

Integration Patterns
WebSphere Process Server 6.2

WebSphere Application Server 6.1
WebSphere Message Broker 6.1

WebSphere MQ 7.0

©2010

Business Process Choreographer team, Boeblingen, Germany

Disclaimer

This document is subject to change without notification and will not comprehensively cover
the issues encountered in all customer situations.
The information contained in this document has not been submitted to any formal IBM test
and is distributed AS IS.
For updates or newer releases please contact the service team.

The Authors

This document is produced by the Business Process Choreographer team in Böblingen
Germany.

Torsten Wilms
IBM Software Group, Application and Integration Middleware Software
BPM Suite Integration Quality Assurance

Werner Führich
IBM Software Group, Application and Integration Middleware Software
BPM Competence Center

Dieter König
IBM Software Group, Application and Integration Middleware Software
Senior Technical Staff Member, Business Process Choreographer

Thanks to the following people for their contributions
Michael Klingler (Daimler AG), Thomas Gehrung (Daimler AG), Marco Scheuermann
(Daimler AG), Daniel Fritz (Daimler AG), Jonas Grundler, Anthony O’Dowd.

Table of Contents

1 Introduction.. 4
1.1 Overview of the interactions .. 4

2 Showcase application ... 6
2.1 Operational model.. 6

2.2 Overall sequence diagram of the order process application (showcase) 7

3 Identity propagation .. 9

4 Using JAX-WS clients with the BPC- and HTM API... 10

5 Web Service Addressing (WS-A).. 11

6 SSL Configuration ... 12
6.1 SSL between WPS/WAS and MQ... 12

6.1.1 Create the self-signed certificate for MQ... 12

6.1.2 Create the self-signed certificate for WPS... 14

6.1.3 Export the self-signed certificate ... 15

6.1.4 Configure the WebSphere MQ queue manager for SSL.. 16

6.1.5 Configure the WebSphere Application Server JMS client .. 19

6.2 SSL between WMB and WAS... 22

6.2.1 Create Self-Signed Certficate for WAS... 22

6.2.2 Export the WAS self-signed certificate ... 22

6.2.3 Import to WMB.. 23

6.3 SSL between WPS and WAS... 24

6.3.1 Configure WPS (client) for SSL .. 24

6.3.2 Configure WAS (server) for SSL... 25

7 Patterns (Interactions)... 27
7.1 Sequence of interactions .. 27

7.1.1 Interaction 1 to 3 - Start Process .. 28

7.1.1.1 Optional implementation.. 28

7.1.1.2 Detailed description of the implementation and configuration steps..................... 29

7.1.1.3 Step 1 – WPS: Develop the BPEL Application and define potential process

starters 29

7.1.1.4 Step 2 – WPS: Deploy BPEL Application... 30

7.1.1.5 Step 3 – WPS: Modify Token consumer settings on the BPC Container 30

7.1.1.6 Step 4 – WAS: Develop Web Service consumer application and define Token

Generator – JAX RPC.. 35

7.1.1.7 Step 4 – WAS: Develop Web Service consumer application and define Token

Generator – JAX WS ... 36

7.1.1.8 Step 5 – WAS: Deploy application .. 43

7.1.2 Interaction 4a and 4d – Check Stock #1 – WPS to Message Broker 44

7.1.2.1 Step 1 – MQ: Define queues .. 44

7.1.2.2 Step 2 – WPS: Develop the BPEL application .. 45

7.1.2.2.1 Propagate the user ID from WPS to Message Broker...................................... 45

7.1.2.2.2 Define the ConnectionFactory and queue objects in WID 48

7.1.2.3 Step 3 – WPS: Deploy the BPEL application .. 48

7.1.2.4 Step 4 – WMB: Develop the message flow and set up a security profile.............. 49

7.1.2.5 Step 5 – WMB: Deploy the message flow application .. 50

7.1.2.6 Step 6 – SSL configuration between WPS and MQ .. 50

7.1.3 Interaction 4b and 4c – Check Stock #1 – Message Broker to WAS 51

7.1.3.1 Step 1 – WMQ: Define queues .. 51

7.1.3.2 Step 2 – WMB: Develop the message flow ... 52

Page 2 of 144

7.1.3.3 Step 3 – WMB: Deploy the message flow... 52

7.1.3.4 Step 4 – WAS: Develop the WAS application .. 52

7.1.3.5 Step 5 – WAS: Configure the MQ Adapter WAS application 52

7.1.3.6 Step 6 – WAS: Deploy the WAS application .. 53

7.1.3.7 Step 7 – SSL Configuration ... 53

7.1.4 Interaction 5a and 5d – Check Stock #2 – WPS to Message Broker 53

7.1.5 Interaction 5b and 5c – Check Stock #2 – Message Broker to WAS 55

7.1.5.1 Step1 – WAS: Develop Web Service provider application and create token

consumer 56

7.1.5.2 Step 2 – WAS: Deploy the application .. 58

7.1.5.3 Step 3 – WMB: Develop the message flow as Web Service consumer................. 59

7.1.5.4 Step 4 – WMB: Deploy the message flow... 62

7.1.5.5 Step 5 – SSL configuration between WMB and WAS .. 62

7.1.6 Interaction 7 and 8 - SOAP/HTTP from WPS to WAS via Message Broker............ 63

7.1.6.1 Step 1 – WPS: Develop the BPEL application .. 64

7.1.6.2 Correlation in BPEL... 65

7.1.6.3 Step 2 – WPS: Create a Token Generator.. 67

7.1.6.4 Step 3 – WPS: Create a Token Consumer ... 69

7.1.6.5 Step 4 – WPS: Deploy the BPEL application .. 73

7.1.6.6 Step 5 – WAS: Develop the WAS application .. 73

7.1.6.7 Step 6 – WAS: Create the Token Request Consumer.. 73

7.1.6.8 Step 7 – WAS: Create a Token Response Generator... 77

7.1.6.9 Step 8 – WAS: Deploy WAS application .. 80

7.1.6.10 Step 9 – WMB: Develop MessageFlow... 81

7.1.6.11 Step 10: Deploy MessageFlow .. 81

7.1.7 Interaction 11 and 14: Human Task – get Supplier – WAS to WPS 82

7.1.7.1 Step 1 – WPS: Develop the BPEL application and define the potential Human

Task Owners .. 83

7.1.7.2 Step 2 – WPS: Deploy the BPEL application .. 84

7.1.7.3 Step 3 – WAS: Develop the Web Service client.. 84

7.1.7.4 Step 4 – WAS: Define the Token Generator – JAX-RPC 84

7.1.7.5 Step 4 – WAS: Define Token Generator – JAX-WS... 87

7.1.7.6 Step 5 – WPS: Deploy WAS application... 88

7.1.7.7 Step 6 – SSL configuration between WPS and WAS.. 88

7.1.8 Interaction 13: Web Service Addressing between WAS and WMB 89

7.1.8.1 Step 1 – WMB: Implement the message flow ... 90

7.1.8.2 Step 2 – WMB: Deploy the message flow... 91

7.1.8.3 Step 3 – WAS: Configure and implement the WAS application........................... 91

7.1.8.4 Step 4 – WAS: Deploy the application .. 93

7.1.9 Interaction 15 and 16 – SOAP/MQ - Identity propagation based on HT owner of

preceding activity... 94

7.1.9.1 Step 1 – WPS: Identity propagation based on HT owner of the preceding

activity 95

7.1.9.2 Step 2 and 3 – WPS: Implement a SOAP/JMS binding .. 99

7.1.9.3 Step 4 – WPS: Deploy the BPEL application .. 101

7.1.9.4 Step 5 – WAS: Develop the WAS application .. 101

7.1.9.5 Step 6 – WAS: Configure MQ Adapter ... 101

7.1.9.6 Step 7 – WAS: Define Token Generator and Consumer 101

7.1.9.7 Step 8 – WAS: Deploy the WAS application .. 106

7.1.9.8 Step 9 – WMB: Develop the message flow ... 106

Page 3 of 144

7.1.9.9 Step 10 – WMB: Deploy th message flow... 107

7.1.10 Interaction 17 – RMI between WPS and WAS... 107

7.1.10.1 Step 1 – WPS: Develop BPEL application .. 108

7.1.10.2 Step 2 – WPS: Deploy the BPEL application .. 110

7.1.10.3 Step 3 – WAS: Develop the application .. 110

7.1.10.4 Step 4 – WAS: Deploy the application .. 110

7.1.10.5 Step 5 – SSL configuration .. 110

7.1.10.6 Step 6 and 7 – Configure CSIv2 authentication... 110

7.1.10.6.1 Option 1: Basic Authentication and identity assertion................................. 110

7.1.10.6.2 Option 2: Basic Authentication without identity assertion 114

7.1.10.6.3 When to use LTPA, identity assertion, Basic Authentication and Certificates117

7.1.11 Interaction 18 – Update Global Order DB - SOAP HTTPs between WPS and WAS118

8 Basis setup and application install reference... 119
8.1 Configuration of JMS resources .. 119

8.2 Configuration of JDBC resources .. 119

8.3 Deployment of the showcase SCA module.. 119

8.4 WebSphere Message Broker resources.. 130

8.4.1 Message Flow definition.. 130

8.4.2 Queue definition... 131

8.5 WebSphere Application Server resources.. 131

8.5.1 JMS Connection Factory resources.. 131

8.5.2 Configuration of JDBC resources .. 135

8.5.3 Configuration of DB2 for WAS applications .. 136

8.5.4 Deployment of the WAS applications ... 137

9 Terms... 138

10 Abbreviations ... 139

11 Referenced Documents .. 140

Page 4 of 144

1 Introduction

This paper documents the integration of WebSphere Application Server (WAS),
WebSphere Process Server (WPS), WebSphere Message Broker (WMB) and WebSphere
MQ (WMQ). It uses a fictive order process to verify secured and reliable communication
among these products in a bi-directional way. Throughout this document the terms
scenario and showcase are used synonymously. This showcase scenario consists of
WPS- , WAS- and WMB applications, MQ queues, two user registries (Tivoli Directory
Server, file-based), and DB2 databases. The applications are deployed on several
hardware boxes.

The integration considers:

• SSL configuration between WAS, WPS and WMB (refer to chapter SSL
configuration)

• Identity propagation and assertion between WAS, WPS and WMB (refer to chapter
Identity Propagation)

• JAX-WS and JAX-B clients on WAS for the WPS BPC- and HTM API (refer to
chapter using JAX-WS and JAX-B clients)

• Web Service Addressing (WS-A) between WAS and WebSphere Message Broker
(refer to chapter Web Service Addressing)

• Integration patterns (refer to chapter Patterns/Interactions)
o document the detailed implementation steps
o provide an overview of the interactions from a security point of view in

chapter Overview of the interactions

1.1 Overview of the interactions

The showcase, as mentioned before, provided for bi-directional interactions between the
servers and registries, consists of several interactions. The following list provides an
overview of the interactions:

• Interaction 3 - propagate identity using Username Tokens from WebSphere
Application Server to WebSphere Process Server via SOAP/http

• Interaction 4a/d - propagate identity from WPS via MQ to Message Broker. SSL is
used for transport level security.

• Interaction 4b/c - propagate identity from WMB via MQ to WAS. SSL is used for
transport level security.

• Interaction 5a/d -propagate identity from WPS via MQ to Message Broker. SSL is
used for transport level security.

• Interaction 5b/c - identity propagation with identity assertion from WBM to WAS via
SOAP/https

• Interaction 7/8 - identity propagation from WPS to WAS via Message Broker.
identity is propagated via Username Token in the Web Service Security Header.

• Interaction 11/14 - propagate the identity via LTPA from WAS to WPS with the HTM
Web Service API.

Page 5 of 144

• Interaction 13 - Set up WS-A between WAS and WMB. Https will be used as
Transport Level Security. Identity propagation will be done using Username Tokens
(w/o password).

• Interaction 15/16 - SOAP/MQ; identity propagation not based on process starter
identity but on HT owner of preceding activity

• Interaction 17 - SSL with RMI/IIOP; identity propagation between WPS and WAS

Chapter 3 provides an overview about the scenario that we used to demonstrate the
integration. It contains the operational model and a UML sequence diagram. After getting
an understanding of the process the reader can refer to those concepts and interactions of
interest:

• SSL configuration between WAS, WPS and WMB (chapter SSL configuration)

• Identity propagation and assertion between WAS, WPS and WMB (chapter Identity
Propagation)

• JAX-WS and JAX-B clients on WAS for the WPS BPC- and HTM API (chapter using
JAX-WS and JAX-B clients)

• Web Service Addressing (WS-A) between WAS and WebSphere Message Broker
(chapter Web Service Addressing)

• Integration patterns (chapter Patterns/Interactions)
o Detailed interaction implementations
o Chapter interaction 15/16 describes identity propagation of the Human Task

Owner of the preceding process activity.

Find detailed setup and install information in the Appendix.

1.2 Scope of the document

This document shows security related integration aspect of WebSphere Application Server
(WAS), WebSphere Process Server (WPS), WebSphere Message Broker (WMB) and
WebSphere MQ (WMQ). It does not document the basic WebSphere installation,
configuration and implementation.

Page 6 of 144

2 Showcase application

2.1 Operational model

The high-level system structure for the “showcase” application is shown in the following
diagram. In this document we do not describe how to install the products.

Page 7 of 144

2.2 Overall sequence diagram of the order process application
(showcase)

The figure below shows the sequence diagram of the scenario. Each interaction step is
documented in detail in the Patterns/Interactions chapter.

The order process is started by a clerk. He uses a web based client to initiate the process.
Following this two external systems are used to verify availability of the order item in stock.
If so, internal order reservation is executed (interactions 1 to 7.1).
Otherwise an internal purchase order is issued. A purchaser will verify the request, select
a supplier and submit the external order. Order confirmation automatically updates two
order databases at the end (interactions 9 to 18).

The arrows in the sequence diagram indicate the request, the chosen protocol, the
message / request name, whether it is synchronous or asynchronous. The kind of
processing and protocols also determine the transaction boundaries for the entire
scenario.

Page 8 of 144

Page 9 of 144

3 Identity propagation

This chapter describes how identity propagation can be done between WebSphere
Process Server, WebSphere Application Server and WebSphere Message Broker using
different kind of transport and communication protocols. With identity propagation we
mean that a user identity is carried within a request call from one system to another
system.

The following listing provides the interactions described in this document. For the
implementation refer to chapter Patterns/Interactions.

From To Protocol Pattern/Interaction
WAS WPS Web Services 3, 11, 14
WAS WMB Web Service (WS-A) 13
WAS WMB Web Services 16.1

WPS WMB MQ 4a, 5a
WPS WMB Web Services 7
WPS WAS SOAP/MQ 15
WPS WAS RMI/IIOP 17
WPS WAS Web Services 18
WMB WAS MQ 4b
WMB WAS Web Services 5b, 8

Chapter Interaction 15/16 describes identity propagation of the Human Task Owner of the
preceding process activity.

Page 10 of 144

4 Using JAX-WS clients with the BPC- and HTM API

In the showcase application we use JAX-WS and JAX-B based clients on WebSphere
Application Server to access the BPC- and HTM API on WebSphere Process Server.

We show how to propagate the user identity from WAS to WPS - both have different user
registries - using a programmatic approach and a declarative approach (using JAX-WS
policy sets).

By using JAX-B on the client we are able to use strong typed business objects with the
APIs instead of generic ones.

• Using BPC API with JAX-WS (startProcess) refer to Interaction 3.

• Using HTM API with JAX-WS (query, claim, complete task) refer to Interaction 11
and 14.

Page 11 of 144

5 Web Service Addressing (WS-A)

We demonstrate how to set up WS-A between WAS and WMB with identity propagation
(Username Tokens). For details refer to chapter Interaction 13.

WS-Addressing is a standardized way of including message routing data within the SOAP
message. It supports the use of asynchronous interactions by specifying a common SOAP
header (wsa:ReplyTo) that contains the endpoint reference (EPR) to which the response is
to be sent.

Page 12 of 144

6 SSL Configuration

Some of the interactions of the showcase use a Secure Socket Layer (SSL) connection between the
products (WAS, WMQ, WMB and WPS).
The following SSL configurations are described in this chapter.

• SSL between WPS/WAS and MQ

• SSL between WMB and WAS (for http/s between WMB and WAS)

• SSL between WPS and WAS

Refer to IBM WebSphere Developer Technical Journal: SSL, certificate, and key management
enhancements for even stronger security in WebSphere Application Server V6.1

http://www.ibm.com/developerworks/websphere/techjournal/0612_birk/0612_birk.html

6.1 SSL between WPS/WAS and MQ

The option for SSL between MQ and WPS/WAS is to use certificates.
Therefore we need to generate and exchange certificates at design time. For the WebSphere MQ server
certificate and for the WPS/WAS server certificate, we will use a self-signed certificate.
Find an overview of the SSL handshake at
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzas.doc/sy10660_.ht
m .

The next steps describe the configuration steps to be performed for WPS.
For SSL between WAS and MQ repeat these steps.

Important: MQ stores the client certificates from its trusted peers (WAS, WPS) not in a separate Trust
File, but in its keyfile.

6.1.1 Create the self-signed certificate for MQ

1. Start key management utility ikeyman by opening WebSphere MQ Explorer and right-clicking on IBM
Websphere MQ, then select Manage SSL Certificates.

2. Create the key database file by selecting Key Database File > New

Page 13 of 144

3. Accept the default key database type of CMS

4. For the File Name, browse to <mqroot>\Qmgrs\<qmgrname>\ssl\ directory and call the file key.kdb

5. When prompted, enter an appropriate password (websphere)
Select the option to stash the password to a file

6. Select Create > New Self Signed Certificate.

7. Enter a value for the Key Label name as ibmwebspheremq<yourqmgrname_inlowercase>. This will
end up being the certificate name.
Also enter values for Common Name (e.g MQServer)
Organization, and all remaining fields that are labeled optional.
You can leave the default Key Size of 1024.

Page 14 of 144

8. Enter a filename to store the request or leave the default certreq.arm. The certificate label name must
follow this convention if using WebSphere MQ V6, otherwise the queue manager will not know which
server certificate to use

6.1.2 Create the self-signed certificate for WPS

1. Switch to the version of ikeyman that comes with WebSphere Application Server by launching
<wps root>\bin\ikeyman.bat

2. From the ikeyman menu, select Key Database File > New

3. On the Open dialog, for key database type, accept the default value of JKS (Java™ keystore)
Save the file as WPSKey.jks

4. When prompted to create a keystore password, select a valid password and confirm it
(websphere)

5. Optional: Delete all signer certificates from the Signer Certificates tab. Limiting signers limits risk.

Page 15 of 144

6. Create a new Self-Signed Certificate

7. Enter data in the Create New Self-Signed certificate dialog with values appropriate to the location
of your application server. Set Key Label to a value of your choice. Note that the default Validity
Period is set to 365 days. After 365 days you have to renew the certificates.

6.1.3 Export the self-signed certificate

At this point, we have created a self-signed certificate for the WPS MQ client. We now need to extract the
jmsclient certificate and place it in the trust file for WebSphere Process Server and WebSphere MQ, so that
they can both use it as a signer.

1. First, we will export the WPS personal certificate. With the ikeyman database open to the WPSKey file,
and the jmsclient certificate selected, click Extract Certificate. This exports only the certificate (not the
private key).

Page 16 of 144

2. Save the certificate and give it an appropriate name, such as wps_jms_client.arm

3. While the WPSKey is used for private keys, we need a trust file which will be will be used for validating
signers. We will now create this file and call it WPSServerTrustFile. Using ikeyman, create a new key
database by selecting Key Database File => New and call it WPSServerTrustFile.jks

4. Optional: Switch to the Signer Certificates tab and delete all unnecessary signers

5. Import the jmsclient certificate into the WebSphere Application Server truststore:
switch to the Signer Certificates tab, press the Add button, browse to the location where you saved
wps_jms_client.arm, and import the certificate.
In later point in time, we will also import the MQServer arm file into the WPS trust store.

6. Switch to the MQ keyman
Import the jmsclient certificate into the WebSphere MQ truststore
switch to the Signer Certificates tab, press the Add button, browse to was_jms_client.arm, and import
the certificate

7. Remember that we also need to import the MQ Certificate into the WebSphere Application Server
truststore, so that the application server can validate the queue manager certificate during the SSL
handshake

All the certificates are now in the right places for your application server key and trust files. To verify this,
make sure your application server key file contains the jmsclient certificate, and the application server trust
file contains the jmsclient certificate and the mqserver certificate.

6.1.4 Configure the WebSphere MQ queue manager for SSL

1. Make sure all key files are located in D:\IBM\WebSphere MQ\qmgrs\QM_fmtc7113\ssl\key

Page 17 of 144

2. In the MQ Explorer right-click on the queue manager and select Properties > SSL

3. Verify the Key Repository and click OK

4. Next, we will configure the channel with which the JMS client will communicate with the queue manager
for SSL:
Note that "CN", "OU", "O", and so on, must be uppercase. Also note that PC (postal code) is not an
accepted part of the DN in WebSphere MQ. Finally, although some areas of the documentation may
mention that the DN values need to be in quotes, we found in our testing that quoted values such as
CN='jmsclient' did not work in WebSphere MQ V6 for Windows.

5. In MQ Explorer, select your queue manager, then select the Advanced folder, then the Channels folder,
and right-click.
 Select New > Server Connection Channel

6. On the next dialog, enter a name for the channel (we use SSL.SVRCONN), then click Next.

Page 18 of 144

7. Switch to the SSL tab view, and specify a cipher specification. For this example, we will use
RC4_MD5_US, but you should evaluate your organization's security needs and consider alternative,
stronger ciphers if necessary. Notice that the default setting for Authentication of parties initiating
connection is Required

8. We need to prevent the queue manager from accepting a certificate from simply any client that has a
certificate issued by one of the CAs in the queue manager's keystore. To do so, we need to set the
SSLPEER parameter on the channel. This parameter is used to check the Distinguished Name (DN) of
the certificate from the client at the other end of a WebSphere MQ channel. If the DN received from the
client does not match the SSLPEER value, the channel will not start. Set this by checking Only accept
certificates with Distinguished Names matching these values, and enter the DN value that matches the
client certificate. In our case, this would be: CN=jmsclient,OU=issw,O=ibm,C=US (based on how we
generated the self-signed client certificate).

We have now configured the server connection channel that the WPS JMS client will use to communicate
with the queue manager. If you have not yet done so, you should tighten all channels to require SSL (or
remove the channel), including channels such as SYSTEM.DEF.SVRCONN

If you have more than one SSL client (as we have in the showcase) and you want to only accept
request from DNs matching specific values, you have to create additional channels.
In the showcase we have two SSL channels:

• SSL.SRVCONN for WPS

• SSLWAS for WAS

Page 19 of 144

Certificate security warning
As you configure certificate keystores for WebSphere MQ, remember that each signing certificate in the
keystore represents trust between you and that signer (typically a Certificate Authority, CA). In the most
basic case, placing any signing certificate in the WMQ Server keystore without DN verification means that
WebSphere MQ should accept all connects from any party that has a certificate from that CA. Unless you are
using self-signed certificates or have a dedicated CA just for WebSphere MQ, that is almost completely
insecure. Thus, we restrict the certificates to those with the matching DN value that we specify. That ensures
that the identity in the certificate is really the identity that we expect. However, there is a catch. If two CAs
were to issue certificates with the same DN, our security would again be compromised. That should not
happen since a reputable CA would not do such a thing, but two different CAs might issue certificates with
the same subject, which is why you need to remove all of the certificates except for the certificate from the
CA you expect.

6.1.5 Configure the WebSphere Application Server JMS client

1. In the WebSphere administrative console, navigate to Security > SSL certificate and key management
> SSL configurations

2. Select NodeDefaultSSLSettings

3. Select Key stores and certificates

4. Create a new KeyStore by clicking New

5. Name the new keystore, for example, wpskeystore
Change path to WPS_INSTALL_ROOT/bin/WPSkey.jks
Enter a password (e.g websphere)
Select as Type JKS
Click OK and Save

Page 20 of 144

6. Create a new TrustStore by clicking New

7. Name the new truststore, for example, wpstruststore

Change path to WPS_INSTALL_ROOT/bin/WPSServerTrustFile.jks
Select as Type JKS
Click OK and Save

Page 21 of 144

8. Navigate to Business Integration Security > SSL configurations > NodeDefaultSSLSettings
Select as Trust store name wpstruststore
Select as keystore name wpskeystore
Click OK and save

Page 22 of 144

6.2 SSL between WMB and WAS

This chapter describes how to setup SSL between WMB and WAS for SOAP/HTTPs.

6.2.1 Create Self-Signed Certficate for WAS

1. Switch to the version of ikeyman that comes with WebSphere Application Server by launching <was
root>\bin\ikeyman.bat

2. From the ikeyman menu, select Key Database File => New

3. On the Open dialog, for key database type, accept the default value of JKS (Java™ keystore).

4. Save the file as WASKey.jks

5. When prompted to create a keystore password, select a valid password and confirm it (websphere)

6. Delete all signer certificates from the Signer Certificates tab. As mentioned earlier, limiting signers limits
risk

7. Switch to Personal Certificates, and click New Self-Signed

8. Enter data in the Create New Self-Signed certificate dialog with values appropriate to the location of
your application server. Set Key Label to a value of your choice

6.2.2 Export the WAS self-signed certificate

At this point, we have created a self-signed certificate for the WebSphere Application Server. We now need
to extract the certificate and place it in the trust file for WebSphere Application Server and WebSphere MB,
so that they can both use it as a signer:
To export the certificate:

Page 23 of 144

a. With the ikeyman database open to the WASKey file, and the certificate selected, click Extract
Certificate. This exports only the certificate (not the private key).

b. Save the certificate and give it an appropriate name, such as was_soap_server.arm.

6.2.3 Import to WMB

Refer also to the Info center at
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/index.jsp?topic=/com.ibm.etools.mft.doc/ap12235_
.htm

1. Adding certificates to the cacerts file
You must add the certificate for the WAS web service to the cacerts file for Message Broker. This file is the
default trust store for the broker and is located in the broker's JRE security directory.
The cacerts file is located in the "%MQSI_FILEPATH%\jre\lib\security"

2. Importing a certificate into the cacerts file

Use the keytool command to modify the cacerts file:

1. Click Start > IBM WebSphere Message Broker 6.1 > Command Console to open a broker command
console

2. In the command console, type the following command:

"%MQSI_FILEPATH%\jre\bin\keytool" -import -alias mykey -file name of certificate file -keystore cacerts
-storepass changeit

where:

• name of certificate file is the fully qualified name of the certificates file. This file is typically found
in the message broker user's home directory.

• changeit is the default password for the cacerts file. You can use the keytool command to
change the password, but, because it is not a configurable property of the broker, the broker
always attempts to access the cacerts file using the default password changeit.

3.
Verify that the cacerts file was updated by looking at the change date of the cacerts file.

4. Restart WMB

Page 24 of 144

6.3 SSL between WPS and WAS

6.3.1 Configure WPS (client) for SSL

1
.

From the administrative console, follow
Security > SSL certificate and key management > key stores and certificates > NodeDefaultTrustStore >
Signer certificates > Retrieve from port

2
.

Enter the remote machine name in the Host field of the WAS server (see screenshot below)

3
.

Enter CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS 9402 of the remote machine as port (see
screenshot below)

4
.

Enter Alias for reference (see screenshot below)

5
.

Click Retrieve signer information to retrieve the keys from WAS

Page 25 of 144

6
.

Apply and save the changes

6.3.2 Configure WAS (server) for SSL

1
.

From the administrative console, follow
Security > SSL certificate and key management > key stores and certificates > NodeDefaultTrustStore -
> Signer certificates > Retrieve from port

2
.

Enter remote machine name in the Host field(see screenshot below)

3
.

Enter CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS 9402 of the remote machine at Port (see
screenshot below)

Page 26 of 144

4
.

Enter Alias for reference (see screenshot below)

5
.

Click Retrieve signer information

6
.

Apply and save the changes

Page 27 of 144

7 Patterns (Interactions)

7.1 Sequence of interactions

In this chapter we describe each step of the showcase. We describe

• how to configure the specifications for security – on consumer and provider side

• the implementation of the step in WAS, in WMB, and WPS.

How to read the configuration steps

o We have chosen the approach which describes specifications in the message flow
or BPEL application directly with server configuration to show its dependencies.

o The configuration is described from the consumer side first and the corresponding

settings on the provider side. In some steps it is described the opposite way as the
settings are driven by the provider side.

Page 28 of 144

7.1.1 Interaction 1 to 3 - Start Process

This section describes how to propagate the identity using Username Tokens from WebSphere Application
Server to WebSphere Process Server via SOAP/http.

Client Application Server Application

StartProcessEAR_3 (WAS) ShowcaseApp (WPS, BPC Web Service API)

The figure below shows the relevant part in the sequence diagram:

The figure below shows the high-level implementation and configuration steps that have to be performed.
Find details of the steps in the next sections.

7.1.1.1 Optional implementation

In this scenario we use Username tokens to propagate the identity. Another option would be to use an LTPA
token instead the Username Token. Following table lists pros and cons using LTPA- and Username tokens:

Page 29 of 144

 LTPA Token Username Token
Pro + No SSL required, LTPA Key

exchange is sufficient
+ No Realm in token: No Realm mapping
required, if using different realms

Con - If different Realms: Realm
mapping required

- Identity assertion must be configured, if
password is not known
- SSL must be configured

7.1.1.2 Detailed description of the implementation and configuration steps

To configure the Username Token with identity assertion and SSL between WebSphere Application Server

and WebSphere Process Server, follow the next steps.

7.1.1.3 Step 1 – WPS: Develop the BPEL Application and define potential process
starters

Detailed implementation steps, which are not security relevant, are not described. Refer to the WID artefacts
to see how the BPEL application is developed.

To define who (users, groups, dynamic staff assignments) is allowed to start a process, an invocation human
task must be defined on the receive activity of the BPEL process.

1. In the BPEL editor, click on the Receive activity and select under Properties > Authorization > New to
create a new invocation human task

2. Click on Potential starters and select under Properties the People assignment criteria. In our case it is
just a User ID. It could be also a Group of users, or a dynamic staff assignment.

Page 30 of 144

7.1.1.4 Step 2 – WPS: Deploy BPEL Application

Detailed deployment steps are described in the appendix.

7.1.1.5 Step 3 – WPS: Modify Token consumer settings on the BPC Container

By default, the Business Process Container application accepts LTPA- and Username Tokens.
We have to modify the Web Service security bindings of the Username Token consumer to use User Id
assertion as we do not send the User’s password from WAS to WPS.

The following sequence describes the detailed configuration steps how to modify the Web Service security
bindings of the Username Token consumer to use User ID assertion for the BPCContainer application.

3. To modify the security binding click in the Admin Console on
Applications->Enterprise Applications->BPCContainer_<yourDeploymentTarget>

Page 31 of 144

4. Click Manage Modules

5. Click on the module BFIM_<yourDeploymentTarget>

Page 32 of 144

6. Click Web services: Server security bindings

7. Click Edit custom

Page 33 of 144

8. Click Token consumers

9. Click username_token_con

10. Modify the Token consumer class name: Replace the existing entry
com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer
with:
com.ibm.wsspi.wssecurity.token.IDAssertionUsernameTokenConsumer
and click Apply and JAAS configuration

Page 34 of 144

11. Change the JAAS configuration name to
system.wssecurity.IDAssertionUsernameToken
Click OK and save

You have now modified the Web Service security bindings of the Username Token consumer to use User Id
assertion.

Page 35 of 144

7.1.1.6 Step 4 – WAS: Develop Web Service consumer application and define Token
Generator – JAX RPC

Detailed implementation steps, which are not security relevant, are not described. Refer to the WID artefacts
to see how the application is developed.

The consumer (WAS) has to send an Asserted Username Token to the BPC Web Service. This is a
Username Token without password.

1. To create a Username Token, open the Deployment Descriptor of the StartProcess_Web application

2. Click the WS Extension tab
Add a Security Token under Request Generator Configuration
Select as Token type Username Token
Local part is filled automatically.
Click OK

3. Click the tab WS-Security Bindings
Add a Token Generator under Security Request Generator Configuration

Token Generator Name: TOKEN_GEN

Token generator class: com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator

Security Token: BFM_TOKEN

Use value type: Checked

Callback handler: Blank

UserID Blank

Password Blank

Callback handler Properties:

com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed=true

com.ibm.wsspi.wssecurity.token.IDAssertion.useRunAsIdentity=true

You'll need to click the Add button to add a row and then select name and value fields to type over.

Page 36 of 144

Click OK

4. Save the deployment descriptor

7.1.1.7 Step 4 – WAS: Develop Web Service consumer application and define Token
Generator – JAX WS

When using JAX-WS you have two options to generate a token:

• By configuration using policy sets

• By implementation

Generate the token by programming (this option is implemented in the showcase):

Page 37 of 144

This section describes how to use the programmatic approach:

public void startProcess() {

 BFMWSService service = new BFMWSService();

 BFMIF bfm = service.getBFMWSPort();

 try {

enhanceSecurity(bfm,

com.ibm.websphere.security.auth.WSSubject.getCallerPrincipal(), "");

 } catch (WSSException e1) {

 e1.printStackTrace();

 }

 Order order = new Order();

 order.setClientEmail(getClientEmail());

 order.setPartNumber(getPartNumber());

 order.setPartCount(new Integer(getPartCount()));

 Start start = new Start();

 start.setOrder(order);

com.ibm.xmlns.prod.websphere.business_process.services._6.SendMessage

sendMessage = new ObjectFactory().createSendMessage();

 sendMessage.setProcessTemplateName("Showcase");

 sendMessage.setPortType(new QName("http://Showcase/Order", "Order"));

 sendMessage.setOperation("start");

 sendMessage.setAny(getElement(start));

com.ibm.xmlns.prod.websphere.business_process.services._6.SendMessageRespons

e response;

 try {

 response = bfm.sendMessage(sendMessage);

 setPiid(response.getPIID());

 } catch (ProcessFaultMsg e) {

 e.printStackTrace();

 }

 }

private void enhanceSecurity(BFMIF port, String user, String password) throws

WSSException {

 BindingProvider binding = (BindingProvider) port;

 Map requestContext = binding.getRequestContext();

 WSSFactory wssFactory = WSSFactory.getInstance();

 WSSGenerationContext genContext = wssFactory.newWSSGenerationContext();

//UNTGenerateCallbackHandler untCallbackHandler = new

UNTGenerateCallbackHandler(user, password, true, true);

UNTGenerateCallbackHandler untCallbackHandler = new

UNTGenerateCallbackHandler(user, null, true, true);

Page 38 of 144

SecurityToken secToken = wssFactory.newSecurityToken(UsernameToken.class,

untCallbackHandler);

 genContext.add(secToken);

 genContext.process(requestContext);

 }

Generate the token by configuration

Create a new policy set for Username Tokens. We will not use the default Username Policy set, because it
will also encrypt the message:

 In the administrative console click Services – Policy Sets – Application policy sets

Click New

 Enter a name and click Apply

Page 39 of 144

 Click on Add and select WS-Security

 Click Apply and click on WS-Security

 Click on Main policy

De-select Include timestamp…
De-select Message Level protection
Click Apply
Click Request Token policies

Page 40 of 144

 Click on Add Token Type
Click Username

 Enter a Token name
Select as WS-Security version 1.1
Click Apply
Save

Bind the policy set to the service client:

 Click on Service clients

Click on BFMWSService

Page 41 of 144

 Select BFMService
Click Attach and click UNTAsserted

 Select BFMService
Click Assign Binding
Click New

Page 42 of 144

 Enter a Name and click WS-Security

 Click on WS-Security

 Click on Authentication and protection

 Click on request:UNT

Page 43 of 144

 Add the custom properties:

com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed
to sent the username without password

com.ibm.wsspi.wssecurity.token.IDAssertion.useRunAsIdentity = true
to sent the RunAs identity as Username

 Save

7.1.1.8 Step 5 – WAS: Deploy application

Detailed deployment steps are not described.

Page 44 of 144

7.1.2 Interaction 4a and 4d – Check Stock #1 – WPS to Message Broker

This chapter describes how to propagate a user ID from WPS via MQ to Message Broker.
SSL is used for transport level security.

Client Application Server Application

ShowcaseApp (WPS, SCA Import - MQ Binding) CheckStockMQ.mgsflow (WMB)

The figure below shows the relevant part in the sequence diagram:

The figure below shows the high-level implementation and configuration steps that have to be performed.
Find details of the steps in the next sections.

7.1.2.1 Step 1 – MQ: Define queues

Page 45 of 144

Make sure that following queues are defined in MQ:

STOCK_5_INPUT_J2EE

STOCK_5_INPUT_WPS

STOCK_5_OUTPUT_J2EE

STOCK_5_OUTPUT_WPS

7.1.2.2 Step 2 – WPS: Develop the BPEL application

7.1.2.2.1 Propagate the user ID from WPS to Message Broker

There are three options to propagate the user ID from WPS to Message Broker.
1. Only Option 1 is implemented in the showcase.
2. Option 2 is feasible and documented, but not implemented in the showcase.
3. Option 3 is not feasible and therefore not implemented in the showcase.

7.1.2.2.1.1 Option 1 - User propagation via payload (This is the implemented option in the
showcase)

In WPS we put the user ID in the payload of the message using a BO Map.
The user ID is the user ID of the thread starter (process starter). We use
WSSubject.getCallerPrincipal()in a custom assign to get the user ID under which the thread runs.

This field of the BO will be used in the Message Broker to do authorization.

Page 46 of 144

7.1.2.2.1.2 Option 2 - User propagation via Custom MQ Header (not implemented)

In WPS MQ Headers can be produced and modified using mediation components. A username custom
header (e.g MQRFH2) can be passed via MQ to the Message Broker.
To create an MQRFH2 in WPS you have to create a mediation module. Within the mediation module an
MQHeaderSetter node sets the MQRFH2:

Page 47 of 144

On the Broker site, the message flow can access and extract the user ID from the MQRFH2 Header field.

Page 48 of 144

7.1.2.2.2 Define the ConnectionFactory and queue objects in WID

After the SSL configuration is done (which is described here) configure the MQ import in the SCA Assembly
Diagram to match the SSL settings.

1. Open the Assembly Diagram in WID and click the MQ Import CheckStockMQ

At Properties > End-point configuration make sure you use as Server channel the SSL server
connection channel.

2. At Security attributes select as Cipher Suite the one you have selected during the MQ SSL
configuration.
Enter as Peer name the DN which you have defined during the creation of the certificates.

7.1.2.3 Step 3 – WPS: Deploy the BPEL application

Detailed deployment steps are not described.

Page 49 of 144

7.1.2.4 Step 4 – WMB: Develop the message flow and set up a security profile

Detailed implementation steps, which are not security relevant, are not described. Refer to the WMB Toolkit
artefacts to see how the message flow application is developed.

If the User Id is provided with the input message, HTTPInput, SOAPInput, or MQInput nodes can be
examined for an identity field. The identity is used as is, or can be mapped to an alternate identity. This
identity is used to ensure that the client is authorized to access the message flow.
Authentication and authorization are performed using an LDAP. The type of security actions to be taken
(authentication, authorization, and mapping) and the external provider to use are controlled by security
profiles defined for the broker.

Reference Material:
Using the New Features in WebSphere Message Broker V6.1
http://www.redbooks.ibm.com/abstracts/redp4458.html

In the showcase we can do authentication on the message flow:

1 The input message (csv format) contains the user Id in column 3 of the message

2 A Security Profile on the broker must exist and Authentication must be set to LDAP

3 Specify in the MQInput Node:
identity token type = Username
identity token location = path to the user ID field

Page 50 of 144

4 The Security Profile must be added to the MQ input node of the message flow in the Broker archive.

7.1.2.5 Step 5 – WMB: Deploy the message flow application

Detailed deployment steps are not described.

7.1.2.6 Step 6 – SSL configuration between WPS and MQ

Refer to chapter “SSL between WPS and MQ”

Page 51 of 144

7.1.3 Interaction 4b and 4c – Check Stock #1 – Message Broker to WAS

This scenario describes how to propagate a user ID from WMB via MQ to WAS.
SSL is used for transport layer security.

The figure below shows the relevant part in the sequence diagram:

The figure below shows the high-level implementation and configuration steps that have to be performed.
Find details of the steps in the next sections.

7.1.3.1 Step 1 – WMQ: Define queues

Make sure that the following queues exist on MQ:

STOCK_5_INPUT_J2EE

Page 52 of 144

STOCK_5_INPUT_WPS

STOCK_5_OUTPUT_J2EE

STOCK_5_OUTPUT_WPS

7.1.3.2 Step 2 – WMB: Develop the message flow

Detailed implementation steps, which are not security relevant, are not described. Refer to the WMB
artefacts to see how the application is developed.
The message flow is just a pass-through flow.

7.1.3.3 Step 3 – WMB: Deploy the message flow

Detailed deployment steps are not described.

7.1.3.4 Step 4 – WAS: Develop the WAS application

Detailed implementation steps, which are not security relevant, are not described. Refer to the WID artefacts
to see how the application is developed.

7.1.3.5 Step 5 – WAS: Configure the MQ Adapter WAS application

The term “MQ Adapter” means here that we switch the user context of the thread under which the Java MDB
runs. To do so, the following must be implemented:

1. Parse the MQ input message
2. Get the user ID from the payload
3. Switch the user context

Parse the MQ input message

 BytesMessage bytesMsg = (BytesMessage) msg;

 byte[] payloadba = new byte[(int) bytesMsg.getBodyLength()];

 int datalen = bytesMsg.readBytes(payloadba);

 if (datalen != bytesMsg.getBodyLength()) {

 System.out.println("BodyLength = " + bytesMsg.getBodyLength()

 + ", but returned data lengt = " + datalen);

 return;

 }

 String payload = new String(payloadba);

 // handle payload

 String reply = handlePayload(payload);

Page 53 of 144

Get the user ID from the payload

 String[] results = payload.split(","); // number,count,user

 partNumber = results[0];

 partCount = results[1];

 userId = results[2];

Switch the User Context

AuthenticationHandler result = null;

 result = new AuthenticationHandler();

 realm = "defaultWIMFileBasedRealm";

 try {

 result.setSubject(com.ibm.ws.security.core.ContextManagerFactory

 .getInstance().login(realm, userId));

 WSSubject.setRunAsSubject(result.getSubject());

 } catch (WSLoginFailedException e1) {

 // TODO Auto-generated catch block

 e1.printStackTrace();

 } catch (WSSecurityException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

7.1.3.6 Step 6 – WAS: Deploy the WAS application

Detailed deployment steps are not described.

7.1.3.7 Step 7 – SSL Configuration

Refer to the chapter SSL Configuration.

7.1.4 Interaction 5a and 5d – Check Stock #2 – WPS to Message Broker

Client Application Server Application

ShowcaseApp (WPS, SCA Import - MQ Binding) CheckStockMQ.mgsflow (WMB)

The figure below shows the relevant part in the sequence diagram:

Page 54 of 144

The figure below shows the high-level implementation and configuration steps that have to be performed.
Find details of the steps in the next sections.

Refer to the Chapter Interaction 4a and 4d – Check Stock #1 – WPS to Message Broker

Page 55 of 144

7.1.5 Interaction 5b and 5c – Check Stock #2 – Message Broker to WAS

This chapter describes identity propagation with identity assertion from WBM to WAS via SOAP/HTTP.

Client Application Server Application

CheckStockMQ.mgsflow (WMB) CheckStock2EAR (WAS)

The figure below shows the relevant part in the sequence diagram:

The figure below shows the high-level implementation and configuration steps that have to be performed.
Find details of the steps in the next sections.

In this scenario a trusted user vouches for the end-user. WebSphere Application Server provides
functionality that you can use to configure identity assertion and there are different ways in which it can be
configured. This chapter documents one such way to achieve identity assertion by using a combination of
transport-level basic authentication and message level Username token where:

• Transport-level basic authentication will be used to carry the credential of the trusted caller and

• Username Token will be used to carry the identity of the asserted user.

Page 56 of 144

7.1.5.1 Step1 – WAS: Develop Web Service provider application and create token
consumer

WAS, the service provider, expects from the Web Service consumer an asserted Username Token.
Therefore, we have to configure the deployment descriptor of WAS accordingly.

1. To create a Request Consumer Security Token open the webservice.xml and go to the tab Extension

2. Open Request Consumer Service Configuration Details > Required Security Token and
Click Add

3. Name the token for example AssertedUsernameToken
Select as Token type Username Token
Local Part is set automatically when choosing Username Token
Usage type is Required
Click OK

Page 57 of 144

4. The token is now available in the Required Security Token section

5. Open the Binding Configurations Tab
Open Request Consumer Binding Configuration Details > Token Consumer
Click Add

Page 58 of 144

6. • In the Token Consumer dialog box enter a consumer name, e.g AssertedTokenConsumer

• Select as Token consumer class
com.ibm.wsspi.wssecurity.token.IDAssertionUsernameTokenConsumer

• As Security Token select AssertedUsernameToken

• Check Use value type

• Select as Value type: Username Token

• Local Part is generated automatically

• Check Use.jaas.config

• Enter as jaas.config name: system.wssecurity.IDAssertionUsernameToken
by selecting the IDAssertionUsernameToken we define that we just need the user ID, and no
password

• Click OK

7.1.5.2 Step 2 – WAS: Deploy the application

Detailed deployment steps are described in the appendix.

Page 59 of 144

7.1.5.3 Step 3 – WMB: Develop the message flow as Web Service consumer

This section describes how to take the identity information from the message body and build a SOAP
Username Token. The objective is to get a SOAP Message as shown below, which is build in WMB and sent
to WAS.

<soapenv:Envelope xmlns:show="http://showcase.ibm.com" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-31775739" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>bob</wsse:Username>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <show:getStock>
 <partNumber>0</partNumber>
 <count>0</count>
 </show:getStock>
 </soapenv:Body>
</soapenv:Envelope>

To build such SOAP messages with the Username Token, perform the following steps.

1. First, create a Compute Node. The Compute Node extracts the user ID from the input message and
assigns it to an IdentityMappedToken . The Compute Node will also set the

IdentityMappedType to username

Based on both properties, the SOAP request node will later build the SOAP Security Header with a
(asserted) Username Token.

SET OutputRoot.Properties.IdentityMappedType='username';

SET OutputRoot.Properties.IdentityMappedToken= InputRoot.MRM.CSV_Row.CSV_Column[3];

2. To propagate the IdentityMappedType and IdentityMappedTokenType to the SOAP Security Header a
Policy Set must be created and added to the bar file. Also, a Security Profile must be added to the
RequestNode:

• Create a Policy Set

• Right-clickon the broker and select Open Policy Sets

Page 60 of 144

3. Add a new Policy Set (for example, Policy_2) and add a new Authentication Token (for example,
username)

4. Add a New Policy Set Binding

Page 61 of 144

5. Add the Policy set to the BAR:
Right-click on the cmf file and select Configure

6. Add the Policy set to the Consumer Policy Set and the Binding to the Consumer Binding

7. Add the defaultSecurity profile to the RequestNode (the defaultSecurity profile is configured for identity
propagation):
In the BAR file Right-click on the Request Node and select Configure

Page 62 of 144

8. As Security profile, select Default propagation

7.1.5.4 Step 4 – WMB: Deploy the message flow

Detailed deployment steps are described in the appendix.

7.1.5.5 Step 5 – SSL configuration between WMB and WAS

Refer to chapter “SSL between WMB and WAS”

Page 63 of 144

7.1.6 Interaction 7 and 8 - SOAP/HTTP from WPS to WAS via Message Broker

This section describes identity propagation from WPS to WAS via Message Broker. identity is propagated via
Username Token in the Web Service Security Header.
This section also describes the implementation of an asynchronous SOAP Request from WMB to WAS.

• WPS makes a one-way call with a Username Token to WMB

• WMB copies the message header (Username Token) and calls WAS

• WAS sends a response message, which is received by WMB

• WMB forwards it using a one-way call to WPS

 Client Application Server Application

1 ShowcaseApp (WPS, SCA Import – SOAP/HTTP
Binding)

InternalOrder_7Flow.mgsflow (WMB)

2 InternalOrder_7Flow.mgsflow (WMB) InternalOrder8 (WAS)

3 InternalOrder_7Flow.mgsflow (WMB) ShowcaseApp (WPS, SCA Export – SOAP/HTTP
Binding)

The figure below shows the relevant part in the sequence diagram:

The figure below shows the high-level implementation and configuration steps that have to be performed.
Find details of the steps in the next sections.

Page 64 of 144

7.1.6.1 Step 1 – WPS: Develop the BPEL application

Refer to the WID artefacts to see how the full BPEL application is developed.

The process must be configured so that it only accepts responses with the identity of the process
starter:

1. Add a Authorization Human task to the Receive activity

2. Open the Human Task and select as Potential Starters Users by user ID and as value
%wf:process.starter%

Page 65 of 144

3. Save the Human Task

7.1.6.2 Correlation in BPEL

In this interaction step we use BPEL correlation set to correlate response messages. This section describes
the implementation of a correlation set in the showcase application.

Reference Material

BPC Samples Page
http://publib.boulder.ibm.com/bpcsamp/advancedProcessFeatures/correlation.html

1. The BPEL contains a one way invoke and a Receive activity.

2. To correlate the response message in the Receive activity, a Correlation Property must be created.

The Correlation Property specifies the correlation parameters of the request interface and of the response
interface.

Page 66 of 144

3. Also a Correlation Set must be defined, which contains a link to the InternalOrderCorrelationProperty.

4. First, the correlation set must be initialized at the invoke activity

Page 67 of 144

5. Second, the correlation set must be used at the receive activity

6. Now, the BPEL flow is able to correlate the response message to the appropriate process instance.

7.1.6.3 Step 2 – WPS: Create a Token Generator

WMB as service provider expects from the WPS client an asserted Username Token. Therefore, we have to
configure the deployment descriptor of WPS accordingly.

1. Right-click the showcase SCA Module and select Open Deployment Editor

2. Click the Imports tab

Page 68 of 144

3. Click the WS-Security Extension tab
Add a Security Token under Request Generator Configuration
Select as Token type Username Token
Local part is filled automatically.

4. Click WS-Security Bindings
Add a Token Generator under Security Request Generator Configuration

Token Generator Name: AssertedTokenGenerator

Token generator class: com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator

Security Token: AssertedToken

Use value type: Checked

Callback handler: Blank

UserID Blank

Password Blank

Callback handler Properties:

com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed=true

com.ibm.wsspi.wssecurity.token.IDAssertion.useRunAsIdentity=true

You'll need to click the Add button to add a row and then select name and value fields to type over.

Page 69 of 144

7.1.6.4 Step 3 – WPS: Create a Token Consumer

The response to WPS is delivered as Web Service call from WMB to WPS. This means:

• WPS is Web Service provider

• WMB is Web Service client

Page 70 of 144

We need to deliver in the identity in form of a Username Token from (WAS to) WMB to WPS.

Right-click the showcase SCA Module and select Open Deployment Editor

Click the Exports tab > WS-Security-Extensions and add a Required Security Token

Click the WS-Security Extension tab
Add a Security Token under Request Generator Configuration
Select as Token type Username Token
Local part is filled automatically.

Open Request Consumer Binding Configuration Details > Caller Part
Click Add

Page 71 of 144

Switch to the WS-Security Bindings tab and add a new Token Consumer

Page 72 of 144

• In the Token Consumer dialog box enter a consumer name, e.g AssertedTokenConsumer

• Select as Token consumer class
com.ibm.wsspi.wssecurity.token.IDAssertionUsernameTokenConsumer

• As Security Token select AssertedUsernameToken

• Check Use value type

• Select as Value type: Username Token

• Local Part is generated automatically

• Check Use.jaas.config

• Enter as jaas.config name: system.wssecurity.IDAssertionUsernameToken
by selecting the IDAssertionUsernameToken we define that we just need the user ID, and no
password

• Click OK

Page 73 of 144

7.1.6.5 Step 4 – WPS: Deploy the BPEL application

Detailed deployment steps are described in the appendix.

7.1.6.6 Step 5 – WAS: Develop the WAS application

Detailed implementation steps, which are not security relevant, are not described. Refer to the WID artefacts
to see how the application is developed.

7.1.6.7 Step 6 – WAS: Create the Token Request Consumer

WAS as service provider expects an asserted Username Token from the client. Therefore, we have to
configure the deployment descriptor of WAS accordingly.

1. To create a Request Consumer Security Token open the webservice.xml and goto the tab Extension

Page 74 of 144

2. Open Request Consumer Service Configuration Details > Required Security Token and
Click Add

3. Name the token for example AssertedUsernameToken
Select as Token type Username Token
Local Part is set automatically when choosing Username Token
Usage type is Required
Click OK

4. The token is now available in the Required Security Token section

Page 75 of 144

5. Open the Binding Configurations Tab
Open Request Consumer Binding Configuration Details > Token Consumer
Click Add

6. • In the Token Consumer dialog box enter a consumer name, e.g AssertedTokenConsumer

• Select as Token consumer class
com.ibm.wsspi.wssecurity.token.IDAssertionUsernameTokenConsumer

• As Security Token select AssertedUsernameToken

• Check Use value type

• Select as Value type: Username Token

• Local Part is generated automatically

• Check Use.jaas.config

• Enter as jaas.config name: system.wssecurity.IDAssertionUsernameToken
by selecting the IDAssertionUsernameToken we define that we just need the user ID, and no
password

• Click OK

Page 76 of 144

7. Open the Extension Tab
Open Request Consumer Binding Configuration Details > Caller Part
Click Add

Page 77 of 144

7.1.6.8 Step 7 – WAS: Create a Token Response Generator

1. To create a Response Generator Security Token open the webservice.xml and goto the tab Extension

2. Open Request Consumer Service Configuration Details > Required Security Token and
Click Add

Page 78 of 144

3. Name the token for example ResponseAssertionToken
Select as Token type Username Token
Local Part is set automatically when choosing Username Token
Click OK

4. The token is now available in the Required Security Token section

Page 79 of 144

5. Open the Binding Configurations Tab
Open Response Generator Binding Configuration Details > Token Consumer
Click Add

6. Token Generator Name: ResponseTokenGenerator

Token generator class: com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator

Security Token: ResponseAssertionToken

Use value type: Checked

Callback handler: Blank

UserID Blank

Password Blank

Callback handler Properties:

com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed=true

com.ibm.wsspi.wssecurity.token.IDAssertion.useRunAsIdentity=true

You'll need to click the Add button to add a row and then select name and value fields to type over.

Page 80 of 144

7.1.6.9 Step 8 – WAS: Deploy WAS application

Detailed deployment steps are described in the appendix.

Page 81 of 144

7.1.6.10 Step 9 – WMB: Develop MessageFlow

Message Broker makes an asynchronous SOAP Request to WAS.

The objective is to build a SOAP Message like below, which is sent to WAS. To achieve this, we copy just
the WS-Security Header from the input node to the output node.

<soapenv:Envelope xmlns:int="http://Showcase/InternalOrder" xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-20140850" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd">
 <wsse:Username>admin</wsse:Username>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <int:execute>
 <input1>
 <!--Optional:-->
 <partNumber>3</partNumber>
 <!--Optional:-->
 <partCount>1</partCount>
 <!--Optional:-->
 <repositoryId>1</repositoryId>
 <!--Optional:-->
 <clientOrderId>1</clientOrderId>
 </input1>
 </int:execute>
 </soapenv:Body>
</soapenv:Envelope>

 In the Compute nodes for the request and response flows copy the SOAP input Header into the SOAP
output header

--COPY SOAP UsernameToken
SET OutputRoot.SOAP.Header = InputRoot.SOAP.Header;

7.1.6.11 Step 10: Deploy MessageFlow

Detailed deployment steps are not described

Page 82 of 144

7.1.7 Interaction 11 and 14: Human Task – get Supplier – WAS to WPS

This scenario shows how to propagate the user identity via LTPA from WAS to WPS with the HTM Web
Service API.

Client Application Server Application

HumanTaskInterface (WAS) ShowcaseApp (HTM Web Service API)

The figure below shows the relevant part in the sequence diagram:

The figure below shows the high-level implementation and configuration steps that have to be performed.
Find details of the steps in the next sections.

Page 83 of 144

For all three calls (query, claim, complete) the generic HTM Web Service API is used.
By default, the HTM Web Service API supports LTPA- and Username Tokens. Therefore, no security-
specific configuration is necessary on WPS side.

7.1.7.1 Step 1 – WPS: Develop the BPEL application and define the potential Human
Task Owners

Detailed implementation steps, which are not security relevant, are not described. Refer to the WID artefacts
to see how the BPEL application is developed.

To define potential HT owners follow the next steps:

Open the Human task

Page 84 of 144

In the Task you can define Potential Owners. In our case, everybody who is authenticated can claim
the task.

7.1.7.2 Step 2 – WPS: Deploy the BPEL application

Detailed deployment steps are described in the appendix.

7.1.7.3 Step 3 – WAS: Develop the Web Service client

Detailed implementation steps, which are not security relevant, are not described. Refer to the WID artefacts
to see how the BPEL application is developed.

7.1.7.4 Step 4 – WAS: Define the Token Generator – JAX-RPC

Page 85 of 144

On the client side (WAS) a Security Token and a Token Generator must be configured. The next steps
describe how to configure the client application to send an LTPA Token.

 Open the deployment descriptor on the client application

 In the deployment descriptor open the WS Extension tab, and add a new Security Token

 Add a new LTPA token

 Go to the WS Binding tab and add a new Token Generator

Page 86 of 144

 Name the Token generator for example LTPA Token Gen
Select as class com.ibm.wsspi.wssecurity.token.LTPATokenGenerator
Select as Security Token the LTPA Token

Enable Use value type
Select as Value type LTPA Token

Page 87 of 144

7.1.7.5 Step 4 – WAS: Define Token Generator – JAX-WS

If using JAX-WS you have following two options to generate a LTPA Token:

- By coding
- By declaration

This section describes how to use the programmatic approach:

HTMWSService service = new HTMWSService();

htm = service.getHTMWSPort();

try {

enhanceSecurity(htm,

com.ibm.websphere.security.auth.WSSubject.getCallerPrincipal(), "");

 } catch (WSSException e1) {

 e1.printStackTrace();

 }

Page 88 of 144

...

private void enhanceSecurity(HTMIF port, String user, String password) throws

WSSException {

 BindingProvider binding = (BindingProvider) port;

 Map requestContext = binding.getRequestContext();

 WSSFactory wssFactory = WSSFactory.getInstance();

 WSSGenerationContext genContext = wssFactory.newWSSGenerationContext();

//UNTGenerateCallbackHandler untCallbackHandler = new

UNTGenerateCallbackHandler(user, password, true, true);

LTPAGenerateCallbackHandler ltpaCallbackHandler = new

LTPAGenerateCallbackHandler(user, null);

SecurityToken secToken = wssFactory.newSecurityToken(LTPAToken.class,

ltpaCallbackHandler);

 genContext.add(secToken);

 genContext.process(requestContext);

 }

 In the administrative console, select Policy sets > Application policy sets

7.1.7.6 Step 5 – WPS: Deploy WAS application

Detailed deployment steps are described in the appendix.

7.1.7.7 Step 6 – SSL configuration between WPS and WAS

Refer to chapter “SSL between WPS and WAS”

Page 89 of 144

7.1.8 Interaction 13: Web Service Addressing between WAS and WMB

This section describes how to set up WS-A between WAS and WMB. HTTPs will be used as Transport Level
Security. Identity propagation will be done using Username Tokens (w/o password).

Client Application Server Application

HumanTaskInterface (WAS) Supplier.msgflow (WMB)

The figure below shows the relevant part in the sequence diagram:

The figure below shows the high-level implementation and configuration steps that have to be performed.
Find details of the steps in the next sections.

Page 90 of 144

Reference Material

• Web Services Handbook for WebSphere Application Server Version 6.1, Chapter 19 “WS-
Addressing and WS-Resource”, SG24-7257

• DeveloperWorks Article “Driving WS-Addressing in WebSphere Application Server Version 6.1” at
http://www.ibm.com/developerworks/webservices/library/ws-soa-wsawsa/

7.1.8.1 Step 1 – WMB: Implement the message flow

The SOAPInput node has a property for processing WS-Addressing information present in the incoming
message called Use WS-Addressing. If you select this property, the WS-Addressing information is processed
and the process itself is called engaging WS-Addressing. The default is that WS-Addressing is not engaged.
To enable WS-A support in WMB on a SOAP Input node, open the Properties tab of the SOAP input node
and select WS Extensions -> Use WS-Addressing (see figure below).
There is also the option to specify this property in the WSDL. Refer to
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/index.jsp?topic=/com.ibm.etools.mft.doc/ac64500_
.htm.

The SOAPReply node uses WS-Addressing if WS-Addressing is engaged on the SOAPInput node that is
referenced by the reply identifier of the message entering the reply node.
The SOAPReply node uses addressing information in the Destination.SOAP.Reply.WSA folder of the local
environment to determine where to send the reply and with what Message Addressing Properties (MAPs).
If the Destination.SOAP.Reply.WSA does not exist, or is completely empty when inspected by the
SOAPReply node, the node uses the default addressing headers that were part of the incoming message.
Therefore, you do not have to propagate the local environment in the default case, and addressing still works
as expected. Refer to
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/index.jsp?topic=/com.ibm.etools.mft.doc/ac64510_
.htm

Page 91 of 144

7.1.8.2 Step 2 – WMB: Deploy the message flow

Detailed deployment steps are described in the appendix.

7.1.8.3 Step 3 – WAS: Configure and implement the WAS application

To make a WS-A call in a Java application, the following basic steps have to be performed:

1. Generate a JAX-RPC client based on the WSDL

2. Set the Input parameters of the SOAP request message

3. Create the SOAP Proxy
SupplierProxy sp = new SupplierProxy();

4. Create an Endpoint Reference Object
EndpointReference epr = null;

5. Create a URI object holding the endpoint
URI uri = new URI(

 "http://fmtc7113.boeblingen.de.ibm.com:7800/testwsdlWeb/sca/SupplierExpor

t1");

6. Add the URI to the EndpointReference object
epr = com.ibm.wsspi.wsaddressing.EndpointReferenceManager

Page 92 of 144

 .createEndpointReference(uri);

7. Create a Stub object
javax.xml.rpc.Stub stub = ((javax.xml.rpc.Stub) sp.getSupplier());

8. Set the EPR object as WS-Addressing destination property to the stub
stub.setProperty(

 com.ibm.websphere.wsaddressing.WSAConstants.WSADDRESSING_DESTINATION_EPR,

epr);

9. Do the SOAP call and get the response. No extra configuration is needed for the Web services provider
on WebSphere Application Server 6.1. The application server automatically inserts WS-Addressing
headers in the response.

10. Find details for 7 to 9 in the code snippet below (step 12, GetSupplierBean.java)

11. The WSDL binding information can specify that WS-Addressing is mandatory or optional:
<wsdl:binding name="xyzBinding" type="intf:xyzBean">
<wsaw:UsingAddressing wsdl:required="false"
xmlns:wsaw="http://www.w3.org/2006/02/addressing/wsdl"/>
......

When specifying wsdl:required="true" the Web service returns a fault if WS-Addressing information is
missing in the client request message. If a WebSphere Application Server client sends a message
without specifying addressing properties the message automatically contains the mandatory WS-
Addressing information. Therefore WebSphere clients do not have to worry about WS-Addressing.

12. GetSupplierBean.java:

package com.ibm.wsapitest;

import java.rmi.RemoteException;

import Showcase.Get;

import Showcase.GetResponse;

import Showcase.SupplierProxy;

import Showcase.SupplierRequest;

import com.ibm.websphere.wsaddressing.EndpointReference;

import com.ibm.websphere.wsaddressing.EndpointReferenceCreationException;

import java.net.URI;

import java.net.URISyntaxException;

public class GetSupplierBean {

 String partNumber, partCount, supplierId;

 public String getSupplier() {

 System.out.println("create SOAP Request");

 SupplierRequest sr = new SupplierRequest();

 sr.setPartCount(1);

 sr.setPartNumber("123");

 Get g = new Get();

 g.setInput1(sr);

 GetResponse res = null;

 System.out.println("create SOAP Proxy");

 SupplierProxy sp = new SupplierProxy();

 EndpointReference epr = null;

 try {

 URI uri = new URI(

 "http://fmtc7113.boeblingen.de.ibm.com:7800/testwsdlWeb/sca/SupplierExport1");

 epr = com.ibm.wsspi.wsaddressing.EndpointReferenceManager

 .createEndpointReference(uri);

 } catch (EndpointReferenceCreationException e) {

Page 93 of 144

 // TODO Auto-generated catch block

 System.out.println("********************** Error creating erp");

 e.printStackTrace();

 } catch (URISyntaxException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 System.out.println("create stub");

 javax.xml.rpc.Stub stub = ((javax.xml.rpc.Stub) sp.getSupplier());

 System.out.println("set stub property");

 stub

 ._setProperty(

 com.ibm.websphere.wsaddressing.WSAConstants.WSADDRESSING_DESTINATION_EPR,

 epr);

 System.out.println("do SOAP call");

 try {

 res = sp.getSupplier().get(g);

 } catch (RemoteException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 String[] response = res.getOutput1();

 setSupplierId(response[0]);

 System.out.println(response[0]);

 return response[0];

 }

 public String getPartNumber() {

 return partNumber;

 }

 public void setPartNumber(String partNumber) {

 this.partNumber = partNumber;

 }

 public String getPartCount() {

 return partCount;

 }

 public void setPartCount(String partCount) {

 this.partCount = partCount;

 }

 public String getSupplierId() {

 return supplierId;

 }

 public void setSupplierId(String supplierId) {

 this.supplierId = supplierId;

 }

}

7.1.8.4 Step 4 – WAS: Deploy the application

Detailed deployment steps are described in the appendix.

Page 94 of 144

7.1.9 Interaction 15 and 16 – SOAP/MQ - Identity propagation based on HT owner of
preceding activity

This step documents:

• Identity propagation not based on process starter identity but on HT owner of preceding activity

• SOAP/MQ call from WPS to WAS

 Client Application Server Application

1 ShowcaseApp (WPS, SCA Import – SOAP/JMS
Binding)

InternalSupplierOrder_16 (WAS)

The figure below shows the relevant part in the sequence diagram:

The figure below shows the high-level implementation and configuration steps that have to be performed.
Find details of the steps in the next sections.

Page 95 of 144

7.1.9.1 Step 1 – WPS: Identity propagation based on HT owner of the preceding
activity

This section demonstrates how to call a service with an HT owner identity of a preceding activity.

 By default, the behaviour is that a invoke is done under the security context of the process starter

 To achieve that the service call is done by the human task owner, we have to add a Java snippet which
assigns the activity owner of the human task to a BPEL variable.

Page 96 of 144

The snippet contains the following code:
com.ibm.bpe.api.ActivityInstanceData aid = activityInstance("GetSuppliers");

HTOwner = aid.getOwner();

Important: This approach works only with an inline human task.

 The BPEL variable with the HT owner must be added to the payload of the message we will sent to the
back-end service.

 Now, the back-end service is not invoked directly by the Invoke activity. The invoke will call a mediation
module. The mediation module is in between the BPEL invoke and the back-end service.

 The mediation module has one main node:

 The SOAPHeaderSetter node creates a Username Token Header element and assigns the user ID from
the payload to it.

Page 97 of 144

 To create the Username Token in the security header, first of all you have to add WS-Security schema
files in the dependencies editor.

 Then, click the SOAPHeaderSetter node and select Properties > Details > Add..

 In the dialog box, select as Action Create and click Browse…

 Select as Data Type UsernameToken. If you did not add the WS-Security schema file to the
dependencies, you will not find the UsernameToken here.
Click OK

Page 98 of 144

 Click Next

 Insert an XPATH expression where to find the user ID in the input message to the value field.

Page 99 of 144

 Click Finish and Save

When the Service call is now done using SOAP, the token contains the user ID of the human task owner.

7.1.9.2 Step 2 and 3 – WPS: Implement a SOAP/JMS binding

In our showcase we use a SOAP/MQ call.

There are two options to do this:

1. Using a SOAP Datahandler with the MQ binding. However, the disadvantage here is, that just the BO

itself is converted to a SOAP message and not the SOAP Headers. The SOAP Headers are ignored by
the Datahandler. Therefore this is not an option for the showcase.

2. Another option, which we implemented, is to use a SOAP/JMS binding with MQ as JMS provider. Using
this approach, the SOAP header we set in the mediation is inserted into the SOAP envelope.

The JMS/SOAP binding defines Address properties containing destination and queue connection factory.

The queue connection factory is based on MQ:

Page 100 of 144

And the destination is also based on MQ:

Page 101 of 144

7.1.9.3 Step 4 – WPS: Deploy the BPEL application

Detailed deployment steps are described in the appendix.

7.1.9.4 Step 5 – WAS: Develop the WAS application

The WAS application picks up the message from the JMS MQ queue with a message-driven bean.
The SOAP message is parsed and a new SOAP message is created, which is sent to Message Broker via
SOAP/HTTP.

7.1.9.5 Step 6 – WAS: Configure MQ Adapter

Refer to chapter 5.9.4.5 Step 5 – WAS: Configure MQ Adapter WAS application

7.1.9.6 Step 7 – WAS: Define Token Generator and Consumer

Page 102 of 144

Define Token Generator:

 Open the deployment descriptor on the client application

 In the deployment descriptor open the WS Extension tab, and add a new Security Token

 Add a new Username token

 Go to the WS Binding tab and add a new Token Generator

Page 103 of 144

 Token Generator Name: AssertedTokenGenerator

Token generator class: com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator

Security Token: AssertedToken

Use value type: Checked

Callback handler: Blank

UserID Blank

Password Blank

Callback handler Properties:

com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed=true

com.ibm.wsspi.wssecurity.token.IDAssertion.useRunAsIdentity=true

You'll need to click the Add button to add a row and then select name and value fields to type over.

Page 104 of 144

Define Token Consumer:

1. To create a Response Consumer Security Token open the deployment descriptor and goto the tab WS

Extension

Page 105 of 144

2. Open Response Consumer Service Configuration Details > Required Security Token and
Click Add

3. Name the token for example AssertedUsernameToken
Select as Token type Username Token
Local Part is set automatically when choosing Username Token
Usage type is Required
Click OK

4. Open the WS-Binding Tab
Open Response Consumer Binding Configuration Details > Token Consumer
Click Add

5. • In the Token Consumer dialog box enter a consumer name, e.g AssertedTokenConsumer

• Select as Token consumer class
com.ibm.wsspi.wssecurity.token.IDAssertionUsernameTokenConsumer

Page 106 of 144

• As Security Token select AssertedUsernameToken

• Check Use value type

• Select as Value type: Username Token

• Local Part is generated automatically

• Check Use.jaas.config

• Enter as jaas.config name: system.wssecurity.IDAssertionUsernameToken
by selecting the IDAssertionUsernameToken we define that we just need the user ID, and no
password

• Click OK

7.1.9.7 Step 8 – WAS: Deploy the WAS application

Detailed deployment steps are described in the appendix.

7.1.9.8 Step 9 – WMB: Develop the message flow

In the Compute node we copy the SOAP Header to the output message:

Page 107 of 144

 --COPY SOAP UsernameToken

 SET OutputRoot.SOAP.Header = InputRoot.SOAP.Header;

7.1.9.9 Step 10 – WMB: Deploy th message flow

Detailed deployment steps are described in the appendix.

7.1.10 Interaction 17 – RMI between WPS and WAS

In this section we describe:

• SSL with RMI/IIOP

• Identity propagation

The figure below shows the relevant part in the sequence diagram:

The figure below shows the high-level implementation and configuration steps that have to be performed.
Find details of the steps in the next sections.

Page 108 of 144

7.1.10.1 Step 1 – WPS: Develop BPEL application

To make an EJB call in a SCA application, the following basic steps have to be performed:

1. Add the EJB client as dependency to the SCA module

2. Create a new import component in the Assembly editor

3. Add the Java remote interface of the bean you want to access

Page 109 of 144

4. Generate a Enterprise Java Bean binding and name it for example EJBcall_17

5. Add following JNDI name to the EJB binding

6. EJB bindings can only have Java interfaces, not WSDL interfaces (from WPS 6.2 on they can also
have WSDL interfaces). BPEL components can only have WSDL interfaces. Therefore we need a
Java component “WSDL to Java bridge”, which transforms the WSDL interface to a Java interface
(screenshot #2)

7. To create the “WSDL2Java” component, add a Java component to the Assembly Diagram and add a

WSDL interface and a Java reference to it.
o WSDl interface: GlobalOrderingDB
o Java interface: public interface OrderDBSession extends

javax.ejb.EJBObject, OrderDBInterface

8. Generate the implementation of the Java component

9. Add following code to access the EJB
__

public String store(DataObject input1) {

OrderDBRequestData orderDBRequestData = new

Page 110 of 144

OrderDBRequestData(input1.getString("clientOrderId"),

input1.getInt("partCount"), input1.getString("partNumber"));

 //0=OK, 1=NOK

OrderDBResponseData orderDBResponseData = new OrderDBResponseData(1);

 try {

orderDBResponseData =

locateService_OrderDBSessionPartner().createOrderEntry(orderDBRequestDa

ta);

 } catch (RemoteException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 String status;

 if (orderDBResponseData.getStatus()==0)

 status = "OK";

 else

 status = "NOK";

 return status;

 }

__

7.1.10.2 Step 2 – WPS: Deploy the BPEL application

Detailed deployment steps are described in the appendix.

7.1.10.3 Step 3 – WAS: Develop the application

Detailed implementation steps, which are not security relevant, are not described. Refer to the WID artefacts

to see how the BPEL application is developed.

7.1.10.4 Step 4 – WAS: Deploy the application

Detailed deployment steps are described in the appendix.

7.1.10.5 Step 5 – SSL configuration

Refer to chapter “SSL between WPS and WAS”

7.1.10.6 Step 6 and 7 – Configure CSIv2 authentication

7.1.10.6.1 Option 1: Basic Authentication and identity assertion

Option 1 describes how to establish trust between the servers using Basic Authentication and identity
assertion (technical user ID). Basic Authentication with identity assertion is identity propagation without the
need for a common authentication infrastructure. For example the sending server and target server do not
share LTPA keys.

Servers require some form of trust. In this identity assertion scenario the target server authenticates the
sending server to establish trust. If the server is trustworthy, the target server accepts the asserted identity
token. Two mechanisms to authenticate trusted user exist:

1. Basic Authentication (implemented as Option 1 in this showcase)
� Outbound server’s security ID (technical user ID) and password is sent
� With WAS V6.1 can specify id to use

Page 111 of 144

� Inbound server validates user ID and password in registry
2. Client Certificate Authentication (not implemented in the showcase)

� Outbound server’s client certificate (KeyRing used by IIOP) is verified by the
inbound server, that is, the signing certificate used to sign the client’s certificate
(whether CA issued or self-signed) must be in the server’s key ring

� Certificate identity is then mapped to an identity in the receiving server’s registry
� Then by using the trusted server list, WAS determines if calling server is authorized

to assert identity

Identity assertion behavior:

� Outbound server sends the asserted user’s identity as a user ID
� Inbound server accepts the user’s id and creates credentials by querying its registry
� No validation is performed on asserted identity (no password, token, etc)
� Both outbound and inbound servers can insert login modules to customize this process

� RMI_INBOUND - inbound server’s JAAS login configuration
� RMI_OUTBOUND – outbound server’s JAAS login configuration

� Either module can perform identity mapping

To configure Basic Authentication with identity assertion you have to configure

� CSIv2 outbound authentication on caller side (WPS)
� CSIv2 inbound authentication on provider side (WAS)

Configure CSIv2 outbound authentication on caller side (WPS)

1. In the administrative console navigate to Secure administration, applications, and infrastructure >
RMI/IIOP security > CSIv2 outbound authentication

2. Set Basic Authentication to required
This option indicates that clients communicating with this server must specify a user ID and password
for any method request

3. Enable identity assertion
Specify as alternate trusted identity a technical user that is known on the provider side

4. Disable security attribute propagation
LTPA is the only authentication mechanism supported when you enable the security attribute
propagation feature

Page 112 of 144

5.
Save

Configure CSIv2 inbound authentication on provider side (WAS)

1. In the administrative console navigate to Secure administration, applications, and infrastructure >
RMI/IIOP security > CSIv2 inbound authentication

2. Set Basic Authentication to required

3. Enable identity assertion and enter the trusted identity

4. Disable security attribute propagation

Page 113 of 144

The following picture shows both inbound and outbound authentication properties:

Page 114 of 144

7.1.10.6.2 Option 2: Basic Authentication without identity assertion

Option 2 describes how to use Basic authentication to authenticate with the current user using LTPA tokens.
Prerequisite is that the sending server and target server share LTPA keys.

o The client sends an LTPA token to the target server via the IIOP channel.
o Option 2 is only applicable if both servers share the realm or part of a trusted realm
o Option 2 is only applicable if both servers share the LTPA key

To configure Basic Authentication with identity assertion you have to configure

� CSIv2 outbound authentication on caller side (WPS)
� CSIv2 inbound authentication on provider side (WAS)

Configure CSIv2 outbound authentication on caller side (WPS)

1. In the administrative console navigate to Secure administration, applications, and infrastructure >
RMI/IIOP security > CSIv2 outbound authentication

2. Set Basic Authentication to required
a. Never

i. This option indicates that this server cannot accept user ID and password
authentication.

b. Supported
i. This option indicates that a client communicating with this server can specify a

user ID and password. However, a method might be invoked without this type
of authentication. For example, an anonymous or client certificate might be
used instead.

Page 115 of 144

c. Required
i. This option indicates that clients communicating with this server must specify a

user ID and password for any method request.

3. Disable identity assertion

4. Disable security attribute propagation

5. Save

Configure CSIv2 inbound authentication on provider side (WAS)

1. In the administrative console navigate to Secure administration, applications, and infrastructure >
RMI/IIOP security > CSIv2 inbound authentication

Page 116 of 144

2. Set Basic Authentication to required

3. disable identity assertion

4. disable security attribute propagation

The following picture shows both inbound and outbound authentication properties:

Page 117 of 144

7.1.10.6.3 When to use LTPA, identity assertion, Basic Authentication and Certificates

CSIv2 panel shows:

• Identity assertion

• Basic auth

• Certificate

• LTPA is implicitly there as an option but not shown.

The recommendations are:

• If identity assertion is available
o LTPA token not used or sent for user identity
o Basic auth or certificate used for server to server authentication

• If identity assertion is not available
o LTPA token used if available
o Basic auth or certificate used if no LTPA is available.

Page 118 of 144

7.1.11 Interaction 18 – Update Global Order DB - SOAP HTTPs between WPS and
WAS

The figure below shows the relevant part in the sequence diagram:

The figure below shows the high-level implementation and configuration steps that have to be performed.
Find details of the steps in the next sections.

This interaction step is not documented in detail, because it is not security relevant

Page 119 of 144

8 Basis setup and application install reference

8.1 Configuration of JMS resources

All JMS resources on WPS are generated automatically during deployment of the
applications.

8.2 Configuration of JDBC resources

All JDBC resources on WPS are generated automatically during deployment of the
applications.

8.3 Deployment of the showcase SCA module

For the deployment to WPS we use the default deployment settings:

Page 120 of 144

Page 121 of 144

Page 122 of 144

Page 123 of 144

Page 124 of 144

Page 125 of 144

Page 126 of 144

Page 127 of 144

Page 128 of 144

Page 129 of 144

Page 130 of 144

8.4 WebSphere Message Broker resources

8.4.1 Message Flow definition

Projectname Content Interaction

Step
CheckStock_4 CheckStockMQ_5.msgflow

CheckStockSOAP_6.msgflow
4a
5

InternalOrder_7 InternalOrder_7Flow.msgflow 7
Supplier_13 Supplier.msgflow 13

Page 131 of 144

SupplierOrder_16 SupplierOrder_16.msgflow 15/16

8.4.2 Queue definition

Name Type Content Interaction
Step

STOCK_5_INPUT_J2EE queue 4d
STOCK_5_INPUT_WPS queue 4c
STOCK_5_OUTPUT_J2EE queue 4b
STOCK_5_OUTPUT_WPS queue 4a

STOCK_6_INPUT_WPS queue 5d
STOCK_6_OUTPUT_WPS queue 5a
SUPPLIER_16_INPUT queue 16.1
SUPPLIER_16_OUTPUT queue 16.1

8.5 WebSphere Application Server resources

Projectname Type Content Interaction

Step
StartProcessEAR_3
StartProcessWeb_3

JSF Start Process 3

CheckStock1_EAR_5
CheckStock1MdbEjb_5

MDB Reads MQ request message ;
modify payload; sends MQ
message

5

CheckStock2EAR_6
CheckStock2WAR_6

Web
Service

Returns stock amount, via
SOAP/HTTP

6

InternalOrderEAR_8
InternalOrderWAR_8

Web
Service

Executes internal order, via
SOAP/HTTP

8

HumanTaskInterfaceEAR_9
HumanTaskInterfaceWAR_9

JSF HumanTask Web Service API
client

9

InternalSupplierOrderEAR_16
InternalSupplierOrderEJB_16

Web
Service
MQ

 16

OrderDBEAR_17
OrderDBEntity
OrderDBSession

EntityBean Insert into DB 17

8.5.1 JMS Connection Factory resources

Create following two JMS Queue Connection Factories:

Page 132 of 144

Page 133 of 144

Page 134 of 144

Page 135 of 144

JMS Queues:

8.5.2 Configuration of JDBC resources

Page 136 of 144

8.5.3 Configuration of DB2 for WAS applications

To create DB2 tables for the showcase interaction step 17 create DDLs using the Data
Model in OrderDBEntity:

Page 137 of 144

In the showcase we used the db2 admin user ID to access the database during runtime.
The user needs at least the rights to do sql insert, delete and recover.

8.5.4 Deployment of the WAS applications

For the deployment to WAS we use the default settings of the deployment steps.

Page 138 of 144

9 Terms

Token A security token represents a set of claims made by a client that

may include a name, password, identity, key, certificate, group, or

privilege. Web services security provides a general-purpose

mechanism to associate security tokens with messages for single-

message authentication. A specific type of security token is not

required by Web services security

Username Token A Username Token consists of a user name and, optionally,

password information

Asserted (Username) Token A asserted Username Token consists of a user name without

password information

LTPA Token Lightweight Third-Party Authentication Token.

Encrypted Token, carries User identiy.

Prereq for use is, that servers exchange their LTPA keys.

Identity assertion When using the identity assertion (IDAssertion) authentication

method, the security token generated is a <wsse:UsernameToken>

element that contains a <wsse:Username> element.

On the request sender side, a callback handler is invoked to generate

the security token. On the request receiver side, the security token is

validated.

Identity propagation An identity is carried within a request call from one system to

another system

Page 139 of 144

10 Abbreviations

BPC Business Process Choreographer

HTM Human Task Container

WAS WebSphere Application Server

WID WebSphere Integration Developer

WMB WebSphere Message Broker

MQ WebSphere MQ

WPS WebSphere Process Server

Page 140 of 144

11 Referenced Documents

WPS
[WPS01] WID info center

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/index.jsp?topic=/com.ibm.wbit.620.hel

p.nav.doc/topics/welcome.html

[WPS02] WPS info center

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/index.jsp?topic=/com.ibm.websphere.

wps.620.doc/welcome_wps.html

[WPS03] Pamela Fong: Asynchronous Processing in WebSphere Process Server, Asynchronous

processing in WebSphere Process Server
http://www.ibm.com/developerworks/websphere/library/techarticles/0904_fong/0904_fong.html

[WPS04] IBM Redbook, Using IBM WebSphere Message Broker as an ESB with WebSphere

Process Server, http://www.redbooks.ibm.com/redbooks/pdfs/sg247527.pdf

Message Broker

[WMB01] WMB info center

[WMB02] IBM Redpaper, Using the New Features in WebSphere Message Broker V6.1,

http://www.redbooks.ibm.com/abstracts/redp4458.html?Open

[WMB03] Mike Johnson , Signing Flows for WebServices Security,

http://www.ibm.com/developerworks/library/ws-security/index.html

Summary: Set up Web Services Security (WS-Security) for signing data that your applications send

to and receive from IBM® WebSphere® Message Broker. This article describes basic concepts,

how to set up the environment, and how to configure WebSphere Message Broker to sign the data.

The information provided here is platform-independent and operating system-independent, but you

can see examples of specific operating systems where appropriate. A section on terminology at the

end of this article helps clarify the concepts described.

[WMB04] Rob Henley, Matthew Golby-Kirk,

http://www.ibm.com/developerworks/websphere/library/techarticles/0902_henley/0902_henley.htm

l

Summary: SOAP nodes in WebSphere Message Broker V6.1 send and receive SOAP-based Web

services messages, enabling a message flow to interact with Web service endpoints. The messages

may be plain SOAP, SOAP with Attachments (SwA), or Message Transmission Optimization

Mechanism (MTOM). You can configure the nodes using WSDL, and they support the WS-

Security and WS-Addressing standards. This four-part series describes the SOAP nodes, the logical

tree for the new SOAP domain, configuration, and runtime behavior. Part 4 describes runtime

validation, performance, scalability, message flow design, and use of WS-Addressing.

Page 141 of 144

[WMB05] Rob Henley, Matthew Golby-Kirk, SOAP nodes in IBM WebSphere Message Broker

V6.1, Part 1:

http://www.ibm.com/developerworks/library/ws-soapnode/index.html

SOAP nodes send and receive SOAP-based Web services messages, allowing a message flow to

interact with Web service endpoints. The messages might be plain SOAP, SOAP with Attachments

(SwA), or Message Transmission Optimization Mechanism (MTOM). The nodes are configured

using Web Services Description Language (WSDL) and support WS-Security and WS-Addressing.

This four-part series describes the SOAP nodes, the logical tree for the new SOAP domain, and

details of configuration and runtime behavior. In this first article, you learn about the basic use of

the nodes. You should have a general familiarity with SOAP-based Web services and WSDL to

follow along with this article series.

[WMB06] Rob Henley, (rhenley@uk.ibm.com), Matthew Golby-Kirk (mgk@uk.ibm.com), SOAP

nodes in IBM WebSphere Message Broker V6.1, Part 2:

http://www.ibm.com/developerworks/library/ws-soapnode2/index.html

This article, Part 2, describes the new logical tree format used by the SOAP domain. You should

have a general familiarity with SOAP-based Web services and WSDL to follow along with this

article series. Note: This article relates to IBM WebSphere Message Broker V6.1 Fix Pack 6.1.0.2.

Some details could differ slightly from the 6.1 GA version.

[WMB07] Rob Henley, (rhenley@uk.ibm.com), Matthew Golby-Kirk (mgk@uk.ibm.com), SOAP

Nodes in WebSphere Message Broker V6.1, Part 4:

http://www.ibm.com/developerworks/websphere/library/techarticles/0902_henley/0902_henley.htm

l

SOAP nodes in WebSphere Message Broker V6.1 send and receive SOAP-based Web services

messages, enabling a message flow to interact with Web service endpoints. The messages may be

plain SOAP, SOAP with Attachments (SwA), or Message Transmission Optimization Mechanism

(MTOM). You can configure the nodes using WSDL, and they support the WS-Security and WS-

Addressing standards. This four-part series describes the SOAP nodes, the logical tree for the new

SOAP domain, configuration, and runtime behavior. Part 4 describes runtime validation,

performance, scalability, message flow design, and use of WS-Addressing.

 WAS

[WAS01] WAS Info Center Web services security token propagation,

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.expres

s.doc/info/exp/ae/cwbs_securitytokenPropagationwbs.html

[WAS02] WAS Security in General (Technical Library

http://www.ibm.com/developerworks/views/websphere/libraryview.jsp?end_no=100&lcl_sort_orde

r=desc&type_by=All+Types&sort_order=desc&show_all=false&start_no=1&product_by=WebSph

ere+Application+Servers&search_by=&sort_by=Date&count=100&topic_by=Security&search_fla

g=&show_abstract=true

[WAS04] Keys Botzum, Keys Botzum's Home Page, http://www.keysbotzum.com/

[WAS05] Web Services Handbook for WebSphere Application Server Version 6.1, Chapter 19 “WS-

Addressing and WS-Resource”, SG247257

Page 142 of 144

[WAS06] DeveloperWorks Article “Driving WS-Addressing in WebSphere Application Server Version 6.1” at

http://www.ibm.com/developerworks/webservices/library/ws-soa-wsawsa/

