom tables.

11.3 Registering a custom table
The custom table definition file described in the previous section must be stored in a file
system location that is accessible by WebSphere Process Server.

In a clustered environment, this file (or a copy of it) must be stored in the same location
for each server.

Make sure that your WebSphere Process Server is up and running. Open the
administration console and navigate to Servers Application servers server1

 Business process container.

On the business process container panel select Custom Properties.

In the list of custom properties for the business container click “New” and add a new
entry named customTableDefinition with a value that specifies the file system location
of the previously created custom table definition file (for example,
d:\wps\customData.xml).

Restart your WebSphere Process Server for the new setting to be picked up.

Note that this registration affects the query()/queryAll() API functions for both the
business flow manager (BFM) API and the human task manager (HTM) API respectively,
even though registration is solely through the business process container.

You are now ready to use your registered custom table together with the built-in
Business Process Choreographer views.

 34

Business Process Choreographer: query and queryAll()

12 Related references
[BPCSamples] Business Process Choreographer Samples
http://publib.boulder.ibm.com/bpcsamp/index.html

[InfoCenter] WebSphere Process Server Info Center
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp

13 About the authors
The authors of this paper, Rolf Bäurle (baeurle@de.ibm.com) and Frank Neumann
(frank_neumann@de.ibm.com) both work in the Business Process Choreographer
development team at the IBM Germany Development Lab, Böblingen.

14 Trademarks
IBM, DB2, DB2 Universal Database, and WebSphere are trademarks or registered
trademarks of the IBM Corporation in the United States, other countries, or both.

Oracle is a registered trademark of the Oracle Corporation in the United States, other
countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

 35

http://publib.boulder.ibm.com/bpcsamp/index.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp
mailto:baeurle@de.ibm.com
mailto:frank_neumann@de.ibm.com

	 Abstract
	1 Introduction
	2 Business Process Choreographer API
	3 Work item management and authorization
	3.1 How and when work items get created
	3.2 Database tables for work items
	3.3 Published queryable views
	3.4 Group work items
	3.5 Authority for business process admin and reader
	3.6 Authorization for the queryAll() API call
	4 Query clauses
	4.1 Select clause
	4.2 Where clause
	4.3 Order-by clause
	4.4 Applying a threshold
	4.5 Skipping tuples
	4.6 Timestamps and time zones
	4.7 Current date
	4.8 Object IDs
	4.9 Syntax for constant values
	4.10 Complex queries

	5 Query processing
	5.1 Parameter markers and prepared statements
	5.2 Correlation names
	5.3 From clause, join algorithm, join hierarchy
	5.3.1 Outer join for optional data
	5.3.2 Multiple references to a view

	5.4 Adding the authorization term – the system administrator role
	5.5 Query execution isolation level

	6 The QueryResultSet
	6.1 Reading QueryResultSet data
	6.2 QueryResultSet meta data

	7 Stored queries
	8 People assignment expiration and caching
	8.1 Refresh people query results using the administrative console
	8.2 Refresh people query results using administrative commands
	8.3 Refresh people query results using the refresh daemon

	9 queryProcessTemplates() and queryTaskTemplates()
	10 Using views with JDBC
	10.1 Retrieving a database connection
	10.2 Running a JDBC select statement

	11 Including custom tables or views
	11.1 An example
	11.2 Defining a custom table
	11.3 Registering a custom table

	12 Related references
	13 About the authors
	14 Trademarks

