
IBM XL C/C++ for Linux on z Systems, V1.2

Optimization and Programming Guide
Version 1.2

SC27-5997-01

IBM

IBM XL C/C++ for Linux on z Systems, V1.2

Optimization and Programming Guide
Version 1.2

SC27-5997-01

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 251.

First edition

This edition applies to IBM XL C/C++ for Linux on z Systems, V1.2 (Program 5725-N01) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

© Copyright IBM Corporation 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Who should read this document v
How to use this document. v
How this document is organized v
Conventions vi
Related information ix

IBM XL C/C++ information ix
Standards and specifications x
Other information x

Technical support xi
How to send your comments xi

Chapter 1. Using 31-bit and 64-bit
modes 1
Assigning long values 1

Assigning constant values to long variables . . . 2
Bit-shifting long values 3

Assigning pointers 3
Aligning aggregate data 4

Chapter 2. Aligning data 5
Using alignment modes. 5

Alignment of aggregates 6
Alignment of bit-fields 7

Using alignment modifiers. 8

Chapter 3. Handling floating-point
operations 11
Floating-point formats 11
Handling multiply-and-add operations 11
Handling floating-point constant folding and
rounding 11

Matching compile-time and runtime rounding
modes 12

Handling floating-point exceptions 13

Chapter 4. Constructing a library . . . 15
Compiling and linking a library 15

Compiling a static library. 15
Compiling a shared library 15
Linking a library to an application. 15
Linking a shared library to another shared library 16

Initializing static objects in libraries (C++) 16
Assigning priorities to objects 16
Order of object initialization across libraries . . 17

Chapter 5. Optimizing your applications 21
Distinguishing between optimization and tuning . . 21
Steps in the optimization process 22
Basic optimization 22

Optimizing at level 0 22
Optimizing at level 2 23

Advanced optimization 24
Optimizing at level 3 24

Increasing -qhot at level 3 25
Tuning for your system architecture 25

Getting the most out of target machine options 26
Using high-order loop analysis and transformations 27

Getting the most out of -qhot 27
Generating vector instructions 28

Using interprocedural analysis 28
Getting the most from -qipa 29

Using profile-directed feedback 30
Viewing profiling information with showpdf . . 34
Object level profile-directed feedback 36

Other optimization options 37

Chapter 6. Debugging optimized code 39
Understanding different results in optimized
programs 39
Debugging in the presence of optimization 40

Chapter 7. Coding your application to
improve performance 43
Finding faster input/output techniques 43
Reducing function-call overhead 43
Managing memory efficiently (C++ only) 44
Optimizing variables 45
Manipulating strings efficiently 46
Optimizing expressions and program logic 46
Optimizing operations in 64-bit mode 47
The C++ template model 47
Using delegating constructors (C++11) 48
Using rvalue references (C++11) 48
Using visibility attributes (IBM extension) 51

Types of visibility attributes 52
Rules of visibility attributes 53
Propagation rules (C++ only) 58
Specifying visibility attributes using pragma
preprocessor directives 60

Chapter 8. Using vector programming
support 63
Vector data types (IBM extension) 63
Vector literals (IBM extension) 64
Initialization of vectors (IBM extension) 67
typedef definitions for vector types (IBM extension) 68
Pointers (IBM extension) 68
Expressions and operators (IBM extension) 68

Compound literal expressions 68
Cast expressions 68
Unary expressions 69
Binary expressions 71

Extensions to runtime library functions 87
Vector built-in functions 87

Summary of vector built-in functions 87
Arithmetic functions 95
Comparison functions 116
Range comparison functions 127

© Copyright IBM Corp. 2015 iii

Element searching functions 142
Gather and scatter functions 154
Mask generation functions 163
Copy until zero functions 165
Load and store functions 167
Logical calculation functions 173
Merge functions 176
Pack and unpack functions 179
Replicate functions 184
Rotate and shift functions 189
Rounding and conversion functions 200
Testing functions 207
All elements predication functions 208
Any element predication functions 219

Defining vector built-in functions from the
operators 229
Debug support for vector programming 229

Chapter 9. Using the high
performance libraries 231
Using the Mathematical Acceleration Subsystem
(MASS) libraries 231

Using the scalar libraries 231
Using the vector libraries 234
Compiling and linking a program with MASS 238

Using the Automatically Tuned Linear Algebra
Software (ATLAS) libraries 239

The ATLAS libraries and their header files . . 239
The required specification to use the ATLAS
libraries 242
Example 1: Compiling, linking, and running a
simple matrix multiplication ATLAS program . 242
Example 2: Compiling, linking, and running a
complex ATLAS sample program. 249

Notices 251
Trademarks 253

Index 255

iv XL C/C++: Optimization and Programming Guide

About this document

This guide discusses advanced topics related to the use of IBM® XL C/C++ for
Linux on z Systems™, V1.2, with a particular focus on program portability and
optimization. The guide provides both reference information and practical tips for
getting the most out of the compiler's capabilities through recommended
programming practices and compilation procedures.

Who should read this document
This document is addressed to programmers building complex applications, who
already have experience compiling with XL C/C++ and would like to take further
advantage of the compiler's capabilities for program optimization and tuning,
support for advanced programming language features, and add-on tools and
utilities.

How to use this document
This document uses a task-oriented approach to present the topics by concentrating
on a specific programming or compilation problem in each section. Each topic
contains extensive cross-references to the relevant sections of the reference guides
in the IBM XL C/C++ for Linux on z Systems, V1.2 documentation set, which
provides detailed descriptions of compiler options, pragmas, and specific language
extensions.

How this document is organized
This guide includes the following chapters:
v Chapter 1, “Using 31-bit and 64-bit modes,” on page 1 discusses common

problems that arise when you port existing 31-bit applications to 64-bit mode,
and it provides recommendations for avoiding these problems.

v Chapter 2, “Aligning data,” on page 5 discusses options available for controlling
the alignment of data in aggregates, such as structures and classes.

v Chapter 3, “Handling floating-point operations,” on page 11 discusses options
available for controlling how floating-point operations are handled by the
compiler.

v Chapter 4, “Constructing a library,” on page 15 discusses how to compile and
link static and shared libraries and how to specify the initialization order of
static objects in C++ programs.

v Chapter 5, “Optimizing your applications,” on page 21 discusses various options
provided by the compiler for optimizing your programs, and it provides
recommendations on how to use these options.

v Chapter 6, “Debugging optimized code,” on page 39 discusses the potential
usability problems of optimized programs and the options that can be used to
debug optimized code.

v Chapter 7, “Coding your application to improve performance,” on page 43
discusses recommended programming practices and coding techniques to
enhance program performance and compatibility with the compiler's
optimization capabilities.

v Chapter 8, “Using vector programming support,” on page 63 introduces how to
use the Vector Facility for z/Architecture® on the Linux distributions that have

© Copyright IBM Corp. 2015 v

vector support and run on the IBM z13™ models. The provided vector
programming support includes vector data types, expressions, operators, and
vector built-in functions.

v Chapter 9, “Using the high performance libraries,” on page 231 discusses two
performance libraries that are shipped with XL C/C++: the Mathematical
Acceleration Subsystem (MASS), which contains tuned versions of standard
math library functions, and the Automatically Tuned Liner Algebra Software
libraries for algebra high-performance computing.

Conventions
Typographical conventions

The following table shows the typographical conventions used in the IBM XL
C/C++ for Linux on z Systems, V1.2 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc and xlC
(xlc++), along with several other
compiler invocation commands to
support various C/C++ language
levels and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

C only begins
C

C

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

vi XL C/C++: Optimization and Programming Guide

Table 2. Qualifying elements (continued)

Qualifier/Icon Meaning

C++ only begins
C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

IBM extension begins
IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

C11 begins
C11

C11

C11 ends

The text describes a feature that is introduced into standard C
as part of C11.

C++11 begins
C++11

C++11

C++11 ends

The text describes a feature that is introduced into standard
C++ as part of C++11.

C++14 begins
C++14

C++14

C++14 ends

The text describes a feature that is introduced into standard
C++ as part of C++14.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
helps you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

About this document vii

►► keyword
optional_argument

►◄

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

viii XL C/C++: Optimization and Programming Guide

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Related information
The following sections provide related information for XL C/C++:

IBM XL C/C++ information
XL C/C++ provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL C/C++ for Linux on z Systems, V1.2. It is located by default in the XL
C/C++ directory and in the \quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory, and in the root directory and subdirectories of the
installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for Linux on z Systems, V1.2
Installation Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSVUN6_1.2.0/
com.ibm.compilers.loz.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27044043.
The following files comprise the full set of XL C/C++ product information:

Table 3. XL C/C++ PDF files

Document title
PDF file
name Description

IBM XL C/C++ for Linux
on z Systems, V1.2
Installation Guide,
GC27-5995-01

install.pdf Contains information for installing XL C/C++
and configuring your environment for basic
compilation and program execution.

Getting Started with IBM
XL C/C++ for Linux on z
Systems, V1.2,
GI13-2865-01

getstart.pdf Contains an introduction to the XL C/C++
product, with information about setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

About this document ix

http://www.ibm.com/support/knowledgecenter/SSVUN6_1.2.0/com.ibm.compilers.loz.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSVUN6_1.2.0/com.ibm.compilers.loz.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27044043
http://www.ibm.com/support/docview.wss?uid=swg27044043

Table 3. XL C/C++ PDF files (continued)

Document title
PDF file
name Description

IBM XL C/C++ for Linux
on z Systems, V1.2
Compiler Reference,
SC27-5998-01

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in functions.

IBM XL C/C++ for Linux
on z Systems, V1.2
Language Reference,
SC27-5996-01

langref.pdf Contains information about language extensions
for portability and conformance to
nonproprietary standards.

IBM XL C/C++ for Linux
on z Systems, V1.2
Optimization and
Programming Guide,
SC27-5997-01

proguide.pdf Contains information about advanced
programming topics, such as application
porting, library development, application
optimization, and the XL C/C++
high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL C/C++, including IBM Redbooks® publications,
white papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27044043.

For more information about C/C++, see the C/C++ café at https://
www.ibm.com/developerworks/community/groups/service/html/
communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3.

Standards and specifications
XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards and specifications for precise definitions of some of the
features found in this information.
v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also

known as C89.
v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also

known as C99.
v Information Technology - Programming languages - C, ISO/IEC 9899:2011, also

known as C11.
v Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also

known as C++98.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also

known as C++03.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also

known as C++11 (Partial support).
v Information Technology - Programming languages - C++, ISO/IEC 14882:2014, also

known as C++14 (Partial support).
v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

x XL C/C++: Optimization and Programming Guide

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27044043
http://www.ibm.com/support/docview.wss?uid=swg27044043
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
http://gcc.gnu.org/onlinedocs

Technical support
Additional technical support is available from the XL C/C++ Support page at
http://www.ibm.com/support/entry/portal/product/rational/xl_c/
c++_for_linux_on_z_systems. This page provides a portal with search capabilities
to a large selection of Technotes and other support information.

If you cannot find what you need, you can send an email to
compinfo@ca.ibm.com.

For the latest information about XL C/C++, visit the product information site at
http://www.ibm.com/software/products/en/xlcpp-loz.

How to send your comments
Your feedback is important in helping us to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments to compinfo@ca.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL C/C++, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

About this document xi

http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_linux_on_z_systems
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_linux_on_z_systems
http://www.ibm.com/software/products/en/xlcpp-loz

xii XL C/C++: Optimization and Programming Guide

Chapter 1. Using 31-bit and 64-bit modes

You can use the XL C/C++ compiler to develop either 31-bit or 64-bit applications.
To do so, specify -m31 or -m64 (the default), respectively, during compilation.

However, porting existing applications from 31-bit to 64-bit mode can lead to a
number of problems, mostly related to the differences in C/C++ long and pointer
data type sizes and alignment between the two modes. The following table
summarizes these differences.

Table 4. Size and alignment of data types in 31-bit and 64-bit modes

Data type 31-bit mode 64-bit mode

Size Alignment Size Alignment

long, signed long,
unsigned long

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

pointer 4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

size_t (defined in the
header file <cstddef>)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

ptrdiff_t (defined in
the header file
<cstddef>)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

The following sections discuss some of the common pitfalls implied by these
differences, as well as recommended programming practices to help you avoid
most of these issues:
v “Assigning long values”
v “Assigning pointers” on page 3
v “Aligning aggregate data” on page 4

For suggestions on improving performance in 64-bit mode, see "Optimize
operations in 64-bit mode".

Related information in the XL C/C++ Compiler Reference

-m31, -m64 (-q31, -q64)

Compile-time and link-time environment variables

Assigning long values
The limits of long type integers that are defined in the limits.h standard library
header file are different in 31-bit and 64-bit modes, as shown in the following
table.

Table 5. Constant limits of long integers in 31-bit and 64-bit modes

Symbolic
constant

Mode Value Hexadecimal Decimal

LONG_MIN
(smallest
signed long)

31-bit –(231) 0x80000000L –2,147,483,648

64-bit –(263) 0x8000000000000000L –9,223,372,036,854,775,808

© Copyright IBM Corp. 2015 1

Table 5. Constant limits of long integers in 31-bit and 64-bit modes (continued)

Symbolic
constant

Mode Value Hexadecimal Decimal

LONG_MAX
(largest signed
long)

31-bit 231–1 0x7FFFFFFFL 2,147,483,647

64-bit 263–1 0x7FFFFFFFFFFFFFFFL 9,223,372,036,854,775,807

ULONG_MAX
(largest
unsigned long)

31-bit 232–1 0xFFFFFFFFUL 4,294,967,295

64-bit 264–1 0xFFFFFFFFFFFFFFFFUL 18,446,744,073,709,551,615

These differences have the following implications:
v Assigning a long value to a double variable can cause loss of accuracy.
v Assigning constant values to long variables can lead to unexpected results. This

issue is explored in more detail in “Assigning constant values to long variables.”
v Bit-shifting long values will produce different results, as described in

“Bit-shifting long values” on page 3.
v Using int and long types interchangeably in expressions will lead to implicit

conversion through promotions, demotions, assignments, and argument passing,
and it can result in truncation of significant digits, sign shifting, or unexpected
results, without warning. These operations can impact performance.

In situations where a long value can overflow when assigned to other variables or
passed to functions, you must observe the following guidelines:
v Avoid implicit type conversion by using explicit type casting to change types.
v Ensure that all functions that accept or return long types are properly

prototyped.
v Ensure that long type parameters can be accepted by the functions to which they

are being passed.

Assigning constant values to long variables
Although type identification of constants follows explicit rules in C and C++, many
programs use hexadecimal or unsuffixed constants as "typeless" variables and rely
on a twos complement representation to truncate values that exceed the limits
permitted on a 31-bit system. As these large values are likely to be extended into a
64-bit long type in 64-bit mode, unexpected results can occur, generally at the
following boundary areas:
v constant > UINT_MAX
v constant < INT_MIN
v constant > INT_MAX

Some examples of unexpected boundary side effects are listed in the following
table.

Table 6. Unexpected boundary results of constants assigned to long types

Constant assigned to long Equivalent value 31-bit mode 64-bit mode

–2,147,483,649 INT_MIN–1 +2,147,483,647 –2,147,483,649

+2,147,483,648 INT_MAX+1 –2,147,483,648 +2,147,483,648

+4,294,967,726 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFF UINT_MAX –1 +4,294,967,295

2 XL C/C++: Optimization and Programming Guide

Table 6. Unexpected boundary results of constants assigned to long types (continued)

Constant assigned to long Equivalent value 31-bit mode 64-bit mode

0x100000000 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFFFFFFFFFF ULONG_MAX –1 –1

Unsuffixed constants can lead to type ambiguities that can affect other parts of
your program, such as when the results of sizeof operations are assigned to
variables. For example, in 31-bit mode, the compiler types a number like
4294967295 (UINT_MAX) as an unsigned long and sizeof returns 4 bytes. In 64-bit
mode, this same number becomes a signed long and sizeof returns 8 bytes.
Similar problems occur when the compiler passes constants directly to functions.

You can avoid these problems by using the suffixes L (for long constants), UL (for
unsigned long constants), LL (for long long constants), or ULL (for unsigned long
long constants) to explicitly type all constants that have the potential of affecting
assignment or expression evaluation in other parts of your program. In the
example cited in the preceding paragraph, suffixing the number as 4294967295U
forces the compiler to always recognize the constant as an unsigned int in 31-bit
or 64-bit mode. These suffixes can also be applied to hexadecimal constants.

Bit-shifting long values
Left-bit-shifting long values produces different results in 31-bit and 64-bit modes.
The examples in Table 7 show the effects of performing a bit-shift on long
constants using the following code segment:
long l=valueL<<1;

Table 7. Results of bit-shifting long values

Initial value Symbolic
constant

Value after bit shift by one bit

31-bit mode 64-bit mode

0x7FFFFFFFL INT_MAX 0xFFFFFFFE 0x00000000FFFFFFFE

0x80000000L INT_MIN 0x00000000 0x0000000100000000

0xFFFFFFFFL UINT_MAX 0xFFFFFFFE 0x00000001FFFFFFFE

In 31-bit mode, 0xFFFFFFFE is negative. In 64-bit mode, 0x00000000FFFFFFFE and
0x00000001FFFFFFFE are both positive.

Assigning pointers
In 64-bit mode, pointers and int types are no longer of the same size. The
implications of this are as follows:
v Exchanging pointers and int types causes segmentation faults.
v Passing pointers to a function expecting an int type results in truncation.
v Functions that return a pointer but are not explicitly prototyped as such, return

an int instead and truncate the resulting pointer, as illustrated in the following
example.
In C, the following code is valid in 31-bit mode without a prototype:
a=(char*) calloc(25);

Without a function prototype for calloc, when the same code is compiled in 64-bit
mode, the compiler assumes the function returns an int, so a is silently truncated

Chapter 1. Using 31-bit and 64-bit modes 3

and then sign-extended. Type casting the result does not prevent the truncation, as
the address of the memory allocated by calloc was already truncated during the
return. In this example, the best solution is to include the header file, stdlib.h,
which contains the prototype for calloc. An alternative solution is to prototype the
function as it is in the header file.

To avoid these types of problems, you can take the following measures:
v Prototype any functions that return a pointer, where possible by using the

appropriate header file.
v Ensure that the type of parameter you are passing in a function, pointer or int,

call matches the type expected by the function being called.
v For applications that treat pointers as an integer type, use type long or unsigned

long in either 31-bit or 64-bit mode.

Aligning aggregate data
Normally, structures are aligned according to the most strictly aligned member in
both 31-bit and 64-bit modes. However, since long types and pointers change size
and alignment in 64-bit modes, the alignment of a structure's strictest member can
change, resulting in changes to the alignment of the structure itself.

Structures that contain pointers or long types cannot be shared between 31-bit and
64-bit applications. Unions that attempt to share long and int types or overlay
pointers onto int types can change the alignment. In general, you need to check all
but the simplest structures for alignment and size dependencies.

Any aggregate data written to a file in one mode cannot be correctly read in the
other mode. Data exchanged with other languages has the similar problems.

For detailed information about aligning data structures, including structures that
contain bit fields, see Chapter 2, “Aligning data,” on page 5.

4 XL C/C++: Optimization and Programming Guide

Chapter 2. Aligning data

XL C/C++ provides many mechanisms for specifying data alignment at the levels
of individual variables, members of aggregates, entire aggregates, and entire
compilation units. If you are porting applications between different platforms, or
between 31-bit and 64-bit modes, you need to take into account the differences
between alignment settings available in different environments, to prevent possible
data corruption and deterioration in performance.

XL C/C++ provides alignment modes and alignment modifiers for specifying data
alignment. Using alignment modes, you can set alignment defaults for all data
types for a compilation unit or subsection of a compilation unit by specifying a
predefined suboption.

Using alignment modifiers, you can set the alignment for specific variables or data
types within a compilation unit by specifying the exact number of bytes that
should be used for the alignment.

“Using alignment modes” discusses the default alignment modes for all data types
on different platforms and addressing models, the suboptions and pragmas that
you can use to change or override the defaults, and rules for the alignment modes
for simple variables, aggregates, and bit fields.

“Using alignment modifiers” on page 8 discusses the different specifiers, pragmas,
and attributes you can use in your source code to override the alignment mode
currently in effect, for specific variable declarations. It also provides the rules that
govern the precedence of alignment modes and modifiers during compilation.

Using alignment modes
Each data type that is supported by XL C/C++ is aligned along byte boundaries
according to platform-specific default alignment modes. The default alignment
mode is zlinux.

Each of the valid alignment modes is defined in Table 8, which provides the
alignment value, in bytes, for scalar variables of all data types. Where there are
differences between 31-bit and 64-bit modes, these are indicated. Also, where there
are differences between the first (scalar) member of an aggregate and subsequent
members of the aggregate, these are indicated.

Table 8. Alignment settings (values given in bytes)

Data type Storage

Alignment setting

zlinux bit_packed

_Bool (C), bool (C++) 1 1 1

char, signed char, unsigned char 1 1 1

wchar_t (31-bit mode) 2 2 1

wchar_t (64-bit mode) 4 4 1

int, unsigned int 4 4 1

short int, unsigned short int 2 2 1

long int, unsigned long int (31-bit mode) 4 4 1

© Copyright IBM Corp. 2015 5

Table 8. Alignment settings (values given in bytes) (continued)

Data type Storage

Alignment setting

zlinux bit_packed

long int, unsigned long int (64-bit mode) 8 8 1

long long 8 8 1

float 4 4 1

double 8 8 1

long double 16 16 1

pointer (31-bit mode) 4 4 1

pointer (64-bit mode) 8 8 1

If you generate data with an application on one platform and read the data with
an application on another platform, it is recommended that you use the bit_packed
mode, which results in equivalent data alignment on all platforms.

“Alignment of aggregates” discusses the rules for the alignment of entire
aggregates and provides examples of aggregate layouts. “Alignment of bit-fields”
on page 7 discusses additional rules and considerations for the use and alignment
of bit fields and provides an example of bit-packed alignment.

Related information in the XL C/C++ Compiler Reference

-fpack-struct (-qalign)

Alignment of aggregates
The data contained in Table 8 on page 5 in “Using alignment modes” on page 5
apply to scalar variables, and variables that are members of aggregates such as
structures, unions, and classes. The following rules apply to aggregate variables,
namely structures, unions or classes, as a whole (in the absence of any modifiers):
v For all alignment modes, the size of an aggregate is the smallest multiple of its

alignment value that can encompass all of the members of the aggregate.

v C Empty aggregates are assigned a size of zero bytes. As a result, two
distinct variables might have the same address.

v C++ Empty aggregates are assigned a size of one byte. Note that static data
members do not participate in the alignment or size of an aggregate; therefore, a
structure or class containing only a single static data member has a size of one
byte.

v For all alignment modes, the alignment of an aggregate is equal to the largest
alignment value of any of its members. With the exception of packed alignment
modes, members whose natural alignment is smaller than that of their
aggregate's alignment are padded with empty bytes.

v Aligned aggregates can be nested, and the alignment rules applicable to each
nested aggregate are determined by the alignment mode that is in effect when a
nested aggregate is declared.

Notes:

v C++ The C++ compiler might generate extra fields for classes that contain
base classes or virtual functions. Objects of these types might not conform to the
usual mappings for aggregates.

6 XL C/C++: Optimization and Programming Guide

v The alignment of an aggregate must be the same in all compilation units. For
example, if the declaration of an aggregate is in a header file and you include
that header file into two distinct compilations units, choose the same alignment
mode for both compilations units.

For rules on the alignment of aggregates containing bit fields, see “Alignment of
bit-fields.”

Alignment of bit-fields
You can declare a bit-field as a C _Bool C , C++ bool, char, signed
char, unsigned char, short, unsigned short C++ , int, unsigned int, long,
unsigned long, C++ long long, or unsigned long long C++ data type. The
alignment of a bit-field depends on its base type and the compilation mode (31-bit
or 64-bit).

C The length of a bit-field cannot exceed the length of its base type. In
extended mode, you can use the sizeof operator on a bit-field. The sizeof
operator on a bit-field returns the size of the base type. C

C++ The length of a bit-field can exceed the length of its base type, but the
remaining bits are used to pad the field and do not actually store any value.

C++

However, alignment rules for aggregates containing bit-fields are different
depending on the alignment mode in effect. These rules are described below.

Rules for Linux on z Systems alignment
v Bit-fields are allocated from a bit-field container. The size of this container is

determined by the declared type of the bit-field. For example, a char bit-field
uses an 8-bit container, and an int bit-field uses 31 bits. The container must be
large enough to contain the bit-field because the bit-field will not be split across
containers.

v Containers are aligned in the aggregate as if they start on a natural boundary for
that type of container. Bit-fields are not necessarily allocated at the start of the
container.

v If a zero-length bit-field is the first member of an aggregate, it has no effect on
the alignment of the aggregate and is overlapped by the next data member. If a
zero-length bit-field is a non-first member of the aggregate, it pads to the next
alignment boundary determined by its base declared type but does not affect the
alignment of the aggregate.

v Unnamed bit-fields do not affect the alignment of the aggregate.

Rules for bit-packed alignment
v Bit-fields have an alignment of one byte and are packed with no default padding

between bit-fields.
v A zero-length bit-field causes the next member to start at the next byte

boundary. If the zero-length bit-field is already at a byte boundary, the next
member starts at this boundary. A non-bit-field member that follows a bit-field is
aligned on the next byte boundary.

Chapter 2. Aligning data 7

Using alignment modifiers
XL C/C++ also provides alignment modifiers, with which you can exercise even
finer-grained control over alignment, at the level of declaration or definition of
individual variables or aggregate members. Available modifiers are as follows:

#pragma pack(...)

Valid application:
The entire aggregate (as a whole) immediately following the directive.

Effect: Sets the maximum alignment of the members of the aggregate to which it
applies, to a specific number of bytes. Also allows a bit-field to cross a
container boundary. Used to reduce the effective alignment of the selected
aggregate.

For details about #pragma pack(...), see the GNU Compiler Collection online
documentation at http://gcc.gnu.org/onlinedocs/.

__attribute__((aligned(n)))

Valid application:
As a variable attribute, it applies to a single aggregate (as a whole), namely
a structure, union, or class, or it applies to an individual member of an
aggregate.1 As a type attribute, it applies to all aggregates declared of that
type. If it is applied to a typedef declaration, it applies to all instances of
that type.2

Effect:
Sets the minimum alignment of the specified variable or variables to a
specific number of bytes. Typically used to increase the effective alignment
of the selected variables.

Valid values:
n must be a positive power of two, or NIL. NIL can be specified as
either __attribute__((aligned())) or __attribute__((aligned)); this is
the same as specifying the maximum system alignment (16 bytes on all
UNIX platforms).

__attribute__((packed))

Valid application:
As a variable attribute, it applies to simple variables or individual
members of an aggregate, namely a structure or class1. As a type attribute,
it applies to all members of all aggregates declared of that type.

Effect: Sets the maximum alignment of the selected variable or variables, to which
it applies, to the smallest possible alignment value, namely one byte for a
variable and one bit for a bit field.

Notes:

1. In a comma-separated list of variables in a declaration, if the modifier is placed
at the beginning of the declaration, it applies to all the variables in the
declaration. Otherwise, it applies only to the variable immediately preceding it.

2. Depending on the placement of the modifier in the declaration of a struct, it
can apply to the definition of the type, and hence applies to all instances of that
type; or it can apply to only a single instance of the type. For details, see the
information about type attributes in the XL C/C++ Language Reference and the C

C++ and C++ C++

language standards.

Related information in the XL C/C++ Compiler Reference

8 XL C/C++: Optimization and Programming Guide

http://gcc.gnu.org/onlinedocs/

#pragma pack
Related information in the XL C/C++ Language Reference

The aligned type attribute (IBM extension)

The packed type attribute (IBM extension)

Type attributes (IBM extension)

The aligned variable attribute (IBM extension)

The packed variable attribute (IBM extension)

Chapter 2. Aligning data 9

10 XL C/C++: Optimization and Programming Guide

Chapter 3. Handling floating-point operations

The following sections provide reference information, portability considerations,
and suggested procedures for using compiler options to manage floating-point
operations:
v “Floating-point formats”
v “Handling multiply-and-add operations”
v “Handling floating-point constant folding and rounding”
v “Handling floating-point exceptions” on page 13

Floating-point formats
XL C/C++ supports the following binary floating-point formats:
v 32-bit single precision, with an approximate absolute normalized range of 0 and

10-38 to 1038 and with a precision of about 7 decimal digits
v 64-bit double precision, with an approximate absolute normalized range of 0 and

10-308 to 10308 and with a precision of about 16 decimal digits
v 128-bit extended precision, with slightly greater range than double-precision

values, and with a precision of about 32 decimal digits

The 128-bit extended precision format of XL C/C++ is different from the binary128
formats that are suggested by the IEEE standard. The IEEE standard suggests that
extended formats use more bits in the exponent for greater range and the fraction
for higher precision.

It is possible that special numbers, such as NaN, infinity, and negative zero, cannot
be represented by the 128-bit extended precision values. Arithmetic operations do
not necessarily propagate these numbers in extended precision.

Handling multiply-and-add operations
By default, the compiler generates a single non-IEEE 754 compatible
multiply-and-add instruction for binary floating-point expressions, such as a + b *
c, partly because one instruction is faster than two. Because no rounding occurs
between the multiply and add operations, this might also produce a more precise
result. However, the increased precision might lead to different results from those
obtained in other environments, and might cause x*y-x*y to produce a nonzero
result. To avoid these issues, you can suppress the generation of multiply-add
instructions by using the -qfloat=nomaf option.

Related information in the XL C/C++ Compiler Reference

-qfloat

Handling floating-point constant folding and rounding
By default, the compiler replaces most operations involving constant operands
with their result at compile time. The result of a floating-point operation folded at
compile time normally produces the same result as that obtained at execution time,
except in the following case:

© Copyright IBM Corp. 2015 11

Expressions like a + b * c are partially or fully evaluated at compile time. The
results might be different from those produced at execution time, because b * c
might be rounded before being added to a, while the runtime multiply-add
instruction does not use any intermediate rounding. To avoid differing the results,
suppress the use of multiply-add instructions by specifying -qfloat=nomaf.
Related information:
“Handling floating-point exceptions” on page 13

Related information in the XL C/C++ Compiler Reference

-qfloat

Matching compile-time and runtime rounding modes
The default rounding mode used at compile time and run time is round-to-nearest,
ties to even. If your program changes the rounding mode at run time, the results of
a floating-point calculation might be slightly different from those that are obtained
at compile time. The following example illustrates this:
#include <float.h>
#include <fenv.h>
#include <stdio.h>

int main ()
{
volatile double one = 1.f, three = 3.f; /* volatiles are not folded */
double one_third;

one_third = 1. / 3.; /* folded */
printf ("1/3 with compile-time rounding = %.17f\n", one_third);

fesetround (FE_TOWARDZERO);
one_third = one / three; /* not folded */

printf ("1/3 with execution-time rounding to zero = %.17f\n", one_third);

fesetround (FE_TONEAREST);
one_third = one / three; /* not folded */

printf ("1/3 with execution-time rounding to nearest = %.17f\n", one_third);

fesetround (FE_UPWARD);
one_third = one / three; /* not folded */

printf ("1/3 with execution-time rounding to +infinity = %.17f\n", one_third);

fesetround (FE_DOWNWARD);
one_third = one / three; /* not folded */

printf ("1/3 with execution-time rounding to -infinity = %.17f\n", one_third);

return 0;
}

When compiled with the default options, this code produces the following results:
1/3 with compile-time rounding = 0.33333333333333331
1/3 with execution-time rounding to zero = 0.33333333333333331
1/3 with execution-time rounding to nearest = 0.33333333333333331
1/3 with execution-time rounding to +infinity = 0.33333333333333337
1/3 with execution-time rounding to -infinity = 0.33333333333333331

Because the fourth computation changes the rounding mode to round-to-infinity,
the results are slightly different from the first computation, which is performed at
compile time, using round-to-nearest.

12 XL C/C++: Optimization and Programming Guide

Related information in the XL C/C++ Compiler Reference

-qfloat

Handling floating-point exceptions
By default, invalid operations such as division by zero, division by infinity,
overflow, and underflow are ignored at run time.

You can add suitable support code to your program to make program execution
continue after an exception occurs and to modify the results of operations causing
exceptions.

Because, however, floating-point computations involving constants are usually
folded at compile time, the potential exceptions that would be produced at run
time might not occur.

Related information in the XL C/C++ Compiler Reference

-qfloat

Chapter 3. Handling floating-point operations 13

14 XL C/C++: Optimization and Programming Guide

Chapter 4. Constructing a library

You can include static and shared libraries in your C and C++ applications.

“Compiling and linking a library” describes how to compile your source files into
object files for inclusion in a library, how to link a library into the main program,
and how to link one library into another.

“Initializing static objects in libraries (C++)” on page 16 describes how to use
priorities to control the order of initialization of objects across multiple files in a
C++ application.

Compiling and linking a library
This section describes how to compile your source files into object files for
inclusion in a library, how to link a library into the main program, and how to link
one library into another.

Related information in the Getting Started with XL C/C++

Dynamic and static linking

Compiling a static library
To compile a static library, follow this procedure:
1. Compile each source file to get an object file. For example:

xlc -c test.c example.c

2. Use the ar command to add the generated object files to an archive library file.
For example:
ar -rv libex.a test.o example.o

Compiling a shared library
To compile a shared library, follow this procedure:
1. Compile your source files to get an object file. Note that in the case of

compiling a shared library, you must use the -fPIC (-qpic) compiler option. For
example:
xlc -fPIC -c foo.c

2. Use the -shared (-qmkshrobj) compiler option to create a shared object from
the generated object files. For example:
xlc -shared -o libfoo.so foo.o

Related information in the XL C/C++ Compiler Reference

-fPIC (-qpic)

-shared (-qmkshrobj)

Linking a library to an application
You can use the following command string to link a static or shared library to your
main program. For example:
xlc -o myprogram main.c -Ldirectory1:directory2 [-Rdirectory] -ltest

© Copyright IBM Corp. 2015 15

At compile time, you instruct the linker to search for libtest.so in the first
directory specified by the -L option. If libtest.so is not found, the linker searches
for libtest.a. If neither file is found, the search continues with the next directory
specified by the -L option.

At run time, the runtime linker searches for libtest.so in the first directory
specified by the -R option. If libtest.so is not found, the search continues with
the next directory specified by the -R option. The path specified by the -R option
can be overridden at run time by the LD_LIBRARY_PATH environment variable.

For additional linkage options, including options that modify the default behavior,
see the operating system ld documentation .

Related information in the XL C/C++ Compiler Reference

-l

-L

-R

Linking a shared library to another shared library
Just as you link modules into an application, you can create dependencies between
shared libraries by linking them together. For example:
xlc -shared -o mylib.so myfile.o -Ldirectory -Rdirectory -ltest

Related information in the XL C/C++ Compiler Reference

-shared (-qmkshrobj)

-R

-L

Initializing static objects in libraries (C++)
The C++ language definition specifies that all non-local objects with constructors
from all the files included in the program must be properly constructed before the
main function in a C++ program is executed. Although the language definition
specifies the order of initialization for these objects within a file (which follows the
order in which they are declared), it does not specify the order of initialization for
these objects across files and libraries. You might want to specify the initialization
order of static objects declared in various files and libraries in your program.

To specify an initialization order for objects, you assign relative priority numbers to
objects. The mechanisms by which you can specify priorities for entire files or
objects within files are discussed in “Assigning priorities to objects.” The
mechanisms by which you can control the initialization order of objects across
modules are discussed in “Order of object initialization across libraries” on page
17.

Assigning priorities to objects
You can assign a priority level number to objects and files within a single library
using the following approaches. The objects will be initialized at run time
according to the order of priority level. In addition, because modules are loaded
and objects are initialized differently on different platforms, you can choose an
approach that fits the platform better.

16 XL C/C++: Optimization and Programming Guide

Set the priority level for an entire file
To use this approach, specify the -qpriority compiler option during
compilation. By default, all objects within a single file are assigned the
same priority level; they are initialized in the order in which they are
declared, and they are terminated in reverse declaration order.

Set the priority level for individual objects
To use this approach, use init_priority variable attributes in the source
files. The init_priority attribute can be applied to objects in any
declaration order. On Linux, the objects are initialized according to their
priority and terminated in reverse priority across compilation units.

Using priority numbers

Priority numbers can range from 101 to 65535. The smallest priority number that
you can specify, 101, is initialized first. The largest priority number, 65535, is
initialized last. If you do not specify a priority level, the default priority is 65535.

The examples below show how to specify the priority of objects within a single file
and across two files. “Order of object initialization across libraries” provides
detailed information on the order of initialization of objects.

Related information in the XL C/C++ Compiler Reference

-qpriority

-shared (-qmkshrobj)
Related information in the XL C/C++ Language Reference

The init_priority variable attribute

Order of object initialization across libraries
Each static library and shared library is loaded and initialized at runtime in reverse
link order, once all of its dependencies have been loaded and initialized. Link
order is the order in which each library was listed on the command line during
linking into the main application. For example, if library A calls library B, library B
is loaded before library A.

As each module is loaded, objects are initialized in order of priority according to
the rules outlined in “Assigning priorities to objects” on page 16. If objects do not
have priorities assigned or have the same priorities, object files are initialized in
reverse link order — where link order is the order in which the files were given on
the command line during linking into the library — and the objects within the files
are initialized according to their declaration order. Objects are terminated in
reverse order of their construction.

Example of object initialization across libraries

In this example, the following modules are used:
v main.out, the executable containing the main function
v libS1 and libS2, two shared libraries
v libS3 and libS4, two shared libraries that are dependencies of libS1
v libS5 and libS6, two shared libraries that are dependencies of libS2

Chapter 4. Constructing a library 17

The source files are compiled into object files with the following commands. You
must use the -fPIC (-qpic) option to compile what is to be included in a shared
library.
xlC -qpriority=101 -c fileA.C -o fileA.o
xlC -qpriority=150 -c fileB.C -o fileB.o
xlC -c fileC.C -o fileC.o
xlC -c fileD.C -o fileD.o
xlC -c fileE.C -o fileE.o
xlC -c fileF.C -o fileF.o
xlC -qpriority=300 -c fileG.C -o fileG.o
xlC -qpriority=200 -c fileH.C -o fileH.o
xlC -qpriority=500 -c fileI.C -o fileI.o
xlC -c fileJ.C -o fileJ.o
xlC -c fileK.C -o fileK.o
xlC -qpriority=600 -c fileL.C -o fileL.o

The dependent libraries are created with the following commands:
xlC -shared -o libS3.so fileE.o fileF.o
xlC -shared -o libS4.so fileG.o fileH.o
xlC -shared -o libS5.so fileI.o fileJ.o
xlC -shared -o libS6.so fileK.o fileL.o

The dependent libraries are linked with their parent libraries by using the
following commands:
xlC -shared -o libS1.so fileA.o fileB.o -L. -R. -lS3 -lS4
xlC -shared -o libS2.so fileC.o fileD.o -L. -R. -lS5 -lS6

The parent libraries are linked with the main program with the following
command:
xlC main.C -o main.out -L. -R. -lS1 -lS2

The following diagram shows the initialization order of the shared libraries.

4 23 1

6 5

7

fileG.o fileK.ofileE.o fileI.o

fileA.o fileC.o

fileH.o fileL.ofileF.o fileJ.o

fileB.o fileD.o

libS4 libS6libS3 libS5

libS1 libS2

-qpriority=300 -qpriority=500

-qpriority=101

-qpriority=200 -qpriority=600

-qpriority=150

main.out

Objects are initialized as follows:

Figure 1. Object initialization order on Linux

18 XL C/C++: Optimization and Programming Guide

Sequence Object
Priority
value Comment

1 libS6 n/a libS2 was entered last on the command line when
linked with main, and so is initialized before libS1.
However, libS5 and libS6 are dependencies of
libS2, so they are initialized first. Since it was
entered last on the command line when linked to
create libS2, libS6 is initialized first. The objects in
this library are initialized according to their priority.

2 fileL 600 The objects in fileL are initialized next (lowest
priority number in this module).

3 fileK 65535 The objects in fileK are initialized next (next priority
number in this module (default priority of 65535)).

4 libS5 n/a libS5 was entered before libS6 on the command
line when linked with libS2, so it is initialized next.
The objects in this library are initialized according to
their priority.

5 fileI 500 The objects in fileI are initialized next (lowest
priority number in this module).

6 fileJ 65535 The objects in fileJ are initialized next (next priority
number in this module (default priority of 65535)).

7 libS4 n/a libS4 is a dependency of libS1 and was entered last
on the command line when linked to create libS1, so
it is initialized next. The objects in this library are
initialized according to their priority.

8 fileH 200 The objects in fileH are initialized next (lowest
priority number in this module).

9 fileG 300 The objects in fileG are initialized next (next priority
number in this module).

10 libS3 n/a libS3 is a dependency of libS1 and was entered first
on the command line during the linking with libS1,
so it is initialized next. The objects in this library are
initialized according to their priority.

11 fileF 65535 Both fileF and fileE are assigned a default priority
of 65535. However, because fileF was listed last on
the command line when the object files were linked
into libS3, fileF is initialized first.

12 fileE 65535 Initialized next.

13 libS2 n/a libS2 is initialized next. The objects in this library
are initialized according to their priority.

14 fileD 65535 Both fileD and fileC are assigned a default priority
of 65535. However, because fileD was listed last on
the command line when the object files were linked
into libS2, fileD is initialized first.

15 fileC 65535 Initialized next.

16 libS1 libS1 is initialized next. The objects in this library
are initialized according to their priority.

17 fileA 101 The objects in fileA are initialized next (lowest
priority number in this module).

18 fileB 150 The objects in fileB are initialized next (next priority
number in this module).

Chapter 4. Constructing a library 19

Sequence Object
Priority
value Comment

19 main.out n/a Initialized last. The objects in main.out are initialized
according to their priority.

Related information in the XL C/C++ Compiler Reference

-shared (-qmkshrobj)

-W

20 XL C/C++: Optimization and Programming Guide

Chapter 5. Optimizing your applications

The XL compilers enable development of high performance 31-bit and 64-bit
applications by offering a comprehensive set of performance enhancing techniques
that exploit the multilayered System z® architecture. These performance advantages
depend on good programming techniques, thorough testing and debugging,
followed by optimization and tuning.

Distinguishing between optimization and tuning
You can use optimization and tuning separately or in combination to increase the
performance of your application. Understanding the difference between them is the
first step in understanding how the different levels, settings, and techniques can
increase performance.

Optimization

Optimization is a compiler-driven process that searches for opportunities to
restructure your source code and give your application better overall performance
at run time, without significantly impacting development time. The XL compiler
optimization suite, which you control using compiler options and directives,
performs best on well-written source code that has already been through a
thorough debugging and testing process. These optimization transformations can
bring the following benefits:
v Reduce the number of instructions that your application executes to perform

critical operations.
v Improve memory subsystem usage.

Each basic optimization technique can result in a performance benefit, although
not all optimizations can benefit all applications. Consult the “Steps in the
optimization process” on page 22 for an overview of the common sequence of
steps that you can use to increase the performance of your application.

Tuning

Tuning is a user-driven process where you experiment with changes, for example
to source code or compiler options, to make the compiler better optimize your
program. While optimization applies general transformations designed to improve
the performance of any application in any supported environment, tuning offers
you opportunities to adjust specific characteristics or target execution environments
of your application to improve its performance. Even at low optimization levels,
tuning for your application and target architecture can have a positive impact on
performance. With proper tuning, the compiler can make the following
improvements:
v Select more efficient machine instructions.
v Generate instruction sequences that are more relevant to your application.
v Select from more focussed optimizations to improve your code.

For instructions, see “Tuning for your system architecture” on page 25.

© Copyright IBM Corp. 2015 21

Steps in the optimization process
When you begin the optimization process, consider that not all optimization
techniques suit all applications. Trade-offs sometimes occur between an increase in
compile time, a reduction in debugging capability, and the improvements that
optimization can provide.

Learning about and experimenting with different optimization techniques can help
you strike the right balance for your XL compiler applications while achieving the
best possible performance. Also, though it is unnecessary to hand-optimize your
code, compiler-friendly programming can be extremely beneficial to the
optimization process. Unusual constructs can obscure the characteristics of your
application and make performance optimization difficult. Use the steps in this
section as a guide for optimizing your application.
1. The Basic optimization step begins your optimization processes at levels 0 and

2.
2. The Advanced optimization step exposes your application to more intense

optimizations at levels 3.
3. The Using high-order loop analysis and transformations step can help you limit

loop execution time.
4. The Using interprocedural analysis step can optimize your entire application at

once.
5. The Using profile-directed feedback step focuses optimizations on specific

characteristics of your application.
6. The Debugging optimized code step can help you identify issues and problems

that can occur with optimized code.

Basic optimization
The XL compiler supports several levels of optimization, with each option level
building on the levels below through increasingly aggressive transformations and
consequently using more machine resources.

Ensure that your application compiles and executes properly at low optimization
levels before you try more aggressive optimizations. This topic discusses two
optimizations levels, listed with complementary options in Table 9. The table also
includes a column for compiler options that can have a performance benefit at that
optimization level for some applications.

Table 9. Basic optimizations

Optimization level
Additional options
implied by default

Complementary
options

Other options with
possible benefits

-O0 None -march None

-O2 None -march
-mtune

-qhot=level=0

Optimizing at level 0
Benefits at level 0
v Provides minimal performance improvement with minimal impact on machine

resources
v Exposes some source code problems that can be helpful in the debugging

process

22 XL C/C++: Optimization and Programming Guide

Begin your optimization process at -O0, which the compiler already specifies by
default. This level performs basic analytical optimization by removing obviously
redundant code, and it can result in better compile time. It also ensures your code
is algorithmically correct so you can move forward to more complex optimizations.
-O0 also includes some redundant instruction elimination and constant folding.
Optimizing at this level accurately preserves all debugging information and can
expose problems in existing code, such as uninitialized variables and bad casting.

Additionally, specifying -march at this level targets your application for a
particular machine and can significantly improve performance by ensuring that
your application takes advantage of all applicable architectural benefits.

Related information in the XL C/C++ Compiler Reference

-march

Optimizing at level 2
Benefits at level 2
v Eliminates redundant code
v Performs basic loop optimization
v Structures code to take advantage of -march and -mtune settings

After you successfully compile, execute, and debug your application using -O0,
recompiling at -O2 opens your application to a set of comprehensive low-level
transformations that apply to subprogram or compilation unit scopes and can
include some inlining. Optimizations at -O2 attain a relative balance between
increasing performance while limiting the impact on compilation time and system
resources.

C In C, compile with -qlibansi unless your application defines functions
with names identical to those of library functions. If you encounter problems with
-O2, consider using -qalias=noansi rather than turning off optimization.

Also, ensure that pointers in your C code follow these type restrictions:
v Generic pointers can be char* or void*.
v Mark all shared variables and pointers to shared variables volatile.

C

Starting to tune at O2

Choosing the right hardware architecture target or family of targets becomes even
more important at -O2 and higher. By targeting the proper hardware, the optimizer
can make the best use of the available hardware facilities. If you choose a family of
hardware targets, the -mtune option can direct the compiler to emit code that is
consistent with the architecture choice and that can execute optimally on the
chosen tuning hardware target. With this option, you can compile for a general set
of targets and have the code run best on a particular target.

For details on the -march and -mtune options, see “Tuning for your system
architecture” on page 25.

The -O2 option can perform a number of additional optimizations as follows:
v Common subexpression elimination: Eliminates redundant instructions
v Constant propagation: Evaluates constant expressions at compile time

Chapter 5. Optimizing your applications 23

v Dead code elimination: Eliminates instructions that a particular control flow
does not reach or that generate an unused result

v Dead store elimination: Eliminates unnecessary variable assignments
v Global register allocation: Globally assigns user variables to registers
v Value numbering: Simplifies algebraic expressions by eliminating redundant

computations
v Instruction scheduling for the target machine
v Loop unrolling and software pipelining
v Method inlining: Inlines some methods into the calling method
v Moving loop-invariant code out of loops
v Simplifying control flow
v Strength reduction and effective use of addressing modes
v Widening: Merges adjacent load/stores and other operations
v Pointer aliasing improvements to enhance other optimizations

Even with -O2 optimizations, some useful information about your source code is
made available to the debugger if you specify -g. Using a higher -g level increases
the information provided to the debugger but reduces the optimization that can be
done. Conversely, higher optimization levels can transform code to an extent to
which debugging information is no longer accurate.

Advanced optimization
Higher optimization levels can have a tremendous impact on performance, but
some trade-offs can occur in terms of code size, compile time, resource
requirements, and numeric or algorithmic precision.

After applying “Basic optimization” on page 22 and successfully compiling and
executing your application, you can apply more powerful optimization tools. The
XL compiler optimization portfolio includes many options for directing advanced
optimization, and the transformations that your application undergoes are largely
under your control. The discussion of the optimization level in Table 10 includes
information on the performance benefits and the possible trade-offs and
information on how you can help guide the optimizer to find the best solutions for
your application.

Table 10. Advanced optimizations

Optimization Level
Additional options
implied

Complementary
options

Options with
possible benefits

-O3 -qhot=level=0 -march
-mtune

-qpdf

Optimizing at level 3
Benefits at level 3
v In-depth memory access analysis
v Better loop scheduling
v High-order loop analysis and transformations (-qhot=level=0)
v Inlining of small procedures within a compilation unit by default
v Eliminating implicit compile-time memory usage limits

24 XL C/C++: Optimization and Programming Guide

Specifying -O3 initiates more intense low-level transformations that remove many
of the limitations present at -O2. Additionally, optimizations encompass larger
program regions and attempt more in-depth analysis. Although not all applications
contain opportunities for the optimizer to provide a measurable increase in
performance, most applications can benefit from this type of analysis.

Potential trade-offs at level 3

With the in-depth analysis of -O3 comes a trade-off in terms of compilation time
and memory resources. This typically involves precision trade-offs as follows:
v Reordering of floating-point computations
v Reordering or elimination of possible exceptions, such as division by zero or

overflow
v Using alternative calculations that might give slightly less precise results or not

handle infinities or NaNs in the same way

For information about the -O level syntax, see "-O -qoptimize" in the XL C/C++
Compiler Reference .

Increasing -qhot at level 3
At -O3, the optimization includes minimal -qhot loop transformations at level=0 to
increase performance. To further increase your performance benefit from -qhot,
increase the optimization aggressiveness by increasing the optimization level of
-qhot. Try specifying -qhot without any suboptions or -qhot=level=1.

For more information about -qhot, see “Using high-order loop analysis and
transformations” on page 27.

Conversely, if the application does not use loops processing arrays, which -qhot
improves, you can improve compile speed significantly, usually with minimal
performance loss by using -qnohot after -O3.

Tuning for your system architecture
You can instruct the compiler to generate code for optimal execution on a given
microprocessor or architecture family. By selecting appropriate target machine
options, you can optimize to suit the broadest possible selection of target
processors, a range of processors within a given family of processor architectures,
or a specific processor.

The following table lists the optimization options that affect individual aspects of
the target machine. Using a predefined optimization level sets default values for
these individual options.

Table 11. Target machine options

Option Behavior

-m31 Generates code for a 31-bit (4 byte integer / 4 byte long / 4 byte pointer)
addressing model (31-bit execution mode).

-m64 Generates code for a 64-bit (4 byte integer / 8 byte long / 8 byte pointer)
addressing model (64-bit execution mode). This is the default setting.

-march Selects a family of processor architectures for which instruction code
should be generated. See “Getting the most out of target machine
options” on page 26 for more information about this option.

Chapter 5. Optimizing your applications 25

Table 11. Target machine options (continued)

Option Behavior

-mtune Biases optimization toward execution on a given microprocessor, without
implying anything about the instruction set architecture to be used as a
target. See “Getting the most out of target machine options” for more
information about this option.

For a complete list of valid hardware related suboptions and combinations of
suboptions, see the following information in the XL C/C++ Compiler Reference.
v Acceptable -march and -mtune combinations in -mtune (-qtune)
v Specifying compiler options for architecture-specific compilation

Related information in the XL C/C++ Compiler Reference

-m31, -m64 (-q31, -q64)

-march

-qipa

Getting the most out of target machine options
Using the -march (-qarch) option

Use the -march (-qarch) compiler option to generate instructions that are optimized
for a specific machine architecture. For example, if you want to generate an object
code that contains instructions optimized for the z196 architectures, use
-march=z196. If your application runs on the same machine on which you compile
it, use the -qarch=auto option, which automatically detects the specific architecture
of the compiling machine and generates code to take advantage of instructions
available only on that machine (or on a system that supports the equivalent
processor architecture). Otherwise, use the -march (-qarch) option to specify the
smallest possible family of the machines that can run your code reasonably well.

Using the -mtune (-qtune) option

Use the -mtune (-qtune) compiler option to control the scheduling of instructions
that are optimized for your machine architecture. If you specify a particular
architecture with -march (-qarch), -mtune (-qtune) automatically selects the
suboption that generates instruction sequences with the best performance for that
architecture. If you specify a group of architectures with -qarch, compiling with
-qtune=auto generates code that runs on all of the architectures in the specified
group, but the instruction sequences are those with the best performance on the
architecture of the compiling machine.

Try to specify with -mtune (-qtune) the particular architecture that the compiler
should target for best performance but still allow execution of the produced object
file on all architectures specified in the -march (-qarch) option. For information
about the valid combinations of -march (-qarch) and -mtune (-qtune) settings, see
Acceptable -march and -mtune combinations in the -mtune (-qtune) section of the XL
C/C++ Compiler Reference.

Related information in the XL C/C++ Compiler Reference

-march

-mtune

26 XL C/C++: Optimization and Programming Guide

Using high-order loop analysis and transformations
High-order transformations are optimizations that specifically improve the
performance of loops through techniques such as interchange, fusion, and
unrolling.

The goals of these loop optimizations include:
v Reducing the costs of memory access through the effective use of caches and

address translation look-aside buffers
v Overlapping computation and memory access through effective utilization of the

data prefetching capabilities provided by the hardware
v Improving the utilization of microprocessor resources through reordering and

balancing the usage of instructions with complementary resource requirements
v Generating SIMD vector instructions to offer better program performance when

-ftree-vectorize or -qsimd=auto is specified
v Generating calls to vector math library functions

To enable high-order loop analysis and transformations, use the -qhot option,
which implies an optimization level of -O2.

Table 12. -qhot suboptions

Suboption Behavior

level=0 Instructs the compiler to perform a subset of high-order transformations
that enhance performance by improving data locality. This suboption
implies -qhot=noarraypad. This level is automatically enabled if you
compile with -O3.

level=1 This is the default suboption if you specify -qhot with no suboptions.

arraypad Instructs the compiler to pad any arrays where it infers there might be a
benefit and to pad by whatever amount it chooses.

Related information in the XL C/C++ Compiler Reference

-march

Getting the most out of -qhot
Here are some suggestions for using -qhot:
v Try using -qhot along with -O3 for all of your code. It is designed to have a

neutral effect when no opportunities for transformation exist. However, it
increases compilation time and might have little benefit if the program has no
loop processing vectors or arrays. In this case, using -O3 -qnohot might be
better.

v If you encounter unacceptably long compilation time (this can happen with
complex loop nests), try -qhot=level=0 or -qnohot.

v You can compile some source files with the -qhot option and some files without
the -qhot option, allowing the compiler to improve only the parts of your code
that need optimization.

v Use -qreport along with -qhot to generate a loop transformation listing. The
listing file identifies how loops are transformed in a section marked LOOP
TRANSFORMATION SECTION. Use the listing information as feedback about how the
loops in your program are being transformed. Based on this information, you
might want to adjust your code so that the compiler can transform loops more
effectively. For example, you can use this section of the listing to identify
non-stride-one references that might prevent loop vectorization.

Chapter 5. Optimizing your applications 27

v Use -qreport along with -qhot or any optimization option that implies -qhot to
generate information about nested loops in the LOOP TRANSFORMATION SECTION of
the listing file.
Related information in the XL C/C++ Compiler Reference

-qhot

Generating vector instructions
When you run the compiler on the IBM z13 models and target a Linux distribution
that has vector support, you can specify -ftree-vectorize (-qsimd) to enable the
compiler to transform code into vector instructions.

These vector instructions take advantage of the Vector Facility for z/Architecture to
execute several operations in parallel. This transformation mostly applies to the
loops that iterate over contiguous array data and perform calculations on each
element.

You can specify -qsimd=auto with -O3 or -O3 -qhot to expose additional
optimization opportunities.

You can use the #pragma nosimd directive to disable the transformation of a
particular loop into vector instructions.

Related information in the XL C/C++ Compiler Reference

-qhot

Using interprocedural analysis
Interprocedural analysis (IPA) enables the compiler to optimize across different
files (whole-program analysis), and it can result in significant performance
improvements.

You can specify interprocedural analysis on the compilation step only or on both
compilation and link steps in whole program mode. Whole program mode
expands the scope of optimization to an entire program unit, which can be an
executable or a shared object. As IPA can significantly increase compilation time,
you should limit using IPA to the final performance tuning stage of development.

You can enable IPA by specifying the -qipa option. The most commonly used
suboptions and their effects are described in the following table. The full set of
suboptions and syntax is described in the -qipa section of the XL C/C++ Compiler
Reference.

The steps to use IPA are as follows:
1. Do preliminary performance analysis and tuning before compiling with the

-qipa option, because the IPA analysis uses a two-pass mechanism that
increases compilation time and link time. You can reduce some compilation and
link overhead by using the -qipa=noobject option.

2. Specify the -qipa option on both the compilation and the link steps of the
entire application, or as much of it as possible. Use suboptions to indicate
assumptions to be made about parts of the program not compiled with -qipa.

28 XL C/C++: Optimization and Programming Guide

Table 13. Commonly used -qipa suboptions

Suboption Behavior

level=0 Program partitioning and simple interprocedural optimization, which
consists of:
v Automatic recognition of standard libraries.
v Localization of statically bound variables and procedures.
v Partitioning and layout of procedures according to their calling

relationships. (Procedures that call each other frequently are
located closer together in memory.)

v Expansion of scope for some optimizations, notably register
allocation.

level=1 Inlining and global data mapping. Specifically:
v Procedure inlining.
v Partitioning and layout of static data according to reference

affinity. (Data that is frequently referenced together will be located
closer together in memory.)

This is the default level if you do not specify any suboptions with
the -qipa option.

level=2 Global alias analysis, specialization, interprocedural data flow:
v Whole-program alias analysis. This level includes the

disambiguation of pointer dereferences and indirect function calls,
and the refinement of information about the side effects of a
function call.

v Intensive intraprocedural optimizations. This can take the form of
value numbering, code propagation and simplification, moving
code into conditions or out of loops, and elimination of
redundancy.

v Interprocedural constant propagation, dead code elimination,
pointer analysis, code motion across functions, and interprocedural
strength reduction.

v Procedure specialization (cloning).
v Whole program data reorganization.

inline=suboptions Provides precise control over function inlining.

fine_tuning Other values for -qipa provide the ability to specify the behavior of
library code, tune program partitioning, read commands from a file,
and so on.

Note:

The XL C/C++ for Linux on z Systems compilers provide backwards compatibility
with IPA objects that are created by earlier compiler versions. If IPA object files that
are compiled with newer versions of compilers are linked by an earlier version,
errors occur during the link step. For example, if IPA object file a.o is compiled by
XL C/C++ for Linux on z Systems, V1.2 and is to be linked with IPA object file b.o
that is compiled by XL C/C++ for Linux on z Systems, V1.1, then you must use a
compiler whose version is XL C/C++ for Linux on z Systems, V1.2 or later.

Related information in the XL C/C++ Compiler Reference

-qipa

Getting the most from -qipa
It is not necessary to compile everything with -qipa, but try to apply it to as much
of your program as possible. Here are some suggestions:

Chapter 5. Optimizing your applications 29

v Specify the -qipa option on both the compile and the link steps of the entire
application. Although you can also use -qipa with libraries, shared objects, and
executable files, be sure to use -qipa to compile the main and exported
functions.

v When compiling and linking separately, use -qipa=noobject on the compile step
for faster compilation.

v When specifying optimization options in a makefile, use the compiler driver
(xlC) to link with all the compiler options on the link step included.

v As IPA can generate significantly larger object files than traditional compilations,
ensure that there is enough space in the /tmp directory (at least 200 MB). You
can use the TMPDIR environment variable to specify a directory with sufficient
free space.

v Try varying the level suboption if link time is too long. Compiling with
-qipa=level=0 can still be very beneficial for little additional link time.

v Use -qipa=list=long to generate a report of functions that were previously
inlined. If too few or too many functions are inlined, consider using
-finline-functions (-qinline) or -qnoinline. To control the inlining of specific
functions, use -qinline+function_name or -qinline-function_name.

v To generate data reorganization information in the listing file, specify the
optimization level -qipa=level=2 together with -qreport. During the IPA link
pass, the data reorganization messages for program variable data will be
produced to the data reorganization section of the listing file with the label DATA
REORGANIZATION SECTION. Reorganizations include array splitting, array
transposing, memory allocation merging, array interleaving, and array
coalescing.

Note: While IPA's interprocedural optimizations can significantly improve
performance of a program, they can also cause incorrect but previously functioning
programs to fail. Here are examples of programming practices that can work by
accident without aggressive optimization but are exposed with IPA:
v Relying on the allocation order or location of automatic variables, such as taking

the address of an automatic variable and then later comparing it with the
address of another local variable to determine the growth direction of a stack.
The C language does not guarantee where an automatic variable is allocated, or
its position relative to other automatic variables. Do not compile such a function
with IPA.

v Accessing a pointer that is either invalid or beyond an array's bounds. Because
IPA can reorganize global data structures, a wayward pointer that might have
previously modified unused memory might now conflict with user-allocated
storage.

v Dereferencing a pointer that has been cast to an incompatible type.
Related information in the XL C/C++ Compiler Reference

-finline-functions

-qlist

-qipa

Using profile-directed feedback
You can use profile-directed feedback (PDF) to tune the performance of your
application for a typical usage scenario. The compiler optimizes the application
based on an analysis of how often branches are taken and blocks of code are run.

30 XL C/C++: Optimization and Programming Guide

Use the PDF process as one of the last steps of optimization before putting the
application into production. Optimization at all levels from -O2 up can benefit
from PDF. Other optimizations such as the -qipa option can also benefit from PDF
process.

The following diagram illustrates the PDF process.

Compile with
-qpdf1

Compile with
-qpdf2

Source
code

Instrumented
executable

Profile data

Optimized
executable

Sample runs

To use the PDF process to optimize your application, follow these steps:
1. Compile some or all of the source files in a program with the -qpdf1 option.

You must specify at least the -O2 optimization level.

Notes:

v A PDF map file is generated at this step. It is used for the showpdf utility to
display part of the profiling information in text or XML format. For details,
see “Viewing profiling information with showpdf” on page 34. If you do not
need to view the profiling information, specify the -qnoshowpdf option at
this step so that the PDF map file is not generated. For details of
-qnoshowpdf, see -qshowpdf in the XL C/C++ Compiler Reference.

v You do not have to compile all of the files of the programs with the -qpdf1
option. In a large application, you can concentrate on those areas of the code
that can benefit most from the optimization.

v When any level of option -qipa is in effect, and you specify the -qpdf1
option at the link step but not at the compile step, the compiler issues a
warning message. The message indicates that you must recompile your
program to get all the profiling information.

Restriction: When you run an application that is compiled with -qpdf1, you
must end the application using normal methods, including reaching the end of
the execution for the main function and calling the exit() function in libc
(stdlib.h) for C/C++ programs. System calls exit(), _Exit(), and abort() are
considered abnormal termination methods and are not supported. Using
abnormal program termination might result in incomplete instrumentation data
generated by using the PDF file or PDF data not being generated at all.

2. Run the resulting application with a typical data set. When the application
exits, profile information is written to one or more PDF files. You can train the
resulting application multiple times with different data sets. The profiling
information is accumulated to provide a count of how often branches are taken

Figure 2. Profile-directed feedback

Chapter 5. Optimizing your applications 31

and blocks of code are run, based on the input data used. This step is called the
PDF training step. By default, the PDF file is named ._pdf, and it is placed in
the current working directory or the directory specified by the PDFDIR
environment variable. If the PDFDIR environment variable is set but the
specified directory does not exist, the compiler issues a warning message. To
override the defaults, use the -qpdf1=pdfname or -qpdf1=exename option.
If you recompile your program with the -qpdf1 option, the compiler removes
the existing PDF file or files whose names and locations are the same as the file
or files that will be created in the training step before generating a new
application.

Notes:

v When you compile your program with the -qpdf1 or -qpdf2 option, by
default, the -qipa option is also invoked with level=0.

v To avoid wasting compile and run time, make sure that the PDFDIR
environment variable is set to an absolute path. Otherwise, you might run
the application from a wrong directory, and the compiler cannot locate the
profiling information files. When it happens, the program might not be
optimized correctly or might be stopped by a segmentation fault. A
segmentation fault might also happen if you change the value of the PDFDIR
environment variable and run the application before the PDF process
finishes.

v Avoid using atypical data. Otherwise, it might distort the analysis of
infrequently executed code paths.

3. If you have several PDF files, use the mergepdf utility to combine these PDF
files into one PDF file. For example, if you produce three PDF files that
represent usage patterns that occur 53%, 32%, and 15% of the time respectively,
you can use this command:

mergepdf -r 53 file_path1 -r 32 file_path2 -r 15 file_path3 -o file_path4

where file_path1, file_path2, and file_path3 specify the directories and names of
the PDF files that are to be merged, and file_path4 specifies the directory and
name of the output PDF file.

Notes:

v Avoid mixing the PDF files created by different versions or PTF levels of the
XL C/C++ compiler.

v You cannot edit PDF files that are generated by the resulting application.
Otherwise, the performance or function of the generated executable
application might be affected.

4. Recompile your program using the same compiler options as before, but
change -qpdf1 to -qpdf2. In this second compilation, the accumulated profiling
information is used to fine-tune the optimizations. The resulting program
contains no profiling overhead and runs at full speed.
It is recommended that you use the -qpdf2 option to link the object files that
are created during the -qpdf1 phase without recompiling your program. Using
this approach, you can save considerable compilation time and achieve the
same optimization result as if you had recompiled your program during the
-qpdf2 phase.

Notes:

v If the compiler cannot read any PDF files in this step, the compiler issues
error message 1586-401 but continues the compilation.

32 XL C/C++: Optimization and Programming Guide

v You are highly recommended to use the same optimization level at all
compilation steps for a particular program. Otherwise, the PDF process
cannot optimize your program correctly and might even slow it down. All
compiler settings that affect optimization must be the same, including any
supplied by configuration files.

v You can modify your source code and use the -qpdf1 and -qpdf2 options to
compile your program. Old profiling information can still be preserved and
used during the second stage of the PDF process. The compiler issues a list
of warnings but the compilation does not stop. An information message is
also issued with a number in the range of 0 - 100 to indicate how outdated
the old profiling information is.

v When any level of option -qipa is in effect, and you specify the -qpdf2
option at the link step but not at the compile step, the compiler issues a
warning message. The message indicates that you must recompile your
program to get all the profiling information.

v When using the -qreport option with the -qpdf2 option, you can get
additional information in your listing file to help you tune your program.
This information is written to the PDF Report section.

5. If you want to erase the PDF information, use the cleanpdf utility.

Examples

The following example demonstrates that you can concentrate on compiling with
-qpdf1 only the code that can benefit most from the optimization, instead of
compiling all the code with the -qpdf1 option:
#Set the PDFDIR variable
export PDFDIR=$HOME/project_dir

#Compile most of the files with -qpdf1
xlc -qpdf1 -O3 -c file1.c file2.c file3.c

#This file does not need optimization
xlc -c file4.c

#Non-PDF object files such as file4.o can be linked
xlc -qpdf1 -O3 file1.o file2.o file3.o file4.o

#Run several times with different input data
./a.out < polar_orbit.data
./a.out < elliptical_orbit.data
./a.out < geosynchronous_orbit.data

#Link all the object files into the final application
xlc -qpdf2 -O3 file1.o file2.o file3.o file4.o

The following example bypasses recompiling the source with the -qpdf2 option:
#Compile source with -qpdf1
xlc -c -qpdf1 -O3 file1.c file2.c

#Link object files
xlc -qpdf1 -O3 file1.o file2.o

#Run with one set of input data
./a.out < sample.data

#Link object files
xlc -qpdf2 -O3 file1.o file2.o

Related information in the XL C/C++ Compiler Reference

Chapter 5. Optimizing your applications 33

-qpdf1, -qpdf2

-O, -qoptimize

Runtime environment variables

Viewing profiling information with showpdf
With the showpdf utility, you can view the following types of profiling
information that is gathered from your application:
v Block-counter profiling
v Call-counter profiling
v Value profiling

Syntax

►► showpdf
pdfdir -f pdfname -m pdfmapdir

►◄

Parameters

pdfdir
Is the directory that contains the profile-directed feedback (PDF) file. If the
PDFDIR environment variable is not changed after the -qpdf1 phase, the PDF
map file is also contained in this directory. If this parameter is not specified,
the compiler uses the value of the PDFDIR environment variable as the name
of the directory.

pdfname
Is the name of the PDF file. If this parameter is not specified, the compiler uses
._pdf as the name of the PDF file.

pdfmapdir
Is the directory that contains the PDF map file. If this parameter is not
specified, the compiler uses the value of the PDFDIR environment variable as
the name of the directory.

Usage

A PDF map file that contains static information is generated during the -qpdf1
phase, and a PDF file is generated during the execution of the resulting
application. The showpdf utility needs both the PDF and PDF map files to display
PDF information.

By default, the PDF file is named ._pdf, and the PDF map file is named ._pdf_map.
If the PDFDIR environment variable is set, the compiler places the PDF and PDF
map files in the directory specified by PDFDIR. Otherwise, the compiler places
these files in the current working directory. If the PDFDIR environment variable is
set but the specified directory does not exist, the compiler issues a warning
message. To override the defaults, use the -qpdf1=pdfname option to specify the
paths and names for the PDF and PDF map files. For example, if you specify the
-qpdf1=pdfname=/home/joe/func option, the resulting PDF file is named func, and
the PDF map file is named func_map. Both of the files are placed in the /home/joe
directory.

34 XL C/C++: Optimization and Programming Guide

If the PDFDIR environment variable is changed between the -qpdf1 phase and the
execution of the resulting application, the PDF and PDF map files are generated in
separate directories. In this case, you must specify the directories for both of these
files to the showpdf utility.

Notes:

v PDF and PDF map files must be generated from the same compilation instance.
Otherwise, the compiler issues an error.

v PDF and PDF map files must be generated during the same profiling process.
This means that you cannot mix and match PDF and PDF map files that are
generated from different profiling processes.

v You must use the same version and PTF level of the compiler to generate the
PDF file and the PDF map file.

v The showpdf utility accepts only PDF files that are in binary format.
v You can use the PDF_WL_ID environment variable to distinguish the multiple

sets of PDF counters that are generated by multiple training runs of the user
program.

The following example shows how to use the showpdf utility to view the profiling
information for a Hello World application:

The source for the program file hello.c is as follows:
#include <stdio.h>
void HelloWorld()
{

printf("Hello World");
}
main()
{

HelloWorld();
return 0;

}

1. Compile the source file.
xlc -qpdf1 -O hello.c

2. Run the resulting executable program a.out using a typical data set or several
typical data sets.

3. If you want to view the profiling information for the executable file in text
format, run the showpdf utility without any parameters.
showpdf

The result is as follows:
HelloWorld(67): 1 (hello.c)

Call Counters:
4 | 1 printf(69)

Call coverage = 100% (1/1)

Block Counters:
2-4 | 1
5 |
5 | 1

Block coverage = 100% (2/2)

main(68): 1 (hello.c)

Chapter 5. Optimizing your applications 35

Call Counters:
8 | 1 HelloWorld(67)

Call coverage = 100% (1/1)

Block Counters:
6-9 | 1
10 |

Block coverage = 100% (1/1)

Total Call coverage = 100% (2/2)
Total Block coverage = 100% (3/3)

Related information in the XL C/C++ Compiler Reference

-qpdf1, -qpdf2

-qshowpdf

Object level profile-directed feedback
About this task

In addition to optimizing entire executables, profile-directed feedback (PDF) can
also be applied to specific object files. This can be an advantage in applications
where patches or updates are distributed as object files or libraries rather than as
executables. Also, specific areas of functionality in your application can be
optimized without the process of relinking the entire application. In large
applications, you can save the time and trouble that otherwise need to be spent
relinking the application.

The process for using object level PDF is essentially the same as the standard PDF
process but with a small change to the -qpdf2 step. For object level PDF, compile
your program using the -qpdf1 option, execute the resulting application with
representative data, compile the program again with the -qpdf2 option, but now
also use the -qnoipa option so that the linking step is skipped.

The steps below outline this process:
1. Compile your program using the -qpdf1 option. For example:

xlc -c -O3 -qpdf1 file1.c file2.c file3.c

In this example, we are using the optimization level -O3 to indicate that we
want a moderate level of optimization.

2. Link the object files to get an instrumented executable:
xlc -O3 -qpdf1 file1.o file2.o file3.o

3. Run the instrumented executable with sample data that is representative of the
data you want to optimize for.
a.out < sample_data

4. Compile the program again using the -qpdf2 option. Specify the -qnoipa
option so that the linking step is skipped and PDF optimization is applied to
the object files rather than to the entire executable.
xlc -c -O3 -qpdf2 -qnoipa file1.c file2.c file3.c

The resulting output of this step are object files optimized for the sample data
processed by the original instrumented executable. In this example, the
optimized object files would be file1.o, file2.o, and file3.o. These can be linked
by using the system loader ld or by omitting the -c option in the -qpdf2 step.

36 XL C/C++: Optimization and Programming Guide

Notes:

v You must use the same optimization level in all the steps. In this example, the
optimization level is -O3.

v If you want to specify a file name for the profile that is created, use the
pdfname suboption in both the -qpdf1 and -qpdf2 steps. For example:
xlc -O3 -qpdf1=pdfname=myprofile file1.c file2.c file3.c

Without the pdfname suboption, by default the file name is ._pdf; the location
of the file is the current working directory or whatever directory you have set
using the PDFDIR environment variable. If the PDFDIR environment variable is
set but the specified directory does not exist, the compiler issues a warning
message.

v Because the -qnoipa option needs to be specified in the -qpdf2 step so that
linking of your object files is skipped, you cannot use interprocedural analysis
(IPA) optimizations and object level PDF at the same time.

For details, see -qpdf1, -qpdf2 in the XL C/C++ Compiler Reference.

Other optimization options
Options are available to control particular aspects of optimization. They are often
enabled as a group or given default values when you enable a more general
optimization option or level.

For more information about these options, see the heading for each option in the
XL C/C++ Compiler Reference.

Table 14. Selected compiler options for optimizing performance

Option Description

-finline-functions Controls inlining.

C++

-qnoeh Informs the compiler that no C++ exceptions will be thrown

and that cleanup code can be omitted. If your program does
not throw any C++ exceptions, use this option to compact
your program by removing exception-handling code.

Related information in the XL C/C++ Compiler Reference

-finline-functions

-qeh (C++ only)

Chapter 5. Optimizing your applications 37

38 XL C/C++: Optimization and Programming Guide

Chapter 6. Debugging optimized code

Debugging optimized programs presents special usability problems. Optimization
can change the sequence of operations, add or remove code, change variable data
locations, and perform other transformations that make it difficult to associate the
generated code with the original source statements.

For example:

Data location issues
With an optimized program, it is not always certain where the most
current value for a variable is located. For example, a value in memory
might not be current if the most current value is being stored in a register.
Most debuggers cannot follow the removal of stores to a variable, and to
the debugger it appears as though that variable is never updated, or
possibly even never set. This contrasts with no optimization where all
values are flushed back to memory and debugging can be more effective
and usable.

Instruction scheduling issues
With an optimized program, the compiler might reorder instructions. That
is, instructions might not be executed in the order you would expect based
on the sequence of lines in the original source code. Also, the sequence of
instructions for a statement might not be contiguous. As you step through
the program with a debugger, the program might appear as if it is
returning to a previously executed line in the code (interleaving of
instructions).

Consolidating variable values
Optimizations can result in the removal and consolidation of variables. For
example, if a program has two expressions that assign the same value to
two different variables, the compiler might substitute a single variable.
This can inhibit debug usability because a variable that a programmer is
expecting to see is no longer available in the optimized program.

There are a couple of different approaches you can take to improve debug
capabilities while also optimizing your program:

Debug non-optimized code first
Debug a non-optimized version of your program first, and then recompile
it with your desired optimization options. See “Debugging in the presence
of optimization” on page 40 for some compiler options that are useful in
this approach.

Use -g level
Use the -g level suboption to control the amount of debugging information
made available. Increasing it improves debug capability but prevents some
optimizations. For more information, see -g.

Understanding different results in optimized programs
Here are some reasons why an optimized program might produce different results
from one that has not undergone the optimization process:

© Copyright IBM Corp. 2015 39

v Optimized code can fail if a program contains code that is not valid. The
optimization process relies on your application conforming to language
standards.

v If a program that works without optimization fails when you optimize, check
the cross-reference listing and the execution flow of the program for variables
that are used before they are initialized. Compile with the -qinitauto=hex_value
option to try to produce the incorrect results consistently. For example, using
-qinitauto=FF gives variables an initial value of "negative not a number"
(-NAN). Any operations on these variables will also result in NAN values. Other
bit patterns (hex_value) might yield different results and provide further clues as
to what is going on. Programs with uninitialized variables can appear to work
properly when compiled without optimization because of the default
assumptions the compiler makes, but such programs might fail when you
optimize. Similarly, a program can appear to execute correctly after optimization,
but it fails at lower optimization levels or when it is run in a different
environment.

v Referring to an automatic-storage variable by its address after the owning
function has gone out of scope leads to a reference to a memory location that
can be overwritten as other auto variables come into scope as new functions are
called.

Use with caution debugging techniques that rely on examining values in storage,
unless the -g8 or -g9 option is in effect and the optimization level is -O2. The
compiler might have deleted or moved a common expression evaluation. It might
have assigned some variables to registers so that they do not appear in storage at
all.

Debugging in the presence of optimization
Debug and compile your program with your desired optimization options. Test the
optimized program before placing it into production. If the optimized code does
not produce the expected results, you can attempt to isolate the specific
optimization problems in a debugging session.

The following list presents options that provide specialized information, which can
be helpful during the debugging of optimized code:

-qlist Instructs the compiler to emit an object listing. The object listing includes
hex and pseudo-assembly representations of the generated instructions,
traceback tables, and text constants.

-qreport
Instructs the compiler to produce a report of the loop transformations it
performed, what inlining was done, and some other transformations. To
generate a listing file, you must specify the -qreport option with at least
one optimization option such as -qhot, -finline-functions (-qinline), or
-ftree-vectorize (-qsimd).

-qipa=list
Instructs the compiler to emit an object listing that provides information
for IPA optimization.

-qkeepparm
Ensures that procedure parameters are stored on the stack even during
optimization. This can negatively impact execution performance. The

40 XL C/C++: Optimization and Programming Guide

-qkeepparm option then provides access to the values of incoming
parameters to tools, such as debuggers, simply by preserving those values
on the stack.

-qinitauto
Instructs the compiler to emit code that initializes all automatic variables to
a given value.

-g Generates debugging information to be used by a symbolic debugger. You
can use different -g levels to debug optimized code by viewing or possibly
modifying accessible variables at selected source locations in the debugger.
Higher -g levels provide a more complete debug support, while lower
levels provide higher runtime performance. For details, see -g.

Chapter 6. Debugging optimized code 41

42 XL C/C++: Optimization and Programming Guide

Chapter 7. Coding your application to improve performance

Chapter 5, “Optimizing your applications,” on page 21 discusses the various
compiler options that the XL C/C++ compiler provides for optimizing your code
with minimal coding effort. If you want to take your application a step further to
complement and take the most advantage of compiler optimizations, the topics in
this section discuss C and C++ programming techniques that can improve
performance of your code.

Finding faster input/output techniques
There are a number of ways to improve your program's performance of input and
output:
v If your file I/O accesses do not exhibit locality (that is truly random access such

as in a database), implement your own buffering or caching mechanism on the
low-level I/O functions.

v If you do your own I/O buffering, make the buffer a multiple of 4KB, which is
the minimum size of a page.

v Use buffered I/O to handle text files.
v If you have to process an entire file, determine the size of the data to be read in,

allocate a single buffer to read it to, read the whole file into that buffer at once
using read, and then process the data in the buffer. This reduces disk I/O,
provided the file is not so big that excessive swapping will occur. Consider
using the mmap function to access the file.

Reducing function-call overhead
When you write a function or call a library function, consider the following
guidelines:
v Call a function directly, rather than using function pointers.
v Use const arguments in inlined functions whenever possible. Functions with

constant arguments provide more opportunities for optimization.
v Use the restrict keyword for pointers that can never point to the same

memory.
v Use #pragma disjoint within functions for pointers or reference parameters that

can never point to the same memory.
v Declare a nonmember function as static whenever possible. This can speed up

calls to the function and increase the likelihood that the function will be inlined.
v C++ Usually, you should not declare all your virtual functions inline. If all

virtual functions in a class are inline, the virtual function table and all the virtual
function bodies will be replicated in each compilation unit that uses the class.

v C++ When declaring functions, use the const specifier whenever possible.

v C Fully prototype all functions. A full prototype gives the compiler and
optimizer complete information about the types of the parameters. As a result,
promotions from unwidened types to widened types are not required, and
parameters can be passed in appropriate registers.

v C Avoid using unprototyped variable argument functions.
v Design functions so that they have few parameters and the most frequently used

parameters are in the leftmost positions in the function prototype.

© Copyright IBM Corp. 2015 43

v Avoid passing by value large structures or unions as function parameters or
returning a large structure or a union. Passing such aggregates requires the
compiler to copy and store many values. This is worse in C++ programs in
which class objects are passed by value because a constructor and destructor are
called when the function is called. Instead, pass or return a pointer to the
structure or union, or pass it by reference.

v Pass non-aggregate types such as int and short or small aggregates by value
rather than passing by reference, whenever possible.

v If your function exits by returning the value of another function with the same
parameters that were passed to your function, put the parameters in the same
order in the function prototypes. The compiler can then branch directly to the
other function.

v Use the built-in functions, which include string manipulation, floating-point, and
trigonometric functions, instead of coding your own. Intrinsic functions require
less overhead and are faster than a function call, and they often allow the
compiler to perform better optimization.

C++ Many functions from the C++ standard libraries are mapped to
optimized built-in functions by the compiler.

C Many functions from string.h and math.h are mapped to optimized
built-in functions by the compiler.

v Selectively mark your functions for inlining using the inline keyword. An
inlined function requires less overhead and is generally faster than a function
call. The best candidates for inlining are small functions that are called
frequently from a few places, or functions called with one or more compile-time
constant parameters, especially those that affect if, switch, or for statements.
You might also want to put these functions into header files, which allows
automatic inlining across file boundaries even at low optimization levels. Be sure
to inline all functions that only load or store a value, or use simple operators
such as comparison or arithmetic operators. Large functions and functions that
are called rarely are generally not good candidates for inlining. Neither are
medium size functions that are called from many places.

v Avoid breaking your program into too many small functions. If you must use
small functions, you can use the -qipa compiler option to automatically inline
such functions and use other techniques to optimize calls between functions.

v C++ Avoid virtual functions and virtual inheritance unless required for class
extensibility. These language features are costly in object space and function
invocation performance.
Related information in the XL C/C++ Compiler Reference

-qisolated_call

#pragma disjoint

-qipa

Managing memory efficiently (C++ only)
Because C++ objects are often allocated from the heap and have limited scope,
memory use affects performance more in C++ programs than it does in C
programs. For that reason, consider the following guidelines when you develop
C++ applications:
v In a structure, declare the largest aligned members first. Members of similar

alignment should be grouped together where possible.

44 XL C/C++: Optimization and Programming Guide

v In a structure, place variables near each other if they are frequently used
together.

v Ensure that objects that are no longer needed are freed or otherwise made
available for reuse. One way to do this is to use an object manager. Each time you
create an instance of an object, pass the pointer to that object to the object
manager. The object manager maintains a list of these pointers. To access an
object, you can call an object manager member function to return the
information to you. The object manager can then manage memory usage and
object reuse.

v Storage pools are a good way of keeping track of used memory (and reclaiming
it) without having to resort to an object manager or reference counting. Do not
use storage pools for objects with non-trivial destructors, because in most
implementations the destructors cannot be run when the storage pool is cleared.

v Avoid copying large and complicated objects.
v Avoid performing a deep copy if you only need a shallow copy. For an object that

contains pointers to other objects, a shallow copy copies only the pointers and
not the objects to which they point. The result is two objects that point to the
same contained object. A deep copy, however, copies the pointers and the objects
they point to, as well as any pointers or objects that are contained within that
object, and so on. A deep copy must be performed in multithreaded
environments, because it reduces sharing and synchronization.

v Use virtual methods only when absolutely necessary.
v Use the "Resource Acquisition is Initialization" (RAII) pattern.
v Use shared_ptr and weak_ptr.

Optimizing variables
Consider the following guidelines:
v Use local variables, preferably automatic variables, as much as possible. The

compiler must make several worst-case assumptions about global variables. For
example, if a function uses external variables and also calls external functions,
the compiler assumes that every call to an external function could use and
change the value of every external variable. If you know that a global variable is
not read or affected by any function call and this variable is read several times
with function calls interspersed, copy the global variable to a local variable and
then use this local variable.

v If you must use global variables, use static variables with file scope rather than
external variables whenever possible. In a file with several related functions and
static variables, the optimizer can gather and use more information about how
the variables are affected.

v If you must use external variables, group external data into structures or arrays
whenever it makes sense to do so. All elements of an external structure use the
same base address. Do not group variables whose addresses are taken with
variables whose addresses are not taken.

v Avoid taking the address of a variable. If you use a local variable as a temporary
variable and must take its address, avoid reusing the temporary variable for a
different purpose. Taking the address of a local variable can inhibit
optimizations that would otherwise be done on calculations involving that
variable.

v Use constants instead of variables where possible. The optimizer is able to do a
better job reducing runtime calculations by doing them at compile time instead.
For instance, if a loop body has a constant number of iterations, use constants in
the loop condition to improve optimization (for (i=0; i<4; i++) can be better

Chapter 7. Coding your application to improve performance 45

optimized than for (i=0; i<x; i++)). An enumeration declaration can be used
to declare a named constant for maintainability.

v Use register-sized integers (long data type) for scalars to avoid sign extension
instructions after each change in 64-bit mode. For large arrays of integers,
consider using one-byte or two-byte integers or bit fields.

v Use the smallest floating-point precision appropriate to your computation.
Related information in the XL C/C++ Compiler Reference

-qisolated_call

Manipulating strings efficiently
The handling of string operations can affect the performance of your program.
v When you store strings into allocated storage, align the start of the string on an

8-byte or 16-byte boundary.
v Keep track of the length of your strings. If you know the length of a string, you

can use mem functions instead of str functions. For example, memcpy is faster than
strcpy because it does not have to search for the end of the string.

v If you are certain that the source and target do not overlap, use memcpy instead
of memmove. This is because memcpy copies directly from the source to the
destination, while memmove might copy the source to a temporary location in
memory before copying to the destination, or it might copy in reverse order
depending on the length of the string.

v When manipulating strings using mem functions, faster code can be generated if
the count parameter is a constant rather than a variable. This is especially true
for small count values.

Optimizing expressions and program logic
Consider the following guidelines:
v If components of an expression are used in other expressions and they include

function calls or there are function calls between the uses, assign the duplicated
values to a local variable.

v Avoid forcing the compiler to convert numbers between integer and
floating-point internal representations. For example:
float array[10];
float x = 1.0;
int i;
for (i = 0; i< 9; i++) { /* No conversions needed */

array[i] = array[i]*x;
x = x + 1.0;
}

for (i = 0; i< 9; i++) { /* Multiple conversions needed */
array[i] = array[i]*i;
}

When you must use mixed-mode arithmetic, code the integer and floating-point
arithmetic in separate computations whenever possible.

v Do not use global variables as loop indices or bounds.
v Avoid goto statements that jump into the middle of loops. Such statements

inhibit certain optimizations.
v Improve the predictability of your code by making the fall-through path more

probable. Code such as:
if (error) {handle error} else {real code}

46 XL C/C++: Optimization and Programming Guide

should be written as:
if (!error) {real code} else {error}

v If one or two cases of a switch statement are typically executed much more
frequently than other cases, break out those cases by handling them separately
before the switch statement. If possible, replace the switch statement by
checking whether the value is in range to be obtained from an array.

v C++ Use try blocks for exception handling only when necessary because
they can inhibit optimization.

v Keep array index expressions as simple as possible.

Optimizing operations in 64-bit mode
The ability to handle larger amounts of data directly in physical memory rather
than relying on disk I/O is perhaps the most significant performance benefit of
64-bit machines. However, some applications compiled in 31-bit mode perform
better than when they are recompiled in 64-bit mode. Some reasons for this
include:
v 64-bit programs are larger. The increase in program size places greater demands

on physical memory.
v 64-bit long division is more time-consuming than 31-bit integer division.
v 64-bit programs that use 31-bit signed integers as array indexes or loop counts

might require additional instructions to perform sign extension each time the
array is referenced or the loop count is incremented.

Some ways to compensate for the performance liabilities of 64-bit programs
include:
v Avoid performing mixed 31-bit and 64-bit operations. For example, adding a

31-bit data type to a 64-bit data type requires that the 31-bit be sign-extended to
clear or set the upper 31-bit of the register. This slows the computation.

v Use long types instead of signed, unsigned, and plain int types for variables
that will be frequently accessed, such as loop counters and array indexes. Doing
so frees the compiler from having to truncate or sign-extend array references,
parameters during function calls, and function results during returns.

The C++ template model
In C++, you can use a template to declare a set of related following entities:
v Classes (including structures)
v Functions
v Static data members of template classes

Each compiler implements templates according to a model that determines the
meaning of a template at various stages of the translation of a program. In
particular, the compiler determines what the various constructs in a template mean
when the template is instantiated. Name lookup is an essential ingredient of the
compilation model.

Template instantiation is a process that generates types and functions from generic
template definitions. The concept of instantiation of C++ templates is fundamental
but also intricate because the definitions of entities generated by a template are no
longer limited to a single location in the source code. The location of the template,
the location where the template is used, and the locations where the template
arguments are defined all contribute to the meaning of the entity.

Chapter 7. Coding your application to improve performance 47

XL C/C++ supports Greedy instantiation. The compiler generates a template
instantiation in each compilation unit that uses it. The linker discards the
duplicates.

Related information in the XL C/C++ Compiler Reference

-qtmplinst (C++ only)

Using delegating constructors (C++11)

Note: IBM supports the majority of C++11 features and will continue to develop
and implement the features of this standard.

Before C++11, common initialization in multiple constructors of the same class
cannot be concentrated in one place in a robust and maintainable manner. Starting
from C++11, with the delegating constructors feature, you can concentrate common
initialization in one constructor, which can make the program more readable and
maintainable. Delegating constructors help reduce code size and collective size of
object files.

Syntactically, delegating constructors and target constructors present the same
interface as other constructors.

Consider the following points when you use the delegating constructors feature:
v Call the target constructor implementation in such a way that virtual bases,

direct nonvirtual bases, and class members are initialized by the target
constructor as appropriate.

v The feature has minimal impact on compile-time and runtime performance.
However, use of default arguments with an existing constructor is recommended
in place of a delegating constructor where possible. Without inlining and
interprocedural analysis, runtime performance might degrade because of
function call overhead and increased opacity.

Using rvalue references (C++11)

Note: IBM supports the majority of C++11 features and will continue to develop
and implement the features of this standard.

In C++11, you can overload functions based on the value categories of arguments
and similarly have lvalueness detected by template argument deduction. You can
also have an rvalue bound to an rvalue reference and modify the rvalue through
the reference. This enables a programming technique with which you can reuse the
resources of expiring objects and therefore improve the performance of your
libraries, especially if you use generic code with class types, for example, template
data structures. Additionally, the value category can be considered when writing a
forwarding function.

Move semantics

When you want to optimize the use of temporary values, you can use a move
operation in what is known as destructive copying. Consider the following string
concatenation and assignment:
std::string a, b, c;
c = a + b;

48 XL C/C++: Optimization and Programming Guide

In this program, the compiler first stores the result of a + b in an internal
temporary variable, that is, an rvalue.

The signature of a normal copy assignment operator is as follows:
string& operator = (const string&)

With this copy assignment operator, the assignment consists of the following steps:
1. Copy the temporary variable into c using a deep-copy operation.
2. Discard the temporary variable.

Deep copying the temporary variable into c is not efficient because the temporary
variable is discarded at the next step.

To avoid the needless duplication of the temporary variable, you can implement an
assignment operator that moves the variable instead of copying the variable. That
is, the argument of the operator is modified by the operation. A move operation is
faster because it is done through pointer manipulation, but it requires a reference
through which the source variable can be manipulated. However, a + b is a
temporary value, which is not easily differentiated from a const-qualified value in
C++ before C++11 for the purposes of overload resolution.

With rvalue references, you can create a move assignment operator as follows:
string& operator= (string&&)

With this move assignment operator, the memory allocated for the underlying
C-style string in the result of a + b is assigned to c. Therefore, it is not necessary
to allocate new memory to hold the underlying string in c and to copy the
contents to the new memory.

The following code can be an implementation of the string move assignment
operator:
string& string::operator=(string&& str)
{

// The named rvalue reference str acts like an lvalue
std::swap(_capacity, str._capacity);
std::swap(_length, str._length);

// char* _str points to a character array and is a
// member variable of the string class
std::swap(_str, str._str);
return *this;

}

However, in this implementation, the memory originally held by the string being
assigned to is not freed until str is destroyed. The following implementation that
uses a local variable is more memory efficient:
string& string::operator=(string&& parm_str)
{

// The named rvalue reference parm_str acts like an lvalue
string sink_str;
std::swap(sink_str, parm_str);
std::swap(*this, sink_str);
return *this;

}

In a similar manner, the following program is a possible implementation of a
string concatenation operator:

Chapter 7. Coding your application to improve performance 49

string operator+(string&& a, const string& b)
{

return std::move(a+=b);
}

Note: The std::move function only casts the result of a+=b to an rvalue reference,
without moving anything. The return value is constructed using a move
constructor because the expression std::move(a+=b) is an rvalue. The relationship
between a move constructor and a copy constructor is analogous to the
relationship between a move assignment operator and a copy assignment operator.

Perfect forwarding

The std::forward function is a helper template, much like std::move. It returns a
reference to its function argument, with the resulting value category determined by
the template type argument. In an instantiation of a forwarding function template,
the value category of an argument is encoded as part of the deduced type for the
related template type parameter. The deduced type is passed to the std::forward
function.

The wrapper function in the following example is a forwarding function template
that forwards to the do_work function. Use std::forward in forwarding functions
on the calls to the target functions. The following example also uses the decltype
and trailing return type features to produce a forwarding function that forwards to
one of the do_work functions. Calling the wrapper function with any argument
results in a call to a do_work function if a suitable overload function exists. Extra
temporaries are not created and overload resolution on the forwarding call resolves
to the same overload as it would if the do_work function were called directly.
struct s1 *do_work(const int&); // #1
struct s2 *do_work(const double&); // #2
struct s3 *do_work(int&&); // #3
struct s4 *do_work(double&&); // #4
template <typename T> auto wrapper(T && a)->

decltype(do_work(std::forward<T>(*static_cast<typename std::remove_reference<T>
::type*>(0))))

{
return do_work(std::forward<T>(a));

}
template <typename T> void tPtr(T *t);
int main()
{

int x;
double y;
tPtr<s1>(wrapper(x)); // calls #1
tPtr<s2>(wrapper(y)); // calls #2
tPtr<s3>(wrapper(0)); // calls #3
tPtr<s4>(wrapper(1.0)); // calls #4

}

Related information in the XL C/C++ Compiler Reference

-qlanglvl

50 XL C/C++: Optimization and Programming Guide

Using visibility attributes (IBM extension)
Visibility attributes describe whether and how an entity that is defined in one
module can be referenced or used in other modules. Visibility attributes affect
entities with external linkage only, and they cannot increase the visibility of other
entities. By specifying visibility attributes for entities, you can export only the
entities that are necessary to shared libraries. With this feature, you can get the
following benefits:
v Decrease the size of shared libraries.
v Reduce the possibility of symbol collision.
v Allow more optimization for the compile and link phases.
v Improve the efficiency of dynamic linking.

Supported types of entities

C++

The compiler supports visibility attributes for the following entities:
v Function
v Variable
v Structure/union/class
v Enumeration
v Template
v Namespace

C++

C

The compiler supports visibility attributes for the following entities:
v Function
v Variable

Note: Data types in the C language do not have external linkage, so you cannot
specify visibility attributes for C data types.

C

Related information in the XL C/C++ Compiler Reference

-shared (-qmkshrobj)

#pragma GCC visibility push, #pragma GCC visibility pop
Related information in the XL C/C++ Language Reference

The visibility variable attribute (IBM extension)

The visibility function attribute (IBM extension)

The visibility type attribute (C++ only) (IBM extension)

The visibility namespace attribute (C++ only) (IBM extension)

Chapter 7. Coding your application to improve performance 51

Types of visibility attributes
The following table describes different visibility attributes.

Table 15. Visibility attributes

Attribute Description

default Indicates that external linkage entities have the default attribute in object
files. These entities are exported in shared libraries, and can be preempted.

protected Indicates that external linkage entities have the protected attribute in object
files. These entities are exported in shared libraries, but cannot be
preempted.

hidden Indicates that external linkage entities have the hidden attribute in object
files. These entities are not exported in shared libraries, but their addresses
can be referenced indirectly through pointers.

internal Indicates that external linkage entities have the internal attribute in object
files. These entities are not exported in shared libraries, and their addresses
are not available to other modules in shared libraries.

Notes:

v In this release, the hidden and internal visibility attributes are the same. The addresses
of the entities that are specified with either of these visibility attributes can be referenced
indirectly through pointers.

Example: Differences among the default, protected, hidden, and internal visibility
attributes
//a.c
#include <stdio.h>
void __attribute__((visibility("default"))) func1(){

printf("func1 in the shared library");
}
void __attribute__((visibility("protected"))) func2(){

printf("func2 in the shared library");
}
void __attribute__((visibility("hidden"))) func3(){

printf("func3 in the shared library");
}
void __attribute__((visibility("internal"))) func4(){

printf("func4 in the shared library");
}

//a.h
extern void func1();
extern void func2();
extern void func3();
extern void func4();

//b.c
#include "a.h"
void temp(){

func1();
func2();

}

//b.h
extern void temp();

//main.c
#include "a.h"
#include "b.h"

void func1(){
printf("func1 in b.c");

}

52 XL C/C++: Optimization and Programming Guide

void func2(){
printf("func2 in b.c");

}
void main(){

temp();
// func3(); // error
// func4(); // error

}

You can use the following commands to create a shared library named libtest.so:
xlc -c -fPIC a.c b.c
xlc -shared -o libtest.so a.o b.o

Then, you can dynamically link libtest.so during run time by using the following
commands:
xlc main.c -L. -ltest -o main
./main

The output of the example is as follows:
func1 in b.c
func2 in the shared library

The visibility attribute of function func1() is default, so it is preempted by the
function with the same name in main.c. The visibility attribute of function func2()
is protected, so it cannot be preempted. The compiler always calls func2() that is
defined in the shared library libtest.so. The visibility attribute of function
func3() is hidden, so it is not exported in the shared library. The compiler issues a
link error to indicate that the definition of func3() cannot be found. The same
issue is with function func4() whose visibility attribute is internal.

Rules of visibility attributes
Priority of visibility attributes

The visibility attributes have a priority sequence, which is default < protected <
hidden < internal. You can see Example 9 for reference.

Rules of determining the visibility attributes

C

The visibility attribute of an entity is determined by the following rules:
1. If the entity has an explicitly specified visibility attribute, the specified visibility

attribute takes effect.
2. Otherwise, if the entity has a pair of enclosing pragma directives, the visibility

attribute that is specified by the pragma directives takes effect.

C

C++

The visibility attribute of an entity is determined by the following rules:
1. If the entity has an explicitly specified visibility attribute, the specified visibility

attribute takes effect.

Chapter 7. Coding your application to improve performance 53

2. Otherwise, if the entity is a template instantiation or specialization, and the
template has a visibility attribute, the visibility attribute of the entity is
propagated from that of the template. See Example 1.

3. Otherwise, if the entity has any of the following enclosing contexts, the
visibility attribute of this entity is propagated from that of the nearest context.
See Example 2. For the details of propagation rules, see “Propagation rules
(C++ only)” on page 58.
v Structure/class
v Enumeration
v Namespace
v Pragma directives

Restriction: Pragma directives do not affect the visibility attributes of class
members and template specializations.

4. Otherwise, the visibility attribute of the entity is determined by the following
visibility attribute settings. The visibility attribute that has the highest priority
is the actual visibility attribute of the entity. For the priority of the visibility
attributes, see Priority of visibility attributes.
v The visibility attribute of the type of the entity, if the entity is a variable and

its type has a visibility attribute.
v The visibility attribute of the return type of the entity, if the entity is a

function and its return type has a visibility attribute.
v The visibility attributes of the parameter types of the entity, if the entity is a

function and its parameter types have visibility attributes.
v The visibility attributes of template arguments or template parameters of the

entity, if the entity is a template and its arguments or parameters have
visibility attributes.

Example 1

In the following example, template template<typename T, typename U> B{} has the
protected visibility attribute. The visibility attribute is propagated to those of
template specialization template<> class B<char, char>{}, partial specialization
template<typename T> class B<T, float>{}, and all the types of template
instantiations.
class __attribute__((visibility("internal"))) A{} vis_v_a; //internal

//protected
template<typename T, typename U>
class __attribute__((visibility("protected"))) B{

public:
void func(){}

};

//protected
template<>
class B<char, char>{

public:
void func(){}

};

//protected
template<typename T>
class B<T, float>{

public:
void func(){}

};

54 XL C/C++: Optimization and Programming Guide

B<int, int> a; //protected
B<A, int> b; //protected
B<char, char> c; //protected
B<int, float> d; //protected
B<A, float> e; //protected

int main(){
a.func();
b.func();
c.func();
d.func();
e.func();

}

Example 2

In the following example, the nearest enclosing context of function func() is class
B, so the visibility attribute of func() is propagated from that of class B, which is
hidden. The nearest enclosing context of class A is the pragma directives whose
setting is protected, so the visibility of class A is protected.
namespace __attribute__((visibility("internal"))) ns{
#pragma GCC visibility push(protected)

class A{
class __attribute__((visibility("hidden"))) B{

int func(){};
};

};
#pragma GCC visibility pop
};

C++

Rules and restrictions of using the visibility attributes

When you specify visibility attributes for entities, consider the following rules and
restrictions:
v You can specify visibility attributes only for entities that have external linkage.

The compiler issues a warning message when you set the visibility attribute for
entities with other linkages, and the specified visibility attribute is ignored. See
Example 4.

v You cannot specify different visibility attributes in the same declaration or
definition of an entity; otherwise, the compiler issues an error message. See
Example 5.

v If an entity has more than one declaration that is specified with different
visibility attributes, the visibility attribute of the entity is the first visibility
attribute that the compiler processes. See Example 6.

v You cannot specify visibility attributes in the typedef statements. See Example 7.
v C++ If type T has a visibility attribute, types T*, T&, and T&& have the same

visibility attribute with that of type T. See Example 8.
v C++ If a class and its enclosing classes do not have explicitly specified

visibilities and the visibility attribute of the class has a lower priority than those
of its nonstatic member types and its bases classes, the compiler issues a
warning message. See Example 9. For the priority of the visibility attributes, see
Priority of visibility attributes. C++

v C++ The visibility attribute of a namespace does not apply for the
namespace with the same name. See Example 10. C++

Chapter 7. Coding your application to improve performance 55

v C++ If you specify a visibility attribute for a global new or delete operator,
the compiler issues a warning message to ignore the visibility attribute unless
the visibility attribute is default. See Example 11. C++

Example 3

In this example, because m and i have internal linkage and j has no linkage, the
compiler ignores the visibility attributes of variables m, i, and j.
static int m __attribute__((visibility("protected")));
int n __attribute__((visibility("protected")));

int main(){
int i __attribute__((visibility("protected")));
static int j __attribute__((visibility("protected)));

}

Example 4

In this example, the compiler issues an error message to indicate that you cannot
specify two different visibility attributes at the same time in the definition of
variable m.
//error
int m __attribute__((visibility("hidden"))) __attribute__((visibility("protected")));

Example 5

In this example, the first declaration of function fun() that the compiler processes
is extern void fun() __attribute__((visibility("hidden"))), so the visibility
attribute of fun() is hidden.
extern void fun() __attribute__((visibility("hidden")));
extern void fun() __attribute__((visibility("protected")));

int main(){
fun();

}

Example 6

In this example, the visibility attribute of variable vis_v_ti is default, which is not
affected by the setting in the typedef statement.
typedef int __attribute__((visibility("protected"))) INT;
INT vis_v_ti = 1;

C++

Example 7

In this example, the visibility attribute of class CP is protected, so the visibility
attribute of CP* and CP& is also protected.
class __attribute__((visibility("protected"))) CP {} vis_v_p;
class CP* vis_v_p_p = &vis_v_p; //protected
class CP& vis_v_lr_p = vis_v_p; //protected

Example 8

In this example, the compiler accepts the default visibility attribute of class
Derived1 because the visibility attribute is explicitly specified for class Derived1.

56 XL C/C++: Optimization and Programming Guide

The compiler also accepts the protected visibility attribute of class Derived2
because the visibility attribute is propagated from that of the enclosing class A.
Class Derived3 does not have an explicitly specified visibility attribute or an
enclosing class, and its visibility attribute is default. The compiler issues a warning
message because the visibility attribute of class Derived3 has a lower priority than
those of its parent class Base and the nonstatic member function fun().
//base class
struct __attribute__((visibility("hidden"))) Base{

int vis_f_fun(){
return 0;

}
};

//Ok
struct __attribute__((visibility("default"))) Derived1: public Base{

int vis_f_fun(){
return Base::vis_f_fun();

};
}vis_v_d;

//Ok
struct __attribute__((visibility("protected"))) A{

struct Derived2: public Base{
int vis_f_fun(){

__attribute__((visibility("protected")))
};

}
};

//Warning
struct Derived3: public Base{

//Warning
int fun() __attribute__((visibility("protected"))){};

};

Example 9

In this example, the visibility attribute of the definition of namespace X does not
apply to the extension of namespace X.
//namespace definition
namespace X __attribute__((visibility("protected"))){

int a; //protected
int b; //protected

}
//namespace extension
namespace X {

int c; //default
int d; //default

}
//equivalent to namespace X
namespace Y {

int __attribute__((visibility("protected"))) a; //protected
int __attribute__((visibility("protected"))) b; //protected
int c; //default
int d; //default

}

Example 10

In this example, the new and delete operators defined outside of class A are global
functions, so the explicitly specified hidden visibility attribute does not take effect.
The new and delete operations defined within class A are local ones, so you can
specify visibility attributes for them.

Chapter 7. Coding your application to improve performance 57

#include <stddef.h>
//default
void* operator new(size_t) throw (std::bad_alloc) __attribute__((visibility("hidden")))
{

return 0;
};
void operator delete(void*) throw () __attribute__((visibility("hidden"))){}

class A{
public:
//hidden
void* operator new(size_t) throw (std::bad_alloc) __attribute__((visibility("hidden")))
{

return 0;
};
void operator delete(void*) throw () __attribute__((visibility("hidden"))){}

};

C++

Propagation rules (C++ only)

Visibility attributes can be propagated from one entity to other entities. The
following table lists all the cases for visibility propagation.

Table 16. Propagation of visibility attributes

Original
entity

Destination
entities Example

Namespace Named
namespaces that
are defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Namespace B has the hidden visibility attribute,
// which is propagated from namespace A.
namespace B{}
// The unnamed namespace does not have a visibility
// attribute.
namespace{}

}

Namespace Classes that are
defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Class B has the hidden visibility attribute,
// which is propagated from namespace A.
class B;
// Object x has the hidden visibility attribute,
// which is propagated from namespace A.
class{} x;

}

Namespace Functions that are
defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Function fun() has the hidden visibility
// attribute, which is propagated from namespace A.
void fun(){};

}

Namespace Objects that are
defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Variable m has the hidden visibility attribute,
// which is propagated from namespace A.
int m;

}

Class Member classes class __attribute__((visibility("hidden"))) A{
// Class B has the hidden visibility attribute,
// which is propagated from class A.
class B{};

}

58 XL C/C++: Optimization and Programming Guide

Table 16. Propagation of visibility attributes (continued)

Original
entity

Destination
entities Example

Class Member
functions or static
member variables

class __attribute__((visibility("hidden"))) A{
// Function fun() has the hidden visibility
// attribute, which is propagated from class A.
void fun(){};
// Static variable m has the hidden visibility
// attribute, which is propagated from class A.
static int m;

}

Template Template
instantiations/
template
specifications/
template partial
specializations

template<typename T, typename U>
class __attribute__((visibility("hidden"))) A{

public:
void fun(){};

};

// Template instantiation class A<int, char> has the
// hidden visibility attribute, which is propagated
// from template class A(T,U).
class A<int, char>{

public:
void fun(){};

};

// Template specification
// template<> class A<double, double> has the hidden
// visibility attribute, which is propagated
// from template class A(T,U).
template<> class A<double, double>{

public:
void fun(){};

};

// Template partial specification
// template<typename T> class A<T, char> has the
// hidden visibility attribute, which is propagated
// from template class A(T,U).
template<typename T> class A<T, char>{

public:
void fun(){};

};

Template
argument/
parameter

Template
instantiations/
template
specifications/
template partial
specializations

template<typename T> void fun1(){}
template<typename T> void fun2(T){}

class M __attribute__((visibility("hidden"))){} m;

// Template instantiation fun1<M>() has the hidden
// visibility attribute, which is propagated from
// template argument M.
fun1<M>();

// Template instantiation fun2<M>(M) has the hidden
// visibility attribute, which is propagated from
// template parameter m.
fun2(m);

// Template specification fun1<M>() has the hidden
// visibility attribute, which is propagated from
// template argument M.
template<> void fun1<M>();

Chapter 7. Coding your application to improve performance 59

Table 16. Propagation of visibility attributes (continued)

Original
entity

Destination
entities Example

Inline
function

Static local
variables

inline void __attribute__((visibility("hidden")))
fun(){
// Variable m has the hidden visibility attribute,
// which is propagated from inline function fun().
static int m = 4;

}

Type Entities of the
original type

class __attribute__((visibility("hidden"))) A {};

// Object x has the hidden visibility attribute,
// which is propagated from class A.
class A x;

Function
return
type

Function class __attribute__((visibility("hidden"))) A{};
// Function fun() has the hidden visibility attribute,
// which is propagated from function return type A.
A fun();

Function
parameter
type

Function class __attribute__((visibility("hidden"))) A{};
// Function fun(class A) has the hidden visibility
// attribute, which is propagated from function
// parameter type A.
void fun(class A);

Specifying visibility attributes using pragma preprocessor
directives

You can selectively set visibility attributes for entities by using pairs of the #pragma
GCC visibility push and #pragma GCC visibility pop preprocessor directives
throughout your source program.

The compiler supports nested visibility pragma preprocessor directives. If entities
are included in several pairs of the nested #pragma GCC visibility push and
#pragma GCC visibility pop directives, the nearest pair of directives takes effect.
See Example 1.

You must not specify the visibility pragma directives for header files. Otherwise,
your program might exhibit undefined behaviors. See Example 2.

C++ Visibility pragma directives #pragma GCC visibility push and #pragma
GCC visibility pop affect only namespace-scope declarations. Class members and
template specializations are not affected. See Example 3 and Example 4. C++

Examples

Example 1

In this example, the function and variables have the visibility attributes that are
specified by their nearest pairs of pragma preprocessor directives.
#pragma GCC visibility push(default)
namespace ns
{

void vis_f_fun() {} //default
pragma GCC visibility push(internal)

int vis_v_i; //internal
pragma GCC visibility push(protected)

int vis_v_j; //protected

60 XL C/C++: Optimization and Programming Guide

pragma GCC visibility push(hidden)
int vis_v_k; //hidden

pragma GCC visibility pop
pragma GCC visibility pop
pragma GCC visibility pop
}
#pragma GCC visibility pop

Example 2

In this example, the compiler issues a link error message to indicate that the
definition of the printf() library function cannot be found.
#pragma GCC visibility push(hidden)
#include <stdio.h>
#pragma GCC visibility pop

int main(){
printf("hello world!");
return 0;

}

C++

Example 3

In this example, the visibility attribute of class members vis_v_i and vis_f_fun()
is hidden. The visibility attribute is propagated from that of the class, but is not
affected by the pragma directives.
class __attribute__((visibility("hidden"))) A{
#pragma GCC visibility push(protected)

public:
static int vis_v_i;
void vis_f_fun() {}

#pragma GCC visibility pop
} vis_v_a;

Example 4

In this example, the visibility attribute of function vis_f_fun() is hidden. The
visibility attribute is propagated from that of the template specialization or partial
specialization, but is not affected by the pragma directives.
namespace ns{

#pragma GCC visibility push(hidden)
template <typename T, typename U> class TA{

public:
void vis_f_fun(){}

};
#pragma GCC visibility pop

#pragma GCC visibility push(protected)
//The visibility attribute of the template specialization is hidden.
template <> class TA<char, char>{

public:
void vis_f_fun(){}

};
#pragma GCC visibility pop

#pragma GCC visibility push(default)
//The visibility attribute of the template partial specialization is hidden.
template <typename T> class TA<T, long>{

Chapter 7. Coding your application to improve performance 61

public:
void vis_f_fun(){}

};
#pragma GCC visibility pop

C++

62 XL C/C++: Optimization and Programming Guide

Chapter 8. Using vector programming support

In IBM XL C/C++ for Linux on z Systems, V1.2, you can use the Vector Facility for
z/Architecture on the Linux distributions that have vector support and run on the
IBM z13 models.

To enable vector programming support on the Linux distributions that have vector
support, you must specify the -mzvector option with the -march=z13 option or its
equivalent; otherwise, the compiler ignores the -mzvector option and issues a
warning message.

The __VEC__ macro is introduced for vector processing support, which indicates
support for vector data types. When the -mzvector option is in effect, the value of
__VEC__ is 10301.

Related information in the XL C/C++ Compiler Reference

-march (-qarch)

-mzvector

Vector data types (IBM extension)
In a declaration context, the keyword vector is recognized only when it is used as
a type specifier and when vector programming support is enabled.

The signed qualifier and the unsigned qualifier are optional. If neither is specified,
the sign of the type is the same as its underlying plain type. For example, vector
int is interpreted as vector signed int, and vector char is interpreted as vector
unsigned char if -funsigned-char is in effect.

Type qualifiers, such as const, and storage class specifiers, such as static, can be
used to refine a vector declaration. Type qualifiers and storage class specifiers can
appear in any place within the declaration other than immediately following
keyword vector or its alternative spelling, __vector.

Duplicate type specifiers are ignored in a vector declaration context.

All vector types are aligned on an 8-byte boundary. An aggregate that contains one
or more vector types is aligned or, if necessary, padded on an 8-byte boundary so
that each member of the vector types is also 8-byte aligned.

The following table lists supported vector data types, the number of elements for
each vector data type, and value range for each element.

Table 17. Vector data types

Type Interpretation of content Range of element value

vector signed char 16 elements of type signed
char

From -128 to 127 inclusive

vector unsigned char 16 elements of type unsigned
char

From 0 to 255 inclusive

vector bool char1 16 elements of type unsigned
char

0 (FALSE), 255 (TRUE)

© Copyright IBM Corp. 2015 63

Table 17. Vector data types (continued)

Type Interpretation of content Range of element value

vector signed short 8 elements of type signed
short

From -32768 to 32767
inclusivevector signed short int

vector unsigned short 8 elements of type unsigned
short

From 0 to 65535 inclusive

vector unsigned short int

vector bool short1 8 elements of type unsigned
short

0 (FALSE), 65535 (TRUE)

vector bool short int1

vector signed int 4 elements of type signed
int

From -231 to (231-1) inclusive

vector unsigned int 4 elements of type unsigned
int

From 0 to (232-1) inclusive

vector bool int1 4 elements of type unsigned
int

0 (FALSE), 232-1 (TRUE)

vector signed long long 2 elements of type signed
long long

From -263 to (263-1) inclusive

vector unsigned long long 2 elements of type unsigned
long long

From 0 to (264-1) inclusive

vector bool long long1 2 elements of type unsigned
long long

0 (FALSE), 264-1 (TRUE)

vector double 2 elements of type double 64-bit IEEE-754
double-precision
floating-point values

Note:

1. The keyword bool is recognized as a valid type specifier only when preceded by the
keyword vector or __vector. __vector __bool, vector _Bool, and __vector _Bool are
equivalent to vector bool.

Related information in the XL C/C++ Compiler Reference

-mzvector

Vector literals (IBM extension)
A vector literal is a constant expression whose value is interpreted as a vector. The
data type of a vector literal is represented by a parenthesized vector type. The
value of a vector literal is a set of constant expressions that represent the vector
elements and are enclosed in parentheses or braces.

Vector literal syntax

►► (vector_type) (literal_list)
{ literal_list }

►◄

literal_list:

▼

,

constant_expression

64 XL C/C++: Optimization and Programming Guide

The literal_list can be either of the following expressions:
v A single expression

– If the single expression is enclosed with parentheses, all elements of the
vector are initialized to the specified value.

– If the single expression is enclosed with braces, the first element of the vector
is initialized to the specified value, and the remaining elements of the vector
are initialized to 0.

v A comma-separated list of expressions
Each element of the vector is initialized to the respectively specified value.
– If the comma-separated list of expressions is enclosed with parentheses, the

number of constant expressions must match the number of elements in the
vector.

– If the comma-separated list of expressions is enclosed with braces, the
number of constant expressions can be equal to or less than the number of
elements in the vector. If the number of constant expressions is less than the
number of elements in the vector, the values of the unspecified elements are
0.

The following table lists the supported vector literals and how the compiler
interprets them to determine their values.

Table 18. Vector literals

Syntax Interpretation

(vector signed char)(int) A list of 16 signed 8-bit quantities
that all have the value of the single
integer.

(vector signed char)(int, ...)
(vector signed char){int, ...}

A list of 16 signed 8-bit quantities
with the values specified by the 16
integers.

(vector unsigned char)(unsigned int) A list of 16 unsigned 8-bit quantities
that all have the value of the single
integer.

(vector bool char)(unsigned int)1

(vector unsigned char)(unsigned int, ...)
(vector unsigned char){unsigned int, ...}

A list of 16 unsigned 8-bit quantities
with the values specified by the 16
integers.(vector bool char)(unsigned int, ...)1

(vector bool char){unsigned int, ...}1

(vector signed short)(int) A list of 8 signed 16-bit quantities
that all have the value of the single
integer.

(vector signed short)(int, ...)
(vector signed short){int, ...}

A list of 8 signed 16-bit quantities
with the values specified by the 8
integers.

(vector unsigned short)(unsigned int) A list of 8 unsigned 16-bit quantities
that all have the value of the single
integer.

(vector bool short)(unsigned int)1

(vector unsigned short)(unsigned int, ...)
(vector unsigned short){unsigned int, ...}

A list of 8 unsigned 16-bit quantities
with the values specified by the 8
integers.(vector bool short)(unsigned int, ...)1

(vector bool short){unsigned int, ...}1

(vector signed int)(int) A list of 4 signed 32-bit quantities
that all have the value of the single
integer.

Chapter 8. Using vector programming support 65

Table 18. Vector literals (continued)

Syntax Interpretation

(vector signed int)(int, ...)
(vector signed int){int, ...}

A list of 4 signed 32-bit quantities
with the values specified by the 4
integers.

(vector unsigned int)(unsigned int) A list of 4 unsigned 32-bit quantities
that all have the value of the single
integer.

(vector bool int)(unsigned int)1

(vector unsigned int)(unsigned int, ...)
(vector unsigned int){unsigned int, ...}

A list of 4 unsigned 32-bit quantities
with the values specified by the 4
integers.(vector bool int)(unsigned int, ...)1

(vector bool int){unsigned int, ...}1

(vector signed long long)(signed long long) A list of 2 signed 64-bit quantities
that both have the value of the
single long long integer.

(vector signed long long)(signed long long, ...)
(vector signed long long){signed long long, ...}

A list of 2 signed 64-bit quantities
with the values specified by the 2
long long integers.

(vector unsigned long long)(unsigned long long) A list of 2 unsigned 64-bit quantities
that both have the value of the
single long long integer.

(vector unsigned long long)(unsigned long long, ...)
(vector unsigned long long){unsigned long long, ...}

A list of 2 unsigned 64-bit quantities
with the values specified by the 2
unsigned long long integers.

(vector bool long long)(unsigned long long)1 A list of 2 boolean 64-bit quantities
that both have the value specified
by the single unsigned long long
integer.

(vector bool long long)(unsigned long long, ...)1

(vector bool long long){unsigned long long, ...}1
A list of 2 boolean 64-bit quantities
with the values specified by the 2
unsigned long long integers.

(vector double)(double) A list of 2 64-bit IEEE-754
double-precision floating-point
quantities that both have the value
of the single double-precision
floating-point value.

(vector double)(double, double)
(vector double){double, double}

A list of 2 64-bit IEEE-754
double-precision floating-point
quantities with the values specified
by the 2 double-precision
floating-point values.

Note:

1. The value of an element of a vector bool type is FALSE if each bit of the element is set
to 0 and TRUE if each bit of the element is set to 1. Otherwise, it is neither TRUE nor
FALSE.

You can initialize vector types with vector literals. For example:
vector int vi1 = (vector int)(1); // It initializes all four elements to 1.
vector int vi2 = (vector int){1}; // It initializes the first element to 1

// and all the other elements to 0.
vector int vi3 = (vector int){1, 2} // It initializes the first element to 1,

// the second element to 2, and the third
// and fourth elements to 0.

66 XL C/C++: Optimization and Programming Guide

You can cast vector literals using the cast operator (). Enclosing the vector literal to
be cast in parentheses can improve the readability of the code. For example, you
can use the following code to cast a vector signed int literal to a vector unsigned
char literal:
(vector unsigned char)((vector signed int)(-1, -1, 0, 0))

Related information:
“Cast expressions” on page 68
“Initialization of vectors (IBM extension)”

Initialization of vectors (IBM extension)
You can initialize a vector type using a vector literal, an expression of the same
vector type, or an initializer list.

In the following code example, a vector literal is used to initialize a vector.
vector unsigned int v1 = (vector unsigned int)(10);

In the following code example, an expression is used to initialize a vector of the
same vector type.
vector unsigned int v1 = (vector unsigned int)(10);
vector unsigned int v2;
v2 = v1;

You can also initialize a vector type with an initializer list according to the
following syntax.

►► vector_type identifier = (initializer_list) ;
{ initializer_list }

►◄

An initializer list that is enclosed in parentheses must have the same number of
values as the number of elements of the vector type. The number of values in a
braced initializer list must be less than or equal to the number of elements of the
vector type. Any element that is not explicitly initialized by the initializer list is
initialized to zero.

In the following example, each vector is initialized using a initializer list:
vector unsigned int v1 = {1}; // It initializes the first element of v1 to 1

// and the remaining three elements to zero.

vector unsigned int v2 = {1, 2}; // It initializes the first element of v2 to 1,
// the second element to 2,
// and the remaining two elements to zero.

vector unsigned int v3 = {1, 2, 3, 4}; // v3 is {1, 2, 3, 4}.

Unlike vector literals, the expressions in the initializer list do not have to be
constant expressions unless the initialized vector variable has static duration. Thus,
the following code is valid:
int i=1;
int function() { return 2; }
int main()
{

vector unsigned int v1 = {i, function()};
return 0;

}

Related information:
“Vector literals (IBM extension)” on page 64

Chapter 8. Using vector programming support 67

typedef definitions for vector types (IBM extension)
When vector programming support is enabled, you can define your own identifiers
for vector types by using typedef definitions.

The self-defined type identifiers can be used in place of the original type specifiers,
except for declaring other vectors types. The following example illustrates a typical
usage of typedef definitions with vector types:
typedef vector unsigned short vint4;
vint4 v1;

Related information in the XL C/C++ Compiler Reference

-mzvector

Pointers (IBM extension)
Pointer arithmetic and pointer dereferencing are extended to support vector data
types.

You can perform pointer arithmetic on vector data types. For example, if pointer p
points to a vector, the result of the operation p+1 is a pointer that points to the next
vector.

When you dereference a pointer to a vector data type, the standard behavior is
either a load or a copy of the corresponding type.

Expressions and operators (IBM extension)
The C/C++ language is extended to support expressions and operators on vector
data types.

Compound literal expressions
A compound literal is a postfix expression that provides an unnamed object whose
value is given by an initializer list. You can pass parameters to functions without
creating temporary variables.

In the following syntax, type_name can be any vector type.

Compound literal syntax

►► (type_name) { initializer_list } ►◄

Cast expressions
The cast operator, (), is extended to support explicit type conversions from one
vector data type to another vector data type. The exact same bit pattern is retained
from the argument that is cast, and no conversion on the vector element value
takes place.

Cast expression syntax for vectors

►► (vec_data_type) vec_expression ►◄

68 XL C/C++: Optimization and Programming Guide

You cannot perform casting between scalar types and vector types. To copy data
between scalar and vector variables, you can use the vector subscripting operator,
[]. Alternatively, you can first define a union that consists of a vector variable and
an equivalent array of the scalar type and then copy the data using the union.

Unary expressions
Some unary operators that were used with primitive data types are extended to
support vector data types.

Unary operators
Vector data types can use these unary operators that are used with primitive data
types: &, +, -, and ~.

The following table lists the vector data types that can be used with the address
operator (&), unary plus operator (+), unary minus operator (-), and bitwise
negation operator (~).

Table 19. Supported vector data types for &, +, -, and ~

Operator
Signed integer
vector types

Unsigned
integer vector
types

Type vector
double

Bool vector
types

& Yes Yes Yes Yes

+ 1 Yes Yes Yes No

- 1 Yes No Yes No

~ 1 Yes Yes No Yes

Note:

1. Each element in the vector has the operation applied to it. The operator require
compatible types to be used as operands unless otherwise stated. The operator is not
supported at global scope or for objects that have static duration. There is no constant
folding. The operator might not be portable.

Increment operator ++ and decrement operator --
When the increment operator or decrement operator is used with vector data
types, each element in the vector has the operation applied to it.

Both operators require compatible types to be used as operands unless otherwise
stated. Both operators are not supported at global scope or for objects that have
static duration. There is no constant folding. These two operators might not be
portable.

The following table lists the vector data types that can be used with the increment
operator (++) and decrement operator (--).

Table 20. Supported vector data types for ++ and --

Operator Integer vector types Type vector double Bool vector types

++ Yes Yes No

-- Yes Yes No

The __alignof__ operator
The __alignof__ operator is a language extension to C99 and C++03, which
returns the alignment of its operand.

Chapter 8. Using vector programming support 69

When vector programming support is enabled, operator __alignof__ can accept an
operand that is of a vector type. See the following example.
vector unsigned int v1 = (vector unsigned int)(10);
vector unsigned int *pv1 = &v1;
__alignof__(v1); // Alignment of a vector type is 8.
__alignof__(&v1); // Alignment of the address of a vector is 4.
__alignof__(*pv1); // Alignment of the dereferenced pointer to a vector is 8.
__alignof__(pv1); // Alignment of the pointer to a vector is 4.
__alignof__(vector signed char); // Alignment of a vector type is 8.

When __attribute__((aligned)) is used to increase the alignment of a variable of
vector type, the value that is returned by the __alignof__ operator is the alignment
factor that is specified by __attribute__((aligned)).

The sizeof operator
The sizeof operator yields the size of its operand in bytes.

When vector programming support is enabled, the operand of the sizeof operator
can be a vector variable, a vector type, or the result of dereferencing a pointer to a
vector type. In these cases, the return value of sizeof is always 16. For example,
vector bool int v1;
vector bool int *pv1 = &v1;
sizeof(v1); // For a vector type, the result is 16.
sizeof(*pv1); // For the dereferenced pointer to a vector,

// the result is 16.
sizeof(vector bool int); // For a vector type, the result is 16.

sizeof(pv1); // For the pointer to a vector,
// the result is 4 with ILP32 or 8 with ILP64.

sizeof(&v1); // For the address of a vector,
// the result is 4 with ILP32 or 8 with ILP64.

Related information in the XL C/C++ Compiler Reference

-mzvector

The typeof operator
The typeof operator returns the type of its argument, which can be an expression
or a type. The alternative spelling of the keyword, __typeof__, is recommended.

When vector programming support is enabled, the typeof operator is extended to
accept an operand that is of a vector type.

Related information in the XL C/C++ Compiler Reference

-mzvector

The vec_step operator
The vec_step operator takes an operand that is of a vector type. The operator
returns an integer value that represents the amount by which a pointer to a vector
element must be incremented to move by 16 bytes, which is the size of a vector.

The following table provides a summary of the increment values by data type.

Table 21. Increment values for vec_step by data type

vec_step expresssion Value

vec_step(vector signed char)
vec_step(vector unsigned char)
vec_step(vector bool char)

16

70 XL C/C++: Optimization and Programming Guide

Table 21. Increment values for vec_step by data type (continued)

vec_step expresssion Value

vec_step(vector signed short)
vec_step(vector unsigned short)
vec_step(vector bool short)

8

vec_step(vector signed int)
vec_step(vector unsigned int)
vec_step(vector bool int)

4

vec_step(vector signed long long)
vec_step(vector unsigned long long)
vec_step(vector bool long long)

2

vec_step(vector double) 2

Binary expressions
Some binary operators that are used with primitive data types are extended to
support vector data types.

The following table provides a summary of the accepted vector data types for each
operator.

Table 22. Binary operators

Operator

Integer
vector
types

Type
vector
double

Bool
vector
types Note

= Yes Yes Yes The operation applies to each element in the
first operand and the element of the same
index in the second operand.

+ Yes Yes Yes

- Yes Yes Yes

* Yes Yes No

/ Yes Yes No

% Yes No No

& Yes Yes Yes

^ Yes Yes Yes

| Yes Yes Yes

<< Yes No No

>> Yes No No

[] 1 Yes Yes Yes

== Yes Yes Yes Each operation is applied to each set of the
elements that are in the same index of the first
and the second operands. The final result is
obtained by applying the AND operator to the
results of each set of the corresponding
elements.

!= Yes Yes Yes

< Yes Yes Yes

> Yes Yes Yes

<= Yes Yes Yes

>= Yes Yes Yes

Chapter 8. Using vector programming support 71

Table 22. Binary operators (continued)

Operator

Integer
vector
types

Type
vector
double

Bool
vector
types Note

Notes:

1. The [] operator returns the vector element at the index specified. If the index specified
is outside the valid range, the behavior is undefined.

2. All operators require compatible types to be used as operands unless otherwise stated.
The operators are not supported at global scope or for objects that have static duration.
There is no constant folding. The operators might not be portable.

Assignment operator =
An assignment operator stores a value in the object that is designated by the left
operand.

If either side of an assignment expression a = b is of a vector type, both sides of
the expression, a and b, must be of the same vector type. Otherwise, the expression
is invalid, and the compiler reports an error about the data type inconsistency.

Addition operator +
The addition operator (+) yields the sum of its operands.

The following table lists the accepted vector data types of operands and the result
data types:

Table 23. Accepted vector data types for the addition operator and result data types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector bool char

vector bool char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char

vector bool char vector unsigned char

vector signed short vector signed short vector signed short

vector bool short

vector bool short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short

vector bool short vector unsigned short

vector signed int vector signed int vector signed int

vector bool int

vector bool int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int

vector bool int vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

72 XL C/C++: Optimization and Programming Guide

Table 23. Accepted vector data types for the addition operator and result data
types (continued)

Result type Left operand type Right operand type

vector double vector double vector double

Subtraction operator -
The subtraction operator (-) yields the difference of its operands.

The following table lists the accepted vector data types of operands and the result
data types:

Table 24. Accepted vector data types for the subtraction operator and result data types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector bool char

vector bool char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char

vector bool char vector unsigned char

vector signed short vector signed short vector signed short

vector bool short

vector bool short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short

vector bool short vector unsigned short

vector signed int vector signed int vector signed int

vector bool int

vector bool int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int

vector bool int vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector double vector double vector double

Multiplication operator *
The multiplication operator (*) yields the product of its operands.

The size of the products is double the size of the vector elements of operands;
however, only the least significant half of each product is assigned to the
corresponding vector element in the result.

Note: This function is emulated on vector long long.

The following table lists the accepted vector data types of operands and the result
data types:

Chapter 8. Using vector programming support 73

Table 25. Accepted vector data types for the multiplication operator and result data types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector double vector double vector double

Division operator /
The division operator (/) yields the algebraic quotient of its operands.

Note: This function is emulated on integer vector values.

The following table lists the accepted vector data types of operands and the result
data types:

Table 26. Accepted vector data types for the division operator and result data types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector double vector double vector double

Remainder operator %
The remainder operator (%) yields the remainder from the division of the left
operand by the right operand.

The following table lists the accepted vector data types of operands and the result
data types:

Table 27. Accepted vector data types for the remainder operator and result data types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector signed int vector signed int vector signed int

74 XL C/C++: Optimization and Programming Guide

Table 27. Accepted vector data types for the remainder operator and result data
types (continued)

Result type Left operand type Right operand type

vector unsigned int vector unsigned int vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

Bitwise AND operator &
The bitwise AND operator (&) performs a bitwise AND operation of each bit of its
first operand and the corresponding bit of the second operand.

The following table lists the accepted vector data types of operands and the result
data types:

Table 28. Accepted vector data types for the bitwise AND operator and result data types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector bool char

vector bool char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char

vector bool char vector unsigned char

vector bool char vector bool char vector bool char

vector signed short vector signed short vector signed short

vector bool short

vector bool short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short

vector bool short vector unsigned short

vector bool short vector bool short vector bool short

vector signed int vector signed int vector signed int

vector bool int

vector bool int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int

vector bool int vector unsigned int

vector bool int vector bool int vector bool int

vector signed long long vector signed long long vector signed long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector unsigned long long

vector bool long long vector bool long long vector bool long long

Chapter 8. Using vector programming support 75

Table 28. Accepted vector data types for the bitwise AND operator and result data
types (continued)

Result type Left operand type Right operand type

vector double vector bool long long vector double

vector double vector double

vector bool long long

Bitwise exclusive OR operator ^
The bitwise exclusive OR operator (^) performs a bitwise exclusive OR operation
of each bit of its first operand and the corresponding bit of the second operand.

Note: vector double does not cause an IEEE exception.

The following table lists the accepted vector data types of operands and the result
data types:

Table 29. Accepted vector data types for the bitwise exclusive OR operator and result data
types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector bool char

vector bool char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char

vector bool char vector unsigned char

vector bool char vector bool char vector bool char

vector signed short vector signed short vector signed short

vector bool short

vector bool short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short

vector bool short vector unsigned short

vector bool short vector bool short vector bool short

vector signed int vector signed int vector signed int

vector bool int

vector bool int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int

vector bool int vector unsigned int

vector bool int vector bool int vector bool int

vector signed long long vector signed long long vector signed long long

vector bool long long

vector bool long long vector signed long long

76 XL C/C++: Optimization and Programming Guide

Table 29. Accepted vector data types for the bitwise exclusive OR operator and result data
types (continued)

Result type Left operand type Right operand type

vector unsigned long long vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector unsigned long long

vector bool long long vector bool long long vector bool long long

vector double vector bool long long vector double

vector double vector double

vector bool long long

Bitwise inclusive OR operator |
The bitwise inclusive OR operator (|) performs a bitwise inclusive OR operation of
each bit of its first operand and the corresponding bit of the second operand.

Note: vector double does not cause an IEEE exception.

The following table lists the accepted vector data types of operands and the result
data types:

Table 30. Accepted vector data types for the bitwise inclusive OR operator and result data
types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector bool char

vector bool char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char

vector bool char vector unsigned char

vector bool char vector bool char vector bool char

vector signed short vector signed short vector signed short

vector bool short

vector bool short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short

vector bool short vector unsigned short

vector bool short vector bool short vector bool short

vector signed int vector signed int vector signed int

vector bool int

vector bool int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int

vector bool int vector unsigned int

vector bool int vector bool int vector bool int

Chapter 8. Using vector programming support 77

Table 30. Accepted vector data types for the bitwise inclusive OR operator and result data
types (continued)

Result type Left operand type Right operand type

vector signed long long vector signed long long vector signed long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector unsigned long long

vector bool long long vector bool long long vector bool long long

vector double vector bool long long vector double

vector double vector double

vector bool long long

Bitwise left shift operator <<
The bitwise left shift operator (<<) performs a left shift operation for each element
of a vector.

If the right operand is a vector, each element of the result vector is the result of left
shifting the corresponding element of the left operand by the number of bits
specified by the corresponding element of the right operand. If the right operand is
of type unsigned long, each element of the result vector is the result of left shifting
the number of bits specified by the right operand.

If the value used as the shift bit is greater than the number of bits in the element
of the left operand, n, the compiler uses the value modulo n as the shift bit. The
bits that are shifted out are replaced by zeros.

The following table lists the accepted vector data types of operands and the result
data types:

Table 31. Accepted vector data types for the bitwise left shift operator and result data types

Result type Left operand type Right operand type

vector signed char vector signed char vector unsigned char

vector unsigned char vector unsigned char

vector signed short vector signed short vector unsigned short

vector unsigned short vector unsigned short

vector signed int vector signed int vector unsigned int

vector unsigned int vector unsigned int

vector signed long long vector signed long long vector unsigned long long

vector unsigned long long vector unsigned long long

78 XL C/C++: Optimization and Programming Guide

Table 31. Accepted vector data types for the bitwise left shift operator and result data
types (continued)

Result type Left operand type Right operand type

vector signed char vector signed char unsigned long

vector unsigned char vector unsigned char

vector signed short vector signed short

vector unsigned short vector unsigned short

vector signed int vector signed int

vector unsigned int vector unsigned int

vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

Bitwise right shift operator >>
The bitwise right shift operator (>>) performs an algebraic right shift operation for
each element of a vector.

If the right operand is a vector, each element of the result vector is the result of
right shifting the corresponding element of the left operand by the number of bits
specified by the corresponding element of the right operand. If the right operand is
of type unsigned long, each element of the result vector is the result of right
shifting the number of bits specified by the right operand.

If the value used as the shift bit is greater than the number of bits in the element
of the left operand, n, the compiler uses the value modulo n as the shift bit.

If the left operand is an unsigned vector, the bits that are shifted out are replaced
by zeros. If the left operand is a signed vector, the bits that are shifted out are
replaced by copies of the most significant bit of the element of the left operand.

The following table lists the accepted vector data types of operands and the result
data types:

Table 32. Accepted vector data types for the bitwise right shift operator and result data
types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long

vector signed char vector signed char unsigned long

vector signed short vector signed short

vector signed int vector signed int

vector signed long long vector signed long long

Chapter 8. Using vector programming support 79

Table 32. Accepted vector data types for the bitwise right shift operator and result data
types (continued)

Result type Left operand type Right operand type

vector unsigned char vector unsigned char vector unsigned char

vector unsigned short vector unsigned short vector unsigned short

vector unsigned int vector unsigned int vector unsigned int

vector unsigned long long vector unsigned long long vector unsigned long long

vector unsigned char vector unsigned char unsigned long

vector unsigned short vector unsigned short

vector unsigned int vector unsigned int

vector unsigned long long vector unsigned long long

Vector subscripting operator []
The subscripting operator ([]) accesses individual elements of a vector, similar to
how array elements are accessed.

To access an element of a vector, append a pair of brackets that contains the index
of the wanted element to the vector. The index of the first element is 0. The type of
the result is the type of the elements that are contained in the vector.

Note: If the specified index is outside of the valid range, the behavior is
undefined.

See the following example for the usage of the subscripting operator:
vector unsigned int v1 = {1,2,3,4};
unsigned int u1, u2, u3, u4;
u1 = v1[0]; // The value of u1 is 1.
u2 = v1[1]; // The value of u2 is 2.
u3 = v1[2]; // The value of u3 is 3.
u4 = v1[3]; // The value of u4 is 4.

Equality operator ==
The equality operator (==) tests whether the corresponding elements of two vectors
are equal.

If an element of the left operand is equal to the corresponding element of the right
operand, the corresponding element in the result vector is -1. Otherwise, the
corresponding element in the result vector is 0.

The following table lists the accepted vector data types of operands and the result
data types:

80 XL C/C++: Optimization and Programming Guide

Table 33. Accepted vector data types for the equality operator and result data types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector bool char

vector signed short vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector bool short

vector signed int vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector bool int

vector signed long long vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector bool long long

vector double vector double

Inequality operator !=
The inequality operator (!=) tests whether the corresponding elements of two
vectors are unequal.

If an element of the left operand is not equal to the corresponding element of the
right operand, the corresponding element in the result vector is -1. Otherwise, the
corresponding element in the result vector is 0.

The following table lists the accepted vector data types of operands and the result
data types:

Chapter 8. Using vector programming support 81

Table 34. Accepted vector data types for the inequality operator and the result data types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector bool char

vector signed short vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector bool short

vector signed int vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector bool int

vector signed long long vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector bool long long

vector double vector double

Relational less than operator <
The relational less than operator (<) tests whether each element of the left operand
is less than the corresponding element of the right operand.

If an element of the left operand is less than the corresponding element of the right
operand, the corresponding element in the result vector is -1. Otherwise, the
corresponding element in the result vector is 0.

Note: If either of the operands is a signed integer vector, a signed comparison is
performed.

The following table lists the accepted vector data types of operands and the result
data types:

82 XL C/C++: Optimization and Programming Guide

Table 35. Accepted vector data types for the relational less than operator and the result data
types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector bool char

vector signed short vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector bool short

vector signed int vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector bool int

vector signed long long vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector bool long long

vector double vector double

Relational greater than operator >
The relational greater than operator (>) tests whether each element of the left
operand is greater than the corresponding element of the right operand.

If an element of the left operand is greater than the corresponding element of the
right operand, the corresponding element in the result vector is -1. Otherwise, the
corresponding element in the result vector is 0.

Note: If either of the operands is a signed integer vector, a signed comparison is
performed.

Chapter 8. Using vector programming support 83

The following table lists the accepted vector data types of operands and the result
data types:

Table 36. Accepted vector data types for the relational greater than operator and the result
data types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector bool char

vector signed short vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector bool short

vector signed int vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector bool int

vector signed long long vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector bool long long

vector double vector double

Relational less than or equal to operator <=
The relational less than or equal to operator (<=) tests whether each element of the
left operand is less than or equal to the corresponding element of the right
operand.

If an element of the left operand is less than or equal to the corresponding element
of the right operand, the corresponding element in the result vector is -1.
Otherwise, the corresponding element in the result vector is 0.

84 XL C/C++: Optimization and Programming Guide

Note: If either of the operands is a signed integer vector, a signed comparison is
performed.

The following table lists the accepted vector data types of operands and the result
data types:

Table 37. Accepted vector data types for the relational less than or equal to operator and
the result data types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector bool char

vector signed short vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector bool short

vector signed int vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector bool int

vector signed long long vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector bool long long

vector double vector double

Relational greater than or equal to operator >=
The relational greater than or equal to operator (>=) tests whether each element of
the left operand is greater than or equal to the corresponding element of the right
operand.

Chapter 8. Using vector programming support 85

If an element of the left operand is greater than or equal to the corresponding
element of the right operand, the corresponding element in the result vector is -1.
Otherwise, the corresponding element in the result vector is 0.

Note: If either of the operands is a signed integer vector, a signed comparison is
performed.

The following table lists the accepted vector data types of operands and the result
data types:

Table 38. Accepted vector data types for the relational greater than or equal to operator and
the result data types

Result type Left operand type Right operand type

vector signed char vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector bool char

vector signed short vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector bool short

vector signed int vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector bool int

vector signed long long vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector bool long long

vector double vector double

86 XL C/C++: Optimization and Programming Guide

Extensions to runtime library functions
These runtime library functions are extended to support vector processing.

longjmp
Restores stack environment.

malloc
Allocates storage for variables.

Note: The new operator is also extended to support vector processing.

setjmp
Preserves stack environment.

va_arg , va_copy , va_end , and va_start
Accesses function arguments.

Vector built-in functions
You can use vector built-in functions to access and manipulate individual elements
of vectors.

You can use vector built-in functions when the following conditions are met:
v The Linux distributions have vector support.
v Both the -mzvector option and the -march=z13 option, or its equivalent, are in

effect.
v The builtins.h or vecintrinc.h header file is included.

In this topic collection, the following pseudo code is used to represent the built-in
function syntax:
d = vec_builtin_name(a, b, c)

where
v d represents the return value of the vector built-in function.
v a, b, and c represent the parameters of the vector built-in function.
v vec_builtin_name is the name of the vector built-in function.

For example, the syntax for vector built-in function vector double =
vec_xld2(long, double*) is represented by d = vec_xld2(a, b).

Valid parameter types and the return type of the vector built-in function are
provided in the description of each vector built-in function.

Related information in the XL C/C++ Compiler Reference

-march (-qarch)

-mzvector

Summary of vector built-in functions
These tables summarize and categorize vector built-in functions.

Chapter 8. Using vector programming support 87

Arithmetic functions

Table 39. Vector built-in functions for arithmetic

Function name Short name description
More
information

vec_abs Vector Absolute Value See details

vec_add_u128 Vector Add Unsigned 128-bit Values See details

vec_addc Vector Add Carry See details

vec_addc_u128 Vector Add Compute Carry Unsigned
128-bit Values

See details

vec_adde_u128 Vector Add with Carry Unsigned 128-bit
Values

See details

vec_addec_u128 Vector Add with Carry Compute Carry
Unsigned 128-bit Values

See details

vec_andc Vector AND with Complement See details

vec_avg Vector Average See details

vec_checksum Vector Checksum See details

vec_gfmsum Vector Galois Field Multiply Sum See details

vec_gfmsum_128 Vector Galois Field Multiply Sum 128-bit
Values

See details

vec_gfmsum_accum Vector Galois Field Multiply Sum and
Accumulate

See details

vec_gfmsum_accum_128 Vector Galois Field Multiply Sum and
Accumulate 128-bit Values

See details

vec_madd Vector Multiply Add See details

vec_max Vector Maximum See details

vec_meadd Vector Multiply and Add Even See details

vec_mhadd Vector Multiply and Add High See details

vec_min Vector Minimum See details

vec_mladd Vector Multiply and Add Low See details

vec_moadd Vector Multiply and Add Odd See details

vec_msub Vector Multiply Subtract See details

vec_mule Vector Multiply Even See details

vec_mulh Vector Multiply High See details

vec_mulo Vector Multiply Odd See details

vec_nabs Vector Negative Absolute See details

vec_sqrt Vector Square Root See details

vec_sub_u128 Vector Subtract Unsigned 128-bit Values See details

vec_subc Vector Subtract Compute Borrow See details

vec_subc_u128 Vector Subtract Compute Borrow
Unsigned 128-bit Values

See details

vec_sube_u128 Vector Subtract with Borrow Unsigned
128-bit Values

See details

vec_subec_u128 Vector Subtract with Borrow Compute
Borrow Unsigned 128-bit Values

See details

vec_sum_u128 Vector Sum Across Quadword See details

88 XL C/C++: Optimization and Programming Guide

Table 39. Vector built-in functions for arithmetic (continued)

Function name Short name description
More
information

vec_sum2 Vector Sum Across Doubleword See details

vec_sum4 Vector Sum Across Word See details

Comparison functions

Table 40. Vector built-in functions for comparing elements

Function name Short name description
More
information

vec_cmpeq Vector Compare Equal See details

vec_cmpeq_idx Vector Compare Equal Index See details

vec_cmpeq_idx_cc Vector Compare Equal Index with
Condition Code

See details

vec_cmpeq_or_0_idx Vector Compare Equal or Zero Index See details

vec_cmpeq_or_0_idx_cc Vector Compare Equal or Zero Index
with Condition Code

See details

vec_cmpge Vector Compare Greater Than or Equal See details

vec_cmpgt Vector Compare Greater Than See details

vec_cmple Vector Compare Less Than or Equal See details

vec_cmplt Vector Compare Less Than See details

vec_cmpne_idx Vector Compare Not Equal Index See details

vec_cmpne_idx_cc Vector Compare Not Equal Index with
Condition Code

See details

vec_cmpne_or_0_idx Vector Compare Not Equal or Zero Index See details

vec_cmpne_or_0_idx_cc Vector Compare Not Equal or Zero Index
with Condition Code

See details

Ranges comparison functions

Table 41. Vector built-in functions for comparing elements against ranges

Function name Short name description
More
information

vec_cmpnrg Vector Compare Not in Ranges See details

vec_cmpnrg_cc Vector Compare Not in Ranges with
Condition Code

See details

vec_cmpnrg_idx Vector Compare Not in Ranges Index See details

vec_cmpnrg_idx_cc Vector Compare Not in Ranges Index
with Condition Code

See details

vec_cmpnrg_or_0_idx Vector Compare Not in Ranges or Zero
Index

See details

vec_cmpnrg_or_0_idx_cc Vector Compare Not in Ranges or Zero
Index with Condition Code

See details

vec_cmprg Vector Compare Ranges See details

vec_cmprg_cc Vector Compare Ranges with Condition
Code

See details

Chapter 8. Using vector programming support 89

Table 41. Vector built-in functions for comparing elements against ranges (continued)

Function name Short name description
More
information

vec_cmprg_idx Vector Compare Ranges Index See details

vec_cmprg_idx_cc Vector Compare Ranges Index with
Condition Code

See details

vec_cmprg_or_0_idx Vector Compare Ranges or Zero Index See details

vec_cmprg_or_0_idx_cc Vector Compare Ranges or Zero Index
with Condition Code

See details

Element searching functions

Table 42. Vector built-in functions for element searching

Function name Short name description
More
information

vec_find_any_eq Vector Find Any Element Equal See details

vec_find_any_eq_cc Vector Find Any Element Equal with
Condition Code

See details

vec_find_any_eq_idx Vector Find Any Element Equal Index See details

vec_find_any_eq_idx_cc Vector Find Any Element Equal Index
with Condition Code

See details

vec_find_any_eq_or_0_idx Vector Find Any Element Equal or Zero
Index

See details

vec_find_any_eq_or_0_idx_cc Vector Find Any Element Equal or Zero
Index with Condition Code

See details

vec_find_any_ne Vector Find Any Element Not Equal See details

vec_find_any_ne_cc Vector Find Any Element Not Equal with
Condition Code

See details

vec_find_any_ne_idx Vector Find Any Element Not Equal
Index

See details

vec_find_any_ne_idx_cc Vector Find Any Element Not Equal
Index with Condition Code

See details

vec_find_any_ne_or_0_idx Vector Find Any Element Not Equal or
Zero Index

See details

vec_find_any_ne_or_0_idx_cc Vector Find Any Element Not Equal or
Zero Index with Condition Code

See details

Gather and scatter functions

Table 43. Vector built-in functions for gathering and scattering elements

Function name Short name description
More
information

vec_extract Vector Extract See details

vec_gather_element Vector Gather Element See details

vec_insert Vector Insert See details

vec_insert_and_zero Vector Insert and Zero See details

vec_perm Vector Permute See details

90 XL C/C++: Optimization and Programming Guide

Table 43. Vector built-in functions for gathering and scattering elements (continued)

Function name Short name description
More
information

vec_permi Vector Permute Immediate See details

vec_promote Vector Promote See details

vec_scatter_element Vector Scatter Element See details

vec_sel Vector Select See details

Mask generation functions

Table 44. Vector built-in functions for mask generation

Function name Short name description
More
information

vec_genmask Vector Generate Byte Mask See details

vec_genmasks_8 Vector Generate Mask (Byte) See details

vec_genmasks_16 Vector Generate Mask (Halfword) See details

vec_genmasks_32 Vector Generate Mask (Word) See details

vec_genmasks_64 Vector Generate Mask (Doubleword) See details

Copy until zero functions

Table 45. Vector built-in functions for copying elements until a zero is encountered

Function name Short name description
More
information

vec_cp_until_zero Vector Copy Until Zero See details

vec_cp_until_zero_cc Vector Copy Until Zero with Condition
Code

See details

Load and store functions

Table 46. Vector built-in functions for loading and storing vectors

Function name Short name description
More
information

vec_ld2f Vector Load 2 Float See details

vec_load_bndry Vector Load to Block Boundary See details

vec_load_len Vector Load with Length See details

vec_load_pair Vector Load Pair See details

vec_st2f Vector Store 2 Float See details

vec_store_len Vector Store with Length See details

vec_xld2 Vector Load 2 Doubleword See details

vec_xlw4 Vector Load 4 Word See details

vec_xstd2 Vector Store 2 Doubleword See details

vec_xstw4 Vector Store 4 Word See details

Chapter 8. Using vector programming support 91

Logical calculation functions

Table 47. Vector built-in functions for logical calculation

Function name Short name description
More
information

vec_cntlz Vector Count Leading Zeros See details

vec_cnttz Vector Count Trailing Zeros See details

vec_nor Vector NOR See details

vec_popcnt Vector Population Count See details

Merge functions

Table 48. Vector built-in functions for merging vectors

Function name Short name description
More
information

vec_mergeh Vector Merge High See details

vec_mergel Vector Merge Low See details

Pack and unpack functions

Table 49. Vector built-in functions for packing and unpacking

Function name Short name description
More
information

vec_pack Vector Pack See details

vec_packs Vector Pack Saturate See details

vec_packs_cc Vector Pack Saturate Condition Code See details

vec_packsu Vector Pack Saturated Unsigned See details

vec_packsu_cc Vector Pack Saturated Unsigned
Condition Code

See details

vec_unpackh Vector Unpack High Element See details

vec_unpackl Vector Unpack Low Element See details

Replicate functions

Table 50. Vector built-in functions for replicating vector elements

Function name Short name description
More
information

vec_splat Vector Splat See details

vec_splat_s8 Vector Splat Signed Byte See details

vec_splat_s16 Vector Splat Signed Halfword See details

vec_splat_s32 Vector Splat Signed Word See details

vec_splat_s64 Vector Splat Signed Doubleword See details

vec_splat_u8 Vector Splat Unsigned Byte See details

vec_splat_u16 Vector Splat Unsigned Halfword See details

vec_splat_u32 Vector Splat Unsigned Word See details

vec_splat_u64 Vector Splat Doubleword See details

92 XL C/C++: Optimization and Programming Guide

Table 50. Vector built-in functions for replicating vector elements (continued)

Function name Short name description
More
information

vec_splats Vector Splats See details

Rotate and shift functions

Table 51. Vector built-in functions for rotation and shift

Function name Short name description
More
information

vec_rl Vector Element Rotate Left See details

vec_rl_mask Vector Element Rotate and Insert Under
Mask

See details

vec_rli Vector Element Rotate Left Immediate See details

vec_slb Vector Shift Left by Byte See details

vec_sld Vector Shift Left Double by Byte See details

vec_sldw Vector Shift Left Double by Word See details

vec_sll Vector Shift Left See details

vec_srab Vector Shift Right Arithmetic by Byte See details

vec_sral Vector Shift Right Arithmetic See details

vec_srb Vector Shift Right by Byte See details

vec_srl Vector Shift Right See details

Rounding and conversion functions

Table 52. Vector built-in functions for rounding and conversion

Function name Short name description
More
information

vec_ceil Vector Ceiling See details

vec_ctd Vector Convert to Double See details

vec_ctsl Vector Convert to Signed Long Long See details

vec_ctul Vector Convert to Unsigned Long Long See details

vec_extend_s64 Vector Sign Extend to Doubleword See details

vec_floor Vector Floor See details

vec_round Vector Round to Nearest See details

vec_roundc Vector Round to Current See details

vec_roundm Vector Round toward Negative Infinity See details

vec_roundp Vector Round toward Positive Infinity See details

vec_roundz Vector Round toward Zero See details

vec_trunc Vector Truncate See details

Chapter 8. Using vector programming support 93

Testing functions

Table 53. Vector built-in functions for testing

Function name Short name description
More
information

vec_fp_test_data_class Vector Floating-Point Test Data Class See details

vec_test_mask Vector Test under Mask See details

All elements predication functions

Table 54. Vector built-in functions to judge whether all elements meet the search criteria

Function name Short name description
More
information

vec_all_eq All Elements Equal See details

vec_all_ge All Elements Greater Than or Equal See details

vec_all_gt All Elements Greater Than See details

vec_all_le All Elements Less Than or Equal See details

vec_all_lt All Elements Less Than See details

vec_all_nan All Elements Not a Number See details

vec_all_ne All Elements Not Equal See details

vec_all_nge All Elements Not Greater Than or Equal See details

vec_all_ngt All Elements Not Greater Than See details

vec_all_nle All Elements Not Less Than or Equal See details

vec_all_nlt All Elements Not Less Than See details

vec_all_numeric All Elements Numeric See details

Any element predication functions

Table 55. Vector built-in functions to judge whether any element meets the search criteria

Function name Short name description
More
information

vec_any_eq Any Element Equal See details

vec_any_ge Any Element Greater Than or Equal See details

vec_any_gt Any Element Greater Than See details

vec_any_le Any Element Less Than or Equal See details

vec_any_lt Any Element Less Than See details

vec_any_nan Any Element Not a Number See details

vec_any_ne Any Element Not Equal See details

vec_any_nge Any Element Not Greater Than or Equal See details

vec_any_ngt Any Element Not Greater Than See details

vec_any_nle Any Element Not Less Than or Equal See details

vec_any_nlt Any Element Not Less Than See details

vec_any_numeric Any Element Numeric See details

94 XL C/C++: Optimization and Programming Guide

Arithmetic functions
This topic collection describes built-in functions for arithmetic.

vec_abs: Vector Absolute Value
Purpose

Returns a vector that contains the absolute values of the elements of a given vector.

Syntax
d = vec_abs(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 56. Return and parameter types for vec_abs

d a

vector signed char vector signed char

vector signed short vector signed short

vector signed int vector signed int

vector signed long long vector signed long long

vector double vector double

Result value

The value of each element of d is the absolute value of the corresponding element
of a.

Note: vector double does not cause an IEEE exception.

vec_add_u128: Vector Add Unsigned 128-bit Values
Purpose

Adds two vectors as 128-bit unsigned integers.

Syntax
d = vec_add_u128(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 57. Return and parameter types for vec_add_u128

d a b

vector unsigned char vector unsigned char vector unsigned char

Result value

d contains the low 128 bits of a + b.

Chapter 8. Using vector programming support 95

vec_addc: Vector Add Carry
Purpose

Returns a vector that contains the carry produced by adding each set of the
corresponding elements of two vectors.

Syntax
d = vec_addc(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 58. Return and parameter types for vec_addc

d a b

vector unsigned char vector unsigned char vector unsigned char

vector unsigned short vector unsigned short vector unsigned short

vector unsigned int vector unsigned int vector unsigned int

vector unsigned long long vector unsigned long long vector unsigned long long

Result value

If a carry occurs in adding each set of the corresponding elements of a and b, the
corresponding element of d is 1; otherwise, the corresponding element of d is 0.

vec_addc_u128: Vector Add Compute Carry Unsigned 128-bit
Values
Purpose

Gets the carry produced by adding two vectors as 128-bit unsigned integers.

Syntax
d = vec_addc_u128(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 59. Return and parameter types for vec_addc_u128

d a b

vector unsigned char vector unsigned char vector unsigned char

Result value

d contains the carry produced by adding a and b. If a carry occurs on the addition,
bit 127 of d is set to 1; otherwise, bit 127 of d is set to 0. All other bits of d are set
to 0.

96 XL C/C++: Optimization and Programming Guide

vec_adde_u128: Vector Add with Carry Unsigned 128-bit Values
Purpose

Adds two vectors as 128-bit unsigned integers with the carry bit from a previous
operation.

Syntax
d = vec_adde_u128(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 60. Return and parameter types for vec_adde_u128

d a b c

vector unsigned char vector unsigned char vector unsigned char vector unsigned char

Result value

d contains the low 128 bits of a + b + (c & 1).

Note: Only the carry bit, which is bit 127, of c is used, and the other bits of c are
ignored.

vec_addec_u128: Vector Add with Carry Compute Carry
Unsigned 128-bit Values
Purpose

Gets the carry produced by adding two vectors as 128-bit unsigned integers and
the carry bit from a previous operation.

Syntax
d = vec_addec_u128(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 61. Return and parameter types for vec_addec_u128

d a b c

vector unsigned char vector unsigned char vector unsigned char vector unsigned char

Result value

d contains the carry out of a + b + (c & 1). If a carry occurs on this addition, bit
127 of d is 1; otherwise, bit 127 of d is 0. All other bits of d are 0.

Note: Only the carry bit, which is bit 127, of c is used, and the other bits of c are
ignored.

Chapter 8. Using vector programming support 97

vec_andc: Vector AND with Complement
Purpose

Returns the bitwise AND of the first vector parameter with the bitwise
complement of the second vector parameter.

Syntax
d = vec_andc(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 62. Return and parameter types for vec_andc

d a b

vector signed char vector signed char vector signed char

vector bool char

vector bool char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char

vector bool char vector unsigned char

vector bool char vector bool char vector bool char

vector signed short vector signed short vector signed short

vector bool short

vector bool short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short

vector bool short vector unsigned short

vector bool short vector bool short vector bool short

vector signed int vector signed int vector signed int

vector bool int

vector bool int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int

vector bool int vector unsigned int

vector bool int vector bool int vector bool int

vector signed long long vector signed long long vector signed long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector unsigned long long

vector bool long long vector bool long long vector bool long long

98 XL C/C++: Optimization and Programming Guide

Table 62. Return and parameter types for vec_andc (continued)

d a b

vector double vector bool long long vector double

vector double vector bool long long

vector double

Result value

d is the bitwise AND of a with the bitwise complement of b.

vec_avg: Vector Average
Purpose

Returns a vector that contains the average values of each set of the corresponding
elements of two vectors.

Syntax
d = vec_avg(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 63. Return and parameter types for vec_avg

d a b

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

Result value

The value of each element of d is the average value of the corresponding elements
of a and b.

vec_checksum: Vector Checksum
Purpose

Returns a vector with the 1-indexed element containing a checksum that is
computed from the summation of all vector elements of one vector and the
1-indexed element of another vector.

Syntax
d = vec_checksum(a, b)

Chapter 8. Using vector programming support 99

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 64. Return and parameter types for vec_checksum

d a b

vector unsigned int vector unsigned int vector unsigned int

Result value

The value of d[1] is the checksum computed from the summation of all vector
elements of a and b[1]. All other vector elements of d have a value of 0.

vec_gfmsum: Vector Galois Field Multiply Sum
Purpose

Performs a Galois field multiply sum on each element of two vectors.

The Galois field has an order of two. This multiplication is similar to standard
binary multiplication, but it is exclusive ORed instead of adding the shifted
multiplicand.

Syntax
d = vec_gfmsum(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 65. Return and parameter types for vec_gfmsum

d a b

vector unsigned short vector unsigned char vector unsigned char

vector unsigned int vector unsigned short vector unsigned short

vector unsigned long long vector unsigned int vector unsigned int

Result value

Each element of d is the product in a Galois field of the corresponding elements of
a and b. The resulting even-odd pairs of double element-sized products are
exclusive ORed with each other and placed in the corresponding double
element-sized elements of d.

vec_gfmsum_128: Vector Galois Field Multiply Sum 128-bit
Values
Purpose

Performs a Galois field multiply sum on two vectors as 128-bit unsigned integers.

The Galois field has an order of two. This multiplication is similar to standard
binary multiplication, but it is exclusive ORed instead of adding the shifted
multiplicand.

100 XL C/C++: Optimization and Programming Guide

Syntax
d = vec_gfmsum_128(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 66. Return and parameter types for vec_gfmsum_128

d a b

vector unsigned char vector unsigned long long vector unsigned long long

Result value

The value of d is the product in a Galois field of a and b. The resulting 128-bit
products are exclusive ORed with each other.

vec_gfmsum_accum: Vector Galois Field Multiply Sum and
Accumulate
Purpose

Performs a Galois field multiply sum and accumulate on each set of the
corresponding elements of given vectors.

The Galois field has an order of two. This multiplication is similar to standard
binary multiplication, but it is exclusive ORed instead of adding the shifted
multiplicand.

Syntax
d = vec_gfmsum_accum(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 67. Return and parameter types for vec_gfmsum_accum

d a b c

vector unsigned short vector unsigned char vector unsigned char vector unsigned short

vector unsigned int vector unsigned short vector unsigned short vector unsigned int

vector unsigned long
long

vector unsigned int vector unsigned int vector unsigned long
long

Result value

Each element of d is the product in a Galois field of the corresponding elements of
a and b. The resulting even-odd pairs of double element-sized products are
exclusive ORed with each other and exclusive ORed with the corresponding
double-wide element of c.

Chapter 8. Using vector programming support 101

vec_gfmsum_accum_128: Vector Galois Field Multiply Sum and
Accumulate 128-bit Values
Purpose

Performs a Galois field multiply sum and accumulate on given vectors as 128-bit
unsigned integers.

The Galois field has an order of two. This multiplication is similar to standard
binary multiplication, but it is exclusive ORed instead of adding the shifted
multiplicand.

Syntax
d = vec_gfmsum_accum_128(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 68. Return and parameter types for vec_gfmsum_accum_128

d a b c

vector unsigned char vector unsigned long
long

vector unsigned long
long

vector unsigned char

Result value

The value of d is the product in a Galois field of a and b. The resulting 128-bit
products are exclusive ORed with each other and exclusive ORed with c.

vec_madd: Vector Multiply Add
Purpose

Performs a fused multiply-and-add operation on each set of the corresponding
elements of given vectors.

Syntax
d = vec_madd(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 69. Return and parameter types for vec_madd

d a b c

vector double vector double vector double vector double

Result value

The value of each element of d is the result of adding the corresponding element of
c to the product of the corresponding elements of a and b.

102 XL C/C++: Optimization and Programming Guide

vec_max: Vector Maximum
Purpose

Returns a vector that contains the maximum values of each set of the
corresponding elements of two vectors.

Syntax
d = vec_max(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 70. Return and parameter types for vec_max

d a b

vector signed char vector signed char vector signed char

vector bool char

vector bool char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char

vector bool char vector unsigned char

vector signed short vector signed short vector signed short

vector bool short

vector bool short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short

vector bool short vector unsigned short

vector signed int vector signed int vector signed int

vector bool int

vector bool int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int

vector bool int vector unsigned int

vector signed long long vector signed long long vector signed long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector unsigned long long

vector double vector double vector double

Result value

The value of each element of d is the maximum value of the corresponding
elements of a and b.

Chapter 8. Using vector programming support 103

Note: This function is emulated on vector double.

vec_meadd: Vector Multiply and Add Even
Purpose

Returns a vector that contains double element-sized results of performing a
multiply-and-add operation on each set of the corresponding even-indexed
elements of given vectors.

Syntax
d = vec_meadd(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 71. Return and parameter types for vec_meadd

d a b c

vector signed short vector signed char vector signed char vector signed short

vector unsigned short vector unsigned char vector unsigned char vector unsigned short

vector signed int vector signed short vector signed short vector signed int

vector unsigned int vector unsigned short vector unsigned short vector unsigned int

vector signed long
long

vector signed int vector signed int vector signed long
long

vector unsigned long
long

vector unsigned int vector unsigned int vector unsigned long
long

Result value

The value of each element of d is the result of adding the corresponding element of
c to the product of the even-indexed elements of a and b. Each product is extended
to the double size of elements of a.

Example

If a and b are of type vector singed int and c is of type vector signed long
long, d is obtained as follows:
v The value of b[0] is the result of adding c[0] to the product of a[0] and b[0].
v The value of b[1] is the result of adding c[1] to the product of a[2] and b[2].

Both products are of type unsigned long long.

vec_mhadd: Vector Multiply and Add High
Purpose

Returns a vector that contains the most significant half, also known as the high
half, of the double element-sized results of performing a multiply-and-add
operation on each set of the corresponding elements of given vectors.

Syntax
d = vec_mhadd(a, b, c)

104 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 72. Return and parameter types for vec_mhadd

d a b c

vector signed char vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char vector unsigned char

vector signed short vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short vector unsigned short

vector signed int vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int vector unsigned int

Result value

The value of each element of d is the result of adding the corresponding element of
c to the most significant half of the product of the corresponding elements of a and
b. Each product is extended to the double size of elements of a.

vec_min: Vector Minimum
Purpose

Returns a vector that contains the minimum values of each set of the
corresponding elements of two vectors.

Syntax
d = vec_min(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 73. Return and parameter types for vec_min

d a b

vector signed char vector signed char vector signed char

vector bool char

vector bool char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char

vector bool char vector unsigned char

vector signed short vector signed short vector signed short

vector bool short

vector bool short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short

vector bool short vector unsigned short

Chapter 8. Using vector programming support 105

Table 73. Return and parameter types for vec_min (continued)

d a b

vector signed int vector signed int vector signed int

vector bool int

vector bool int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int

vector bool int vector unsigned int

vector signed long long vector signed long long vector signed long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector unsigned long long

vector double vector double vector double

Result value

The value of each element of d is the minimum value of the corresponding
elements of a and b.

Note: This function is emulated on vector double.

vec_mladd: Vector Multiply and Add Low
Purpose

Returns a vector that contains the least significant half, also known as the low half,
of the double element-sized results of performing a multiply-and-add operation on
each set of the corresponding elements of given vectors.

Syntax
d = vec_mladd(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 74. Return and parameter types for vec_mladd

d a b c

vector signed char vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char

vector unsigned char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char vector unsigned char

vector signed short vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short

vector unsigned short vector signed short vector signed short

106 XL C/C++: Optimization and Programming Guide

Table 74. Return and parameter types for vec_mladd (continued)

d a b c

vector unsigned short vector unsigned short vector unsigned short vector unsigned short

vector signed int vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int

vector unsigned int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int vector unsigned int

Result value

The value of each element of d is the result of adding the corresponding element of
c to the least significant half of the product of the corresponding elements of a and
b. Each product is extended to the double size of elements of a.

vec_moadd: Vector Multiply and Add Odd
Purpose

Returns a vector that contains double element-sized results of performing a
multiply-and-add operation on each set of the corresponding odd-indexed
elements of given vectors.

Syntax
d = vec_moadd(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 75. Return and parameter types for vec_moadd

d a b c

vector signed short vector signed char vector signed char vector signed short

vector unsigned short vector unsigned char vector unsigned char vector unsigned short

vector signed int vector signed short vector signed short vector signed int

vector unsigned int vector unsigned short vector unsigned short vector unsigned int

vector signed long
long

vector signed int vector signed int vector signed long
long

vector unsigned long
long

vector unsigned int vector unsigned int vector unsigned long
long

Result value

The value of each element of d is the result of adding the corresponding element of
c to the product of the odd-indexed elements of a and b. Each product is extended
to the double size of elements of a.

Chapter 8. Using vector programming support 107

vec_msub: Vector Multiply Subtract

Purpose

Performs a multiply-and-subtract operation on each set of the corresponding
elements of given vectors.

Syntax
d = vec_msub(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 76. Return and parameter types for vec_msub

d a b c

vector double vector double vector double vector double

Result value

The value of each element of d is the result of subtracting the corresponding
element of c from the product of the corresponding elements of a and b.

vec_mule: Vector Multiply Even
Purpose

Returns a vector that contains double element-sized results of performing a
multiply operation on each set of the corresponding even-indexed elements of two
vectors.

Syntax
d = vec_mule(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 77. Return and parameter types for vec_mule

d a b

vector signed short vector signed char vector signed char

vector unsigned short vector unsigned char vector unsigned char

vector signed int vector signed short vector signed short

vector unsigned int vector unsigned short vector unsigned short

vector signed long long vector signed int vector signed int

vector unsigned long long vector unsigned int vector unsigned int

Result value

The value of each element of d is the product of the corresponding even-indexed
elements of a and b. Each product is extended to the double size of elements of a.

108 XL C/C++: Optimization and Programming Guide

Example

The following figure illustrates the operation on operands of type vector signed
short or vector unsigned short.

vec_mulh: Vector Multiply High
Purpose

Returns a vector that contains the most significant half, also known as the high
half, of the results of performing a multiply operation on each set of the
corresponding elements of two vectors.

Syntax
d = vec_mulh(a, b)

Return and parameter types

Table 78. Return and parameter types for vec_mulh

d a b

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

Result value

The value of each element of d is the most significant half of the product of the
corresponding elements of a and b. Each product is extended to the double size of
elements of a.

b

d

0 1 2 3 4 5 6 7

a

Figure 3. Even multiply of 16-bit integer elements

Chapter 8. Using vector programming support 109

vec_mulo: Vector Multiply Odd
Purpose

Returns a vector that contains double element-sized results of performing a
multiply operation on each set of the corresponding odd-indexed elements of two
vectors.

Syntax
d = vec_mulo(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 79. Return and parameter types for vec_mulo

d a b

vector signed short vector signed char vector signed char

vector unsigned short vector unsigned char vector unsigned char

vector signed int vector signed short vector signed short

vector unsigned int vector unsigned short vector unsigned short

vector signed long long vector signed int vector signed int

vector unsigned long long vector unsigned int vector unsigned int

Result value

The value of each element of d is the product of the corresponding odd-indexed
elements of a and b. Each product is extended to the double size of elements of a.

Example

The following figure illustrates the operation on operands of type vector signed
short or vector unsigned short.

b

d

0 1 2 3 4 5 6 7

a

Figure 4. Odd multiply of 16-bit integer elements

110 XL C/C++: Optimization and Programming Guide

vec_nabs: Vector Negative Absolute
Purpose

Returns a vector that contains the results of performing a negative-absolute
operation on each element of a given vector.

Syntax
d = vec_nabs(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 80. Return and parameter types for vec_nabs

d a

vector double vector double

Result value

The value of each element of d is the negated value of the absolute value of the
corresponding element of a.

Note: This built-in function does not cause an IEEE exception.

vec_sqrt: Vector Square Root
Purpose

Returns a vector that contains the square roots of the elements of a given vector.

Syntax
d = vec_sqrt(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 81. Return and parameter types for vec_sqrt

d a

vector double vector double

Result value

The value of each element of d is the square root of the corresponding element of
a.

vec_sub_u128: Vector Subtract Unsigned 128-bit Values
Purpose

Subtracts one vector from another vector as 128-bit unsigned integers.

Syntax
d = vec_sub_u128(a, b)

Chapter 8. Using vector programming support 111

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 82. Return and parameter types for vec_sub_u128

d a b

vector unsigned char vector unsigned char vector unsigned char

Result value

d contains the low 128 bits of a - b.

vec_subc: Vector Subtract Compute Borrow
Purpose

Returns a vector that contains the borrow produced by subtracting each element of
one vector from the corresponding element of another vector.

Syntax
d = vec_subc(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 83. Return and parameter types for vec_subc

d a b

vector unsigned char vector unsigned char vector unsigned char

vector unsigned short vector unsigned short vector unsigned short

vector unsigned int vector unsigned int vector unsigned int

vector unsigned long long vector unsigned long long vector unsigned long long

Result value

If a borrow occurs in subtracting an element of b from the corresponding element
of a, the value of the corresponding element of d is 0; otherwise, the value of the
corresponding element of d is 1.

vec_subc_u128: Vector Subtract Compute Borrow Unsigned
128-bit Values
Purpose

Gets the borrow produced by subtracting one vector from another vector as 128-bit
unsigned integers.

Syntax
d = vec_subc_u128(a, b)

112 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 84. Return and parameter types for vec_subc_u128

d a b

vector unsigned char vector unsigned char vector unsigned char

Result value

d contains the borrow produced by subtracting b from a as unsigned 128-bit
integers. If a borrow occurs, bit 127 of d is 1; otherwise, bit 127 of d is 0. All other
bits of d are set to 0.

vec_sube_u128: Vector Subtract with Borrow Unsigned 128-bit
Values
Purpose

Returns a vector that contains the result of subtracting one vector from another
vector as 128-bit unsigned integers and the borrow bit from a previous operation.

Syntax
d = vec_sube_u128(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 85. Return and parameter types for vec_sube_u128

d a b c

vector unsigned char vector unsigned char vector unsigned char vector unsigned char

Result value

d contains the low 128 bits of a - b - (c & 1).

Note: Only the borrow bit, which is bit 127, of c is used, and the other bits of c are
ignored.

vec_subec_u128: Vector Subtract with Borrow Compute Borrow
Unsigned 128-bit Values
Purpose

Returns a vector that contains the borrow produced in subtracting one vector from
another vector as 128-bit integers and the borrow bit from a previous operation.

Syntax
d = vec_subec_u128(a, b, c)

Chapter 8. Using vector programming support 113

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 86. Return and parameter types for vec_subec_u128

d a b c

vector unsigned char vector unsigned char vector unsigned char vector unsigned char

Result value

d contains the borrow out of a - b - (c & 1). If a borrow occurs on this
subtraction, bit 127 of d is 1; otherwise, bit 127 of d 0. All other bits of d are 0.

Note: Only the borrow bit of c is used, and the other bits of c are ignored.

vec_sum_u128: Vector Sum Across Quadword
Purpose

Sums up all the elements of one vector and the rightmost element of another
vector.

Syntax
d = vec_sum_u128(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 87. Return and parameter types for vec_sum_u128

d a b

vector unsigned char vector unsigned int vector unsigned int

vector unsigned long long vector unsigned long long

Result value

For vector unsigned int operands, d is obtained as follows as an unsigned 128-bit
integer:
d = a[0] + a[1] + a[2] + a[3] + b[3]

For vector unsigned long long operands, d is obtained as follows as an unsigned
128-bit integer:
d = a[0] + a[1] + b[1]

vec_sum2: Vector Sum Across Doubleword
Purpose

Sums up all the elements in each of the doubleword of one vector and the
rightmost element of the corresponding doubleword of another vector.

Syntax
d = vec_sum2(a, b)

114 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 88. Return and parameter types for vec_sum2

d a b

vector unsigned long long vector unsigned short vector unsigned short

vector unsigned int vector unsigned int

Result value

For vector unsigned short operands, d is obtained as follows:
d[0] = a[0] + a[1] + a[2] + a[3] + b[3]
d[1] = a[4] + a[5] + a[6] + a[7] + b[7]

For vector unsigned int operands, d is obtained as follows:
d[0] = a[0] + a[1] + b[1]
d[1] = a[2] + a[3] + b[3]

Example

The following figure illustrates the operation on operands of type vector unsigned
int.

vec_sum4: Vector Sum Across Word
Purpose

Sums up all the elements in each of the word of one vector and the rightmost
element of the corresponding word of another vector.

Syntax
d = vec_sum4(a, b)

0

0 0

1 2 3

a

b

d

+ +

Figure 5. Two saturated sums of 32-bit integer elements

Chapter 8. Using vector programming support 115

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 89. Return and parameter types for vec_sum4

d a b

vector unsigned int vector unsigned char vector unsigned char

vector unsigned short vector unsigned short

Result value

For vector unsigned char operands, d is obtained as follows:
d[0] = a[0] + a[1] + a[2] + a[3] + b[3]
d[1] = a[4] + a[5] + a[6] + a[7] + b[7]
d[2] = a[8] + a[9] + a[10] + a[11] + b[11]
d[3] = a[12] + a[13] + a[14] + a[15] + b[15]

For vector unsigned short operands, d is obtained as follows:
d[0] = a[0] + a[1] + b[1]
d[1] = a[2] + a[3] + b[3]
d[2] = a[4] + a[5] + b[5]
d[3] = a[6] + a[7] + b[7]

Comparison functions
This topic collection describes vector built-in functions that are used to compare
elements.

vec_cmpeq: Vector Compare Equal
Purpose

Compares each set of the corresponding elements of two vectors for equality.

Syntax
d = vec_cmpeq(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 90. Return and parameter types for vec_cmpeq

d a b

vector bool char vector signed char vector signed char

vector unsigned char vector unsigned char

vector bool char vector bool char

vector bool short vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool short vector bool short

116 XL C/C++: Optimization and Programming Guide

Table 90. Return and parameter types for vec_cmpeq (continued)

d a b

vector bool int vector signed int vector signed int

vector unsigned int vector unsigned int

vector bool int vector bool int

vector bool long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

vector bool long long vector bool long long

vector double vector double

Result value

For each element of d, if the corresponding elements of a and b are equal, the value
of each bit is 1. Otherwise, the value of each bit is 0.

vec_cmpeq_idx: Vector Compare Equal Index
Purpose

Compares each set of the corresponding elements of two vectors for equality and
returns the byte index of the eligible element of the lowest position.

Syntax
d = vec_cmpeq_idx(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 91. Return and parameter types for vec_cmpeq_idx

d a b

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

If none of the elements of a equals the corresponding element of b, the result is 16;
otherwise, the result is the byte index of the lowest-position element of a that is
equal to the corresponding element of b. The result is placed in byte element seven
of d, and all other bytes of d are set to 0.

Chapter 8. Using vector programming support 117

Examples

Example 1: No equal corresponding elements

In the following example, none of the elements of a equals the corresponding
element of b, so the result is 16. Because the result is placed in byte element seven
and elements of d are of type unsigned char, whose size is 1 byte, so the result, 16,
is placed in d[7].
vector unsigned char a ={’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’};
vector unsigned char b ={’z’,’z’,’z’,’z’,’z’,’z’,’z’,’z’,’z’,’z’,’z’,’z’,’z’,’z’,’z’,’z’};
vector unsigned char d = vec_cmpeq_idx(a, b);
// d is {’0’,’0’,’0’,’0’,’0’,’0’,’0’,’16’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’}.

Example 2: One equal corresponding element of type unsigned char found

In the following example, elements of a and b are of 1 byte and a[3] equals b[3],
so the result is 3. Similar to example 1, the result, 3, is placed in d[7].
vector unsigned char a ={’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’};
vector unsigned char b ={’z’,’z’,’z’,’a’,’z’,’z’,’z’,’z’,’z’,’z’,’z’,’z’,’z’,’z’,’z’,’z’};
vector unsigned char d = vec_cmpeq_idx(a, b);
// d is {’0’,’0’,’0’,’0’,’0’,’0’,’0’,’3’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’}.

Example 3: One equal corresponding element of type signed int found

In the following example, elements of a and b are of 4 bytes and a[3] equals b[3],
so the byte index of a[3] is 12, the result of (3 - 0) * 4.

Elements of d are of type signed int, whose size is 4 bytes, so byte element seven
is found in d[1]. d[1] is assigned the byte index 12.
vector signed int a ={1, 2, 3, 4};
vector signed int b ={5, 6, 7, 4};
vector signed int d = vec_cmpeq_idx(a, b);
// d is {0, 12, 0, 0}.

Example 4: More than one equal corresponding element found

In the following example, elements of a and b are of 1 byte. a[7] equals b[7], and
a[11] equals b[11]. Because byte index 7 is lower than 11, so the result is 7.
Similar to example 1, the result, 7, is placed in d[7].
vector unsigned char a ={’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’,’a’};
vector unsigned char b ={’z’,’z’,’z’,’z’,’z’,’z’,’z’,’a’,’z’,’z’,’z’,’a’,’z’,’z’,’z’,’z’};
vector unsigned char d = vec_cmpeq_idx(a, b);
// d is {’0’,’0’,’0’,’0’,’0’,’0’,’0’,’7’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’}.

vec_cmpeq_idx_cc: Vector Compare Equal Index with Condition
Code
Purpose

Compares each set of the corresponding elements of two vectors for equality and
returns the byte index of the eligible element of the lowest position. It also returns
a condition code that indicates whether such an element is found.

Syntax
d = vec_cmpeq_idx_cc(a, b, c)

118 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 92. Return and parameter types for vec_cmpeq_idx_cc

d a b c

vector signed char vector signed char vector signed char int *

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned
short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

If none of the elements of a equals the corresponding element of b, the result is 16;
otherwise, the result is the byte index of the lowest-position element of a that is
equal to the corresponding element of b. The result is placed in byte element seven
of d, and all other bytes of d are set to 0.

If at least one element of a equals the corresponding element of b, the value that is
referred to by c is set to 1; otherwise, the value that is referred to by c is set to 3.

vec_cmpeq_or_0_idx: Vector Compare Equal or Zero Index
Purpose

Compares each set of the corresponding elements of two vectors for equality and
compares each element of one vector against 0. It returns the byte index of the
eligible element of the lowest position.

Syntax
d = vec_cmpeq_or_0_idx(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 93. Return and parameter types for vec_cmpeq_or_0_idx

d a b

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short vector bool short

Chapter 8. Using vector programming support 119

Table 93. Return and parameter types for vec_cmpeq_or_0_idx (continued)

d a b

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

If none of the elements of a equals the corresponding element of b and has a value
of 0, the result is 16. Otherwise, the result is the byte index of the lowest-position
element of a that is equal to the corresponding element of b or 0. The result is
placed in byte element seven of d, and all other bytes of d are set to 0.

vec_cmpeq_or_0_idx_cc: Vector Compare Equal or Zero Index
with Condition Code
Purpose

Compares each set of the corresponding elements of two vectors for equality and
compares each element of one vector against 0. It returns the byte index of the
eligible element of the lowest position. It also returns a condition code that
indicates whether such an element is found.

Syntax
d = vec_cmpeq_or_0_idx_cc(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 94. Return and parameter types for vec_cmpeq_or_0_idx_cc

d a b c

vector signed char vector signed char vector signed char int *

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned
short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

If none of the elements of a equals the corresponding element of b and has a value
of 0, the result is 16. Otherwise, the result is the byte index of the lowest-position
element of a that is equal to the corresponding element of b or 0. The result is
placed in byte element seven of d, and all other bytes of d are set to 0.

120 XL C/C++: Optimization and Programming Guide

The value that is referred to by c is determined as follows. The comparison is
performed starting from a[0].
v 0 if all the corresponding elements of a and b are unequal before value 0 is

found in a, or if they happen concurrently.
v 1 if at least one element of a equals the corresponding element of b and if no

elements of a have a value of 0.
v 2 if an equality occurs between the corresponding elements of a and b before

value 0 is found in a.
v 3 if none of the elements of a equals the corresponding element of b and if no

elements of a have a value of 0.

vec_cmpge: Vector Compare Greater Than or Equal
Purpose

Returns a vector that contains the results of a greater-than-or-equal-to comparison
between the corresponding elements of two vectors.

Syntax
d = vec_cmpge(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 95. Return and parameter types for vec_cmpge

d a b

vector bool char vector signed char vector signed char

vector unsigned char vector unsigned char

vector bool short vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool int vector signed int vector signed int

vector unsigned int vector unsigned int

vector bool long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

vector double vector double

Result value

For each element of d, if the value of the corresponding element of a is greater
than or equal to the value of the corresponding element of b, the value of each bit
is 1. Otherwise, the value of each bit is 0.

Note: This function is emulated on integer vector values.

vec_cmpgt: Vector Compare Greater Than
Purpose

Returns a vector that contains the results of a greater-than comparison between the
corresponding elements of two vectors.

Chapter 8. Using vector programming support 121

Syntax
d = vec_cmpgt(a, b)

Return and parameter types

Table 96. Return and parameter types for vec_cmpgt

d a b

vector bool char vector signed char vector signed char

vector unsigned char vector unsigned char

vector bool short vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool int vector signed int vector signed int

vector unsigned int vector unsigned int

vector bool long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

vector double vector double

Result value

For each element of d, if the value of the corresponding element of a is greater
than the value of the corresponding element of b, the value of each bit is 1.
Otherwise, the value of each bit is 0.

vec_cmple: Vector Compare Less Than or Equal
Purpose

Returns a vector that contains the results of a less-than-or-equal-to comparison
between the corresponding elements of two vectors.

Syntax
d = vec_cmple(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 97. Return and parameter types for vec_cmple

d a b

vector bool char vector signed char vector signed char

vector unsigned char vector unsigned char

vector bool short vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool int vector signed int vector signed int

vector unsigned int vector unsigned int

vector bool long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

vector double vector double

122 XL C/C++: Optimization and Programming Guide

Result value

For each element of d, if the value of the corresponding element of a is less than or
equal to the value of the corresponding element of b, the value of each bit is 1.
Otherwise, the value of each bit is 0.

Note: This function is emulated.

vec_cmplt: Vector Compare Less Than
Purpose

Returns a vector that contains the results of a less-than comparison between the
corresponding elements of two vectors.

Syntax
d = vec_cmplt(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 98. Return and parameter types for vec_cmplt

d a b

vector bool char vector signed char vector signed char

vector unsigned char vector unsigned char

vector bool short vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool int vector signed int vector signed int

vector unsigned int vector unsigned int

vector bool long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

vector double vector double

Result value

For each element of d, if the value of the corresponding element of a is less than
the value of the corresponding element of b, the value of each bit is 1. Otherwise,
the value of each bit is 0.

Note: This function is emulated.

vec_cmpne_idx: Vector Compare Not Equal Index
Purpose

Compares each set of the corresponding elements of two vectors for inequality and
returns the byte index of the eligible element of the lowest position.

Syntax
d = vec_cmpne_idx(a, b)

Chapter 8. Using vector programming support 123

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 99. Return and parameter types for vec_cmpne_idx

d a b

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

If a and b are equal, the result is 16. Otherwise, the result is the byte index of the
lowest-position element of a that is unequal to the corresponding element of b. The
result is placed in byte element seven of d, and all other bytes of d are set to 0.

vec_cmpne_idx_cc: Vector Compare Not Equal Index with
Condition Code
Purpose

Compares each set of the corresponding elements of two vectors for inequality and
returns the byte index of the eligible element of the lowest position. It also returns
a condition code that indicates whether such an element is found.

Syntax
d = vec_cmpne_idx_cc(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

124 XL C/C++: Optimization and Programming Guide

Table 100. Return and parameter types for vec_cmpne_idx_cc

d a b c

vector signed char vector signed char vector signed char int *

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned
short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

If a and b are equal, the result is 16. Otherwise, the result is the byte index of the
lowest-position element of a that is unequal to the corresponding element of b. The
result is placed in byte element seven of d, and all other bytes of d are set to 0.

The value that is referred to by c is determined as follows:
v 1 if an inequality occurs and that element of a is less than the corresponding

element of b.
v 2 if an inequality occurs and that element of a is greater than the corresponding

element of b.
v 3 if a and b are equal.

vec_cmpne_or_0_idx: Vector Compare Not Equal or Zero Index
Purpose

Compares each set of the corresponding elements of two vectors for inequality and
compares each element of one vector against 0. It returns the byte index of the
eligible element of the lowest position.

Syntax
d = vec_cmpne_or_0_idx(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 101. Return and parameter types for vec_cmpne_or_0_idx

d a b

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short vector bool short

Chapter 8. Using vector programming support 125

Table 101. Return and parameter types for vec_cmpne_or_0_idx (continued)

d a b

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

If a and b are equal and no elements of a have a value of 0, the result is 16.
Otherwise, the result is the byte index of the lowest-position element of a that is
unequal to the corresponding element of b or that is equal to 0.

vec_cmpne_or_0_idx_cc: Vector Compare Not Equal or Zero
Index with Condition Code
Purpose

Compares each set of the corresponding elements of two vectors for inequality and
compares each element of one vector against 0. It returns the byte index of the
eligible element of the lowest position. It also returns a condition code that
indicates whether such an element is found.

Syntax
d = vec_cmpne_or_0_idx_cc(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 102. Return and parameter types for vec_cmpne_or_0_idx_cc

d a b c

vector signed char vector signed char vector signed char int *

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned
short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

If a and b are equal and no elements of a have a value of 0, the result is 16.
Otherwise, the result is the byte index of the lowest-position element of a that is
unequal to the corresponding element of b or that is equal to 0. The result is placed
in byte element seven of d, and all other bytes of d are set to 0.

The value that is referred to by c is determined as follows. The comparison is
performed starting from a[0].

126 XL C/C++: Optimization and Programming Guide

v 0 if value 0 is found in a and b at the same index before an inequality between
the corresponding elements of a and b occurs.

v 1 if an inequality occurs and that element of a is less than the corresponding
element of b, and if prior to the inequality all elements of a and b are not 0.

v 2 if an inequality occurs and that element of a is greater than the corresponding
element of b, and if prior to the inequality all elements of a and b are not 0.

v 3 if a and b are equal and no elements of a and b have a value of 0.

Range comparison functions
This topic collection describes vector built-in functions that are used to compare
elements against ranges.

vec_cmpnrg: Vector Compare Not in Ranges
Purpose

Checks whether the value of each element of a vector is not within any of the
specified ranges.

Syntax
d = vec_cmpnrg(a, b, c)

Usage

This function checks whether the value of each element of a is not within any of
the ranges that are specified by b and c as follows:
v Each even-odd element pairs of b define values for the limits of the ranges.
v The corresponding even-odd pairs of elements of c control which comparison is

to be done. The following table lists valid values for elements of c of each
possible data type for different comparison operations.

Table 103. Element values of parameter c

Comparison
Element value for
vector unsigned char

Element value for
vector unsigned
short

Element value for
vector unsigned int

Force to FALSE 0 0 0

Equal 0x80 0x8000 0x80000000

Not equal 0x60 0x6000 0x60000000

Greater than 0x20 0x2000 0x20000000

Greater than or equal 0xA0 0xA000 0xA0000000

Less than 0x40 0x4000 0x40000000

Less than and equal 0xC0 0xC000 0xC0000000

Ignore - always
TRUE

0xE0 0xE000 0xE0000000

Return and parameter types

The following table describes the types of the return value and function
parameters.

Chapter 8. Using vector programming support 127

Table 104. Return and parameter types for vec_cmpnrg

d a b c

vector bool char vector unsigned char vector unsigned char vector unsigned char

vector bool short vector unsigned short vector unsigned short vector unsigned short

vector bool int vector unsigned int vector unsigned int vector unsigned int

Result value

For each element of d, if the value of the corresponding element of a is not within
any of the specified ranges, the value of each bit is 1. Otherwise, the value of each
bit is 0.

Examples

Example 1: Comparing against two ranges

In this example, each element of a is checked against the range 10 - 20 exclusive
and the range 30 - 40 exclusive.
vector unsigned int a = {11, 22, 33, 44};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x20000000,

0x40000000};
vector unsigned int d = vec_cmpnrg(a, b, c);
// d = {0, 0xFFFFFFFF, 0, 0xFFFFFFFF}

Example 2: Comparing against a single range and a specific value

In this example, each element of a is checked against the range 10 - 20 exclusive
and the value of 30.
vector unsigned int a = {11, 22, 33, 30};
vector unsigned int b = {10, 20, 30, 30};
vector unsigned int c = {0x20000000, 0x40000000, 0x80000000,

0x80000000};
vector unsigned int d = vec_cmpnrg(a, b, c);
// d = {0, 0xFFFFFFFF, 0xFFFFFFFF, 0)

Example 3: Comparing against a single range

In this example, each element of a is checked against the range 10 -20 exclusive.
vector unsigned int a = {11, 22, 33, 44};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x00000000,

0x00000000};
vector unsigned int d = vec_cmpnrg(a, b, c);
// d = {0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}

vec_cmpnrg_cc: Vector Compare Not in Ranges with Condition
Code
Purpose

Checks whether the value of each element of a vector is not within any of the
specified ranges. It also returns a condition code that indicates whether such an
element is found.

Syntax
d = vec_cmpnrg_cc(a, b, c, e)

128 XL C/C++: Optimization and Programming Guide

Usage

This function checks whether the value of each element of a is not within any of
the ranges that are specified by b and c as follows:
v Each even-odd element pairs of b define values for the limits of the ranges.
v The corresponding even-odd pairs of elements of c control which comparison is

to be done. The following table lists valid values for elements of c of each
possible data type for different comparison operations.

Table 105. Element values of parameter c

Comparison
Element value for
vector unsigned char

Element value for
vector unsigned
short

Element value for
vector unsigned int

Force to FALSE 0 0 0

Equal 0x80 0x8000 0x80000000

Not equal 0x60 0x6000 0x60000000

Greater than 0x20 0x2000 0x20000000

Greater than or equal 0xA0 0xA000 0xA0000000

Less than 0x40 0x4000 0x40000000

Less than and equal 0xC0 0xC000 0xC0000000

Ignore - always
TRUE

0xE0 0xE000 0xE0000000

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 106. Return and parameter types for vec_cmpnrg_cc

d a b c e

vector bool char vector unsigned
char

vector unsigned
char

vector unsigned
char

int *

vector bool short vector unsigned
short

vector unsigned
short

vector unsigned
short

vector bool int vector unsigned
int

vector unsigned
int

vector unsigned
int

Result value

For each element of d, if the value of the corresponding element of a is not within
any of the specified ranges, the value of each bit is 1. Otherwise, the value of each
bit is 0.

If the value of at least one element of a is not within any of the specified ranges,
the value that is referred to by e is set to 1. Otherwise, the value that is referred to
by e is set to 3.

Chapter 8. Using vector programming support 129

vec_cmpnrg_idx: Vector Compare Not in Ranges Index
Purpose

Returns the byte index of the lowest-position element of a vector whose value is
not within any of the specified ranges.

Syntax
d = vec_cmpnrg_idx(a, b, c)

Usage

This function checks whether the value of each element of a is not within any of
the ranges that are specified by b and c as follows:
v Each even-odd element pairs of b define values for the limits of the ranges.
v The corresponding even-odd pairs of elements of c control which comparison is

to be done. The following table lists valid values for elements of c of each
possible data type for different comparison operations.

Table 107. Element values of parameter c

Comparison
Element value for
vector unsigned char

Element value for
vector unsigned
short

Element value for
vector unsigned int

Force to FALSE 0 0 0

Equal 0x80 0x8000 0x80000000

Not equal 0x60 0x6000 0x60000000

Greater than 0x20 0x2000 0x20000000

Greater than or equal 0xA0 0xA000 0xA0000000

Less than 0x40 0x4000 0x40000000

Less than and equal 0xC0 0xC000 0xC0000000

Ignore - always
TRUE

0xE0 0xE000 0xE0000000

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 108. Return and parameter types for vec_cmpnrg_idx

d a b c

vector unsigned char vector unsigned char vector unsigned char vector unsigned char

vector unsigned
short

vector unsigned short vector unsigned short vector unsigned short

vector unsigned int vector unsigned int vector unsigned int vector unsigned int

Result value

The result is the byte index of the lowest-position element of a whose value is not
within any of the ranges that are specified by b and c. If the values of all elements
of a are within the specified ranges, the result is 16.

130 XL C/C++: Optimization and Programming Guide

The result is placed in byte element seven of d, and all other bytes of d are set to 0.

Example

In this example, each element of a is checked against the range 10 - 20 exclusive
and the range 30 - 40 exclusive. a[1] and a[3] meet the requirement because they
are not within any of the two ranges, and a[1] is the lowest-position eligible
element. As a result, 4, which stands for the byte index of a[1], is placed in byte
element seven of d.
vector unsigned int a = {11, 22, 33, 44};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x20000000,

0x40000000};
vector unsigned int d = vec_cmpnrg_idx(a, b, c);
// d = {0, 4, 0, 0)

vec_cmpnrg_idx_cc: Vector Compare Not in Ranges Index with
Condition Code
Purpose

Returns the byte index of the lowest-position element of a vector whose value is
not within any of the specified ranges. It also returns a condition code that
indicates whether such an element is found.

Syntax
d = vec_cmpnrg_idx_cc(a, b, c, e)

Usage

This function checks whether each element of a is not within any of the ranges that
are specified by b and c as follows:
v Each even-odd element pairs of b define values for the limits of the ranges.
v The corresponding even-odd pairs of elements of c control which comparison is

to be done. The following table lists valid values for elements of c of each
possible data type for different comparison operations.

Table 109. Element values of parameter c

Comparison
Element value for
vector unsigned char

Element value for
vector unsigned
short

Element value for
vector unsigned int

Force to FALSE 0 0 0

Equal 0x80 0x8000 0x80000000

Not equal 0x60 0x6000 0x60000000

Greater than 0x20 0x2000 0x20000000

Greater than or equal 0xA0 0xA000 0xA0000000

Less than 0x40 0x4000 0x40000000

Less than and equal 0xC0 0xC000 0xC0000000

Ignore - always
TRUE

0xE0 0xE000 0xE0000000

Chapter 8. Using vector programming support 131

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 110. Return and parameter types for vec_cmpnrg_idx_cc

d a b c e

vector unsigned
char

vector unsigned
char

vector unsigned
char

vector unsigned
char

int *

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
int

vector unsigned
int

vector unsigned
int

vector unsigned
int

Result value

The result is the byte index of the lowest-position element of a whose value is not
within any of the ranges that are specified by b and c. If all elements of a are
within the specified ranges, the result is 16. The result is placed in byte element
seven of d, and all other bytes of d are set to 0.

If the value of at least one element of a is not within any of the specified ranges,
the value that is referred to by e is set to 1. Otherwise, the value that is referred to
by e is set to 3.

vec_cmpnrg_or_0_idx: Vector Compare Not in Ranges or Zero
Index
Purpose

Returns the byte index of the lowest-position element of a vector whose value is 0
or is not within any of the specified ranges.

Syntax
d = vec_cmpnrg_or_0_idx(a, b, c)

Usage

This function checks the value of each element of a against 0 and the ranges that
are specified by b and c as follows:
v Each even-odd element pairs of b define values for the limits of the ranges.
v The corresponding even-odd pairs of elements of c control which comparison is

to be done. The following table lists valid values for elements of c of each
possible data type for different comparison operations.

Table 111. Element values of parameter c

Comparison
Element value for
vector unsigned char

Element value for
vector unsigned
short

Element value for
vector unsigned int

Force to FALSE 0 0 0

Equal 0x80 0x8000 0x80000000

Not equal 0x60 0x6000 0x60000000

Greater than 0x20 0x2000 0x20000000

132 XL C/C++: Optimization and Programming Guide

Table 111. Element values of parameter c (continued)

Comparison
Element value for
vector unsigned char

Element value for
vector unsigned
short

Element value for
vector unsigned int

Greater than or equal 0xA0 0xA000 0xA0000000

Less than 0x40 0x4000 0x40000000

Less than and equal 0xC0 0xC000 0xC0000000

Ignore - always
TRUE

0xE0 0xE000 0xE0000000

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 112. Return and parameter types for vec_cmpnrg_or_0_idx

d a b c

vector unsigned char vector unsigned char vector unsigned char vector unsigned char

vector unsigned
short

vector unsigned short vector unsigned short vector unsigned short

vector unsigned int vector unsigned int vector unsigned int vector unsigned int

Result value

The result is the byte index of the lowest-position element of a whose value is 0 or
is not within any of the ranges that are specified by b and c. If the values of all
elements of a are within the specified ranges and are not 0, the result is 16.

The result is placed in byte element seven of d, and all other bytes of d are set to 0.

Example

In this example, each element of a is checked not only against 0 but also against
the range 10 - 20 exclusive and the range 30 - 40 exclusive. a[2] and a[3] meet the
requirement, and a[2] is the lowest-position eligible element. As a result, 8, which
stands for the byte index of a[2], is placed in byte element seven of d.
vector unsigned int a = {11, 33, 0, 22};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x20000000,

0x40000000};
vector unsigned int d = vec_cmpnrg_or_0_idx(a, b, c);
// d = {0, 8, 0, 0)

vec_cmpnrg_or_0_idx_cc: Vector Compare Not in Ranges or
Zero Index with Condition Code
Purpose

Returns the byte index of the lowest-position element of a vector whose value is 0
or is not within any of the specified ranges. It also returns a condition code that
indicates whether such an element is found.

Chapter 8. Using vector programming support 133

Syntax
d = vec_cmpnrg_or_0_idx_cc(a, b, c, e)

Usage

This function checks the value of each element of a against 0 and the ranges that
are specified by b and c as follows:
v Each even-odd element pairs of b define values for the limits of the ranges.
v The corresponding even-odd pairs of elements of c control which comparison is

to be done. The following table lists valid values for elements of c of each
possible data type for different comparison operations.

Table 113. Element values of parameter c

Comparison
Element value for
vector unsigned char

Element value for
vector unsigned
short

Element value for
vector unsigned int

Force to FALSE 0 0 0

Equal 0x80 0x8000 0x80000000

Not equal 0x60 0x6000 0x60000000

Greater than 0x20 0x2000 0x20000000

Greater than or equal 0xA0 0xA000 0xA0000000

Less than 0x40 0x4000 0x40000000

Less than and equal 0xC0 0xC000 0xC0000000

Ignore - always
TRUE

0xE0 0xE000 0xE0000000

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 114. Return and parameter types for vec_cmpnrg_or_0_idx_cc

d a b c e

vector unsigned
char

vector unsigned
char

vector unsigned
char

vector unsigned
char

int *

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
int

vector unsigned
int

vector unsigned
int

vector unsigned
int

Result value

The result is the byte index of the lowest-position element of a whose value is 0 or
is not within any of the ranges that are specified by b and c. If the values of all
elements of a are within the specified ranges and are not 0, the result is 16. The
result is placed in byte element seven of d, and all other bytes of d are set to 0.

The value that is referred to by e is determined as follows. The comparison is
performed starting from a[0].

134 XL C/C++: Optimization and Programming Guide

v 0 if value 0 is found in a before an element whose value is not within any of the
specified ranges is found, or if they happen concurrently.

v 1 if no elements of a have a value of 0 and if the value of at least one element of
a is not within any of the specified ranges.

v 2 if value 0 is found in a after an element whose value is not within any of the
specified ranges is found.

v 3 if no elements of a have a value of 0 and if each element of a has a value that
is within any of the specified ranges.

vec_cmprg: Vector Compare Ranges
Purpose

Checks whether each element of a vector is within any of the specified ranges.

Syntax
d = vec_cmprg(a, b, c)

Usage

You can use this function to check whether each element of a is within any of the
ranges that are specified by b and c as follows:
v Each even-odd element pairs of b define values for the limits of the ranges.
v The corresponding even-odd pairs of elements of c control which comparison is

to be done. The following table lists valid values for elements of c of each
possible data type for different comparison operations.

Table 115. Element values of parameter c

Comparison
Element value for
vector unsigned char

Element value for
vector unsigned
short

Element value for
vector unsigned int

Force to FALSE 0 0 0

Equal 0x80 0x8000 0x80000000

Not equal 0x60 0x6000 0x60000000

Greater than 0x20 0x2000 0x20000000

Greater than or equal 0xA0 0xA000 0xA0000000

Less than 0x40 0x4000 0x40000000

Less than and equal 0xC0 0xC000 0xC0000000

Ignore - always
TRUE

0xE0 0xE000 0xE0000000

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 116. Return and parameter types for vec_cmprg

d a b c

vector bool char vector unsigned char vector unsigned char vector unsigned char

vector bool short vector unsigned short vector unsigned short vector unsigned short

vector bool int vector unsigned int vector unsigned int vector unsigned int

Chapter 8. Using vector programming support 135

Result value

For each element of d, if the corresponding element of a is within any of the
specified ranges, the value of each bit is 1. Otherwise, the value of each bit is 0.

Examples

Example 1: Comparing against two ranges

In this example, each element of a is checked against the range 10 - 20 exclusive
and the range 30 - 40 exclusive.
vector unsigned int a = {11, 22, 33, 44};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x20000000,

0x40000000};
vector unsigned int d = vec_cmprg(a, b, c);
// d = {0xFFFFFFFF, 0, 0xFFFFFFFF, 0}

Example 2: Comparing against a single range and a specific value

In this example, each element of a is checked against the range 10 - 20 exclusive
and the value of 30.
vector unsigned int a = {11, 22, 33, 30};
vector unsigned int b = {10, 20, 30, 30};
vector unsigned int c = {0x20000000, 0x40000000, 0x80000000,

0x80000000};
vector unsigned int d = vec_cmprg(a, b, c);
// d = {0xFFFFFFFF, 0, 0, 0xFFFFFFFF)

Example 3: Comparing against a single range

In this example, each element of a is checked against the range 10 -20 exclusive.
vector unsigned int a = {11, 22, 33, 44};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x00000000,

0x00000000};
vector unsigned int d = vec_cmprg(a, b, c);
// d = {0xFFFFFFFF, 0, 0, 0}

vec_cmprg_cc: Vector Compare Ranges with Condition Code
Purpose

Checks whether each element of a vector is within any of the specified ranges. It
also returns a condition code that indicates whether such an element is found.

Syntax
d = vec_cmprg_cc(a, b, c, e)

Usage

You can use this function to check whether each element of a is within any of the
ranges that are specified by b and c as follows:
v Each even-odd element pairs of b define values for the limits of the ranges.
v The corresponding even-odd pairs of elements of c control which comparison is

to be done. The following table lists valid values for elements of c of each
possible data type for different comparison operations.

136 XL C/C++: Optimization and Programming Guide

Table 117. Element values of parameter c

Comparison
Element value for
vector unsigned char

Element value for
vector unsigned
short

Element value for
vector unsigned int

Force to FALSE 0 0 0

Equal 0x80 0x8000 0x80000000

Not equal 0x60 0x6000 0x60000000

Greater than 0x20 0x2000 0x20000000

Greater than or equal 0xA0 0xA000 0xA0000000

Less than 0x40 0x4000 0x40000000

Less than and equal 0xC0 0xC000 0xC0000000

Ignore - always
TRUE

0xE0 0xE000 0xE0000000

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 118. Return and parameter types for vec_cmprg_cc

d a b c e

vector bool char vector unsigned
char

vector unsigned
char

vector unsigned
char

int *

vector bool short vector unsigned
short

vector unsigned
short

vector unsigned
short

vector bool int vector unsigned
int

vector unsigned
int

vector unsigned
int

Result value

For each element of d, if the corresponding element of a is within any of the
specified ranges, the value of each bit is 1. Otherwise, the value of each bit is 0.

If the value of at least one element of a is within any of the specified ranges, the
value that is referred to by e is set to 1. Otherwise, the value that is referred to by
e is set to 3.

vec_cmprg_idx: Vector Compare Ranges Index
Purpose

Returns the byte index of the lowest-position element of a vector whose value is
within any of the specified ranges.

Syntax
d = vec_cmprg_idx(a, b, c)

Usage

This function checks whether each element of a is within any of the ranges that are
specified by b and c as follows:

Chapter 8. Using vector programming support 137

v Each even-odd element pairs of b define values for the limits of the ranges.
v The corresponding even-odd pairs of elements of c control which comparison is

to be done. The following table lists valid values for elements of c of each
possible data type for different comparison operations.

Table 119. Element values of parameter c

Comparison
Element value for
vector unsigned char

Element value for
vector unsigned
short

Element value for
vector unsigned int

Force to FALSE 0 0 0

Equal 0x80 0x8000 0x80000000

Not equal 0x60 0x6000 0x60000000

Greater than 0x20 0x2000 0x20000000

Greater than or equal 0xA0 0xA000 0xA0000000

Less than 0x40 0x4000 0x40000000

Less than and equal 0xC0 0xC000 0xC0000000

Ignore - always
TRUE

0xE0 0xE000 0xE0000000

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 120. Return and parameter types for vec_cmprg_idx

d a b c

vector unsigned char vector unsigned char vector unsigned char vector unsigned char

vector unsigned
short

vector unsigned short vector unsigned short vector unsigned short

vector unsigned int vector unsigned int vector unsigned int vector unsigned int

Result value

The result is the byte index of the lowest-position element of a whose value is
within any of the ranges that are specified by b and c. If none of the elements of a
is within any of the specified ranges, the result is 16.

The result is placed in byte element seven of d, and all other bytes are set to 0.

Example

In this example, each element of a is checked against the range 10 - 20 exclusive
and the range 30 - 40 exclusive. a[1] and a[3] meet the requirement, and a[1] is
the lowest-position eligible element. As a result, 4, which stands for the byte index
of a[1], is placed in byte element seven of d.
vector unsigned int a = {1, 11, 22, 33};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x20000000,

0x40000000};
vector unsigned int d = vec_cmprg_idx(a, b, c);
// d = {0, 4, 0, 0)

138 XL C/C++: Optimization and Programming Guide

vec_cmprg_idx_cc: Vector Compare Ranges Index with
Condition Code
Purpose

Returns the byte index of the lowest-position element of a vector whose value is
within any of the specified ranges. It also returns a condition code that indicates
whether such an element is found.

Syntax
d = vec_cmprg_idx_cc(a, b, c, e)

Usage

This function checks whether each element of a is within any of the ranges that are
specified by b and c as follows:
v Each even-odd element pairs of b define values for the limits of the ranges.
v The corresponding even-odd pairs of elements of c control which comparison is

to be done. The following table lists valid values for elements of c of each
possible data type for different comparison operations.

Table 121. Element values of parameter c

Comparison
Element value for
vector unsigned char

Element value for
vector unsigned
short

Element value for
vector unsigned int

Force to FALSE 0 0 0

Equal 0x80 0x8000 0x80000000

Not equal 0x60 0x6000 0x60000000

Greater than 0x20 0x2000 0x20000000

Greater than or equal 0xA0 0xA000 0xA0000000

Less than 0x40 0x4000 0x40000000

Less than and equal 0xC0 0xC000 0xC0000000

Ignore - always
TRUE

0xE0 0xE000 0xE0000000

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 122. Return and parameter types for vec_cmprg_idx_cc

d a b c e

vector unsigned
char

vector unsigned
char

vector unsigned
char

vector unsigned
char

int *

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
int

vector unsigned
int

vector unsigned
int

vector unsigned
int

Chapter 8. Using vector programming support 139

Result value

The result is the byte index of the lowest-position element of a whose value is
within any of the ranges that are specified by b and c. If none of the elements of a
is within any of the specified ranges, the result is 16. The result is placed in byte
element seven of d, and all other bytes of d are set to 0.

If the value of at least one element of a is within any of the specified ranges, the
value that is referred to by e is set to 1. Otherwise, the value that is referred to by
e is set to 3.

vec_cmprg_or_0_idx: Vector Compare Ranges or Zero Index
Purpose

Returns the byte index of the lowest-position element of a vector whose value is 0
or is within any of the specified ranges.

Syntax
d = vec_cmprg_or_0_idx(a, b, c)

Usage

This function checks the value of each element of a against value 0 and the ranges
that are specified by b and c as follows:
v Each even-odd element pairs of b define values for the limits of the ranges.
v The corresponding even-odd pairs of elements of c control which comparison is

to be done. The following table lists valid values for elements of c of each
possible data type for different comparison operations.

Table 123. Element values of parameter c

Comparison
Element value for
vector unsigned char

Element value for
vector unsigned
short

Element value for
vector unsigned int

Force to FALSE 0 0 0

Equal 0x80 0x8000 0x80000000

Not equal 0x60 0x6000 0x60000000

Greater than 0x20 0x2000 0x20000000

Greater than or equal 0xA0 0xA000 0xA0000000

Less than 0x40 0x4000 0x40000000

Less than and equal 0xC0 0xC000 0xC0000000

Ignore - always
TRUE

0xE0 0xE000 0xE0000000

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 124. Return and parameter types for vec_cmprg_or_0_idx

d a b c

vector unsigned char vector unsigned char vector unsigned char vector unsigned char

140 XL C/C++: Optimization and Programming Guide

Table 124. Return and parameter types for vec_cmprg_or_0_idx (continued)

d a b c

vector unsigned
short

vector unsigned short vector unsigned short vector unsigned short

vector unsigned int vector unsigned int vector unsigned int vector unsigned int

Result value

The result is the byte index of the lowest-position element of a whose value is 0 or
is within any of the ranges that are specified by b and c. If none of the elements of
a is within any of the specified ranges and has a value of 0, the result is 16.

The result is placed in byte element seven of d, and all other bytes of d are set to 0.

Example

In this example, each element of a is checked not only against 0 but also against
the range 10 - 20 exclusive and the range 30 - 40 exclusive. a[1] and a[3] meet the
requirement, and a[1] is the lowest-position element. As a result, 4, which stands
for the byte index of a[1], is placed in byte element seven of d.
vector unsigned int a = {1, 0, 22, 33};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x20000000,

0x40000000};
vector unsigned int d = vec_cmprg_or_0_idx(a, b, c);
// d = {0, 4, 0, 0)

vec_cmprg_or_0_idx_cc: Vector Compare Ranges or Zero Index
with Condition Code
Purpose

Returns the byte index of the lowest-position element of a vector whose value is 0
or is within any of the specified ranges. It also returns a condition code that
indicates whether such an element is found.

Syntax
d = vec_cmprg_or_0_idx_cc(a, b, c, e)

Usage

This function checks the value of each element of a against value 0 and the ranges
that are specified by b and c as follows:
v Each even-odd element pairs of b define values for the limits of the ranges.
v The corresponding even-odd pairs of elements of c control which comparison is

to be done. The following table lists valid values for elements of c of each
possible data type for different comparison operations.

Table 125. Element values of parameter c

Comparison
Element value for
vector unsigned char

Element value for
vector unsigned
short

Element value for
vector unsigned int

Force to FALSE 0 0 0

Equal 0x80 0x8000 0x80000000

Chapter 8. Using vector programming support 141

Table 125. Element values of parameter c (continued)

Comparison
Element value for
vector unsigned char

Element value for
vector unsigned
short

Element value for
vector unsigned int

Not equal 0x60 0x6000 0x60000000

Greater than 0x20 0x2000 0x20000000

Greater than or equal 0xA0 0xA000 0xA0000000

Less than 0x40 0x4000 0x40000000

Less than and equal 0xC0 0xC000 0xC0000000

Ignore - always
TRUE

0xE0 0xE000 0xE0000000

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 126. Return and parameter types for vec_cmprg_or_0_idx_cc

d a b c e

vector unsigned
char

vector unsigned
char

vector unsigned
char

vector unsigned
char

int *

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
int

vector unsigned
int

vector unsigned
int

vector unsigned
int

Result value

The result is the byte index of the lowest-position element of a whose value is 0 or
is within any of the ranges that are specified by b and c. If none of the elements of
a is within any of the specified ranges and has a value of 0, the result is 16. The
result is placed in byte element seven of d, and all other bytes of d are set to 0.

The value that is referred to by e is determined as follows. The comparison is
performed starting from a[0].
v 0 if value 0 is found in a before an element whose value is within any of the

specified ranges is found, or if they happen concurrently.
v 1 if no elements of a have a value of 0 and if the value of at least one element of

a is within any of the specified ranges.
v 2 if value 0 is found in a after an element whose value is within any of the

specified ranges is found.
v 3 if no elements of a have a value of 0 and are within any of the specified

ranges.

Element searching functions
This topic collection describes vector built-in functions for element searching.

142 XL C/C++: Optimization and Programming Guide

vec_find_any_eq: Vector Find Any Element Equal
Purpose

Compares each element of one vector with every element of another vector for
equality.

Syntax
d = vec_find_any_eq(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 127. Return and parameter types for vec_find_any_eq

d a b

vector bool char vector signed char vector signed char

vector unsigned char vector unsigned char

vector bool char vector bool char

vector bool short vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector bool int vector signed int vector signed int

vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

For each element of d, if the corresponding element of a equals any element of b,
the value of each bit is 1. Otherwise, the value of each bit is 0.

Example

In the following example, the value of a[2] is found in b, so each bit of d[2] is set
to 1:
vector signed int a = {1, -2, 3, -4};
vector signed int b = {-5, 3, -7, 8};
vector bool int d = vec_find_any_eq(a, b);
// d = {0, 0, 0xFFFFFFFF, 0}

vec_find_any_eq_cc: Vector Find Any Element Equal with
Condition Code
Purpose

Compares each element of one vector with every element of another vector for
equality. It also returns a condition code that indicates whether such an element is
found.

Syntax
d = vec_find_any_eq_cc(a, b, c)

Chapter 8. Using vector programming support 143

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 128. Return and parameter types for vec_find_any_eq_cc

d a b c

vector bool char vector signed char vector signed char int *

vector unsigned char vector unsigned char

vector bool char vector bool char

vector bool short vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector bool int vector signed int vector signed int

vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

For each element of d, if the corresponding element of a equals any element of b,
the value of each bit is 1; otherwise, the value of each bit is 0. If at least one
element of a finds an element of the same value in b, the value that is referred to
by c is set to 1; otherwise, the value that is referred to by c is set to 3.

vec_find_any_eq_idx: Vector Find Any Element Equal Index
Purpose

Compares each element of one vector with every element of another vector for
equality and returns the byte index of the eligible element of the lowest position.

Syntax
d = vec_find_any_eq_idx(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 129. Return and parameter types for vec_find_any_eq_idx

d a b

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

144 XL C/C++: Optimization and Programming Guide

Result value

The result is the byte index of the lowest-position element of a that equals any
element of b. If none of the elements of a finds an element of the same value in b,
the result is 16.

The result is placed in byte element seven of d, and all other bytes of d are set to 0.

Examples

Example 1

In this example, a[2] equals b[1], and the byte index of a[2] is 8. As a result, byte
element seven of d is set to 8.
vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {5, 3, 7, 8};
vector unsigned int d = vec_find_any_eq_idx(a, b);
// d = {0, 8, 0, 0}

Example 2

In this example, no elements of a are found in b, so 16 is returned and placed in
byte element seven of d.
vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {5, 6, 7, 8};
vector unsigned int d = vec_find_any_eq_idx(a, b);
// d = {0, 16, 0, 0}

vec_find_any_eq_idx_cc: Vector Find Any Element Equal Index
with Condition Code
Purpose

Compares each element of one vector with every element of another vector for
equality and returns the byte index of the eligible element of the lowest position. It
also returns a condition code that indicates whether such an element is found.

Syntax
d = vec_find_any_eq_idx_cc(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Chapter 8. Using vector programming support 145

Table 130. Return and parameter types for vec_find_any_eq_idx_cc

d a b c

vector signed char vector signed char vector signed char int *

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned
short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

The result is the byte index of the lowest-position element of a that equals any
element of b. If none of the elements of a finds an element of the same value in b,
the result is 16. The result is placed in byte element seven of d, and all other bytes
of d are set to 0.

If at least one element of a finds an element of the same value in b, the value that
is referred to by c is set to 1; otherwise, the value that is referred to by c is set to 3.

Examples

Example 1

In this example, a[2] equals b[1], so c is set to 1. Because the byte index of a[2] is
8, byte element seven of d is set to 8.
vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {5, 3, 7, 8};
int c = 0;
vector unsigned int d = vec_find_any_eq_idx_cc(a, b, &c);
// d = {0, 8, 0, 0}, c = 1

Example 2

In this example, no elements of a are found in b, so byte element seven of d is set
to 16 and c is set to 3.
vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {5, 6, 7, 8};
int c = 0;
vector unsigned int d = vec_find_any_eq_idx_cc(a, b, &c);
// d = {0, 16, 0, 0}, c = 3

vec_find_any_eq_or_0_idx: Vector Find Any Element Equal or
Zero Index
Purpose

Returns the byte index of the lowest-position element of one vector that finds an
equal value in another vector or that has a value of 0.

Syntax
d = vec_find_any_eq_or_0_idx(a, b)

146 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 131. Return and parameter types for vec_find_any_eq_or_0_idx

d a b

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

The result is the byte index of the lowest-position element of a that equals any
element of b or that has a value of 0. If all the elements of a satisfies neither of
these two conditions, the result is 16.

The result is placed in byte element seven of d, and all other bytes of d are set to 0.

Example

In this example, the value of a[3] is found in b, and a[2] has a value of 0. Because
a[2], whose byte index is 8, has lower byte index than a[3], byte element seven of
d is set to 8.
vector unsigned int a = {1, 2, 0, 5};
vector unsigned int b = {5, 6, 7, 8};
vector unsigned int d = vec_find_any_eq_or_0_idx(a, b);
// d = {0, 8, 0, 0}

vec_find_any_eq_or_0_idx_cc: Vector Find Any Element Equal or
Zero Index with Condition Code
Purpose

Returns the byte index of the lowest-position element of one vector that finds an
equal value in another vector or that has a value of 0. It also returns a condition
code that indicates whether such an element is found.

Syntax
d = vec_find_any_eq_or_0_idx_cc(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Chapter 8. Using vector programming support 147

Table 132. Return and parameter types for vec_find_any_eq_or_0_idx_cc

d a b c

vector signed char vector signed char vector signed char int *

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned
short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

The result is the byte index of the lowest-position element of a that equals any
element of b or that has a value of 0. If all the elements of a satisfies neither of
these two conditions, the result is 16. The result is placed in byte element seven of
d, and all other bytes of d are set to 0.

The value that is referred to by c is determined as follows. The comparison is
performed starting from a[0].
v 0 if value 0 is found in a before an element that equals any element of b is

found, or if they happen concurrently.
v 1 if no elements of a have a value of 0 and if at least one element of a equals

any element of b.
v 2 if value 0 is found in a after an element that equals any element of b is found.
v 3 if no elements of a have a value of 0 and equal any element of b.

vec_find_any_ne: Vector Find Any Element Not Equal
Purpose

Compares each element of one vector with every element of another vector for
inequality.

Syntax
d = vec_find_any_ne(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 133. Return and parameter types for vec_find_any_ne

d a b

vector bool char vector signed char vector signed char

vector unsigned char vector unsigned char

vector bool char vector bool char

148 XL C/C++: Optimization and Programming Guide

Table 133. Return and parameter types for vec_find_any_ne (continued)

d a b

vector bool short vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector bool int vector signed int vector signed int

vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

For each element of d, if the corresponding element of a does not equal any
element of b, the value of each bit is 1. Otherwise, the value of each bit is 0.

Example

In the following example, the values of a[0], a[1], and a[3] are not found in b, so
each bit of the corresponding element of d is set to 1:
vector signed int a = {1, -2, 3, -4};
vector signed int b = {-5, 3, -7, 8};
vector bool int d = vec_find_any_ne(a, b);
// d = {0xFFFFFFFF, 0xFFFFFFFF, 0, 0xFFFFFFFF}

vec_find_any_ne_cc: Vector Find Any Element Not Equal with
Condition Code
Purpose

Compares each element of one vector with every element of another vector for
inequality. It also returns a condition code that indicates whether such an element
is found.

Syntax
d = vec_find_any_ne_cc(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 134. Return and parameter types for vec_find_any_ne_cc

d a b c

vector bool char vector signed char vector signed char int *

vector unsigned char vector unsigned char

vector bool char vector bool char

vector bool short vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector bool int vector signed int vector signed int

vector unsigned int vector unsigned int

vector bool int vector bool int

Chapter 8. Using vector programming support 149

Result value

For each element of d, if the corresponding element of a does not equal any
element of b, the value of each bit is 1. Otherwise, the value of each bit is 0. If at
least one element of a does not find an element of the same value in b, the value
that is referred to by c is set to 1. Otherwise, the value that is referred to by c is set
to 3.

vec_find_any_ne_idx: Vector Find Any Element Not Equal Index
Purpose

Compares each element of one vector with every element of another vector for
inequality and returns the byte index of the eligible element of the lowest position.

Syntax
d = vec_find_any_ne_idx(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 135. Return and parameter types for vec_find_any_ne_idx

d a b

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

The result is the byte index of the lowest-position element of a that does not equal
any element of b. If each element of a has the same value as any element of b, the
result is 16.

The result is placed in byte element seven of d, and all other bytes of d are set to 0.

Examples

Example 1

In this example, the value of a[1] is not found in b, and the byte index of a[1] is
4. As a result, byte element seven of d is set to 4.

150 XL C/C++: Optimization and Programming Guide

vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {1, 5, 3, 4};
vector unsigned int d = vec_find_any_ne_idx(a, b);
// d = {0, 4, 0, 0}

Example 2

In this example, all the values of elements of a are found in b, so 16 is returned
and placed in byte element seven of d.
vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {1, 2, 3, 4};
vector unsigned int d = vec_find_any_ne_idx(a, b);
// d = {0, 16, 0, 0}

vec_find_any_ne_idx_cc: Vector Find Any Element Not Equal
Index with Condition Code
Purpose

Compares each element of one vector with every element of another vector for
inequality and returns the byte index of the eligible element of the lowest position.
It also returns a condition code that indicates whether such an element is found.

Syntax
d = vec_find_any_ne_idx_cc(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 136. Return and parameter types for vec_find_any_ne_idx_cc

d a b c

vector signed char vector signed char vector signed char int *

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned
short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

The result is the byte index of the lowest-position element of a that does not equal
any element of b. If each element of a has the same value as any element of b, the
result is 16. The result is placed in byte element seven of d, and all other bytes of d
are set to 0.

If at least one element of a does not find an element of the same value in b, the
value that is referred to by c is set to 1; otherwise, the value that is referred to by c
is set to 3.

Chapter 8. Using vector programming support 151

Examples

Example 1

In this example, the value of a[1] is not found in b, so c is set to 1. Because the
byte index of a[1] is 4, byte element seven of d is set to 4.
vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {1, 5, 3, 4};
int c = 0;
vector unsigned int d = vec_find_any_ne_idx_cc(a,b,&c);
// d = {0, 4, 0, 0}, c = 1

Example 2

In this example, the value of each element of a is found in b, so byte element seven
of d is set to 16 and c is set to 3.
vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {1, 2, 3, 4};
int c = 0;
vector unsigned int d = vec_find_any_ne_idx_cc(a,b,&c);
// d = {0, 16, 0, 0}, c = 3

vec_find_any_ne_or_0_idx: Vector Find Any Element Not Equal
or Zero Index
Purpose

Returns the byte index of the lowest-position element of one vector that cannot
find an equal value in another vector or that has a value of 0.

Syntax
d = vec_find_any_ne_or_0_idx(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 137. Return and parameter types for vec_find_any_ne_or_0_idx:

d a b

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

The result is the byte index of the lowest-position element of a that does not equal
any element of b or that has a value of 0. If all the elements of a satisfies neither of

152 XL C/C++: Optimization and Programming Guide

these two conditions, the result is 16. The result is placed in byte element seven of
d, and all other bytes of d are set to 0.

Example

In this example, a[2] has a value of 0, and the value of a[3] is not found in b.
Because a[2], whose byte index is 8, has lower byte index than a[3], byte element
seven of d is set to 8.
vector unsigned int a = {1, 2, 0, 5};
vector unsigned int b = {1, 2, 0, 4};
vector unsigned int d = vec_find_any_ne_or_0_idx(a, b);
// d = {0, 8, 0, 0}

vec_find_any_ne_or_0_idx_cc: Vector Find Any Element Not
Equal or Zero Index with Condition Code
Purpose

Returns the byte index of the lowest-position element of a that cannot find an
equal value in b or that has a value of 0. It also returns a condition code that
indicates whether such an element is found.

Syntax
d = vec_find_any_ne_or_0_idx_cc(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 138. Return and parameter types for vec_find_any_ne_or_0_idx_cc

d a b c

vector signed char vector signed char vector signed char int *

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned
short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

The result is the byte index of the lowest-position element of a that does not equal
any element of b or that has a value of 0. If all the elements of a satisfies neither of
these two conditions, the result is 16. The result is placed in byte element seven of
d, and all other bytes of d are set to 0.

The value that is referred to by c is determined as follows:
v 0 if value 0 is found in a before an element that does not equal any element of b

is found, or if they happen concurrently.

Chapter 8. Using vector programming support 153

v 1 if no elements of a have a value of 0 and if at least one element of a does not
equal any element of b.

v 2 if value 0 is found in a after an element that does not equal any element of b is
found.

v 3 if no elements of a have a value of 0 and each element of a equals a certain
element of b.

Gather and scatter functions
This topic collection describes vector built-in functions that are used to gather and
scatter elements.

vec_extract: Vector Extract
Purpose

Returns the value of the designated element from a vector.

Syntax
d = vec_extract(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 139. Return and parameter types for vec_extract

d a b

signed char vector signed char signed int

unsigned char vector unsigned char

vector bool char

signed short vector signed short

unsigned short vector unsigned short

vector bool short

signed int vector signed int

unsigned int vector unsigned int

vector bool int

signed long long vector signed long long

unsigned long long vector unsigned long long

vector bool long long

double vector double

Result value

d is assigned the value of a[b mod n], where n is the number of elements in a.

vec_gather_element: Vector Gather Element
Purpose

Returns a copy of a vector with the value of one element replaced by the value
obtained by applying the specified offset to a pointer.

154 XL C/C++: Optimization and Programming Guide

Syntax
d = vec_gather_element(a, b, c, e)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 140. Return and parameter types for vec_gather_element

d a b c e

vector signed int vector signed int vector unsigned
int

const signed int
*

unsigned char1

vector unsigned
int

vector unsigned
int

const unsigned
int *

vector bool int vector bool int

vector signed
long long

vector signed
long long

vector unsigned
long long

const signed
long long *

unsigned char2

vector unsigned
long long

vector unsigned
long long

const unsigned
long long *

vector bool long
long

vector bool long
long

vector double vector double vector unsigned
long long

const double *

Notes:

1. It must be a literal whose value is in the range 0 - 3 inclusive.

2. It must be a literal whose value is 0 or 1.

Result value

d[e] is assigned the value that is obtained by applying the offset specified by b[e]
to pointer c, and other elements of d are assigned the values of the corresponding
elements of a.

Example

In the following example, v1[0] is replaced by a1[5] using the offset specified by
v3[0], and v2[0] is replaced by a2[5] using the offset specified by v3[0]:
unsigned int a1[10] = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19};
unsigned int a2[10] = {20, 21, 22, 23, 24, 25, 26, 27, 28, 29};
vector unsigned int v1, v2 = {1, 2, 3, 4};
vector unsigned int v3 = {5 * sizeof(int), 8 * sizeof(int),

9 * sizeof(int), 6 * sizeof(int)};
v1 = vec_gather_element (v1, v3, a1, 0); // v1 = {15, 2, 3, 4}
v2 = vec_gather_element (v2, v3, a2, 0); // v2 = {25, 2, 3, 4}

The results are the same as the following code example:
unsigned int a1[10] = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19};
unsigned int a2[10] = {20, 21, 22, 23, 24, 25, 26, 27, 28, 29};
vector unsigned int v1, v2 = {1, 2, 3, 4};
vector unsigned int v3 = {0, 0, 0, 0};
v1 = vec_gather_element (v1, v3, &a1[5], 0); // v1 = {15, 2, 3, 4};
v2 = vec_gather_element (v2, v3, &a2[5], 0); // v2 = {25, 2, 3, 4};

Chapter 8. Using vector programming support 155

vec_insert: Vector Insert
Purpose

Returns a copy of a vector with the value of the specified element replaced by a
given value.

Syntax
d = vec_insert(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 141. Return and parameter types for vec_insert

d a b c

vector signed char signed char vector signed char signed int

vector unsigned char unsigned char vector unsigned char

vector bool char

vector signed short signed short vector signed short

vector unsigned short unsigned short vector unsigned short

vector bool short

vector signed int signed int vector signed int

vector unsigned int unsigned int vector unsigned int

vector bool int

vector signed long
long

signed long long vector signed long
long

vector unsigned long
long

unsigned long long vector unsigned long
long

vector bool long long

vector double double vector double

Result value

d is a copy of b with the value of d[c mod n] replaced by the value of a, where n is
the number of elements in b.

vec_insert_and_zero: Vector Insert and Zero
Purpose

Sets the leftmost doubleword element or the rightmost element of the leftmost
doubleword to what is referred to by the specified pointer, and sets the bit
positions of all other vector elements to zero.

Syntax
d = vec_insert_and_zero(a)

156 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 142. Return and parameter types for vec_insert_and_zero

d a

vector signed char const signed char *

vector unsigned char const unsigned char *

vector signed short const signed short *

vector unsigned short const unsigned short *

vector signed int const signed int *

vector unsigned int const unsigned int *

vector signed long long const signed long long *

vector unsigned long long const unsigned long long *

vector double const double *

Result value

The leftmost doubleword element or the rightmost element of the leftmost
doubleword of d is set to the value referred to by a. The bit positions of all other
elements of d are set to 0.

Example

Example 1
const signed char temp = ’x’;
const signed char * a = &temp;
vector signed char b = vec_insert_and_zero(a);
// b is {’0’,’0’,’0’,’0’,’0’,’0’,’0’,’x’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’}.
// b[7] is the rightmost element of the leftmost doubleword.

Example 2
const signed short temp = 1;
const signed short * a = &temp;
vector signed short b = vec_insert_and_zero(a);
// b is {0, 0, 0, 1, 0, 0, 0, 0}.
// b[3] is the rightmost element of the leftmost doubleword.

Example 3
const signed int temp = 1;
const signed int * a = &temp;
vector signed int b = vec_insert_and_zero(a);
// b is {0, 1, 0, 0}.
// b[1] is the rightmost element of the leftmost doubleword.

Example 4
const double temp = 1;
const double * a = &temp;
vector double b = vec_insert_and_zero(a);
// b is {1, 0}.
// b[0] is the leftmost doubleword element.

Chapter 8. Using vector programming support 157

vec_perm: Vector Permute
Purpose

Returns a vector that contains some elements of two vectors in the order that is
specified by a third vector.

Syntax
d = vec_perm(a, b, c)

Return and parameter types

Table 143. Return and parameter types for vec_perm

d a b c

vector signed char vector signed char vector signed char vector unsigned char

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int vector bool int

vector signed long
long

vector signed long
long

vector signed long
long

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

vector bool long long vector bool long long vector bool long long

vector double vector double vector signed double

Result value

d contains some elements of a and b in the order that is specified by c.

Note: You can use the vector mask generation built-in functions to generate mask
c.

Example

In the following figure, the indexes of elements of a and b are indicated in the
corresponding blocks. Each byte of d is selected by using the least significant 5 bits
of the corresponding byte of c as the index.

158 XL C/C++: Optimization and Programming Guide

Related information:
“Mask generation functions” on page 163

vec_permi: Vector Permute Immediate
Purpose

Returns a vector by permuting and combining two 8-byte elements from two
vectors based on the specified value.

Syntax
d = vec_permi(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 144. Return and parameter types for vec_permi

d a b c

vector signed long
long

vector signed long
long

vector signed long
long

int1

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

vector bool long long vector bool long long vector bool long long

vector double vector double vector double

Note:

1. It must be a literal whose value is in the range 0 - 3 inclusive.

c

a

b

d

01 14 18 10 16 15 19 1A 1C 1C 1C 13 08 1D 1B

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E

0E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

Figure 6. Permute 16 8-bit integer elements

Chapter 8. Using vector programming support 159

Result value

The values of the elements of d are determined by c as follows:

Table 145. Result value of d

c Value of d[0] Value of d[1]

0 a[0] b[0]

1 a[0] b[1]

2 a[1] b[0]

3 a[1] b[1]

vec_promote: Vector Promote
Purpose

Returns a vector with the specified element set to a given value.

Syntax
d = vec_promote(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 146. Return and parameter types for vec_promote

d a b

vector signed char signed char signed int

vector unsigned char unsigned char

vector signed short signed short

vector unsigned short unsigned short

vector signed int signed int

vector unsigned int unsigned int

vector signed long long signed long long

vector unsigned long long unsigned long long

vector double double

Result value

d is set to the value of a[b mod n], where n is the number of elements in d. All
other elements of d are undefined.

vec_scatter_element: Vector Scatter Element
Purpose

Stores the value of a vector element to the location specified by an offset and a
pointer.

Syntax
d=vec_scatter_element(a, b, c, e)

160 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 147. Return and parameter types for vec_scatter_element

d a b c e

void vector signed int vector unsigned
int

signed int * unsigned long
long1

vector unsigned
int

unsigned int *

vector bool int

vector signed
long long

vector unsigned
long long

signed long long
*

unsigned long
long2

vector unsigned
long long

unsigned long
long *

vector bool long
long

vector double vector unsigned
long long

double *

Notes:

1. It must be a literal whose value is in the range 0 - 3 inclusive.

2. It must be a literal whose value is 0 or 1.

Result value

The value of a[e] is stored to the location that is obtained by applying the offset
specified by b[e] to pointer c.

vec_sel: Vector Select
Purpose

Returns a vector that contains the selected values of two vectors according to the
value of a third vector.

Syntax
d = vec_sel(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 148. Return and parameter types for vec_sel

d a b c

vector signed char vector signed char vector signed char vector unsigned char

vector bool char

vector unsigned char vector unsigned char vector unsigned char vector unsigned char

vector bool char

vector bool char vector bool char vector bool char vector unsigned char

vector bool char

Chapter 8. Using vector programming support 161

Table 148. Return and parameter types for vec_sel (continued)

d a b c

vector signed short vector signed short vector signed short vector unsigned short

vector bool short

vector unsigned short vector unsigned short vector unsigned short vector unsigned short

vector bool short

vector bool short vector bool short vector bool short vector unsigned short

vector bool short

vector signed int vector signed int vector signed int vector unsigned int

vector bool int

vector unsigned int vector unsigned int vector unsigned int vector unsigned int

vector bool int

vector bool int vector bool int vector bool int vector unsigned int

vector bool int

vector signed long
long

vector signed long
long

vector signed long
long

vector unsigned long
long

vector bool long long

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

vector bool long long

vector bool long long vector bool long long vector bool long long vector unsigned long
long

vector bool long long

vector double vector double vector double vector unsigned long
long

vector bool long long

Result value

For each bit of c, if the bit is 0, the corresponding bit of d is set to the value of the
corresponding bit of a; otherwise, the corresponding bit of d is set to the value of
the corresponding bit of b.

Example

In the following example, each bit of c[1] and c[3] has a value of 0, so the
corresponding bit of d has the value of the corresponding bit of a. Each bit of c[0]
and c[2] does not have a value of 0, so the corresponding bit of d has the value of
the corresponding bit of b.
vector signed int a = {1, 2, 3, 4};
vector signed int b = {5, 6, 7, 8};
vector unsigned int e = {9, 10, 11, 12};
vector unsigned int f = {9, 9, 11, 11};
vector bool int c = vec_cmpeq(e, f);
// c = {0xFFFFFFFF, 0, 0xFFFFFFFF, 0};
vector signed int d = vec_sel (a, b, c);
// d = {5, 2, 7, 4}

162 XL C/C++: Optimization and Programming Guide

Mask generation functions
This topic collection describes vector built-in functions for mask generation.

vec_genmask: Vector Generate Byte Mask
Purpose

Generates byte masks for elements.

Syntax
d = vec_genmask(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 149. Return and parameter types for vec_genmask

d a

vector unsigned char unsigned short1

Note:

1. It must be a literal.

Result value

For each bit in a, if the bit is 1, all bit positions in the corresponding byte element
of d are set to 1. Otherwise, the corresponding byte element of d is set to 0.

vec_genmasks_8: Vector Generate Mask (Byte)
Purpose

Generates a bit mask for each byte element.

Syntax
d = vec_genmasks_8(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 150. Return and parameter types for vec_genmasks_8

d a b

vector unsigned char unsigned char1 unsigned char1

Note:

1. It must be a literal.

Result value

A bit mask is generated for each byte element of d. For each bit mask, the bit
positions in the range that starts at the bit position specified by a and ends at the
bit position specified by b are set to 1. All other bit positions are set to 0.

Notes:

Chapter 8. Using vector programming support 163

v If a or b is greater than or equal to 8, the compiler uses the value modulo 8.
v If a is greater than b, the bit mask wraps around to start at the top. For example,

each element of the result of vec_genmasks_8(5,2) is 0b11100111.

vec_genmasks_16: Vector Generate Mask (Halfword)
Purpose

Generates a bit mask for each halfword element.

Syntax
d = vec_genmasks_16(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 151. Return and parameter types for vec_genmasks_16

d a b

vector unsigned short unsigned char1 unsigned char1

Note:

1. It must be a literal.

Result value

A bit mask is generated for each halfword element of d. For each bit mask, the bit
positions in the range that starts at the bit position specified by a and ends at the
bit position specified by b are set to 1. All other bit positions are set to 0.

Notes:

v If a or b is greater than or equal to 16, the compiler uses the value modulo 16.
v If a is greater than b, the bit mask wraps around to start at the top.

vec_genmasks_32: Vector Generate Mask (Word)
Purpose

Generates a bit mask for each word element.

Syntax
d = vec_genmasks_32(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 152. Return and parameter types for vec_genmasks_32

d a b

vector unsigned int unsigned char1 unsigned char1

Note:

1. It must be a literal.

164 XL C/C++: Optimization and Programming Guide

Result value

A bit mask is generated for each word element of d. For each bit mask, the bit
positions in the range that starts at the bit position specified by a and ends at the
bit position specified by b are set to 1. All other bit positions are set to 0.

Notes:

v If a or b is greater than or equal to 32, the compiler uses the value modulo 32.
v If a is greater than b, the bit mask wraps around to start at the top.

vec_genmasks_64: Vector Generate Mask (Doubleword)
Purpose

Generates a bit mask for each doubleword element.

Syntax
d = vec_genmasks_64(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 153. Return and parameter types for vec_genmasks_64

d a b

vector unsigned long long unsigned char1 unsigned char1

Note:

1. It must be a literal.

Result value

A bit mask is generated for each doubleword element in d. For each bit mask, the
bit positions in the range that starts at the bit position specified by a and ends at
the bit position specified by b are set to 1. All other bit positions are set to 0.

Notes:

v If a or b is greater than or equal to 64, the compiler uses the value modulo 64.
v If a is greater than b, the bit mask wraps around to start at the top.

Copy until zero functions
This topic collection describes vector built-in functions that are used to copy vector
elements until a zero element is encountered.

vec_cp_until_zero: Vector Copy Until Zero
Purpose

Copies the elements from a vector until an element that has a value of zero is
encountered.

Syntax
d = vec_cp_until_zero(a)

Chapter 8. Using vector programming support 165

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 154. Return and parameter types for vec_cp_until_zero

d a

vector signed char vector signed char

vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int

vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

Starting from the first vector element, the vector elements are copied from a to d
until a vector element of a that has a value of zero is encountered. The remaining
vector elements of d are set to zero. If no elements of a have a value of zero, the
entire vector is copied to d.

vec_cp_until_zero_cc: Vector Copy Until Zero with Condition
Code
Purpose

Copies the elements from a vector until an element that has a value of zero is
encountered. It also returns a condition code that indicates whether all the vector
elements are copied.

Syntax
d = vec_cp_until_zero_cc(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

166 XL C/C++: Optimization and Programming Guide

Table 155. Return and parameter types for vec_cp_until_zero

d a b

vector signed char vector signed char int *

vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int

vector unsigned int vector unsigned int

vector bool int vector bool int

Result value

Starting from the first vector element, the vector elements are copied from a to d
until a vector element of a that has a value of zero is encountered. The remaining
vector elements of d are set to zero. If no elements of a have a value of zero, the
entire vector is copied to d.

If not all the vector elements are copied because an element of a has a value of
zero, c is set to 0. Otherwise, if all elements of a are nonzero, c is set to 3.

Load and store functions
This topic collection describes vector built-in functions that are used to load and
store vectors.

vec_ld2f: Vector Load 2 Float
Purpose

Loads two consecutive floats, which take eight bytes in total, from the address that
is specified by a pointer, and extends them to a vector of type vector double.

Note: This function is emulated.

Syntax
d = vec_ld2f(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 156. Return and parameter types for vec_ld2f

d a

vector double const float *

Result value

The value of d[0] is (double)(*a), and the value of d[1] is (double)(*(a+1)).

Chapter 8. Using vector programming support 167

vec_load_bndry: Vector Load to Block Boundary
Purpose

Returns a vector that contains the 16 bytes that are loaded starting from a given
address unless the specified boundary condition is encountered.

Syntax
d = vec_load_bndry(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 157. Return and parameter types for vec_load_bndry

d a b

vector signed char const signed char * unsigned short1

vector unsigned char const unsigned char *

vector signed short const signed short *

vector unsigned short const unsigned short *

vector signed int const signed int *

vector unsigned int const unsigned int *

vector signed long long const signed long long *

vector unsigned long long const unsigned long long *

vector double const double *

Note:

1. It must be a literal whose value is 64, 128, 256, 512, 1024, 2048, or 4096.

Result value

d contains the 16 bytes that are loaded starting from a. If the specified boundary
condition b is encountered during the load, the rest of the bytes in d are undefined.

vec_load_len: Vector Load with Length
Purpose

Returns a vector with content loaded from a given address from byte 0 to the byte
number, which is specified by an integer modulo 16, plus 1.

Syntax
d = vec_load_len(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

168 XL C/C++: Optimization and Programming Guide

Table 158. Return and parameter types for vec_load_len

d a b

vector signed char const signed char * unsigned int

vector unsigned char const unsigned char *

vector signed short const signed short *

vector unsigned short const unsigned short *

vector signed int const signed int *

vector unsigned int const unsigned int *

vector signed long long const signed long long *

vector unsigned long long const unsigned long long *

vector double const double *

Result value

d contains the content loaded from *a from byte 0 to the byte number, which is
specified by b modulo 16, plus 1. The remaining bytes of d are set to 0.

vec_load_pair: Vector Load Pair
Purpose

Returns a vector with the 0-indexed and 1-indexed element set to the specified
values.

Note: This function might be emulated.

Syntax
d = vec_load_pair(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 159. Return and parameter types for vec_load_pair

d a b

vector signed long long signed long long signed long long

vector unsigned long long unsigned long long unsigned long long

Result value

d[0] is set to the value of a, and d[1] is set to the value of b.

vec_st2f: Vector Store 2 Float
Purpose

Rounds a vector of type vector double as two floats and stores them, which take
eight bytes in total, to the specified location.

Note: This function is emulated.

Chapter 8. Using vector programming support 169

Syntax
d = vec_st2f(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 160. Return and parameter types for vec_st2f

d a b

void vector double float *

Result value

The eight bytes starting from address b are set to the values that are produced by
rounding a[0] and a[1] to floats.

vec_store_len: Vector Store with Length
Purpose

Stores a number of bytes from a vector to the specified location.

Syntax
d = vec_store_len(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 161. Return and parameter types for vec_store_len

d a b c

void vector signed char signed char * unsigned int

vector unsigned char unsigned char *

vector signed short signed short *

vector unsigned short unsigned short *

vector signed int signed int *

vector unsigned int unsigned int *

vector signed long long signed long long *

vector unsigned long
long

unsigned long long *

vector double double *

Result value

The c+1 number of bytes starting from address b are set to the values of the
corresponding c+1 bytes of a.

Note: If c is greater than 15, only 16 bytes are stored.

170 XL C/C++: Optimization and Programming Guide

vec_xld2: Vector Load 2 Doubleword
Purpose

Loads a vector from two 8-byte elements at the memory address that is specified
by a displacement and a pointer.

Syntax
d = vec_xld2(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 162. Return and parameter types for vec_xld2

d a b

vector signed char long signed char *

vector unsigned char unsigned char *

vector signed short signed short *

vector unsigned short unsigned short *

vector signed int signed int *

vector unsigned int unsigned int *

vector signed long long signed long long *

vector unsigned long long unsigned long long *

vector double double *

Result value

The content of d is loaded from the address that is obtained by adding
displacement a and the rvalue of pointer b.

vec_xlw4: Vector Load 4 Word
Purpose

Loads a vector from four 4-byte elements at the memory address that is specified
by a displacement and a pointer.

Syntax
d = vec_xlw4(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Chapter 8. Using vector programming support 171

Table 163. Return and parameter types for vec_xlw4

d a b

vector signed char long signed char *

vector unsigned char unsigned char *

vector signed short signed short *

vector unsigned short unsigned short *

vector signed int signed int *

vector unsigned int unsigned int *

Result value

The content of d is loaded from the address that is obtained by adding
displacement a and the rvalue of pointer b.

vec_xstd2: Vector Store 2 Doubleword
Purpose

Puts a vector as two 8-byte elements to the memory address specified by a
displacement and a pointer.

Syntax
d = vec_xstd2(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 164. Return and parameter types for vec_xstd2

d a b c

void vector signed char long signed char *

vector unsigned char unsigned char *

vector signed short signed short *

vector unsigned short unsigned short *

vector signed int signed int *

vector unsigned int unsigned int *

vector signed long long signed long long *

vector unsigned long
long

unsigned long long *

vector double double *

Result value

This function puts vector a as two 8-byte elements to the memory address that is
obtained by adding displacement b and the rvalue of pointer c.

172 XL C/C++: Optimization and Programming Guide

vec_xstw4: Vector Store 4 Word
Purpose

Puts a vector as four 4-byte elements to the memory address specified by a
displacement and a pointer.

Syntax
d = vec_xstw4(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 165. Return and parameter types for vec_xstw4

d a b c

void vector signed char long signed char *

vector unsigned char unsigned char *

vector signed short signed short *

vector unsigned short unsigned short *

vector signed int signed int *

vector unsigned int unsigned int *

Result value

This function puts vector a as four 4-byte elements to the memory address that is
obtained by adding displacement b and the rvalue of pointer c.

Logical calculation functions
This topic collection describes vector built-in functions for logical calculation.

vec_cntlz: Vector Count Leading Zeros
Purpose

Computes the count of leading zero bits in each element of a vector.

Syntax
d = vec_cntlz(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 166. Return and parameter types for vec_cntlz

d a

vector unsigned char vector signed char

vector unsigned char

vector unsigned short vector signed short

vector unsigned short

Chapter 8. Using vector programming support 173

Table 166. Return and parameter types for vec_cntlz (continued)

d a

vector unsigned int vector signed int

vector unsigned int

vector unsigned long long vector signed long long

vector unsigned long long

Result value

Each element of d is set to the number of leading zero bits in the corresponding
element of a.

vec_cnttz: Vector Count Trailing Zeros
Purpose

Computes the count of trailing zero bits in each element of a vector.

Syntax
d = vec_cnttz(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 167. Return and parameter types for vec_cnttz

d a

vector unsigned char vector signed char

vector unsigned char

vector unsigned short vector signed short

vector unsigned short

vector unsigned int vector signed int

vector unsigned int

vector unsigned long long vector signed long long

vector unsigned long long

Result value

Each element of d is set to the number of tailing zero bits in the corresponding
element of a.

vec_nor: Vector NOR
Purpose

Performs a bitwise NOR operation on two vectors.

Syntax
d = vec_nor(a, b)

174 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 168. Return and parameter types for vec_nor

d a b

vector signed char vector signed char vector signed char

vector bool char

vector bool char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char

vector bool char vector unsigned char

vector bool char vector bool char vector bool char

vector signed short vector signed short vector signed short

vector bool short

vector bool short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short

vector bool short vector unsigned short

vector bool short vector bool short vector bool short

vector signed int vector signed int vector signed int

vector bool int

vector bool int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int

vector bool int vector unsigned int

vector bool int vector bool int vector bool int

vector signed long long vector signed long long vector signed long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector unsigned long long

vector bool long long vector bool long long vector bool long long

vector double vector bool long long vector double

vector double vector bool long long

vector double

Result value

d is the result of performing a bitwise NOR operation on a and b.

Note: vector double does not cause an IEEE exception.

Chapter 8. Using vector programming support 175

vec_popcnt: Vector Population Count
Purpose

Computes the population count, that is, the number of bits that are set to one, in
each element of a vector.

Syntax
d = vec_popcnt(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 169. Return and parameter types for vec_popcnt

d a

vector unsigned char vector signed char

vector unsigned char

vector unsigned short vector signed short

vector unsigned short

vector unsigned int vector signed int

vector unsigned int

vector unsigned long long vector signed long long

vector unsigned long long

Result value

Each element of d is set to the number of set bits in the corresponding element of
a.

Note: This function is emulated except for vector signed char and vector
unsigned char.

Merge functions
This topic collection describes vector built-in functions that are used to merge
vectors.

vec_mergeh: Vector Merge High
Purpose

Merges the most significant halves, also known as the high halves, of two vectors.

Syntax
d = vec_mergeh(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

176 XL C/C++: Optimization and Programming Guide

Table 170. Return and parameter types for vec_mergeh

d a b

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int vector bool int

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector bool long long vector bool long long vector bool long long

vector double vector double vector double

Result value

The values of the even-numbered elements of d are copied, in order, from the
elements in the most significant half of a. The values of odd-numbered elements of
d are copied, in order, from the elements in the most significant half of b.

Example

The following figure illustrates the operation on operands of type vector signed
int, vector unsigned int, or vector bool int.

vec_mergel: Vector Merge Low
Purpose

Merges the least significant halves, also known as the low halves, of two vectors.

Syntax
d = vec_mergel(a, b)

0 1 2 3

a

b

d

Figure 7. Merge 32-bit high-order elements

Chapter 8. Using vector programming support 177

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 171. Return and parameter types for vec_mergel

d a b

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool char vector bool char vector bool char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool short vector bool short vector bool short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool int vector bool int vector bool int

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector bool long long vector bool long long vector bool long long

vector double vector double vector double

Result value

The values of the even-numbered elements of d are copied, in order, from the
elements in the least significant half of a. The values of the odd-numbered
elements of d are copied, in order, from the elements in the least significant half of
b.

Example

The following figure illustrates the operation on operands of type vector signed
int, vector unsigned int, or vector bool int.

0 1 2 3

a

b

d

Figure 8. Merge 32-bit low-order elements

178 XL C/C++: Optimization and Programming Guide

Pack and unpack functions
This topic collection describes vector built-in functions for packing and unpacking
vector elements.

vec_pack: Vector Pack
Purpose

Packs content from each element of two vectors into the result vector.

Syntax
d = vec_pack(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 172. Return and parameter types for vec_pack

d a b

vector signed char vector signed short vector signed short

vector unsigned char vector unsigned short vector unsigned short

vector bool char vector bool short vector bool short

vector signed short vector signed int vector signed int

vector unsigned short vector unsigned int vector unsigned int

vector bool short vector bool int vector bool int

vector signed int vector signed long long vector signed long long

vector unsigned int vector unsigned long long vector unsigned long long

vector bool int vector bool long long vector bool long long

Result value

The value of each element of d is copied from the low half of the corresponding
element of the result of concatenating a and b.

Example

The following figure illustrates the operation on operands of type vector signed
int, vector unsigned int, or vector bool int.

0 1 2 3

a

0 1 2 3

b

d

Figure 9. Pack eight 32-bit unsigned integer elements to eight 16-bit unsigned integer
elements

Chapter 8. Using vector programming support 179

vec_packs: Vector Pack Saturate
Purpose

Packs content from each element of two vectors into the result vector using
saturated values, which equal the boundary values if overflow occurs.

Syntax
d = vec_packs(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 173. Return and parameter types for vec_packs

d a b

vector signed char vector signed short vector signed short

vector unsigned char vector unsigned short vector unsigned short

vector signed short vector signed int vector signed int

vector unsigned short vector unsigned int vector unsigned int

vector signed int vector signed long long vector signed long long

vector unsigned int vector unsigned long long vector unsigned long long

Result value

The value of each element of d is the saturated value of the corresponding element
of the result of concatenating a and b.

Example

The following figure illustrates the operation on operands of type vector signed
int or vector unsigned int.

In the following example, value 65535 and -65536 are out of the range of short
int, so the corresponding elements are set to the boundary values, 32767 and
-32768, in the overflow direction respectively.
vector signed int a = {65535, -65536, 0, -1};
vector signed short b = vec_packs(a, a);
//b is {32767, -32768, 0, -1, 32767, -32768, 0, -1}.

0 1 2 3

a

0 1 2 3

b

d

Figure 10. Pack eight 32-bit integer elements to eight 16-bit integer elements

180 XL C/C++: Optimization and Programming Guide

vec_packs_cc: Vector Pack Saturate with Condition Code
Purpose

Packs content from each element of two vectors into the result vector using
saturated values, which equal the boundary values if overflow occurs. It also
returns a condition code.

Syntax
d = vec_packs_cc(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 174. Return and parameter types for vec_packs_cc

d a b c

vector signed char vector signed short vector signed short int *

vector unsigned char vector unsigned short vector unsigned short

vector signed short vector signed int vector signed int

vector unsigned
short

vector unsigned int vector unsigned int

vector signed int vector signed long long vector signed long long

vector unsigned int vector unsigned long
long

vector unsigned long
long

Result value

The value of each element of d is the saturated value of the corresponding element
of the result of concatenating a and b. For the signed types, c is set to the resulting
condition code from the VECTOR PACK SATURATE (VPKS) instruction. For the
unsigned types, c is set to the resulting condition code from the VECTOR PACK
LOGICAL SATURATE (VPKLS) instruction.

vec_packsu: Vector Pack Saturated Unsigned
Purpose

Packs content from each element of two vectors into the result vector using
saturated unsigned values, which equal the boundary values if overflow occurs.

Syntax
d = vec_packsu(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 175. Return and parameter types for vec_packsu

d a b

vector unsigned char vector signed short vector signed short

vector unsigned short vector unsigned short

Chapter 8. Using vector programming support 181

Table 175. Return and parameter types for vec_packsu (continued)

d a b

vector unsigned short vector signed int vector signed int

vector unsigned int vector unsigned int

vector unsigned int vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

Result value

The value of each element of d is the saturated unsigned value of the
corresponding element of the result of concatenating a and b.

Note: This function is emulated on vector signed values.

vec_packsu_cc: Vector Pack Saturated Unsigned with Condition
Code
Purpose

Packs content from each element of two vectors into the result vector using
saturated unsigned values, which equal the boundary values if overflow occurs. It
also returns a condition code.

Syntax
d = vec_packsu_cc(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 176. Return and parameter types for vec_packsu_cc

d a b c

vector unsigned char vector unsigned short vector unsigned short int *

vector unsigned
short

vector unsigned int vector unsigned int

vector unsigned int vector unsigned long
long

vector unsigned long
long

Result value

The value of each element of d is the saturated unsigned value of the
corresponding element of the result of concatenating a and b. c is set to the
resulting condition code from the VECTOR PACK LOGICAL SATURATE (VPKLS)
instruction.

vec_unpackh: Vector Unpack High Element
Purpose

Unpacks with sign extension the most significant half, also known as the high half,
of a vector into the result vector whose elements have a larger size.

182 XL C/C++: Optimization and Programming Guide

Syntax
d = vec_unpackh(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 177. Return and parameter types for vec_unpackh

d a

vector signed short vector signed char

vector unsigned short vector unsigned char

vector bool short vector bool char

vector signed int vector signed short

vector unsigned int vector unsigned short

vector bool int vector bool short

vector signed long long vector signed int

vector unsigned long long vector unsigned int

vector bool long long vector bool int

Result value

The value of each element of d is the value of the corresponding element in the
most significant half of a.

Example

The following figure illustrates the operation on operand of type vector signed
short, vector unsigned short, or vector bool short.

vec_unpackl: Vector Unpack Low Element
Purpose

Unpacks with sign extension the least significant half, also known as the low half,
of a vector into the result vector whose elements have a larger size.

Syntax
d = vec_unpackl(a)

dS S S S

0 1 2 3 4 5 6 7

a

Figure 11. Unpack 16-bit high-order signed integer elements to 32-bit signed integer elements

Chapter 8. Using vector programming support 183

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 178. Return and parameter types for vec_unpackl

d a

vector signed short vector signed char

vector unsigned short vector unsigned char

vector bool short vector bool char

vector signed int vector signed short

vector unsigned int vector unsigned short

vector bool int vector bool short

vector signed long long vector signed int

vector unsigned long long vector unsigned int

vector bool long long vector bool int

Result value

The value of each element of d is the value of the corresponding element in the
least significant half of a.

Example

The following figure illustrates the operation on operand of type vector signed
short, vector unsigned short, or vector bool short.

Replicate functions
This topic collection describes vector built-in functions that are used to replicate
vector elements.

vec_splat: Vector Splat
Purpose

Sets all elements of a vector to the value of the designated vector element.

Syntax
d = vec_splat(a, b)

dS S S S

0 1 2 3 4 5 6 7

a

Figure 12. Unpack 16-bit low-order signed integer elements to 32-bit signed integer elements

184 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 179. Return and parameter types for vec_splat

d a b

vector signed char vector signed char unsigned char1

vector unsigned char vector unsigned char

vector bool char vector bool char

vector signed short vector signed short unsigned char2

vector unsigned short vector unsigned short

vector bool short vector bool short

vector signed int vector signed int unsigned char3

vector unsigned int vector unsigned int

vector bool int vector bool int

vector signed long long vector signed long long unsigned char4

vector unsigned long long vector unsigned long long

vector bool long long vector bool long long

vector double vector double

Notes:

1. It must be a literal whose value is in the range 0 - 15 inclusive.

2. It must be a literal whose value is in the range 0 - 7 inclusive.

3. It must be a literal whose value is in the range 0 - 3 inclusive.

4. It must be a literal whose value is 0 or 1.

Result value

Each element of d is set to the value of a[b].

vec_splat_s8: Vector Splat Signed Byte
Purpose

Returns a vector with each of the 16 signed 8-bit elements equal to a given value.

Syntax
d = vec_splat_s8(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 180. Return and parameter types for vec_splat_s8

d a

vector signed char signed long long1

Note:

1. It must be a literal whose value is in the range from -128 to 127 inclusive.

Chapter 8. Using vector programming support 185

Result value

d contains 16 signed 8-bit elements of value a.

vec_splat_s16: Vector Splat Signed Halfword
Purpose

Returns a vector with each of the eight signed 16-bit elements equal to a given
value.

Syntax
d = vec_splat_s16(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 181. Return and parameter types for vec_splat_s16

d a

vector signed short signed short1

Note:

1. It must be a literal.

Result value

d contains eight signed 16-bit elements of value a.

vec_splat_s32: Vector Splat Signed Word
Purpose

Returns a vector with each of the four signed 32-bit elements equal to a given
value.

Syntax
d = vec_splat_s32(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 182. Return and parameter types for vec_splat_s32

d a

vector signed int signed short1

Note:

1. It must be a literal.

Result value

d contains four signed 32-bit elements of value a.

186 XL C/C++: Optimization and Programming Guide

vec_splat_s64: Vector Splat Signed Doubleword
Purpose

Returns a vector with each of the two signed 64-bit elements equal to a given
value.

Syntax
d = vec_splat_s64(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 183. Return and parameter types for vec_splat_s64

d a

vector signed long long signed short1

Note:

1. It must be a literal.

Result value

d contains two signed 64-bit elements of value a.

vec_splat_u8: Vector Splat Unsigned Byte
Purpose

Returns a vector with each of the 16 unsigned 8-bit elements equal to a given
value.

Syntax
d = vec_splat_u8(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 184. Return and parameter types for vec_splat_u8

d a

vector unsigned char unsigned char1

Note:

1. It must be a literal.

Result value

d contains 16 unsigned 8-bit elements of value a.

vec_splat_u16: Vector Splat Unsigned Halfword
Purpose

Returns a vector with each of the eight unsigned 16-bit elements equal to a given
value.

Chapter 8. Using vector programming support 187

Syntax
d = vec_splat_u16(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 185. Return and parameter types for vec_splat_u16

d a

vector unsigned short signed short1

Note:

1. It must be a literal.

Result value

d contains eight unsigned 16-bit elements of value a.

vec_splat_u32: Vector Splat Unsigned Word
Purpose

Returns a vector with each of the four unsigned 32-bit elements equal to a given
value.

Syntax
d = vec_splat_u32(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 186. Return and parameter types for vec_splat_u32

d a

vector unsigned int signed short1

Note:

1. It must be a literal.

Result value

d contains four unsigned 32-bit elements of value a.

vec_splat_u64: Vector Splat Doubleword
Purpose

Returns a vector with each of the two unsigned 64-bit elements equal to a given
value.

Syntax
d = vec_splat_u64(a)

188 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 187. Return and parameter types for vec_splat_u64

d a

vector unsigned long long signed short1

Note:

1. It must be a literal.

Result value

d contains two unsigned 64-bit elements of value a.

vec_splats: Vector Splats
Purpose

Sets all elements of a vector to a given value.

Syntax
d = vec_splats(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 188. Return and parameter types for vec_splats

d a

vector signed char signed char

vector unsigned char unsigned char

vector signed short signed short

vector unsigned short unsigned short

vector signed int signed int

vector unsigned int unsigned int

vector signed long long signed long long

vector unsigned long long unsigned long long

vector double double

Result value

Each element of d is set to the value of a.

Rotate and shift functions
This topic collection describes vector built-in functions that are used to rotate and
shift vector elements.

vec_rl: Vector Element Rotate Left
Purpose

Rotates each element of a vector left by a given number of bits.

Chapter 8. Using vector programming support 189

Syntax
d = vec_rl(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 189. Return and parameter types for vec_rl

d a b

vector signed char vector signed char vector unsigned char

vector unsigned char vector unsigned char

vector signed short vector signed short vector unsigned short

vector unsigned short vector unsigned short

vector signed int vector signed int vector unsigned int

vector unsigned int vector unsigned int

vector signed long long vector signed long long vector unsigned long long

vector unsigned long long vector unsigned long long

Result value

Each element of d is obtained by rotating the corresponding element of a left by
the number of bits specified by the corresponding element of b. If the value of the
element in b is out of range, the compiler uses the value modulo the number of
bits in the element of a as the rotating bit.

vec_rl_mask: Vector Element Rotate and Insert Under Mask
Purpose

Rotates each element of a vector left by a given number of bits and overlays with
the vector according to a mask.

Syntax
d = vec_rl_mask(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

190 XL C/C++: Optimization and Programming Guide

Table 190. Return and parameter types for vec_rl_mask

d a b c

vector signed char vector signed char vector unsigned char unsigned
char1

vector unsigned char vector unsigned char

vector signed short vector signed short vector unsigned short

vector unsigned short vector unsigned short

vector signed int vector signed int vector unsigned int

vector unsigned int vector unsigned int

vector signed long long vector signed long long vector unsigned long
longvector unsigned long

long
vector unsigned long
long

Note:

1. It must be a literal.

Result value

Each bit of d is obtained as follows:
v If the corresponding bit mask b is 1, it gets the corresponding bit from the

intermediate result after rotating each element of vector a left by the number of
bits specified by c. If c is out of range, the compiler uses c modulo the number
of bits in the element of a as the rotating bit.

v If the corresponding bit mask b is 0, it gets the corresponding bit from a.

vec_rli: Vector Element Rotate Left Immediate
Purpose

Rotates each element of a vector left by a given number of bits.

Syntax
d = vec_rli(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 191. Return and parameter types for vec_rli

d a b

vector signed char vector signed char unsigned long

vector unsigned char vector unsigned char

vector signed short vector signed short

vector unsigned short vector unsigned short

vector signed int vector signed int

vector unsigned int vector unsigned int

vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

Chapter 8. Using vector programming support 191

Result value

Each element of d is obtained by rotating the corresponding element of a left by
the number of bits specified by b. If b is out of range, the compiler uses b modulo
the number of bits in the element of a as the rotating bit.

vec_slb: Vector Shift Left by Byte
Purpose

Shifts each element of a vector left by a given number of bytes.

Syntax
d = vec_slb(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 192. Return and parameter types for vec_slb

d a b

vector signed char vector signed char vector signed char

vector unsigned char

vector unsigned char vector unsigned char vector signed char

vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short

vector unsigned short vector unsigned short vector signed short

vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int

vector unsigned int vector unsigned int vector signed int

vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long

vector unsigned long long vector unsigned long long vector signed long long

vector unsigned long long

Result value

Each element of d is obtained by shifting the corresponding element of a left by the
number of bytes specified by the second to fifth bits of byte element seven of b.
The bits that are shifted out are replaced by zeros.

vec_sld: Vector Shift Left Double by Byte
Purpose

Shifts two concatenated vectors left by a given number of bytes.

192 XL C/C++: Optimization and Programming Guide

Syntax
d = vec_sld(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 193. Return and parameter types for vec_sld

d a b c

vector signed char vector signed char vector signed char unsigned long
long1

vector unsigned char vector unsigned char vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector signed long long vector signed long long vector signed long
long

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

vector double vector double vector double

Note:

1. It must be a literal whose value is in the range 0 - 15 inclusive.

Result value

d contains the most significant 16 bytes obtained by concatenating a and b and
shifting the intermediate result left by the number of bytes specified by c.

Example

The following figure illustrates the operation when the value of c is four.

d
c = 4 in this example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a b

Temp

||

Figure 13. Bitwise conditional select of vector contents

Chapter 8. Using vector programming support 193

vec_sldw: Vector Shift Left Double by Word Immediate
Purpose

Shifts two concatenated vectors left by multiples of 4 bytes as specified.

Syntax
d = vec_sldw(a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 194. Return and parameter types for vec_sldw

d a b c

vector signed char vector signed char vector signed char int1

vector unsigned char vector unsigned char vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long
long

vector unsigned long
long

vector double vector double vector double

Note:

1. It must be a literal whose value is in the range 0 - 3 inclusive.

Result value

d contains the four leftmost 4-byte values obtained by concatenating a and b and
shifting the intermediate result left by c * 4 bytes.

vec_sll: Vector Shift Left
Purpose

Performs a left shift on each element of a vector by the low-order three bits of all
byte elements of another vector.

Syntax
d = vec_sll(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

194 XL C/C++: Optimization and Programming Guide

Table 195. Return and parameter types for vec_sll

d a b

vector signed char vector signed char vector unsigned char

vector unsigned short

vector unsigned int

vector unsigned char vector unsigned char vector unsigned char

vector unsigned short

vector unsigned int

vector bool char vector bool char vector unsigned char

vector unsigned short

vector unsigned int

vector signed short vector signed short vector unsigned char

vector unsigned short

vector unsigned int

vector unsigned short vector unsigned short vector unsigned char

vector unsigned short

vector unsigned int

vector bool short vector bool short vector unsigned char

vector unsigned short

vector unsigned int

vector signed int vector signed int vector unsigned char

vector unsigned short

vector unsigned int

vector unsigned int vector unsigned int vector unsigned char

vector unsigned short

vector unsigned int

vector bool int vector bool int vector unsigned char

vector unsigned short

vector unsigned int

vector signed long long vector signed long long vector unsigned char

vector unsigned short

vector unsigned int

vector unsigned long long vector unsigned long long vector unsigned char

vector unsigned short

vector unsigned int

vector bool long long vector bool long long vector unsigned char

vector unsigned short

vector unsigned int

Chapter 8. Using vector programming support 195

Result value

Each element of d is obtained by shifting the corresponding element of a left by the
number of bits specified by the low-order three bits of every byte of b. The bits
that are shifted out are replaced by zeros.

Note: The low-order three bits of all byte elements in b must be same; otherwise,
the result is undefined.

vec_srab: Vector Shift Right Arithmetic by Byte
Purpose

Performs an algebraic right shift on a vector by a given number of bytes.

Syntax
d = vec_srab(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 196. Return and parameter types for vec_srab

d a b

vector signed char vector signed char vector signed char

vector unsigned char

vector unsigned char vector unsigned char vector signed char

vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short

vector unsigned short vector unsigned short vector signed short

vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int

vector unsigned int vector unsigned int vector signed int

vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long

vector unsigned long long vector unsigned long long vector signed long long

vector unsigned long long

vector double vector double vector signed long long

vector unsigned long long

Result value

Each element of d is obtained by shifting the corresponding element of a right by
the number of bytes specified by bit 1 - 4 of byte element seven of b. The bits that
are shifted out are replaced by copies of the most significant bit of the
corresponding element of a.

196 XL C/C++: Optimization and Programming Guide

vec_sral: Vector Shift Right Arithmetic
Purpose

Performs an algebraic right shift on a vector by a given number of bits.

Syntax
d = vec_sral(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 197. Return and parameter types for vec_sral

d a b

vector signed char vector signed char vector unsigned char

vector unsigned short

vector unsigned int

vector unsigned char vector unsigned char vector unsigned char

vector unsigned short

vector unsigned int

vector bool char vector bool char vector unsigned char

vector unsigned short

vector unsigned int

vector signed short vector signed short vector unsigned char

vector unsigned short

vector unsigned int

vector unsigned short vector unsigned short vector unsigned char

vector unsigned short

vector unsigned int

vector bool short vector bool short vector unsigned char

vector unsigned short

vector unsigned int

vector signed int vector signed int vector unsigned char

vector unsigned short

vector unsigned int

vector unsigned int vector unsigned int vector unsigned char

vector unsigned short

vector unsigned int

vector bool int vector bool int vector unsigned char

vector unsigned short

vector unsigned int

vector signed long long vector signed long long vector unsigned char

vector unsigned short

vector unsigned int

Chapter 8. Using vector programming support 197

Table 197. Return and parameter types for vec_sral (continued)

d a b

vector unsigned long long vector unsigned long long vector unsigned char

vector unsigned short

vector unsigned int

vector bool long long vector bool long long vector unsigned char

vector unsigned short

vector unsigned int

Result value

Each element of d is obtained by shifting the corresponding element of a right by
the number of bits specified by the low-order three bits of every byte of b. The bits
that are shifted out are replaced by copies of the most significant bit of the
corresponding element of a.

Note: The low-order three bits of all byte elements of b must be same; otherwise,
the result is undefined.

vec_srb: Vector Shift Right by Byte
Purpose

Performs a right shift on a vector by a given number of bytes.

Syntax
d = vec_srb(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 198. Return and parameter types for vec_srb

d a b

vector signed char vector signed char vector signed char

vector unsigned char

vector unsigned char vector unsigned char vector signed char

vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short

vector unsigned short vector unsigned short vector signed short

vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int

vector unsigned int vector unsigned int vector signed int

vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long

198 XL C/C++: Optimization and Programming Guide

Table 198. Return and parameter types for vec_srb (continued)

d a b

vector unsigned long long vector unsigned long long vector signed long long

vector unsigned long long

vector double vector double vector signed long long

vector unsigned long long

Result value

Each element of d is obtained by shifting the corresponding element of a right by
the number of bytes specified by bit 1 - 4 of byte element seven of b. The bits that
are shifted out are replaced by zeros.

vec_srl: Vector Shift Right
Purpose

Performs a right shift on a vector by a given number of bits.

Syntax
d = vec_srl(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 199. Return and parameter types for vec_srl

d a b

vector signed char vector signed char vector unsigned char

vector unsigned short

vector unsigned int

vector unsigned char vector unsigned char vector unsigned char

vector unsigned short

vector unsigned int

vector bool char vector bool char vector unsigned char

vector unsigned short

vector unsigned int

vector signed short vector signed short vector unsigned char

vector unsigned short

vector unsigned int

vector unsigned short vector unsigned short vector unsigned char

vector unsigned short

vector unsigned int

vector bool short vector bool short vector unsigned char

vector unsigned short

vector unsigned int

Chapter 8. Using vector programming support 199

Table 199. Return and parameter types for vec_srl (continued)

d a b

vector signed int vector signed int vector unsigned char

vector unsigned short

vector unsigned int

vector unsigned int vector unsigned int vector unsigned char

vector unsigned short

vector unsigned int

vector bool int vector bool int vector unsigned char

vector unsigned short

vector unsigned int

vector signed long long vector signed long long vector unsigned char

vector unsigned short

vector unsigned int

vector unsigned long long vector unsigned long long vector unsigned char

vector unsigned short

vector unsigned int

vector bool long long vector bool long long vector unsigned char

vector unsigned short

vector unsigned int

Result value

Each element of d is obtained by shifting the corresponding element of a right by
the number of bits specified by the low-order three bits of every byte of b. The bits
that are shifted out are replaced by zeros.

Note: The low-order three bits of all byte elements in b must be same; otherwise,
the result is undefined.

Rounding and conversion functions
This topic collection describes vector built-in functions for rounding and
conversion.

vec_ceil: Vector Ceiling
Purpose

Returns a vector that contains the smallest representable floating-point integers
greater than or equal to the corresponding elements of a given vector.

Syntax
d = vec_ceil(a)

200 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 200. Return and parameter types for vec_ceil

d a

vector double vector double

Result value

The value of each element of d is the smallest representable floating-point integer
that is greater than or equal to the corresponding element of a.

Note: vec_ceil provides the same functionality as vec_roundp except that vec_ceil
triggers the IEEE-inexact exception.
Related reference:
“vec_roundp: Vector Round toward Positive Infinity” on page 205

vec_ctd: Vector Convert to Double
Purpose

Converts an integer vector to a double-precision floating-point vector.

Syntax
d = vec_ctd(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 201. Return and parameter types for vec_ctd

d a b

vector double vector signed long long int1

vector unsigned long long

Note:

1. It must be a literal whose value is in the range 0 - 31 inclusive.

Result value

Each element of d is obtained by converting the corresponding element of a from
integer to double-precision floating point and dividing the intermediate result by 2
to the power of b.

Note: Current BFP rounding mode is used on the conversion.

vec_ctsl: Vector Convert to signed long long
Purpose

Converts a double-precision floating-point vector to a signed long long integer
vector.

Chapter 8. Using vector programming support 201

Syntax
d = vec_ctsl(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 202. Return and parameter types for vec_ctsl

d a b

vector signed long long vector double int1

Note:

1. It must be a literal whose value is in the range 0 - 31 inclusive.

Result value

Each element of d is obtained by multiplying the corresponding element of a by 2
to the power of b and rounding the intermediate result towards 0 into an integer.

vec_ctul: Vector Convert to unsigned long long
Purpose

Converts a double-precision floating-point vector to an unsigned long long integer
vector.

Syntax
d = vec_ctul(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 203. Return and parameter types for vec_ctul

d a b

vector signed long long vector double int1

Note:

1. It must be a literal whose value is in the range 0 - 31 inclusive.

Result value

Each element of d is obtained by multiplying the corresponding element of a by 2
to the power of b and rounding the intermediate result towards 0 into an unsigned
integer.

vec_extend_s64: Vector Sign Extend to Doubleword
Purpose

Returns a vector containing sign-extended results of the rightmost element of each
doubleword of a given vector.

202 XL C/C++: Optimization and Programming Guide

Syntax
d = vec_extend_s64(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 204. Return and parameter types for vec_extend_s64

d a

vector signed long long vector signed char

vector signed short

vector signed int

Result value

d contains the results of performing sign extension on the rightmost element of
each doubleword of a.

Example

If a is of type vector signed char, a[7] and a[15] are the rightmost elements of
each doubleword of a. The value of d[0] is the result of performing sign extension
on a[7], and the value of d[1] is the result of performing sign extension on a[15].

vec_floor: Vector Floor
Purpose

Returns a vector that contains the largest representable floating-point integers less
than or equal to the corresponding elements of a given vector.

Syntax
d = vec_floor(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 205. Return and parameter types for vec_floor

d a

vector double vector double

Result value

The value of each element of d is the largest representable floating-point integer
that is less than or equal to the corresponding element of a.

Note: vec_floor provides the same functionality as vec_roundm except that
vec_floor triggers the IEEE-inexact exception.
Related reference:
“vec_roundm: Vector Round toward Negative Infinity” on page 205

Chapter 8. Using vector programming support 203

vec_round: Vector Round to Nearest
Purpose

Rounds the elements of a vector by using the IEEE round-to-nearest rounding
mode.

Syntax
d = vec_round(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 206. Return and parameter types for vec_round

d a

vector double vector double

Result value

Each element of d has the value of rounding the corresponding element of a to the
nearest representable floating-point integer by using the IEEE round-to-nearest
rounding mode.

Note: The IEEE-inexact exception is suppressed.

vec_roundc: Vector Round to Current
Purpose

Rounds the double-precision floating-point elements of a vector to integer by using
the current rounding mode.

Syntax
d = vec_roundc(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 207. Return and parameter types for vec_roundc

d a

vector double vector double

Result value

Each element of d has the value of rounding the corresponding double-precision
floating-point element of a to integer by using the current rounding mode.

Note: The IEEE-inexact exception is suppressed.

204 XL C/C++: Optimization and Programming Guide

vec_roundm: Vector Round toward Negative Infinity
Purpose

Returns a vector that contains the largest representable floating-point integers less
than or equal to the corresponding elements of a given vector.

Syntax
d = vec_roundm(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 208. Return and parameter types for vec_roundm

d a

vector double vector double

Result value

The value of each element of d is the largest representable floating-point integer
that is less than or equal to the corresponding element of a.

Note: vec_roundm provides the same functionality as vec_floor except that
vec_roundm does not trigger the IEEE-inexact exception.
Related reference:
“vec_floor: Vector Floor” on page 203

vec_roundp: Vector Round toward Positive Infinity
Purpose

Returns a vector that contains the smallest representable floating-point integers
greater than or equal to the corresponding elements of a given vector.

Syntax
d = vec_roundp(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 209. Return and parameter types for vec_roundp

d a

vector double vector double

Result value

The value of each element of d is the smallest representable floating-point integer
that is greater than or equal to the corresponding element of a.

Note: vec_roundp provides the same functionality as vec_ceil, except that
vec_roundp does not trigger the IEEE-inexact exception.
Related reference:

Chapter 8. Using vector programming support 205

“vec_ceil: Vector Ceiling” on page 200

vec_roundz: Vector Round toward Zero
Purpose

Returns a vector that contains the truncated values of the corresponding elements
of a given vector.

Syntax
d = vec_roundz(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 210. Return and parameter types for vec_roundz

d a

vector double vector double

Result value

The value of each element of d is the result value of truncating the corresponding
element of a to an integer.

Note: vec_roundz provides the same functionality as vec_trunc except that
vec_roundz does not trigger the IEEE-inexact exception.
Related reference:
“vec_trunc: Vector Truncate”

vec_trunc: Vector Truncate
Purpose

Returns a vector that contains the truncated values of the corresponding elements
of a given vector.

Syntax
d = vec_trunc(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 211. Return and parameter types for vec_trunc

d a

vector double vector double

Result value

The value of each element of d is the result value of truncating the corresponding
element of a to an integer.

Note: vec_trunc provides the same functionality as vec_roundz except that
vec_trunc triggers the IEEE-inexact exception.

206 XL C/C++: Optimization and Programming Guide

Related reference:
“vec_roundz: Vector Round toward Zero” on page 206

Testing functions
This topic collection describes vector built-in functions for testing.

vec_fp_test_data_class: Vector Floating-Point Test Data Class
Purpose

Tests the element class on the vector elements based on the specified condition.

Syntax
d = vec_fp_test_data_class (a, b, c)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 212. Return and parameter types for vec_fp_test_data_class

d a b c

vector bool long long vector double unsigned short1 int *

Note:

1. It must be a literal whose value is in the range 0 - 4095 inclusive.

Result value

This function uses the VECTOR FP TEST DATA CLASS IMMEDIATE (VFTCIDB)
instruction to test the BFP element class on the elements of a:
v d is the first operand in the VFTCIDB instruction.
v a is the second operand in the VFTCIDB instruction.
v b is the third operand in the VFTCIDB instruction and specifies the condition of

the instruction.

The value that is referred to by c is set to the condition code set by the VFTCIDB
instruction.

vec_test_mask: Vector Test under Mask
Purpose

Performs a zeros or ones test on the selected bits on the masked vector.

Syntax
d = vec_test_mask(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Chapter 8. Using vector programming support 207

Table 213. Return and parameter types for vec_test_mask

d a b

int vector signed char vector unsigned char

vector unsigned char

vector signed short vector unsigned short

vector unsigned short

vector signed int vector unsigned int

vector unsigned int

vector signed long long vector unsigned long long

vector unsigned long long

vector double vector unsigned long long

Result value

d is set to the condition code set by the Vector Test Under Mask (VTM) instruction
as follows:
v 0 if all the selected bits of a under mask b are set to zero or if all bits of mask b

are set to zero.
v 1 if some of the selected bits of a under mask b are set to zero and others are set

to one.
v 3 if all the selected bits of a under mask b are set to one.

All elements predication functions
This topic collection describes vector built-in functions that are used to compare
vector elements to determine whether all elements meet the compare criteria.

vec_all_eq: All Elements Equal
Purpose

Tests whether all sets of the corresponding elements of two vectors are equal.

Syntax
d = vec_all_eq(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

208 XL C/C++: Optimization and Programming Guide

Table 214. Return and parameter types for vec_all_eq

d a b

int vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector bool char

vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector bool short

vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector bool int

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector bool long long

vector double vector double

Result value

If each element of a is equal to the corresponding element of b, d is 1. Otherwise, d
is 0.

vec_all_ge: All Elements Greater Than or Equal
Purpose

Tests whether all elements of the first vector parameter are greater than or equal to
the corresponding elements of the second vector parameter.

Syntax
d = vec_all_ge(a, b)

Chapter 8. Using vector programming support 209

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 215. Return and parameter types for vec_all_ge

d a b

int vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector bool char

vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector bool short

vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector bool int

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector bool long long

vector double vector double

Result value

If all elements of a are greater than or equal to the corresponding elements of b, d
is 1; otherwise, d is 0.

210 XL C/C++: Optimization and Programming Guide

vec_all_gt: All Elements Greater Than
Purpose

Tests whether all elements of the first vector parameter are greater than the
corresponding elements of the second vector parameter.

Syntax
d = vec_all_gt(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 216. Return and parameter types for vec_all_gt

d a b

int vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector bool char

vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector bool short

vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector bool int

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector bool long long

vector double vector double

Chapter 8. Using vector programming support 211

Result value

If all elements of a are greater than the corresponding elements of b, d is 1.
Otherwise, d is 0.

vec_all_le: All Elements Less Than or Equal
Purpose

Tests whether all elements of the first vector parameter are less than or equal to
the corresponding elements of the second vector parameter.

Syntax
d = vec_all_le(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

212 XL C/C++: Optimization and Programming Guide

Table 217. Return and parameter types for vec_all_le

d a b

int vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector bool char

vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector bool short

vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector bool int

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector bool long long

vector double vector double

Result value

If all elements of a are less than or equal to the corresponding elements of b, d is 1.
Otherwise, d is 0.

vec_all_lt: All Elements Less Than
Purpose

Tests whether all elements of the first vector parameter are less than the
corresponding elements of the second vector parameter.

Syntax
d = vec_all_lt(a, b)

Chapter 8. Using vector programming support 213

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 218. Return and parameter types for vec_all_lt

d a b

int vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector bool char

vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector bool short

vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector bool int

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector bool long long

vector double vector double

Result value

If all elements of a are less than the corresponding elements of b, d is 1. Otherwise,
d is 0.

vec_all_nan: All Elements Not a Number
Purpose

Tests whether each element of a vector is a NaN.

214 XL C/C++: Optimization and Programming Guide

Syntax
d = vec_all_nan(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 219. Return and parameter types for vec_all_nan

d a

int vector double

Result value

If each element of a is a NaN, d is 1. Otherwise, d is 0.

vec_all_ne: All Elements Not Equal
Purpose

Tests whether all sets of the corresponding elements of two vectors are unequal.

Syntax
d = vec_all_ne(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Chapter 8. Using vector programming support 215

Table 220. Return and parameter types for vec_all_ne

d a b

int vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector bool char

vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector bool short

vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector bool int

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector bool long long

vector double vector double

Result value

If each element of a is not equal to the corresponding element of b, d is 1.
Otherwise, d is 0.

vec_all_nge: All Elements Not Greater Than or Equal
Purpose

Tests whether all elements of the first vector parameter are neither greater than nor
equal to the corresponding elements of the second vector parameter.

Syntax
d = vec_all_nge(a, b)

216 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 221. Return and parameter types for vec_all_nge

d a b

int vector double vector double

Result value

If all elements of a are neither greater than nor equal to the corresponding
elements of b, d is 1. Otherwise, d is 0.

vec_all_ngt: All Elements Not Greater Than
Purpose

Tests whether all elements of the first vector parameter are not greater than the
corresponding elements of the second vector parameter.

Syntax
d = vec_all_ngt(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 222. Return and parameter types for vec_all_ngt

d a b

int vector double vector double

Result value

If all elements of a are not greater than the corresponding elements of b, d is 1.
Otherwise, d is 0.

vec_all_nle: All Elements Not Less Than or Equal
Purpose

Tests whether all elements of the first vector parameter are neither less than nor
equal to the corresponding elements of the second vector parameter.

Syntax
d = vec_all_nle(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Chapter 8. Using vector programming support 217

Table 223. Return and parameter types for vec_all_nle

d a b

int vector double vector double

Result value

If all elements of a are neither less than nor equal to the corresponding elements of
b, d is 1. Otherwise, d is 0.

vec_all_nlt: All Elements Not Less Than
Purpose

Tests whether all elements of the first vector parameter are not less than the
corresponding elements of the second vector parameter.

Syntax
d = vec_all_nlt(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 224. Return and parameter types for vec_all_nlt

d a b

int vector double vector double

Result value

If all elements of a are not less than the corresponding elements of b, d is 1.
Otherwise, d is 0.

vec_all_numeric: All Elements Numeric
Purpose

Tests whether each element of a vector is a numeric, that is, not a NaN.

Syntax
d = vec_all_numeric(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 225. Return and parameter types for vec_all_numeric

d a

int vector double

Result value

If each element of a is a numeric, d is 1. Otherwise, d is 0.

218 XL C/C++: Optimization and Programming Guide

Any element predication functions
This topic collection describes vector built-in functions that are used to compare
vector elements to determine whether any element meets the compare criteria.

vec_any_eq: Any Element Equal
Purpose

Tests whether any set of the corresponding elements of two vectors is equal.

Syntax
d = vec_any_eq(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Chapter 8. Using vector programming support 219

Table 226. Return and parameter types for vec_any_eq

d a b

int vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector bool char

vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector bool short

vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector bool int

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector bool long long

vector double vector double

Result value

If any element of a is equal to the corresponding element of b, d is 1. Otherwise, d
is 0.

vec_any_ge: Any Element Greater Than or Equal
Purpose

Tests whether any element of the first vector parameter is greater than or equal to
the corresponding element of the second vector parameter.

Syntax
d = vec_any_ge(a, b)

220 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 227. Return and parameter types for vec_any_ge

d a b

int vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector double vector double

Result value

If any element of a is greater than or equal to the corresponding element of b, d is
1. Otherwise, d is 0.

vec_any_gt: Any Element Greater Than
Purpose

Tests whether any element of the first vector parameter is greater than the
corresponding element of the second vector parameter.

Syntax
d = vec_any_gt(a, b)

Chapter 8. Using vector programming support 221

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 228. Return and parameter types for vec_any_gt

d a b

int vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector double vector double

Result value

If any element of a is greater than the corresponding element of b, d is 1.
Otherwise, d is 0.

vec_any_le: Any Element Less Than or Equal
Purpose

Tests whether any element of the first vector parameter is less than or equal to the
corresponding element of the second vector parameter.

Syntax
d = vec_any_le(a, b)

222 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 229. Return and parameter types for vec_any_le

d a b

int vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector double vector double

Result value

If any element of a is less than or equal to the corresponding element of b, d is 1.
Otherwise, d is 0.

vec_any_lt: Any Element Less Than
Purpose

Tests whether any element of the first vector parameter is less than the
corresponding element of the second vector parameter.

Syntax
d = vec_any_lt(a, b)

Chapter 8. Using vector programming support 223

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 230. Return and parameter types for vec_any_lt

d a b

int vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector double vector double

Result value

If any element of a is less than the corresponding element of b, d is 1. Otherwise, d
is 0.

vec_any_nan: Any Element Not a Number
Purpose

Tests whether any element of a vector is a NaN.

Syntax
d = vec_any_nan(a)

224 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 231. Return and parameter types for vec_any_nan

d a

int vector double

Result value

If any element of a is a NaN, d is 1. Otherwise, d is 0.

vec_any_ne: Any Element Not Equal
Purpose

Tests whether any set of the corresponding elements of two vectors is unequal.

Syntax
d = vec_any_ne(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Chapter 8. Using vector programming support 225

Table 232. Return and parameter types for vec_any_ne

d a b

int vector signed char vector signed char

vector bool char

vector unsigned char vector unsigned char

vector bool char

vector bool char vector signed char

vector unsigned char

vector bool char

vector signed short vector signed short

vector bool short

vector unsigned short vector unsigned short

vector bool short

vector bool short vector signed short

vector unsigned short

vector bool short

vector signed int vector signed int

vector bool int

vector unsigned int vector unsigned int

vector bool int

vector bool int vector signed int

vector unsigned int

vector bool int

vector signed long long vector signed long long

vector bool long long

vector unsigned long long vector unsigned long long

vector bool long long

vector bool long long vector signed long long

vector unsigned long long

vector bool long long

vector double vector double

Result value

If any element of a is not equal to the corresponding element of b, d is 1.
Otherwise, d is 0.

vec_any_nge: Any Element Not Greater Than or Equal
Purpose

Tests whether any element of the first vector parameter is neither greater than nor
equal to the corresponding element of the second vector parameter.

Syntax
d = vec_any_nge(a, b)

226 XL C/C++: Optimization and Programming Guide

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 233. Return and parameter types for vec_any_nge

d a b

int vector double vector double

Result value

If any element of a is neither greater than nor equal to the corresponding element
of b, d is 1. Otherwise, d is 0.

vec_any_ngt: Any Element Not Greater Than
Purpose

Tests whether any element of the first vector parameter is not greater than the
corresponding element of the second vector parameter.

Syntax
d = vec_any_ngt(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 234. Return and parameter types for vec_any_ngt

d a b

int vector double vector double

Result value

If any element of a is not greater than the corresponding element of b, d is 1.
Otherwise, d is 0.

vec_any_nle: Any Element Not Less Than or Equal
Purpose

Tests whether any element of the first vector parameter is neither less than nor
equal to the corresponding element of the second vector parameter.

Syntax
d = vec_any_nle(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Chapter 8. Using vector programming support 227

Table 235. Return and parameter types for vec_any_nle

d a b

int vector double vector double

Result value

If any element of a is neither less than nor equal to the corresponding element of b,
d is 1. Otherwise, d is 0.

vec_any_nlt: Any Element Not Less Than
Purpose

Tests whether any element of the first vector parameter is not less than the
corresponding element of the second vector parameter.

Syntax
d = vec_any_nlt(a, b)

Return and parameter types

The following table describes the types of the return value and function
parameters.

Table 236. Return and parameter types for vec_any_nlt

d a b

int vector double vector double

Result value

If any element of a is not less than the corresponding element of b, d is 1.
Otherwise, d is 0.

vec_any_numeric: Any Element Numeric
Purpose

Tests whether any element of a vector is a numeric, that is, not a NaN.

Syntax
d = vec_any_numeric(a)

Return and parameter types

The following table describes the types of the return value and function parameter.

Table 237. Return and parameter types for vec_any_numeric

d a

int vector double

Result value

If any element of a is a numeric, d is 1. Otherwise, d is 0.

228 XL C/C++: Optimization and Programming Guide

Defining vector built-in functions from the operators
IBM XL C/C++ for Linux on z Systems, V1.2 does not provide the vector built-in
functions that perform the same operations as operators, but the XL C/C++
compilers for some other platforms might provide such vector built-in functions.
To compile your program that contains these vector built-in functions with IBM XL
C/C++ for Linux on z Systems, V1.2, you can use the function-like macros to
define these vector built-in functions from operators.
#define vec_neg(a) (-(a)) // Vector Negate
#define vec_add(a, b) ((a) + (b)) // Vector Add
#define vec_sub(a, b) ((a) - (b)) // Vector Subtract
#define vec_mul(a, b) ((a) * (b)) // Vector Multiply
#define vec_div(a, b) ((a) / (b)) // Vector Divide
#define vec_and(a, b) ((a) & (b)) // Vector AND
#define vec_or(a, b) ((a) | (b)) // Vector OR
#define vec_xor(a, b) ((a) ^ (b)) // Vector XOR
#define vec_sl(a, b) ((a) << (b)) // Vector Shift Left
#define vec_sr(a, b) ((a) >> (b)) // Vector Shift Right1

#define vec_sra(a, b) ((a) >> (b)) // Vector Shift Right Arithmetic2

Notes:

1. The vec_sr macro definition can be used on only unsigned vector types so that
the correct bits can be inserted on the shifted out bits.

2. The vec_sra macro definition can be used only if the first argument is of a
signed vector type.

In addition, IBM XL C/C++ for Linux on z Systems, V1.2 does not provide vec_slo
or vec_sro, but you can define them as follows:
#define vec_slo(a, b) vec_slb(a, (b) << 64) // Vector Shift Left by Octet
#define vec_sro(a, b) vec_srb(a, (b) << 64) // Vector Shift Right by Octet

Related reference:
“vec_slb: Vector Shift Left by Byte” on page 192
“vec_srb: Vector Shift Right by Byte” on page 198
Related information:
“Binary expressions” on page 71

Debug support for vector programming
The -g option generates debugging information for vector programming.

The debugging information can be examined by gdb, the target debugger on Linux
on z Systems. gdb version 7.8 or higher provides vector type support. gdb does
not rely on the consumer library of IBM.

Related information in the XL C/C++ Compiler Reference

-g

Chapter 8. Using vector programming support 229

230 XL C/C++: Optimization and Programming Guide

Chapter 9. Using the high performance libraries

IBM XL C/C++ for Linux on z Systems, V1.2 is shipped with a set of libraries for
high-performance mathematical computing:
v The Mathematical Acceleration Subsystem (MASS) is a set of libraries of tuned

mathematical intrinsic functions that provide improved performance over the
corresponding standard system math library functions. MASS is described in
“Using the Mathematical Acceleration Subsystem (MASS) libraries.”

v The Automatically Tuned Linear Algebra Software (ATLAS) libraries contain all
the Basic Linear Algebra Subprograms (BLAS) and a subset of the Linear
Algebra PACKage (LAPACK) routines. For details, see Using the Automatically
Tuned Linear Algebra Software (ATLAS) libraries .

Using the Mathematical Acceleration Subsystem (MASS) libraries
XL C/C++ is shipped with a set of Mathematical Acceleration Subsystem (MASS)
libraries for high-performance mathematical computing.

The MASS libraries consist of a set of scalar libraries described in “Using the scalar
libraries” and a set of vector libraries described in “Using the vector libraries” on
page 234. The scalar and the vector libraries are tuned for IBM zEnterprise® EC12
(zEC12), IBM zEnterprise BC12 (zBC12), and IBM z13™ models. Note that accuracy
and exception handling might not be identical in MASS functions and system
library functions.

The MASS functions must run with the default rounding mode and floating-point
exception trapping settings.

“Compiling and linking a program with MASS” on page 238 describes how to
compile and link a program that uses the MASS libraries, and how to selectively
use the MASS scalar library functions in conjunction with the regular system
libraries.

The following table describes the scalar and the vector libraries that are shipped
with the compiler.

Architecture Scalar libraries Vector libraries

zEC12 and zBC12 libmass.zEC12.a libmassv.zEC12.a

z13 libmass.z13.a libmassv.z13.a

Related external information

Mathematical Acceleration Subsystem website, available at
http://www.ibm.com/software/awdtools/mass/

Using the scalar libraries
The MASS scalar libraries contain an accelerated set of frequently used math
intrinsic functions that provide improved performance over the corresponding
standard system library functions. The MASS scalar functions are used when you
explicitly link the MASS scalar libraries.

If you want to call the MASS scalar functions, you can take the following steps:

© Copyright IBM Corp. 2015 231

http://www.ibm.com/software/awdtools/mass/
http://www.ibm.com/software/awdtools/mass/

1. Provide the prototypes for the functions by including math.h and mass.h in
your source files.

2. Link the MASS scalar library with your application. For instructions, see
“Compiling and linking a program with MASS” on page 238.

The scalar libraries shipped with XL C/C++ are listed below:

libmass.zEC12.a
Contains scalar functions that are tuned for the IBM zEnterprise EC12 and
IBM zEnterprise BC12 architectures.

libmass.z13.a
Contains scalar functions that are tuned for the IBM z13 architecture.

The MASS scalar functions accept double-precision parameters and return a
double-precision result, or accept single-precision parameters and return a
single-precision result, except sincos which gives 2 double-precision results. They
are summarized in Table 238.

Table 238. MASS scalar functions

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

acos acosf Returns the arccosine of
x

double acos (double x); float acosf (float x);

acosh acoshf Returns the hyperbolic
arccosine of x

double acosh (double x); float acoshf (float x);

anint Returns the rounded
integer value of x

float anint (float x);

asin asinf Returns the arcsine of x double asin (double x); float asinf (float x);

asinh asinhf Returns the hyperbolic
arcsine of x

double asinh (double x); float asinhf (float x);

atan2 atan2f Returns the arctangent
of x/y

double atan2 (double x,
double y);

float atan2f (float x, float y);

atan atanf Returns the arctangent
of x

double atan (double x); float atanf (float x);

atanh atanhf Returns the hyperbolic
arctangent of x

double atanh (double x); float atanhf (float x);

cbrt cbrtf Returns the cube root
of x

double cbrt (double x); float cbrtf (float x);

copysign copysignf Returns x with the sign
of y

double copysign (double
x,double y);

float copysignf (float x);

cos cosf Returns the cosine of x double cos (double x); float cosf (float x);

cosh coshf Returns the hyperbolic
cosine of x

double cosh (double x); float coshf (float x);

cosisin Returns a complex
number with the real
part the cosine of x and
the imaginary part the
sine of x.

double_Complex cosisin
(double);

dnint Returns the nearest
integer to x (as a
double)

double dnint (double x);

232 XL C/C++: Optimization and Programming Guide

Table 238. MASS scalar functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

erf erff Returns the error
function of x

double erf (double x); float erff (float x);

erfc erfcf Returns the
complementary error
function of x

double erfc (double x); float erfcf (float x);

exp expf Returns the exponential
function of x

double exp (double x); float expf (float x);

expm1 expm1f Returns (the
exponential function of
x) - 1

double expm1 (double x); float expm1f (float x);

hypot hypotf Returns the square root
of x2 + y2

double hypot (double x,
double y);

float hypotf (float x, float y);

lgamma lgammaf Returns the natural
logarithm of the
absolute value of the
Gamma function of x

double lgamma (double x); float lgammaf (float x);

log logf Returns the natural
logarithm of x

double log (double x); float logf (float x);

log10 log10f Returns the base 10
logarithm of x

double log10 (double x); float log10f (float x);

log1p log1pf Returns the natural
logarithm of (x + 1)

double log1p (double x); float log1pf (float x);

pow powf Returns x raised to the
power y

double pow (double x,
double y);

float powf (float x, float y);

rint rintf Returns the nearest
integer to x (as a
double)

double rint (double x); float rintf (float x);

rsqrt Returns the reciprocal
of the square root of x

double rsqrt (double x);

sin sinf Returns the sine of x double sin (double x); float sinf (float x);

sincos Sets *s to the sine of x
and *c to the cosine of
x

void sincos (double x,
double* s, double* c);

sinh sinhf Returns the hyperbolic
sine of x

double sinh (double x); float sinhf (float x);

sqrt Returns the square root
of x

double sqrt (double x);

tan tanf Returns the tangent of x double tan (double x); float tanf (float x);

tanh tanhf Returns the hyperbolic
tangent of x

double tanh (double x); float tanhf (float x);

Notes:

v The trigonometric functions (sin, cos, tan) return NaN (Not-a-Number) for large
arguments (where the absolute value is greater than 250pi).

v In some cases, the MASS functions are not as accurate as the ones in the libm.a
library, and they might handle edge cases differently (sqrt(Inf), for example).

Chapter 9. Using the high performance libraries 233

Using the vector libraries
If you want to call any of the MASS vector functions, you can do so by including
massv.h in your source files and linking your application with the appropriate
vector library. Information about linking is provided in “Compiling and linking a
program with MASS” on page 238.

The vector libraries shipped with XL C/C++ are listed below:

libmassv.zEC12.a
Contains vector functions that are tuned for the IBM zEnterprise EC12 and
IBM zEnterprise BC12 architectures.

libmassv.z13.a
Contains vector functions that are tuned for the IBM z13 architecture.

The single-precision and double-precision floating-point functions contained in the
vector libraries are summarized in Table 239 on page 235. The integer functions
contained in the vector libraries are summarized in Table 240 on page 237. Note
that in C and C++ applications, only call by reference is supported, even for scalar
arguments.

With the exception of a few functions (described in the following paragraph), all of
the floating-point functions in the vector libraries accept three parameters:
v A double-precision (for double-precision functions) or single-precision (for

single-precision functions) vector output parameter
v A double-precision (for double-precision functions) or single-precision (for

single-precision functions) vector input parameter
v An integer vector-length parameter.

The functions are of the form
function_name (y,x,n)

where y is the target vector, x is the source vector, and n is the vector length. The
parameters y and x are assumed to be double-precision for functions with the
prefix v, and single-precision for functions with the prefix vs. As an example, the
following code outputs a vector y of length 500 whose elements are exp(x[i]),
where i=0,...,499:
#include <massv.h>

double x[500], y[500];
int n;
n = 500;
...
vexp (y, x, &n);

The functions vdiv, vsincos, vpow, and vatan2 (and their single-precision versions,
vsdiv, vssincos, vspow, and vsatan2) take four arguments. The functions vdiv,
vpow, and vatan2 take the arguments (z,x,y,n). The function vdiv outputs a vector z
whose elements are x[i]/y[i], where i=0,..,*n–1. The function vpow outputs a vector
z whose elements are x[i]y[i], where i=0,..,*n–1. The function vatan2 outputs a vector
z whose elements are atan(x[i]/y[i]), where i=0,..,*n–1. The function vsincos takes
the arguments (y,z,x,n), and outputs two vectors, y and z, whose elements are
sin(x[i]) and cos(x[i]), respectively.

In vcosisin(y,x,n) and vscosisin(y,x,n), x is a vector of n elements and the
function outputs a vector y of n __Complex elements of the form (cos(x[i]),sin(x[i])).

234 XL C/C++: Optimization and Programming Guide

Table 239. MASS floating-point vector functions

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

vacos vsacos Sets y[i] to the arc cosine
of x[i], for i=0,..,*n-1

void vacos (double y[],
double x[], int *n);

void vsacos (float y[], float
x[], int *n);

vacosh vsacosh Sets y[i] to the hyperbolic
arc cosine of x[i], for
i=0,..,*n-1

void vacosh (double y[],
double x[], int *n);

void vsacosh (float y[], float
x[], int *n);

vasin vsasin Sets y[i] to the arc sine of
x[i], for i=0,..,*n-1

void vasin (double y[],
double x[], int *n);

void vsasin (float y[], float
x[], int *n);

vasinh vsasinh Sets y[i] to the hyperbolic
arc sine of x[i], for
i=0,..,*n-1

void vasinh (double y[],
double x[], int *n);

void vsasinh (float y[], float
x[], int *n);

vatan1 vsatan1 Sets y[i] to the arc
tangent of x[i], for
i=0,..,*n-1

void vatan (double y[],
double x[], int *n);

void vsatan (float y[], float
x[], int *n);

vatan2 vsatan2 Sets z[i] to the arc
tangent of x[i]/y[i], for
i=0,..,*n-1

void vatan2 (double z[],
double x[], double y[], int
*n);

void vsatan2 (float z[], float
x[], float y[], int *n);

vatanh vsatanh Sets y[i] to the hyperbolic
arc tangent of x[i], for
i=0,..,*n-1

void vatanh (double y[],
double x[], int *n);

void vsatanh (float y[], float
x[], int *n);

vcbrt vscbrt Sets y[i] to the cube root
of x[i], for i=0,..,*n-1

void vcbrt (double y[],
double x[], int *n);

void vscbrt (float y[], float
x[], int *n);

vcos vscos Sets y[i] to the cosine of
x[i], for i=0,..,*n-1

void vcos (double y[],
double x[], int *n);

void vscos (float y[], float
x[], int *n);

vcosh vscosh Sets y[i] to the hyperbolic
cosine of x[i], for
i=0,..,*n-1

void vcosh (double y[],
double x[], int *n);

void vscosh (float y[], float
x[], int *n);

vcosisin vscosisin Sets the real part of y[i]
to the cosine of x[i] and
the imaginary part of y[i]
to the sine of x[i], for
i=0,..,*n-1

void vcosisin (double
_Complex y[], double x[], int
*n);

void vscosisin (float
_Complex y[], float x[], int
*n);

vdint Sets y[i] to the integer
truncation of x[i], for
i=0,..,*n-1

void vdint (double y[],
double x[], int *n);

vdiv vsdiv Sets z[i] to x[i]/y[i], for
i=0,..,*n–1

void vdiv (double z[],
double x[], double y[], int
*n);

void vsdiv (float z[], float
x[], float y[], int *n);

vdnint Sets y[i] to the nearest
integer to x[i], for
i=0,..,*n-1

void vdnint (double y[],
double x[], int *n);

verf1 vserf1 Sets y[i] to the error
function of x[i], for
i=0,..,*n-1

void verf (double y[], double
x[], int *n)

void vserf (float y[], float
x[], int *n)

verfc1 vserfc1 Sets y[i] to the
complementary error
function of x[i], for
i=0,..,*n-1

void verfc (double y[],
double x[], int *n)

void vserfc (float y[], float
x[], int *n)

Chapter 9. Using the high performance libraries 235

Table 239. MASS floating-point vector functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

vexp vsexp Sets y[i] to the
exponential function of
x[i], for i=0,..,*n-1

void vexp (double y[],
double x[], int *n);

void vsexp (float y[], float
x[], int *n);

vexp21 vsexp21 Sets y[i] to 2 raised to the
power of x[i], for
i=1,..,*n-1

void vexp2 (double y[],
double x[], int *n);

void vsexp2 (float y[], float
x[], int *n);

vexpm1 vsexpm1 Sets y[i] to (the
exponential function of
x[i])-1, for i=0,..,*n-1

void vexpm1 (double y[],
double x[], int *n);

void vsexpm1 (float y[],
float x[], int *n);

vexp2m11 vsexp2m11 Sets y[i] to (2 raised to
the power of x[i]) - 1, for
i=1,..,*n-1

void vexp2m1 (double y[],
double x[], int *n);

void vsexp2m1 (float y[],
float x[], int *n);

vhypot1 vshypot1 Sets z[i] to the square
root of the sum of the
squares of x[i] and y[i],
for i=0,..,*n-1

void vhypot (double z[],
double x[], double y[], int
*n);

void vshypot (float z[], float
x[], float y[], int *n);

vlgamma1 vslgamma1 Sets y[i] to the natural
logarithm of the absolute
value of the Gamma
function of x[i], for
i=0,..,*n-1

void vlgamma (double y[],
double x[], int *n);

void vslgamma (float y[],
float x[], int *n);

vlog vslog Sets y[i] to the natural
logarithm of x[i], for
i=0,..,*n-1

void vlog (double y[],
double x[], int *n);

void vslog (float y[], float
x[], int *n);

vlog21 vslog21 Sets y[i] to the base-2
logarithm of x[i], for
i=1,..,*n-1

void vlog2 (double y[],
double x[], int *n);

void vslog2 (float y[], float
x[], int *n);

vlog10 vslog10 Sets y[i] to the base-10
logarithm of x[i], for
i=0,..,*n-1

void vlog10 (double y[],
double x[], int *n);

void vslog10 (float y[], float
x[], int *n);

vlog1p vslog1p Sets y[i] to the natural
logarithm of (x[i]+1), for
i=0,..,*n-1

void vlog1p (double y[],
double x[], int *n);

void vslog1p (float y[], float
x[], int *n);

vlog21p1 vslog21p1 Sets y[i] to the base-2
logarithm of (x[i]+1), for
i=1,..,*n-1

void vlog21p (double y[],
double x[], int *n);

void vslog21p (float y[],
float x[], int *n);

vpow vspow Sets z[i] to x[i] raised to
the power y[i], for
i=0,..,*n-1

void vpow (double z[],
double x[], double y[], int
*n);

void vspow (float z[], float
x[], float y[], int *n);

vqdrt vsqdrt Sets y[i] to the fourth
root of x[i], for i=0,..,*n-1

void vqdrt (double y[],
double x[], int *n);

void vsqdrt (float y[], float
x[], int *n);

vrcbrt vsrcbrt Sets y[i] to the reciprocal
of the cube root of x[i],
for i=0,..,*n-1

void vrcbrt (double y[],
double x[], int *n);

void vsrcbrt (float y[], float
x[], int *n);

vrec vsrec Sets y[i] to the reciprocal
of x[i], for i=0,..,*n-1

void vrec (double y[],
double x[], int *n);

void vsrec (float y[], float
x[], int *n);

vrqdrt vsrqdrt Sets y[i] to the reciprocal
of the fourth root of x[i],
for i=0,..,*n-1

void vrqdrt (double y[],
double x[], int *n);

void vsrqdrt (float y[], float
x[], int *n);

236 XL C/C++: Optimization and Programming Guide

Table 239. MASS floating-point vector functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

vrsqrt vsrsqrt Sets y[i] to the reciprocal
of the square root of x[i],
for i=0,..,*n-1

void vrsqrt (double y[],
double x[], int *n);

void vsrsqrt (float y[], float
x[], int *n);

vsin vssin Sets y[i] to the sine of
x[i], for i=0,..,*n-1

void vsin (double y[],
double x[], int *n);

void vssin (float y[], float
x[], int *n);

vsincos vssincos Sets y[i] to the sine of
x[i] and z[i] to the
cosine of x[i], for
i=0,..,*n-1

void vsincos (double y[],
double z[], double x[], int
*n);

void vssincos (float y[],
float z[], float x[], int *n);

vsinh vssinh Sets y[i] to the hyperbolic
sine of x[i], for i=0,..,*n-1

void vsinh (double y[],
double x[], int *n);

void vssinh (float y[], float
x[], int *n);

vsqrt vssqrt Sets y[i] to the square
root of x[i], for i=0,..,*n-1

void vsqrt (double y[],
double x[], int *n);

void vssqrt (float y[], float
x[], int *n);

vtan vstan Sets y[i] to the tangent of
x[i], for i=0,..,*n-1

void vtan (double y[],
double x[], int *n);

void vstan (float y[], float
x[], int *n);

vtanh vstanh Sets y[i] to the hyperbolic
tangent of x[i], for
i=0,..,*n-1

void vtanh (double y[],
double x[], int *n);

void vstanh (float y[], float
x[], int *n);

Note:

1. These functions are available only on z13 architechtures.

Integer functions are of the form function_name (x[], *n), where x[] is a vector of
4-byte (for vpopcnt4) or 8-byte (for vpopcnt8) numeric objects (integral or
floating-point), and *n is the vector length.

Table 240. MASS integer vector library functions

Function Description Prototype

vpopcnt4 Returns the total number of 1 bits in the
concatenation of the binary
representation of x[i], for i=0,..,*n–1 ,
where x is a vector of 32-bit objects.

unsigned int vpopcnt4 (void *x,
int *n)

vpopcnt8 Returns the total number of 1 bits in the
concatenation of the binary
representation of x[i], for i=0,..,*n–1 ,
where x is a vector of 64-bit objects.

unsigned int vpopcnt8 (void *x,
int *n)

Overlap of input and output vectors

In most applications, the MASS vector functions are called with disjoint input and
output vectors; that is, the two vectors do not overlap in memory. Another
common usage scenario is to call them with the same vector for both input and
output parameters (for example, vsin (y, y, &n)). Other kinds of overlap (where
input and output vectors are neither disjoint nor identical) should be avoided,
since they might produce unexpected results:
v For calls to vector functions that take one input and one output vector (for

example, vsin (y, x, &n)):

Chapter 9. Using the high performance libraries 237

The vectors x[0:n-1] and y[0:n-1] must be either disjoint or identical, or
unexpected results might be obtained.

v For calls to vector functions that take two input vectors (for example, vatan2 (y,
x1, x2, &n)):
The previous restriction applies to both pairs of vectors y,x1 and y,x2. That is,
y[0:n-1] and x1[0:n-1] must be either disjoint or identical; and y[0:n-1] and
x2[0:n-1] must be either disjoint or identical.

v For calls to vector functions that take two output vectors (for example, vsincos
(y1, y2, x, &n)):
The above restriction applies to both pairs of vectors y1,x and y2,x. That is,
y1[0:n-1] and x[0:n-1] must be either disjoint or identical; and y2[0:n-1] and
x[0:n-1] must be either disjoint or identical. Also, the vectors y1[0:n-1] and
y2[0:n-1] must be disjoint.

Compiling and linking a program with MASS
To compile an application that calls the functions in the following MASS libraries,
specify the corresponding library names on the -l link option.

Table 241. The scalar and vector MASS library

MASS library Library name

Scalar library mass.zEC12

mass.z13

Vector library massv.zEC12

massv.z13

For example, if the MASS libraries are installed in the default directory, you can
use one of the following commands:

Link object file progc with scalar library libmass.zEC12.a and vector library
libmassv.zEC12.a (31-bit code)

xlc progc.c -o progc -lmass.zEC12 -lmassv.zEC12

Link object file progc with scalar library libmass.z13.a and vector library
libmassv.z13.a (64-bit code)

xlc progc.c -o progc -lmass.z13 -lmassv.z13 -q64

Using the scalar library with the math system library
If you want to use the scalar library for some functions and the normal math
library libm.a for other functions, follow this procedure to compile and link your
program:
1. Use the ar command to extract the object files of the wanted functions from the

scalar library. For most functions, the object file name is the function name
followed by .s31.o for 31-bit or .s64.o for 64-bit mode.1 For example, to
extract the object file for the tan function in the 31-bit zEC12 architecture, the
command would be:
ar -x tan.s31.o libmass.zEC12.a

2. Archive the extracted object files into another library:
ar -qv libfasttan.a tan.s31.o
ranlib libfasttan.a

3. Create the final executable using xlc, specifying -lfasttan instead of
-lmass.zEC12:
xlc sample.c -o sample -Ldir_containing_libfasttan -lfasttan

238 XL C/C++: Optimization and Programming Guide

This links only the tan function from MASS (now in libfasttan.a) and the
remainder of the math functions from the standard system library.

Exceptions:

1. The sin and cos functions are both contained in the object files sincos.s31.o and
sincos.s64.o. The cosisin and sincos functions are both contained in the object
files cosisin.s31.o and cosisin.s64.o.

2. The XL C/C++ pow function is contained in the object files dxy.s31.o and
dxy.s64.o.

Note: The cos and sin functions will both be exported if either one is exported.
cosisin and sincos will both be exported if either one is exported.

Using the Automatically Tuned Linear Algebra Software (ATLAS)
libraries

IBM XL C/C++ for Linux on z Systems, V1.2 is shipped with a set of
Automatically Tuned Linear Algebra Software (ATLAS) libraries for algebra
high-performance computing.

The ATLAS libraries contain all the Basic Linear Algebra Subprograms (BLAS) and
a subset of the Linear Algebra PACKage (LAPACK) routines with interfaces that
are provided for both C and FORTRAN 77 across platforms and architectures.
Different versions of the ATLAS libraries, including single-threaded, multithreaded,
static, and shared ones, are provided and tuned for the IBM zEnterprise EC12
(zEC12), IBM zEnterprise BC12 (zBC12), and IBM z13 models. To use ATLAS
libraries that are tuned for the IBM z13 models, ensure that the compiler runs on a
Linux distribution that has vector support. C and C++ calling programs are
supported with 31-bit and 64-bit linkage.

To call ATLAS functionality in your program, take the following steps:
1. Include the appropriate header files that contain the prototypes of library

functions. For header file names, see “The ATLAS libraries and their header
files.”

2. Specify the appropriate compiler option, define the appropriate macros, or
both. For the information about the compiler options and macros, see “The
required specification to use the ATLAS libraries” on page 242.

3. Link with the appropriate ATLAS libraries. For library names, see “The ATLAS
libraries and their header files.”

This topic is intended only as a high-level description of ATLAS and the IBM
specific extensions and naming convention. For details about the ATLAS libraries,
such as lists of functions that are included in the various libraries, visit the
Automatically Tuned Linear Algebra Software website at http://math-
atlas.sourceforge.net.

The ATLAS libraries and their header files
The static version of the ATLAS main library, the CBLAS library, the LAPACK
library, the Fortran BLAS library, and their shared aggregate library are provided.
Include the provided header files in your programs to call ATLAS functionality.

Note: To use ATLAS libraries that are tuned for the IBM z13 models, ensure that
the compiler runs on a Linux distribution that has vector support.

Chapter 9. Using the high performance libraries 239

http://math-atlas.sourceforge.net
http://math-atlas.sourceforge.net

The aggregate ATLAS library (shared version)

The shared version of the aggregate ATLAS library contains the corresponding
single-threaded or multithreaded LAPACK and BLAS functions and all ATLAS
symbols that are needed to support the functions.

Table 242. The shared version of the ATLAS library and its header files

Operation
type

Library name for
zEC12/zBC12

Library name for
z13 Library location

Header files
to be used
with the
library

Header file
location

Single-
threaded

libsatlas.zEC12.so libsatlas.z13.so /opt/ibm/atlas/1.2.0/
lib (for 31 bit)

/opt/ibm/atlas/1.2.0/
lib64 (for 64 bit)

atlas_*1

cblas.h
clapack.h
atlas_*f77*1

/opt/ibm/
atlas/1.2.0/
includeMultithreaded libtatlas.zEC12.so libtatlas.z13.so

Note:

1. Replace * with the specific header file name or library file name.

The ATLAS main library (static version)

The static version of the ATLAS main library contains the ATLAS specific variants
of the BLAS, CBLAS, and LAPACK routines.

A sample provided interface routine is ATL_dgemm.

Table 243. The static version of the ATLAS main library and its header files

Operation
type

Library name for
zEC12/zBC12

Library name for
z13 Library location

Header files
to be used
with the
library

Header file
location

Single-
threaded

libatlas.zEC12.a
libtstatlas.zEC12.a1

libatlas.z13.a
libtstatlas.z13.a1

/opt/ibm/atlas/1.2.0/
lib (for 31 bit)

/opt/ibm/atlas/1.2.0/
lib64 (for 64 bit)

atlas_*2 /opt/ibm/
atlas/1.2.0/
include

Notes:

1. This is a test ATLAS library, which can be used to test functionality that is implemented with ATLAS functions.

2. Replace * with the specific header file name or library file name.

The CBLAS library (static version)

The static version of the BLAS library, which is also known as the CBLAS interface,
contains the implementation of the C routines of the BLAS algorithms.

A sample provided interface routine is cblas_dgemm.

240 XL C/C++: Optimization and Programming Guide

Table 244. The static version of the CBLAS library and its header files

Operation
type

Library name for
zEC12/zBC12 Library name for z13 Library location

Header
files to be
used with
the library

Header file
location

Single-
threaded

libcblas.zEC12.a libcblas.z13.a /opt/ibm/atlas/1.2.0/
lib (for 31 bit)

/opt/ibm/atlas/1.2.0/
lib64 (for 64 bit)

cblas.h /opt/ibm/
atlas/1.2.0/
includeMultithreaded libptcblas.zEC12.a libptcblas.z13.a

The LAPACK library (static version)

The static version of the LAPACK library, which is also known as the CLAPACK
interface, contains the implementation of the C routines of the LAPACK
algorithms.

A sample provided interface routine is clapack_dgesv.

Table 245. The static version of the LAPACK library and its header files

Operation type
Library name for
zEC12/zBC12 Library name for z13 Library location

Header
files to
be used
with the
library

Header file
location

Single-threaded liblapack.zEC12.a liblapack.z13.a /opt/ibm/atlas/
1.2.0/lib (for 31 bit)

/opt/ibm/atlas/
1.2.0/lib64 (for 64
bit)

clapack.h /opt/ibm/
atlas/1.2.0/
include

Multithreaded libptlapack.zEC12.a libptlapack.z13.a

The Fortran BLAS library (static version)

The static version of the Fortran BLAS library, which is also known as the BLAS
interface, contains the implementation of the FORTRAN 77 routines of the BLAS
algorithms.

A sample provided interface routine is dgemm_.

Table 246. The static version of the Fortran BLAS library and its header files

Operation
type

Library name for
zEC12/zBC12 Library name for z13 Library location

Header files to
be used with the
library

Header file
location

Single-
threaded

libf77blas.zEC12.a
libf77refblas.zEC12.a1

libf77blas.z13.a
libf77refblas.z13.a1

/opt/ibm/
atlas/1.2.0/
lib (for 31 bit)

/opt/ibm/
atlas/1.2.0/
lib64 (for 64
bit)

atlas_*f77*2 /opt/ibm/
atlas/
1.2.0/
include

Multithreaded libptf77blas.zEC12.a libptf77blas.z13.a

Chapter 9. Using the high performance libraries 241

Table 246. The static version of the Fortran BLAS library and its header files (continued)

Operation
type

Library name for
zEC12/zBC12 Library name for z13 Library location

Header files to
be used with the
library

Header file
location

Notes:

1. You might need to link this library alongside the single-threaded or multithreaded version of the Fortran BLAS
library.

2. Replace * with the specific header file name or library file name.

Notes:

v For each of the base libraries that are mentioned in this topic, the
single-threaded and multithreaded versions contain the same list of functions.

v The libraries archive 31-bit C linkage and 64-bit C linkage objects in different
directories. The linker chooses the appropriate libraries based on the specified
options, environment variables, or both.

The required specification to use the ATLAS libraries
To force zEC12 optimizations and defaults, you must define
ATL_ARCH_IBMzEC12 on the command line. To force z13 optimizations and
defaults, you must either define ATL_ARCH_IBMz13 or use the -march=z13
option, or its equivalent, on the command line. If neither of the above is used, the
compiler uses z13 defaults.

To use the ATLAS vector functionality, you must specify the -mzvector option with
the -march=z13 option or its equivalent and ensure that the compiler runs on a
Linux distribution that has vector support.

You might still be able to compile and link your ATLAS application without
specifying the required compiler option or defining the macros. However, the
program might generate incorrect results.
Related information:

-march (-qarch)

-mzvector

Example 1: Compiling, linking, and running a simple matrix
multiplication ATLAS program

This simple sample achieves a multiplication of two matrices, A and B.

Matrices A and B have elements that are randomly generated with values in the
range of 0 to 1. The multiplication is done by using these two ways in the
following topics:
v By calling the dgemm or cblas_dgemm BLAS functionality provided by ATLAS to

get Matrix C
v By a manual calculation to get Matrix D

The result matrices C and D are congruent. Each of the following topics provides a
method to generate Matrix C using the ATLAS functionality.
v “Method 1” on page 243
v “Method 2” on page 244

242 XL C/C++: Optimization and Programming Guide

v “Method 3” on page 246
v “Method 4” on page 247

Sample output is as follows:
Using defaults
Matrix A has 2 rows and 6 columns:
0.446 0.992 0.463 0.006 0.269 0.540
0.753 0.943 0.084 0.753 0.921 0.924

Matrix B has 6 rows and 4 columns:
0.976 0.367 0.013 0.304
0.170 0.980 0.736 0.363
0.387 0.318 0.815 0.111
0.514 0.110 0.125 0.296
0.952 0.053 0.917 0.306
0.095 0.310 0.358 0.574

Matrix C has 2 rows and 4 columns:
1.093 1.465 1.554 0.941
2.279 1.645 2.043 1.616

Matrix D has 2 rows and 4 columns:
1.093 1.465 1.554 0.941
2.279 1.645 2.043 1.616

Note: Matrix data is organized in the Fortran way, namely columns major.

Method 1
This program contains a C invocation of the Fortran BLAS function dgemm_
provided by the ATLAS framework.

Observation: In this sample, the invocation of dgemm_ has no previously declared
prototype; the compiler might issue a warning message. Prototypes can be
declared by including the atlas_f77 header files, but source files might not have
these header files specified, which means old source code is written before ATLAS.

sample1.c is as follows:
#include <stdio.h>
#include <time.h>
#include <stdlib.h>

void init(double* matrix, int row, int column)
{
for (int j = 0; j < column; j++){

for (int i = 0; i < row; i++){
matrix[j*row + i] = ((double)rand())/RAND_MAX;

}
}

}

void print(const char * name, const double* matrix, int row, int column)
{
printf("Matrix %s has %d rows and %d columns:\n", name, row, column);
for (int i = 0; i < row; i++){

for (int j = 0; j < column; j++){
printf("%.3f ", matrix[j*row + i]);

}
printf("\n");

}
printf("\n");

}

int main(int argc, char * argv[])

Chapter 9. Using the high performance libraries 243

{
int rowsA, colsB, common;
int i,j,k;

if (argc != 4){
printf("Using defaults\n");
rowsA = 2; colsB = 4; common = 6;

}
else{

rowsA = atoi(argv[1]); colsB = atoi(argv[2]);common = atoi(argv[3]);
}

double A[rowsA * common]; double B[common * colsB];
double C[rowsA * colsB]; double D[rowsA * colsB];

char transA = ’N’, transB = ’N’;
double one = 1.0, zero = 0.0;

srand(time(NULL));

init(A, rowsA, common); init(B, common, colsB);

dgemm_(&transA, &transB, &rowsA, &colsB, &common, &one, A,
&rowsA, B, &common, &zero, C, &rowsA);

for(i=0;i<colsB;i++){
for(j=0;j<rowsA;j++){

D[i*rowsA+j]=0;
for(k=0;k<common;k++){
D[i*rowsA+j]+=A[k*rowsA+j]*B[k+common*i];

}
}

}

print("A", A, rowsA, common); print("B", B, common, colsB);
print("C", C, rowsA, colsB); print("D", D, rowsA, colsB);

return 0;
}

To compile the program for IBM zEnterprise EC12 (zEC12) models, enter:
xlc -c -march=zEC12 -DATL_ARCH_IBMzEC12 -o sample1.o sample1.c

To compile the program for IBM z13 models, enter:
xlc -c -march=z13 -o sample1.o sample1.c

, or
xlc -c -DATL_ARCH_IBMz13 -o sample1.o sample1.c

To link the program for IBM zEnterprise EC12 (zEC12) models in static
single-threaded mode, enter:
xlc sample1.o -march=zEC12 -lgfortran -lf77blas.zEC12 -latlas.zEC12 -o sample1

To link the program for IBM z13 models in static single-threaded mode, enter:
xlc sample1.o -march=z13 -lgfortran -lf77blas.z13 -latlas.z13 -o sample1

Method 2
This program contains a C++ invocation of the Fortran BLAS function dgemm_
provided by the ATLAS framework.

Observation: As opposed to method 1, the compiler must be explicitly instructed
that the function dgemm_ has C linkage and thus no mangling needs to be

244 XL C/C++: Optimization and Programming Guide

attempted. This can be achieved either as specified, or by including the appropriate
header file with the extern "C" designation.

sample2.C is as follows:
#include <stdio.h>
#include <time.h>
#include <stdlib.h>

extern "C"
{
int dgemm_(char *, char *, int *, int *, int *, double *, double *, int *,

double *, int *, double *, double *, int *);
}

void init(double* matrix, int row, int column)
{
for (int j = 0; j < column; j++){

for (int i = 0; i < row; i++){
matrix[j*row + i] = ((double)rand())/RAND_MAX;

}
}

}

void print(const char * name, const double* matrix, int row, int column)
{
printf("Matrix %s has %d rows and %d columns:\n", name, row, column);
for (int i = 0; i < row; i++){

for (int j = 0; j < column; j++){
printf("%.3f ", matrix[j*row + i]);

}
printf("\n");

}
printf("\n");

}

int main(int argc, char * argv[])
{
int rowsA, colsB, common;
int i,j,k;

if (argc != 4){
printf("Using defaults\n");
rowsA = 2; colsB = 4; common = 6;

}
else{

rowsA = atoi(argv[1]); colsB = atoi(argv[2]);common = atoi(argv[3]);
}

double A[rowsA * common]; double B[common * colsB];
double C[rowsA * colsB]; double D[rowsA * colsB];

char transA = ’N’, transB = ’N’;
double one = 1.0, zero = 0.0;

srand(time(NULL));

init(A, rowsA, common); init(B, common, colsB);

dgemm_(&transA, &transB, &rowsA, &colsB, &common, &one, A,
&rowsA, B, &common, &zero, C, &rowsA);

for(i=0;i<colsB;i++){
for(j=0;j<rowsA;j++){
D[i*rowsA+j]=0;
for(k=0;k<common;k++){

Chapter 9. Using the high performance libraries 245

D[i*rowsA+j]+=A[k*rowsA+j]*B[k+common*i];
}

}
}

print("A", A, rowsA, common); print("B", B, common, colsB);
print("C", C, rowsA, colsB); print("D", D, rowsA, colsB);

return 0;
}

To compile the program for IBM zEnterprise EC12 (zEC12) models, enter:
xlC -c -march=zEC12 -DATL_ARCH_IBMzEC12 -o sample2.o sample2.C

To compile the program for IBM z13 models, enter:
xlC -c -march=z13 -o sample2.o sample2.C

, or
xlC -c -DATL_ARCH_IBMz13 -o sample2.o sample2.C

To link the program for IBM zEnterprise EC12 (zEC12) models in static
single-threaded mode, enter:
xlC sample2.o -march=zEC12 -lgfortran -lf77blas.zEC12 -latlas.zEC12 -o sample2

To link the program for IBM z13 models in static single-threaded mode, enter:
xlC sample2.o -march=z13 -lgfortran -lf77blas.z13 -latlas.z13 -o sample2

Method 3
This program contains a C invocation of the CBLAS function cblas_dgemm_
provided by the ATLAS framework.

Observation: This program has same result as if the dgemm_ function were called.

sample3.c is as follows:
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <cblas.h>

void init(double* matrix, int row, int column)
{
for (int j = 0; j < column; j++){

for (int i = 0; i < row; i++){
matrix[j*row + i] = ((double)rand())/RAND_MAX;

}
}

}

void print(const char * name, const double* matrix, int row, int column)
{
printf("Matrix %s has %d rows and %d columns:\n", name, row, column);
for (int i = 0; i < row; i++){

for (int j = 0; j < column; j++){
printf("%.3f ", matrix[j*row + i]);

}
printf("\n");

}
printf("\n");

}

int main(int argc, char * argv[])

246 XL C/C++: Optimization and Programming Guide

{
int rowsA, colsB, common;
int i,j,k;

if (argc != 4){
printf("Using defaults\n");
rowsA = 2; colsB = 4; common = 6;

}
else{

rowsA = atoi(argv[1]); colsB = atoi(argv[2]);common = atoi(argv[3]);
}

double A[rowsA * common]; double B[common * colsB];
double C[rowsA * colsB]; double D[rowsA * colsB];

enum CBLAS_ORDER order = CblasColMajor;
enum CBLAS_TRANSPOSE transA = CblasNoTrans;
enum CBLAS_TRANSPOSE transB = CblasNoTrans;

double one = 1.0, zero = 0.0;

srand(time(NULL));

init(A, rowsA, common); init(B, common, colsB);

cblas_dgemm(order,transA,transB, rowsA, colsB, common ,1.0,A,
rowsA ,B, common ,0.0,C, rowsA);

for(i=0;i<colsB;i++){
for(j=0;j<rowsA;j++){
D[i*rowsA+j]=0;
for(k=0;k<common;k++){

D[i*rowsA+j]+=A[k*rowsA+j]*B[k+common*i];
}

}
}

print("A", A, rowsA, common); print("B", B, common, colsB);
print("C", C, rowsA, colsB); print("D", D, rowsA, colsB);

return 0;
}

To compile the program for IBM zEnterprise EC12 (zEC12) models, enter:
xlc -c -march=zEC12 -DATL_ARCH_IBMzEC12 -o sample3.o sample3.c

To compile the program for IBM z13 models, enter:
xlc -c -march=z13 -o sample3.o sample3.c

, or
xlc -c -DATL_ARCH_IBMz13 -o sample3.o sample3.c

To link the program for IBM zEnterprise EC12 (zEC12) models in static
single-threaded mode, enter:
xlc sample3.o -march=zEC12 -lcblas.zEC12 -latlas.zEC12 -o sample3

To link the program for IBM z13 models in static single-threaded mode, enter:
xlc sample3.o -march=z13 -lcblas.z13 -latlas.z13 -o sample3

Method 4
This program contains a C++ invocation of the CBLAS function cblas_dgemm_
provided by the ATLAS framework.

Chapter 9. Using the high performance libraries 247

Observation: This program has same result as if the dgemm_ function were called.

sample4.C is as follows:
#include <stdio.h>
#include <time.h>
#include <stdlib.h>

extern "C"
{
#include <cblas.h>
}

void init(double* matrix, int row, int column)
{
for (int j = 0; j < column; j++){

for (int i = 0; i < row; i++){
matrix[j*row + i] = ((double)rand())/RAND_MAX;

}
}

}

void print(const char * name, const double* matrix, int row, int column)
{
printf("Matrix %s has %d rows and %d columns:\n", name, row, column);
for (int i = 0; i < row; i++){

for (int j = 0; j < column; j++){
printf("%.3f ", matrix[j*row + i]);

}
printf("\n");

}
printf("\n");

}

int main(int argc, char * argv[])
{
int rowsA, colsB, common;
int i,j,k;

if (argc != 4){
printf("Using defaults\n");
rowsA = 2; colsB = 4; common = 6;

}
else{

rowsA = atoi(argv[1]); colsB = atoi(argv[2]);common = atoi(argv[3]);
}

double A[rowsA * common]; double B[common * colsB];
double C[rowsA * colsB]; double D[rowsA * colsB];

enum CBLAS_ORDER order = CblasColMajor;
enum CBLAS_TRANSPOSE transA = CblasNoTrans;
enum CBLAS_TRANSPOSE transB = CblasNoTrans;

double one = 1.0, zero = 0.0;

srand(time(NULL));

init(A, rowsA, common); init(B, common, colsB);

cblas_dgemm(order,transA,transB, rowsA, colsB, common ,1.0,A,
rowsA ,B, common ,0.0,C, rowsA);

for(i=0;i<colsB;i++){
for(j=0;j<rowsA;j++){

D[i*rowsA+j]=0;
for(k=0;k<common;k++){

248 XL C/C++: Optimization and Programming Guide

D[i*rowsA+j]+=A[k*rowsA+j]*B[k+common*i];
}

}
}

print("A", A, rowsA, common); print("B", B, common, colsB);
print("C", C, rowsA, colsB); print("D", D, rowsA, colsB);

return 0;
}

To compile the program for IBM zEnterprise EC12 (zEC12) models, enter:
xlC -c -march=zEC12 -DATL_ARCH_IBMzEC12 -o sample4.o sample4.C

To compile the program for IBM z13 models, enter:
xlC -c -march=z13 -o sample4.o sample4.C

, or
xlC -c -DATL_ARCH_IBMz13 -o sample4.o sample4.C

To link the program for IBM zEnterprise EC12 (zEC12) models in static
single-threaded mode, enter:
xlC sample4.o -march=zEC12 -lcblas.zEC12 -latlas.zEC12 -o sample4

To link the program for IBM z13 models in static single-threaded mode, enter:
xlC sample4.o -march=z13 -lcblas.z13 -latlas.z13 -o sample4

Example 2: Compiling, linking, and running a complex ATLAS
sample program

In this example, it is assumed that a complex test sample invtst.c is shipped with
the ATLAS source code. This program combines ATLAS specific, CBLAS, and
LAPACK functionality that must be compiled using the invocation commands for
C programs.

Examples of the ATLAS specific functions that are called in this sample are
ATL_flushcache, ATL_assert, ATL_DivBySize, and ATL_MulBySize.

Examples of the CBLAS specific functions that are called in this sample are
cblas_asum, cblas_scasum, cblas_dzasum, cblas_copy, cblas_gemm, cblas_symm, and
cblas_hemm.

The ATLAS header files that are used are atlas_misc.h, atlas_lapack.h, cblas.h,
atlas_cblastypealias.h, atlas_tst.h, atlas_level3.h, and clapack.h.

To compile invtst.c for IBM zEnterprise EC12 (zEC12) models, enter:
xlc -c -march=zEC12 -DATL_ARCH_IBMzEC12 -o invtst.o -DL2SIZE=4194304 -DAdd_ \
-DF77_INTEGER=int -DStringSunStyle -DATL_NCPU=20 -DATLCINT -DSREAL \
-DWALL -DATL_CPUMHZ=5564 -DATL_OS_Linux invtst.c

To compile invtst.c for IBM z13 machine models, enter:
xlc -c -march=z13 -o invtst.o -DL2SIZE=4194304 -DAdd_ \
-DF77_INTEGER=int -DStringSunStyle -DATL_NCPU=20 -DATLCINT -DSREAL \
-DWALL -DATL_CPUMHZ=5564 -DATL_OS_Linux invtst.c

, or

Chapter 9. Using the high performance libraries 249

xlc -c -DATL_ARCH_IBMz13 -o invtst.o -DL2SIZE=4194304 -DAdd_ \
-DF77_INTEGER=int -DStringSunStyle -DATL_NCPU=20 -DATLCINT -DSREAL \
-DWALL -DATL_CPUMHZ=5564 -DATL_OS_Linux invtst.c

where:
v L2SIZE represents the size of the L2 cache on the target hardware.
v Add_, F77_INTEGER, and StringSunStyle are Fortran macros that outline the

inter-language interaction between C and Fortran code on Linux on z Systems.
v ATL_NCPU represents the number of CPUs on the target hardware.
v ATLCINT and SREAL are ATLAS specific macros.
v WALL instructs the ATLAS framework to issue all possible warnings.
v ATL_CPUMHZ represents the speed of the target architecture.
v ATL_OS_Linux instructs ATLAS that a Linux operating system is used for compile

operations.

To link the program for IBM zEnterprise EC12 (zEC12) models in static
single-threaded mode, enter:
xlc invtst.o -march=zEC12 -lgfortran -ltstatlas.zEC12 -llapack.zEC12 -lcblas.zEC12 \
-lf77blas.zEC12 -latlas.zEC12 -lm -o invtst

To link the program for IBM z13 models in static single-threaded mode, enter:
xlc invtst.o -march=z13 -lgfortran -ltstatlas.z13 -llapack.z13 -lcblas.z13 \
-lf77blas.z13 -latlas.z13 -lm -o invtst

When you run the executable, it produces the following output:
NREPS ORDER UPLO N LDA TIME MFLOP RESID
===== ===== ===== ===== ===== ======== ======== ============
0 Col GE 100 100 0.027 73.97 8.918092e-03
0 Col GE 200 200 0.005 3024.80 6.950735e-03
0 Col GE 300 300 0.015 3535.71 8.034554e-03
0 Col GE 400 400 0.034 3783.16 9.250009e-03
0 Col GE 500 500 0.063 3937.21 7.678587e-03
0 Col GE 600 600 0.107 4046.78 9.520883e-03
0 Col GE 700 700 0.167 4097.17 8.519278e-03
0 Col GE 800 800 0.247 4148.75 8.575264e-03
0 Col GE 900 900 0.346 4217.16 1.272196e-02
0 Col GE 1000 1000 0.471 4247.66 8.753754e-03

10 cases: 10 passed, 0 skipped, 0 failed

250 XL C/C++: Optimization and Programming Guide

Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL C/C++ for Linux on z Systems.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2015 251

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

252 XL C/C++: Optimization and Programming Guide

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 2015.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 253

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

254 XL C/C++: Optimization and Programming Guide

Index

Special characters
-fpack-struct (-qalign) 5
-m31 1, 25
-m64 1, 25
-march (-qarch) 25, 26
-mtune (-qtune) 25, 26
-O0 22
-O2 23
-O3 24

trade-offs 25
-qfloat 11, 13

multiply-add operations 11
-qhot 27
-qipa 25, 28
-qpdf1, -qpdf2 31
-qpriority 16
-qsimd=auto 28
-shared 15

Numerics
64-bit mode 4

alignment 4
bit-shifting 3
data types 1
long constants 2
long types 1
optimization 47
pointers 3

A
advanced optimization 24
aggregate

alignment 4, 5, 6
aligned attribute 8
alignment 4, 5

bit-fields 7
modes 5
modifiers 8

architecture
optimization 25

attribute
aligned 8
init_priority 16
packed 8

B
basic example, described ix
basic optimization 22
bit-field 7

alignment 7
bit-shifting 3

C
C++ templates 47

C++11
delegating constructors 48
rvalue references 48
target constructors 48

cloning, function 25, 28
constants

folding 11
long types 2
rounding 11

D
data types

31-bit and 64-bit modes 1
64-bit mode 1
long 1
size and alignment 5

debugging 39

E
errors, floating-point 13
exceptions, floating-point 13

F
floating-point

exceptions 13
folding 11
range and precision 11
rounding 11

folding, floating-point 11
function calls

optimizing 43
function cloning 25, 28

H
hardware optimization 25

I
init_priority attribute 16
initialization order of C++ static

objects 16
input/output

optimizing 43
interprocedural analysis (IPA) 28

L
libmass library 231
libmassv library 234
libraries

dynamic 15
shared 15

library
MASS 231

library (continued)
scalar 231
static 15
vector 234

long constants, 64-bit mode 2
long data type, 64-bit mode 1
loop optimization 27

M
MASS libraries 231

scalar functions 231
vector functions 234

memory
management 44

mergepdf 31
move 48

O
optimization 43

-O0 22
-O2 23
-O3 24
64-bit mode 47
across program units 28
advanced 24
architecture 25
ATLAS libraries 239

example 1 242
example 2 249
functionality 239
libraries and header files 239
related external information 239
required options 242

basic 22
debugging 39
hardware 25
loops 27
math functions 231

optimization and tuning
optimizing 21
tuning 21

optimization trade-offs
-O3 25

optimizing
applications 21

P
packed attribute 8
perfect forwarding 48
performance tuning 43
pointers

64-bit mode 3
pragma

pack 8
priority 16

precision, floating-point numbers 11
priority of static objects 16

© Copyright IBM Corp. 2015 255

profile-directed feedback (PDF) 31
profiling 31

R
range, floating-point numbers 11
rounding, floating-point 11

S
scalar MASS library 231
showpdf 31
static library 15
static objects, C++ 16
strings

optimizing 46
structure alignment 6

64-bit mode 4

T
template model 47
tuning for performance 25

V
vector built-in functions

all predicates 208
any predicates 219
arithmetic 95
compare 116
compare ranges 127
copy until zero 165
find any element 143
gather and scatter 154
generate mask 163
load and store 167
logical 173
merge 176
migration 229
operators 229
pack and unpack 179
replicate 184
rotate and shift 189
rounding and conversion 200
summary 88
test 207

vector MASS library 234
vector programming support

expressions and operators 68
header file 87
language extensions

__alignof__ operator 70
addition operator + 72
address operator & 69
assignment operator = 72
binary expressions 71
bitwise AND operator & 75
bitwise exclusive OR operator

^ 76
bitwise inclusive OR operator

| 77
bitwise left shift operator << 78
bitwise negation operator ~ 69
bitwise right shift operator >> 79

vector programming support (continued)
language extensions (continued)

cast expressions 68
compound literal expressions 68
decrement operator -- 69
division operator / 74
equality operator == 80
increment operator ++ 69
inequality operator != 81
initialization of vectors 67
multiplication operator * 73
other extensions 87
pointers 68
relational greater than operator

> 83
relational greater than or equal to

operator >= 86
relational less than operator < 82
relational less than or equal to

operator <= 84
remainder operator % 74
sizeof operator 70
subscripting operator [] 80
subtraction operator - 73
typedef definitions 68
typeof operator 70
unary expressions 69
unary minus operator - 69
unary plus operator + 69
vec_step operator 70
vector literals 64

macro 63
option 63
vector built-in functions 87
vector data types 63

vectorization 28
visibility attributes 51

propagation 58

256 XL C/C++: Optimization and Programming Guide

IBM®

Product Number: 5725-N01

Printed in USA

SC27-5997-01

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other information

	Technical support
	How to send your comments

	Chapter 1. Using 31-bit and 64-bit modes
	Assigning long values
	Assigning constant values to long variables
	Bit-shifting long values

	Assigning pointers
	Aligning aggregate data

	Chapter 2. Aligning data
	Using alignment modes
	Alignment of aggregates
	Alignment of bit-fields

	Using alignment modifiers

	Chapter 3. Handling floating-point operations
	Floating-point formats
	Handling multiply-and-add operations
	Handling floating-point constant folding and rounding
	Matching compile-time and runtime rounding modes

	Handling floating-point exceptions

	Chapter 4. Constructing a library
	Compiling and linking a library
	Compiling a static library
	Compiling a shared library
	Linking a library to an application
	Linking a shared library to another shared library

	Initializing static objects in libraries (C++)
	Assigning priorities to objects
	Order of object initialization across libraries

	Chapter 5. Optimizing your applications
	Distinguishing between optimization and tuning
	Steps in the optimization process
	Basic optimization
	Optimizing at level 0
	Optimizing at level 2

	Advanced optimization
	Optimizing at level 3
	Increasing -qhot at level 3

	Tuning for your system architecture
	Getting the most out of target machine options

	Using high-order loop analysis and transformations
	Getting the most out of -qhot
	Generating vector instructions

	Using interprocedural analysis
	Getting the most from -qipa

	Using profile-directed feedback
	Viewing profiling information with showpdf
	Object level profile-directed feedback

	Other optimization options

	Chapter 6. Debugging optimized code
	Understanding different results in optimized programs
	Debugging in the presence of optimization

	Chapter 7. Coding your application to improve performance
	Finding faster input/output techniques
	Reducing function-call overhead
	Managing memory efficiently (C++ only)
	Optimizing variables
	Manipulating strings efficiently
	Optimizing expressions and program logic
	Optimizing operations in 64-bit mode
	The C++ template model
	Using delegating constructors (C++11)
	Using rvalue references (C++11)
	Using visibility attributes (IBM extension)
	Types of visibility attributes
	Rules of visibility attributes
	Propagation rules (C++ only)
	Specifying visibility attributes using pragma preprocessor directives

	Chapter 8. Using vector programming support
	Vector data types (IBM extension)
	Vector literals (IBM extension)
	Initialization of vectors (IBM extension)
	typedef definitions for vector types (IBM extension)
	Pointers (IBM extension)
	Expressions and operators (IBM extension)
	Compound literal expressions
	Cast expressions
	Unary expressions
	Unary operators
	Increment operator ++ and decrement operator --
	The __alignof__ operator
	The sizeof operator
	The typeof operator
	The vec_step operator

	Binary expressions
	Assignment operator =
	Addition operator +
	Subtraction operator -
	Multiplication operator *
	Division operator /
	Remainder operator %
	Bitwise AND operator &
	Bitwise exclusive OR operator ^
	Bitwise inclusive OR operator |
	Bitwise left shift operator <<
	Bitwise right shift operator >>
	Vector subscripting operator []
	Equality operator ==
	Inequality operator !=
	Relational less than operator <
	Relational greater than operator >
	Relational less than or equal to operator <=
	Relational greater than or equal to operator >=

	Extensions to runtime library functions
	Vector built-in functions
	Summary of vector built-in functions
	Arithmetic functions
	vec_abs: Vector Absolute Value
	vec_add_u128: Vector Add Unsigned 128-bit Values
	vec_addc: Vector Add Carry
	vec_addc_u128: Vector Add Compute Carry Unsigned 128-bit Values
	vec_adde_u128: Vector Add with Carry Unsigned 128-bit Values
	vec_addec_u128: Vector Add with Carry Compute Carry Unsigned 128-bit Values
	vec_andc: Vector AND with Complement
	vec_avg: Vector Average
	vec_checksum: Vector Checksum
	vec_gfmsum: Vector Galois Field Multiply Sum
	vec_gfmsum_128: Vector Galois Field Multiply Sum 128-bit Values
	vec_gfmsum_accum: Vector Galois Field Multiply Sum and Accumulate
	vec_gfmsum_accum_128: Vector Galois Field Multiply Sum and Accumulate 128-bit Values
	vec_madd: Vector Multiply Add
	vec_max: Vector Maximum
	vec_meadd: Vector Multiply and Add Even
	vec_mhadd: Vector Multiply and Add High
	vec_min: Vector Minimum
	vec_mladd: Vector Multiply and Add Low
	vec_moadd: Vector Multiply and Add Odd
	vec_msub: Vector Multiply Subtract
	vec_mule: Vector Multiply Even
	vec_mulh: Vector Multiply High
	vec_mulo: Vector Multiply Odd
	vec_nabs: Vector Negative Absolute
	vec_sqrt: Vector Square Root
	vec_sub_u128: Vector Subtract Unsigned 128-bit Values
	vec_subc: Vector Subtract Compute Borrow
	vec_subc_u128: Vector Subtract Compute Borrow Unsigned 128-bit Values
	vec_sube_u128: Vector Subtract with Borrow Unsigned 128-bit Values
	vec_subec_u128: Vector Subtract with Borrow Compute Borrow Unsigned 128-bit Values
	vec_sum_u128: Vector Sum Across Quadword
	vec_sum2: Vector Sum Across Doubleword
	vec_sum4: Vector Sum Across Word

	Comparison functions
	vec_cmpeq: Vector Compare Equal
	vec_cmpeq_idx: Vector Compare Equal Index
	vec_cmpeq_idx_cc: Vector Compare Equal Index with Condition Code
	vec_cmpeq_or_0_idx: Vector Compare Equal or Zero Index
	vec_cmpeq_or_0_idx_cc: Vector Compare Equal or Zero Index with Condition Code
	vec_cmpge: Vector Compare Greater Than or Equal
	vec_cmpgt: Vector Compare Greater Than
	vec_cmple: Vector Compare Less Than or Equal
	vec_cmplt: Vector Compare Less Than
	vec_cmpne_idx: Vector Compare Not Equal Index
	vec_cmpne_idx_cc: Vector Compare Not Equal Index with Condition Code
	vec_cmpne_or_0_idx: Vector Compare Not Equal or Zero Index
	vec_cmpne_or_0_idx_cc: Vector Compare Not Equal or Zero Index with Condition Code

	Range comparison functions
	vec_cmpnrg: Vector Compare Not in Ranges
	vec_cmpnrg_cc: Vector Compare Not in Ranges with Condition Code
	vec_cmpnrg_idx: Vector Compare Not in Ranges Index
	vec_cmpnrg_idx_cc: Vector Compare Not in Ranges Index with Condition Code
	vec_cmpnrg_or_0_idx: Vector Compare Not in Ranges or Zero Index
	vec_cmpnrg_or_0_idx_cc: Vector Compare Not in Ranges or Zero Index with Condition Code
	vec_cmprg: Vector Compare Ranges
	vec_cmprg_cc: Vector Compare Ranges with Condition Code
	vec_cmprg_idx: Vector Compare Ranges Index
	vec_cmprg_idx_cc: Vector Compare Ranges Index with Condition Code
	vec_cmprg_or_0_idx: Vector Compare Ranges or Zero Index
	vec_cmprg_or_0_idx_cc: Vector Compare Ranges or Zero Index with Condition Code

	Element searching functions
	vec_find_any_eq: Vector Find Any Element Equal
	vec_find_any_eq_cc: Vector Find Any Element Equal with Condition Code
	vec_find_any_eq_idx: Vector Find Any Element Equal Index
	vec_find_any_eq_idx_cc: Vector Find Any Element Equal Index with Condition Code
	vec_find_any_eq_or_0_idx: Vector Find Any Element Equal or Zero Index
	vec_find_any_eq_or_0_idx_cc: Vector Find Any Element Equal or Zero Index with Condition Code
	vec_find_any_ne: Vector Find Any Element Not Equal
	vec_find_any_ne_cc: Vector Find Any Element Not Equal with Condition Code
	vec_find_any_ne_idx: Vector Find Any Element Not Equal Index
	vec_find_any_ne_idx_cc: Vector Find Any Element Not Equal Index with Condition Code
	vec_find_any_ne_or_0_idx: Vector Find Any Element Not Equal or Zero Index
	vec_find_any_ne_or_0_idx_cc: Vector Find Any Element Not Equal or Zero Index with Condition Code

	Gather and scatter functions
	vec_extract: Vector Extract
	vec_gather_element: Vector Gather Element
	vec_insert: Vector Insert
	vec_insert_and_zero: Vector Insert and Zero
	vec_perm: Vector Permute
	vec_permi: Vector Permute Immediate
	vec_promote: Vector Promote
	vec_scatter_element: Vector Scatter Element
	vec_sel: Vector Select

	Mask generation functions
	vec_genmask: Vector Generate Byte Mask
	vec_genmasks_8: Vector Generate Mask (Byte)
	vec_genmasks_16: Vector Generate Mask (Halfword)
	vec_genmasks_32: Vector Generate Mask (Word)
	vec_genmasks_64: Vector Generate Mask (Doubleword)

	Copy until zero functions
	vec_cp_until_zero: Vector Copy Until Zero
	vec_cp_until_zero_cc: Vector Copy Until Zero with Condition Code

	Load and store functions
	vec_ld2f: Vector Load 2 Float
	vec_load_bndry: Vector Load to Block Boundary
	vec_load_len: Vector Load with Length
	vec_load_pair: Vector Load Pair
	vec_st2f: Vector Store 2 Float
	vec_store_len: Vector Store with Length
	vec_xld2: Vector Load 2 Doubleword
	vec_xlw4: Vector Load 4 Word
	vec_xstd2: Vector Store 2 Doubleword
	vec_xstw4: Vector Store 4 Word

	Logical calculation functions
	vec_cntlz: Vector Count Leading Zeros
	vec_cnttz: Vector Count Trailing Zeros
	vec_nor: Vector NOR
	vec_popcnt: Vector Population Count

	Merge functions
	vec_mergeh: Vector Merge High
	vec_mergel: Vector Merge Low

	Pack and unpack functions
	vec_pack: Vector Pack
	vec_packs: Vector Pack Saturate
	vec_packs_cc: Vector Pack Saturate with Condition Code
	vec_packsu: Vector Pack Saturated Unsigned
	vec_packsu_cc: Vector Pack Saturated Unsigned with Condition Code
	vec_unpackh: Vector Unpack High Element
	vec_unpackl: Vector Unpack Low Element

	Replicate functions
	vec_splat: Vector Splat
	vec_splat_s8: Vector Splat Signed Byte
	vec_splat_s16: Vector Splat Signed Halfword
	vec_splat_s32: Vector Splat Signed Word
	vec_splat_s64: Vector Splat Signed Doubleword
	vec_splat_u8: Vector Splat Unsigned Byte
	vec_splat_u16: Vector Splat Unsigned Halfword
	vec_splat_u32: Vector Splat Unsigned Word
	vec_splat_u64: Vector Splat Doubleword
	vec_splats: Vector Splats

	Rotate and shift functions
	vec_rl: Vector Element Rotate Left
	vec_rl_mask: Vector Element Rotate and Insert Under Mask
	vec_rli: Vector Element Rotate Left Immediate
	vec_slb: Vector Shift Left by Byte
	vec_sld: Vector Shift Left Double by Byte
	vec_sldw: Vector Shift Left Double by Word Immediate
	vec_sll: Vector Shift Left
	vec_srab: Vector Shift Right Arithmetic by Byte
	vec_sral: Vector Shift Right Arithmetic
	vec_srb: Vector Shift Right by Byte
	vec_srl: Vector Shift Right

	Rounding and conversion functions
	vec_ceil: Vector Ceiling
	vec_ctd: Vector Convert to Double
	vec_ctsl: Vector Convert to signed long long
	vec_ctul: Vector Convert to unsigned long long
	vec_extend_s64: Vector Sign Extend to Doubleword
	vec_floor: Vector Floor
	vec_round: Vector Round to Nearest
	vec_roundc: Vector Round to Current
	vec_roundm: Vector Round toward Negative Infinity
	vec_roundp: Vector Round toward Positive Infinity
	vec_roundz: Vector Round toward Zero
	vec_trunc: Vector Truncate

	Testing functions
	vec_fp_test_data_class: Vector Floating-Point Test Data Class
	vec_test_mask: Vector Test under Mask

	All elements predication functions
	vec_all_eq: All Elements Equal
	vec_all_ge: All Elements Greater Than or Equal
	vec_all_gt: All Elements Greater Than
	vec_all_le: All Elements Less Than or Equal
	vec_all_lt: All Elements Less Than
	vec_all_nan: All Elements Not a Number
	vec_all_ne: All Elements Not Equal
	vec_all_nge: All Elements Not Greater Than or Equal
	vec_all_ngt: All Elements Not Greater Than
	vec_all_nle: All Elements Not Less Than or Equal
	vec_all_nlt: All Elements Not Less Than
	vec_all_numeric: All Elements Numeric

	Any element predication functions
	vec_any_eq: Any Element Equal
	vec_any_ge: Any Element Greater Than or Equal
	vec_any_gt: Any Element Greater Than
	vec_any_le: Any Element Less Than or Equal
	vec_any_lt: Any Element Less Than
	vec_any_nan: Any Element Not a Number
	vec_any_ne: Any Element Not Equal
	vec_any_nge: Any Element Not Greater Than or Equal
	vec_any_ngt: Any Element Not Greater Than
	vec_any_nle: Any Element Not Less Than or Equal
	vec_any_nlt: Any Element Not Less Than
	vec_any_numeric: Any Element Numeric

	Defining vector built-in functions from the operators
	Debug support for vector programming

	Chapter 9. Using the high performance libraries
	Using the Mathematical Acceleration Subsystem (MASS) libraries
	Using the scalar libraries
	Using the vector libraries
	Compiling and linking a program with MASS
	Using the scalar library with the math system library

	Using the Automatically Tuned Linear Algebra Software (ATLAS) libraries
	The ATLAS libraries and their header files
	The required specification to use the ATLAS libraries
	Example 1: Compiling, linking, and running a simple matrix multiplication ATLAS program
	Method 1
	Method 2
	Method 3
	Method 4

	Example 2: Compiling, linking, and running a complex ATLAS sample program

	Notices
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	O
	P
	R
	S
	T
	V

