
What’s New in Enterprise 
COBOL Version 4…
Release 2!
Tom Ross
IBM

August 25, 2009
S1511



2

Agenda

• New features of Enterprise COBOL V4R2
• Prerequisites for V4R2
• Requirements satisfied by V4R2



3

Briefly

• Enterprise COBOL for z/OS Version 4 Release 2
• Announced today, August 25
• General Availability, August 28
• Requires update to Language Environment

• PK90754 
• Full list of prerequisites at end of presentation



4

New Features

• New in Enterprise COBOL V4R2
• XML document parsing with validation
• Performance improvements to parsing XML documents 

without validation
• Compiler message severity customization
• Compiler option BLOCK0 to exploit system-determined block 

size for QSAM output files
• COBOL user-defined words can include the underscore (_) 

character
• Compiler listings display CICS options in effect
• More Java SDKs supported: Java 5 and Java 6



5

New features of V4 Release 2

• How about some details?



6

XML PARSE with validation

• Validation against XML schema
• No validation against DTD

• An early requirement for XML PARSE (2001)
• Good thing we did not do it, schema is better!

• What is validation?  An XML schema?



7

XML PARSE with validation

• What is validation?
• Validating an XML document determines whether the structure 

and content of the document conform to a set of rules 
• In Enterprise COBOL, the rules are expressed in an XML 

schema



8

XML PARSE with validation

• What is an XML schema?
• A blueprint for a class of documents
• Expressed in XML
• Describes and constrains the structure and content of XML 

documents 
• Using a schema you can control the contents of attributes and  

elements. You have far more control over what is considered a 
valid XML document using a schema than with a DTD. 



9

What is an XML schema?

• Consider an XML document that describes an item for 
stock-keeping purposes:

<stockItem itemNumber="453-SR">
<itemName>Stainless steel rope thimbles</itemName>
<quantityOnHand>23</quantityOnHand>
</stockItem>

• The example document above is both well formed and valid 
according to the following schema. (The numbers that 
precede each line are not part of the schema, but are used 
in the explanations after the schema.)



10

What is an XML schema?
01. <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
02.   <xsd:element name="stockItem" type="stockItemType"/>
03.   <xsd:complexType name="stockItemType">
04.     <xsd:sequence>
05.       <xsd:element name="itemName" type="xsd:string" minOccurs="0"/>
06.       <xsd:element name="quantityOnHand">
07.          <xsd:simpleType>
08.             <xsd:restriction base="xsd:nonNegativeInteger">
09.               <xsd:maxExclusive value="100"/>    </xsd:restriction>
10.          </xsd:simpleType>
11.       </xsd:element>
12.     </xsd:sequence>
13.     <xsd:attribute name="itemNumber" type="SKU" use="required"/>
14.   </xsd:complexType>
15.   <xsd:simpleType name="SKU">
16.     <xsd:restriction base="xsd:string">
17.       <xsd:pattern value="\d{3}-[A-Z]{2}"/>     </xsd:restriction>
18.   </xsd:simpleType>
19. </xsd:schema>



11

What is an XML schema?

• The schema declares that the root element is 
stockItem (line 02),

01. <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
02.   <xsd:element name="stockItem" type="stockItemType"/>

• which has a mandatory itemNumber attribute 
of type SKU (line 13),

13.     <xsd:attribute name="itemNumber" type="SKU" use="required"/>



12

What is an XML schema?
• stockItemType is defined by sequence (lines 04 - 12):

• optional itemName element of type string (line 05)
• required quantityOnHand with constrained range of 1 - 99 

based on the type nonNegativeInteger (lines 06 - 11)

03.   <xsd:complexType name="stockItemType">
04.   <xsd:sequence>
05.       <xsd:element name="itemName" type="xsd:string" minOccurs="0"/>
06.       <xsd:element name="quantityOnHand">
07.          <xsd:simpleType>
08.             <xsd:restriction base="xsd:nonNegativeInteger">
09.               <xsd:maxExclusive value="100"/>   </xsd:restriction>
10.          </xsd:simpleType>
11.       </xsd:element>
12.   </xsd:sequence>



13

What is an XML schema?

• Type declarations can be inline and unnamed, as in 
lines 07 - 10, which include the maxExclusive facet 
to specify the legal values for the quantityOnHand
element.

07.           <xsd:simpleType>
08.             <xsd:restriction base="xsd:nonNegativeInteger">
09.               <xsd:maxExclusive value="100"/>     </xsd:restriction>
10.           </xsd:simpleType>



14

What is an XML schema?

• For the itemNumber attribute, by contrast, the 
named type SKU is declared separately in lines 15 -
18, which include a pattern facet that uses regular 
expression syntax to specify that the legal values for 
that type consist of (in order): 
• 3 digits, 
• a hyphen-minus, 
• then two uppercase letters.

15.   <xsd:simpleType name="SKU">
16.     <xsd:restriction base="xsd:string">
17.       <xsd:pattern value="\d{3}-[A-Z]{2}"/>     </xsd:restriction>
18.   </xsd:simpleType>



15

What is an XML schema?

<stockItem itemNumber="453-SR">
<itemName>Stainless steel rope thimbles</itemName>
<quantityOnHand>23</quantityOnHand>
</stockItem>

• Root element is stockItem with attribute itemNumber
• itemNumber has 3 digits, a hyphen and 2 uppercase letters
• itemName contains a string
• quantityOnHand contains nonnegative integer less than 100



16

XML PARSE with validation

• How are schemas presented to the parser?
• COBOL validating parse uses XML System Services
• XML System services uses OSR…what?



17

XML PARSE with validation

• In Enterprise COBOL, a schema used for XML validation 
must be in a preprocessed format known as Optimized 
Schema Representation, or OSR. 

• To generate a schema in OSR format from a text-form 
schema, use the z/OS UNIX command xsdosrg, which 
invokes the OSR generator provided by z/OS XML System 
Services. 

• Example: to convert the text-form schema in file item.xsd to 
a schema in preprocessed format in file item.osr, you can 
use the following z/OS UNIX command: 

xsdosrg -v -o /u/HLQ/xml/item.osr /u/HLQ/xml/item.xsd



18

XML PARSE with validation

• Use one of two forms of the VALIDATING phrase, 
depending on the location of the preprocessed 
schema:
• In one form, you use the FILE keyword and specify an 

XML schema name. In this case, the schema must be in 
an MVS data set or a z/OS UNIX file.

• In the other form, you specify the identifier of a data item 
that contains the schema.



19

XML PARSE with validation

XML PARSE xmldoc
VALIDATING WITH FILE mySchema
PROCESSING PROCEDURE p1

END-XML

If you use the FILE keyword and specify an XML schema 
name, the COBOL runtime library automatically retrieves 
the schema during execution of the XML PARSE statement.



20

XML PARSE with validation

• To associate an XML schema name with the external file 
that contains the schema, code the XML-SCHEMA clause in 
the SPECIAL-NAMES paragraph, specifying either a literal 
or a user-defined word to identify the file.

• For example, you can associate the XML schema name 
mySchema with the ddname DDSCHEMA by coding the 
ddname as a literal in the XML-SCHEMA clause as follows:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

XML-SCHEMA mySchema IS 'DDSCHEMA'.



21

XML PARSE with validation

• For running the program, you can associate ddname
DDSCHEMA with the z/OS UNIX file item.osr by coding a 
DD statement as follows:

//GO.DDSCHEMA DD PATH='/u/HLQ/xml/item.osr‘

• Or you can use an analogous TSO ALLOCATE command.
• Alternatively, DDSCHEMA could be the name of an 

environment variable that identifies the external file by 
means of 
• a DSN option that specifies an MVS data set or 
• a PATH option that specifies a z/OS UNIX file



22

XML PARSE with validation

• VALIDATING WITH identifier 
• Requires schema in memory before XML PARSE statement 
• Use COBOL READ, EXEC CICS READ or SQL SELECT to get 

schema into memory
• Supported under CICS 
• Could be efficient to read the schema into memory once and 

reuse it for subsequent XML documents
• VALIDATING WITH FILE 

• Reads schema into memory for every parse: convenient, but slow
• Not supported under CICS



23

XML PARSE with validation

XML PARSE xmldoc
VALIDATING WITH mySchema-id
PROCESSING PROCEDURE p1

END-XML

If you do not use the FILE keyword and specify an XML 
schema identifier, the schema must be in the specified data 
item during execution of the XML PARSE statement.



24

XML PARSE with validation

VParse section.                                   
Perform Get-schema                               
Display "Completed reading schema into memory"
Perform Validate-XML                          
Display "Completed validating PARSE" 
If document-valid                             

Perform Process-data-from-XML 
End-if.



25

XML PARSE with validation

Data division.
File section. 
FD  F2                   

block contains 0     
recording mode is F. 

1 R2            Pic x(80). 
Local-storage section.       

01 fs2          Pic 99.          
01 DOCL         Pic 9(9) BINARY. 
01 mySchema-id  Pic X(1000000). 



26

XML PARSE with validation
Get-schema section.                                   

Open input F2                          
If FS2 not = 0 then  Display 'OPEN failed,'

'FS=' FS2   Goback End-if                         
Set Not-EOF To TRUE                    
Compute DocL = 1                       
Perform Until EOF                      

Read F2                              
At End   Set EOF To TRUE  Display "EOF on F2"     
Not At End                         

Display "Read:   " R2(1:80)     
Move R2(1:80) To mySchema-id(DocL:80)        
Add 80 To DocL
End-If                          

End-Read                           
End-Perform                            
Close F2. 



27

XML PARSE with validation

Validate-XML section.                               
Display "Reading and parsing XML ..."
Open input F1                        
Read F1                              
Display "Read: " R1(1:L)             
XML parse R1(1:L)       

VALIDATING WITH myschema-id
with encoding 1047                 
processing procedure P 

End-XML            
Close F1. 



28

XML PARSE with validation

• Any questions on XML PARSE with validation?



29

Performance improvements to parsing XML 
documents without validation

• In Enterprise COBOL V4R1, some users found that XML 
PARSE was slow with XMLPARSE(XMLSS)

• Typical setup was 
• STORAGE(00)
• ANYHEAP(FREE)

• Solution
• STORAGE(NONE) or 
• ANYHEAP(KEEP)

• In Enterprise COBOL V4R2 this problem is solved
• You get the better performance with any settings 



30

Compiler message severity customization

• New MSGEXIT suboption of EXIT compiler option
• Exit called for each compiler message
• Sample message exit IGYMSGXT included in SIGYSAMP

• IGYMSGXT is explained in the Programming Guide
• User can change severity of diagnostic messages, convert 

FIPS messages to diagnostic,  or suppress messages



31

Compiler message severity customization

• You can change the severity of a compiler message in the 
following ways:
• Severity-I and severity-W compiler diagnostic messages, and 

FIPS messages, can be changed to have any severity from I 
through S

• Assigning a severity to a FIPS message converts the FIPS 
message to a diagnostic message of the assigned severity



32

Compiler message severity customization

• As examples, you can:
• Suppress optimizer warnings 
• Disallow REDEFINING a smaller item with a larger item by 

raising the severity of message 1154
• Prevent inclusion of TEST information in the object file when  

the SYSDEBUG file cannot be opened, by raising the severity 
of message 4073

• Disallow complex OCCURS DEPENDING ON by changing 
FIPS message 8235 from a category-E FIPS message to a 
severity-S compiler diagnostic message.



33

Compiler message severity customization

• Severity-E messages can be raised to severity S, but not 
lowered to severity I or W, because an error condition has 
occurred in the program

• Severity-S and severity-U messages cannot be changed to 
have a different severity

• You can request suppression of compiler messages as 
follows:
• I, W, and FIPS messages can be suppressed
• E and S messages cannot be suppressed
• Suppressed messages do not affect compilation return code 



34

Message severity customization examples

Evaluate EXIT-MESSAGE-NUM
********************************************************
* Change severity of message 1154(W) to 12 ('S')
* This is the case of redefining a large item
* with a smaller item, IBM Req # MR0904063236
********************************************************

When(1154)
Compute EXIT-USER-SEV = 12

********************************************************
* Suppress all optimizer warning messages:
* 3090, 3091, 3094, 3171 and 3235
* This is IBM Req # MR00049476
********************************************************

When(3090) When(3091) When(3094) When(3171)  When(3235)
Compute EXIT-USER-SEV = -1



35

Message severity customization examples
*******************************************************
* Change severity of messages 3188(W) and 3189(W) to 12 (‘S’)
* This is to force a fix for all SEARCH ALL cases that might
* behave differently between COBOL compilers earlier than 
* Enterprise COBOL release V3R4 and later compilers such as
* Enterprise COBOL Version 4 Release 2.
*************************************************************

When(3188) When(3189)
Compute EXIT-USER-SEV = 12

*************************************************************
* Change severity of message 4073(W) to 12 ('S')
* Prevent inclusion of TEST information in object
* if SYSDEBUG file cannot be opened. 
* This is IBM Req # MR0716082134
*************************************************************

When(4073)
Compute EXIT-USER-SEV = 12



36

Message severity customization example

Options in effect:
EXIT(NOINEXIT,NOPRTEXIT,NOLIBEXIT,NOADEXIT,MSGEXIT(MSGXRTN))
FLAG(S,S)
.
.
.
FIPS Messages      Total      Standard      Nonstandard      Obsolete      

6           0               6              0          
Messages   Total  Informational   Warning   Error   Severe   Terminating 
Suppressed:    2           1                  1                 
Messages suppressed by MSGEXIT: 2                               
Messages with severity modified by MSGEXIT: 2
* Statistics for COBOL program MSGXT2:                          
*    Source records = 61                                        
*    Data Division statements = 14                              
*    Procedure Division statements = 3                          
End of compilation 1,  program MSGXT2,  highest severity 8. 



37

Compiler option BLOCK0 to exploit system-
determined block size for QSAM output files

• Prior to this option, the default for files with no BLOCK 
CONTAINS clause was unblocked
• One physical write for each logical write!

• BLOCK0 changes the default to blocked with no block size 
specified
• BLOCK0 activates an implicit BLOCK CONTAINS 0 clause for 

all eligible files
• Eligible files are

• QSAM  (physical sequential)
• No BLOCK CONTAINS clause
• No RECORDING MODE U



38

Compiler option BLOCK0 to exploit system-
determined block size for QSAM output files

• For INPUT files there might be problems in odd cases.  
Specifying BLOCK0 for existing programs might result in a 
change of behavior, and in some cases produce 
undesirable results for files opened as INPUT. For example:
• The OPEN INPUT statement fails for files for which no block 

size can be determined.
• Programs that continue after handling nonzero FILE STATUS 

codes for files opened as INPUT might abnormally terminate 
when executing subsequent I/O statements on those files

• For OUTPUT files, BLOCK0 should only improve 
performance, no risk



39

COBOL user-defined words can include the 
underscore (_) character

• This includes data names and procedure names but also…
• Program names! 
• Why?

• You can use XML GENERATE to create XML with underscore 
in tag names  - no post processing!

• You can use variables with the same names as column names 
in DB2/SQL

• You can share variable names across COBOL, PL/I, C/C++ 
and assembler

• You can call C functions with underscores in names without 
using PGMNAME(LONGMIXED) 



40

COBOL user-defined words can include the 
underscore (_) character

• COBOL words cannot start with underscore, but can end 
with underscore

• Literal program names can have underscore anywhere

PROGRAM-ID. my_func.  
WORKING-STORAGE SECTION.

77 x_ PIC X(8).
77 y_y PIC 99. 
01 Z_ PIC Z9.

PROCEDURE DIVISION USING x_  y_y Z_.
CALL '_cFunc'



41

Compiler listings display CICS options in effect

• Using the integrated CICS translator 
• CICS 3.2 or CICS 4.1 with PTFs
• Now you can get DB2 and CICS options in effect in your 

COBOL listing!  



42

Compiler listings display CICS options in effect
PP 5655-S71 IBM Enterprise COBOL for z/OS  4.2.0 
Options in effect:        
NOADATA                  
ADV                    
QUOTE                  
ARITH(COMPAT)          

NOAWO                    
NOBLOCK0                 
BUFSIZE(4096)          
. 
.
. 

CICS Options in effect:       
CICS                         
DEBUG                        
EDF                          
NATLANG(EN)                  
APOST                        
NOSYSEIB                     
NOFEPI                       
NOCPSM                       
LINKAGE 



43

Java interoperability –
support for Java 5 and Java 6

• Java 5 was not supported with Enterprise COBOL V4R1 
• Java 5 and Java 6 are supported with Enterprise COBOL V4R2 
• Enterprise COBOL applications using object-oriented syntax for 

Java interoperability can now run with Java 5 or Java 6. 
Java SDK 1.4.2 continues to be supported

• COBOL requires a 31-bit Java SDK. 64-bit Java technology is 
not currently supported



44

Prerequisites

• z/OS, V1.9 (5694-A01), or later
• z/OS Language Environment V1.9, V1.10, or V1.11 with  

PTFs for APAR PK90754  installed 
• Enterprise COBOL XML processing with the 

XMLPARSE(XMLSS) option requires:
• z/OS XML Systems Services V1.9, V1.10, or V1.11, and PTFs

for APAR OA28253
• When parsing with validation under CICS, the PTFs for APAR 

OA29675 are also required



45

Prerequisites

• Including CICS options in effect as part of the COBOL listing 
requires 
• CICS Transaction Server for z/OS, V4.1 (5655-S97) and PTFs

for APAR PK89224, or 
• CICS Transaction Server for z/OS, V3.2 (5655-M15) and PTFs

for APAR PK91041
• Enterprise COBOL applications using object-oriented syntax 

for Java interoperability with Java 6 require 
• SDK for z/OS, Java Technology Edition V6 (5655-R31) and 

PTFs for APAR PK89762



46

Requirements satisfied by COBOL V4R2
• MR1216031446 - underscores for var name across 

COBOL, PL/I, C/C++ and HLASM. 
• MR0317083231, MR120804208 - underscore XML GENERATE.   
• MR071508264 - underscores in names so COBOL names can 

match DB2/SQL names
• MR0716082134(SYSDEBUG) MR00023071 (Obsolete FIPS) 

– satisfied by message severity customization
• MR00049476, MR0227075935, MR042506463, MR0524065843, 

MR072006118, MR0803072215, MR0904063236, MR110606344 -
message severity customization 

• MR0318042758, MR1126031815 – CICS options in effect in listing
• MR0529095034, MR1216031447 (SSLNGC03003), MR1107071627 

– BLOCK0 compiler option



47

Backup detail slides


