
IBM XL C/C++ for Linux on z Systems, V1.2

Getting Started with XL C/C++
Version 1.2

GI13-2865-01

IBM

IBM XL C/C++ for Linux on z Systems, V1.2

Getting Started with XL C/C++
Version 1.2

GI13-2865-01

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 27.

First edition

This edition applies to IBM XL C/C++ for Linux on z Systems, V1.2 (Program 5725-N01) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

© Copyright IBM Corporation 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Conventions v
Related information ix

IBM XL C/C++ information ix
Standards and specifications x
Other information x

Technical support x
How to send your comments xi

Chapter 1. Introducing XL C/C++ 1
Commonality with other IBM compilers 1
Operating system and hardware support 1
A highly configurable compiler 2
Language standard compliance 3

Compatibility with GNU 3
Source-code migration and conformance checking 4

Libraries 4
Utilities and commands. 5
Program optimization 5
64-bit object capability 6
Diagnostic reports 6
Symbolic debugger support 6

Chapter 2. What's new for IBM XL C/C++
for Linux on z Systems, V1.2. 9
C++14 features 9
C++11 features. 9
C11 features 10
Built-in functions 10
Commands 11
Compiler options and pragma directives. 11
Performance and optimization 13

Chapter 3. Migration of your
applications 15
Migrating applications that use transactional
memory built-in functions 15

Mixing object files compiled with different
compilers 15

Chapter 4. Features added in earlier
releases 17
Features added in Version 1.1 17

Compiler options 17
Template model 17
Compiler predefined macro support 17
Compiler pragmas 17

Chapter 5. Setting up and customizing
XL C/C++. 19
Using custom compiler configuration files 19

Chapter 6. Developing applications
with XL C/C++ 21
The compiler phases 21
Editing C/C++ source files 21
Compiling with XL C/C++ 22

Invoking the compiler 22
Specifying compiler options 22
XL C/C++ input and output files 23

Linking your compiled applications with XL C/C++ 24
Dynamic and static linking 24

Running your compiled application 25
XL C/C++ compiler diagnostic aids 25

Debugging compiled applications 26
Determining which level of XL C/C++ is being
used 26

Notices 27
Trademarks 29

Index 31

© Copyright IBM Corp. 2015 iii

iv XL C/C++: Getting Started

About this document

This document contains overview and basic usage information for the IBM® XL
C/C++ for Linux on z Systems™, V1.2 compiler.

Who should read this document

This document is intended for C and C++ developers who are looking for
introductory overview and usage information for XL C/C++. It assumes that you
have some familiarity with command-line compilers, basic knowledge of the C and
C++ programming languages, and basic knowledge of operating system
commands. Programmers new to XL C/C++ can use this document to find
information about the capabilities and features unique to XL C/C++.

How to use this document

Unless indicated otherwise, all of the text in this reference pertains to both C and
C++ languages. Where there are differences between languages, these are indicated
through qualifying text and icons, as described in “Conventions.”

Throughout this document, the xlc and xlC compiler invocations are used to
describe the behavior of the compiler. You can, however, substitute other forms of
the compiler invocation command if your particular environment requires it, and
compiler option usage remains the same unless otherwise specified.

While this document covers information such as configuring the compiler
environment, and compiling and linking C or C++ applications using the XL
C/C++ compiler, it does not include the following topics:
v Compiler installation: see the XL C/C++ Installation Guide.
v Compiler options: see the XL C/C++ Compiler Reference for detailed information

about the syntax and usage of compiler options.
v The C or C++ programming language: see the XL C/C++ Language Reference for

information about the syntax, semantics, and IBM implementation of the C or
C++ IBM extension features. See C/C++ standards for the details of standard
features.

v Programming topics: see the XL C/C++ Optimization and Programming Guide for
detailed information about developing applications with XL C/C++, with a
focus on program portability and optimization.

Conventions
Typographical conventions

© Copyright IBM Corp. 2015 v

The following table shows the typographical conventions used in the IBM XL
C/C++ for Linux on z Systems, V1.2 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc and xlC
(xlc++), along with several other
compiler invocation commands to
support various C/C++ language
levels and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

C only begins
C

C

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

C++ only begins
C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

IBM extension begins
IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

vi XL C/C++: Getting Started

Table 2. Qualifying elements (continued)

Qualifier/Icon Meaning

C11 begins
C11

C11

C11 ends

The text describes a feature that is introduced into standard C
as part of C11.

C++11 begins
C++11

C++11

C++11 ends

The text describes a feature that is introduced into standard
C++ as part of C++11.

C++14 begins
C++14

C++14

C++14 ends

The text describes a feature that is introduced into standard
C++ as part of C++14.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
helps you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

About this document vii

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

viii XL C/C++: Getting Started

Related information
The following sections provide related information for XL C/C++:

IBM XL C/C++ information
XL C/C++ provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL C/C++ for Linux on z Systems, V1.2. It is located by default in the XL
C/C++ directory and in the \quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory, and in the root directory and subdirectories of the
installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for Linux on z Systems, V1.2
Installation Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSVUN6_1.2.0/
com.ibm.compilers.loz.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27044043.
The following files comprise the full set of XL C/C++ product information:

Table 3. XL C/C++ PDF files

Document title
PDF file
name Description

IBM XL C/C++ for Linux
on z Systems, V1.2
Installation Guide,
GC27-5995-01

install.pdf Contains information for installing XL C/C++
and configuring your environment for basic
compilation and program execution.

Getting Started with IBM
XL C/C++ for Linux on z
Systems, V1.2,
GI13-2865-01

getstart.pdf Contains an introduction to the XL C/C++
product, with information about setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL C/C++ for Linux
on z Systems, V1.2
Compiler Reference,
SC27-5998-01

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in functions.

IBM XL C/C++ for Linux
on z Systems, V1.2
Language Reference,
SC27-5996-01

langref.pdf Contains information about language extensions
for portability and conformance to
nonproprietary standards.

About this document ix

http://www.ibm.com/support/knowledgecenter/SSVUN6_1.2.0/com.ibm.compilers.loz.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSVUN6_1.2.0/com.ibm.compilers.loz.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27044043
http://www.ibm.com/support/docview.wss?uid=swg27044043

Table 3. XL C/C++ PDF files (continued)

Document title
PDF file
name Description

IBM XL C/C++ for Linux
on z Systems, V1.2
Optimization and
Programming Guide,
SC27-5997-01

proguide.pdf Contains information about advanced
programming topics, such as application
porting, library development, application
optimization, and the XL C/C++
high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL C/C++, including IBM Redbooks® publications,
white papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27044043.

For more information about C/C++, see the C/C++ café at https://
www.ibm.com/developerworks/community/groups/service/html/
communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3.

Standards and specifications
XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards and specifications for precise definitions of some of the
features found in this information.
v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also

known as C89.
v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also

known as C99.
v Information Technology - Programming languages - C, ISO/IEC 9899:2011, also

known as C11.
v Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also

known as C++98.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also

known as C++03.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also

known as C++11 (Partial support).
v Information Technology - Programming languages - C++, ISO/IEC 14882:2014, also

known as C++14 (Partial support).
v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support
Additional technical support is available from the XL C/C++ Support page at
http://www.ibm.com/support/entry/portal/product/rational/xl_c/
c++_for_linux_on_z_systems. This page provides a portal with search capabilities
to a large selection of Technotes and other support information.

If you cannot find what you need, you can send an email to
compinfo@ca.ibm.com.

x XL C/C++: Getting Started

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27044043
http://www.ibm.com/support/docview.wss?uid=swg27044043
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_linux_on_z_systems
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_linux_on_z_systems

For the latest information about XL C/C++, visit the product information site at
http://www.ibm.com/software/products/en/xlcpp-loz.

How to send your comments
Your feedback is important in helping us to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments to compinfo@ca.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL C/C++, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

About this document xi

http://www.ibm.com/software/products/en/xlcpp-loz

xii XL C/C++: Getting Started

Chapter 1. Introducing XL C/C++

IBM XL C/C++ for Linux on z Systems, V1.2 is an advanced, high-performance
compiler that can be used for developing complex, computationally intensive
C/C++ programs.

This section contains information about the features of the XL C/C++ compiler at a
high level. It is intended for people who are evaluating the compiler and for new
users who want to find out more about the product.

Commonality with other IBM compilers
IBM XL C/C++ for Linux on z Systems, V1.2 is part of a larger family of IBM C,
C++, and Fortran compilers.

These compilers are derived from a common code base that shares compiler
function and optimization technologies for a variety of platforms and
programming languages. Programming environments include IBM AIX®, IBM Blue
Gene®/Q, IBM i, selected Linux distributions, IBM z/OS®, and IBM z/VM®. The
common code base, along with compliance with international programming
language standards, helps support consistent compiler performance and ease of
code portability across multiple operating systems and hardware platforms.

IBM XL C/C++ for Linux on z Systems combines the Clang front end
infrastructure with the advanced optimization technology in the IBM compiler
back end. Clang is a component of the LLVM open source compiler and toolchain
project and provides the C and C++ language family front end for LLVM. XL
C/C++ combines the Clang front-end infrastructure with the advanced
optimization technology from IBM. For additional information about Clang, see the
LLVM web site at: http://clang.llvm.org/

Operating system and hardware support
This section describes the operating systems and hardware that IBM XL C/C++ for
Linux on z Systems, V1.2 supports.

IBM XL C/C++ for Linux on z Systems, V1.2 supports the following operating
systems:
v Red Hat Enterprise Linux for IBM System z® 6.3 (RHEL 6.3)
v Red Hat Enterprise Linux for IBM System z 7 (RHEL 7.0)
v Red Hat Enterprise Linux for IBM System z 7.1 (RHEL 7.1)
v Red Hat Enterprise Linux for IBM System z 7.2 (RHEL 7.2)
v SUSE Linux Enterprise Server for System z 11 SP3 (SLES 11 SP3)
v SUSE Linux Enterprise Server for System z 12 (SLES 12)
v SUSE Linux Enterprise Server for System z 12 Service Pack 1 (SLES 12 SP1)

See the README file and "Before installing XL C/C++" in the XL C/C++
Installation Guide for a complete list of requirements.

The compiler, its libraries, and its generated object programs run on the following
IBM z Systems servers:

© Copyright IBM Corp. 2015 1

http://clang.llvm.org/

v IBM z13™ (z13)
v IBM zEnterprise® EC12 (zEC12) or IBM zEnterprise BC12 (zBC12)
v IBM zEnterprise 196 (z196) or IBM zEnterprise 114 (z114)
v IBM System z10® Enterprise Class (z10™ EC) or IBM System z10 Business Class

(z10 BC)

To exploit the various supported hardware configurations, the compiler provides
options to tune the performance of applications according to the hardware type
that runs the compiled applications.

A highly configurable compiler
You can use a variety of compiler invocation commands and options to tailor the
compiler to your unique compilation requirements.

Compiler invocation commands

XL C/C++ provides several commands to invoke the compiler, for example, xlC,
xlc++, and xlc. Compiler invocation commands are provided to support most
standardized C/C++ language levels and many popular language extensions.

All the invocation commands allow for threadsafe compilations. You can use them
to link programs that use multithreading.

For more information about XL C/C++ compiler invocation commands, see
"Invoking the compiler" in the XL C/C++ Compiler Reference.

Compiler options

You can choose from a large selection of compiler options to control compiler
behavior. You can benefit from using different options for the following tasks:
v Debugging your applications
v Optimizing and tuning application performance
v Selecting language levels and extensions for compatibility with nonstandard

features and behaviors that are supported by other C or C++ compilers
v Performing many other common tasks that would otherwise require changing

the source code

You can specify compiler options through a combination of environment variables,
compiler configuration files, command line options, and compiler directive
statements embedded in your program source.

For more information about XL C/C++ compiler options, see "Compiler options
reference" in the XL C/C++ Compiler Reference.

Custom compiler configuration files

The installation process creates a default compiler configuration file containing
stanzas that define compiler option default settings.

If you frequently specify compiler option settings other than the default settings of
XL C/C++, you can use makefiles to define your settings. Alternatively, you can
create custom configuration files to define your own frequently used option
settings.

2 XL C/C++: Getting Started

For more information about using custom compiler configuration files, see “Using
custom compiler configuration files” on page 19.

Language standard compliance
This topic describes the C/C++ programming language specifications that IBM XL
C/C++ for Linux on z Systems, V1.2 supports.

C language specifications

v ISO/IEC 9899:2011 (referred to as C11)
v ISO/IEC 9899:1999 (referred to as C99)
v ISO/IEC 9899:1990 (referred to as C89)

C++ language specifications

v Partial support for ISO/IEC 14882:2014 (referred to as C++14)
v Partial support for ISO/IEC 14882:2011 (referred to as C++11)
v ISO/IEC 14882:2003 (referred to as C++03)
v ISO/IEC 14882:1998, the first official specification of the C++ language (referred

to as C++98)

In addition to the standard language levels, XL C/C++ supports the following
language extensions:
v A subset of GNU C and C++ language extensions

See "Language levels and language extensions" in the XL C/C++ Language Reference
for more information about C/C++ language specifications and extensions.

Compatibility with GNU
XL C/C++ supports a subset of the GNU compiler command options to facilitate
porting applications that are developed with the gcc and g++ compilers.

IBM XL C/C++ for Linux on z Systems, V1.2 provides a greater level of GNU
source compatibility. It supports the use of gcc and g++ compiler options and
therefore the gxlc and gxlc++ invocation commands are not required or included.

XL C/C++ uses GNU C and GNU C++ header files together with the GNU C and
C++ runtime libraries to produce code that is binary-compatible with that
produced by GCC. Portions of an application can be built with XL C/C++ and
combined with portions built with GCC to produce an application that behaves as
if it had been built solely with GCC.

To achieve binary compatibility with GCC-compiled code, a program compiled
with XL C/C++ includes the same headers as those used by a GNU compiler
residing on the same system. To ensure that the proper versions of headers and
runtime libraries are present on the system, you must install the prerequisite GCC
compiler before you install XL C/C++.

Note: Some additional noteworthy points about this relationship are as follows:
v IBM built-in functions coexist with GNU C built-ins.
v Compilation of C and C++ programs uses the GNU C and GNU C++ header

files.
v Compilation uses the GNU assembler for assembler input files.

Chapter 1. Introducing XL C/C++ 3

v Compiled C code is linked to the GNU C runtime libraries.
v Compiled C++ code is linked to the GNU C and GNU C++ runtime libraries.
v Code compiled with XL C/C++ can be debugged with the GNU debugger, gdb.

Source-code migration and conformance checking
XL C/C++ provides compiler invocation commands that instruct the compiler to
compile your application code to a specific language level.

You can also use the -std(-qlanglvl) compiler option to specify a language level. If
the language or language extension elements in your program source do not
conform to the specified language level, the compiler issues diagnostic messages.

Related information

-std (-qlanglvl)

Libraries
XL C/C++ includes a runtime environment that contains a number of libraries.

Mathematical Acceleration Subsystem library

The Mathematical Acceleration Subsystem (MASS) library consists of scalar
mathematical built-in functions tuned specifically for optimum performance on
supported processor architectures. You can choose a MASS library to support
high-performance computing on a broad range of processors, or you can select a
library tuned to support a specific processor family.

The MASS library functions support both 31-bit and 64-bit compilation modes and
offer improved performance over the default libm math library routines. These
libraries are threadsafe. You can also make explicit calls to MASS library functions,
whether optimization options are in effect or not.

For more information, see "Using the Mathematical Acceleration Subsystem" in the
XL C/C++ Optimization and Programming Guide.

Automatically Tuned Linear Algebra Software libraries

XL C/C++ is shipped with a set of Automatically Tuned Linear Algebra Software
(ATLAS) libraries for high-performance computing. The ATLAS libraries contain all
the Basic Linear Algebra Subprograms (BLAS) and a subset of the Linear Algebra
PACKage (LAPACK) routines. For details, see "Using the Automatically Tuned
Linear Algebra Software (ATLAS) libraries" in the XL C/C++ Optimization and
Programming Guide

XL C++ Runtime Library

The following library is also shipped with XL C/C++:
v XL C++ Runtime Library contains support routines needed by the compiler.

Support for Boost libraries

IBM XL C/C++ for Linux on z Systems, V1.2 provides partial support for the Boost
V1.55.0 libraries. A patch file is available that modifies the Boost V1.55.0 libraries

4 XL C/C++: Getting Started

so that they can be built and used with XL C/C++ applications. The patch or
modification file does not extend nor provide additional functionality to the Boost
libraries.

To access the patch file for building the Boost libraries, go to Boost Library
Regression Test Summaries and select download required Boost modification
file for your compiler release and platform.

You can download the latest Boost libraries at http://www.boost.org/.

For more information about support for libraries, search on the XL C/C++
Compiler support page at http://www.ibm.com/support/entry/portal/product/
rational/xl_c/c++_for_linux_on_z_systems.

Utilities and commands
This topic introduces the main utilities and commands that are included with XL
C/C++. It does not contain all compiler utilities and commands.

Utilities

install The install utility installs and configures IBM XL C/C++ for Linux on z
Systems, V1.2 for use on your system.

Commands

Profile-directed feedback (PDF) related commands

cleanpdf command
The cleanpdf command removes all the PDF files or the specified
PDF files from the directory to which profile-directed feedback
data is written.

mergepdf command
The mergepdf command provides the ability to weigh the
importance of two or more PDF records when combining them into
a single record. The PDF records must be derived from the same
executable.

showpdf command
The showpdf command displays the following types of profiling
information for all the procedures executed in a PDF run
(compilation under the -qpdf1 option):
v Block-counter profiling
v Call-counter profiling
v Value profiling

For more information, see -qpdf1, -qpdf2 in the XL C/C++ Compiler
Reference.

Program optimization
XL C/C++ provides several compiler options that can help you control the
optimization and performance of your programs.

With these options, you can perform the following tasks:
v Select different levels of compiler optimizations.
v Control optimizations for loops, floating point, and other types of operations.

Chapter 1. Introducing XL C/C++ 5

http://www.ibm.com/support/docview.wss?uid=swg27006911
http://www.ibm.com/support/docview.wss?uid=swg27006911
http://www.boost.org/
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_linux_on_z_systems
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_linux_on_z_systems

v Optimize a program for a particular class of machines or for a very specific
machine configuration, depending on where the program will run.

Optimizing transformations can give your application better overall execution
performance. XL C/C++ provides a portfolio of optimizing transformations
tailored to various supported hardware. These transformations offer the following
benefits:
v Reducing the number of instructions executed for critical operations
v Restructuring generated object code to make optimal use of the z/Architecture®

processors
v Improving the usage of the memory subsystem

Related information

Optimizing your applications

Optimization and tuning

Compiler built-in functions

64-bit object capability
The 64-bit object capability of the XL C/C++ compiler addresses increasing
demand for larger storage requirements and greater processing power.

The Linux operating system provides an environment that allows you to develop
and execute programs that exploit 64-bit processors through the use of 64-bit
address spaces.

To support larger executables that can fit within a 64-bit address space, a separate
64-bit object format is used. The linker binds these objects to create 64-bit
executables. Objects that are bound together must all be of the same object format.
The following scenarios are not permitted and will fail to load, execute, or both:
v A 64-bit object or executable that has references to symbols from a 31-bit library

or shared library
v A 31-bit object or executable that has references to symbols from a 64-bit library

or shared library
v A 64-bit executable that explicitly attempts to load a 31-bit module
v A 31-bit executable that explicitly attempts to load a 64-bit module

For more information, see "Using 31-bit and 64-bit modes" in the XL C/C++
Optimization and Programming Guide.

Diagnostic reports
The compiler listings provide important information to help you develop and
debug your applications more efficiently.

For more information about the applicable compiler options and the listing itself,
see "Compiler messages and listings" in the XL C/C++ Compiler Reference.

Symbolic debugger support
You can instruct XL C/C++ to include debugging information in your compiled
objects by using different levels of the -g compiler option.

6 XL C/C++: Getting Started

The debugging information can be examined by gdb or any symbolic debugger
that supports the DWARF debug format on Linux to help you debug your
programs.

Related information

-g

Chapter 1. Introducing XL C/C++ 7

8 XL C/C++: Getting Started

Chapter 2. What's new for IBM XL C/C++ for Linux on z
Systems, V1.2

This section describes features and enhancements added to IBM XL C/C++ for
Linux on z Systems, V1.2.

C++14 features
C++14 is a new C++ programming language standard. This topic lists the C++14
features that are introduced in this release of XL C/C++.

Note: IBM supports selected features of C++14 standard. IBM will continue to
develop and implement the features of this standard. The implementation of the
language level is based on IBM's interpretation of the standard. Until IBM's
implementation of all the C++14 features is complete, including the support of a
new C++14 standard library, the implementation might change from release to
release. IBM makes no attempt to maintain compatibility, in source, binary, or
listings and other compiler interfaces, with earlier releases of IBM's implementation
of the new C++14 features.
v Polymorphic lambda expressions
v Variable templates

Related information
v Standard features in the XL C/C++ Language Reference

C++11 features
In addition to existing C++11 features, this topic lists the C++11 features that are
introduced in this release of XL C/C++.

Note: IBM supports the majority of C++11 features and will continue to develop
and implement the features of this standard.
v Alignment support
v constexpr

v Explicit overrides and final
v Generalized attributes
v Inheriting constructors
v Local and unnamed types as template arguments
v Monomorphic lambdas expressions
v New character types
v New definitions of POD types
v noexcept

v Non-static data member initializers
v Range-based for
v Raw string literals
v ref-qualifiers
v Template aliases
v thread_local

© Copyright IBM Corp. 2015 9

v Unicode names (UCN) and unicode literals
v Uniform initialization
v Unrestricted unions
v User-defined literals

Note: Compiler support for language features that have runtime library
requirements is dependent on the GCC runtime library on the Linux distribution.

Related information
v Standard features in the XL C/C++ Language Reference

C11 features
In addition to existing C11 features, this topic lists the C11 features that are
introduced in this release of XL C/C++.
v _Thread_local

v Alignment
v Complex type initializations
v Composite types for variable length arrays
v Conversions between pointers and floating types
v Generic selection
v Temporary lifetime extensions
v typedef redeclarations
v Unicode and UTF-8 literals

Related information
v Standard features in the XL C/C++ Language Reference

Built-in functions
This section describes the major categories of built-in functions that are new for
IBM XL C/C++ for Linux on z Systems, V1.2.

__cp This function compares two signed packed decimal integers.

__cvb This function converts an 8-byte, signed packed decimal integer to a signed
binary integer.

__cvbg
This function converts a packed decimal integer to a 64-bit signed binary
integer.

__cvd This function converts a signed binary integer to a packed decimal integer.

__cvdg
This function converts a 64-bit signed binary integer to a packed decimal
integer.

__dp This function performs a divide operation on signed packed-decimal
integers.

__fidbr
This function rounds a long binary-floating-point number to an integer
value in the same floating-point format using the specified rounding mode.

10 XL C/C++: Getting Started

__fiebr
This function rounds a short binary-floating-point number to an integer
value in the same floating-point format using the specified rounding mode.

__fixbr
This function rounds an extended binary-floating-point number to an
integer value in the same floating-point format using the specified
rounding mode.

__lcbb This function counts the number of bytes from a given address without
crossing the specified block boundary.

__mp This function performs a multiply operation on signed packed-decimal
integers.

__srp This function shifts a signed packed decimal integer with or without
rounding.

__zap This function places a signed packed decimal integer at a given address.

Vector built-in functions
You can use vector built-in functions to access and manipulate individual
elements of vectors. For detailed information about each built-in function,
see the topic collection about vector programming support in the XL C/C++
Optimization and Programming Guide.

Commands
This section lists commands that are introduced in this release.

cleanpdf command
The cleanpdf command removes all the PDF files or the specified PDF files
from the directory to which profile-directed feedback data is written.

mergepdf command
The mergepdf command provides the ability to weigh the importance of
two or more PDF records when combining them into a single record. The
PDF records must be derived from the same executable.

showpdf command
The showpdf command displays the following types of profiling
information for all the procedures executed in a PDF run (compilation
under the -qpdf1 option):
v Block-counter profiling
v Call-counter profiling
v Value profiling

For more information, see -qpdf1, -qpdf2 in the XL C/C++ Compiler Reference.

Compiler options and pragma directives
This section describes new compiler options and pragma directives that are added
in this version.

You can specify compiler options on the command line. You can also modify
compiler behavior through pragma directives embedded in your application source
files. For detailed descriptions and usage information for XL C/C++ compiler
options, see the XL C/C++ Compiler Reference.

Chapter 2. What's new for IBM XL C/C++ for Linux on z Systems, V1.2 11

Compiler options

-ftree-vectorize (-qsimd)
The -ftree-vectorize (-qsimd) option is added to control whether the
compiler can automatically take advantage of vector instructions for
processors that support them.

-gdwarf (-qdbgfmt)
The -gdwarf (-qdbgfmt) option is added to control the format for the
debugging information in object files.

-mzvector
The -mzvector option is added to enable the compiler support for vector
programming including the vector and __vector keywords and vector
built-in functions. Note that -mzvector takes effect only on the Linux
distributions that have vector support and run on the IBM z13™ models.

-qasm_as
This option is added to specify the path and flags that is used to invoke
the assembler to handle assembler code in an asm assembly statement.

-qfuncsect
This option is added to place instructions for each function in a separate
section. Placing each function in its own section might reduce the size of
your program because the linker can collect garbage per function rather
than per object file.

-finline-functions (-qinline)
The level suboption is added to indicate the relative degree of inlining. In
addition, the -qinline+<function_name> and -qinline-<function_name>
options are added to control whether the named functions must be inlined
or must not be inlined.

-qpdf1, -qpdf2
These options are added to tunes optimizations through profile-directed
feedback (PDF). With this feature, sample program execution are used to
improve optimization near conditional branches and in frequently executed
code sections.

-qpriority (C++ only)
This option is added to specify the priority level for the initialization of
static objects.

-qshowpdf
This option is added in this release. When -qshowpdf is specified with
-qpdf1 and a minimum optimization level of -O2 at compile and link
steps, the compiler creates a PDF map file that contains additional profiling
information for all procedures in your application.

-std (-qlanglvl)
The following suboptions are added to -qlanglvl:

C++14 extended1y
Compilation is based on the C++14 standard, invoking most of the
C++11 features and all the currently supported C++14 features.

C11 stdc11
Compilation conforms strictly to the ISO C11 standard.

The following suboptions are added to -std:

12 XL C/C++: Getting Started

C++14 c++1y
Compilation is based on the C++14 standard, invoking most of the
C++11 features and all the currently supported C++14 features.

C++11 c++11 | c++0x
Compilation conforms strictly to the ISO C++ standard plus
amendments, also known as ISO C++11.

C++11 gnu++11 | gnu++0x
Compilation is based on the ISO C++ standard, with some
differences to accommodate extended language features.

C++ gnu++03
Compilation is based on the ISO C++98 standard, with some
differences to accommodate extended language features.

C11 c11 | c1x | iso9899:2011
Compilation conforms strictly to the ISO C11 standard.

C11 gnu11
Compilation is based on the ISO C11 standard, with some
differences to accommodate extended language features.

Pragma directives

#pragma nosimd
The #pragma nosimd pragma is added to disable automatic generation of
vector instructions.

Performance and optimization
More features and enhancements assist with performance tuning and application
optimization.

MASS libraries tuned for IBM z13

IBM XL C/C++ for Linux on z Systems, V1.2 provides the MASS libraries that are
tuned for the IBM z13 models in addition to the IBM zEnterprise EC12 (zEC12)
and IBM zEnterprise BC12 (zBC12) models.

New ATLAS libraries

In addition to the static version of the ATLAS libraries tuned for the IBM
zEnterprise® EC12 (zEC12) and IBM zEnterprise BC12 (zBC12) models, IBM XL
C/C++ for Linux on z Systems, V1.2 provides the static version of the ATLAS
main library, the CBLAS library, the LAPACK library, and the Fortran BLAS library
that are tuned for the IBM z13 models.

IBM XL C/C++ for Linux on z Systems, V1.2 also provides the shared version of
the aggregate ATLAS libraries that are tuned for the IBM zEC12, IBM zBC12, and
IBM z13 models.

Vector programming support

In IBM XL C/C++ for Linux on z Systems, V1.2, the Vector Facility for
z/Architecture is available on the Linux distributions that have vector support and
run on the IBM z13 models. The provided vector programming support includes
vector data types, expressions, operators, and vector built-in functions.

Chapter 2. What's new for IBM XL C/C++ for Linux on z Systems, V1.2 13

Related information in the XL C/C++ Optimization and Programming Guide

Optimizing your applications

Coding your application to improve performance

Using the Mathematical Acceleration Subsystem (MASS) libraries

Using the Automatically Tuned Linear Algebra Software (ATLAS) libraries

Using vector programming support

14 XL C/C++: Getting Started

Chapter 3. Migration of your applications

This section lists important considerations when you migrate your applications
that were compiled with other versions of XL C/C++.

Migrating applications that use transactional memory built-in functions
Starting from IBM XL C/C++ for Linux on z Systems, V1.2, to use transactional
memory built-in functions, you must include a header file in the source code. In
addition, if you used numeric return values of the transaction begin and end
built-in functions, you must replace numeric return values with macro return
values that are provided by IBM XL C/C++ for Linux on z Systems, V1.2.

New header file needed for transactional memory built-in
functions

You must include the htmxlintrin.h file in the source code if you use any of the
transactional memory built-in functions.

Changed return values of the transaction begin and end built-in
functions

The return values of the transaction begin and end built-in functions are no longer
numeric. You must update your program using the following return values:

__TM_begin
This function returns _HTM_TBEGIN_STARTED if successful; otherwise, it
returns a different value.

__TM_end
This function returns _HTM_TBEGIN_STARTED if the thread is in the
transactional state before the instruction starts; otherwise, it returns a
different value.

__TM_simple_begin
This function returns _HTM_TBEGIN_STARTED if successful; otherwise, it
returns a different value.

Related information

Transactional memory built-in functions

Transactional memory built-in functions

Mixing object files compiled with different compilers
Most object files that were compiled with different compilers can be linked
together. However, under some circumstances, object files are not compatible and
must be recompiled.

Note the following restrictions:
v There is no binary compatibility among AIX, Linux for big endian distributions,

and Linux for little endian distributions.
v Do not mix object files that were compiled with the big endian compiler and

object files that were complied with the little endian compiler.

© Copyright IBM Corp. 2015 15

v Do not mix object and library files that were compiled with different versions of
a compiler if the -qipa option was used during the compilation. The -qipa
option instructs the compiler to perform an IPA link for these object and library
files. An IPA link might not be able to handle mismatched versions.

Related information:

-qipa

16 XL C/C++: Getting Started

Chapter 4. Features added in earlier releases

This section describes features added in earlier releases. These features also apply
to the current release.

Features added in Version 1.1
In IBM XL C/C++ for Linux on z Systems, V1.1, XL C/C++ combines the Clang
front-end infrastructure with the advanced optimization technology in the IBM
compiler back end. This section describes features added in IBM XL C/C++ for
Linux on z Systems, V1.1. These features and enhancements apply to later releases
as well.

Compiler options
IBM XL C/C++ for Linux on z Systems, V1.1 introduces support for many of the
options supported by GCC.

For a complete list of options that are supported by IBM XL C/C++ for Linux on z
Systems, V1.1, see "Compiler options reference" in the XL C/C++ Compiler Reference.

Note: Some compiler options are not available if you have makefiles for programs
that were previously compiled with XL C/C++ for other platforms.

Template model
IBM XL C/C++ for Linux on z Systems, V1.1 supports Greedy instantiation. The
compiler generates a template instantiation in each compilation unit that uses it.
The linker discards the duplicates.

Related information

The C++ template model

Compiler predefined macro support
The macros that are supported by IBM XL C/C++ for Linux on z Systems, V1.1 are
different from the macros that are supported by other versions of the XL C/C++
compiler. Some macros that are supported by other versions of XL C/C++ for
various platforms might be undefined in IBM XL C/C++ for Linux on z Systems,
V1.1.

You can specify the -Wunsupported-xl-macro option to check whether any
unsupported macro is used. If an unsupported macro is used in your code, the
compiler issues a warning message. For a complete list of supported macros, see
"Compiler predefined macros" in the XL C/C++ Compiler Reference.

Compiler pragmas
IBM XL C/C++ for Linux on z Systems, V1.1 introduces support for many of the
pragmas supported by GCC.

Supported GCC pragmas

© Copyright IBM Corp. 2015 17

The following GCC pragmas are supported in IBM XL C/C++ for Linux on z
Systems, V1.1. For details about these pragmas, see the GNU Compiler Collection
online documentation at http://gcc.gnu.org/onlinedocs/.
v #pragma GCC dependency

v #pragma GCC diagnostic kind option

v #pragma GCC diagnostic push

v #pragma GCC diagnostic pop

v #pragma GCC error string

v #pragma GCC poison

v #pragma GCC system_header

v #pragma GCC visibility push(visibility)

v #pragma GCC visibility pop

v #pragma GCC warning string

v #pragma message string

v #pragma once

v #pragma pop_macro("macro_name")

v #pragma push_macro("macro_name")

v #pragma redefine_extname oldname newname

v #pragma unused

Supported IBM pragmas
v #pragma disjoint

v #pragma execution_frequency

v #pragma option_override

v #pragma pack

v #pragma reachable

v #pragma nounroll

18 XL C/C++: Getting Started

http://gcc.gnu.org/onlinedocs/

Chapter 5. Setting up and customizing XL C/C++

This section describes how to set up and customize the compiler according to your
own requirements.

For complete prerequisite and installation information for XL C/C++, see "Before
installing XL C/C++" in the XL C/C++ Installation Guide.

Using custom compiler configuration files
You can customize compiler settings and options by modifying the default
configuration file or creating your own configuration file.

You have the following options to customize compiler settings:
v The XL C/C++ compiler installation process creates a default compiler

configuration file. You can directly modify this configuration file to add default
options for specific needs. However, if you later apply updates to the compiler,
you must reapply all of your modifications to the newly installed configuration
file.

v You can create your own custom configuration file that either overrides or
complements the default configuration file. The compiler can recognize and
resolve compiler settings that you specify in your custom configuration files
with compiler settings that are specified in the default configuration file.
Compiler updates that might later affect settings in the default configuration file
do not affect the settings in your custom configuration files.
Related information

Using custom compiler configuration files

© Copyright IBM Corp. 2015 19

20 XL C/C++: Getting Started

Chapter 6. Developing applications with XL C/C++

C/C++ application development consists of repeating cycles of editing, compiling,
linking, and running. By default, compiling and linking are combined into a single
step.

Notes:

v Before you use the compiler, ensure that XL C/C++ is properly installed and
configured. For more information, see the XL C/C++ Installation Guide.

v To learn about writing C/C++ programs, refer to the XL C/C++ Language
Referenceand the C and C++ language standards.

The compiler phases
A typical compiler invocation executes some or all of these activities in sequence.
For link time optimizations, some activities are executed more than once during a
compilation. As each compilation component runs, the results are sent to the next
step in the sequence.
1. Preprocessing of source files
2. Compilation, which might consist of the following phases, depending on what

compiler options are specified:
a. Front-end parsing and semantic analysis
b. High-level optimization
c. Low-level optimization
d. Register allocation
e. Final assembly

3. Assembling the assembly (.s) files and the unpreprocessed assembler (.S) files
after they are preprocessed

4. Object linking to create an executable application

To see the compiler step through these phases, specify the -v compiler option when
you compile your application. To see the amount of time the compiler spends in
each phase, specify -ftime-report(-qphsinfo).

Editing C/C++ source files
To create C/C++ source programs, you can use any text editor available on your
system.

Source programs must be saved using a recognized file name suffix. See “XL
C/C++ input and output files” on page 23 for a list of suffixes recognized by XL
C/C++.

For a C or C++ source program to be a valid program, it must conform to the
language definitions specified in the XL C/C++ Language Referenceand the C and
C++ language standards.

© Copyright IBM Corp. 2015 21

Compiling with XL C/C++
XL C/C++ is a command-line compiler. Invocation commands and options can be
selected according to the needs of a particular C/C++ application.

Invoking the compiler
The compiler invocation commands perform all necessary steps to compile C/C++
source files or preprocessed files (.i or .ii), assemble any .s and .S files, and link
the object files and libraries into an executable program.

To compile a C source program, use the following basic invocation syntax:

►► xlc ▼ ▼ input_file
compiler_option

►◄

To compile a C++ source program, use the following basic invocation syntax:

►► xlC
xlc++

▼ ▼ input_file
compiler_option

►◄

For most applications, compile with xlc or xlC. You can use xlC to compile either
C or C++ program source, but compiling C++ files with xlc might result in link or
runtime errors because libraries required for C++ code are not specified when the
linker is called by the C compiler. The compiler invocation commands produce
threadsafe code.

More invocation commands are available to meet specialized compilation needs,
primarily to provide explicit compilation support for different levels and
extensions of the C or C++ language. For more information about available
compiler invocation commands, see "Invoking the compiler" in the XL C/C++
Compiler Reference.

Specifying compiler options
Compiler options perform a variety of functions, such as setting compiler
characteristics, describing the object code to be produced, controlling the diagnostic
messages emitted, and performing some preprocessor functions.

You can specify compiler options in one or any combination of the following ways:
v On the command line
v In your source code using directive statements
v In a makefile
v In the stanzas found in a compiler configuration file

You can also pass options to the linker, assembler, and preprocessor.

22 XL C/C++: Getting Started

Priority sequence of compiler options

Option conflicts and incompatibilities might occur when multiple compiler options
are specified. To resolve these conflicts in a consistent manner, the compiler applies
the following general priority sequence to most options:
1. Directive statements in your source file override command line settings.
2. Compiler option settings on the command line override configuration file

settings.
3. Configuration file settings override default settings.

Generally, if the same compiler option is specified more than once on the
command line when the compiler is invoked, the last option specified prevails.

Note: Some compiler options, such as the -I option, do not follow the priority
sequence described above. The compiler searches any directories specified with -I
in the xlc.cfg file before it searches the directories specified with -I on the
command line. The -I option is cumulative rather than preemptive. Other options
with cumulative behavior are -R and -l (lowercase L).

Related information

Compiler options reference

XL C/C++ input and output files
The topic describes the file types that are recognized by XL C/C++.

For detailed information about these and additional file types used by the
compiler, see "Types of input files" in the XL C/C++ Compiler Reference and "Types
of output files" in the XL C/C++ Compiler Reference.

Table 4. Input file types

Filename extension Description

.c C source files

.C, .cc, .cp, .cpp, .cxx, .c++ C++ source files

.i Preprocessed source files

.ii Preprocessed C++ source files

.o Object files

.s Assembler files

.S Unpreprocessed assembler files

.so Shared object or library files

Table 5. Output file types

Filename extension Description

a.out Default name for executable file created by the compiler

.d Make dependency file

.i Preprocessed source files

.lst Listing files

.o Object files

.s Assembler files

.so Shared object or library files

Chapter 6. Developing applications with XL C/C++ 23

Linking your compiled applications with XL C/C++
By default, you do not need to do anything special to link an XL C/C++ program.
The compiler invocation commands automatically call the linker to produce an
executable output file.

For example, you can use xlc++ to compile file1.C and file3.C to produce object
files file1.o and file3.o; after that, all object files, including file2.o, are
submitted to the linker to produce one executable.
xlc++ file1.C file2.o file3.C

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.
xlc++ -c file1.C # Produce one object file (file1.o)
xlc++ -c file2.C file3.C # Or multiple object files (file1.o, file3.o)
xlc++ file1.o file2.o file3.o # Link object files with default libraries

Related information

Linking

Constructing a library

Dynamic and static linking
You can use XL C/C++ to take advantage of the operating system facilities for
both dynamic and static linking.

Dynamic linking means that the code for some external routines is located and
loaded when the program is first run. When you compile a program that uses
shared libraries, the shared libraries are dynamically linked to your program by
default. Dynamically linked programs take up less disk space and less virtual
memory if more than one program uses the routines in the shared libraries. During
linking, they do not require any special precautions to avoid naming conflicts with
library routines. They might perform better than statically linked programs if
several programs use the same shared routines at the same time. By using dynamic
linking, you can upgrade the routines in the shared libraries without relinking.
This form of linking is the default and no additional options are needed.

Static linking means that the code for all routines called by your program becomes
part of the executable file. Statically linked programs can be moved to run on
systems without the XL C/C++ runtime libraries. They might perform better than
dynamically linked programs if they make many calls to library routines or call
many small routines. They do require some precautions in choosing names for data
objects and routines in the program if you want to avoid naming conflicts with
library routines.

Note: Dynamically and statically linked programs might not work if you compile
them on one level of the operating system and run them on a different level of the
operating system.

24 XL C/C++: Getting Started

Running your compiled application
After a program is compiled and linked, you can run the generated executable file
on the command line.

The default file name for the program executable file produced by the XL C/C++
compiler is a.out. You can select a different name with the -o compiler option.

You should avoid giving your program executable file the same name as system or
shell commands, such as test or cp, as you could accidentally execute the wrong
command. If you do decide to name your program executable file with the same
name as a system or shell command, you should execute your program by
specifying the path name to the directory in which your executable file resides,
such as ./test.

To run a program, enter the name of the program executable file with runtime
arguments on the command line.

Canceling execution

To suspend a running program, press Ctrl+Z while the program is in the
foreground. Use the fg command to resume running.

To cancel a running program, press Ctrl+C while the program is in the foreground.

Setting runtime options

You can use environment variable settings to control certain runtime options and
behaviors of applications created with the XL C/C++ compiler. Some environment
variables do not control actual runtime behavior, but they can have an impact on
how your applications run.

For more information about environment variables and how they can affect your
applications at run time, see the XL C/C++ Installation Guide.

Running compiled applications on other systems

If you want to run an application developed with the XL C/C++ compiler on
another system that does not have the compiler installed, you need to install a
runtime environment on that system or link your application statically.

You can obtain the latest XL C/C++ Runtime Environment images, together with
licensing and usage information, from the XL C/C++ for Linux support page.

XL C/C++ compiler diagnostic aids
XL C/C++ issues diagnostic messages when it encounters problems compiling
your application. You can use these messages and other information provided in
compiler output listings to help identify and correct such problems.

For more information about listing, diagnostics, and related compiler options that
can help you resolve problems with your application, see the following topics in
the XL C/C++ Compiler Reference:
v "Compiler messages and listings"
v "Error checking and debugging options"

Chapter 6. Developing applications with XL C/C++ 25

http://www.ibm.com/support/entry/portal/overview/software/rational/xl_c~c++_for_linux

v "Listings, messages, and compiler information options"

Debugging compiled applications
You can use a symbolic debugger to debug applications compiled with XL C/C++.

At compile time, you can use the -g or -qlinedebug option to instruct the XL
C/C++ compiler to include debugging information in compiled output. For -g, you
can also use different levels to balance between debug capability and compiler
optimization. For more information about the debugging options, see "Error
checking and debugging" in the XL C/C++ Compiler Reference.

You can then use gdb or any symbolic debugger that supports the DWARF debug
format on Linux to step through and inspect the behavior of your compiled
application.

Optimized applications pose special challenges when you debug your applications.
For more information about debugging your optimized code, see "Debugging
optimized code" in the XL C/C++ Optimization and Programming Guide.

Determining which level of XL C/C++ is being used
To display the version and release level of XL C/C++ that you are using, invoke
the compiler with the --version (-qversion) compiler option.

For example, to obtain detailed version information, enter the following command:
xlc++ --version

26 XL C/C++: Getting Started

Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL C/C++ for Linux on z Systems.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2015 27

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

28 XL C/C++: Getting Started

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 2015.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 29

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

30 XL C/C++: Getting Started

Index

Special characters
.a files 23
.c and .C files 23
.i files 23
.ii files 23
.lst files 23
.mod files 23
.o files 23
.s files 23
.S files 23
.so files 23

Numerics
64-bit environment 6

A
assembler

source (.s) files 23
source (.S) files 23

B
basic example, described viii
built-in functions 10

C
C++ templates 17
code optimization 5
commands 5
compatibility with GNU 3
compilation

sequence of activities 21
compiler

invoking 22
running 22

compiler directives
new 11

compiler options
conflicts and incompatibilities 23
new 11
specification methods 22

customization
for compatibility with GNU 3

D
debugger support 26

output listings 25
symbolic 7

debugging 26
debugging compiled applications 25
debugging information, generating 25
dynamic linking 24

E
editing source files 21
executable files 23
executing a program 25
executing the linker 24

F
files

editing source 21
input 23
output 23

G
GCC options 17
GCC pragmas 17

I
input files 23
invocation commands 22
invoking a program 25
invoking the compiler 22

L
language standards 3
language support 3
libraries 23
linking

dynamic 24
static 24

linking process 24
listings 23

M
macros 17
migration

source code 22

O
object files 23

creating 24
linking 24

optimization 13
programs 5

output files 23

P
performance 13

optimizing transformations 5
problem determination 25

programs
running 25

R
running the compiler 22
runtime environment 25
runtime libraries 23
runtime options 25

S
shared object files 23
source files 23
source-level debugging support 7
static linking 24
symbolic debugger support 7

T
tools

cleanpdf utility 5
install configuration utility 5
install utility 5
mergepdf utility 5
showpdf utility 5

U
utilities

cleanpdf 5
install 5
mergepdf 5
showpdf 5

X
xlc.cfg file 22

© Copyright IBM Corp. 2015 31

32 XL C/C++: Getting Started

IBM®

Product Number: 5725-N01

Printed in USA

GI13-2865-01

	Contents
	About this document
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other information

	Technical support
	How to send your comments

	Chapter 1. Introducing XL C/C++
	Commonality with other IBM compilers
	Operating system and hardware support
	A highly configurable compiler
	Language standard compliance
	Compatibility with GNU
	Source-code migration and conformance checking

	Libraries
	Utilities and commands
	Program optimization
	64-bit object capability
	Diagnostic reports
	Symbolic debugger support

	Chapter 2. What's new for IBM XL C/C++ for Linux on z Systems, V1.2
	C++14 features
	C++11 features
	C11 features
	Built-in functions
	Commands
	Compiler options and pragma directives
	Performance and optimization

	Chapter 3. Migration of your applications
	Migrating applications that use transactional memory built-in functions
	Mixing object files compiled with different compilers

	Chapter 4. Features added in earlier releases
	Features added in Version 1.1
	Compiler options
	Template model
	Compiler predefined macro support
	Compiler pragmas

	Chapter 5. Setting up and customizing XL C/C++
	Using custom compiler configuration files

	Chapter 6. Developing applications with XL C/C++
	The compiler phases
	Editing C/C++ source files
	Compiling with XL C/C++
	Invoking the compiler
	Specifying compiler options
	XL C/C++ input and output files

	Linking your compiled applications with XL C/C++
	Dynamic and static linking

	Running your compiled application
	XL C/C++ compiler diagnostic aids
	Debugging compiled applications
	Determining which level of XL C/C++ is being used

	Notices
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	O
	P
	R
	S
	T
	U
	X

