
IBM XL C/C++ for AIX, V11.1

Getting Started with XL C/C++
Version 11.1

GI11-9417-00

���

IBM XL C/C++ for AIX, V11.1

Getting Started with XL C/C++
Version 11.1

GI11-9417-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 47.

First edition

This edition applies to IBM XL C/C++ for AIX, V11.1 (Program 5724-X13) and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of
the product.

© Copyright IBM Corporation 1996, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Conventions v
Related information ix

IBM XL C/C++ information ix
Standards and specifications x
Other IBM information. xi
Other information xi

Technical support xi
How to send your comments xii

Chapter 1. Introducing XL C/C++ 1
Commonality with other IBM compilers 1
Hardware and operating system support 1
A highly configurable compiler 1
Language standards compliance 2

Compatibility with GNU 3
Source-code migration and conformance checking 3

Libraries 3
Tools and utilities. 5
Program optimization 6
64-bit object capability 7
Shared memory parallelization 7
Diagnostic listings 8
Symbolic debugger support 9

Chapter 2. What's new for IBM XL
C/C++ for AIX, V11.1 11
Support for POWER7 processors 11
C++0x 12
Performance and optimization 15
New diagnostic reports 17
Utilization tracking and reporting 19
New or changed compiler options and directives . . 20
Built-in functions new for this release 23
Compatibility of redistributable library libxlopt.a . . 24

Chapter 3. Enhancements added in
previous versions 25
Enhancements added in Version 10.1 25

Operating system support 25
C++0x 25
Other XL C/C++ language-related updates . . . 26
OpenMP 3.0 27
Performance and optimization 27
New or changed compiler options and directives 29

Enhancements added in Version 9.0 29
C/C++ language-related updates 29
Architecture and processor support 31
Performance and optimization 32
Other new or changed compiler options 34

Chapter 4. Setting up and customizing
XL C/C++. 37
Using custom compiler configuration files 37
Configuring compiler utilization tracking and
reporting 37

Chapter 5. Developing applications
with XL C/C++ 39
The compiler phases 39
Editing C/C++ source files 39
Compiling with XL C/C++ 39

Invoking the compiler 40
Compiling parallelized XL C/C++ applications 40
Specifying compiler options 41
XL C/C++ input and output files 42

Linking your compiled applications with XL C/C++ 42
Relinking an existing executable file 43
Dynamic and static linking 43

Running your compiled application 44
XL C/C++ compiler diagnostic aids 45

Debugging compiled applications 45
Determining what level of XL C/C++ is installed 45

Notices 47
Trademarks and service marks 49

Index 51

© Copyright IBM Corp. 1996, 2010 iii

iv XL C/C++: Getting Started

About this document

This document contains overview and basic usage information for the IBM® XL
C/C++ for AIX®, V11.1 compiler.

Who should read this document

This document is intended for C and C++ developers who are looking for
introductory overview and usage information for XL C/C++. It assumes that you
have some familiarity with command-line compilers, a basic knowledge of the C
and C++ programming languages, and basic knowledge of operating system
commands. Programmers new to XL C/C++ can use this document to find
information on the capabilities and features unique to XL C/C++.

How to use this document

Unless indicated otherwise, all of the text in this reference pertains to both C and
C++ languages. Where there are differences between languages, these are indicated
through qualifying text and icons, as described in “Conventions.”

Throughout this document, the xlc and xlc++ compiler invocations are used to
describe the actions of the compiler. You can, however, substitute other forms of
the compiler invocation command if your particular environment requires it, and
compiler option usage will remain the same unless otherwise specified.

While this document covers information on configuring the compiler environment,
and compiling and linking C or C++ applications using the XL C/C++ compiler, it
does not include the following topics:
v Compiler installation: see the XL C/C++ Installation Guide for information on

installing XL C/C++.
v Compiler options: see the XL C/C++ Compiler Reference for detailed information

on the syntax and usage of compiler options.
v The C or C++ programming languages: see the XL C/C++ Language Reference for

information on the syntax, semantics, and IBM implementation of the C or C++
programming languages.

v Programming topics: see the XL C/C++ Optimization and Programming Guide for
detailed information on developing applications with XL C/C++, with a focus
on program portability and optimization.

Conventions
Typographical conventions

© Copyright IBM Corp. 1996, 2010 v

The following table explains the typographical conventions used in the IBM XL
C/C++ for AIX, V11.1 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc and xlC
(xlc++), along with several other
compiler invocation commands to
support various C/C++ language
levels and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

C only, or C only
begins

C

C

C only ends

The text describes a feature that is supported in the C language only;
or describes behavior that is specific to the C language.

C++ only, or C++
only begins

C++

C++

C++ only ends

The text describes a feature that is supported in the C++ language
only; or describes behavior that is specific to the C++ language.

IBM extension
begins

IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the standard
language specifications.

vi XL C/C++: Getting Started

Table 2. Qualifying elements (continued)

Qualifier/Icon Meaning

C++0x, or C++0x
begins

C++0x

z/OSC++0x

C++0x ends

The text describes a feature that is introduced into standard C++ as
part of C++0x.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
will help you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a command, directive, or statement.
The ───� symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The �─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───�� symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

�� keyword required_argument ��

v Optional items are shown below the main path:

�� keyword
optional_argument

��

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

�� keyword required_argument1
required_argument2

��

If choosing one of the items is optional, the entire stack is shown below the
main path.

�� keyword
optional_argument1
optional_argument2

��

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

About this document vii

�� �

,

keyword repeatable_argument ��

v The item that is the default is shown above the main path.

�� keyword
default_argument
alternate_argument ��

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma
comment directive.

��
(1) (2) (3) (4) (5) (9) (10)

pragma comment (compiler)
date
timestamp

(6)
copyright
user (7) (8)

, " token_sequence "

��

Notes:

1 This is the start of the syntax diagram.

2 The symbol # must appear first.

3 The keyword pragma must appear following the # symbol.

4 The name of the pragma comment must appear following the keyword pragma.

5 An opening parenthesis must be present.

6 The comment type must be entered only as one of the types indicated:
compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an
optional character string.

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

#pragma comment(date)
#pragma comment(user)
#pragma comment(copyright,"This text will appear in the module")

viii XL C/C++: Getting Started

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Related information

The following sections provide related information for XL C/C++:

IBM XL C/C++ information

XL C/C++ provides product information in the following formats:
v README files

README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory and in the root directory of the installation CD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for AIX, V11.1 Installation Guide.

v Information center
The information center of searchable HTML files can be launched on a network
and accessed remotely or locally. Instructions for installing and accessing the
online information center are provided in the IBM XL C/C++ for AIX, V11.1
Installation Guide.
The information center is viewable on the Web at http://
publib.boulder.ibm.com/infocenter/comphelp/v111v131/index.jsp.

v PDF documents
PDF documents are located by default in the /usr/vacpp/doc/LANG/pdf/
directory, where LANG is one of en_US, zh_CN, or ja_JP. The PDF files are also
available on the Web at http://www.ibm.com/software/awdtools/xlcpp/aix/
library/.
The following files comprise the full set of XL C/C++ product information:

Table 3. XL C/C++ PDF files

Document title
PDF file
name Description

IBM XL C/C++ for AIX,
V11.1 Installation Guide,
GC27-2480-00

install.pdf Contains information for installing XL C/C++
and configuring your environment for basic
compilation and program execution.

Getting Started with IBM
XL C/C++ for AIX, V11.1,
GI11-9417-00

getstart.pdf Contains an introduction to the XL C/C++
product, with information on setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

About this document ix

http://publib.boulder.ibm.com/infocenter/comphelp/v111v131/index.jsp
http://publib.boulder.ibm.com/infocenter/comphelp/v111v131/index.jsp
http://www.ibm.com/software/awdtools/xlcpp/aix/library/
http://www.ibm.com/software/awdtools/xlcpp/aix/library/

Table 3. XL C/C++ PDF files (continued)

Document title
PDF file
name Description

IBM XL C/C++ for AIX,
V11.1 Compiler Reference,
SC27-2479-00

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in functions,
including those used for parallel processing.

IBM XL C/C++ for AIX,
V11.1 Language Reference,
SC27-2481-00

langref.pdf Contains information about the C and C++
programming languages, as supported by IBM,
including language extensions for portability
and conformance to nonproprietary standards.

IBM XL C/C++ for AIX,
V11.1 Optimization and
Programming Guide,
SC27-2482-00

proguide.pdf Contains information on advanced
programming topics, such as application
porting, interlanguage calls with Fortran code,
library development, application optimization
and parallelization, and the XL C/C++
high-performance libraries.

Standard C++ Library
Reference, SC27-2483-00

standlib.pdf Contains reference information about the
standard C++ runtime libraries and headers.

C/C++ Legacy Class
Libraries Reference,
SC09-7652-00

legacy.pdf Contains reference information about the USL
I/O Stream Library and the Complex
Mathematics Library.

To read a PDF file, use the Adobe® Reader. If you do not have the Adobe
Reader, you can download it (subject to license terms) from the Adobe Web site
at http://www.adobe.com.

More information related to XL C/C++ including IBM Redbooks® publications,
white papers, tutorials, and other articles, is available on the Web at:

http://www.ibm.com/software/awdtools/xlcpp/aix/library/

For more information about boosting performance, productivity, and portability,
see the C/C++ café at http://www-949.ibm.com/software/rational/cafe/
community/ccpp.

Standards and specifications

XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards for precise definitions of some of the features found in
this information.
v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also

known as C89.
v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also

known as C99.
v Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also

known as C++98.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2003(E), also

known as Standard C++.
v Information Technology - Programming languages - Extensions for the programming

language C to support new character data types, ISO/IEC DTR 19769. This draft
technical report has been accepted by the C standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1040.pdf.

x XL C/C++: Getting Started

http://www.adobe.com
http://www.ibm.com/software/awdtools/xlcpp/aix/library/
http://www-949.ibm.com/software/rational/cafe/community/ccpp
http://www-949.ibm.com/software/rational/cafe/community/ccpp
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1040.pdf

v Draft Technical Report on C++ Library Extensions, ISO/IEC DTR 19768. This draft
technical report has been submitted to the C++ standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/
n1836.pdf.

v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification
for vector data types, to support vector processing technology, is available at
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

v Information Technology - Programming Languages - Extension for the programming
language C to support decimal floating-point arithmetic, ISO/IEC WDTR 24732. This
draft technical report has been submitted to the C standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1176.pdf.

v Decimal Types for C++: Draft 4 http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2006/n1977.html

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v OpenMP Application Program Interface Version 3.0, available at

http://www.openmp.org

Other IBM information
v Parallel Environment for AIX: Operation and Use

v The IBM Systems Information Center, at http://publib.boulder.ibm.com/
infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
is a resource for AIX information.
You can find the following books for your specific AIX system:
– AIX Commands Reference, Volumes 1 - 6

– Technical Reference: Base Operating System and Extensions, Volumes 1 & 2

– AIX National Language Support Guide and Reference

– AIX General Programming Concepts: Writing and Debugging Programs

– AIX Assembler Language Reference

v ESSL for AIX V4.4 - ESSL for Linux on POWER V4.4 Guide and Referenceavailable
at the Engineering and Scientific Subroutine Library (ESSL) and Parallel ESSL
Web page.

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support

Additional technical support is available from the XL C/C++ Support page at
http://www.ibm.com/software/awdtools/xlcpp/aix/support/. This page provides
a portal with search capabilities to a large selection of Technotes and other support
information.

If you cannot find what you need, you can send e-mail to compinfo@ca.ibm.com.

For the latest information about XL C/C++, visit the product information site at
http://www.ibm.com/software/awdtools/xlcpp/aix/.

About this document xi

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1176.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1176.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1977.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1977.html
http://www.openmp.org
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl.doc/esslbooks.html
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/software/awdtools/xlcpp/aix/support/
http://www.ibm.com/software/awdtools/xlcpp/aix/

How to send your comments

Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments by e-mail to compinfo@ca.ibm.com.

Be sure to include the name of the information, the part number of the
information, the version of XL C/C++, and, if applicable, the specific location of
the text you are commenting on (for example, a page number or table number).

xii XL C/C++: Getting Started

Chapter 1. Introducing XL C/C++

IBM XL C/C++ for AIX, V11.1 is an advanced, high-performance compiler that can
be used for developing complex, computationally intensive programs, including
interlanguage calls with C and Fortran programs.

This section discusses the features of the XL C/C++ compiler at a high level. It is
intended for people who are evaluating the compiler, and for new users who want
to find out more about the product.

Commonality with other IBM compilers
IBM XL C/C++ for AIX, V11.1 is part of a larger family of IBM C, C++, and
Fortran compilers.

XL C/C++, together with XL C and XL Fortran, comprise the family of XL
compilers.

These compilers are derived from a common code base that shares compiler
function and optimization technologies for a variety of platforms and
programming languages. Programming environments include IBM AIX, IBM Blue
Gene®/L™, IBM Blue Gene®/P™, the Cell Broadband Engine™ architecture, IBM i,
selected Linux® distributions, IBM z/OS®, and IBM z/VM®. The common code
base, along with compliance with international programming language standards,
helps support consistent compiler performance and ease of program portability
across multiple operating systems and hardware platforms.

Hardware and operating system support
IBM XL C/C++ for AIX, V11.1 supports AIX 5L™ for POWER® Version 5.3 and AIX
Version 6.1. See the README file and "Before installing XL C/C++" in the XL
C/C++ Installation Guide for a complete list of requirements.

The compiler, its libraries, and its generated object programs will run on systems
with the required software and disk space.

To take maximum advantage of the various supported hardware configurations,
the compiler provides options to tune the performance of applications specific to
the type of hardware that will be used to execute the compiled applications.

A highly configurable compiler
You can use a variety of compiler invocation commands and options to tailor the
compiler to your unique compilation requirements.

Compiler invocation commands
XL C/C++ provides several different commands that you can use to invoke
the compiler, for example, xlC, xlc++, and xlc. Each invocation command is
unique in that it instructs the compiler to tailor compilation output to meet
a specific language level specification. Compiler invocation commands are
provided to support all standardized C/C++ language levels, and many
popular language extensions as well.

© Copyright IBM Corp. 1996, 2010 1

The compiler also provides corresponding "_r" versions of most invocation
commands, for example, xlc_r and xlC_r. The "_r" invocations instruct the
compiler to link and bind object files to thread safe components and
libraries, and produce thread safe object code for compiler-created data and
procedures.

For more information about XL C/C++ compiler invocation commands, see
"Invoking the compiler" in the XL C/C++ Compiler Reference .

Compiler options
You can choose from a large selection of compiler options to control
compiler behavior. Different categories of options help you to debug your
applications, optimize and tune application performance, select language
levels and extensions for compatibility with non-standard features and
behaviors supported by other C or C++ compilers, and perform many
other common tasks that would otherwise require changing the source
code.

XL C/C++ lets you specify compiler options through a combination of
environment variables, compiler configuration files, command line options,
and compiler directive statements embedded in your program source.

For more information about XL C/C++ compiler options, see "Compiler
options reference" in the XL C/C++ Compiler Reference.

Custom compiler configuration files
The installation process creates a default plain text compiler configuration
file containing stanzas that define compiler option default settings.

Your compilation needs may frequently call for specifying compiler option
settings other than the default settings provided by XL C/C++. If so, you
can use makefiles to define your compiler option settings, or alternatively,
you can create custom configuration files to define your own sets of
frequently used compiler option settings.

For more information about using custom compiler configuration files, see
“Using custom compiler configuration files” on page 37.

Utilization tracking configuration file
The utilization tracking and reporting feature of the compiler has its own
configuration file. The main compiler configuration file contains an entry
that points to this file. The different installations of the compiler product
can use a single utilization tracking configuration file to centrally manage
the functionality of the utilization tracking and reporting feature. This
utilization and reporting tool can be used to detect whether your
organization's use of the compiler exceeds your license entitlements. For
detailed information about the utilization tracking and reporting feature,
see "Tracking and reporting compiler usage" in the XL C/C++ Compiler
Reference.

Language standards compliance
The compiler supports the following programming language specifications for
C/C++:

v ISO/IEC 9899:1999 (C99)
v ISO/IEC 9899:1990 (referred to as C89)
v ISO/IEC 14882:2003 (referred to as Standard C++)
v ISO/IEC 14882:1998, the first official specification of the language (referred

to as C++98)

2 XL C/C++: Getting Started

In addition to the standardized language levels, XL C/C++ supports language
extensions, including:

v OpenMP V3.0 to support portable parallelized programming
v Language extensions to support vector programming
v A subset of GNU C and C++ language extensions
v C++0x

See C++0x in the Getting Started with IBM XL C/C++ for AIX, V11.1 for
more details.

See "Language levels and language extensions" in the XL C/C++ Language Reference
for more information about C/C++ language specifications and extensions.

Compatibility with GNU
XL C/C++ supports a subset of the GNU compiler command options to facilitate
porting applications developed with gcc and g++ compilers.

This support is available when the gxlc or gxlc++ invocation command is used
together with select GNU compiler options. Where possible, the compiler maps
GNU options to their XL C/C++ compiler option counterparts before invoking the
compiler.

These invocation commands use a plain text configuration file to control
GNU-to-XL C/C++ option mappings and defaults. You can customize this
configuration file to better meet the needs of any unique compilation requirements
you may have. See "Reusing GNU C/C++ compiler options with gxlc and gxlc++"
in the XL C/C++ Compiler Reference for more information.

Source-code migration and conformance checking
XL C/C++ helps protect your investment in your existing C/C++ source code by
providing compiler invocation commands that instruct the compiler to compile
your application code to a specific language level.

You can also use the -qlanglvl compiler option to specify a given language level,
and the compiler will issue warnings, errors, and severe error messages if language
or language extension elements in your program source do not conform to that
language level.

See "qlanglvl" in the XL C/C++ Compiler Reference for more information.

Libraries
XL C/C++ includes a runtime environment containing a number of libraries.

Standard C++ library

XL C/C++ ships a modified version of the Dinkum C++ Library, a conforming
implementation of the Standard C++ Library. The Standard C++ Library consists of
51 headers, including 13 headers which constitute the Standard Template Library
(STL). In addition, the Standard C++ Library works in conjunction with the 18
headers from the Standard C Library. The functions in these headers perform
essential services such as input and output. They also provide efficient
implementations of frequently used operations.

For more information, see the Standard C++ Library Reference.

Chapter 1. Introducing XL C/C++ 3

C++ library extensions

In addition to the Standard C++ Library, XL C/C++ V11.1 supports extensive
extensions to the C++ language as defined by the Draft Technical Report on C++
Library Extensions (TR1).

For more information on these language extensions, see Draft Technical Report on
C++ Library Extensions (TR1).

Mathematical Acceleration Subsystem library

The Mathematical Acceleration Subsystem (MASS) library consists of scalar and
vector mathematical intrinsic functions tuned specifically for optimum performance
on supported processor architectures. You can choose a MASS library to support
high-performance computing on a broad range of processors, or you can select a
library tuned to support a specific processor family.

The MASS library functions support both 32-bit and 64-bit compilation modes, are
thread-safe, and offer improved performance over the default libm math library
routines. They are called automatically when you request specific levels of
optimization for your application. You can also make explicit calls to MASS library
functions regardless of whether optimization options are in effect or not.

See "Using the Mathematical Acceleration Subsystem" in the XL C/C++ Optimization
and Programming Guide for more information.

Basic Linear Algebra Subprograms

The Basic Linear Algebra Subprograms (BLAS) set of high-performance algebraic
functions are shipped in the libxlopt library. These functions let you:
v Compute the matrix-vector product for a general matrix or its transpose.
v Perform combined matrix multiplication and addition for general matrices or

their transposes.

For more information about using the BLAS functions, see "Using the Basic Linear
Algebra Subprograms" in the XL C/C++ Optimization and Programming Guide.

Other libraries

The following are also shipped with XL C/C++:
v The SMP runtime library supports both explicit and automated parallel

processing. See "SMP Runtime Library" in the XL C/C++ Optimization and
Programming Guide.

v The memory debug runtime library is used for diagnosing memory leaks. See
"Using memory heaps" in the XL C/C++ Optimization and Programming Guide.

v XL C++ Runtime Library contains support routines needed by the compiler.
v UNIX® System Laboratories (USL) contains stream classes for input and output

capabilities for C++. This library is provided for use by old applications. For
new applications, you should use the Standard C++ Library. See C/C++ Legacy
Class Libraries Reference for more information.

v USL contains classes for manipulating complex numbers. This library is
provided for use by old applications. For new applications, you should use the
Standard C++ Library. See C/C++ Legacy Class Libraries Reference for more
information.

4 XL C/C++: Getting Started

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf

v C++ The demangler library provides routines and classes for demangling
linkage names created by the C++ compiler.

Support for Boost libraries

XL C/C++ for AIX, V11.1 partially supports the Boost V1.40.0 libraries. A patch file
is available that modifies the Boost 1.40.0 libraries so that they can be built and
used with XL C/C++ applications. The patch or modification file does not extend
nor provide additional functionality to the Boost libraries.

You can download the latest Boost libraries at http://www.boost.org/.

For more information on support for libraries, search on the XL C/C++ Compilers
support page at http://www.ibm.com/software/awdtools/xlcpp/aix/support/.

Tools and utilities
There are many tools and utilities that are included with XL C/C++.

vacppndi
This is a script you can use to install XL C/C++ to a non-default directory
location.

IBM Debugger for AIX
The IBM Debugger for AIX can help you detect and diagnose errors in
programs that are running locally or remotely. You can control the
execution of your programs by setting compiled language-specific
breakpoints, suspending execution, stepping through your code, and
examining and changing the contents of variables.

The debugger contains views and functionality specific to a given
programming language. With the compiled language views, you can
monitor variables, expressions, registers, memory, and application modules
of the application you are debugging.

CreateExportList command
Creates a file that contains a list of all the global symbols found in a given
set of object files.

C++ c++filt Name demangling utility
When XL C/C++ compiles a C++ program, it encodes all function names
and certain other identifiers to include type and scoping information. This
encoding process is called mangling. This utility converts the mangled
names to their original source code names.

C++ linkxlC command
Links C++ .o and .a files. This command is used for linking on systems
without XL C/C++ compiler installed.

C++ makeC++SharedLib command
Permits the creation of C++ shared libraries on systems on which the XL
C/C++ compiler is not installed.

cleanpdf command
A command related to profile-directed feedback (PDF), cleanpdf removes
all profiling information from the directory to which profile-directed
feedback data is written.

Chapter 1. Introducing XL C/C++ 5

http://www.boost.org/
http://www.ibm.com/software/awdtools/xlcpp/aix/support/

mergepdf command
A command related to profile-directed feedback (PDF), mergepdf provides
the ability to weigh the importance of two or more PDF records when
combining them into a single record. The PDF records must be derived
from the same executable.

resetpdf command
The current behavior of the cleanpdf command is the same as the resetpdf
command, and is retained for compatibility with earlier releases on other
platforms.

showpdf command
The showpdf command displays the call and block counts for all
procedures executed in a profile-directed feedback training run
(compilation under the options -qpdf1 and -qshowpdf).

gxlc and gxlc++ utilities
The gxlc and gxlc++ invocations translate GNU C or GNU C++ invocation
commands into corresponding xlc or xlc++ commands before invoking the
IBM XL C/C++ for AIX, V11.1 compiler. The purpose of these utilities is to
minimize the number of changes to makefiles used for existing
applications built with the GNU compilers and to facilitate the transition to
IBM XL C/C++ for AIX, V11.1.

Utilization reporting tool

The utilization reporting tool generates a report describing your
organization's utilization of the compiler. These reports can be used to
monitor compliance with your compiler license entitlements. You can use
the urt command to control how the report is generated. For more
information about this tool, see "Tracking and reporting compiler usage" in
the XL C/C++ Compiler Reference.

Program optimization
XL C/C++ provides several compiler options that can help you control the
optimization or performance of your programs.

With these options, you can perform the following tasks:
v Select different levels of compiler optimizations.
v Control optimizations for loops, floating point, and other types of operations.
v Optimize a program for a particular class of machines or for a very specific

machine configuration, depending on where the program will run.

Optimizing transformations can give your application better overall execution
performance. C/C++ provides a portfolio of optimizing transformations tailored to
various supported hardware. These transformations offer the following benefits:
v Reducing the number of instructions executed for critical operations
v Restructuring generated object code to make optimal use of the POWER

architecture
v Improving the usage of the memory subsystem
v Exploiting the ability of the architecture to handle large amounts of shared

memory parallelization

For more information, see these related topics:

6 XL C/C++: Getting Started

v "Optimizing your applications" in the XL C/C++ Optimization and Programming
Guide

v "Optimizing and tuning options" in the XL C/C++ Compiler Reference

v "Compiler built-in functions" in the XL C/C++ Compiler Reference

64-bit object capability
The XL C/C++ compiler's 64-bit object capability addresses increasing demand for
larger storage requirements and greater processing power.

The AIX operating system provides an environment that allows you to develop
and execute programs that exploit 64-bit processors through the use of 64-bit
address spaces.

To support larger executables that can be fit within a 64-bit address space, a
separate 64-bit object form is used. The binder binds these objects to create 64-bit
executables. Objects that are bound together must all be of the same object format.
The following scenarios are not permitted and will fail to load, or execute, or both:
v A 64-bit object or executable that has references to symbols from a 32-bit library

or shared library
v A 32-bit object or executable that has references to symbols from a 64-bit library

or shared library
v A 64-bit executable that explicitly attempts to load a 32-bit module
v A 32-bit executable that explicitly attempts to load a 64-bit module
v Attempts to run 64-bit applications on 32-bit platforms

On both 64-bit and 32-bit platforms, 32-bit executables will continue to run as they
currently do on a 32-bit platform.

XL C/C++ supports 64-bit mode mainly through the use of the -q64 and -qarch
compiler options. This combination determines the bit mode and instruction set for
the target architecture.

For more information, see "Using 32-bit and 64-bit modes" in the XL C/C++
Optimization and Programming Guide.

Shared memory parallelization
XL C/C++ supports application development for multiprocessor system
architectures.

You can use any of the following methods to develop your parallelized
applications with XL C/C++:

v Directive-based shared memory parallelization (OpenMP, SMP)
v Instructing the compiler to automatically generate shared memory

parallelization
v Message passing based shared or distributed memory parallelization (MPI)
v POSIX threads (Pthreads) parallelization
v Low-level UNIX parallelization using fork() and exec()

The parallel programming facilities of the AIX operating system are based on the
concept of threads. Parallel programming exploits the advantages of multiprocessor
systems, while maintaining a full binary compatibility with existing uniprocessor

Chapter 1. Introducing XL C/C++ 7

systems. This means that a multithreaded program that works on a uniprocessor
system can take advantage of a multiprocessor system without recompiling.

For more information, see "Parallelizing your programs" in the XL C/C++
Optimization and Programming Guide.

OpenMP directives

OpenMP directives are a set of API-based commands supported by XL C/C++ and
many other IBM and non-IBM C, C++, and Fortran compilers.

You can use OpenMP directives to instruct the compiler how to parallelize a
particular loop. The existence of the directives in the source removes the need for
the compiler to perform any parallel analysis on the parallel code. OpenMP
directives require the presence of Pthread libraries to provide the necessary
infrastructure for parallelization.

OpenMP directives address three important issues of parallelizing an application:
1. Clauses and directives are available for scoping variables. Frequently,

variables should not be shared; that is, each processor should have its
own copy of the variable.

2. Work sharing directives specify how the work contained in a parallel
region of code should be distributed across the processors.

3. Directives are available to control synchronization between the processors.

As of XL C/C++ for AIX, V10.1, XL C/C++ supports the OpenMP API Version 3.0
specification. See “OpenMP 3.0” on page 27 for an overview of the changes
introduced by this feature.

For more information about program performance optimization, see:
v "Optimizing your applications" in the XL C/C++ Optimization and Programming

Guide

v www.openmp.org

Diagnostic listings
The compiler output listing and XML reports can provide important information to
help you develop and debug your applications more efficiently.

Listing information is organized into optional sections that you can include or
omit. For more information about the applicable compiler options and the listing
itself, refer to "Compiler messages and listings" in the XL C/C++ Compiler Reference.

It is also possible to get information from the compiler in XML 1.0 format about
some of the optimizations that the compiler was able to perform and also which
optimization opportunities were missed. This information can be used to improve
programmer productivity when tuning applications, especially high performance
applications. The report is defined by an XML schema and easily consumable by
tools that you can create to read and analyze the results. For detailed information
about this report and how to use it, see "Using reports to diagnose optimization
opportunities" in the XL C/C++ Optimization and Programming Guide.

8 XL C/C++: Getting Started

http://www.openmp.org

Symbolic debugger support
You can instruct XL C/C++ to include debugging information in your compiled
objects. That information can be examined by dbx, the IBM Debugger for AIX, or
any other symbolic debugger that supports the AIX XCOFF executable format to
help you debug your programs.

Chapter 1. Introducing XL C/C++ 9

10 XL C/C++: Getting Started

Chapter 2. What's new for IBM XL C/C++ for AIX, V11.1

This section describes features and enhancements added to the compiler in IBM XL
C/C++ for AIX, V11.1.

Support for POWER7 processors
IBM XL C/C++ for AIX, V11.1 supports POWER7™ processors. New features are
introduced in support of POWER7 processors.

The new features and enhancements for POWER7 processors fall into four
categories:
v vector scalar extension data types and intrinsic functions
v MASS libraries for POWER7 processors
v built-in functions for POWER7 processors
v compiler options for POWER7 processors

Vector scalar extension data types and intrinsic functions

This release of the compiler supports the Vector Scalar eXtension (VSX) instruction
set in the POWER7 processors. New data types and intrinsic functions are
introduced to support the VSX instructions. With the VSX intrinsic functionsand
the original Vector Multimedia eXtension (VMX) intrinsic functions, you can
efficiently manipulate vector operations in your application.

For more information about the VSX data types and intrinsic functions, see Vector
types in the XL C/C++ Language Reference and Vector built-in functions in the XL
C/C++ Compiler Reference.

Mathematical Acceleration Subsystem (MASS) libraries for
POWER7 processors

Vector libraries

The vector MASS library libmassvp7.a contains vector functions that have
been tuned for the POWER7 architecture. The functions can be used in
either 32-bit mode or 64-bit mode.

Functions supporting previous POWER processors, either single-precision
or double-precision, are included for POWER7 processors.

The following new functions are added, in both single-precision and
double-precision function groups:
v exp2
v exp2m1
v log21p
v log2

For more information about the vector libraries, see Using the vector
libraries in the XL C/C++ Optimization and Programming Guide.

SIMD libraries

© Copyright IBM Corp. 1996, 2010 11

The MASS SIMD library libmass_simdp7.a contains an accelerated set of
frequently used math intrinsic functions that provide improved
performance over the corresponding standard system library functions.

For more information about the SIMD libraries, see Using the SIMD library
for POWER7 in the XL C/C++ Optimization and Programming Guide.

POWER7 hardware intrinsics

New hardware intrinsics are added to support the following POWER7 processor
features:
v new POWER7 prefetch extensions and cache control
v new POWER7 hardware instructions

For more information, see “Built-in functions new for this release” on page 23.

New compiler option for POWER7 processors

New arch and tune compiler options

The -qarch compiler option specifies the processor architecture for which
code is generated. The -qtune compiler option tunes instruction selection,
scheduling, and other architecture-dependent performance enhancements
to run best on a specific hardware architecture.

-qarch=pwr7 produces object code containing instructions that will run on
the POWER7 hardware platforms. With -qtune=pwr7, optimizations are
tuned for the POWER7 hardware platforms.

For more information, see -qarch in the XL C/C++ Compiler Reference and
-qtune in the XL C/C++ Compiler Reference.

C++0x
C++0x is the working draft of the new C++ programming language standard.
Additional C++0x features are supported in this release of XL C/C++.

Note: C++0x is a new version of the C++ programming language standard. This is
a draft standard and has not been officially adopted in its entirety. The
implementation of C++0x is based on IBM's interpretation of the draft C++0x
standard and is subject to change at any time without notice. IBM makes no
attempt to maintain compatibility with earlier releases and therefore the C++0x
language extension should not be relied on as a stable programming interface.

The following features are introduced in XL C/C++ V11.1:
v Auto type deduction
v C99 long long

v C99 preprocessor features adopted in C++0x
v Decltype
v Delegating constructors
v Explicit instantiation declarations
v Extended friend declarations
v Inline namespace definitions
v Static assertion
v Variadic templates

12 XL C/C++: Getting Started

Auto type deduction

With the auto type deduction feature, you no longer need to specify a type while
declaring a variable. This is because auto type deduction delegates the task of
deducting the type of an auto variable to the compiler from the type of its
initializer expression.

You can use the individual suboption -qlanglvl=autotypededuction or the group
option -qlanglvl=extended0x to enable this feature.

For more information, see "The auto type specifier (C++0x)" in the XL C/C++
Language Reference.

C99 long long

The C++ compiler can use the C99 long long feature, which improves source
compatibility between the C and C++ languages.

You can use the individual suboption -qlanglvl=c99longlong or the group option
-qlanglvl=extended0x to enable the C99 long long feature.

IBM After this feature is enabled, if a decimal integer literal that does not
have a suffix containing u or U cannot be represented by the long long int type,
you can decide whether to use the unsigned long long int type to represent the
literal or not by specifying the -qlanglvl=[no]extendedintegersafe option.

For more information, see "Integer literals" in the XL C/C++ Language Reference.

C99 preprocessor features adopted in C++0x

With several C99 preprocessor features adopted in C++0x, C and C++ compilers
provide a more common preprocessor interface, which can ease porting C source
files to the C++ compiler, eliminate semantic differences between the C and C++
preprocessors, and avoid preprocessor compatibility issues or diverging
preprocessor behaviors.

You can use the individual suboption -qlanglvl=c99preprocessor or the group
option -qlanglvl=extended0x to enable this feature.

For more information, see "C99 preprocessor features adopted in C++0x)" in the XL
C/C++ Language Reference.

Decltype

With the decltype feature, you can get a type that is based on the resultant type of
a possibly type-dependent expression.

You can use the individual suboption -qlanglvl=decltype or the group option
-qlanglvl=extended0x to enable this feature.

For more information, see "The decltype(expression) type specifier (C++0x)" in the
XL C/C++ Language Reference.

Chapter 2. What's new for IBM XL C/C++ for AIX, V11.1 13

Delegating constructors

With the delegating constructors feature, you can concentrate common
initializations in one constructor, which makes programs more readable and
maintainable.

You can use the individual suboption -qlanglvl=delegatingctors or the group
option -qlanglvl=extended0x to enable this feature.

For more information, see "Delegating constructors (C++0x)" in the XL C/C++
Language Reference.

Explicit instantiation declarations

With the explicit instantiation declarations feature, you can suppress the implicit
instantiation of a template specialization or its members.

You can use the individual suboption -qlanglvl=externtemplate or the group
options -qlanglvl=extended and -qlanglvl=extended0x to enable this feature.

For more information, see "Explicit instantiation (C++ only)" in the XL C/C++
Language Reference.

Extended friend declarations

The extended friend declarations feature relaxes the syntax rules governing friend
declarations as follows:
v Template parameters, typedef names, and basic types can be declared as friends.
v The class-key in the context for friend declarations is no longer necessary in

C++0x.

You can enable this feature with the individual suboption
-qlanglvl=extendedfriend or the group option -qlanglvl=extended0x.

For more information, see "Friends (C++ only)" in the XL C/C++ Language Reference.

Inline namespace definitions

Inline namespace definitions are namespace definitions with an initial inline
keyword. You can define or specialize the members of an inline namespace as if
they belong to the enclosing namespace that contains the inline namespace.

You can enable this feature with the individual suboption
-qlanglvl=inlinenamespace or the group option -qlanglvl=extended0x.

For more information, see "Inline namespace definitions (C++0x)" in the XL C/C++
Language Reference.

Static assertion

The static assertion feature provides you with the following benefits:
v Libraries can detect common usage errors at compile time.
v Implementations of the C++ Standard Library can detect and diagnose common

usage errors, thus improving usability.

14 XL C/C++: Getting Started

You can use a static_assert declaration to check important program invariants at
compile time.

You can enable the static assertion feature with the individual suboption
-qlanglvl=static_assert or the group option -qlanglvl=extended0x.

For more information, see "static_assert declaration (C++0x)" in the XL C/C++
Language Reference.

Variadic templates

With the variadic templates feature, you can define class or function templates that
have any number (including zero) of parameters.

You can use the individual suboption -qlanglvl=variadic[templates] or the group
option -qlanglvl=extended0x to enable this feature.

For more information, see "Variadic templates (C++0x)" in the XL C/C++ Language
Reference.

Related information in the XL C/C++ Compiler Reference

-qlanglvl

Performance and optimization
Additional features and enhancements assist with performance tuning and
application optimization.

Enhancements to -qpdf

The use of the -qpdf option consists of two steps. First, compile your program
with -qpdf1 and run it with a typical set of data to generate the profiling data.
Second, compile your program again with -qpdf2 to optimize the program based
on the profiling data.

In previous releases, if you modified the source file and compiled with the -qpdf
option, the compilation would stop with an error. As of IBM XL C/C++ for AIX,
V11.1, you can use profiling data after you modify your source files. To do this,
compile your application using the stale profiling data at the second stage of the
PDF process.

Three new suboptions are added to the -qpdf option. These new suboptions allow
more fine-grained control over performance improvement and extend -qpdf to
support multiple pass profiling, cache miss profiling, block counter profiling, call
counter profiling, and extended value profiling.

The three new -qpdf suboptions are:

level Supports multiple-pass profiling, cache miss profiling, block counter
profiling, call counter profiling, and extended value profiling. You can
compile your application with -qpdf1=level=0|1|2 to generate profiling
data with different levels of optimization.

Note: Both -qpdf1=level=0 and -qpdf1=level=1 support single-pass
profiling, whereas -qpdf1=level=2 supports multiple-pass profiling.

Chapter 2. What's new for IBM XL C/C++ for AIX, V11.1 15

exename
Generates the name of the PDF file you specify with the -o parameter.

defname
Reverts the PDF file to its default file name.

For detailed information about these suboptions, see -qpdf1, -qpdf2 in the XL
C/C++ Compiler Reference.

Reports about compiler optimizations

There have been a number of enhancements to the listing reports to give you more
information on how the compiler optimized your code. You can use this
information to get further benefits from the compiler's optimization capabilities.
For more details about these enhanced reports, see “New diagnostic reports” on
page 17.

Performance-related compiler options and directives

The entries in the following table describe new or changed compiler options and
directives.

Information presented here is a brief overview. For detailed information about
these and other performance-related compiler options, see "Optimization and
tuning options" in the XL C/C++ Compiler Reference.

Table 4. Performance-related compiler options and directives

-qfuncsect An enhancement added to -qfuncsect is to improve
linker garbage collection of functions with XL C/C++
programs. -qfuncsect places instructions for each
function in a separate object file control section or
CSECT which may reduce the size of your program.
Placing each function in its own CSECT enables the
linker to perform garbage collection on a per function
basis rather than per object file. For details, see the
-qfuncsect section in the XL C/C++ Compiler Reference.

-qhot Two suboptions -qhot=fastmath and -qhot=nofastmath
are added to -qhot, to tune your applications to use the
fast scalar versions of the math routines or to use the
default versions. -qhot=level=2 is also added for loop
transformation analysis of nested loops. For details, see
the -qhot section in the XL C/C++ Compiler Reference.

-qinline=level=number A new option is added to -qinline to provide guidance
to the compiler about the relative value of inlining in
relation to the default value of 5.number is a range of
integer values between 0 and 10 that indicates the level
of inlining you want to use. For details, see -qinline in
the XL C/C++ Compiler Reference.

16 XL C/C++: Getting Started

Table 4. Performance-related compiler options and directives (continued)

-qipa A new enhancement added to -qipa is -r
-qipa=relink. You can generate relinkable objects while
preserving IPA information by specifying -r
-qipa=relink. This creates a nonexecutable package
that contains all object files. By using this suboption,
you can postpone linking until the very last stage.

-qipa=clonearch is no longer supported. Consider
using -qtune=balanced.

For detailed information, see -qipa section in the XL
C/C++ Compiler Reference.

-qpdf -qpdf provides suboptions to give you more control
flexibility in controlling different PDF optimizations.
For more information, see the -qpdf1, -qpdf2 section in
the XL C/C++ Compiler Reference.

-qprefetch A new enhancement added to -qprefetch is
-qprefetch=assistthread. -qprefetch inserts prefetch
instructions automatically where there are opportunities
to improve code performance. For details, see
-qprefetch in the XL C/C++ Compiler Reference.

For additional information about performance tuning and program optimization,
see "Optimizing your applications" in the XL C/C++ Optimization and Programming
Guide.

New diagnostic reports
The new diagnostic reports can help you to identify opportunities to improve
performance of code.

Compiler reports in XML format

It is now possible to get information in XML format about some of the
optimizations that the compiler was able to perform and also which optimization
opportunities were missed. This information can be used to improve programmer
productivity when tuning applications, especially high performance applications.

The information from the compiler is produced in XML 1.0 format. The report is
defined by an XML schema and is easily consumable by tools that you can create
to read and analyze the results. A stylesheet, xlstyle.xsl, is provided to render
the report into a human readable format that can be read by anyone with a
browser which supports XSLT.

In this release, there are four optimization categories in the report, one for inlining,
one for loop transformations, one for data reorganizations, and one for
profile-directed feedback information. The new -qlistfmt option and its associated
suboptions generate the new XML 1.0 report.

For detailed information about this report and how to use it, see "Using reports to
diagnose optimization opportunities" in the XL C/C++ Optimization and
Programming Guide.

Chapter 2. What's new for IBM XL C/C++ for AIX, V11.1 17

Enhancements to profiling reports

Additional sections of the listing report have been added to help you understand
your programs. When using the -qreport option with the -qpdf2 option, you can
get the following additional sections added to your listing file in the section
entitled PDF Report:

Loop iteration count
The most frequent loop iteration count and the average iteration count, for
a given set of input data, is calculated for most loops in a program. This
information is only available when the program is compiled at
optimization level -O5.

Block and call count
This section of the report covers the call structure of the program and the
respective execution count for each called function. It also includes block
information for each function. For non-user defined functions, only
execution count is given. The total block and call coverage, and a list of the
user functions ordered by decreasing execution count are printed in the
end of this report section. In addition, the block count information is
printed at the beginning of each block of the pseudo-code in the listing
files.

Cache miss
This section of the report is printed in a single table. It reports the number
of cache misses for certain functions, with additional information about the
functions such as: cache level, cache miss ratio, line number, file name, and
memory reference.

Note: You must use the -qpdf1=level=2 option to get this report.
You can also select the level of cache to profile using the PDF_PM_EVENT
environment variable during run time.

For detailed information about the profile-directed feedback, see "Using
profile-directed feedback" in the XL C/C++ Optimization and Programming Guide.

For additional information about the listing files, see "Compiler listings" in the XL
C/C++ Compiler Reference

Report of data reorganization

The compiler can generate the following information in the listing files:
v Data reorganizations (a summary of useful information about how program

variable data gets reorganized by the compiler)
v The location of data prefetch instructions inserted by the compiler

To generate data reorganization information, specify the optimization level
-qipa=level=2 or -O5 together with -qreport. The data reorganization messages for
program variable data are added to the data reorganization section of the listing
file with the label DATA REORGANIZATION SECTION during the IPA link pass.
Reorganizations include:
v array splitting
v array transposing
v memory allocation merging
v array interleaving
v array coalescing

18 XL C/C++: Getting Started

To generate information about data prefetch insertion locations, use the
optimization level of -qhot, or any other option that implies -qhot together with
-qreport. This information appears in the LOOP TRANSFORMATION SECTION of the
listing file.

Additional loop analysis

A new suboption has been added to -qhot to add some more aggressive loop
analysis. -qhot=level=2 together with -qsmp and -qreport add information about
loop nests on which the aggressive loop analysis was performed to the LOOP
TRANSFORMATION SECTION of the listing file. This information can also appear in the
XML listing file created with the -qlistfmt option.

New and enhanced diagnostic options

The entries in the following table describe new or changed compiler options and
directives that give you control over compiler listings.

Information presented here is a brief overview. For detailed information about
these and other performance-related compiler options, see "Listings, messages and
compiler information" in the XL C/C++ Compiler Reference.

Table 5. Listings-related compiler options and directives

Option/directive Description

-qlistfmt Generates a report in an XML 1.0 format containing
information about optimizations performed by the
compiler and missed optimization opportunities. The
report contains information about inlining, loop
transformations, data reorganization and
profile-directed feedback.

-qreport The listing now contains a PDF report section when
used with -qpdf2. Another new section in the listing
files is a DATA REORGANIZATION section when used with
-qipa=level=2 or -O5.

-qskipsrc Determines whether the source statements skipped by
the compiler are shown in the SOURCE section of the
listing file.

Utilization tracking and reporting
The utilization tracking and reporting feature is a lightweight and simple
mechanism for tracking the compiler utilization within your organization. It is
disabled by default. You can use this feature to detect whether your organization's
use of the compiler exceeds your compiler license entitlements.

When utilization tracking is enabled, each invocation of the compiler is recorded in
a compiler utilization file. You can run the utilization reporting tool to generate a
report from one or more of these files to get a picture of the overall usage of the
compiler within your organization. The urt command can be used to control how
the report is generated. In particular, the report indicates whether the compiler
usage complies with the number of Concurrent User licenses that you have
purchased.

The utilization tracking and reporting feature is easy to set up and manage, and
utilization tracking does not impact the usage or performance of the compiler.

Chapter 2. What's new for IBM XL C/C++ for AIX, V11.1 19

For detailed information about the utilization tracking and reporting feature, see
"Tracking and reporting compiler usage" in the XL C/C++ Compiler Reference.

New or changed compiler options and directives
New and changed compiler options and directives are described in this section.

Compiler options can be specified on the command line or through directives
embedded in your application source files. See the XL C/C++ Compiler Reference for
detailed descriptions and usage information for these and other compiler options.

Table 6. New or changed compiler options and directives

Option/directive Description

-qarch A new suboption has been added to -qarch, specifying
-qarch=pwr7 produces object code that contains
instructions that run on the POWER7 hardware
platforms.

-qassert -qassert is a new option for XL C/C++. It is used to
provide information about the characteristics of the
files that can help to fine-tune optimizations.

-qconcurrentupdate If you are building kernel extensions, you must use
-qconcurrentupdate to enable hot patching. For details,
see -qconcurrentupdate in the XL C/C++ Compiler
Reference.

-qfuncsect In previous releases,-qfuncsect had minimal size
reductions for C++ programs. You can see a significant
improvement in the current release.

-qfunctrace You can use -qfunctrace to trace the entry and exit
points of functions in a compilation unit or only a
specific list of functions.

-qhot A new suboption has been added for -qhot. The -qhot
compiler option is a powerful alternative to hand
tuning that provides opportunities to optimize loops
and array language.

The -qhot=fastmath option enables the replacement of
math routines with available math routines from the
XLOPT library only if -qstrict=nolibrary is enabled.
-qhot=nofastmath disables the replacement of math
routines by the XLOPT library. -qhot=fastmath is
enabled by default if -qhot is specified regardless of the
hot level.

-qinline Attempts to inline functions instead of generating calls
to those functions, for improved performance.

-qipa You can generate relinkable objects while preserving
IPA information by specifying -r -qipa=relink.

-qkeepinlines A new suboption exports has been added to the
-qkeepinlines option. You can use
-qkeepinlines=exports to make sure that the compiler
keeps the list of symbols and their definitions from the
shared object file compiled with an earlier version of
the compiler.

20 XL C/C++: Getting Started

Table 6. New or changed compiler options and directives (continued)

Option/directive Description

-qlanglvl C++0x New suboptions have been added to
-qlanglvl:

v -qlanglvl=autotypededuction: Controls whether the
auto type deduction feature is enabled. This feature
can be used to delegate the task of type deduction of
an auto variable to the compiler from the type of its
initializer expression.

v -qlanglvl=c99longlong: Controls whether the C99
long long feature is enabled. This feature improves
source compatibility between the C and C++
languages.

v -qlanglvl=c99preprocessor: Controls whether the
C99 preprocessor features adopted in C++0x are
enabled. This feature can be used to provide a more
common preprocessor interface for C and C++
compilers.

v -qlanglvl=decltype: Controls whether the decltype
feature is enabled. This feature can be used to get a
type that is based on the resultant type of a possibly
type-dependent expression.

v -qlanglvl=delegatingctors: Controls whether the
delegating constructors feature is enabled. This
feature can be used to concentrate common
initializations in one constructor.

v -qlanglvl=extendedfriend: Controls whether the
extended friend declarations feature is enabled. This
feature can be used to accept additional forms of
non-function friend declarations.

v IBM -qlanglvl=extendedintegersafe: Controls
whether or not unsigned long long int can be used
as the type for decimal integer literals that do not
have a suffix containing u or U and cannot be
represented by the long long int type. This option
takes effect only when the -qlanglvl=c99longlong
option is specified.

v -qlanglvl=externtemplate: Controls whether the
explicit instantiation declarations feature is enabled.
This feature can be used to suppress the implicit
instantiation of a template specialization or its
members.

v -qlanglvl=inlinenamespace: Controls whether the
inline namespace definitions feature is enabled. This
feature can be used to define and specialize
members of an inline namespace as if they were also
members of the enclosing namespace.

v -qlanglvl=static_assert: Controls whether the static
assertions feature is enabled. This feature can be
used to produce compile-time assertions for which a
severe error message is issued on failure.

v -qlanglvl=variadic[templates]: Controls whether the
variadic templates feature is enabled. This feature
can be used to define class or function templates that
have any number (including zero) of parameters.

Chapter 2. What's new for IBM XL C/C++ for AIX, V11.1 21

Table 6. New or changed compiler options and directives (continued)

Option/directive Description

-qlibmpi You can use -qlibmpi to tune code based on the
known behavior of the Message Passing Interface
(MPI) functions.

-qlistfmt Generates a report in an XML 1.0 format containing
information about some optimizations performed by
the compiler and some missed optimization
opportunities for inlining, loop transformations, data
reorganization and profile-directed feedback.

-qnamemangling There is a new namemangling scheme for this release.

-qpdf1,-qpdf2 New options have been added to -qpdf1,-qpdf2.

-qprefetch A new suboption has been added to -qprefetch. When
you work with applications that generate a high
cache-miss rate, you can use -qprefectch=assistthread
to exploit assist threads for data prefetching.

-qsaveopt|-qnosaveopt The existing -qsaveopt option is enhanced to also
include the user's configuration file name and the
options specified in the configuration files.

-qsimd Controls whether the compiler can automatically take
advantage of vector instructions for processors that
support them.

-qskipscrc When a listing file is generated using the -qsource
option, you can use -qskipsrc to control whether the
source statements skipped by the compiler are shown
in the source section of the listing file. Alternatively,
you can use the -qskipsrc=hide option to hide the
source statements skipped by the compiler.

-qstackprotect You can use -qstackprotect to protect your applications
against malicious code or programming errors that
overwrite or corrupt the stack.

-qstrict A new suboption has been added to the -qstrict option
to allow more control over optimizations and
transformations that violate strict program semantics.

-qstrict=vectorprecision disables vectorization in loops
where it might produce different results in vectorized
iterations than in nonvectorized ones.

-qtune A new suboption has been added to -qtune. If you
specify -qtune=pwr7, optimizations are tuned for the
POWER7 hardware platforms.

Table 7. Deprecated directives and options

Option/directive Description

#pragma ibm critical This directive is deprecated and might be
removed in a future release. You can use the
OpenMP equivalent.

#pragma ibm parallel_loop This directive is deprecated and might be
removed in a future release. You can use the
OpenMP equivalent.

#pragma ibm schedule This directive is deprecated and might be
removed in a future release. You can use the
OpenMP equivalent.

22 XL C/C++: Getting Started

Table 7. Deprecated directives and options (continued)

Option/directive Description

-Q This option is deprecated and replaced with
-qinline.

-qenablevmx This option is deprecated and replaced with
the -qsimd=auto option.

-qhot=simd | nosimd -qhot=simd | nosimd are deprecated and
might be removed in a future release. You can
use -qsimd.

-qinfo=private -qinfo=private is deprecated and replaced
with -qreport.

-qinfo=reduction -qinfo=reduction is deprecated and replaced
with -qreport.

-qipa=inline | noinline -qipa=inline | noinline are deprecated and
might be removed in a future release. You can
use -qinline.

-qipa=clonearch | noclonearch -qipa=clonearch | noclonearch is no longer
supported. You can use -qtune=balanced.

-qipa=clonearch | noclonearch -qipa=cloneproc | nocloneproc is no longer
supported. You can use -qtune=balanced.

Built-in functions new for this release
This section lists built-in functions that are new for this release.

For more information about built-in functions provided by XL C/C++, see
Compiler built-in functions in the XL C/C++ Compiler Reference.

VSX built-in functions

Vector Scalar eXtension (VSX) is newly added for POWER7 processors.

For more information about VSX built-in functions, see Vector built-in functions.

POWER7 prefetch extensions and cache control

The POWER7 processor has cache control and stream prefetch extensions that
support store stream prefetch and prefetch depth control. XL C/C++ provides the
following new built-in functions to provide direct programmer access to these
instructions:
v __protected_stream_stride

v __transient_protected_stream_count_depth

v __unlimited_protected_stream_depth

v __transient_unlimited_protected_stream_depth

v __partial_dcbt

v __dcbtt

v __dcbtstt

v __dcbflp

The compiler can insert the built-in functions automatically when it optimizes the
code. You can disable automatic use of these instructions with -qnoprefetch.

Chapter 2. What's new for IBM XL C/C++ for AIX, V11.1 23

For more information about the directives, see built-in functions in the XL C/C++
Compiler Reference.

POWER7 hardware built-in functions

New XL C/C++ built-in functions corresponding to each new POWER7 hardware
instruction are added in this release. With these functions, you can directly
manipulate specific hardware instructions in your code, which can improve the
performance of your application.
v __bpermd

v __cbcdtd

v __cdtbcd

v __load8r

v __store8r

v __divde

v __divdeu

v __cmpb

v __divwe

v __divweu

v __addg6s

Conversion functions

These new functions convert between Declets and Binary Coded Decimal.
v __cbcdtd

v __cdtbcd

Comparison functions

This new function compares bytes.
v __cmpb

Decimal floating-point functions

This new function adds and generates sixes.
v __addg6s

Compatibility of redistributable library libxlopt.a
Starting from this release, compatibility of the redistributable library, libxlopt.a, will
be maintained. The libxlopt.a library will be compatible with compiler XL C/C++
for AIX, V11.1 or later.

Previously, the version of the redistributable library had to be the same as the
version of the compiler with which the application was compiled.

You can download and use the latest redistributable library for multiple
applications compiled with XL C/C++ V11.1, or later, on supported platforms.

For more information about the redistributable libraries, see Redistributable
libraries in the XL C/C++ Compiler Reference.

24 XL C/C++: Getting Started

Chapter 3. Enhancements added in previous versions

This section lists the enhancements added to the compiler in the previous releases.

Enhancements added in Version 10.1
This section describes features and enhancements added to the compiler in Version
10.1.

Operating system support
IBM XL C++ for AIX, V10.1 supports AIX V6.1 and AIX V5.3.

This version of the compiler does not support AIX V5.2.

C++0x
This release introduces support for a new version of the standard for the C++
programming language - specifically C++0x. This standard has not yet been
officially adopted but we are beginning to support some of its features.

Note: C++0x is a new version of the C++ programming language standard. This is
a draft standard and has not been officially adopted in its entirety. The
implementation of C++0x is based on IBM's interpretation of the draft C++0x
standard and is subject to change at any time without notice. IBM makes no
attempt to maintain compatibility with earlier releases and therefore the C++0x
language extension should not be relied on as a stable programming interface.

Specifically, in this release:
v we add a new language level
v we introduce new integer promotion rules for arithmetic conversions with long

long data types
v the C++ preprocessor now supports C99 features

New language level - extended0x

The default -qlanglvl compiler option remains extended when invoking the C++
compiler.

A new suboption has been added to the -qlanglvl option in this release.
-qlanglvl=extended0x is used to allow users to try out early implementations of
any features of C++0x that are currently supported by XL C/C++.

C99 long long under C++

With this release of XL C/C++ V11.1, compiler behavior changes when performing
certain arithmetic operations with integral literal data types. Specifically, the
integer promotion rules have changed.

Previously, in C++ (and as an extension to C89), when compiling with -qlonglong,
an unsuffixed integral literal would be promoted to the first type in this list into
which it fitted:

int

© Copyright IBM Corp. 1996, 2010 25

long int

unsigned long int

long long int

unsigned long long

Starting with this release and when compiling with -qlanglvl=extended0x, the
compiler now promotes unsuffixed integral literal to the first type in this list into
which it fits:

int

long int

long long int

unsigned long long

Note: Like our implementation of the C99 Standard in the C compiler, C++ will
allow promotions from long long to unsigned long long if a value cannot fit into
a long long type, but can fit in an unsigned long long. In this case, a message will
be generated.

The macro __C99_LLONG has been added for compatibility with C99. This macro is
defined to 1 with -qlanglvl=extended0x and is otherwise undefined.

For more information, see "Integral and floating-point promotions" in the XL
C/C++ Language Reference.

Preprocessor changes

The following changes to the C++ preprocessor make it easier to port code from C
to C++:
v Regular string literals can now be concatenated with wide-string literals.
v The #line <integer> preprocessor directive has a larger upper limit. It has been

increased from 32767 to 2147483647 for C++ .
v C++ now supports _Pragma operator.
v These macros now apply to C++ as well as C:

– __C99_MACRO_WITH_VA_ARGS (also available with -qlanglvl=extended)
– __C99_MAX_LINE_NUMBER (also available with -qlanglvl=extended)
– __C99_PRAGMA_OPERATOR
– __C99_MIXED_STRING_CONCAT

Note: Except as noted, these C++ preprocessor changes are only available when
compiling with -qlanglvl=extended0x.

For additional information about the language standards supported by XL C/C++,
see "Language levels and extensions" in the XL C/C++ Language Reference.

Other XL C/C++ language-related updates
Vector data types

Vector data types can now use some of the operators that can be used with base
data types such as:.
v unary operators
v binary operators

26 XL C/C++: Getting Started

v relational operators

Thread local storage

The thread local storage support has been enhanced to include
__attribute__((tls-model("string"))) where string is one of local-exec,
initial-exec, local-dynamic, or global-dynamic.

OpenMP 3.0
In IBM XL C++ for AIX, V10.1, XL C/C++ supports the OpenMP API Version 3.0
specification. The XL C/C++ implementation is based on IBM's interpretation of
the OpenMP Application Program Interface Draft 3.0 Public Comment.

The main differences between Version 2.5 and Version 3.0 are:
v Addition of task level parallelization. The new OpenMP constructs TASK and

TASKWAIT give users the ability to parallelize irregular algorithms, such as pointer
chasing or recursive algorithms for which the existing OpenMP constructs were
not adequate.

v for loops can now contain var values of unsigned int and pointer type as well
as signed int.

v Stack size control. You can now control the size of the stack for threads created
by the OMP runtime library using the new environment variable OMP_STACKSIZE.

v Users can give hints to the desired behavior of waiting threads using new
environment variables OMP_WAIT_POLICY and OMP_SET_POLICY.

v Storage reuse. Some restrictions on the PRIVATE clause have been removed. A list
item that appears in the reduction clause of a parallel construct can now also
appear in a private clause on a work-sharing construct.

v Scheduling. A new SCHEDULE attribute, auto, allows the compiler and runtime
system to control scheduling.

v Consecutive loop constructs with STATIC schedule can now use nowait.
v Nesting support - a COLLAPSE clause has been added to the DO, FOR, PARALLEL

FOR, and PARALLEL DO directives to allow parallelization of perfect loop nests.
This means that multiple loops in a nest can be parallelized.

v THREADPRIVATE directives can now apply to variables at class scope in addition to
file and block scope.

v Parallelization of iterator loops of canonical form including those with random
access iterators.

For more information, see:
v "Using OpenMP directives" in the XL C/C++ Optimization and Programming Guide

v www.openmp.org

Performance and optimization
Some features and enhancements can assist with performance tuning and
optimization of your application.

Enhancements to -qstrict

Many suboptions have been added to the -qstrict option to allow more
fine-grained control over optimizations and transformations that violate strict
program semantics. In previous releases, the -qstrict option disabled all
transformations that violate strict program semantics. This is still the behavior if

Chapter 3. Enhancements added in previous versions 27

http://www.openmp.org

you use -qstrict without suboptions. Likewise, in previous releases -qnostrict
allowed transformations that could change program semantics. Because a higher
level of optimizations might require relaxing strict program semantics, the addition
of the suboptions relaxes selected rules to get specific benefits of faster code
without turning off all semantic verifications.

You can use 16 new suboptions separately or use a suboption group. Here is a list
of suboption groups:

all Disables all semantics-changing transformations, including those controlled
by the other suboptions.

ieeefp
Controls whether individual operations conform to IEEE 754 semantics.

order Controls whether individual operations can be reordered in a way that
violate program language semantics.

precision
Controls optimizations and transformations that can affect the precision of
program results.

exceptions
Controls optimizations and transformations that can affect the runtime
exceptions generated by the program.

For detailed information about these suboptions, see "-qstrict" in the XL C/C++
Compiler Reference.

Performance-related compiler options and directives

The entries in the following table describe new or changed compiler options and
directives.

Information presented here is a brief overview. For detailed information about
these and other performance-related compiler options, see "Optimization and
tuning options" in the XL C/C++ Compiler Reference.

Table 8. Performance-related compiler options and directives

Option/directive Description

-qstrict Many new suboptions have been added to give you
more control over the relaxation of program semantic
rules in order to gain some performance benefits.

-qreport The listing now contains information about how many
streams are created for each loop and which loops
cannot be SIMD vectorized due to non-stride-one
references. You can use this information to improve the
performance of your applications.

-qsmp When -qsmp=omp is in effect, the additional
functionality of OpenMP API 3.0 is now available. For
more information, see “OpenMP 3.0” on page 27.

For additional information about performance tuning and program optimization,
see "Optimizing your applications" in the XL C/C++ Optimization and Programming
Guide.

28 XL C/C++: Getting Started

New or changed compiler options and directives
Compiler options can be specified on the command line or through directives
embedded in your application source files. See the XL C/C++ Compiler Reference for
detailed descriptions and usage information for these and other compiler options.

Table 9. New or changed compiler options and directives

Option/directive Description

-qstrict Many suboptions have been added to the -qstrict option to
allow more control over optimizations and transformations
that violate strict program semantics. See “Performance and
optimization” on page 15 for more information.

-qshowmacros When used in conjunction with the -E option, the
-qshowmacros option replaces preprocessed output with
macro definitions. There are suboptions provided to control
the emissions of predefined and user-defined macros more
precisely.

-qreport When used together with compiler options that enable
automatic parallelization or vectorization, the -qreport
option now reports the number of streams in a loop and
produces information when loops cannot be SIMD
vectorized due to non-stride-one references.

-qnamemangling There is a new namemangling scheme for this release.

-qsmp When -qsmp=omp is in effect, the additional functionality
of OpenMP API 3.0 is now available. For more information,
see “OpenMP 3.0” on page 27.

#pragma init and #pragma
fini

Programmers can use #pragma init and #pragma fini to
specify a list of functions to run before or after main() or
when shared libraries are loaded or unloaded. These
functions can be used to do initialization and cleanup.
Note: A C++ invocation, such as xlC or the redistributable
tools linkxlC or makeC++SharedLib must be used at link
time.

-qtimestamps This option can be used to remove timestamps from
generated binaries.

-qtls The thread local storage support has been enhanced to
include __attribute__((tls-model("string"))) where
string is one of local-exec, initial-exec, local-dynamic, or
global-dynamic.

-qinfo The suboptions als and noals have been added to the
qinfo option to report (or not report) possible violations of
the ANSI aliasing rule.

-qunique -qunique now applies to both C and C++.

Enhancements added in Version 9.0
This section describes features and enhancements added to the compiler in Version
9.0.

C/C++ language-related updates
The default language level for C compilations changed, and new support for
extensions to the C and C++ programming languages was introduced.

Chapter 3. Enhancements added in previous versions 29

Default language level changed for C - extc99

The default -qlanglvl compiler option setting is extc99 when invoking the C
compiler with the xlc invocation. This change allows you to use C99 features and
headers without having to explicitly specify the extc99 suboption.

You might encounter issues with the following when compiling with the new
default -qlanglvl=extc99 setting:
v Pointers can be qualified with restrict in C99, so restrict can not be used as

an identifier.
v C99 treatment of long long data differs from the way long long data is handled

in C89.
v C99 header files define new macros: LLONG_MAX in limits.h, and va_copy in

stdarg.h.
v The value of macro __STDC_VERSION__ changes from 199409 to 19990.

To revert to previous xlc behavior, specify -qlanglvl=extc89 when invoking the
compiler.

Decimal floating point support for C and C++

Decimal floating point arithmetic offers greater computational performance and
precision in business and financial applications where numeric data I/O is usually
performed in decimal form. Data conversions from decimal type to binary floating
point type and back are avoided, as are inherent rounding errors accumulated
during data conversions.

XL C/C++ adds support for decimal floating point arithmetic with the following
new compiler options:

Table 10. Decimal floating point compiler options

Option/directive Description

-qdfp|-qnodfp Specifying -qdfp enables compiler support for decimal
floating-point data types and literals. If you specify
-qdfp when compiling for an architecture that does not
support decimal floating-point computation, the
compiler will assume -qfloat=dfpemulate and enable
software emulation of decimal floating-point
computations.

-qfloat=
dfpemulate|nodfpemulate

Specifying -qfloat=dfpemulate instructs the compiler to
use software emulation when handling decimal floating
point computations. This option can be used with any
architecture supported by XL C/C++.

-y There are suboptions specific to decimal floating-point
arithmetic for the -y option to control rounding of
constant expressions.

Note: Compiler support for decimal floating point operations requires AIX 5L for
POWER version 5.3 with the 5300-06 Technology Level or higher.

For more information, see Extension for the programming language C to support
decimal floating-point arithmetic: TR 24732 and Decimal Types for C++: Draft 4.

30 XL C/C++: Getting Started

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1176.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1176.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1977.html

TR1 library extensions for C++

XL C/C++ Version 9.0 introduced support for numerous extensions to the C++
language as defined by the Draft Technical Report on C++ Library Extensions
(TR1).

For more information on these language extensions, see Draft Technical Report on
C++ Library Extensions (TR1).

Architecture and processor support
The -qarch and -qtune compiler options control the code generated by the
compiler. These compiler options adjust the instructions, scheduling, and other
optimizations to give the best performance for a specified target processor or range
of processors.

New default settings for -qarch, -qtune

The new default -qarch and -qtune settings are:
v -qarch=ppc
v -qtune=balanced

The -qtune=balanced suboption is new for this release, and becomes the default
-qtune setting when certain -qarch settings are specified. Using -qtune=balanced
instructs the compiler to tune generated code for optimal performance across a
range of recent processor architectures, including POWER6®.

Important: The change to the -qarch default suboption setting can affect the
results of floating-point short arithmetic computations in your programs. The
-qarch=com default used in the previous release of the compiler caused such
computations to be performed using double precision instructions followed by
rounding. The new -qarch=ppc default instructs the compiler to generate code that
uses short floating point instructions. The difference in computational method can
affect the precision of computational results. To achieve the behavior of the
previous -qarch=com default, specify the new -qfloat=nosingle compiler option
when compiling your application.

New support for POWER6 processors

XL C/C++ Version 9.0 expanded the list of -qarch and -qtune suboptions to
support the newly-available POWER6 processors.

The following -qarch and -qtune options are now available:
v -qarch=pwr6
v -qarch=pwr6e
v -qtune=pwr6

Support removed for selected processors

XL C/C++ Version 9.0 removed support for processor architectures not supported
by AIX V5.2, such as POWER, POWER2™, and PowerPC® 601. As a result, the
following -qarch and -qtune suboption settings are no longer supported.

v -qarch= com | pwr | pwr2 | pwr2s | p2sc | 601 | 602 | 603
v -qtune= pwr | pwr2 | pwr2s | pwrx | p2sc | 601 | 602 | 603

Chapter 3. Enhancements added in previous versions 31

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf

The compiler continues to recognize these suboption settings, and will still
generate code for their corresponding architectures. However, in some cases the
behavior of that code might differ from code generated by previous versions of the
compiler. Also, code generated for these unsupported architectures may not even
execute at all on supported AIX systems because of differences in architecture.

Use caution if you will still be using these unsupported -qarch and -qtune
suboption settings.

Performance and optimization
Many enhancements were made to assist with performance tuning and program
optimization.

Performance-related compiler options and directives

The entries in the following table describes new or changed compiler options and
directives.

Information presented here is just a brief overview. For more information about
these and other performance-related compiler options, refer to "Optimization and
tuning options" in the XL C/C++ Compiler Reference.

Table 11. Performance-related compiler options and directives

Option/directive Description

-qalias= global|noglobal These new -qalias suboptions enable or disable the
application of language-specific aliasing rules across
compilation units during link time optimization.

-qalias= restrict|norestrict These new -qalias suboptions enable or disable
optimization for restrict qualified pointers. Specifying
-qalias=restrict will usually improve performance for
code that uses restrict qualified pointers. You can use
-qalias=norestrict to preserve compatibility with code
compiled with versions of the compiler previous to
V9.0.

-qfloat= fenv|nofenv These new -qfloat suboptions inform the compiler if
code has a dependency on the floating-point hardware
environment, such as explicitly reading or writing the
floating-point status and control register. Specifying
-qfloat=nofenv indicates that there is no dependency
on the hardware environment, allowing the compiler to
perform aggressive optimizations.

-qfloat= hscmplx|nohscmplx Specifying -qfloat=hscmplx improves optimization of
operations involving complex division and complex
absolute values.

-qfloat= rngchk|norngchk Specifying -qfloat=rngchk enables range checking on
input arguments for software divide and inlined sqrt
operations. Specifying -qfloat=norngchk instructs the
compiler to skip range checking, allowing for better
performance in certain circumstances. Specifying the
-qnostrict compiler option sets -qfloat=norngchk.

32 XL C/C++: Getting Started

Table 11. Performance-related compiler options and directives (continued)

Option/directive Description

-qfloat= single|nosingle Specifying -qfloat=single instructs the compiler to
compute single-precision floating-point values using
single-precision arithmetic instructions supported by all
current PowerPC processors. Use -qfloat=nosingle if
you need to preserve the computational behavior in
applications originally compiled for earlier processors,
such as POWER and POWER2 processors. You may
also need to specify -qfloat=norndsngl to obtain the
same computational results.

-qipa=threads=
[auto|noauto|number]

This new -qipa suboption lets you specify how many
threads the compiler will assign to code generation
during the second IPA pass.

-qminimaltoc|-qnominimaltoc Specifying -qminimaltoc helps avoid toc overflow
conditions in 64-bit compilations by placing toc entries
into a separate data section for each object file.

-qpdf The -qpdf option can now be used to provide
profile-directed feedback on specific objects. See "Object
level profile-directed feedback" in the XL C/C++
Optimization and Programming Guide for more
information.

-qsmp= threshold=n When -qsmp=auto is in effect, this new suboption lets
you specify the amount of work required in a loop
before the compiler will consider it for automatic
parallelization.

-qspeculateabsolutes|-
qnospeculateabsolutes

During program optimization, -qnospeculateabsolutes
works with -qtocmerge -bI:file for non-IPA links and
-bI:file for IPA links to disable speculation of variables
at absolute addresses.

#pragma expected_value(param,
value)

Use the #pragma expected_value directive to specify a
value that a parameter passed in a function call is most
likely to take at run time. The compiler can use this
information to perform certain optimizations, such as
function cloning and inlining.

Built-in functions in Version 9.0
Some built-in functions were added in Version 9.0.

For more information on built-in functions provided by XL C/C++, see "Compiler
built-in functions" in the XL C/C++ Compiler Reference.

PowerPC cache control

The PowerPC architecture specifies the dcbst and dcbf cache copy instructions.
The following new built-in functions provide direct programmer access to these
instructions.
v void __dcbst(const void* addr); /* Data Cache Block Store */

v void __dcbf(const void* addr); /* Data Cache Block Flush */

Chapter 3. Enhancements added in previous versions 33

POWER6 prefetch extensions and cache control

The POWER6 processor has cache control and stream prefetch extensions with
support for store stream prefetch and prefetch depth control. XL C/C++ provides
the following new built-in functions to provide direct programmer access to these
instructions.
v void __dcbfl(const void* addr); /* pwr6 - Data Cache Block Flush from

L1 data cache only */

v void __protected_unlimited_stream_set(unsigned int direction, const void*
addr, unsigned int ID); /* Supported by pwr5 and pwr6 */

v void __protected_unlimited_store_stream_set(unsigned int direction, const
void* addr, unsigned int ID); /* Supported by pwr6 */

v void __protected_store_stream_set(unsigned int direction, const void*
addr, unsigned int ID); /* Supported by pwr6 */

v void __protected_stream_count_depth(unsigned int unit_cnt, unsigned int
prefetch_depth, unsigned int ID); /* Supported by pwr6 */

Other new or changed compiler options
Compiler options can be specified on the command line or through directives
embedded in your application source files. See the XL C/C++ Compiler Reference for
detailed descriptions and usage information for these and other compiler options.

Table 12. Other new or changed compiler options

Option/directive Description

-C! Specifying the -C! compiler option removes comments from
preprocessed output.

-qoptdebug|-qnooptdebug When used with optimization levels of -O3 or higher, the
new -qoptdebug option instructs the compiler to produce
optimized pseudocode that can be read by a symbolic
debugger.

-qreport When used together with compiler options that enable
automatic parallelization or vectorization, the -qreport
option produces a pseudo-code listing showing how
program loops are parallelized and vectorized. The report
also provides diagnostic information if the compiler is not
able to parallelize or vectorize a given loop.

-qsaveopt|-qnosaveopt In previous releases, the -qsaveopt option stored the
command line options used to compile a file into the
resulting object file. In Version 9.0, the information stored in
the object file expanded to also include version and level
information for each compiler component invoked during
compilation.

-qsmp=stackcheck This new -qsmp suboption instructs the compiler to check
for stack overflow by slave threads at run time, and issue a
warning if the remaining stack size is less than the number
of bytes specified by the stackcheck option of the
XLSMPOPTS environment variable.

-qtemplatedepth=number -qtemplatedepth specifies the maximum number of
recursively-instantiated template specializations that the
compiler will process.

34 XL C/C++: Getting Started

Table 12. Other new or changed compiler options (continued)

Option/directive Description

-qversion=verbose The -qversion option adds a new verbose suboption.
Specifying -qversion=verbose instructs the compiler to
display the version and level information for each compiler
component invoked during compilation.

Chapter 3. Enhancements added in previous versions 35

36 XL C/C++: Getting Started

Chapter 4. Setting up and customizing XL C/C++

For complete prerequisite and installation information for XL C/C++, refer to
"Before installing" in the XL C/C++ Installation Guide.

Using custom compiler configuration files
You can customize compiler settings and options by modifying the default
configuration file or by creating your own.

You have the following options to customize compiler settings:
v The XL C/C++ compiler installation process creates a default compiler

configuration file. You can directly modify this configuration file to add default
options for specific needs. However, if you later apply updates to the compiler,
you must reapply all of your modifications to the newly installed configuration
file.

v You can create your own custom configuration file that either overrides or
complements the default configuration file. The compiler can recognize and
resolve compiler settings you specify in your custom configuration files together
with compiler settings specified in the default configuration file. Compiler
updates that might later affect settings in the default configuration file does not
affect the settings in your custom configuration files.

For more information, see "Using custom compiler configuration files" in the XL
C/C++ Compiler Reference.

Configuring compiler utilization tracking and reporting
In addition to the compiler configuration file, there is a separate configuration file
for the utilization tracking and reporting feature. Utilization tracking is disabled by
default, but you can enable it by modifying an entry in this configuration file.
Various other aspects of utilization tracking can also be configured using this file.

Although the compiler configuration file is separate from the utilization tracking
configuration file, it contains an entry that specifies the location of the utilization
tracking configuration file so that the compiler can find this file.

For more information about how to configure the utilization tracking and reporting
feature, see Tracking and reporting compiler usage in the XL C/C++ Compiler
Reference.

© Copyright IBM Corp. 1996, 2010 37

38 XL C/C++: Getting Started

Chapter 5. Developing applications with XL C/C++

C/C++ application development consists of repeating cycles of editing, compiling
and linking (by default a single step combined with compiling), and running.

Notes:

1. Before you can use the compiler, you must first ensure that XL C/C++ is
properly installed and configured. For more information see the XL C/C++
Installation Guide.

2. To learn about writing C/C++ programs, refer to the XL C/C++ Language
Reference.

The compiler phases
A typical compiler invocation executes some or all of these activities in sequence.
For link time optimizations, some activities will be executed more than once
during a compilation. As each program runs, the results are sent to the next step in
the sequence.
1. Preprocessing of source files
2. Compilation, which may consist of the following phases, depending on what

compiler options are specified:
a. Front-end parsing and semantic analysis
b. High-level optimization
c. Low-level optimization
d. Register allocation
e. Final assembly

3. Assemble the assembly (.s) files, and the unpreprocessed assembler (.S) files
after they are preprocessed

4. Object linking to create an executable application

To see the compiler step through these phases, specify the -v compiler option when
you compile your application. To see the amount of time the compiler spends in
each phase, specify -qphsinfo.

Editing C/C++ source files
To create C/C++ source programs, you can use any text editor available to your
system, such as vi or emacs.

Source programs must be saved using a recognized file name suffix. See the “XL
C/C++ input and output files” on page 42 for a list of suffixes recognized by XL
C/C++.

For a C or C++ source program to be a valid program, it must conform to the
language definitions specified in the XL C/C++ Language Reference.

Compiling with XL C/C++
XL C/C++ is a command-line compiler. Invocation commands and options can be
selected according to the needs of a particular C/C++ application.

© Copyright IBM Corp. 1996, 2010 39

Invoking the compiler
The compiler invocation commands perform all necessary steps to compile C or
C++ source files, assemble any .s and .S files, and link the object files and libraries
into an executable program.

To compile a source program, use the basic invocation syntax shown below:

��
(1)

xlc
(2)

xlC
xlc++

� � input_file
compiler_option

��

Notes:

1 Basic invocation to compile C source code

2 Basic invocations to compile C++ source code

For most applications, you should compile with xlc, xlc++, or a thread safe
counterpart. You can use xlc++ to compile either C or C++ program source, but
compiling C++ files with xlc may result in link or run time errors because libraries
required for C++ code are not specified when the linker is called by the C
compiler.

Additional invocation commands are available to meet specialized compilation
needs, primarily to provide explicit compilation support for different levels and
extensions of the C or C++ language. See "Invoking the compiler" in the XL C/C++
Compiler Reference for more information about compiler invocation commands
available to you, including special invocations intended to assist developers
migrating from a GNU compilation environment to XL C/C++.

Compiling parallelized XL C/C++ applications
XL C/C++ provides thread-safe compiler invocation commands that you can use
when compiling parallelized applications for use in multiprocessor environments.

These invocations are similar to their corresponding base compiler invocations,
except that they link and bind compiled objects to thread-safe components and
libraries. The generic XL C/C++ thread-safe compiler invocations include:

v xlC_r, xlC_r7, , xlC128_r, xlC128_r7
v xlc++_r, xlc++_r7, xlc++128_r, xlc++128_r7
v xlc_r, xlc_r7, xlc128_r, xlc128_r7

XL C/C++ provides additional thread-safe invocations to meet specific compilation
requirements. See "Invoking the compiler" in the XL C/C++ Compiler Reference for
more information.

Note: Using any of these commands alone does not imply parallelization. For the
compiler to recognize SMP or OpenMP directives and activate parallelization, you
must also specify -qsmp compiler option. In turn, you should specify the -qsmp
option only in conjunction with one of these thread-safe invocation commands.
When you specify -qsmp, the driver links in the libraries specified on the smp
libraries line in the active stanza of the configuration file.

40 XL C/C++: Getting Started

For more information on parallelized applications see "Parallelizing your
programs" in the XL C/C++ Optimization and Programming Guide.

Specifying compiler options
Compiler options perform a variety of functions, such as setting compiler
characteristics, describing the object code to be produced, controlling the diagnostic
messages emitted, and performing some preprocessor functions.

You can specify compiler options:
v On the command-line with command-line compiler options
v In your source code using directive statements
v In a makefile
v In the stanzas found in a compiler configuration file
v Or by using any combination of these techniques

It is possible for option conflicts and incompatibilities to occur when multiple
compiler options are specified. To resolve these conflicts in a consistent fashion, the
compiler usually applies the following general priority sequence to most options:

1. Directive statements in your source file override command-line settings
2. Command-line compiler option settings override configuration file settings
3. Configuration file settings override default settings

Generally, if the same compiler option is specified more than once on a
command-line when invoking the compiler, the last option specified prevails.

Note: Some compiler options do not follow the priority sequence described above.

For example, the -I compiler option is a special case. The compiler searches any
directories specified with -I in the vac.cfg file before it searches the directories
specified with -I on the command-line. The option is cumulative rather than
preemptive.

See the XL C/C++ Compiler Reference for more information about compiler options
and their usage.

You can also pass compiler options to the linker, assembler, and preprocessor. See
"Compiler options reference" in the XL C/C++ Compiler Reference for more
information about compiler options and how to specify them.

Reusing GNU C/C++ compiler options with gxlc and gxlc++
XL C/C++ includes various features to help you transition from GNU C/C++
compilers to XL C/C++ including gxlc and gxlc++ commands.

Each of the gxlc and gxlc++ utilities accepts GNU C or C++ compiler options and
translates them into comparable XL C/C++ options. Both utilities use the XL
C/C++ options to create an xlc or xlc++ invocation command, which is then used
to invoke the compiler. These utilities are provided to help you reuse makefiles
created for applications previously developed with GNU C/C++. However, to fully
exploit the capabilities of XL C/C++, you should use the XL C/C++ invocation
commands and their associated options.

The actions of gxlc and gxlc++ are controlled by the configuration file gxlc.cfg.
The GNU C/C++ options that have an XL C/C++ counterpart are shown in this

Chapter 5. Developing applications with XL C/C++ 41

file. Not every GNU option has a corresponding XL C/C++ option. gxlc and
gxlc++ return warnings for input options that were not translated.

The gxlc and gxlc++ option mappings are modifiable. For information on using the
gxlc or gxlc++ configuration file, see "Reusing GNU C/C++ compiler options with
gxlc and gxlc++" in the XL C/C++ Compiler Reference .

XL C/C++ input and output files
These file types are recognized by XL C/C++.

For detailed information about these and additional file types used by the
compiler, see "Types of input files" in the XL C/C++ Compiler Reference and "Types
of output files" in the XL C/C++ Compiler Reference.

Table 13. Input file types

Filename extension Description

.a Archive or library files

.c C source files

.C, .cc, .cp, .cpp, .cxx, .c++ C++ source files

.i Preprocessed source files

.o Object files

.s Assembler files

.S Unpreprocessed assembler files

.so Shared object files

Table 14. Output file types

Filename extension Description

a.out Default name for executable file created by the compiler

.d Target file suitable for inclusion in a makefile

.i Preprocessed source files

.lst Listing files

.o Object files

.s Assembler files

.so Shared object files

.u Make dependency files

Linking your compiled applications with XL C/C++
By default, you do not need to do anything special to link an XL C/C++ program.
The compiler invocation commands automatically call the linker to produce an
executable output file.

For example, running the following command:
xlc++ file1.C file2.o file3.C

compiles file1.C and file3.C to produce the object files file1.o and file3.o,
then all object files (including file2.o) are submitted to the linker to produce one
executable.

42 XL C/C++: Getting Started

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.
xlc++ -c file1.C # Produce one object file (file1.o)
xlc++ -c file2.C file3.C # Or multiple object files (file1.o, file3.o)
xlc++ file1.o file2.o file3.o # Link object files with default libraries

For more information about compiling and linking your programs, see:
v "Linking" in the XL C/C++ Compiler Reference

v "Constructing a library" in the XL C/C++ Optimization and Programming Guide

Relinking an existing executable file
The linker accepts executable files as input, so you can link an existing executable
file with updated object files.

You cannot, however, relink executable files that were previously linked using the
-qipa option.

If you have a program consisting of several source files and only make localized
changes to some of the source files, you do not necessarily have to compile each
file again. Instead, you can include the executable file as the last input file when
compiling the changed files:

xlc -omansion front_door.c entry_hall.c parlor.c sitting_room.c \
master_bath.c kitchen.c dining_room.c pantry.c utility_room.c

vi kitchen.c # Fix problem in OVEN function

xlc -o newmansion kitchen.c mansion

Limiting the number of files to compile and link the second time reduces the
compile time, disk activity, and memory use.

Note: You should avoid this type of linking unless you are experienced with
linking. If done incorrectly, it can result in interface errors and other problems. If
you do encounter problems, compiling with the -qextchk compiler option can help
you diagnose problems with linking.

Dynamic and static linking
XL C/C++ allows your programs to take advantage of the operating system
facilities for both dynamic and static linking.

Dynamic linking means that the code for some external routines is located and
loaded when the program is first run. When you compile a program that uses
shared libraries, the shared libraries are dynamically linked to your program by
default. Dynamically linked programs take up less disk space and less virtual
memory if more than one program uses the routines in the shared libraries. During
linking, they do not require any special precautions to avoid naming conflicts with
library routines. They may perform better than statically linked programs if several
programs use the same shared routines at the same time. They also allow you to
upgrade the routines in the shared libraries without relinking.

Because this form of linking is the default, you need no additional options to turn
it on.

Chapter 5. Developing applications with XL C/C++ 43

Static linking means that the code for all routines called by your program becomes
part of the executable file.

Statically linked programs can be moved to and run on systems without the XL
C/C++ runtime libraries. They may perform better than dynamically linked
programs if they make many calls to library routines or call many small routines.
They do require some precautions in choosing names for data objects and routines
in the program if you want to avoid naming conflicts with library routines. They
also may not work if you compile them on one level of the operating system and
run them on a different level of the operating system.

Running your compiled application
The default file name for the program executable file produced by the XL C/C++
compiler is a.out. You can select a different name with the -o compiler option.

To run a program, enter the name of the program executable file together with any
run time arguments on the command line.

You should avoid giving your program executable file the same name as system or
shell commands, such as test or cp, as you could accidentally execute the wrong
command. If you do decide to name your program executable file with the same
name as a system or shell command, you should execute your program by
specifying the path name to the directory in which your executable file resides,
such as ./test.

Canceling execution

To suspend a running program, press the Ctrl+Z key while the program is in the
foreground. Use the fg command to resume running.

To cancel a running program, press the Ctrl+C key while the program is in the
foreground.

Setting runtime options

You can use environment variable settings to control certain runtime options and
behaviors of applications created with the XL C/C++ compiler. Other environment
variables do not control actual runtime behavior, but can have an impact on how
your applications will run.

For more information on environment variables and how they can affect your
applications at run time, see the XL C/C++ Installation Guide.

Running compiled applications on other systems

In general, applications linked on a system using an earlier version of AIX will run
with more recent versions of AIX. However, applications linked on a system using
a newer version of AIX will not necessarily run with earlier versions of AIX.

If you want to run an application developed with the XL C/C++ compiler on
another system that does not have the compiler installed, you will need to install a
runtime environment on that system.

You can obtain the latest XL C/C++ Runtime Environment PTF images, together
with licensing and usage information, from the XL C/C++ Support page at:

44 XL C/C++: Getting Started

www.ibm.com/software/awdtools/xlcpp/support

XL C/C++ compiler diagnostic aids
XL C/C++ issues diagnostic messages when it encounters problems compiling
your application. You can use these messages and other information provided in
compiler output listings to help identify and correct such problems.

For more information about listing, diagnostics, and related compiler options that
can help you resolve problems with your application, see the following topics in
the XL C/C++ Compiler Reference:
v "Compiler messages and listings"
v "Error checking and debugging options"
v "Listings, messages, and compiler information options"

Debugging compiled applications
You can use a symbolic debugger to debug applications compiled with XL C/C++.

Specifying the -g or -qlinedebug compiler options at compile time instructs the XL
C/C++ compiler to include debugging information in compiled output. For more
information debugging options, see "Error checking and debugging" in the XL
C/C++ Compiler Reference.

You can then use dbx, the IBM Debugger for AIX, or any other symbolic debugger
that supports the AIX XCOFF executable format to step through and inspect the
behavior of your compiled application.

Optimized applications pose special challenges when debugging. When debugging
highly optimized applications, you should consider using the -qoptdebug compiler
option. For more information about optimizing your code, see "Optimizing your
applications" in the XL C/C++ Optimization and Programming Guide.

Determining what level of XL C/C++ is installed
If contacting software support for assistance, you will need to know what level of
XL C/C++ is installed on a particular machine.

To display the version and release level of the compiler you have installed on your
system, invoke the compiler with the -qversion compiler option.

For example, to obtain detailed version information, enter the following at the
command line:

xlc++ -qversion=verbose

Chapter 5. Developing applications with XL C/C++ 45

 http://www.ibm.com/software/awdtools/xlcpp/support

46 XL C/C++: Getting Started

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2010 47

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd. Laboratory
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

48 XL C/C++: Getting Started

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2010. All rights reserved.

Trademarks and service marks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. These and other IBM trademarked terms are marked on their first
occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law
trademarks in other countries. A complete and current list of IBM trademarks is
available on the Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 49

http://www.ibm.com/legal/copytrade.shtml

50 XL C/C++: Getting Started

Index

Special characters
.a files 42
.c and .C files 42
.i files 42
.lst files 42
.mod files 42
.o files 42
.s files 42
.S files 42

Numerics
64-bit environment 7

A
a.out file 42
archive files 42
assembler

source (.s) files 42
source (.S) files 42

B
basic example, described ix
built-in functions 23, 33

C
C++0x

auto type deduction 12
C99 long long 12
C99 preprocessor features adopted in

C++0x 12
decltype 12
delegating constructors 12
explicit instantiation declarations 12
extended friend declarations 12
inline namespace definitions 12
static assertion 12
variadic templates 12

code optimization 6
compilation

sequence of activities 39
compiler

controlling behavior of 41
invoking 40
running 40

compiler directives
new or changed 20

compiler options
conflicts and incompatibilities 41
new or changed 20
specification methods 41

compiling
SMP programs 40

customization
for compatibility with GNU 3

D
dbx debugger 9, 45
debugger support 45

output listings 45
symbolic 9

debugging 45
debugging compiled applications 45
debugging information, generating 45
dynamic linking 43

E
editing source files 39
executable files 42
executing a program 44
executing the linker 43

F
files

editing source 39
input 42
output 42

G
GNU

compatibility with 3

I
input files 42
invocation commands 40
invoking a program 44
invoking the compiler 40

L
language standards 2
language support 2
level of XL C/C++, determining 45
libraries 42
linking

dynamic 43
static 43

linking process 42
listings 42

M
migration

source code 41
mod files 42
multiprocessor systems 7, 27

O
object files 42

creating 43
linking 43

OMP directives 27
OpenMP 8
optimization

programs 6
output files 42

P
parallelization 7, 27
performance

optimizing transformations 6
problem determination 45
programs

running 44

R
running the compiler 40
runtime

libraries 42
runtime environment 44
runtime options 44

S
shared memory parallelization 7, 27
shared object files 42
SMP

programs, compiling 40
SMP programs 7
source files 42
source-level debugging support 9
static linking 43
symbolic debugger support 9

T
tools 5

C++filt name demangling utility 5
cleanpdf utility 5
CreateExportList 5
custom installation 5
debugger 5
gxlc and gxlc++ utilities 6
IBM Debugger 5
install 5
linkxlC 5
makeC++SharedLib 5
mergepdf utility 6
resetpdf utility 6
showpdf utility 6
urt 5
vacndi 5
vacppndi 5

© Copyright IBM Corp. 1996, 2010 51

U
utilities 5

C++filt name demangling utility 5
cleanpdf 5
CreateExportList 5
custom installation 5
gxlc and gxlc++ 6
IBM Debugger 5
install 5
linkxlC 5
makeC++SharedLib 5
mergepdf 6
resetpdf 6
showpdf 6
urt 5
vacppndi 5

V
vac.cfg file 41

52 XL C/C++: Getting Started

����

Program Number: 5724-X13

Printed in USA

GI11-9417-00

	Contents
	About this document
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other IBM information
	Other information

	Technical support
	How to send your comments

	Chapter 1. Introducing XL C/C++
	Commonality with other IBM compilers
	Hardware and operating system support
	A highly configurable compiler
	Language standards compliance
	Compatibility with GNU
	Source-code migration and conformance checking

	Libraries
	Tools and utilities
	Program optimization
	64-bit object capability
	Shared memory parallelization
	Diagnostic listings
	Symbolic debugger support

	Chapter 2. What's new for IBM XL C/C++ for AIX, V11.1
	Support for POWER7 processors
	C++0x
	Performance and optimization
	New diagnostic reports
	Utilization tracking and reporting
	New or changed compiler options and directives
	Built-in functions new for this release
	Compatibility of redistributable library libxlopt.a

	Chapter 3. Enhancements added in previous versions
	Enhancements added in Version 10.1
	Operating system support
	C++0x
	Other XL C/C++ language-related updates
	OpenMP 3.0
	Performance and optimization
	New or changed compiler options and directives

	Enhancements added in Version 9.0
	C/C++ language-related updates
	Architecture and processor support
	Performance and optimization
	Built-in functions in Version 9.0

	Other new or changed compiler options

	Chapter 4. Setting up and customizing XL C/C++
	Using custom compiler configuration files
	Configuring compiler utilization tracking and reporting

	Chapter 5. Developing applications with XL C/C++
	The compiler phases
	Editing C/C++ source files
	Compiling with XL C/C++
	Invoking the compiler
	Compiling parallelized XL C/C++ applications
	Specifying compiler options
	Reusing GNU C/C++ compiler options with gxlc and gxlc++

	XL C/C++ input and output files

	Linking your compiled applications with XL C/C++
	Relinking an existing executable file
	Dynamic and static linking

	Running your compiled application
	XL C/C++ compiler diagnostic aids
	Debugging compiled applications
	Determining what level of XL C/C++ is installed

	Notices
	Trademarks and service marks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V

