
IBM XL C/C++ for Linux on z Systems, V1.2

Compiler Reference
Version 1.2

SC27-5998-01

IBM

IBM XL C/C++ for Linux on z Systems, V1.2

Compiler Reference
Version 1.2

SC27-5998-01

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 213.

First edition

This edition applies to IBM XL C/C++ for Linux on z Systems, V1.2 (Program 5725-N01) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

© Copyright IBM Corporation 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Who should read this document v
How to use this document. v
How this document is organized v
Conventions vi
Related information ix

IBM XL C/C++ information ix
Standards and specifications x
Other information xi

Technical support xi
How to send your comments xi

Chapter 1. Compiling and linking
applications 1
Invoking the compiler 1

Command-line syntax 2
Types of input files 3
Types of output files 4
Specifying compiler options 5

Specifying compiler options on the command line 5
Specifying compiler options in a configuration file 5
Specifying compiler options in program source
files 6
Resolving conflicting compiler options. 6
Specifying compiler options for
architecture-specific compilation 7

Preprocessing 8
Directory search sequence for included files . . . 9

Linking. 10
Order of linking 11
Redistributable libraries 12

Compiler messages and listings. 12
Compiler messages 13
Compiler listings 13
Paging space errors during compilation 15

Chapter 2. Configuring compiler
defaults 17
Setting environment variables 17

Compile-time and link-time environment
variables 18
Runtime environment variables. 18

Using custom compiler configuration files 19
Creating custom configuration files 20

Chapter 3. Compiler options reference 23
Summary of compiler options by functional
category 23

Output control 23
Input control 24
Language element control 25
Template control (C++ only) 26
Floating-point and integer control 26
Object code control 27

Error checking and debugging 28
Listings, messages, and compiler information . . 31
Optimization and tuning 31
Linking. 33
Portability and migration 34
Compiler customization 34

Individual option descriptions 35
-### (-#) (pound sign) 36
-+ (plus sign) (C++ only) 37
--help (-qhelp) 37
--version (-qversion) 38
@file (-qoptfile) 40
-B 42
-C, -C! 43
-D 44
-E 45
-F. 46
-I 48
-L 49
-O, -qoptimize 50
-P 52
-R 53
-S. 54
-U 55
-X (-W) 56
-Werror (-qhalt) 57
-Wunsupported-xl-macro 58
-c 59
-dM (-qshowmacros) 60
-e 60
-fasm (-qasm). 61
-fcommon (-qcommon) 63
-fdollars-in-identifiers (-qdollar) 64
-fdump-class-hierarchy (-qdump_class_hierarchy)
(C++ only). 65
-finline-functions (-qinline) 65
-fPIC , -fpic (-qpic) 69
-fpack-struct (-qalign) 70
-fsigned-bitfields, -funsigned-bitfields (-qbitfields) 71
-fsigned-char, -funsigned-char (-qchars) 71
-fstrict-aliasing (-qalias=ansi), -qalias 72
-fsyntax-only (-qsyntaxonly) 74
-ftemplate-depth (-qtemplatedepth) (C++ only) 75
-ftls-model (-qtls) 76
-ftime-report (-qphsinfo) 77
-ftree-vectorize (-qsimd) 78
-g. 80
-gdwarf (-qdbgfmt) 83
-include (-qinclude). 84
-isystem (-qc_stdinc) (C only) 85
-isystem (-qcpp_stdinc) (C++ only) 87
-isystem (-qgcc_c_stdinc) (C only) 88
-isystem (-qgcc_cpp_stdinc) (C++ only) 89
-l 91
-march (-qarch) 92
-mtune (-qtune) 94

© Copyright IBM Corp. 2015 iii

-mzvector 96
-m31, -m64 (-q31, -q64) 96
-o. 97
-p, -pg, -qprofile 98
-qasm_as 99
-qcrt, -nostartfiles (-qnocrt) 100
-qeh (C++ only) 101
-qfloat 102
-qfullpath 103
-qfuncsect 104
-qhot 104
-qinitauto. 106
-qipa 109
-qisolated_call 114
-qkeepparm 115
-qlib, -nodefaultlibs (-qnolib) 116
-qlibansi 117
-qlinedebug 118
-qlist 119
-qmakedep, -MD (-qmakedep=gcc) 120
-qpath 122
-qpdf1, -qpdf2 123
-qpriority (C++ only) 129
-qreport 130
-qrtti, -fno-rtti (-qnortti) (C++ only) 131
-qsaveopt. 132
-qshowpdf 134
-qsmallstack 135
-qstaticinline (C++ only) 136
-qstdinc, -qnostdinc (-nostdinc, -nostdinc++) . . 137
-qtimestamps 138
-qtmplinst (C++ only) 139
-r 139
-s 140
-shared (-qmkshrobj) 141
-static (-qstaticlink) 142
-std (-qlanglvl) 144
-t 148
-v, -V 150
-w 150
-x (-qsourcetype) 151
Supported GCC options 153

Chapter 4. Compiler pragmas
reference 159
Pragma directive syntax 159
Scope of pragma directives 159
Supported GCC pragmas 160
Supported IBM pragmas 160

#pragma disjoint 161
#pragma execution_frequency 162
#pragma nosimd 163
#pragma nounroll 164
#pragma option_override 164
#pragma pack 166
#pragma reachable 169

Chapter 5. Compiler predefined
macros 171
General macros. 171
Macros indicating the XL C/C++ compiler . . . 172
Macros related to the platform 173
Macros related to compiler features 174

Macros related to compiler option settings. . . 174
Macros related to architecture settings 175
Macros related to language levels 176

Unsupported macros from other XL compilers . . 177

Chapter 6. Compiler built-in functions 179
Fixed-point built-in functions 179

Absolute value functions 179
Population count functions 179

Cache-related built-in functions 180
Data cache functions 180

Block-related built-in functions 181
bzero 181

Vector built-in functions 181
GCC atomic memory access built-in functions (IBM
extension) 181

Atomic lock, release, and synchronize functions 182
Atomic fetch and operation functions 183
Atomic operation and fetch functions 186
Atomic compare and swap functions 189

Miscellaneous built-in functions 190
Optimization-related functions 190
Memory-related functions 190

Hardware built-in functions 191
__cp 191
__cvb 192
__cvbg 193
__cvd 193
__cvdg 193
__dp 194
__fidbr 195
__fiebr. 196
__fixbr 197
__lcbb 198
__mp 198
__srp 199
__stck 200
__stckf. 201
__zap 201

Transactional memory built-in functions 203
Transaction begin and end functions. 204
Transaction abort functions 205
Transaction inquiry functions 206
Transaction store functions 211

Notices 213
Trademarks 215

Index 217

iv XL C/C++: Compiler Reference

About this document

This document is a reference for the IBM® XL C/C++ for Linux on z Systems™,
V1.2 compiler. Although it provides information about compiling and linking
applications written in C and C++, it is primarily intended as a reference for
compiler command-line options, pragma directives, predefined macros, built-in
functions, environment variables, error messages, and return codes.

Who should read this document
This document is for experienced C or C++ developers who have some familiarity
with the XL C/C++ compilers or other command-line compilers on Linux
operating systems. It assumes thorough knowledge of the C or C++ programming
language and basic knowledge of operating system commands. Although this
information is intended as a reference guide, programmers new to XL C/C++ can
still find information about the capabilities and features unique to the XL C/C++
compiler.

How to use this document
Unless indicated otherwise, all of the text in this reference pertains to both C and
C++ languages. Where there are differences between languages, these are indicated
through qualifying text and icons, as described in “Conventions” on page vi.

Throughout this document, the xlc and xlc++ command invocations are used to
describe the behavior of the compiler. You can, however, substitute other forms of
the compiler invocation command if your particular environment requires it, and
compiler option usage remains the same unless otherwise specified.

While this document covers topics such as configuring the compiler environment,
and compiling and linking C or C++ applications using the XL C/C++ compiler, it
does not include the following topics:
v Compiler installation: see the XL C/C++ Installation Guide.
v The C or C++ programming language: see the XL C/C++ Language Reference for

information about the syntax, semantics, and IBM implementation of the C or
C++ IBM extension features. See C/C++ standards for the details of standard
features.

v Programming topics: see the XL C/C++ Optimization and Programming Guide for
detailed information about developing applications with XL C/C++, with a
focus on program portability and optimization.

How this document is organized
Chapter 1, “Compiling and linking applications,” on page 1 discusses topics related
to compilation tasks, including invoking the compiler, preprocessor, and linker;
types of input and output files; different methods for setting include file path
names and directory search sequences; different methods for specifying compiler
options and resolving conflicting compiler options; and compiler listings and
messages.

© Copyright IBM Corp. 2015 v

Chapter 2, “Configuring compiler defaults,” on page 17 discusses topics related to
setting up default compilation settings, including setting environment variables
and customizing the configuration file.

Chapter 3, “Compiler options reference,” on page 23 provides a summary of
options according to their functional category, through which you can look up and
link to options by function. This chapter also includes individual descriptions of
selected compiler option sorted alphabetically and a list of the rest of supported
GCC options.

Chapter 4, “Compiler pragmas reference,” on page 159 provides a list of GCC
supported pragmas, which are sorted alphabetically. Then it provides the detailed
information of each IBM supported pragma.

Chapter 5, “Compiler predefined macros,” on page 171 provides a list of compiler
macros grouped according to their category. It also provides a list of compiler
macros that might be supported by other XL compilers but are not supported in
IBM XL C/C++ for Linux on z Systems, V1.2.

Chapter 6, “Compiler built-in functions,” on page 179 contains individual
descriptions of XL C/C++ built-in functions for Power® architectures, categorized
by their functionality.

Conventions
Typographical conventions

The following table shows the typographical conventions used in the IBM XL
C/C++ for Linux on z Systems, V1.2 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc and xlC
(xlc++), along with several other
compiler invocation commands to
support various C/C++ language
levels and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

vi XL C/C++: Compiler Reference

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

C only begins
C

C

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

C++ only begins
C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

IBM extension begins
IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

C11 begins
C11

C11

C11 ends

The text describes a feature that is introduced into standard C
as part of C11.

C++11 begins
C++11

C++11

C++11 ends

The text describes a feature that is introduced into standard
C++ as part of C++11.

C++14 begins
C++14

C++14

C++14 ends

The text describes a feature that is introduced into standard
C++ as part of C++14.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
helps you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.

About this document vii

The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.

viii XL C/C++: Compiler Reference

v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Related information
The following sections provide related information for XL C/C++:

IBM XL C/C++ information
XL C/C++ provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL C/C++ for Linux on z Systems, V1.2. It is located by default in the XL
C/C++ directory and in the \quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory, and in the root directory and subdirectories of the
installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for Linux on z Systems, V1.2
Installation Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSVUN6_1.2.0/
com.ibm.compilers.loz.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27044043.
The following files comprise the full set of XL C/C++ product information:

About this document ix

http://www.ibm.com/support/knowledgecenter/SSVUN6_1.2.0/com.ibm.compilers.loz.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSVUN6_1.2.0/com.ibm.compilers.loz.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27044043
http://www.ibm.com/support/docview.wss?uid=swg27044043

Table 3. XL C/C++ PDF files

Document title
PDF file
name Description

IBM XL C/C++ for Linux
on z Systems, V1.2
Installation Guide,
GC27-5995-01

install.pdf Contains information for installing XL C/C++
and configuring your environment for basic
compilation and program execution.

Getting Started with IBM
XL C/C++ for Linux on z
Systems, V1.2,
GI13-2865-01

getstart.pdf Contains an introduction to the XL C/C++
product, with information about setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL C/C++ for Linux
on z Systems, V1.2
Compiler Reference,
SC27-5998-01

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in functions.

IBM XL C/C++ for Linux
on z Systems, V1.2
Language Reference,
SC27-5996-01

langref.pdf Contains information about language extensions
for portability and conformance to
nonproprietary standards.

IBM XL C/C++ for Linux
on z Systems, V1.2
Optimization and
Programming Guide,
SC27-5997-01

proguide.pdf Contains information about advanced
programming topics, such as application
porting, library development, application
optimization, and the XL C/C++
high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL C/C++, including IBM Redbooks® publications,
white papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27044043.

For more information about C/C++, see the C/C++ café at https://
www.ibm.com/developerworks/community/groups/service/html/
communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3.

Standards and specifications
XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards and specifications for precise definitions of some of the
features found in this information.
v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also

known as C89.
v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also

known as C99.
v Information Technology - Programming languages - C, ISO/IEC 9899:2011, also

known as C11.
v Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also

known as C++98.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also

known as C++03.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also

known as C++11 (Partial support).

x XL C/C++: Compiler Reference

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27044043
http://www.ibm.com/support/docview.wss?uid=swg27044043
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3

v Information Technology - Programming languages - C++, ISO/IEC 14882:2014, also
known as C++14 (Partial support).

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support
Additional technical support is available from the XL C/C++ Support page at
http://www.ibm.com/support/entry/portal/product/rational/xl_c/
c++_for_linux_on_z_systems. This page provides a portal with search capabilities
to a large selection of Technotes and other support information.

If you cannot find what you need, you can send an email to
compinfo@ca.ibm.com.

For the latest information about XL C/C++, visit the product information site at
http://www.ibm.com/software/products/en/xlcpp-loz.

How to send your comments
Your feedback is important in helping us to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments to compinfo@ca.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL C/C++, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

About this document xi

http://gcc.gnu.org/onlinedocs
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_linux_on_z_systems
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_linux_on_z_systems
http://www.ibm.com/software/products/en/xlcpp-loz

xii XL C/C++: Compiler Reference

Chapter 1. Compiling and linking applications

By default, when you invoke the XL C/C++ compiler, all of the following phases
of translation are performed:
v Preprocessing of program source
v Compiling and assembling into object files
v Linking into an executable

These different translation phases are actually performed by separate executables,
which are referred to as compiler components. However, you can use compiler
options to perform only certain phases, such as preprocessing, or assembling. You
can then reinvoke the compiler to resume processing of the intermediate output to
a final executable.

The following sections describe how to invoke the XL C/C++ compiler to
preprocess, compile, and link source files and libraries:
v “Invoking the compiler”
v “Types of input files” on page 3
v “Types of output files” on page 4
v “Specifying compiler options” on page 5
v “Preprocessing” on page 8
v “Linking” on page 10
v “Compiler messages and listings” on page 12

Invoking the compiler
Different forms of the XL C/C++ compiler invocation commands support various
levels of the C and C++ languages. In most cases, you should use the xlc
command to compile your C source files, and the xlc++ command to compile C++
source files. Use xlc++ to link if you have both C and C++ object files.

All the invocation commands allow for threadsafe compilations. You can use them
to link the programs that use multithreading.

Note: For each invocation command, the compiler configuration file defines
default option settings and, in some cases, macros; for information about the
defaults implied by a particular invocation, see the /opt/ibm/xlC/1.2/etc/
xlc.cfg.$OSRelease.gcc$gccVersion file for your system. For example,
/opt/ibm/xlC/1.2/etc/xlc.cfg.sles.12.gcc.4.8.2

Table 4. Compiler invocations

Invocations Description Equivalent invocations

xlc Invokes the compiler for C source files. This command
supports all of the ISO C99 standard features, and most IBM
language extensions. This invocation is recommended for all
applications.

xlc_r

c99 Invokes the compiler for C source files. This command
supports all ISO C99 language features, but does not
support IBM language extensions. Use this invocation for
strict conformance to the C99 standard.

c99_r

© Copyright IBM Corp. 2015 1

Table 4. Compiler invocations (continued)

Invocations Description Equivalent invocations

c89 Invokes the compiler for C source files. This command
supports all ANSI C89 language features, but does not
support IBM language extensions. Use this invocation for
strict conformance to the C89 standard.

c89_r

cc Invokes the compiler for C source files. This command
supports pre-ANSI C, and many common language
extensions. You can use this command to compile legacy
code that does not conform to standard C.

cc_r

xlc++, xlC Invokes the compiler for C++ source files. If any of your
source files are C++, you must use this invocation to link
with the correct runtime libraries.

Files with .c suffixes, assuming you have not used the -+
compiler option, are compiled as C language source code.

xlc++_r, xlC_r

Related information
v “-std (-qlanglvl)” on page 144

Command-line syntax
You invoke the compiler using the following syntax, where invocation can be
replaced with any valid XL C/C++ invocation command listed in Table 4 on page
1:

►► invocation ▼ input_files
command_line_options

►◄

The parameters of the compiler invocation command can be the names of input
files, compiler options, and linker options.

Your program can consist of several input files. All of these source files can be
compiled at once using only one invocation of the compiler. Although more than
one source file can be compiled using a single invocation of the compiler, you can
specify only one set of compiler options on the command line per invocation. Each
distinct set of command-line compiler options that you want to specify requires a
separate invocation.

Compiler options perform a wide variety of functions, such as setting compiler
characteristics, describing the object code and compiler output to be produced, and
performing some preprocessor functions.

By default, the invocation command calls both the compiler and the linker. It passes
linker options to the linker. Consequently, the invocation commands also accept all
linker options. To compile without linking, use the -c compiler option. The -c
option stops the compiler after compilation is completed and produces as output,
an object file file_name.o for each file_name.nnn input source file, unless you use the
-o option to specify a different object file name. The linker is not invoked. You can
link the object files later using the same invocation command, specifying the object
files without the -c option.

2 XL C/C++: Compiler Reference

Related information
v “Types of input files”

Types of input files
The compiler processes the source files in the order in which they are displayed. If
the compiler cannot find a specified source file, it produces an error message and
the compiler proceeds to the next specified file. However, the linker does not run
and temporary object files are removed.

By default, the compiler preprocesses and compiles all the specified source files.
Although you usually want to use this default, you can use the compiler to
preprocess the source file without compiling; see “Preprocessing” on page 8 for
details.

You can input the following types of files to the XL C/C++ compiler:

C and C++ source files
These are files containing C or C++ source code.

To use the C compiler to compile a C language source file, the source file
must have a .c (lowercase c) suffix, unless you compile with the -x c
option.

To use the C++ compiler, the source file must have a .C (uppercase C), .cc,
.cp, .cpp, .cxx, or .c++ suffix, unless you compile with the -x c++ option.

Preprocessed source files
Preprocessed files are useful for checking macros and preprocessor
directives. Preprocessed C source files have a .i suffix and preprocessed
C++ source files have a .ii suffix, for example, file_name.i and
file_name.ii. The compiler sends the preprocessed source file,
file_name.i or file_name.ii, to the compiler where it is preprocessed
again in the same way as a .c or .C file.

Object files
Object files must have a .o suffix, for example, file_name.o. Object files,
library files, and unstripped executable files serve as input to the linker.
After compilation, the linker links all of the specified object files to create
an executable file.

Assembler files
Assembler files must have a .s suffix, for example, file_name.s, unless you
compile with the -x assembler option. Assembler files are assembled to
create an object file.

Unpreprocessed assembler files
Unpreprocessed assembler files must have a .S suffix, for example,
file_name.S, unless you compile with the -x assembler-with-cpp option.
The compiler compiles all source files with a .S extension as if they are
assembler language source files that need preprocessing.

Shared library files
Shared library files generally have a .a suffix, for example, file_name.a,
but they can also have a .so suffix, for example, file_name.so.

Unstripped executable files
Executable and linking format (ELF) files that have not been stripped with
the operating system strip command can be used as input to the compiler.

Related information:

Chapter 1. Compiling and linking applications 3

“Input control” on page 24

Types of output files
You can specify the following types of output files when invoking the XL C/C++
compiler:

Executable files
By default, executable files are named a.out. To name the executable file
something else, use the -o file_name option with the invocation command.
This option creates an executable file with the name you specify as
file_name. The name you specify can be a relative or absolute path name for
the executable file.

Object files
If you specify the -c option, an output object file, file_name.o, is produced
for each input file. The linker is not invoked, and the object files are placed
in your current directory. All processing stops at the completion of the
compilation. The compiler gives object files a .o suffix, for example,
file_name.o, unless you specify the -o file_name option, giving a different
suffix or no suffix at all.

You can link the object files later into a single executable file by invoking
the compiler.

Shared library files
If you specify the -shared (-qmkshrobj) option, the compiler generates a
single shared library file for all input files. The compiler names the output
file a.out, unless you specify the -o file_name option, and give the file a .so
suffix.

Assembler files
If you specify the -S option, an assembler file, file_name.s, is produced for
each input file.

You can then assemble the assembler files into object files and link the
object files by reinvoking the compiler.

Preprocessed source files
If you specify the -P option, a preprocessed source file, file_name.i, is
produced for each input file.

You can then compile the preprocessed files into object files and link the
object files by reinvoking the compiler.

Listing files
If you specify any of the listing-related options, such as -qlist, a compiler
listing file, file_name.lst, is produced for each input file. The listing file is
placed in your current directory.

Target files
If you specify the -qmakedep, -MD, or -MMD option, a target file suitable
for inclusion in a makefile, file_name.d is produced for each input file.

Related information:
“Output control” on page 23

4 XL C/C++: Compiler Reference

Specifying compiler options
Compiler options perform a wide variety of functions, such as setting compiler
characteristics, describing the object code and compiler output to be produced, and
performing some preprocessor functions. You can specify compiler options in one
or more of the following ways:
v On the command line
v In a custom configuration file, which is a file with a .cfg extension
v In your source program
v As system environment variables
v In a makefile

The compiler assumes default settings for most compiler options not explicitly set
by you in the ways listed above.

When specifying compiler options, it is possible for option conflicts and
incompatibilities to occur. The XL C/C++ compiler resolves most of these conflicts
and incompatibilities in a consistent fashion, as follows:

In most cases, the compiler uses the following order in resolving conflicting or
incompatible options:
1. Pragma statements in source code override compiler options specified on the

command line.
2. Compiler options specified on the command line override compiler options

specified as environment variables or in a configuration file. If conflicting or
incompatible compiler options are specified in the same command line
compiler invocation, the subsequent option in the invocation takes precedence.

3. Compiler options specified as environment variables override compiler options
specified in a configuration file.

4. Compiler options specified in a configuration file, command line or source
program override compiler default settings.

Option conflicts that do not follow this priority sequence are described in
“Resolving conflicting compiler options” on page 6.

Specifying compiler options on the command line
Most options specified on the command line override both the default settings of
the option and options set in the configuration file. Similarly, most options
specified on the command line are in turn overridden by pragma directives, which
provide you a means of setting compiler options right in the source file. Options
that do not follow this scheme are listed in “Resolving conflicting compiler
options” on page 6.

Specifying compiler options in a configuration file
The default configuration file (/opt/ibm/xlC/1.2/etc/
xlc.cfg.$OSRelease.gcc$gccVersion, for example, /opt/ibm/xlC/1.2/etc/
xlc.cfg.sles.12.gcc.4.8.3) defines values and compiler options for the compiler. The
compiler refers to this file when compiling C or C++ programs.

The configuration file is a plain text file. You can edit this file, or create an
additional customized configuration file to support specific compilation
requirements. For more information, see “Using custom compiler configuration
files” on page 19.

Chapter 1. Compiling and linking applications 5

Specifying compiler options in program source files
You can specify some compiler options within your program source by using
pragma directives. A pragma is an implementation-defined instruction to the
compiler. For those options that have equivalent pragma directives, you can have
several ways to specify the syntax of the pragmas:
v Using #pragma name syntax

Some options also have corresponding pragma directives that use a
pragma-specific syntax, which may include additional or slightly different
suboptions. Throughout the section “Individual option descriptions” on page 35,
each option description indicates whether this form of the pragma is supported,
and the syntax is provided.

v Using the standard C99 _Pragma operator
For options that support either forms of the pragma directives listed above, you
can also use the C99 _Pragma operator syntax in both C and C++.

Complete details on pragma syntax are provided in “Pragma directive syntax” on
page 159.

Other pragmas do not have equivalent command-line options; these are described
in detail throughout Chapter 4, “Compiler pragmas reference,” on page 159.

Options specified with pragma directives in program source files override all other
option settings, except other pragma directives. The effect of specifying the same
pragma directive more than once varies. See the description for each pragma for
specific information.

Pragma settings can carry over into included files. To avoid potential unwanted
side effects from pragma settings, you should consider resetting pragma settings at
the point in your program source where the pragma-defined behavior is no longer
required. Some pragma options offer reset or pop suboptions to help you do this.
These suboptions are listed in the detailed descriptions of the pragmas to which
they apply.

Resolving conflicting compiler options
In general, if more than one variation of the same option is specified, the compiler
uses the setting of the last one specified. Compiler options specified on the
command line must appear in the order you want the compiler to process them.
However, some options have cumulative effects when they are specified more than
once; examples are the -Idirectory, -Ldirectory, and -Rdirectory_path options.

When options such as -qfloat are specified with suboptions for multiple times,
each suboption overrides previous specifications of that suboption, but different
suboptions are cumulative.

In most cases, the compiler uses the following order in resolving conflicting or
incompatible options:
1. Pragma statements in source code override compiler options specified on the

command line.
2. Compiler options specified on the command line override compiler options

specified as environment variables or in a configuration file. If conflicting or
incompatible compiler options are specified on the command line, the option
appearing later on the command line takes precedence.

6 XL C/C++: Compiler Reference

3. Compiler options specified as environment variables override compiler options
specified in a configuration file.

4. Compiler options specified in a configuration file override compiler default
settings.

Not all option conflicts are resolved using the preceding rules. The following table
summarizes exceptions and how the compiler handles conflicts between them.
Rules for resolving conflicts between compiler mode and architecture-specific
options are discussed in “Specifying compiler options for architecture-specific
compilation.”

Option Conflicting options Resolution

-E -P, -S -E

-P -c, -o, -S -P

-# -v -#

-F -B, -t, -W, -qpath -B, -t, -W, -qpath

-qpath -B, -t -qpath

-S -c -S

-nostdinc,
-nostdinc++
(-qnostdinc)

-isystem (-qc_stdinc, -qcpp_stdinc,
-qgcc_c_stdinc, -qgcc_cpp_stdinc)

-nostdinc, -nostdinc++
(-qnostdinc)

Specifying compiler options for architecture-specific
compilation

You can use the -m31, -m64, -march, and -mtune compiler options to optimize the
output of the compiler to suit:
v The broadest possible selection of target processors
v A range of processors within a given processor architecture family
v A single specific processor

Generally speaking, the options do the following:
v -m31 selects 31-bit execution mode.
v -m64 selects 64-bit execution mode.
v -march selects the general family processor architecture for which instruction

code should be generated.
v -mtune selects the specific processor for which compiler output is optimized.

The -mtune option influences only the performance of the code when running
on a particular system but does not determine where the code will run.

The compiler evaluates compiler options in the following order, with the last
allowable one found determining the compiler mode:
1. Internal default (64-bit mode)
2. Configuration file settings
3. Command line compiler options (-m31, -m64, -march, and -mtune)

The compilation mode actually used by the compiler depends on a combination of
the settings of the -m31, -m64, -march, and -mtune compiler options, subject to the
following conditions:
v Compiler mode is set according to the last-found instance of the -m31 or -m64

compiler options.

Chapter 1. Compiling and linking applications 7

v Architecture target is set according to the last-found instance of the -march
compiler option, provided that the specified -march setting is compatible with
the compiler mode setting. If the -march option is not set, the compiler sets
-march to the appropriate default based on the effective compiler mode setting.

v Tuning of the architecture target is set according to the last-found instance of the
-mtune compiler option, provided that the -mtune setting is compatible with the
architecture target and compiler mode settings. If the -mtune option is not set, the
compiler assumes a default -mtune setting according to the -march setting in
use. If -march is not specified, the compiler sets -mtune to the appropriate
default based on the effective -march as selected by default based on the
effective compiler mode setting.

Allowable combinations of these options are found in “-mtune (-qtune)” on page
94.

The following list describes possible option conflicts and compiler resolution of
these conflicts:
v -march option is incompatible with user-selected -mtune option.

Resolution: Compiler issues a warning message, and sets -mtune to the -march
setting's default -mtune value.

v Selected -march or -mtune options are not known to the compiler.

Resolution: Compiler issues a warning message, sets -march and -mtune to
their default settings. The compiler mode (31-bit or 64-bit) is determined by the
-m31 or -m64 compiler settings.

Related information
v “-march (-qarch)” on page 92
v “-mtune (-qtune)” on page 94
v “-m31, -m64 (-q31, -q64)” on page 96

Preprocessing
Preprocessing manipulates the text of a source file, usually as a first phase of
translation that is initiated by a compiler invocation. Common tasks accomplished
by preprocessing are macro substitution, testing for conditional compilation
directives, and file inclusion.

You can invoke the preprocessor separately to process text without compiling. The
output is an intermediate file, which can be input for subsequent translation.
Preprocessing without compilation can be useful as a debugging aid because it
provides a way to see the result of include directives, conditional compilation
directives, and complex macro expansions.

The following table lists the options that direct the operation of the preprocessor.

Option Description

“-E” on page 45 Preprocesses the source files and writes the output to standard output.
By default, #line directives are generated.

“-P” on page 52 Preprocesses the source files and creates an intermediary file with a .i
file name suffix for each source file. By default, #line directives are
not generated.

8 XL C/C++: Compiler Reference

Option Description

“-C, -C!” on page
43

Preserves comments in preprocessed output.

“-D” on page 44 Defines a macro name from the command line, as if in a #define
directive.

-dD1 Emits macro definitions to preprocessed output and prints the output.

“-dM
(-qshowmacros)”
on page 601

Emits macro definitions to preprocessed output.

“-qmakedep, -MD
(-qmakedep=gcc)”
on page 120

Produces the dependency files that are used by the make tool for each
source file.

-M1 Generates a rule suitable for the make tool that describes the
dependencies of the input file.

-MD1 Compiles the source files, generates the object file, and generates a
rule suitable for the make tool that describes the dependencies of the
input file in a .d file with the name of the input file.

-MF file1 Specifies the file to write the dependencies to. The -MF option must
be specified with option -M or -MM.

-MG1 Assumes that missing header files are generated files and adds them
to the dependency list without raising an error. The -MG option must
be used with option -M, -MD, -MM, or -MMD.

-MM1 Generates a rule suitable for the make tool that describes the
dependencies of the input file, but does not mention header files that
are found in system header directories nor header files that are
included from such a header.

-MMD1 Compiles the source files, generates the object file, and generates a
rule suitable for the make tool that describes the dependencies of the
input file in a .d file with the name of the input file. However, the
dependencies do not include header files that are found in system
header directories nor header files that are included from such a
header.

-MP1 Instructs the C preprocessor to add a phony target for each
dependency other than the input file.

-MQ target1 Changes the target of the rule emitted by dependency generation and
quotes any characters that are special to the make tool.

-MT target1 Changes the target of the rule emitted by dependency generation.

“-U” on page 55 Undefines a macro name defined by the compiler or by the -D option.

Note:

1. For details about the option, see the GNU Compiler Collection online documentation at
http://gcc.gnu.org/onlinedocs/.

Directory search sequence for included files
The XL C/C++ compiler supports the following types of included files:
v Header files supplied by the compiler (referred to throughout this document as

XL C/C++ headers)
v Header files mandated by the C and C++ standards (referred to throughout this

document as system headers)
v Header files supplied by the operating system (also referred to throughout this

document as system headers)

Chapter 1. Compiling and linking applications 9

http://gcc.gnu.org/onlinedocs/

v User-defined header files

You can use any of the following methods to include any type of header file:
v Use the standard #include <file_name> preprocessor directive in the including

source file.
v Use the standard #include "file_name" preprocessor directive in the including

source file.
v Use the -include compiler option.

If you specify the header file using a full (absolute) path name, you can use these
methods interchangeably, regardless of the type of header file you want to include.
However, if you specify the header file using a relative path name, the compiler
uses a different directory search order for locating the file depending on the
method used to include the file.

Furthermore, the -qstdinc compiler option can affect this search order. The
following summarizes the search order used by the compiler to locate header files
depending on the mechanism used to include the files and on the compiler options
that are in effect:
1. Header files included with -include only: The compiler searches the current

(working) directory from which the compiler is invoked.
2. Header files included with -include or #include "file_name": The compiler

searches the directory in which the source file is located.
3. All header files: The compiler searches each directory specified by the -I

compiler option, in the order that it displays on the command line.
4. All header files: The compiler searches the standard directory for the system

headers. The default directory for these headers is specified in the compiler
configuration file. This location is set during installation, but the search path
can be changed with the -isystem (-qgcc_c_stdinc or -qgcc_cpp_stdinc) option.1

Note:

1. If the -nostdinc or -nostdinc++ (-qnostdinc) compiler option is in effect, step 4
is omitted.

Related information
v “-I” on page 48
v “-isystem (-qc_stdinc) (C only)” on page 85
v “-isystem (-qcpp_stdinc) (C++ only)” on page 87
v “-isystem (-qgcc_c_stdinc) (C only)” on page 88
v “-isystem (-qgcc_cpp_stdinc) (C++ only)” on page 89
v “-include (-qinclude)” on page 84
v “-qstdinc, -qnostdinc (-nostdinc, -nostdinc++)” on page 137

Linking
The linker links specified object files to create one executable file. Invoking the
compiler with one of the invocation commands automatically calls the linker
unless you specify one of the following compiler options:
v -c

v -E

v -M

v -P

v -S

10 XL C/C++: Compiler Reference

v -fsyntax-only (-qsyntaxonly)

v -### (-#)

v --help (-qhelp)

v --version (-qversion)

Input files
Object files, unstripped executable files, and library files serve as input to
the linker. Object files must have a .o suffix, for example, filename.o.
Static library file names have a .a suffix, for example, filename.a.
Dynamic library file names typically have a .so suffix, for example,
filename.so.

Output files
The linker generates an executable file and places it in your current
directory. The default name for an executable file is a.out. To name the
executable file explicitly, use the -o file_name option with the compiler
invocation command, where file_name is the name you want to give to the
executable file. For example, to compile myfile.c and generate an
executable file called myfile, enter:
xlc myfile.c -o myfile

If you use the -shared (-qmkshrobj) option to create a shared library, the
default name of the shared object created is a.out. You can use the -o
option to rename the file and give it a .so suffix.

If you use XL C/C++ to compile and link the assembler files that are produced by
GCC, specify the -march option to target the same architecture level as the one
used by GCC. Note that the default architecture levels of XL C/C++ and GCC are
different.

You can invoke the linker explicitly with the ld command. However, the compiler
invocation commands set several linker options, and link some standard files into
the executable output by default. In most cases, it is better to use one of the
compiler invocation commands to link your object files. For a complete list of
options available for linking, see “Linking” on page 33.

Note: If you want to use a nondefault linker, you can use either of the following
approaches:
v Use -t and -B or use -qpath to specify the nondefault linker, for example,

-tl -Blinker_path

or
-qpath=l:linker_path

v Customize the configuration file of the compiler to use the nondefault linker. For
more information about how to customize the configuration file, see Using
custom compiler configuration files and Creating custom configuration files.

Related information
v “-march (-qarch)” on page 92
v “-shared (-qmkshrobj)” on page 141

Order of linking
The compiler links libraries in the following order:
1. System startup libraries

Chapter 1. Compiling and linking applications 11

2. User .o files and libraries
3. XL C/C++ libraries
4. C++ standard libraries
5. C standard libraries

Related information
v “Linking” on page 33
v “Redistributable libraries”

Redistributable libraries
If you build your application using XL C/C++, it might use one or more of the
following redistributable libraries. If you ship the application, ensure that the users
of your application have the packages that contain the libraries. To make sure the
required libraries are available to the users of your application, take one of the
following actions:
v Ship the packages that contain the redistributable libraries with your application.

The packages are stored under the images/rpms directory in the installed
compiler package..

v Direct the users of your application to download the appropriate runtime
libraries from the Latest updates for supported IBM C and C++ compilers link from
the XL C/C++ support website at http://www.ibm.com/support/entry/portal/
product/rational/xl_c/c++_for_linux_on_z_systems.

For information about the licensing requirements related to the distribution of
these packages, see the LicenseAgreement.pdf, LicenseInformation.pdf, and
redist.txt files in the installed compiler package.

Table 5. Redistributable libraries

Package
name Libraries (and default installation path) Description

libxlc-devel /opt/ibm/xlC/1.2.0/lib/libibmc++.a
/opt/ibm/xlC/1.2.0/lib/libxl.a
/opt/ibm/xlC/1.2.0/lib/libxlopt.a
/opt/ibm/xlC/1.2.0/lib64/libibmc++.a
/opt/ibm/xlC/1.2.0/lib64/libxl.a
/opt/ibm/xlC/1.2.0/lib64/libxlopt.a

XL C/C++ compiler
libraries

libxlc /opt/ibm/lib/libibmc++.so.1
/opt/ibm/lib64/libibmc++.so.1

XL C++ runtime
libraries

libatlas-
devel

/opt/ibm/atlas/1.2.0/include
/opt/ibm/atlas/1.2.0/lib
/opt/ibm/atlas/1.2.0/lib64

Automatically Tuned
Linear Algebra
Software (ATLAS)
libraries

Compiler messages and listings
The following sections discuss the various information generated by the compiler
after compilation.
v “Compiler messages” on page 13
v “Compiler listings” on page 13
v “Paging space errors during compilation” on page 15

12 XL C/C++: Compiler Reference

http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_linux_on_z_systems
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_linux_on_z_systems

Compiler messages
When the compiler encounters a programming error while compiling a C or C++
source program, it issues a diagnostic message to the standard error device. You
can control which code constructs cause the compiler to emit errors and warning
messages and how they are displayed to the console.

Message severity levels and compiler response
The XL C/C++ compiler uses a multilevel classification scheme for diagnostic
messages. Each level of severity is associated with a compiler response. The table
below provides a key to the abbreviations for the severity levels and the associated
default compiler response.

You can use the -Werror (-qhalt=w) option to stop the compilation for warnings
and all types of errors.

You can use the -Werror=unused-command-line-argument option to switch
between warnings and errors for invalid options.

Table 6. Compiler message severity levels

Letter Severity Synonym Compiler response

I Informational note Compilation continues and object code is generated. The message
reports conditions found during compilation.

W Warning warning Compilation continues and object code is generated. The message
reports valid but possibly unintended conditions.

C

E

Error error Compilation continues and object code is generated. The compiler
can correct the error conditions that are found, but the program
might not produce the expected results.

S Severe error error Compilation continues, but object code is not generated. The
compiler cannot correct the error conditions that are found.

v If the message indicates a resource limit (for example, file
system full or paging space full), provide additional resources
and recompile.

v If the message indicates that different compiler options are
needed, recompile using those options.

v Check for and correct any other errors reported prior to the
severe error.

v If the message indicates an internal compile-time error, report
the message to your IBM service representative.

C

U

Unrecoverable
error

fatal error The compiler halts. An internal compile-time error has occurred.
Report the message to your IBM service representative.

Related information
v “-Werror (-qhalt)” on page 57
v “Listings, messages, and compiler information” on page 31

Compiler listings
A listing is a compiler output file (with a .lst suffix) that contains information
about a particular compilation. As a debugging aid, a compiler listing is useful for
determining what has gone wrong in a compilation.

To produce a listing, you can compile with any of the following options, which
provide different types of information:

Chapter 1. Compiling and linking applications 13

v -qlist
v -qreport

Listing information is organized in sections. A listing contains a header section and
a combination of other sections, depending on other options in effect. The contents
of these sections are described as follows.

Header section
Lists the compiler name, version, release, the source file name, and the
date and time of the compilation.

File table section
Lists the file name and number for each main source file and include file.
Each file is associated with a file number, starting with the main source
file, which is assigned file number 0.

PDF report section
The following information is included in this section when you use the
-qreport option with the -qpdf2 option:

Block and call count
This section covers the Call Structure of the program and the
respective execution count for each called function. It also includes
Block information for each function. For non-user defined functions,
only execution count is given. The Total Block and Call Coverage,
and a list of the user functions ordered by decreasing execution
count are printed in the end of this report section. In addition, the
Block count information is printed at the beginning of each block
of the pseudo-code in the listing files.

Relevance of profiling data
This section shows the relevance of the profiling data to the source
code during the -qpdf1 phase. The relevance is indicated by a
number in the range of 0 - 100. The larger the number is, the more
relevant the profiling data is to the source code, and the more
performance gain can be achieved by using the profiling data.

Missing profiling data
This section might include a warning message about missing
profiling data. The warning message is issued for each function for
which the compiler does not find profiling data.

Outdated profiling data
This section might include a warning message about outdated
profiling data. The compiler issues this warning message for each
function that is modified after the -qpdf1 phase. The warning
message is also issued when the optimization level changes from
the -qpdf1 phase to the -qpdf2 phase.

Data reorganization section
Displays data reorganization messages for program variable data during
the IPA link pass when -qreport is used with -qipa=level=2.
Reorganization information includes:
v array splitting
v array transposing
v memory allocation merging
v array interleaving
v array coalescing

14 XL C/C++: Compiler Reference

Object section
If you specify the -qlist option, the Object section lists the object code
generated by the compiler. This section is useful for diagnosing
execution-time problems, if you suspect the program is not performing as
expected due to code generation error.

Constant area section
If you specify the -qlist option, the Constant area section lists the constants
used in the program. The compiler loads from the constant area section by
loading the starting address of this section and adding the fixed offsets to
the respective constants.

Related information
v “Listings, messages, and compiler information” on page 31

Paging space errors during compilation
If the operating system runs low on paging space during a compilation, the
compiler issues the following message:
1501-229 Compilation ended due to lack of space.

To minimize paging-space problems, take any of the following actions and
recompile your program:
v Reduce the size of your program by splitting it into two or more source files
v Compile your program without optimization
v Reduce the number of processes competing for system paging space
v Increase the system paging space

For more information about paging space and how to allocate it, see your
operating system documentation.

Chapter 1. Compiling and linking applications 15

16 XL C/C++: Compiler Reference

Chapter 2. Configuring compiler defaults

When you compile an application with XL C/C++, the compiler uses default
settings that are determined in a number of ways:
v Internally defined settings. These settings are predefined by the compiler and

you cannot change them.
v Settings defined by system environment variables. Certain environment variables

are required by the compiler; others are optional. You might have already set
some of the basic environment variables during the installation process. For
more information, see the XL C/C++ Installation Guide. “Setting environment
variables” provides a complete list of the required and optional environment
variables you can set or reset after installing the compiler.

v Settings defined in the compiler configuration file, xlc.cfg. The compiler
requires many settings that are determined by its configuration file. Normally,
the configuration file is automatically generated during the installation
procedure. For more information, see the XL C/C++ Installation Guide.
However, you can customize this file after installation, to specify additional
compiler options, default option settings, library search paths, and other settings.
Information on customizing the configuration file is provided in “Using custom
compiler configuration files” on page 19.

Setting environment variables
To set environment variables in Bourne, Korn, and BASH shells, use the following
commands:
variable=value
export variable

where variable is the name of the environment variable, and value is the value you
assign to the variable.

To set environment variables in the C shell, use the following command:
setenv variable value

where variable is the name of the environment variable, and value is the value you
assign to the variable.

To set the variables so that all users have access to them, in Bourne, Korn, and
BASH shells, add the commands to the file /etc/profile. To set them for a specific
user only, add the commands to the file .profile in the user's home directory. In C
shell, add the commands to the file /etc/csh.cshrc. To set them for a specific user
only, add the commands to the file .cshrc in the user's home directory. The
environment variables are set each time the user logs in.

The following sections discuss the environment variables you can set for XL
C/C++ and applications you have compiled with it:
v “Compile-time and link-time environment variables” on page 18
v “Runtime environment variables” on page 18

© Copyright IBM Corp. 2015 17

Compile-time and link-time environment variables
The following environment variables are used by the compiler when you are
compiling and linking your code. Many are built into the Linux operating system.
With the exception of LANG and NLSPATH, which must be set if you are using a
locale other than the default en_US, all of these variables are optional.

LANG
Specifies the locale for your operating system. The default locale used by
the compiler for messages and help files is United States English, en_US,
but the compiler supports other locales. For a list of these, see National
language support in the XL C/C++ Installation Guide. For more information
on setting the LANG environment variable to use an alternate locale, see
your operating system documentation.

LD_RUN_PATH
Specifies search paths for dynamically loaded libraries, equivalent to using
the -R link-time option. The shared-library locations named by the
environment variable are embedded into the executable, so the dynamic
linker can locate the libraries at application run time. For more information
about this environment variable, see your operating system documentation.
See also “-R” on page 53.

NLSPATH
Specifies the directory search path for finding the compiler message and
help files. You only need to set this environment variable if the national
language to be used for the compiler message and help files is not English.
For information on setting the NLSPATH, see Enabling the XL C/C++ error
messages in the XL C/C++ Installation Guide.

PATH Specifies the directory search path for the executable files of the compiler.
Executables are in /opt/ibm/xlC/1.2.0/bin/ if installed to the default
location. For information, see Setting the PATH environment variable to
include the path to the XL C/C++ invocations in the XL C/C++ Installation
Guide

TMPDIR
Optionally specifies the directory in which temporary files are created
during compilation. The default location, /tmp/, may be inadequate at high
levels of optimization, where paging and temporary files can require
significant amounts of disk space, so you can use this environment variable
to specify an alternate directory.

XLC_USR_CONFIG
Specifies the location of a custom configuration file to be used by the
compiler. The file name must be given with its absolute path. The compiler
will first process the definitions in this file before processing those in the
default system configuration file, or those in a customized file specified by
the -F option; for more information, see “Using custom compiler
configuration files” on page 19.

Runtime environment variables
The following environment variables are used by the system loader or by your
application when it is executed. All of these variables are optional.

LD_LIBRARY_PATH
Specifies an alternate directory search path for dynamically linked libraries
at application run time. If shared libraries required by your application
have been moved to an alternate directory that was not specified at link

18 XL C/C++: Compiler Reference

time, and you do not want to relink the executable, you can set this
environment variable to allow the dynamic linker to locate them at run
time. For more information about this environment variable, see your
operating system documentation.

PDFDIR
Optionally specifies the directory in which profiling information is saved
when you run an application that you have compiled with the -qpdf1
option. The default value is unset, and the compiler places the profile data
file in the current working directory. If the PDFDIR environment variable is
set but the specified directory does not exist, the compiler issues a warning
message. When you recompile or relink your program with the -qpdf2
option, the compiler uses the data saved in this directory to optimize the
application. It is recommended that you set this variable to an absolute
path if you use profile-directed feedback (PDF). See “-qpdf1, -qpdf2” on
page 123 for more information.

PDF_WL_ID

This environment variable is used to distinguish the sets of PDF counters
that are generated by multiple training runs of the user program. Each run
receives distinct input.

By default, PDF counters for training runs after the first training run are
added to the first and the only set of PDF counters. This behavior can be
changed by setting the PDF_WL_ID environment variable before each PDF
training run. You can set PDF_WL_ID to an integer value in the range 1 -
65535. The PDF runtime library then uses this number to tag the set of
PDF counters that are generated by this training run. After all the training
runs complete, the PDF profile file contains multiple sets of PDF counters,
each set with an ID number.

Using custom compiler configuration files
The XL C/C++ compiler generates a default configuration file
/opt/ibm/xlC/1.2/etc/xlc.cfg.$OSRelease.gcc$gccVersion at installation time (for
example, /opt/ibm/xlC/1.2/etc/xlc.cfg.sles.12.gcc.4.8.2). (See the XL C/C++
Installation Guide for more information on the various tools you can use to generate
the configuration file during installation.) The configuration file specifies
information that the compiler uses when you invoke it.

If you are running on a single-user system, or if you already have a compilation
environment with compilation scripts or makefiles, you might want to leave the
default configuration file as it is.

If you want users to be able to choose among several sets of compiler options, you
might want to use custom configuration files for specific needs. For example, you
might want to enable -qlist by default for compilations using the xlc compiler
invocation command. This is to avoid forcing your users to specify this option on
the command line for every compilation, because -qnolist is automatically in effect
every time the compiler is called with the xlc command.

You have several options for customizing configuration files:
v You can directly edit the default configuration file. In this case, the customized

options will apply for all users for all compilations. The disadvantage of this
option is that you will need to reapply your customizations to the new default
configuration file that is provided every time you install a compiler update.

Chapter 2. Configuring compiler defaults 19

v You can use the default configuration file as the basis of customized copies that
you specify at compile time with the -F option. In this case, the custom file
overrides the default file on a per-compilation basis.

Note: This option requires you to reapply your customization after you apply
service to the compiler.

v You can create custom, or user-defined, configuration files that are specified at
compile time with the XLC_USR_CONFIG environment variable. In this case,
the custom user-defined files complement, rather than override, the default
configuration file, and they can be specified on a per-compilation or global basis.
The advantage of this option is that you do not need to modify your existing,
custom configuration files when a new system configuration file is installed
during an update installation. Procedures for creating custom, user-defined
configuration files are provided below.

Related reference:
“-F” on page 46
Related information:
“Compile-time and link-time environment variables” on page 18

Creating custom configuration files
If you use the XLC_USR_CONFIG environment variable to instruct the compiler to
use a custom user-defined configuration file, the compiler examines and processes
the settings in that user-defined configuration file before looking at the settings in
the default system configuration file.

To create a custom user-defined configuration file, you add stanzas which specify
multiple levels of the use attribute. The user-defined configuration file can
reference definitions specified elsewhere in the same file, as well as those specified
in the system configuration file. For a given compilation, when the compiler looks
for a given stanza, it searches from the beginning of the user-defined configuration
file and follows any other stanza named in the use attribute, including those
specified in the system configuration file.

If the stanza named in the use attribute has a name different from the stanza
currently being processed, the search for the use stanza starts from the beginning
of the user-defined configuration file. This is the case for stanzas A, C, and D
which you see in the following example. However, if the stanza in the use attribute
has the same name as the stanza currently being processed, as is the case of the
two B stanzas in the example, the search for the use stanza starts from the location
of the current stanza.

The following example shows how you can use multiple levels for the use
attribute. This example uses the options attribute to help show how the use
attribute works, but any other attributes, such as libraries can also be used.

20 XL C/C++: Compiler Reference

In this example:
v stanza A uses option sets A and Z
v stanza B uses option sets B1, B2, D, A, and Z
v stanza C uses option sets C, A, and Z
v stanza D uses option sets D, A, and Z

Attributes are processed in the same order as the stanzas. The order in which the
options are specified is important for option resolution. Ordinarily, if an option is
specified more than once, the last specified instance of that option wins.

By default, values defined in a stanza in a configuration file are added to the list of
values specified in previously processed stanzas. For example, assume that the
XLC_USR_CONFIG environment variable is set to point to the user-defined
configuration file at ~/userconfig1. With the user-defined and default configuration
files shown in the following example, the compiler references the xlc stanza in the
user-defined configuration file and uses the option sets specified in the
configuration files in the following order: A1, A, D, and C.

xlc: use=xlc
options= <A1>

DEFLT: use=DEFLT
options=<D>

Figure 2. Custom user-defined configuration
file ~/userconfig1

xlc: use=DEFLT
options=<A>

DEFLT:
options=<C>

Figure 3. Default configuration file xlc.cfg

Overriding the default order of attribute values
You can override the default order of attribute values by changing the assignment
operator(=) for any attribute in the configuration file.

Table 7. Assignment operators and attribute ordering

Assignment
Operator

Description

-= Prepend the following values before any values determined by the default
search order.

:= Replace any values determined by the default search order with the
following values.

A: use =DEFLT
options=<set of options A>

B: use =B
options=<set of options B1>

B: use =D
options=<set of options B2>

C: use =A
options=<set of options C>

D: use =A
options=<set of options D>

DEFLT:
options=<set of options Z>

Figure 1. Sample configuration file

Chapter 2. Configuring compiler defaults 21

Table 7. Assignment operators and attribute ordering (continued)

Assignment
Operator

Description

+= Append the following values after any values determined by the default
search order.

For example, assume that the XLC_USR_CONFIG environment variable is set to
point to the custom user-defined configuration file at ~/userconfig2.

Custom user-defined configuration file
~/userconfig2 Default configuration file xlc.cfg

xlc_prepend: use=xlc
options-=<B1>

xlc_replace: use=xlc
options:=<B2>

xlc_append: use=xlc
options+=<B3>

DEFLT: use=DEFLT
options=<D>

xlc: use=DEFLT
options=

DEFLT:
options=<C>

The stanzas in the preceding configuration files use the following option sets, in
the following orders:
1. stanza xlc uses B, D, and C
2. stanza xlc_prepend uses B1, B, D, and C
3. stanza xlc_replace uses B2

4. stanza xlc_append uses B, D, C, and B3

You can also use assignment operators to specify an attribute more than once. For
example:

Examples of stanzas in custom configuration files

DEFLT: use=DEFLT
options = -g

This example specifies that the -g option is to
be used in all compilations.

xlc: use=xlc options+=-qlist This example specifies that -qlist is to be used
for any compilation called by the xlc command.
This -qlist specification overrides the default
setting of -qlist specified in the system
configuration file.

DEFLT: use=DEFLT
libraries=-L/home/user/lib,-lmylib

This example specifies that all compilations
should link with /home/user/lib/libmylib.a.

xlc:
use=xlc
options-=-Isome_include_path
options+=some options

Figure 4. Using additional assignment operations

22 XL C/C++: Compiler Reference

Chapter 3. Compiler options reference

This section contains a summary of the compiler options available in XL C/C++ by
functional category, followed by detailed descriptions of the individual options.

Related information
v “Specifying compiler options” on page 5

Summary of compiler options by functional category
The XL C/C++ options available on the Linux platform are grouped into the
following categories. If the option supports an equivalent pragma directive, this is
indicated. To get detailed information on any option listed, see the full description
for that option.
v “Output control”
v “Input control” on page 24
v “Language element control” on page 25
v “Template control (C++ only)” on page 26
v “Floating-point and integer control” on page 26
v “Error checking and debugging” on page 28
v “Listings, messages, and compiler information” on page 31
v “Optimization and tuning” on page 31
v “Object code control” on page 27
v “Linking” on page 33
v “Portability and migration” on page 34
v “Compiler customization” on page 34

Output control
The options in this category control the type of output file the compiler produces,
as well as the locations of the output. These are the basic options that determine
the following aspects:
v The compiler components that will be invoked
v The preprocessing, compilation, and linking steps that will (or will not) be taken
v The kind of output to be generated

Table 8. Compiler output options

Option name Description

“-c” on page 59
Instructs the compiler to compile or assemble the
source files only but do not link. With this option, the
output is a .o file for each source file.

“-C, -C!” on page 43
When used in conjunction with the -E or -P options,
preserves or removes comments in preprocessed
output.

“-dM (-qshowmacros)” on page
60 Emits macro definitions to preprocessed output.

“-E” on page 45
Preprocesses the source files named in the compiler
invocation, without compiling.

© Copyright IBM Corp. 2015 23

Table 8. Compiler output options (continued)

Option name Description

“-o” on page 97
Specifies a name for the output object, assembler,
executable, or preprocessed file.

“-P” on page 52
Preprocesses the source files named in the compiler
invocation, without compiling, and creates an output
preprocessed file for each input file.

“-qmakedep, -MD
(-qmakedep=gcc)” on page 120

Produces the dependency files that are used by the
make tool for each source file.

“-qtimestamps” on page 138
Controls whether or not implicit time stamps are
inserted into an object file.

“-shared (-qmkshrobj)” on page
141

Creates a shared object from generated object files.

“-S” on page 54
Generates an assembler language file for each source
file.

“-X (-W)” on page 56
-Xpreprocessor option or -Wp,option passes the listed
option directly to the preprocessor.

The following options are supported by XL C/C++ for GCC compatibility. For
details about these options, see the GNU Compiler Collection online
documentation at http://gcc.gnu.org/onlinedocs/.
v -###
v -dCHARS

v -M
v -MD
v -MF file
v -MG
v -MM
v -MMD
v -MP
v -MQ target

v -MT target

v -Xpreprocessor

Input control
The options in this category specify the type and location of your source files.

Table 9. Compiler input options

Option name Description

“-include (-qinclude)” on page
84 Specifies additional header files to be included in a

compilation unit, as though the files were named in an
#include statement in the source file.

“-I” on page 48
Adds a directory to the search path for include files.

24 XL C/C++: Compiler Reference

http://gcc.gnu.org/onlinedocs/

Table 9. Compiler input options (continued)

Option name Description

“-qstdinc, -qnostdinc (-nostdinc,
-nostdinc++)” on page 137 Specifies whether the standard include directories are

included in the search paths for system and user header
files.

“-x (-qsourcetype)” on page 151
Instructs the compiler to treat all recognized source files
as a specified source type, regardless of the actual file
name suffix.

Language element control
The options in this category allow you to specify the characteristics of the source
code. You can also use these options to enforce or relax language restrictions and
enable or disable language extensions.

Table 10. Language element control options

Option name Description

“-D” on page 44 Defines a macro as in a #define preprocessor directive.

“-fasm (-qasm)” on page 61 Controls the interpretation and subsequent generation of
code for assembler language extensions.

“-fdollars-in-identifiers
(-qdollar)” on page 64 Allows the dollar-sign ($) symbol to be used in the

names of identifiers.

“-mzvector” on page 96 Enables the compiler support for vector programming
including the vector and __vector keywords and vector
built-in functions.

“-qstaticinline (C++ only)” on
page 136 Controls whether inline functions are treated as having

static or extern linkage.

“-std (-qlanglvl)” on page 144
Determines whether source code and compiler options
should be checked for conformance to a specific
language standard, or subset or superset of a standard.

“-U” on page 55 Undefines a macro defined by the compiler or by the -D
compiler option.

“-X (-W)” on page 56
-Xassembler option or -Wa,option passes the listed option
directly to the assembler.

The following options are supported by XL C/C++ for GCC compatibility. For
details about these options, see the GNU Compiler Collection online
documentation at http://gcc.gnu.org/onlinedocs/.
v -ansi
v -fconstexpr-depth
v -fconstexpr-steps
v -fexec-charset
v -ffreestanding
v -fgnu89-inline
v -fhosted
v -fno-access-control

Chapter 3. Compiler options reference 25

http://gcc.gnu.org/onlinedocs/

v -fno-builtin
v -fno-gnu-keywords
v -fno-operator-names
v -fno-rtti
v -fpermissive
v -fsigned-bitfields
v -fsigned-char
v -ftemplate-backtrace-limit
v -ftemplate-depth
v -funsigned-bitfields
v -funsigned-char
v -trigraphs
v -Xassembler

Template control (C++ only)
You can use these options to control how the C++ compiler handles templates.

Table 11. C++ template options

Option name Description

“-ftemplate-depth (-qtemplatedepth) (C++
only)” on page 75 Specifies the maximum number of

recursively instantiated template
specializations that will be processed by
the compiler.

“-qtmplinst (C++ only)” on page 139
Manages the implicit instantiation of
templates.

Floating-point and integer control
Specifying the details of how your applications perform calculations can allow you
to take better advantage of your system's floating-point performance and precision,
including how to direct rounding. However, keep in mind that strictly adhering to
IEEE floating-point specifications can impact the performance of your application.
Use the options in the following table to control trade-offs between floating-point
performance and adherence to IEEE standards.

Table 12. Floating-point and integer control options

Option name Description

“-fsigned-bitfields,
-funsigned-bitfields (-qbitfields)”
on page 71

Specifies whether bit fields are signed or unsigned.

“-fsigned-char, -funsigned-char
(-qchars)” on page 71 Determines whether all variables of type char is treated

as signed or unsigned.

“-qfloat” on page 102
Selects different strategies for speeding up or improving
the accuracy of floating-point calculations.

26 XL C/C++: Compiler Reference

Object code control
These options affect the characteristics of the object code, preprocessed code, or
other output generated by the compiler.

Table 13. Object code control options

Option name Description

“-fcommon (-qcommon)” on page
63 Controls where uninitialized global variables are

allocated.

“-fPIC , -fpic (-qpic)” on page 69 Generates position-independent code suitable for use
in shared libraries.

“-ftls-model (-qtls)” on page 76
Enables recognition of the __thread storage class
specifier, which designates variables that are to be
allocated thread-local storage; and specifies the
threadlocal storage model to be used.

“-m31, -m64 (-q31, -q64)” on page
96 Selects either 31-bit or 64-bit compiler mode.

“-qeh (C++ only)” on page 101
Controls whether exception handling is enabled in
the module being compiled.

“-qfuncsect” on page 104
Places instructions for each function in a separate
section. Placing each function in its own section
might reduce the size of your program because the
linker can collect garbage per function rather than per
object file.

“-qpriority (C++ only)” on page
129 Specifies the priority level for the initialization of

static objects.

“-qrtti, -fno-rtti (-qnortti) (C++
only)” on page 131 Generates runtime type identification (RTTI)

information for exception handling and for use by the
typeid and dynamic_cast operators.

“-qsaveopt” on page 132
Saves the command-line options used for compiling a
source file, the user's configuration file name and the
options specified in the configuration files, the
version and level of each compiler component
invoked during compilation, and other information to
the corresponding object file.

“-r” on page 139
Produces a nonexecutable output file to use as an
input file in another ld command call. This file may
also contain unresolved symbols.

“-s” on page 140
Strips the symbol table, line number information, and
relocation information from the output file.

The following options are supported by XL C/C++ for GCC compatibility. For
details about these options, see the GNU Compiler Collection online
documentation at http://gcc.gnu.org/onlinedocs/.
v -fpack-struct
v -fpic, -fno-pic

Chapter 3. Compiler options reference 27

http://gcc.gnu.org/onlinedocs/

v -fpie, -fno-pie
v -fPIE, -fno-PIE
v -fshort-wchar
v -mtpf-trace

Error checking and debugging
The options in this category allow you to detect and correct problems in your
source code. In some cases, these options can alter your object code, increase your
compile time, or introduce runtime checking that can slow down the execution of
your application. The option descriptions indicate how extra checking can impact
performance.

To control the amount and type of information you receive regarding the behavior
and performance of your application, consult the options in “Listings, messages,
and compiler information” on page 31.

For information on debugging optimized code, see the XL C/C++ Optimization and
Programming Guide.

Table 14. Error checking and debugging options

Option name Description

“-### (-#) (pound sign)” on page
36 Previews the compilation steps specified on the

command line, without actually invoking any compiler
components.

“-g” on page 80
Generates debugging information for use by a symbolic
debugger, and makes the program state available to the
debugging session at selected source locations.

“-gdwarf (-qdbgfmt)” on page 83 Specifies the format for the debugging information in
object files.

“-qfullpath” on page 103
When used with the -g or -qlinedebug option, this
option records the full, or absolute, path names of
source and include files in object files compiled with
debugging information, so that debugging tools can
correctly locate the source files.

“-qinitauto” on page 106
Initializes uninitialized automatic variables to a specific
value, for debugging purposes.

“-qkeepparm” on page 115
When used with -O2 or higher optimization, specifies
whether procedure parameters are stored on the stack.

“-qlinedebug” on page 118
Generates only line number and source file name
information for a debugger.

“-Werror (-qhalt)” on page 57
Stops compilation before producing any object,
executable, or assembler source files if the maximum
severity of compile-time messages equals or exceeds the
severity you specify.

“-Wunsupported-xl-macro” on
page 58

Checks whether any unsupported XL macro is used.

28 XL C/C++: Compiler Reference

Options to control diagnostic messages formatting

The following options are supported by XL C/C++ for GCC compatibility. For
details about these options, see the GNU Compiler Collection online
documentation at http://gcc.gnu.org/onlinedocs/.
v -fansi-escape-codes
v -fcolor-diagnostics
v -fdiagnostics-format=[clang|msvc|vi]
v -fdiagnostics-fixit-info
v -fdiagnostics-print-source-range-info
v -fdiagnostic-parsable-fixits
v -fdiagnostic-show-category=[none|id|name]
v -fdiagnostics-show-name
v -fdiagnostic-show-template-tree
v -fmessage-length
v -fno-diagnostics-show-caret
v -fno-diagnostics-show-option
v -fno-elide-type
v -fshow-column
v -fshow-source-location
v -pedantic
v -pedantic-errors
v -Wambiguous-member-template
v -Wbind-to-temporary-copy
v -Wextra-tokens

Options to request or suppress warnings

The following options are supported by XL C/C++ for GCC compatibility. For
details about these options, see the GNU Compiler Collection online
documentation at http://gcc.gnu.org/onlinedocs/.
v -fsyntax-only
v -w
v -Wall
v -Wbad-function-cast
v -Wcast-align
v -Wchar-subscripts
v -Wcomment
v -Wconversion
v -Wc++11-compat
v -Wdelete-non-virtual-dtor
v -Wempty-body
v -Wenum-compare
v -Werror=foo
v -Weverything
v -Wfatal-errors
v -Wfloat-equal

Chapter 3. Compiler options reference 29

http://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/onlinedocs/

v -Wfoo
v -Wformat
v -Wformat=n
v -Wformat=2
v -Wformat-nonliteral
v -Wformat-security
v -Wformat-y2k
v -Wignored-qualifiers
v -Wimplicit-int
v -Wimplicit-function-declaration
v -Wimplicit
v -Wmain
v -Wmissing-braces
v -Wmissing-field-initializers
v -Wmissing-prototypes
v -Wnarrowing
v -Wno-attributes
v -Wno-builtin-macro-redefined
v -Wno-deprecated
v -Wno-deprecated-declarations
v -Wno-division-by-zero
v -Wno-endif-labels
v -Wno-format
v -Wno-format-extra-args
v -Wno-format-zero-length
v -Wno-int-conversion
v -Wno-invalid-offsetof
v -Wno-int-to-pointer-cast
v -Wno-multichar
v -Wnonnull
v -Wno-return-local-addr
v -Wno-unused-result
v -Wno-virtual-move-assign
v -Wnon-virtual-dtor
v -Woverlength-strings
v -Woverloaded-virtual
v -Wpedantic -pedantic -pedantic-errors
v -Wpadded
v -Wparantheses
v -Wpointer-arith
v -Wpointer-sign
v -Wreorder
v -Wreturn-type
v -Wsequence-point
v -Wshadow

30 XL C/C++: Compiler Reference

v -Wsign-compare
v -Wsign-conversion
v -Wsizeof-pointer-memaccess
v -Wswitch
v -Wsystem-headers
v -Wtautological-compare
v -Wtype-limits
v -Wtrigraphs
v -Wundef
v -Wuninitialized
v -Wunknown-pragmas
v -Wunused
v -Wunused-label
v -Wunused-parameter
v -Wunused-variable
v -Wunused-value
v -Wvariadic-macros
v -Wvarargs
v -Wvla
v -Wwrite-strings

Listings, messages, and compiler information
The options in this category allow your control over the listing file, as well as how
and when to display compiler messages. You can use these options in conjunction
with those described in “Error checking and debugging” on page 28 to provide a
more robust overview of your application when checking for errors and
unexpected behavior.

Table 15. Listings and messages options

Option name Description

“-fdump-class-hierarchy
(-qdump_class_hierarchy) (C++ only)”
on page 65

Dumps a representation of the hierarchy and
virtual function table layout of each class object to
a file.

“-qlist” on page 119
Produces a compiler listing file that includes object
and constant area sections.

“-qreport” on page 130
Produces listing files that show how sections of
code have been optimized.

“--help (-qhelp)” on page 37 Displays the man page of the compiler.

“--version (-qversion)” on page 38
Displays the version and release of the compiler
being invoked.

Optimization and tuning
The options in this category allow you to control the optimization and tuning
process, which can improve the performance of your application at run time.

Chapter 3. Compiler options reference 31

Remember that not all options benefit all applications. Trade-offs sometimes occur
among an increase in compile time, a reduction in debugging capability, and the
improvements that optimization can provide.

In addition to the option descriptions in this section, consult the XL C/C++
Optimization and Programming Guide for details about the optimization and tuning
process as well as writing optimization-friendly source code.

Table 16. Optimization and tuning options

Option name Description

“-finline-functions (-qinline)” on
page 65

Attempts to inline functions instead of generating calls
to those functions, for improved performance.

“-ftree-vectorize (-qsimd)” on
page 78

Controls whether the compiler can automatically take
advantage of vector instructions for processors that
support them.

Equivalent pragma: #pragma nosimd

“-fstrict-aliasing (-qalias=ansi),
-qalias” on page 72 Indicates whether a program contains certain categories

of aliasing or does not conform to C/C++ standard
aliasing rules. The compiler limits the scope of some
optimizations when there is a possibility that different
names are aliases for the same storage location.

“-march (-qarch)” on page 92
Specifies the processor architecture for which the code
(instructions) should be generated.

-mtune (-qtune)
Tunes instruction selection, scheduling, and other
architecture-dependent performance enhancements to
run best on a specific hardware architecture.

“-O, -qoptimize” on page 50
Specifies whether to optimize code during compilation
and, if so, at which level.

“-qhot” on page 104
Performs high-order loop analysis and transformations
(HOT) during optimization.

“-qipa” on page 109
Enables or customizes a class of optimizations known
as interprocedural analysis (IPA).

“-qisolated_call” on page 114
Specifies functions in the source file that have no side
effects other than those implied by their parameters.

“-qlibansi” on page 117
Assumes that all functions with the name of an ANSI C
library function are in fact the system functions.

“-qpdf1, -qpdf2” on page 123
Tunes optimizations through profile-directed feedback
(PDF), where results from sample program execution
are used to improve optimization near conditional
branches and in frequently executed code sections.

“-qshowpdf” on page 134
When used with -qpdf1 and a minimum optimization
level of -O2 at compile and link steps, creates a PDF
map file that contains additional profiling information
for all procedures in your application.

32 XL C/C++: Compiler Reference

Table 16. Optimization and tuning options (continued)

Option name Description

“-qsmallstack” on page 135
Minimizes stack usage where possible. Disables
optimizations that increase the size of the stack frame.

The following options are supported by XL C/C++ for GCC compatibility. For
details about these options, see the GNU Compiler Collection online
documentation at http://gcc.gnu.org/onlinedocs/.
v --sysroot
v -isysroot
v -isystem

Linking
Though linking occurs automatically, the options in this category allow you to
direct input and output to the linker, controlling how the linker processes your
object files.

Table 17. Linking options

Option name Description

“-e” on page 60
When used together with the -shared (-qmkshrobj)
option , specifies an entry point for a shared object.

“-L” on page 49
At link time, searches the directory path for library files
specified by the -l option.

“-l” on page 91
Searches for the specified library file. The linker
searches for libkey.so, and then libkey.a if libkey.so is not
found.

“-qcrt, -nostartfiles (-qnocrt)” on
page 100 Specifies whether system startup files are to be linked.

“-qlib, -nodefaultlibs (-qnolib)”
on page 116 Specifies whether standard system libraries and XL

C/C++ libraries are to be linked.

“-R” on page 53
At link time, writes search paths for shared libraries into
the executable, so that these directories are searched at
program run time for any required shared libraries.

“-static (-qstaticlink)” on page
142 Controls whether static or shared runtime libraries are

linked into an application.

“-X (-W)” on page 56
-Xlinker option or -Wl,option passes the listed option
directly to the linker.

The following options are supported by XL C/C++ for GCC compatibility. For
details about these options, see the GNU Compiler Collection online
documentation at http://gcc.gnu.org/onlinedocs/.
v -idirafter
v -imacros
v -iprefix

Chapter 3. Compiler options reference 33

http://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/onlinedocs/

v -iquote
v -iwithprefix
v -pie
v -rdynamic
v -Xlinker

Portability and migration
The option in this category can help you maintain application behavior
compatibility on past, current, and future hardware, operating systems and
compilers, or help move your applications to an XL compiler with minimal change.

Table 18. Portability and migration option

Option name Description

“-fpack-struct (-qalign)” on page
70 Specifies the alignment of data objects in storage, which

avoids performance problems with misaligned data.

Compiler customization
The options in this category allow you to specify alternative locations for compiler
components, configuration files, standard include directories, and internal compiler
operation. These options are useful for specialized installations, testing scenarios,
and the specification of additional command-line options.

Table 19. Compiler customization options

Option name Description

“@file (-qoptfile)” on page 40 Specifies a file containing a list of additional command
line options to be used for the compilation.

“-B” on page 42 Specifies substitute path names for XL C/C++
components such as the assembler, C preprocessor, and
linker.

“-F” on page 46 Names an alternative configuration file or stanza for the
compiler.

“-isystem (-qc_stdinc) (C only)”
on page 85 Changes the standard search location for the XL C

header files.

“-isystem (-qcpp_stdinc) (C++
only)” on page 87 Changes the standard search location for the XL C++

header files.

“-isystem (-qgcc_c_stdinc) (C
only)” on page 88 Changes the standard search location for the GNU C

system header files.

“-isystem (-qgcc_cpp_stdinc)
(C++ only)” on page 89 Changes the standard search location for the GNU C++

system header files.

“-qasm_as” on page 99
Specifies the path and flags used to invoke the assembler
in order to handle assembler code in an asm assembly
statement.

“-qpath” on page 122
Specifies substitute path names for XL C/C++
components such as the compiler, assembler, linker, and
preprocessor.

34 XL C/C++: Compiler Reference

Table 19. Compiler customization options (continued)

Option name Description

“-t” on page 148
Applies the prefix specified by the -B option to the
designated components.

“-X (-W)” on page 56
Passes the listed options to a component that is executed
during compilation.

Individual option descriptions
This section contains descriptions of the individual compiler options available in
XL C/C++.

For each option, the following information is provided:

Category
The functional category to which the option belongs is listed here.

Pragma equivalent
Many compiler options allow you to use an equivalent pragma directive to
apply the option's functionality within the source code, limiting the scope
of the option's application to a single source file, or even selected sections
of code.

When an option supports the #pragma name form of the directive, this is
indicated.

Purpose
This section provides a brief description of the effect of the option (and
equivalent pragmas), and why you might want to use it.

Syntax
This section provides the syntax for the option, and where an equivalent
#pragma name is supported, the specific syntax for the pragma.

Note that you can also use the C99-style _Pragma operator form of any
pragma; although this syntax is not provided in the option descriptions.
For complete details on pragma syntax, see “Pragma directive syntax” on
page 159

Defaults
In most cases, the default option setting is clearly indicated in the syntax
diagram. However, for many options, there are multiple default settings,
depending on other compiler options in effect. This section indicates the
different defaults that may apply.

Parameters
This section describes the suboptions that are available for the option and
pragma equivalents, where applicable. For suboptions that are specific to
the command-line option or to the pragma directive, this is indicated in the
descriptions.

Usage This section describes any rules or usage considerations you should be
aware of when using the option. These can include restrictions on the
option's applicability, valid placement of pragma directives, precedence
rules for multiple option specifications, and so on.

Predefined macros
Many compiler options set macros that are protected (that is, cannot be

Chapter 3. Compiler options reference 35

undefined or redefined by the user). Where applicable, any macros that are
predefined by the option, and the values to which they are defined, are
listed in this section. A reference list of these macros (as well as others that
are defined independently of option setting) is provided in Chapter 5,
“Compiler predefined macros,” on page 171

Examples
Where appropriate, examples of the command-line syntax and pragma
directive use are provided in this section.

-### (-#) (pound sign)
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Previews the compilation steps specified on the command line, without actually
invoking any compiler components.

When this option is enabled, information is written to standard output, showing
the names of the programs within the preprocessor, compiler, and linker that
would be invoked, and the default options that would be specified for each
program. The preprocessor, compiler, and linker are not invoked.

Syntax

►► -### ►◄

►► -# ►◄

Usage

You can use this command to determine the commands and files that will be
involved in a particular compilation. It avoids the overhead of compiling the
source code and overwriting any existing files, such as .lst files.

This option displays the same information as -v, but it does not invoke the
compiler. The -### (-#) option overrides the -v option.

Predefined macros

None.

Examples

To preview the steps for the compilation of the source file myprogram.c, enter:
xlc myprogram.c -###

36 XL C/C++: Compiler Reference

Related information
v “-v, -V” on page 150

-+ (plus sign) (C++ only)
Category

Input control

Pragma equivalent

None.

Purpose

Compiles any file as a C++ language file.

This option is equivalent to the -x c++ option.

Syntax

►► -+ ►◄

Usage

You can use -+ to compile a file with any suffix other than .a, .o, .so, .S or .s. If you
do not use the -+ option, files must have a suffix of .C (uppercase C), .cc, .cp, .cpp,
.cxx, or .c++ to be compiled as a C++ file. If you compile files with suffix .c
(lowercase c) without specifying -+, the files are compiled as a C language file.

You cannot use the -+ option with the -qsourcetype or -x option.

Predefined macros

None.

Examples

To compile the file myprogram.cplspls as a C++ source file, enter:
xlc -+ myprogram.cplspls

Related information
v “-x (-qsourcetype)” on page 151

--help (-qhelp)
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Chapter 3. Compiler options reference 37

Purpose

Displays the man page of the compiler.

Syntax

►► --help ►◄

►► -q help ►◄

Usage

If you specify the --help (-qhelp) option, regardless of whether you provide input
files, the compiler man page is displayed and the compilation stops.

Predefined macros

None.

Related information
v “--version (-qversion)”

--version (-qversion)
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Displays the version and release of the compiler being invoked.

Syntax

►► --version ►◄

►►
noversion

-q version
= verbose

►◄

Defaults

-qnoversion

--version is not set by default.

38 XL C/C++: Compiler Reference

Parameters

verbose
Displays information about the version, release, and level of each compiler
component installed.

Usage

When you specify --version (-qversion), the compiler displays the version
information and exits; compilation is stopped. If you want to save this information
to the output object file, you can do so with the -qsaveopt -c options.

-qversion specified without the verbose suboption shows compiler information in
the format:
product_nameVersion: VV.RR.MMMM.LLLL

where:
V Represents the version.
R Represents the release.
M Represents the modification.
L Represents the level.

For more details, see Example 1.

-qversion=verbose shows component information in the following format:
component_name Version: VV.RR(product_name) Level: component_build_date ID:
component_level_ID

where:
component_name

Specifies an installed component, such as the low-level optimizer.
component_build_date

Represents the build date of the installed component.
component_level_ID

Represents the ID associated with the level of the installed component.

For more details, see Example 2.

Predefined macros

None.

Example 1

The output of specifying the --version (-qversion) option:
IBM XL C/C++ for Linux on z Systems, V1.1
Version: 01.01.0000.0000

Example 2

The output of specifying the -qversion=verbose option:
IBM XL C/C++ for Linux on z Systems, V1.2
Version: 01.02.0000.0000
Driver Version: 01.02(C/C++): 141017 ID: _kUiP60sMEeSe5NK2G0fWzA
C/C++ Front End Version: 01.02(C/C++) Level: 141002 ID: _INkPkEnXEeSe5NK2G0fWzA
High-Level Optimizer Version: 01.02(C/C++)Level: 141003 ID: __Iiw0kr_EeSe5NK2G0fWzA
Low-Level Optimizer Version: 01.02(C/C++)Level: 141003 ID: _zoirQEqlEeSe5NK2G0fWzA

Chapter 3. Compiler options reference 39

Related information
v “-qsaveopt” on page 132

@file (-qoptfile)
Category

Compiler customization

Pragma equivalent

None.

Purpose

Specifies a file containing a list of additional command line options to be used for
the compilation.

Syntax

►► @ filename ►◄

►► -q optfile = filename ►◄

Defaults

None.

Parameters

filename
Specifies the name of the file that contains a list of additional command line
options. filename can contain a relative path or absolute path, or it can contain
no path. It is a plain text file with one or more command line options per line.

Usage

The format of the option file follows these rules:
v Specify the options you want to include in the file with the same syntax as on

the command line. The option file is a whitespace-separated list of options. The
following special characters indicate whitespace: \n, \v, \t. (All of these
characters have the same effect.)

v A character string between a pair of single or double quotation marks are passed
to the compiler as one option.

v You can include comments in the options file. Comment lines start with the #
character and continue to the end of the line. The compiler ignores comments
and empty lines.

When processed, the compiler removes the @file (-qoptfile) option from the
command line, and sequentially inserts the options included in the file before the
other subsequent options that you specify.

40 XL C/C++: Compiler Reference

The @file (-qoptfile) option is also valid within an option file. The files that contain
another option file are processed in a depth-first manner. The compiler avoids
infinite loops by detecting and ignoring cycles in option file inclusion.

If @file (-qoptfile) and -qsaveopt are specified on the same command line, the
original command line is used for -qsaveopt. A new line for each option file is
included representing the contents of each option file. The options contained in the
file are saved to the compiled object file.

Predefined macros

None.

Example 1

This is an example of specifying an option file.
$ cat options.file
To perform optimization at -O3 level, and high-order
loop analysis and transformations during optimization
-O3 -qhot
To generate position-independent code
-fPIC

$ xlC -qlist @options.file -qipa test.c

The preceding example is equivalent to the following invocation:
$ xlC -qlist -O3 -qhot -fPIC -qipa test.c

Example 2

This is an example of specifying an option file that contains @file (-qoptfile) with a
cycle.
$ cat options.file2
To perform optimization at -O3 level, and high-order
loop analysis and transformations during optimization
-O3 -qhot
To include the -qoptfile option in the same option file
@options.file2
To generate position-independent code
-fPIC
To produce a compiler listing file
-qlist

$ xlC -qlist @options.file2 -qipa test.c

The preceding example is equivalent to the following invocation:
$ xlC -qlist -O3 -qhot -fPIC -qlist -qipa test.c

Example 3

This is an example of specifying an option file that contains @file (-qoptfile)
without a cycle.
$ cat options.file1
-O3 -qhot
@options.file2
-qalias=ansi

Chapter 3. Compiler options reference 41

$ cat options.file2
-qchars=signed

$ xlC @options.file1 test.c

The preceding example is equivalent to the following invocation:
$ xlC -O3 -qhot -qchars=signed test.c

Example 4

This is an example of specifying -qsaveopt and @file (-qoptfile) on the same
command line.
$ cat options.file3
-O3
-qhot

$ xlC -qsaveopt -qipa @options.file3 test.c -c

$ what test.o
test.o:
opt f xlC -qsaveopt -qipa @options.file3 test.c -c
optfile options.file3 -O3 -qhot

Related information
v “-qsaveopt” on page 132

-B
Category

Compiler customization

Pragma equivalent

None.

Purpose

Specifies substitute path names for XL C/C++ components such as the assembler,
C preprocessor, and linker.

You can use this option if you want to keep multiple levels of some or all of the
XL C/C++ executables and have the option of specifying which one you want to
use. However, it is preferred that you use the -qpath option to accomplish this
instead.

Syntax

►► -B
prefix

►◄

Defaults

The default paths for the compiler executables are defined in the compiler
configuration file.

42 XL C/C++: Compiler Reference

Parameters

prefix
Defines part of a path name for programs you can name with the -t option.
You must add a slash (/). If you specify the -B option without the prefix, the
default prefix is /lib/o.

Usage

The -t option specifies the programs to which the -B prefix name is to be
appended; see “-t” on page 148 for a list of these. If you use the -B option without
-tprograms, the prefix you specify applies to all of the compiler executables.

The -B and -t options override the -F option.

Predefined macros

None.

Examples

In this example, an earlier level of the compiler components is installed in the
default installation directory. To test the upgraded product before making it
available to everyone, the system administrator restores the latest installation
image under the directory /home/jim and then tries it out with commands similar
to:
xlc -tcbI -B/home/jim/opt/ibm/xlC/1.2.0/bin/ test_suite.c

Once the upgrade meets the acceptance criteria, the system administrator installs it
in the default installation directory.

Related information
v “-qpath” on page 122
v “-t” on page 148
v “Invoking the compiler” on page 1
v The -B option that GCC provides. For details, see the GCC online

documentation at http://gcc.gnu.org/onlinedocs/.

-C, -C!
Category

Output control

Pragma equivalent

None.

Purpose

When used in conjunction with the -E or -P options, preserves or removes
comments in preprocessed output.

When -C is in effect, comments are preserved. When -C! is in effect, comments are
removed.

Chapter 3. Compiler options reference 43

http://gcc.gnu.org/onlinedocs/

Syntax

►►
-C
-C! ►◄

Defaults

-C

Usage

The -C option has no effect without either the -E or the -P option. If -E is specified,
continuation sequences are preserved in the output. If -P is specified, continuation
sequences are stripped from the output, forming concatenated output lines.

You can use the -C! option to override the -C option specified in a default makefile
or configuration file.

Predefined macros

None.

Examples

To compile myprogram.c to produce a file myprogram.i that contains the
preprocessed program text including comments, enter:
xlc myprogram.c -P -C

Related information
v “-E” on page 45
v “-P” on page 52

-D
Category

Language element control

Pragma equivalent

None.

Purpose

Defines a macro as in a #define preprocessor directive.

Syntax

►► -D name
= definition

►◄

Defaults

Not applicable.

44 XL C/C++: Compiler Reference

Parameters

name
The macro you want to define. -Dname is equivalent to #define name. For
example, -DCOUNT is equivalent to #define COUNT.

definition
The value to be assigned to name. -Dname=definition is equivalent to #define
name definition. For example, -DCOUNT=100 is equivalent to #define COUNT
100.

Usage

Using the #define directive to define a macro name already defined by the -D
option will result in an error condition.

The -Uname option, which is used to undefine macros defined by the -D option,
has a higher precedence than the -Dname option.

Predefined macros

The compiler configuration file uses the -D option to predefine several macro
names for specific invocation commands. For details, see the configuration file for
your system.

Examples

To specify that all instances of the name COUNT be replaced by 100 in myprogram.c,
enter:
xlc myprogram.c -DCOUNT=100

Related information
v “-U” on page 55
v Chapter 5, “Compiler predefined macros,” on page 171

-E
Category

Output control

Pragma equivalent

None.

Purpose

Preprocesses the source files named in the compiler invocation, without compiling.

Syntax

►► -E ►◄

Chapter 3. Compiler options reference 45

Defaults

By default, source files are preprocessed, compiled, and linked to produce an
executable file.

Usage

Source files with unrecognized file name suffixes are treated and preprocessed as C
files.

Unless -C is specified, comments are replaced in the preprocessed output by a
single space character. New lines and #line directives are issued for comments that
span multiple source lines.

The -E option overrides the -P and -fsyntax-only (-qsyntaxonly) options. The
combination of -E -o stores the preprocessed result in the file specified by -o.

Predefined macros

None.

Examples

To compile myprogram.c and send the preprocessed source to standard output,
enter:
xlc myprogram.c -E

If myprogram.c has a code fragment such as:
#define SUM(x,y) (x + y)
int a ;
#define mm 1 /* This is a comment in a

preprocessor directive */
int b ; /* This is another comment across

two lines */
int c ;

/* Another comment */
c = SUM(a,b) ; /* Comment in a macro function argument*/

the output will be:
int a ;

int b ;

int c ;

c = a + b ;

Related information
v “-C, -C!” on page 43
v “-P” on page 52
v “-fsyntax-only (-qsyntaxonly)” on page 74

-F
Category

Compiler customization

46 XL C/C++: Compiler Reference

Pragma equivalent

None.

Purpose

Names an alternative configuration file or stanza for the compiler.

Note: This option is not equivalent to the -F option that GCC provides.

Syntax

►► -F file_path
: stanza

: stanza

►◄

Defaults

By default, the compiler uses the configuration file that is configured at installation
time, and uses the stanza defined in that file for the invocation command currently
being used.

Parameters

file_path
The full path name of the alternate compiler configuration file to use.

stanza
The name of the configuration file stanza to use for compilation. This directs
the compiler to use the entries under that stanza regardless of the invocation
command being used. For example, if you are compiling with xlc, but you
specify the c99 stanza, the compiler will use all the settings specified in the c99
stanza.

Usage

Note that any file names or stanzas that you specify with the -F option override
the defaults specified in the system configuration file. If you have specified a
custom configuration file with the XLC_USR_CONFIG environment variable, that
file is processed before the one specified by the -F option.

The -B, -t, and -W options override the -F option.

Predefined macros

None.

Examples

To compile myprogram.c using a stanza called debug that you have added to the
default configuration file, enter:
xlc myprogram.c -F:debug

To compile myprogram.c using a configuration file called /usr/tmp/myconfig.cfg,
enter:
xlc myprogram.c -F/usr/tmp/myconfig.cfg

Chapter 3. Compiler options reference 47

To compile myprogram.c using the stanza c99 you have created in a configuration
file called /usr/tmp/myconfig.cfg, enter:
xlc myprogram.c -F/usr/tmp/myconfig.cfg:c99

Related information
v “Using custom compiler configuration files” on page 19
v “-B” on page 42
v “-t” on page 148
v “-X (-W)” on page 56
v “Specifying compiler options in a configuration file” on page 5
v “Compile-time and link-time environment variables” on page 18

-I
Category

Input control

Pragma equivalent

None.

Purpose

Adds a directory to the search path for include files.

Syntax

►► -I directory_path ►◄

Defaults

See “Directory search sequence for included files” on page 9 for a description of
the default search paths.

Parameters

directory_path
The path for the directory where the compiler should search for the header
files.

Usage

If -nostdinc or -nostdinc++ (-qnostdinc) is in effect, the compiler searches only the
paths specified by the -I option for header files, and not the standard search paths
as well.

If the -I directory option is specified both in the configuration file and on the
command line, the paths specified in the configuration file are searched first. The -I
directory option can be specified more than once on the command line. If you
specify more than one -I option, directories are searched in the order that they
appear on the command line.

The -I option has no effect on files that are included using an absolute path name.

48 XL C/C++: Compiler Reference

Predefined macros

None.

Examples

To compile myprogram.c and search /usr/tmp and then /oldstuff/history for
included files, enter:
xlc myprogram.c -I/usr/tmp -I/oldstuff/history

Related information
v “-qstdinc, -qnostdinc (-nostdinc, -nostdinc++)” on page 137
v “-include (-qinclude)” on page 84
v “Directory search sequence for included files” on page 9
v “Specifying compiler options in a configuration file” on page 5

-L
Category

Linking

Pragma equivalent

None.

Purpose

At link time, searches the directory path for library files specified by the -l option.

Syntax

►► -L directory_path ►◄

Defaults

The default is to search only the standard directories. See the compiler
configuration file for the directories that are set by default.

Parameters

directory_path
The path for the directory which should be searched for library files.

Usage

Paths specified with the -L compiler option are only searched at link time. To
specify paths that should be searched at run time, use the -R option.

If the -Ldirectory option is specified both in the configuration file and on the
command line, search paths specified in the configuration file are the first to be
searched at link time.

The -L compiler option is cumulative. Subsequent occurrences of -L on the
command line do not replace, but add to, any directory paths specified by earlier
occurrences of -L.

Chapter 3. Compiler options reference 49

For more information, refer to the ld documentation for your operating system.

Predefined macros

None.

Examples

To compile myprogram.c so that the directory /usr/tmp/old is searched for the
library libspfiles.a, enter:
xlc myprogram.c -lspfiles -L/usr/tmp/old

Related information
v “-l” on page 91
v “-R” on page 53

-O, -qoptimize
Category

Optimization and tuning

Purpose

Specifies whether to optimize code during compilation and, if so, at which level.

Syntax

►►

noopt
nooptimize

-q optimize
opt = 0

2
3

-O0
-O
-O2
-O3

►◄

Defaults

-qnooptimize or -O0 or -qoptimize=0

Parameters

-O0 | nooptimize | noopt | optimize|opt=0
Performs only quick local optimizations such as constant folding and
elimination of local common subexpressions.

-O | -O2 | optimize | opt | optimize|opt=2
Performs optimizations that the compiler developers considered the best
combination for compilation speed and runtime performance. The
optimizations may change from product release to release. If you need a
specific level of optimization, specify the appropriate numeric value.

-O3 | optimize|opt=3
Performs additional optimizations that are memory intensive, compile-time

50 XL C/C++: Compiler Reference

intensive, or both. They are recommended when the desire for runtime
improvement outweighs the concern for minimizing compilation resources.

-O3 applies the -O2 level of optimization, but with unbounded time and
memory limits. -O3 also performs higher and more aggressive optimizations
that have the potential to slightly alter the semantics of your program. The
compiler guards against these optimizations at -O2. The aggressive
optimizations performed when you specify -O3 are:
1. Both -O2 and -O3 conform to the following IEEE rules.

With -O2 certain optimizations are not performed because they may
produce an incorrect sign in cases with a zero result, and because they
remove an arithmetic operation that may cause some type of floating-point
exception.

2. Specifying -O3 implies -qhot=level=0, unless you explicitly specify -qhot or
-qhot=level=1 option.

Built-in functions do not change errno at -O3.

Integer divide instructions are considered too dangerous to optimize even at
-O3.

When -O3 and -qhot=level=1 are in effect, the compiler replaces any calls in
the source code to standard math library functions with calls to the equivalent
MASS library functions.

Usage

Increasing the level of optimization may or may not result in additional
performance improvements, depending on whether additional analysis detects
further opportunities for optimization.

Compilations with optimizations may require more time and machine resources
than other compilations.

Optimization can cause statements to be moved or deleted, and generally should
not be specified along with the -g flag for debugging programs. The debugging
information produced may not be accurate.

If optimization level -O3 is specified on the command line, the -qhot and -qipa
options that are set by the optimization level cannot be overridden by #pragma
option_override(identifier, "opt(level, 0)") or #pragma
option_override(identifier, "opt(level, 2)").

Predefined macros
v __OPTIMIZE__ is predefined to 2 when -O | O2 is in effect; it is predefined to 3

when -O3 is in effect. Otherwise, it is undefined.
v __OPTIMIZE_SIZE__ is predefined to 1 when -O | -O2 | -O3 is in effect.

Otherwise, it is undefined.

Examples

To compile and optimize myprogram.c, enter:
xlc myprogram.c -O3

Related information
v “-qhot” on page 104
v “-qipa” on page 109

Chapter 3. Compiler options reference 51

v “-qpdf1, -qpdf2” on page 123
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide.
v “#pragma option_override” on page 164

-P
Category

Output control

Pragma equivalent

None.

Purpose

Preprocesses the source files named in the compiler invocation, without compiling,
and creates an output preprocessed file for each input file.

The preprocessed output file has the same name as the input file but with a .i
suffix.

Note: This option is not equivalent to the GCC option -P .

Syntax

►► -P ►◄

Defaults

By default, source files are preprocessed, compiled, and linked to produce an
executable file.

Usage

Source files with unrecognized file name suffixes are preprocessed as C files except
those with a .i suffix.

#line directives are not generated.

Line continuation sequences are removed and the source lines are concatenated.

The -P option retains all white space including line-feed characters, with the
following exceptions:
v All comments are reduced to a single space (unless -C is specified).
v Line feeds at the end of preprocessing directives are not retained.
v White space surrounding arguments to function-style macros is not retained.

The -P option is overridden by the -E option. The -P option overrides the -c, -o,
and -fsyntax-only (-qsyntaxonly) option.

Predefined macros

None.

52 XL C/C++: Compiler Reference

Related information
v “-C, -C!” on page 43
v “-E” on page 45
v “-fsyntax-only (-qsyntaxonly)” on page 74

-R
Category

Linking

Pragma equivalent

None.

Purpose

At link time, writes search paths for shared libraries into the executable, so that
these directories are searched at program run time for any required shared
libraries.

Syntax

►► -R directory_path ►◄

Defaults

The default is to include only the standard directories. See the compiler
configuration file for the directories that are set by default.

Usage

If the -Rdirectory_path option is specified both in the configuration file and on the
command line, the paths specified in the configuration file are searched first at run
time.

The -R compiler option is cumulative. Subsequent occurrences of -R on the
command line do not replace, but add to, any directory paths specified by earlier
occurrences of -R.

Predefined macros

None.

Examples

To compile myprogram.c so that the directory /usr/tmp/old is searched at run time
along with standard directories for the dynamic library libspfiles.so, enter:
xlc myprogram.c -lspfiles -R/usr/tmp/old

Related information
v “-L” on page 49

Chapter 3. Compiler options reference 53

-S
Category

Output control

Pragma equivalent

None.

Purpose

Generates an assembler language file for each source file.

The resulting file has a .s suffix and can be assembled to produce object .o files or
an executable file (a.out).

Syntax

►► -S ►◄

Defaults

Not applicable.

Usage

You can invoke the assembler with any compiler invocation command. For
example,
xlc myprogram.s

will invoke the assembler, and if successful, the linker to create an executable file,
a.out.

If you specify -S with -E or -P, -E or -P takes precedence. Order of precedence
holds regardless of the order in which they were specified on the command line.

You can use the -o option to specify the name of the file produced only if no more
than one source file is supplied. For example, the following is not valid:
xlc myprogram1.c myprogram2.c -o -S

Predefined macros

None.

Examples

To compile myprogram.c to produce an assembler language file myprogram.s, enter:
xlc myprogram.c -S

To assemble this program to produce an object file myprogram.o, enter:
xlc myprogram.s -c

To compile myprogram.c to produce an assembler language file asmprogram.s, enter:
xlc myprogram.c -S -o asmprogram.s

54 XL C/C++: Compiler Reference

Related information
v “-E” on page 45
v “-P” on page 52

-U
Category

Language element control

Pragma equivalent

None.

Purpose

Undefines a macro defined by the compiler or by the -D compiler option.

Syntax

►► -U name ►◄

Defaults

Many macros are predefined by the compiler; see Chapter 5, “Compiler predefined
macros,” on page 171 for those that can be undefined (that is, are not protected).
The compiler configuration file also uses the -D option to predefine several macro
names for specific invocation commands; for details, see the configuration file for
your system.

Parameters

name
The macro you want to undefine.

Usage

The -U option is not equivalent to the #undef preprocessor directive. It cannot
undefine names defined in the source by the #define preprocessor directive. It can
only undefine names defined by the compiler or by the -D option.

The -Uname option has a higher precedence than the -Dname option.

Predefined macros

None.

Examples

Assume that your operating system defines the name __unix, but you do not want
your compilation to enter code segments conditional on that name being defined,
compile myprogram.c so that the definition of the name __unix is nullified by
entering:
xlc myprogram.c -U__unix

Chapter 3. Compiler options reference 55

Related information
v “-D” on page 44

-X (-W)
Category

Compiler customization

Pragma equivalent

None.

Purpose

Passes the listed options to a component that is executed during compilation.

Syntax

►► ▼-X assembler option
preprocessor
linker

►◄

►► ▼ ▼-W a , option
b
c
C
d
I
L
l
p

►◄

Parameters

option
Any option that is valid for the component to which it is being passed.

Note: For -X, for details about the options for linking and assembling, see the
GNU Compiler Collection online documentation at http://gcc.gnu.org/
onlinedocs/

The following table shows the correspondence between -X or -W parameters and
the component names:

Parameter of -W Parameter of -X Description Component name

a assembler The assembler as

b The low-level
optimizer

xlCcode

c, C The C and C++
compiler front end

xlCentry

56 XL C/C++: Compiler Reference

http://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/onlinedocs/

Parameter of -W Parameter of -X Description Component name

d The disassembler dis

I (uppercase i) The high-level
optimizer, compile
step

ipa

L The high-level
optimizer, link step

ipa

l (lowercase L) linker The linker ld

p preprocessor The preprocessor xlCentry

Usage

In the string following the -W option, use a comma as the separator for each
option, and do not include any spaces. For the -X option, one space is needed
before the option. If you need to include a character that is special to the shell in
the option string, precede the character with a backslash. For example, if you use
the -X or -W option in the configuration file, you can use the escape sequence
backslash comma (\,) to represent a comma in the parameter string.

You do not need the -X or -W option to pass most options to the linker ld;
unrecognized command-line options, except -q options, are passed to it
automatically. Only linker options with the same letters as compiler options, such
as -v or -S, strictly require -X or -W.

Predefined macros

None.

Examples

To compile the file file.c and pass the linker option -symbolic to the linker, enter
the following command:
xlc -Xlinker -symbolic file.c

To compile the file uses_many_symbols.c and the assembly file
produces_warnings.s so that produces_warnings.s is assembled with the assembler
option -alh, and the object files are linked with the option -s (write list of object
files and strip final executable file), issue the following command:
xlc -Xassembler -alh produces_warnings.s -Xlinker -s uses_many_symbols.c

Related information
v “Invoking the compiler” on page 1

-Werror (-qhalt)
Category

Error checking and debugging

Purpose

Stops compilation before producing any object, executable, or assembler source
files if the maximum severity of compile-time messages equals or exceeds the
severity you specify.

Chapter 3. Compiler options reference 57

Syntax

►► -Werror ►◄

►► -qhalt =w ►◄

Defaults

By default, -Werror (-qhalt=w) is disabled.

Parameters

w Specifies that compilation is to stop for warnings (W) and all types of errors.

Predefined macros

None.

Examples

To compile myprogram.c so that compilation stops if a warning or higher level
message occurs, enter:
xlc myprogram.c -Werror

-Wunsupported-xl-macro
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Checks whether any unsupported XL macro is used.

Syntax

►► -Wunsupported-xl-macro ►◄

Defaults

By default, -Wunsupported-xl-macro is disabled.

Usage

Some macros that might be supported by other XL compilers are unsupported in
IBM XL C/C++ for Linux on z Systems, V1.2.

You can specify the -Wunsupported-xl-macro option to check whether any
unsupported macro is used. If an unsupported macro is used, the compiler issues a
warning message.

58 XL C/C++: Compiler Reference

Predefined macros

None.
Related information

“Unsupported macros from other XL compilers” on page 177

-c
Category

Output control

Pragma equivalent

None.

Purpose

Instructs the compiler to compile or assemble the source files only but do not link.
With this option, the output is a .o file for each source file.

Syntax

►► -c ►◄

Defaults

By default, the compiler invokes the linker to link object files into a final
executable.

Usage

When this option is in effect, the compiler creates an output object file, file_name.o,
for each valid source file, such as file_name.c, file_name.i, file_name.C, file_name.cpp,
or file_name.s. You can use the -o option to provide an explicit name for the object
file.

The -c option is overridden if the -E, -P, or -fsyntax-only (-qsyntaxonly) option is
specified.

Predefined macros

None.

Examples

To compile myprogram.c to produce an object file myprogram.o, but no executable
file, enter the command:
xlc myprogram.c -c

To compile myprogram.c to produce the object file new.o and no executable file,
enter the command:
xlc myprogram.c -c -o new.o

Chapter 3. Compiler options reference 59

Related information
v “-E” on page 45
v “-o” on page 97
v “-P” on page 52
v “-fsyntax-only (-qsyntaxonly)” on page 74

-dM (-qshowmacros)
Category

“Output control” on page 23

Pragma equivalent

None

Purpose

Emits macro definitions to preprocessed output.

Emitting macros to preprocessed output can help determine functionality available
in the compiler. The macro listing may prove useful for debugging complex macro
expansions, as well.

Syntax

►► -dM ►◄

►►
noshowmacros

-q showmacros ►◄

Defaults

-qnoshowmacros

Usage

Note the following when using this option:
v This option has no effect unless preprocessed output is generated; for example,

by using the -E or -P options.
v If a macro is defined and subsequently undefined before compilation ends, this

macro will not be included in the preprocessed output.
v Only macros defined internally by the preprocessor are considered predefined;

all other macros are considered as user-defined.

Related information
v “-E” on page 45
v “-P” on page 52

-e
Category

Linking

60 XL C/C++: Compiler Reference

Pragma equivalent

None.

Purpose

Specifies an entry point for a shared object when used together with the -shared
(-qmkshrobj) option.

Syntax

►► -e entry_name ►◄

Defaults

None.

Parameters

name
The name of the entry point for the shared executable.

Usage

Specify the -e option only with the -shared (-qmkshrobj) option.

Note: When you link object files, do not use the -e option. The default entry point
of the executable output is __start. Changing this label with the -e flag can
produce errors.

Predefined macros

None.

Related information
v “-shared (-qmkshrobj)” on page 141

-fasm (-qasm)
Category

Language element control

Pragma equivalent

None.

Purpose

Controls the interpretation and subsequent generation of code for assembler
language extensions.

When -qasm is in effect, the compiler generates code for assembly statements in
the source code. Suboptions specify the syntax used to interpret the content of the
assembly statement.

Chapter 3. Compiler options reference 61

Note: The system assembler program must be available for this command to take
effect.

Syntax

►► -f
asm
no-asm ►◄

►►

asm
gcc

=
-q noasm ►◄

Defaults

-qasm=gcc or -fasm

Parameters

gcc
Instructs the compiler to recognize the extended GCC syntax and semantics for
assembly statements.

Specifying -qasm without a suboption is equivalent to specifying the default.

Usage

C At language levels stdc89 and stdc99, token asm is not a keyword. At all
the other language levels, token asm is treated as a keyword. C

C++

The tokens asm, __asm, and __asm__ are keywords at all language levels.

C++

For detailed information about the syntax and semantics of inline asm statements,
see "Inline assembly statements" in the XL C/C++ Language Reference.

Examples

The following code snippet shows an example of the GCC conventions for asm
syntax in inline statements:
int a,b;
int main() {

a = 11;
b = 44;
asm("AR %0, %1" : "+r"(a) : "r"(b));

return a;
}

Related information
v “-qasm_as” on page 99
v “-std (-qlanglvl)” on page 144
v "Inline assembly statements" in the XL C/C++ Language Reference

62 XL C/C++: Compiler Reference

-fcommon (-qcommon)
Category

Object code control

Pragma equivalent

None.

Purpose

Controls where uninitialized global variables are allocated.

When -fcommon (-qcommon) is in effect, uninitialized global variables are
allocated in the common section of the object file. When -fno-common
(-qnocommon) is in effect, uninitialized global variables are initialized to zero and
allocated in the data section of the object file.

Syntax

►► -f common
no-common

►◄

►► -q common
nocommon

►◄

Defaults

v C -fcommon (-qcommon) except when -shared (-qmkshrobj) is specified;
-fno-common (-qnocommon) when -shared (-qmkshrobj) is specified.

v C++ -fno-common (-qnocommon)

Usage

This option does not affect static or automatic variables, or the declaration of
structure or union members.

This option is overridden by the common|nocommon and section variable attributes.
See "The common and nocommon variable attribute" and "The section variable
attribute" in the XL C/C++ Language Reference.

Predefined macros

None.

Examples

In the following declaration, where a and b are global variables:
int a, b;

Compiling with -fcommon (-qcommon) produces the equivalent of the following
assembly code:
.common a,4,4
.common b,4,4

Chapter 3. Compiler options reference 63

Compiling with -fno-common (-qnocommon) produces the equivalent of the
following assembly code:
.globl a
.size a,4
a:
.fill 4

.globl b

.size b,4
b:
.fill 4

Related information
v “-shared (-qmkshrobj)” on page 141
v "The common and nocommon variable attribute" in the XL C/C++ Language

Reference
v "The section variable attribute" in the XL C/C++ Language Reference

-fdollars-in-identifiers (-qdollar)
Category

Language element control

Pragma equivalent

None

Purpose

Allows the dollar-sign ($) symbol to be used in the names of identifiers.

When -fdollars-in-identifiers or -qdollar is in effect, the dollar symbol $ in an
identifier is treated as a base character.

Syntax

►►
dollars-in-identifiers

-f no-dollars-in-identifiers ►◄

►►
dollar

-q nodollar ►◄

Defaults

-fdollars-in-identifiers or -qdollar

Predefined macros

None.

Examples

To compile myprogram.c so that $ is allowed in identifiers in the program, enter:
xlc myprogram.c -fdollars-in-identifiers

64 XL C/C++: Compiler Reference

Related information
v “-std (-qlanglvl)” on page 144

-fdump-class-hierarchy (-qdump_class_hierarchy) (C++ only)
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Dumps a representation of the hierarchy and virtual function table layout of each
class object to a file.

Syntax

►► -f dump-class-hierarchy ►◄

►► -q dump_class_hierarchy ►◄

Defaults

Not applicable.

Usage

The output file name consists of the source file name appended with a .class suffix.

Predefined macros

None.

Examples

To compile myprogram.C to produce a file named myprogram.C.class containing the
class hierarchy information, enter:
xlc++ myprogram.C -fdump-class-hierarchy

-finline-functions (-qinline)
Category

Optimization and tuning

Pragma equivalent

None.

Chapter 3. Compiler options reference 65

Purpose

Attempts to inline functions instead of generating calls to those functions, for
improved performance.

Syntax

►► -finline-functions ►◄

►►

▼

▼

-qnoinline
-qinline

:

= auto
noauto
level = number

:

+ function_name
-

►◄

Defaults

If -qinline is not specified, the default option is -qnoinline at the -O0 or -qnoopt
optimization level, or -qinline=noauto:level=5 at the -O2 or higher optimization
level.

If -qinline is specified without any suboptions, the default option is
-qinline=auto:level=5.

Parameters

auto | noauto
Enables or disables automatic inlining. When option -qinline=auto is in effect,
all functions are considered for inlining by the compiler. When option
-qinline=noauto is in effect, only the following types of functions are
considered for inlining:
v Functions that are defined with the inline specifier
v Small functions that are identified by the compiler

The compiler determines whether a function is appropriate for inlining, and
enabling automatic inlining does not guarantee that a function is inlined.

level=number
Indicates the relative degree of inlining. The values for number must be integers
in the range 0 - 10 inclusive. The default value for number is 5. The greater the
value of number, the more aggressive inlining the compiler conducts.

function_name
If function_name is specified after the -qinline+ option, the named function
must be inlined. If function_name is specified after the -qinline- option, the
named function must not be inlined. C++ The function_name must be the
mangled name of the function. You can find the mangled function name in the
listing file. C++

66 XL C/C++: Compiler Reference

Usage

You can specify C++ -qinline C++ or specify -qinline with any
optimization level of C++ -O C++ , -O2, or -O3 to enable inlining of
functions, including those functions that are declared with the inline specifier

C++ or that are defined within a class declaration C++ .

When -qinline is in effect, the compiler determines whether inlining a specific
function can improve performance. That is, whether a function is appropriate for
inlining is subject to two factors: limits on the number of inlined calls and the
amount of code size increase as a result. Therefore, enabling inlining a function
does not guarantee that function will be inlined.

Because inlining does not always improve runtime performance, you need to test
the effects of this option on your code. Do not attempt to inline recursive or
mutually recursive functions.

You can use the -qinline+<function_name> or -qinline-<function_name> option to
specify the functions that must be inlined or must not be inlined.

IBM The -qinline-<function_name> option takes higher precedence than the
always_inline or __always_inline__ attribute. When you specify both the
always_inline or __always_inline__ attribute and the -qinline-<function_name>
option to a function, that function is not inlined. IBM

Specifying -qnoinline disables all inlining, including that achieved by the
high-level optimizer with the -qipa option, and functions declared explicitly as
inline. However, the -qnoinline option does not affect the inlining of the following
functions:
v IBM Functions that are specified with the always_inline or

__always_inline__ attribute IBM

v Functions that are specified with the -qinline+<function_name> option

If you specify the -g option to generate debugging information, the inlining effect
of -qinline might be suppressed.

Predefined macros

None.

Examples

Example 1

To compile myprogram.c so that no functions are inlined, use the following
command:
xlc myprogram.c -O2 -qnoinline

However, if some functions in myprogram.c are specified with IBM the
always_inline or __always_inline__ attribute IBM , the -qnoinline option has
no effect on these functions and they are still inlined.

If you want to enable automatic inlining, you use the auto suboption:
-O2 -qinline=auto

Chapter 3. Compiler options reference 67

You can specify an inlining level 6 - 10 to achieve more aggressive automatic
inlining. For example:
-O2 -qinline=auto:level=7

If automatic inlining is already enabled by default and you want to specify an
inlining level of 7, you enter:
-O2 -qinline=level=7

Example 2

C

Assuming myprogram.c contains the salary, taxes, expenses, and benefits
functions, you can use the following command to compile myprogram.c to inline
these functions:
xlc myprogram.c -O2 -qinline+salary:taxes:expenses:benefits

If you do not want the functions salary, taxes, expenses, and benefits to be
inlined, use the following command to compile myprogram.c:
xlc myprogram.c -O2 -qinline-salary:taxes:expenses:benefits

You can also disable automatic inlining and specify certain functions to be inlined
with the -qinline+ option. Consider the following example:
-O2 -qinline=noauto -qinline+salary:taxes:benefits

In this case, the functions salary, taxes, and benefits are inlined. Functions that
are specified with IBM the always_inline or __always_inline__ attribute

IBM

or declared with the inline specifier are also inlined. No other functions

are inlined.

You cannot mix the + and - suboptions with each other or with other -qinline
suboptions. For example, the following options are invalid suboption combinations:
-qinline+increase-decrease // Invalid
-qinline=level=5+increase // Invalid

However, you can use multiple -qinline options separately. See the following
example:
-qinline+increase -qinline-decrease -qinline=noauto:level=5

C

C++ In C++, you can use the -qinline+ and -qinline- options in the same way
as in example 2; however, you must specify the mangled function names instead of
the actual function names after these options. C++

Related information
v “-g” on page 80
v “-qipa” on page 109
v “-O, -qoptimize” on page 50
v “Compiler listings” on page 13
v "always_inline (IBM extension)" in the XL C/C++ Language Reference

68 XL C/C++: Compiler Reference

-fPIC , -fpic (-qpic)
Category

Object code control

Pragma equivalent

None.

Purpose

Generates position-independent code suitable for use in shared libraries.

Syntax

►►

no-PIC
no-pic

-f PIC
pic

►◄

►►
nopic

-q pic
large

= small

►◄

Defaults
v -fno-PIC, -fno-pic, or -qnopic in both 31-bit and 64-bit compilation mode.

Specifying -qpic without any suboption is equivalent to -qpic=large.

Parameters

small
Instructs the compiler to assume that the size of the Global Offset Table (GOT)
is no larger than 4 Kb.

large
Instructs the compiler to assume that the size of the GOT is larger than 4 Kb.
Code that is generated with this option is usually larger than that generated
with -qpic=small.

Usage

You must specify -qpic or -qpic=large when you build shared libraries.

If a thread local storage (TLS) model is not specified, the position-independent
code setting determines the default TLS model:
v When -fno-pic (-fno-PIC, -qnopic) is in effect, the default TLS model is

local-exec.
v When -fPIC (-qpic) is in effect, the default TLS model is general-dynamic.

If the initial-exec TLS model is in effect, different code sequences are used
depending on different position-independent code settings.

Chapter 3. Compiler options reference 69

Predefined macros

None.

Examples

To compile a shared library libmylib.so, use the following commands:
xlc mylib.c -fPIC -c -o mylib.o
xlc -shared mylib -o libmylib.so.1

Related information
v “-m31, -m64 (-q31, -q64)” on page 96
v “-shared (-qmkshrobj)” on page 141

-fpack-struct (-qalign)
Category

Portability and migration

Purpose

Specifies the alignment of data objects in storage, which avoids performance
problems with misaligned data.

Syntax

►► -fpack-struct ►◄

►►
=zlinux

-q align =bit_packed ►◄

Defaults

-qalign=zlinux

Parameters

bit_packed
Bit field data is packed on a bitwise basis without respect to byte boundaries.

zlinux
Uses GNU C/C++ alignment rules to maintain binary compatibility with GNU
C/C++ objects.

Usage

If you use the -fpack-struct (-qalign=bit_packed) or -qalign=zlinux option more
than once on the command line, the last alignment rule specified applies to the file.

Note: When using -fpack-struct (-qalign=bit_packed) or -qalign=zlinux , all
system headers are also compiled with -fpack-struct (-qalign=bit_packed) or
-qalign=zlinux . For a complete explanation of the option as well as usage
considerations, see "Aligning data" in the XL C/C++ Optimization and Programming
Guide.

70 XL C/C++: Compiler Reference

Predefined macros

None.

Related information
v “Supported GCC pragmas” on page 160
v "Aligning data" in the XL C/C++ Optimization and Programming Guide
v "The aligned variable attribute" in the XL C/C++ Language Reference
v "The packed variable attribute" in the XL C/C++ Language Reference

-fsigned-bitfields, -funsigned-bitfields (-qbitfields)
Category

Floating-point and integer control

Pragma equivalent

None.

Purpose

Specifies whether bit fields are signed or unsigned.

Syntax

►►
signed

-f unsigned -bitfields
no-signed
no-unsigned

►◄

►►
signed

-q bitfields = unsigned ►◄

Defaults

-fsigned-bitfields or -qbitfields=signed

Parameters

signed
Bit fields are signed.

unsigned
Bit fields are unsigned.

Predefined macros

None.

-fsigned-char, -funsigned-char (-qchars)
Category

Floating-point and integer control

Chapter 3. Compiler options reference 71

Pragma equivalent

None.

Purpose

Determines whether all variables of type char is treated as signed or unsigned.

Syntax

►►
unsigned

-f signed char
no-unsigned
no-signed

►◄

►►
unsigned

-q chars = signed ►◄

Defaults

-funsigned-char or -qchars=unsigned

Parameters

unsigned
Variables of type char are treated as unsigned char.

-fno-signed-char is equivalent to -funsigned-char.

signed
Variables of type char are treated as signed char.

-fno-unsigned-char is equivalent to -fsigned-char.

Usage

Regardless of the setting of this option or pragma, the type of char is still
considered to be distinct from the types unsigned char and signed char for
purposes of type-compatibility checking or C++ overloading.

Predefined macros
v _CHAR_SIGNED and __CHAR_SIGNED__ are defined to 1 when signed is in

effect; otherwise, it is undefined.
v _CHAR_UNSIGNED and __CHAR_UNSIGNED__ are defined to 1 when

unsigned is in effect; otherwise, they are undefined.

-fstrict-aliasing (-qalias=ansi), -qalias
Category

Optimization and tuning

Pragma equivalent

None

72 XL C/C++: Compiler Reference

Purpose

Indicates whether a program contains certain categories of aliasing or does not
conform to C/C++ standard aliasing rules. The compiler limits the scope of some
optimizations when there is a possibility that different names are aliases for the
same storage location.

Syntax

►► ▼

:
ansi
noaddrtaken

-q alias = addrtaken
noansi

►◄

For details about the -fstrict-aliasing option, see the GCC information, which is
available at http://gcc.gnu.org/onlinedocs/.

Defaults
v C++ -qalias=noaddrtaken:ansi

v C -qalias=noaddrtaken:ansi for all invocation commands except cc.
-qalias=noaddrtaken:noansi for the cc invocation command.

Parameters

addrtaken | noaddrtaken
When addrtaken is in effect, the reference of any variable whose address is
taken may alias to any pointer type. Any class of variable for which an address
has not been recorded in the compilation unit is considered disjoint from
indirect access through pointers.

When noaddrtaken is specified, the compiler generates aliasing based on the
aliasing rules that are in effect.

ansi | noansi
This suboption has no effect unless you also specify an optimization option.
You can specify the may_alias attribute for a type that is not subject to
type-based aliasing rules.

When noansi is in effect, the optimizer makes worst case aliasing assumptions.
It assumes that a pointer of a given type can point to an external object or any
object whose address is already taken, regardless of type.

Usage

-qalias makes assertions to the compiler about the code that is being compiled. If
the assertions about the code are false, the code that is generated by the compiler
might result in unpredictable behavior when the application is run.

The following are not subject to type-based aliasing:
v Signed and unsigned types. For example, a pointer to a signed int can point to

an unsigned int.
v Character pointer types can point to any type.
v Types that are qualified as volatile or const. For example, a pointer to a const

int can point to an int.

Chapter 3. Compiler options reference 73

http://gcc.gnu.org/onlinedocs

v C++ Base type pointers can point to the derived types of that type. C++

Predefined macros

None.

Examples

To specify worst-case aliasing assumptions when you compile myprogram.c, enter:
xlc myprogram.c -O -qalias=noansi

Related information
v “-qipa” on page 109
v The may_alias type attribute (IBM extension) in the XL C/C++ Language Reference

-fsyntax-only (-qsyntaxonly)
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Performs syntax checking without generating an object file.

Syntax

►► -f syntax-only ►◄

►► -q syntaxonly ►◄

Defaults

By default, source files are compiled and linked to generate an executable file.

Usage

The -P, -E, and -C options override the -fsyntax-only (-qsyntaxonly) option, which
in turn overrides the -c and -o options.

The -fsyntax-only (-qsyntaxonly) option suppresses only the generation of an
object file. All other files, such as listing files, are still produced if their
corresponding options are set.

Predefined macros

None.

74 XL C/C++: Compiler Reference

Examples

To check the syntax of myprogram.c without generating an object file, enter:
xlc myprogram.c -fsyntax-only

Related information
v “-C, -C!” on page 43
v “-c” on page 59
v “-E” on page 45
v “-o” on page 97
v “-P” on page 52

-ftemplate-depth (-qtemplatedepth) (C++ only)
Category

Template control

Pragma equivalent

None.

Purpose

Specifies the maximum number of recursively instantiated template specializations
that will be processed by the compiler.

Syntax

►► -f -template-depth = number ►◄

►► -q templatedepth = number ►◄

Defaults

-ftemplate-depth=256 or -qtemplatedepth=256

Parameters

number
The maximum number of recursive template instantiations. The number can be
a value in the range of 1 to INT_MAX. If your code attempts to recursively
instantiate more templates than number, compilation halts and an error
message is issued. If you specify an invalid value, the default value of 256 is
used.

Usage

Note that setting this option to a high value can potentially cause an
out-of-memory error due to the complexity and amount of code generated.

Predefined macros

None.

Chapter 3. Compiler options reference 75

Examples

To allow the following code in myprogram.cpp to be compiled successfully:
template <int n> void foo() {

foo<n-1>();
}

template <> void foo<0>() {}

int main() {
foo<400>();

}

Enter:
xlc++ myprogram.cpp -ftemplate-depth=400

Related information
v "Using C++ templates" in the XL C/C++ Optimization and Programming Guide.

-ftls-model (-qtls)
Category

Object code control

Pragma equivalent

None.

Purpose

Enables recognition of the __thread storage class specifier, which designates
variables that are to be allocated thread-local storage; and specifies the threadlocal
storage model to be used.

When this option is in effect, any variables marked with the __thread storage class
specifier are treated as local to each thread in a multithreaded application. At run
time, a copy of the variable is created for each thread that accesses it, and
destroyed when the thread terminates. Like other high-level constructs that you
can use to parallelize your applications, thread-local storage prevents race
conditions to global data, without the need for low-level synchronization of
threads.

Suboptions allow you to specify thread-local storage models, which provide better
performance but are more restrictive in their applicability.

Syntax

►►

tls-model =global-dynamic
=local-dynamic
=initial-exec
=local-exec

-f no-tls-model ►◄

76 XL C/C++: Compiler Reference

►►

=default
tls =global-dynamic

=initial-exec
=local-exec
=local-dynamic

-q notls ►◄

Defaults

-qtls=default

Specifying -qtls with no suboption is equivalent to specifying -qtls=default.

The default setting for -ftls-model is the same as the default setting for -qtls.

Parameters

default (-qtls only)
Uses the appropriate model depending on the setting of the -fPIC (-qpic)
option, which determines whether position-independent code is generated or
not. When -fPIC (-qpic) is in effect, this suboption results in
-qtls=global-dynamic. When -fno-pic (-fno-PIC, -qnopic) is in effect, this
suboption results in -qtls=initial-exec .

global-dynamic
This model is the most general, and can be used for all thread-local variables.

initial-exec
This model provides better performance than the global-dynamic or
local-dynamic models, and can be used for thread-local variables defined in
dynamically-loaded modules, provided that those modules are loaded at the
same time as the executable. That is, it can only be used when all thread-local
variables are defined in modules that are not loaded through dlopen.

local-dynamic
This model provides better performance than the global-dynamic model, and
can be used for thread-local variables defined in dynamically-loaded modules.
However, it can only be used when all references to thread-local variables are
contained in the same module in which the variables are defined.

local-exec
This model provides the best performance of all of the models, but can only be
used when all thread-local variables are defined and referenced by the main
executable.

Predefined macros

None.

Related information
v “-fPIC , -fpic (-qpic)” on page 69
v "The __thread storage class specifier" in the XL C/C++ Language Reference

-ftime-report (-qphsinfo)
Category

Listings, messages, and compiler information

Chapter 3. Compiler options reference 77

Pragma equivalent

None.

Purpose

Reports the time taken in each compilation phase to standard output.

Syntax

►► -ftime-report ►◄

►►
nophsinfo

-q phsinfo ►◄

Defaults

-ftime-report is not on by default.

-qnophsinfo

Usage

The output takes the form number1/number2 for each phase where number1
represents the CPU time used by the compiler and number2 represents real time
(wall clock time).

The time reported by -qphsinfo is in seconds.

Predefined macros

None.

Example

To compile myprogram.c and report the time taken for each phase of the
compilation, enter the following command:
xlc myprogram.c -ftime-report

The output looks like:
---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name ---
0.0007 (100.0%) 0.0007 (100.0%) 0.0014 (100.0%) 0.0014 (100.0%) Clang front-end timer
0.0007 (100.0%) 0.0007 (100.0%) 0.0014 (100.0%) 0.0014 (100.0%) Total

Front End - Phase Ends; 0.000/ 0.000
Compilation Time = 0:0.001088
Gen IL Time = 0:0.000288
Optimization Time = 0:0.000264
Code Gen Time = 0:0.000528

-ftree-vectorize (-qsimd)
Category

Optimization and tuning

78 XL C/C++: Compiler Reference

Pragma equivalent

#pragma nosimd

Purpose

Controls whether the compiler can automatically take advantage of vector
instructions for processors that support them.

These instructions can offer higher performance when used with
algorithmic-intensive tasks such as multimedia applications.

Syntax

►►
no-tree-vectorize

-f tree-vectorize ►◄

►►
noauto

-q simd = auto ►◄

Defaults

-fno-tree-vectorize

-qsimd=noauto

Usage

The -ftree-vectorize or -qsimd=auto option enables automatic generation of vector
instructions for processors that support them. When -ftree-vectorize or
-qsimd=auto is in effect, the compiler converts certain operations that are
performed in a loop on successive elements of an array into vector instructions.
These instructions calculate several results at one time, which is faster than
calculating each result sequentially. These options are useful for applications with
significant image processing demands.

The -fno-tree-vectorize or -qsimd=noauto option disables the conversion of loop
array operations into vector instructions.

Notes:

v Specifying -qsimd without any suboption is equivalent to -qsimd=auto.
v Specifying -ftree-vectorize or -qsimd=auto does not guarantee that

autosimdization will occur.
v Using vector instructions to calculate several results at one time might delay or

even miss detection of floating-point exceptions on some architectures. If
detecting exceptions is important, do not use -ftree-vectorize or -qsimd=auto.

Rules

When you specify the -ftree-vectorize or -qsimd=auto option, the option takes
effect only when the following conditions are satisfied:
v -march or -qarch is set to z13 (equivalent to arch11) or higher; otherwise, the

compiler ignores the option and issues a warning message.

Chapter 3. Compiler options reference 79

v -qhot is set to -qhot=level=0 or higher.
v The compiler runs on Linux distributions that have vector support.

If you enable IPA and specify -ftree-vectorize or -qsimd=auto at the IPA compile
step, but specify -fno-tree-vectorize or -qsimd=noauto at the IPA link step, the
compiler automatically sets -ftree-vectorize or -qsimd=auto at the IPA link step. It
also sets an appropriate value for -qarch to match the architecture that is specified
at the compile time. Similarly, if you enable IPA and specify -fno-tree-vectorize or
-qsimd=noauto at the IPA compile step, but specify -ftree-vectorize or
-qsimd=auto at the IPA link step, the compiler automatically sets -ftree-vectorize
or -qsimd=auto at the compile step.

Predefined macros

None.

Examples

Any of the following command combinations can enable autosimdization when the
compiler runs on a Linux distribution that has vector support:
v xlc -O3 -qsimd -march=z13

v xlc -O2 -qhot=level=0 -qsimd=auto -march=z13

v xlc -O3 -ftree-vectorize -march=z13

Neither of the following command combinations enables autosimdization:
v xlc -O2 -qsimd=auto

v xlc -O3 -qsimd=auto -fno-tree-vectorize

In the following example, #pragma nosimd is used to disable -qsimd=auto for a
specific for loop:
...
#pragma nosimd
for (i=1; i<1000; i++) {

/* program code */
}

Related information
v “#pragma nosimd” on page 163
v “-march (-qarch)” on page 92
v “-qreport” on page 130
v Using interprocedural analysis in the XL C/C++ Optimization and Programming

Guide.

-g
Category

Error checking and debugging

Pragma equivalent

None.

80 XL C/C++: Compiler Reference

Purpose

Generates debugging information for use by a symbolic debugger, and makes the
program state available to the debugging session at selected source locations.

Program state refers to the values of user variables at certain points during the
execution of a program.

You can use different -g levels to balance between debug capability and compiler
optimization. Higher -g levels provide a more complete debug support, at the cost
of runtime or possible compile-time performance, while lower -g levels provide
higher runtime performance, at the cost of some capability in the debugging
session.

When the -O2 optimization level is in effect, the debug capability is completely
supported.

Note: When an optimization level higher than -O2 is in effect, the debug capability
is limited.

Syntax

►► -g
0

1
2
3
4
5
6
7
8
9

►◄

Defaults

-g0

Parameters

-g

v When no optimization is enabled (-qnoopt), -g is equivalent to -g9.
v When the -O2 optimization level is in effect, -g is equivalent to -g2.

-g0 Generates no debugging information. No program state is preserved.

-g1 Generates minimal read-only debugging information about line numbers
and source file names. No program state is preserved. This option is
equivalent to -qlinedebug.

-g2 Generates read-only debugging information about line numbers, source file
names, and variables.

When the -O2 optimization level is in effect, no program state is preserved.

-g3, -g4
Generates read-only debugging information about line numbers, source file
names, and variables.

Chapter 3. Compiler options reference 81

When the -O2 optimization level is in effect:
v No program state is preserved.
v Function parameter values are available to the debugger at the

beginning of each function.

-g5, -g6, -g7
Generates read-only debugging information about line numbers, source file
names, and variables.

When the -O2 optimization level is in effect:
v Program state is available to the debugger at if constructs, loop

constructs, function definitions, and function calls. For details, see
“Usage.”

v Function parameter values are available to the debugger at the
beginning of each function.

-g8 Generates read-only debugging information about line numbers, source file
names, and variables.

When the -O2 optimization level is in effect:
v Program state is available to the debugger at the beginning of every

executable statement.
v Function parameter values are available to the debugger at the

beginning of each function.

-g9 Generates debugging information about line numbers, source file names,
and variables. You can modify the value of the variables in the debugger.

When the -O2 optimization level is in effect:
v Program state is available to the debugger at the beginning of every

executable statement.
v Function parameter values are available to the debugger at the

beginning of each function.

Usage

When no optimization is enabled, the debugging information is always available if
you specify -g2 or a higher level. When the -O2 optimization level is in effect, the
debugging information is available at selected source locations if you specify -g5 or
a higher level.

When you specify -g8 or -g9 with -O2, the debugging information is available at
every source line with an executable statement.

When you specify -g5, -g6, or -g7 with -O2, the debugging information is available
for the following language constructs:
v if constructs

The debugging information is available at the beginning of every if statement,
namely at the line where the if keyword is specified. It is also available at the
beginning of the next executable statement right after the if construct.

v Loop constructs
The debugging information is available at the beginning of every do, for, or
while statement, namely at the line where the do, for, or while keyword is
specified. It is also available at the beginning of the next executable statement
right after the do, for, or while construct.

v Function definitions

82 XL C/C++: Compiler Reference

The debugging information is available at the first executable statement in the
body of the function.

v Function calls
The debugging information is available at the beginning of every statement
where a user-defined function is called. It is also available at the beginning of
the next executable statement right after the statement that contains the function
call.

C++ Debugging information might not be generated for programs that contain
namespace alias declarations. When you compile such a program with the -g
option, an error might be issued. You can either remove the namespace alias
declarations from the program or compile the program without the -g option.

C++

Examples

Use the following command to compile myprogram.c and generate an executable
program called testing for debugging:
xlc myprogram.c -o testing -g

The following command uses a specific -g level with -O2 to compile myprogram.c
and generate debugging information:
xlc myprogram.c -O2 -g8

Related information
v “-qlinedebug” on page 118
v “-qfullpath” on page 103
v “-O, -qoptimize” on page 50
v “-qkeepparm” on page 115

-gdwarf (-qdbgfmt)
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Specifies the format for the debugging information in object files.

DWARF is a standard that defines the format of debugging information in
programs. It is used on a wide variety of operating systems and is extensible and
compact.

Syntax

►►
3

-g dwarf- 4 ►◄

Chapter 3. Compiler options reference 83

►►
dwarf

-q dbgfmt = dwarf4 ►◄

Defaults

-qdbgfmt=dwarf (-gdwarf-3)

Parameters

dwarf
Generates debugging information in DWARF 3 format.

dwarf4
Generates debugging information in DWARF 4 format.

Usage

To debug programs built with -qdbgfmt=dwarf or -qdbgfmt=dwarf4, a
DWARF-enabled debugger such as dbx is required.

-qdbgfmt=dwarf is equivalent to -gdwarf-3. -qdbgfmt=dwarf4 is equivalent to
-gdwarf-4.

-qdbgfmt does not imply any of the debugging options, such as “-g” on page 80.
To generate debugging information, you must specify a debugging option, for
example:
v To generate debugging information in DWARF 3 format, use -g

-qdbgfmt=dwarf.
v To generate debugging information in DWARF 4 format, use -g

-qdbgfmt=dwarf4.

Related information
v “-g” on page 80
v “-std (-qlanglvl)” on page 144

-include (-qinclude)
Category

Input control

Pragma equivalent

None.

Purpose

Specifies additional header files to be included in a compilation unit, as though the
files were named in an #include statement in the source file.

The headers are inserted before all code statements and any headers specified by
an #include preprocessor directive in the source file. This option is provided for
portability among supported platforms.

84 XL C/C++: Compiler Reference

Syntax

►► -include file ►◄

►►
noinclude

-q include = file ►◄

Defaults

None.

Parameters

file
The header file to be included in the compilation units being compiled.

Usage

Firstly, file is searched in the preprocessor's working directory. If file is not found in
the preprocessor's working directory, it is searched for in the search chain of the
#include directive. If multiple -include (-qinclude) options are specified, the files
are included in order of appearance on the command line.

Predefined macros

None.

Examples

To include the files test1.h and test2.h in the source file test.c, enter the
following command:
xlc -include test1.h -include test2.h test.c

Related information
v “Directory search sequence for included files” on page 9

-isystem (-qc_stdinc) (C only)
Category

Compiler customization

Pragma equivalent

None.

Purpose

Changes the standard search location for the XL C header files.

Syntax

►► -isystem dir ►◄

Chapter 3. Compiler options reference 85

►► ▼

:

-q c_stdinc = directory_path
" "

►◄

Defaults

By default, the compiler searches the directory specified in the configuration file
for the XL C header files (this is normally /opt/ibm/xlC/1.2.0/include/).

Parameters

dir
The directory for the compiler to search for XL C header files. The search
directories are after all directories specified by the -I option but before the
standard system directories. The dir can be a relative or absolute path.

directory_path
The path for the directory where the compiler should search for the XL C
header files. The directory_path can be a relative or absolute path. You can
surround the path with quotation marks to ensure it is not split up by the
command line.

Usage

This option allows you to change the search paths for specific compilations. To
permanently change the default search paths for the XL C headers, you use a
configuration file to do so; see “Directory search sequence for included files” on
page 9 for more information.

If this option is specified more than once, only the last instance of the option is
used by the compiler.

This option is ignored if the -nostdinc or -nostdinc++ (-qnostdinc) option is in
effect.

Predefined macros

None.

Examples

To override the default search path for the XL C headers with mypath/headers1
and mypath/headers2, enter:
xlc myprogram.c -isystem mypath/headers1 -isystem mypath/headers2

Related information
v “-isystem (-qgcc_c_stdinc) (C only)” on page 88
v “-qstdinc, -qnostdinc (-nostdinc, -nostdinc++)” on page 137
v “-include (-qinclude)” on page 84
v “Directory search sequence for included files” on page 9
v “Specifying compiler options in a configuration file” on page 5
v “-I” on page 48

86 XL C/C++: Compiler Reference

-isystem (-qcpp_stdinc) (C++ only)
Category

Compiler customization

Pragma equivalent

None.

Purpose

Changes the standard search location for the XL C++ header files.

Syntax

►► -isystem dir ►◄

►► ▼

:

-q cpp_stdinc = directory_path
" "

►◄

Defaults

By default, the compiler searches the directory specified in the configuration file
for the XL C++ header files (this is normally /opt/ibm/xlC/1.2.0/include/).

Parameters

dir
The directory for the compiler to search for XL C++ header files. The search
directories are after all directories specified by the -I option but before the
standard system directories. The dir can be a relative or absolute path.

directory_path
The path for the directory where the compiler should search for the XL C++
header files. The directory_path can be a relative or absolute path. You can
surround the path with quotation marks to ensure it is not split up by the
command line.

Usage

This option allows you to change the search paths for specific compilations. To
permanently change the default search paths for the XL C++ headers, you use a
configuration file to do so; see “Directory search sequence for included files” on
page 9 for more information.

If this option is specified more than once, only the last instance of the option is
used by the compiler.

This option is ignored if the -nostdinc or -nostdinc++ (-qnostdinc) option is in
effect.

Chapter 3. Compiler options reference 87

Predefined macros

None.

Examples

To override the default search path for the XL C++ headers with mypath/headers1
and mypath/headers2, enter:
xlc myprogram.C -isystem mypath/headers1 -isystem mypath/headers2

Related information
v “-isystem (-qgcc_cpp_stdinc) (C++ only)” on page 89
v “-qstdinc, -qnostdinc (-nostdinc, -nostdinc++)” on page 137
v “-include (-qinclude)” on page 84
v “Directory search sequence for included files” on page 9
v “Specifying compiler options in a configuration file” on page 5
v “-I” on page 48

-isystem (-qgcc_c_stdinc) (C only)
Category

Compiler customization

Pragma equivalent

None.

Purpose

Changes the standard search location for the GNU C system header files.

Syntax

►► -isystem dir ►◄

►► ▼

:

-q gcc_c_stdinc = directory_path
" "

►◄

Defaults

By default, the compiler searches the directory specified in the configuration file.

Parameters

dir
The directory for the compiler to search for GNU C header files. The search
directories are after all directories specified by the -I option but before the
standard system directories. The dir can be a relative or absolute path.

directory_path
The path for the directory where the compiler should search for the GNU C

88 XL C/C++: Compiler Reference

header files. The directory_path can be a relative or absolute path. You can
surround the path with quotation marks to ensure it is not split up by the
command line.

Usage

This option allows you to change the search paths for specific compilations. To
permanently change the default search paths for the GNU C headers, you use a
configuration file to do so; see “Directory search sequence for included files” on
page 9 for more information.

If this option is specified more than once, only the last instance of the option is
used by the compiler.

This option is ignored if the -nostdinc or -nostdinc++ (-qnostdinc) option is in
effect.

Predefined macros

None.

Examples

To override the default search paths for the GNU C headers with mypath/headers1
and mypath/headers2, enter:
xlc myprogram.c -isystem mypath/headers1 -isystem mypath/headers2

Related information
v “-isystem (-qc_stdinc) (C only)” on page 85
v “-qstdinc, -qnostdinc (-nostdinc, -nostdinc++)” on page 137
v “-include (-qinclude)” on page 84
v “Directory search sequence for included files” on page 9
v “Specifying compiler options in a configuration file” on page 5
v “-I” on page 48

-isystem (-qgcc_cpp_stdinc) (C++ only)
Category

Compiler customization

Pragma equivalent

None

Purpose

Changes the standard search location for the GNU C++ system header files.

Syntax

►► -isystem dir ►◄

Chapter 3. Compiler options reference 89

►► ▼

:

-q gcc_cpp_stdinc = directory_path
" "

►◄

Defaults

By default, the compiler searches the directory specified in the configuration file.

Parameters

dir
The directory for the compiler to search for GNU C++ header files. The search
directories are after all directories specified by the -I option but before the
standard system directories. The dir can be a relative or absolute path.

directory_path
The path for the directory where the compiler should search for the GNU C++
header files. The directory_path can be a relative or absolute path. You can
surround the path with quotation marks to ensure it is not split up by the
command line.

Usage

This option allows you to change the search paths for specific compilations. To
permanently change the default search paths for the GNU C++ headers, you use a
configuration file to do so; see “Directory search sequence for included files” on
page 9 for more information.

If this option is specified more than once, only the last instance of the option is
used by the compiler.

This option is ignored if the -nostdinc or -nostdinc++ (-qnostdinc) option is in
effect.

Predefined macros

None.

Examples

To override the default search paths for the GNU C++ headers with
mypath/headers1 and mypath/headers2, enter:
xlc myprogram.C -isystem mypath/headers1 -isystem mypath/headers2

Related information
v “-isystem (-qcpp_stdinc) (C++ only)” on page 87
v “-qstdinc, -qnostdinc (-nostdinc, -nostdinc++)” on page 137
v “-include (-qinclude)” on page 84
v “Directory search sequence for included files” on page 9
v “Specifying compiler options in a configuration file” on page 5
v “-I” on page 48

90 XL C/C++: Compiler Reference

-l
Category

Linking

Pragma equivalent

None.

Purpose

Searches for the specified library file. The linker searches for libkey.so, and then
libkey.a if libkey.so is not found.

Syntax

►► -l key ►◄

Defaults

The compiler default is to search only some of the compiler runtime libraries. The
default configuration file specifies the default library names to search for with the
-l compiler option, and the default search path for libraries with the -L compiler
option.

The C and C++ runtime libraries are automatically added.

Parameters

key
The name of the library minus the lib and .a or .so characters.

Usage

You must also provide additional search path information for libraries not located
in the default search path. The search path can be modified with the -L option.

The -l option is cumulative. Subsequent appearances of the -l option on the
command line do not replace, but add to, the list of libraries specified by earlier
occurrences of -l. Libraries are searched in the order in which they appear on the
command line, so the order in which you specify libraries can affect symbol
resolution in your application.

For more information, refer to the ld documentation for your operating system.

Predefined macros

None.

Examples

To compile myprogram.c and link it with library libmylibrary.so or
libmylibrary.a that is found in the /usr/mylibdir directory, enter the following
command. Preference is given to libmylibrary.so over libmylibrary.a.
xlc myprogram.c -lmylibrary -L/usr/mylibdir

Chapter 3. Compiler options reference 91

Related information
v “-L” on page 49
v “Specifying compiler options in a configuration file” on page 5

-march (-qarch)
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Specifies the processor architecture for which the code (instructions) should be
generated.

Syntax

►►

= arch8
= z10

-m arch = z196
= zEC12
= z13
= arch9
= arch10
= arch11

►◄

►►

= arch8
= z10

-q arch = z196
= zEC12
= z13
= arch9
= arch10
= arch11
= auto

►◄

Defaults
v -march=z10 (or -qarch=z10), -march=arch8 (or -qarch=arch8)

Parameters

auto
Automatically detects the specific architecture of the compilation machine. It
assumes that the execution environment will be the same as the compilation
environment. You can specify the auto suboption with -qarch only.

z10|arch8
Produces code that uses instructions available on the 2097-xxx (IBM System
z10® EC) models and 2098-xxx (IBM System z10 BC) models in z/Architecture®

mode. z10™ EC and z10 BC machines and their follow-ons add instructions
that are supported by the general instruction extensions facility, which might
be exploited by the compiler.

92 XL C/C++: Compiler Reference

z196|arch9
Produces code that uses instructions available on the 2817-xxx (IBM
zEnterprise® 196, also called z196) models and 2818-xxx models (IBM
zEnterprise 114, also called z114) models in z/Architecture mode. z196 and
z114 machines and their follow-ons add instructions that are supported by the
high-word facility, the interlocked-access facility, the load- and
store-on-condition facility, the distinct-operands-facility, and the
population-count facility, which might be exploited by the compiler.

zEC12|arch10
Produces code that uses instructions available on the 2827-xxx (IBM
zEnterprise EC12, also called zEC12) models and 2828-xxx (IBM zEnterprise
BC12, also called zBC12) models in z/Architecture mode. zEC12 and zBC12
machines and their follow-ons add instructions that are supported by the
execution-hint facility, the load-and-trap facility, the miscellaneous-instruction-
extension facility, and the transactional-execution facility, which might be
exploited by the compiler.

z13™|arch11
Produces code that uses instructions available on the 2964-xxx (IBM z13)
models in z/Architecture mode. z13 machines and their follow-ons add
instructions that are supported by the vector facility for z/Architecture, the
decimal floating point packed conversion facility, the load- and
store-on-condition facility, and the conditional-transaction-end facility, which
might be exploited by the compiler.

For further information about these facilities, see z/Architecture Principles of
Operation in z/OS® product documentation.

Usage

For any given -march or -qarch setting, the compiler defaults to a specific,
matching -mtune or -qtune setting, which can provide additional performance
improvements. For detailed information about using -march (-qarch) and -mtune
(-qtune) together, see “-mtune (-qtune)” on page 94.

For a given application program, make sure that you specify the same -march or
-qarch setting when you compile each of its source files.

When -qarch=auto is specified, you must ensure that the GCC tool chain on the
compilation and execution machine supports the architecture level of the machine.

Predefined macros

See “Macros related to architecture settings” on page 175 for a list of macros that
are predefined by -march (-qarch) suboptions.

Examples

To specify that the executable program testing compiled from myprogram.c is to
run on a computer with the z196 architecture, enter:
xlc -o testing myprogram.c -march=z196

Related information
v -qfloat
v “-mtune (-qtune)” on page 94

Chapter 3. Compiler options reference 93

http://pic.dhe.ibm.com/infocenter/zos/v2r1/topic/com.ibm.zos.v2r1/en/homepage.html

v “Specifying compiler options for architecture-specific compilation” on page 7
v “-m31, -m64 (-q31, -q64)” on page 96
v “Macros related to architecture settings” on page 175
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide

-mtune (-qtune)
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Tunes instruction selection, scheduling, and other architecture-dependent
performance enhancements to run best on a specific hardware architecture.

Syntax

►►

z10
arch8

-m tune = z196
zEC12
z13
arch9
arch10
arch11

►◄

►►

z10
arch8

-q tune = auto
z196
zEC12
z13
arch9
arch10
arch11

►◄

Defaults

-mtune=z10 (or -qtune=z10), -mtune=arch8 (or -qtune=arch8)

Parameters

auto
Optimizations are tuned for the platform on which the application is compiled.
You can specify the auto suboption with -qtune only.

z10|arch8
Optimizations are tuned for the 2097-xxx (IBM System z10 EC, also called z10
EC) models and 2098-xxx (IBM System z10 BC, also called z10 BC) models.

94 XL C/C++: Compiler Reference

z196|arch9
Optimizations are tuned for the 2817-xxx (IBM zEnterprise 196, also called
z196) models and 2818-xxx models (IBM zEnterprise 114, also called z114)
models.

zEC12|arch10
Optimizations are tuned for the 2827-xxx (IBM zEnterprise EC12, also called
zEC12) models and 2828-xxx (IBM zEnterprise BC12, also called zBC12)
models.

z13|arch11
Optimizations are tuned for the 2964-xxx (IBM z13) models.

Usage

Use an -mtune or -qtune setting to match the architecture of the machine where
your application runs most often. Acceptable combinations of -march (-qarch) and
-mtune (-qtune) settings are shown as follows.

Table 20. Acceptable -march and -mtune combinations

-march (-qarch) option
setting Acceptable -mtune (-qtune) option settings

z10 , arch8 z10, z196, zEC12, arch8, arch9, arch10, arch11, auto

z196, arch9 z196, zEC12, arch9, arch10, arch11, auto

zEC12, arch10 zEC12, arch10, arch11, auto

z13, arch11 z13, arch11, auto

By arranging (scheduling) the generated machine instructions to take maximum
advantage of hardware features such as cache size and pipelining, -mtune or
-qtune can improve performance. It only has an effect when used in combination
with options that enable optimization.

Although changing the -mtune or -qtune setting may affect the performance of the
resulting executable, it has no effect on whether the executable can be executed
correctly on a particular hardware platform.

When -qtune=auto is specified, you must ensure that the GCC tool chain on the
compilation and execution machine supports the architecture level of the machine.

Predefined macros

None.

Examples

To specify that the executable program testing compiled from myprogram.c is to be
optimized for a z196 hardware platform, enter:
xlc -o testing myprogram.c -mtune=z196

Related information
v “-march (-qarch)” on page 92
v “-m31, -m64 (-q31, -q64)” on page 96
v “Specifying compiler options for architecture-specific compilation” on page 7

Chapter 3. Compiler options reference 95

v "Optimizing your applications" in the XL C/C++ Optimization and Programming
Guide

-mzvector

Category

Language element control

Pragma equivalent

None.

Purpose

Enables the compiler support for vector programming including the vector and
__vector keywords and vector built-in functions.

Syntax

►►
no zvector

-m zvector ►◄

Defaults

-mno-zvector

Usage

The -mzvector option takes effect only on the Linux distributions that have vector
support and run on the IBM z13 models. Therefore, you must specify the
-mzvector option with the -march=z13 option or its equivalent in effect. Otherwise,
the compiler ignores the -mzvector option and issues an error message.

For details about -mzvector, see the GNU Compiler Collection online
documentation at http://gcc.gnu.org/onlinedocs/.

Predefined macros

__VEC__ is defined to 10301 when -mzvector is in effect; otherwise, it is undefined.
Related information in the XL C/C++ Compiler Reference

-march (-qarch)
-ftree-vectorize (-qsimd)
Related information in the XL C/C++ Optimization and Programming Guide

Using vector programming support

-m31, -m64 (-q31, -q64)
Category

Object code control

96 XL C/C++: Compiler Reference

http://gcc.gnu.org/onlinedocs/

Pragma equivalent

None.

Purpose

Selects either 31-bit or 64-bit compiler mode.

Use the -m31 and -m64 options, along with the -march and -mtune compiler
options, to optimize the output of the compiler to the architecture on which that
output will be used.

Syntax

►►
64

-m 31 ►◄

►►
64

-q 31 ►◄

Defaults

-m64 or -q64

Predefined macros

When -m64 (or -q64) is in effect, __64BIT__ is defined to 1; otherwise, it is
undefined.

Examples

To specify that the executable program testing compiled from myprogram.c is to
run on a computer with a 31-bit z196 architecture, enter:
xlc -o testing myprogram.c -m31 -march=z196

Related information
v Specifying compiler options for architecture-specific compilation
v “-march (-qarch)” on page 92
v “-mtune (-qtune)” on page 94

-o
Category

Output control

Pragma equivalent

None.

Purpose

Specifies a name for the output object, assembler, executable, or preprocessed file.

Chapter 3. Compiler options reference 97

Syntax

►► -o path ►◄

Defaults

See “Types of output files” on page 4 for the default file names and suffixes
produced by different phases of compilation.

Parameters

path
When you are using the option to compile from source files, path can be the
name of a file. path can be a relative or absolute path name. When you are
using the option to link from object files, path must be a file name.

You cannot specify a file name with a C or C++ source file suffix (.C, .c, or
.cpp), such as myprog.c; this results in an error and neither the compiler nor
the linker is invoked.

Usage

If you use the -c option with -o, you can compile only one source file at a time. In
this case, if more than one source file name is specified, the compiler issues a
warning message and ignores -o.

The -P and -fsyntax-only (-qsyntaxonly) options override the -o option.

Predefined macros

None.

Examples

To compile myprogram.c so that the resulting executable is called myaccount, enter:
xlc myprogram.c -o myaccount

To compile test.c to an object file only and name the object file new.o, enter:
xlc test.c -c -o new.o

Related information
v “-c” on page 59
v “-E” on page 45
v “-P” on page 52
v “-fsyntax-only (-qsyntaxonly)” on page 74

-p, -pg, -qprofile
Category

Optimization and tuning

Pragma equivalent

None.

98 XL C/C++: Compiler Reference

Purpose

Prepares the object files produced by the compiler for profiling.

When you compile with a profiling option, the compiler produces monitoring code
that counts the number of times each routine is called. The compiler replaces the
startup routine of each subprogram with one that calls the monitor subroutine at
the start. When you execute the compiled program and it ends normally, it writes
the recorded information to a gmon.out file. You can then use the gprof command
to generate a runtime profile.

Syntax

►► -p
-pg
-q profile = p

pg

►◄

Defaults

Not applicable.

Usage

When you are compiling and linking in separate steps, you must specify the
profiling option in both steps.

The profiling options will generate full traceback tables.

Predefined macros

None.

Examples

To compile myprogram.c to include profiling data, enter:
xlc myprogram.c -p

Remember to compile and link with one of the profiling options. For example:
xlc myprogram.c -p -c
xlc myprogram.o -p -o program

Related information
v See your operating system documentation for more information on the gprof

command.
v For details about the GCC options -p and -pg, see the GCC online

documentation at http://gcc.gnu.org/onlinedocs/.

-qasm_as
Category

Compiler customization

Chapter 3. Compiler options reference 99

http://gcc.gnu.org/onlinedocs/

Pragma equivalent

None.

Purpose

Specifies the path and flags used to invoke the assembler in order to handle
assembler code in an asm assembly statement.

Normally the compiler reads the location of the assembler from the configuration
file; you can use this option to specify an alternate assembler program and flags to
pass to that assembler.

Syntax

►► -q asm_as = path
" path "

flags

►◄

Defaults

By default, the compiler invokes the assembler program defined for the as
command in the compiler configuration file.

Parameters

path
The full path name of the assembler to be used.

flags
A space-separated list of options to be passed to the assembler for assembly
statements. Quotation marks must be used if spaces are present.

Predefined macros

None.

Examples

To instruct the compiler to use the assembler program at /bin/as when it
encounters inline assembler code in myprogram.c, enter the following command:
xlc myprogram.c -qasm_as=/bin/as

To instruct the compiler to pass some additional options to the assembler at
/bin/as for processing inline assembler code in myprogram.c, enter the following
command:
xlc myprogram.c -qasm_as="/bin/as -a64 -l a.lst"

Related information
v “-fasm (-qasm)” on page 61

-qcrt, -nostartfiles (-qnocrt)
Category

Linking

100 XL C/C++: Compiler Reference

Pragma equivalent

None.

Purpose

When -qcrt is in effect, the system startup routines are automatically linked. When
-nostartfiles (-qnocrt) is in effect, the system startup files are not used at link time;
only the files specified on the command line with the -l flag are linked.

This option can be used in system programming to disable the automatic linking of
the startup routines provided by the operating system.

Syntax

►► -nostartfiles ►◄

►►
crt

-q nocrt ►◄

Defaults

-qcrt

Predefined macros

None.

Related information
v “-qlib, -nodefaultlibs (-qnolib)” on page 116

-qeh (C++ only)
Category

Object code control

Pragma equivalent

None.

Purpose

Controls whether exception handling is enabled in the module being compiled.

Syntax

►►
eh

-q noeh ►◄

Defaults

-qeh

Chapter 3. Compiler options reference 101

Usage

When -qeh is in effect, exception handling is enabled. If your program does not
use C++ structured exception handling, you can compile with -qnoeh to prevent
generation of code that is not needed by your application.

Specifying -qeh also implies -qrtti. If -qeh is specified together with -qnortti, RTTI
information will still be generated as needed.

Predefined macros

__EXCEPTIONS is predefined to 1 when -qeh is in effect; otherwise, it is
undefined.

Related information
v “-qrtti, -fno-rtti (-qnortti) (C++ only)” on page 131
v The -fexceptions option that GCC provides. For details, see the GCC online

documentation at http://gcc.gnu.org/onlinedocs/.

-qfloat
Category

Floating-point and integer control

Purpose

Selects different strategies for speeding up or improving the accuracy of
floating-point calculations.

Syntax

►►
maf

-q float = nomaf ►◄

Defaults
v -qfloat=maf

Parameters

maf | nomaf
Makes floating-point calculations faster and more accurate by using
floating-point multiply-add instructions appropriately. The results might not be
equivalent to those from similar calculations performed at compile time or on
other types of computers. Negative zero results might be produced. This
suboption might affect the precision of floating-point results in the
intermediate calculation.

If -qfloat=nomaf is specified, the multiply-add instructions are generated only
if they are required for correctness.

Usage

Using -qfloat suboptions other than the default settings might produce incorrect
results in floating-point computations if the system does not meet all required
conditions for a given suboption. Therefore, use this option only if the

102 XL C/C++: Compiler Reference

http://gcc.gnu.org/onlinedocs/

floating-point calculations involving IEEE floating-point values are manipulated
and can properly assess the possibility of introducing errors in the program.

Predefined macros

None.

Example

To compile the source file myprogram.c without multiply-add instructions
generated, run the following command:
xlc myprogram.c -qfloat=nomaf

Related information
v “-march (-qarch)” on page 92
v "Handling floating-point operations" in the XL C/C++ Optimization and

Programming Guide

-qfullpath
Category

Error checking and debugging

Purpose

When used with the -g or -qlinedebug option, this option records the full, or
absolute, path names of source and include files in object files compiled with
debugging information, so that debugging tools can correctly locate the source
files.

When fullpath is in effect, the absolute (full) path names of source files are
preserved. When nofullpath is in effect, the relative path names of source files are
preserved.

Syntax

►►
nofullpath

-q fullpath ►◄

Defaults

-qnofullpath

Usage

If your executable file was moved to another directory, the debugger would be
unable to find the file unless you provide a search path in the debugger. You can
use fullpath to ensure that the debugger locates the file successfully.

Predefined macros

None.

Chapter 3. Compiler options reference 103

Related information
v “-qlinedebug” on page 118
v “-g” on page 80

-qfuncsect
Category

Object code control

Purpose

Places instructions for each function in a separate section. Placing each function in
its own section might reduce the size of your program because the linker can
collect garbage per function rather than per object file.

When -qnofuncsect is in effect, each object file consists of a single text section
combining all functions defined in the corresponding source file. You can use
-qfuncsect to place each function in a separate section.

Syntax

►►
nofuncsect

-q funcsect ►◄

Defaults

-qnofuncsect

Usage

Using multiple sections increases the size of the object file, but it can reduce the
size of the final executable by allowing the linker to remove functions that are not
called or that have been inlined by the optimizer at all places they are called.

The pragma directive must be specified before the first statement in the
compilation unit.

Predefined macros

None.

-qhot
Category

Optimization and tuning

Purpose

Performs high-order loop analysis and transformations (HOT) during optimization.

The -qhot compiler option is a powerful alternative to hand tuning that provides
opportunities to optimize loops and array language. This compiler option will
always attempt to optimize loops, regardless of the suboptions you specify.

104 XL C/C++: Compiler Reference

Syntax

►►

▼

nohot
-q hot

:

= noarraypad
arraypad

= number
1

level = 0
fastmath
nofastmath

►◄

Defaults
v -qnohot

v -qhot=noarraypad:level=0:fastmath when -O3 is in effect.
v Specifying -qhot without suboptions is equivalent to

-qhot=noarraypad:level=1:fastmath.

Parameters

arraypad | noarraypad
Permits the compiler to increase the dimensions of arrays where doing so
might improve the efficiency of array-processing loops. (Because of the
implementation of the cache architecture, array dimensions that are powers of
two can lead to decreased cache utilization.) Specifying -qhot=arraypad when
your source includes large arrays with dimensions that are powers of 2 can
reduce cache misses and page faults that slow your array processing programs.
This can be particularly effective when the first dimension is a power of 2. If
you use this suboption with no number, the compiler will pad any arrays
where it infers there may be a benefit and will pad by whatever amount it
chooses. Not all arrays will necessarily be padded, and different arrays may be
padded by different amounts. If you specify a number, the compiler will pad
every array in the code.

Note: Using arraypad can be unsafe, as it does not perform any checking for
reshaping or equivalences that may cause the code to break if padding takes
place.

number
A positive integer value representing the number of elements by which each
array will be padded in the source. The pad amount must be a positive integer
value. To achieve more efficient cache utilization, it is recommended that pad
values be multiples of the largest array element size, typically 4, 8, or 16.

level=0
Performs a subset of the high-order transformations and sets the default to
noarraypad:fastmath.

level=1
Performs the default set of high-order transformations.

fastmath | nofastmath
You can use this suboption to tune your application to either use fast scalar
versions of math functions or use the default versions.

Chapter 3. Compiler options reference 105

-qhot=nofastmath disables the replacement of math routines by the XLOPT
library. -qhot=fastmath is enabled by default if -qhot is specified regardless of
the hot level.

Usage

If you do not also specify an optimization level when specifying -qhot on the
command line, the compiler assumes -O2.

You can use the -qreport option in conjunction with -qhot or any optimization
option that implies -qhot to produce a pseudo-C report showing how the loops
were transformed. The loop transformations are included in the listing report if is
also specified. For more information, see “-qreport” on page 130.

Predefined macros

None.

Related information
v “-march (-qarch)” on page 92
v “-ftree-vectorize (-qsimd)” on page 78
v “-qreport” on page 130
v “-O, -qoptimize” on page 50
v Using the Mathematical Acceleration Subsystem (MASS) in the XL C/C++

Optimization and Programming Guide

-qinitauto
Category

Error checking and debugging

Purpose

Initializes uninitialized automatic variables to a specific value, for debugging
purposes.

Syntax

►►
noinitauto

-q initauto = hex_value ►◄

Defaults

-qnoinitauto

Parameters

hex_value
A one- to eight-digit hexadecimal number.

v To initialize each byte of storage to a specific value, specify one or two digits for
the hex_value.

v To initialize each word of storage to a specific value, specify three to eight digits
for the hex_value.

106 XL C/C++: Compiler Reference

v In the case where less than the maximum number of digits are specified for the
size of the initializer requested, leading zeros are assumed.

v In the case of word initialization, if an automatic variable is smaller than a
multiple of 4 bytes in length, the hex_value is truncated on the left to fit. For
example, if an automatic variable is only 1 byte and you specify five digits for
the hex_value, the compiler truncates the three digits on the left and assigns the
other two digits on the right to the variable. See Example 1.

v If an automatic variable is larger than the hex_value in length, the compiler
repeats the hex_value and assigns it to the variable. See Example 1.

v If the automatic variable is an array, the hex_value is copied into the memory
location of the array in a repeating pattern, beginning at the first memory
location of the array. See Example 2.

v You can specify alphabetic digits as either uppercase or lowercase.
v The hex_value can be optionally prefixed with 0x, in which x is case-insensitive.

Usage

The -qinitauto option provides the following benefits:
v Setting hex_value to zero ensures that all automatic variables that are not

explicitly initialized when declared are cleared before they are used.
v You can use this option to initialize variables of real or complex type to a

signaling or quiet NaN, which helps locate uninitialized variables in your
program.

This option generates extra code to initialize the value of automatic variables. It
reduces the runtime performance of the program and is to be used for debugging
purposes only.

Restrictions:

v Objects that are equivalenced, structure components, and array elements are not
initialized individually. Instead, the entire storage sequence is initialized
collectively.

v The -qinitauto=hex_value option does not initialize variable length arrays or
memory allocated through the __alloca function.

Predefined macros
v __INITAUTO__ is defined to the least significant byte of the hex_value that is

specified on the -qinitauto option or pragma; otherwise, it is undefined.
v __INITAUTO_W__ is defined to the byte hex_value, repeated four times, or to the

word hex_value, which is specified on the -qinitauto option or pragma;
otherwise, it is undefined.

For example:
v For option -qinitauto=0xABCD, the value of __INITAUTO__ is 0xCDu, and the

value of __INITAUTO_W__ is 0x0000ABCDu.
v For option -qinitauto=0xCD, the value of __INITAUTO__ is 0xCDu, and the

value of __INITAUTO_W__ is 0xCDCDCDCDu.

Examples

Example 1: Use the -qinitauto option to initialize automatic variables of scalar
types.

Chapter 3. Compiler options reference 107

#include <stdio.h>

int main()
{

char a;
short b;
int c;
long long int d;

printf("char a = 0x%X\n",(char)a);
printf("short b = 0x%X\n",(short)b);
printf("int c = 0x%X\n",c);
printf("long long int d = 0x%llX\n",d);

}

If you compile the program with -qinitauto=AABBCCDD, for example, the result is as
follows:
char a = 0xDD
short b = 0xFFFFCCDD
int c = 0xAABBCCDD
long long int d = 0xAABBCCDDAABBCCDD

Example 2: Use the -qinitauto option to initialize automatic array variables.
#include <stdio.h>
#define ARRAY_SIZE 5

int main()
{

char a[5];
short b[5];
int c[5];
long long int d[5];

printf("array of char: ");
for (int i = 0; i<ARRAY_SIZE; i++)
printf("0x%1X ",(unsigned)a[i]);

printf("\n");

printf("array of short: ");
for (int i = 0; i<ARRAY_SIZE; i++)
printf("0x%1X ",(unsigned)b[i]);

printf("\n");

printf("array of int: ");
for (int i = 0; i<ARRAY_SIZE; i++)
printf("0x%1X ",(unsigned)c[i]);

printf("\n");

printf("array of long long int: ");
for (int i = 0; i<ARRAY_SIZE; i++)
printf("0x%1X ",(unsigned)d[i]);

printf("\n");
}

If you compile the program with -qinitauto=AABBCCDD, for example, the result is as
follows:
array of char: OxAA OxBB OxCC OxDD OxAA
array of short: OxAABB OxCCDD OxAABB OxCCDD OxAABB
array of int: OxAABBCCDD OxAABBCCDD OxAABBCCDD OxAABBCCDD OxAABBCCDD
array of long long int: 0xAABBCCDDAABBCCDD 0xAABBCCDDAABBCCDD 0xAABBCCDDAABBCCDD
0xAABBCCDDAABBCCDD 0xAABBCCDDAABBCCDD

108 XL C/C++: Compiler Reference

-qipa
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Enables or customizes a class of optimizations known as interprocedural analysis
(IPA).

IPA is a two-step process: the first step, which takes place during compilation,
consists of performing an initial analysis and storing interprocedural analysis
information in the object file. The second step, which takes place during linking,
and causes a complete recompilation of the entire application, applies the
optimizations to the entire program.

You can use -qipa during the compilation step, the link step, or both. If you
compile and link in a single compiler invocation, only the link-time suboptions are
relevant. If you compile and link in separate compiler invocations, only the
compile-time suboptions are relevant during the compile step, and only the
link-time suboptions are relevant during the link step.

Syntax

-qipa compile-time syntax

►►
noipa

-q ipa
object

= noobject

►◄

-qipa link-time syntax

Chapter 3. Compiler options reference 109

►►

▼ ▼

▼

▼

▼

noipa
-q ipa

:
,

= exits = function_name
,

infrequentlabel = label_name
1

level = 0
2

list
= file_name

long
short
,

lowfreq = function_name
unknown

missing = safe
isolated
pure

medium
partition = small

large
,

isolated = function_name
pure
safe
unknown

file_name

►◄

Defaults
v -qnoipa

Parameters

You can specify the following parameters during a separate compile step only:

object | noobject
Specifies whether to include standard object code in the output object files.

Specifying noobject can substantially reduce overall compile time by not
generating object code during the first IPA phase. Note that if you specify -S
with noobject, noobject will be ignored.

If compiling and linking are performed in the same step and you do not
specify the -S or any listing option, -qipa=noobject is implied.

Specifying -qipa with no suboptions on the compile step is equivalent to
-qipa=object.

You can specify the following parameters during a combined compilation and link
stepin the same compiler invocation, or during a separate link step only:

clonearch | noclonearch
This suboption is no longer supported.

110 XL C/C++: Compiler Reference

cloneproc | nocloneproc
This suboption is no longer supported.

exits
Specifies names of functions which represent program exits. Program exits are
calls which can never return and can never call any function which has been
compiled with IPA pass 1. The compiler can optimize calls to these functions
(for example, by eliminating save/restore sequences), because the calls never
return to the program. These functions must not call any other parts of the
program that are compiled with -qipa.

infrequentlabel
Specifies user-defined labels that are likely to be called infrequently during a
program run.

label_name
The name of a label, or a comma-separated list of labels.

isolated
Specifies a comma-separated list of functions that are not compiled with -qipa.
Functions that you specify as isolated or functions within their call chains
cannot refer directly to any global variable.

level
Specifies the optimization level for interprocedural analysis. Valid suboptions
are as follows:

0 Performs only minimal interprocedural analysis and optimization.

1 Enables inlining, limited alias analysis, and limited call-site tailoring.

2 Performs full interprocedural data flow and alias analysis.

If you do not specify a level, the default is 1.

To generate data reorganization information, specify the optimization level
-qipa=level=2 together with -qreport. During the IPA link phase, the data
reorganization messages for program variable data are produced in the data
reorganization section of the listing file. Reorganizations include array splitting,
array transposing, memory allocation merging, array interleaving, and array
coalescing.

list
Specifies that a listing file be generated during the link phase. The listing file
contains information about transformations and analyses performed by IPA, as
well as an optional object listing for each partition.

If you do not specify a list_file_name, the listing file name defaults to a.lst. If
you specify -qipa=list together with any other option that generates a listing
file, IPA generates an a.lst file that overwrites any existing a.lst file. If you have
a source file named a.c, the IPA listing will overwrite the regular compiler
listing a.lst. You can use the -qipa=list=list_file_name suboption to specify an
alternative listing file name.

Additional suboptions are one of the following suboptions:

short Requests less information in the listing file. Generates the Object File
Map, Source File Map and Global Symbols Map sections of the listing.

long Requests more information in the listing file. Generates all of the

Chapter 3. Compiler options reference 111

sections generated by the short suboption, plus the Object Resolution
Warnings, Object Reference Map, Inliner Report and Partition Map
sections.

lowfreq
Specifies functions that are likely to be called infrequently. These are typically
error handling, trace, or initialization functions. The compiler may be able to
make other parts of the program run faster by doing less optimization for calls
to these functions.

missing
Specifies the interprocedural behavior of functions that are not compiled with
-qipa and are not explicitly named in an unknown, safe, isolated, or pure
suboption.

Valid suboptions are one of the following suboptions:

safe Specifies that the missing functions do not indirectly call a visible (not
missing) function either through direct call or through a function
pointer.

isolated
Specifies that the missing functions do not directly reference global
variables accessible to visible function. Functions bound from shared
libraries are assumed to be isolated.

pure Specifies that the missing functions are safe and isolated and do not
indirectly alter storage accessible to visible functions. pure functions
also have no observable internal state.

unknown
Specifies that the missing functions are not known to be safe, isolated, or
pure. This suboption greatly restricts the amount of interprocedural
optimization for calls to missing functions.

The default is to assume unknown.

partition
Specifies the size of each program partition created by IPA during pass 2. Valid
suboptions are one of the following suboptions:
v small

v medium

v large

Larger partitions contain more functions, which result in better interprocedural
analysis but require more storage to optimize. Reduce the partition size if
compilation takes too long because of paging.

pure
Specifies pure functions that are not compiled with -qipa. Any function
specified as pure must be isolated and safe, and must not alter the internal state
nor have side-effects, defined as potentially altering any data visible to the
caller.

safe
Specifies safe functions that are not compiled with -qipa and do not call any
other part of the program. Safe functions can modify global variables, but may
not call functions compiled with -qipa.

unknown
Specifies unknown functions that are not compiled with -qipa. Any function

112 XL C/C++: Compiler Reference

specified as unknown can make calls to other parts of the program compiled
with -qipa, and modify global variables.

file_name
Gives the name of a file which contains suboption information in a special
format.

The file format is shown as follows:
... comment
attribute{, attribute} = name{, name}
missing = attribute{, attribute}
exits = name{, name}
lowfreq = name{, name}
list [= file-name | short | long]
level = 0 | 1 | 2
partition = small | medium | large

where attribute is one of:
v exits
v lowfreq
v unknown
v safe
v isolated
v pure

Usage

Specifying -qipa automatically sets the optimization level to -O2. For additional
performance benefits, you can also specify the -finline-functions (-qinline) option.
The -qipa option extends the area that is examined during optimization and
inlining from a single function to multiple functions (possibly in different source
files) and the linkage between them.

If any object file used in linking with -qipa was created with the -qipa=noobject
option, any file containing an entry point (the main program for an executable
program, or an exported function for a library) must be compiled with -qipa.

You can link objects created with different releases of the compiler, but you must
ensure that you use a linker that is at least at the same release level as the newer
of the compilers used to create the objects being linked.

Some symbols which are clearly referenced or set in the source code may be
optimized away by IPA, and may be lost to debug or nm outputs. Using IPA
together with the -g compiler will usually result in non-steppable output.

Note that if you specify -qipa with -#, the compiler does not display linker
information subsequent to the IPA link step.

For recommended procedures for using -qipa, see "Optimizing your applications"
in the XL C/C++ Optimization and Programming Guide.

Predefined macros

None.

Chapter 3. Compiler options reference 113

Examples

The following example shows how you might compile a set of files with
interprocedural analysis:
xlc -c *.c -qipa
xlc -o product *.o -qipa

Here is how you might compile the same set of files, improving the optimization
of the second compilation, and the speed of the first compile step. Assume that
there exist a set of routines, user_trace1, user_trace2, and user_trace3, which are
rarely executed, and the routine user_abort that exits the program:
xlc -c *.c -qipa=noobject
xlc -c *.o -qipa=lowfreq=user_trace[123]:exit=user_abort

Related information
v “-finline-functions (-qinline)” on page 65
v “-qisolated_call”
v “#pragma execution_frequency” on page 162
v “-S” on page 54
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide
v Runtime environment variables

-qisolated_call
Category

Optimization and tuning

Purpose

Specifies functions in the source file that have no side effects other than those
implied by their parameters.

Essentially, any change in the state of the runtime environment is considered a side
effect, including:
v Accessing a volatile object
v Modifying an external object
v Modifying a static object
v Modifying a file
v Accessing a file that is modified by another process or thread
v Allocating a dynamic object, unless it is released before returning
v Releasing a dynamic object, unless it was allocated during the same invocation
v Changing system state, such as rounding mode or exception handling
v Calling a function that does any of the above

Marking a function as isolated indicates to the optimizer that external and static
variables cannot be changed by the called function and that pessimistic references
to storage can be deleted from the calling function where appropriate. Instructions
can be reordered with more freedom, resulting in fewer pipeline delays and faster
execution in the processor. Multiple calls to the same function with identical
parameters can be combined, calls can be deleted if their results are not needed,
and the order of calls can be changed.

114 XL C/C++: Compiler Reference

Syntax

Option syntax

►► ▼

:

-q isolated_call = function ►◄

Defaults

Not applicable.

Parameters

function
The name of a function that does not have side effects or does not rely on
functions or processes that have side effects. function is a primary expression
that can be an identifier, operator function, conversion function, or qualified
name. An identifier must be of type function or a typedef of function. C++

If the name refers to an overloaded function, all variants of that function are
marked as isolated calls. C++

Usage

The only side effect that is allowed for a function named in the option or pragma
is modifying the storage pointed to by any pointer arguments passed to the
function, that is, calls by reference. The function is also permitted to examine
nonvolatile external objects and return a result that depends on the nonvolatile
state of the runtime environment. Do not specify a function that causes any other
side effects; that calls itself; or that relies on local static storage. If a function is
incorrectly identified as having no side effects, the program behavior might be
unexpected or produce incorrect results.

Predefined macros

None.

Examples

To compile myprogram.c, specifying that the functions myfunction(int) and
classfunction(double) do not have side effects, enter:
xlc myprogram.c -qisolated_call=myfunction:classfunction

Related information
v "The const function attribute" and "The pure function attribute" in the XL C/C++

Language Reference

-qkeepparm
Category

Error checking and debugging

Pragma equivalent

None.

Chapter 3. Compiler options reference 115

Purpose

When used with -O2 or higher optimization, specifies whether procedure
parameters are stored on the stack.

A function usually stores its incoming parameters on the stack at the entry point.
However, when you compile code with optimization options enabled, the compiler
may remove these parameters from the stack if it sees an optimizing advantage in
doing so. When -qkeepparm is in effect, parameters are stored on the stack even
when optimization is enabled. When -qnokeepparm is in effect, parameters are
removed from the stack if this provides an optimization advantage.

Syntax

►►
nokeepparm

-q keepparm ►◄

Defaults

-qnokeepparm

Usage

Specifying -qkeepparm that the values of incoming parameters are available to
tools, such as debuggers, by preserving those values on the stack. However, this
may negatively affect application performance.

Predefined macros

None.

Related information
v “-O, -qoptimize” on page 50

-qlib, -nodefaultlibs (-qnolib)
Category

Linking

Pragma equivalent

None.

Purpose

Specifies whether standard system libraries and XL C/C++ libraries are to be
linked.

When -qlib is in effect, the standard system libraries and compiler libraries are
automatically linked. When -nodefaultlibs (-qnolib) is in effect, the standard
system libraries and compiler libraries are not used at link time; only the libraries
specified on the command line with the -l flag will be linked.

116 XL C/C++: Compiler Reference

This option can be used in system programming to disable the automatic linking of
unneeded libraries.

Syntax

►► -nodefaultlibs ►◄

►►
lib

-q nolib ►◄

Defaults

-qlib

Usage

Using -nodefaultlibs (-qnolib) specifies that no libraries, including the system
libraries as well as the XL C/C++ libraries (these are found in the lib/ and lib64/
subdirectories of the compiler installation directory), are to be linked. The system
startup files are still linked, unless -nostartfiles (-qnocrt) is also specified.

Note: If your program references any symbols that are defined in the standard
libraries or compiler-specific libraries, link errors will occur. To avoid these
unresolved references when compiling with -nodefaultlibs (-qnolib), be sure to
explicitly link the required libraries by using the command flag -l and the library
name.

Predefined macros

None.

Examples

To compile myprogram.c without linking to any libraries except the compiler library
libxlopt.a, enter:
xlc myprogram.c -nodefaultlibs -lxlopt

Related information
v “-qcrt, -nostartfiles (-qnocrt)” on page 100

-qlibansi
Category

Optimization and tuning

Pragma equivalent

Purpose

Assumes that all functions with the name of an ANSI C library function are in fact
the system functions.

Chapter 3. Compiler options reference 117

When libansi is in effect, the optimizer can generate better code because it will
know about the behavior of a given function, such as whether or not it has any
side effects.

Syntax

►►
nolibansi

-q libansi ►◄

Defaults

-qnolibansi

Predefined macros

C++ __LIBANSI__ is defined to 1 when libansi is in effect; otherwise, it is not
defined.

-qlinedebug
Category

Error checking and debugging

Pragma equivalent

None.

Purpose

Generates only line number and source file name information for a debugger.

When -qlinedebug is in effect, the compiler produces minimal debugging
information, so the resulting object size is smaller than that produced by the -g
debugging option. You can use the debugger to step through the source code, but
you will not be able to see or query variable information. The traceback table, if
generated, will include line numbers.

-qlinedebug is equivalent to -g1.

Syntax

►►
nolinedebug

-q linedebug ►◄

Defaults

-qnolinedebug

Usage

When -qlinedebug is in effect, function inlining is disabled.

118 XL C/C++: Compiler Reference

Avoid using -qlinedebug with -O (optimization) option. The information produced
may be incomplete or misleading.

The -g option overrides the -qlinedebug option. If you specify -g with
-qnolinedebug on the command line, -qnolinedebug is ignored and a warning is
issued.

Predefined macros

None.

Examples

To compile myprogram.c to produce an executable program testing so you can step
through it with a debugger, enter:
xlc myprogram.c -o testing -qlinedebug

Related information
v “-g” on page 80
v “-O, -qoptimize” on page 50

-qlist
Category

Listings, messages, and compiler information

Purpose

Produces a compiler listing file that includes object and constant area sections.

Syntax

►►
nolist

-q list
nooffset

= offset

►◄

Defaults

-qnolist

Parameters

offset | nooffset
Changes the offset of the PDEF header from 00000 to the offset of the start of
the text area. Specifying the option allows any program reading the .lst file to
add the value of the PDEF and the line in question, and come up with the
same value whether offset or nooffset is specified. The offset suboption is
only relevant if there are multiple procedures in a compilation unit.

Specifying list without the suboption is equivalent to list=nooffset.

Chapter 3. Compiler options reference 119

Usage

When list is in effect, a listing file is generated with a .lst suffix for each source file
named on the command line. For details of the contents of the listing file, see
“Compiler listings” on page 13.

You can use the object or assembly listing to help understand the performance
characteristics of the generated code and to diagnose execution problems.

Predefined macros

None.

Examples

To compile myprogram.c and to produce a listing (.lst) file that includes object and
constant area sections, enter:
xlc myprogram.c -qlist

-qmakedep, -MD (-qmakedep=gcc)
Category

Output control

Pragma equivalent

None.

Purpose

Produces the dependency files that are used by the make tool for each source file.

The dependency output file is named with a .d suffix.

Syntax

►► -q makedep
= gcc

►◄

Defaults

Not applicable.

Parameters

gcc
The format of the generated make rule to match the GCC format: the
dependency output file includes a single target that lists all of the main source
file's dependencies.

This suboption is equivalent to -MD.

If you specify -qmakedep with no suboption, the dependency output file specifies
a separate rule for each of the main source file's dependencies.

120 XL C/C++: Compiler Reference

Usage

For each source file with a .c, .C, .cpp, or .i suffix that is named on the command
line, a dependency output file is generated with the same name as the object file
but with a .d suffix. Dependency output files are not created for any other types of
input files. If you use the -o option to rename the object file, the name of the
dependency output file is based on the name specified in the -o option. For more
information, see the Examples section.

The dependency output files generated by these options are not make description
files; they must be linked before they can be used with the make command. For
more information about this command, see your operating system documentation.

The output file contains a line for the input file and an entry for each include file.
It has the general form:
file_name.o:include_file_name
file_name.o:file_name.suffix

Include files are listed according to the search order rules for the #include
preprocessor directive, described in “Directory search sequence for included files”
on page 9. If the include file is not found, it is not added to the .d file.

Files with no include statements produce dependency output files that contain one
line listing only the input file name.

Predefined macros

None.

Examples

Example 1: To compile mysource.c and create a dependency output file named
mysource.d, enter:
xlc -c -qmakedep mysource.c

Example 2: To compile foo_src.c and create a dependency output file named
mysource.d, enter:
xlc -c -qmakedep foo_src.c -MF mysource.d

Example 3: To compile foo_src.c and create a dependency output file named
mysource.d in the deps/ directory, enter:
xlc -c -qmakedep foo_src.c -MF deps/mysource.d

Example 4: To compile foo_src.c and create an object file named foo_obj.o and a
dependency output file named foo_obj.d, enter:
xlc -c -qmakedep foo_src.c -o foo_obj.o

Example 5: To compile foo_src.c and create an object file named foo_obj.o and a
dependency output file named mysource.d, enter:
xlc -c -qmakedep foo_src.c -o foo_obj.o -MF mysource.d

Related information
v “-o” on page 97
v “Directory search sequence for included files” on page 9

Chapter 3. Compiler options reference 121

v The -M, -MD, -MF, -MG, -MM, -MMD, -MP, -MQ, and -MT options that GCC
provides. For details, see the GCC online documentation at http://gcc.gnu.org/
onlinedocs/.

-qpath
Category

Compiler customization

Pragma equivalent

None.

Purpose

Specifies substitute path names for XL C/C++ components such as the compiler,
assembler, linker, and preprocessor.

You can use this option if you want to keep multiple levels of some or all of the
XL C/C++ components and have the option of specifying which one you want to
use. This option is preferred over the -B and -t options.

Syntax

►► ▼-q path = a : directory_path
b
c
C
d
I
L
l
p

►◄

Defaults

By default, the compiler uses the paths for compiler components defined in the
configuration file.

Parameters

directory_path
The path to the directory where the alternate programs are located.

The following table shows the correspondence between -qpath parameters and the
component names:

Parameter Description Component name

a The assembler as

b The low-level optimizer xlCcode

c, C The C and C++ compiler
front end

xlCentry

122 XL C/C++: Compiler Reference

http://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/onlinedocs/

Parameter Description Component name

d The disassembler dis

I (uppercase i) The high-level optimizer,
compile step

ipa

L The high-level optimizer, link
step

ipa

l (lowercase L) The linker ld

p The preprocessor xlCentry

Usage

The -qpath option overrides the -F, -t, and -B options.

Predefined macros

None.

Examples

To compile myprogram.c using a substitute xlc compiler in /lib/tmp/mine/, enter
the command:
xlc myprogram.c -qpath=c:/lib/tmp/mine/

To compile myprogram.c using a substitute linker in /lib/tmp/mine/, enter the
command:
xlc myprogram.c -qpath=l:/lib/tmp/mine/

Related information
v “-B” on page 42
v “-F” on page 46
v “-t” on page 148

-qpdf1, -qpdf2
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Tunes optimizations through profile-directed feedback (PDF), where results from
sample program execution are used to improve optimization near conditional
branches and in frequently executed code sections.

Optimizes an application for a typical usage scenario based on an analysis of how
often branches are taken and blocks of code are run.

Chapter 3. Compiler options reference 123

Syntax

►►

nopdf2
nopdf1

-q pdf1
= pdfname = file_path
= unique
= nounique
= exename
= defname
= level = 0

1
pdf2

= pdfname = file_path
= exename
= defname

►◄

Defaults

-qnopdf1, -qnopdf2

Parameters

defname
Reverts a PDF file to its default file name if the -qpdf1=exename option is also
specified.

exename
Specifies the name of the generated PDF file according to the output file name
specified by the -o option. For example, you can use -qpdf1=exename -o func
func.c to generate a PDF file called .func_pdf.

level=0 | 1
Specifies different levels of profiling information to be generated by the
resulting application. The following table shows the type of profiling
information supported on each level. The plus sign (+) indicates that the
profiling type is supported.

Table 21. Profiling type supported on each -qpdf1 level

Profiling type

Level

0 1

Block-counter profiling + +

Call-counter profiling + +

Value profiling +

-qpdf1=level=1 is the default level. It is equivalent to -qpdf1. Higher PDF
levels profile more optimization opportunities but have a larger overhead.

pdfname= file_path
Specifies the directories and names for the PDF files and any existing PDF map
files. By default, if the PDFDIR environment variable is set, the compiler places
the PDF and PDF map files in the directory specified by PDFDIR. Otherwise, if
the PDFDIR environment variable is not set, the compiler places these files in
the current working directory. If the PDFDIR environment variable is set but
the specified directory does not exist, the compiler issues a warning message.
The name of the PDF map file follows the name of the PDF file if the

124 XL C/C++: Compiler Reference

-qpdf1=unique option is not specified. For example, if you specify the
-qpdf1=pdfname=/home/joe/func option, the generated PDF file is called func,
and the PDF map file is called func_map. Both of the files are placed in the
/home/joe directory. You can use the pdfname suboption to do simultaneous
runs of multiple executable applications using the same directory. This is
especially useful when you are tuning dynamic libraries with PDF.

unique | nounique
You can use the -qpdf1=unique option to avoid locking a single PDF file when
multiple processes are writing to the same PDF file in the PDF training step.
This option specifies whether a unique PDF file is created for each process
during run time. The PDF file name is <pdf_file_name>.<pid>.
<pdf_file_name> is ._pdf by default or specified by other -qpdf1 suboptions,
which include pdfname, exename, and defname. <pid> is the ID of the
running process in the PDF training step. For example, if you specify the
-qpdf1=unique:pdfname=abc option, and there are two processes for PDF
training with the IDs 12345678 and 87654321, two PDF files abc.12345678 and
abc.87654321 are generated.

Note: When -qpdf1=unique is specified, multiple PDF files with process IDs
as suffixes are generated. You must use the mergepdf program to merge all
these PDF files into one after the PDF training step.

Usage

The PDF process consists of the following three steps:
1. Compile your program with the -qpdf1 option and a minimum optimization

level of -O2. By default, a PDF map file named ._pdf_map and a resulting
application are generated.

2. Run the resulting application with a typical data set. Profiling information is
written to a PDF file named ._pdf by default. This step is called the PDF
training step.

3. Recompile and link or just relink the program with the -qpdf2 option and the
optimization level used with the -qpdf1 option. The -qpdf2 process fine-tunes
the optimizations according to the profiling information collected when the
resulting application is run.

Notes:

v The showpdf utility uses the PDF map file to display part of the profiling
information in text or XML format. For details, see "Viewing profiling
information with showpdf" in the XL C/C++ Optimization and Programming Guide.
If you do not need to view the profiling information, specify the -qnoshowpdf
option during the -qpdf1 phase so that the PDF map file is not generated. For
details of -qnoshowpdf, see -qshowpdf in the XL C/C++ Compiler Reference.

v When any level of option -qipa is in effect, and you specify the -qpdf1 or -qpdf2
option at the link step but not at the compile step, the compiler issues a warning
message. The message indicates that you must recompile your program to get all
the profiling information.

v When the -qpdf1=pdfname option is used during the -qpdf1 phase, you must
use the -qpdf2=pdfname option during the -qpdf2 phase for the compiler to
recognize the correct PDF file. This rule also applies to the -qpdf[1|2]=exename
option.

The compiler issues an information message with a number in the range of 0 - 100
during the -qpdf2 phase. If you have not changed your program between the

Chapter 3. Compiler options reference 125

-qpdf1 and -qpdf2 phases, the number is 100, which means that all the profiling
information can be used to optimize the program. If the number is 0, it means that
the profiling information is completely outdated, and the compiler cannot take
advantage of any information. When the number is less than 100, you can choose
to recompile your program with the -qpdf1 option and regenerate the profiling
information.

If you recompile your program by using the -qpdf1 option with any suboption, the
compiler removes the existing PDF file or files whose names and locations are the
same as the file or files that will be created in the training step before generating a
new application.

Other related options

You can use the following option with the -qpdf1 option:

-qshowpdf
Uses the showpdf utility to view the PDF data that were collected. See
“-qshowpdf” on page 134 for more information.

For recommended procedures of using PDF, see "Using profile-directed feedback"
in the XL C/C++ Optimization and Programming Guide.

The following utility programs, found in /opt/ibm/xlC/1.2.0/bin/, are available
for managing the files to which profiling information is written:

cleanpdf

►► cleanpdf
pdfdir -u -f pdfname

►◄

Removes all PDF files or the specified PDF files, including PDF files with
process ID suffixes. Removing profiling information reduces runtime
overhead if you change the program and then go through the PDF process
again.

pdfdir Specifies the directory that contains the PDF files to be removed. If
pdfdir is not specified, the directory is set by the PDFDIR
environment variable; if PDFDIR is not set, the directory is the
current directory.

-f pdfname
Specifies the name of the PDF file to be removed. If -f pdfname is
not specified, ._pdf is removed.

-u If -f pdfname is specified, in addition to the file removed by -f,
files with the naming convention pdfname.<pid>, if applicable, are
also removed.

If -f pdfname is not specified, removes ._pdf. Files with the
naming convention ._pdf.<pid>, if applicable, are also removed.

<pid> is the ID of the running process in the PDF training step.

Run cleanpdf only when you finish the PDF process for a particular
application. Otherwise, if you want to resume by using PDF process with
that application, you must compile all of the files again with -qpdf1.

mergepdf

126 XL C/C++: Compiler Reference

►► ▼mergepdf input -o output
-r scaling -n -v

►◄

Merges two or more PDF files into a single PDF file.

-r scaling
Specifies the scaling ratio for the PDF file. This value must be
greater than zero and can be either an integer or a floating-point
value. If not specified, a ratio of 1.0 is assumed.

input Specifies the name of a PDF input file, or a directory that contains
PDF files.

-o output
Specifies the name of the PDF output file, or a directory to which
the merged output is written.

-n Specifies that PDF files do not get normalized. By default,
mergepdf normalizes the files in such a way that every profile has
the same overall weighting, and individual counters are scaled
accordingly. This is done before applying the user-specified ratio
(with -r). When -n is specified, no normalization occurs. If neither
-n nor -r is specified, the PDF files are not scaled at all.

-v Specifies verbose mode, and causes internal and user-specified
scaling ratios to be displayed to standard output.

showpdf

Displays part of the profiling information written to PDF and PDF map
files. To use this command, you must first compile your program with the
-qpdf1 option. See "Viewing profiling information with showpdf" in the XL
C/C++ Optimization and Programming Guide for more information.

Predefined macros

None.

Examples

The following example uses the -qpdf1=level=0 option to reduce possible runtime
instrumentation overhead:
#Compile all the files with -qpdf1=level=0
xlc -qpdf1=level=0 -O3 file1.c file2.c file3.c

#Run with one set of input data
./a.out < sample.data

#Recompile all the files with -qpdf2
xlc -qpdf2 -O3 file1.c file2.c file3.c

#If the sample data is typical, the program
#can now run faster than without the PDF process

The following example uses the -qpdf1=level=1 option:
#Compile all the files with -qpdf1
xlc -qpdf1 -O3 file1.c file2.c file3.c

#Run with one set of input data
./a.out < sample.data

Chapter 3. Compiler options reference 127

#Recompile all the files with -qpdf2
xlc -qpdf2 -O3 file1.c file2.c file3.c

#If the sample data is typical, the program
#can now run faster than without the PDF process

The following example demonstrates the use of the -qpdf[1|2]=exename option:
#Compile all the files with -qpdf1=exename
xlc -qpdf1=exename -O3 -o final file1.c file2.c file3.c

#Run executable with sample input data
./final < typical.data

#List the content of the directory
>ls -lrta

-rw-r--r-- 1 user staff 50 Dec 05 13:18 file1.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file2.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file3.c
-rwxr-xr-x 1 user staff 12243 Dec 05 17:00 final
-rwxr-Sr-- 1 user staff 762 Dec 05 17:03 .final_pdf

#Recompile all the files with -qpdf2=exename
xlc -qpdf2=exename -O3 -o final file1.c file2.c file3.c

#The program is now optimized using PDF information

The following example demonstrates the use of the -qpdf[1|2]=pdfname option:
#Compile all the files with -qpdf1=pdfname. The static profiling
#information is recorded in a file named final_map
xlc -qpdf1=pdfname=final -O3 file1.c file2.c file3.c

#Run executable with sample input data. The profiling
#information is recorded in a file named final
./a.out < typical.data

#List the content of the directory
>ls -lrta

-rw-r--r-- 1 user staff 50 Dec 05 13:18 file1.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file2.c
-rw-r--r-- 1 user staff 50 Dec 05 13:18 file3.c
-rwxr-xr-x 1 user staff 12243 Dec 05 18:30 a.out
-rwxr-Sr-- 1 user staff 762 Dec 05 18:32 final

#Recompile all the files with -qpdf2=pdfname
xlc -qpdf2=pdfname=final -O3 file1.c file2.c file3.c

#The program is now optimized using PDF information

Related information
v “-qshowpdf” on page 134
v “-qipa” on page 109
v “-qreport” on page 130
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide
v “Runtime environment variables” on page 18
v "Profile-directed feedback" in the XL C/C++ Optimization and Programming Guide

128 XL C/C++: Compiler Reference

-qpriority (C++ only)
Category

Object code control

Purpose

Specifies the priority level for the initialization of static objects.

The C++ standard requires that all global objects within the same translation unit
be constructed from top to bottom, but it does not impose an ordering for objects
declared in different translation units. You can use the -qpriority option to impose
a construction order for all static objects declared within the same load module.
Destructors for these objects are run in reverse order during termination.

Syntax

Option syntax

►► -q priority = number ►◄

Defaults

The default priority level is 65535.

Parameters

number
An integer literal in the range of 101 to 65535. A lower value indicates a higher
priority; a higher value indicates a lower priority. If you do not specify a
number, the compiler assumes 65535.

Usage

In order to be consistent with the Standard, priority values specified within the
same translation unit must be strictly increasing. Objects with the same priority
value are constructed in declaration order.

Note: The C++ variable attribute init_priority can also be used to assign a
priority level to a shared variable of class type. See "The init_priority variable
attribute" in the XL C/C++ Language Reference for more information.

Examples

To compile the file myprogram.C to produce an object file myprogram.o so that
objects within that file have an initialization priority of 2000, enter the following
command:
xlc++ myprogram.C -c -qpriority=2000

Related information
v "Initializing static objects in libraries" in the XL C/C++ Optimization and

Programming Guide

Chapter 3. Compiler options reference 129

-qreport
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Produces listing files that show how sections of code have been optimized.

A listing file is generated with a .lst suffix for each source file that is listed on the
command line. When you specify -qreport with an option that enables
vectorization, the listing file shows a pseudo-C code listing and a summary of how
program loops are optimized. The report also includes diagnostic information
about why specific loops cannot be vectorized. For example, when -qreport is
specified with -ftree-vectorize (-qsimd), messages are provided to identify
non-stride-one references that prevent loop vectorization.

The compiler also reports the number of streams created for a given loop, which
include both load and store streams. This information is included in the Loop
Transformation section of the listing file. You can use this information to
understand your application code and to tune your code for better performance.
For example, you can distribute a loop which has more streams than the number
supported by the underlying architecture.

Syntax

►►
noreport

-q report ►◄

Defaults

-qnoreport

Usage

To generate a loop transformation listing, you must specify -qreport with one of
the following options:
v -qhot

v -O3 or higher

To generate PDF information in the listing, you must specify both -qreport and
-qpdf2.

To generate data reorganization information, specify -qreport with the optimization
level -qipa=level=2. Reorganizations include array splitting, array transposing,
memory allocation merging, array interleaving, and array coalescing.

To generate information about data prefetch insertion locations, specify -qreport
with the optimization level of -qhot or any other option that implies -qhot. This
information appears in the LOOP TRANSFORMATION SECTION of the listing file.

130 XL C/C++: Compiler Reference

The pseudo-C code listing is not intended to be compilable. Do not include any of
the pseudo-C code in your program, and do not explicitly call any of the internal
routines whose names may appear in the pseudo-C code listing.

Predefined macros

None.

Examples

To compile myprogram.c so the compiler listing includes a report showing how
loops are optimized, enter:
xlc -qhot -O3 -qreport myprogram.c

Related information
v “-qhot” on page 104
v “-ftree-vectorize (-qsimd)” on page 78
v “-qipa” on page 109

-qrtti, -fno-rtti (-qnortti) (C++ only)
Category

Object code control

Purpose

Generates runtime type identification (RTTI) information for exception handling
and for use by the typeid and dynamic_cast operators.

Syntax

►►
rtti

-q nortti ►◄

►► -f no-rtti ►◄

Defaults

-fno-rtti (-qnortti)

Usage

For improved runtime performance, suppress RTTI information generation with
the -fno-rtti (-qnortti) setting.

You should be aware of the following effects when specifying the -qrtti compiler
option:
v Contents of the virtual function table will be different when -qrtti is specified.
v When linking objects together, all corresponding source files must be compiled

with the correct -qrtti option specified.
v If you compile a library with mixed objects (-qrtti specified for some objects,

-fno-rtti (-qnortti) specified for others), you may get an undefined symbol error.

Chapter 3. Compiler options reference 131

Predefined macros
v __GXX_RTTI is predefined to a value of 1 when -qrtti is in effect; otherwise, it

is undefined.
v __NO_RTTI__ is defined to 1 when -fno-rtti (-qnortti) is in effect; otherwise, it is

undefined.
v __RTTI_ALL__ is defined to 1 when -qrtti is in effect; otherwise, it is undefined.
v __RTTI_DYNAMIC_CAST__ is predefined to a value of 1 when -qrtti is in effect;

otherwise, it is undefined.
v __RTTI_TYPE_INFO__ is predefined to a value of 1 when -qrtti is in effect;

otherwise, it is undefined.

Related information
v “-qeh (C++ only)” on page 101

-qsaveopt
Category

Object code control

Pragma equivalent

None.

Purpose

Saves the command-line options used for compiling a source file, the user's
configuration file name and the options specified in the configuration files, the
version and level of each compiler component invoked during compilation, and
other information to the corresponding object file.

Syntax

►►
nosaveopt

-q saveopt ►◄

Defaults

-qnosaveopt

Usage

This option has effect only when compiling to an object (.o) file (that is, using the
-c option). Though each object might contain multiple compilation units, only one
copy of the command-line options is saved. Compiler options specified with
pragma directives are ignored.

Command-line compiler options information is copied as a string into the object
file, using the following format:

►► @(#) opt c invocation options
C

►◄

132 XL C/C++: Compiler Reference

►► @(#) cfg config_file_options_list ►◄

►► @(#) env env_var_definition ►◄

where:
c Signifies a C language compilation.
C Signifies a C++ language compilation.
invocation

Shows the command used for the compilation, for example, xlc.
options The list of command line options specified on the command line, with

individual options separated by space.
config_file_options_list

The list of options specified by the options attribute in all configuration
files that take effect in the compilation, separated by space.

env_var_definition
The environment variables that are used by the compiler. Currently only
XLC_USR_CONFIG is listed.

Note: You can always use this option, but the corresponding information
is only generated when the environment variable XLC_USR_CONFIG is set.

For more information about the environment variable XLC_USR_CONFIG, see
Compile-time and link-time environment variables.

Note: The string of the command-line options is truncated after 64,000 bytes.

Compiler version and release information, as well as the version and level of each
component invoked during compilation, are also saved to the object file in the
format:

►► @(#) ▼ version Version : VV.RR.MMMM.LLLL
component_name Version : VV.RR (product_name) Level : YYMMDD : component_level_ID

►◄

where:
V Represents the version.
R Represents the release.
M Represents the modification.
L Represents the level.
component_name

Specifies the components that were invoked for this compilation, such as
the low-level optimizer.

product_name
Indicates the product to which the component belongs (for example, C/C++
).

YYMMDD
Represents the year, month, and date of the installed update. If the update
installed is at the base level, the level is displayed as BASE.

component_level_ID
Represents the ID associated with the level of the installed component.

If you want to simply output this information to standard output without writing
it to the object file, use the --version (-qversion) option.

Chapter 3. Compiler options reference 133

Predefined macros

None.

Examples

Compile t.c with the following command:
xlc t.c -c -qsaveopt -qhot

Issuing the strings -a command on the resulting t.o object file produces
information similar to the following:
IBM XL C/C++ for Linux on z Systems, Version 1.2.0.0
@(#)opt c /opt/ibm/xlC/1.2.0/bin/xlc t.c -c -qsaveopt -qhot
@(#)cfg -qlanglvl=extc99 -qcpluscmt -qalias=ansi -ftls-model -D_CALL_SYSV
-D__null=0 -D__NO_MATH_INLINES -ftls-model
@(#)version IBM XL C/C++ for Linux on z Systems, V1.2
@(#)version Version: 01.02.0000.0000
@(#)version Driver Version: 01.02(C/C++) Level: YYMMDD ID: _JbNFoYQ_EeWg_O7EssfHAg
@(#)version C/C++ Front End Version : 01.02(C/C++) Level: YYMMDD ID: _JX7IIIQ_EeWg_O7EssfHAg
@(#)version High-Level Optimizer Version: 01.02(C/C++) Level: YYMMDD
ID: _JfAAgYQ_EeWg_O7EssfHAg
@(#)version Low-Level Optimizer Version: 01.02(C/C++) Level: YYMMDD
ID: _sk208X8mEeWg_O7EssfHAg

In the first line, c identifies the source used as C, /opt/ibm/xlC/1.2.0/bin/xlc
shows the invocation command used, and -qhot -qsaveopt shows the compilation
options.

The remaining lines list each compiler component invoked during compilation, and
its version and level. Components that are shared by multiple products may show
more than one version number. Level numbers shown may change depending on
the updates you have installed on your system.

Related information
v “--version (-qversion)” on page 38

-qshowpdf
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

When used with -qpdf1 and a minimum optimization level of -O2 at compile and
link steps, creates a PDF map file that contains additional profiling information for
all procedures in your application.

Syntax

►►
showpdf

-q noshowpdf ►◄

134 XL C/C++: Compiler Reference

Defaults

-qshowpdf

Usage

After you run your application with typical data, the profiling information is
recorded into a profile-directed feedback (PDF) file (by default, the file is named
._pdf).

In addition to the PDF file, the compiler also generates a PDF map file that
contains static information during the -qpdf1 phase. With these two files, you can
use the showpdf utility to view part of the profiling information of your
application in text or XML format. For details of the showpdf utility, see "Viewing
profiling information with showpdf" in the XL C/C++ Optimization and Programming
Guide.

If you do not need to view the profiling information, specify the -qnoshowpdf
option during the -qpdf1 phase so that the PDF map file is not generated. This can
reduce your compile time.

Predefined macros

None.

Related information
v “-qpdf1, -qpdf2” on page 123
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide

-qsmallstack
Category

Optimization and tuning

Pragma equivalent

None.

Purpose

Minimizes stack usage where possible. Disables optimizations that increase the size
of the stack frame.

Syntax

►►
nosmallstack

-q smallstack ►◄

Defaults

-qnosmallstack

Chapter 3. Compiler options reference 135

Usage

Programs that allocate large amounts of data to the stack, such as threaded
programs, might result in stack overflows. The -qsmallstack option helps avoid
stack overflows by disabling optimizations that increase the size of the stack frame.

This option takes effect only when used together with IPA (the -qipa compiler
option).

Specifying this option might adversely affect program performance.

Predefined macros

None.

Examples

To compile myprogram.c to use a small stack frame, enter the command:
xlc myprogram.c -qipa -qsmallstack

Related information
v “-g” on page 80
v “-qipa” on page 109
v “-O, -qoptimize” on page 50

-qstaticinline (C++ only)
Category

Language element control

Pragma equivalent

None.

Purpose

Controls whether inline functions are treated as having static or extern linkage.

When -qnostaticinline is in effect, the compiler treats inline functions as extern:
only one function body is generated for a function marked with the inline
function specifier, regardless of how many definitions of the same function appear
in different source files. When -qstaticinline is in effect, the compiler treats inline
functions as having static linkage: a separate function body is generated for each
definition in a different source file of the same function marked with the inline
function specifier.

Syntax

►►
nostaticinline

-q staticinline ►◄

Defaults

-qnostaticinline

136 XL C/C++: Compiler Reference

Usage

When -qnostaticinline is in effect, any redundant functions definitions for which
no bodies are generated are discarded by default.

Predefined macros

None.

Examples

Using the -qstaticinline option causes function f in the following declaration to be
treated as static, even though it is not explicitly declared as such. A separate
function body is created for each definition of the function. Note that this can lead
to a substantial increase in code size.
inline void f() {/*...*/};

-qstdinc, -qnostdinc (-nostdinc, -nostdinc++)
Category

Input control

Purpose

Specifies whether the standard include directories are included in the search paths
for system and user header files.

When -qstdinc is in effect, the compiler searches the following directories for
header files:

v C The directory specified in the configuration file for the XL C header
files (this is normally /opt/ibm/xlC/1.2.0/include/) or by the -isystem
(-qc_stdinc) option

v C++ The directory specified in the configuration file for the XL C and C++
header files (this is normally /opt/ibm/xlC/1.2.0/include/) or by the -isystem
(-qcpp_stdinc) option

v The directory specified in the configuration file for the system header files or by
the -isystem (-qgcc_c_stdinc or -qgcc_cpp_stdinc) option

When -nostdinc++ or -nostdinc (-qnostdinc) is in effect, these directories are
excluded from the search paths. The following directories are searched:
v Directories in which source files containing #include "filename" directives are

located
v Directories specified by the -I option
v Directories specified by the -include (-qinclude) option

Syntax

►► -nostdinc++
-nostdinc

►◄

►►
stdinc

-q nostdinc ►◄

Chapter 3. Compiler options reference 137

Defaults

-qstdinc

Usage

The search order of header files is described in “Directory search sequence for
included files” on page 9.

This option only affects search paths for header files included with a relative name;
if a full (absolute) path name is specified, this option has no effect on that path
name.

The last valid pragma directive remains in effect until replaced by a subsequent
pragma.

Predefined macros

None.

Examples

To compile myprogram.c so that only the directory /tmp/myfiles (in addition to the
directory containing myprogram.c) is searched for the file included with the
#include "myinc.h" directive, enter:
xlc myprogram.c -nostdinc -I/tmp/myfiles

Related information
v “-isystem (-qc_stdinc) (C only)” on page 85
v “-isystem (-qcpp_stdinc) (C++ only)” on page 87
v “-isystem (-qgcc_c_stdinc) (C only)” on page 88
v “-isystem (-qgcc_cpp_stdinc) (C++ only)” on page 89
v “-I” on page 48
v “Directory search sequence for included files” on page 9

-qtimestamps
Category

“Output control” on page 23

Pragma equivalent

None.

Purpose

Controls whether or not implicit time stamps are inserted into an object file.

Syntax

►►
timestamps

-q notimestamps ►◄

138 XL C/C++: Compiler Reference

Defaults

-qtimestamps

Usage

By default, the compiler inserts an implicit time stamp in an object file when it is
created. In some cases, comparison tools may not process the information in such
binaries properly. Controlling time stamp generation provides a way of avoiding
such problems. To omit the time stamp, use the option -qnotimestamps.

This option does not affect time stamps inserted by pragmas and other explicit
mechanisms.

-qtmplinst (C++ only)
Category

Template control

Pragma equivalent

None.

Purpose

Manages the implicit instantiation of templates.

Syntax

►► -q tmplinst = none ►◄

Defaults

-qtmplinst=none

Parameters

none
Instructs the compiler to instantiate only inline functions. No other implicit
instantiation is performed.

Predefined macros

None.

Related information
v "Explicit instantiation" in the XL C/C++ Optimization and Programming Guide

-r
Category

Object code control

Chapter 3. Compiler options reference 139

Pragma equivalent

None.

Purpose

Produces a nonexecutable output file to use as an input file in another ld
command call. This file may also contain unresolved symbols.

Syntax

►► -r ►◄

Defaults

Not applicable.

Usage

A file produced with this flag is expected to be used as an input file in another
compiler invocation or ld command call.

Predefined macros

None.

Examples

To compile myprogram.c and myprog2.c into a single object file mytest.o, enter:
xlc myprogram.c myprog2.c -r -o mytest.o

-s
Category

Object code control

Pragma equivalent

None.

Purpose

Strips the symbol table, line number information, and relocation information from
the output file.

This command is equivalent to the operating system strip command.

Syntax

►► -s ►◄

140 XL C/C++: Compiler Reference

Defaults

The symbol table, line number information, and relocation information are
included in the output file.

Usage

Specifying -s saves space, but limits the usefulness of traditional debug programs
when you are generating debugging information using options such as -g.

Predefined macros

None.

Related information
v “-g” on page 80

-shared (-qmkshrobj)
Category

Output control

Pragma equivalent

None.

Purpose

Creates a shared object from generated object files.

Use this option, together with the related options described later in this topic,
instead of calling the linker directly to create a shared object. The advantages of
using this option are the automatic handling of link-time C++ template
instantiation (using either the template include directory or the template registry),
and compatibility with -qipa link-time optimizations.

Syntax

►► -shared ►◄

►► -q mkshrobj ►◄

Defaults

By default, the output object is linked with the runtime libraries and startup
routines to create an executable file.

Usage

The compiler automatically exports all global symbols from the shared object
unless you specify which symbols to export by using the --version-script linker
option. IBM Symbols that have the hidden or internal visibility attribute are
not exported. IBM

Chapter 3. Compiler options reference 141

Specifying -shared (-qmkshrobj) implies -fPIC (-qpic).

You can also use the following related options with -shared (-qmkshrobj):

-o shared_file
The name of the file that holds the shared file information. The default is a.out.

-e name
Sets the entry name for the shared executable to name.

-qstaticlink=xllibs
When you specify -qstaticlink=xllibs and -qmkshrobj, both options take effect.
The compiler creates a shared object in which all references to the XL libraries
are statically linked in.

For detailed information about using -shared (-qmkshrobj) to create shared
libraries, see "Constructing a library" in the XL C/C++ Optimization and
Programming Guide.

Predefined macros

None.

Examples

To construct the shared library big_lib.so from three smaller object files, enter the
following command:
xlc -shared -o big_lib.so lib_a.o lib_b.o lib_c.o

Related information
v “-e” on page 60
v “-qipa” on page 109
v “-o” on page 97
v “-fPIC , -fpic (-qpic)” on page 69
v “-qpriority (C++ only)” on page 129
v “Supported GCC pragmas” on page 160
v “-static (-qstaticlink)”

-static (-qstaticlink)
Category

Linking

Pragma equivalent

None.

Purpose

Controls whether static or shared runtime libraries are linked into an application.

Syntax

►► -static
-libgcc

►◄

142 XL C/C++: Compiler Reference

►► -shared-libgcc ►◄

►►

▼

nostaticlink
-q staticlink

:

= libgcc
xllibs

►◄

The following table shows the equivalent usage between different format of
options for specifying the linkage of shared and nonshared libraries.

Table 22. Option equivalence mapping

Equivalent option Meaning

-static or -qstaticlink Build a static object and prevent linking
with shared libraries. Every library that
is linked to must be a static library.

-shared-libgcc or -qnostaticlink=libgcc Link with the shared version of libgcc.

-static-libgcc or -qstaticlink=libgcc Link with the static version of libgcc.

Defaults

-qnostaticlink

Parameters

libgcc

v When you specify -shared-libgcc, the compiler links the shared version of
libgcc.

v When you specify -static-libgcc, the compiler links the static version of
libgcc.

xllibs

v When you specify xllibs with -qnostaticlink, the compiler links the shared
version of the XL compiler libraries.

v When you specify xllibs with -qstaticlink, the compiler links the static
version of the XL compiler libraries.

The xllibs suboption is available only for the -qstaticlink and -qnostaticlink
options.

Usage

When you specify -static without suboptions, only static libraries are linked with
the object file.

When you specify -qnostaticlink without suboptions, shared libraries are linked
with the object file.

When you specify -qstaticlink=xllibs and -qmkshrobj, both options take effect.
The compiler links in the static version of XL libraries and creates a shared object
at the same time.

Chapter 3. Compiler options reference 143

When compiler options are combined, conflicts might occur. The following table
describes the resolutions of the conflicting compiler options.

Table 23. Examples of conflicting compiler options and resolutions

Options combination
examples Resolution result Compiler behavior

-qnostaticlink -static-libgcc Equivalent to
-static-libgcc

If you first specify -qnostaticlink
without suboptions and then
specify -static or -qstaticlink with
or without suboptions,
-qnostaticlink is overridden. All
libraries are linked statically.

-qnostaticlink
-qstaticlink=xllibs

Equivalent to
-qstaticlink=xllibs

-static-libgcc -qnostaticlink Equivalent to
-qnostaticlink

If you specify -static with or
without suboptions followed by
-qnostaticlink without suboptions,
-qnostaticlink takes effect and
shared libraries are linked.

-static -shared-libgcc Equivalent to -static If you specify -static without
suboptions followed by
-shared-libgcc or -qnostaticlink
with suboptions, -static takes
effect and only static libraries are
linked with the object file.

-static
-qnostaticlink=libgcc:xllibs

Equivalent to -static

-shared-libgcc -static Equivalent to -static If you first specify -shared-libgcc
with suboptions and then specify
-static without suboptions, -static
takes effect and all libraries are
linked statically.

Notes:

v If a runtime library is linked in statically while its message catalog is not
installed on the system, messages are issued with message numbers only, and no
message text is shown.

v If a shared library or a dynamically linked application is supposed to throw or
catch exceptions, you must link it with the shared libgcc by using
-shared-libgcc.

Predefined macros

None.

Related information
v “-shared (-qmkshrobj)” on page 141

-std (-qlanglvl)
Category

Language element control

Purpose

Determines whether source code and compiler options should be checked for
conformance to a specific language standard, or subset or superset of a standard.

144 XL C/C++: Compiler Reference

Syntax

-qlanglvl syntax (C only)

►►
extc99

-q langlvl = stdc89
extc89
stdc99
extended
stdc11
extc1x

►◄

-std syntax (C only)

►►

gnu9x
gnu99

-std = c89
c90
c99
c9x
c11
c1x
iso9899:1990
iso9899:199409
iso9899:1999
iso9899:199x
iso9899:2011
gnu89
gnu90
gnu11

►◄

-qlanglvl syntax (C++ only)

►►
extended

-q langlvl = extended0x
extended1y

►◄

-std syntax (C++ only)

►►

gnu++98
gnu++03

-std = c++98
c++03
c++11
gnu++11
c++0x
gnu++0x
c++1y

►◄

Defaults

v C -std=gnu99 or -std=gnu9x

v C++ -std=gnu++98

v C The default is set according to the command used to invoke the
compiler:

Chapter 3. Compiler options reference 145

– -qlanglvl=extc99 for the xlc and related invocation commands
– -qlanglvl=extended for the cc and related invocation commands
– -qlanglvl=stdc89 for the c89 and related invocation commands
– -qlanglvl=stdc99 for the c99 and related invocation commands

v C++ The default is set according to the command used to invoke the
compiler:
– -qlanglvl=extended for the xlC or xlc++ and related invocation commands

Parameters for C language programs

Parameters of the -std option:

c89 | c90 | iso9899:1990
Compilation conforms strictly to the ANSI C89 standard, also known as ISO
C90.

iso9899:199409
Compilation conforms strictly to the ISO C95 standard.

c99 | c9x | iso9899:1999 | iso9899:199x
Compilation conforms strictly to the ISO C99 standard, also known as ISO C99.

C11 c111 | c1x | iso9899:2011
Compilation conforms strictly to the ISO C11 standard. C11

gnu89 | gnu90
Compilation conforms to the ANSI C89 standard and accepts
implementation-specific language extensions, also known as GNU C90.

gnu99 | gnu9x
Compilation conforms to the ISO C99 standard and accepts
implementation-specific language extensions, also known as GNU C99.

gnu111

Compilation conforms to the ISO C11 standard and accepts
implementation-specific language extensions, also known as GNU C11.

If you are using some of the C11 features, you must use the -qlanglvl option.

Parameters of the -qlanglvl option:

stdc89
Compilation conforms strictly to the ANSI C89 standard, also known as ISO
C90.

extc89
Compilation conforms to the ANSI C89 standard and accepts
implementation-specific language extensions.

stdc99
Compilation conforms strictly to the ISO C99 standard.

extc99
Compilation conforms to the ISO C99 standard and accepts
implementation-specific language extensions.

extended
Compilation is based on the ISO C89 standard, with some differences to
accommodate extended language features.

146 XL C/C++: Compiler Reference

C11 stdc11
Compilation conforms strictly to the ISO C11 standard. C11

C11 extc1x
Compilation is based on the C11 standard, invoking all the currently supported
C11 features and other implementation-specific language extensions. C11

The following tables reflect the mapping between the -qlanglvl and -std
suboptions:

Table 24. Mapping between the -qlanglvl and -std suboptions (C only)

-qlanglvl suboption Mapping to -std suboption

stdc89 c89 | c90 | iso9899:1990

extc89 gnu89 | gnu90

stdc99 c99 | c9x | iso9899:1999 | iso9899:199x

extc99 gnu99 | gnu9x

stdc11 c11 | c1x | iso9899:2011

extc1x gnu11

Parameters for C++ language programs

Parameters of the -std option:

gnu++98 | gnu++03
Compilation is based on the ISO C++98 standard, with some differences to
accommodate extended language features.

c++98 | c++03
Compilation conforms strictly to the ISO C++ standard, also known as ISO
C++98.

C++11 c++111 | c++0x
Compilation conforms strictly to the ISO C++ standard plus amendments, also
known as ISO C++11.

Note: IBM supports the majority of C++11 features and will continue to
develop and implement the features of this standard.

C++11

C++11 gnu++111 | gnu++0x
Compilation is based on the ISO C++ standard, with some differences to
accommodate extended language features. C++11

C++14 c++1y
Compilation is based on the C++14 standard, invoking most of the C++11
features and all the currently supported C++14 features. C++14

Parameters of the -qlanglvl option:

extended
Compilation is based on the ISO C++ standard, with some differences to
accommodate extended language features.

C++11 extended0x
Compilation is based on the C++11 standard, invoking most of the C++
features and all the currently-supported C++11 features.

Chapter 3. Compiler options reference 147

Note: IBM supports the majority of C++11 features and will continue to
develop and implement the features of this standard.

C++11

C++14 extended1y
Compilation is based on the C++14 standard, invoking most of the C++11
features and all the currently supported C++14 features.

Note: IBM supports selected features of C++14 standard. IBM will continue to
develop and implement the features of this standard. The implementation of
the language level is based on IBM's interpretation of the standard. Until IBM's
implementation of all the C++14 features is complete, including the support of
a new C++14 standard library, the implementation might change from release
to release. IBM makes no attempt to maintain compatibility, in source, binary,
or listings and other compiler interfaces, with earlier releases of IBM's
implementation of the new C++14 features.

C++14

The following tables reflect the mapping between the -qlanglvl and -std
suboptions:

Table 25. Mapping between the -qlanglvl and -std suboptions (C++ only)

-qlanglvl suboption Mapping to -std suboption

extended gnu++98 | gnu++03

extended0x gnu++11 | gnu++0x

extended1y c++1y

Note:

1. This suboption is available only on platforms where GCC supports it.

Predefined macros

See “Macros related to language levels” on page 176 for a list of macros that are
predefined by -qlanglvl suboptions.

-t
Category

Compiler customization

Pragma equivalent

None.

Purpose

Applies the prefix specified by the -B option to the designated components.

Syntax

148 XL C/C++: Compiler Reference

►► ▼-t a
b
c
C
d
I
L
l
p

►◄

Defaults

The default paths for all of the compiler components are defined in the compiler
configuration file.

Parameters

The following table shows the correspondence between -t parameters and the
component names:

Parameter Description Component name

a The assembler as

b The low-level optimizer xlCcode

c, C The C and C++ compiler
front end

xlCentry

d The disassembler dis

I (uppercase i) The high-level optimizer,
compile step

ipa

L The high-level optimizer, link
step

ipa

l (lowercase L) The linker ld

p The preprocessor xlCentry

Usage

Use this option with the -Bprefix option. If -B is specified without the prefix, the
default prefix is /lib/o. If -B is not specified at all, the prefix of the standard
program names is /lib/n.

Note: If you use the p suboption, it can cause the source code to be preprocessed
separately before compilation, which can change the way a program is compiled.

Predefined macros

None.

Examples

To compile myprogram.c so that the name /u/newones/compilers/ is prefixed to the
compiler and assembler program names, enter:
xlc myprogram.c -B/u/newones/compilers/ -tca

Chapter 3. Compiler options reference 149

Related information
v “-B” on page 42

-v, -V
Category

Listings, messages, and compiler information

Pragma equivalent

None.

Purpose

Reports the progress of compilation, by naming the programs being invoked and
the options being specified to each program.

When the -v option is in effect, information is displayed in a comma-separated list.
When the -V option is in effect, information is displayed in a space-separated list.

Syntax

►► -v
-V

►◄

Defaults

The compiler does not display the progress of the compilation.

Usage

The -v and -V options are overridden by the -### (-#) option.

Predefined macros

None.

Examples

To compile myprogram.c so you can watch the progress of the compilation and see
messages that describe the progress of the compilation, the programs being
invoked, and the options being specified, enter:
xlc myprogram.c -v

Related information
v “-### (-#) (pound sign)” on page 36

-w
Category

Listings, messages, and compiler information

150 XL C/C++: Compiler Reference

Pragma equivalent

None.

Purpose

Suppresses warning messages.

Syntax

►► -w ►◄

Defaults

All informational and warning messages are reported.

Usage

Informational and warning messages that supply additional information to a
severe error are not disabled by this option.

Predefined macros

None.

Examples

Consider the file myprogram.c.
#include <stdio.h>
int main()
{ char* greeting = "hello world";
printf("%d \n", greeting);
return 0;

}

v If you compile myprogram.c without the -w option, the compiler issues a warning
message.
xlC myprogram.c

Output:
"5:18: warning: format specifies type ’int’ but the argument has type ’char *’ [-Wformat]
printf("%d \n", greeting);
~~ ^~~~~
%s
1 warning generated."

v If you compile myprogram.c with the -w option, the warning message is
suppressed.
xlC myprogram.c -w

-x (-qsourcetype)
Category

Input control

Chapter 3. Compiler options reference 151

Pragma equivalent

None.

Purpose

Instructs the compiler to treat all recognized source files as a specified source type,
regardless of the actual file name suffix.

Ordinarily, the compiler uses the file name suffix of source files specified on the
command line to determine the type of the source file. For example, a .c suffix
normally implies C source code, and a .C suffix normally implies C++ source code.
The -x option instructs the compiler to not rely on the file name suffix, and to
instead assume a source type as specified by the option.

Syntax

►►
none

-x assembler
assembler-with-cpp
c
c++

►◄

►►
default

-q sourcetype = assembler
assembler-with-cpp
c
c++

►◄

Defaults

-x none or -qsourcetype=default

Parameters

assembler
All source files following the option are compiled as if they are assembler
language source files.

assembler-with-cpp
All source files following the option are compiled as if they are assembler
language source files that need preprocessing.

c All source files following the option are compiled as if they are C language
source files.

c++
All source files following the option are compiled as if they are C++ language
source files. This suboption is equivalent to the -+ option.

default (-qsourcetype only)
The programming language of a source file is implied by its file name suffix.

none (-x only)
The programming language of a source file is implied by its file name suffix.

152 XL C/C++: Compiler Reference

Usage

If you do not use this option, files must have a suffix of .c to be compiled as C
files, and .C (uppercase C), .cc, .cp, .cpp, .cxx, or .c++ to be compiled as C++ files.

Note that the option only affects files that are specified on the command line
following the option, but not those that precede the option. Therefore, in the
following example:
xlc goodbye.C -x c hello.C

hello.C is compiled as a C source file, but goodbye.C is compiled as a C++ file.

Predefined macros

None.

Related information
v “-+ (plus sign) (C++ only)” on page 37

Supported GCC options

The following GCC options are also supported in IBM XL C/C++ for Linux on z
Systems, V1.2. For details about these options, see the GNU Compiler Collection
online documentation at http://gcc.gnu.org/onlinedocs/.
v @file
v -###
v --help
v --sysroot
v --version
v -ansi
v -dD
v -dM
v -fansi-escape-codes
v -fasm, -fno-asm
v -fcolor-diagnostics
v -fcommon, -fno-common
v -fconstexpr-depth
v -fconstexpr-steps
v -fdiagnostic-parsable-fixits
v -fdiagnostic-show-category=[none|id|name]
v -fdiagnostic-show-template-tree
v -fdiagnostics-fixit-info
v -fdiagnostics-format=[clang|msvc|vi]
v -fdiagnostics-print-source-range-info
v -fdiagnostics-show-name
v -fdiagnostics-show-option
v -fdollars-in-identifiers, -fno-dollars-in-identifiers
v -fdump-class-hierarchy
v -fexceptions, -fno-exceptions

Chapter 3. Compiler options reference 153

http://gcc.gnu.org/onlinedocs/

v -fexec-charset
v -ffreestanding
v -fgnu89-inline
v -fhosted
v -finline-functions
v -fmessage-length
v -fno-access-control
v -fno-assume-sane-operator-new
v -fno-builtin
v -fno-diagnostics-show-caret
v -fno-diagnostics-show-option
v -fno-elide-type
v -fno-gnu-keywords
v -fno-operator-names
v -fno-rtti
v -fno-show-column
v -fpack-struct
v -fpermissive
v -fpic, -fno-pic
v -fPIC, -fno-PIC
v -fPIE, -fno-PIE
v -fpie, -fno-pie
v -fshort-enums
v -fshort-wchar
v -fshow-column
v -fshow-source-location
v -fsigned-bitfields, -fno-signed-bitfields
v -fsigned-char, -fno-signed-char
v -fstrict-aliasing
v -fsyntax-only
v -ftabstop=width

v -ftemplate-backtrace-limit
v -ftemplate-depth
v -ftime-report
v -ftls-model, -fno-tls-model
v -ftrap-function=name

v -ftrapping-math, -fnotrapping-math
v -funsigned-bitfields, -fno-unsigned-bitfields
v -funsigned-char, -fno-unsigned-char
v -idirafter
v -imacros
v -include
v -iprefix
v -iquote
v -isysroot

154 XL C/C++: Compiler Reference

v -isystem
v -iwithprefix
v -march
v -mtpf-trace
v -mtune
v -M
v -MD
v -MF
v -MG
v -MM
v -MMD
v -MP
v -MQ
v -MT
v -nodefaultlibs
v -nostartfiles
v -nostdinc
v -nostdinc++
v -pedantic
v -pedantic-errors
v -pie
v -rdynamic
v -shared
v -shared-libgcc
v -static
v -static-libgcc
v -std
v -trigraphs
v -w
v -Wall
v -Wambiguous-member-template
v -Wbad-function-cast
v -Wbind-to-temporary-copy
v -Wc++11-compat
v -Wcast-align
v -Wchar-subscripts
v -Wcomment
v -Wconversion
v -Wdelete-non-virtual-dtor
v -Wempty-body
v -Wenum-compare
v -Werror
v -Werror=foo [specically, -Werror=unused-command-line-argument to switch

between warning/error for invalid options]
v -Weverything

Chapter 3. Compiler options reference 155

v -Wextra-tokens
v -Wfatal-errors
v -Wfloat-equal
v -Wfoo
v -Wformat-nonliteral
v -Wformat-security
v -Wformat-y2k
v -Wignored-qualifiers
v -Wimplicit
v -Wimplicit-function-declaration
v -Wimplicit-int
v -Wmain
v -Wmissing-braces
v -Wmissing-field-initializers
v -Wmissing-prototypes
v -Wnarrowing
v -Wno-attributes
v -Wno-builtin-macro-redefined
v -Wno-deprecated
v -Wno-deprecated-declarations
v -Wno-division-by-zero
v -Wno-endif-labels
v -Wno-extra-tokens
v -Wno-format
v -Wno-format-extra-args
v -Wno-format-zero-length
v -Wno-int-conversion
v -Wno-int-to-pointer-cast
v -Wno-invalid-offsetof
v -Wno-multichar
v -Wnonnull
v -Wno-return-local-addr
v -Wno-unused-result
v -Wno-virtual-move-assign
v -Wnon-virtual-dtor
v -Woverlength-strings
v -Woverloaded-virtual
v -Wpadded
v -Wparantheses
v -Wpedantic
v -Wpointer-arith
v -Wpointer-sign
v -Wreorder
v -Wreturn-type
v -Wsequence-point

156 XL C/C++: Compiler Reference

v -Wshadow
v -Wsign-compare
v -Wsign-conversion
v -Wsizeof-pointer-memaccess
v -Wswitch
v -Wsystem-headers
v -Wtautological-compare
v -Wtrigraphs
v -Wtype-limits
v -Wundef
v -Wuninitialized
v -Wunknown-pragmas
v -Wunused
v -Wunused-label
v -Wunused-parameter
v -Wunused-value
v -Wunused-variable
v -Wvarargs
v -Wvariadic-macros
v -Wvla
v -Wwrite-strings
v -x
v -X

Chapter 3. Compiler options reference 157

158 XL C/C++: Compiler Reference

Chapter 4. Compiler pragmas reference

The following sections describe the available pragmas:
v “Pragma directive syntax”
v “Scope of pragma directives”
v “Supported GCC pragmas” on page 160
v “Supported IBM pragmas” on page 160

Pragma directive syntax
XL C/C++ supports the following forms of pragma directives:

#pragma name
This form uses the following syntax:

►► ▼# pragma name (suboptions) ►◄

The name is the pragma directive name, and the suboptions are any required
or optional suboptions that can be specified for the pragma, where
applicable.

_Pragma ("name")
This form uses the following syntax:

►► ▼_Pragma (" name (suboptions) ") ►◄

For example, the statement:
_Pragma ("pack(1)")

is equivalent to:
#pragma pack(1)

For all forms of pragma statements, you can specify more than one name and
suboptions in a single #pragma statement.

The name on a pragma is subject to macro substitutions, unless otherwise stated.
The compiler ignores unrecognized pragmas, issuing an informational message
indicating this.

Scope of pragma directives
Many pragma directives can be specified at any point within the source code in a
compilation unit; others must be specified before any other directives or source
code statements. In the individual descriptions for each pragma, the "Usage"
section describes any constraints on the pragma's placement.

In general, if you specify a pragma directive before any code in your source
program, it applies to the entire compilation unit, including any header files that

© Copyright IBM Corp. 2015 159

are included. For a directive that can appear anywhere in your source code, it
applies from the point at which it is specified, until the end of the compilation
unit.

You can further restrict the scope of a pragma's application by using
complementary pairs of pragma directives around a selected section of code.

Many pragmas provide "pop" or "reset" suboptions that allow you to enable and
disable pragma settings in a stack-based fashion; examples of these are provided in
the relevant pragma descriptions.

Supported GCC pragmas
The following GCC pragmas are supported in IBM XL C/C++ for Linux on z
Systems, V1.2. For details about these pragmas, see the GNU Compiler Collection
online documentation at http://gcc.gnu.org/onlinedocs/.
v #pragma GCC dependency
v #pragma GCC diagnostic kind option

v #pragma GCC diagnostic pop
v #pragma GCC diagnostic push
v #pragma GCC error string

v #pragma GCC poison
v #pragma GCC system_header
v #pragma GCC visibility push(visibility)
v #pragma GCC visibility pop
v #pragma GCC warning string

v #pragma message string

v #pragma once
v #pragma pop_macro("macro_name")
v #pragma push_macro("macro_name")
v #pragma redefine_extname oldname newname

v #pragma unused

Supported IBM pragmas
This section contains descriptions of individual pragmas available in XL C/C++.

For each pragma, the following information is given:

Category
The functional category to which the pragma belongs is listed here.

Purpose
This section provides a brief description of the effect of the pragma, and
why you might want to use it.

Syntax
This section provides the syntax for the pragma. For convenience, the
#pragma name form of the directive is used in each case. However, it is
perfectly valid to use the alternate C99-style _Pragma operator syntax; see
“Pragma directive syntax” on page 159 for details.

160 XL C/C++: Compiler Reference

http://gcc.gnu.org/onlinedocs/

Parameters
This section describes the suboptions that are available for the pragma,
where applicable.

Usage This section describes any rules or usage considerations you should be
aware of when using the pragma. These can include restrictions on the
pragma's applicability, valid placement of the pragma, and so on.

Examples
Where appropriate, examples of pragma directive use are provided in this
section.

#pragma disjoint
Purpose

Lists identifiers that are not aliased to each other within the scope of their use.

By informing the compiler that none of the identifiers listed in the pragma shares
the same physical storage, the pragma provides more opportunity for
optimizations.

Syntax

►► #pragma disjoint ►

► ▼

▼ ▼

(variable_name , variable_name)

* *

►◄

Parameters

variable_name
The name of a variable. It must not refer to any of the following:
v A member of a structure, class, or union
v A structure, union, or enumeration tag
v An enumeration constant
v A typedef name
v A label

Usage

The #pragma disjoint directive asserts that none of the identifiers listed in the
pragma share physical storage; if any the identifiers do actually share physical
storage, the pragma may give incorrect results.

The pragma can appear only in the function or block scope. An identifier in the
directive must be visible at the point in the program where the pragma appears.

You must declare the identifiers before using them in the pragma. Your program
must not dereference a pointer in the identifier list nor use it as a function

Chapter 4. Compiler pragmas reference 161

argument before it appears in the directive.

Examples

The following example shows the use of #pragma disjoint.
int a, b, *ptr_a, *ptr_b;

one_function()
{

#pragma disjoint(*ptr_a, b) /* *ptr_a never points to b */
#pragma disjoint(*ptr_b, a) /* *ptr_b never points to a */

b = 6;
ptr_a = 7; / Assignment will not change the value of b */

another_function(b); /* Argument "b" has the value 6 */
}

External pointer ptr_a does not share storage with and never points to the external
variable b. Consequently, assigning 7 to the object to which ptr_a points will not
change the value of b. Likewise, external pointer ptr_b does not share storage with
and never points to the external variable a. The compiler can assume that the
argument to another_function has the value 6 and will not reload the variable
from memory.

#pragma execution_frequency
Purpose

Marks program source code that you expect will be either very frequently or very
infrequently executed.

When optimization is enabled, the pragma is used as a hint to the optimizer.

Syntax

►► # pragma execution_frequency (very_low)
very_high

►◄

Parameters

very_low
Marks source code that you expect will be executed very infrequently.

very_high
Marks source code that you expect will be executed very frequently.

Usage

Use this pragma in conjunction with an optimization option; if optimization is not
enabled, the pragma has no effect.

The pragma must be placed within block scope, and acts on the closest preceding
point of branching.

162 XL C/C++: Compiler Reference

Examples

In the following example, the pragma is used in an if statement block to mark
code that is executed infrequently.
int *array = (int *) malloc(10000);

if (array == NULL) {
/* Block A */
#pragma execution_frequency(very_low)
error();

}

In the next example, the code block Block B is marked as infrequently executed
and Block C is likely to be chosen during branching.
if (Foo > 0) {

#pragma execution_frequency(very_low)
/* Block B */
doSomething();

} else {
/* Block C */
doAnotherThing();

}

In this example, the pragma is used in a switch statement block to mark code that
is executed frequently.
while (counter > 0) {

#pragma execution_frequency(very_high)
doSomething();

} /* This loop is very likely to be executed. */

switch (a) {
case 1:

doOneThing();
break;

case 2:
#pragma execution_frequency(very_high)
doTwoThings();
break;

default:
doNothing();

} /* The second case is frequently chosen. */

#pragma nosimd
Purpose

Disables automatic generation of vector instructions. This pragma needs to be
specified on a per-loop basis.

Syntax

►► # pragma nosimd ►◄

Example

In the following example, #pragma nosimd is used to disable -qsimd=auto for a
specific for loop.

Chapter 4. Compiler pragmas reference 163

...
#pragma nosimd
for (i=1; i<1000; i++)
{

/* program code */
}

Related reference:
“-ftree-vectorize (-qsimd)” on page 78

#pragma nounroll
Purpose

Controls the loop not unrolling, for performance improvement.

Pragma syntax

►► # pragma nounroll ►◄

Usage

Only one pragma can be specified for a given loop. The pragma must appear
immediately before the loop to take effect. The pragma affects only the loop that
follows it.

The #pragma nounroll directives can be used on for loops only. The #pragma
nounroll directives cannot be applied to do while or while loops.

#pragma option_override
Purpose

Allows you to specify optimization options at the subprogram level that override
optimization options given on the command line.

This enables finer control of program optimization, and can help debug errors that
occur only under optimization.

Syntax

►► # pragma option_override ►

► (identifier , " opt (level , 0) "))
2
3

►◄

Parameters

identifier
The name of a function for which optimization options are to be overridden.

The following table shows the equivalent command line option for each pragma
suboption.

#pragma option_override value Equivalent compiler option

level, 0 -O1

164 XL C/C++: Compiler Reference

#pragma option_override value Equivalent compiler option

level, 2 -O21

level, 3 -O32

Notes:

1. If optimization level -O3 is specified on the command line, #pragma
option_override(identifier, "opt(level, 0)") or #pragma
option_override(identifier, "opt(level, 2)") does not turn off the
implication of the -qhot and -qipa options.

2. Specifying -O3 implies -qhot=level=0. However, specifying #pragma
option_override(identifier, "opt(level, 3)") in source code does not imply
-qhot=level=0.

Defaults

See the descriptions for the options listed in the table above for default settings.

Usage

The pragma takes effect only if optimization is already enabled by a command-line
option. You can only specify an optimization level in the pragma lower than the
level applied to the rest of the program being compiled.

The #pragma option_override directive only affects functions that are defined in
the same compilation unit. The pragma directive can appear anywhere in the
translation unit. That is, it can appear before or after the function definition, before
or after the function declaration, before or after the function has been referenced,
and inside or outside the function definition.

C++

This pragma cannot be used with overloaded member functions.

Examples

Suppose you compile the following code fragment containing the functions foo
and faa using -O2. Since it contains the #pragma option_override(faa,
"opt(level, 0)"), function faa will not be optimized.
foo(){

.

.

.
}

#pragma option_override(faa, "opt(level, 0)")

faa(){
.
.
.
}

Related information
v “-O, -qoptimize” on page 50

Chapter 4. Compiler pragmas reference 165

#pragma pack
Purpose

Sets the alignment of all aggregate members to a specified byte boundary.

If the byte boundary number is smaller than the natural alignment of a member,
padding bytes are removed, thereby reducing the overall structure or union size.

Syntax

►► # pragma pack ()
number
push

, number
pop

►◄

Defaults

Members of aggregates (structures, unions, and classes) are aligned on their natural
boundaries and a structure ends on its natural boundary. The alignment of an
aggregate is that of its strictest member (the member with the largest alignment
requirement).

Parameters

number
is one of the following:

1 Aligns structure members on 1-byte boundaries, or on their natural
alignment boundary, whichever is less.

2 Aligns structure members on 2-byte boundaries, or on their natural
alignment boundary, whichever is less.

4 Aligns structure members on 4-byte boundaries, or on their natural
alignment boundary, whichever is less.

8 Aligns structure members on 8-byte boundaries, or on their natural
alignment boundary, whichever is less.

16 Aligns structure members on 16-byte boundaries, or on their natural
alignment boundary, whichever is less.

push
When specified without a number, pushes whatever value is currently in effect
to the top of the packing "stack". When used with a number, pushes that value
to the top of the packing stack, and sets the packing value to that of number for
structures that follow.

pop
Removes the previous value added with #pragma pack. Specifying #pragma
pack() with no parameters is equivalent to #pragma pack(pop).

Usage

The #pragma pack directive applies to the definition of an aggregate type, rather
than to the declaration of an instance of that type; it therefore automatically applies
to all variables declared of the specified type.

166 XL C/C++: Compiler Reference

The #pragma pack directive modifies the current alignment rule for only the
members of structures whose declarations follow the directive. It does not affect
the alignment of the structure directly, but by affecting the alignment of the
members of the structure, it may affect the alignment of the overall structure.

The #pragma pack directive cannot increase the alignment of a member, but rather
can decrease the alignment. For example, for a member with data type of short, a
#pragma pack(1) directive would cause that member to be packed in the structure
on a 1-byte boundary, while a #pragma pack(4) directive would have no effect.

The #pragma pack directive causes bit fields to cross bit field container boundaries.
#pragma pack(2)
struct A{

int a:31;
int b:2;

}x;

int main(){
printf("size of struct A = %lu\n", sizeof(x));

}

When the program is compiled and run, the output is:
size of struct A = 6

But if you remove the #pragma pack directive, you get this output:
size of struct A = 8

The #pragma pack directive applies only to complete declarations of structures or
unions; this excludes forward declarations, in which member lists are not specified.
For example, in the following code fragment, the alignment for struct S is 4, since
this is the rule in effect when the member list is declared:
#pragma pack(1)
struct S;
#pragma pack(4)
struct S { int i, j, k; };

A nested structure has the alignment that precedes its declaration, not the
alignment of the structure in which it is contained, as shown in the following
example:
#pragma pack (4) // 4-byte alignment

struct nested {
int x;
char y;
int z;

};

#pragma pack(1) // 1-byte alignment
struct packedcxx{

char a;
short b;
struct nested s1; // 4-byte alignment

};

If more than one #pragma pack directive appears in a structure defined in an
inlined function, the #pragma pack directive in effect at the beginning of the
structure takes precedence.

Chapter 4. Compiler pragmas reference 167

Examples

The following example shows how the #pragma pack directive can be used to set
the alignment of a structure definition:
// header file file.h

#pragma pack(1)

struct jeff{ // this structure is packed
short bill; // along 1-byte boundaries
int *chris;

};
#pragma pack(pop) // reset to previous alignment rule

// source file anyfile.c

#include "file.h"

struct jeff j; // uses the alignment specified
// by the pragma pack directive
// in the header file and is
// packed along 1-byte boundaries

This example shows how a #pragma pack directive can affect the size and
mapping of a structure:
struct s_t {
char a;
int b;
short c;
int d;
}S;

Default mapping: With #pragma pack(1):

size of s_t = 16 size of s_t = 11

offset of a = 0 offset of a = 0

offset of b = 4 offset of b = 1

offset of c = 8 offset of c = 5

offset of d = 12 offset of d = 7

alignment of a = 1 alignment of a = 1

alignment of b = 4 alignment of b = 1

alignment of c = 2 alignment of c = 1

alignment of d = 4 alignment of d = 1

The following example defines a union uu containing a structure as one of its
members, and declares an array of 2 unions of type uu:

union uu {
short a;
struct {
char x;
char y;
char z;

} b;
};

union uu nonpacked[2];

168 XL C/C++: Compiler Reference

Since the largest alignment requirement among the union members is that of short
a, namely, 2 bytes, one byte of padding is added at the end of each union in the
array to enforce this requirement:

┌───── nonpacked[0] ─────────── nonpacked[1] ───┐
│ │ │
│ a │ │ a │ │
│ x │ y │ z │ │ x │ y │ z │ │
|─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘
0 1 2 3 4 5 6 7 8

The next example uses #pragma pack(1) to set the alignment of unions of type uu
to 1 byte:

#pragma pack(1)

union uu {
short a;
struct {
char x;
char y;
char z;

} b;
};

union uu pack_array[2];

Now, each union in the array packed has a length of only 3 bytes, as opposed to
the 4 bytes of the previous case:

┌─── packed[0] ───┬─── packed[1] ───┐
│ │ │
│ a │ │ a │ │
│ x │ y │ z │ x │ y │ z │
|─────┴─────┴─────┴─────┴─────┴─────┘
0 1 2 3 4 5 6

Related information
v “-fpack-struct (-qalign)” on page 70
v "Using alignment modifiers" in the XL C/C++ Optimization and Programming

Guide

#pragma reachable
Purpose

Informs the compiler that the point in the program after a named function can be
the target of a branch from some unknown location.

By informing the compiler that the instruction after the specified function can be
reached from a point in your program other than the return statement in the
named function, the pragma allows for additional opportunities for optimization.

Note: The compiler automatically inserts #pragma reachable directives for the
setjmp family of functions (setjmp, _setjmp, sigsetjmp, and _sigsetjmp) when you
include the setjmp.h header file.

Chapter 4. Compiler pragmas reference 169

Syntax

►► # pragma reachable ▼

,

(function_name) ►◄

Parameters

function_name
The name of a function preceding the instruction which is reachable from a
point in the program other than the function's return statement.

Defaults

Not applicable.

170 XL C/C++: Compiler Reference

Chapter 5. Compiler predefined macros

Predefined macros can be used to conditionally compile code for specific
compilers, specific versions of compilers, specific environments, and specific
language features.

Predefined macros fall into several categories:
v “General macros”
v “Macros related to the platform” on page 173
v “Macros related to compiler features” on page 174

General macros
The following predefined macros are always predefined by the compiler. Unless
noted otherwise, all the following macros are protected, which means that the
compiler will issue a warning if you try to undefine or redefine them.

Table 26. General predefined macros

Predefined macro
name

Description Predefined value

__BASE_FILE__ Indicates the name of the primary source file. The fully qualified file name of the
primary source file.

__DATE__ Indicates the date that the source file was
preprocessed.

A character string containing the date
when the source file was
preprocessed.

__FILE__ Indicates the name of the preprocessed source file. A character string containing the
name of the preprocessed source file.

__FUNCTION__ Indicates the name of the function currently being
compiled.

A character string containing the
name of the function currently being
compiled.

__LINE__ Indicates the current line number in the source file. An integer constant containing the
line number in the source file.

__SIZE_TYPE__ Indicates the underlying type of size_t on the
current platform. Not protected.

unsigned int in 31-bit compilation
mode and unsigned long in 64-bit
compilation mode.

__TIME__ Indicates the time that the source file was
preprocessed.

A character string containing the time
when the source file was
preprocessed.

© Copyright IBM Corp. 2015 171

Table 26. General predefined macros (continued)

Predefined macro
name

Description Predefined value

__TIMESTAMP__ Indicates the date and time when the source file was
last modified. The value changes as the compiler
processes any include files that are part of your
source program.

A character string literal in the form
"Day Mmm dd hh:mm:ss yyyy", where:

Day Represents the day of the
week (Mon, Tue, Wed, Thu, Fri,
Sat, or Sun).

Mmm Represents the month in an
abbreviated form (Jan, Feb,
Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, or Dec).

dd Represents the day. If the
day is less than 10, the first d
is a blank character.

hh Represents the hour.

mm Represents the minutes.

ss Represents the seconds.

yyyy Represents the year.

Macros indicating the XL C/C++ compiler
Macros related to the XL C/C++ compiler are always predefined, and they are
protected, which means that the compiler will issue a warning if you try to
undefine or redefine them. You can use the -dM (-qshowmacros) -E compiler
options to view the values of the predefined macros.

Table 27. Compiler-related predefined macros

Predefined macro name Description Predefined value

__clang__ Indicates that Clang compiler is
used.

1

__clang_major__ Indicates the major version
number of the Clang compiler.

3

__clang_minor__ Indicates the minor version
number of the Clang compiler.

4

__clang_patchlevel__ Indicates the patch level number
of the Clang compiler.

0

__clang_version__ Indicates the full version of the
Clang compiler.

3.4 (tags/RELEASE_34/final)

__ibmxl__ Indicates the XL C/C++
compiler is being used.

1

__ibmxl_vrm__ Indicates the VRM level of the
XL C/C++ compiler using a
single integer for sorting
purposes.

A hexadecimal integer whose value is as follows:

(((__ibmxl_version__) << 24) | \
((__ibmxl_release__) << 16) | \
((__ibmxl_modification__) << 8) \
)

__ibmxl_version__ Indicates the version number of
the XL C/C++ compiler.

An integer that represents the version number

__ibmxl_release__ Indicates the release number of
the XL C/C++ compiler.

An integer that represents the release number

172 XL C/C++: Compiler Reference

Table 27. Compiler-related predefined macros (continued)

Predefined macro name Description Predefined value

__ibmxl_modification__ Indicates the modification
number of the XL C/C++
compiler.

An integer that represents the modification
number

__ibmxl_ptf_fix_level__ Indicates the PTF fix level of the
XL C/C++ compiler.

An integer that represents the fix number

__llvm__ Indicates that an LLVM backend
is used.

1

Macros related to the platform
The following predefined macros are provided to facilitate porting applications
between platforms. All platform-related predefined macros are unprotected and
can be undefined or redefined without warning unless otherwise specified.

Table 28. Platform-related predefined macros

Predefined macro name Description Predefined value
Predefined under the
following conditions

_BIG_ENDIAN, __BIG_ENDIAN__ Indicates that the platform is
big-endian (that is, the most
significant byte is stored at the
memory location with the
lowest address).

1 Always predefined.

__ELF__ Indicates that the ELF object
model is in effect.

1 Always predefined for
the Linux platform.

C++

__GXX_WEAK__ Indicates that weak symbols

are supported (used for
template instantiation by the
linker).

1 Always predefined.

__HOS_LINUX__ Indicates that the host
operating system is Linux.
Protected.

1 Always predefined for
all Linux platforms.

__linux, __linux__, linux, __gnu_linux__ Indicates that the platform is
Linux.

1 Always predefined for
all Linux platforms.

_LP64, __LP64__ Indicates that the target
platform uses 64-bit long int
and pointer types, and a 32-bit
int type.

1 Predefined when the
target platform uses
64-bit long int and
pointer types, and
32-bit a int type.

__THW_BIG_ENDIAN__ Indicates that the target is a
big-endian architecture.

1 Always predefined.

__TOS_LINUX__ Indicates that the target
operating system is Linux.

1 Predefined when the
target OS is a z
Systems architecture.

__unix, __unix__, unix Indicates that the operating
system is a variety of UNIX.

1 Always predefined.

Chapter 5. Compiler predefined macros 173

Macros related to compiler features
Feature-related macros are predefined according to the setting of specific compiler
options or pragmas. Unless noted otherwise, all feature-related macros are
protected, which means that the compiler will issue a warning if you try to
undefine or redefine them.

Feature-related macros are discussed in the following sections:
v “Macros related to compiler option settings”
v “Macros related to architecture settings” on page 175
v “Macros related to language levels” on page 176

Macros related to compiler option settings
The following macros can be tested for various features, including source input
characteristics, output file characteristics, and optimization. All of these macros are
predefined by a specific compiler option or suboption, or any invocation or
pragma that implies that suboption. If the suboption enabling the feature is not in
effect, then the macro is undefined.

Table 29. General option-related predefined macros

Predefined macro name Description Predefined value Predefined when the
following compiler option
or equivalent pragma is in
effect

__64BIT__ Indicates that 64-bit
compilation mode
is in effect.

1 -m64 (-q64)

_CHAR_SIGNED,
__CHAR_SIGNED__

Indicates that the
default character
type is signed
char.

1 -fsigned-char
(-qchars=signed)

_CHAR_UNSIGNED,
__CHAR_UNSIGNED__

Indicates that the
default character
type is unsigned
char.

1 -funsigned-char
(-qchars=unsigned)

C++

__EXCEPTIONS Indicates that C++

exception handling
is enabled.

1 -qeh

__GXX_RTTI Indicates that
runtime type
identification
(RTTI) information
is enabled.

1 -qrtti, -fno-rtti (-qnortti)

C++

__INITAUTO__ Indicates the value

to which automatic
variables which are
not explicitly
initialized in the
source program are
to be initialized.

The two-digit hexadecimal value
specified in the -qinitauto
compiler option.

-qinitauto=hex value

C++ __INITAUTO_W__ Indicates the value
to which automatic
variables which are
not explicitly
initialized in the
source program are
to be initialized.

An eight-digit hexadecimal
corresponding to the value
specified in the -qinitauto
compiler option repeated 4 times.

-qinitauto=hex value

174 XL C/C++: Compiler Reference

Table 29. General option-related predefined macros (continued)

Predefined macro name Description Predefined value Predefined when the
following compiler option
or equivalent pragma is in
effect

C++ __LIBANSI__ Indicates that calls
to functions whose
names match those
in the C Standard
Library are in fact
the C library
functions, enabling
certain compiler
optimizations.

1 -qlibansi

__LONGDOUBLE128,
__LONG_DOUBLE_128__

Indicates that the
size of a long
double type is 128
bits.

1 Always predefined.

__OPTIMIZE__ Indicates the level
of optimization in
effect.

2 -O | -O2

3 -O3

__OPTIMIZE_SIZE__ Indicates that
optimization for
code size is in
effect.

1 -O | -O2 | -O3

__RTTI_ALL__ Indicates that
runtime type
identification
(RTTI) information
for all operators is
enabled.

1 -qrtti

C++

__RTTI_DYNAMIC_CAST__ Indicates that

runtime type
identification
(RTTI) information
for the
dynamic_cast
operator is
generated.

1 -qrtti

C++

__RTTI_TYPE_INFO__

Indicates that
runtime type
identification
(RTTI) information
for the typeid
operator is
generated.

1 -qrtti

C++

__NO_RTTI__ Indicates that

runtime type
identification
(RTTI) information
is disabled.

1 -fno-rtti (-qnortti)

__VEC__ Indicates support
for vector data
types.

10301 -mzvector

Macros related to architecture settings
The following macros can be tested for target architecture settings. All of these
macros are predefined to a value of 1 by a -march compiler option setting, or any
other compiler option that implies that setting. If the -march suboption enabling
the feature is not in effect, then the macro is undefined.

Chapter 5. Compiler predefined macros 175

Table 30. -march-related macros

Macro name Description
Predefined by the following -march
suboptions

__ARCH_z10 Indicates that the application is targeted
to run on IBM System z10 EC and
System z10 BC in z/Architecture mode.

z10, arch8

__ARCH_z196 Indicates that the application is targeted
to run on IBM zEnterprise 196 and
zEnterprise 114 in z/Architecture mode.

z196, arch9

__ARCH_zEC12 Indicates that the application is targeted
to run on IBM zEnterprise EC12 and
zEnterprise BC12 in z/Architecture
mode.

zEC12, arch10

__ARCH_z13 Indicates that the application is targeted
to run on IBM z13 in z/Architecture
mode.

z13, arch11

Related information
v “-march (-qarch)” on page 92

Macros related to language levels
The following macros except C++ __cplusplus, __STDC__ C++ , and

C __STDC_VERSION__ C

are predefined to a value of 1 by a specific

language level, represented by a suboption of the -std (-qlanglvl) compiler option,
or any invocation or pragma that implies that suboption. If the suboption enabling
the feature is not in effect, then the macro is undefined. For descriptions of the
features related to these macros, see the XL C/C++ Language Reference and the C and
C++ language standards.

Table 31. Predefined macros for language features

Predefined macro name Description Predefined when the following
language level is in effect

C++ __BOOL__ Indicates that the bool
keyword is accepted.

Always defined.

C++ __cplusplus The numeric value that
indicates the supported
language standard as
defined by that specific
standard.

The format is yyyymmL. (For
example, the format is 199901L
for C99.)

C++ __IBMCPP_COMPLEX_INIT Indicates support for the
initialization of complex
types: float _Complex,
double _Complex, and
long double _Complex.

extended

__STDC__ Indicates that the compiler
conforms to the ANSI/ISO
C standard.

C

Predefined to 1 if

ANSI/ISO C standard
conformance is in effect.

C++

Explicitly defined to

0.

176 XL C/C++: Compiler Reference

Table 31. Predefined macros for language features (continued)

Predefined macro name Description Predefined when the following
language level is in effect

__STDC_HOSTED__ Indicates that the
implementation is a hosted
implementation of the
ANSI/ISO C standard.
(That is, the hosted
environment has all the
facilities of the standard C
available).

C stdc11 | extc1x |
stdc99 | extc99

C++

extended0x

C11 __STDC_NO_ATOMICS__ Indicates that the
implementation does not
have the full support of
the atomics feature.

stdc11 | extc1x

C11 __STDC_NO_THREADS__ Indicates that the
implementation does not
have the full support of
the threads feature.

stdc11 | extc1x

C

__STDC_VERSION__ Indicates the version of

ANSI/ISO C standard
which the compiler
conforms to.

The format is yyyymmL. (For
example, the format is 199901L
for C99.)

Unsupported macros from other XL compilers
The following macros, which might be supported by other XL compilers, are
unsupported in IBM XL C/C++ for Linux on z Systems, V1.2. You can specify the
-Wunsupported-xl-macro option to check whether any unsupported macro is used;
if an unsupported macro is used, the compiler issues a warning message.

You might want to edit your source code to remove references of the unsupported
macros during compiler migration.

Table 32. Unsupported macros indicating the XL C/C++ compiler product

__IBMC__
__IBMCPP__

__xlc__
__xlC__
__xlC_ver__

Table 33. Unsupported macros that are related to the platform

_LITTLE_ENDIAN, __LITTLE_ENDIAN__
_ILP32, __ILP32__
__POWERPC__
__PPC__
__PPC64__
__THW_PPC__

Table 34. Unsupported macros related to compiler option settings

__ALTIVEC__
__LONGDOUBLE64
__IBM_GCC_ASM
__IBM_STDCPP_ASM
__IGNERRNO__
__TEMPINC__

Chapter 5. Compiler predefined macros 177

Table 35. Unsupported macros related to architecture settings

_ARCH_PPC
_ARCH_PPC64
_ARCH_PPCGR
_ARCH_PWR4
_ARCH_PWR5
_ARCH_PWR5X
_ARCH_PWR6
_ARCH_PWR6E
_ARCH_PWR7
_ARCH_PWR8
__ARCH_z10
__ARCH_z196
__ARCH_zEC12

Table 36. Unsupported macros related to language levels

__C99_BOOL
__C99_COMPLEX
__C99_COMPOUND_LITERAL
__C99_CPLUSCMT
__C99_DESIGNATED_INITIALIZER
__C99_DUP_TYPE_QUALIFIER
__C99_EMPTY_MACRO_ARGUMENTS
__C99_FLEXIBLE_ARRAY_MEMBER
__C99_FUNC__
__C99_HEX_FLOAT_CONST
__C99_INLINE
__C99_LLONG
__C99_MACRO_WITH_VA_ARGS
__C99_MAX_LINE_NUMBER
__C99_MIXED_DECL_AND_CODE
__C99_MIXED_STRING_CONCAT
__C99_NON_LVALUE_ARRAY_SUB
__C99_NON_CONST_AGGR_INITIALIZER
__C99_PRAGMA_OPERATOR
__C99_REQUIRE_FUNC_DECL
__C99_RESTRICT
__C99_STATIC_ARRAY_SIZE
__C99_STD_PRAGMAS
__C99_TGMATH
__C99_UCN
__C99_VAR_LEN_ARRAY
__C99_VARIABLE_LENGTH_ARRAY
__DIGRAPHS__
__EXTENDED__
__IBM__ALIGN
__IBM__ALIGNOF__
__IBM_ALIGNOF__
__IBM_ATTRIBUTES
__IBM_COMPUTED_GOTO

__IBM_DOLLAR_IN_ID
__IBM_EXTENSION_KEYWORD
__IBM_GCC__INLINE__
__IBM_GENERALIZED_LVALUE
__IBM_INCLUDE_NEXT
__IBM_LABEL_VALUE
__IBM_LOCAL_LABEL
__IBM_MACRO_WITH_VA_ARGS
__IBM_NESTED_FUNCTION
__IBM_PP_PREDICATE
__IBM_PP_WARNING
__IBM_REGISTER_VARS
__IBM__TYPEOF__
__IBMC_COMPLEX_INIT
__IBMC_GENERIC
__IBMC_NORETURN
__IBMC_STATIC_ASSERT
__IBMCPP_AUTO_TYPEDEDUCTION
__IBMCPP_C99_LONG_LONG
__IBMCPP_C99_PREPROCESSOR
__IBMCPP_CONSTEXPR
__IBMCPP_DECLTYPE
__IBMCPP_DELEGATING_CTORS
__IBMCPP_EXPLICIT_CONVERSION_OPERATORS
__IBMCPP_EXTENDED_FRIEND
__IBMCPP_EXTERN_TEMPLATE
__IBMCPP_INLINE_NAMESPACE
__IBMCPP_REFERENCE_COLLAPSING
__IBMCPP_RIGHT_ANGLE_BRACKET
__IBMCPP_RVALUE_REFERENCES
__IBMCPP_SCOPED_ENUM
__IBMCPP_STATIC_ASSERT
__IBMCPP_UNIFORM_INIT
__IBMCPP_VARIADIC_TEMPLATES
_LONG_LONG

178 XL C/C++: Compiler Reference

Chapter 6. Compiler built-in functions

A built-in function is a coding extension to C and C++ that allows a programmer
to use the syntax of C function calls and C variables to access the instruction set of
the processor of the compiling machine. IBM z Systems architectures have special
instructions that enable the development of highly optimized applications. Access
to some z Systems instructions cannot be generated using the standard constructs
of the C and C++ languages. Other instructions can be generated through standard
constructs, but using built-in functions allows exact control of the generated code.
Inline assembly language programming, which uses these instructions directly, is
fully supported. Furthermore, the technique can be time-consuming to implement.

As an alternative to managing hardware registers through assembly language, XL
C/C++ built-in functions provide access to the optimized z Systems instruction set
and allow the compiler to optimize the instruction scheduling.

C++

To call any of the XL C/C++ built-in functions in C++, you must include

the header file builtins.h in your source code. C++

The following sections describe the available built-in functions for the z Systems
platform.

Fixed-point built-in functions
Fixed-point built-in functions are grouped into the following categories:
v “Absolute value functions”
v “Population count functions”

Absolute value functions

__labs, __llabs
Purpose

Absolute Value Long, Absolute Value Long Long

Returns the absolute value of the argument.

Prototype

signed long __labs (signed long);

signed long long __llabs (signed long long);

Population count functions

__popcnt4, __popcnt8
Purpose

Population Count, 4-byte or 8-byte integer

Returns the number of bits set for a 32-bit or 64-bit integer.

© Copyright IBM Corp. 2015 179

Prototype

int __popcnt4 (unsigned int);

int __popcnt8 (unsigned long long);

Cache-related built-in functions
Cache-related built-in functions fall into the “Data cache functions” category.

Data cache functions

__dcbf
Purpose

Releases the cache line that contains the specified address Op2 from all accesses.

Prototype

void __dcbf(const void* Op2)

__dcbst
Purpose

Releases the cache line that contains the specified address Op2 from store access
and retains the data in the cache line for fetch access.

Prototype

void __dcbst(const void* Op2)

__dcbt
Purpose

Prefetches the cache line that contains the specified address Op2 into the cache for
fetch access.

Prototype

void __dcbt(const void* Op2)

__dcbtst
Purpose

Prefetches the cache line that contains the specified address Op2 into the cache for
store access.

Prototype

void __dcbtst (const void* Op2)

180 XL C/C++: Compiler Reference

Block-related built-in functions

bzero
Purpose

Sets the first n bytes of the byte area starting at s to zero.

Prototype

void bzero(void* s, size_t n);

Parameters

n The size of the data.

s The starting address in the byte area.

Vector built-in functions
You can use vector built-in functions to access and manipulate individual elements
of vectors when the following conditions are met:
v The compiler runs on a Linux distribution that has vector support.
v Both the -mzvector option and the -march=z13 option, or its equivalent, are in

effect.
v The builtins.h or vecintrinc.h header file is included.

For detailed information about individual vector built-in functions, see Vector
built-in functions in the XL C/C++ Optimization and Programming Guide.

GCC atomic memory access built-in functions (IBM extension)
This section provides reference information for atomic memory access built-in
functions whose behavior corresponds to that provided by GNU Compiler
Collection (GCC). In a program with multiple threads, you can use these functions
to atomically and safely modify data in one thread without interference from other
threads.

These built-in functions manipulate data atomically, regardless of how many
processors are installed in the host machine.

In the prototype of each function, the parameter types T, U, and V can be of
pointer or integral type. U and V can also be of real floating-point type, but only
when T is of integral type. The following tables list the integral and floating-point
types that are supported by these built-in functions.

Table 37. Supported integral data types

signed char unsigned char

short int unsigned short int

int unsigned int

long int unsigned long int

long long int ▌1▐ unsigned long long int ▌1▐

C++ bool C _Bool

Chapter 6. Compiler built-in functions 181

Table 37. Supported integral data types (continued)

▌1▐ Restriction: This type is supported only on 64-bit platforms.

Table 38. Supported floating-point data types

float double

long double

In the prototype of each function, the ellipsis (...) represents an optional list of
parameters. XL C/C++ ignores these optional parameters and protects all globally
accessible variables.

The GCC atomic memory access built-in functions are grouped into the following
categories.

Atomic lock, release, and synchronize functions

__sync_lock_test_and_set
Purpose

This function atomically assigns the value of __v to the variable that __p points to.

An acquire memory barrier is created when this function is invoked.

Prototype

T __sync_lock_test_and_set (T* __p, U __v, ...);

Parameters

__p
The pointer of the variable that is to be set.

__v
The value to set to the variable that __p points to.

Return value

The function returns the initial value of the variable that __p points to.

__sync_lock_release
Purpose

This function releases the lock acquired by the __sync_lock_test_and_set function,
and assigns the value of zero to the variable that __p points to.

A release memory barrier is created when this function is invoked.

Prototype

void __sync_lock_release (T* __p, ...);

Parameters

__p
The pointer of the variable that is to be set.

182 XL C/C++: Compiler Reference

__sync_synchronize
Purpose

This function synchronizes data in all threads.

A full memory barrier is created when this function is invoked.

Prototype

void __sync_synchronize ();

Atomic fetch and operation functions

__sync_fetch_and_add
Purpose

This function atomically adds the value of __v to the variable that __p points to.
The result is stored in the address that is specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_fetch_and_add (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable to which __v is to be added. The value of this
variable is to be changed to the result of the add operation.

__v
The variable whose value is to be added to the variable that __p points to.

Return value

The function returns the initial value of the variable that __p points to.

__sync_fetch_and_and
Purpose

This function performs an atomic bitwise AND operation on the variable __v with
the variable that __p points to. The result is stored in the address that is specified
by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_fetch_and_and (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable on which the bitwise AND operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

Chapter 6. Compiler built-in functions 183

__v
The variable with which the bitwise AND operation is to be performed.

Return value

The function returns the initial value of the variable that __p points to.

__sync_fetch_and_nand
Purpose

This function performs an atomic bitwise NAND operation on the variable __v
with the variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_fetch_and_nand (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable on which the bitwise NAND operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise NAND operation is to be performed.

Return value

The function returns the initial value of the variable that __p points to.

__sync_fetch_and_or
Purpose

This function performs an atomic bitwise inclusive OR operation on the variable
__v with the variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_fetch_and_or (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable on which the bitwise inclusive OR operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise inclusive OR operation is to be performed.

184 XL C/C++: Compiler Reference

Return value

The function returns the initial value of the variable that __p points to.

__sync_fetch_and_sub
Purpose

This function atomically subtracts the value of __v from the variable that __p
points to. The result is stored in the address that is specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_fetch_and_sub (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable from which __v is to be subtracted. The value of this
variable is to be changed to the result of the sub operation.

__v
The variable whose value is to be subtracted from the variable that __p points
to.

Return value

The function returns the initial value of the variable that __p points to.

__sync_fetch_and_xor
Purpose

This function performs an atomic bitwise exclusive OR operation on the variable
__v with the variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_fetch_and_xor (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable on which the bitwise exclusive OR operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise exclusive OR operation is to be performed.

Return value

The function returns the initial value of the variable that __p points to.

Chapter 6. Compiler built-in functions 185

Atomic operation and fetch functions

__sync_add_and_fetch
Purpose

This function atomically adds the value of __v to the variable that __p points to.
The result is stored in the address that is specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_add_and_fetch (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable to which __v is to be added. The value of this
variable is to be changed to the result of the add operation.

__v
The variable whose value is to be added to the variable that __p points to.

Return value

The function returns the new value of the variable that __p points to.

__sync_and_and_fetch
Purpose

This function performs an atomic bitwise AND operation on the variable __v with
the variable that __p points to. The result is stored in the address that is specified
by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_and_and_fetch (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable on which the bitwise AND operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise AND operation is to be performed.

Return value

The function returns the new value of the variable that __p points to.

186 XL C/C++: Compiler Reference

__sync_nand_and_fetch
Purpose

This function performs an atomic bitwise NAND operation on the variable __v
with the variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_nand_and_fetch (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable on which the bitwise NAND operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise NAND operation is to be performed.

Return value

The function returns the new value of the variable that __p points to.

__sync_or_and_fetch
Purpose

This function performs an atomic bitwise inclusive OR operation on the variable
__v with variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_or_and_fetch (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable on which the bitwise inclusive OR operation is to be
performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise inclusive OR operation is to be performed.

Return value

The function returns the new value of the variable that __p points to.

Chapter 6. Compiler built-in functions 187

__sync_sub_and_fetch
Purpose

This function atomically subtracts the value of __v from the variable that __p
points to. The result is stored in the address that is specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_sub_and_fetch (T* __p, U __v, ...);

Parameters

__p
The pointer of a variable from which __v is to be subtracted. The value of this
variable is to be changed to the result of the sub operation.

__v
The variable whose value is to be subtracted from the variable that __p points
to.

Return value

The function returns the new value of the variable that __p points to.

__sync_xor_and_fetch
Purpose

This function performs an atomic bitwise exclusive OR operation on the variable
__v with the variable that __p points to. The result is stored in the address that is
specified by __p.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_xor_and_fetch (T* __p, U __v, ...);

Parameters

__p
The pointer of the variable on which the bitwise exclusive OR operation is to
be performed. The value of this variable is to be changed to the result of the
operation.

__v
The variable with which the bitwise exclusive OR operation is to be performed.

Return value

The function returns the new value of the variable that __p points to.

188 XL C/C++: Compiler Reference

Atomic compare and swap functions

__sync_bool_compare_and_swap
Purpose

This function compares the value of __compVal with the value of the variable that
__p points to. If they are equal, the value of __exchVal is stored in the address that
is specified by __p; otherwise, no operation is performed.

A full memory barrier is created when this function is invoked.

Prototype

bool __sync_bool_compare_and_swap (T* __p, U __compVal, V __exchVal, ...);

Parameters

__p
The pointer to a variable whose value is to be compared with.

__compVal
The value to be compared with the value of the variable that __p points to.

__exchVal
The value to be stored in the address that __p points to.

Return value

If the value of __compVal and the value of the variable that __p points to are equal,
the function returns true; otherwise, it returns false.

__sync_val_compare_and_swap
Purpose

This function compares the value of __compVal to the value of the variable that __p
points to. If they are equal, the value of __exchVal is stored in the address that is
specified by __p; otherwise, no operation is performed.

A full memory barrier is created when this function is invoked.

Prototype

T __sync_val_compare_and_swap (T* __p, U __compVal, V __exchVal, ...);

Parameters

__p
The pointer to a variable whose value is to be compared with.

__compVal
The value to be compared with the value of the variable that __p points to.

__exchVal
The value to be stored in the address that __p points to.

Return value

The function returns the initial value of the variable that __p points to.

Chapter 6. Compiler built-in functions 189

Miscellaneous built-in functions
Miscellaneous functions are grouped into the following categories:
v “Optimization-related functions”
v “Memory-related functions”

Optimization-related functions

__builtin_expect
Purpose

Indicates that an expression is likely to evaluate to a specified value. The compiler
may use this knowledge to direct optimizations.

Prototype

long __builtin_expect (long expression, long value);

Parameters

expression
Should be an integral-type expression.

value
Must be a constant literal.

Usage

If the expression does not actually evaluate at run time to the predicted value,
performance may suffer. Therefore, this built-in function should be used with
caution.

Memory-related functions

__alloca
Purpose

Allocates space for an object. The allocated space is put on the stack and freed
when the calling function returns.

Prototype

void* __alloca (size_t size)

Parameters

size
An integer representing the amount of space to be allocated, measured in
bytes.

__builtin_frame_address, __builtin_return_address
Purpose

Returns the address of the stack frame, or return address, of the current function,
or of one of its callers.

190 XL C/C++: Compiler Reference

Prototype

void* __builtin_frame_address (unsigned int level);

void* __builtin_return_address (unsigned int level);

Parameters

level
A constant literal indicating the number of frames to scan up the call stack.
The level must range from 0 to 63. A value of 0 returns the frame or return
address of the current function, a value of 1 returns the frame or return
address of the caller of the current function and so on.

Return value

Returns 0 when the top of the stack is reached. Optimizations such as inlining may
affect the expected return value by introducing extra stack frames or fewer stack
frames than expected. If a function is inlined, the frame or return address
corresponds to that of the function that is returned to.

Hardware built-in functions
General hardware built-in functions provide access to general purpose instructions
that are not normally generated by the compiler. For more information on these
instructions, see z/OS Architecture Principle of Operations.

You must include the builtins.h header file before using any of these hardware
built-in functions.

__cp
Purpose

Compares two signed packed decimal integers.

Prototypes

int __cp (unsigned char *Op1, unsigned char Len1, unsigned char *Op2, unsigned
char Len2);

Parameter

Op1
The address of the first operand.

Len1
The number of additional bytes to the left of the first operand.

The value must be in the range 0 - 15 inclusive.

Op2
The address of the second operand.

Len2
The number of additional bytes to the left of the second operand.

The value must be in the range 0 - 15 inclusive.

Chapter 6. Compiler built-in functions 191

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html

Usage

The function compares the first operand Op1 with the second operand Op2, and
the result is indicated in the returned condition code.

Note: When either Len1 or Len2 is not specified as a literal, an EX instruction is
generated to execute a target CP instruction with the length encoded in the register
that is used by the EX instruction.

The preferred and alternate sign codes for a particular sign are treated as
equivalent for comparison purposes.

A negative zero and a positive zero are considered equal.

Return value

The function returns the condition code set by the CP instruction.

Table 39. Resulting condition code

Code Description

0 The first operand is equal to the second operand.

1 The first operand is lower than the second operand.

2 The first operand is higher than the second operand.

Related information:

z/OS Architecture Principle of Operations

__cvb
Purpose

Converts an 8-byte, signed packed decimal integer to a signed binary integer and
loads the result into a general register.

After the conversion operation is completed, the number is in the proper form for
use as an operand in signed binary arithmetic.

Prototypes

int __cvb (char *Op2);

Parameter

Op2
A pointer to an 8-byte storage area that contains a valid signed packed decimal
integer to be converted to a signed binary integer.

Return value

The function returns the converted 32-bit signed binary integer.
Related information:

z/OS Architecture Principle of Operations

192 XL C/C++: Compiler Reference

http://www.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a
http://www.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a

__cvbg
Purpose

Converts a packed decimal integer at a given storage area to a 64-bit signed binary
integer.

Prototypes

long long __cvbg (char *Op2);

Parameter

Op2
A pointer to a 16-byte storage area that contains a packed decimal integer

Return value

The function returns the converted 64-bit signed binary integer.
Related information:

z/OS Architecture Principle of Operations

__cvd
Purpose

Converts a signed binary integer to a packed decimal integer and places the result
at a given address.

Prototypes

void __cvd (int Op1, char *Op2);

Parameter

Op1
A 32-bit signed binary integer to be converted to a packed decimal integer

Op2
A pointer to an 8-byte storage area that receives the converted packed decimal
integer

Return value

The function does not return any value.
Related information:

z/OS Architecture Principle of Operations

__cvdg
Purpose

Converts a 64-bit signed binary integer to a packed decimal integer and saves the
result to a given storage area.

Chapter 6. Compiler built-in functions 193

http://www.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a
http://www.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a

Prototypes

void __cvdg (long long Op1, char *Op2);

Parameter

Op1
A 64-bit signed binary integer to be converted into a packed decimal integer

Op2
A pointer to a 16-byte storage area that receives the converted packed decimal
integer

Return value

The function does not return any value.
Related information:

z/OS Architecture Principle of Operations

__dp
Purpose

Divides a signed packed decimal integer (the dividend) by another signed packed
decimal integer (the divisor).

Prototypes

void __dp (unsigned char *Op1, unsigned char Len1, unsigned char *Op2, unsigned
char Len2);

Parameter

Op1
The address of the first operand, the dividend.

The dividend cannot exceed 31 digits and sign.

Len1
The number of additional bytes to the left of the dividend.

The value must be greater than Len2.

Op2
The address of the second operand, the divisor.

The divisor cannot exceed 15 digits and sign.

Len2
The number of additional bytes to the left of the divisor.

The value must be in the range 0 - 7 inclusive and less than Len1.

Usage

The first operand Op1 is divided by the second operand Op2. The resulting
quotient and remainder are placed at the location of the dividend. The quotient is
placed leftmost at the dividend location. The length of the quotient field is equal to
the difference between the dividend length and the divisor length (Len2 − Len1).
The remainder is placed rightmost at the dividend location and has a length equal
to the divisor length.

194 XL C/C++: Compiler Reference

http://www.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a

Note: When either Len1 or Len2 is not specified as a literal, an EX instruction is
generated to execute a target DP instruction with the length encoded in the register
that is used by the EX instruction.

Return value

The function does not return any value.
Related information:

z/OS Architecture Principle of Operations

__fidbr
Purpose

Rounds a long binary-floating-point number to an integer value in the same
floating-point format using the specified rounding mode.

Prototypes

double __fidbr (int M3, double Op2)

Note: M3 must be a literal.

Parameter

M3 The 4-bit mask to select the rounding mode

Op2
A long binary-floating-point number

Usage

This function takes effect only when the -qfloat option is enabled.

The following table describes the rounding methods that are represented by each
M3 modifier.

M3 Rounding method

0 According to the current binary-floating-point rounding mode

1 Rounds to nearest with ties away from zero

3 Rounds to prepare for shorter precision

4 Rounds to nearest with ties to even

5 Rounds toward zero

6 Rounds toward positive infinity

7 Rounds toward negative infinity

Note: M3 is valid only when the modifier value is 0, 1, or 3 - 7. M3 is also invalid when
the floating-point extension facility is not installed and the modifier value is 3.

Return value

The function returns an integer value in the floating-point format.

Chapter 6. Compiler built-in functions 195

http://www.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a

Related information
v “__fiebr”
v “__fixbr” on page 197
v -qfloat
v z/Architecture Principles of Operation
v z/OS XL C/C++ Programming Guide

__fiebr
Purpose

Rounds a short binary-floating-point number to an integer value in the same
floating-point format using the specified rounding mode.

Prototypes

float __fiebr (int M3, float Op2)

Note: M3 must be a literal.

Parameter

M3 The 4-bit mask to select the rounding mode

Op2
A short binary-floating-point number

Usage

This function takes effect only when the -qfloat option is in effect.

The following table describes the rounding methods that are represented by each
M3 modifier.

M3 Rounding method

0 According to the current binary-floating-point rounding mode

1 Rounds to nearest with ties away from zero

3 Rounds to prepare for shorter precision

4 Rounds to nearest with ties to even

5 Rounds toward zero

6 Rounds toward positive infinity

7 Rounds toward negative infinity

Note: M3 is valid only when the modifier value is 0, 1, or 3 - 7. M3 is also invalid when
the floating-point extension facility is not installed and the modifier value is 3.

Return value

The function returns an integer value in the floating-point format.

Related information
v “__fidbr” on page 195
v “__fixbr” on page 197

196 XL C/C++: Compiler Reference

https://www-304.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.cbcpx01/toc.htm

v -qfloat
v z/OS XL C/C++ Programming Guide

__fixbr
Purpose

Rounds an extended binary-floating-point number to an integer value in the same
floating-point format using the specified rounding mode.

Prototypes

long double __fixbr (int M3, long double Op2)

Note: M3 must be a literal.

Parameter

M3 The 4-bit mask to select the rounding mode

Op2
An extended binary-floating-point number

Usage

This function takes effect only when the -qfloat option is enabled.

The following table describes the rounding methods that are represented by each
M3 modifier.

M3 Rounding method

0 According to the current binary-floating-point rounding mode

1 Rounds to nearest with ties away from zero

3 Rounds to prepare for shorter precision

4 Rounds to nearest with ties to even

5 Rounds toward zero

6 Rounds toward positive infinity

7 Rounds toward negative infinity

Note: M3 is valid only when the modifier value is 0, 1, or 3 - 7. M3 is also invalid when
the floating-point extension facility is not installed and the modifier value is 3.

Return value

The function returns an integer value in the floating-point format.

Related information
v “__fidbr” on page 195
v “__fiebr” on page 196
v -qfloat
v z/Architecture Principles of Operation
v z/OS XL C/C++ Programming Guide

Chapter 6. Compiler built-in functions 197

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.cbcpx01/toc.htm
https://www-304.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.cbcpx01/toc.htm

__lcbb
Purpose

Counts the number of bytes from a given address without crossing the specified
block boundary.

Prototypes

unsigned int __lcbb (const void *Op2, unsigned short boundary)

Parameter

Op2
The address of the second operand in the hardware instruction.

boundary
The boundary to encode in the hardware instruction. It must be a literal whose
value is 64, 128, 256, 512, 1024, 2048, or 4096.

Usage

This instruction can be used only on IBM z13 models.

If the return value is 16, the LCBB instruction sets the condition code to 0. If the
return value is less than 16, the LCBB instruction sets the condition code to 3.

Return value

The function returns the first operand that is set by the LCBB instruction. The first
operand contains the number of bytes to load from the second operand location
without crossing the specified block boundary. If the number of bytes is greater
than 16, the first operand is set to 16.

Related information
v z/OS Architecture Principle of Operations

__mp
Purpose

Multiplies a signed packed decimal integer (the multiplicand) by another signed
packed decimal integer (the multiplier).

Prototypes

void __mp (unsigned char *Op1, unsigned char Len1, unsigned char *Op2,
unsigned char Len2);

Parameter

Op1
The address of the multiplicand.

Len1
The number of additional bytes to the left of the multiplicand.

The value must be greater than Len2.

198 XL C/C++: Compiler Reference

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html

Op2
The address of the multiplier.

Len2
The number of additional bytes to the left of the multiplier.

The value must be in the range 0 - 7 inclusive and less than Len1.

Usage

The multiplicand must have at least as many bytes of leftmost zeros as the number
of bytes in the multiplier.

The multiplier length cannot exceed 15 digits and sign, and it must be less than the
multiplicand length.

Note: When either Len1 or Len2 is not specified as a literal, an EX instruction is
generated to execute a target MP instruction with the length encoded in the
register that is used by the EX instruction.

The product is placed at the location of the multiplicand.

The product cannot exceed 31 digits and sign. The leftmost digit of the product is
always zero.

Return value

The function does not return any value.
Related information:

z/OS Architecture Principle of Operations

__srp
Purpose

Shifts a signed packed decimal integer with or without rounding.

Prototypes

int __srp (unsigned char *Op1, unsigned char Len1, signed char Op2, unsigned char
Op3);

Parameter

Op1
The address of the first operand, which points to a signed packed decimal
integer to be shifted with or without rounding.

Len1
The number of additional bytes to the left of the first operand.

The value must be in the range 0 - 15 inclusive.

Op2
The address of the second operand, which points to a 6-bit signed binary
integer.

Op2 indicates the direction and the number of decimal digit positions to be
shifted.

Chapter 6. Compiler built-in functions 199

http://www.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a

The value must be in the range -32 to 31 inclusive. Positive values specify
shifting to the left. Negative values specify shifting to the right.

Op3
The address of the third operand, which points to a decimal rounding digit.

Usage

The function can be used for shifting up to 31 digit positions left and up to 32
digit positions right. Only the digit portion of the first operand Op1 is shifted; the
sign position does not participate in the shifting.

Bits 58-63 of Op2 are the shift value, and the leftmost bits are ignored.

For a right shift, that is, when Op2 is negative, the absolute value of the first
operand Op1 is rounded to the rounding digit Op3. The rounding digit 5 provides
conventional rounding of the result. The rounding digit 0 specifies truncation
without rounding.

The result is placed at the location of the first operand. Zeros fill the vacated
digits.

Note: When either Len1 or Op3 is not specified as a literal, an EX instruction is
generated to execute a target SRP instruction with the Len1 or Op3 parameter
encoded in the register that is used by the EX instruction.

Return value

The function returns the condition code set by the SRP instruction.

Table 40. Resulting condition code

Code Description

0 The result is zero. No overflow occurs.

1 The result is less than zero. No overflow occurs.

2 The result is greater than zero. No overflow occurs.

3 Overflow occurs.

Related information:

z/OS Architecture Principle of Operations

__stck
Purpose

Stores the internal 8-byte time-of-day (TOD) clock to the specified memory
location.

Prototypes

int __stck (unsigned long long *Op1);

Parameter

Op1
The address of the memory location to store the TOD clock

200 XL C/C++: Compiler Reference

http://www.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a

Usage

A serialization function is performed before the value of the TOD clock is fetched
and stored.

Return value

The function returns the condition code.

Related information
v “__stckf”
v z/OS Architecture Principle of Operations

__stckf
Purpose

Stores the internal 8-byte time-of-day (TOD) clock to the specified memory
location.

Prototypes

int __stckf (unsigned long long *Op1);

Parameter

Op1
The address of the memory location to store the TOD clock

Usage

The __stckf built-in function runs faster than the __stck built-in function because
other processors are not serialized before the value of the TOD clock is fetched and
stored.

Return value

The function returns the condition code.

Related information
v “__stck” on page 200
v z/OS Architecture Principle of Operations

__zap
Purpose

Places a signed packed decimal integer at a given address. The operation is
equivalent to an addition to zero.

Prototypes

int __zap (unsigned char *Op1, unsigned char Len1, unsigned char *Op2, unsigned
char Len2);

Chapter 6. Compiler built-in functions 201

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html

Parameter

Op1
The address of the first operand, which is to receive the result.

Len1
The number of additional bytes to the left of the sign byte of the first operand.

The value must be in the range 0 - 15 inclusive.

Op2
The address of the second operand, which points to a signed packed decimal
integer to be placed at the location specified by Op1.

Len2
The number of additional bytes to the left of the sign byte of the second
operand.

The value must be in the range 0 - 15 inclusive.

Usage

This function places the second operand Op2 at the location specified by the first
operand Op1.

If the first operand is too short to contain all leftmost nonzero digits of the second
operand, decimal overflow occurs and the operation is completed. The result is
obtained by ignoring the overflow digits. If the decimal-overflow mask is one, a
program interruption for decimal overflow occurs.

If overflow does not occur, the sign of a zero result is made positive. If overflow
occurs, a zero result is given the sign of the second operand but with the preferred
sign code.

If the two operands overlap and the rightmost byte of the first operand is exactly
or to the right of the rightmost byte of the second operand, the result is obtained
as if the operands were processed right to left.

If the two operands overlap and the rightmost byte of the first operand is to the
left of the rightmost byte of the second operand, either of the following
consequences might occur depending on the model:
v A data exception is recognized.
v The result is obtained as if the entire second operand were fetched before any

byte of the result is stored.

Note: When either Len1 or Len2 is not specified as a literal, an EX instruction is
generated to execute a target ZAP instruction with the length encoded in the
register that is used by the EX instruction.

Return value

The function returns the condition code set by the ZAP instruction.

Table 41. Resulting condition code

Code Description

0 The result is zero. No overflow occurs.

1 The result is less than zero. No overflow occurs.

202 XL C/C++: Compiler Reference

Table 41. Resulting condition code (continued)

Code Description

2 The result is greater than zero. No overflow occurs.

3 Overflow occurs.

Related information:

z/OS Architecture Principle of Operations

Transactional memory built-in functions
Transactional memory is a model for parallel programming. This module provides
functions that allow you to designate a block of instructions or statements to be
treated atomically. Such an atomic block is called a transaction. When a thread
executes a transaction, all of the memory operations within the transaction occur
simultaneously from the perspective of other threads.

For some kinds of parallel programs, a transaction implementation can be more
efficient than other implementation methods, such as locks. You can use these
built-in functions to mark the beginning and end of transactions, and to diagnose
the reasons for failure.

In the transactional memory built-in functions, the TM_buff parameter allows for a
user-provided memory location to be used to store the transaction state and
debugging information.

The transactional state is entered following a successful call to __TM_begin or
__TM_simple_begin, and ended by __TM_end, __TM_abort, __TM_named_abort, or by
transaction failure.

Transaction failure occurs when any of the following conditions is met:
v Memory that is accessed in the transactional state is accessed by another thread

or by the same thread running in the suspended state before the transaction
completes.

v The architecture-defined footprint for memory accesses within a transaction is
exceeded.

v The architecture-defined nesting limit for nested transactions is exceeded.

Transactions can be nested. You can use __TM_begin or __TM_simple_begin in the
transactional state. Within an outermost transaction initiated with __TM_begin,
nested transactions must be initiated with __TM_simple_begin, or by __TM_begin
using the same buffer of the outermost containing transaction.

A nested transaction is subsumed into the containing transaction. Therefore, a
failure of the nested transaction is treated as a failure of all containing transactions,
and the nested transaction completes only when all contained transactions
complete.

Note: You must include the htmxlintrin.h file in the source code if you use any of
the transactional memory built-in functions.

Chapter 6. Compiler built-in functions 203

http://www.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a

Transaction begin and end functions

__TM_begin
Purpose

Marks the beginning of an expensive transaction, which provides full debugging
capability.

Prototype

long __TM_begin (void* const TM_buff);

Parameter

TM_buff
The address of a 256-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Usage

Upon a transaction failure (including a user abort), execution resumes from the
point immediately following the __TM_begin that initiated the failed transaction as
if the __TM_begin were unsuccessful.

You can use the transaction inquiry functions to query the transaction status.

If the transaction fails, the TDB is populated with lots of debug information.

Note: Using this built-in function causes the compiler to save all variables that are
kept in GPRs. However, variables that are kept in FPRs or ARs are not saved.
Saving variables of the float type is not supported, and the facility of filtering
some interrupts is not provided.

Return value

This function returns _HTM_TBEGIN_STARTED if successful; otherwise, it returns
a different value.

Related information
v “__TM_simple_begin” on page 205
v “Transaction inquiry functions” on page 206
v z/OS Architecture Principle of Operations

__TM_end
Purpose

Marks the end of a transaction.

Prototype

long __TM_end ();

Return value

The return value is _HTM_TBEGIN_STARTED if the thread is in the transactional
state before the instruction starts; otherwise, it returns a different value.

204 XL C/C++: Compiler Reference

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html

Related information
v z/OS Architecture Principle of Operations

__TM_simple_begin
Purpose

Marks the beginning of a cheap transaction. Compared with the __TM_begin
built-in function, __TM_simple_begin has better performance but provides limited
debugging capability.

Prototype

long __TM_simple_begin ();

Usage

Upon a transaction failure (including a user abort), execution resumes from the
point immediately following the __TM_simple_begin function that initiated the
failed transaction as if the __TM_simple_begin were unsuccessful.

The transaction status of transactions started using __TM_simple_begin cannot be
queried by using the transaction inquiry functions.

A cheap transaction has better performance than an expensive transaction.
However, if a cheap transaction fails, the only failure information available is the
2-bit cc returned by the tbegin hardware instruction.

Note: Using this built-in function causes the compiler to save all variables that are
kept in GPRs. However, variables that are kept in FPRs or ARs are not saved.
Saving variables of the float type is not supported, and the facility of filtering
some interrupts is not provided.

Return value

This function returns _HTM_TBEGIN_STARTED if successful; otherwise, it returns
a different value.

Related information
v “__TM_begin” on page 204
v “Transaction inquiry functions” on page 206
v z/OS Architecture Principle of Operations

Transaction abort functions

__TM_abort
Purpose

Aborts a transaction with failure code 0.

Prototype

void __TM_abort ();

Chapter 6. Compiler built-in functions 205

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html

Related information
v “__TM_named_abort”
v z/OS Architecture Principle of Operations

__TM_abort_assist
Purpose

Requests the processor to increase the likelihood of successful completion of the
transaction in a subsequent execution. The processor takes escalating actions based
on the number of times that the transaction has been aborted.

Prototypes

void __TM_abort_assist (unsigned int op1);

Parameter

op1
The number of times that the transaction has been aborted.

Related information
v z/OS Architecture Principle of Operations

__TM_named_abort
Purpose

Aborts a transaction with the specified failure code.

Prototype

void __TM_named_abort (unsigned char const code);

Parameter

code
The specified failure code. It is a literal that is in the range of 0 - 255.

Related information
v “__TM_abort” on page 205
v z/OS Architecture Principle of Operations

Transaction inquiry functions

__TM_failure_address
Purpose

Gets the code address at which the most recent transaction was aborted.

Prototypes

long __TM_failure_address (void* const TM_buff);

206 XL C/C++: Compiler Reference

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html

Parameter

TM_buff
The address of a 256-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns the address at which the most recent transaction was aborted.
In 64-bit mode, the address is obtained from the fourth doubleword of the TDB. In
31-bit mode, the address is obtained from the righmost word of the TDB.

Related information
v z/OS Architecture Principle of Operations

__TM_failure_code
Purpose

Provides the raw failure code for the transaction.

Prototypes

long long __TM_failure_code (void* const TM_buff);

Parameter

TM_buff
The address of a 256-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

The function returns the raw failure code for the transaction. The raw failure code
is obtained from byte 8 - 15 of the TDB.

Related information
v z/OS Architecture Principle of Operations

__TM_is_conflict
Purpose

Queries whether the transaction was aborted because of a conflict.

Prototypes

long __TM_is_conflict (void* const TM_buff);

Parameter

TM_buff
The address of a 256-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns 1 if both of the following qualifications are met; otherwise, it
returns 0:

Chapter 6. Compiler built-in functions 207

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html

v The TDB is valid.
v The transaction was aborted because of a conflict. The transaction abort code,

which is the second word of the TDB, is 9 or 10.

Related information
v z/OS Architecture Principle of Operations

__TM_is_failure_persistent
Purpose

Queries whether the transaction was aborted because of a persistent reason.

Prototypes

long __TM_is_failure_persistent (long const result);

Parameter

result
2-bit cc returned by the tbegin hardware instruction.

Return value

This function returns 1 if the transaction was aborted because of a persistent
reason; the value of result is 3. Otherwise, the function returns 0.

Related information
v z/OS Architecture Principle of Operations

__TM_is_footprint_exceeded
Purpose

Queries whether the transaction was aborted because of exceeding the maximum
number of cache lines.

Prototypes

long __TM_is_footprint_exceeded (void* const TM_buff);

Parameter

TM_buff
The address of a 256-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns 1 if both of the following qualifications are met; otherwise, it
returns 0:
v The TDB is valid.
v The transaction was aborted because the maximum number of cache lines was

exceeded. The transaction abort code, which is the second word of the TDB, is 7
or 8.

Related information
v z/OS Architecture Principle of Operations

208 XL C/C++: Compiler Reference

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html

__TM_is_illegal
Purpose

Queries whether the transaction was aborted because of an illegal attempt, such as
an instruction not permitted in transactional mode or other kind of illegal access.

Prototypes

long __TM_is_illegal (void* const TM_buff);

Parameter

TM_buff
The address of a 256-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns 1 if both of the following qualifications are met; otherwise, it
returns 0:
v The TDB is valid.
v The transaction was aborted because of an illegal attempt. The transaction abort

code, which is the second word of the TDB, is 11 or 4.

Related information
v z/OS Architecture Principle of Operations

__TM_is_named_user_abort
Purpose

Queries whether the transaction failed because of a user abort instruction and gets
the transaction abort code.

Prototypes

long __TM_is_named_user_abort (void* const TM_buff, unsigned char* code);

Parameter

code
The address of the memory location to save the transaction abort code.

TM_buff
The address of a 256-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns 1 if both of the following qualifications are met; otherwise, it
returns 0:
v The TDB is valid.
v The transaction failed because of a user abort instruction. The transaction abort

code, which is the second word of the TDB, is no less than 256.

When both of the preceding qualifications are met, code is set to the transaction
abort code minus 256. The value of code is also passed to the tabort hardware

Chapter 6. Compiler built-in functions 209

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html

instruction. When either of the preceding qualifications is not met, code is set to 0.

Related information
v “__TM_is_user_abort”
v z/OS Architecture Principle of Operations

__TM_is_nested_too_deep
Purpose

Queries whether the transaction was aborted because of trying to exceed the
maximum nesting depth.

Prototypes

long __TM_is_nested_too_deep (void* const TM_buff);

Parameter

TM_buff
The address of a 256-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns 1 if both of the following qualifications are met; otherwise, it
returns 0:
v The TDB is valid.
v The transaction was aborted because of trying to exceed the maximum nesting

depth. The transaction abort code, which is the second word of the TDB, is 13.

Related information
v z/OS Architecture Principle of Operations

__TM_is_user_abort
Purpose

Queries whether the transaction failed because of a user abort instruction.

Prototypes

long __TM_is_user_abort (void* const TM_buff);

Parameter

TM_buff
The address of a 256-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

This function returns 1 if both of the following qualifications are met; otherwise, it
returns 0:
v The TDB is valid.
v The transaction failed because of a user abort instruction. The transaction abort

code, which is the second word of the TDB, is no less than 256.

210 XL C/C++: Compiler Reference

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html

Related information
v “__TM_is_named_user_abort” on page 209
v z/OS Architecture Principle of Operations

__TM_nesting_depth
Purpose

Returns the current nesting depth. If the thread is not in the transactional state, the
function returns the depth at which the most recent transaction was aborted.

Prototypes

long __TM_nesting_depth (void* const TM_buff);

Parameter

TM_buff
The address of a 256-byte transaction diagnostic block (TDB) that contains
diagnostic information.

Return value

If the thread is in the transactional state, this function returns the current nesting
depth. Otherwise, the function returns the depth at which the most recent
transaction was aborted. The function returns 0 if the transaction is completed
successfully.

The compiler uses ETNDG to get the current nesting depth. If the result is 0, the
nesting depth is obtained from byte 6 and byte 7 of the TDB.

Related information
v z/OS Architecture Principle of Operations

Transaction store functions

__TM_non_transactional_store
Purpose

Stores a value to the specified memory location.

Prototypes

void __TM_non_transactional_store (void* const addr, long long const value);

Parameter

addr
The address of the memory location to store the specified value.

value
The value to be stored.

Usage

This function indicates that 8 bytes provided by value are stored at the address
pointed by addr. The store is non-transactional.

Chapter 6. Compiler built-in functions 211

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html
http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html

Related information
v z/OS Architecture Principle of Operations

212 XL C/C++: Compiler Reference

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1/en/homepage.html

Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL C/C++ for Linux on z Systems.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2015 213

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

214 XL C/C++: Compiler Reference

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 2015.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 215

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

216 XL C/C++: Compiler Reference

Index

Special characters
--help compiler option 37
--version (-qversion) compiler option 38
-qdbgfmt compiler option 83
-qhelp compiler option 37
-qreport compiler option 130
-qsaveopt compiler option 132

A
alias 72

-qalias compiler option 72
pragma disjoint 161

alignment 70
-fpack-struct (-qalign) compiler

option 70
pragma align 70
pragma pack 166

appending macro definitions,
preprocessed output 60

architecture 7, 92
-m64 compiler option 96
-mtune compiler option 94
-qarch compiler option 92
-qtune compiler option 94
architecture combination 95
macros 175

arrays
padding 104

B
basic example, described ix
built-in functions 179

block-related 181
cache-related 180
fixed-point 179
GCC atomic memory access 181
hardware 191
miscellaneous 190
transactional memory 203

C
cleanpdf command 126
compatibility

compatibility
options for compatibility 34

compiler options 5
architecture-specific 7
performance optimization 31
resolving conflicts 6
specifying compiler options 5

command line 5
configuration file 5
source files 6

summary of command line
options 23

compiler predefined macros 171

configuration 19
custom configuration files 19
specifying compiler options 5

configuration file 46

D
data types 96

-mzvector compiler option 96

E
environment variables

compile-time and link-time 18
setting 17

error checking and debugging 28
-g compiler option 80
-qlinedebug compiler option 118

G
GCC options 153

H
high order transformation 104

I
implicit timestamps 138
inlining 65
interprocedural analysis (IPA) 109
invocations 1

compiler or components 1
preprocessor 8
selecting 1
syntax 2

L
language level 144
language standards 144
lib*.a library files 91
lib*.so library files 91
libraries

redistributable 12
XL C/C++ 12

linker 10
invoking 10

linking 10
options that control linking 33
order of linking 11

listing 13
-qlist compiler option 119
options that control listings and

messages 31
loop optimization 164

M
macro definitions, preprocessed

output 60
macros

related to architecture 175
related to compiler options 174
related to language features 176
related to the compiler 172
related to the platform 173

mergepdf 126

O
optimization 31

-O compiler option 50
-qalias compiler option 72
-qoptimize compiler option 50
controlling, using option_override

pragma 164
loop optimization 31

-qhot compiler option 104
options for performance

optimization 31

P
performance 31

-O compiler option 50
-qalias compiler option 72
-qoptimize compiler option 50

pragmas 160
profile-directed feedback (PDF) 123

-qpdf1 compiler option 123
-qpdf2 compiler option 123

profiling 98
-qpdf1 compiler option 123
-qpdf2 compiler option 123
-qshowpdf compiler option 134

S
shared objects 141

-shared (-qmkshrobj) 141
showpdf 126

T
target machine 92
templates

-qtmplinst compiler option 139
tuning 94

-march compiler option 94
-mtune compiler option 94
-qarch compiler option 94
-qtune compiler option 94

© Copyright IBM Corp. 2015 217

V
vector data types 96

-mzvector compiler option 96
vector processing 78

-mzvector compiler option 96
virtual function table (VFT) 65

-fdump-class-hierarchy
(-qdump_class_hierarchy) 65

218 XL C/C++: Compiler Reference

IBM®

Product Number: 5725-N01

Printed in USA

SC27-5998-01

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other information

	Technical support
	How to send your comments

	Chapter 1. Compiling and linking applications
	Invoking the compiler
	Command-line syntax

	Types of input files
	Types of output files
	Specifying compiler options
	Specifying compiler options on the command line
	Specifying compiler options in a configuration file
	Specifying compiler options in program source files
	Resolving conflicting compiler options
	Specifying compiler options for architecture-specific compilation

	Preprocessing
	Directory search sequence for included files

	Linking
	Order of linking
	Redistributable libraries

	Compiler messages and listings
	Compiler messages
	Message severity levels and compiler response

	Compiler listings
	Paging space errors during compilation

	Chapter 2. Configuring compiler defaults
	Setting environment variables
	Compile-time and link-time environment variables
	Runtime environment variables

	Using custom compiler configuration files
	Creating custom configuration files
	Overriding the default order of attribute values
	Examples of stanzas in custom configuration files

	Chapter 3. Compiler options reference
	Summary of compiler options by functional category
	Output control
	Input control
	Language element control
	Template control (C++ only)
	Floating-point and integer control
	Object code control
	Error checking and debugging
	Listings, messages, and compiler information
	Optimization and tuning
	Linking
	Portability and migration
	Compiler customization

	Individual option descriptions
	-### (-#) (pound sign)
	-+ (plus sign) (C++ only)
	--help (-qhelp)
	--version (-qversion)
	@file (-qoptfile)
	-B
	-C, -C!
	-D
	-E
	-F
	-I
	-L
	-O, -qoptimize
	-P
	-R
	-S
	-U
	-X (-W)
	-Werror (-qhalt)
	-Wunsupported-xl-macro
	-c
	-dM (-qshowmacros)
	-e
	-fasm (-qasm)
	-fcommon (-qcommon)
	-fdollars-in-identifiers (-qdollar)
	-fdump-class-hierarchy (-qdump_class_hierarchy) (C++ only)
	-finline-functions (-qinline)
	-fPIC , -fpic (-qpic)
	-fpack-struct (-qalign)
	-fsigned-bitfields, -funsigned-bitfields (-qbitfields)
	-fsigned-char, -funsigned-char (-qchars)
	-fstrict-aliasing (-qalias=ansi), -qalias
	-fsyntax-only (-qsyntaxonly)
	-ftemplate-depth (-qtemplatedepth) (C++ only)
	-ftls-model (-qtls)
	-ftime-report (-qphsinfo)
	-ftree-vectorize (-qsimd)
	-g
	-gdwarf (-qdbgfmt)
	-include (-qinclude)
	-isystem (-qc_stdinc) (C only)
	-isystem (-qcpp_stdinc) (C++ only)
	-isystem (-qgcc_c_stdinc) (C only)
	-isystem (-qgcc_cpp_stdinc) (C++ only)
	-l
	-march (-qarch)
	-mtune (-qtune)
	-mzvector
	-m31, -m64 (-q31, -q64)
	-o
	-p, -pg, -qprofile
	-qasm_as
	-qcrt, -nostartfiles (-qnocrt)
	-qeh (C++ only)
	-qfloat
	-qfullpath
	-qfuncsect
	-qhot
	-qinitauto
	-qipa
	-qisolated_call
	-qkeepparm
	-qlib, -nodefaultlibs (-qnolib)
	-qlibansi
	-qlinedebug
	-qlist
	-qmakedep, -MD (-qmakedep=gcc)
	-qpath
	-qpdf1, -qpdf2
	-qpriority (C++ only)
	-qreport
	-qrtti, -fno-rtti (-qnortti) (C++ only)
	-qsaveopt
	-qshowpdf
	-qsmallstack
	-qstaticinline (C++ only)
	-qstdinc, -qnostdinc (-nostdinc, -nostdinc++)
	-qtimestamps
	-qtmplinst (C++ only)
	-r
	-s
	-shared (-qmkshrobj)
	-static (-qstaticlink)
	-std (-qlanglvl)
	-t
	-v, -V
	-w
	-x (-qsourcetype)
	Supported GCC options

	Chapter 4. Compiler pragmas reference
	Pragma directive syntax
	Scope of pragma directives
	Supported GCC pragmas
	Supported IBM pragmas
	#pragma disjoint
	#pragma execution_frequency
	#pragma nosimd
	#pragma nounroll
	#pragma option_override
	#pragma pack
	#pragma reachable

	Chapter 5. Compiler predefined macros
	General macros
	Macros indicating the XL C/C++ compiler
	Macros related to the platform
	Macros related to compiler features
	Macros related to compiler option settings
	Macros related to architecture settings
	Macros related to language levels

	Unsupported macros from other XL compilers

	Chapter 6. Compiler built-in functions
	Fixed-point built-in functions
	Absolute value functions
	__labs, __llabs

	Population count functions
	__popcnt4, __popcnt8

	Cache-related built-in functions
	Data cache functions
	__dcbf
	__dcbst
	__dcbt
	__dcbtst

	Block-related built-in functions
	bzero

	Vector built-in functions
	GCC atomic memory access built-in functions (IBM extension)
	Atomic lock, release, and synchronize functions
	__sync_lock_test_and_set
	__sync_lock_release
	__sync_synchronize

	Atomic fetch and operation functions
	__sync_fetch_and_add
	__sync_fetch_and_and
	__sync_fetch_and_nand
	__sync_fetch_and_or
	__sync_fetch_and_sub
	__sync_fetch_and_xor

	Atomic operation and fetch functions
	__sync_add_and_fetch
	__sync_and_and_fetch
	__sync_nand_and_fetch
	__sync_or_and_fetch
	__sync_sub_and_fetch
	__sync_xor_and_fetch

	Atomic compare and swap functions
	__sync_bool_compare_and_swap
	__sync_val_compare_and_swap

	Miscellaneous built-in functions
	Optimization-related functions
	__builtin_expect

	Memory-related functions
	__alloca
	__builtin_frame_address, __builtin_return_address

	Hardware built-in functions
	__cp
	__cvb
	__cvbg
	__cvd
	__cvdg
	__dp
	__fidbr
	__fiebr
	__fixbr
	__lcbb
	__mp
	__srp
	__stck
	__stckf
	__zap

	Transactional memory built-in functions
	Transaction begin and end functions
	__TM_begin
	__TM_end
	__TM_simple_begin

	Transaction abort functions
	__TM_abort
	__TM_abort_assist
	__TM_named_abort

	Transaction inquiry functions
	__TM_failure_address
	__TM_failure_code
	__TM_is_conflict
	__TM_is_failure_persistent
	__TM_is_footprint_exceeded
	__TM_is_illegal
	__TM_is_named_user_abort
	__TM_is_nested_too_deep
	__TM_is_user_abort
	__TM_nesting_depth

	Transaction store functions
	__TM_non_transactional_store

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	G
	H
	I
	L
	M
	O
	P
	S
	T
	V

