
IBM i
7.2

Database
Database overview

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
41.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.
© Copyright International Business Machines Corporation 1998, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Database overview.. 1
PDF file for Database overview..1
DB2 for IBM i.. 1
Terminology: SQL versus traditional file access..2
Getting started with System i Navigator..2

Starting System i Navigator..2
Creating a schema.. 3
Editing the list of schemas displayed...3
Creating and using a table..4

Defining additional columns on a table.. 6
Creating the supplier table... 7
Copying column definitions.. 7
Viewing the contents of a table.. 7
Changing information in a table..8
Deleting information from a table...8
Copying and moving a table..9

Copying a table.. 9
Moving a table..9

Creating and using a view.. 10
Creating a view over a single table... 10

Deleting database objects..10
System i Navigator database tasks... 11

Database objects creation tasks..12
Database objects operation tasks... 14
Database performance optimization tasks..18
Mapping your database..21
Querying your database by running SQL scripts... 22

Stopping SQL scripts...22
Viewing the job log..22
Generating SQL for existing objects... 23
Building SQL statements with SQL Assist.. 23
Starting IBM i Debugger... 23

Managing check pending constraints.. 23
Importing and exporting data.. 24

Getting started with SQL..24
Creating a schema..25
Creating and using a table..25

Using the LABEL ON statement..27
Inserting information into a table...28
Getting information from a single table... 31
Getting information from multiple tables...33
Changing information in a table..34
Deleting information from a table.. 36

Creating and using a view.. 37
Creating a view on a single table.. 38
Creating a view that combines data from multiple tables...38

Notices..41
Programming interface information.. 42
Trademarks.. 42

 iii

Terms and conditions...43

iv

Database overview
Db2® for IBM® i shares characteristics with many other DB2® implementations. But if you have just
migrated to the IBM i product, you might wonder how differently Db2 for i works on the system and what
advantages the system brings to database development.

The IBM i product as a database platform has various strengths. This topic collection describes how to
assess which data access methods make the most sense for your organization and how to build a rough
framework for developing and maintaining your database implementation.

You can also explore other database information using the main navigation tree.

PDF file for Database overview
You can view and print a PDF file of this information.

To view or download the PDF version of this document, select Database overview.

Saving PDF files
To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader
You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html) .

DB2 for IBM i
Db2 for i is the relational database manager that is fully integrated on your system. Because it is
integrated on the system, Db2 for i is easy to use and manage.

The Db2 for i database also provides many functions and features, such as triggers, stored procedures,
and dynamic bitmapped indexing, that serve a wide variety of application types. These applications range
from traditional host-based applications to client/server solutions to business intelligence applications.

As an interface to Db2 for i, the IBM DB2 Query Manager and SQL Development Kit for i licensed program
adds an interactive query and report writing interface, together with precompilers and tools, to help you
write Structured Query Language (SQL) application programs in high-level languages. Conforming to the
industry standard SQL, the SQL implementation for the IBM i operating system allows you to define,
manipulate, query, and control access to your data. It works equally well with IBM i files and SQL tables.

© Copyright IBM Corp. 1998, 2010 1

http://www.adobe.com/products/acrobat/readstep.html

Terminology: SQL versus traditional file access
Db2 for IBM i provides two access methods for manipulating database tables and data: SQL and system
file access methods. These access methods use different words to describe some similar concepts.

SQL term Traditional file access term

Schema. A group of related objects that consists
of a library, a journal, a journal receiver, an SQL
catalog, and an optional data dictionary. A schema
enables the user to find the objects by name.
Another name for a schema is collection.

Library. A group of related objects that enables the
user to find the objects by name.

Table. A set of columns and rows. Physical file. A set of records.

Row. The horizontal part of a table containing a
serial set of columns.

Record. A set of fields.

Column. The vertical part of a table of one data
type.

Field. One of more bytes of related information of
one data type.

View. A subset of columns and rows of one or
more tables.

Logical file. A subset of fields or records of up to
32 physical files.

Index. A collection of data in the columns
of a table, logically arranged in ascending or
descending order.

Index. A type of logical file.

Package. An object that contains control
structures for SQL statements to be used by an
application server.

SQL package. An object that contains control
structures for SQL statements to be used by an
application server.

Catalog. A set of tables and views that
contain information about tables, packages, views,
indexes, and constraints.

No similar object. However, the Display File
Description (DSPFD) and Display File Field
Description (DSPFFD) commands provide some of
the same information that querying an SQL catalog
provides.

Getting started with System i Navigator
System i Navigator is a graphical interface that you can use to perform many common administrative
database operations. Most of the System i Navigator operations are based on SQL, but you do not need to
fully understand SQL to perform them.
Related concepts
System i Navigator database tasks
You can perform many database tasks with System i Navigator, including creating, modifying, and deleting
various database objects.

Starting System i Navigator
You need to start System i Navigator before using it to manage your database objects.

To start System i Navigator, follow these steps:

1. Double-click the System i Navigator icon.
2. Expand the system you want to use.

2 IBM i: Database overview

Creating a schema
A database schema provides a logical classification of database objects. After you successfully create
a schema, you can create tables, views, indexes, stored procedures, user-defined functions, and user-
defined types in the schema.

To create a schema, follow these steps. The procedure uses SAMPLELIB for the schema name.

1. From System i Navigator, expand the system that you want to use.
2. Expand Databases and the database that you want to work with.
3. Right-click Schemas and select New Schema.
4. In the New Schema window, type SAMPLELIB in the name field.
5. To add the newly created schema to the list of schemas to be displayed, select Add to displayed list

of schemas.
6. Select Create as a standard library.
7. Specify a disk pool to contain the schema. Choose one so that the schema is created on the system

disk pool.
8. Optional: Specify a description.
9. Click OK.

Related concepts
Creating database objects
Related tasks
Working with multiple databases

Editing the list of schemas displayed
By editing the list of schemas displayed, you can hide from your view those schemas that you do not use
frequently.

To edit the list of schemas that is displayed when you click the Schemas folder, follow these steps:

1. Right-click Schemas and select Select Schemas to Display.
2. In the Select Schemas to Display window, you can edit the list by selecting Enter schema names and

specifying a schema, or by selecting Search for schemas and performing a search. Select the schema
that you want to display and click Add.

3. To remove a schema from the list of schemas to display, select the schema from the list and click
Remove.

4. For now, leave SAMPLELIB as the schema displayed.

Database overview 3

Creating and using a table
A table is a basic database object that is used to store information. After you create a table, you can
define columns, create indexes, and add triggers and constraints.

When you are creating a table, you need to understand the concepts of null value and default value. A null
value indicates the absence of a column value for a row. It is not the same as a value of zero or all blanks.
It means unknown. A null value is not equal to any value, not even to other null values. If a column does
not allow the null value, a value must be assigned to the column. This value is either a default value or a
user-supplied value.

If no value is specified for a column when a row is added to a table, the row is assigned a default value. If
the column is not assigned a specific default value, the column uses the system default value.

This example shows how to create a table to maintain information about the current inventory of a
business. The table contains information about the items kept in the inventory, their cost, quantity
currently on hand, the last order date, and the number last ordered. The item number is a required value.
It cannot be null. The item name, quantity on hand, and order quantity have user-supplied default values.
The last order date and quantity allow null values.

To create the table, follow these steps:

1. From System i Navigator, expand the system that you want to use.
2. Expand Databases and the database that you want to work with.
3. Expand Schemas.
4. Right-click SAMPLELIB and select New > Table > Table.

The New Table window is shown.
5. On the Table tab, provide the following information for the new table:

a) Specify INVENTORY_LIST as the table name.
b) In the Schema field, select SAMPLELIB.
c) In the System table name field and the Record format name field, select System-generated.
d) Optional: In the Text field, specify a description for the table.

4 IBM i: Database overview

6. On the Columns tab, click the Add button to define a column for the new table.
The New Column window is shown.
a) In the Column name field, type ITEM_NUMBER.
b) Optional: In the Short name field, specify a short name for the column. If you do not specify a

short name, the system automatically generates a name. If the column name is 10 characters or
less, then the short name is the same as the column name. You can perform queries by using either
column name. For this example, leave this space as the default, System-generated.

c) Select CHARACTER as the data type.
d) Specify a length of 6 for this column. For data types of which the size is predetermined, the size is

provided and you cannot change the value.
e) Leave the Encoding option as the default, Data type default.
f) Optional: In the Text field, specify a description for the column.
g) In the Heading fields, type a column heading. The heading is the label that shows at the top of the

column for displaying or printing. The heading is limited to 60 characters, 20 per line.
h) Clear the Nullable check box. This ensures that a value must be placed in this column for the row

insertion to be successful.
i) In the Default value field, type 0.
j) Click Add to add the column.

k) Click Close to close the New Column window.

Database overview 5

7. Click OK to create the table.

The new table INVENTORY_LIST is shown.

Defining additional columns on a table
After you create a table, you can still add new columns to the table.

To add columns to the INVENTORY_LIST table that you created, follow these steps:

1. Navigate to the table by expanding your database > Schemas > SAMPLELIB > Tables.
2. In the detail pane, right-click INVENTORY_LIST and select Definition.
3. In the Table Definition window, click the Columns tab and click Add.
4. Define the following new columns.

Column name Type Length Precision Scale Nullable Default value

ITEM_NAME VARCHAR 20 No UNKNOWN

UNIT_COST DECIMAL 8 2 No 0

QUANTITY_ON_HAND SMALLINT Yes NULL

LAST_ORDER_DATE DATE Yes NULL

ORDER_QUANTITY SMALLINT Yes 20

5. Click OK to add these columns.

6 IBM i: Database overview

Creating the supplier table
Assume that later you need a second table. This table contains information about suppliers of inventory
items, which items they supply, and the cost of the item from that supplier.

Create a table called SUPPLIERS in SAMPLELIB. This table has three columns: SUPPLIER_NUMBER,
ITEM_NUMBER, and SUPPLIER_COST.

Note: This table has a common column with the INVENTORY_LIST table: ITEM_NUMBER. Instead of
creating a new ITEM_NUMBER column, you can copy the column definition used for ITEM_NUMBER in
INVENTORY_LIST.

Copying column definitions
Copying column definitions saves you from defining columns in multiple tables by sharing the same
definitions across the tables.

In this example, the ITEM_NUMBER column in the SUPPLIERS table shares the definition of the
ITEM_NUMBER column in the INVENTORY_LIST table. To copy column definitions, follow these steps:

1. In the New Table window or in the SUPPLIERS table definition window, click Browse on the Columns
tab.

2. In the Browse Columns window, expand SAMPLELIB.
3. Click INVENTORY_LIST.

The columns in this table are listed, along with their data types, sizes, and descriptions.
4. Select ITEM_NUMBER.
5. Click Add to copy this column definition to the SUPPLIERS table.
6. Close the Browse Columns window.

You can then add the following additional columns to the SUPPLIERS table.

Column name Type Length Precision Scale Nullable Default
value

SUPPLIER_NUMBER CHAR 4 No 0

SUPPLIER_COST DECIMAL 8 2 Yes NULL

Viewing the contents of a table
You can display the contents of your tables and views. When viewing the contents of a table, you cannot
make changes to the table. To make changes to a table, you must edit the table.

To view the contents of INVENTORY_LIST, follow these steps:

1. From System i Navigator, expand the system that you want to use.
2. Expand Databases and the database that you want to work with.
3. Expand Schemas.
4. Click SAMPLELIB.
5. Double-click Tables.
6. Right-click INVENTORY_LIST and select View Contents.

Database overview 7

Changing information in a table
You can use System i Navigator to change the values in the columns of a table. The value that you give
must be valid for that column.

Suppose that you want to update a column to indicate that you received an order for more paper clips
today.

1. Navigate to the table INVENTORY_LIST. Right-click the table and select Edit Contents.
2. Type the current date in the LAST_ORDER_DATE column for paper clips. Be sure to use the correct

date format for your system.
3. Change the ORDER_QUANTITY value to 50.
4. Save the changes and view the table contents by using View Contents.

The paper clip row reflects the changes you made.

Deleting information from a table
You can delete information from a single column in a row or delete the row entirely. If a column requires a
value, you cannot delete it without deleting the entire row.

To delete some information in the INVENTORY_LIST table, follow these steps:

1. Open the INVENTORY_LIST table by double-clicking it.
2. Delete the ORDER_QUANTITY value for the ENVELOPES, STANDARD row.

Because this column allows null values, you can delete the value.
3. Delete the UNIT_COST value for the LINED TABLETS row.

Because this column does not allow null values, the deletion is not allowed.

You can also delete an entire row without removing all of the column values one at a time.

1. Open table INVENTORY_LIST by double-clicking it.
2. Click the cell to the left of the UNKNOWN row. This highlights the entire row.
3. Select Delete from the Rows menu or press the Delete key on your keyboard. The UNKNOWN row is

deleted.
4. Delete all of the rows that do not have a value in the QUANTITY_ON_HAND column from the

INVENTORY_LIST table.
5. Save the changes and view the contents by using View Contents.

You should have a table that contains the following data.

8 IBM i: Database overview

ITEM_ NUMBER ITEM_ NAME UNIT_ COST QUANTITY_
ON_ HAND

LAST_ ORDER_
DATE

ORDER_ QUANTITY

153047 PENCILS, RED 10.00 25 20

229740 LINED TABLETS 1.50 120 20

303476 PAPER CLIPS 2.00 100 2007-09-22 50

559343 ENVELOPES,
LEGAL

3.00 500 20

775298 CHAIRS,
SECRETARY

225.00 6 20

073956 PENS, BLACK 20.00 25 20

Copying and moving a table
You can copy or move tables from one schema or system to another. By copying a table, you create more
than one instance of the table. By moving a table, you transfer the table to its new location while removing
the instance from its former location.

Copying a table
In this example, you copy the INVENTORY_LIST table to another schema.

Create a new schema called LIBRARY1 and add it to the list of schemas displayed. After you have created
this new schema, copy INVENTORY_LIST to the LIBRARY1 schema. To copy a table, follow these steps:

1. From System i Navigator, expand the system that you want to use.
2. Expand Databases and the database that you want to work with.
3. Expand Schemas.
4. Click SAMPLELIB.
5. Double-click Tables.
6. Right-click INVENTORY_LIST and select Copy.
7. Right-click LIBRARY1 and select Paste.

Moving a table
Now that you have copied the INVENTORY_LIST table to the LIBRARY1 schema, move the SUPPLIERS
table to LIBRARY1.

To move a table, follow these steps:

1. From System i Navigator, expand the system that you want to use.
2. Expand Databases and the database that you want to work with.
3. Expand Schemas.
4. Click SAMPLELIB.
5. Double-click Tables.
6. Right-click SUPPLIERS and select Cut.
7. Right-click LIBRARY1 and select Paste.

Note: You can move a table by dragging and dropping the table on the new schema. Moving a table to a
new location does not always remove it from the source system. For example, if you have read authority
but not delete authority to the source table, you can move the table to the target system. However, you
cannot delete the table from the source system, causing two instances of the table to exist.

Database overview 9

Creating and using a view
You might find that no single table in the database contains all the information that you need. You might
also want to give users access to only part of the data in a table. Views provide a way to divide the table so
that you deal with only the data that you need.

A view reduces complexity and, at the same time, restricts access. To create a view, you must have
the correct authority to the tables or physical files on which the view is based. See the CREATE VIEW
statement for a list of authorities needed.

If you did not specify column names in the view definition, the column names are the same as those for
the table on which the view is based.

You can make changes to a table through a view even if the view has a different number of columns or
rows than the table. For INSERT, columns in the table that are not in the view must have a default value.

You can use the view as though it were a table, even though the view is totally dependent on one or more
tables for data. The view has no data of its own and therefore requires no storage for the data. Because a
view is derived from a table that exists in storage, when you update the view data, you are really updating
data in the table. Therefore, views are automatically kept up-to-date as the tables they depend on are
updated.

Creating a view over a single table
This example shows how to create a view over a single table. The view is built on the
INVENTORY_LIST table. The table has six columns, but the view uses only three of them: ITEM_NUMBER,
LAST_ORDER_DATE, and QUANTITY_ON_HAND.

To create a view over a single table, follow these steps:

1. From System i Navigator, expand the system that you want to use.
2. Expand Databases and the database that you want to work with.
3. Expand Schemas.
4. Right-click SAMPLELIB and select New > View.
5. In the New View window, type RECENT_ORDERS in the Name field.
6. In the Schema field, specify SAMPLELIB.
7. Optional: In the Text field, specify a description.
8. Select a check option. A check option on a view specifies that the values inserted or updated into a

row must conform to the conditions of the view. For this view, select None.
9. Select the Query Text tab.

10. Enter the SQL text of the statement that you want to represent the query for the view.
You can use the Preview Results button to check the results before you create the view.

11. Click OK.

Deleting database objects
After you create database objects on your system, you might want to delete them to save system
resources. You need delete authority to perform these tasks.

Note: To keep the information in these tables, create a third schema and copy the tables and views to it.

1. To delete the INVENTORY_LIST table from the LIBRARY1 schema, follow these steps:
a) From System i Navigator, expand the system that you want to use.
b) Expand Databases and the database that you want to work with.
c) Expand Schemas and select LIBRARY1.
d) Select Tables.
e) Right-click INVENTORY_LIST and select Delete or press the Delete key.

10 IBM i: Database overview

f) In the Object Deletion Confirmation window, select Delete.
The INVENTORY_LIST table is deleted.

2. To delete the SUPPLIERS table from LIBRARY1 and delete LIBRARY1, follow these steps:
a) Right-click SUPPLIERS and select Delete or press the Delete key.
b) In the Object Deletion Confirmation window, select Yes.

A new window opens, indicating that the view LOWER_COST is dependent on SUPPLIERS. The view
should also be deleted.

c) Click Delete.
SUPPLIERS and LOWER_COST are deleted, and LIBRARY1 is empty.

d) Right-click LIBRARY1 and select Delete.
e) In the Object Deletion Confirmation window, select Yes. LIBRARY1 is deleted.

3. To delete the SAMPLELIB schema, follow these steps:
a) Navigate to SAMPLELIB in the Schemas menu.
b) Right-click SAMPLELIB and select Delete.
c) In the Object Deletion Confirmation window, select Delete.

A new window opens, indicating that SAMPLELIB contains the INVENTORY_LIST table and the
RECENT_ORDERS view and that RECENT_ORDERS is dependent on INVENTORY_LIST.

d) Click Yes to delete SAMPLELIB, INVENTORY_LIST, and RECENT_ORDERS.

System i Navigator database tasks
You can perform many database tasks with System i Navigator, including creating, modifying, and deleting
various database objects.

In addition to the tasks described in “Getting started with System i Navigator” on page 2, you can use
System i Navigator with Db2 for IBM i in many other ways. With System i Navigator, you can perform a
task in the following ways:

• In System i Navigator, right-click an object and then select the appropriate function from the context
menu.

• In the System i Navigator Web interface, select the appropriate function from an object context menu.
• In System i Navigator, use a System i Navigator utility, such as the Run SQL Scripts window.

Note: Most of the System i Navigator utilities are not available from the Web interface.

Related tasks
Defining public authority using System i Navigator
Setting a default public authority for new files
Related reference
Examining query optimizer debug messages in the job log
Related information
Working with journals

Database overview 11

Database objects creation tasks
This table shows how you can create various database objects in System i Navigator.

Table 1. Creating database objects

Tasks Objects whose context menu
supports the task

Available from object
context menus in the
Web interface

System i Navigator
utilities

Create a constraint on
a table

N/A, but the task
is available from
the Table Definition
window in the Web
interface.

• The Table
Definition window

• A Database
Navigator map

Create a distinct type
or an array type

• A schema object
• The All Objects folder
• The Types folder

Yes

Create a function • A schema object
• The All Objects folder
• The Functions folder
• A function object

No

Create a global
variable

• A schema object
• The All Objects folder
• The Global Variables folder

Yes

Create a journal • A schema object
• The All Objects folder
• The Journals folder

N/A, but the task
is available from the
Journal Management
window in the Web
interface.

A Database
Navigator map

Create an alias • A schema object
• The All Objects folder
• The Alias folder
• A table object
• A table partition
• A view object

Yes A Database
Navigator map

Create an index • A schema object
• The All Objects folder
• The Indexes folder
• A table object
• A table partition

Yes • A Database
Navigator map

• Index Advisor
• An SQL

performance
monitor analysis
result

• Visual Explain

Create an SQL
package

A database folder No The Run SQL Scripts
window 1

12 IBM i: Database overview

Table 1. Creating database objects (continued)

Tasks Objects whose context menu
supports the task

Available from object
context menus in the
Web interface

System i Navigator
utilities

Create a procedure • A schema object
• The All Objects folder
• The Procedures folder

No

Create a schema The Schemas folder Yes

Create a sequence • A schema object
• The All Objects folder
• The Sequences folder

Yes

Create a table • A schema object
• The All Objects folder
• The Tables folder

Yes A Database
Navigator map

Create a trigger • A schema object
• The All Objects folder
• The Triggers folder
• A table object
• A view object

Yes A Database
Navigator map

Create a view • A schema object
• The All Objects folder
• The views folder

Yes A Database
Navigator map

Create multiple
indexes with Run SQL
Scripts2

Index Advisor

Create an OmniFind
text search index

• A schema object
• An OmniFind Text Indexes

folder
• The All Objects folder

Yes

Note:
1 To create an SQL package from the Run SQL Scripts window, select Connection > JDBC Settings from
the menu, and then select the Enable extended dynamic (SQL package) support check box on the
Package tab.
2 To create multiple indexes with Run SQL Scripts, right-click the advised indexes in the Index Advisor
window and select Show SQL. This launches the Run SQL Scripts window that contains the CREATE
INDEX statements for each index selected.

Related concepts
Creating a library
Related tasks
Creating and using a table

Database overview 13

A table is a basic database object that is used to store information. After you create a table, you can
define columns, create indexes, and add triggers and constraints.
Creating and using a view
You might find that no single table in the database contains all the information that you need. You might
also want to give users access to only part of the data in a table. Views provide a way to divide the table so
that you deal with only the data that you need.
Adding triggers using System i Navigator
Related information
OmniFind Text Search for DB2 for i

Database objects operation tasks
This table shows how you can work with various database objects in System i Navigator.

Table 2. Working with database objects

Tasks Objects whose context menu
supports the task

Available from object
context menus in the
Web interface

System i Navigator
utilities

Add a comment to a
database object

All database objects Yes

Build SQL scripts with
SQL Assist

• The Run SQL
Scripts window

• The Create SQL
Trigger window

• The New
Materialized Query
Table window

Capture information
about your database
with the Database
Health Center

A database folder Yes

Clear data from a
table

• A table object
• A table partition

Yes

Copy data from a
table

• A table object
• A table partition
• A view object

Yes

Delete a database
object

Most objects Yes A Database
Navigator map

Export data from a
table or a view

• A table object
• A table partition
• A view object

Yes Taskpad

Generate SQL
statements for
existing database
objects

Most objects and object folders Yes • A Database
Navigator map

• The Run SQL
Scripts window

14 IBM i: Database overview

Table 2. Working with database objects (continued)

Tasks Objects whose context menu
supports the task

Available from object
context menus in the
Web interface

System i Navigator
utilities

Import data into a
table

A table object Yes Taskpad

Initialize data in a
table

• A table object
• A table partition

Yes

Manage tables being
altered

Database
Maintenance
folder for a
database→Table
Alters window

Manage check
pending constraints

Database
Maintenance
folder for a
database→Check
Pending Constraints
window

Manage indexes being
built

Database
Maintenance
folder for a
database→Index
Builds window

Manage indexes being
rebuilt

Database
Maintenance
folder for a
database→Index
Rebuilds window

Manage table
reorganizations

Database
Maintenance
folder for a
database→Table
Reorganizations
window

Manage text search
indexes being built

Database
Maintenance folder
for a database→Text
Index Builds
window

Modify the definition
of a table

A table object Yes • A Database
Navigator map

• Visual Explain
• An SQL

performance
monitor analysis
report

Database overview 15

Table 2. Working with database objects (continued)

Tasks Objects whose context menu
supports the task

Available from object
context menus in the
Web interface

System i Navigator
utilities

Reset usage counts
for indexes

• One or more index objects
• One or more table objects
• One or more indexes,

constraints, keyed logical files,
and keyed physical files in the
Show Indexes window

Yes The Show Indexes
window

Reset usage counts
for materialized query
tables

One or more materialized query
table objects

Yes The Show
Materialized Query
Tables window

Run an SQL script1 A database folder No Taskpad

Select schemas to
be displayed in the
Schemas folder

The Schemas folder Yes Taskpad

Show database
objects relations

A table object Yes A Database
Navigator map

Show indexes for all
tables in a schema

The Tables folder Yes

Show indexes for a
specific table

A table object Yes

Show locked rows • A table object
• A table partition
• A job that locks some rows in

the Work Management folder2

Yes

Show materialized
query tables for all
tables in a schema

The Tables folder Yes

Show materialized
query tables for all
views in a schema

The Views folder Yes

Show materialized
query tables for a
specific table

A table object Yes

Show materialized
query tables for a
specific view

A view object Yes

Show partitions of a
table

A partitioned table Yes

Show transaction
information

• The Database Transactions
folder

• The Global Transactions folder

Yes

16 IBM i: Database overview

Table 2. Working with database objects (continued)

Tasks Objects whose context menu
supports the task

Available from object
context menus in the
Web interface

System i Navigator
utilities

Specify the JDBC
settings

The Run SQL Scripts
window

View lock holders • An alias object
• An index object
• A table object
• A view object

Yes

Notes:
1 You can start the Run SQL Scripts window by double-clicking an SQL file.
2 To show the locked rows of an object from the Work Management folder, right-click a job in the Work
Management folder and select Details > Locked Objects. You can then right-click the locked object and
show the locked rows of that object.

Related concepts
Copying a file
Moving a file
Displaying information with Database Health Center
Related tasks
Building SQL statements with SQL Assist
You can build SELECT, INSERT, UPDATE, and DELETE SQL statements interactively in the SQL Assist
window of System i Navigator.
Importing and exporting data
System i Navigator provides Import and Export wizards for you to import and export data between files
and database tables. These wizards use the Copy from Import File (CPYFRMIMPF) and Copy to Import
File (CPYTOIMPF) commands to process the requests.
Generating SQL for existing objects
You can reconstruct the SQL that was used to create existing database objects in the Generate SQL
window of System i Navigator.
Managing check pending constraints
You can view and change constraints that the system has placed in a check pending state.
Displaying locked rows using System i Navigator
Mapping your database
Database Navigator is a System i Navigator function that you can use to visually represent the
relationships of database objects on your system. This representation is called a map. In essence, a
Database Navigator map is a snapshot of your database and the relationships that exist among all of the
objects in the map.
Displaying attributes of a file using System i Navigator
Reorganizing a table using System i Navigator
Deleting database objects
After you create database objects on your system, you might want to delete them to save system
resources. You need delete authority to perform these tasks.
Related reference
Managing index rebuilds
Determining unnecessary indexes

Database overview 17

Database performance optimization tasks
This table shows how you can access various tools in System i Navigator to optimize your database
performance.

Table 3. Optimizing database performance

Tasks Objects whose context menu
supports the task

Available from object
context menus in the
Web interface

System i Navigator
utilities

Analyze an SQL plan
cache event monitor

An SQL plan cache event monitor
object

Yes

Analyze an SQL plan
cache snapshot

An SQL plan cache snapshot
object

Yes

Analyze monitor data An SQL performance monitor
object

Yes The Run SQL Scripts
window

Change query
attributes for a job

A database folder Yes The Run SQL Scripts
window

Change the plan score
for an access plan

The SQL Plan Cache
Statements window

Change the SQL plan
cache size threshold

Note: The resize is
temporary and is lost
at the next initial
program load.

The SQL Plan Cache
Properties window

Compare data
collected by
performance monitors

One or more SQL performance
monitor objects

Yes

Compare data
collected by SQL plan
cache event monitors

One or more SQL plan cache
event monitor objects

Yes

Compare data
collected by SQL plan
cache snapshots

One or more SQL plan cache
snapshot objects

Yes

Create an SQL
performance monitor

The SQL Performance Monitors
folder

Yes • Health Center–
Environment Limits
tab

• Taskpad
• The Run SQL

Scripts window
• Visual Explain

Create an SQL plan
cache snapshot

The SQL Plan Cache Snapshots
folder

Yes

Create a subset
of an existing SQL
performance monitor
for easier analysis

An SQL performance monitor
object (analyze or show
statements)

Yes Visual Explain

18 IBM i: Database overview

Table 3. Optimizing database performance (continued)

Tasks Objects whose context menu
supports the task

Available from object
context menus in the
Web interface

System i Navigator
utilities

Delete a plan from the
SQL plan cache

The SQL Plan Cache
Statements window

Display indexes
advised by the system

• A database folder
• A schema object
• A table object

Yes • Visual Explain
• An SQL

performance
monitor object

• An SQL plan cache
snapshot object

Display SQL
information for an
object

• A function object
• An SQL package object
• A procedure object
• A trigger object
• A program object that contains

precompiled SQL information
in the Integrated File System
folder

Yes

Display SQL
statements collected
by an SQL plan cache
event monitor

An SQL plan cache event monitor Yes

Display SQL
statements collected
by an SQL plan cache
snapshot

An SQL plan cache snapshot
object

Yes

Display SQL
statements collected
by a performance
monitor

An SQL performance monitor
object

Yes

Display the most
recent statement and
other SQL details for a
job

• The Databases folder
• A job that contains SQL

statements in the Work
Management folder2

Yes

Manage statistics data • A table object
• A table partition

Yes • A Database
Navigator map

• Visual Explain

Manage the
background statistics
process

The Databases folder Yes

Remove the longest
runs of SQL
statements

SQL Plan Cache
Show Statements
window

Database overview 19

Table 3. Optimizing database performance (continued)

Tasks Objects whose context menu
supports the task

Available from object
context menus in the
Web interface

System i Navigator
utilities

Show active jobs that
are using the selected
SQL statements

The SQL Plan Cache
Statements window

Show an SQL
statement

• A detailed SQL performance
monitor object

• An SQL plan cache snapshot
object

• A job that contains SQL
statements in the Work
Management folder2

Yes • The SQL Details for
Jobs window

• The Compare SQL
Performance Data
window

Show the longest runs
of SQL statements

The SQL Plan Cache
Statements window

Show the picture of a
query execution using
Visual Explain

• SQL performance monitor
objects (analyze or compare)

• SQL plan cache snapshot
objects (analyze or compare)

• A job that contains SQL
statements in the Work
Management folder1

No • The Run SQL
Scripts window

• The Show
statements
window

• The SQL Details for
Jobs window

• The SQL Plan
Cache Statements
window

Show the user history
for the selected SQL
statements

The SQL Plan Cache
Statements window

Start an SQL plan
cache event monitor
to log plans that are
removed from the
plan cache

The SQL Plan Cache Event
Monitors folder

Yes

Start the statistics
advisor

• Visual Explain
• An SQL

performance
monitor analysis
report

• An SQL plan cache
snapshot analysis
report

20 IBM i: Database overview

Table 3. Optimizing database performance (continued)

Tasks Objects whose context menu
supports the task

Available from object
context menus in the
Web interface

System i Navigator
utilities

View the SQL plan
cache

• The SQL Plan Cache folder1

• An index object
• An advised index in the Index

Advisor window
• A condensed advised index in

the Condensed Index Advice
window

Yes Index Advisor

Notes:
1 To view the SQL plan cache, right-click the SQL Plan Cache folder and select Show Statements.
2 To show the SQL statement that a job contains from the Work Management folder, right-click a job in
the Work Management folder and select Details > SQL.

Related reference
Viewing the plan cache with System i Navigator
Viewing the implementation of your queries with Visual Explain
Displaying index advisor information
Collecting statistics with the Statistics Manager
Authority options for SQL analysis and tuning

Mapping your database
Database Navigator is a System i Navigator function that you can use to visually represent the
relationships of database objects on your system. This representation is called a map. In essence, a
Database Navigator map is a snapshot of your database and the relationships that exist among all of the
objects in the map.

Using Database Navigator, you can explore the complex relationships of your database objects using a
graphical representation that presents the tables in your database, the relationships between tables, and
indexes and constraints that are attached to tables. The primary workspace for Database Navigator is a
window that is divided into several main areas. The map is displayed in the right pane. You can perform a
variety of tasks by right-clicking an object. The Locator pane is found on the left side of the window. You
can use this pane to locate specific objects to include in the map or to specify a type of object to include in
the map.

To access Database Navigator maps, expand the system name, Databases, and the database that you
want to use.

To display a list of existing maps in the right pane, click Database Navigator Maps.

To create a new map, right-click Database Navigator Maps and select New > Map.

Tips for using Database Navigator:

• To change the size of either side of the window, drag the bar (splitter) that separates the two sides.
• Be sure to right-click the objects on both the left and right sides of the window. The right-click menus

give you quick access to common functions.
• To quickly open a schema and display the objects in it, double-click the schema.
• To access the various Database Navigator commands, use either the Menu bar or the Toolbar.

Database overview 21

Querying your database by running SQL scripts
You can create, edit, run, and troubleshoot scripts of SQL statements in the Run SQL Scripts window of
System i Navigator. When you finish working with the scripts, you can save the statements to your PC.

To open the Run SQL Scripts window, expand the system name and Databases and right-click the
database to which you want to connect.

You can use the Examples list to build your scripts, manually create your statement, retrieve the SQL for
an existing object using the generate SQL function, or build a script using SQL Assist.

You can check the syntax of your SQL by clicking Check Syntax. Additional ways of debugging your
programs and scripts include debugging messages in the job log and starting IBM i Debugger. When
syntax checking is complete, you can save the script by selecting Save from the File menu.

To run an SQL script, select one of the following options from the Run menu:

• All: Run your SQL script from the beginning to the end. If an error occurs and the Stop on Error option
is turned on, the program stops and the statement where the error occurred remains selected.

• From Selected: Start your SQL script from the first statement that is selected or from the current
cursor position to the end of the script.

• Selected: Run the statements that are selected.

The results are added to the end of the Messages tab. If the Smart Statement Selection option on the
Options menu is not checked, the text that is selected is run as a single SQL statement.
Related concepts
Using interactive SQL
Related tasks
Creating a view that combines data from multiple tables
A view that combines data from multiple tables enables you to show relevant information in multiple
tables together. You can create a view that combines data from two or more tables by naming more than
one table in the FROM clause.

Stopping SQL scripts
You can stop or cancel a running SQL script from System i Navigator.

To stop or cancel SQL scripts that are running, select one of the following options from the Run menu:

• Stop After Current: Stop running the SQL script after the currently running statement ends.
• Cancel Request: Request that the system cancel the current SQL statement. However, because not

all SQL statements can be canceled, an SQL statement might continue to completion even after this
option is used. SQL statements that have already completed host processing before Cancel Request
is pressed also continue to completion. For example, SELECT statements that have already completed
query processing but have not returned results to the client typically cannot be canceled.

Viewing the job log
The job log contains the messages that are related to your job. You can view the job log from System i
Navigator.

To see query optimizer and other database debugging messages, follow these steps:

1. Select Include Debug Messages in Job Log from the Options menu.
2. Run the statement again.
3. If the Job Log dialog box is open when you do this, refresh the view to see new messages.

To view the job log, select Job Log from the View menu.

The job log is not cleared when Clear Run History is used, so you can use the job log to see messages
that are no longer in the Output pane.

To view job details, select Job Details from the View menu.

22 IBM i: Database overview

Generating SQL for existing objects
You can reconstruct the SQL that was used to create existing database objects in the Generate SQL
window of System i Navigator.

You can generate SQL for most database objects. Additionally, if you generate SQL for a table that has
constraints or triggers associated with it, the SQL is generated for those constraints or triggers as well.
You can generate SQL for one object or many objects at a time. You can also send the generated SQL
to the Run SQL Scripts window for running or editing, or you can write the generated SQL directly to a
database or PC file.

To generate SQL for an object, right-click the object and select Generate SQL.

You can also open the Generate SQL window by selecting Insert Generated SQL from the Edit menu in
the Run SQL Scripts window.

Building SQL statements with SQL Assist
You can build SELECT, INSERT, UPDATE, and DELETE SQL statements interactively in the SQL Assist
window of System i Navigator.

To start the SQL Assist window, follow these steps:

1. Select SQL Assist from the Edit menu in the Run SQL Scripts window.
In the SQL Assist window, you can choose tables to work with and build selection criteria. The
statement is built in the bottom portion of the window.

2. Click OK to return the statement that you built to the Run SQL Scripts window.
3. Edit, run, and save your statement.

Starting IBM i Debugger
IBM i Debugger provides a graphical user debugging environment on your system. You can use IBM i
Debugger to debug and test programs that run on your system, including the programs that run in IBM i
Portable Application Solutions Environment (PASE).

To start IBM i Debugger from the Run SQL Scripts window, select Debugger from the Run menu.

Related concepts
IBM i Debugger

Managing check pending constraints
You can view and change constraints that the system has placed in a check pending state.

Check pending refers to a state in which a mismatch exists either between a parent and foreign key in the
case of a referential constraint or between the column value and the check constraint definition in the
case of a check constraint.

To view and change constraints that have been placed in a check pending state, follow these steps:

1. Expand the system name and Databases.
2. Expand the database that you want to use and expand the Database Maintenance folder. Select Check

Pending Constraints.
From this interface, you can view the definition of each constraint and the rows that are in violation of
the constraint rules.

3. Select the constraint that you want to work with and then select Edit Check Pending Constraint from
the File menu.

4. Change or delete the rows that are in violation.

Related concepts
Check pending status in referential constraints

Database overview 23

Importing and exporting data
System i Navigator provides Import and Export wizards for you to import and export data between files
and database tables. These wizards use the Copy from Import File (CPYFRMIMPF) and Copy to Import
File (CPYTOIMPF) commands to process the requests.

Here are the files and database tables that you can import data from or export data to:

• Integrated file systems files
• Source physical files
• Program-described files
• Database tables with a single nonnumeric column that is not data type LOB

System i Navigator refers to an import file as a data file.

To start the Import or Export wizard, follow these steps:

1. From System i Navigator, expand the system that you want to use.
2. Expand Databases.
3. Expand the database and schema that you want to work with.
4. Click the Tables container.
5. If you want to import data from a data file, right-click the table that you want to import data to and

select Data > Import. If you want to export data in a table to a file, right-click the table that you want
to export data to and select Data > Export.

Related tasks
Copying between different systems
Related reference
Copy From Import File (CPYFRMIMPF) command
Copy To Import File (CPYTOIMPF) command

Getting started with SQL
SQL is a standardized language for defining and manipulating data in a relational database. You can create
and work with schemas, tables, and views by using SQL statements in interactive SQL directly.

The syntax for each of the SQL statements used in these topics is described in detail and descriptions of
how to use SQL statements and clauses in more complex situations are provided in the Db2 for IBM i SQL
reference topic collection.

In these topics, the examples use the interactive SQL interface to show the use of SQL statements. Each
SQL interface provides methods for defining tables, views, and other objects; for updating the objects;
and for reading data from the objects.

First, start interactive SQL:

1. Type STRSQL NAMING(*SQL).
2. Press Enter.

When the Enter SQL Statements display appears, you are ready to start typing SQL statements.

If you are reusing an existing interactive SQL session, make sure that you set the naming mode to SQL
naming. You can specify this on the F13 (Services) panel, option 1 (Change session attributes).

Related reference
SQL programming

24 IBM i: Database overview

Creating a schema
A schema (also known as a collection) is a basic object in which tables, views, indexes, and packages are
placed. To create a schema, use the CREATE SCHEMA statement.

To create a schema named SAMPLECOLL, follow these steps:

1. Enter the following SQL statement on the Enter SQL Statements display: CREATE SCHEMA
SAMPLECOLL.

2. Press Enter.

Note: Running this statement causes several objects to be created and takes several seconds.

After you have successfully created a schema, you can create tables, views, and indexes in it. Tables,
views, and indexes can also be created in libraries instead of schemas.

Related concepts
Creating database objects
Related reference
CREATE SCHEMA

Creating and using a table
You can use the CREATE TABLE statement to create a table, to define the physical attributes of the
columns in a table, and to define constraints to restrict the values that are allowed in a table.

When creating a table, you need to understand the concepts of null value and default value. A null value
indicates the absence of a column value for a row. It is not the same as a value of zero or all blanks. It
means unknown. A null value is not equal to any value, not even to other null values. If a column does
not allow the null value, a value must be assigned to the column, either a default value or a user-supplied
value.

A default value is assigned to a column when a row is added to a table and no value is specified for that
column. If a specific default value was not defined for a column, the system default value is used.

You are going to create a table to maintain information about the current inventory of a business. The
table contains information about the items kept in the inventory, their cost, quantity currently on hand,
the last order date, and the number last ordered. The item number is a required value. It cannot be null.
The item name, quantity on hand, and order quantity have user-supplied default values. The last order
date and quantity ordered allow null values.

You also need to create a second table. This table contains information about suppliers of your inventory
items, which items they supply, and the cost of the item from that supplier.

1. Create the first table named INVENTORY_LIST:
a) On the Enter SQL Statements display, type CREATE TABLE and press F4 (Prompt). The following

display is shown (with the input areas not yet filled in).

Database overview 25

 Specify CREATE TABLE Statement

Type information, press Enter.

Table INVENTORY_LIST______ Name
 Collection SAMPLECOLL__ Name, F4 for list

Nulls: 1=NULL, 2=NOT NULL, 3=NOT NULL WITH DEFAULT

Column FOR Column Type Length Scale Nulls
ITEM_NUMBER_______ ____________ CHAR___________ 6____ __ 2
ITEM_NAME_________ ____________ VARCHAR________ 20___ __ 3
UNIT_COST_________ ____________ DECIMAL________ 8____ 2_ 3
QUANTITY_ON_HAND__ ____________ SMALLINT_______ _____ __ 1
LAST_ORDER_DATE___ ____________ DATE___________ _____ __ 1
__________________ ____________ _______________ _____ __ 3
 Bottom
 Table CONSTRAINT N Y=Yes, N=No
 Distributed Table N Y=Yes, N=No

F3=Exit F4=Prompt F5=Refresh F6=Insert line F10=Copy line
F11=Display more attributes F12=Cancel F14=Delete line F24=More keys

b) Type the table name INVENTORY_LIST and schema name SAMPLECOLL at the Table and
Collection prompts, as shown.

c) Each column you want to define for the table is represented by an entry in the list on the lower
part of the display. For each column, type the name of the column, the data type of the column, its
length and scale, and the null attribute.

d) Press F11 (Display more attributes) to see more attributes that can be specified for the columns.
This is where a default value can be specified.

 Specify CREATE TABLE Statement

Type information, press Enter.

Table INVENTORY_LIST______ Name
 Collection SAMPLECOLL__ Name, F4 for list

Data: 1=BIT, 2=SBCS, 3=MIXED, 4=CCSID

Column Data Allocate CCSID CONSTRAINT Default
ITEM NUMBER_______ _ _____ _____ N __________________
ITEM NAME_________ _ _____ _____ N '***UNKNOWN***'___
UNIT_COST_________ _ _____ _____ N __________________
QUANTITY_ON_HAND__ _ _____ _____ N NULL______________
LAST_ORDER_DATE___ _ _____ _____ N __________________
ORDER_QUANTITY____ _ _____ _____ N 20________________
__________________ _ _____ _____ _ __________________
 Bottom
 Table CONSTRAINT N Y=Yes, N=No
 Distributed Table N Y=Yes, N=No

F3=Exit F4=Prompt F5=Refresh F6=Insert line F10=Copy line
F11=Display more attributes F12=Cancel F14=Delete line F24=More keys

Note: Another way of entering column definitions is to press F4 (Prompt) with your cursor on one of
the column entries in the list. A display that shows all of the attributes for defining a single column
appears.

e) When all the values have been entered, press Enter to create the table. The Enter SQL Statements
display is shown again with a message indicating that the table has been created.

Note: You can type this CREATE TABLE statement on the Enter SQL Statements display as follows:

CREATE TABLE SAMPLECOLL.INVENTORY_LIST
(ITEM_NUMBER CHAR(6) NOT NULL,
 ITEM_NAME VARCHAR(20) NOT NULL WITH DEFAULT '***UNKNOWN***',
 UNIT_COST DECIMAL(8,2) NOT NULL WITH DEFAULT,
 QUANTITY_ON_HAND SMALLINT DEFAULT NULL,
 LAST_ORDER_DATE DATE,
 ORDER_QUANTITY SMALLINT DEFAULT 20)

2. Create a second table named SUPPLIERS. There are two methods you can use:

26 IBM i: Database overview

a) Type the following command directly on the Enter SQL Statements display.
b) Press F4 (Prompt) to use the interactive SQL displays to create the definition.

CREATE TABLE SAMPLECOLL.SUPPLIERS
 (SUPPLIER_NUMBER CHAR(4)NOT NULL,
 ITEM_NUMBER CHAR(6) NOT NULL,
 SUPPLIER_COST DECIMAL(8,2))

Related concepts
Altering and managing database objects
Creating database objects
Related reference
INSERT

Using the LABEL ON statement
Normally, the column name is used as the column heading when the output of a SELECT statement is
shown in interactive SQL. By using the LABEL ON statement, you can create a more descriptive label for
the column name.

Because you run your examples in interactive SQL, you use the LABEL ON statement to change the
column headings. Even though the column name is descriptive, it is easier to read if the column heading
shows each part of the name on a single line. It also allows you to see more columns of data on a single
display.

To change the labels for your columns, follow these steps:

1. Enter LABEL ON COLUMN on the Enter SQL Statements display.
2. Press F4 (Prompt). The following display appears.

 Specify LABEL ON Statement

Type choices, press Enter.

 Label on 2 1=Table or view
 2=Column
 3=Package
 4=Alias

 Table or view INVENTORY_LIST______ Name, F4 for list
 Collection . . SAMPLECOLL__ Name, F4 for list

 Option 1 1=Column heading
 2=Text

F3=Exit F4=Prompt F5=Refresh F12=Cancel F20=Display entire name
F21=Display statement

3. Type the name of the table and schema that contains the columns for which you want to add labels.
4. Press Enter. The following display is shown, prompting you for each of the columns in the table.

Database overview 27

 Specify LABEL ON Statement

Type information, press Enter.

 Column Heading
Column +....1....+....2....+....3....+....4....+....5....
ITEM_NUMBER 'ITEM NUMBER'___________________________
ITEM_NAME 'ITEM NAME'_____________________________
UNIT_COST 'UNIT COST'_____________________________
QUANTITY_ON_HAND 'QUANTITY ON HAND'_________
LAST_ORDER_DATE 'LAST ORDER DATE'_________
ORDER_QUANTITY 'NUMBER ORDERED'__________________________

 Bottom
F3=Exit F5=Refresh F6=Insert line F10=Copy line F12=Cancel
F14=Delete line F19=Display system column names F24=More keys

5. Type the column heading for each of the columns. Column headings are defined in 20-character
sections. Each section is displayed on a different line when the output of a SELECT statement is
shown. The ruler across the top of the column heading entry area can be used to easily space the
headings correctly.

6. Press Enter.

The following message indicates that the LABEL ON statement was successful:
LABEL ON for INVEN00001 in SAMPLECOLL completed.

The table name in the message is the system table name for this table, not the name that was actually
specified in the statement. Db2 for i maintains two names for tables with names longer than 10
characters.

Note: The LABEL ON statement can also be typed directly on the Enter SQL Statements display as follows:

LABEL ON SAMPLECOLL.INVENTORY_LIST
(ITEM_NUMBER IS 'ITEM NUMBER ',
ITEM_NAME IS 'ITEM NAME ',
UNIT_COST IS 'UNIT COST ',
QUANTITY_ON_HAND IS 'QUANTITY ON HAND ',
LAST_ORDER_DATE IS 'LAST ORDER DATE ',
ORDER_QUANTITY IS 'NUMBER ORDERED ')

Related reference
CREATE TABLE

Inserting information into a table
After you create a table, you can insert or add information (data) into the table by using the SQL INSERT
statement.

To insert information into a table, follow these steps:

1. On the Enter SQL Statements display, type INSERT and press F4 (Prompt). The Specify INSERT
Statement display is shown.

28 IBM i: Database overview

 Specify INSERT Statement

Type choices, press Enter.

 INTO table INVENTORY_LIST______ Name, F4 for list
 Collection SAMPLECOLL__ Name, F4 for list

 Select columns to insert
 INTO Y Y=Yes, N=No
 Insertion method 1 1=Input VALUES
 2=Subselect

Type choices, press Enter.

 WITH isolation level . . 1 1=Current level, 2=NC (NONE)
 3=UR (CHG), 4=CS, 5=RS (ALL)
 6=RR

F3=Exit F4=Prompt F5=Refresh F12=Cancel F20=Display entire name
F21=Display statement

2. Type the table name and schema name in the input fields as shown.
3. Change the Select columns to insert INTO prompt to Yes.
4. Press Enter to see the display where the columns you want to insert values into can be selected.

 Specify INSERT Statement

Type sequence numbers (1-999) to make selections, press Enter.

Seq Column Type Length Scale
1__ ITEM_NUMBER CHARACTER 6
2__ ITEM_NAME VARCHAR 20
3__ UNIT_COST DECIMAL 8 2
4__ QUANTITY_ON_HAND SMALLINT 4
___ LAST_ORDER_DATE DATE
___ ORDER_QUANTITY SMALLINT 4

 Bottom
F3=Exit F5=Refresh F12=Cancel F19=Display system column names
F20=Display entire name F21=Display statement

In this example, insert four of the columns. Allow the other columns to have their default values
inserted. The sequence numbers on this display indicate the order that the columns and values are
listed in the INSERT statement.

5. Press Enter to show the display where values for the selected columns can be typed.

 Specify INSERT Statement

Type values to insert, press Enter.

Column Value
ITEM_NUMBER '153047'___
ITEM_NAME 'Pencils, red'_______________________________________
UNIT_COST 10.00__
QUANTITY_ON_HAND 25___

 Bottom
F3=Exit F5=Refresh F6=Insert line F10=Copy line F11=Display type
F12=Cancel F14=Delete line F15=Split line F24=More keys

Database overview 29

Note: To see the data type and length for each of the columns in the insert list, press F11 (Display
type). This shows a different view of the insert values display, providing information about the column
definition.

6. Type the values to be inserted for all of the columns and press Enter. A row containing these values is
added to the table. The values for the columns that were not specified have a default value inserted.
For LAST_ORDER_DATE it is the null value because no default was provided and the column allows
the null value. For ORDER_QUANTITY it is 20, the value specified as the default value on the CREATE
TABLE statement.

7. Type the INSERT statement on the Enter SQL Statements display as follows:

INSERT INTO SAMPLECOLL.INVENTORY_LIST (ITEM_NUMBER, ITEM_NAME, UNIT_COST, QUANTITY_ON_HAND)
 VALUES ('153047', 'Pencils, red', 10.00, 25)

8. To add the next row to the table, press F9 (Retrieve) on the Enter SQL Statements display. This copies
the previous INSERT statement to the typing area. You can either type over the values from the
previous INSERT statement or press F4 (Prompt) to use the Interactive SQL displays to enter data.

9. Continue using the INSERT statement to add the following rows to the table.

Values not shown in the following chart should not be inserted so that the default is used. In the INSERT
statement column list, specify only the column names for which you want to insert a value. For example,
to insert the third row, specify only ITEM_NUMBER and UNIT_COST for the column names and only the
two values for these columns in the VALUES list.

ITEM_NUMBER ITEM_NAME UNIT_COST QUANTITY_ON_HAND

153047 Pencils, red 10.00 25

229740 Lined tablets 1.50 120

544931 5.00

303476 Paper clips 2.00 100

559343 Envelopes, legal 3.00 500

291124 Envelopes, standard

775298 Chairs, secretary 225.00 6

073956 Pens, black 20.00 25

Add the following rows to the SAMPLECOLL.SUPPLIERS table.

SUPPLIER_NUMBER ITEM_NUMBER SUPPLIER_COST

1234 153047 10.00

1234 229740 1.00

1234 303476 3.00

9988 153047 8.00

9988 559343 3.00

2424 153047 9.00

2424 303476 2.50

5546 775298 225.00

3366 303476 1.50

3366 073956 17.00

The sample schema now contains two tables with several rows of data in each.

30 IBM i: Database overview

Getting information from a single table
After inserting information into a table, you can use the SELECT statement to display some or all the
information in the table.

The SELECT statement is the most complex of all SQL statements. This statement is composed of the
following main clauses:

1. The SELECT clause, which specifies those columns that contain the data.
2. The FROM clause, which specifies the table or tables that contain the columns with the data.
3. The WHERE clause, which supplies conditions that determine which rows of data are retrieved.

In addition to these main clauses, several other clauses that affect the final form of returned data are
described in the SQL programming and Db2 for i SQL reference topic collections.

1. To see the values that you inserted into the INVENTORY_LIST table, type SELECT and press F4
(Prompt). The following display is shown.

 Specify SELECT Statement

Type SELECT statement information. Press F4 for a list.

 FROM tables SAMPLECOLL.INVENTORY_LIST____________________
 SELECT columns *__
 WHERE conditions ___
 GROUP BY columns ___
 HAVING conditions ___
 ORDER BY columns ___
 FOR UPDATE OF columns . . . ___

 Bottom
Type choices, press Enter.

 DISTINCT rows in result table N Y=Yes, N=No
 UNION with another SELECT N Y=Yes, N=No
 Specify additional options N Y=Yes, N=No

F3=Exit F4=Prompt F5=Refresh F6=Insert line F9=Specify subquery
F10=Copy line F12=Cancel F14=Delete line F15=Split line F24=More keys

2. Type the table name in the FROM tables field on the display. To select all columns from the table, type
* for the SELECT columns field on the display.

3. Press Enter and the statement runs to select all of the data for all of the columns in the table. The
following output is shown.

 Display Data
 Data width : 71
Position to line Shift to column
....+....1....+....2....+....3....+....4....+....5....+....6....+....7.
ITEM ITEM UNIT QUANTITY LAST NUMBER
NUMBER NAME COST ON ORDER ORDERED
 HAND DATE
153047 Pencils, red 10.00 25 - 20
229740 Lined tablets 1.50 120 - 20
544931 ***UNKNOWN*** 5.00 - - 20
303476 Paper clips 2.00 100 - 20
559343 Envelopes, legal 3.00 500 - 20
291124 Envelopes, standard .00 - - 20
775298 Chairs, secretary 225.00 6 - 20
073956 Pens, black 20.00 25 - 20
******** End of data ********

F3=Exit F12=Cancel F19=Left F20=Right F21=Split

The column headings that were defined with the LABEL ON statement are shown. The ITEM_NAME
column for the third entry contains the default value that was specified in the CREATE TABLE
statement. The QUANTITY_ON_HAND column contains a null value for the rows where no value was
inserted. The LAST_ORDER_DATE column contains all null values because that column is not in any

Database overview 31

of the INSERT statements and the column was not defined to have a default value. Similarly, the
ORDER_QUANTITY column contains the default value for all rows.

This statement can be entered on the Enter SQL Statements display as:

SELECT *
 FROM SAMPLECOLL.INVENTORY_LIST

4. To limit the number of columns returned by the SELECT statement, the columns you want to see must
be specified. To restrict the number of output rows returned, the WHERE clause is used. To see only
the items that cost more than 10 dollars, and only have the values for the columns ITEM_NUMBER,
UNIT_COST, and ITEM_NAME returned, type SELECT and press F4 (Prompt). The Specify SELECT
Statement display is shown.

 Specify SELECT Statement

Type SELECT statement information. Press F4 for a list.

 FROM tables SAMPLECOLL.INVENTORY_LIST____________________
 SELECT columns ITEM_NUMBER, UNIT_COST, ITEM_NAME____________
 WHERE conditions UNIT_COST > 10.00____________________________
 GROUP BY columns ___
 HAVING conditions ___
 ORDER BY columns ___
 FOR UPDATE OF columns . . . ___

 Bottom
Type choices, press Enter.

 DISTINCT rows in result table N Y=Yes, N=No
 UNION with another SELECT N Y=Yes, N=No
 Specify additional options N Y=Yes, N=No

F3=Exit F4=Prompt F5=Refresh F6=Insert line F9=Specify subquery
F10=Copy line F12=Cancel F14=Delete line F15=Split line F24=More keys

Although only one line is initially shown for each prompt on the Specify SELECT Statement display, you
can add more lines to any of the input areas on the top part of the display by pressing F6 (Insert line).
F6 can be used if more columns need to be entered in the SELECT columns list or if a longer, more
complex WHERE condition is needed.

5. Complete the information on the display, as shown.
6. Press Enter to run the SELECT statement. The following output is shown.

 Display Data
 Data width : 41
Position to line Shift to column
....+....1....+....2....+....3....+....4.
ITEM UNIT ITEM
NUMBER COST NAME
775298 225.00 Chairs, secretary
073956 20.00 Pens, black
******** End of data ********

F3=Exit F12=Cancel F19=Left F20=Right F21=Split

The only rows returned are those whose data values satisfy the condition specified in the WHERE clause.
Furthermore, the only data values returned are from the columns you explicitly specified in the SELECT
clause. Data values of columns other than those explicitly identified are not returned.

This statement can be entered on the Enter SQL Statements display as:

SELECT ITEM_NUMBER,UNIT_COST,ITEM_NAME
 FROM SAMPLECOLL.INVENTORY_LIST
 WHERE UNIT_COST > 10.00

32 IBM i: Database overview

Getting information from multiple tables
With SQL, you can get information from columns in more than one table. This operation is called a join
operation.

In SQL, a join operation is specified by placing the names of those tables that you want to join in the same
FROM clause of a SELECT statement.

Suppose that you want to see a list of all the suppliers and the item numbers and item names for their
supplied items. The item name is not in the SUPPLIERS table; it is in the INVENTORY_LIST table. Using
the common column, ITEM_NUMBER, you can see all of the columns as if they were from a single table.

Whenever the same column name exists in two or more tables being joined, the column name must be
qualified by the table name to specify which column is being referenced. In this SELECT statement, the
column name ITEM_NUMBER is defined in both tables, so it needs to be qualified by the table name. If
the columns have different names, no qualification is needed.

To perform this join operation, enter the following SELECT statement by typing it directly on the Enter SQL
Statements display or by prompting:

SELECT SUPPLIER_NUMBER, SAMPLECOLL.INVENTORY_LIST.ITEM_NUMBER, ITEM_NAME
 FROM SAMPLECOLL.SUPPLIERS, SAMPLECOLL.INVENTORY_LIST
 WHERE SAMPLECOLL.SUPPLIERS.ITEM_NUMBER
 = SAMPLECOLL.INVENTORY_LIST.ITEM_NUMBER

If you use prompting, you need to type both table names on the FROM tables input line.

Another way to enter the same statement is to use a correlation name. A correlation name provides
another name for a table name to use in a statement. A correlation name must be used when the table
names are the same. It can be specified by following each table name in the FROM list. The previous
statement can be rewritten as:

SELECT SUPPLIER_NUMBER, Y.ITEM_NUMBER, ITEM_NAME
 FROM SAMPLECOLL.SUPPLIERS X, SAMPLECOLL.INVENTORY_LIST Y
 WHERE X.ITEM_NUMBER = Y.ITEM_NUMBER

In this example, SAMPLECOLL.SUPPLIERS is given a correlation name of X and
SAMPLECOLL.INVENTORY_LIST is given a correlation name of Y. The names X and Y are then used to
qualify the ITEM_NUMBER column name.

Running this example returns the following output.

 Display Data
 Data width : 45
Position to line Shift to column
....+....1....+....2....+....3....+....4....+
SUPPLIER_NUMBER ITEM ITEM
 NUMBER NAME
 1234 153047 Pencils, red
 1234 229740 Lined tablets
 1234 303476 Paper clips
 9988 153047 Pencils, red
 9988 559343 Envelopes, legal
 2424 153047 Pencils, red
 2424 303476 Paper clips
 5546 775298 Chairs, secretary
 3366 303476 Paper clips
 3366 073956 Pens, black
******** End of data ********

F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Note: Because no ORDER BY clause was specified for the query, the order of the rows returned by your
query may be different.

The data values in the result table represent a composite of the data values contained in the two tables
INVENTORY_LIST and SUPPLIERS. This result table contains the supplier number from the SUPPLIER
table and the item number and item name from the INVENTORY_LIST table. Any item numbers that do
not appear in the SUPPLIER table are not shown in this result table. The results are not guaranteed to

Database overview 33

be in any order unless the ORDER BY clause is specified for the SELECT statement. Because you did not
change any column headings for the SUPPLIER table, the SUPPLIER_NUMBER column name is used as
the column heading.

The following example shows how to use ORDER BY to guarantee the order of the rows. The
statement first sorts the result table by the SUPPLIER_NUMBER column. Rows with the same value for
SUPPLIER_NUMBER are sorted by their ITEM_NUMBER.

SELECT SUPPLIER_NUMBER,Y.ITEM_NUMBER,ITEM_NAME
 FROM SAMPLECOLL.SUPPLIERS X,SAMPLECOLL.INVENTORY_LIST Y
 WHERE X.ITEM_NUMBER = Y.ITEM_NUMBER
 ORDER BY SUPPLIER_NUMBER,Y.ITEM_NUMBER

Running the previous statement produces the following output.

 Display Data
 Data width : 45
Position to line Shift to column
....+....1....+....2....+....3....+....4....+
SUPPLIER_NUMBER ITEM ITEM
 NUMBER NAME
 1234 153047 Pencils, red
 1234 229740 Lined tablets
 1234 303476 Paper clips
 2424 153047 Pencils, red
 2424 303476 Paper clips
 3366 073956 Pens, black
 3366 303476 Paper clips
 5546 775298 Chairs, secretary
 9988 153047 Pencils, red
 9988 559343 Envelopes, legal
******** End of data ********

F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Related reference
DB2 for i5/OS SQL reference

Changing information in a table
The SQL UPDATE statement changes the values in some or all of the columns of a table. If you want
to limit the number of rows being changed during the processing of a single statement, use the WHERE
clause with the UPDATE statement.

If you do not specify the WHERE clause, all of the rows in the specified table are changed. However, if you
use the WHERE clause, the system changes only the rows that satisfy the specified conditions.

Suppose that you want to place an order for more paper clips today.

1. To update the LAST_ORDER_DATE and ORDER_QUANTITY columns for item number 303476, type
UPDATE and press F4 (Prompt).
The Specify UPDATE Statement display is shown.

34 IBM i: Database overview

 Specify UPDATE Statement

Type choices, press Enter.

 Table INVENTORY_LIST______ Name, F4 for list
 Collection SAMPLECOLL__ Name, F4 for list

 Correlation ____________________ Name

F3=Exit F4=Prompt F5=Refresh F12=Cancel F20=Display full names
F21=Display statement

2. Type the table name and schema name, as shown on the previous display.
3. Press Enter. The display is shown again with the list of columns in the table.

 Specify UPDATE Statement

Type choices, press Enter.

 Table INVENTORY_LIST______ Name, F4 for list
 Collection SAMPLECOLL__ Name, F4 for list

 Correlation ____________________ Name

Type information, press Enter.

Column Value
ITEM_NUMBER ___
ITEM_NAME ___
UNIT_COST ___
QUANTITY_ON_HAND ___
LAST_ORDER_DATE CURRENT DATE___
ORDER_QUANTITY 50___

 Bottom
F3=Exit F4=Prompt F5=Refresh F6=Insert line F10=Copy line
F11=Display type F12=Cancel F14=Delete line F24=More keys

4. Specify CURRENT DATE in the LAST_ORDER_DATE field to change the value to today's date.
5. Type the updated values, as shown.
6. Press Enter to see the display on which the WHERE condition can be specified. If a WHERE condition is

not specified, all the rows in the table are updated with the values from the previous display.

Database overview 35

 Specify UPDATE Statement

Type WHERE conditions, press Enter. Press F4 for a list.
 ITEM_NUMBER = '303476'__
 __

 Bottom
Type choices, press Enter.

 WITH isolation level . . . 1 1=Current level, 2=NC (NONE)
 3=UR (CHG), 4=CS, 5=RS (ALL)
 6=RR

F3=Exit F4=Prompt F5=Refresh F6=Insert line F9=Specify subquery
F10=Copy line F12=Cancel F14=Delete line F15=Split line F24=More keys

7. Type ITEM_NUMBER ='303476' in the WHERE condition field.
8. Press Enter to perform the update on the table. A message indicates that the function is complete.

Running a SELECT statement to get all the rows from the table (SELECT * FROM
SAMPLECOLL.INVENTORY_LIST) returns the following result.

 Display Data
 Data width : 71
Position to line Shift to column
....+....1....+....2....+....3....+....4....+....5....+....6....+....7.
ITEM ITEM UNIT QUANTITY LAST NUMBER
NUMBER NAME COST ON ORDER ORDERED
 HAND DATE
153047 Pencils, red 10.00 25 - 20
229740 Lined tablets 1.50 120 - 20
544931 ***UNKNOWN*** 5.00 - - 20
303476 Paper clips 2.00 100 05/30/07 50
559343 Envelopes, legal 3.00 500 - 20
291124 Envelopes, standard .00 - - 20
775298 Chairs, secretary 225.00 6 - 20
073956 Pens, black 20.00 25 - 20
******** End of data ********
 Bottom
F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Only the entry for paper clips is changed. The LAST_ORDER_DATE column is changed to be the current
date. This date is always the date the update is run. The NUMBER_ORDERED column shows its updated
value.

This statement can be typed on the Enter SQL Statements display as:

UPDATE SAMPLECOLL.INVENTORY_LIST
 SET LAST_ORDER_DATE = CURRENT DATE,
 ORDER_QUANTITY = 50
 WHERE ITEM_NUMBER = '303476'

Related reference
SQL programming

Deleting information from a table
The SQL DELETE statement deletes data from a table. You can delete all rows in a table when they no
longer contain needed information, or you can use the WHERE clause with the DELETE statement to
identify rows to be deleted during the processing of a single statement.

To remove all the rows in a table that have the null value for the QUANTITY_ON_HAND column, follow
these steps:

36 IBM i: Database overview

1. Enter the following statement on the Enter SQL Statements display:

DELETE
 FROM SAMPLECOLL.INVENTORY_LIST
 WHERE QUANTITY_ON_HAND IS NULL

To check a column for the null value, the IS NULL comparison is used.
2. After the delete operation is completed, run another SELECT statement.

This results in the following table.

 Display Data
 Data width : 71
Position to line Shift to column
....+....1....+....2....+....3....+....4....+....5....+....6....+....7.
ITEM ITEM UNIT QUANTITY LAST NUMBER
NUMBER NAME COST ON ORDER ORDERED
 HAND DATE
153047 Pencils, red 10.00 25 - 20
229740 Lined tablets 1.50 120 - 20
303476 Paper clips 2.00 100 05/30/07 50
559343 Envelopes, legal 3.00 500 - 20
775298 Chairs, secretary 225.00 6 - 20
073956 Pens, black 20.00 25 - 20
******** End of data ********
 Bottom
F3=Exit F12=Cancel F19=Left F20=Right F21=Split

The rows with a null value for QUANTITY_ON_HAND are deleted.

Creating and using a view
Views provide a way to divide a table or multiple tables so that you deal with only the data that you need.
A view reduces complexity and, at the same time, restricts access. You can create a view using the SQL
CREATE VIEW statement.

Using the CREATE VIEW statement, you define a view on a table just as you create a new table that
contains only the columns and rows that you want. When your application uses a view, it cannot access
rows or columns of the table that are not included in the view. However, rows that do not match the
selection criteria can still be inserted through a view if WITH CHECK OPTION is not used.

To create a view, you must have the appropriate authority to the tables or physical files on which the view
is based.

If you did not specify column names in the view definition, the column names are the same as those for
the table on which the view is based.

You can make changes to a table through a view even if the view has a different number of columns or
rows than the table. For INSERT, columns in the table that are not in the view must have a default value.

You can use the view as though it were a table, even though the view is totally dependent on one or more
tables for data. The view has no data of its own and therefore requires no storage for the data. Because a
view is derived from a table that exists in storage, when you update the view data, you are really updating
data in the table. Therefore, views are automatically kept up-to-date as the tables they depend on are
updated.

Related concepts
WITH CHECK OPTION on a view
Related reference
CREATE VIEW

Database overview 37

Creating a view on a single table
You can create a view on a single table to show a subset of the data that the table contains. Compared
with the original table, the view can have fewer records and fewer columns, and the columns in the view
can have a different order.

The following example procedure shows how to create a view on a single table. The view is built on
the INVENTORY_LIST table. The table has six columns, but the view uses only three of the columns:
ITEM_NUMBER, LAST_ORDER_DATE, and QUANTITY_ON_HAND. The order of the columns in the SELECT
clause is the order in which they appear in the view. The view contains only the rows for items that were
ordered in the last two weeks. The CREATE VIEW statement looks like this:

1. Use the following command to create the view:

CREATE VIEW SAMPLECOLL.RECENT_ORDERS AS
 SELECT ITEM_NUMBER, LAST_ORDER_DATE, QUANTITY_ON_HAND
 FROM SAMPLECOLL.INVENTORY_LIST
 WHERE LAST_ORDER_DATE > CURRENT DATE - 14 DAYS

In the preceding example, the columns in the view have the same name as the columns in the table
because no column list follows the view name. The schema that the view is created into does not need
to be the same schema as the table it is built over. Any schema or library can be used.

2. Run this statement:

SELECT *FROM SAMPLECOLL.RECENT_ORDERS

The result looks like this.

 Display Data
 Data width : 26
Position to line Shift to column
....+....1....+....2....+.
ITEM LAST QUANTITY
NUMBER ORDER ON
 DATE HAND
303476 05/30/07 100
******** End of data ********
 Bottom
F3=Exit F12=Cancel F19=Left F20=Right F21=Split

The only row selected by the view is the row that you updated to have the current date. All other dates in
the table still have the null value so they are not returned.

Creating a view that combines data from multiple tables
A view that combines data from multiple tables enables you to show relevant information in multiple
tables together. You can create a view that combines data from two or more tables by naming more than
one table in the FROM clause.

In the following example procedure, the INVENTORY_LIST table contains a column of item numbers
called ITEM_NUMBER and a column of item cost called UNIT_COST. These columns are joined with the
ITEM_NUMBER column and the SUPPLIER_COST column of the SUPPLIERS table. A WHERE clause is
used to limit the number of rows returned. The view contains only the item numbers for suppliers that can
supply an item at lower cost than the current unit cost.

1. Use the following statement to create the view:

CREATE VIEW SAMPLECOLL.LOWER_COST AS
 SELECT SUPPLIER_NUMBER, A.ITEM_NUMBER,UNIT_COST, SUPPLIER_COST
 FROM SAMPLECOLL.INVENTORY_LIST A, SAMPLECOLL.SUPPLIERS B
 WHERE A.ITEM_NUMBER = B.ITEM_NUMBER
 AND UNIT_COST > SUPPLIER_COST

2. Run this statement:

SELECT *FROM SAMPLECOLL.LOWER_COST

38 IBM i: Database overview

The results look like this.

 Display Data
 Data width : 51
Position to line Shift to column
....+....1....+....2....+....3....+....4....+....5.
SUPPLIER_NUMBER ITEM UNIT SUPPLIER_COST
 NUMBER COST
 1234 229740 1.50 1.00
 9988 153047 10.00 8.00
 2424 153047 10.00 9.00
 3366 303476 2.00 1.50
 3366 073956 20.00 17.00
******** End of data ********
 Bottom
F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Note: Because no ORDER BY clause was specified for the query, the order of the rows that is returned by
the query might be different.

Only rows that contain a supplier cost that is lower than the unit cost can be seen through this view.

Related tasks
Querying your database by running SQL scripts
You can create, edit, run, and troubleshoot scripts of SQL statements in the Run SQL Scripts window of
System i Navigator. When you finish working with the scripts, you can save the statements to your PC.

Database overview 39

40 IBM i: Database overview

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 1998, 2010 41

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
This Database overview publication documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of IBM i.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

42 Notices

http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Other product and service names might be trademarks of IBM or other companies.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 43

44 IBM i: Database overview

IBM®

Product Number: 5770-SS1

	Contents
	Database overview
	PDF file for Database overview
	DB2 for IBM i
	Terminology: SQL versus traditional file access
	Getting started with System i Navigator
	Starting System i Navigator
	Creating a schema
	Editing the list of schemas displayed
	Creating and using a table
	Defining additional columns on a table
	Creating the supplier table
	Copying column definitions
	Viewing the contents of a table
	Changing information in a table
	Deleting information from a table
	Copying and moving a table
	Copying a table
	Moving a table

	Creating and using a view
	Creating a view over a single table

	Deleting database objects

	System i Navigator database tasks
	Database objects creation tasks
	Database objects operation tasks
	Database performance optimization tasks
	Mapping your database
	Querying your database by running SQL scripts
	Stopping SQL scripts
	Viewing the job log
	Generating SQL for existing objects
	Building SQL statements with SQL Assist
	Starting IBM i Debugger

	Managing check pending constraints
	Importing and exporting data

	Getting started with SQL
	Creating a schema
	Creating and using a table
	Using the LABEL ON statement
	Inserting information into a table
	Getting information from a single table
	Getting information from multiple tables
	Changing information in a table
	Deleting information from a table

	Creating and using a view
	Creating a view on a single table
	Creating a view that combines data from multiple tables

	Notices
	Programming interface information
	Trademarks
	Terms and conditions

