
Exploiting the Automatic Client Reconnect feature in

WebSphere MQ JMS 7.0.1

IBM Techdoc: 7023313

http://www.ibm.com/support/docview.wss?rs=171&uid=swg27023313

Date last updated: 19-Jun-2012

Angel Rivera – rivera@us.ibm.com

IBM WebSphere MQ Support

+++ Objective +++

The objective of this technical document is to describe in detail how to exploit the

automatic client reconnect feature in WebSphere MQ JMS 7.0.1.

The scope is for standalone JMS applications and not for JMS applications that run

inside an application server.

There are 2 scenarios covered in detail:

1) Using a sample that utilizes the Java Naming and Directory Interface (JNDI) which

reference Connection Factories and Destinations.

In UNIX, the JMSAdmin tool is used to populate the Java Naming and Directory

Interface (JNDI) with the JMS Administrative objects that serve as a link between the

JMS application and the physical queues and topics in the queue manager. This JNDI

is in the form of a file named ".bindings".

In Windows and in Linux x86, in addition to the JMSAdmin tool, the GUI MQ Explorer

tool can be used to populate the JNDI into a file named ".bindings".

2) Using a sample that does not use JNDI, and instead, specifies the characteristics of

the Connection Factories and Destinations inside the code.

http://www.ibm.com/support/docview.wss?rs=171&uid=swg27023313
mailto:rivera@us.ibm.com

+++ Important technote

It is highly recommended that you review the details described in the following

technote:

http://www.ibm.com/support/docview.wss?uid=swg21508357

Technote: 1508357

Using WebSphere MQ automatic client reconnection with the WebSphere MQ classes

for JMS

++ Contents

UNIX

Chapter 1: Configuration in UNIX via JMSAdmin

Chapter 2: Scenario using JNDI - UNIX

Chapter 3: Scenario NOT using JNDI - UNIX

Windows

Chapter 4: Configuration in Windows via JMSAdmin and MQ Explorer

Chapter 5: Scenario using JNDI - Windows

Chapter 6: Scenario NOT using JNDI - Windows

+++ Software used +++

Windows:

 WebSphere MQ 7.0.1.6 queue manager and JMS client

 Java 1.6 SR 7

Linux x86 32-bit

 WebSphere MQ 7.0.1.6 queue manager and JMS client

 Java 1.6 SR 9

+++ DISCLAIMER

All source code and/or binaries attached to this document are referred

to here as "the Program". IBM is not providing program services of any

kind for the Program. IBM is providing the Program on an "AS IS" basis

without warranty of any kind. IBM WILL NOT BE LIABLE FOR ANY ACTUAL,

DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS OR SAVINGS), EVEN IF IBM,

OR ITS RESELLER, HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

http://www.ibm.com/support/docview.wss?uid=swg21508357

+++ About the Samples

There are 3 samples provided with this techdoc.

 JmsJndiProducerLoop.java => Uses JmsConnectionFactory and JNDI

 JmsProducerLoop.java = > Uses JmsConnectionFactory (no JNDI)

 JmsProducerLoopMQCF.java => Uses MQConnectionFactory (no JNDI)

a) JmsJndiProducerLoop.java

It uses JMS administrative objects that are defined in the JNDI.

An excerpt of the comments in the header is shown below:

-- begin excerpt

* This sample is based on the JmsJndiProducer.java sample provided with MQ V7:

 * Windows: C:\Program Files\IBM\WebSphere MQ\tools\jms\samples\JmsJndiProducer.java

 * UNIX: /opt/mqm/samp/jms/samples/JmsJndiProducer.java

 *

 * A JMS producer (sender or publisher) application that sends a simple message to the named

 * destination (queue or topic) by looking up the connection factory instance and the destination

 * instance in an initial context (This sample supports file system context only).

 *

 * JmsJndiProducerLoop is an extension in which inside a forever loop, a message is sent

 * to the destination, with an interval of 5 seconds between each message.

 * At runtime, the user needs to use Ctrl-C to terminate the endless loop.

-- end excerpt

b) About JmsProducerLoop.java (no JNDI)

An excerpt of the comments in the header is shown below for JmsProducerLoop.java

-- begin excerpt

* This sample is based on the JmsProducer.java sample provided with MQ V7:

 * Windows: C:\Program Files\IBM\WebSphere MQ\tools\jms\samples\JmsProducer.java

 * UNIX: /opt/mqm/samp/jms/samples/JmsProducer.java

 *

 * A JMS producer (sender or publisher) application that sends a simple message to the named

 * destination (queue or topic).

 *

 * JmsProducerLoop is an extension in which inside a forever loop, a message is sent

 * to the destination, with an interval of 5 seconds between each message.

 * At runtime, the user needs to use Ctrl-C to terminate the endless loop.

 *

 * CUSTOMIZATION: You need to customize the value for: connectionNameList

 private static String connectionNameList = "host1(1414),host2(1414)";

 // Create a connection factory

 JmsFactoryFactory ff = JmsFactoryFactory.getInstance(WMQConstants.WMQ_PROVIDER);

 JmsConnectionFactory cf = ff.createConnectionFactory();

 // Set the properties

 cf.setStringProperty(WMQConstants.WMQ_CHANNEL, channel);

 cf.setIntProperty(WMQConstants.WMQ_CONNECTION_MODE, WMQConstants.WMQ_CM_CLIENT);

 cf.setIntProperty(WMQConstants.WMQ_CLIENT_RECONNECT_OPTIONS,

WMQConstants.WMQ_CLIENT_RECONNECT);

 cf.setStringProperty(WMQConstants.WMQ_CONNECTION_NAME_LIST, connectionNameList);

-- end excerpt

c) JmsProducerLoopMQCF.java

An excerpt of the comments in the header is shown below for

JmsProducerLoopMQCF.java

-- begin excerpt

 * Sample for MQConnectionFactory based on

 * the JmsProducer.java sample from MQ V7 which uses JmsConnectionFactory

 *

 * A JMS producer (sender or publisher) application that sends a simple message to the named

 * destination (queue or topic).

 *

 * JmsProducerLoopMQCF is an extension in which inside a forever loop, a message is sent

 * to the destination, with an interval of 5 seconds between each message.

 * At runtime, the user needs to use Ctrl-C to terminate the endless loop.

 * This samples uses MQConnectionFactory.

 *

 * CUSTOMIZATION: You need to customize the value for: connectionNameList

 private static String connectionNameList = "host1(1414),host2(1414)";

 if (isTopic) {

 // Create a connection factory

 MQTopicConnectionFactory cf = new MQTopicConnectionFactory();

 // Set the properties

 cf.setTransportType(WMQConstants.WMQ_CM_CLIENT);

 cf.setChannel(channel);

 cf.setConnectionNameList(connectionNameList);

 cf.setClientReconnectOptions(WMQConstants.WMQ_CLIENT_RECONNECT);

 // Create JMS objects

 connection = cf.createConnection();

 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 destination = session.createTopic(destinationName);

 }

 else {

 // Create a connection factory

 MQQueueConnectionFactory cf = new MQQueueConnectionFactory();

 // Set the properties

 cf.setTransportType(WMQConstants.WMQ_CM_CLIENT);

 cf.setChannel(channel);

 cf.setConnectionNameList(connectionNameList);

 cf.setClientReconnectOptions(WMQConstants.WMQ_CLIENT_RECONNECT);

 // Create JMS objects

 connection = cf.createConnection();

 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 destination = session.createQueue(destinationName);

-- end excerpt

+++

+++ Chapter 1: Configuration in UNIX via JMSAdmin

+++

It is necessary to use the JMSAdmin tool to create, view or alter the JNDI.

The JMSAdmin tool is located in /opt/mqm/java/bin (non-AIX) or /usr/mqm/java/bin

(AIX)

a) Modify your profile to facilitate the running MQ tools and samples:

a.1) Add the following MQ directories into the PATH in your .profile (or .bashrc in

Linux):

Non-AIX:

export MQ_ROOT=/opt/mqm

export

PATH=$PATH:$MQ_ROOT/bin:$MQ_ROOT/java/bin:$MQ_ROOT/samp/bin:$MQ_ROOT/s

amp/jms/samples

AIX:

export MQ_ROOT=/usr/mqm

export

PATH=$PATH:$MQ_ROOT/bin:$MQ_ROOT/java/bin:$MQ_ROOT/samp/bin:$MQ_ROOT/s

amp/jms/samples

a.2) Run the MQ script that sets the proper JMS and JAVA environment variables and

CLASSPATH for MQ.

This can be accomplished by adding the following into the .profile (or .bashrc in

Linux):

+ begin quote

Customization for WMQ

if [-f $MQ_ROOT/java/bin/setjmsenv64]

then

. setjmsenv64

else

. setjmsenv

fi

+ end quote

For running 32-bit applications (for example, under Linux X86 32-bit), run:

. setjmsenv

For running 64-bit applications (for other platforms, such as AIX, Solaris, HP-UX, Linux

64-bit), run the following script that is only provided if your platform supports 64-bit:

. setjmsenv64

You must type the dot, then space, then "setjmsenv" or "setjmsenv64".

An example of running it is shown below for Linux x86 32-bit:

rivera@veracruz: /home/rivera

$. setjmsenv

MQ_JAVA_INSTALL_PATH is /opt/mqm/java

MQ_JAVA_DATA_PATH is /var/mqm

MQ_JAVA_LIB_PATH is /opt/mqm/java/lib

CLASSPATH is

:/opt/mqm/java/lib/com.ibm.mq.jar:/opt/mqm/java/lib/com.ibm.mqjms.jar:/opt/

mqm/samp/jms/samples:/opt/mqm/samp/wmqjava/samples

a.3) Expand the CLASSPATH in your .profile or .bashrc:

Need to manually add the following to CLASSPATH to compile JMS programs

export CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/jms.jar

b) Creation of physical objects (Queue and Topic) in the queue manager

The following were used in UNIX:

Queue Manager name: QM_VER

Host: veracruz.x.com

Port: 1414

$ runmqsc QM_VER

DEFINE QL(Q2)

DEFINE TOPIC(T2) TOPICSTR('TOPIC2')

END

c) Create a directory where the JMS configuration objects will be located in a file

name ".bindings".

For example, in UNIX, you can create the following subdirectory in the same directory

where the other MQ objects are stored:

 mkdir /var/mqm/JNDI-Directory

d) Copy the JMSAdmin.config file from its default location, into /var/mqm

The default file in Solaris, Linux and HP-UX is:

 /opt/mqm/java/bin/JMSAdmin.config

The default file in AIX is:

 /usr/mqm/java/bin/JMSAdmin.config

In this document we follow the best practice of not writing files under /opt/mqm

(/usr/mqm). Thus, you need to copy the JMSAdmin.config file:

 cp /opt/mqm/java/bin/JMSAdmin.config /var/mqm/JMSAdmin.config

Ensure that you have write privileges for the file (the original file is read-only):

 chmod 644 /var/mqm/JMSAdmin.config

e) Modify /var/mqm/JMSAdmin.config

These 2 variables need to be properly specified in the config file.

e.1) INITIAL_CONTEXT_FACTORY

The following is common for UNIX and Windows, and it indicates that a file will be

used:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory

e.2) PROVIDER_URL

For UNIX: notice the 3 forward slashes after "file:".

PROVIDER_URL=file:///var/mqm/JNDI-Directory

Note: If there are not 3 slashes, such as 2, 4, 5, etc. then the following error is

displayed by JMSAdmin at runtime:

InitCtx> DEFINE TCF(testCF)

Unable to bind object

For Windows: notice only 1 forward slash after "file:" and notice the drive letter "C:/"

PROVIDER_URL=file:/C:/JNDI-Directory

Notice that ONLY one INITIAL_CONTEXT_FACTORY and PROVIDER_URL must be

uncommented. If there are more uncommented lines, then the last entry is the

winner, and overwrites any earlier entries of the same type.

f) Create a shell script called "myJMSAdmin.sh" that has these lines:

<beginning of script>

#!/usr/bin/ksh

echo "running: JMSAdmin -cfg /var/mqm/JMSAdmin.config"

if [-f /opt/mqm/java/bin/setjmsenv64]

then

. setjmsenv64

else

. setjmsenv

fi

JMSAdmin -cfg /var/mqm/JMSAdmin.config

<end of script>

This script will invoke the JMSAdmin tool using the JMSAdmin.config that was copied

and modified under /var/mqm.

Ensure that the myJMSAdmin.sh script is in a directory under $PATH.

Ensure that the script is executable:

 chmod 755 myJMSAdmin.sh

g) Start JMSAdmin by running the script - notice the prompt: InitCtx>

rivera@veracruz: /home/rivera

$ myJMSAdmin.sh

+ begin quote to show a run of the tool

running: JMSAdmin -cfg /var/mqm/JMSAdmin.config

MQ_JAVA_INSTALL_PATH is /opt/mqm/java

MQ_JAVA_DATA_PATH is /var/mqm

MQ_JAVA_LIB_PATH is /opt/mqm/java/lib

CLASSPATH is

:/opt/mqm/java/lib/com.ibm.mq.jar:/opt/mqm/java/lib/com.ibm.mqjms.jar:/opt/

mqm/samp/jms/samples:/opt/mqm/samp/wmqjava/samples

Starting WebSphere MQ classes for Java(tm) Message Service Administration

InitCtx>

+ end quote

Notice the prompt for the tool:

 InitCtx>

It means: Initial Context

h) Creation of JMS Administrative objects

For a complete list of the properties for the JNDI objects, see:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=%2Fcom.ibm

.mq.csqzaw.doc%2Fjm10910_.htm

WebSphere MQ > Using Java > WebSphere MQ classes for JMS

Properties of WebSphere MQ classes for JMS objects

Define Connection Factory called CF2REC

Notice the 2 important options:

CONNECTIONNAMELIST

CLIENTRECONNECTOPTIONS(ANY)

Suggestion: Do not specify a value for QMGR to provide more flexibility. If you

specify a name, then only when the queue manager is named the same (such as in a

multi-instance queue manager) the reconnection will work.

InitCtx> DEF CF(CF2REC) TRANSPORT(CLIENT) CHANNEL(SYSTEM.DEF.SVRCONN)

CONNECTIONNAMELIST(angelito.x.com(1414),veracruz.x.com(1414))

CLIENTRECONNECTOPTIONS(ANY)

Define Queue Q2

InitCtx> DEF Q(Q2) QUEUE(Q2)

Define Topic T2

InitCtx> DEF T(T2) TOPIC(TOPIC2)

Display all items in the Context:

InitCtx> DIS CTX

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=%2Fcom.ibm.mq.csqzaw.doc%2Fjm10910_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=%2Fcom.ibm.mq.csqzaw.doc%2Fjm10910_.htm

 JMSADM4089 InitCtx

 .bindings java.io.File

 a T2 com.ibm.mq.jms.MQTopic

 a CF2REC com.ibm.mq.jms.MQConnectionFactory

 a Q2 com.ibm.mq.jms.MQQueue

 4 Object(s)

 0 Context(s)

 4 Binding(s), 3 Administered

InitCtx> DISPLAY CF(CF2REC)

 ASYNCEXCEPTION(ALL)

 BROKERCCSUBQ(SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE)

 BROKERCONQ(SYSTEM.BROKER.CONTROL.QUEUE)

 BROKERPUBQ(SYSTEM.BROKER.DEFAULT.STREAM)

 BROKERQMGR()

 BROKERSUBQ(SYSTEM.JMS.ND.SUBSCRIBER.QUEUE)

 BROKERVER(UNSPECIFIED)

 CCSID(819)

 CHANNEL(SYSTEM.DEF.SVRCONN)

 CLEANUP(SAFE)

 CLEANUPINT(3600000)

 CLIENTRECONNECTOPTIONS(ANY)

 CLIENTRECONNECTTIMEOUT(1800)

 CLONESUPP(DISABLED)

 COMPHDR(NONE)

 COMPMSG(NONE)

CONNECTIONNAMELIST(angelito.x.com(1414),veracruz.x.com(1414))

 CONNOPT(STANDARD)

 FAILIFQUIESCE(YES)

 HOSTNAME(angelito.x.com)

 LOCALADDRESS()

 MAPNAMESTYLE(STANDARD)

 MSGBATCHSZ(10)

 MSGRETENTION(YES)

 MSGSELECTION(CLIENT)

 OPTIMISTICPUBLICATION(NO)

 OUTCOMENOTIFICATION(YES)

 POLLINGINT(5000)

 PORT(1414)

 PROCESSDURATION(UNKNOWN)

 PROVIDERVERSION(UNSPECIFIED)

 PUBACKINT(25)

 QMANAGER()

 RECEIVEISOLATION(COMMITTED)

 RESCANINT(5000)

 SENDCHECKCOUNT(0)

 SHARECONVALLOWED(YES)

 SPARSESUBS(NO)

 SSLFIPSREQUIRED(NO)

 SSLRESETCOUNT(0)

 STATREFRESHINT(60000)

 SUBSTORE(BROKER)

 SYNCPOINTALLGETS(NO)

 TARGCLIENTMATCHING(YES)

 TEMPMODEL(SYSTEM.DEFAULT.MODEL.QUEUE)

 TEMPQPREFIX()

 TEMPTOPICPREFIX()

 TRANSPORT(CLIENT)

 USECONNPOOLING(YES)

 VERSION(7)

 WILDCARDFORMAT(TOPIC_ONLY)

InitCtx> DISPLAY Q(Q2)

 CCSID(1208)

 ENCODING(NATIVE)

 EXPIRY(APP)

 FAILIFQUIESCE(YES)

 MDMSGCTX(DEFAULT)

 MDREAD(NO)

 MDWRITE(NO)

 MSGBODY(UNSPECIFIED)

 PERSISTENCE(APP)

 PRIORITY(APP)

 PUTASYNCALLOWED(AS_DEST)

 QMANAGER()

 QUEUE(Q2)

 READAHEADALLOWED(AS_DEST)

 READAHEADCLOSEPOLICY(DELIVER_ALL)

 RECEIVECCSID(1208)

 RECEIVECONVERSION(CLIENT_MSG)

 REPLYTOSTYLE(DEFAULT)

 TARGCLIENT(JMS)

 VERSION(7)

InitCtx> DISPLAY T(T2)

 BROKERCCDURSUBQ(SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE)

 BROKERDURSUBQ(SYSTEM.JMS.D.SUBSCRIBER.QUEUE)

 BROKERPUBQ()

 BROKERPUBQMGR()

 BROKERVER(V1)

 CCSID(1208)

 ENCODING(NATIVE)

 EXPIRY(APP)

 FAILIFQUIESCE(YES)

 MDMSGCTX(DEFAULT)

 MDREAD(NO)

 MDWRITE(NO)

 MSGBODY(UNSPECIFIED)

 MULTICAST(ASCF)

 PERSISTENCE(APP)

 PRIORITY(APP)

 PUTASYNCALLOWED(AS_DEST)

 READAHEADALLOWED(AS_DEST)

 READAHEADCLOSEPOLICY(DELIVER_ALL)

 RECEIVECCSID(1208)

 RECEIVECONVERSION(CLIENT_MSG)

 REPLYTOSTYLE(DEFAULT)

 TARGCLIENT(JMS)

 TOPIC(TOPIC2)

 VERSION(7)

 WILDCARDFORMAT(TOPIC_ONLY)

Exit JMSAdmin

InitCtx> end

Stopping Websphere MQ classes for Java(tm) Message Service Administration

+++

+++ Chapter 2: Scenario using JNDI - UNIX

+++

Sample JMS code used in this chapter:

 JmsJndiProducerLoop.java

++ Compile the sample:

$ javac JmsJndiProducerLoop.java

Note: JmsJndiProducerLoop.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

++ Running the sample from Linux

Open 3 windows:

Window 1: To run the JMS sample

Window 2: To start and stop the queue manager QM_ANGELITO in Windows

Window 3: To start and stop the queue manager QM_VER in Linux

Window 2: Start the queue manager QM_ANGELITO in Windows

C:\> strmqm QM_ANGELITO

Window 3: Start the queue manager QM_VER in Linux

$ strmqm QM_VER

Window 1: Run the sample code specifying the Connection Factory that has a

connectionNameList and a queue destination.

$ java JmsJndiProducerLoop -i file:///var/mqm/JNDI-Directory -c CF2REC -d Q2

Initial context found!

Sent message:

 JMSMessage class: jms_text

 JMSType: null

 JMSDeliveryMode: 2

 JMSExpiration: 0

 JMSPriority: 4

 JMSMessageID: ID:414d5120514d5f414e47454c49544f20b3ab9d4e20003405

 JMSTimestamp: 1318959303026

 JMSCorrelationID: null

 JMSDestination: queue:///Q2

 JMSReplyTo: null

 JMSRedelivered: false

 JMSXAppID: WebSphere MQ Client for Java

 JMSXDeliveryCount: 0

 JMSXUserID: rivera

 JMS_IBM_PutApplType: 28

 JMS_IBM_PutDate: 20111018

 JMS_IBM_PutTime: 17104412

JmsJndiProducerLoop: Your lucky number today is 25

Window 2: Verify that Q2 in QM_ANGELITO is receiving messages:

C:\> amqsget Q2 QM_ANGELITO

amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 3: Verify that Q2 in QM_VER is NOT receiving messages

$ amqsget Q2 QM_VER

Sample AMQSGET0 start

(no messages)

Window 2: End the queue manager with flags to terminate immediately and to notify

the connected clients to reconnect

C:\> endmqm -ir QM_ANGELITO

Waiting for queue manager 'QM_ANGELITO' to end.

WebSphere MQ queue manager 'QM_ANGELITO' ending.

WebSphere MQ queue manager 'QM_ANGELITO' ended.

Window 1: Except for a pause for the MQ client code to detect the termination of the

first queue manager and to reconnect to the second queue manager, there should not

be any messages that indicate that a reconnect is happening, and the sample should

continue producing messages.

Sent message:

 JMSMessage class: jms_text

…

 JMS_IBM_PutTime: 17362851

JmsJndiProducerLoop: Your lucky number today is 516

Window 3: Verify that Q2 in QM_VER in Linux is now receiving messages:

$ amqsget Q2 QM_VER

amqsget Q2 QM_VER

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 2: Verify that Q2 in QM_ANGELITO in Windows is NOT receiving messages

(because the Queue manager is no longer running)

C:\> amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

MQCONN ended with reason code 2059

Window 2: Restart the queue manager QM_ANGELITO

C:\> strmqm QM_ANGELITO

Window 2: Notice that the sample is still connected to QM_VER and queue Q2 in

QM_ANGELITO is NOT receiving messages:

C:\> amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

no more messages

Sample AMQSGET0 end

Window 1: Notice that the sample is still in the loop to produce messages.

Window 3: Now terminate QM_VER with the flags for immediate termination and to

tell the clients to reconnect.

$ endmqm -ir QM_VER

WebSphere MQ queue manager 'QM_VER' ending.

WebSphere MQ queue manager 'QM_VER' ended.

Window 1: Notice that after a brief pause, the sample should continue producing

messages.

Window 2: Verify that queue Q2 in QM_ANGELITO is now receiving messages:

C:\> amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

message <RFH ☻>

message <RFH ☻>

Window 1: To terminate the sample code, enter: Ctrl-C

+++ Note about using Topic

You can repeat the above scenario using the Topic T2 that was defined:

Window 1:

$ java JmsJndiProducerLoop -i file:///var/mqm/JNDI-Directory -c CF2REC -d T2

Window 2: Issue the following command to subscribe to the topic string TOPIC2 in

QM_ANGELITO.

C:\> amqssub TOPIC2 QM_ANGELITO

Sample AMQSSUBA start

Calling MQGET : 30 seconds wait time

MQGET ended with reason code 2080

Sample AMQSSUBA end

Notice that there was a message sent to the subscriber, but it was too long for the

sample to handle. The MQ utility "mqrc" 2080 displays the error name.

C:\> mqrc 2080

 2080 0x00000820 MQRC_TRUNCATED_MSG_FAILED

You could edit the amqssuba.c source code to expand the buffer in order to handle

longer messages.

Or, you can use the MQ Explorer. See the corresponding Chapter for the details on

using the MQ Explorer for Windows: the same technique can be used with Linux.

+++

+++ Chapter 3: Scenario NOT using JNDI - UNIX

+++

The following samples are used in this chapter:

 JmsProducerLoop.java = > Uses JmsConnectionFactory

 JmsProducerLoopMQCF.java => Uses MQConnectionFactory

++ Edit the files and customize the connectionNameList

private static String connectionNameList = "host1(1414),host2(1414)";

++ Compile the samples:

$ javac JmsProducerLoop.java

$ javac JmsProducerLoopMQCF.java

++ Running the sample JmsProducerLoop (JmsConnectionFactory) from Linux

Open 3 windows:

Window 1: To run the JMS sample

Window 2: To start and stop the queue manager QM_ANGELITO in Windows

Window 3: To start and stop the queue manager QM_VER in Linux

Window 2: Start the queue manager QM_ANGELITO in Windows

C:\> strmqm QM_ANGELITO

Window 3: Start the queue manager QM_VER in Linux

$ strmqm QM_VER

Window 1: Run the sample code specifying the Connection Factory that has a

connectionNameList and a queue destination.

$ java JmsProducerLoop -d Q2

Initial context found!

Sent message:

 JMSMessage class: jms_text

 JMSType: null

 JMSDeliveryMode: 2

 JMSExpiration: 0

 JMSPriority: 4

 JMSMessageID: ID:414d5120514d5f414e47454c49544f20b3ab9d4e20003405

 JMSTimestamp: 1318959303026

 JMSCorrelationID: null

 JMSDestination: queue:///Q2

 JMSReplyTo: null

 JMSRedelivered: false

 JMSXAppID: WebSphere MQ Client for Java

 JMSXDeliveryCount: 0

 JMSXUserID: rivera

 JMS_IBM_PutApplType: 28

 JMS_IBM_PutDate: 20111018

 JMS_IBM_PutTime: 17104412

JmsJndiProducerLoop: Your lucky number today is 25

Window 2: Verify that Q2 in QM_ANGELITO is receiving messages:

C:\> amqsget Q2 QM_ANGELITO

amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 3: Verify that Q2 in QM_VER is NOT receiving messages

$ amqsget Q2 QM_VER

Sample AMQSGET0 start

(no messages)

Window 2: End the queue manager with flags to terminate immediately and to notify

the connected clients to reconnect

C:\> endmqm -ir QM_ANGELITO

Waiting for queue manager 'QM_ANGELITO' to end.

WebSphere MQ queue manager 'QM_ANGELITO' ending.

WebSphere MQ queue manager 'QM_ANGELITO' ended.

Window 1: Except for a pause for the MQ client code to detect the termination of the

first queue manager and to reconnect to the second queue manager, there should not

be any messages that indicate that a reconnect is happening, and the sample should

continue producing messages.

Sent message:

 JMSMessage class: jms_text

…

 JMS_IBM_PutTime: 17362851

JmsJndiProducerLoop: Your lucky number today is 516

Window 3: Verify that Q2 in QM_VER in Linux is now receiving messages:

$ amqsget Q2 QM_VER

amqsget Q2 QM_VER

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 2: Verify that Q2 in QM_ANGELITO in Windows is NOT receiving messages

(because the Queue manager is no longer running)

C:\> amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

MQCONN ended with reason code 2059

Window 2: Restart the queue manager QM_ANGELITO

C:\> strmqm QM_ANGELITO

Window 2: Notice that the sample is still connected to QM_VER and queue Q2 in

QM_ANGELITO is NOT receiving messages:

C:\> amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

no more messages

Sample AMQSGET0 end

Window 1: Notice that the sample is still in the loop to produce messages.

Window 3: Now terminate QM_VER with the flags for immediate termination and to

tell the clients to reconnect.

$ endmqm -ir QM_VER

WebSphere MQ queue manager 'QM_VER' ending.

WebSphere MQ queue manager 'QM_VER' ended.

Window 1: Notice that after a brief pause, the sample should continue producing

messages.

Window 2: Verify that queue Q2 in QM_ANGELITO is now receiving messages:

C:\> amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 1: To terminate the sample code, enter: Ctrl-C

+++ Note about using Topic

You can repeat the above scenario using the Topic string "sports":

Window 1:

$ java JmsProducerLoop -d topic://sports

Window 2: Issue the following command to subscribe to the topic string "sports" in

QM_ANGELITO.

C:\> amqssub "sports" QM_ANGELITO

Sample AMQSSUBA start

Calling MQGET : 30 seconds wait time

MQGET ended with reason code 2080

Sample AMQSSUBA end

Notice that there was a message sent to the subscriber, but it was too long for the

sample to handle. The MQ utility "mqrc" 2080 displays the error name.

C:\> mqrc 2080

 2080 0x00000820 MQRC_TRUNCATED_MSG_FAILED

You could edit the amqssuba.c source code to expand the buffer in order to handle

longer messages.

Or, you can use the MQ Explorer. See the corresponding Chapter for the details on

using the MQ Explorer for Windows: the same technique can be used with Linux.

++ Running the sample JmsProduceLoopMQCF (MQConnectionFactory) from Linux

Open 3 windows:

Window 1: To run the JMS sample

Window 2: To start and stop the queue manager QM_ANGELITO in Windows

Window 3: To start and stop the queue manager QM_VER in Linux

Window 2: Start the queue manager QM_ANGELITO in Windows

C:\> strmqm QM_ANGELITO

Window 3: Start the queue manager QM_VER in Linux

$ strmqm QM_VER

Window 1: Run the sample code

$ java JmsProducerLoopMQCF -d Q2

Initial context found!

Sent message:

 JMSMessage class: jms_text

…

 JMS_IBM_PutDate: 20111018

 JMS_IBM_PutTime: 19242795

JmsProducerLoopMQCF: Your lucky number today is 411

Window 2: Verify that Q2 in QM_ANGELITO is receiving messages:

C:\> amqsget Q2 QM_ANGELITO

amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 3: Verify that Q2 in QM_VER is NOT receiving messages

$ amqsget Q2 QM_VER

Sample AMQSGET0 start

(no messages)

Window 2: End the queue manager with flags to terminate immediately and to notify

the connected clients to reconnect

C:\> endmqm -ir QM_ANGELITO

Waiting for queue manager 'QM_ANGELITO' to end.

WebSphere MQ queue manager 'QM_ANGELITO' ending.

WebSphere MQ queue manager 'QM_ANGELITO' ended.

Window 1: Except for a pause for the MQ client code to detect the termination of the

first queue manager and to reconnect to the second queue manager, there should not

be any messages that indicate that a reconnect is happening, and the sample should

continue producing messages.

Window 3: Verify that Q2 in QM_VER in Linux is now receiving messages:

$ amqsget Q2 QM_VER

amqsget Q2 QM_VER

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 1: To terminate the sample code, enter: Ctrl-C

+++

+++ Chapter 4: Configuration in Windows via JMSAdmin and MQ Explorer

+++

++ Section: JMSAdmin

Only the specific details for Windows are covered here.

For the common details, see the usage notes in Chapter 1.

a) Create a directory where the JMS configuration objects will be located in a file

name ".bindings".

For example, in Windows, you can create the following subdirectory in the same

directory where the other MQ objects are stored:

 mkdir c:\var\mqm\JNDI-Directory

b) Copy the JMSAdmin.config file from its default location into c:\var\mqm

The default file in Windows is located at:

 C:\Program Files\IBM\WebSphere MQ\java\bin\JMSAdmin.config

In this document we follow the best practice of not writing files under the directory

structure that has the MQ runtime code. Thus, you need to copy the JMSAdmin.config

file:

 Copy "C:\Program Files\IBM\WebSphere MQ\java\bin\JMSAdmin.config"

C:\var\mqm\JMSAdmin.config

c) Modify C:\var\mqm\JMSAdmin.config

These 2 variables need to be properly specified in the config file.

c.1) INITIAL_CONTEXT_FACTORY

The following is common for UNIX and Windows, and it indicates that a file will be

used:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory

c.2) PROVIDER_URL

For Windows: notice only 1 forward slash after file: and notice the drive letter C:/

PROVIDER_URL=file:/C:/var/mqm/JNDI-Directory

For UNIX (notice the 3 forward slashes after file:):

PROVIDER_URL=file:///var/mqm/JNDI-Directory

Note: If there are not 3 slashes, such as 2, 4, 5, etc. then the following error is

displayed by JMSAdmin at runtime:

InitCtx> DEFINE TCF(testCF)

Unable to bind object

Notice that ONLY one INITIAL_CONTEXT_FACTORY and PROVIDER_URL must be

uncommented. If there are more uncommented lines, then the last entry is the

winner, and overwrites any earlier entries of the same type.

d) Create a batch file called "myJMSAdmin.bat" that has this one line:

+ begin

"%MQ_JAVA_INSTALL_PATH%\bin\JMSAdmin" -cfg C:\var\mqm\JMSAdmin.config

+ end

This batch file will invoke the JMSAdmin tool using the JMSAdmin.config that was

copied and modified under C:\var\mqm.

Ensure that the myJMSAdmin.bat is in a directory under PATH.

e) Start the myJMSAdmin batch file:

C:\> myJMSAdmin

You will see the following. Notice the prompt: InitCtx>

Licensed Materials - Property of IBM

5724-H72, 5655-R36, 5724-L26, 5655-L82

(c) Copyright IBM Corp. 2008 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.

Starting Websphere MQ classes for Java(tm) Message Service Administration

InitCtx>

f) To create the JMS administrative objects, see the corresponding steps in Chapter 1.

g) Creation of physical objects (Queue and Topic) in the queue manager

The following were used in Windows:

Queue Manager name: QM_ANGELITO

Host: angelito.x.com

Port: 1414

$ runmqsc QM_ANGELITO

define ql(Q2)

define topic(T2) topicstr('TOPIC2')

end

++ Section: MQ Explorer

Start the MQ Explorer and the desired queue manager.

In this example, the queue manager is called: QM_ANGELITO

Scroll down to the bottom and select: JMS Administered Objects

Do right Click and select "Add Initial Context …"

In the dialog window for "Add Initial Context", specify:

 Where is the JNDI namespace located?

 (x) File System

 JNDI Namespace location

 Bindings directory: C:\var\mqm\JNDI-Directory

Click Next

Accept the defaults and click Finish.

Notice that this initial context location will be shown in the right panel:

In the left panel, expand the entry for the newly added initial context:

Let's create a Connection Factory for the new initial context.

Click on Connection Factories -> New -> Connection Factory …

Specify the name, such as: CF2REC

Click Next.

Accept the default Type of "Connection Factory"

In case that you want "Queue Connection Factory", this is the panel where you can

specify it.

Click Next

The default value for the Transport is Bindings.

Because this document is trying to illustrate Client mode, then change to:

 MQ Client

Click Next

If you have an existing connection factory that you want to use as a model for the

rest of the fields, the following panel is the place to do it.

In this simple example, there is no such existing CF. Thus, just Click Next.

Click Next

You will see the following dialog with several tabs.

For this example, there are no changes in the General tab:

In the Connection tab, enter:

 Base queue manager: (Leave it blank, to provide maximum flexibility)

 Connection list: angelito.x.com(1414),veracruz.x(1414)

On the Channels tab, notice that the channel to be used is by default:

 SYSTEM.DEF.SVRCONN

Click Next

In the Reconnection tab you must change the Options!

 Options: Reconnect

 Timeout: 1800 seconds (30 minutes)

Note: If you leave the Options to the default value of "Default", you will get runtime

errors during the reconnection phase:

com.ibm.msg.client.jms.DetailedJMSException: JMSWMQ2007: Failed to send a

message to destination 'Q2'. JMS attempted to perform an MQPUT or MQPUT1;

however WebSphere MQ reported an error. Use the linked exception to determine the

cause of this error.

Inner exception(s):

com.ibm.mq.MQException: JMSCMQ0001: WebSphere MQ call failed with compcode '2'

('MQCC_FAILED') reason '2009' ('MQRC_CONNECTION_BROKEN').

com.ibm.mq.jmqi.JmqiException: CC=2;RC=2009

com.ibm.mq.jmqi.JmqiException: CC=2;RC=2009

Click Finish

Notice that this new Connection Factory will be listed in the right panel.

Let's create the Destination Queue Q2:

In the Create Destination, specify:

 Name: Q2

 Type: Queue

Click Next.

You will see:

Click Next.

Then enter the name of the physical queue in the queue manager, in this case it is

the same name: Q2

Click Finish.

Let's create the Topic T2

In the Create Destination, specify:

 Name: T2

 Type: Topic

Click Next

Click Next

Enter the Topic String: TOPIC2

Click Finish

Now you can proceed to the next chapter.

+++

+++ Chapter 5: Scenario using JNDI - Windows

+++

Download from the techdoc, the sample JMS code:

 JmsJndiProducerLoop.java

An excerpt of the comments in the header is shown below:

-- begin excerpt

* This sample is based on the JmsJndiProducer.java sample provided with MQ V7:

 * Windows: C:\Program Files\IBM\WebSphere MQ\tools\jms\samples\JmsJndiProducer.java

 * Unix: /opt/mqm/samp/jms/samples/JmsJndiProducer.java

 *

 * A JMS producer (sender or publisher) application that sends a simple message to the named

 * destination (queue or topic) by looking up the connection factory instance and the destination

 * instance in an initial context (This sample supports file system context only).

 *

 * JmsJndiProducerLoop is an extension in which inside a forever loop, a message is sent

 * to the destination, with an interval of 5 seconds between each message.

 * At runtime, the user needs to use Ctrl-C to terminate the endless loop.

-- end excerpt

++ Compile the sample:

C:\mqv7-jndi> javac JmsJndiProducerLoop.java

Note: JmsJndiProducerLoop.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

++ Running the sample from Windows

Open 3 windows:

Window 1: To run the JMS sample

Window 2: To start and stop the queue manager QM_ANGELITO in Windows

Window 3: To start and stop the queue manager QM_VER in Linux

Window 2: Start the queue manager QM_ANGELITO in Windows

C:\> strmqm QM_ANGELITO

Window 3: Start the queue manager QM_VER in Linux

$ strmqm QM_VER

Window 1: Run the sample code specifying the Connection Factory that has a

connectionNameList and a queue destination.

C:\> java JmsJndiProducerLoop -i file:/C:/var/mqm/JNDI-Directory -c CF2REC -d Q2

Initial context found!

Sent message:

 JMSMessage class: jms_text

 JMSType: null

 JMSDeliveryMode: 2

 JMSExpiration: 0

 JMSPriority: 4

 JMSMessageID: ID:414d5120514d5f414e47454c49544f201b7b9c4e20001e11

 JMSTimestamp: 1318878069843

 JMSCorrelationID: null

 JMSDestination: queue:///Q2

 JMSReplyTo: null

 JMSRedelivered: false

 JMSXAppID: WebSphere MQ Client for Java

 JMSXDeliveryCount: 0

 JMSXUserID: rivera

 JMS_IBM_PutApplType: 28

 JMS_IBM_PutDate: 20111017

 JMS_IBM_PutTime: 19010984

JmsJndiProducerLoop: Your lucky number today is 843

Window 2: Verify that Q2 in QM_ANGELITO is receiving messages:

C:\> amqsget Q2 QM_ANGELITO

amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 3: Verify that Q2 in QM_VER is NOT receiving messages

$ amqsget Q2 QM_VER

Sample AMQSGET0 start

(no messages)

Window 2: End the queue manager with flags to terminate immediately and to notify

the connected clients to reconnect

C:\> endmqm -ir QM_ANGELITO

Waiting for queue manager 'QM_ANGELITO' to end.

WebSphere MQ queue manager 'QM_ANGELITO' ending.

WebSphere MQ queue manager 'QM_ANGELITO' ended.

Window 1: Except for a pause for the MQ client code to detect the termination of the

first queue manager and to reconnect to the second queue manager, there should not

be any messages that indicate that a reconnect is happening, and the sample should

continue producing messages.

Sent message:

 JMSMessage class: jms_text

 JMSType: null

 JMSDeliveryMode: 2

 JMSExpiration: 0

 JMSPriority: 4

 JMSMessageID: ID:414d5120514d5f414e47454c49544f20ba7d9c4e20001d05

 JMSTimestamp: 1318878672796

 JMSCorrelationID: null

 JMSDestination: queue:///Q2

 JMSReplyTo: null

 JMSRedelivered: false

 JMSXAppID: WebSphere MQ Client for Java

 JMSXDeliveryCount: 0

 JMSXUserID: rivera

 JMS_IBM_PutApplType: 28

 JMS_IBM_PutDate: 20111017

 JMS_IBM_PutTime: 19111279

JmsJndiProducerLoop: Your lucky number today is 796

Window 3: Verify that Q2 in QM_VER in Linux is now receiving messages:

$ amqsget Q2 QM_VER

amqsget Q2 QM_VER

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 2: Verify that Q2 in QM_ANGELITO in Windows is NOT receiving messages

(because the Queue manager is no longer running)

C:\> amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

MQCONN ended with reason code 2059

Window 2: Restart the queue manager QM_ANGELITO

C:\> strmqm QM_ANGELITO

Window 2: Notice that the sample is still connected to QM_VER and queue Q2 in

QM_ANGELITO is NOT receiving messages:

C:\> amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

no more messages

Sample AMQSGET0 end

Window 1: Notice that the sample is still in the loop to produce messages.

Window 3: Now terminate QM_VER with the flags for immediate termination and to

tell the clients to reconnect.

$ endmqm -ir QM_VER

WebSphere MQ queue manager 'QM_VER' ending.

WebSphere MQ queue manager 'QM_VER' ended.

Window 1: Notice that after a brief pause, the sample should continue producing

messages.

Window 2: Verify that queue Q2 in QM_ANGELITO is now receiving messages:

C:\> amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 1: To terminate the sample code, enter: Ctrl-C

+++ Note about using Topic

You can repeat the above scenario using the Topic T2 that was defined:

Window 1:

C:\> java JmsJndiProducerLoop -i file:/C:/var/mqm/JNDI-Directory -c CF2REC -d T2

Window 2: Issue the following command to subscribe to the topic string TOPIC2 in

QM_ANGELITO.

C:\> amqssub TOPIC2 QM_ANGELITO

Sample AMQSSUBA start

Calling MQGET : 30 seconds wait time

MQGET ended with reason code 2080

Sample AMQSSUBA end

Notice that there was a message sent to the subscriber, but it was too long for the

sample to handle. The MQ utility "mqrc" 2080 displays the error name.

C:\> mqrc 2080

 2080 0x00000820 MQRC_TRUNCATED_MSG_FAILED

You could edit the amqssuba.c source code to expand the buffer in order to handle

longer messages.

Or, you can use the MQ Explorer.

In this case, the MQ Explorer is running in Windows:

Select the Queue Manager "QM_ANGELITO" and expand the Topics.

Then select the desired topic T2 in the right panel, and do right click to bring the

context menu and do a "Test Subscription".

You will see the Test Subscription window.

Notice that you can move this window around and still being able to interact with the

rest of the MQ Explorer GUI.

Move the window "Subscribe" to the right.

Notice that the Queue Manager is "QM_ANGELITO" and the Topic String is "TOPIC2"

Now click on the 2nd queue manager (QM_VER).

Notice that we have NOT closed the subscription for TOPIC2 in QM_ANGELITO.

Repeat the process but this time with QM_VER: select the Topic T2 and Test

Subscription.

Notice that we now have 2 test subscriptions:

On the left is for Queue Manager: QM_VER

On the right is for Queue Manager: QM_ANGELITO

Window 1: Run the sample and specify a Topic:

C:\> java JmsJndiProducerLoop -i file:/C:/var/mqm/JNDI-Directory -c CF2REC -d T2

Initial context found!

Sent message:

 JMSMessage class: jms_text

 JMSType: null

 JMSDeliveryMode: 2

 JMSExpiration: 0

 JMSPriority: 4

 JMSMessageID: ID:414d5120514d5f414e47454c49544f20df839c4e20002903

 JMSTimestamp: 1318880689734

 JMSCorrelationID: null

 JMSDestination: topic://TOPIC2

 JMSReplyTo: null

 JMSRedelivered: false

 JMSXAppID: WebSphere MQ Client for Java

 JMSXDeliveryCount: 0

 JMSXUserID: rivera

 JMS_IBM_ConnectionID: 414D5143514D5F414E47454C49544F20DF839C4E20002802

 JMS_IBM_PutApplType: 28

 JMS_IBM_PutDate: 20111017

 JMS_IBM_PutTime: 19444975

JmsJndiProducerLoop: Your lucky number today is 703

Notice that only the subscription on the left (QM_ANGELITO) is receiving messages:

Window 2: Terminate the queue manager QM_ANGELITO

MQ Explorer: Notice that the test subscription for QM_ANGELITO terminated (left

one), the sample reconnects to the other queue manager and now the subscription

for QM_VER is receiving messages:

Now you can terminate the sample that produces messages, and the test

Subscription.

+++

+++ Chapter 6: Scenario NOT using JNDI - Windows

+++

The following samples are used in this chapter:

 JmsProducerLoop.java = > Uses JmsConnectionFactory

 JmsProducerLoopMQCF.java => Uses MQConnectionFactory

++ Edit the files and customize the connectionNameList

private static String connectionNameList = "host1(1414),host2(1414)";

++ Compile the samples:

C:\> javac JmsProducerLoop.java

C:\> javac JmsProducerLoopMQCF.java

++ Running the sample JmsProduceLoop (JmsConnectionFactory) from Linux

Open 3 windows:

Window 1: To run the JMS sample

Window 2: To start and stop the queue manager QM_ANGELITO in Windows

Window 3: To start and stop the queue manager QM_VER in Linux

Window 2: Start the queue manager QM_ANGELITO in Windows

C:\> strmqm QM_ANGELITO

Window 3: Start the queue manager QM_VER in Linux

$ strmqm QM_VER

Window 1: Run the sample code specifying the Connection Factory that has a

connectionNameList and a queue destination.

C:\> java JmsProducerLoop -d Q2

Initial context found!

Sent message:

 JMSMessage class: jms_text

 …

JmsProducerLoop: Your lucky number today is 234

Window 2: Verify that Q2 in QM_ANGELITO is receiving messages:

C:\> amqsget Q2 QM_ANGELITO

amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 3: Verify that Q2 in QM_VER is NOT receiving messages

$ amqsget Q2 QM_VER

Sample AMQSGET0 start

(no messages)

Window 2: End the queue manager with flags to terminate immediately and to notify

the connected clients to reconnect

C:\> endmqm -ir QM_ANGELITO

Waiting for queue manager 'QM_ANGELITO' to end.

WebSphere MQ queue manager 'QM_ANGELITO' ending.

WebSphere MQ queue manager 'QM_ANGELITO' ended.

Window 1: Except for a pause for the MQ client code to detect the termination of the

first queue manager and to reconnect to the second queue manager, there should not

be any messages that indicate that a reconnect is happening, and the sample should

continue producing messages.

Sent message:

 JMSMessage class: jms_text

…

JmsJndiProducerLoop: Your lucky number today is 516

Window 3: Verify that Q2 in QM_VER in Linux is now receiving messages:

$ amqsget Q2 QM_VER

amqsget Q2 QM_VER

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 2: Verify that Q2 in QM_ANGELITO in Windows is NOT receiving messages

(because the Queue manager is no longer running)

C:\> amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

MQCONN ended with reason code 2059

Window 2: Restart the queue manager QM_ANGELITO

C:\> strmqm QM_ANGELITO

Window 2: Notice that the sample is still connected to QM_VER and queue Q2 in

QM_ANGELITO is NOT receiving messages:

C:\> amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

no more messages

Sample AMQSGET0 end

Window 1: Notice that the sample is still in the loop to produce messages.

Window 3: Now terminate QM_VER with the flags for immediate termination and to

tell the clients to reconnect.

$ endmqm -ir QM_VER

WebSphere MQ queue manager 'QM_VER' ending.

WebSphere MQ queue manager 'QM_VER' ended.

Window 1: Notice that after a brief pause, the sample should continue producing

messages.

Window 2: Verify that queue Q2 in QM_ANGELITO is now receiving messages:

C:\> amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 1: To terminate the sample code, enter: Ctrl-C

+++ Note about using Topic

You can repeat the above scenario using the Topic string "sports":

Window 1:

C:\> java JmsProducerLoop -d topic://sports

Window 2: Issue the following command to subscribe to the topic string "sports" in

QM_ANGELITO.

C:\> amqssub "sports" QM_ANGELITO

Sample AMQSSUBA start

Calling MQGET : 30 seconds wait time

MQGET ended with reason code 2080

Sample AMQSSUBA end

Notice that there was a message sent to the subscriber, but it was too long for the

sample to handle. The MQ utility "mqrc" 2080 displays the error name.

C:\> mqrc 2080

 2080 0x00000820 MQRC_TRUNCATED_MSG_FAILED

You could edit the amqssuba.c source code to expand the buffer in order to handle

longer messages.

Or, you can use the MQ Explorer. See the corresponding Chapter for the details on

using the MQ Explorer for Windows: the same technique can be used with Linux.

++ Running the sample JmsProduceLoopMQCF (MQConnectionFactory) from Linux

Open 3 windows:

Window 1: To run the JMS sample

Window 2: To start and stop the queue manager QM_ANGELITO in Windows

Window 3: To start and stop the queue manager QM_VER in Linux

Window 2: Start the queue manager QM_ANGELITO in Windows

C:\> strmqm QM_ANGELITO

Window 3: Start the queue manager QM_VER in Linux

$ strmqm QM_VER

Window 1: Run the sample code

C:> java JmsProducerLoopMQCF -d Q2

Initial context found!

Sent message:

 JMSMessage class: jms_text

…

 JMS_IBM_PutDate: 20111018

 JMS_IBM_PutTime: 19242795

JmsProducerLoopMQCF: Your lucky number today is 411

Window 2: Verify that Q2 in QM_ANGELITO is receiving messages:

C:\> amqsget Q2 QM_ANGELITO

amqsget Q2 QM_ANGELITO

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 3: Verify that Q2 in QM_VER is NOT receiving messages

$ amqsget Q2 QM_VER

Sample AMQSGET0 start

(no messages)

Window 2: End the queue manager with flags to terminate immediately and to notify

the connected clients to reconnect

C:\> endmqm -ir QM_ANGELITO

Waiting for queue manager 'QM_ANGELITO' to end.

WebSphere MQ queue manager 'QM_ANGELITO' ending.

WebSphere MQ queue manager 'QM_ANGELITO' ended.

Window 1: Except for a pause for the MQ client code to detect the termination of the

first queue manager and to reconnect to the second queue manager, there should not

be any messages that indicate that a reconnect is happening, and the sample should

continue producing messages.

Window 3: Verify that Q2 in QM_VER in Linux is now receiving messages:

$ amqsget Q2 QM_VER

amqsget Q2 QM_VER

Sample AMQSGET0 start

message <RFH ☻>

message <RFH ☻>

Window 1: To terminate the sample code, enter: Ctrl-C

+++ end +++

