
IBM XL C/C++ for Linux on z Systems, V1.2

Language Reference
Version 1.2

SC27-5996-01

IBM

IBM XL C/C++ for Linux on z Systems, V1.2

Language Reference
Version 1.2

SC27-5996-01

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 47.

First edition

This edition applies to IBM XL C/C++ for Linux on z Systems, V1.2 (Program 5725-N01) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

© Copyright IBM Corporation 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Who should read this document v
How to use this document. v
How this document is organized v
Conventions v
Related information ix

IBM XL C/C++ information ix
Standards and specifications x
Other information x

Technical support x
How to send your comments xi

Chapter 1. Language levels and
language extensions 1

Chapter 2. IBM extension features . . . 3
IBM extension features for both C and C++ 3

General IBM extensions. 3
Extensions for GNU C compatibility 6
Extensions for vector processing support . . . 37

IBM extension features for C only 38
General IBM extensions 38
Extensions for GNU C compatibility 38

IBM extension features for C++ only 41
Extensions for C99 compatibility 41
Extensions for C11 compatibility 41
Extensions for GNU C++ compatibility 42

Chapter 3. Standard features 45

Notices 47
Trademarks 49

Index 51

© Copyright IBM Corp. 2015 iii

iv XL C/C++: Language Reference

About this document

This document describes the syntax, semantics, and IBM® XL C/C++ for Linux
implementation of the C and C++ programming language extensions. Although the
XL C/C++ compiler conforms to the specifications maintained by the ISO
standards for the C and C++ programming languages, the compiler also
incorporates many extensions to the core languages. These extensions have been
implemented to enhance usability in specific operating environments, support
compatibility with other compilers, and support new hardware capabilities. For
example, many language constructs have been added for compatibility with the
GNU Compiler Collection (GCC), to maximize portability between the two
development environments.

Note: Detailed descriptions of standard features are no longer provided in this
document. Instead, a list of the standard features that the compiler currently
supports is provided in Standard features. For a description of these standard
features, see the C and C++ language standards.

Who should read this document
This document is a reference for users who want to learn about IBM extension
features. Users can also access the list of standard features that the compiler
currently supports.

How to use this document
This document contains detailed descriptions for IBM extension features. It does
not include the following topics:
v Detailed descriptions of standard C and C++ features. For a description of these

standard features, see the C/C++ standard.
v Standard C and C++ library functions and headers. For information on the

standard C and C++ libraries, refer to your operating system information.
v Compiler pragmas, predefined macros, and built-in functions. These are

described in the XL C/C++ Compiler Reference.

How this document is organized
v Chapter 1 provides a brief introduction to language levels and language

extensions.
v Chapter 2 describes all the IBM extension features that are categorized in

different groups.
v Chapter 3 lists all the standard features that the compiler currently supports.

Conventions
Typographical conventions

© Copyright IBM Corp. 2015 v

The following table shows the typographical conventions used in the IBM XL
C/C++ for Linux on z Systems™, V1.2 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc and xlC
(xlc++), along with several other
compiler invocation commands to
support various C/C++ language
levels and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

C only begins
C

C

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

C++ only begins
C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

IBM extension begins
IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

vi XL C/C++: Language Reference

Table 2. Qualifying elements (continued)

Qualifier/Icon Meaning

C11 begins
C11

C11

C11 ends

The text describes a feature that is introduced into standard C
as part of C11.

C++11 begins
C++11

C++11

C++11 ends

The text describes a feature that is introduced into standard
C++ as part of C++11.

C++14 begins
C++14

C++14

C++14 ends

The text describes a feature that is introduced into standard
C++ as part of C++14.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
helps you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

About this document vii

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

viii XL C/C++: Language Reference

Related information
The following sections provide related information for XL C/C++:

IBM XL C/C++ information
XL C/C++ provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL C/C++ for Linux on z Systems, V1.2. It is located by default in the XL
C/C++ directory and in the \quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory, and in the root directory and subdirectories of the
installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for Linux on z Systems, V1.2
Installation Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSVUN6_1.2.0/
com.ibm.compilers.loz.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27044043.
The following files comprise the full set of XL C/C++ product information:

Table 3. XL C/C++ PDF files

Document title
PDF file
name Description

IBM XL C/C++ for Linux
on z Systems, V1.2
Installation Guide,
GC27-5995-01

install.pdf Contains information for installing XL C/C++
and configuring your environment for basic
compilation and program execution.

Getting Started with IBM
XL C/C++ for Linux on z
Systems, V1.2,
GI13-2865-01

getstart.pdf Contains an introduction to the XL C/C++
product, with information about setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL C/C++ for Linux
on z Systems, V1.2
Compiler Reference,
SC27-5998-01

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in functions.

IBM XL C/C++ for Linux
on z Systems, V1.2
Language Reference,
SC27-5996-01

langref.pdf Contains information about language extensions
for portability and conformance to
nonproprietary standards.

About this document ix

http://www.ibm.com/support/knowledgecenter/SSVUN6_1.2.0/com.ibm.compilers.loz.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSVUN6_1.2.0/com.ibm.compilers.loz.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27044043
http://www.ibm.com/support/docview.wss?uid=swg27044043

Table 3. XL C/C++ PDF files (continued)

Document title
PDF file
name Description

IBM XL C/C++ for Linux
on z Systems, V1.2
Optimization and
Programming Guide,
SC27-5997-01

proguide.pdf Contains information about advanced
programming topics, such as application
porting, library development, application
optimization, and the XL C/C++
high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL C/C++, including IBM Redbooks® publications,
white papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27044043.

For more information about C/C++, see the C/C++ café at https://
www.ibm.com/developerworks/community/groups/service/html/
communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3.

Standards and specifications
XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards and specifications for precise definitions of some of the
features found in this information.
v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also

known as C89.
v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also

known as C99.
v Information Technology - Programming languages - C, ISO/IEC 9899:2011, also

known as C11.
v Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also

known as C++98.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also

known as C++03.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also

known as C++11 (Partial support).
v Information Technology - Programming languages - C++, ISO/IEC 14882:2014, also

known as C++14 (Partial support).
v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support
Additional technical support is available from the XL C/C++ Support page at
http://www.ibm.com/support/entry/portal/product/rational/xl_c/
c++_for_linux_on_z_systems. This page provides a portal with search capabilities
to a large selection of Technotes and other support information.

If you cannot find what you need, you can send an email to
compinfo@ca.ibm.com.

x XL C/C++: Language Reference

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27044043
http://www.ibm.com/support/docview.wss?uid=swg27044043
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_linux_on_z_systems
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_linux_on_z_systems

For the latest information about XL C/C++, visit the product information site at
http://www.ibm.com/software/products/en/xlcpp-loz.

How to send your comments
Your feedback is important in helping us to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments to compinfo@ca.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL C/C++, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

About this document xi

http://www.ibm.com/software/products/en/xlcpp-loz

xii XL C/C++: Language Reference

Chapter 1. Language levels and language extensions

The C and C++ languages described in this reference are based on the standards
listed in “Standards and specifications” on page x.

We refer to the following language specifications as "base language levels" in order
to introduce the notion of an extension to a base.
v C++11
v C++03
v C++98
v C11
v C99
v C89

This information uses the term K&R C to refer to the C language plus the generally
accepted extensions produced by Brian Kernighan and Dennis Ritchie that were in
use prior to the ISO standardization of C.

Note: Detailed descriptions of standard features are no longer provided in the
Language Reference. Instead, a list of the standard features that the compiler
currently supports is provided in Standard features. For a description of these
standard features, see the C and C++ language standards.

In addition to the features supported by the base levels, XL C/C++ contains
language extensions that enhance usability and facilitate porting programs to
different platforms, including:
v “Extensions to C++ to support C99 and C11 standard features” on page 2
v “Extensions related to GNU C and GNU C++” on page 2

You can control the language level to be used for compilation through several
mechanisms, including:
v various invocation commands in the XL C/C++ Compiler Reference

v the -std (-qlanglvl) option in the XL C/C++ Compiler Reference

With a few exceptions, almost all of the language extensions are supported when
you compile using the basic invocation commands xlc (for C) and xlc++ or xlC (for
C++).

The default language level for the xlc invocation command is extc99, which
includes all of the features introduced by the C99 standard, and most of the IBM
extensions described in this information.

The default language level for the xlC or xlc++ invocation command is extended,
which includes most of the IBM extensions described in this information, as well
as many C99 features.

For information on the various methods for controlling the language level for
compilation, see Invoking the compiler in the XL C/C++ Compiler Reference and -std
(-qlanglvl) in the XL C/C++ Compiler Reference.

© Copyright IBM Corp. 2015 1

Extensions to C++ to support C99 and C11 standard features

The C++ language specification does not include many of the features specified in
the C99 and C11 language standards. To promote compatibility and portability
between C++ and C99 or between C++ and C11, the XL C++ compiler enables
many of the C99 and C11 features that are supported by the XL C compiler.
Because these features extend the C++ standard, they are considered extensions to
the base language. In this reference, unless the text is marked to indicate that a
feature is supported only in C, C99, or C11, C99 and C11 features also apply to
C++. A complete list of C99 and C11 features supported in XL C++ is provided in
“Extensions for C99 compatibility” on page 41 and “Extensions for C11
compatibility” on page 41.

Extensions related to GNU C and GNU C++

Certain language extensions that correspond to GNU C and GNU C++ features are
implemented to facilitate portability. These include extensions to C89, C99, C++98,
C++03, and C++11. Throughout this information, the text indicates the IBM
extensions that have been implemented for compatibility with GNU C and GNU
C++; a complete list of these is provided in “Extensions for GNU C compatibility”
on page 6 for both C and C++, “Extensions for GNU C compatibility” on page 38
for C only, and “Extensions for GNU C++ compatibility” on page 42 for C++ only.

2 XL C/C++: Language Reference

Chapter 2. IBM extension features

This chapter describes features that are IBM extensions to the standard language
specifications.

Note: In a topic that describes both standard language elements and IBM
extension features, the IBM extension information is indicated in one of the
following ways. If there are none of these indicators in the topic, the entire topic
describes an IBM extension.
v Enclosed in icons IBM

and IBM

v Marked with (IBM extension) in the section title
v Specified as IBM extension in main text

IBM extension features for both C and C++
This section describes IBM extension features for both the C and C++ languages
that are listed in the following categories. The topic of the extension feature is
appended under only one category if it belongs to more than one category; in the
other categories that the feature belongs to, only a link to the feature is provided.
v “General IBM extensions”
v “Extensions for GNU C compatibility” on page 6

General IBM extensions
The following feature is disabled by default at all language levels. It also can be
enabled or disabled by an individual option.

Table 4. General IBM extensions with individual option controls

Language feature Discussed in: Individual option controls

Extra text after #endif or
#else

“Extension of #endif and
#else” on page 4

-Wno-extra-tokens

C The following feature is enabled by default with the xlc, cc and c99
invocation commands when the extc99, stdc99, extc1x, or stdc11 language level is
not in effect. C

C++ The following feature is enabled with the -qlanglvl=extended option.
C++

Table 5. General IBM extensions

Language feature Discussed in:

Non-C99 IBM long long extension “Types of integer literals that are supported in
pre-C99 and pre-C++11 modes” on page 4

C The following feature is enabled by default with the xlc, cc and c99
invocation commands when the extc99, stdc99, extc1x, or stdc11 language level is
in effect. C

C++ The following feature is enabled with the -qlanglvl=extended0x option.
C++

© Copyright IBM Corp. 2015 3

Table 6. General IBM extensions

Language feature Discussed in:

C99 long long feature with the associated
IBM extensions

Types of integer literals in C99 and C++11

Extension of #endif and #else
The C and C++ language standards do not support extra text after #endif or #else.
XL C/C++ compiler complies with the standards. When you port code from a
compiler that supports extra text after #endif or #else, you can specify option
-Wno-extra-tokens to suppress the warning message that is emitted.

One use is to comment on what is being tested by the corresponding #if or
#ifdef. For example:
#ifdef MY_MACRO
...
#else MY_MACRO not defined
...
#endif MY_MACRO

In this case, if you want the compiler to be silent about this deviation from the
standards, you can suppress the message by specifying option -Wno-extra-tokens.

Integer literals

The long long features

There are two long long features:
v the C99 long long feature
v the non-C99 long long feature

Note: The syntax of integer literals is the same for both of the long long features.

Types of integer literals that are supported in pre-C99 and pre-C++11
modes

The following table lists the integer literals and shows the possible data types
when the C99 long long feature is not enabled.

Table 7. Types of integer literals that are supported in pre-C99 and pre-C++11 modes1

Representation Suffix Possible data types

int unsigned
int

long
int

unsigned long
int

IBM

long long
int

IBM

unsigned
long long
int

Decimal None + + +2 + +

Octal, Hex None + + + + + +

All u or U + + +

Decimal l or L + + + +

Octal, Hex l or L + + + +

4 XL C/C++: Language Reference

Table 7. Types of integer literals that are supported in pre-C99 and pre-C++11
modes1 (continued)

Representation Suffix Possible data types

All Both u
or U
and l
or L

+ +

Decimal ll
or LL

+ +

Octal, Hex ll or
LL

+ +

All Both u
or U
and ll
or LL

+

Note:

1. When none of the long long features are enabled, types of integer literals include all
the types in this table except the last two columns.

2. IBM The unsigned long int type is not required here in the C++98 and C++03
standards. The C++ compiler includes the type in the implementation for compatibility
purposes only.

Types of integer literals that are supported in C99 and C++11

The following example demonstrates the different behaviors of the compiler when
you enable different long long behaviors:
#include <stdio.h>

int main(){
if(0>3999999999-4000000000){

printf("C99 long long");
}
else{

printf("non-C99 IBM long long extension");
}

}

In this example, the values 3999999999 and 4000000000 are too large to fit into the
32-bit long int type, but they can fit into either the unsigned long or the long
long int type. If you enable the C99 long long feature, the two values have the
long long int type, so the difference of 3999999999 and 4000000000 is negative.
Otherwise, if you enable the non-C99 IBM long long extension, the two values
have the unsigned long type, so the difference is positive.

When both the C99 and non-C99 long long features are disabled, integer literals
that have one of the following suffixes cause a severe compile-time error:
v ll or LL
v Both u or U and ll or LL

C++11 To strictly conform to the C++11 standard, the compiler introduces the
extended integer safe behavior to ensure that a signed value never becomes an
unsigned value after a promotion. After you enable this behavior, if a decimal
integer literal that does not have a suffix containing u or U cannot be represented
by the long long int type, the compiler issues a warning message to indicate that

Chapter 2. IBM extension features 5

the value of the literal is out of range. You can change the severity of the message
from warning to error with the -Werror=implicitly-unsigned-literal option. The
extended integer safe behavior is the only difference between the C99 long long
feature with the associated IBM extensions and the C99 long long feature. C++11

The following table lists the integer literals and shows the possible data types
when the C99 long long feature is enabled.

Table 8. Types of integer literals that are supported in C99 and C++11

Representation Suffix Possible data types

int unsigned
int

long int unsigned
long int

long
long int

unsigned
long
long int

Decimal None + + + +1, 2

Octal, Hex None + + + + + +

All u or U + + +

Decimal l or L + + +1, 2

Octal, Hex l or L + + + +

All Both u or U
and l or L

+ +

Decimal ll or LL + +1, 2

Octal, Hex ll or LL + +

All Both u or U
and ll or
LL

+

Note:

1. C++11 The compiler does not support this type if the extended integer safe behavior
is enabled.

2. IBM All integer literals can be represented by the unsigned long long int type if
they can fit into this type. A decimal literal without a u or U in the suffix is represented
by the unsigned long long int type if both of the following conditions are satisfied. In
this case, the compiler generates a message to indicate that the value of the literal is too
large for any signed integer type.

v The value of the literal can fit into the unsigned long long int type.

v The value cannot fit into any of the possible data types that are not marked as an
IBM extension in the table.

Related reference:

See -std (-qlanglvl) in the XL C/C++ Compiler Reference

Extensions for GNU C compatibility
The following features are enabled by default at all language levels:

Table 9. Default IBM XL C and C++ extensions for GNU C compatibility

Language feature Discussed in:

__alignof__ operator N/A

__attribute__ keyword “Variable attributes” on page 30, “Function
attributes” on page 8

__complex__ keyword N/A

6 XL C/C++: Language Reference

Table 9. Default IBM XL C and C++ extensions for GNU C compatibility (continued)

Language feature Discussed in:

__extension__ keyword N/A

__imag__ and __real__ complex type
operators

N/A

__restrict__ keyword N/A

__thread storage class specifier “The __thread storage class specifier” on
page 26

__typeof__ keyword “The typeof keyword” on page 27

#include_next preprocessor directive “The #include_next directive” on page 25

#warning preprocessor directive N/A

Alternate keywords N/A

asm inline assembly-language statements “Inline assembly statements” on page 19

asm labels N/A

Complex literal suffixes N/A

Computed goto statements N/A

Dollar signs in identifiers “Characters in identifiers” on page 8

Function attributes “Function attributes” on page 8

Initialization of static variables by
compound literals

“Compound literal expressions” on page 8

Labels as values N/A

Postfix and unary operators on complex
types (increment, decrement, and complex
conjugation)

N/A

Statements and declarations in expressions
(statement expressions)

N/A

Static initialization of flexible array members
of aggregates

“Flexible array members of structures” on
page 8

Structures with flexible array members being
members of another structure

“Flexible array members of structures” on
page 8

Type attributes “Type attributes” on page 27

Variable attributes “Variable attributes” on page 30

Variadic macro extensions “Variadic macros” on page 37

Zero-extent arrays N/A

C The following features are enabled by default when you compile with the
xlc invocation command or the -qlanglvl=extc99 | extc89 | extc1x | extended
options. C

C++ The following features are enabled by default at all C++ language levels:
C++

Table 10. IBM XL C and C++ extensions for GNU C compatibility

Language feature Discussed in:

typeof keyword “The typeof keyword” on page 27

Visibility function attribute “visibility” on page 19

Chapter 2. IBM extension features 7

Table 10. IBM XL C and C++ extensions for GNU C compatibility (continued)

Language feature Discussed in:

Visibility variable attribute “The visibility variable attribute” on page 36

Characters in identifiers
The dollar sign can appear in identifier names at all language levels. When you
compile with either the -fno-dollars-in-identifiers or the -qnodollar option, the
compiler issues error messages for dollar signs in identifier names.

Other specialized identifiers, such as characters in national character sets, can also
be allowed to appear in an identifier depending on compiler options.

Compound literal expressions
For compatibility with GNU C, a static variable can be initialized with a
compound literal of the same type, provided that all the initializers in the
initializer list are constant expressions.

Flexible array members of structures

To be compatible with GNU C/C++, the XL C/C++ compiler extends Standard C
and C++, to ease the restrictions on flexible array members and allow the
following situations:
v Structures containing flexible array members can be members of other structures.
v C Flexible array members can be statically initialized only if either of the

following two conditions is true:
– The flexible array member is the last member of the structure, for example:

struct f {
int a;
int b[];

} f1 = {1,{1,2,3}}; // Fine.

struct a {
int b;
int c[];
int d[];

} e = { 1,{1,2},3}; // Error, c is not the last member
// of structure a.

– Flexible array members are contained in the outermost structure of nested
structures. Members of inner structures cannot be statically initialized, for
example:
struct b {
int c;
int d[];

};

struct c {
struct b f;
int g[];

} h ={{1,{1,2}},{1,2}}; // Error, member d of structure b is
// in the inner nested structure.

C

Function attributes
Function attributes are extensions implemented to enhance the portability of
programs developed with GNU C. Specifiable attributes for functions provide

8 XL C/C++: Language Reference

explicit ways to help the compiler optimize function calls and to instruct it to
check more aspects of the code. Others provide additional functionality.

IBM XL C/C++ compiler implements a subset of the GNU C function attributes.
For a particular function attribute that is not implemented, the compiler issues
diagnostics and ignores the attribute specification.

A function attribute is specified with the keyword __attribute__ followed by the
attribute name and any additional arguments the attribute name requires. A
function __attribute__ specification is included in the declaration or definition of
a function. The syntax takes the following forms:

Function attribute syntax: function definition (form 1)

►► return_type __attribute__ ▼

,

((attribute name))
__ attribute_name __

►

► function_declarator ►◄

Function attribute syntax: function definition (form 2)

►► __attribute__ ►

► ▼

,

((attribute_name)) return_type function_declarator ;
__ attribute_name __

►◄

Function attribute syntax: function definition (form 3)

►► return_type function_declarator __attribute__ ►

► ▼

,

((attribute_name)) ;
__ attribute_name __

►◄

You can specify attribute_name with or without leading and trailing double
underscore characters; however, using the double underscore characters reduces
the likelihood of name conflicts with macros of the same name. These language
features are collectively available when compiling in any of the extended language
levels.

The following function declarations are all valid:
int __attribute__((attribute_name)) func(int i); //Form 1
__attribute__((attribute_name)) int func(int); //Form 2
int func() __attribute__((attribute_name)); //Form 3

Chapter 2. IBM extension features 9

C++ The attribute specification must follow any exception declaration that
might present for the function. For example:
int func(int) throw(int) __attribute__((pure));

C++

The following function attributes are supported:
v “alias”
v “always_inline” on page 11
v “const” on page 11
v “constructor and destructor” on page 12
v “format” on page 13
v “format_arg” on page 14
v “gnu_inline” on page 14
v “malloc” on page 15
v “noinline” on page 16
v “noreturn” on page 16
v “pure” on page 16
v “The section function attribute” on page 17
v “used” on page 17
v “weak” on page 17
v “weakref” on page 18
v “visibility” on page 19
Related reference:
“Variable attributes” on page 30
“Type attributes” on page 27

alias:
The alias function attribute causes the function declaration to appear in the object
file as an alias for another symbol. This language feature provides a technique for
coping with duplicate or cumbersome names.

alias function attribute syntax

►► __attribute__ ((alias ("original_function_name")))
__alias__

►◄

C The aliased function can be defined after the specification of its alias with
this function attribute. C also allows an alias specification in the absence of a
definition of the aliased function in the same compilation unit.

The following code declares func1 to be an alias for __func2:
void __func2(){ /* function body */ }
void func1() __attribute__((alias("__func2")));

C

C++ The original_function_name must be the mangled name.

The following code declares func1 to be an alias for __func2

10 XL C/C++: Language Reference

extern "C" __func2(){ /* function body */ }
void func1() __attribute__((alias("__func2")));

C++

The compiler does not check for consistency between the declaration of func1 and
definition of __func2. Such consistency remains the responsibility of the
programmer.
Related reference:
“The weak variable attribute” on page 36

always_inline:
The always_inline function attribute instructs the compiler to inline a function.
This function can be inlined when all of the following conditions are satisfied:
v The function is an inline function that satisfies any of the following conditions:

– The function is specified with the inline or __inline__ keyword.
– The option -qinline+<function_name> is specified, where function_name is the

name of the function to be inlined.
– C++ The function is defined within a class declaration. C++

v The function is not specified with the noinline or __noinline__ attribute.
v The number of functions to be inlined does not exceed the limit of inline

functions that can be supported by the compiler.

always_inline function attribute syntax

►► __attribute__ ((always_inline))
__always_inline__

►◄

The noinline attribute takes precedence over the always_inline attribute. The
always_inline attribute takes precedence over inlining compiler options only if
inlining is enabled. The always_inline attribute is ignored if inlining is disabled.

C++ The compiler might not inline a virtual function even when the function
is specified with the always_inline attribute. The compiler will not issue an
informational message to indicate that a virtual function is not inlined.

When you specialize a function template that is specified with the always_inline
attribute, this attribute is propagated to the template specification. If you apply the
always_inline attribute to the template specification, the duplicate always_inline
attribute is ignored. See the following example.
template<class T> inline __attribute__((always_inline)) T test(){

return (T)0;
}

// The duplicate attribute "always_inline" is ignored.
template<> inline __attribute__((always_inline)) float test<float>(){

return (float)0;
}

C++

Related reference:
“noinline” on page 16

const:

Chapter 2. IBM extension features 11

The const function attribute allows you to tell the compiler that the function can
safely be called fewer times than indicated in the source code. The language
feature provides you with an explicit way to help the compiler optimize code by
indicating that the function does not examine any values except its arguments and
has no effects except for its return value.

const function attribute syntax

►► __attribute__ ((const))
__const__

►◄

The following kinds of functions should not be declared const:
v A function with pointer arguments which examines the data pointed to.
v A function that calls a non-const function.

Note: GNU C has a non-attribute method that uses the const keyword to achieve
the const function attribute, but the XL C/C++ compiler does not support this
method.
Related reference:

See -qisolated_call in the XL C/C++ Compiler Reference

constructor and destructor:
The constructor and destructor function attributes provide the ability to write a
function that initializes data or releases storage that is used implicitly during
program execution. A function to which the constructor function attribute has
been applied is called automatically before execution enters main. Similarly, a
function to which the destructor attribute has been applied is called automatically
after calling exit or upon completion of main.

When the constructor or destructor function is called automatically, the return
value of the function is ignored, and any parameters of the function are undefined.

constructor and destructor function attribute syntax

►► __attribute__ ((constructor))
destructor
__constructor__
__destructor__

►◄

A function declaration containing a constructor or destructor function attribute
must match all of its other declarations.

deprecated:
With the deprecated function attribute, you can declare a function as deprecated.

deprecated function attribute syntax

►► __attribute__ ((deprecated))
__deprecated__

►◄

If a function that is specified with the deprecated attribute is called, the compiler
issues a warning message to indicate that the function is not recommended to be
used. Warning messages are issued only for invocations but not declarations of
deprecated functions. See the following example.

12 XL C/C++: Language Reference

int func() __attribute__((deprecated));

int main(){
int i = func(); // warning: ’func’ is deprecated
int func();
return i;

}

int func(){
return 1;

}

Related reference:
“The deprecated type attribute” on page 29
“The deprecated variable attribute” on page 33

format:
The format function attribute provides a way to identify user-defined functions
that take format strings as arguments so that calls to these functions will be
type-checked against a format string, similar to the way the compiler checks calls
to the functions printf, scanf, strftime, and strfmon for errors.

format function attribute syntax

►► ▼

,

__attribute__ ((format (printf , string_index , first_to_check)))
__format__ scanf

strftime
strfmon
__printf__
__scanf__
__strftime__
__strfmon__

►◄

where

string_index
Is a constant integral expression that specifies which argument in the
declaration of the user function is the format string argument. C++ In
C++, the minimum value of string_index for nonstatic member functions is
2 because the first argument is an implicit this argument. This behavior is
consistent with that of GNU C++. C++

first_to_check
Is a constant integral expression that specifies the first argument to check
against the format string. If there are no arguments to check against the
format string (that is, diagnostics should only be performed on the format
string syntax and semantics), first_to_check should have a value of 0. For
strftime-style formats, first_to_check is required to be 0.

It is possible to specify multiple format attributes on the same function, in which
case, all apply.
void my_fn(const char* a, const char* b, ...)

__attribute__((__format__(__printf__,1,0), __format__(__scanf__,2,3)));

It is also possible to diagnose the same string for different format styles. All styles
are diagnosed.
void my_fn(const char* a, const char* b, ...)

__attribute__((__format__(__printf__,2,3),
__format__(__strftime__,2,0),
__format__(__scanf__,2,3)));

Chapter 2. IBM extension features 13

format_arg:
The format_arg function attribute provides a way to identify user-defined
functions that modify format strings. Once the function is identified, calls to
functions like printf, scanf, strftime, or strfmon, whose operands are a call to the
user-defined function can be checked for errors.

format_arg function attribute syntax

►► __attribute__ ((format_arg (string_index)))
__format_arg__

►◄

where string_index is a constant integral expression that specifies which argument
is the format string argument, starting from 1. C++ For non-static member
functions in C++, string_index starts from 2 because the first parameter is an
implicit this parameter. C++

It is possible to specify multiple format_arg attributes on the same function, in
which case, all apply.
extern char* my_dgettext(const char* my_format, const char* my_format2)

__attribute__((__format_arg__(1))) __attribute__((__format_arg__(2)));

printf(my_dgettext("%","%"));
//printf-style format diagnostics are performed on both "%" strings

gnu_inline: The gnu_inline attribute instructs the compiler to modify the inlining
behavior of a function. When this function attribute is used, the compiler imitates
the GNU legacy inlining extension to C.

This function attribute is only enabled if used in conjunction with an inline
keyword (__inline__, inline, __inline, etc.).

gnu_inline function attribute syntax

►► inline __attribute__ ((gnu_inline)) ►◄

Note: The behavior of the gnu_inline function attribute is the same when used in
conjunction with either the inline or __inline__ keywords.

The semantics of the GNU legacy inlining extension to C are as follows:

C

extern gnu_inline:
extern inline __attribute__((gnu_inline)) func() {...};

This definition of func is used only for inlining. It is not compiled as a
standalone function.

static gnu_inline:
static inline __attribute__((gnu_inline)) func() {...};

If the function is generated, it is generated with internal linkage.

plain gnu_inline:
inline __attribute__((gnu_inline)) func() {...};

14 XL C/C++: Language Reference

The definition is used for inlining when possible. It is compiled as a
standalone function (emitted as a strong definition) and emitted with
external linkage.

C

C++

extern gnu_inline:
[extern] inline __attribute__((gnu_inline)) func() {...};

This definition of func is used only for inlining. It is not compiled as a
standalone function. Note that member functions (including static ones and
ones with no linkage) marked with function attribute gnu_inline has
"extern" behavior.

static gnu_inline:
static inline __attribute__((gnu_inline)) func() {...};

If the function is generated, it is generated with internal linkage. Note that
static behavior only applies to non-member static functions.

C++

The gnu_inline attribute can be specified inside double parentheses with keyword
__attribute__ in a function declaration. See the following example.

inline int func() __attribute__((gnu_inline));

As with other GCC function attributes, the double underscores on the attribute
name are optional. The gnu_inline attribute should be used with a function that is
also declared with the inline keyword.

malloc: With the function attribute malloc, you can instruct the compiler to treat a
function as if any non-NULL pointer it returns cannot alias any other valid
pointers. This type of function (such as malloc and calloc) has this property, hence
the name of the attribute. As with all supported attributes, malloc will be accepted
by the compiler without requiring any particular option or language level.

The malloc function attribute can be specified inside double parentheses via
keyword __attribute__ in a function declaration.

malloc function attribute syntax

►► __attribute__ ((malloc))
__malloc__

►◄

As with other GCC function attributes, the double underscores on the attribute
name are optional.

Note:

v Do not use this function attribute unless you are sure that the pointer returned
by a function points to unique storage. Otherwise, optimizations performed
might lead to incorrect behavior at run time.

v If the function does not return a pointer or C++ reference return type but it is
marked with the function attribute malloc, a warning is emitted, and the
attribute is ignored.

Chapter 2. IBM extension features 15

Example

A simple case that should be optimized when attribute malloc is used:
#include <stdlib.h>
#include <stdio.h>
int a;
void* my_malloc(int size) __attribute__ ((__malloc__))
{

void* p = malloc(size);
if (!p) {
printf("my_malloc: out of memory!\n");
exit(1);

}
return p;

}
int main() {

int* x = &a;
int* p = (int*) my_malloc(sizeof(int));
*x = 0;
*p = 1;
if (*x) printf("This printf statement to be detected as unreachable

and discarded during compilation process\n");
return 0;

}

noinline:
The noinline function attribute prevents the function to which it is applied from
being inlined, regardless of whether the function is declared inline or non-inline.
The attribute takes precedence over inlining compiler options, the inline keyword,
and the always_inline function attribute.

noinline function attribute syntax

►► __attribute__ ((noinline))
__noinline__

►◄

Other than preventing inlining, the attribute does not remove the semantics of
inline functions.

noreturn:
The noreturn function attribute allows you to indicate to the compiler that the
function will not return the control to its caller. The language feature provides the
programmer with another explicit way to help the compiler optimize code and to
reduce false warnings for uninitialized variables.

The return type of the function should be void.

noreturn function attribute syntax

►► __attribute__ ((noreturn))
__noreturn__

►◄

Registers saved by the calling function may not necessarily be restored before
calling the nonreturning function.

pure:
The pure function attribute allows you to declare a function that can be called
fewer times than what is literally in the source code. Declaring a function with the

16 XL C/C++: Language Reference

attribute pure indicates that the function has no effect except a return value that
depends only on the parameters, global variables, or both.

pure function attribute syntax

►► __attribute__ ((pure))
__pure__

►◄

Related reference:

See -qisolated_call in the XL C/C++ Compiler Reference

The section function attribute:
The section function attribute specifies the section in the object file in which the
compiler should place its generated code. The language feature provides the ability
to control the section in which a function should appear.

section function attribute syntax

►► __attribute__ ((section ("section_name")))
__section__

►◄

where section_name is a string literal.

Each defined function can reside in only one section. The section indicated in a
function definition should match that in any previous declaration. The section
indicated in a function definition cannot be overwritten, whereas one in a function
declaration can be overwritten by a later specification. Moreover, if a section
attribute is applied to a function declaration, the function will be placed in the
specified section only if it is defined in the same compilation unit.
Related reference:
“The section variable attribute” on page 34

used: When a function is referenced only in inline assembly, you can use the used
function attribute to instruct the compiler to emit the code for the function even if
it appears that the function is not referenced.

The used function attribute can be specified inside double parentheses via keyword
__attribute__ in a function declaration, for example, int foo() __attribute__
((__used__)); As with other GCC function attributes, the double underscores on
the attribute name are optional.

used function attribute syntax

►► __attribute__ ((used))
__used__

►◄

If the function attribute gnu_inline is specified in such a way that the function is
discarded, and is specified together with the function attribute used, the
gnu_inline attribute wins, and the function definition is discarded.

weak:
The weak function attribute causes the symbol resulting from the function
declaration to appear in the object file as a weak symbol, rather than a global one.
The language feature provides the programmer writing library functions with a

Chapter 2. IBM extension features 17

way to allow function definitions in user code to override the library function
declaration without causing duplicate name errors.

weak function attribute syntax

►► __attribute__ ((weak))
__weak__

►◄

Related reference:
“alias” on page 10

weakref: weakref is an attribute attached to function declarations which must
specify a target name. The target name might also be specified through the
attribute alias in any declaration of the function.

References to the weakref function are converted into references of the target name.
If the target name is not defined in the current translation unit and it is not
referenced directly or otherwise in a way that requires a definition of the target, for
example if it is only referenced by using weakref functions, the reference is weak.
In the presence of a definition of the target in the current translation unit,
references to a weakref function resolve directly to said definition. The weakref
attribute does not otherwise affect definitions of the target. A weakref function
must have internal linkage.

The weakref attribute, as with other GCC attributes, can be expressed in a pre-fix
or post-fix syntax:

pre-fix syntax
static __attribute__((weakref("bar"))) void foo(void);

post-fix syntax
static void foo(void) __attribute__((weakref("bar")));

Functions with weakref or alias attributes may refer to other such functions. The
name referred to is that of the last, i.e., non-weakref and non-alias target.

Rules

If a weakref function is declared without the keyword static, an error message is
emitted when the compiler is configured with GCC version 4.3 or later.

The target name specified in the weakref function declaration cannot directly or
indirectly point to itself.

Using the weakref attribute without providing a target name is not recommended.

If a body is provided in a weakref function declaration with a pre-fix syntax, the
attribute is ignored. A warning message reporting this situation will be emitted.

Examples

The following examples illustrates various declarations of weakref functions:
static void foo() __attribute__((weakref("bar")));

void foo() __attribute__((weakref("bar")));

static void foo() __attribute__((weakref,alias("bar")));

static void foo() __attribute__((alias("bar"),weakref));

18 XL C/C++: Language Reference

visibility:
The visibility function attributes describe whether and how a function defined in
one module can be referenced or used in other modules. By using this feature, you
can make a shared library smaller and decrease the possibility of symbol collision.
For details, see Using visibility attributes in the XL C/C++ Optimization and
Programming Guide.

visibility function attribute syntax

►► __attribute__ ((visibility ("default")))
__visibility__ "protected"

"hidden"
"internal"

►◄

Example

In the following example, the visibility attribute of function void f(int i, int j)
is hidden:
void __attribute__((visibility("hidden"))) f(int i, int j);

Related reference:
“The visibility variable attribute” on page 36
“The visibility type attribute” on page 43
“The visibility namespace attribute” on page 42

See Using visibility attributes in the XL C/C++ Optimization and Programming
Guide

See -shared (-qmkshrobj) in the XL C/C++ Compiler Reference

Inline assembly statements
Under extended language levels, the compiler provides support for embedded
assembly code fragments among C and C++ source statements. This extension has
been implemented for use in general system programming code, and in the
operating system kernel and device drivers, which were originally developed with
GNU C.

The keyword asm stands for assembly code. When strict language levels are used
in compilation, the C compiler treats asm as a regular identifier and reserves __asm
and __asm__ as keywords. The C++ compiler always recognizes the asm, __asm, and
__asm__ keywords.

The syntax is as follows:

asm statement syntax — statement in local scope

►► asm
__asm
__asm__

volatile
►

► (code_format_string)
:

output :
input :

clobbers

►◄

Chapter 2. IBM extension features 19

input:

▼

,

constraint (C_expression)
modifier

output:

▼

,

modifier constraint (C_expression)

volatile
The qualifier volatile instructs the compiler to perform only minimal
optimizations on the assembly block. The compiler cannot move any
instructions across the implicit fences surrounding the assembly block. See
Example 1 for detailed usage information.

code_format_string
The code_format_string is the source text of the asm instructions and is a
string literal similar to a printf format specifier.

Operands are referred to in the %integer format, where integer refers to the
sequential number of the input or output operand. See Example 1 for
detailed usage information.

To increase readability, each operand can be given a symbolic name
enclosed in brackets. In the assembler code section, you can refer to each
operand in the %[symbolic_name] format, where the symbolic_name is
referenced in the operand list. You can use any name, including existing C
or C++ symbols, because the symbolic names have no relation to any C or
C++ identifiers. However, no two operands in the same assembly
statement can use the same symbolic name. See Example 2 for detailed
usage information.

output
The output consists of zero, one or more output operands, separated by
commas. Each operand consists of a constraint(C_expression) pair. The
output operand must be constrained by the = or + modifier (described
below), and, optionally, by an additional % or & modifier.

input The input consists of zero, one or more input operands, separated by
commas. Each operand consists of a constraint(C_expression) pair.

clobbers

clobbers is a comma-separated list of register names enclosed in double
quotes. If an asm instruction updates registers that are not listed in the
input or output of the asm statement, the registers must be listed as
clobbered registers. The following register names are valid :

r0 to r15
General purpose registers

In addition to the register names, cc and memory can also be used in the list
of clobbered registers. The usage information of cc and memory is listed as
follows:

20 XL C/C++: Language Reference

cc Add cc to the list of clobbered registers if assembler instructions
can alter the condition code.

memory

Add memory to the clobber list if assembler instructions can change
a memory location in an unpredictable fashion. The memory clobber
ensures that the compiler does not to move the assembler
instruction across other memory references and ensures that any
data that is used after the completion of the assembly statement is
valid.

However, the memory clobber can result in many unnecessary
reloads, reducing the benefits of hardware prefetching. Thus, the
memory clobber can impose a performance penalty and should be
used with caution.

modifier

The modifier can be one of the following operators:

= Indicates that the operand is write-only for this instruction. The
previous value is discarded and replaced by output data. See
Example 3 for detailed usage information.

+ Indicates that the operand is both read and written by the
instruction. See Example 4 for detailed usage information.

& Indicates that the operand may be modified before the instruction
is finished using the input operands; a register that is used as
input should not be reused here.

% Declares the instruction to be commutative for this operand and
the following operand. This means that the order of this operand
and the next may be swapped when generating the instruction.
This modifier can be used on an input or output operand, but
cannot be specified on the last operand.

constraint

The constraint is a string literal that describes the kind of operand that is
permitted, one character per constraint. The following constraints are
supported:

a Use an address register (general purpose register except r0).

d Use a data register that is an arbitrary general purpose register.
This constraint is the same as the r constraint.

g Use a memory or immediate operand.

i Use an immediate integer or string literal operand.

m Use a memory operand supported by the machine. You can use
this constraint for operands of the form D(R), where D is a
displacement and R is a register. See Example 5 for detailed usage
information.

n Use an immediate integer.

o Use a memory operand that is offsetable.

r Use a general register. See Example 3 for detailed usage
information.

s Use a string literal operand.

Chapter 2. IBM extension features 21

v Use a vector register.

0, 1, ...8, 9
A matching constraint. Allocate the same register in output as in
the corresponding input.

I, J, K Integer constant values

Q, R, S, T
Memory operands. They are treated the same as constraint m.

C_expression

The C_expression is a C or C++ expression whose value is used as the
operand for the asm instruction. Output operands must be modifiable
lvalues. The C_expression must be consistent with the constraint specified
on it. For example, if i is specified, the operand must be an integer
constant number.

Related reference:

See -fstrict-aliasing (-qalias=ansi) in the XL C/C++ Compiler Reference

Supported and unsupported constructs:
Supported constructs

The inline assembly statements support the following constructs:
v All the instruction statements listed in the Assembler Language Reference
v All extended instruction mnemonics
v Label definitions
v Branches to labels

Unsupported constructs

The inline assembly statements do not support branches between different asm
blocks.

In addition, some constraints originating from the GNU compiler are not
supported, but are tolerated where it is possible.

Restrictions on inline assembly statements:
The following restrictions are on the use of inline assembly statements:
v The assembler instructions must be self-contained within an asm statement. The

asm statement can only be used to generate instructions. All connections to the
rest of the program must be established through the output and input operand
list.

v Referencing an external symbol directly without going through the operand list
is not supported.

v Assembler instructions requiring a pair of registers are not specifiable by any
constraints, and are therefore not supported. For example, you cannot use the %f
constraint for a long double operand.

v long long variables cannot be used in the output or input operand of the inline
asm statement in 31 bit mode.

Related reference:

See -fasm (-qasm) in the XL C/C++ Compiler Reference

Examples of inline assembly statements:

22 XL C/C++: Language Reference

Example 1: The following example illustrates the usage of the volatile keyword.
#include <stdio.h>
#define TRUE 1
#define FALSE 0

inline int acquireLock(int *lock){
int getLockStatus = FALSE;
int acquiredLock = TRUE;
// The lock is the leftmost bit that is located at the location pointed to by lock
__asm__ volatile("TS %1\n"

// If the condition code of TS is not 0, you failed to acquire the log.
"BRC 0x7,A\n"
// Coming here means you have acquired the lock, set return code TRUE
"LR %0,%2\n"
// Return FALSE due to failure to acquire the lock
"A:\n"
:"=r"(getLockStatus)
:"m"(*lock), "r"(acquiredLock)
//No clobber to be specified
:
);

return getLockStatus;
}

int main(){
int lock_val = 0;
int *lck = &lock_val;
// Because lock_val is 0, it is available
if (acquireLock(lck)) {

printf ("Acquired lock as expected\n");
} else {

printf ("Some thing wrong... Cannot acquire lock\n");
}

// The lock has been acquired. It is no longer available.
if (acquireLock(lck)) {

printf ("Some thing wrong. Lock is no longer available and must not be acquired\n");
} else {

printf ("Cannot acquire lock as expected\n");
}

return 0;
}

In this example, %0 refers to the first operand "=r"(getLockStatus), %1 refers to the
second operand "m"(*lock), and %2 refers to the third operand "r"(acquiredLock).

The assembly statement uses a lock to control access to the shared storage; no
instruction can access the shared storage before acquiring the lock.

The volatile keyword implies fences around the assembly instruction group, so
that no assembly instructions can be moved out of or around the assembly block.

Without the volatile keyword, the compiler can move the instructions around for
optimization. This might cause some instructions to access the shared storage
without acquiring the lock.

It is unnecessary to use the memory clobber in this assembly statement, because the
instructions do not modify memory in an unexpected way. If you use the memory
clobber, the program is still functionally correct. However, the memory clobber
results in many unnecessary reloads, imposing a performance penalty.

Chapter 2. IBM extension features 23

Example 2: The following example illustrates the use of the symbolic names for
input and output operands.
int main(){

int sum = 0, one=1, two = 2;
__asm ("AR %[result], %[first]\n"

"AR %[result], %[second]\n"
:[result] "+r"(sum)
:[first] "r"(one),
[second] "r"(two)
);

return sum == 3 ? 0 : 1;
}

In this example, %[result] refers to the output operand variable sum, %[first]
refers to the input operand variable one, and %[second] refers to the input operand
variable two.

Example 3: The following example shows the usage of the = modifier and the r
constraint.
#include <stdio.h>

int main() {

int res = 25;
int newRes = 55;
asm("LR %0,%1\n"

:"=r"(res)
:"r"(newRes)
);

return res;

}

The LR instruction places the content of the second general purpose register to the
first register. The %0 and %1 operands are substituted by the C expressions in the
output/input operand fields.

The output operand uses the = modifier to indicate that a modifiable operand is
required; it uses the r constraint to indicate that a general purpose register is
required. Likewise, the r constraint in the input operand indicates that a general
purpose register is required. Within these restrictions, the compiler is free to choose
any registers to substitute for %0 and %1.

Example 4: The following example shows the usage of the + modifier and the K
constraint.
#include <stdio.h>

int main() {
int res = 25;
asm(" AHI %0,%1\n"

:"+r"(res)
: "K"(30)
);

return res;
}

This assembly statement adds operand %0 and operand %1, and writes the result to
operand %0. The output operand uses the + modifier to indicate that operand %0
can be read and written by the instruction. The K constraint indicates that the value
loaded to operand %1 must be an integer constant value.

24 XL C/C++: Language Reference

Example 5: The following example shows the usage of the m constraint.
int main()
{

int val=40, dest;
asm(" ST %1,%0\n"

:"=m"(dest)
:"r"(val)
);

return 40 == dest ? 55 :66;
}

In this example, the syntax of the instruction ST is RS,D(RA), where D is a
displacement and R is a register. D+RA forms an effective address, which is
calculated from D(RA). By using constraint m, you do not need to manually
construct effective addresses by specifying the register and displacement separately.

The #include_next directive
The preprocessor directive #include_next behaves like the #include directive,
except that it specifically excludes the directory of the including file from the paths
to be searched for the named file. All search paths up to and including the
directory of the including file are omitted from the list of paths to be searched for
the included file. This allows you to include multiple versions of a file with the
same name in different parts of an application; or to include one header file in
another header file with the same name (without the header including itself
recursively). Provided that the different file versions are stored in different
directories, the directive ensures you can access each version of the file, without
requiring that you use absolute paths to specify the file name.

#include_next directive syntax

►► # include_next " file_name "
file_path

< file_name >
file_path

►◄

The directive must only be used in header files, and the file specified by the
file_name must be a header file. There is no distinction between the use of double
quotation marks and angle brackets to enclose the file name.

As an example of how search paths are resolved with the #include_next directive,
assume that there are two versions of the file t.h: the first one, which is included
in the source file t.c, is located in the subdirectory path1; the second one, which is
included in the first one, is located in the subdirectory path2. Both directories are
specified as include file search paths when t.c is compiled.
/* t.c */

#include "t.h"

int main()
{
printf(", ret_val);
}

/* t.h in path1 */

#include_next "t.h"

int ret_val = RET;

Chapter 2. IBM extension features 25

/* t.h in path2 */

#define RET 55;

The #include_next directive instructs the preprocessor to skip the path1 directory
and start the search for the included file from the path2 directory. This directive
allows you to use two different versions of t.h and it prevents t.h from being
included recursively.

The __thread storage class specifier
The __thread storage class marks a static variable as having thread-local storage
duration. This means that, in a multithreaded application, a unique instance of the
variable is created for each thread that uses it, and destroyed when the thread
terminates. The __thread storage class specifier can provide a convenient way of
assuring thread-safety: declaring an object as per-thread allows multiple threads to
access the object without the concern of race conditions, while avoiding the need
for low-level programming of thread synchronization or significant program
restructuring.

The tls_model attribute allows source-level control for the thread-local storage
model used for a given variable. The tls_model attribute must specify one of
local-exec, initial-exec, local-dynamic, or global-dynamic access method, which
overrides the -ftls-model (-qtls) option for that variable. For example:
__thread int i __attribute__((tls_model("local-exec")));

The tls_model attribute allows the linker to check that the correct thread model
has been used to build the application or shared library. The linker/loader
behavior is as follows:

Table 11. Link time/runtime behavior for thread access models

Access method Link-time diagnostic Runtime diagnostic

local-exec Fails if referenced symbol is
imported.

Fails if module is not the
main program. Fails if
referenced symbol is
imported (but the linker
should have detected the
error already).

initial-exec None. dlopen() fails if referenced
symbol is not in the module
loaded at execution time.

local-dynamic Fails if referenced symbol is
imported.

Fails if referenced symbol is
imported (but the linker
should have detected the
error already).

global-dynamic None. None.

The specifier can be applied to variables with static storage duration. It cannot be
applied to function-scoped or block-scoped automatic variables or non-static data
members.

The thread specifier can be either preceded or followed by the static or extern
specifier.

26 XL C/C++: Language Reference

__thread int i;
extern __thread struct state s;
static __thread char *p;

C++ A thread variable must be initialized with a constant expression. C++

Applying address operator (&) to a thread-local variable returns the runtime
address of the current thread's instance of the variable. That thread can pass this
address to any other thread; however, when the first thread terminates, any
pointers to its thread-local variables become invalid.
Related reference:

See -ftls-model (-qtls) in the XL C/C++ Compiler Reference

The typeof keyword
The typeof and __typeof__ keywords are supported as follows:

v C The __typeof__ keyword is recognized at all language levels. The
typeof token is not a keyword at the stdc89 and stdc99 language levels. At all
other language levels, typeof is treated as a keyword.

v C++ The typeof and __typeof__ keywords are recognized by default.

Type attributes
Type attributes are language extensions provided to facilitate compilation of
programs developed with the GNU C/C++ compilers. These language features
allow you to use named attributes to specify special properties of data objects. Any
variables that are declared as having that type will have the attribute applied to
them.

A type attribute is specified with the keyword __attribute__ followed by the
attribute name and any additional arguments the attribute name requires.
Although there are variations, the syntax of a type attribute is of the general form:

Type attribute syntax

►► type_name __attribute__ ▼

,

((attribute name))
__attribute name__

►

►
tag_identifier

{ member_definition_list } ; ►◄

Type attribute syntax — typedef declarations

►► typedef type_declaration type_name ►

► ▼

,

__attribute__ ((attribute name)) ;
__attribute name__

►◄

Chapter 2. IBM extension features 27

You can specify attribute name with or without leading and trailing double
underscore characters; however, using the double underscore characters reduces
the likelihood of name conflicts with macros of the same name. For unsupported
attribute names, the XL C/C++ compiler issues diagnostics and ignores the
attribute specification. Multiple attribute names can be specified in the same
attribute specification.

The following type attributes are supported:
v “The aligned type attribute”
v “The packed type attribute” on page 30
v “The may_alias type attribute” on page 29
v “The transparent_union type attribute” on page 40
v “The visibility type attribute” on page 43
Related reference:
“Variable attributes” on page 30
“Function attributes” on page 8

The aligned type attribute:
With the aligned type attribute, you can override the default alignment mode to
specify a minimum alignment value, expressed as a number of bytes, for a
structure, C++ classes C++ , union, enumeration, or other user-defined type
created in a typedef declaration. The aligned attribute is typically used to increase
the alignment of any variables declared of the type to which the attribute applies.

aligned type attribute syntax

►► __attribute__ ((aligned))
__aligned__ (alignment_factor)

►◄

The alignment_factor is the number of bytes, specified as a constant expression that
evaluates to a positive power of 2. If you omit the alignment factor (and its
enclosing parentheses), the compiler automatically uses 16 bytes. You can specify a
value up to a maximum 268435456 bytes. If you specify an alignment factor greater
than the maximum, the compiler issues an error message and the compilation fails.

The alignment value that you specify is applied to all instances of the type. Also,
the alignment value applies to the variable as a whole; if the variable is an
aggregate, the alignment value applies to the aggregate as a whole, not to the
individual members of the aggregate.

Example

In all of the following examples, the aligned attribute is applied to the structure
type A. Because a is declared as a variable of type A, it also receives the alignment
specification, as any other instances declared of type A.
struct __attribute__((__aligned__(8))) A {};

struct __attribute__((__aligned__(8))) A {} a;

typedef struct __attribute__((__aligned__(8))) A {} a;

Related reference:
“The aligned variable attribute” on page 32

See Aligning data in the XL C/C++ Optimization and Programming Guide

28 XL C/C++: Language Reference

The deprecated type attribute:
With the deprecated type attribute, you can declare a type as deprecated.

deprecated type attribute syntax

►► __attribute__ ((deprecated))
__deprecated__

►◄

If you use a deprecated type to declare an identifier, a warning message is issued
to indicate that the type is not recommended to be used regardless of whether the
identifier is declared as deprecated. See the following example.
struct S{ int a[3]; } __attribute__ ((deprecated));
S x; // warning: ’S’ is deprecated
S y __attribute__((deprecated)); // warning: ’S’ is deprecated

The compiler issues warning messages for type S in both the second and third
statements of this example, where x is not declared as deprecated while y is
declared as deprecated.
Related reference:
deprecated
“The deprecated variable attribute” on page 33

The may_alias type attribute:
You can specify the may_alias type attribute for a type so that lvalues of the type
can alias objects of any type, similar to a char type. Types with the may_alias
attribute are not subject to type-based aliasing rules.

may_alias type attribute syntax

►► __attribute__ ((may_alias))
__may_alias__

►◄

You can specify the may_alias type attribute in the following ways:
struct __attribute__((__may_alias__)) my_struct {} *ps;
typedef long __attribute__((__may_alias__)) t_long;
typedef struct __attribute__((__may_alias__)) my_struct {} t_my_struct;

Instead of specifying -fnostrict-aliasing, you can alternatively specify the
may_alias type attribute for a type to violate the ANSI aliasing rules when
compiling expressions that contain lvalues of that type. For example:
#define __attribute__(x) // Invalidates all __attribute__ declarations
typedef float __attribute__((__may_alias__)) t_float;

int main (void){
int i = 42;
t_float *pa = (t_float *) &i;
*pa = 0;
if (i == 42)
return 1;

return 0;
}

If you compile this code with the -fstrict-aliasing (-qalias=ansi) option at a high
optimization level, such as -O3, the executable program returns 1. Because the
lvalue *pa is of type float, according to the ANSI aliasing rules, the assignment to
lvalue *pa cannot modify the value of i, which is of type int.

Chapter 2. IBM extension features 29

If you remove the #define __attribute__(x) statement and compile the code with
the same options as before, the executable program returns 0. Because the type of
*pa is float __attribute__((__may_alias__)), *pa can alias any other object of
any type, and the assignment to lvalue *pa can modify the value of i to 0.

Compared to the -fno-strict-aliasing (-qalias=noansi) compiler option, the
may_alias type attribute can result in less pessimistic aliasing assumptions by the
compiler and thus lead to more optimization opportunities.

C This attribute is supported at the extc89, extc99, extended, and extc1x
language levels. C

C++ This attribute is supported at the extended and extended0x language
levels. C++

Related reference:

See -qalias in the XL C/C++ Compiler Reference

The packed type attribute:
The packed type attribute specifies that the minimum alignment should be used for
the members of a structure, class, union, or enumeration type. For structure, class,
or union types, the alignment is one byte for a member and one bit for a bit field
member. For enumeration types, the alignment is the smallest size that will
accomodate the range of values in the enumeration. All members of all instances of
that type will use the minimum alignment.

packed type attribute syntax

►► __attribute__ ((packed))
__packed__

►◄

Unlike the aligned type attribute, the packed type attribute is not allowed in a
typedef declaration.
Related reference:
“The packed variable attribute” on page 34

See Aligning data in the XL C/C++ Optimization and Programming Guide

Variable attributes
Variable attributes are language extensions provided to facilitate the compilation of
programs developed with the GNU C/C++ compilers. These language features
allow you to use named attributes to specify special properties of data objects.
Variable attributes apply to the declarations of simple variables, aggregates, and
member variables of aggregates.

A variable attribute is specified with the keyword __attribute__ followed by the
attribute name and any additional arguments the attribute name requires. A
variable __attribute__ specification is included in the declaration of a variable,
and can be placed before or after the declarator. Although there are variations, the
syntax generally takes either of the following forms:

Variable attribute syntax: post-declarator

30 XL C/C++: Language Reference

►► declarator __attribute__ ▼

,

((attribute name))
__attribute name__

►◄

Variable attribute syntax: pre-declarator

►► type specifier __attribute__ ▼

,

((attribute name))
__attribute name__

►

► declarator
initializer

►◄

You can specify attribute name with or without leading and trailing double
underscore characters; however, using the double underscore characters reduces
the likelihood of name conflicts with macros of the same name. For unsupported
attribute names, the XL C/C++ compiler issues diagnostics and ignores the
attribute specification. Multiple attribute names can be specified in the same
attribute specification.

In a comma-separated list of declarators on a single declaration line, if a variable
attribute appears before all the declarators, it applies to all declarators in the
declaration. If the attribute appears after a declarator, it only applies to the
immediately preceding declarator. For example:
struct A {

int b __attribute__((aligned)); /* typical placement of variable */
/* attribute */

int __attribute__((aligned)) c; /* variable attribute can also be */
/* placed here */

int d, e, f __attribute__((aligned)); /* attribute applies to f only */

int g __attribute__((aligned)), h, i; /* attribute applies to g only */

int __attribute__((aligned)) j, k, l; /* attribute applies to j, k, and l */

};

The following variable attributes are supported:
v “The aligned variable attribute” on page 32
v “The common and nocommon variable attributes” on page 32
v “The init_priority variable attribute” on page 42
v “The mode variable attribute” on page 34
v “The packed variable attribute” on page 34
v “The section variable attribute” on page 34
v “The tls_model attribute” on page 35
v “The weak variable attribute” on page 36
v “The visibility variable attribute” on page 36
Related reference:

Chapter 2. IBM extension features 31

“Type attributes” on page 27
“Function attributes” on page 8

The aligned variable attribute:
With the aligned variable attribute, you can override the default memory
alignment mode to specify a minimum memory alignment value, expressed as a
number of bytes, for any of the following types of variables:
v Non-aggregate variables
v Aggregate variables (such as a structures, classes, or unions)
v Selected member variables

The attribute is typically used to increase the alignment of the given variable.

aligned variable attribute syntax

►► __attribute__ ((aligned))
__aligned__ (alignment_factor)

►◄

The alignment_factor is the number of bytes, specified as a constant expression that
evaluates to a positive power of 2. You can specify a value up to a maximum of
268435456. If you omit the alignment factor, and its enclosing parentheses, the
compiler automatically uses 16 bytes. If you specify an alignment factor greater
than the maximum, the compiler issues an error message and the compilation fails.

When you apply the aligned attribute to a member variable in a bit field structure,
the attribute specification is applied to the bit field container. If the default
alignment of the container is greater than the alignment factor, the default
alignment is used.

Example

In the following example, the structures first_address and second_address are set
to an alignment of 16 bytes:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

} first_address __attribute__((__aligned__(16))) ;

struct address second_address __attribute__((__aligned__(16))) ;

In the following example, only the members first_address.prov and
first_address.postal_code are set to an alignment of 16 bytes:
struct address {

int street_no;
char *street_name;
char *city;
char *prov __attribute__((__aligned__(16))) ;
char *postal_code __attribute__((__aligned__(16))) ;

} first_address ;

Related reference:

See Aligning data in the XL C/C++ Optimization and Programming Guide
“The aligned type attribute” on page 28

The common and nocommon variable attributes:

32 XL C/C++: Language Reference

The variable attribute common allows you to specify that an uninitialized global
variable or a global variable explicitly initialized to 0 should be allocated in the
common section of the object file. The variable attribute nocommon specifies that an
uninitialized global variable should be allocated in the data section of the object
file. The variable is automatically initialized to zero.

nocommon and common variable attribute syntax

►► __attribute__ (())
nocommon
__nocommon__
common
__common__

►◄

For example:
int i __attribute__((nocommon)); /* allocate i at .data */
int k __attribute__((common)); /* allocate k at .comm */

You can only apply the variable attributes to global scalar or aggregate variables. If
you try to assign either attribute to a static or automatic variable or structure or
union member, the attribute is ignored and a warning is issued.

Note that using nocommon to allocate uninitialized global variables in the data
section can dramatically increase the size of the generated object. Also, specifying
nocommon on a global variable that is simultaneously defined in different object files
will cause an error at link time; such variables should be defined in one file and
referred to in other files with an extern declaration.

The attributes take precedence over the -fcommon | -fno-common (-qcommon |
-qnocommon) compiler option.

If multiple specifications of the attribute appear in the same attribute statement,
the last one specified will take effect. For example:
int i __attribute__((common, nocommon)); /* allocate i at .data */
int k __attribute__((common, nocommon, common)); /* allocate k at .comm */

If both the common or nocommon attribute and the section attribute are applied to
the same variable, the section attribute takes precedence.
Related reference:

See -qcommon in the XL C/C++ Compiler Reference

The deprecated variable attribute:
With the deprecated variable attribute, you can declare a variable as deprecated.

deprecated variable attribute syntax

►► __attribute__ ((deprecated))
__deprecated__

►◄

If a variable that is specified with the deprecated attribute is used, the compiler
issues a warning message to indicate that the variable is not recommended to be
used. Warning messages are issued only for uses but not declarations of
deprecated variables. See the following example:

Chapter 2. IBM extension features 33

extern int var __attribute__ ((deprecated));
extern int var;
int func (){

return var; // Warning: ’var’ is deprecated.
}

Related reference:
“The deprecated type attribute” on page 29
deprecated

The mode variable attribute:
The variable attribute mode allows you to override the type specifier in a variable
declaration, to specify the size of a particular integral type.

mode variable attribute syntax

►► __attribute__ ((mode (byte)))
__mode__ word

pointer
__byte__
__word__
__pointer__

►◄

The valid argument for the mode is any of the of the following type specifiers that
indicates a specific width:
v byte means a 1-byte integer type
v word means a 4-byte integer type
v pointer means a 4-byte integer type in 31-bit mode and an 8-byte integer type in

64-bit mode

The packed variable attribute:
The variable attribute packed allows you to override the default alignment mode,
to reduce the alignment for all members of an aggregate, or selected members of
an aggregate to the smallest possible alignment: one byte for a member and one bit
for a bit field member.

packed variable attribute syntax

►► __attribute__ ((packed))
__packed__

►◄

Related reference:

See Aligning data in the XL C/C++ Optimization and Programming Guide

The section variable attribute:
The section variable attribute specifies the section in the object file in which the
compiler should place its generated code. The language feature provides the ability
to control the section in which a variable should appear.

section variable attribute syntax

►► declarator ►

► __attribute__ ((section (" section_name ")))
__section__

►◄

34 XL C/C++: Language Reference

The section_name specifies a named section as a string literal, maximum length of
16 characters, not counting spaces. Spaces in the string are ignored.

The section variable attribute can be applied to a declaration or definition of the
following types of variables:
v initialized or static global or namespace variables
v static local variables
v C++ uninitialized global or namespace variables
v C++ static structure or class member variables

A section attribute applied to a local variable with automatic storage duration is
ignored with a warning because such variables are stored on the stack.

C

A section attribute applied to a structure member is ignored with a

warning. A section attribute applied to an uninitialized global variable is ignored
without a warning; the symbols for uninitialized global variables are always placed
in the common section. C

When multiple section attributes are applied to a variable declaration, the last
specification prevails. The section indicated in the prevailing variable declaration
should match that of the variable definition because a variable definition cannot be
overwritten. Each defined variable can reside in only one section.

The section attribute overrides the -fcommon | -fno-common (-qcommon |
-qnocommon) compiler option and the common|nocommon attribute. That is, if both
attributes are specified for the same variable, the section attribute takes priority.

A named section can be used for multiple variables, but not for both variables and
functions in the same compilation unit.
Related reference:
“The section function attribute” on page 17
“The common and nocommon variable attributes” on page 32

See -qcommon in the XL C/C++ Compiler Reference

The tls_model attribute:
The tls_model attribute allows source-level control for the thread-local storage
model used for a given variable. The tls_model attribute must specify one of
local-exec, initial-exec, local-dynamic, or global-dynamic access method, which
overrides the -ftls-model (-qtls) option for that variable. For example:
__thread int i __attribute__((tls_model("local-exec")));

The tls_model attribute allows the linker to check that the correct thread model
has been used to build the application or shared library. The linker/loader
behavior is as follows:

Table 12. Link time/runtime behavior for thread access models

Access method Link-time diagnostic Runtime diagnostic

local-exec Fails if referenced symbol is
imported.

Fails if module is not the
main program. Fails if
referenced symbol is
imported (but the linker
should have detected the
error already).

Chapter 2. IBM extension features 35

Table 12. Link time/runtime behavior for thread access models (continued)

Access method Link-time diagnostic Runtime diagnostic

initial-exec None. dlopen() fails if referenced
symbol is not in the module
loaded at execution time.

local-dynamic Fails if referenced symbol is
imported.

Fails if referenced symbol is
imported (but the linker
should have detected the
error already).

global-dynamic None. None.

The weak variable attribute:
The weak variable attribute causes the symbol resulting from the variable
declaration to appear in the object file as a weak symbol, rather than a global one.
The language feature provides the programmer writing library functions with a
way to allow variable definitions in user code to override the library declaration
without causing duplicate name errors.

weak variable attribute syntax

►► __attribute__ ((weak))
__weak__

►◄

Related reference:
“weak” on page 17

The visibility variable attribute:
The visibility variable attribute describes whether and how a variable defined in
one module can be referenced or used in other modules. The visibility attribute
affects only variables with external linkage. By using this feature, you can make a
shared library smaller and decrease the possibility of symbol collision. For details,
see Using visibility attributes in the XL C/C++ Optimization and Programming
Guide.

visibility variable attribute syntax

►► __attribute__ ((visibility ("default")))
__visibility__ "protected"

"hidden"
"internal"

►◄

Example

In the following example, the visibility attribute of variable a is protected, and that
of variable b is hidden:
struct str{

int var;
};
int a __attribute__((visibility("protected")));
struct str __attribute__((visibility("hidden"))) b;

Related reference:
visibility
“The visibility type attribute” on page 43

36 XL C/C++: Language Reference

“The visibility namespace attribute” on page 42

See Using visibility attributes in the XL C/C++ Optimization and Programming
Guide

See -shared (-qmkshrobj) in the XL C/C++ Compiler Reference

Variadic macros

More complex than object-like macros, a function-like macro definition declares the
names of formal parameters within parentheses, separated by commas. An empty
formal parameter list is legal: such a macro can be used to simulate a function that
takes no arguments. C99 adds support for function-like macros with a variable
number of arguments. XL C++ supports function-like macros with a variable
number of arguments, as a language extension for compatibility with C and as part
of C++11.

IBM

Variadic macro extensions

Variadic macro extensions refer to two extensions to C99 and C++03 related to
macros with variable number of arguments. One extension is a mechanism for
renaming the variable argument identifier from __VA_ARGS__ to a user-defined
identifier. The other extension provides a way to remove the dangling comma in a
variadic macro when no variable arguments are specified. Both extensions have
been implemented to facilitate porting programs developed with GNU C and C++.

The following examples demonstrate the use of an identifier in place of
__VA_ARGS__. The first definition of the macro debug exemplifies the usual usage of
__VA_ARGS__. The second definition shows the use of the identifier args in place of
__VA_ARGS__.
#define debug1(format, ...) printf(format, ## __VA_ARGS__)
#define debug2(format, args ...) printf(format, ## args)

Invocation Result of macro expansion

debug1("Hello %s/n", "World"); printf("Hello %s/n", "World");
debug2("Hello %s/n", "World"); printf("Hello %s/n", "World");

The preprocessor removes the trailing comma if the variable arguments to a
function macro are omitted and the comma followed by ## precedes the variable
argument identifier in the function macro definition.

IBM

Extensions for vector processing support

IBM XL C/C++ for Linux on z Systems, V1.2 provides you with vector
programming support on the Linux distributions that have vector support through
language extensions. Some vector extensions are enabled only when the -mzvector
option and the -march=z13 option, or its equivalent, are in effect.

Related information in the XL C/C++ Compiler Reference

-march (-qarch)

Chapter 2. IBM extension features 37

-mzvector
Related information in the XL C/C++ Optimization and Programming Guide

Vector data types (IBM extension)

Vector literals (IBM extension)

Initialization of vectors (IBM extension)

typedef definitions for vector types (IBM extension)

Pointers (IBM extension)

Expressions and operators (IBM extension)

IBM extension features for C only
This section describes IBM extension features for the C language only in the
following categories:
v “General IBM extensions”
v “Extensions for GNU C compatibility”

General IBM extensions
The following feature is enabled by default at all extended language levels:

Table 13. General IBM extensions

Language feature Discussed in:

Extended types allowed in bit field
structure members

“Bit field members of structures”

Bit field members of structures
Both C and C++ allow integer members to be stored into memory spaces smaller
than the compiler would ordinarily allow. These space-saving structure members
are called bit fields, and their width in bits can be explicitly declared. Bit fields are
used in programs that must force a data structure to correspond to a fixed
hardware representation and are unlikely to be portable.

In C99, the allowable data types for a bit field include _Bool, int, signed int, and
unsigned int, IBM and can be of other types such as char, short, long, or long
long as well. IBM

Related reference:

See Alignment of bit fields in the XL C/C++ Optimization and Programming
Guide

Extensions for GNU C compatibility
The following features are enabled by default when you compile with any of the
following commands:
v the xlc invocation command
v the -qlanglvl=extc99 | extc89 | extended options

38 XL C/C++: Language Reference

Table 14. Default IBM XL C extensions for GNU C compatibility

Language feature Discussed in:

Cast to a union type “Cast to union type”

The transparent_union type attribute “The transparent_union type attribute” on
page 40

Cast to union type
Casting to a union type is the ability to cast a union member to the same type as
the union to which it belongs. Such a cast does not produce an lvalue. The feature
is supported as an extension to C99, implemented to facilitate porting programs
developed with GNU C.

Only a type that explicitly exists as a member of a union type can be cast to that
union type. The cast can use either the tag of the union type or a union type name
declared in a typedef expression. The type specified must be a complete union
type. An anonymous union type can be used in a cast to a union type, provided
that it has a tag or type name. A bit field can be cast to a union type, provided that
the union contains a bit field member of the same type, but not necessarily of the
same length. The following code shows an example of a simple cast to union:
#include <stdio.h>

union f {
char t;
short u;
int v;
long w;
long long x;
float y;
double z;

};

int main() {
union f u;
char a = 1;
u = (union f)a;
printf("u = %i\n", u.t);

}

The output of this example is:
u = 1

Casting to a nested union is also allowed. In the following example, the double
type dd can be cast to the nested union u2_t.
int main() {

union u_t {
char a;
short b;
int c;
union u2_t {

double d;
}u2;

};
union u_t U;
double dd = 1.234;
U.u2 = (union u2_t) dd; // Valid.
printf("U.u2 is %f\n", U.u2);

}

The output of this example is:

Chapter 2. IBM extension features 39

U.u2 is 1.234

A union cast is also valid as a function argument, part of a constant expression for
initialization of a static or non-static data object, and in a compound literal
statement. The following example shows a cast to union used as part of an
expression for initializing a static object:
struct S{

int a;
}s;

union U{
struct S *s;

};

struct T{
union U u;

};

static struct T t[] = { {(union U)&s} };

Related reference:
“The transparent_union type attribute”

The transparent_union type attribute
The transparent_union attribute applied to a union definition or a union typedef
definition indicates the union can be used as a transparent union. The union must
be a complete union type.

Whenever a transparent union is the type of a function parameter and that
function is called, the transparent union can accept an argument of any type that
matches that of one of its members without an explicit cast. Arguments to this
function parameter are passed to the transparent union, using the calling
convention of the first member of the union type. Because of this, all members of
the union must have the same machine representation. Transparent unions are
useful in library functions that use multiple interfaces to resolve issues of
compatibility.

transparent_union type attribute syntax

►► __attribute__ ((transparent_union))
__transparent_union__

►◄

When the transparent_union type attribute is applied to the outer union of a
nested union, the size of the inner union (that is, its largest member) is used to
determine if it has the same machine representation as the other members of the
outer union. See the following example:
union u_t{

union u2_t{
char a;
short b;
char c;
char d;

}u;
int a1;

}__attribute__((__transparent_union__));

The attribute is ignored because the first member of union u_t, which is itself a
union, has a machine representation of 2 bytes, whereas the other member of
union u_t is of type int, which has a machine representation of 4 bytes.

40 XL C/C++: Language Reference

The same rationale applies to members of a union that are structures. When a
member of a union to which type attribute transparent_union has been applied is
a struct, the machine representation of the entire struct is considered, rather than
members.

All members of the union must have the same machine representation as the first
member of the union. This means that all members must be representable by the
same amount of memory as the first member of the union. The machine
representation of the first member represents the maximum memory size for any
remaining union members. For instance, if the first member of a union to which
type attribute transparent_union has been applied is of type int, then all
following members must be representable by at most 4 bytes. Members that are
representable by 1, 2, or 4 bytes are considered valid for this transparent union.

Floating-point types (float, double, float _Complex, or double _Complex) types can
be members of a transparent union, but they cannot be the first member. The
restriction that all members of the transparent union have the same machine
representation as the first member still applies.

IBM extension features for C++ only
This section describes IBM extension features for the C++ language only in the
following categories:
v “Extensions for C99 compatibility”
v “Extensions for C11 compatibility”
v “Extensions for GNU C++ compatibility” on page 42

Extensions for C99 compatibility
IBM XL C++ adds support for the following C99 language features. All of these
features are enabled by default.
v _Complex keyword
v __func__ predefined identifier
v Complex data type
v Compound literals
v C standard pragmas
v Duplicate type qualifiers
v Flexible array members at the end of a structure or union
v Hexadecimal floating-point literals
v The restrict type qualifier
v Universal character names
v Variable length arrays

Note: The _Imaginary keyword is reserved for possible future use. For complex
number functionality, use _Complex.

Extensions for C11 compatibility
IBM XL C++ adds support for some C11 language features.

The following features are enabled by default:
v _Noreturn function specifier
v _Thread_local

Chapter 2. IBM extension features 41

v Composite types for variable length arrays
v Conversions between pointers and floating types
v Generic selection
v Static assertions
v Temporary lifetime extensions
v typedef redeclarations
v Unicode and UTF-8 literals

The complex type initializations feature is enabled when you specify the
-qlanglvl=extended or -qlanglvl=extended0x option.

Extensions for GNU C++ compatibility
The following GNU C++ language extensions are enabled by default.

Table 15. IBM XL C++ language extensions for compatibility with GNU C++

Language feature Discussed in:

__decltype keyword N/A

init_priority variable attribute “The init_priority variable attribute”

Visibility namespace attribute “The visibility namespace attribute”

Visibility type attribute “The visibility type attribute” on page 43

The init_priority variable attribute
The variable attribute init_priority is an extension to C++ that allows you to
control the initialization order of static objects defined in namespace scope across
multiple compilation units.

init_priority variable attribute syntax

►► __attribute__ (())
init_priority (relative_priority)
__init_priority__

►◄

The relative_priority is a constant integral expression between 101 and 65535,
inclusive. A lower number indicates a higher priority.

The visibility namespace attribute
The visibility namespace attribute is a language extension that allows you to
control whether and how the entities within a namespace defined in one module
can be referenced or used in other modules. By using this feature, you can make a
shared library smaller and decrease the possibility of symbol collision. For details,
see Using visibility attributes in the XL C/C++ Optimization and Programming
Guide.

visibility namespace attribute syntax

►► namespace identifier __attribute__ ►

► ((visibility ("default")))
__visibility__ "protected"

"hidden"
"internal"

{ namespace_body } ►◄

42 XL C/C++: Language Reference

You can specify the attribute name visibility with or without leading and trailing
double underscore characters; however, using the double underscore characters
reduces the likelihood of name conflicts with macros of the same name.

Example

In the following example, function fun() is defined in namespace A , and the
visibility attribute of fun() is default:
namespace A __attribute__((visibility("default"))) {

void fun(){}
}

Related reference:
“The visibility variable attribute” on page 36
visibility
“The visibility type attribute”

See Using visibility attributes in the XL C/C++ Optimization and Programming
Guide

See -shared (-qmkshrobj) in the XL C/C++ Compiler Reference

The visibility type attribute
With the visibility type attributes, you can control whether and how a
structure/union/class or an enumeration that is defined in one module can be
referenced or used in other modules. Visibility attributes affect only types with
external linkage. By using this feature, you can make a shared library smaller and
decrease the possibility of symbol collision. For details, see Using visibility
attributes in the XL C/C++ Optimization and Programming Guide.

visibility type attribute syntax

►► __attribute__ ((visibility ("default")))
__visibility__ "protected"

"hidden"
"internal"

►◄

Example

In the following example, the visibility attribute of class A is protected, and that of
enumeration E is hidden:
class __attribute__((visibility("protected"))) A {};
enum __attribute__((visibility("hidden"))) E {e1,e2} e;

Related reference:
“The visibility variable attribute” on page 36
visibility
“The visibility namespace attribute” on page 42

See Using visibility attributes in the XL C/C++ Optimization and Programming
Guide

See -shared (-qmkshrobj) in the XL C/C++ Compiler Reference

Chapter 2. IBM extension features 43

44 XL C/C++: Language Reference

Chapter 3. Standard features

The compiler fully supports the following language standards:
v C++03
v C++98
v C11
v C99
v C89

Note: The compiler fully supports _Thread_local, which is an optional C11
feature.

Besides these standards, the compiler also supports the following C++11 and
C++14 features:

C++11 features

Note: IBM supports the majority of C++11 features and will continue to develop
and implement the features of this standard.
v Alignment
v Auto type deduction
v C99 long long
v C99 preprocessor features adopted in C++11
v constexpr - generalized constant expressions
v Defaulted and deleted functions
v Delegating constructors
v Explicit conversion operators
v Explicit instantiation declarations
v Explicit overrides and final
v Extended friend declarations
v Forward declaration of enumerations
v Generalized attributes
v Inheriting constructors
v Inline namespace definitions
v Local and unnamed types as template arguments
v Monomorphic lambda expressions
v New character types
v New definitions of POD types
v noexcept

v Non-static data member initializers
v nullptr

v Range-based for
v Raw string literals
v ref-qualifiers
v Reference collapsing

© Copyright IBM Corp. 2015 45

v Right angle brackets
v Rvalue references
v Scoped enumerations
v static_assert

v Template aliases
v thread_local

v Trailing comma allowed in enum declarations
v Trailing return type
v Unicode names (UCN) and unicode literals
v Uniform initialization
v Unrestricted unions
v User-defined literals
v Variadic templates

C++14 features

Note: IBM supports selected features of C++14 standard. IBM will continue to
develop and implement the features of this standard. The implementation of the
language level is based on IBM's interpretation of the standard. Until IBM's
implementation of all the C++14 features is complete, including the support of a
new C++14 standard library, the implementation might change from release to
release. IBM makes no attempt to maintain compatibility, in source, binary, or
listings and other compiler interfaces, with earlier releases of IBM's implementation
of the new C++14 features.
v Polymorphic lambda expressions
v Variable templates

Note: Compiler support for language features that have runtime library
requirements is dependent on the GCC runtime library on the Linux distribution.

46 XL C/C++: Language Reference

Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL C/C++ for Linux on z Systems.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2015 47

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

48 XL C/C++: Language Reference

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 2015.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 49

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

50 XL C/C++: Language Reference

Index

Special characters
__VA_ARGS__ 37
_thread storage class specifier 26
$ 8

A
alias function attribute 10
alignment 32, 34

bit fields 38
structures 32

allocation
uninitialized global variables 32

always_inline function attribute 11
arguments

macro 37
trailing 37

arrays
flexible array member 8

asm
statements 19

assembly
statements 19

B
basic example, described viii
bit fields 38

as structure member 38

C
cast expressions

union type 39
compatibility

XL C and GCC 6, 38
XL C/C++ and GCC 1
XL C++ and C11 41
XL C++ and C99 1, 41
XL C++ and GCC 42

compound
literal 8

const function attribute 11

D
dollar sign 8

E
ellipsis

in macro argument list 37
examples

inline assembly statements 22

F
file inclusion 25
flexible array member 8
format function attribute 13
function attribute

alias 10
always_inline 11
const 11
constructor 12
deprecated 12
destructor 12
format 13
format_arg 14
noinline 16
noreturn 16
pure 16
section 17
weak 17

function attributes 8
function-like macro 37
functions

specifiable attributes 8

G
global variable

uninitialized 32

I
identifiers 8
include_next preprocessor directive 25
incomplete type

as structure member 8
initialization

order of 42
static object 8

initializer lists 8
inline

assembly statements 19
integer

literals 4

L
language extensions 1
linkage

weak symbols 36
literals

compound 8
integer 4

long long
types of integer literals in C99 and

C++11 4
types of integer literals outside of C99

and C++11 4

M
macro

function-like 37
variable argument 37

P
packed

variable attribute 34

S
statements

inline assembly
restrictions 22

storage class specifiers
_thread 26
tls_model attribute 26

structures
flexible array member 8
members

incomplete types 8
suffix

integer literal constants 4

T
tls_model attribute 35
type attributes 27

aligned 28
deprecated 29
may_alias 29
packed 30
transparent_union 40

type specifiers
overriding 34

U
unions

cast to union type 39

V
variable attributes 30

deprecated 33
section 34

vector processing support 1
visibility attributes

class 43
enumeration 43
function 19
namespace 42
structure 43
union 43
variable 36

© Copyright IBM Corp. 2015 51

W
weak symbol 36

52 XL C/C++: Language Reference

IBM®

Product Number: 5725-N01

Printed in USA

SC27-5996-01

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other information

	Technical support
	How to send your comments

	Chapter 1. Language levels and language extensions
	Chapter 2. IBM extension features
	IBM extension features for both C and C++
	General IBM extensions
	Extension of #endif and #else
	Integer literals

	Extensions for GNU C compatibility
	Characters in identifiers
	Compound literal expressions
	Flexible array members of structures
	Function attributes
	Inline assembly statements
	The #include_next directive
	The __thread storage class specifier
	The typeof keyword
	Type attributes
	Variable attributes
	Variadic macros

	Extensions for vector processing support

	IBM extension features for C only
	General IBM extensions
	Bit field members of structures

	Extensions for GNU C compatibility
	Cast to union type
	The transparent_union type attribute

	IBM extension features for C++ only
	Extensions for C99 compatibility
	Extensions for C11 compatibility
	Extensions for GNU C++ compatibility
	The init_priority variable attribute
	The visibility namespace attribute
	The visibility type attribute

	Chapter 3. Standard features
	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	P
	S
	T
	U
	V
	W

