
IBM i
Version 7.2

Systems management
Journal management

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
383.

This edition applies to IBM i 7.2 (product number 5770-SS1) and to all subsequent releases and modifications until
otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor
does it run on CISC models.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.
© Copyright International Business Machines Corporation 2004, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Journal management...1
What's new for IBM i 7.2..1
PDF file for Journal management..2
System-managed access-path protection.. 2

Benefits of SMAPP..3
How SMAPP works... 3
How the system chooses access paths to protect.. 4
Effects of SMAPP on performance and storage...4
How SMAPP handles changes in disk pool configuration... 6
SMAPP and access path journaling..6
SMAPP and independent disk pools.. 7
Starting SMAPP or changing SMAPP values.. 7
Displaying SMAPP status..8

Local journal management.. 9
Journal management concepts... 10

Benefits of journal management.. 10
How journal management works..10
Journal entries.. 13
Journal management and system performance..14
Journal management with the save-while-active function... 15

Planning for journal management..16
IBM Navigator for i versus the character-based interface for journaling objects.........................16
Planning which objects to journal.. 17

Reasons to journal access paths.. 20
Reasons to journal before-images..20

Planning for journal use of auxiliary storage..21
Frequently asked questions about journaling and disk arm usage... 22
Functions that increase the journal receiver size...23
Methods to estimate the size of a journal receiver.. 24
Journal sizing and planning tool... 25
Estimating the size of the journal receiver manually... 25
Methods to reduce the storage that journal receivers use.. 27
Determining the type of disk pool in which to place journal receivers....................................28
Journal management and independent disk pools..29

Planning setup for journal receivers...30
Disk pool assignment for journal receivers.. 30
Library assignment for journal receivers.. 30
Naming conventions for journal receivers..31
Threshold (disk space) for journal receivers.. 32
Security for journal receivers.. 33

Planning setup for journals...34
Disk pool assignment for journals...34
Library assignment for journals.. 34
Naming conventions for journals.. 34
Journal and journal receiver association..35
Journal message queue.. 35
Manual versus system journal-receiver management... 36
Automatic deletion of journal receivers... 38
Receiver size options for journals...39
Journal object limit..42
Minimized entry-specific data for journal entries.. 43

 iii

Customization of the journal recovery count..45
Fixed-length options for journal entries... 45
Journal cache.. 46
Object assignment to journals.. 47

Setting up journaling.. 48
Example: Setting up journaling.. 49

Starting and ending journaling and changing journaling attributes..51
Why you must save objects after you start journaling...51
Starting journaling...52

Journaling libraries..52
Journaling database physical files (tables).. 53
Journal DB2 Multisystem files.. 54
Logical file journaling.. 54
Journaling integrated file system objects.. 54
Journal access paths...56
Journaling data areas and data queues... 56
Automatically starting journaling..57

Changing journaling attributes of journaled objects without ending journaling...........................59
Ending journaling.. 60

Managing journals.. 62
Swapping, deleting, saving and restoring journals and receivers... 62

Swapping journal receivers...62
Journal receiver chains... 63
Resetting the sequence number of journal entries..65
Deleting journal receivers... 66
Deleting journals... 68
Saving and restoring journals and journal receivers.. 69

Evaluation of how system changes affect journal management...73
Keeping records of journaled objects.. 73
Security management for journals... 74
Displaying information for journaled objects, journals, and receivers..75
Working with inoperable journal receivers.. 76
Comparing journal images..77
Working with IBM-supplied journals..77
Sending your own journal entries...79
Changing the state of local journals... 80
Work with messages on the journal message queue.. 81

Scenario: Journal management...82
JKLPROD... 83
JKLINT...83
JKLDEV..84

Recovery operations for journal management.. 84
Determining recovery needs using journal status... 85
Recovery for journal management after abnormal system end..85
Recovering from a damaged journal receiver.. 87
Recovering a damaged journal... 88

Associating receivers with journals.. 89
Recovering a damaged journal with the WRKJRN command.. 90

Recovery of journaled objects.. 91
Applying journaled changes..92
Removing journaled changes..98
Use of the QAJRNCHG file.. 100
Journaled changes with trigger programs..104
Journaled changes with referential constraints.. 105
Actions of applying or removing journaled changes by journal code.................................... 105
When the system ends applying or removing journaled changes... 115
Example: Applying journaled changes... 116
Example: Removing journaled changes... 118

iv

Example: Recovering objects with partial transactions...119
Journal entry information.. 121

Journal code descriptions.. 122
All journal entries by code and type...123
Fixed-length portion of the journal entry...157
Layouts for the fixed-length portion of journal entries..159
Variable-length portion of the journal entry.. 189
Layouts for variable-length portion of journal entries...190
Working with journal entry information... 303

Displaying and printing journal entries...304
Displaying journal information for a table using IBM Navigator for i.....................................307
Displaying journal entry information using the Display_Journal table function 307
Receiving journal entries in an exit program..307
Retrieving journal entries in a program.. 312
Working with pointers in journal entries.. 313
Replaying a database operation from a single journal entry... 314
Replaying a non-database operation from a single journal entry..316
Considerations for entries which contain minimized entry-specific data............................. 316

Remote journal management..317
Remote journal concepts...317

Network configurations for remote journals..319
Types of remote journals..320
Filtered remote journals...322
Journal state and delivery mode..323
Journal receivers associated with a remote journal..327
Process of adding remote journal ... 328

Library redirection with remote journals..329
Remote journal attributes...331

Supported communications protocols for remote journals.. 332
Release-to-release considerations for remote journals... 333

Planning for remote journals... 333
Candidates for remote journal management...333
Synchronous and asynchronous delivery mode for remote journals..334
Communications protocol and delivery mode for remote journals.. 335
Where the replication of journal entries start..335
Factors that affect remote journal performance... 337
Remote journals and auxiliary storage.. 339
Journal receiver disk pool considerations... 340
Remote journals and main storage.. 340

Setting up remote journals.. 341
Preparing to use remote journals...341
Adding remote journals.. 342

Removing remote journals...343
Activating and inactivating remote journals..344

Activating the replication of journal entries to a remote journal.. 344
Catch-up phase for remote journals...345

Relational database considerations for remote journal state...347
Automatically restarting remote journal..347
Inactivating the replication of journal entries to a remote journal... 347

Managing remote journals... 348
Keeping records of your remote journal network..348
Displaying remote journal function information.. 349
Evaluating how system changes affect your remote journal network.. 350
Getting information about remote journal entries...350

File identifier considerations for working with integrated file system entries......................350
Confirmed and unconfirmed journal entries.. 351
Journal entries from a remote journal with library redirection... 353
Retrieving journal entries from a remote journal during the catch-up phase....................... 353

 v

Remote journal considerations for retrieving journal entries when using commitment
control.. 354

Remote journal considerations for retrieving journal entries when using journal caching.. 355
Journal receiver management with remote journals.. 355
Swapping journal receiver operations with remote journals.. 355
Considerations for save and restore operations with remote journals.......................................356

Rules for saving and restoring journals.. 357
Rules for saving and restoring journal receivers.. 357
Considerations for restoring journaled objects..360
Considerations for restoring objects saved with SAVSTG... 360

Remote journal considerations when restarting the server.. 361
Working with remote journal error messages..362

Scenarios: Remote journal management and recovery..364
Scenario: Data replication environment for remote journals..364
Scenario: Hot-backup environment... 366
Scenario: Recovery for remote journaling... 368
Details: Recovery for remote journaling scenario... 369

Related information for journal management.. 380

Notices..383
Programming interface information..384
Trademarks..384
Terms and conditions.. 385

vi

Journal management
Journal management provides a means by which you can record the activity of objects on your system.
When you use journal management, you create an object called a journal. The journal records the
activities of the objects you specify in the form of journal entries. The journal writes the journal entries in
another object called a journal receiver.

Journal management provides you with the following:

• Decreased recovery time after an abnormal end
• Powerful recovery functions
• Powerful audit functions
• The ability to replicate journal entries on a remote system

This topic provides information about how to set up, manage, and troubleshoot system-managed access-
path protection (SMAPP), local journals, and remote journals on the IBM® i platform.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer information.

What's new for IBM i 7.2
Describes the improvements and additions to journal management.

New journal entry types for journal entry codes D and T

For journal code D- Database file operation, there is are new entry types,

• M1, M2, M3 for masking
• P1, P2, P3 for permission

For journal code T- Audit trail entry, there are new entry types,

• X2 query manager profile changes
• AX row and column access control
• PF, PU for PTFs

For a list of all journal entries by code and type see: “All journal entries by code and type” on page 123

Deferred object journaling during restore support

For details on deferring object journaling during a restore see: “Deferring object journaling during restore”
on page 72

Remote journal over secure sockets (SSL) support

For details on remote journal over SSL see: “Supported communications protocols for remote journals” on
page 332

New methods for displaying journal entries

Displaying journal entries using System i Navigator and table function QSYS2/Display_Journal are
outlined in: “Working with journal entry information” on page 303

Tips for journals and journal receivers in different libraries

For some tips for restoring journals and journal receivers that are in different libraries see: “Library
assignment for journal receivers” on page 30

© Copyright IBM Corp. 2004, 2013 1

A tool for journal traffic prediction and planning

The journal sizing and planning tool (Pseudo Journal) is outlined here: “Journal sizing and planning tool”
on page 25

How to see what's new or changed

To help you see where technical changes have been made, this information uses:

• The image to mark where new or changed information begins.
• The image to mark where new or changed information ends.

To find other information about what's new or changed this release, see the Memo to users.

PDF file for Journal management
Use this to view and print a PDF of this information.

To view or download the PDF version of this document, select Journal management.

You can view or download these related topics:

• Database programming contains the following topics:

– Setting up a database on your system.
– Using a database on your system.

• Integrated file system contains the following topics:

– What is the integrated file system?
– Integrated file system concepts and terminology.
– The interfaces you can use to interact with the integrated file system.

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you would like to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html) .

System-managed access-path protection
System-managed access-path protection (SMAPP) allows you to use some of the advantages of journaling
without explicitly setting up journaling. Use SMAPP to decrease the time it takes to restart your system
after an abnormal end.

SMAPP is a way to reduce the time for the system or independent disk pool to restart after an abnormal
end. An access path describes the order in which records in a database file are processed. A file can have
multiple access paths, if different programs need to see the records in different sequences.

When the system or an independent disk pool ends abnormally, the system must rebuild the access paths
the next time you restart the system, or vary on an independent disk pool. When the system must rebuild

2 IBM i: Journal management

http://www.adobe.com/products/acrobat/readstep.html

access paths, the next restart or vary on operation takes longer to complete than if the system ended
normally.

When you use SMAPP, the system protects the access paths so the system does not need to rebuild the
access paths after an abnormal end. This topic introduces SMAPP, describes SMAPP concepts, and
provides setup and management tasks.

Benefits of SMAPP
System-managed access-path protection (SMAPP) can greatly reduce the amount of time it takes to
restart your system or vary on an independent disk pool, after an abnormal end.

The time is reduced by protecting access paths. A protected access path can be recovered much quicker
than a unprotected access path. It is an automatic function that runs without attention. SMAPP
determines which access paths to protect without any intervention by the user. It adjusts to changes in
the environment, such as the addition of new applications or new hardware.

SMAPP does not require any setup. You do not have to change your applications. You do not have to
journal any physical files or even use journaling at all. You simply need to determine your policy for access
path recovery:

• After a failure, how long you can afford to spend rebuilding access paths when you restart the system,
or vary on an independent disk pool.

• How to balance access path protection with other demands on system resources.
• Whether to have different target times for recovering access paths for different disk pools.

You may need to experiment with different target recovery times for access paths to achieve the correct
balance for your system. If you configure additional basic or independent disk pools, you must also
evaluate your access path recovery times.

The system protects access paths by journaling the access paths to internal system journals. Therefore,
SMAPP requires some additional auxiliary storage for journal receivers. However, SMAPP is designed to
keep the additional disk usage to a minimum. SMAPP manages journal receivers and removes them from
the system as soon as they are no longer needed.

Related concepts
Independent disk pools

How SMAPP works
The purpose of system-managed access-path protection (SMAPP) is to reduce the amount of time it takes
to restart the system or vary on an independent disk pool, after an abnormal end.

It can take much longer than normal to restart the system when the system ends abnormally because of
something like a power interruption. Also, if you are using an independent disk pool, the next vary on of
the independent disk pool can take much longer than normal.

Access paths

An access path describes the order in which records in a database file are processed. A file can have
multiple access paths, if different programs need to see the records in different sequences.

How SMAPP works with abnormal ends

When the system restarts after an abnormal end, the system rebuilds access paths that were open for
updating at the time of the abnormal end. Rebuilding access paths contributes to this long restart time.
Likewise, when you vary on an independent disk pool, the system rebuilds access paths that were open
for updating at the time the independent disk pool ended abnormally. The system does not rebuild access
paths that are specified as MAINT(*REBLD) when you create them. When protecting access paths with
SMAPP, the system uses information that it has collected to bring access paths up to date, rather than
rebuilding them.

Journal management 3

You can specify the target time for rebuilding access paths after the system ends abnormally. The target
time is a goal that the system does its best to achieve. The actual recovery time for access paths after a
specific failure may be somewhat more or less than this target.

The target recovery time for access paths can be specified for the entire system or for individual disk
pools. The system dynamically selects which access paths to protect to meet this target. It periodically
estimates how long it will take to recover access paths that are open for change.

For new systems, the system-wide recovery time for access paths is 50 minutes, which is the default. If
you move from a release that does not provide the SMAPP function to a release that supports SMAPP, the
system-wide recovery time for access paths is also set to 50 minutes.

How the system chooses access paths to protect
The system periodically examines access path exposure and estimates how long it would take to rebuild
all the exposed access paths. If the rebuild time exceeds your target recovery times for access paths, the
system selects additional access paths for protection.

An access path is exposed when the access path has changed because records have been added or
deleted or because a key field has changed, and those changes have not yet been written to the disk. The
system periodically examines access path exposure and estimates the time required to rebuild all the
exposed access paths. If the rebuild time exceeds your target recovery times for access paths, the
system selects additional access paths for protection. The system can also remove access paths from
protection if the estimated time for rebuilding access paths consistently falls below your target recovery
times for access paths. The recover attribute of a file is not used in determining whether to protect access
paths.

Some access paths are not eligible for protection by SMAPP:

• A file that specifies MAINT(*REBLD).
• An access path that is already explicitly journaled.
• An access path in the QTEMP library.
• An access path whose underlying physical files are journaled to different journals.
• A file journaled to a journal in standby state.
• Some access paths that use an international component for unicode (ICU) sort sequence table and

aggregate encoded vector indexes.

You can use the Display Recovery for Access Paths (DSPRCYAP) command to see a list of
access paths that are not eligible for SMAPP.

Effects of SMAPP on performance and storage
System-managed access-path protection (SMAPP) is designed to have minimal effect to your system.
Though it is minimal, SMAPP does affect your system's processor performance and auxiliary storage.

Processor performance

SMAPP has some effect on processor performance. The lower the target recovery time you specify for
access paths, the greater this effect may be. Typically, the effect on processor performance is not very
noticeable, unless the processor is nearing capacity. Another situation that may cause an increase in
processor consumption is when local journals are placed in standby state and large access paths built
over files journaled to the local journal are modified. The presence of standby state flags the access paths
as not eligible for SMAPP protection. This may force SMAPP to protect many other small access paths in
an attempt to achieve the specified target recovery time, and this can lead to performance concerns.
Using the F16=Display details function from the Display Recovery for Access Paths (DSPRCYAP) shows
the internal threshold used by SMAPP. All access paths with estimated rebuild times greater than the
internal threshold are protected by SMAPP. The internal threshold value might change if the number of
exposed access paths changes, the estimated rebuild times for exposed access paths changes, or if the
target recovery time changes.

4 IBM i: Journal management

To alleviate the processor performance impact, INCACCPTH(*ELIGIBLE) can be specified on the Change
Recovery for Access Paths (CHGRCYAP) command. This will give SMAPP permission to ignore any access
paths built over files journaled to journals in this state which in turn will prevent SMAPP from having to
protect many other small access paths. However, this INCACCPTH option will ignore these access paths
when estimating the IPL or independent Auxiliary Storage Pool (ASP) vary on exposure which means that
the actual IPL or independent ASP vary on duration may be longer than the estimated value.

Auxiliary storage

SMAPP causes increased disk activity, which increases the load on disk input/output processors. Because
the disk write operations for SMAPP do not happen at the same time, they do not directly affect the
response time for a specific transaction. However, the increased disk activity might affect overall
response time.

Also when you use SMAPP, the system creates an internal journal and journal receiver for each disk pool
on your system. The journal receivers that SMAPP uses take additional auxiliary storage. If the target
recovery time for access paths for a disk pool is set to *NONE, the journal receiver has no entries. The
internal journal receivers are spread across all the arms in a disk pool, up to a maximum of 100 arms.

The system manages the journal receivers automatically to minimize the affect as much as possible. It
regularly discards internal journal receivers that are no longer needed for recovery and recovers the disk
space. The internal journal receivers that are used by SMAPP require less auxiliary storage than the
journal receivers for explicit journaling of access paths. Internal journal receivers are more condensed
because they are used only for SMAPP entries.

If you have already set up journaling for a physical file, the system uses the same journal to protect any
access paths that are associated with that physical file. If the system chooses to protect additional
access paths, your journal receivers will grow larger more quickly. You will need to change journal
receivers more often.

Tips to reduce SMAPP's effect on auxiliary storage

• When you set up SMAPP, specify target recovery times for access paths either for the entire system or
for individual disk pools, but not for both. If you specify both, the system does extra work by balancing
the overall target with the individual targets.

• If you also journal physical files, to deal with the increased size of your journal receivers, consider
specifying to remove internal entries when you set up journaling or swap journal receivers. If you
specify this, the system periodically removes internal entries from user journal receivers when it no
longer needs them to recover access paths. This prevents your journal receivers from growing
excessively large because of SMAPP.

• If your system cannot support dedicating any resources to SMAPP, you can specify *OFF for the system
target recovery time. Before choosing this option, consider setting the recovery time to *NONE for a
normal business cycle, perhaps a week. During that time, periodically display the estimated recovery
time for access paths. Evaluate whether those times are acceptable or whether you need to dedicate
some system resources to protecting access paths.

If you turn SMAPP off, any disk storage that has already been used will be recovered shortly thereafter.
If you set the SMAPP values to *NONE, any disk storage that has already been used will be recovered
after the next time you restart your system.

Note: If you want to change the target system recovery time to a different value after you have set it to
*OFF, the system must be in a restricted state.

Related concepts
Receiver size options for journals
A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.

Journal management 5

Performance

How SMAPP handles changes in disk pool configuration
When you restart the system, the system checks to see if your disk pool configuration has changed. The
system may change either the size of the SMAPP receiver or the placement of the receiver based on the
change to the disk units.

When you restart your system, the system checks to see if your disk pool configuration has changed. The
system does the following:

• If any disk units have been added or removed from an existing disk pool, the system may change either
the size of the SMAPP receiver or the placement of the receiver.

• If any new disk pools are in the configuration and do not have any access path recovery times assigned
for SMAPP, the system assigns a recovery time of *NONE for that disk pool. If you remove a disk pool
from your configuration and later add it back, the access path for that disk pool is set to *NONE, even if
that disk pool previously had a recovery time for access paths.

• If all basic user disk pools have been removed from your configuration so that you have only the system
disk pool, the system access path recovery time is set to the lower of the following values:

– The existing system access path recovery time.
– The current access path recovery time for disk pool 1. If the current access path recovery time for

disk pool 1 is *NONE, the system access path recovery time is not changed.

When you vary on an independent disk pool, the system checks to see if any disk units have been added
or removed from the independent disk pool. The system may change either the size of the SMAPP
receiver or the placement of the receiver based on the change to the disk units. If this is the first time the
independent disk pool is varied on, then the system assigns a recovery time of *NONE for that
independent disk pool.

When you add disk units to your disk configuration while your system is active, or your independent disk
pool is varied on, the system does not consider those changes in making SMAPP storage decisions until
the next time you restart the system, or vary on the independent disk pool. The system uses the size of
the disk pool to determine the threshold size for SMAPP receivers. If you add disk units, the system does
not increase the threshold size for the receivers until the next time you restart the system restart or vary
on the independent disk pool. This means that the frequency of changing SMAPP receivers will not go
down until you restart the system, or vary off the independent disk pool.

When you create a new user disk pool while your system is active, add all of the planned disks to the disk
pool at the same time. The system uses the initial size of the new disk pool to make storage decisions for
SMAPP. If you later add more disk units to the disk pool, those disk units are not considered until the next
time you restart the system or vary on the independent disk pool. When you create a new user disk pool,
the access path recovery time for that disk pool is set to *NONE. You can use the EDTRCYAP command to
set a target recovery time for the new disk pool, if desired.

Related concepts
Disk management

SMAPP and access path journaling
In addition to using system-managed access path protection (SMAPP), you can choose to journal some
access paths yourself by using the Start Journaling Access Path (STRJRNAP) command. This is called
explicit journaling.

To journal an access path explicitly, you must first journal all the underlying physical files. SMAPP does
not require that the underlying physical files be journaled.

The reason for choosing to journal an access path explicitly is that you consider the access path (and the
underlying files) absolutely critical. You want to make sure that the files are available as soon as possible
when the system is started after an abnormal end.

Under SMAPP, the system looks at all access paths to determine how it can meet the specified target
times for recovering access paths. It may not choose to protect an access path that you consider critical.

6 IBM i: Journal management

When the system determines how to meet the target times for recovering access paths, it considers only
access paths that are not explicitly journaled.

How SMAPP is different from explicitly journaling access paths:

• SMAPP does not require that underlying physical files be journaled.
• SMAPP determines which access paths to protect based strictly on the target recovery times for all

access paths. You might choose to journal an access path explicitly because of your requirements for
the availability of a specific file.

• SMAPP continually evaluates which access paths to protect and responds to changes in your system
environment.

• SMAPP does not require any user intervention to manage its internal journals and journal receivers.
• SMAPP uses less disk space for journal receivers because they are detached and deleted regularly.

For more information about when to journal access paths, see Reasons to journal access paths.

Related concepts
Reasons to journal access paths
If you journal access paths, the system can use the journal entries to recover access paths instead of
rebuilding them completely.
Related reference
Start Journal Access Path (STRJRNAP) command

SMAPP and independent disk pools
Use SMAPP to limit recovery time for access paths that reside within independent disk pools.

When you use SMAPP to protect access paths in independent disk pools, you can specify the recovery
time individually for each independent disk pool. This helps limit the vary-on duration as well as the
quantity of background job activity, which must ensue to make each access path whole when you vary on
your independent disk pool after an abnormal vary off.

The recovery time that you specify becomes an attribute of the independent disk pool and thus moves
with the independent disk pool if you switch it between systems. Therefore, if you are switching an
independent disk pool between systems, you only need to specify the recovery time once.

The only occasion when the specified recovery time is not moved is when the system you are moving the
independent disk pool to has its system wide recovery time specified as *OFF. In this case, the
independent disk pool's recovery time is set to *NONE when you vary on the independent disk pool.

Related concepts
Independent disk pools

Starting SMAPP or changing SMAPP values
Use the Edit Recovery Access Path (EDTRCYAP) display to start or change values for system-managed
access-path protection (SMAPP).

If you use basic or independent disk pools to separate objects that have different recovery and availability
requirements, you might also want to specify different recovery times for access paths in those disk
pools.

For example, if you have a large history file that changes infrequently, you can put the file in a separate
disk pool and set the access path recovery time for that disk pool to *NONE. Or, if you have an
independent disk pool, and you want the recovery time to move with the disk pool when it is switched to
another system, you can specify a specific time for that disk pool.

To start SMAPP or change SMAPP values, proceed as follows:

1. On the display, specify one of the following values in the System access path recovery time field:

• *SYSDFT

Journal management 7

• *NONE
• *MIN
• *OFF
• A specific value between 1 and 1440 minutes.

2. At the Include access paths field select one of the following:

• *ALL
• *ELIGIBLE

3. If you are starting or changing SMAPP for disk pools, change the Target field for individual disk pools.

To change the access path recovery time from *OFF to another value, your system must be in a restricted
state.

You can also use the Change Recovery for Access Paths (CHGRCYAP) command to change the
target recovery times without using the Edit Recovery Access Path display.

The system performance monitor also provides information about access path recovery times. The Work
Management and Performance Tools for IBM i topics provide more information about monitoring
performance and about what SMAPP information is available through the tools.

Related reference
Edit Recovery Access Path (EDTRCYAP) command
Change Recovery for Access Paths (CHGRCYAP) command
Related information
Work Management
Performance Tools for System i PDF

Displaying SMAPP status
You can display many types of status for SMAPP.

You can use the Edit Recovery for Access Paths (EDTRCYAP) command to view the following
values for system-managed access-paths (SMAPP):

• The entire system.
• Basic and independent disk pools.
• Access paths not eligible for protection.
• Protected access paths.
• Unprotected access paths

Use the top part of the display to see the values for the entire system. Use the bottom part of the display
to see the values for individual disk pools on the system. If you do not have basic or independent disk
pools that are active, the bottom part of the display says No user ASP configured or
information not available.

Estimated time for recovery

To see the number of minutes the system estimates it will need to recover most of the access paths, look
at the Estimated recovery time for access paths field. The time is an estimated maximum, based on
most circumstances. It assumes that the system is recovering access paths on a dedicated server (during
a restart) and that all eligible access paths are being recovered or rebuilt. It does not include time to
rebuild access paths that must be rebuilt for one of the following reasons:

• The access path is damaged.
• The access path was marked as not valid during a previous abnormal end and was not successfully

rebuilt.
• One of the following commands marked the access path as not valid and was running when the

system failed:

8 IBM i: Journal management

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/rzahx/sc415340.pdf

– Copy File (CPYF), if the system chose to rebuild the access path for efficiency.
– Reorganize Physical File Member (RGZPFM)
– Restore Object (RSTOBJ)

If you have basic or independent disk pools, the estimated recovery time for access paths for the entire
system (System access path recovery time field) might not equal the total estimated recovery time for
the disk pools (Access Path Recovery Time-Estimated (Minutes)). When you restart the system or vary
on an independent disk pool, the system overlaps processing when recovering access paths to reduce the
total time it requires.

Disk space used

The Disk Storage Used field on the display shows the disk space that SMAPP uses only for internal
system journals and journal receivers. It does not include any additional space in user-managed journal
receivers for protecting access paths whose underlying physical files are already journaled.

Access paths not eligible

You can display all access paths that are not eligible for protection. To view access paths that are not
eligible for protection, press F13. Access paths that are not eligible for access protection are as follows:

• Access paths built over physical files which are journaled to separate journals.
• Access paths built over a physical file which is journaled to a journal whose state is currently standby.

Protected access paths

You can display up to 500 protected access paths by pressing F14. The system displays the access paths
with the highest estimated recovery time first.

Unprotected access paths

You can display up to 500 access paths that are eligible for SMAPP protection but are not currently being
protected by pressing F15. The system displays the access paths with the highest estimated recovery
time first.

Display details

By pressing F16 you can display some additional details concerning your SMAPP environment. These
details may be helpful if there are concerns with your SMAPP environment.

You can also use the Display Recovery for Access Paths (DSPRCYAP) command to display or
print the estimated recovery times, disk usage and additional details.

Related reference
Display Recovery for Access Paths (DSPRCYAP) command

Local journal management
Use local journal management to recover the changes to an object that have occurred since the object
was last saved, as an audit trail, or to help replicate an object. Setting up journaling locally is a
prerequisite for other system functions such as remote journal management and commitment control.
Use this information to set up, manage, and troubleshoot journaling on a local system.
Related information
Journal entry information finder

Journal management 9

Journal management concepts
This topic explains how journal management works, why to use it, and how it affects your system.

Journal management enables you to recover the changes to an object that have occurred since the object
was last saved. You can also use journal management to provide an audit trail or to help replicate an
object. You use a journal to define what objects you want to protect with journal management. The
system keeps a record of changes you make to objects that are journaled and of other events that occur
on the system.

This topic provides information about how journals work, information about journal entries, and how
journals affect system performance.

Benefits of journal management
The primary benefit of journal management is that it enables you to recover the changes to an object that
have occurred since the object was last saved. This ability is especially useful if you have an unscheduled
outage such as a power failure.

In addition to powerful recovery functions, journal management also has the following benefits:

• Journal management enhances system security. You can create an audit trail of activity that occurs for
objects.

• Journal management allows you to generate user defined journal entries to record activity, even for
objects that do not allow journaling.

• Journal management provides quicker recovery of access paths if your system ends abnormally.
• Journal management provides quicker recovery when restoring from save-while-active media.
• Journal management provides the means to recover an object that was saved with partial transactions.

Saving your system while it is active has instructions for saving an object with partial transactions.

Related tasks
Save your server while it is active
Example: Recovering objects with partial transactions
If you restore an object that was saved with a save-while-active operation that specified that the object
can be saved before it reaches a commitment boundary, it can have partial transactions. To recover
objects that are in a partial state you must perform an apply or a remove journaled changes operation.

How journal management works
Use journal management to create an object called a journal. Use a journal to define which objects you
want to protect. You can have more than one journal on your system. A journal can define protection for
more than one object.

You can journal the objects that are listed below:

• Libraries
• Database physical files
• Access paths
• Data areas
• Data queues
• Integrated file system objects (stream files, directories, and symbolic links).

Journal entries

The system keeps a record of changes you make to objects that are journaled and of other events that
occur on the system. These records are called journal entries. You can also write journal entries for events
that you want to record, or for objects other than the object that you want to protect with journaling.

For example, some journal entries identify activity for a specific database record such as add, update, or
delete. (If the updated object image after the update is the same as the image before the update, then
journal entries are not deposited for that update.) Also journal entries identify activity such as a save,

10 IBM i: Journal management

open, or close operation for an object. Journal entries can also identify other events that occur, such as
security-relevant events on the system or changes made by dynamic performance tuning. The Journal
entry information link below describes all the possible journal entry types and their contents.

Each journal entry can include additional control information that identifies the source of the activity,
including the user, job, program, time, and date. The entries that the system deposits for a journaled
object reflect the changes made to that journaled object. For example, the entries for changes to
database records can include the entire image of the database record, not just the changed information.

Journal receivers

The system writes entries to an object called a journal receiver. The system sends entries for all the
objects associated with a particular journal to the same journal receiver.

You can attach journal receivers to a journal by using System i® Navigator or the Create Journal (CRTJRN)
and Change Journal (CHGJRN) commands. The system adds journal entries to the attached receiver.
Journal receivers that are no longer attached to a journal and are still known to the system are associated
with that journal. Use the Work with Journal Attributes (WRKJRNA) command to see a list of receivers
associated with a journal.

The system adds an entry to the attached journal receiver when an event occurs to a journaled object. The
system numbers each entry sequentially. For example, it adds an entry when you change a record in a
journaled database file member. Journal entries contain information that identifies:

• Type of change
• Record that has been changed
• Change that has been made to the record
• Information about the change (such as the job being run and the time of the change)

When you are journaling objects, changes to the objects are added to the journal receiver. The system
does not journal data that you retrieved but did not change. If the logical file record format of a database
file does not contain all the fields that are in the dependent physical file record format, the journal entry
still contains all the fields of the physical file record format. In addition, if you are journaling access paths,
entries for those access paths are added to the journal. If the updated physical file image after the update
is the same as the image before the update, and if the file has no variable length fields, then journal
entries are not deposited for that update. If the updated data area image after the update is the same as
the image before the update, then journal entries are not deposited for that update. If the attribute that
was requested to be changed was already that value, then journal entries are not deposited for that
change.

Summary of the journaling process

The following figure shows a summary of journal processing. Objects A and B are journaled; object C is
not. Programs PGMX and PGMY use object B. When you make a change to object A or B, the following
occurs:

• The change is added to the attached journal receiver.
• The journal receiver is written to auxiliary storage.
• The changes are written to the main storage copy of the object.

Object C changes are written directly to the main storage copy of the object because it is not being
journaled. Only the entries added to the journal receiver are written immediately to auxiliary storage.
Changes against the object may stay in main storage until the object is closed.

Journal management 11

You can also take advantage of the remote journal function. The remote journal function allows you to
associate a journal on a remote system with a journal on a local system. Journal entries on the local
system are replicated to the remote journal receiver.

Related concepts
Journal entry information
This topic provides information and tasks for working with journal entries.
Remote journal management
Use remote journal management to establish journals and journal receivers on a remote system that are
associated with specific journals and journal receivers on a local system. Remote journal management
replicates journal entries from the local system to the journals and journal receivers that are located on
the remote system after they have been established.
Related reference
Create Journal (CRTJRN) command
Change Journal (CHGJRN) command

12 IBM i: Journal management

Work with Journal Attributes (WRKJRNA) command

Journal entries
When you use journal management, the system keeps a record of changes that you make to objects that
are journaled and of other events that occur on the system. These records are called journal entries. You
can use journal entries to help recover objects or analyze changes that were made to the objects.

Every journal entry is stored internally in a compressed format. The operating system must convert
journal entries to an external form before you can see them. You cannot change or access the journal
entries directly. Not even the security officer can remove or change journal entries in a journal receiver.
You can use these journal entries to help you recover your objects or analyze changes that were made to
the objects.

Contents of a journal entry

Journal entries contain the following information:

• Information that identifies the type of change.
• Information that identifies the data that was changed.
• The after-image of the data.
• Optionally, the before-image of the data (this is a separate entry in the journal).
• Information that identifies the job, the user, and the time of change.
• The journal identifier of the object.
• Information that indicates if the entry-specific data is minimized.

The system also places entries in the journal that are not for a particular journaled object. These entries
contain information about the operation of the system and the control of the journal receivers.

Journal identifier

When you start journaling an object, the system assigns a unique journal identifier (JID) to that object.
The system uses the JID to associate the journal entry with the corresponding journaled object.

Journal entry numbering

Each journal entry is sequentially numbered without any missing numbers until you reset the sequence
number with the Change Journal (CHGJRN) command or System i Navigator. However, when you
display journal entries, sequence numbers can be missing because the system uses some entries only
internally. For audit purposes, you can display these internal entries with the INCHIDENT option on the
Display Journal (DSPJRN) command.

When the system exceeds the largest sequence number, a message is sent to the system operator
identifying the condition and requesting action. No other journal entries can be added to the journal until
the journal receivers are changed and the sequence number is reset.

Fixed-length and variable-length portions

A journal entry that is converted for displaying or processing contains a fixed-length prefix portion that is
followed by a variable-length portion. The variable-length portion contains entry-specific data and, in
some cases, null-values indicator data. The format of the converted entry depends on the command that
you use and the format that you specify. The entry-specific data varies by entry type. The Send Journal
Entry (SNDJRNE) command or the QJOSJRNE API specifies the entry-specific data for user-created
journal entries.

Related concepts
Why you must save objects after you start journaling
After you start journaling, it is essential that you save objects that you are journaling.
Journal entry information

Journal management 13

This topic provides information and tasks for working with journal entries.
Related reference
Apply Journaled Changes (APYJRNCHG) command
Apply Journaled Changes Extend (APYJRNCHGX) command
Compare Journal Images (CMPJRNIMG) command
Delete Pointer Handle (QjoDeletePointerHandle) API
Display Journal (DSPJRN) command
Get Path Name of Object from Its File ID (Qp0lGetPathFromFileID()) API
Receive Journal Entry (RCVJRNE) command
Retrieve Journal Entry (RTVJRNE) command
Retrieve Journal Entries (QjoRetrieveJournalEntries) API
Remove Journaled Changes (RMVJRNCHG) command
Replay Database Operation (QDBRPLAY) API
Send Journal Entry (SNDJRNE) command
Send Journal Entry (QJOSJRNE) API

Journal management and system performance
Journal management prevents transactions from being lost if your system ends abnormally or has to be
recovered. Journal management writes changes to journaled objects immediately to the journal receiver
in auxiliary storage. Journaling increases the disk activity on your system and can have a noticeable affect
on system performance.

Journaling also increases the overhead associated with opening objects and closing objects, so as the
number of objects you are journaling increases, the general performance of the system can be slower.
The time it takes to perform an IPL on your system or vary on of an independent auxiliary storage pool
(ASP) can also increase, particularly if your system or independent ASP ends abnormally.

The system takes measures to minimize the performance effect of using journaling features. For example,
the system packages before-images and after-images, and any access path changes for a record in a
single write operation to auxiliary storage. Therefore, journaling access paths, and before-images and
after-images, usually does not cause additional performance overhead. However, they do add to the
auxiliary storage requirements for journaling.

The system also spreads journal receivers across multiple disk units to improve performance. If you do
not specify a maximum receiver-size option, then the system can place the journal receiver on up to ten
disk units in a disk pool. If you specify a maximum receiver-size option, and a matching sufficiently large
journal size threshold then the system can place the journal receiver on up to 100 disk units in a disk pool.

You can take measures to minimize the effect of journaling on your system performance:

• Consider using journal caching. Journal caching is a separately chargeable feature that causes the
system to write journal entries to memory in large groups. When there are several journal entries in
memory then the system writes journal entries from memory to disk. If the application performs a large
number of changes, this can result in fewer synchronous disk writes resulting in improved performance.
However, when you use journal caching, a few of the most recent updates to your journaled objects may
be lost on an abnormal IPL or independent ASP vary on.

• Before using journal standby state, consider the potential System Managed Access Path Protection
(SMAPP) impacts of making that choice and consider specifying INCACCPTH(*ELIGIBLE) on the Change
Recovery for Access Paths (CHGRCYAP) command.

• Do not set the force-write ratio (FRCRATIO) parameter for physical files that you are journaling. You can
let the system manage when to write records for the physical file to disk because the journal receiver
has a force-write ratio of 1.

• For optimal performance, ensure that your I/O processors have adequate write cache.
• Consider using record blocking when a program processes a journaled file sequentially

(SEQONLY(*YES)). When you add or insert records to the file, the records are not written to the journal
receiver until the block is filled. You can specify record blocking with the Override with Database File

14 IBM i: Journal management

(OVRDBF) command or in some high-level language programs. If you use the OVRDBF command, do the
following:

– Set the SEQONLY parameter to (*YES).
– Use a large enough value for the NBRRCDS parameter to make the buffer approach the optimal size

of 128KB.
• Consider minimizing the fixed-length portion of the journal entry using RCVSIZOPT(*MINFIXLEN) for the

journal. When you specify this option, all of the data that is selectable by the FIXLENDTA parameter is
not deposited. Therefore, that information does not have to be retrieved, benefiting journal
performance.

• Consider omitting information from the journal entry you do not need using the OMTJRNE parameter.
When you specify the OMTJRNE parameter for database physical files you will not deposit the file open
and close entries which saves processing as well as disk storage space. Similarly, if you specify the
OMTJRNE parameter for directories and stream files, the object open, close, and force entries are not
deposited.

• Ensure you have enough write cache for your I/O processor (IOP).

Related concepts
Receiver size options for journals
A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.
Journal cache
Journal caching is a separately chargeable feature with which you can specify that the system cache
journal entries in main storage, before writing them to disk. Journal caching is option 42 of the IBM i
operating system.
Frequently asked questions about journaling and disk arm usage
Journaling affects the disk arms that store the journal receiver.
Performance
Disk management
Striving for Optimal Journal Performance on DB2 Universal Database for iSeries
Related reference
Override with Database File (OVRDBF) command

Journal management with the save-while-active function
Journaling can help you with recovery if you use the save-while-active function in your backup strategy. If
you plan to save an application without ending it for checkpoint processing, consider journaling all of the
objects associated with the application. After the save operation is complete, save all of the journal
receivers for the objects you are saving.

If you need to perform recovery, you can restore objects from the save-while-active media. Then you can
apply journal changes to an application boundary.

You also can use the save-while-active function to save an object with partial transactions--before the
transactions reach a commit boundary. When you restore an object with partial transactions, you cannot
use it without additional actions. Journaling enables you to apply or remove changes to an object with
partial transactions to restore it to a usable state.

Using the save-while-active function to save your journaled objects can help you recover your objects
more quickly when you need to apply or remove journaled changes specifying FROMENT(*LASTSAVE) or
FROMENTLRG(*LASTSAVE). When you use the save-while-active function to save your journaled objects,
the system saves and then restores information that indicates which starting journal sequence number is
needed for the apply or remove operation. When this information is available for all objects to which you
are applying or removing journaled changes, the system does not need to scan the journal receivers to

Journal management 15

http://www.redbooks.ibm.com/abstracts/sg246286.html?Open

determine this starting point. Scanning journal receiver data to find the starting points can be time
consuming.

Also, using the save-while-active function when saving your objects allows you to restore a version of
your object which was not from the last save and to still specify FROMENT(*LASTSAVE) or
FROMENTLRG(*LASTSAVE) on the apply or remove command and successfully apply or remove changes.

Related concepts
Commitment control
Related tasks
Save your server while it is active
Example: Recovering objects with partial transactions
If you restore an object that was saved with a save-while-active operation that specified that the object
can be saved before it reaches a commitment boundary, it can have partial transactions. To recover
objects that are in a partial state you must perform an apply or a remove journaled changes operation.

Planning for journal management
This topic provides you with the information you need to ensure you have enough disk space, to plan what
objects to journal, and to plan which journaling options to use.

Before you start to journal an object, you must make decisions that will determine how you will create
journals and receivers, what objects to journal and how to journal those objects. These decisions include:

• Whether to use System i Navigator to set up your journaling environment.
• What objects to protect with journaling.
• Whether to journal other objects that the system does not journal.
• Whether to combine journaling with the save-while-active function.
• How many journals you need and which objects must be assigned to each journal.
• Whether to journal after-images only or both before-images and after-images.
• Whether your application programs must write journal entries to assist with recovery.
• What type of disk pool in which to store your journal receiver.
• Whether to use the remote journal function to replicate the journal entries and receivers to one or more

additional systems.
• Whether to omit the optional open, close, or force entries for your objects.

You also need to make operational decisions about journal management:

• How often must journal receivers be changed and saved?
• How often must you save journaled objects?
• How must journals and journal receivers be secured?

Finally, you need to balance the benefits of journaling with the affect it may have on your system
performance and auxiliary storage requirements.

Use the following information to help you make these decisions:

Note: The Remote journal management topic has information about remote journaling.

Related concepts
Remote journal management
Use remote journal management to establish journals and journal receivers on a remote system that are
associated with specific journals and journal receivers on a local system. Remote journal management
replicates journal entries from the local system to the journals and journal receivers that are located on
the remote system after they have been established.

IBM Navigator for i versus the character-based interface for journaling objects
There are two environments that you can use for journal management: IBM Navigator for i and the
character-based interface. Navigator for i provides a graphical interface for journaling that is easy to use

16 IBM i: Journal management

and does not require the use of control language (CL) commands. The character-based interface requires
the use of CL commands or APIs, but has more functionality than Navigator for i. Some of this function is
also available through the System i Navigator.

Here is a list of journaling functions that are only available with the character-based interface:

• Journal access paths.
• Compare journal entries.
• Apply journaled changes.
• Remove journaled changes.
• Display journal entries.

One other difference between Navigator for i and the character-based interface is that with Navigator for
i, you create the journal and journal receiver together. With the character-based interface, you create the
journal receiver first.

Decide which of the two interfaces to use before you set up journal management, since the character-
based interface creates journal receivers and journals separately, and Navigator for i creates journals and
receivers together. However, if you decide to use a function that Navigator for i does not support after you
start journaling, you can do so with the character-based interface, even if you used Navigator for i to set
up journaling.

Related concepts
Receiver size options for journals
A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.
Minimized entry-specific data for journal entries
On the Create Journal (CRTJRN) and Change Journal (CHGJRN) commands, you can specify to allow for
the deposit of minimized journal entries. This will decrease the size of your journal entries.
Fixed-length options for journal entries
You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTJRN) and Change
Journal (CHGJRN) commands to audit security related activity for journaled objects on your system. The
IBM Navigator for i equivalent function is Fixed length data to include on the Create Journal and
Change Receivers dialogs.
Journal cache
Journal caching is a separately chargeable feature with which you can specify that the system cache
journal entries in main storage, before writing them to disk. Journal caching is option 42 of the IBM i
operating system.
Related tasks
Changing the state of local journals
Local journals can be in one of two states, active or standby. When the journal state of a local journal is
active, journal entries are allowed to be deposited to the journal receiver.

Planning which objects to journal
When you plan which objects to journal, consider the following:

• What types of objects you can journal.
• What makes an object a good candidate for journaling.
• What rules for journaling apply to those objects.
• Whether or not to send journal entries for objects the system does not journal.

Types of objects that are eligible for journaling

You can journal the following object types:

Journal management 17

• Libraries
• Database physical files
• Access paths
• Data areas
• Data queues
• Integrated file system objects (stream files, directories, and symbolic links)

General characteristics that make objects good candidates for journaling

• An object with a high volume of transactions between save operations is a good candidate for
journaling.

• An object that is difficult to reconstruct the changes made to it, such as an object that receives many
changes without physical documentation. For example, an object used for telephone order entry is
more difficult to reconstruct than an object used for orders that arrive in the mail on order forms.

• An object that contains critical information. For example, if you restore an object back to the last save
operation, and the delay from reconstructing changes to that object has a negative effect on your
operation: that object is a good candidate for journaling.

• Objects that relate to other objects on the system. Although the information in a particular object may
not change often, that object may be critical to other, more dynamic objects on the system. For
example, many files may depend on a customer master file. If you are reconstructing orders, the
customer master file must include new customers or changes in credit limits.

• Objects that require that all the actions on it be replicated.
• An object, that, after a crash, has a requirement to be recovered to a consistent state and have a journal

entry show what actions completed.
• An object that can cause a negative consequence to your operation if a crash damages that object while

the system is in the process of updating it.
• An object for which you want to have an audit trail of changes.

Considerations for journaling database physical files

• If you journal one file that participates in a referential constraint, you must journal all the related files.
Referential constraints are not enforced when you apply or remove journaled changes, but the
referential integrity of those constraints is verified.

• If you journal all related files, the process for applying and removing journaled changes keeps the
relationships between your database files valid. If you do not journal all related files, your referential
constraint may show a status of check pending after you apply or remove journaled changes. For some
types of referential constraints, the system requires that you journal all of the related files.

• For a file that has a trigger program, if the trigger program only performs processing on object types
which can be journaled and applied, you must journal all of the objects processed by the trigger
program. If the trigger programs do additional work that must be reconstructed during a recovery,
consider using the API support for sending journal entries.

• In general, database source files must not be journaled. If you use the Start Source Entry Utility
(STRSEU) command to update a member, every record in that member is considered changed and every
record is journaled to the journal. However, if changes to a source file are critical, you can journal the
file in the same manner as data files.

Considerations for journaling integrated file system objects

• When you start journaling on a symbolic link, the link is not followed. Therefore if you want to protect
the actual object with journaling, you have to journal the actual object separately.

• If you want to automatically protect all objects which are created in a directory which itself is journaled,
consider the use and impacts of the inherit journaling attribute that you can associate with a journaled
directory.

18 IBM i: Journal management

• Do you want to protect the structure of the directory tree, or just the data stored in stream files within
that directory structure? If you just want to protect the data stored in stream files, then for
performances reasons, it may be best to only journal the stream files themselves instead of journaling
changes to each directory in the directory tree. You must consider this question when you use the
subtree and inherit journaling attributes options on the start journaling interfaces.

• You cannot journal objects on a user-defined file system (UDFS) independent disk pool. If you want to
journal objects in a UDFS, you must use a library capable independent disk pool. Journal management
and independent disk pools has more information about journaling and independent disk pools.

System objects

It is recommended that you do not journal changes to IBM-supplied objects. The system sometimes
creates and manages these objects differently than user-created objects. The system does not assure the
recovery of these files even though all recovery activity normally succeeds.

Journal entries for objects the system does not journal

Some applications depend on information in objects that the system does not journal. For example, an
application programming interface (API) might use a user space to pass data between two jobs.

You can use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API to
write journal entries for these resources. If you need to perform recovery, you can use a program to
retrieve these journal entries and make sure these application objects are synchronized with the objects
you are journaling.

If you are using commitment control, you can use APIs to register these objects as committable
resources.

Before images and access paths

• Reasons to journal access paths has detailed information about whether or not to journal access paths.
• Reasons to journal before-images discusses whether or not to journal before-images

Journaled object limit

The journaled object limit is the maximum number of objects that can be journaled to one journal. You
can set the journal object limit to either 250 000 or 10 000 000. Use the Journal Object Limit
(JRNOBJLMT) parameter on the Create Journal (CRTJRN) or Change Journal (CHGJRN)
command to set the maximum number of journaled objects.

Journal recovery count

On the CHGJRN command, you can use the Journal Recovery Count (JRNRCYCNT) parameter to indicate
how many journal entries can exist between the last deposited entry and the oldest forced entry for a
journaled object. A value between 10 000 and 2 000 000 000 will be allowed. A value of *SYSDFT will
also be allowed to reset the journal’s recovery count to the system default journal recovery count.

Related concepts
Journal management and independent disk pools
Independent disk pools are disk pools 33 through 255. Independent disk pools can be user-defined file
system (UDFS) independent disk pools or library-capable independent disk pools.
Sending your own journal entries
You can use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API to
add your own entries to a journal. The system places these entries in the journal's attached journal
receiver along with the system-created journal entries.
Commitment control
Related reference
Work with triggers and constraints

Journal management 19

Reasons to journal access paths
If you journal access paths, the system can use the journal entries to recover access paths instead of
rebuilding them completely.

When your system ends abnormally, perhaps because of a power interruption, the next IPL can take
much longer than a normal IPL. Rebuilding access paths contributes to this long IPL time. When you
perform an IPL after an abnormal end, the system rebuilds access paths that were exposed, except those
access paths that are specified as MAINT(*REBLD) when you create the file. An access path is exposed if
changes have been made to it that have not been written to the disk.

If you journal access paths, the system can use the journal entries to recover access paths instead of
rebuilding them completely. This reduces the time it takes to IPL after the system ends abnormally.
Access path journaling is strictly for the purpose of system recovery during an IPL. You do not use access
path journal entries when you are applying journal changes to recover a file.

If certain access paths and their underlying files are critical to your operation, you want to ensure that
these files are available as soon as possible after the system ends abnormally. You can choose to journal
these access paths. This is called explicit access path journaling.

Explicit access path journaling differs system-managed access-path protection (SMAPP) in that with
SMAPP you cannot control which access paths the system chooses to protect. Therefore, if the system
does not protect the access path that you consider critical to meet your target recovery times, you must
explicitly journal that access path.

If you choose to journal an access path, remember the following:

• You can journal an access path for a physical file only if the physical file has a keyed access path or an
index created by a referential constraint.

• Before you start journaling an access path, you must journal all the underlying physical files to the same
journal.

• You can journal only access paths that are defined as MAINT(*IMMED) or MAINT(*DLY).
• Some access paths with international components for unicode (ICU) sort sequence tables are too

complex to be journaled. You can journal access paths with other sort sequence tables, and many of the
access paths with ICU sort sequence tables.

The System-managed access-path protection topic has detailed information about SMAPP.

Related concepts
System-managed access-path protection
System-managed access-path protection (SMAPP) allows you to use some of the advantages of journaling
without explicitly setting up journaling. Use SMAPP to decrease the time it takes to restart your system
after an abnormal end.

Reasons to journal before-images
When you journal an object, the system always writes an after-image for every change that is made. You
can request that the system write before-image journal entries for database files and data areas. All other
object types only journal after-images. This significantly increases the auxiliary storage requirements for
journaling.

However, you can choose to journal before-images for these reasons:

• Before-images are required for a backout recovery, where you remove journal changes with the Remove
Journaled Changes (RMVJRNCHG) command rather than applying journal changes to a restored copy of
an object. Backout recovery is often complex, particularly if multiple users and programs are accessing
the same object. It is most commonly used when new applications or programs are being tested.

• For database physical files, before-images are required to use the Compare Journal Images
(CMPJRNIMG) command. This command highlights the differences between the before-images and
after-images. It is sometimes used to audit changes to a database file.

• For database physical files, if you want a copy of the record that is deleted to be part of the deleted
record journal entry information, you must specify before-images.

20 IBM i: Journal management

• Commitment control requires before-images for the system to roll back uncommitted changes. When
you open a database file under commitment control, the system automatically journals both before-
images and after-images while the commitment definition is active. If you normally journal only after-
images, the system writes before-images only for the changes made under commitment control. If the
system initiates the journaling of before-images, you cannot use them to remove journaled changes.
Commitment control does not support integrated file system objects, data areas, or data queues.

• Access path journaling also requires before-images for the system to use for IPL recovery. When you
journal access paths, or the system journals an access path to provide system-managed access-path
protection, the system will automatically journal both before and after-images. If you normally journal
only after-images, the system also writes before-images if you are journaling the access path.

You can select before-images on an object-by-object basis. You specify whether you want after-images or
both when you start journaling for a database file or a data area. After you start journaling a database file
or a data area, you can use the Change Journal Object (CHGJRNOBJ) command to change whether you
are journaling before-images.

Related concepts
System-managed access-path protection
System-managed access-path protection (SMAPP) allows you to use some of the advantages of journaling
without explicitly setting up journaling. Use SMAPP to decrease the time it takes to restart your system
after an abnormal end.
Related tasks
Journaling database physical files (tables)
When you start journaling a physical file (table), you specify whether you want after-images saved, or
both before-images and after-images.
Journaling data areas and data queues
When you start journaling for a data area or a data queue, the system writes journal entries for all changes
to the data area or data queue.
Related reference
Remove Journaled Changes (RMVJRNCHG) command
Compare Journal Images (CMPJRNIMG) command
Change Journaled Object (CHGJRNOBJ) command

Planning for journal use of auxiliary storage
If you are journaling an object, journal management writes a copy of every object change to the journal
receiver. It writes additional entries for object level activity, such as opening and closing the object,
adding a member, or changing an object attribute. If you have a busy system and journal many objects,
your journal receivers can quickly become very large.

The maximum size for a single journal receiver varies. It depends on how the system allocates the journal
receiver across multiple disk arms. The maximum size ranges from approximately 1.9 GB to 1.0 TB
depending on what value you specified for the associated journal's receiver size option.

To avoid possible problems with a journal receiver exceeding the maximum size allowed on the system,
specify a threshold for the receiver of no more than 900 000 000 KB if you specified a journal receiver
maximum-size option for the associated journal. Otherwise, specify a threshold of no more than
1 441 000 KB.

The following topics provide more information about how journal management affects auxiliary storage:

• Functions that increase the journal receiver size
• Methods to estimate the size of a journal receiver
• Methods to reduce the storage that journal receivers use
• Determine the type of disk pool in which to place journal receivers
• Journals and independent disk pools

Journal management 21

Related concepts
Receiver size options for journals
A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.
Threshold (disk space) for journal receivers
When you create a journal receiver with System i Navigator or the Create Journal Receiver (CRTJRNRCV)
command, you specify a disk space threshold that indicates when you want the system to warn you or
take action.

Frequently asked questions about journaling and disk arm usage
Journaling affects the disk arms that store the journal receiver.

How the journal receiver affects the disk arm depend on several factors :

• The threshold setting you are using for your journal receiver.
• Whether or not you are using a maximum receiver-size option.
• The way in which the system writes journal entries to disk.

The following are frequently asked questions about journaling and disk arm usage:

“How many arms in my disk pool will journaling use?” on page 22

“Which journal parameters and settings affect the number of the disk arms the journal receiver uses?” on
page 22

“Why is the system not using the new disk arms I added to my disk pool?” on page 23

“Why are some disk arms used by journal receivers noticeably busier than the others and what can I do to
spread out the usage?” on page 23

How many arms in my disk pool will journaling use?

Starting in IBM i 7.1, journal receivers will be spread across all disk arms in the disk pool. Journaling no
longer directs writes to specific disk arms.

The journal receiver threshold value will influence the number of parallel writes that journal will allow.
The higher the journal receiver threshold value, the more parallel I/0 requests will be allowed. Allowing
more parallel I/O requests may improve performance.

For more information about disk arm use and journaling see: Striving for Optimal Journal Performance on

DB2® Universal Database for iSeries (3.1 MB)

Back to questions

Which journal parameters and settings affect the number of the disk arms the journal receiver uses?

The threshold for the journal receiver and whether you use a maximum receiver-size option have the
largest effect on how many disk arms the journal receiver uses. If you have a system which is before
V5R2, removing internal entries also affects the number of disk arms that are used.

Back to questions

22 IBM i: Journal management

http://www.redbooks.ibm.com/abstracts/sg246286.html?Open
http://www.redbooks.ibm.com/abstracts/sg246286.html?Open

Why is the system not using the new disk arms I added to my disk pool?

There can be a several reasons. First, to use the newly added disk arms, you must perform a change
journal operation to attach a new journal receiver. Also, the system does not necessarily use all of the
disk arms in a disk pool. If you are not using a maximum receiver-size option, the most disk arms the
system will spread the receiver over is ten. The number of disk arms the receiver uses also depends on
the threshold you use for your journal receiver. If you use a maximum receiver-size option and increase
your threshold, it is more likely that your new disk arm will be used.

If you use system-managed access-path protection (SMAPP), the system generates internal journal
entries to protect the access paths for database files. If you have not upgraded to at least V5R2, setting
your journal receiver to remove internal entries is an issue if you are not producing these internal entries.
Before V5R2, removing internal entries can steal disk arms from the normal journal entries. For example,
if you have six disk arms in the disk pool housing your journal receiver and remove internal entries, two
arms are dedicated to the internal entries and four arms are used for your regular journal entries. If you
do not produce any internal entries, those two arms remained idle. For V5R2 and later, this is not an
issue.

For more information about disk arm use and journaling see Striving for Optimal Journal Performance on
DB2 Universal Database for iSeries.

Back to questions

Why are some disk arms used by journal receivers noticeably busier than the others and what can I
do to spread out the usage?

The journal receivers probably use some disk arms more than other because of the way journal
management writes journal entries to disk. When the system produces journal entries, journal
management stores the journal entries in memory. When it is ready, journal management sends the
journal entries to a disk arm in one group. When the next group of journal entries are ready, journal
management sends the entries to the next disk arm. Journal management continues in this sequential
manner until all of the disk arms it uses have received a group of journal entries. The cycle then repeats.

You can spread out the usage by increasing your threshold and using a maximum receiver-size option.

For more information about disk arm use and journaling see Striving for Optimal Journal Performance on
DB2 Universal Database for iSeries.

Back to questions

Related concepts
Threshold (disk space) for journal receivers
When you create a journal receiver with System i Navigator or the Create Journal Receiver (CRTJRNRCV)
command, you specify a disk space threshold that indicates when you want the system to warn you or
take action.
Receiver size options for journals
A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.

Functions that increase the journal receiver size
Some optional functions available with journal management can significantly increase auxiliary storage
requirements.

You can select to journal both before-images and after-images. The system uses more storage if you
select both before-images and after-images, although storage use is not necessarily doubled. If you
journal access paths, the before-images and after-images are written to the journal receiver when a
database file is updated. Only after-images are written when a database file is added (write operation) or

Journal management 23

http://www.redbooks.ibm.com/abstracts/sg246286.html?Open
http://www.redbooks.ibm.com/abstracts/sg246286.html?Open
http://www.redbooks.ibm.com/abstracts/sg246286.html?Open
http://www.redbooks.ibm.com/abstracts/sg246286.html?Open

deleted. Neither the before-image nor after-image is deposited into the journal if the after-image is
exactly the same as the before-image.

Using Fixed-length options for journal entries can also increase auxiliary storage requirements. The
additional storage that fixed-length options use is similar to the extra space that is used by journaling
both before-images after-images.

The system requires additional space to journal access paths. The space required depends on the
following items:

• How many access paths are journaled.
• How often you change the access paths. When you update a record in a database file, you cause an

access path journal entry only if you update a field included in the access path.
• The method used to update access paths. More journal entries are written if you update access paths

randomly than if you update them in ascending or descending sequence. Doing a mass change to an
access path field, such as a date change, causes the fewest journal entries.

If you are using system-managed access-path protection and you journal database files, the system uses
the same journal receiver to protect access paths for that file. This also increases the size of your journal
receivers.

The information in Methods to estimate a journal receiver will help you predict your requirements for
auxiliary storage.

Related concepts
Fixed-length options for journal entries
You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTJRN) and Change
Journal (CHGJRN) commands to audit security related activity for journaled objects on your system. The
IBM Navigator for i equivalent function is Fixed length data to include on the Create Journal and
Change Receivers dialogs.
System-managed access-path protection
System-managed access-path protection (SMAPP) allows you to use some of the advantages of journaling
without explicitly setting up journaling. Use SMAPP to decrease the time it takes to restart your system
after an abnormal end.
Related tasks
Methods to estimate the size of a journal receiver
You can estimate the effect that a journal receiver has on auxiliary storage.

Methods to estimate the size of a journal receiver
You can estimate the effect that a journal receiver has on auxiliary storage.

The actual auxiliary storage used will be somewhat larger because the system writes additional entries
for such actions as opening and closing objects, unless you omit open and close journal entries when you
start journaling for database physical files or integrated file system objects.

The first method to estimate the size of a journal receiver is to use a journal receiver calculator. The
Journal receiver calculator provides an easy way for you to estimate the size of your journal receiver
without setting up journaling.

The calculator assumes the following:

• You are journaling after-images only.
• You are using a single journal receiver for an entire day's transactions.
• You are journaling database physical files only. It does not include estimates for libraries, access path

journaling, integrated file system objects, data areas, data queues, or user-created entries.
• You are not minimizing entry-specific data for the files.

Another method for estimating the size of the journal receiver is to run a test. This method is more
accurate because it includes all journal entries. Additionally, this method will work for any object type

24 IBM i: Journal management

which can be journaled, not just database physical files unlike method one. To use this method, you must
either have journaling set up already or you must set it up.

If you are already using journaling, skip steps 1 and 2 below. Instead, issue a Display Journal Receiver
Attributes (DSPJRNRCVA) command before the time period so you can compare sizes from the beginning
of the period to the end.

This method assumes that the same receiver is used during the whole test. If there is a change journal to
attach a new journal receiver during the test, you must include the sizes of all the receivers.

1. Set up journaling by creating the receiver and journal.
2. Start journaling for all the objects that you plan to journal.
3. Choose a time period (1 hour) with typical transaction rates.
4. After one hour, use the Display Journal Receiver Attributes (DSPJRNRCVA) command to display the

size of the receiver.
5. Multiple the size by the number of hours that your system is active in a day.

Related concepts
Minimized entry-specific data for journal entries
On the Create Journal (CRTJRN) and Change Journal (CHGJRN) commands, you can specify to allow for
the deposit of minimized journal entries. This will decrease the size of your journal entries.
Related tasks
Journaling database physical files (tables)
When you start journaling a physical file (table), you specify whether you want after-images saved, or
both before-images and after-images.
Journaling integrated file system objects
You can journal integrated file system objects if they are in the "root"(/), QOpenSys, and user-defined file
systems.
Setting up journaling
This topic provides instructions on how to set up journals and journal receivers.
Starting journaling
This topic provides information about how to start journaling for all object types.
Related reference
Display Journal Receiver Attributes (DSPJRNRCVA) command

Journal sizing and planning tool
This tool allows one to predict the journal traffic that will be generated by journaling one or more
database files.

On the IBM DB2 for i : Journal performance tools and utilities page there is a tool that can be used to help
determine the amount of journal traffic that might be generated by journaling one or more files. It only
predicts the traffic for database files, not for any other object types. On that page under the Journal
Sizing and Planning Tool (Pseudo Journal), you will find:

• Installation guide
• Tutorial
• Save file download for installation

To access follow this link->

Estimating the size of the journal receiver manually
This topic provides instructions for estimating the size of your journal receiver.

This procedure assumes the following:

• You are journaling after-images only.
• You are using a single journal receiver for an entire day's transactions.

Journal management 25

http://www.ibm.com/systems/i/software/db2/journalperfutilities.html

• You are journaling database physical files only. It does not include estimates for libraries, access path
journaling, integrated file system objects, data areas, data queues, or user-created entries.

• You are not using the MINENTDTA parameter to minimize entry-specific data for the files.
• Most of the journal entries are record-level (changes to records in a file) instead of object-level (like

renaming or moving objects, ALTER TABLE requests, creating and deleting objects, etc).

Follow the steps below to estimate the size of a journal receiver:

1. Determine the average record length for all the files that you plan to journal. If the record lengths vary
significantly and the information is available, use a weighted average based on the relative number of
transactions per file.

2. If you are not minimizing the fixed-length portion of the journal entry (not specifying
RCVSIZOPT(*MINFIXLEN) on the CRTJRN command), you can specify the data that is included in the
fixed-length portion (FIXLENDTA) of the journal entries. Find the sum of the bytes for the options you
are using. Select the options from the following list:

*JOB = 26 bytes
*USR = 10 bytes
*PGM = 10 bytes
*PGMLIB = 22 bytes
*SYSSEQ = 8 bytes
*RMTADR = 20 bytes
*THD = 8 bytes
*LUW = 27 bytes
*XID = 140 bytes

3. Estimate the number of transactions for a day.
4. The system-created portion of a journal entry is approximately 50 bytes. (It varies by the type of

journal entry.)
5. Estimate the number bytes of auxiliary storage needed for one day's transactions by using the

following formula:

Total bytes needed = (a+b+50)*c

where:

a = the average record length of files (step 1)
b = sum of values selected for FIXLENDTA (step 2)
c = number of transactions for a day (step 3)

For example:

1. The average record length for journaled files is 115 bytes.
2. *JOB, *USR, and *PGM options of FIXLENDTA are selected. Their sum is 46 bytes.
3. The number of journaled transactions per day is 10 000.
4. The total bytes needed to journal after-images for a day is:

(115+46+50) * 10 000 = 2 110 000

Related concepts
Fixed-length options for journal entries
You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTJRN) and Change
Journal (CHGJRN) commands to audit security related activity for journaled objects on your system. The

26 IBM i: Journal management

IBM Navigator for i equivalent function is Fixed length data to include on the Create Journal and
Change Receivers dialogs.

Methods to reduce the storage that journal receivers use
Reduce the size of journal entries by methods such as journaling after-images only, or specifying certain
journaling options including the Fixed Length Data (FIXLENDTA) option on the Create Journal
(CRTJRN) and Change Journal (CHGJRN) commands.

Methods to reduce the storage needed for journaling are as follows:

Journal after-images only
Unless you are using commitment control, after-images are sufficient for your recovery needs. When
you start journaling, the default is to journal after-images only. You can use the Change Journal
Object (CHGJRNOBJ) command to stop journaling before-images without ending journaling for that
object.

Omit the journal entries for open, close or force operations to journaled objects
You can omit these journal entries with the OMTJRNE parameter on the Start Journal Physical
file (STRJRNPF) or Start Journal (STRJRN) command. For database files (tables), you can
select Exclude open and close entries when you start journaling with System i Navigator. For
integrated file system objects, ensure that Include open, close, and synchronization entries is not
selected when you start journaling with System i Navigator. You can also use the CHGJRNOBJ
command to start omitting these journal entries for objects that you are currently journaling.

Omitting these journal entries can have a noticeable effect on both space and performance if an
application opens, closes, or forces objects frequently. Also, any time one looks up an object in a
directory, that can cause an open and close entry to occur for that directory. This can be a lot of
additional journal entries if they are not omitted from the directory objects. However, if you omit the
journal entries for opening and closing objects, you cannot perform the following tasks:

• Use open and close boundaries when applying or removing journal changes (the TOJOBO and
TOJOBC parameters).

• Audit which users open particular objects.

Swap journal receivers, save them, and free storage more frequently
Frequently saving and freeing storage for journal receivers help reduce the auxiliary storage that the
receivers use. However, moving journal receivers off-line increases your recovery time because
receivers have to be restored before journal changes can be applied.

Specify receiver size options that can decrease journal receiver size
Specifying the following receiver size options can help reduce journal receivers size:

• Remove internal entries. This causes the system to periodically remove internal entries that it no
longer needs, such as access path entries.

• Minimize the fixed-length portion the journal entry. This causes the system to no longer deposit all
of the data selectable by the FIXLENDTA parameter in the journal entry, thus reducing the size of
the entries. However, if you require this journal entry information for audit or other uses, you cannot
use this storage saving technique. Additionally, it reduces the options available as selection criteria
used on the following commands and API:

– Display Journal (DSPJRN) command
– Receiver Journal Entry (RCVJRNE) command
– Retrieve Journal Entry (RTVJRNE) command
– Compare Journal Images (CMPJRNIMG) command
– Apply Journaled Changes (APYJRNCHG) command
– Apply Journaled Changes Extend (APYJRNCHGX) command
– Remove Journaled Changes (RMVJRNCHG) command
– Retrieve Journaled Entries (QjoRetrieveJournalEntries) API

Journal management 27

Minimized entry-specific data for journals
Minimizing entry-specific data allows the system to write data to the journal entries in a minimized
format.

Select the fixed-length options for data carefully
Fixed-length options can quickly increase the size of your journal receiver. The journal receiver
calculator can help you determine the effect of fixed-length options on your auxiliary storage.

If you are journaling a physical file, specify SHARE(*YES) for the file.
You can do this using the Create Physical File (CRTPF) command or the Change Physical
File (CHGPF) command. The system writes a single open and close entry regardless of how often
the shared open data path (ODP) is opened or closed within a routing step.

Related concepts
Receiver size options for journals
A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.
Fixed-length options for journal entries
You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTJRN) and Change
Journal (CHGJRN) commands to audit security related activity for journaled objects on your system. The
IBM Navigator for i equivalent function is Fixed length data to include on the Create Journal and
Change Receivers dialogs.

Determining the type of disk pool in which to place journal receivers
Use disk pools (auxiliary storage pool) to control which objects are allocated to which groups of disk units.
If you are journaling many active objects to the same journal, the journal receiver can become a
performance bottleneck. One way to minimize the performance impact of journaling is to put the journal
receiver in a separate disk pool. This also provides additional protection because your objects are on
different disk units from the journal receiver, which contains a copy of changes to the objects.

There are several types of disk pools:

System disk pool
The system disk pool contains the operating system. It can also contain user libraries and objects.
The system disk pool is always disk pool number 1.

Basic disk pool
Basic disk pools are disk pool numbers 2 through 32. A basic disk pool can be a library or a non library
disk pool. The differences are as follows:

• A library disk pool contains one or more user libraries or user-defined file systems. It does not
contain the operating system. This is the current recommended method of configuring user disk
pools.

• A non library disk pool contains no user libraries or user-defined file systems. It may contain
journals, journal receivers, and save files. If you place a journal receiver in a non library basic disk
pool, the journal must be in either the system disk pool or the same non library disk pool. The
journaled objects must be in the system disk pool.

Independent disk pool
Independent disk pools are disk pools 33 through 255. If you use independent disk pools, you can
only put journals and journal receivers on independent disk pools that are library capable. If you are
going to place the journal receiver in a switchable independent disk pool, the journal receiver, the
journal, and journaled object must be in the same disk pool group (though they do not have to be in
the same disk pool).

When disk pools were first introduced, they were called auxiliary storage pools (ASPs). Only non library
user ASPs were available. Many systems still have this type of ASP. However, recovery steps are more
complex for non library user ASPs. Therefore, for systems implementing journaling for the first time,
library disk pools are recommended.

28 IBM i: Journal management

Journal management and independent disk pools has more specific information about using journaling
with independent disk pools. Manage disk units in disk pools has specific information about disk pools.
The Independent disk pools topic has detailed information about setting up independent disk pools.

Related concepts
Journal management and independent disk pools
Independent disk pools are disk pools 33 through 255. Independent disk pools can be user-defined file
system (UDFS) independent disk pools or library-capable independent disk pools.
Managing independent disk pools
Independent disk pools
Related information
Journaling – User ASPs Versus the System ASP
Journaling – Configuring for Your Fair Share of Write Cache

Journal management and independent disk pools
Independent disk pools are disk pools 33 through 255. Independent disk pools can be user-defined file
system (UDFS) independent disk pools or library-capable independent disk pools.

UDFS and library-capable independent disk pools

UDFS independent disk pools are independent disk pools that only have a user-defined file system. UDFS
independent disk pools cannot store journals and receivers. In contrast to UDFS disk pools, library-
capable independent disk pools have libraries and are capable of storing journals and receivers. If you
plan to journal objects on an independent disk pool, you must use a library-capable independent disk
pool.

Note: A library-capable independent disk pool can have integrated file system objects. You can also
journal integrated file system objects on a library-capable independent disk pool.

You cannot journal objects on a UDFS independent disk pool.

Switchable and dedicated independent disk pools

Independent disk pools can also be switchable or dedicated. Dedicated independent disk pools are used
on only one system. Switchable independent disk pools can be switched between systems. If they are
library-capable, you can journal objects on either switchable or dedicated independent disk pools.

Disk pool groups

You can group switchable independent disk pools into disk pool groups. Disk pool groups consist of one
primary disk pool and one or more secondary disk pools. If you are going to journal an object in a disk
pool group, the object and the journal must be in the same disk pool. The journal receiver can be in a
different disk pool, but must be in the same disk pool group as the journal and journaled object.

Rules for journaling objects on independent disk pools

Use the following rules when journaling objects on independent disk pools:

• The disk pool must be available on the system on which you are working.
• The disk pool must be a library-capable disk pool. You cannot journal an object on a UDFS independent

disk pool.
• In a disk pool group, the journaled object and the journal must be in the same disk pool.
• In a disk pool group, the journal receiver can be in a different disk pool, but must be in the same disk

pool group.

Manage disk units in disk pools has information about managing disk pools. The Independent disk pools
topic has information about setting up and managing independent disk pools.

Journal management 29

http://www.redbooks.ibm.com/abstracts/tips0602.html?Open
http://www.redbooks.ibm.com/abstracts/tips0653.html?Open

Related concepts
User-defined file system
Disk management
Independent disk pools

Planning setup for journal receivers
The following topics provide information to plan configuration for journal receivers. They provide
information about each option that you can select for journal receivers.

Disk pool assignment for journal receivers
Placing journal receivers in a different disk pool from the journaled objects may prevent performance
bottlenecks.

Before you place the journal receiver in a library basic disk pool, you must first create the library for the
journal receiver in the disk pool.

You can only place a journal receiver in an independent disk pool if the independent disk pool is library
capable. If you are placing the journal receiver in a switchable independent disk pool, you must place it in
the same disk pool group as the journal and the object you are journaling. Manage disk units in disk pools
has more information about disk pools. The Independent disk pools topic has detailed information about
independent disk pools.

If you are creating the journal receiver with the Create Journal Receiver (CRTJRNRCV) command, you can
use the ASP parameter to allocate storage space for the journal receiver in a different disk pool (ASP) than
the library to which you assigned the journal receiver. Do this only if the disk pool is a basic nonlibrary disk
pool.

Related concepts
Managing independent disk pools
Independent disk pools
Related reference
Create Journal Receiver (CRTJRNRCV) command

Library assignment for journal receivers
When you create a journal receiver, you specify a qualified name that includes the library for the receiver.
The library must exist before you create the journal receiver.

You can assign a library from either the New Journal dialog in System i Navigator or with the Create
Journal Receiver (CRTJRNRCV) command.

Your journals and journal receivers can be in different libraries. If they are, you must ensure that the
library that will contain the journal receivers is on the system before restoring the journal. Ensuring this
will also ensure that the journal receiver is created in the desired library, since a journal receiver is
created when the journal is restored. Only the library needs to be on the system, not the journal receivers
in that library. Also, you will want to save the library with the journal receivers last (after all journaled
objects have been saved) to ensure that all the journal entries recording the object saves will be on
media.

Refer to the Correct order for restoration of journaled objects link below for additional considerations.

Related tasks
Correct order for restoration of journaled objects
You must restore journals and their associated objects in the correct order when not using deferred
journaling support.
Related reference
Create Journal Receiver (CRTJRNRCV) command

30 IBM i: Journal management

Naming conventions for journal receivers
When you create a journal receiver either with System i Navigator or the Create Journal Receiver
(CRTJRNRCV) command, you assign a name to the journal receiver.

When you use System i Navigator or the Change Journal (CHGJRN) command to detach the current
journal receiver and create and attach a new receiver, you can assign a name or have the system generate
one. If you use system journal-receiver management, the system generates the name when it detaches a
receiver and creates and attaches a new one.

If you plan to have more than one journal on your system, use a naming convention that links each journal
with its associated receiver.

To simplify recovery and avoid confusion, make each journal receiver name unique for your entire system,
not unique within a library. If you have two journal receivers with the same name in different libraries and
they both become damaged, the reclaim storage operation renames both journal receivers when they are
placed in the QRCL library. When you use the Move Object (MOVOBJ) command for a journal or journal
receiver in the QRCL library, you can move an object from QRCL back to its original library. You cannot
change the name of the journal or the journal receiver.

When you detach the receiver from the journal and attach a new one, you can have the system generate
the name for the new receiver by incrementing the previous receiver name. If you use system change-
journal management by specifying MNGRCV(*SYSTEM) for the journal, the system also generates a new
receiver name when it changes journal receivers. The default for the Create Journal (CRTJRN) command
is to use system change-journal management.

The following table shows the rules the system uses to generate a new receiver name. It applies these
rules in the sequence shown in the table.

Current name System action Example

Last 4 characters are numeric. Adds 1 DSTR0001 to DSTR0002

Last character is not numeric. Truncates the name to 6
characters, if necessary. Adds
0001

DSTRCVR to DSTRCV0001

Last character is numeric. Last
non-numeric character is in
position 5 or less.

Adds 1 DSTR01 to DSTR02

Last character is numeric. Last
non-numeric character is in
position 6 or higher.

Truncates to 6 characters, if
necessary. Adds 0001.

DSTRCVR01 to DSTRCV0001

If you restore a journal to your system, the system creates a new journal receiver and attaches it to the
journal. The system generates a name for the new journal receiver based on the name of the journal
receiver that was attached when the journal was saved. The following table shows the rules the system
uses to generate a new receiver name when you restore a journal:

Current name System action Example

Last 4 or more characters are
numeric.

Adds 1 to the leftmost digit of the
numeric portion.

DSTR0001 to DSTR1001

Last character is not numeric. Truncates to six characters, if
necessary. Adds 1000.

DSTRCVR to DSTRCV1000.

Ending numeric portion is less
than 4 digits.

Pads the left portion of the
numeric portion with zeroes to
create a 4-digit suffix. Adds 1 to
the leftmost digit.

DSTRCV01 to DSTRCV1001.

Journal management 31

If the name generated by the system is the same as the name of a journal receiver already on the system,
the system adds 1 to the name until it creates a name that is not a duplicate. For example, assume a
journal receiver named RCV1 was attached when the journal was saved. When the journal is restored, the
system attempts to create a new journal receiver named RCV1001. If that name already exists, the
system tries the name RCV1002.

The following table shows examples of how the system generates new receiver names:

Last journal receiver known to
the system1

Created by change journal2 Created by restoring journal

A A0001 A1000

ABCDEF ABCDEF0001 ABCDEF1000

ABCDEFG ABCDEF00013 ABCDEF10003

ABCDEF1234 ABCDEF1235 ABCDEF2234

A0001 A0002 A1001

A1 A2 A1001

A9 A10 A1009

ABCDEF7 ABCDEF00013 ABCDEF10073

ABCDEF9999 Error4 ABCDEF0999

A1B15 A1B16 A1B1015

Notes:
1If the journal exists on the system, the last journal receiver known to the system is the journal receiver
that is currently attached. If the journal does not exist, the last journal receiver known to the system is
the journal receiver that was attached when the journal was saved.
2Either when a user issues the CHGJRN command with JRNRCV(*GEN) or when the journal is changed
by system change-journal management.
3The last character of the current name is dropped because it exceeds 6 characters.
4If the journal is set up as MNGRCV(*SYSTEM), the receiver name wraps around to 0's (ABCDEF0000). If
the journal is set up as MNGRCV(*USER), an error occurs because adding 1 to 9999 causes an overflow
condition.

Related concepts
Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTJRN) command, you can
select to have either system managed or user managed journal receivers.

Threshold (disk space) for journal receivers
When you create a journal receiver with System i Navigator or the Create Journal Receiver (CRTJRNRCV)
command, you specify a disk space threshold that indicates when you want the system to warn you or
take action.

On the CHGJRN command, you can use the Journal Receiver Threshold (THRESHOLD) parameter to
change the next receiver's threshold when specified in combination with JRNRCV(*GEN).

When the receiver reaches that threshold, the system takes the action specified in the manage receiver
(MNGRCV) parameter for the journal. The default storage threshold is 1 500 000 KB.

In specifying a storage threshold, you need to balance the amount of space that you have available with
the additional system resources that are used to change journal receivers frequently.

32 IBM i: Journal management

Related concepts
Receiver size options for journals
A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.
Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTJRN) command, you can
select to have either system managed or user managed journal receivers.
Related tasks
Methods to estimate the size of a journal receiver
You can estimate the effect that a journal receiver has on auxiliary storage.
Related reference
Create Journal Receiver (CRTJRNRCV) command

Basing the size on your available auxiliary storage
This topic lists the steps necessary to determine a receiver threshold, based on the amount of auxiliary
storage available for use.

Base the size on your available auxiliary storage:

1. Calculate the amount of auxiliary storage space that you have available in the user ASP for the journal
receiver.

2. Assign a receiver threshold that is 75 to 80 percent of that space.

Basing the size on how often you want to change journal receivers
This topic lists the steps necessary to determine a receiver threshold, based on how often you want to
change journal receivers.

Base the size on how often you want to change journal receivers:

1. Use the one of the methods described in Methods to estimate the size of a journal receiver to calculate
how large your receiver can be for a day. If you are just journaling database physical files, you can use
the Journal receiver calculator to estimate the size of your journal receiver.

2. Determine how many times a day you will detach and save the journal receiver.
3. Divide the result of step 1 by the result of step 2. This is your receiver threshold.

Do not make the journal receiver size too small, or the system will spend too much resource changing
journal receivers or sending threshold messages. To avoid possible problems with a journal receiver
exceeding the maximum size allowed on the system, specify a threshold for the receiver of no more than
900 000 000 KB if you specify a maximum receiver-size option for the associated journal. Otherwise,
specify a threshold of no more than 1 441 000 KB.

Manual versus system journal-receiver management discusses options for managing your journal
receivers.

Security for journal receivers
If a journal receiver has confidential data, someone with authority to that journal receiver could possibly
display that confidential data.

When you create a journal receiver, you specify the authority that all users on the system have to access it
(public authority). The default authority for the Create Journal Receiver (CRTJRNRCV) command
is *LIBCRTAUT, which means the system uses the value of the create authority (CRTAUT) parameter for
the journal receiver's library.

Journal receivers contain copies of changes from all objects being journaled. Someone with access to the
journal receiver could display confidential data. The authority to a journal receiver must be as strict as the
authority for the most confidential object that is being journaled.

Journal management 33

You do not need any authority to the journal or to the journal receiver to use an object that is journaled.
Authority to the journal receiver is checked only when using commands that operate directly on the
receiver. The authority you set for the journal receiver has no effect on the people using the journaled
objects.

Related concepts
Security
Related reference
Create Journal Receiver (CRTJRNRCV) command
Related information
Security Reference

Planning setup for journals
The following topics provide information to plan configuration for journals. They provide information
about each option that you can select for journal.

Disk pool assignment for journals
If you want to place the journal in a library basic disk pool, you must first create the library for the journal
in the disk pool. If you use a library basic disk pool, the journal and all the objects you are journaling to it
must be in the same library basic disk pool.

You can only place a journal in an independent disk pool if the independent disk pool is library capable. If
you are placing the journal in a switchable independent disk pool, you must place it in the same disk pool
group as the journal receiver associated with the journal. Manage disk units in disk pools has more
information about disk pools. The Independent disk pools topic has information about independent disk
pools.

If you want to place the journal in a non library basic disk pool, you must first create the library for the
journal in the system disk pool. If the journal is in a non library basic disk pool, all the objects being
journaled to it must be in the system disk pool.

If you are creating the journal with the Create Journal (CRTJRN) command, you can use the ASP
parameter to allocate storage space for the journal in a different disk pool (ASP) than the library to which
you assigned the journal. Do this only if the disk pool is a basic nonlibrary disk pool.

Related concepts
Managing independent disk pools
Independent disk pools
Related reference
Create Journal (CRTJRN) command

Library assignment for journals
When you create a journal, you specify a qualified name that includes the library for the journal. The
library must exist before you create the journal.

You can assign a library from either System i Navigator or with the Create Journal (CRTJRN) command.

Related reference
Create Journal (CRTJRN) command

Naming conventions for journals
When you create a journal with System i Navigator or the Create Journal (CRTJRN) command, you assign
a name to it. If you plan to have more than one journal on your system, use a naming convention that links
each journal with its associated receiver.

To simplify recovery and avoid confusion, make each journal name unique for your entire system, not
unique within a library. If you have two journals with the same name in different libraries and they both
become damaged, the reclaim storage operation renames both journals when they are placed in the QRCL
library. When you use the Move Object (MOVOBJ) command for a journal in the QRCL library, you can
change the name of the library back to the original library name. You cannot change the name of the

34 IBM i: Journal management

journal itself. In this case, you would not be able to recover your journal from QRCL since its name has
been changed.

Naming conventions to ensure restore sequence

Name the libraries for the journals, objects, and journal receivers to ensure that the objects are restored
in the correct order. A naming convention will ensure that the system automatically starts journaling after
a restore operation. To ensure that journaling is automatically started again, the journals must be
restored before the objects being journaled, unless defer object journaling during restore is specified. (If
the journals and associated objects are in the same library, then the system automatically restores the
objects in the correct order.)

If you start the name of the library for the journal with a special character, such as #, $, or @, the system
will restore the library for the journal before the library for the objects. This is because in normal sort
sequence, special characters appear before alphabetic characters.

When the journals and associated objects are in different libraries, you must ensure that the objects are
restored in the correct order.

Since independent file system objects do not exist in a library, your restore processing must ensure the
objects are restored in the correct order. That is, you must restore your libraries which contain the
journals before restoring the independent file system objects that were journaled to that journal.

Related concepts
Deferring object journaling during restore
Using deferred journaling support allows the system to manage the reestablishment of journaling of
objects after a restore.
Related reference
Create Journal (CRTJRN) command

Journal and journal receiver association
When you create a journal, you must specify the name of the journal receiver to be attached to it. If you
are using the Create Journal (CRTJRN) command to create the journal, the journal receiver must exist
before you can create the journal.

The receiver that you attach may not have been previously attached to a different journal or have been
interrupted while being attached to any journal. You can specify up to two journal receivers, but the
system ignores the second receiver.

With System i Navigator, you simply create the journal. When you create the journal, System i Navigator
creates the journal receiver in the library you specify in the New Journal dialog.

Related reference
Create Journal (CRTJRN) command

Journal message queue
When you create or change a journal, you can specify where the system sends messages that are
associated with the journal. In addition, you can create a program to monitor this message queue and
handle any messages associated with the journal. The system also sends messages that are related to the
remote journal function to this message queue.

A common use for this message queue is to handle threshold messages. When you create a journal
receiver, you can specify a storage threshold. If you choose to change journal receivers yourself, you can
specify where the system sends messages when the journal receiver exceeds its storage threshold. You
can create a special message queue for this purpose and create a program to monitor the message queue
for message CPF7099. When the message is received, the program can, for example, detach the receiver
and save it.

If you specify that the system manages the journal receiver, the system does not send a threshold
message. Instead, when the system automatically changes the journal receiver, it sends message
CPF7020, which indicates that it successfully detached the journal receiver.

Journal management 35

There are other messages which are sent to this journal message queue related to processing for the
Delete Receiver (DLTRCV) option of the Create Journal (CRTJRN) command.

For IBM Navigator for i, you select the message queue in the Journal Properties dialog. For the
character-based interface, you can select the message queue with the Create Journal (CRTJRN) or
Change Journal (CHGJRN) command.

Related concepts
Threshold (disk space) for journal receivers
When you create a journal receiver with System i Navigator or the Create Journal Receiver (CRTJRNRCV)
command, you specify a disk space threshold that indicates when you want the system to warn you or
take action.
Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTJRN) command, you can
select to have either system managed or user managed journal receivers.
Related tasks
Deleting journal receivers
Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal
management task is to delete journal receivers after you no longer need them.
Related reference
Create Journal (CRTJRN) command
Change Journal (CHGJRN) command

Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTJRN) command, you can
select to have either system managed or user managed journal receivers.

The default for the CRTJRN command is to have the system manage the journal receivers.

User journal-receiver management

If you specify user journal receiver management, you are responsible for changing the journal receiver
when it approaches its storage threshold. If you choose this option, you can have the system send a
message to a message queue when the journal receiver approaches its storage threshold.

System journal-receiver management

If you use system journal-receiver management, you can avoid having to do some journal management
chores. However, if you are journaling for recovery purposes, you need to ensure that you save all journal
receivers that have not been saved, not just the currently attached receiver. Also, if you are journaling for
recovery purposes, be sure to specify that the system does not automatically delete receivers when no
longer needed. Automatic deletion of journal receivers describes this option.

If you use system journal-receiver management, you must ensure that your environment is suitable and
that you regularly check the QSYSOPR message queue and the message queues assigned to your
journals.

If the system cannot complete the change journal operation because it cannot obtain the necessary locks,
it retries every 10 minutes (or as specified by the MNGRCVDLY parameter). It sends messages (CPI70E5)
to the journal's message queue and to the QSYSOPR message queue. If this occurs, you may want to
determine why the operation cannot be performed and either correct the condition or swap the journal
receiver your self with System i Navigator or the CHGJRN command.

If the system cannot complete the change journal operation for any reason other than lock conflicts, it
temporarily discontinues system journal-receiver management for that journal and sends a message
(CPI70E3) to the message queue assigned to the journal or to the QSYSOPR message queue. This might
occur because a journal receiver already exists with the name that it would generate. Look at the
messages in the QHST job log to determine the problem. After you correct the problem, perform a swap
journal operation to do the following:

36 IBM i: Journal management

• Create a new journal receiver
• Detach the current receiver and attach a new journal receiver
• The system then resumes system journal-receiver management.

System journal-receiver management when you restart the system

When you restart the system or vary on an independent disk pool, the system performs a CHGJRN
command to change the journal receiver and reset the journal sequence number.

Note: If the journal has *MAXOPT3 specified as a receiver size option, the sequence number is not reset
when you restart the system or vary on an independent disk pool unless the sequence number is
approaching the maximum sequence number allowed.

Also, if the journal is attached while a maximum receiver-size option is specified, the system attempts to
perform a CHGJRN command to reset the sequence number when the following is true:

• When the sequence number exceeds 9 900 000 000 if RCVSIZOPT(*MAXOPT1) or RCVSIZOPT
(*MAXOPT2) is in effect for the journal.

• When the sequence number exceeds 18 446 644 000 000 000 000 if RCVSIZOPT(*MAXOPT3) is in
effect for the journal.

For all other journal receivers, the system attempts this CHGJRN when the sequence number exceeds
2 147 000 000.

The system does not reset the journal sequence number when you restart the system or vary on an
independent disk pool if the entries in the receiver may be needed for commitment control recovery.

Delaying automatic journal change

If you use the CRTJRN or CHGJRN command, you can use the Manage Receiver Delay Time
(MNGRCVDLY) parameter. When you use system journal-receiver management for a journal, if the system
cannot allocate an object needed to attach a new journal receiver to the journal, it will wait the length of
time that you specify in the MNGRCVDLY parameter before its next attempt to attach the new journal
receiver. If you do not specify this parameter, the system will wait ten minutes, which is the default.

The following topics have information related to management of journal receivers:

• Automatic deletion of journal receivers
• Threshold (disk space) for journal receivers
• Swap journal receivers
• Receiver size options for journals

Related concepts
Automatic deletion of journal receivers
If you choose system journal receiver management, you can also have the system delete journal receivers
that are no longer needed for recovery. You can only specify this if you are using system journal receiver
management.
Threshold (disk space) for journal receivers
When you create a journal receiver with System i Navigator or the Create Journal Receiver (CRTJRNRCV)
command, you specify a disk space threshold that indicates when you want the system to warn you or
take action.
Receiver size options for journals
A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.

Journal management 37

Related tasks
Swapping journal receivers
An important task for journal management is to swap journal receivers. You typically swap journal
receivers when they reach their storage threshold. You can swap journal receivers either with IBM
Navigator for i or with the Change Journal (CHGJRN) command. If you use system journal-receiver
management, the system changes journal receivers for you.
Related reference
Create Journal (CRTJRN) command

Automatic deletion of journal receivers
If you choose system journal receiver management, you can also have the system delete journal receivers
that are no longer needed for recovery. You can only specify this if you are using system journal receiver
management.

The system can only evaluate whether a receiver is needed for its own recovery functions, such as
recovering access paths or rolling back committed changes. It cannot determine whether a receiver is
needed to apply or remove journaled changes.

Attention: Use automatic deletion of journal receivers with care if you use save-while-active
operations to save objects before they reach a commitment boundary. Ensure that you save the
journal receivers before the system deletes them. If an object is saved before it reaches a
commitment boundary it can have partial transactions. To avoid data loss you must have access to
the journal receivers that were attached during the save-while-active operation when you restore
the objects with partial transactions.

The system will automatically delete journal receivers if you do one of the following:

• Specify Delete receivers when no longer needed in the IBM Navigator for i Change Receivers or
Journal Properties dialogs.

• Specify DLTRCV (*YES) in the Create Journal (CRTJRN) or Change journal (CHGJRN) commands.

However, even if you select one of the previous items, the system cannot delete the journal receiver if any
of the following conditions is true:

• An exit program that is registered for the Delete Journal Receiver exit point (QIBM_QJO_DLT_JRNRCV)
indicates that the receiver is not eligible for deletion.

• A journal has remote journals associated with it, and one or more of the associated remote journals
does not have a full copy of this receiver.

• The system could not get the appropriate locks that are required to complete the operation.
• The exit program registration facility was not available to determine if any exit programs were

registered.

If you use system delete-receiver support, you must ensure that your environment is suitable. You must
also regularly check the QSYSOPR message queue and the message queues that are assigned to your
journals.

• If the system cannot complete the DLTJRNRCV command for any of the above reasons, it retries every
10 minutes (or the value you specify on the DLTRCVDLY parameter). It sends a CPI70E6 message to the
journal's message queue, and to QSYSOPR message queue. If this occurs, you might want to determine
why the operation cannot be performed and either correct the condition or run the DLTJRNRCV
command.

• If the system cannot complete the command for any other reason, it sends a CPI70E1 message to the
message queue that is assigned to the journal. If you have not specifically assigned a message queue to
the journal, the message will be sent to the QSYSOPR message queue. Look at the messages in QHST to
determine the problem. After you correct the problem, use the DLTJRNRCV command on the specific
journal receiver.

Do not select to have the detached journal receiver deleted if you might need it for recovery or if you want
to save it before it is deleted. The system does not save the journal receiver before deleting it. The system

38 IBM i: Journal management

does not issue the warning message (CPA7025) that it sends if a user tries to delete a receiver that has
not been saved.

Examples of when you might specify automatic journal deletion include:

• You are journaling only because it is required to use commitment control.
• You are journaling for explicit access-path protection.
• You are replicating the journal receiver to another system through the remote journal function, and that

system is providing the backup copy of the journal receiver.

Delaying the next attempt to delete a journal receiver

If you are using the CRTJRN or CHGJRN command, you can use the Delete Receiver Delay Time
(DLTRCVDLY) parameter. The system waits the time you specify (in minutes) with the DLTRCVDLY
parameter before its next attempt to delete a journal receiver that is associated with the journal when one
of the following is true:

• The system cannot allocate a needed object.
• You are using an exit program, and the exit program votes no.
• You are using remote journaling and the receiver has not been replicated to all the remote journals.

If you do not specify this parameter, the system waits ten minutes, which is the default.

Save your system while it is active has instructions for saving an object with transactions in a partial state.
Example: Recover objects with partial transactions has instructions for recovering objects with partial
transactions.

Related concepts
Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTJRN) command, you can
select to have either system managed or user managed journal receivers.
Related tasks
Save your server while it is active
Example: Recovering objects with partial transactions
If you restore an object that was saved with a save-while-active operation that specified that the object
can be saved before it reaches a commitment boundary, it can have partial transactions. To recover
objects that are in a partial state you must perform an apply or a remove journaled changes operation.
Related reference
Create Journal (CRTJRN) command
Change journal (CHGJRN) command
Delete Journal Receiver exit point (QIBM_QJO_DLT_JRNRCV) API

Receiver size options for journals
A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.

When you create a journal with the Create Journal (CRTJRN) command, the Change Journal (CHGJRN)
command, or IBM Navigator for i, you can specify options that limit the data that gets deposited into these
journal entries, or increases the maximum allowable size for the journal receiver. These options are as
follows:

• The RCVSIZOPT parameter of the CRTJRN command
• The RCVSIZOPT parameter of the CHGJRN command
• The Change Receivers dialog box of Navigator for i
• The Journal Properties dialog box of Navigator for i

Journal management 39

Note: Specifying *SYSDFT for the RCVSIZOPT parameter is the same as specifying
RCVSIZOPT(*MAXOPT2 *RMVINTENT).

The following subtopics explain the benefits of some of the values for receiver size options.

Remove internal entries

When you specify to remove internal entries the system periodically removes internal journal entries from
the attached journal receiver when it no longer needs them for recovery purposes. Removing internal
entries might have a slight impact on system performance, because the system has to manage these
internal entries separately and periodically remove them.

To remove internal entries specify the RCVSIZOPT(*RMVINTENT) parameter. The Navigator for i
equivalent to the RCVSIZOPT(*RMVINTENT) parameter is Remove internal entries in the Change
Receivers or Journal Properties dialog box.

Specifying to remove internal entries has these benefits:

• It reduces the impact that SMAPP might have on journal receivers for user-created journals.
• It reduces the size of journal receivers that are on the system.
• It reduces the amount of time and media required to save journal receivers, because unnecessary

entries are not saved.
• It reduces the time that it takes to apply journal entries, because the system does not have to evaluate

unnecessary entries.
• It reduces the communications impact if the remote journal function is being used because

unnecessary entries are not sent.

Minimize fixed-length portion of entries

Minimizing the fixed-length portion of entries has the following effects:

• All information selectable by the FIXLENDTA parameter is not deposited in the entries.
• Minimizing the fixed-length portion of entries reduces auxiliary storage space and some CPU time as

well.
• When you view journal entries with this information removed, the displayed value is *OMITTED, blanks,

or zeros, depending on the type of data.
• To determine if a journal receiver was attached to a journal while minimizing the fixed-length portion of

entries, use the Display Journal Receiver Attributes DSPJRNRCVA command display.
• Do not use minimize the fixed-length portion of entries if you require an audit trail.
• Minimizing the fixed-length portion of entries limits the selection criteria you can use on these

commands and APIs:

– Apply Journaled Changes (APYJRNCHG) command
– Apply Journaled Changes Extend (APYJRNCHGX) command
– Compare Journal Images (CMPJRNIMG) command
– Display Journal (DSPJRN) command
– Receive Journal Entry (RCVJRNE) command
– Remove Journaled Changes (RMVJRNCHG) command
– Retrieve Journal Entry (RTVJRNE) command
– Retrieve Journal Entries (QjoRetrieveJournalEntries) API

• Minimizing the fixed-length portion of entries reduces the communications impact if the remote journal
function is being used because unnecessary data is not sent.

To minimize the fixed-length portion of entries specify RCVSIZOPT(*MINFIXLEN). The Navigator for i
equivalent to RCVSIZOPT(*MINFIXLEN) is Minimize fixed portion of entries in the Create Journal or
Change Receivers dialog.

40 IBM i: Journal management

If you are using minimizing the fixed-length portion of entries, you cannot use the FIXLENDTA parameter.
See Fixed-length options for journal entries for more information about the FIXLENDTA parameter.

Maximum receiver-size options

Use the following options to specify the maximum allowable size for your journal receivers and to specify
the largest allowable sequence numbers for journal entries. The Navigator for i equivalent is Receiver
Maximum Options in the Create Journal or Change Receivers dialog.

RCVSIZOPT(*SYSDFT)
Using RCVSIZOPT(*SYSDFT) is currently the same as specifying RCVSIZOPT(*RMVINTENT
*MAXOPT2). This is the default.

RCVSIZOPT(*MAXOPT1)
Use RCVSIZOPT(*MAXOPT1) to set the maximum size of a journal receiver attached to your journal to
approximately one terabyte (1 099 511 627 776 bytes) and a maximum sequence number of
9 999 999 999. Additionally, the maximum size of the journal entry which can be deposited is
15 761 440 bytes.

RCVSIZOPT(*MAXOPT2)
Use RCVSIZOPT(*MAXOPT2) to set the maximum size of a journal receiver attached to your journal to
approximately one terabyte (1 099 511 627 776 bytes) and a maximum sequence number of
9 999 999 999. However, with RCVSIZOPT(*MAXOPT2), the system can deposit a journal entry as
large as 4 000 000 000 bytes.

RCVSIZOPT(*MAXOPT3)
Use RCVSIZOPT(*MAXOPT3) to set the maximum size of a journal receiver attached to your journal to
approximately one terabyte (1 099 511 627 776 bytes). In addition, with RCVSIZOPT(*MAXOPT3) the
journal receiver can have a maximum sequence number of 18 446 744 073 709 551 600. With
RCVSIZOPT(*MAXOPT3), the system can deposit a journal entry as large as 4 000 000 000 bytes. You
cannot save or restore these journal receivers to any releases before V5R3M0. Nor can you replicate
them to any remote journals on any systems at a release before V5R3M0.

If you use RCVSIZOPT(*MAXOPT3) you must use the FROMENTLRG and TOENTLRG parameters to
specify a journal entry sequence number larger than 9 999 999 999 when you perform the following
commands:

• APYJRNCHG
• APYJRNCHGX
• CMPJRNIMG
• DSPJRN
• RCVJRNE
• RMVJRNCHG
• RTVJRNE

Related concepts
Fixed-length options for journal entries
You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTJRN) and Change
Journal (CHGJRN) commands to audit security related activity for journaled objects on your system. The
IBM Navigator for i equivalent function is Fixed length data to include on the Create Journal and
Change Receivers dialogs.
Related reference
Create Journal (CRTJRN) command
Change Journal (CHGJRN) command
Change Journal Attributes (CHGJRNA) command
Display Journal Receiver Attributes (DSPJRNRCVA) command
Apply Journaled Changes (APYJRNCHG) command
Apply Journaled Changes Extend (APYJRNCHGX) command

Journal management 41

Compare Journal Images (CMPJRNIMG) command
Display Journal (DSPJRN) command
Receive Journal Entry (RCVJRNE) command
Remove Journaled Changes (RMVJRNCHG) command
Retrieve Journal Entry (RTVJRNE) command
Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Journal object limit
The journal object limit (JRNOBJLMT) parameter allows you to set the maximum number of objects that
will be allowed to be journaled to the journal.

The journaled object limit is the maximum number of objects that can be journaled to one journal. You
can set the journal object limit to either 250 000 or 10 00 000. Use the Journal Object Limit
(JRNOBJLMT) parameter on the Create Journal (CRTJRN) or Change Journal (CHGJRN) command to set
the maximum number of journaled objects.

The value *MAX10M can only be specified for the Journal Object Limit (JRNOBJLMT) parameter if the
Receiver Size Option (RCVSIZOPT) parameter has one of the receiver maximum values specified, or if
RCVSIZOPT is *SYSDFT.

Some factors to consider in determining the journal object limit are:

• Number of objects that would be actively changing at any given time
• The impact journaling has on the performance of your system
• Importance in being able to get some parallelism at IPL, run-time, hot-site apply, and high-availability

(HA) replay time
• Complexity of managing your journal environment with multiple journals
• Complexity of your hot-site recovery procedures if you have dependencies between objects journaled to

different journals
• Number of objects you may need to journal in the future
• A journal employing the *MAX10M attribute cannot be saved and restored to any releases prior to V5R4

and it can not be replicated to any remote journals on any systems prior to V5R4.
• Once you have chosen the *MAX10M option, you cannot switch back to the *MAX250K value.
• If you choose the *MAX10M option, remote journaling will be ended for any remote journal on a release

prior to V5R4 and you will not be able to restart it.
• Increasing the quantity of objects associated with a single journal may increase your IPL time,

independent ASP vary on time, or disaster recovery time. As a general rule, if the number of actively
changing objects is likely to be greater than 5 000, consider journaling some of these objects to a
separate journal. The larger the number of actively changing objects for a given journal at system
termination, the longer it will take to recover the journal at IPL or vary on of an independent ASP.

*MAX250K

The maximum number of objects that can be journaled to one journal is 250 000. This is the default value.

*MAX10M

The maximum number of objects that can be journaled to a single journal is 10 000 000.

If the number of currently journaled objects is greater than the maximum number of journaled objects, a
start journal request will fail.

Note: A new receiver must be attached at the same time as this value is changed.

42 IBM i: Journal management

Minimized entry-specific data for journal entries
On the Create Journal (CRTJRN) and Change Journal (CHGJRN) commands, you can specify to allow for
the deposit of minimized journal entries. This will decrease the size of your journal entries.

When you specify the Minimized Entry Specific Data (MINENTDTA) parameter for an object type, the
entry-specific data for the entries of those object types can be minimized. You can minimize journal
entries for database physical files and data areas.

The system only minimizes entries if the minimized entry is smaller in size than a complete journal entry
deposit. Therefore, even if you specify this option, not all entries that are deposited will be minimized. The
Display Journal (DSPJRN) command, Receiver Journal Entry (RCVJRNE) command, Retrieve Journal Entry
(RTVJRNE) command, and QjoRetrieveJournalEntries API return data that indicates whether the entry is
actually minimized.

The *FILE, *DTAARA, and *FLDBDY values are allowed on the MINENTDTA parameter for the CRTJRN and
CHGJRN commands and indicate the following:

*FILE
Journaled files may have journal entries deposited with minimized entry specific data. The minimizing
will not occur on field boundaries, and the entry specific data may not be viewable and may not be
used for auditing purposes. This value cannot be specified if *FLDBDY is specified.

*FLDBDY
Journaled files may have journal entries deposited with minimized entry specific data. The minimizing
will occur on field boundaries, and the entry specific data will be viewable and may be used for
auditing purposes.

• The DSPJRN command always displays the entries which have been minimized on field boundaries
with formatting.

• The *FLDBDY value is not available in releases prior to V5R4.

*DTAARA
Journaled data areas may have journal entries deposited with minimized entry specific data.

Note: You cannot save or restore a journal receiver with minimized journal entries to any release prior to
V5R1M0, nor can they be replicated to any remote journal on a system at a release prior to V5R1M0.

The IBM Navigator for i equivalent is Minimized entry data on the Create Journal and Change Receivers
dialogs.

An optional parameter, Format minimized data (FMTMINDTA), is available on the Retrieve Journal Entries
(RTVJRNE) command, the Receive Journal Entries (RCVJRNE) command, and the Retrieve Journal Entries
(QjoRetrieveJournalEntries) API. This parameter allows you to specify whether entry specific data which
has been minimized on field boundaries will be returned in a readable format, which allows you to
determine what changes have been made. The possible values for the FMTMINDTA parameter are *NO or
*YES, with the default being *NO. By default, the methods used by these commands provide the data in
their raw format. The RTVJRNE command will indicate whether or not *FLDBDY has been specified for
Minimized entry specific data with a value of ‘2' in the already existing “MINIMIZED ENTRY DATA” field
for the appropriate entry formats. *FILE and *DTAARA will appear as '1' in their fields.

Using the Display Journal (DSPJRN) command, entries are viewable to the screen, an outfile, or printed
output. The DSPJRN command will also indicate whether or not the *FLDBDY value has been specified for
Minimized entry specific data on the “Display Journal Entry” panel and will indicate a value of ‘2' in the
“Minimized entry specific data” field of the *OUTFILE and in the “Min” field of the printed output. *FILE
and *DTAARA will appear as '1' in their fields.

Related concepts
Considerations for entries which contain minimized entry-specific data
Reduce the size of journal receivers by specifying minimized entry-specific data on the Create Journal
(CRTJRN) and Change Journal (CHGJRN) commands.
Related reference
Create Journal (CRTJRN) command

Journal management 43

Change Journal (CHGJRN) command
Related information
Journal code finder

Example: MINENTDTA (*FLDBDY)
The following SQL script provides an example of the of the *FLDBDY value used with the Minimized entry
specific data (MINENTDTA) parameter for the CRTJRN and CHGJRN commands.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer information.
/* Setup of environment */
create collection payroll
create table payroll/wages (employee int, wages char(10),
 startdate date, benefits char(50))
create index payroll/wageix on payroll/wages (employee)
CL:STRJRNAP FILE(PAYROLL/WAGEIX) JRN(PAYROLL/QSQJRN)
CL:CHGJRN payroll/QSQJRN jrnrcv(*GEN) minentdta(*FLDBDY)

/* Changes against files to be audited */
insert into payroll/wages values (1001, '22.00/hour',
 '01/01/2003', 'Qualifies for health benefits, 401k match')
insert into payroll/wages values (1002, '18.00/hour',
 '10/01/2004', 'Qualifies for health benefits')
update payroll/wages set wages = '24.50/hour' where employee = 1001
update payroll/wages set wages = '19.00/hour' where employee = 1002

/* Auditing procedure */
CL:DSPJRN JRN(PAYROLL/QSQJRN) JRNCDE((R)) OUTPUT(*OUTFILE) OUTFILFMT(*TYPE5)
 OUTFILE(PAYROLL/DSPJRNOUT) ENTDTALEN(*CALC) NULLINDLEN(4)
create table payroll/auditfile (fixeddata char(555), nvi char(4),
 employee int, wages char(10), startdate char(10), benefits char(50))
CL:CPYF FROMFILE(PAYROLL/DSPJRNOUT) TOFILE(PAYROLL/AUDITFILE)
 MBROPT(*ADD) OUTFMT(*HEX) FMTOPT(*NOCHK)
select nvi, employee, wages, startdate, benefits
 from payroll/auditfile

Note: the NVI (Null value indicator) field houses metadata which reveals which columns
residing within the journal entry were collected and what variety of data they house.
Some columns will house null values for fields which were collected, some will house
a copy of the data deposited during the update operation, while others will house
filler values representing the default value for that column. Such filler values will
appear on behalf of those columns whose contents were not changed and were not required
to be collected. These are the same columns which did not consume space within the
journal entry because a copy of their value was not collected. In order to recognize
the difference between these three varieties, refer to the table below. The first NVI
character corresponds to the first field (EMPLOYEE), the second NVI character
corresponds to the second field (WAGES), etc. When the NVI value is a '0', it signifies
that an exact copy of the field is present. When the NVI value is a '1', the corresponding
field houses a null. When the NVI value is a '9', the corresponding field was not collected
(because it was minimized) and, therefore, what will be displayed is the default value.

NVI EMPLOYEE WAGES STARTDATE BENEFITS
0000 1,001 22.00/hour 2004-01-01 Qualifies for health benefits, 401k match
0000 1,002 18.00/hour 2004-10-01 Qualifies for health benefits
0099 1,001 22.00/hour 0001-01-01
0099 1,001 24.50/hour 0001-01-01
0099 1,002 18.00/hour 0001-01-01
0099 1,002 19.00/hour 0001-01-01

The first 2 entries are for the inserts. The second 2 entries are the update before image and update after
image for the first update. The last 2 entries are the update before image and update after image for the
final update. Notice that the update entries have real data for the first 2 fields and default data for the
second 2 fields as indicated by the null value indicators. The first field is collected because it is a key field
for a journaled IX over this table. The second field is collected because the data within the field has
changed. Any of the fixed journal entry information (for example, sequence number, journal code) can
also be included by either substringing the fixed field in the audit file or creating the audit file with fields
formatted such as the *TYPE5 outfile.

44 IBM i: Journal management

Customization of the journal recovery count
This topic is about using the Journal Recovery Count (JRNRCYCNT) parameter in the CHGJRN command
to set the journal recovery ratio for each journal. The IBM Navigator for i equivalent function is the
Journal recovery count on the Journal Properties dialog box.

This parameter will indicate how many journal entries can exist between the last deposited entry and the
oldest forced entry for a journaled object. A value between 10 000 and 2 000 000 000 will be allowed. A
value of *SYSDFT will also be allowed to reset the journal's recovery count to the system default journal
recovery count.

The journal recovery count allows you to choose between faster abnormal IPL recovery and decreased
run time processing. Specifying a smaller value decreases the number of changes that would need to be
recovered from this journal during an abnormal IPL by increasing the frequency with which changed
objects are forced. Specifying a larger value increases the number of changes that would need to be
recovered for this journal during an abnormal IPL by decreasing the frequency with which changed
objects are forced.

Note: Changing the journal recovery count value may affect overall system performance as it affects the
utilization of auxiliary storage devices.

The WRKJRNA command indicates the Journal Recovery Count on the panel display and in the printed
output. A value of *SYSDFT displays if the system default journal recovery count is being used. All journals
are created with the system default journal recovery count, and if a value other than the system default
(*SYSDFT) is specified, the system default journal recovery count will no longer be in effect for the journal.
The Retrieve Journal Information API will also return the Journal Recovery Count.

The operating system is shipped with a system default journal recovery count of 250 000. The QJOCHRVC
API changes the system default journal recovery count for all newly created journals on the system and
all existing journals that have the system default (*SYSDFT) specified for their journal recovery count.

For additional information on Journal Recovery Count customization see:

• Change Journal Attributes (CHGJRNA) command
• Change Journal Recovery Count (QJOCHRVC) API

Fixed-length options for journal entries
You can use the Fixed Length Data (FIXLENDTA) parameter of Create Journal (CRTJRN) and Change
Journal (CHGJRN) commands to audit security related activity for journaled objects on your system. The
IBM Navigator for i equivalent function is Fixed length data to include on the Create Journal and
Change Receivers dialogs.

With the FIXLENDTA parameter, you can elect to include security related information in the fixed-length
portion of the journal entries. You cannot use the FIXLENDTA parameter and Minimize fixed-length
portion of entries at the same time.

Fixed-length options

With the FIXLENDTA parameter, you can specify that the following data is included in the journal entries
that are deposited into the attached journal receiver:

Job name
Use the *JOB value to specify the job name.

User profile name
Use the *USR value to specify the effective user profile name.

Program name
Use the *PGM value to specify the program name.

Program library name
Use the *PGMLIB value to specify the program library name and the auxiliary storage pool device
name that contains the program library.

Journal management 45

System sequence number
Use the *SYSSEQ value to specify the system sequence number. The system sequence number gives
a relative sequence to all journal entries in all journal receivers on the system.

Remote address
Use the *RMTADR value to specify the remote address, the address family and the remote port.

Thread identifier
Use the *THD value to specify the thread identifier. The thread identifier helps distinguish between
multiple threads running in the same job.

Logical unit of work identifier
Use the *LUW value to specify the logical unit of work identifier. The logical unit of work identifies
work related to specific commit cycles.

Transaction identifier
Use the *XID value to specify the transaction identifier. The transaction identifier identifies
transactions related to specific commit cycles.

Related concepts
Receiver size options for journals
A journal receiver holds journal entries that you might use for recovery and entries that the system might
use for recovery. For example, you might use record level entries, such as database record changes, and
file level entries, such as the entry for opening or closing a file. Also, the system writes entries that you
never see or use, such as entries for explicitly journaled access paths, for SMAPP, or for commitment
control.
Related reference
Create Journal (CRTJRN) command
Change Journal (CHGJRN) command

Journal cache
Journal caching is a separately chargeable feature with which you can specify that the system cache
journal entries in main storage, before writing them to disk. Journal caching is option 42 of the IBM i
operating system.

After you have purchased journal caching, you can specify it with the JRNCACHE parameter on the Create
Journal (CRTJRN) or Change Journal (CHGJRN) commands. The IBM Navigator for i equivalent function is
the Cache journal entries option on the Create Journal and Journal Properties dialogs.

Journal caching provides significant performance improvement for batch applications which perform
large numbers of changes to the data portion of the journaled objects. The actions that show a
performance improvement if journal caching is enabled are as follows:

• Changes to database files from add, update, or delete operations
• Changes to data areas from uses of the change data area command or API
• Changes to data queues from uses of the send data queue API or the receive data queue API
• Changes to integrated file system objects from various write and fclear operations on journaled stream
files

Applications using commitment control will see less improvement (commitment control already performs
some journal caching).

Journal caching modifies the behavior of traditional noncached journaling in batch. Without journal
caching, a batch job waits for each new journal entry to be written to disk. Journal caching allows most
operations to no longer be held up waiting for synchronous disk writes to the journal receiver.

Journal caching is especially useful for situations where journaling is being used to enable replication to a
second system.

It is not recommended to use journal caching if it is unacceptable to lose even one recent change in the
event of a system failure where the contents of main memory are not preserved. This type of journaling is
directed primarily toward batch jobs and may not be suitable for interactive applications where single
system recovery is the primary reason for using journaling.

46 IBM i: Journal management

Furthermore, the results from the following commands or API will not display the journal entries in the
cache:

• Display Journal (DSPJRN) command
• Retrieve Journal Entry (RTVJRNE) command
• Receive Journal Entry (RCVJRNE) command
• Retrieve Journal Entries (QjoRetrieveJournalEntries) API

The Display Journal Receiver Attributes (DSPJRNRCVA) Command and the Retrieve Journal Receiver
Information (QjoRtvJrnReceiverInformation) API show the total number of journal entries in a journal
receiver. However if some of those entries are in the cache, you cannot see these journal entries using the
DSPJRN, RTVJRNE, and RCVJRNE commands, and the QjoRetrieveJournalEntries API. For example, if
there are 100 journal entries in a journal receiver, the DSPJRNRCVA command and
QjoRtvJrnReceiverInformation API show that the total number of entries is 100. However, if the last 25
entries are in the journal cache, you can only view the first 75 entries.

Journal caching also affects remote journaling. Journal entries are not sent to the remote system until
they are written from the cache to disk. Since journal entries are not sent to the target system right away,
the number of journal entries that are not confirmed are always greater than if you are not using journal
caching.

The Change Journal Attributes (CHGJRNA) command can be used to set the maximum time that the
system waits before writing journal entries to disk when journal caching is used. Setting the CACHEWAIT
time limits the loss of lingering changes when there is a lull in journal entry arrival.

Contact your service representative for more information about ordering journal caching.

Related reference
Create Journal (CRTJRN) command
Change Journal (CHGJRN) command
Change Journal Attributes (CHGJRNA) command

Object assignment to journals
You can use one journal to manage all the objects you are journaling. Or, you can set up several journals if
groups of objects have different backup and recovery requirements. Every journal has a single attached
receiver. All journal entries for all objects being managed by the journal are written to the same journal
receiver.

When deciding how many journals to use and how to assign objects to journals, consider the following:

• Using one journal (and journal receiver) is the simplest method for managing both daily operations and
recovery.

• There is a limit of 10 000 000 objects that can be journaled to a single journal.
• If using a single journal receiver causes a performance bottleneck, you can alleviate this by placing the

journal receiver in a separate disk pool from the objects that you are journaling.
• To simplify recovery, assign objects that are used together in the same application to the same journal.
• If you are journaling database files, all the physical files underlying a logical file must be assigned to the

same journal.
• Files opened under the same commitment definition within a job can be journaled to different journals.

In commitment control, each journal is considered a local location.
• If your major applications have completely separate objects and backup schedules, separate journals

for the applications may simplify operating procedures and recovery.
• If you journal different objects for different reasons; such as recovery, auditing, or transferring

transactions to another system; you may want to separate these functions into separate journals.
However, you can assign an object to only one journal.

• If the security of certain objects requires that you exclude their backup and recovery procedures from
the procedures for other objects, assign them to a separate journal, if possible.

Journal management 47

• If you have basic disk pools with libraries, all objects assigned to a journal must be in the same disk
pool as the journal. The journal receiver may be in a different disk pool. If you place a journal in a disk
pool without libraries (non library disk pool), objects being journaled must be in the system disk pool.
The journal receiver may be in either the system disk pool or the non library disk pool with the journal.

• If you have independent disk pools, they must be library capable in order to journal objects on them.
You cannot journal objects on User-Defined File System (UDFS) independent disk pools.

Related concepts
Determining the type of disk pool in which to place journal receivers
Use disk pools (auxiliary storage pool) to control which objects are allocated to which groups of disk units.
If you are journaling many active objects to the same journal, the journal receiver can become a
performance bottleneck. One way to minimize the performance impact of journaling is to put the journal
receiver in a separate disk pool. This also provides additional protection because your objects are on
different disk units from the journal receiver, which contains a copy of changes to the objects.

Setting up journaling
This topic provides instructions on how to set up journals and journal receivers.

Setting up journaling consists of creating a journal and a journal receiver. When you create a journal, you
need the following information:

• The name of the journal.
• The library assignment of the journal.
• The journal receiver name to associate with the journal.
• Which disk pool to assign storage space for the journal (only if you are using the ASP parameter in the

CRTJRN command).
• The journal message queue.
• Whether or not to use manual or system journal-receiver management.
• Whether or not to have automatic deletion of the journal receiver.
• The receiver size options for the journal.
• The journal object limit for the journal.
• Who has authority to the journal.
• Whether or not to minimize entry-specific data (character-based interface only).
• Whether or not to use journal caching (character-based interface only).
• Whether or not to delay the next attempt to automatically change the journal receiver (character-based

interface only).
• Whether or not to delay the next attempt to automatically delete the journal receiver (character-based

interface only).
• Whether or not to include fixed-length data in the journal entries (character-based interface only).

When you create a journal receiver, you need the following information:

• The name of the journal receiver
• The disk pool assignment for journal receiver
• The storage threshold for the journal receiver
• Who has authority to the journal receiver

You can choose one of the following methods to set up journaling. For information about the difference
between the two methods, see “IBM Navigator for i versus the character-based interface for journaling
objects” on page 16.

• To set up journaling with Navigator for i, follow these steps.

1. With Navigator for i connect to the system that contains the objects you wish to journal.
2. Expand Journal Management.

48 IBM i: Journal management

3. Select Create a journal.
4. Start journaling for each object that you plan to journal.

• To set up journaling with the character-based interface, follow these steps.

1. Create the journal receiver using the Create Journal Receiver (CRTJRNRCV) command.
2. Create the journal using the Create Journal (CRTJRN) command.
3. Start journaling for each object that you plan to journal.

Related concepts
Planning setup for journals
The following topics provide information to plan configuration for journals. They provide information
about each option that you can select for journal.
IBM Navigator for i versus the character-based interface for journaling objects
There are two environments that you can use for journal management: IBM Navigator for i and the
character-based interface. Navigator for i provides a graphical interface for journaling that is easy to use
and does not require the use of control language (CL) commands. The character-based interface requires
the use of CL commands or APIs, but has more functionality than Navigator for i. Some of this function is
also available through the System i Navigator.
Starting and ending journaling and changing journaling attributes
This topic provides instructions on how to start and end journaling for all of the object types that
journaling supports.
Related reference
Create Journal Receiver (CRTJRNRCV) command
Create Journal (CRTJRN) command

Example: Setting up journaling
This topic provides several examples of setting up journaling in the character-based interface. The first
example sets up journaling with the both the journal and receiver in the system disk pool. The second and
third examples set up journaling with the journal and journal receiver in separate basic disk pools.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer information.

Journal and receiver in system disk pool

In this example, the library $DSTJRN is in the system disk pool and has the following description:

• Type: PROD
• Disk pool of library: 1
• Create authority: *EXCLUDE

1. The $DSTJRN library already exists in the system disk pool.
2. The Create Journal Receiver (CRTJRNRCV) command creates journal receiver RCVDST1 in the

$DSTJRN library:

CRTJRNRCV JRNRCV($DSTJRN/RCVDST1) THRESHOLD(1500000)
 TEXT('RECEIVER FOR $DSTJRN JOURNAL')

3. The journal receiver is placed in the system disk pool with the library because *LIBASP is the default
value for the ASP parameter on the CRTJRNRCV command.

4. Public authority for the journal receiver is *EXCLUDE because the Create authority value for the library
is *EXCLUDE and the default for the authority (AUT) parameter is *LIBCRTAUT.

5. The Create Journal (CRTJRN) command creates the associated local journal:

CRTJRN JRN($DSTJRN/JRNLA) JRNRCV($DSTJRN/RCVDST1)
 MNGRCV(*USER)

Journal management 49

The receiver size option is *MAXOPT2 and *RMVINTENT since the RCVSIZOPT(*SYSDFT) is the default for
the CRTJRN command.

Journal receiver in a nonlibrary basic disk pool

In this example, the journal receiver is in a nonlibrary basic disk pool and the journal is in the system disk
pool.

1. The CRTJRNRCV command creates journal receiver RCVDST2 in a nonlibrary basic disk pool

CRTJRNRCV JRNRCV($DSTJRN/RCVDST2) THRESHOLD(1000000)
 ASP(2) TEXT('RECEIVER FOR $DSTJRN JOURNAL')

2. The CRTJRN command creates the local journal in the system disk pool:

CRTJRN JRN($DSTJRN/JRNLB) JRNRCVR($DSTJRN/RCVDST2)
 MSGQ($DSTJRN/JRNLBMSG)
 MNGRCV(*USER)

3. When the receiver RCVDST2 exceeds 1 024 000 000 bytes of storage, a message (CPF7099) is sent to
the JRNLBMSG message queue in the $DSTJRN library.

4. The objects to be journaled must also be in the system disk pool.

Journal and journal receiver in basic disk pools

In this example, the libraries ARLIBR and ARLIB are in basic library disk pools and have the following
description:

ARLIBR

• Type: PROD
• Disk pool of library: 3
• Create authority: *USE
• Text description: A/R Receiver LIB

ARLIB

• Type: PROD
• Disk pool of library: 4
• Create authority: *USE
• Text description: A/R Receiver LIB

1. The CRTJRNRCV command creates journal receiver RCVDST3 in the library basic disk pool

CRTJRNRCV JRNRCV(ARLIBR/RCVDST3) THRESHOLD(1500000)
 TEXT('RECEIVER FOR ARJRN JOURNAL')

2. Because public authority is not specified, the public authority is set to *USE (the Create authority
value for the ARLIBR library).

3. The CRTJRN command creates the local journal that is associated with the RCVDST3 journal receiver:

CRTJRN JRN(ARLIB/ARJRN) JRNRCV(ARLIBR/RCVDST3)

When the RCVDST3 journal receiver exceeds 1 536 000 000 bytes of storage, the system creates a
new journal receiver named RCVDST4, attaches it to the journal, and sends message CPF7020 (journal
receiver detached) to the QSYSOPR message queue (the default queue).

4. All objects journaled to the ARJRN journal must be in ASP 4 because the journal is in ASP 4.
5. In this case, the database files and journal are in the same library. The journal receivers are in a library

that is saved and restored after the journal library if a single command is used, because ARLIBR comes
after ARLIB in a normal sort sequence.

50 IBM i: Journal management

Related reference
Create Journal Receiver (CRTJRNRCV) command
Create Journal (CRTJRN) command

Starting and ending journaling and changing journaling attributes
This topic provides instructions on how to start and end journaling for all of the object types that
journaling supports.

Why you must save objects after you start journaling
After you start journaling, it is essential that you save objects that you are journaling.

It is critical to save the journaled object after journaling is started to be able to apply journaled changes.
When you start journaling an object, the system assigns a unique journal identifier (JID) to that object. If
the object is a physical database file, each member is also assigned a unique JID. If you start journaling
on a distributed file, the piece on each system has its own unique JID. The JID is part of every journal
entry added to the journal receiver for a given object. The system uses the JID to associate the journal
entry with the corresponding journaled object. The copy of the object on the save media that was saved
before it was journaled does not have the journal identifier saved with it. Therefore, if this copy of the
object is restored to the system, the journal entries cannot be associated with the object and cannot be
applied.

After you start journaling an object, do the following:

• Save the object immediately after you have started journaling it, before any changes have occurred.
• Save a physical file or a logical file after you start journaling access paths for the file. This ensures that

when you restore the file, journaling access paths is started automatically.
• If you are using distributed files, save the file separately on the systems in the node group after starting

journaling for the distributed file.

Saving these objects ensures that you can completely recover all the objects by using your saved copy
and your journal receivers.

Updating the history

If you are not using the save-while-active function, update the history for the object when you save it so
that processing for applying and removing journaled changes will have the best information for
verification. If you save the object using the SAV command, change the UPDHST value to something other
than *NO. The default value for the SAV command is to not preserve the update history. For the other
Save related commands, the default value is to preserve the update history. When you use the save-
while-active function, you do not need to update the history for the object for verification when you apply
and remove journaled changes. When you use the save-while-active function, information is saved on the
media with the object and restored when the object is restored. This extra information provides the last
save information for applying and removing journaled changes.

Saving queue contents

• To save the contents of the queue as well, one must specify QDTA((*DTAQ) on the save commands.

The JID and other journaling operations

Not only do you need the JID to apply journaled changes, other journaling operations use the JID. All
formats, except the *TYPE1, *TYPE2, and *TYPE3 formats, for the Display Journal (DSPJRN), Receive
Journal Entry (RCVJRNE), or Retrieve Journal Entry (RTVJRNE) command include the JID for the object.
The JID is also included with the *TYPEPTR and *JRNENTFMT format for the RCVJRNE command, as well
as the Retrieve Journal Entries (QjoRetrieveJournalEntries) API. You can use the Retrieve JID Information
(QJORJIDI) API to retrieve an object's name (for an object not in the integrated file system) or the file
identifier (for an object in the integrated file system), if you know its JID.

Journal management 51

Commands for saving objects

You can use one of the following commands to save journaled objects:

Physical database files, data areas, and data queues

• Save Changed Objects (SAVCHGOBJ) and specify OBJTYPE(*object-type) OBJJRN(*YES)
• Save Object (SAVOBJ)
• Save Library (SAVLIB)
• Save (SAV)

Integrated file system objects

• SAV

See the Manually saving parts of your system topic for more information about saving journaled objects.

Related tasks
Manually saving parts of your server

Starting journaling
This topic provides information about how to start journaling for all object types.

After you have created the journal and journal receiver, you can start journaling. When journaling has
been started for an object, the system writes journal entries for all changes to the object.

The start journal command must obtain an exclusive lock on the object. However, for database physical
files and integrated file system objects, you can start journaling even if an object is open. The
recommended procedure for starting journaling is:

1. Start journaling the object.
2. Save the object. If the object is open for changing, this will be a save-while-active type save.

If you are not using the save-while-active function, it is highly recommended that you update the history
for the object when you save it so that processing for applying and removing journaled changes will have
the best information for verification. If you saved the object using the SAV command, the default value is
to not preserve the update history. Therefore, change the UPDHST value to something other than *NO.

For the other save related commands, the default value is to preserve the update history. When using
save-while-active, updating the history for the object is not needed for verification when applying and
removing journaled changes. In this case, information is saved on media with the object, and restored
when the object is restored. This extra information provides the last save information for applying and
removing journaled changes.

Normally, only the definition of a data queue is saved, not its contents. To save the contents of the queue
as well, one must specify QDTA(*DTAQ) on the save commands.

The maximum number of objects that can be associated with one journal is either 250 000 or 10 000 000.
The option of setting the journal object limit to 10 000 000 simplifies journaling because there are fewer
journals to manage, but allows for less parallelism during IPL and disaster recovery. You can also have all
objects created within a subdirectory start journaling automatically without having to be broken up when
you reach the 250 000 limit. The value *MAX10M can only be specified for the Journal Object Limit
(JRNOBJLMT) parameter if the Receiver Size Option (RCVSIZOPT) parameter has one of the *MAXOPT
values specified or if RCVSIZOPT is *SYSDFT.

The following links provide instructions to start journaling for each object type:

Journaling libraries
Allows you to start journaling changes to a library and automatically journal any objects created, moved,
or restored into a library.

Use the Start Journal Library (STRJRNLIB) command to enable the library journaling functions.
STRJRNLIB starts journaling changes (made to a library or list of libraries) to a specific journal, and

52 IBM i: Journal management

optionally starts journaling changes to objects within the library or list of libraries. To start journaling for a
library using IBM Navigator for i follow these steps.

1. With Navigator for i connect to the system that contains the library that you want to journal.
2. Expand File Systems
3. Select Integrated File System
4. Select QSYS.LIB
5. Select the library you want to journal and the Journaling action.

After journaling begins for the object, save the journaled object to preserve its journal attribute
information. Also, the object must be saved because, for example, journaled changes cannot be applied
to a version of the object that was saved before journaling was in effect.

Objects created, moved, and restored into the library that are eligible for journaling can automatically
start journaling to the same journal as the library. Which objects inherit the journal state of the library and
what journaling attributes they start journaling with are determined by the inherit journaling attributes of
the library. The inherit rules allow for objects to inherit the journal state of the library based on the name
of the object being added to the library. Objects with names that begin with specified characters, can be
selected to start journaling or omitted from starting journaling. With this capability, work files created in
production libraries can be prevented from starting journaling while production files can still have
journaling started.

See Start Journal Library (STRJRNLIB) for details on enabling library journaling.

Journaling database physical files (tables)
When you start journaling a physical file (table), you specify whether you want after-images saved, or
both before-images and after-images.

To reduce the number of journal entries, you can omit entries for open operations and close operations
for the file. To omit open and close entries from being journaled, select the Exclude open and close
entries in IBM Navigator for i. Or you can Specify OMTJRNE(*OPNCLO) on the Start Journal Physical File
(STRJRNPF) command. If you choose to omit open journal entries and close journal entries, be aware
that:

• You cannot use the journal to audit who has accessed the file.
• You cannot apply or remove journal changes to open boundaries and close boundaries using the

TOJOBO and TOJOBC parameters.

To start journaling for physical database files, follow these steps.

1. With Navigator for i, connect to the system with the object you want to journal.
2. Expand Databases
3. Click Set Database/Schema to use with Database Tasks and set the database and schema that

contain the object you want to journal.
4. Click Tables.
5. Select the table that you want to journal and select the Journaling action.

You can also use the STRJRNPF command to start journaling physical database files.

Related concepts
Reasons to journal before-images
When you journal an object, the system always writes an after-image for every change that is made. You
can request that the system write before-image journal entries for database files and data areas. All other
object types only journal after-images. This significantly increases the auxiliary storage requirements for
journaling.
Related reference
Start Journal Physical File (STRJRNPF) command
Related information
DB2 Universal Database

Journal management 53

Journal DB2 Multisystem files
When you successfully start journaling on a distributed file, the system distributes the start journal
request to the other servers in the node group.

All servers are attempted even if there is a failure at any one server. Once journaling is started on a server
in the node group, it stays started even if there is a failure at any of the other servers.

The journal has to exist with the same name on all servers in the node group. The journal itself is not
distributed, only the Start Journal Physical File (STRJRNPF) command.

The journal and its receiver are associated only with the changes made to the file on the one server. If you
have two servers in the node group and a file is updated on both servers, the update on server A is only in
server A's journal and receiver and the update on system B is only in system B's journal and receiver.

The journal identifier (JID) is different on each piece of the distributed file. Each server piece has its own
JID. This means that you cannot use the journal entries that are deposited on one server to apply or
remove journaled changes to a different piece of the file on another server.

Related concepts
Distributed database administration
Related reference
Start Journal Physical File (STRJRNPF) command

Logical file journaling
The system automatically starts journaling logical files built over a journaled physical file when it finds a
need to. This is referred to as covert journaling. The result is journal entries recording things like authority
changes for logical files. Any access path associated with the logical file is not covertly journaled.

The covertly journaled logical files show as journaled objects when viewing objects journaled to a journal.
They also report as being journaled when using the Display Object Description (DSPOBJD) command and
other interfaces that return similar information.

If the based on physical file ends journaling, then any covert journaling of the logical files built over the
physical file also ends.

Journaling integrated file system objects
You can journal integrated file system objects if they are in the "root"(/), QOpenSys, and user-defined file
systems.

The following integrated file system objects can be journaled:

• Stream files (*STMF)
• Directories (*DIR)
• Symbolic links (*SYMLNK)

When you use the SAV command to save an integrated file system object, the default is to not update the
history information for the object. If you plan to apply journaled changes to the objects you are journaling,
and you are not using the save-while-active function, specify to preserve the update history information
about the SAV command.

If you are journaling *DIR or *STMF objects, you can reduce the number of journal entries in the journal
receiver. In IBM Navigator for i, if you ensure that Include open, close, and synchronization entries is
deselected, or specify OMTJRNE(*OPNCLOSYN) on the Start Journal (STRJRN) command, you can omit
entries for open operations, close operations, and force entries for the object. If you choose not to journal
these entries be aware of the following:

• You cannot use the journal to audit who has accessed the object for opens, closes, and forces.
• If an object is journaled, it cannot be memory mapped.
• You cannot apply journal changes to open boundaries and close boundaries using the TOJOBO and

TOJOBC parameters.
• This option is only valid for *DIR and *STMF objects.

54 IBM i: Journal management

If you are journaling symbolic links, the system does not follow the symbolic link to determine what to
journal. That is, the system only journals the actual symbolic link. If you want to journal the end object,
you must journal the end object directly.

If you are journaling a directory and select Journal new files and folders in IBM Navigator for i
(INHERIT(*YES) on the STRJRN command), then objects created into that directory will be automatically
journaled to the same journal. Therefore use caution because you can journal more objects than you
realize. Also, even if this option is on, if an object is restored to the directory, it keeps the journaling
attributes it had before the restore operation (when it was saved), unless it has never previously been
journaled. In that case, the object will be journaled. For example, if you restore a stream file that is
journaled to Journal X, but the directory you restore the stream file to is being journaled to Journal Y, the
stream file will still be journaled to Journal X, even if the directory has the inherit option on.

Note: If you end journaling for an object and then rename that object in the same directory in which it
currently resides, journaling is not started for the object, even if the directory has the inherit option on.

If you select Current folder and all subfolders in Navigator for i (SUBTREE(*ALL) on the STRJRN
command), journaling only starts on objects that exist in the subtree when the STRJRN command is
executed. To start journaling on objects that are added to the subtree after this point you have three
options:

• You can start journaling for each object after it is created.
• You can select Journal new files and folders (INHERIT option) on the original start journal request.
• After journaling is started you can use the Change Journaled Objects (CHGJRNOBJ) command and

specify INHERIT(*YES).

If you select to journal the current folder and all subfolders, and there are object types in the subtree that
are not supported for journaling, the unsupported object types are skipped over so that only object types
that are supported for journaling get journaled.

Restrictions for journaling integrated file system objects are as follows:

• You cannot journal files which are memory mapped. The Memory Map a File (mmap()) API
documentation has information about memory mapping.

• IBM i systems allocate disk space for Integrated xSeries servers as virtual disk drives. From the
perspective of the IBM i system, virtual drives appear as byte stream files within the integrated file
system. You cannot journal these byte stream files. See the Windows environment on IBM i topic for
more information about Integrated xSeries servers.

• Virtual volume files cannot be journaled.
• Temporary user-defined file systems cannot be journaled.

To start journaling for integrated file system objects, do the following steps:

1. With IBM Navigator for i, connect to the system on which the object that you want to journal is located.
2. Expand File Systems.
3. Select Integrated File Systems.
4. Expand the file system with the object you want to journal.
5. If you are journaling a directory, select the directory and the Journaling action.
6. If you are journaling an object in a directory, expand the directory and select that object and the

Journaling action.

You can also use the STRJRN command or Start Journal (QjoStartJournal) API for integrated file system
objects that you want to journal.

Related concepts
Windows environment on System i
Integrated file system
Related reference
Memory Map a File (mmap()) API

Journal management 55

Start Journal (STRJRN) command
Start Journal (QjoStartJournal) API

Journal access paths
After you have started journaling for physical files, you can set up explicit journaling of access paths.

You can use the Start Journal Access Path (STRJRNAP) command to start journaling access paths owned
by physical files or logical files. When you start journaling access paths for a physical file, the system
journals any of these, if they exist:

• Keyed access paths
• Access paths for primary key constraints
• Access paths for unique constraints
• Access paths for referential constraints
• Encoded vector access paths
• Many access paths with sort sequence tables

Some access paths that use an international component for Unicode (ICU) sort sequence table may be
too complex to be journaled.

All underlying physical files must be journaled to the same journal before you can start journaling for an
access path. The entries created when you journal an access path are used to recover the access path
after the system ends abnormally. They are not used when you apply or remove journal entries. You can
specify RCVSIZOPT(*RMVINTENT) for the journal to have the system remove these entries when they are
no longer needed for recovery. This reduces the disk storage requirements for the journal receiver.

You cannot start journaling for an access path that is in use. The STRJRNAP command must obtain an
*EXCL lock on the logical file.

The recommended procedure for starting access path journaling is as follows:

1. Use the STRJRNAP command to start journaling the access path.
2. Save all the underlying physical files, specifying ACCPTH(*YES).

If you have target recovery times for access paths set up on your system, you might not need to set up
explicit journaling for access paths.

Related concepts
Reasons to journal access paths
If you journal access paths, the system can use the journal entries to recover access paths instead of
rebuilding them completely.
Related reference
Start Journal Access Path (STRJRNAP) command

Journaling data areas and data queues
When you start journaling for a data area or a data queue, the system writes journal entries for all changes
to the data area or data queue.

The following restrictions apply for journaling data areas and data queues:

• For data areas, only local external data area objects may be journaled. The special data areas (*LDA,
*GDA, *PDA) and DDM data areas cannot be journaled.

• For data queues, only local data queues are supported. DDM data queues cannot be journaled.

When you start journaling a data area, you specify whether you want after-images saved, or both before-
images and after-images.

To start journaling for data areas and data queues, follow these steps.

1. With IBM Navigator for i, connect to the system with the data area or data queue you want to journal.
2. Expand File Systems.

56 IBM i: Journal management

3. Expand Integrated File System.
4. Expand QSYS.LIB.
5. Select the library with the data area or data queue.
6. Select the data area or data queue you want to journal and select the Journaling action.

Or, after you have created the journal, use one the following commands or API for each data area or data
queue you want to journal:

• Start Journal (STRJRN) command
• Start Journal Object (STRJRNOBJ) command
• Start Journal (QjoStartJournal) API

Related reference
Start Journal (STRJRN) command
Start Journal Object (STRJRNOBJ) command
Start Journal (QjoStartJournal) API
Related information
CL programming
Work Management

Automatically starting journaling
You can automatically journal objects created into libraries or directories.

• Objects created in, moved into, or restored into a journaled library will automatically start journaling. To
start library journaling, see “Journaling libraries” on page 52.

• Using a data area named QDFTJRN, you can automatically start journaling for a non-integrated file
system object. The QDFTJRN data area must be created by the user.

• To automatically start journaling for integrated file system objects, see the discussion of journal
inheritance in “Journaling integrated file system objects” on page 54.

Automatic journaling using QDFTJRN

Using data area named QDFTJRN, you can automatically start journaling when a non-integrated file
system object (data area, data queue, or file) is created, moved, or restored into the library, thus, ensuring
the very first change to the object will be recorded in the journal and that no lock on the user's part
prevents journaling from starting in the library. The QDFTJRN data area must exist in the library where the
object is being added.

If a data area called QDFTJRN exists 1) in the same library into which the data area, data queue, or
physical file is created, or 2) in the same schema that the SQL table is created into, and 3) the user (in
either instance) is authorized to the data area, journaling will be started to the journal named in the data
area if all the following are true:

• The identified library for the data area, data queue, or physical file or identified schema for the SQL
table must not be QSYS, QSYS2, QRECOVERY, QSPL, QPTFOBJ1, QPTFOBJ2, QRCL, QRPLOBJ, QGPL,
QTEMP, or any of the independent auxiliary storage pool (IASP) equivalents to these libraries. (An iASP
equivalent of QRPLOBJ, for example, is QRPLxxxxx where 'xxxxx' is the number of a primary auxiliary
storage pool (ASP).)

• The journal specified in the data area must exist and the user must be authorized to start journaling to
the journal.

See Table 1 on page 58 for a detailed description of the values within the data area. When creating SQL
tables within a schema, the QSQJRN journal within the schema is used to start journaling the tables. To
start journaling the tables to a different journal than QSQJRN within the schema, create the QDFTJRN
data area in the schema and specify a different journal name inside the QDFTJRN data area.

Journal management 57

Table 1. Formats of the QDFTJRN data area.

Offset Field Format Description

1 Library name Char (10) Name of the library that contains the journal.

11 Journal name Char (10) Name of the journal to use to automatically start
journaling.

21 Repeat the set of Object type and Option as needed:

Object type Char (10) Object type value:

*FILE = database files or SQL tables
*DTAARA = data areas
*DTAQ = data queues
*ALL = all journal eligible objects which are not in an
integrated file system
*NONE = no objects

Option Char (10) Option:

*CREATE = Start journaling when an object is created
into the library
*MOVE = Start journaling when an object is moved into
the library
*RESTORE = Start journaling when an object is restored
into the library
*ALLOPR = Start journaling in all cases possible
*RSTOVRJRN = Override the saved object's journal and
start journaling to the journal name in this QDFTJRN
data area when the object is restored into the library

Note: The values in the data area must be in upper case.

Restore impacts for library-based objects

Library journaling and the QDFTJRN data area provide more options for journaling during the restore
operation. When using the *RESTORE keyword, even if an object was not journaled at save time, the
operating system automatically records the restore operation to the journal the library is journaled to, or
to the journal specified in the QDFTJRN data area. However, if the object was journaled at save time and
that journal still exists on the system, the library's journal and the journal specified in the QDFTJRN data
area are ignored. In this case, the operating system still records the restore operation to the journal used
at save time.

You can use the *RSTOVRJRN keyword to override the journal used at save time. After you specify the
*RSTOVRJRN keyword, the operating system always records the restore operation to the library's journal
or to the journal that is specified in the QDFTJRN data area. In this case, any journal used at save time is
ignored.

If the object being restored still exists on the system, the *RSTOVRJRN keyword is ignored during the
restore operation.

If you changed the journal of your object using the *RSTOVRJRN keyword, save your object as soon as
possible to enable future recovery operations with the Apply Journaled Changes (APYJRNCHG), Apply
Journaled Changes Extend (APYJRNCHGX), and Remove Journaled Changes (RMVJRNCHG) commands.
The save operation records the journal receiver and the new journal as the journal receiver and journal to
use for recovering your object from the point of its last save. The save operation also updates the last
saved date of your object, if UPDHST(*YES) is specified on the save command.

58 IBM i: Journal management

See the Start Journal Library (STRJRNLIB) command for more information on using the *RSTOVRJRN
keyword with library journaling.

To use the *RSTOVRJRN keyword to override the journal used at save time, position the *RSTOVRJRN
keyword in the QDFTJRN data area before the references to the *ALLOPR or *RESTORE operation option.
Here is an example.

For example, the files restored into library OVERRIDE are currently journaled to journal SAVEJRN in
library SAVELIB. But you want the files to be journaled to journal OVERJRN in library JRNLIB, while you
still want the restored data areas or data queues to be journaled to the save time journal. And you also
want any new objects created into the library OVERRIDE to be journaled to journal OVERJRN in library
JRNLIB. To achieve this, use the following commands to create the QDFTJRN data area.

CRTDTAARA DTAARA(OVERRIDE/QDFTJRN) TYPE(*CHAR) LEN(80)
CHGDTAARA DTAARA(OVERRIDE/QDFTJRN (1 10)) VALUE(JRNLIB)
CHGDTAARA DTAARA(OVERRIDE/QDFTJRN (11 10)) VALUE(OVERJRN)
CHGDTAARA DTAARA(OVERRIDE/QDFTJRN (21 10)) VALUE(*FILE)
CHGDTAARA DTAARA(OVERRIDE/QDFTJRN (31 10)) VALUE(*RSTOVRJRN)
CHGDTAARA DTAARA(OVERRIDE/QDFTJRN (41 10)) VALUE(*ALL)
CHGDTAARA DTAARA(OVERRIDE/QDFTJRN (51 10)) VALUE(*ALLOPR)

Note: The library and journal names in columns 1-20 must be in upper case.

Related tasks
Journaling integrated file system objects
You can journal integrated file system objects if they are in the "root"(/), QOpenSys, and user-defined file
systems.

Changing journaling attributes of journaled objects without ending journaling
This topic provides information about how to change the journaling attributes of a journaled object
without ending journaling.

Use the Change Journal Object (CHGJRNOBJ) command to change journaling attributes of journaled
objects without ending and restarting journaling. You can use the CHGJRNOBJ command to do the
following:

• Change whether you are journaling both before and after images or just after images.
• Change whether you are omitting open, close, and force journal entries from the journal receiver.
• Change whether you are journaling objects that are created in a directory.
• Remove the partial transaction state from a database file.
• Change what objects in libraries automatically start journaling.
• Change whether journal entries for an object are filtered by remote journal filtering by object.

Except for removing the partial transaction state from a database file, the objects whose attributes you
are changing must currently be journaled. Also, you can only change one attribute at a time.

Before and after images

Use the Images (IMAGES) parameter to change if you are journaling only after images or both before and
after images. The object whose journaling attributes you are changing must already be journaled. You can
change this journaling attribute for the following object types:

• Database physical files
• Data areas

Omitting journal entries

Use the Omit Journal Entries (OMTJRNE) parameter to change whether to omit open, close, and force
journal entries from the journal receiver. The object whose journaling attributes you are changing must
already be journaled. You can change this journaling attribute for the following object types:

• Database physical files

Journal management 59

• Integrated file system stream files
• Integrated file system directories

Journal new objects in a directory

Use the New Objects Inherit Journaling (INHERIT) parameter to change whether journaling starts
automatically for objects that are created in a journaled integrated file system directory after the attribute
is changed.

Partial transaction state

Attention: Use of this parameter can result in loss of data. Use this parameter only as a last resort,
if the appropriate journal receivers are unavailable to do an apply or remove journaled changes
operation.

Use the Partial Transactions (PTLTNS) parameter to allow an object that contains partial transactions to
be used. You use this parameter only for one of the following reasons:

• You are unable to apply or remove the journaled changes to complete or remove the transactions
because the journal receivers are unavailable.

• The object was involved in a rollback operation that was ended early and there is no saved version of
the object to use.

Only use this parameter as a last resort because the partial transactions remain within the object.

Inherit rules

Use the inherit rules (INHRULES) parameter to change which objects automatically start journaling when
created, moved, or restored into a journaled library after the attribute is changed.

Remote journal filter

Use the remote journal filter (RMTJRNFTR) parameter to change whether journal entries deposited for an
object are eligible for remote journal filtering by object.

Consideration for distributed files

When you successfully change the journal attributes for a distributed file, the system distributes the
request to change a journal attribute to the other servers in the group. All servers are attempted even if
there is a failure at any one server. When the journaling attribute has been changed on a server in the
node group, it remains that way even if there is a failure at any of the other servers.

Related tasks
Example: Recovering objects with partial transactions
If you restore an object that was saved with a save-while-active operation that specified that the object
can be saved before it reaches a commitment boundary, it can have partial transactions. To recover
objects that are in a partial state you must perform an apply or a remove journaled changes operation.
Related reference
Change Journaled Object (CHGJRNOBJ) command

Ending journaling
This topic provides information about how to end journaling and why ending journaling might be
necessary.

You may need to end journaling for several reasons:

• If a journal is damaged and you need to delete it, you must first end journaling for all objects assigned to
the journal.

• In some situations, you might want to end journaling before running a large batch application, if that
application has exclusive use of the object. This is done either to improve the speed of the batch

60 IBM i: Journal management

application or to reduce the auxiliary storage needed for the journal receiver. If you do this, use this
method:

1. End journaling for the objects.
2. If journaling physical files save them specifying ACCPTH(*YES).
3. If journaling other object types, save them.
4. Run the batch application.
5. Start journaling for the objects.
6. Save the physical files, specifying ACCPTH(*YES).
7. Save the other journaled objects.

To end journaling, proceed as follows:

1. End journaling for access paths with the End Journal Access Path (ENDJRNAP) command
2. With IBM Navigator for i, connect to the system with the object that you want stop journaling.

a) Expand Journal Management.
b) Select Set Database/Library to use with Journal Tasks and specify the database and library that

contain the object you want to end journaling for.
c) Select Journals.
d) Select the journal to which the object is journaled and the Show Journaled Objects action.
e) Select the correct tab for the object type of the object you want to end journaling for.
f) Select the object and the End Journaling action.

Or, use the following commands or API to end journaling:

• End Journal Library (ENDJRNLIB) command for libraries
• End Journal Access Path (ENDJRNAP) command for access paths
• End Journal Physical File (ENDJRNPF) command for database files
• End Journal (ENDJRN) command for integrated file system objects
• End Journal Object (ENDJRNOBJ) command for other objects
• End Journal (QjoEndJournal) API for integrated file system objects, data areas, and data queues.

You must end journaling for any access paths based on a physical file before you can end journaling for
the physical file.

In the following cases, the system implicitly ends journaling:

• When you delete an object, journaling is ended for the object.
• When you remove a physical file member, journaling is ended for the member.
• When you remove a physical file member, journaling is ended for any access paths associated with the

member unless an access path is shared and journaled by another file member.
• When you delete a file, journaling is ended for any access paths associated with the file unless an

access path is shared and journaled by another file.

When you successfully end journaling on a distributed file, the system distributes the end journal request
to the other systems in the node group. All systems are attempted even if there is a failure at any one
system. Once journaling is ended on a system in the node group, it stays ended even if there is a failure at
any of the other systems.

Even if a distributed file is not locally journaled, and if you specify the file name and the journal name on
the ENDJRNPF command, the system will still attempt to distribute the end-journal request to the other
systems in the file node group.

Related concepts
Distributed database administration

Journal management 61

Related reference
End Journal Access Path (ENDJRNAP) command
End Journal Physical File (ENDJRNPF) command
End Journal (ENDJRN) command
End Journal Object (ENDJRNOBJ) command
End Journal Library (ENDJRNLIB) command
End Journal (QjoEndJournal) API

Managing journals
This topic provides instructions for managing your journaling environment.

Managing your journaling environment requires these basic tasks:

• Keep records of which objects you are journaling.
• Evaluate the impact on journaling when new applications or logical files are added.
• Regularly detach, save, and delete journal receivers.

Your journal receivers enable you to recover changes to your important objects. They also provide an
audit trail of activity that occurs on your system.

Protect your journal receivers by regularly detaching them and saving them; or you can have the system
take over the job of changing journal receivers by specifying system journal-receiver management.

Related concepts
Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTJRN) command, you can
select to have either system managed or user managed journal receivers.

Swapping, deleting, saving and restoring journals and receivers
The management tasks that you need to perform most often for journaling are swapping journal receivers
and saving and deleting journal receivers.

Swapping journal receivers
An important task for journal management is to swap journal receivers. You typically swap journal
receivers when they reach their storage threshold. You can swap journal receivers either with IBM
Navigator for i or with the Change Journal (CHGJRN) command. If you use system journal-receiver
management, the system changes journal receivers for you.

You can use Navigator for i or the Change Journal (CHGJRN) command to change the attributes of the
journal. You can also use the Navigator for i or the CHGJRN command to change the receiver for a journal
(detach the current receiver, create and attach a new receiver) and to reset the sequence number for
journal entries.

When you swap a journal receiver, the old journal receiver becomes detached. When you detach a journal
receiver, you cannot reattach it to any journal. You can do these things with a detached journal receiver:

• Save or restore it.
• Display entries.
• Retrieve entries.
• Receive entries.
• Use it to apply or remove journaled changes.
• Use it to compare journaled images.
• Display its status or position in a receiver chain.
• Delete it.
• Replicate it with the remote journal function.

You must swap journal receivers to change the following journaling attributes:

62 IBM i: Journal management

• Manual or system journal management (MNGRCV parameter)
• Receiver size options (RCVSIZOPT parameter)
• Minimized entry specific data (MINENTDTA parameter)
• Journal receiver threshold value (THRESHOLD parameter)
• Fixed-length data (FIXLENDTA parameter)
• Journal object limit (JRNOBJLMT parameter)
• Reset journal sequence numbers (SEQOPT parameter)

To use Navigator for i to swap a journal receiver, follow these steps:

1. With Navigator for i connect to the system you want to use.
2. Expand Journal Management.
3. Select Set Database/Library to use with Journal Tasks and specify the database/library that you

want to work with.
4. Select Journals.
5. Select the journal you want to use and the Change Receivers action.
6. Optionally, you can change any options you want.
7. Click OK. The Change Receivers dialog closes. The new journal receiver is automatically created and

attached.

You can also use JRNRCV(*GEN) on the Change Journal (CHGJRN) command to create the new
receiver with the same attributes as the currently attached receiver, and in the same library. These
attributes include the owner, private authorities, public authority, object auditing, ASP identifier,
threshold, and text.

Note: The system will call all user exit programs registered on the QIBM_QJO_CHG_JRNRCV exit point
whenever a journal receiver is detached from a journal. See Change Journal Receiver Exit Program for
more information.

CAUTION: If you use save-while-active operations to save objects before they reach a
commitment boundary, ensure that you save the journal receiver after you detach it. If you delete
the journal receiver before it is saved, you can lose the ability to recover any pending transactions
for those objects.

Related concepts
Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTJRN) command, you can
select to have either system managed or user managed journal receivers.
Threshold (disk space) for journal receivers
When you create a journal receiver with System i Navigator or the Create Journal Receiver (CRTJRNRCV)
command, you specify a disk space threshold that indicates when you want the system to warn you or
take action.
Related tasks
Save your server while it is active

Journal receiver chains
Journal receivers that are associated with a journal (that is presently or previously attached to the journal)
are linked in one or more receiver chains. Each journal receiver, except the first one, has a previous
receiver that was detached when the current receiver was attached. Each journal receiver, except the one
that is currently attached, also has a next receiver.

The following figure illustrates the process by which journal receiver chains are created. If you leave the
previously attached receivers RCVA7 through RCVA9 online, you can use them to apply changes, to
remove changes, or to display journal entries without restoring them first.

Journal management 63

This figure shows four journal receivers for journal JRNA. Journal receivers RCVA7, RCVA8, and RCVA9
are online. Journal receiver RCVA10 is currently attached to journal JRNA. Journal receivers RCVA1
through RCVA6 are saved to backup media and not are not on the system.

If a complete copy of a receiver is missing in a chain of journal receivers linked together in the previously
described relationship, the result is a chain break. Avoid receiver chain breaks. A receiver chain break
indicates that any changes made between the last entry in the last receiver in one chain and the first entry
in the first receiver in the next chain are not available in any journal receiver on the system.

Note: If you use save-while-active operations to save objects before they reach a commitment boundary,
it is crucial that you keep track of your journal receiver chains.

Using a save-while-active operation to save objects before they reach a commitment boundary can result
in objects saved to the media that have partial transactions. A break in a journal receiver chain can
prevent you from recovering these objects with partial transactions.

A set of receivers for a journal that has one or more receiver chain breaks has multiple receiver chains.
Receiver chain breaks result from the following:

• You restored an old journal receiver and its next receiver is not on the system.
• A journal receiver was saved while it was attached, a partial receiver is restored, and no complete copy

of the receiver is on the system or restored.
• A receiver that has not had its storage freed by a save operation is restored, and the next receiver has

had its storage freed by a save operation.
• The journal is restored. All journal receivers associated with the previous copy of the journal (before the

journal was deleted and restored) will not be in the same receiver chain as the currently attached
journal receiver.

• The user or the system deleted a damaged or destroyed journal receiver from the middle of a chain.
• A journal receiver from another system is restored. The journal receiver will be associated with a journal

at restore time if the associated library and journal on the source system had the same library name and
journal name as the library and journal on the target system.

• You chose to replicate specific receivers instead of all receivers in the receiver directory chain. This
occurred while replicating journal receivers from a source system to a target system.

You cannot use the following commands and API across multiple receiver chains:

64 IBM i: Journal management

• Apply Journaled Changes (APYJRNCHG) command
• Apply Journaled Changes Extend (APYJRNCHGX) command
• Remove Journaled Changes (RMVJRNCHG) command
• Receive Journal Entries (RCVJRNE) command
• Display Journal (DSPJRN) command
• Retrieve Journal Entries (RTVJRNE) command
• Compare Journal Images CMPJRNIMG command
• Retrieve Journal Entries (QjoRetrieveJournalEntries) API

If multiple receiver chains exist, you need to determine:

• Whether any journal entries are missing.
• Whether your data will be valid if you use more than one receiver chain.

If you decide to proceed, you must run a separate command for each receiver chain.

You can use the Work with Journal Attributes (WRKJRNA) command to display the receiver chain (F15)
and work with journal receivers.

Related tasks
Displaying information for journaled objects, journals, and receivers
IBM Navigator for i, Control Language commands, and APIs provide several ways for you to display
information about journaled objects, journals, and journal receivers.
Save your server while it is active
Example: Recovering objects with partial transactions
If you restore an object that was saved with a save-while-active operation that specified that the object
can be saved before it reaches a commitment boundary, it can have partial transactions. To recover
objects that are in a partial state you must perform an apply or a remove journaled changes operation.

Resetting the sequence number of journal entries
Normally, when you change journal receivers, you continue the sequence number of journal entries. When
the sequence number becomes very large, consider resetting the sequence to start the numbering at 1.
You can reset the sequence number only when all changes are forced to auxiliary storage for all journaled
objects and commitment control is not active for the journal. Resetting the sequence number has no
effect on how the new journal receiver is named.

Some conditions prevent you from resetting the sequence number, such as an active commit cycle. If the
system cannot reset the sequence number, you receive message CPF7018.

If you use system journal-receiver management for a journal and RCVSIZOPT(*MAXOPT3) is not
specified, the sequence number for the journal is reset to 1 whenever you restart the system or vary on
the independent disk pool containing the journal. When you restart the system or vary on an independent
disk pool, the system performs the change journal operation for every journal on the system or disk pool
that specifies system journal-receiver management. The operation that the system performs is equivalent
to CHGJRN JRN(xxx) JRNRCV(*GEN) SEQOPT(*RESET). The sequence number is not reset if journal
entries exist that are needed for commitment control IPL recovery. When RCVSIZOPT(*MAXOPT3) is
specified, the sequence number is only reset when you restart your system or vary on an independent
disk pool if it is approaching the maximum value.

If you specify RCVSIZOPT(*MAXOPT1), RCVSIZOPT(*MAXOPT2), or RCVSIZOPT(*SYSDFT) for the journal
to which you attached the receiver, the maximum sequence number is 9 999 999 999. If you specify
RCVSIZOPT(*MAXOPT3), the maximum sequence number is 18 446 744 073 709 551 600. If you do not
specify a receiver-size option, the maximum sequence number is 2 147 483 136. If these numbers are
reached, journaling stops for that journal. Whenever you change journal receivers, the system tells you
what the starting sequence number is through message CPF7019. Also, when you are approaching the
sequence number limit, CPF7019 is additionally sent to the QSYSOPR message queue every time you
change journal receivers.

Journal management 65

The system sends a warning message (CPI70E7) to the journal's message queue when the sequence
number exceeds 2 147 000 000. If you specified RCVSIZOPT(*MAXOPT1), RCVSIZOPT(*MAXOPT2), or
RCVSIZOPT(*SYSDFT) for the journal that you attached the receiver to, the system sends the warning
message when the sequence number exceeds 9 900 000 000. If you specified RCVSIZOPT(*MAXOPT3),
the system sends the warning message when the sequence number exceeds
18 446 644 000 000 000 000. If you use system change-journal management support
(MNGRCV(*SYSTEM)) for the journal, the system attempts to change the journal and reset the sequence
number one time. The message is sent only if the attempt is not successful.

To reset the sequence numbers for journal entries proceed as follows:

1. With IBM Navigator for i, connect to the system you want to use.
2. Expand Journal Management.
3. Select Set Database/Library to use with Journal Tasks and specify the database and library that you

want to work with.
4. Select Journals.
5. Select the journal you want to use.
6. Select the Change Receivers action and click Reset sequence number.
7. Click OK. The Change Receivers dialog closes. The new journal receiver is automatically created and

attached.

Note: If you attempt to use the CHGJRN command with the same journal receiver name and
SEQOPT(*CONT), you might receive the message CPF701A. To recover, delete the journal receiver and
use the CHGJRN command again.

To change the sequence number with the Change Journal (CHGJRN) command, specify the
SEQOPT(*RESET) parameter.

Related reference
Change Journal (CHGJRN) command

Deleting journal receivers
Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal
management task is to delete journal receivers after you no longer need them.

When you determine whether to delete a journal receiver, consider the following:

• Journal receivers you need for recovery

Do not delete a journal receiver that has not been saved if you need that journal for recovery. Any
journal receiver that you need to perform an apply or remove journaled changes operation is needed for
recovery.

Attention: Use care when you delete journal receivers if you use save-while-active operations to
save objects before they reach a commitment boundary. Ensure that you save the journal
receivers before you delete them. If an object is saved before it reaches a commitment boundary
it can have partial transactions. If you need to restore objects with partial transactions, you must
have access to the journal receivers that were attached during the partial transactions to avoid
data loss.

To determine if a journal receiver has been saved, in IBM Navigator for i select the journal receiver, and
select the Properties action. If the Saved field shows no date, then you have not saved the journal
receiver.

If you have saved the journal receiver, but the journaled objects are not saved, then you still need that
journal receiver for recovery. If you have space on your system, wait to delete journal receivers until it is
unlikely that you need them for a recovery. (You saved the journaled object). Restoring journal receivers
before applying or removing journaled changes may significantly increase your recovery time.

Although it is not recommended, the system does not prevent you from deleting a receiver you
detached and is not saved or that is required to provide adequate recovery. If you try to delete a journal
receiver that was once attached but has not been saved, the system issues an inquiry message. You can

66 IBM i: Journal management

then continue or cancel the delete operation. You can use the system reply list to specify the reply the
system is to send for this inquiry message (rather than explicitly responding to each inquiry message).

• Journal receivers you do not need for recovery

If you are journaling only for access path protection or commitment control, most likely you do not need
the journal receivers to recover journaled changes. You do not need to save these journal receivers
before deleting them.

To make your journaling tasks easier, you can even automate the deletion of these journal receivers by
specifying the following:

– Specify system journal-receiver management.
– Specify automatic deletion of journal receivers.

When you specify automatic deletion of journal receivers, the system does not send a message when it
deletes a journal receiver. By specifying automatic deletion for journal receivers, you indicate that you
do not need the journal receivers for user recovery.

• Where the journal receiver is in the receiver chain

To ensure logical recovery, the system does not allow you to delete a journal receiver from the middle
of the receiver chain unless one of the following conditions exists:

– The journal is using automatic deletion of journal receivers.
– The journal is a remote journal.

However, if a journal receiver is damaged, you can delete it from the middle of the chain. If an attached
journal receiver is damaged, you must perform a change journal operation to detach the damaged
receiver before you can delete it.

The rules for deleting journal receivers are as follows:

• You cannot delete a journal receiver that is attached to a local journal. You must perform a change
journal operation to detach a journal receiver before you delete it.

• You must delete journal receivers in the same order they were attached to a journal.
• You can delete a damaged or inoperable receiver regardless of the previous restriction. However, if an

attached receiver is damaged, you must detach it before you delete it.
• You cannot delete a journal receiver that is attached to a remote journal if the remote journal has a

journal state of active. If you attempt to delete a receiver that is attached to a remote journal, the
system sends the inquiry message CPA705E. The results of the reply to the message are the same as
those that occur with message CPA7025.

To delete journal receivers, take the following steps.

1. With Navigator for i, connect to the system you want to use.
2. Expand Journal Management.
3. Set Database/Library to use with Journal Tasks and specify the database and library that you want

to work with.
4. Click Show All Journal Tasks.
5. Select the journal receivers list.
6. Select the journal receiver you want to delete and click Delete.
7. At the Confirm Object Deletion dialog click Delete.

You can also use the Delete Journal Receiver (DLTJRNRCV) command to delete journal receivers.
If you use the DLTJRNRCV command, an exit point is available to use with an exit program to help
automate journal receiver deletion.

One example of using this exit point is a situation where your application is using the data in the journal
receiver. The application is dependent on the journal receiver being present until your application
processing is complete. By registering an exit program with the QIBM_QJO_DLT_JRNRCV exit point, the
program will be called every time a journal receiver is deleted from the system. If your program

Journal management 67

determines that your application is not yet done with the receiver, it can indicate that the journal receiver
is not eligible for deletion.

If you must delete the receiver regardless of what an exit program indicates, you can specify
*IGNEXITPGM for the DLTOPT parameter on the DLTJRNRCV command. This parameter value requests
that any user exit programs that are registered for QIBM_QJO_DLT_JRNRCV exit point be ignored.

You can also use the following values for the DLTOPT parameter:

*IGNTGTRCV
Ignore target receiver. If you specify this value, the system does not verify that all remote journals
that are associated with this journal, and are immediately downstream on a target system, have full
copies of this journal receiver. The delete operation will continue, even if a remote journal does not
have a full copy.

*IGNINQMSG
Ignore inquiry message. Inquiry message CPA7025 will not be presented, even if this receiver has not
been fully saved. Also, inquiry message CPA705E is not presented to the user even if the receiver is
attached to a remote journal. The delete operation continues.

Related concepts
Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTJRN) command, you can
select to have either system managed or user managed journal receivers.
Automatic deletion of journal receivers
If you choose system journal receiver management, you can also have the system delete journal receivers
that are no longer needed for recovery. You can only specify this if you are using system journal receiver
management.
Related tasks
Inactivating the replication of journal entries to a remote journal
When you end replication of journal entries to a remote journal, it is recommended that the replication of
entries be ended from the source system whenever possible, rather than from the target system. Usually,
ending replication from the target system for a remote journal is only necessary when the source system
has failed, and the system has not ended the remote journal function.
Related reference
QIBM_QJO_DLT_JRNRCV exit point

Deleting journals
Each journal on the system causes additional time and resource to be used when you restart the system
or vary on an independent disk pool after an abnormal end. If you no longer need a journal, you can delete
it.

The system does not allow you to delete a journal if any of the following conditions exist:

• You are journaling objects to it.
• Commitment control is active, and the journal is associated with a commitment definition.

Note: If you have certain types of referential constraints defined, the system starts commitment control
if it is not already started. For example, if you have defined a cascaded delete constraint for an object,
the system starts commitment control if you open the object for a delete operation. The default
commitment definition that is created is active until the job ends.

• Any of the associated remote journals have a journal state *ACTIVE.

If you no longer need a journal and its associated receivers, perform the following steps:

1. Use the Work with Journal Attributes (WRKJRNA) command to determine the following:

• Which objects are being journaled to this journal.
• Whether or not commitment control is active and the journal is associated with it.

68 IBM i: Journal management

2. If commitment control is active and the journal is associated with it, end commitment control with the
End Commitment Control (ENDCMTCTL) command.

3. End journaling for all objects associated with the journal.
4. If any commitment definitions are active that use this journal as the default journal, use the ENDJOB

command to end the jobs that are using the commitment definitions. This includes commitment
control that is started because of a referential constraint.

5. If any remote journals have a journal state of *ACTIVE, inactivate them.
6. Delete the journal by doing the following steps:

a) With IBM Navigator for i, connect to the system you want to use.
b) Expand Journal Management.
c) Select Set Database/Library to use with Journal Tasks and specify the database and library that

you want to work with.
d) Select Journals..
e) Select the journal you want to delete and the Delete action.
f) At the Confirm Object Deletion dialog click Delete.

7. Delete the journal receiver.

You can also use the Delete Journal (DLTJRN) command to delete the journal and the Delete Journal
Receiver (DLTJRNRCV) command to delete the journal receiver.

Related tasks
Ending journaling
This topic provides information about how to end journaling and why ending journaling might be
necessary.
Inactivating the replication of journal entries to a remote journal
When you end replication of journal entries to a remote journal, it is recommended that the replication of
entries be ended from the source system whenever possible, rather than from the target system. Usually,
ending replication from the target system for a remote journal is only necessary when the source system
has failed, and the system has not ended the remote journal function.
Deleting journal receivers
Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal
management task is to delete journal receivers after you no longer need them.
Related reference
Delete Journal (DLTJRN) command
Delete Journal Receiver (DLTJRNRCV) command

Saving and restoring journals and journal receivers
You must save the journal receivers when they are no longer attached, so that you have all the journal
entries saved.

Using a save-while-active operation to save objects before they reach a commitment boundary can result
in objects that are saved with partial transactions. Saving journal receivers ensures that they are available
to recover objects that are restored with partial transactions.

When you save a journal receiver that is no longer attached, you can free storage. However, a journal
receiver whose storage has been freed must be restored before you can use it for recovery.

Notes:

• Saving journals and journal receivers in the Back up your server topic provides more information about
saving journals and journal receivers. Example: Recover objects with partial transactions has
instructions for recovering objects with partial transactions.

• Read the Code example disclaimer for important legal information.

Related concepts
Back up your server topic

Journal management 69

Related tasks
Example: Recovering objects with partial transactions
If you restore an object that was saved with a save-while-active operation that specified that the object
can be saved before it reaches a commitment boundary, it can have partial transactions. To recover
objects that are in a partial state you must perform an apply or a remove journaled changes operation.

Using SAVCHGOBJ to save journal receivers
One technique for saving journal receivers is to use the Save Changed Object (SAVCHGOBJ) command.
When you use the SAVCHGOBJ command to save journal receivers, ensure that you omit the attached
journal receiver.

In the following example, all your journal receivers are in a library called RCVLIB. The currently attached
journal receiver is MYJRCV0004.

SAVCHGOBJ OBJ(*ALL) OMITOBJ(MYJRCV0004) LIB(RCVLIB) OBJTYPE(*JRNRCV)
 DEV(media-device-name) ENDOPT(*LEAVE)

This example saves all journal receivers that have any new entries since the entire library was saved but
omits the currently attached journal receiver MYJRCV0004.

A possible disadvantage to using the SAVCHGOBJ command to save journal receivers is that you can
accidentally save the journal receivers that are currently attached. Those journal receivers are saved as
partial receivers. If you need to do a recovery, you may need to handle the error condition that occurs
when you attempt to restore the partial receiver over the receiver that is currently on the system and has
not yet been saved. Also, partial journal receivers make tasks such as displaying entries and performing
apply and remove journaled changes operations more difficult. Therefore you must avoid saving attached
journal receivers.

Note: Read the Code example disclaimer for important legal information.

Related reference
Save Changed Objects (SAVCHGOBJ) command

Methods to save journal receivers
Following are three methods to save journal receivers. The first method saves journal receivers
individually. The two other methods save the journal receiver automatically.

Saving journal receivers individually

Use the Work with Journal Attributes (WRKJRNA) command to display the receiver directory for each
journal. The receiver directory tells which journal receivers have not yet been saved. Then use the Save
Object (SAVOBJ) command to save them.

The advantage to using this technique is that each journal receiver is saved only once. You will not have
problems with duplicate names and partial receivers if you need to restore. The disadvantage to this
technique is that it requires manual effort to determine the names of the journal receivers to be saved.

Saving journal receivers by name - Automated method 1

You can use a combination of system journal-receiver management and a control language (CL) program
to automate most journal management tasks. Do the following:

• Specify a threshold size for the journal receiver.
• Specify MNGRCV(*SYSTEM), DLTRCV(*NO), and a message queue for the journal.
• Use a CL program to monitor the journal message queue for the message (CPF7020) that indicates that

the system has successfully detached the journal receiver.
• Your CL program can then save the receiver that was detached and optionally delete it.

70 IBM i: Journal management

Saving journal receivers by name - Automated method 2

An alternate method of automatically saving journal receivers is to use a high level language program that
uses the Retrieve Journal Information (QjoRetrieveJournalInformation) API. The program can use this
API to determine the journal receiver directory and which receivers are not saved. The program can then
save the journal receivers that are not marked as saved. You can set up this program to run on a regular
basis or as part of normal processing.

Related information
CL Programming

Correct order for restoration of journaled objects
You must restore journals and their associated objects in the correct order when not using deferred
journaling support.

For the system to automatically reestablish your journaling environment when not using deferred
journaling support, objects must be restored in this sequence:

1. Journals
2. Based-on physical files
3. Dependent logical files
4. Other journaled object types
5. Journal receivers

You can restore journal receivers at any point after you restore the journals. You do not need to restore
them after the journaled objects.

When these objects are in the same library, the system restores them in the correct sequence. When
these objects are in different libraries or directories, you must restore them in the correct sequence, or
you must manually reestablish your journaling environment after the restore operation.

You can restore journal receivers in any sequence. After restoring them, use option 9 (Associate receivers
with journal) from the Work with Journal (WRKJRN) command display to build the receiver chain in
the correct sequence. You can also use Option 9 to build the receiver chain if you restore the journal after
the journal receivers. The journal must be on the system for the receiver chain to be built.

If you restore journaled objects before restoring the journal, you must start journaling again.

Your journals and journal receivers can be in different libraries. If this is true, you must ensure that the
library that will contain the journal receivers is on the system before restoring the journal. Ensuring this
will also ensure that the journal receiver is created in the desired library, since a journal receiver is
created when the journal is restored. Only the library needs to be on the system, not the journal receivers
in that library. If you do not ensure this, you may need to create a journal receiver in the desired journal
receiver library. You would then have to run the Change Journal (CHGJRN) command to attach the
new receiver to your journal.

Related concepts
Journal receiver chains
Journal receivers that are associated with a journal (that is presently or previously attached to the journal)
are linked in one or more receiver chains. Each journal receiver, except the first one, has a previous
receiver that was detached when the current receiver was attached. Each journal receiver, except the one
that is currently attached, also has a next receiver.
Deferring object journaling during restore
Using deferred journaling support allows the system to manage the reestablishment of journaling of
objects after a restore.
Related tasks
Starting journaling
This topic provides information about how to start journaling for all object types.
Related reference
Change Journal (CHGJRN) command

Journal management 71

Related information
Backup and Recovery

Deferring object journaling during restore
Using deferred journaling support allows the system to manage the reestablishment of journaling of
objects after a restore.

Previously, restoring journaled objects from multiple libraries or from a library other than the library of the
dependent journal was difficult to manage. If a journaled object was restored before the library of the
journal, the object was not journaled. After the journal was restored, the user had to manually start
journaling for each of the restored objects. With deferred journaling, the journaling of objects during
restore can be deferred when there is a dependency on a journal in a library that does not yet exist. The
journal information is cached and used to start journaling after the journal becomes available. This
eliminates the manual effort that is required to restart journaling.

To defer the journaling of objects on restore when the journal does not yet exist, specify the Defer ID
(DFRID) parameter on the Restore Library (RSTLIB) or Restore Object (RSTOBJ) command.
Specifying the same defer ID for multiple restore operations provides an association between the
deferred journaling information and the dependent journal.

When the journal becomes available, the Restore Deferred Objects (RSTDFROBJ) command can
be used with the previously specified defer ID to start journaling using the deferred journaling
information.

After the deferred journaling operation completes, use the Remove Defer ID (RMVDFRID) command
to remove the deferred journaling information from the cache.

When journaling is started for the object because of a RSTDFROBJ, the restore and create journal entries
for these objects will not be generated because the object which deferred start journaling was created
before the creation of the journals.

If a user has save system (*SAVSYS) special authority and uses the RSTLIB command and specifies the
*NONSYS, *ALLUSR, or *IBM values for the Saved Library (SAVLIB) parameter and specifying *DFT for
the DFRID parameter, the system manages the deferred journaling information. In all other cases, if the
user omits the DFRID parameter, the user must manage the start journaling requests.

Multiple restore operations can run concurrently using the same defer ID. It is best to wait until all of the
restore operations are complete for that defer ID before issuing the RSTDFROBJ or RMVDFRID
commands. Issuing the RSTDFROBJ command while restores are still running can cause extra work in
processing. Issuing the RMVDFRID command while restores are still running can cause deferred
journaling information to be lost.

If a journaled object is restored with either the RSTLIB or RSTOBJ with a defer ID specified and the
object is renamed or moved to a different library before the issuance of the RSTDFROBJ command,
journaling will not be started for that object.

When an object is restored into a journaled library with a *RESTORE inherit rule defined and a Defer ID
specified, the Defer ID takes precedence. If the journal the object was journaled to at save time does not
exist a deferral record is written and the object is not journaled to the journal specified by the *RESTORE
inherit rule.

When restoring an object into a journaled library that has a *RSTOVRJRN inherit rule defined, the object
attempts to automatically start journaling to the journal used by the library, regardless of whether the
object was journaled when it was saved, what the journal target was at save time, or if a defer id was
specified on the restore.

When restoring an object into a library that contains a data area named QDFTJRN that has a *RSTOVRJRN
rule defined, the object attempts to automatically start journaling to the journal specified in the QDFTJRN
data area, regardless of whether the object was journaled when it was saved, what the journal target was
at save time, or if a defer id was specified on the restore. If the journal specified in the QDFTJRN data area
does not exist and a defer id was specified on the restore, the start of journaling is deferred.

Deferred restore examples

72 IBM i: Journal management

This command restores all the saved non-system libraries to the system from tape. The system manages
the deferred journaling for objects that are restored before their journal is restored. The system attempts
to automatically start journaling of the dependent objects when the journal is finally restored.

RSTLIB SAVLIB(*NONSYS) DEV(TAP01) DFRID(*DFT)

The next examples show libraries that are being restored using a DFRID. Library JRNLIB contains the
journals that the objects in library OBJLIB were journaled to. The objects in OBJLIB cannot start
journaling until after the journals in JRNLIB are restored. A defer ID is specified, so the start journaling
requests are deferred. Use the RSTDFROBJ command to start journaling these files. The RMVDFRID
command removes information about objects that were deferred during the restore operation.

RSTLIB SAVLIB(OBJLIB) DEV(TAPE01) ENDOPT(*LEAVE) DFRID(ABC)

RSTLIB SAVLIB(JRNLIB) DEV(TAPE01) ENDOPT(*LEAVE) DFRID(ABC)

RSTDFROBJ DFRID(ABC)

RMVDFRID DFRID(ABC)

Related reference
Restore Library (RSTLIB) command
Restore Deferred Objects (RSTDFROBJ) command
Remove Defer ID (RMVDFRID) command

Evaluation of how system changes affect journal management
After you have established your journaling environment, you need to keep up with changes that occur on
your system.

When you add new applications, evaluate whether to journal the objects.

If you use SMAPP, the system automatically considers new access paths when deciding how to meet your
target recovery times for access paths.

Journaling places some limits on what changes you can make. For example:

• You cannot protect a logical file, either explicitly or with SMAPP, if the underlying physical files are
journaled to different journals.

• You cannot move an object to a different disk pool from the disk pool of the library that contains its
journal.

Keeping records of journaled objects
You must always have a current list of objects that you are journaling and their assigned journals. Print a
new list whenever you add or remove objects from the journal.

To print a list, follow these steps:

1. Type WRKJRN.
2. Specify *ALL for both the Journal and Library fields.
3. Press Enter twice.
4. Write down the names of all the journals or use the PRINT key for each panel of the display.
5. For each journal in the list that is used to journal objects, type WRKJRNA JRN(library-name/
journal-name) OUTPUT(*PRINT). Additionally, the WRKJRNA command can send the journaled
objects to an outfile. The print and outfile option on the WRKJRNA command also allows subsetting
the output of the journaled object types.

Keep the lists with your most recent set of backup media that you used to save the entire system. You can
also use the Retrieve Journal Information (QjoRetrieveJournalInformation) API to
retrieve information about your journaling environment.

You might need this list for the following reasons:

Journal management 73

• You need to recover your journaling environment; for example, if the journal is damaged or deleted.
Although you can recover your journaling environment by restoring the objects, in many cases starting
journaling for the objects is a quicker and safer method.

• You create new access paths. The system cannot protect access paths, either explicitly or by using
SMAPP, if the underlying physical files are not journaled to the same journal.

• You want to move objects to another disk pool. Journaled objects must be in the same disk pool as the
journal, unless the objects are in the system disk pool and the journal is in a nonlibrary basic disk pool.

Choose the method for saving journal receivers that works best for your organization. Then be sure to
keep track of what you do. Label your save media so that you know which journal receiver media volumes
are required to apply journal changes to the last complete saved copy of the journaled objects.

Think through possible recovery scenarios. For example, assume this is your save procedure:

• You save all user libraries and directories on Sunday evening.
• You save changed objects every evening.
• You save journal receivers every 2 hours during normal business hours.

Given the preceding list, what are your recovery steps if you lose a journaled object at 3 p.m. on
Thursday?

Related concepts
Plan a backup and recovery strategy
Related reference
Retrieve Journal Information (QjoRetrieveJournalInformation) API

Security management for journals
You can use journal management to provide an audit trail of changes that were made to your objects. You
can determine which program or user made changes to objects by using the journal entries.

By specifying the FIXLENDTA parameter of the Change Journal (CHGJRN) or Create Journal (CRTJRN)
commands you can specify that the following data is included in the journal entry:

• The job name.
• The effective user profile name.
• The program name.
• The program library name and the auxiliary storage pool device name that contains the program library.
• The system sequence number. The system sequence number gives a relative sequence to all journal

entries in all journal receivers on the system.
• The remote address, the address family and the remote port.
• The thread identifier. The thread identifier helps distinguish between multiple threads running in the

same job.
• The logical unit of work identifier. The logical unit of work identifies work related to specific commit

cycles.
• The transaction identifier. The transaction identifier identifies transactions related to specific commit

cycles.

For database physical files, you can determine what changes were made to specific records by using the
Compare Journal Images (CMPJRNIMG) command. However, you cannot use the CMPJRNIMG
command for journal entries that have minimized entry-specific data. If you specified the
MINENTDTA(*FILE) or MINENTDTA(*FLDBDY) parameter on the Create Journal (CRTJRN) or
Change Journal (CHGJRN) commands, you might have minimized entry-specific data.

Use Journal management to provide an audit trail because of the following reasons:

• No one, even the security officer, can remove or change the journal entries.
• Journal entries represent a chronological sequence of events.

74 IBM i: Journal management

• Each journal entry in the system is sequentially numbered without gaps until the CHGJRN command
resets the sequence number.

Note: When you display the journal entries, there can be gaps in the sequence numbers because some
journal entries are only used internally by the system. These gaps occur if you are using commitment
control, database file journaling, or access-path journaling. To view the entries in the gaps, you can use
the INCHIDENT parameter on the Display Journal (DSPJRN) command.

• The journal contains entries that indicate when each journal receiver was changed and the name of the
next journal receiver in the chain.

• Whenever journaling for an object is ended or whenever an object is restored an entry is written.

Remember that the date and time recorded in the journal entries depends on the date and time entered
during an IPL and therefore, may not represent the actual date and time. Also, if you use shared files, the
program name that appears in the journal entry is the name of the program that first opened the shared
file.

A special journal, that is called the audit (QAUDJRN) journal, can provide a record of many security-
relevant events that occur on the system.

Related concepts
Security
Related information
Security Reference

Displaying information for journaled objects, journals, and receivers
IBM Navigator for i, Control Language commands, and APIs provide several ways for you to display
information about journaled objects, journals, and journal receivers.

You can use Navigator for i to display information such as whether the object is journaled, the name of the
object's journal, what library the object's journal is in, and which journaling options are being used. You
can use Navigator for i to display journaling information for the following object types:

• Tables (database files)
• Libraries (through the QSYS.LIB file system)
• Data Areas (through the QSYS.LIB file system)
• Data Queues (through the QSYS.LIB file system)
• Integrated file system directories
• Integrated file system stream files
• Integrated file system symbolic links

Using Navigator for i, you can get information about one object at time using the Journaling action, or
about groups of objects journaled to a given journal using the Show Journaled Objects action. Use the
following commands and APIs to get information about journaled objects:

• Display File Description (DSPFD) command
• Display Object Description (DSPOBJD) command
• Display Object Links (DSPLNK) command
• Get Attributes (Qp0lGetAttr()) API
• List Objects (QUSLOBJ) API
• Open List of Objects (QGYOLOBJ) API
• Work with Object Links (WRKLNK)

Ways that you can display information about journal receivers are as follows:

• IBM Navigator for i Journal Receivers properties dialog
• Display Journal Receiver Attributes (DSPJRNRCVA) command
• Retrieve Journal Information (QjoRetrieveJournalInformation) API

Journal management 75

• Work with Journal Attributes (WRKJRNA) command
• Retrieve Journal Receiver Information (QjoRtvJrnReceiverInformation) API

These methods can identify:

• The journal receivers currently attached to the journal.
• A directory of the journal receivers still on the system that are associated with the journal.
• The names of all of the objects that are being journaled instead of the journal.
• The commitment control uses of this journal.
• The attributes of the journal.
• Information about all remote journals that are associated with the journal.
• Fixed-length data
• ASP of the journal receiver
• Minimized entry data
• The next and previous journal receiver information

You can find the status of a journal receiver by using the WRKJRNA command, then pressing F15
(Receiver directory) from the Work with Journal Attributes display. You can also use the DSPJRNRCVA
command. Or in Navigator for i, you can the find status of a journal receiver by doing the following steps:

1. With Navigator for i, connect to the system with the journal receiver
2. Expand Journal Management.
3. Select Set Database/Library to use with Journal Tasks and specify the database and library that you

want to work with.
4. Click Show All Journal Tasks.
5. Select the Journal Receivers list.
6. Select the journal receiver, and the Properties action.

When the journal receiver is in partial status, the partial status of a journal receiver indicates the
following:

• The disk unit on which the journal receiver is stored is damaged. No more journal entries can be
recorded.

• A journal receiver was saved while it was attached to the journal. This means that additional entries may
have been recorded in the journal receiver after the save operation occurred. The receiver was later
restored, and no complete version is available.

• The journal receiver is associated with a remote journal. It does not contain all the journal entries that
are in the associated journal receiver that is attached to the source journal.

• A partial receiver does not contain all the entries that are recorded in the journal while this receiver was
attached. It does contain entries that are recorded up to the last save operation.

• The most complete version of the journal receiver is no longer on the system because it was destroyed
during a failure.

• You have restored an older, partial version.

Working with inoperable journal receivers
If you have specified journaling for any objects, the system ensures that you have corrected problems
that affect journaling before continuing with operations on those objects. If the attached journal receiver
becomes inoperable, the operation that writes a journal entry is interrupted and the system sends an
inquiry message that notifies the system operator.

The operator can swap the journal receiver with System i Navigator or the Change Journal (CHGJRN)
command. You can then respond to the inquiry message. A receiver can become inoperable if the receiver
is damaged, the maximum sequence number has been reached, or there is no more space.

76 IBM i: Journal management

Related tasks
Swapping journal receivers
An important task for journal management is to swap journal receivers. You typically swap journal
receivers when they reach their storage threshold. You can swap journal receivers either with IBM
Navigator for i or with the Change Journal (CHGJRN) command. If you use system journal-receiver
management, the system changes journal receivers for you.
Related reference
Change Journal (CHGJRN) command

Comparing journal images
You can use the Compare Journal Images (CMPJRNIMG) command to compare and list the differences
between the before-image of a record and the after-image of that record, or the after-image of a record
with the previous after-image of that record.

Note: If you are using maximum receiver-size option RCVSIZOPT(*MAXOPT3) and your entry sequence
numbers exceed 9 999 999 999, specify the FROMENTLRG and TOENTLRG parameters when you use the
CMPJRNIMG command.

You can only use the CMPJRNIMG command for journaled physical database files. You cannot use the
CMPJRNIMG command for journal entries that have minimized entry-specific data. If you specified the
minimized entry-specific data (MINENTDTA(*FILE) or MINENTDTA(*FLDBDY) parameter on the Create
Journal (CRTJRN) or Change Journal (CHGJRN) commands, the journal entries might have minimized
entry-specific data, preventing you from being able to compare journaled images.

If the journaled files have null-capable fields, the null value indicators corresponding to the fields in the
before-image of the record are compared with the null value indicators corresponding to the fields in the
after-image of the record. A field-by-field basis compare does this.

The printed output from the CMPJRNIMG command shows the before-images and after-images of a
record followed by a line that indicates (with asterisks) the specific change in the record on a character-
by-character basis. If you compare the after-images, the output shows the previous after-image of the
record and the current after-image of the record, followed by a line indicating the changes.

If you use this command to compare journal images for a file that contains any fields of data type BLOB
(binary large object), CLOB (character large object), or DBCLOB (double-byte character large object),
these fields are not included in the comparison. All other fields in the file are compared.

Working with IBM-supplied journals
The operating system and some licensed programs use journals to provide audit trails and assist with
recovery.

The following table lists some of the IBM-supplied journals:

Journal name Library name Description

QACGJRN QSYS Keeps job accounting information. Job Accounting
in the Work Management topic describes the use of
this optional journal.

QAOSDIAJRN QUSRSYS Provides recovery for the document library files
and the distribution files. Used by Integrated
xSeries Server.

QASOSCFG QUSRSYS The journal for the QASOSCFG physical file. The
QASOSCFG file stores secure client SOCKets
Secure (SOCKS) configuration data. The Client
SOCKS support topic provides more information
about SOCKS.

QAUDJRN QSYS Keeps an audit record of security-relevant activity
on the system. The Security Reference describes
this optional journal.

Journal management 77

Journal name Library name Description

QCQJMJRN QUSRSYS Provides an audit trail for Managed System
Services.

QDSNX QUSRSYS Provides an audit trail for DSNX activity.

QIPFILTER QUSRSYS Provides information for troubleshooting and
auditing IP filter rules. See the IP filtering and
network address translation topic for more
information about IP filtering rules.

QIPNAT QUSRSYS Provides information for troubleshooting and
auditing network address translation (NAT). See
the IP filtering and network address translation
topic for more information about NAT.

QLYJRN QUSRSYS Keeps a log of transactions made to the
Application Development Manager datastore files.

QLYPRJLOG QUSRSYS Keeps the project logs for the Application
Development Manager licensed program. Used by
the system if recovery is necessary.

QLZALOG QUSRSYS Used by the licensed management program to log
requests that exceed the usage limit of a license.

QPFRADJ QSYS Keeps a log of dynamic performance tuning
information. Job Accounting in the Work
Management topic describes using this optional
journal.

QPMCCCAJRN QUSRSYS A system managed journal used internally by
performance data collectors to insure the integrity
of their database transactions.

QSNADS QUSRSYS Provides an audit trail for SNADS activity.

QSZAIR QUSRSYS A journal for Storage Management Services (SMS)

QSNMP QUSRSYS Provides an audit trail for network management
information. Simple Network Management Protocol
(SNMP) describes using this journal.

QSXJRN QUSRSYS Provides a log of the activity that occurs in the
database files for service-related activity. Keep the
information in this journal for 30 days.

QTOVDBJRN QUSRSYS A journal for virtual private networking (VPN).

QVPN0001 QUSRSYS Provides an audit trail for Virtual Private
Networking (VPN) connections. TCP/IP
Configuration and Reference describes this journal.

QYPSDBJRN QUSRSYS A journal for the systems management platform

QZCAJRN QUSRSYS Contains a record for each SNMP PDU in and out of
the SNMP agent, by PDU type (SNMP GET, SNMP
GETNEXT, SNMP SET, SNMP TRAP).

QZMF QUSRSYS Provides an audit trail for the mail server
framework. AnyMail/400 Mail Server Framework
Support provides more information about this
journal.

78 IBM i: Journal management

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/books_web/sc415412.pdf
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/books_web/sc415412.pdf
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/rzaki/sc415411.pdf
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/rzaki/sc415411.pdf

If you are using licensed programs or system functions that require these journals, consult the
documentation for those functions for instructions on how to manage the journals and journal receivers.

In general, you swap journal receivers to detach the journal receiver and create and attach a new receiver
on a regular basis. You may need to save detached receivers before deleting them, or you may be able to
delete them without saving them. This depends on how the journal receivers are being used and whether
the journal is using system journal-receiver management.

In some cases, you can use the automatic cleanup function of Operational Assistant to remove detached
journal receivers that are no longer needed.

Related concepts
Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTJRN) command, you can
select to have either system managed or user managed journal receivers.
Related tasks
Swapping journal receivers
An important task for journal management is to swap journal receivers. You typically swap journal
receivers when they reach their storage threshold. You can swap journal receivers either with IBM
Navigator for i or with the Change Journal (CHGJRN) command. If you use system journal-receiver
management, the system changes journal receivers for you.

Sending your own journal entries
You can use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API to
add your own entries to a journal. The system places these entries in the journal's attached journal
receiver along with the system-created journal entries.

To help identify your entries, you can associate each entry with a particular journaled object. If you use
the QJOSJRNE API, you can include the commit cycle identifier with the journal entry and send a larger
amount of entry-specific data.

You may add entries to the journal to identify significant events (such as a checkpoint) or to help in the
recovery of your applications. On the SNDJRNE command, the data specified on the ENTDTA parameter
becomes the Entry-Specific Data field in the journal entry, and the TYPE parameter value becomes the
entry type field. On the QJOSJRNE API, you use the entry data parameter to specify the entry-specific
data and the journal entry type parameter to specify the entry type. For both the command and API
deposits, the entries journal code is 'U'.

The maximum user entry data size for the QJOSJRNE API is 15 MB, which is the maximum journal entry
size for a journal that does not have one of the receiver maximums chosen (RCVSIZOPT(*MAXOPT1/
*MAXOPT2/*MAXOPT3)). If the length of the entry data is greater than 32KB, then a pointer to the entry
data will be returned when retrieving the entry. If the retrieve interface is expecting pointers, the data can
be accessed through the pointer returned on the retrieve. Otherwise, the data returned by the retrieve
interface will be *POINTER.

The QJOSJRNE API optionally returns the following values in the location specified by the receiver
variable:

• Number of bytes returned in the receiver variable
• Number of bytes available that could have been returned in the receiver variable
• Sequence number of the journal entry that was just deposited
• Journal receiver name
• Journal receiver library
• Independent Auxiliary Storage Pool (IASP) name

Journal management 79

Changing the state of local journals
Local journals can be in one of two states, active or standby. When the journal state of a local journal is
active, journal entries are allowed to be deposited to the journal receiver.

Journal standby state is a separately purchased feature that prevents most journal entries from being
deposited into the journal. Standby state is enabled by option 42 of theIBM i operating system. You can
start or end journaling objects while the journal is in standby. However, when a journal is in standby state,
you cannot use explicit commitment control. Also, records within database files that have referential
integrity constraints cannot be modified, when the underlying journal is in standby state unless RESTRICT
is specified on the ON UPDATE or ON DELETE attribute for the constraint. Additionally, records within
database files that have data links defined cannot be modified when the underlying journal is in standby
state.

An example of when you might want to put a journal into standby state is if the journal is on a backup
system and you want the replicated copies of your objects on that system to incur very low overhead until
role swap time. By having the journal in standby state until role swap time, a switchover to the target
system can be accomplished more quickly because all objects on the backup system can remain
journaled thus allowing the switchover processing to skip the costly step of starting journaling for all
objects. Until the journal leaves standby state and reverts to active state the backup system is not
incurring the overhead of journaling because most journal entries are not deposited when the journal is in
standby state.

If there is an attempt to deposit a journal entry when the journal is in standby state, no entry is deposited,
nor are any error messages sent to the application. In order to flag the transitions in and out of standby
state, journal codes 'J' and entry types 'SI' and 'SX' are deposited when the local journal is put into and
out of standby. Even though the journal state is standby, and most journal entries are not deposited, there
are a few critical journal entries that will be deposited in a journal. Use the Journal entry information
finder to see if a journal entry is still deposited even though the journal is in standby state.

Additionally, when a journal is in standby state the system elects not to provide System-Managed Access-
Path Protection (SMAPP) for any access paths built over files journaled to the journal and flags the access
paths as not eligible for SMAPP protection. These access paths remain not eligible until the underlying
journal leaves standby state and reverts to active state. Because the access paths are not eligible for
protection, in some select instances system performance may be negatively impacted when a journal is
changed to standby state, This would most likely occur if the access paths are large and are actively being
changed. Under those conditions the underlying SMAPP mechanism attempts to compensate by enabling
SMAPP protection for multiple small access paths whose keys are changing and whose underlying
physical files are not associated with journals in standby state.

Also, abnormal IPL duration or the vary on of an independent Auxiliary Storage Pool (ASP) duration may
be affected if standby state is chosen because some access paths that are no longer eligible for
protection may need to be rebuilt.

If performance degrades after switching to standby state, then some investigation should be done to
determine if standby state is a primary contributing factor. To reduce any potential performance impact,
INCACCPTH(*ELIGIBLE) can be specified on the Change Recovery for Access Paths (CHGRCYAP)
command. Specifying INCACCPTH(*ELIGIBLE) will reduce potential overhead but will expose you to a
potentially longer IPL or vary on of an independent ASP. As with many other options, deciding to use
standby state is a trade off between run time performance and IPL or independent ASP vary on duration.

To ensure that switching to standby state is not causing undo IPL or independent ASP vary on concerns,
use the Display Recovery for Access paths (DSPRCYAP) command periodically to display the estimated
access path recovery time. If this value is much larger than the target access path recovery time and the
total not eligible recovery time is greater than zero, then use F13 (Display Not Eligible Access Paths) to
display a list of the not eligible access paths. This will identify the access paths not eligible for SMAPP
protection along with a reason for their not eligible status. If the access paths with the highest estimated
rebuild times are not eligible due to standby, then you may wish to reconsider your standby choice. In lieu
of standby, you may want to consider journal caching, which often provides nearly as much performance
relief.

80 IBM i: Journal management

When a local journal is created, the journal state of that journal is *ACTIVE. This means that journal
entries can be deposited to the local journal. If a local journal is in standby state, journal entries with
journal code 'J' and entry type 'LA' are deposited when the local journal is activated.

If a local journal has been put in standby state, activate it by doing the following:

1. With IBM Navigator for i connect to the system you want to use.
2. Expand Journal Management.
3. Select Set Database/Library to use with Journal Tasks and specify the database and library you

want to work with.
4. Select Journals.
5. Select the journal, and select Properties.
6. On the Journal Properties dialog select Active for the Journal State.

You can also use the Change Journal State (QjoChangeJournalState) API or Change Journal (CHGJRN)
command to activate the local journal.

Related reference
Change Journal State (QjoChangeJournalState) API
Change Journal (CHGJRN) command
Related information
Journal entry information finder

Work with messages on the journal message queue
The journal message queue is used to communicate information about the journal environment. This will
include messages for normal journal processing and error situations. You may wish to monitor the journal
message queue for messages. The Work with Journal Attributes (WRKJRNA) command
indicates the message queue associated with the journal. The Display message queue (DSPMSGQ)
command can be used to display the messages on the queue.

The messages that are sent to the journal message queue are listed as follows:
CPI6956

Not able to call exit programs registered for the QIBM_QJO_CHG_JRNRCV related exit point. The
system will retry.

CPI7019
Journal &1 approaching limit of journaled objects.

CPI7020
A journal's recovery count is being exceeded. This may affect system performance.

CPI70B7
Changes for a journaled object could not be forced to disk. User action may be required.

CPI70E1
The system was not able to delete a journal receiver due to an unexpected exception. You should
investigate why this error occurred.

CPI70E3
A system managed change journal operation to attach a new journal receiver could not be
accomplished. User action is required to attach a new journal receiver at this time.

CPI70E5
A system managed change journal operation could not be accomplished because a journal or journal
receiver was not available. No user action is required, the system will retry the operation when the
specified manage receiver delay time has passed.

CPI70E6
A journal receiver was not available. If the system is to delete the journal receiver, it will try again
when the delete receiver delay time has passed. The reason code on this message may indicate that
an exit program is preventing the deletion of the journal receiver. If this condition persists you may
need to investigate why the message is being issued.

Journal management 81

CPI70E7
The sequence number for a journal is approaching its maximum allowed value. The sequence number
for the journal should be reset via a change journal command. Journaling will stop if the sequence
number is not reset and the maximum sequence number is reached.

CPF7020
A journal receiver was detached from a journal. No action is required, but you may wish to save off the
journal receiver at this time.

CPF7099
The threshold has been reached for a journal receiver that is attached to a user managed journal. You
should attach a new journal receiver at this time.

Scenario: Journal management
This topic provides the steps that a fictitious company, JKL Toy company, takes as it implements journal
management.

Sharon Jones, the system administrator for the JKL Toy Company, is responsible for backing up their
servers and making sure that their servers can be recovered in the event of a natural disaster or system
failure. As security officer, she is also responsible for ensuring the security of the servers.

The JKL Toy Company has a network that consists of a development server, a production server, and an
HTTP server. The following diagram shows the network layout:

Related tasks
Scenario: Backup using BRMS

82 IBM i: Journal management

JKLPROD
JKLPROD is the system that JKL uses for all of their customer orders and where their business
applications are installed (inventory control, customer orders, contracts and pricing, accounts receivable).
The information about this server is extremely critical to their business and changes often.

Also, there are several users who have remote access to the system from home connection. In addition,
even though the company's web site is static, the company has plans to establish a transactional site.
Because of the importance of the information about JKLPROD, Sharon wants to be able to audit the
activity that occurs on the system.

JKLPROD journaling strategy

Since the objects on JKLPROD are crucial to JKL, and since they change often, Sharon has decided that
they are good candidates for journaling.

• Since there are access paths that are critical to her operation, Sharon journals access paths.
• Sharon already separates the information about JKLPROD on separate disk pools:

– Disk pool 2 - inventory control
– Disk pool 3 - customer orders
– Disk pool 4 - contracts and pricing
– Disk pool 5 - accounts receivable

Since the journal and the journaled objects must be in the same disk pool, Sharon creates four journals.
• Since she wants to audit the activity that occurs on the system, and since people have remote access to

the system, Sharon journals fixed-length data using the following values:

– Job name (*JOB)
– User profile (*USR)
– Program name (*PGM)
– Remote address (*RMTADR)

• Since Sharon is using the FIXLENDTA parameter, she cannot minimize the fixed-length portion of the
journal entries.

• Because she is using the FIXLENDTA parameter for all of the journals, and since she is journaling access
paths Sharon uses the character-based interface to set up journaling.

Related concepts
Planning which objects to journal
When you plan which objects to journal, consider the following:
Reasons to journal access paths
If you journal access paths, the system can use the journal entries to recover access paths instead of
rebuilding them completely.
IBM Navigator for i versus the character-based interface for journaling objects
There are two environments that you can use for journal management: IBM Navigator for i and the
character-based interface. Navigator for i provides a graphical interface for journaling that is easy to use
and does not require the use of control language (CL) commands. The character-based interface requires
the use of CL commands or APIs, but has more functionality than Navigator for i. Some of this function is
also available through the System i Navigator.

JKLINT
JKLINT is the system that JKL uses for their Web site and e-mail. While this data is critical to their
business, it is fairly static.

They need 24x7 availability for the critical data on this server, and they accomplish that by having a
second server, JKLINT2, that shadows JKLINT. They use a high availability replication solution to copy
the data from JKLINT to JKLINT2. Then, if JKLINT goes down, they can switch to JKLINT2.

Journal management 83

Since Sharon is using a high availability solution she uses remote journaling with the two servers.
Scenarios: Remote journal management and recovery description shows the different ways that Sharon
can set up remote journaling between JKLINT and JKLINT2.

Related information
Scenarios: Remote journal management and recovery
These scenarios describe the possible ways that JKL Toy Company can use remote journal management.
JKL Toy Company uses the server JKLINT as their web server.

JKLDEV
JKLDEV is JKL's development server. Though it does not require 24x7 availability, the data on it represent
many person hours of work by the developers. Therefore it is important that in the event of a crash, the
system be brought to a current state. Also, since it is a development server, changes to the data occur
often.

JKLDEV is used by both web and database developers. So several different types of data are stored on
this server, including stream files and database files.

JKLDEV journaling strategy

Since many of the objects on JKLDEV are important and changes often, Sharon has decided that they are
good candidates for journaling.

JKLDEV is used by both web and database developers, so there are several physical files, and many
stream files that she wants to journal. Sharon has decided to do the following:

• Since none of the access paths are critical to her operation, Sharon does not journal access paths.
• To simplify setup and recovery, Sharon assigns all of the objects to one journal.
• Since there are many stream files to journal, Sharon journals the integrated file system directories, in

addition to individual files. She elects to use the Current folder and all subfolders option and Journal
new files and folders option. This choice ensures that the objects currently in the directory and in any
subfolders are journaled and objects that are created in the future are also journaled.

• Since journaling with the Journal new files and folders option can quickly make the journal receiver
size grow quickly, she uses system journal-receiver management.

• Because it supports all of the options she has chosen, Sharon sets up journaling on System i Navigator.

Related concepts
Planning which objects to journal
When you plan which objects to journal, consider the following:
Reasons to journal access paths
If you journal access paths, the system can use the journal entries to recover access paths instead of
rebuilding them completely.
Object assignment to journals
You can use one journal to manage all the objects you are journaling. Or, you can set up several journals if
groups of objects have different backup and recovery requirements. Every journal has a single attached
receiver. All journal entries for all objects being managed by the journal are written to the same journal
receiver.
Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTJRN) command, you can
select to have either system managed or user managed journal receivers.

Recovery operations for journal management
This topic provides instructions about how to use journaling to recover data on your system.

You can perform recovery tasks if you have an abnormal system end, need to recover a damaged journal,
journal receiver, or journaled object.

84 IBM i: Journal management

Determining recovery needs using journal status
You can use the Work with Journal (WRKJRN) command to display the damage status of a journal and
display whether or not the last IPL was normal.

Option 5 on the Work with Journal display shows the current status of the journal. It shows if the last
system end was Normal or Abnormal, and if the journal is damaged. The damage status is None or Full.

If the last system end was abnormal, this display indicates whether the system synchronized the
journaled objects or not. This indicates if the system synchronized each object in use during the abnormal
end to match the entries in the attached journal receiver during the previous initial program load (IPL) or
vary on of an independent disk pool.

If the last system end was normal, the display indicates that all objects are synchronized with the journal.
If the journal is damaged, the display indicates that the system was unable to determine whether or not
all objects are synchronized.

The display also presents information about the currently attached receiver and its damage status. The
damage status of the receiver can be None, Partial, or Full. If the journal damage is such that the system
cannot determine the status of the attached journal receiver, no attached receiver shows on the display.

If some objects are not synchronized or damage has been detected, a message appears indicating the
form of recovery that you must perform.

Recovery for journal management after abnormal system end
This topic describes the recovery actions that take place in the event of an abnormal system end.

If the system abnormally ends while you are journaling objects, the system does the following:

1. Brings all journals, journal receivers, and objects you are journaling to a usable and predictable
condition during the IPL or vary on of an independent disk pool, including any access paths being
journaled and in use at the time the system abnormally ended.

2. Checks all recently recorded entries in the journal receivers that were attached to a journal.

Journal management 85

3. Places an entry in the journal to indicate that an abnormal system end occurred. When the system
completes the IPL or vary on of an independent disk pool, all entries are available for processing.

4. Checks that the journal receivers attached to journals can be used for normal processing of the journal
entries. If some of the objects you are journaling could not be synchronized with the journal, the
system sends message CPF3172 to the history log (QHST) that identifies the journals that could not be
synchronized. If a journal or a journal receiver is damaged, the system sends a message to the history
log identifying the damage that occurred (message CPF3171 indicates that the journal is damaged,
and messages CPF3173 or CPF3174 indicate that the journal receiver is damaged). If a journal or
journal receiver is found to no longer exist within a library, the system sends message CPI70EE to the
history log.

5. Recovers each object that was in use at the time the system ended abnormally, using the normal
system recovery procedures for objects.

In addition, if an object being journaled was opened for output, update, or delete operations, the system
performs the following functions so changes to that object will not be lost:

1. Ensures that the changes appear in the object. Changes that do not appear in the journal receiver are
not in the object.

2. Places an entry in the journal receiver that indicates whether the object was synchronized with the
journal. For database files, if the file could not be synchronized with the journal, the system places
message CPF3175 in the history log identifying the failure, and you must correct the problem. For
other journaled objects, the system places message CPF700C in the history log identifying the failure,
and you must correct the problem.

A synchronization failure can occur if the data portion of the object is damaged, a journal receiver
required to perform the synchronization is damaged, or the journal is inoperable.

After an abnormal system end, perform the following steps:

1. Perform a manual IPL.
2. Check the history log to determine if there are any damaged objects, objects that are not

synchronized, or any damaged journals or journal receivers.
3. If necessary, recover the damaged journals or journal receivers as described in Recover a damaged

journal receiver and Recover a damaged journal.
4. If there is a damaged object:

a) Delete the object.
b) Restore the object from the latest saved version.
c) Allocate the object so no one else can access it.
d) Restore the needed journal receivers if they are not online. Journal receivers do not need to be

restored in a particular sequence. The system establishes the receiver chains correctly when they
are restored.

e) Use the APYJRNCHG or APYJRNCHGX command to apply the changes to the object.
f) Deallocate the object.

5. If an object could not be synchronized, use the information in the history log and in the journal to
determine why the object could not be synchronized and how to proceed with recovery. For example,
you may need to use the DFU or a user-written program to bring a database file to a usable condition.

6. Determine which applications or programs were active, and determine where to restart the
applications from the information in the history log and in the journal.

If a journaled access path is in use during an abnormal system end, that access path does not appear on
the Edit Rebuild Access Path display.

If the maintenance for the access path is immediate or delayed, the system automatically recovers the
access path during IPL or vary on of an independent disk pool. A status message is displayed for each
access path whose maintenance is immediate or delayed as it is being recovered during an IPL or vary on
of an independent disk pool. The system places message CPF3123 in the system history log for each
access path that is recovered through the journal during the IPL or vary on of an independent disk pool.

86 IBM i: Journal management

This message appears for access paths that are explicitly journaled and for access paths that are
protected by SMAPP.

Related tasks
Recovering from a damaged journal receiver
If a journal receiver becomes damaged, the system sends message CPF8136 or message CPF8137 to the
system operator and the job log.
Recovering a damaged journal
If a journal becomes damaged, the system sends message CPF8135 to the system operator and to the
job log.

Recovering from a damaged journal receiver
If a journal receiver becomes damaged, the system sends message CPF8136 or message CPF8137 to the
system operator and the job log.

If a journal receiver becomes damaged, there are two ways you can recover from it:

• Recover from a damaged receiver manually

1. If the damaged receiver is currently attached to a journal, swap the journal receiver to attach a new
receiver and detach the damaged receiver.

2. If the journal receiver is not currently attached to a journal and you have a complete saved copy of
the receiver (that is, one that was saved after the receiver was detached), then delete the journal
receiver and restore a previously saved copy. If no complete saved copy of the journal receiver exits,
then you may wish to read as many entries as possible before deleting the journal receiver.

3. If the journal receiver was never attached to a journal, delete the receiver and create it again or
restore it.

If the journal receiver is partially damaged, all journal entries except those in the damaged portion of
the journal receiver can be viewed using the Display Journal (DSPJRN) command. Using this list, you
can determine what you need to do to recover your objects. Applying or removing journal changes
cannot be done with a partially damaged journal receiver.

• Recover from a damaged receiver with the Work with Journal (WRKJRN) command. It is recommended
that you use the WRKJRN command.

To use the Work with Journals display to recover damaged journal receivers, use Option 7 (Recover
damaged journal receivers). Option 7 checks to determine which journal receivers that are associated
with the specified journal are damaged. If none are damaged, a message appears.

If there are damaged journal receivers associated with the specified journal, the Recover Damaged
Journal Receivers display appears and lists those receivers.

The status fields initially show a value of Damaged. After recovery has been successfully completed, the
status shows a value of Recovered (receiver recovered).

To view the online help, type WRKJRN at a command line, and press F1. The online help also contains a
description of the journal menus.

Recovery for a damaged journal receiver guides you through the following steps:

1. If the attached receiver is damaged, you must run a Change Journal (CHGJRN) command to attach a
new receiver.

Indicate that you want to create a new receiver. The system presents the Create Journal Receiver
(CRTJRNRCV) command prompt for receiver name and attributes. After you create the new receiver,
the system shows the CHGJRN command prompt.

If the attached receiver is not damaged, the preceding step is omitted.
2. The damaged journal receiver is deleted.
3. A prompt for the restore of the damaged journal receiver is shown. Any of the values on the prompt

can be changed except the receiver name. Save information in the prompt is provided by the system.

Journal management 87

Related tasks
Swapping journal receivers
An important task for journal management is to swap journal receivers. You typically swap journal
receivers when they reach their storage threshold. You can swap journal receivers either with IBM
Navigator for i or with the Change Journal (CHGJRN) command. If you use system journal-receiver
management, the system changes journal receivers for you.
Deleting journal receivers
Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal
management task is to delete journal receivers after you no longer need them.
Related reference
Work with Journal (WRKJRN) command
Display Journal (DSPJRN) command
Change Journal (CHGJRN) command
Create Journal Receiver (CRTJRNRCV) command

Recovering a damaged journal
If a journal becomes damaged, the system sends message CPF8135 to the system operator and to the
job log.

You can use the Work with Journals (WRKJRN) command to recover a damaged journal, or you can
perform the following steps:

1. End journaling for all libraries by using the End Journal Library (ENDJRNLIB) command.
2. End journaling for all access paths associated with the journal by using the End Journal Access Path

(ENDJRNAP) command.
3. End journaling for all physical files associated with the journal by using the End Journal Physical File

(ENDJRNPF) command.
4. End journaling for all integrated file system objects by using the End Journal (ENDJRN) command.
5. End journaling for all other object types by using the End Journal Object (ENDJRNOBJ) command.
6. Delete the damaged journal by using the Delete Journal (DLTJRN) command.
7. Create a journal receiver (CRTJRNRCV command) and create a journal (CRTJRN command) with the

same name and in the same library as the damaged journal, or restore the journal from a previously
saved version.

Note: If you have remote journals associated with this journal, it is suggested that you restore a
previously saved version of the journal rather than creating the journal.

8. Start journaling the physical files that were journaled by using the Start Journal Physical File
(STRJRNPF) command.

9. Start journaling the access paths that were journaled by using the Start Journal Access Path
(STRJRNAP) command.

10. Start journaling integrated file system objects with the Start Journal (STRJRN) command.
11. Start journaling other new object types with the Start Journal Object (STRJRNOBJ) command.

Note: You can also restore your journaling environment by deleting and restoring all the objects that
were being journaled. Objects that were journaled at the time of their save automatically begin
journaling at restore time if the journal is online.

12. Start journaling libraries with the Start Journal Library (STRJRNLIB) command
13. Save the journaled objects to allow for later recovery.
14. Associate the old journal receivers with the new journal. Do the following:

a) Type WRKJRN and press the Enter key.
b) On the prompt display, enter the name of the journal.
c) From the Work with Journals display, select option 9 (Associate receivers).
d) Press F12 to cancel the display.

88 IBM i: Journal management

e) Type WRKJRNA JRN(library-name/journal-name) and press the Enter key.
f) From the Work with Journal Attributes display, press F15 to display the receiver directory.
g) A new panel now gets displayed after selecting option 9. This new panel is called "Specify Journal

Receivers". Fill in *ALL for journal receiver name and put in the specific library name that the
receivers are located in. This is faster than searching the entire system looking at all receivers.

h) After receivers are attached, then Press F12 to cancel out of the "Work with Journals" display.

Each time a journal is restored, a new receiver chain is started because the last journal receiver in the
chain that existed prior to the restore process did not have the newly created receivers as its next
receivers.

Note: If the damaged journal had any remote journals associated with it and a previously saved version of
the journal was not restored, use the Add Remote Journal (QjoAddRemoteJournal) API or Add Remote
Journal (ADDRMTJRN) command to reassociate those remote journals. See the Add remote journals link
below for more information.

Related tasks
Adding remote journals
This topic provides instructions for adding a remote journal.

Associating receivers with journals
You can use Option 9 on the Work with Journals display if the journal was restored or created again. The
system associates all applicable receivers with the restored or recreated journal so that a restore of these
receivers is not necessary.

The system now displays the Specify Journal Receivers screen. There are new input lines so you can enter
specific receivers, generic receivers or *ALL. Additionally, the second input line allows a library to be
specified so the checking for valid receivers is now restricted to a specific library instead of searching the
entire system to find all receivers and checking all of these receivers to see if they should be associated
with this newly created journal. This new screen significantly speeds up the reassociation of receivers to a
journal.

The system displays the Specify Journal Receivers screen. There are input lines so you can enter specific
receivers, generic receivers or *ALL. Additionally, the second input line allows a library to be specified so
the checking for valid receivers is restricted to a specific library instead of searching the entire system to
find all receivers and checking all of these receivers to see if they should be associated with this journal.
This screen significantly speeds up the reassociation of receivers to a journal.

A journal receiver is associated with a journal if the journal receiver appears in the journal receiver
directory. A receiver that was previously attached to a journal but is not currently associated with a
journal cannot be used with the journal commands, such as:

• Display Journal (DSPJRN)
• Receive Journal Entry (RCVJRNE)
• Retrieve Journal Entry (RTVJRNE)
• Retrieve Journal Entries (QjoRetrieveJournalEntries) API
• Apply Journaled Changes (APYJRNCHG)
• Apply Journaled Changes Extend (APYJRNCHGX)
• Remove Journaled Changes (RMVJRNCHG)

Related reference
Display Journal (DSPJRN) command
Receive Journal Entry (RCVJRNE) command
Retrieve Journal Entry (RTVJRNE) command
Retrieve Journal Entries (QjoRetrieveJournalEntries) API
Apply Journaled Changes (APYJRNCHG) command
Apply Journaled Changes Extend (APYJRNCHGX) command

Journal management 89

Remove Journaled Changes (RMVJRNCHG) command

Recovering a damaged journal with the WRKJRN command
The Work with Journal (WRKJRN) command can be used to recover a damaged journal.

The WRKJRN command associates the receivers with the recovered journals without you having to delete
and restore the receivers.

Option 6 on the Work with Journals display verifies that the journal is damaged before proceeding with
recovery. If the journal is not damaged, an informational message appears.

For a description of the Work with Journals display, see the WRKJRN command in the online command
help. To view the help, type WRKJRN on a command line, and press F1.

Recovery for a damaged journal guides you through the following steps:

1. The system attempts to determine which objects are currently being journaled to the indicated journal.
If the system cannot successfully build this list, a message appears before the recovery operation
begins. For each object type whose journaling is being ended, a status message is sent indicating how
many objects have ended.

2. Journaling is ended for all access paths that are currently being journaled to the specified journal.
3. Journaling is ended for all database files that are currently being journaled to the specified journal.

Journaling is ended for all objects.
4. The system deletes the journal.
5. The system presents the Recover Damaged Journal display, which asks you whether to restore or

create the journal and what state to create the journal. The state is *ACTIVE or *STANDBY. If you have
remote journals associated with your damaged journal it is suggested that you take the option to
restore a previously saved version of the journal.
a) If the journal will be restored, the system prompts for the values that are needed for the restore

operation.
b) If the journal will be created, the system prompts for the receiver name and attributes with the

CRTJRNRCV command prompt. The system prompts for values needed to create the journal with
the CRTJRN command prompt, with known values that are shown.

6. Journaling is restarted for all objects for which it was previously ended. The screen displays after each
object type has been restarted. If there were no objects for a specific type, then that step is skipped. A
status message is sent periodically while journaling is being started to update you on how many
objects have started journaling.

7. The system now displays the Specify Journal Receivers screen. There are new input lines so you can
enter specific receivers, generic receivers or *ALL. On the display you can enter a specific receiver, a
generic name for journal receivers, or *ALL. Additionally, a library name can be specified to limit the
search for receivers to only a specific library when finding receivers to associate with the newly
created journal. Limiting the search to only certain receivers can significantly speed up the
reassociation processing.

A journal receiver is associated with a journal if the journal receiver appears in the journal receiver
directory. A receiver that was previously attached to a journal, but is not currently associated with a
journal, cannot be used with the journal commands such as Display Journal (DSPJRN), Apply
Journaled Changes (APYJRNCHG), Apply Journaled Changes Extend (APYJRNCHGX), and
Remove Journaled Changes (RMVJRNCHG).

As the recovery of a damaged journal proceeds, the Display Journal Recovery Status display appears. The
information about this display is updated as the operation progresses to indicate which steps have been
completed, which steps have been bypassed, and which step will be run next. Whenever a user action is
required, the status display is replaced by the appropriate prompt display.

The status field indicates the following operation status:

• Pending. The step has not been started.
• Next. The step will be performed next (after the Enter key is pressed).

90 IBM i: Journal management

• Bypassed. The step was not performed. (It was not necessary).
• Complete. The step has been performed.
• Error. The step has been performed, but errors were encountered.

The first display you usually see after the first status display is the Recover Damaged Journal display. Use
this display to choose whether the journal is to be created or restored.

When the last step of the recovery process is complete, a message appears indicating that all objects for
which journaling was started must be saved to establish a new recovery point.

If the damaged journal had any remote journals associated with it and a previously saved version of the
journal was not restored, use the Add Remote Journal (QjoAddRemoteJournal) API or Add
Remote Journal (ADDRMTJRN) command to reassociate those remote journals.

Related tasks
Adding remote journals
This topic provides instructions for adding a remote journal.
Related reference
Work with Journal (WRKJRN) command
Display Journal (DSPJRN) command
Apply Journaled Changes (APYJRNCHG) command
Apply Journaled Changes Extend (APYJRNCHGX) command
Remove Journaled Changes (RMVJRNCHG) command
Add Remote Journal (QjoAddRemoteJournal) API
Add Remote Journal (ADDRMTJRN) command

Recovery of journaled objects
One of the primary advantages of journaling is its ability to return a journaled object to its current state
since the last save.

You can recover from many types of damage to journaled objects by using journaled changes. For
example, an object is damaged and becomes unusable, an error in an application program caused records
to be improperly updated, or incorrect data was used to update an object. In each of these instances, only
restoring a saved version of the object can result in the loss of a significant amount of data.

If you use the Apply Journaled Changes (APYJRNCHG) or Apply Journaled Changes Extend
(APYJRNCHGX) command to apply journaled changes, significantly less data may be lost. You can use
the Remove Journaled Changes (RMVJRNCHG) command to recover from improperly updated
records or incorrect data if before-images have been journaled. This command removes (or backs out)
changes that were made to an object.

Use the APYJRNCHG command to apply changes to these object types:

• Library
• Database file
• Integrated file system object
• Data area
• Data queue

Use the APYJRNCHGX command to apply changes to database files.

Use the RMVJRNCHG command to remove changes that were made to these object types:

• Database file
• Data area

To recover an object by applying or removing journaled changes, the object must be currently journaled.
The journal entries must have the same journal identifier (JID) as the object. To ensure the journal
identifiers are the same, save the object immediately after journaling is started for the object.

Journal management 91

To apply or remove journaled changes to or from a restored copy of the object, you must have already
saved the object while it was being journaled. Why you must save objects after you start journaling has
more information about saving journaled objects and about JIDs.

If you need to recover objects that were journaled to a journal that you deleted, restore the journal from a
saved copy or create a new journal with the same name in the same library. Then restore the object and
all the needed receivers before applying or removing journaled changes with that journal. You can use an
option on the Work with Journals display to reassociate any journal receivers that are still on the system.
To use the Work with Journals display, use the Work with Journals (WRKJRN) command.

Some types of entries in the journal receiver cause the apply or remove process to possibly stop. These
entries are written by events that the system cannot reconstruct. Certain illogical conditions, such as a
duplicate key in a database file defined as unique, can also cause processing to end.

Use the Object Error Option (OBJERROPT) of the APYJRNCHG, APYJRNCHGX, or RMVJRNCHG commands
to determine how the system responds to an error. If you select OBJERROPT(*CONTINUE) and an error
occurs, processing of journal entries stops only for the object associated with that error. Processing
continues for the other objects. The system sends a diagnostic message indicating that the processing of
journaled changes for that object was not successful. The system also places an indication that
processing ended early for the specific object in any output file record. If you select OBJERROPT(*END),
processing ends for all objects when an error occurs.

Using save-while-active to save your journaled objects can help you recover your objects more quickly
when you need to apply or remove journaled changes specifying FROMENT(*LASTSAVE) or
FROMENTLRG(*LASTSAVE). When you use the save-while-active function to save your journaled objects,
the system saves and then restores information that indicates which starting journal sequence number is
needed for the apply or remove operation. When this information is available for all objects to which you
are applying or removing journaled changes, the system does not need to scan the journal receivers to
determine this starting point. Scanning journal receiver data to find the starting points can be time
consuming.

Also, using save-while-active when saving your objects allows you to restore a version of your object
which was not from the last save and to still specify FROMENT(*LASTSAVE) or FROMENTLRG(*LASTSAVE)
on the apply or remove command and successfully apply or remove changes.

Actions of applying or removing journaled changes by journal code shows how operations that apply and
remove journaled changes handle journal entry types. It shows which entry types cause processing to end
for an object and what processing is done when the entry is applied or removed.

You can use partial receivers to apply or remove changes from an object. If you attempt to restore a saved
receiver while a more current version of the receiver is on the system, an escape message is sent to
prevent you from restoring the receiver. The system makes sure that the most complete version is
preserved.

You can use a partial receiver as the first receiver in the receiver chain for a RMVJRNCHG command only if
you specify a sequence number for the FROMENT or FROMENTLRG parameter.

Related concepts
Why you must save objects after you start journaling
After you start journaling, it is essential that you save objects that you are journaling.
Using SAVCHGOBJ to save journal receivers
One technique for saving journal receivers is to use the Save Changed Object (SAVCHGOBJ) command.
When you use the SAVCHGOBJ command to save journal receivers, ensure that you omit the attached
journal receiver.

Applying journaled changes
If an object becomes damaged or is not usable you can recover the object using the Apply Journaled
Changes (APYJRNCHG) or Apply Journaled Changes Extend (APYJRNCHGX) command. If you

92 IBM i: Journal management

restore an object that was saved with partial transactions, then you must apply journaled changes to that
object before it is usable.

Difference between APYJRNCHG and APYJRNCHGX

There are slight differences between the Apply Journaled Changes (APYJRNCHG) command and
the Apply Journaled Changes Extend (APYJRNCHGX) command. The APYJRNCHGX command
only applies entries for database files and requires entries to be applied for all files in a library. The
APYJRNCHG command also applies entries for non-database objects.

Applying journaled changes to all objects

You can apply journaled changes to all objects that are journaled to the journal by specifying
OBJ(*ALLJRNOBJ) on the APYJRNCHG command.

Applying journaled changes and commitment control

You can ensure that commitment transaction boundaries are honored during the apply journaled changes
operations by using the commit boundary (CMTBDY) parameter. The default value for the CMTBDY
parameter is *YES. If the system encounters a journal entry that causes the apply or remove process to
stop for the object, the commitment boundary might not be honored.

Note: Regardless of the CMTBDY parameter value, any database file object-level operations that were
originally performed under commitment control are also performed under commitment control during the
apply. If the commitment control transaction was originally committed, the object-level operations are
committed when the corresponding commit entry is applied. If the commitment control transaction was
originally rolled back, the object-level operations are rolled back when the corresponding rollback entry is
applied. If the commitment control operation does not end within the range of journal entries being
applied, then the changes are rolled back.

Error handling

When the system encounters a journal entry it cannot process, it ends apply processing either for that
specific object or for the entire apply operation. You can specify how the system behaves when it
encounters a journal entry it cannot process with the Object Error Option (OBJERROPT) parameter on the
APYJRNCHG or APYJRNCHGX command. If you specify OBJERROPT(*CONTINUE), the system ends apply
processing for the specific object that has an error, but it continues apply processing for the other objects
in the apply operation. If you specify OBJERROPT(*END), the system ends processing for the entire apply
operation. The OBJERROPT parameter is also available for the Remove Journaled Changes
(RMVJRNCHG) command. Actions of applying or removing journaled changes by journal code shows
which entry types cause processing to end for an object.

Before you start applying changes

You must first reestablish the object to a condition that you know is undamaged.

• To reestablish the object, restore the last saved copy of the object. The object must have been saved
while it was being journaled.

• If you saved a database physical file by using the Copy File (CPYF) command, use the CPYF
command to restore the member by overlaying the contents of the existing object with the old values.

• If the member of a database physical file was just initialized, initialize the member again using the
Initialize Physical File Member (INZPFM) command or a user-created application program.

• If a member of a database physical file was just reorganized, reorganize the member again using the
Reorganize Physical File Member (RGZPFM) command.

You must restore the needed journal receivers if any of the following are true:

• If the journal receivers were deleted since the object was last staved (or some other point).
• If the journal receivers were saved with their storage freed.

Journal management 93

When you apply journaled changes to an object, the object cannot be in use by anyone else.

Starting and stopping points for applying journaled changes

When the condition of the object has been established, use the APYJRNCHG or APYJRNCHGX command
to apply the changes that are recorded in the journal to the object.

The system applies the changes to the object in the same order as they were originally made. You must
plan where you want to start and stop applying changes. Use the Display Journal (DSPJRN)
command to identify the desired starting and ending points. If you use a control language (CL) program
for your recovery procedures, use the following:

• Receive Journal Entry (RCVJRNE) command to receive journal entries as they are written to the
journal receiver.

• Retrieve Journal Entry (RTVJRNE) command to retrieve a journal entry and place it in program
variables.

You can also use the QjoRetrieveJournalEntries API to retrieve the information into a High Level
Language (HLL) program.

Starting applying journal entries

On the APYJRNCHG or APYJRNCHGX command, specify the first journal entry to be applied to the object.
This entry can be selected from any of the following points:

• After the last save of the object
• From the first journal entry
• From an identified sequence number that corresponds to a date and time stamp
• From an identified sequence number that corresponds to the start or end of a particular job's use of the

object provided that you did not specify one of the following:

– OMTJRNE(*OPNCLO) when starting journaling or changing the journaling attributes for object.
– OMTJRNE(*OPNCLOSYN) when starting journaling or changing the journaling attributes for a

directory or stream file.
– RCVSIZOPT(*MINFIXLEN) for the journal at any time while the object was journaled.
– A FIXLENDTA option that omitted the job name.

• A specific sequence number

Note: If an object was restored with partial transactions, then you must specify FROMENT(*LASTSAVE)
or FROMENTLRG (*LASTSAVE).

Stopping applying journal entries

You can stop applying the journal entries at the following:

• The end of the data in the last journal receiver in the receiver range
• A particular entry in the journal
• A date and time stamp
• A commitment boundary
• The start or end of a particular job's use of the data in the object, provided you did not specify the

following:

– OMTJRNE(*OPNCLO) when starting journaling or changing the journaling attributes for the object.
– OMTJRNE(*OPNCLOSYN) when starting journaling or changing the journaling attributes for a

directory or stream file.
– RCVSIZOPT(*MINFIXLEN) for the journal at any time while the object was journaled.
– A FIXLENDTA option that omitted the job name.

94 IBM i: Journal management

• The journal entry that indicates when the object was last restored
• A specific sequence number

The apply and remove journaled changes output file

It is highly recommended that you use the apply and remove journaled changes output file when you
apply journaled changes. The output file contains a record for each object that the apply operation
processes. It contains a record for each object created and each object deleted during the apply. This
output file is especially useful when the apply ends early. It is much easier to query the output file for the
status of each object rather then searching through the job log messages. Also the messages are limited
to 512 while the output file is not limited.

Considerations for applying changes

Considerations for applying changes are as follows:

• When you apply journaled changes to integrated file system objects, you need to be aware of integrated
file system considerations.

• If you need to apply entries for less than 300 objects, and your database files have only one member, or
you will be applying changes to all members of the files, then you may wish to use the Forward
Recovery option through the Work with Journals (WRKJRN) command.

Related concepts
Actions of applying or removing journaled changes by journal code
The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),
Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG)
command by journal code and entry type.
Use of the QAJRNCHG file
You can use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the
activity that occurs when you perform an apply or remove journaled changes operation.
Related reference
Apply Journaled Changes (APYJRNCHG) command
Apply Journaled Changes Extend (APYJRNCHGX) command
Copy File (CPYF) command
Initialize Physical File Member (INZPFM) command
Reorganize Physical File Member (RGZPFM) command
Display Journal (DSPJRN) command
Receive Journal Entry (RCVJRNE) command
Retrieve Journal Entry (RTVJRNE) command
Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Integrated file system considerations for applying journaled changes
If there is a create entry or delete entry in the range of journal entries to which you are applying journaled
changes, changes to a directory can cause the creation or deletion of an object.

If you are journaling a directory using the Journal new files and folders (INHERIT(*YES)) option and an
object is created into that directory, the system automatically starts journaling that new object and
deposits associated create and start journal object journal entries. The apply of these create and start
journal entries during the apply operation on the directory then creates the objects and starts journaling
for them during the apply operation. For any subsequent journaled entries for that object, the apply
operation applies any entries that it encounters for that object as well. Similarly, if an entry is
encountered which deletes (unlinks) an integrated file system object, that object is actually deleted as
part of the apply operation.

Additionally, the apply operation will start journaling for any integrated file system journal entry that adds
a link to the journaled directory, such as moving a nonjournaled object into the journaled directory, or

Journal management 95

adding a new hard link to a nonjournaled object into this journaled directory. However, no entries will be
applied to these objects since the state of those objects is not fully know during the apply.

As objects are created, they are included in the maximum number of objects which can be applied as part
of one Apply Journaled Changes (APYJRNCHG) request.

Error handling considerations

When you apply journaled changes, you can use the Object Error Option (OBJERROPT) of the APYJRNCHG
command to specify how the system responds to errors. If you specify *CONTINUE, the system stops
applying changes to the object that encounters an error, but continues the apply operation for the
remaining objects.

For integrated file system objects, the system processes errors for directory-level operations separately
from object-level operations. For example, you perform an apply journaled changes operation for a
directory and a stream file in that directory. During the apply operation, an error occurs for the stream file
and the apply process ends for that stream file. You might expect some operations that are associated
with that stream file, such as remove link, to end also. But since remove link is a directory level operation,
the remove link operation still occurs, even though the apply operation ended for that stream file.

Therefore even though object-level operations for an object might end, directory-level operations that are
associated with that object still occur.

Commitment control considerations

Many journaled integrated file system operations use system initiated commitment control for the
duration of the operation. These operations are not considered completed successfully unless the
commitment control cycle is committed. Commitment control, here, refers to commitment control that
the system initiates. Integrated file system operations cannot be included in a user initiated commitment
control cycle.

For integrated file system journal entries that are part of a commitment control cycle, do not apply
individual entries from within the cycle without applying the entire commit cycle. Using the Commit
Boundary (CMTBDY(*YES)) parameter on the APYJRNCHG command can help enforce this. If you do not
use this option and choose a specific starting point, start from the Start of commit cycle (C SC) entry for
that cycle. Likewise, if you choose to end applying a journaled change at a specific point, end on the
Commit (C CM) or Rollback (C RB) entry for that cycle.

Related concepts
Actions of applying or removing journaled changes by journal code
The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),
Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG)
command by journal code and entry type.

Applying journaled changes with the WRKJRN command
The Work with Journal (WRKJRN) command can be used to recover any journaled object. When you
select option 2, you choose from a list of object types for recovery. Choose an object type to view the
journaled objects of that type and the current status for each object.

The status field for each object indicates the following:

• Not journaled
• Different journal
• Not found
• Damaged
• Not Synchronized
• Restore complete
• Recovered
• Deleted

96 IBM i: Journal management

• Database files

Note: The WRKJRN command support should be considered only if you are applying changes for less than
300 objects.

You can use the Work With Forward Recovery display to perform the following tasks:
Add object to list

To add an object to the list on the display, use Option 1 (Add member to list). Do this if you want to
restore those objects. This task is not available for Integrated File System objects.

Apply journaled changes
To apply journaled changes to an object, use Option 2 (Apply journaled changes). This option applies
journaled changes and changes the status to Recovered (if the apply operation was successful). If the
apply operation was not successful, messages appear indicating why and the last successful status is
displayed. If any required receivers are missing or damaged while running the APYJRNCHG command,
the system prompts for the restore of the missing or damaged receivers.

If any of the objects in the list have a status of Damaged, the system prompts you with the command
necessary to recover the object. For objects that are damaged, recovery involves deleting the object, a
restore of the last save of the object, followed by the Apply Journaled Changes (APYJRNCHG)
command. The system guides you through the recovery of physical files as follows:

Note: The recovery is similar for data areas, data queues, and integrated file system objects, except
for the dependent logical files references. Also, the restore command names are different for
integrated file systems it is RST, but for all others its RSTOBJ.

• For physical files, the system identifies all the logical files dependent on the specified damaged file. The
Dependent Logical Files display appears identifying these files.

• The dependent logical files are deleted.
• The system deletes the files to be recovered (or restored).
• The system displays prompts for the restore of files to be recovered. After all restores are completed

successfully, the files to be recovered are allocated exclusively to prevent any other processing. This
allocation is maintained until the recovery procedures are complete.

• The system displays prompts for the restores of the dependent logical files.
• An APYJRNCHG command is prompted.
• If the APYJRNCHG command encounters a required journal receiver that is not online, the system

prompts for the restore of the required receiver and again starts the APYJRNCHG command.

When the recovery process is complete, the status field for the member indicates Recovered (if the
operation was successful). If the operation failed, the status field remains unchanged, and messages
appear indicating why the operation failed.

Restore objects
If you wish to restore any objects, use Option 3 (Restore). This is particularly useful for objects with a
status of Not Found. Objects that are restored successfully have a status of Restore Complete.
Objects that are not restored keep their old status. A message is sent indicating that the restore did
not complete successfully. All objects that are restored are included in the list of objects to recover.

Note: The last save information is provided for the restore operation. If either of the following are
true, then you must use the RSTOBJ command instead of Option 3 (Restore):

• The device provided is tape, diskette, or optical and you choose to restore from a save file (*SAVF).
• The device provided is a save file (*SAVF) and you choose to restore from tape, diskette, or optical

media.

If you choose option 3 to restore a damaged object, the restore process involves deleting the object
prior to prompting to restore the object. The process is similar for all object types except there are
extra steps if restoring damaged physical files that have dependent logical files. The system guides
you through the restore process of damaged physical files as follows:

• The system identifies all the logical files dependent on the specified damaged physical file.

Journal management 97

• The Dependent Logical Files display appears identifying these logical files.
• The system deletes the files to be restored.
• The system then prompts with a restore command for the physical files.
• Once the physical files are restored, the system prompts with a restore command to restore the

logical files.

Remove object from list
To remove an object from the list, use Option 4 (Remove object or member from list). Option 4
removes objects from the list of objects to be recovered.

Removing journaled changes
Depending on the type of damage to the journaled object and the amount of activity since the object was
last saved, removing changes from the object can be easier than applying changes to the object. Use the
Remove Journaled Changes (RMVJRNCHG) command to remove changes from an object if you are
journaling before-images.

The RMVJRNCHG command removes changes in reverse chronological order, starting with the most
recent change.

On the RMVJRNCHG command, you identify the first journal entry to be removed from the object. This
entry can be from:

• The last journal entry that is contained within the range of journal receivers specified.
• The entry that corresponds to the last save of the object.
• An identified sequence number.

You can control the changes that are removed from the object. For example, assume that an application
updated data incorrectly for a period of time. In this case, you can remove the changes from the object
until that application first opened the object.

You can stop removing journaled changes at:

• The start of the commit cycle for a transaction.
• The end of data in the journal receivers. This corresponds to the first journal entry that was recorded on

the range of journal receivers that are specified.
• An identified sequence number that corresponds to a particular entry in the journal.
• The start of a particular job's use of the object. You can only specify this if you did not specify any the

following:

– To exclude open and close journal entries (OMTJRNE(*OPNCLO)) when starting journaling for the file
– To minimize fixed-length entries RCVSIZOPT(*MINFIXLEN) for the journal at any time while the

object was journaled.
– To omit a FIXLENDTA option that includes the job name.

You can ensure that commitment transaction boundaries are honored on the remove journaled changes
operations by using the CMTBDY parameter on these commands.

If the system encounters a journal entry that causes the apply or remove process to stop, the
commitment boundary may not be honored.

Error handling

When the system encounters a journal entry it cannot process, it ends remove processing either for that
specific object or for the entire remove operation. You can specify how the system behaves when it
encounters a journal entry it cannot process with the Object Error Option (OBJERROPT) on the Remove
Journaled Changes (RMVJRNCHG) command. If you specify OBJERROPT(*CONTINUE), the system ends
remove processing for the specific object, but it continues remove processing for the other objects in the
remove operation. If you specify OBJERROPT(*END), the system ends processing for the entire remove
operation. Actions of applying or removing journaled changes by journal code shows which entry types
cause processing to end for an object.

98 IBM i: Journal management

Starting and ending points

Use the Display Journal (DSPJRN) command to identify the required starting and ending points. If you use
a control language (CL) program for your recovery procedures, use the following:

• Receive Journal Entry (RCVJRNE) command to receive journal entries as they are written to the journal
receiver.

• Retrieve Journal Entry (RTVJRNE) command to retrieve a journal entry and place it in program variables.

You can also use the Retrieve Journal Entries (QjoRetrieveJournalEntries) API to retrieve the information
into a High Level Language (HLL) program.

Another way to remove journaled changes is to Remove journaled changes with the WRKJRN command
and follow the command prompts.

The apply and remove journaled changes output file

It is highly recommended that you use the apply and remove journaled changes output file when you
remove journaled changes. The output file contains a record for each object that the remove operation
processes. It contains a record for each object created and each object deleted during the remove. This
output file is especially useful when the remove ends early. It is much easier to query the output file for
the status of each object rather then searching through the job log messages. Also the messages are
limited to 512 while the output file is not limited.

Related concepts
Actions of applying or removing journaled changes by journal code
The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),
Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG)
command by journal code and entry type.
Use of the QAJRNCHG file
You can use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the
activity that occurs when you perform an apply or remove journaled changes operation.

Removing journaled changes with the WRKJRN command
Remove journaled changes with the Work With Journal (WRKJRN) command by selecting Option 3
(Backout recovery).

After selecting Option 3 , a menu display gives you the option to select either physical files or data areas
as the object type. Then, after selecting one of the object types, a list of the journaled objects of that type
is displayed.

The Work with Backout Recovery display is useful because the system guides you through the process.
However, it can be used for journaling access paths, database files, and data areas only.

The same options on the Work with Forward Recovery display are available on the Work with Backout
Recovery display, except the option to restore the object. However, the option to restore the object is not
valid for backout recovery. The status field that is shown on the Work with Backout Recovery display is
either blank or it indicates the same status as for forward recovery, except for Restore Complete.

The status field for each object indicates the following:

• Not found
• Damaged
• Not synchronized
• Recovered
• Not journaled
• Different journal

Tasks with the Work With Backout Recovery display

You can use the Work With Backout Recovery display to perform the following tasks:

Journal management 99

Add object to list
To add an object to the list select Option 1 (Add object to list).

Remove journaled changes
To remove journaled changes, select Option 2 (Remove journaled changes). Option 2 shows the
Remove Journaled Changes (RMVJRNCHG) command prompt, removes the journaled changes, and
changes the status to Recovered (if the operation was successful). If any required journal receivers
are missing or damaged while the RMVJRNCHG command is running, the system displays prompts for
the necessary restore procedures for the missing or damaged receivers. If the remove operation was
not successful, messages appear indicating why the status remains the same.

If any objects in the list have a status of Not Found or Damaged when on the Work with Backout
Recovery display, the operation is not allowed. These objects must be recovered in a forward fashion
after they have been restored. Forward recovery of specific files must be used for this type of
recovery.

Remove object from list
Use Option 4 (Remove object from list) to remove objects from the list.

Related tasks
Applying journaled changes with the WRKJRN command
The Work with Journal (WRKJRN) command can be used to recover any journaled object. When you
select option 2, you choose from a list of object types for recovery. Choose an object type to view the
journaled objects of that type and the current status for each object.

Use of the QAJRNCHG file
You can use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the
activity that occurs when you perform an apply or remove journaled changes operation.

When you specify to create the output file, the system uses the QAJRNCHG output file in the QSYS library
with the format name QJOAPYRM as a model.

The words in parenthesis in the Field column indicate the column heading used in the output file.

See the following commands for the all of the parameters used with this output file:

• Apply Journaled Changes (APYJRNCHG) command
• Apply Journaled Changes Extend (APYJRNCHGX) command
• Remove Journaled Changes (RMVJRNCHG) command

The following table describes the fields that the output file creates.

Relative
offset

Field Format Description

Fields defining the header information

1 Command (QJOCMD) Char (10) Indicates if APYJRNCHG, APYJRNCHGX, or
RMVJRNCHG was used.

11 Detail option (QJODET) Char (1) Specifies the level of detail that was selected for
this output file:

A = DETAIL(*ALL) The file contains information
about the command and an entry for each
object that was applied to, whether it existed
when the apply command started or it was
created during the apply.
E = DETAIL(*ERR) The file contains information
about the command and an entry only for each
object that was not successfully applied to. If
the apply ends early for an object an entry is
included for it.

100 IBM i: Journal management

Relative
offset

Field Format Description

12 System (QJOSYS) Char (8) The name of the system where the apply or remove
journaled changes operation was performed.

20 Release (QJOSRL) Char (6) The release of i5/OS that the system performing
the apply or remove operation uses.

26 Journal name (QJOJRN) Char (10) The name of the journal.

36 Library name (QJOJLB) Char (10) The name of the library for the journal.

46 ASP device (QJOASP) Char (10) The name of the auxiliary storage pool (ASP)
device for the library.

56 Commit boundary
(QJOCMT)

Char (1) Indicates if a commit boundary was used in the
apply or remove operation.

Y = CMTBDY(*YES) was specified
N = CMTBDY(*NO) was specified

57 Reserved (QJORS1) Char (30) Reserved

Results summary fields

87 Number of objects
(QJONOB)

Char (10) Total number of objects processed during the
apply or remove operation.

97 Total entries (QJONEN) Char (20) Total number of entries processed during the apply
or remove operation.

117 Last entry (QJOLST) Char (20) Last entry examined in the apply or remove
operation.

137 End partial LUW
(QJOLUW)

Char (1) At least one transaction was omitted because
CMTBYD(*YES) was specified and the ending
sequence number was not at a commit boundary.

Y = Yes
N = No

138 Reserved (QJORS2) Char (20) Reserved

Object apply or remove information

158 Object deleted
(QJOOSD)

Char (1) Indicates if the object was deleted during the apply
or remove operation.

Y = Yes
N = No

159 Object created
(QJOOSC)

Char (1) Indicates if the object was created during the apply
or remove operation.

Y = Yes
N = No

160 Early end (QJOOSE) Char (1) Indicates if the apply or remove operation ended
early for this object.

Y = Yes
N = No

Journal management 101

Relative
offset

Field Format Description

161 Change not made
(QJOOSU)

Char (1) Indicates that a change was found for this object
after an early end to the apply operation.

Y = Yes
N = No

162 End reason code
(QJORCD)

Hex (1) Reason code for early end. See message MCH4801
for the possible values.

163 End message ID
(QJOMID)

Char (7) Message identifier associated with an early end to
the apply operation.

170 Error condition
(QJOENO)

Hex (4) Error condition associated with an early end to the
apply operation.

174 Partial transactions
remain (QJOPTL)

Char (1) Changes for partial transactions remain for this
object.

Y = Yes
N = No

175 Partial transactions
removed (QJOPTR)

Char (1) Indicates whether partial transactions were
removed for this object.

Y = Yes
N = No

176 Reserved (QJORS3) Char (20) Reserved

196 Starting sequence
number (QJOSSN)

Char (20) Specified starting sequence number for the apply
or remove operation.

216 Starting receiver name
(QJOSRC)

Char (10) The name of the first receiver from which entries
were applied or removed.

226 Receiver library
(QJOSLB)

Char (10) The library for the starting journal receiver.

236 Ending sequence
number (QJOESN)

Char (20) Specified ending sequence number for the apply or
remove operation.

256 Ending receiver name
(QJOERC)

Char (10) The name of the last or ending receiver from which
entries were applied or removed.

266 Library name (QJOERL) Char (10) The library for the ending journal receiver.

276 First entry applied or
removed (QJOASN)

Char (20) The first entry of the apply or remove operation.

296 Last entry applied or
removed (QJOAEN)

Char (20) The last entry of the apply or remove operation.

316 Number of entries
(QJONUM)

Char (20) The number of journal entries that were applied or
removed.

336 Partial transaction
starting sequence
number (QJOBSN)

Char (20) Starting sequence number for any partial
transactions that were removed. For integrated file
system objects, this field is always zero.

102 IBM i: Journal management

Relative
offset

Field Format Description

356 Partial transaction
ending sequence
number (QJOBEN)

Char (20) Ending sequence number for any partial
transactions that were removed. For integrated file
system objects and data areas, this field is always
zero.

376 Number of partial
transaction removed
(QJOBNM)

Char (20) Count of number of entries removed for partial
transactions. For integrated file system objects and
data areas, this number is always zero.

396 No entries applied
indicator (QJONAIN)

Char (1) Indicates why no entries were applied to the
object.

1 = The object was created during apply, but did
not get journaled or can never be journaled.
2 = The object existed before the apply and was
journaled as a result of the apply. However, no
entries were applied because it could not be
determined that the correct version of the
object was on the server at the time of the
apply.

397 Reserved (QJORS4) Char (19) Reserved

Object identification information

416 Object type (QJOOTP) Char (10) The type of object.

426 Object name (QJOONM) Char (10) The name of the object.

436 Object library (QJOOLB) Char (10) The object's library.

446 Member name
(QJOOMB)

Char (10) Member name.

456 FID (QJOOFD) Char (16) The file identifier of an integrated file system
object.

472 Path indicator (QJOAPI) Char (1) The absolute or relative path indicator. The
possible values for this field are:

0 = The path contains an absolute path name.
The Relative directory FID field is hex zeros.
1 =The path contains a relative path name. The
Relative directory FID field is valid and can be
used to form a complete path name.

This field only applies to integrated file system
objects.

473 Relative directory FID
(QJORPI)

Char (16) The path contains a relative path name. The
Relative directory FID field is valid and can be used
to form a complete path name. This field only
applies to integrated file system objects.

489 Path name CCSID
(QJOPCC)

Hex (4) The coded character set identifier (CCSID) for the
path name. This field only applies to integrated file
system objects.

493 Path name region ID
(QJOPRE)

Char (2) The region or country identifier for national
language support. This field only applies to
integrated file system objects.

Journal management 103

Relative
offset

Field Format Description

495 Path name language ID
(QJOPLN)

Char (3) The language identifier national language support.
This field only applies to integrated file system
objects.

498 Reserved (QJORS5) Char (3) Reserved

501 Path name type
(QJOPNT)

Hex (4) The possible values for this field are:

0 = The path name is a character string with a
one byte delimiter.
2 = The path name is a character string with a
two byte delimiter.

This field only applies to integrated file system
objects.

505 Path name length
(QJOPNL)

Hex (4) The length of the path name. This field only applies
to integrated file system objects.

509 Path name delimiter
(QJOPND)

Char (2) The path name delimiter. This field only applies to
integrated file system objects.

511 Reserved (QJORS6) Char (8) Reserved

519 Path name (QJOPNM) Char
(5000)

The path name. The length of this field is variable,
depending on the path name. This field only
applies to integrated file system objects.

Related reference
Apply Journaled Changes (APYJRNCHG) command
Apply Journaled Changes Extend (APYJRNCHGX) command
Remove Journaled Changes (RMVJRNCHG) command

Journaled changes with trigger programs
The system does not call trigger programs when it is applying or removing journal entries.

If an event occurs that would normally cause a trigger program to run, it is up to you to ensure that the
processing performed by the trigger program is recovered correctly.

Normal recovery processing will work correctly if all of the following are true:

• The trigger program only performs processing on object types which can be journaled and applied.
• The processed object types are journaled.
• Journaled changes are applied to or are removed from all the objects that are affected by the trigger

program.

If additional work is performed by the trigger program or objects other than object types which can be
journaled and applied are updated, you must use user-written programs to recover the work performed
by the trigger program.

If you use trigger programs to perform these actions, consider using the Send Journal Entry (QJOSJRNE)
API to send journal entries when trigger programs are called. To help with recovery, you can develop a
program to retrieve these entries and perform the same operations.

The output format for journal entries (except the *TYPE1, *TYPE2, and *TYPE3 formats) and the
QjoRetrieveJournalEntries API interface include information about whether a journal entry was created
because of actions that were performed when a trigger program was called.

Related concepts
Sending your own journal entries

104 IBM i: Journal management

You can use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API to
add your own entries to a journal. The system places these entries in the journal's attached journal
receiver along with the system-created journal entries.
Related reference
Work with triggers and constraints
Send Journal Entry (QJOSJRNE) API
Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Journaled changes with referential constraints
When you apply or remove journaled changes, journal management does not support referential
constraints.

In the following cases, files may be in CHECK PENDING status after you have applied or removed
journaled changes:

• When you restore a file that already exists, the referential constraints for the system copy of the file are
used. Some of the journaled changes that you apply may have been valid with the referential constraints
that were associated with the saved copy. However, they are not necessarily valid with the current
referential constraints. If you have changed the referential constraints on the file, considering doing one
of the following before applying or removing journaled changes:

– Deleting the system copy and then restoring the file
– Recreating the changes to the referential constraints

When you apply or remove journaled changes, the system attempts to verify the referential constraints
at the end of the command, before returning control to you. This may result in a CHECK PENDING
status.

• Some referential constraints cause an action to another file. You may define a constraint so that
deleting a record in one file causes a related record to be deleted in another file. Because referential
constraints are not enforced when you apply journaled changes, the second delete operation does not
happen automatically. However, if you are journaling both files and applying journaled changes to both
files, the system applies the journal entry for the second file when it encounters it.

If one of the files in a referential constraint was not journaled or is not included when you apply or
remove journaled changes, the referential constraint will probably be put in CHECK PENDING status.

The output format for journal entries (except the *TYPE1, *TYPE2, and *TYPE3 formats) and the
QjoRetrieveJournalEntries API interface include information about whether a journal entry was created
because of changes that occurred to a record that was part of a referential constraint.

Related concepts
Work with triggers and constraints
Related reference
Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Actions of applying or removing journaled changes by journal code
The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),
Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG)
command by journal code and entry type.

If All is specified for the Entry Type, it indicates that all entry types for that journal code have the
specified actions taken by the APYJRNCHG, APYJRNCHGX, or RMVJRNCHG command.

When the system ends applying or removing journaled changes has detailed information about when an
apply or remove journaled changes action ends automatically.

Journal management 105

Actions by journal code and entry type

Journa
l code

Entry
type

Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

A All Ignores Ignores Ignores

B AA Change audit attribute Attribute is
changed

Ignores Ignores

B AJ Start of apply Ends for this
object3

Ignores Ignores

B AT End of apply Ends for this
object3

Ignores Ignores

B BD Integrated file system
object deleted

Ignores Ignores Ignores

B B0 Begin create Ignores Ignores Ignores

B B1 Create summary Object is created
and linked

Ignores Ignores

B B2 Link to existing object Object is linked Ignores Ignores

B B3 Rename, move object Object is moved
or renamed

Ignores Ignores

B B4 Remove link (parent
directory)

Object link is
removed

Ignores Ignores

B B5 Remove link (link) Object link is
removed

Ignores Ignores

B B6 Bytes cleared, after-image Object is updated Ignores Ignores

B B7 Created object authority
information

Authority is
changed

Ignores Ignores

B CS Integrated file system
object closed

Ignores Ignores Ignores

B ET End journaling for object Ends for this
object3

Ignores Ignores

B FA Integrated file system
object attribute changed

Attribute is
changed

Ignores Ignores

B FC Integrated file system
object forced

Ignores Ignores Ignores

B FF Storage for object freed Ignores Ignores Ignores

B FR Integrated file system
object restored

Ends for this
object3

Ignores Ignores

B FS Integrated file system
object saved

Ignores Ignores Ignores

B FW Start of save Ignores Ignores Ignores

B JA Change journaled objects
attribute

Journal attribute
changed

Ignores Ignores

B JT Start journaling for object Ignores Ignores Ignores

106 IBM i: Journal management

Journa
l code

Entry
type

Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

B OA Change object authority Authority is
changed

Ignores Ignores

B OF Integrated file system
object opened

Ignores Ignores Ignores

B OG Change primary group Primary group is
changed

Ignores Ignores

B OI Object in use at abnormal
end, object is
synchronized1

Ignores Ignores Ignores

B OI Object in use at abnormal
end, object is not
synchronized1

Ends for this
object3

Ignores Ignores

B OO Change Object Owner Owner is
changed

Ignores Ignores

B RN Rename file identifier File identifier
renamed

Ignores Ignores

B TR Integrated file system
object truncated

Object is
truncated

Ignores Ignores

B WA Write, after-image Object is updated Ignores Ignores

C All Ignores Ignores Ignores

D AC Add RI constraint Constraint is
added

Constraint is
added

Ignores

D CG Change file File is changed File is changed Ignores

D CT Create database file Ignores File is created Ignores

D DC Remove RI constraint Constraint is
removed

Constraint is
removed

Ignores

D DD End of apply Ends for this
object3

Ends for this
object3

Ignores

D DF Delete file Ignores Ignores Ignores

D DG Start of Apply Ends for this
object3

Ends for this
object3

Ignores

D DH File saved Ignores Ignores Ignores

D DJ Changed journaled object
attribute

Journal attribute
changed

Ignores Ignores

D DT Delete file File is deleted File is deleted Ignores

D DW Start of save Ignores Ignores Ignores

D DZ File restored Ends for this
object3

Ends for this
object3

Ignores

D EF End journal for file Ends for this
object3

Ends for this
object3

Ignores

D FM File moved File is moved6 File is moved Ignores

Journal management 107

Journa
l code

Entry
type

Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

D FN File renamed File is renamed File is renamed Ignores

D GC Change constraint Constraint is
changed

Constraint is
changed

Ignores

D GO Change owner Owner is
changed

Owner is
changed

Ignores

D GT Grant authority Authority is
granted

Authority is
granted

Ignores

D ID File in use Ignores Ignores Ignores

D JF Start journaling file Ignores Ignores Ignores

D LF Logical file association Apply list
updated

Apply list
updated

Ignores

D MA Member added List of objects
being applied is
updated.

List of objects
being applied is
updated.

Ignores

D RV Revoke authority Authority is
revoked

Authority is
revoked

Ignores

D TC Create trigger Trigger is created Trigger is created Ignores

D TD Remove trigger Trigger is
removed

Trigger is
removed

Ignores

D TG Change trigger Trigger is
changed

Trigger is
changed

Ignores

D TQ Refresh table Table is
refreshed

Table is
refreshed

Ignores

D ZB Change Object Attribute Attribute
Changed

Attribute
Changed

Ignores

E EA Update data area, after
image

Data area
modified

Ignores Ignores

E EB Update data area, before
image

Ignores Ignores Data area
modified

E ED Data area is deleted Ends for this
object3

Ignores Ends for this
object3

E EE Create data area Data area is
created

Ignores Ignores

E EG Start journal for data area Ignores Ignores Ends for this
object3

E EH End journal for data area Ends for this
object3

Ignores Ignores

E EI Data area in use, object
synchronized1

Ignores Ignores Ignores

E EI Data area in use, object not
synchronized1

Ends for this
object3

Ignores Ends for this
object3

108 IBM i: Journal management

Journa
l code

Entry
type

Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

E EK Change journaled objects
attribute

Attribute
changed

Ignores Ignores

E EL Data area restored Ends for this
object3

Ignores Ends for this
object3

E EM Data area moved Data area is
moved

Ignores Ignores

E EN Data area renamed Data area is
renamed

Ignores Ignores

E EQ Data area changes applied Ends for this
object3

Ignores Ends for this
object3

E ES Data area saved Ignores Ignores Ignores

E EU RMVJRNCHG command
started

Ends for this
object3

Ignores Ends for this
object3

E EW Start of save for data area Ignores Ignores Ignores

E EX Data area changes
removed

Ends for this
object3

Ignores Ends for this
object3

E EY APYJRNCHG command
started

Ends for this
object3

Ignores Ends for this
object3

E ZA Change authority Object authority
changed

Ignores Ignores

E ZB Change object attribute Attribute
changed

Ignores Ignores

E ZO Change owner Owner changed Ignores Ignores

E ZP Change primary group Primary group
changed

Ignores Ignores

E ZT Change audit attribute Audit attribute
changed

Ignores Ignores

F AY Journaled changes applied Ends for this
object3

Ends for this
object3

Ends for this
object3

F CB Change File member Member is
changed

Member is
changed

Ignores

F CE Change end of data Member end of
data changed2

Member end of
data changed2

Ends for this
object3

F CH File changed Ignores Ignores Ignores

F CL Member closed Ignores Ignores Ignores

F CR Member cleared Member cleared
of all records2

Member cleared
of all records2

Ends for this
object 3

Journal management 109

Journa
l code

Entry
type

Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

F C1 End Rollback IF CMTBDY(*NO)
is selected, ends
for this object. If
CMTBDY(*YES) is
selected,
ignores.

IF CMTBDY(*NO)
is selected, ends
for this object. If
CMTBDY(*YES) is
selected,
ignores.

IF CMTBDY(*NO)
is selected, ends
for this object. If
CMTBDY(*YES) is
selected,
ignores.

F DE Member deleted record
count

Ignores Ignores Ignores

F DM Delete member Member is
deleted

Member is
deleted

Ignores

F EJ End journaling Ends for this
object3

Ends for this
object3

Ignores

F EP End journaling access
paths

Ignores Ignores Ignores

F FD Member forced to auxiliary
storage

Ignores Ignores Ignores

F FI Internal format information Ignores Ignores Ignores

F IU Member in use at abnormal
end, object synchronized1

Ignores Ignores Ignores

F IU Member in use at abnormal
end, object not
synchronized1

Ends for this
object

Ends for this
object

Ends for this
object

F IT Identity Value File identity
changed

File identity
changed

Ignores

F IZ Member initialized Initialized
records inserted
in member

Initialized
records inserted
in member

Initialized
records deleted
from member

F JC Change journal attribute Ignores Ignores Ignores

F JM Start journaling member Ignores Ignores Ends for this
object3

F JP Start journaling access
paths

Ignores Ignores Ignores

F MC Create member Member is
created

Member is
created

Ignores

F MD Member deleted Ignores Ignores Ends for this
object3

F MF Member saved with
storage freed

Ends for this
object3

Ends for this
object3

Ends for this
object3

F MM Member moved Member is
moved

Member is
moved

Ignores

F MN Member renamed Member is
renamed

Member is
renamed

Ignores

110 IBM i: Journal management

Journa
l code

Entry
type

Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

F MO Member changed Ends for this
object3

Ends for this
object3

Ends for this
object3

F MR Member restored Ends for this
object3

Ends for this
object3

Ends for this
object3

F MS Member saved Ignores Ignores Ignores

F OP Member opened Ignores Ignores Ignores

F PD Access path deleted Ignores Ignores Ignores

F PM Logical owning member of
access path moved

Ignores Ignores Ignores

F PN Logical owning member of
access path renamed

Ignores Ignores Ignores

F RC Journaled changes
removed

Ends for this
object3

Ends for this
object3

Ends for this
object3

F RG Member reorganized Ignores Ignores Ends for this
object3

F RM Member reorganized Member is
reorganized

Member is
reorganized

Ignores

F SA Start of APYJRNCHG Ends for this
object3

Ends for this
object3

Ends for this
object3

F SR Start of RMVJRNCHG Ends for this
object3

Ends for this
object3

Ends for this
object3

F SS Start of save active Ignores Ignores Ignores

I All Ignores Ignores Ignores

J All
(Except
SI and
SX)

Ignores Ignores Ignores

J SI Enter
JRNSTATE(*STANDBY)

Ends Ignores Ignores

J SX Exit JRNSTATE(*STANDBY) Ignores Ignores Ends

L All Ignores Ignores Ignores

M All Ignores Ignores Ignores

P All Ignores Ignores Ignores

Q QA Create data queue Data queue is
created

Ignores Ignores

Q QB Start data queue journaling Ignores Ends for this
object

Ignores

Q QC Data queue cleared, no key Data queue is
cleared

Ignores Ignores

Q QD Data queue deleted Data queue is
deleted

Ignores Ignores

Journal management 111

Journa
l code

Entry
type

Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

Q QE End data queue journaling Ends for this
object4

Ignores Ignores

Q QF Change journaled object
attribute

Attribute
changed

Ignores Ignores

Q QG Data queue attributes
changed

Data queue
attributes
changed

Ignores Ignores

Q QH Data queue changes
applied

Ends for this
object4

Ignores Ignores

Q QI Queue in use, object
synchronized

Ignores Ignores Ignores

Q QI Queue in use, object not
synchronized

Ends for this
object4

Ignores Ignores

Q QJ Data queue cleared, has
key

Data queue is
cleared

Ignores Ignores

Q QK Send data queue entry, has
key

Entry is sent Ignores Ignores

Q QL Receive data queue entry,
has key

Entry is received Ignores Ignores

Q QM Data queue moved Data queue is
moved6

Ignores Ignores

Q QN Data queue renamed Data queue is
renamed

Ignores Ignores

Q QR Receive data queue entry,
no key

Entry is received Ignores Ignores

Q QS Send data queue entry, no
key

Entry is sent Ignores Ignores

Q QW APYJRNCHG command
started

Ends for this
object 4

Ignores Ignores

Q QX Start of save for data
queue

Ignores Ignores Ignores

Q QY Data queue saved Ignores Ignores Ignores

Q QZ Data queue restored Ends for this
object 4

Ignores Ignores

Q VE Internal entry Ignores Ignores Ignores

Q VQ Internal entry Ends for this
object 4

Ignores Ignores

Q VW Internal entry Entries
resequenced

Ignores Ignores

Q ZA Change authority Object authority
changed

Ignores Ignores

112 IBM i: Journal management

Journa
l code

Entry
type

Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

Q ZB Object attribute change Attribute
changed

Ignores Ignores

Q ZO Change owner Owner changed Ignores Ignores

Q ZP Change primary group Primary group
changed

Ignores Ignores

Q ZT Change audit attribute Audit attribute
changed

Ignores Ignores

R BR Before-image updated for
rollback operation

Ignores Ignores Record updated
with before-
image

R DL Record deleted Record deleted Record deleted Record updated
with before-
image

R DR Record deleted for rollback
operation

Record deleted Record deleted Record updated

R IL Increment record limit Ignores Ignores Ignores

R PT Record written to member Record written to
member

Record written to
member

Record deleted
from member

R PX Record added directly to
member

Record added Record added Record deleted
from member

R UB Record updated (before-
image)

Ignores Ignores Record updated
with before-
image

R UP Record updated (after-
image)

Record updated
with after-image

Record updated
with after-image

Ignores

R UR After-image updated for
rollback operation

Record updated
with after-image

Record updated
with after-image

Ignores

S All Ignores Ignores Ignores

T All Ignores Ignores Ignores

U User-
specifie
d

User entry Ignores Ignores Ignores

Y LF Logical file association Apply list
updated

Ignores Ignores

Y YA Change library attributes Library attributes
are changed

Ignores Ignores

Y YB Start library journaling Ignores Ignores Ignores

Y YD Library deleted Library is deleted Ignores Ignores

Y YE End library journaling Ends for this
object3

Ignores Ignores

Y YH Library changes applied Ends for this
object3

Ignores Ignores

Journal management 113

Journa
l code

Entry
type

Operation APYJRNCHG APYJRNCHGX RMVJRNCHG

Y YI Library in use, object
synchronized1

Ignores Ignores Ignores

Y YI Library in use, object not
synchronized1

Ends for this
object3

Ignores Ignores

Y YK Change journal attribute Attribute is
changed

Ignores Ignores

Y YN Library renamed Library is
renamed

Ignores Ignores

Y YO Object added Apply list
updated

Ignores Ignores

Y YS Library saved Ignores Ignores Ignores

Y YW Start of save for library Ignores Ignores Ignores

Y YY APYJRNCHG command
started

Ends for this
object3

Ignores Ignores

Y YZ Library restored Ends for this
object3

Ignores Ignores

Y ZA Change authority Object authority
is changed

Ignores Ignores

Y ZB Object attribute change Attribute is
changed

Ignores Ignores

Y ZO Change owner Owner is
changed

Ignores Ignores

Y ZP Change primary group Primary group is
changed

Ignores Ignores

Y ZT Change audit attribute Audit attribute is
changed

Ignores Ignores

Notes:
1The Flag field in the journal entry indicates whether the object is synchronized (0 = object was
synchronized; 1 = object was not synchronized).
2Applying journaled changes stops at this entry if referential constraints that this entry violates are
active during the apply operation.
3Any changes found for the object that follow this entry are not applied. If any additional changes are
found for this object an indication will be returned in the end of apply or remove journal entry, and in any
output file generated. If you specify *END for the Object Error Option (OBJERROPT) when you issue the
apply or remove journaled changes command, the entire apply or remove operation ends.
4Any changes found for the object that follow this entry will NOT be applied when
OBJERROPT(*CONTINUE) is specified. If any additional changes are found for this object, an indication
will be returned in the end of apply/remove journal entry and in any outfile generated.
5If the attribute change is to add before images, then the apply ends for the object.
6If this entry was cut as part of automatically starting journaling the object due to library inheritance,
then the apply ends for this object.

114 IBM i: Journal management

Related concepts
Journal entry information
This topic provides information and tasks for working with journal entries.
Related tasks
When the system ends applying or removing journaled changes
The system ends applying or removing journaled changes as a result from one of the following items:
Related reference
Apply Journaled Changes (APYJRNCHG) command
Apply Journaled Changes Extend (APYJRNCHGX) command
Remove Journaled Changes (RMVJRNCHG) command

When the system ends applying or removing journaled changes
The system ends applying or removing journaled changes as a result from one of the following items:

• Certain journaled entries
• A format error for a database physical file (such as an undefined entry for that file member)
• A logical error for a database physical file (such as updating a record that has not been inserted or a

duplicate key exception)
• A logical error for a data queue (such as inserting a keyed entry into a non-keyed queue)
• Unexpected error processing an entry

When one of the previous items occur, the apply or remove journaled changes action can end either for
the object or for the entire apply or remove operation. You can determine this behavior by using the
Object Error Option (OBJERROPT) parameter on the Apply Journaled Changes (APYJRNCHG), Apply
Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG) commands.

When OBJERROPT(*END) is specified, for entries that end applying or removing journaled changes, a
message identifying the reason for the end is placed in the job log, and the corresponding change is not
made to the object. The message contains the sequence number of the journal entry on which the failing
condition was detected. When OBJERROPT(*CONTINUE) is specified, message CPD7016 indicates what
entry the apply or removed stopped at, and the reason code. This information is also available in the
output file if one was generated. To correct the problem do the following:

1. Analyze the error.
2. Make the necessary correction.
3. Start applying or removing journal changes again using the appropriate sequence number.

For example, if the entry that causes a RMVJRNCHG command to end is entry code F of type RG, you must
reorganize the physical file member referred to in the journal entry. Use the same options that were
originally specified on the reorganize request when the journal entry was recorded in the journal receiver.
Resume removing journal changes by starting with the journal entry that follows the 'F RG' reorganize
physical file member journal entry.

When you apply or remove journaled changes you also have the option to have the system send
information about the operation to an output file. You can specify whether information is sent about all
objects in the operation or only objects that have errors. To specify that the system sends information to
an output file use the Output (OUTPUT) option on the APYJRNCHG, APYJRNCHGX, or RMVJRNCHG
commands.

The APYJRNCHG, APYJRNCHGX, and RMVJRNCHG commands send an escape message and ends the
operation if any required journal receiver defined by the RCVRNG parameter is not on the system and
associated with the journal. Use the WRKJRNA command to select the Work with journal receiver
directory display, to see which journal receivers are on the system and associated with the journal. The
escape message contains the name of the required journal receiver if the reason code of message
CPF7053 is 1 or if message CPF9801 is sent.

Journal management 115

When the processing of applying or removing journaled changes ends with an escape message, the
objects can be partially changed. To determine how many changes were applied or removed for each
object do one of the following:

• Review the diagnostic messages in the job log prior to the final escape message for each object.
• Use the DSPJRN command to display the journal entries indicating completion of the command.
• If you specified to have the system send information to an output file, review the output file. The output
file contains a record for each object that was processed. You can view that object's record to
determine if processing completed successfully for that object.

The command completion journal entries by object type are as follows:

Database physical file members
F journal code and an entry type of AY or RC D journal code and entry type of DD

Integrated file system objects
B journal code and entry type of AJ

Data area objects
E journal code and entry type of EQ or EX

Data queue objects
Q journal code and entry type of QH

Library objects
Y journal code and entry type of YH

The Count field in the journal entry contains the number of journal entries that are applied or removed.

The system puts out a maximum of 512 diagnostic messages from Apply or Remove Journaled Changes.
Therefore, it is recommended that you create an output file to determine how many changes were applied
or removed for each object.

Related concepts
Use of the QAJRNCHG file
You can use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the
activity that occurs when you perform an apply or remove journaled changes operation.

Example: Applying journaled changes
This topic provides examples of the Apply Journaled Changes (APYJRNCHG) command applied to a
database physical file, integrated file system object, data queues, and data area.

The following examples show database physical files, data areas, and integrated file system objects being
processed separately. However, you can use one APYJRNCHG command if you use the OBJ parameter for
files and data areas, and the OBJPATH parameter for the integrated file system objects on one command
call.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer information.

All journaled objects

This example recovers all objects that are journaled to the journal JRN2 in one apply operation. For this
example, assume that journal JRN2 is using the receiver size-option RCVSIZOPT(*MAXOPT3). Since the
ending sequence number is greater than 9 999 999 999, the TOENTLRG parameter is required. The
example starts applying journaled changes from the last save of the objects, to entry sequence number
500 000 000 000.

By default, the system honors the commitment boundaries. So if there is an object whose commitment
boundary ends after sequence number 500 000 000 000, the the apply operations will not apply any
changes to that object for any commit cycles that end after sequence number 500 000 000 000. The
apply operation continues for the other objects that are journaled to the journal.

 APYJRNCHG JRN(JRN2) OBJ(*ALLJRNOBJ)
 FROMENT(*LASTSAVE) TOENTLRG(500000000000)
 RCVRNG(*LASTSAVE)

116 IBM i: Journal management

Database physical file

The following command applies the changes in journal JRNA to all the members of all files in the library
DSTPRODLIB that are being journaled to journal JRNA.

APYJRNCHG JRN(JRNLIB/JRNA) FILE((DSTPRODLIB/*ALL))
 FROMENTLRG(*LASTSAVE) TOENTLRG(*LASTRST)

Because the RCVRNG parameter is not specified, the system determines the range of journal receivers to
use as a result of the save information for the files. The FROMENTLRG parameter defaults to apply the
changes that begin with the first journal entry after the save of the object. The earliest required receiver is
the receiver that contains the D DW journal entry indicating the earliest start of save entry for any file in
DSTPRODLIB.

If the file was last saved with the save-while-active function, the saved copy of each file member includes
all object-level changes in the journal entries up to the corresponding F SS journal entry. In this case, the
system applies changes that begin with the first journal entry that follows the F SS entry.

If the file was last saved when it was not in use (normal save), the saved copy of each member includes
all object-level changes in the journal entries up to the corresponding F MS member saved journal entry.
In this case, the system applies changes that begin with the first journal entry that follows the F MS entry.

The following command applies the changes to the file from the journal receiver that is currently attached
to the journal:

APYJRNCHG JRN(JRNLIB/JRNA) FILE((LIBA/FILEA MBR1))
 RCVRNG(*CURRENT) FROMENTLRG(*FIRST)
 TOENTLRG(*LASTRST) OUTPUT(*OUTFILE)
 OUTFILE(MYFILE) DETAIL(*ERR)

The *CURRENT journal receiver is the journal receiver that is attached to journal JRNA at the beginning of
the operation. The system applies the changes from the first journal entry in this receiver to the entry
before the object was last restored. Changes are applied to member MBR1 of the file FILEA.

Because OUTPUT(*OUTFILE) is specified, an output file with the name MYFILE is created. The output file
contains a record for each object, if any, for which the apply ends early because DETAIL(*ERR) is
specified.

The following command applies the changes in the journal JRNA to all members of the file FILEA
beginning with the first journal entry after the file member was last saved:

APYJRNCHG JRN(JRNLIB/JRNA) FILE((LIBA/FILEA *ALL))
 TOJOBC(000741/USERP/WORKSTP)

The operation continues until the specified job closes any of the members in the file that it opened. The
operation is not restricted only to those journal entries that are recorded by the specified job.

Note: This example works only if you do not specify OMTJRNE (*OPNCLO) when starting journaling for the
file and you did not specify RCVSIZOPT(*MINFIXLEN) or you did not use a FIXLENDTA option that would
have omitted the job name for the journal at any time while the file was journaled).

Integrated file system object

The following command applies the changes in journal JRNA to the objects in the directory MyDirectory,
and its subdirectories, that are being journaled to journal JRNA:

APYJRNCHG JRN(JRNLIB/JRNA) OBJPATH(('/MyDirectory')) SUBTREE(*ALL)

Because the RCVRNG parameter is not specified, the system determines the range of journal receivers to
use as a result of the save information for the objects. Because the FROMENT or the FROMENTLRG
parameters are not specified, the system applies the changes that begin with the journal entry for the last
save of each of the objects.

Journal management 117

If the object was last saved with the save-while-active function, the saved copy of each object includes all
changes in the journal entries up to the corresponding B FW journal entry. In this case, the system applies
changes that begin with the first journal entry that follows the B FW entry.

If the object was last saved when it was not in use (normal save), the saved copy of each object includes
all changes in the journal entries up to the corresponding B FS saved journal entry. In this case, the
system applies changes that begin with the first journal entry that follows the B FS entry.

Data area

The following command applies the changes to the data area DATA1 from the journal receiver that is
currently attached to the journal:

APYJRNCHG JRN(JRNLIB/JRNA) OBJ((LIBA/DATA1 *DTAARA))
 RCVRNG(*CURRENT) FROMENTLRG(*FIRST)
 TOENTLRG(*LASTRST)

The *CURRENT journal receiver is the journal receiver that is attached to journal JRNA at the beginning of
the operation. The system applies the changes from the first journal entry in this receiver to the entry
before the object was last restored. Changes are applied to data area DATA1.

Note: Read the Code example disclaimer for important legal information.

Related reference
Apply Journaled Changes (APYJRNCHG) command

Example: Removing journaled changes
Even though the following examples show database physical files and data areas being processed
separately, you can do them with one Remove Journaled Changes (RMVJRNCHG) command if you use the
OBJ parameter for both object types.

Note: By using the code examples, you agree to the terms of the Code license and disclaimer information.

Database physical file

The following command removes the changes in journal JRNA from the all the members of FILEA:

RMVJRNCHG JRN(JRNLIB/JRNA) FILE(DSTPRODLIB/FILEA)
 FROMENT(*LAST) TOENT(*FIRST)
 RCVRNG(*CURRENT)

The *CURRENT journal receiver is the journal receiver that is attached to journal JRNA at the beginning of
the operation. The system starts removing the changes beginning with the latest entry for that member in
this receiver and continues to the earliest entry for that member in this receiver.

The following command removes the changes in journal JRNA from all the members of FILEA:

RMVJRNCHG JRN(JRNLIB/JRNA) FILE(DSTPRODLIB/FILEA)
 FROMENT(*LAST) TOENT(*FIRST)
 RCVRNG(JRNLIB/RCVA10 JRNLIB/RCVA8)
 OUTPUT(*OUTFILE) OUTFILE(MYFILE)

The system starts removing the changes beginning with the last entry (the latest entry) for that member in
journal receiver RCVA10 and continues to the first entry (the earliest entry) for that member on journal
receiver RCVA8.

Because OUTPUT(*OUTFILE) is specified, an output file with the name MYFILE is created. The output file
contains a record for each object that the remove operation processes. See Use the apply and remove
journaled changes output file for an explanation of each field in the record.

118 IBM i: Journal management

Data area

The following removes the changes in JRNA from data area DATA1 from the last save entry to entry
number 1003.

RMVJRNCHG JRN(JRNLIB/JRNA) OBJ((LIBA/DATA1 *DTAARA))
 RCVRNG(*CURRENT) FROMENT(*LASTSAVE) TOENT(1003)

If the last save operation used the save-while-active function, the system starts by removing changes
from the entry preceding the last E EW start of save entry. If the last save operation was a normal save
operation, the system starts by removing changes from the entry that precedes the last E ES data area
saved entry. In the example, journaled changes are removed back to entry 1003.

Note: Read the Code example disclaimer for important legal information.

Related concepts
Use of the QAJRNCHG file
You can use the apply and remove journaled changes output (QAJRNCHG) file to make a record of all the
activity that occurs when you perform an apply or remove journaled changes operation.
Related reference
Remove Journaled Changes (RMVJRNCHG) command

Example: Recovering objects with partial transactions
If you restore an object that was saved with a save-while-active operation that specified that the object
can be saved before it reaches a commitment boundary, it can have partial transactions. To recover
objects that are in a partial state you must perform an apply or a remove journaled changes operation.

Another reason that an object can have partial transactions is if a long-running rollback was forced to end.
However, if an object has partial transactions because of a long-running rollback, you cannot recover it
with an apply or remove journaled changes operation.

If you perform save-while-active operations that can result in objects that are saved with partial
transaction, it is recommended that you use Backup, Recovery, and Media Services (BRMS). You can use
BRMS to automate your backup and recovery operations. BRMS automatically applies changes to objects
with partial transactions and restores them to a usable state. For more detailed information see the BRMS
topic.

When you recover objects with partial transactions, all of the journal receivers that are required for the
recovery operation must be on the system. The recovery operation might require more journal receivers
than just the last one you detached. The system looks for the last journal receiver with an journal entry for
the object that indicates one of the following:

• The last regular save.
• The last save-while-active in which the object was saved without any partial transactions.
• The earliest SC (start commit) entry for any open transactions that affect the saved object for a save

with partial transactions.

1. Starting with receiver MYRCV05 the apply journaled changes operation starts.
2. The systems finds the SS entry that indicates the object was saved with partial transactions.
3. If journal receiver MYRCV05 has the CM entry that indicates the transaction for the object was

committed, the apply journaled changes operation applies the changes.
4. If journal receiver MYRCV05 does not have the CM entry, the system looks back to previous journal

receivers.
5. Since the SC entry is not in MYRCV04, the system looks in MYRCV03.
6. The system finds the SC entry in MYRCV03 and the transaction is rolled back to that point.

Journal management 119

As the figure shows, even if you are performing an apply journaled changes operation, it is still possible
that the transaction can be rolled back and you will need previous journal receivers.

Here is an example of restoring a single object with partial transactions. In this example, an object, OBJ1
in library LIB1, was saved with a save-while-active operation while it had pending transactions. The save-
while-active operation is the object's most recent save. Journaled changes start from the last save and
end at the last sequence number in the journal receiver.

One way to restore OBJ1 is to use the Apply Journaled Changes (APYJRNCHG) command. The default
value for FROMENT is *LASTSAVE. The TOENT parameter uses the *LASTRST value to apply journaled
changes up to the journal entry when the object was last restored.

 APYJRNCHG JRN(JRN1) FILE(LIB1/OBJ1)
 FROMENT(*LASTSAVE) TOENT(*LASTRST)
 RCVRNG(*LASTSAVE)

Another way to restore OBJ1 is to use the Remove Journaled Changes (RMVJRNCHG) command. The
command removes the changes in journal JRN1 from the all the members of OBJ1. Starting with the last
save journal entry, only changes for journal entries for any partial transactions are removed, back to the
start of the commit transaction.

120 IBM i: Journal management

RMVJRNCHG JRN(JRNA1) FILE(LIB1/OBJ1)
 FROMENT(*LASTSAVE) TOENT(*COMMITSTART)
 RCVRNG(*LASTSAVE)

Here is another example showing how to remove partial transaction status from an object with partial
transactions. This example uses the Change Journal Object (CHGJRNOBJ) command, because the journal
receivers are not available to perform an apply or remove journaled changes operation. The Partial
Transactions (PTLTNS) parameter allows the object to be used, but does not complete the transactions.
The object, BRKNOBJ, still has changes caused by the partial transactions, but you are able to open the
file.

 CHGJRNOBJ OBJECT(LIB1/BRKNOBJ *FILE) PTLTNS(*ALWUSE)

Attention: Only use the following command as a last resort. You will lose data if you use this
command. You should only use this command for the following reasons:

• You have objects with partial transaction as a result of the termination of a long-running rollback
and you have no saved version to restore.

• You have objects with partial transactions as a result of a save-while-active operation, and the
journal receivers required to apply or remove journaled changes have been lost, destroyed, or
damaged beyond repair.

Related concepts
BRMS topic

Journal entry information
This topic provides information and tasks for working with journal entries.

The system creates different types of journal entries in the journal receiver for different kinds of activities.
You cannot access the information in journal receivers directly. Several system commands provide
formatted information from a journal receiver:

• Use the Display Journal (DSPJRN) command to display entries, print them, or write them to an
output file.

• Use the Receive Journal Entry (RCVJRNE) command to specify an exit program. When entries
are added to the journal receiver, they are also passed to the exit program. The exit program can, for
example, write entries to save media or send them to another system.

• Use the Retrieve Journal Entry (RTVJRNE) command to retrieve journal entries to a CL
program.

• Use the Retrieve Journal Entries (QjoRetrieveJournalEntries) API to retrieve journal
entries into a high level language program.

Note: When working with multiple journal entries, the RCVJRNE command is usually the most efficient
interface to get the journal entry information.

When the system formats journal entries for you with the DSPJRN and RTVJRNE commands, it uses one
of several layouts. These layouts include a fixed-length portion and a variable-length portion. The
variable-length portion includes entry-specific data and null value indicators, if applicable. The fixed-
length portion of the journal entry appears as separate fields in these layouts.

• Journal entry information finder - The Journal code finder shows all the journal codes and entry types
for journal entries. You can search for individual codes, display codes by category, or display all journal
codes.

• Journal code descriptions
• Fixed-length portion of the journal entry
• Variable-length portion of the journal entry
• Work with journal entry information

Journal management 121

Note: For information about which journal codes are affected by applying or removing journaled changes
see Actions of applying or removing journaled changes by journal code.

Related concepts
Actions of applying or removing journaled changes by journal code
The following table shows the actions that are taken by the Apply Journaled Changes (APYJRNCHG),
Apply Journaled Changes Extend (APYJRNCHGX), or Remove Journaled Changes (RMVJRNCHG)
command by journal code and entry type.

Journal code descriptions
This topic provides a description of all of the journal codes and categories.

Following are descriptions of all the possible journal codes or categories of journal entries.

Journal Code A - System Accounting Entry
Journal entries with a journal code of A contain information about job accounting. See Job Accounting
in the Work Management topic for a detailed description of the contents of converted journal entries
with journal code A.

Journal Code B- Integrated File System
Journal entries with a journal code of B contain information about changes to integrated file system
objects. The only integrated file system objects that are supported are those with an object of type
*STMF, *DIR or *SYMLNK. These objects must be in the "root"(/), QOpenSys, and User-defined file
systems. See the Integrated file system topic for more information about file systems.

Journal Code C - Commitment Control Operation
Journal entries with a journal code of C contain commitment control information.

Journal Code D - Database File Operation
Journal entries with a journal code of D contain file level information about changes for a physical file,
not an individual member.

Journal Code E - Data Area Operation
Journal entries with a journal code of E contain information about changes to journaled data areas.
See Work Management on the V5R1 Supplemental Manuals Web site for more information about data
areas.

Journal Code F - Database File Member Operation
Journal entries with a journal code of F contain file level information about changes for a physical file
member that are being journaled to this journal. (If you use a logical file in a program, the file level
information reflects the physical file on which the logical file is based.) Journal entries with journal
code F can also contain file level information for access paths that are associated with physical or
logical file members that are being journaled to this journal.

Journal Code I - Internal Operation
Journal entries with a journal code of I contain information about access paths or indexes or other
internal operations. Entries with a journal code of I are displayed only if JRN(*INTSYSJRN) is specified
or INCHIDENT(*YES) is specified on the DSPJRN command.

Journal Code J - Journal or Receiver Operation
Journal entries with a journal code of J contain information about the journal and the journal
receivers.

Journal Code L - License Management
Journal entries with a journal code of L contain information about license management, such as
changes to the usage limit and usage limit violations.

Journal Code M - Network Management Data
Journal entries with a journal code of M contain information about Network Management, including
TCP/IP.

Journal Code P - Performance Tuning Entry
Journal entries with a journal code of P contain information about performance. For the description of
the layout of these entries, see Work Management on the V5R1 Supplemental Manuals Web site.

122 IBM i: Journal management

Journal Code Q - Data Queue Operation
Journal entries with a journal code of Q contain information about changes to journaled data queues.
See CL Programming: Communicate between programs and procedures for more information about
data queues.

Journal Code R - Operation on Specific Record
Journal entries with a journal code of R contain information about a change to a specific record in the
physical file member that is being journaled to the journal. For a given physical file member, the
record-level journal entries appear in the journal in the order that the changes were made to the file.

Journal Code S - Distributed Mail Services
Journal entries with a journal code of S contain information about SNA distribution services (SNADS),
X.400, and mail server framework.

Journal Code T - Audit Trail Entry
Journal entries with a journal code of T contain auditing information.

Journal Code U - User-Generated Entry
Journal entries with a code of U are sent to the journal receiver by the Send Journal Entry
(SNDJRNE) command or by the Send Journal Entry (QJOSJRNE) API.

Journal Code Y - Library Entry
Journal entries with a journal code of Y contain information about changes to libraries.

Related concepts
Sending your own journal entries
You can use the Send Journal Entry (SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API to
add your own entries to a journal. The system places these entries in the journal's attached journal
receiver along with the system-created journal entries.

All journal entries by code and type

Journal
code

Entry type Description Notes

A DP Direct print information See Work Management for the layout of the entry
specific data.

A JB Job resource information See Work Management for the layout of the entry
specific data.

A SP Spooled print information See Work Management for the layout of the entry
specific data.

B AA Change audit attribute The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system change
audit attribute (B AA) journal entry” on page 234 .

B AJ Start of apply

B AT End of apply The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “APYJRNCHG (B AT, D DD, E EQ,
F AY, Q QH, Y YH) and RMVJRNCHG (E EX, F RC)
journal entries” on page 191.

B BD Integrated file system
object deleted

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

Journal management 123

Journal
code

Entry type Description Notes

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system object
deleted (B BD) journal entry” on page 244 .

B B0 Begin create The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system begin
create (B B0) journal entry” on page 234.

B B1 Create summary The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system create-
summary (B B1) journal entry” on page 240 .

B B2 Link to existing object The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system link to
existing object (B B2) journal entry” on page 242.

B B3 Rename, move object Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system rename,
move object (B B3) journal entry” on page 246.

B B4 Remove link (parent
directory)

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system remove
link (parent directory) (B B4) journal entry” on page
246.

B B5 Remove link (link) The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system remove
link (link) (B B5) journal entry” on page 245.

B B6 Bytes cleared, after-image The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system bytes
cleared, after-image (B B6) journal entry” on page
234.

B B7 Created object authority
information.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

124 IBM i: Journal management

Journal
code

Entry type Description Notes

This journal entry may have data which can only be
accessed by using either the
QjoRetrieveJournalEntries API or the RCVJRNE
command. For the RCVJRNE command, use the
ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 313

See the layout for the “Integrated file system created
object authority (B B7) journal entry” on page 239.

B CS Integrated file system
object closed

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system object
closed (B CS) journal entry” on page 244.

B ET End journaling for object Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system end
journaling for object (B ET) journal entry” on page 242.

B FA Integrated file system
object attribute changed

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system object
attribute changed (B FA) journal entry” on page 243.

B FC Integrated file system
object forced

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system object
forced (B FC) journal entry” on page 244.

B FF Storage for object freed These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system storage
for object freed (B FF) journal entry” on page 248.

B FR Integrated file system
object restored

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

Journal management 125

Journal
code

Entry type Description Notes

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Object restored (B FR, D DZ, E
EL, F MR, J RR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 288.

B FS Integrated file system
object saved

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Object saved (B FS, D DH, E ES,
F MS, Q QY, Y YS) journal entries” on page 289.

B FW Start of save for save-
while-active

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Start of save-while-active (B
FW, D DW, E EW, F SS, Q QX, Y YW) journal entries” on
page 295.

B JA Change journaled object
attribute

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Change journaled object
attributes (B JA, D DJ, E EK, F JC, Q QF, Y YK) journal
entries” on page 199.

B JT Start journaling for object Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Start journal (B JT, D JF, E EG, F
JM, Q QB) journal entries” on page 297.

B OA Change object authority The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system change
object authority (B OA) journal entry” on page 235.

B OF Integrated file system
object opened

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

126 IBM i: Journal management

Journal
code

Entry type Description Notes

See the layout for the “Integrated file system object
opened (B OF) journal entries” on page 245.

B OG Change primary group The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system change
primary group (B OG) journal entry” on page 237.

B OI Object in use at abnormal
end

See the layout for the “IPL (J IA, J IN) and in-use (B
OI, C BA, D ID, E EI, F IU, I DA, J JI, Q QI) journal
entries” on page 252.

B OO Change object owner The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system change
object owner (B OO) journal entry” on page 237.

B RN Rename file identifier The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system rename
file identifier (B RN) journal entry” on page 246.

B TR Integrated file system
object truncated

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Integrated file system object
truncated (B TR) journal entry” on page 245.

B WA Write, after-image The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

This journal entry may have data which can only be
accessed by using either the
QjoRetrieveJournalEntries API or the RCVJRNE
command. For the RCVJRNE command, use the
ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 313

See the layout for the “Integrated file system write,
after-image (B WA) journal entry” on page 249.

C BA Commit in use at
abnormal end

See the layout for the “IPL (J IA, J IN) and in-use (B
OI, C BA, D ID, E EI, F IU, I DA, J JI, Q QI) journal
entries” on page 252 .

C BC Start commitment control
(STRCMTCTL)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

Journal management 127

Journal
code

Entry type Description Notes

C CM Set of record changes
committed (COMMIT)

See the layout for the “COMMIT (C CM) journal entry”
on page 205 .

C CN Rollback ended early See the layout for the “Rollback ended early (C CN, F
C1) journal entries” on page 293.

C DB Internal entry Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

C EC End commitment control
(ENDCMTCTL)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

C LW A logical unit of work
(LUW) has ended

See the layout for the “Logical unit of work (C LW)
journal entry” on page 254 and the following:

• “Logical unit of work (C LW) journal entry - header
record” on page 265

• “Logical unit of work (C LW) journal entry - local
record” on page 275

• “Logical unit of work (C LW) journal entry - API
record” on page 255

• “Logical unit of work (C LW) journal entry - DDL
record” on page 259

• “Logical unit of work (C LW) journal entry - RMT
record” on page 277

• “Logical unit of work (C LW) journal entry - DDM
record” on page 262

C PC Prepare commit block See the layout for the “Prepare commit (C PC) journal
entries” on page 292.

C RB Set of record changes
rolled back (ROLLBACK)

See the layout for the “ROLLBACK (C RB) journal
entry” on page 292.

C R1 Rollback started

C SB Start of savepoint This is the start of the savepoint or nested commit
cycle where it is written to the journal and occurs
when the application creates an SQL SAVEPOINT. The
system can also create an internal nested commit
cycle to handle a series of database functions as a
single operation. The entry-specific data for this
journal entry is all internal data.

C SC Commit transaction
started

See the layout for the “Start of commit cycle (C SC)
journal entry” on page 295.

C SQ Release of savepoint This is the release of the savepoint or commit of
nested commit cycle. Entries are written to the journal
when the application releases an SQL SAVEPOINT or
when the system commits an internal nested commit
cycle.

128 IBM i: Journal management

Journal
code

Entry type Description Notes

See the layout for the “Savepoint released (C SQ) and
savepoint rolled back (C SU) journal entries” on page
294.

C SU Rollback of save point This is the release of the savepoint or commit of
nested commit cycle. Entries are written to the journal
when the application releases an SQL SAVEPOINT or
when the system commits an internal nested commit
cycle.

See the layout for the “Savepoint released (C SQ) and
savepoint rolled back (C SU) journal entries” on page
294.

D AC Add referential integrity
constraint

See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D CG Change file See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D CT Create database file See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D DC Remove referential
integrity constraint

See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D DD End of apply or remove See the layout for the “APYJRNCHG (B AT, D DD, E EQ,
F AY, Q QH, Y YH) and RMVJRNCHG (E EX, F RC)
journal entries” on page 191.

D DF File was deleted Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

D DG Start of apply or remove

D DH File saved These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

See the layout for the “Object saved (B FS, D DH, E ES,
F MS, Q QY, Y YS) journal entries” on page 289.

D DJ Change journaled object
attribute

See the layout for the “Change journaled object
attributes (B JA, D DJ, E EK, F JC, Q QF, Y YK) journal
entries” on page 199.

Journal management 129

Journal
code

Entry type Description Notes

D DT Delete file Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D DW Start of save-while-active
save

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

See the layout for the “Start of save-while-active (B
FW, D DW, E EW, F SS, Q QX, Y YW) journal entries” on
page 295.

D DZ File restored These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Object restored (B FR, D DZ, E
EL, F MR, J RR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 288.

D EF Journaling for a physical
file ended (ENDJRNPF)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

D FM File moved to a different
library (MOVOBJ or
RNMOBJ OBJTYPE(*LIB))

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Moving and renaming objects
(D FM, D FN, E EM, E EN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q QN) journal entries” on page 283.

D FN File renamed (RNMOBJ) Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Moving and renaming objects
(D FM, D FN, E EM, E EN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q QN) journal entries” on page 283.

D GC Change constraint See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

130 IBM i: Journal management

Journal
code

Entry type Description Notes

D GO Change owner See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D GT Grant authority See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D ID File in use See the layout for the “IPL (J IA, J IN) and in-use (B
OI, C BA, D ID, E EI, F IU, I DA, J JI, Q QI) journal
entries” on page 252.

D JF Journaling for a physical
file started (STRJRNPF
(JRNPF))

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Start journal (B JT, D JF, E EG, F
JM, Q QB) journal entries” on page 297.

D LF Logical file associated
with based on physical file

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Logical file associated with the
library or based on physical file (D LF, Y LF) journal
entry” on page 254.

D M1 Create mask See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D M2 Drop mask See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D M3 Alter mask See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D MA Member added to file

D P1 Create permission See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D P2 Drop permission See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

Journal management 131

Journal
code

Entry type Description Notes

D P3 Alter permission See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D RV Revoke authority See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D TC Add trigger See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D TD Remove trigger See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D TG Change trigger See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D TQ Refresh table See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

D ZB Change object attribute The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QP0LJRNL.H.

See the layout for the “Change object attribute (E ZB,
D ZB, J ZB, Q ZB, Y ZB) journal entry” on page 200.

E EA Update data area, after
image

Neither the before-image nor after-image is deposited
into the journal if the after-image is exactly the same
as the before-image.

This entry may have minimized entry specific data
(ESD). It will have minimized ESD if its corresponding
object type deposits minimized journal entries through
the MINENTDTA parameter for this journal or journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Update data area (E EA, E EB)
journal entries” on page 299.

E EB Update data area, before
image

Neither the before-image nor after-image is deposited
into the journal if the after-image is exactly the same
as the before-image.

132 IBM i: Journal management

Journal
code

Entry type Description Notes

This entry may have minimized entry specific data
(ESD). It will have minimized ESD if its corresponding
object type deposits minimized journal entries through
the MINENTDTA parameter for this journal or journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Update data area (E EA, E EB)
journal entries” on page 299.

E ED Data area deleted Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

E EE Create data area The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Create data area (E EE) journal
entry” on page 209.

E EG Start journal for data area Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Start journal (B JT, D JF, E EG, F
JM, Q QB) journal entries” on page 297.

E EH End journal for data area Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

E EI Data area in use

E EK Change journaled object
attribute

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Change journaled object
attributes (B JA, D DJ, E EK, F JC, Q QF, Y YK) journal
entries” on page 199.

E EL Data area restored These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Object restored (B FR, D DZ, E
EL, F MR, J RR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 288.

E EM Data area moved Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

Journal management 133

Journal
code

Entry type Description Notes

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Moving and renaming objects
(D FM, D FN, E EM, E EN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q QN) journal entries” on page 283.

E EN Data area renamed Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Moving and renaming objects
(D FM, D FN, E EM, E EN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q QN) journal entries” on page 283.

E EQ Data area changes applied The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “APYJRNCHG (B AT, D DD, E EQ,
F AY, Q QH, Y YH) and RMVJRNCHG (E EX, F RC)
journal entries” on page 191.

E ES Data area saved These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Object saved (B FS, D DH, E ES,
F MS, Q QY, Y YS) journal entries” on page 289.

E EU Remove journaled
changes (RMVJRNCHG)
command started

E EW Start of save for data area These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Start of save-while-active (B
FW, D DW, E EW, F SS, Q QX, Y YW) journal entries” on
page 295.

E EX Data area changes
removed

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “APYJRNCHG (B AT, D DD, E EQ,
F AY, Q QH, Y YH) and RMVJRNCHG (E EX, F RC)
journal entries” on page 191.

134 IBM i: Journal management

Journal
code

Entry type Description Notes

E EY Apply journaled changes
(APYJRNCHG) command
started

E ZA Change authority The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Change authority (E ZA, J ZA, Q
ZA, Y ZA) journal entry” on page 193.

E ZB Change object attribute The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Change object attribute (E ZB,
D ZB, J ZB, Q ZB, Y ZB) journal entry” on page 200.

E ZO Ownership change The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Ownership change (E ZO, J ZO,
Q ZO, Y ZO) journal entries” on page 291.

E ZP Change primary group The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Change primary group (E ZP, J
ZP, Q ZP, Y ZP) journal entry” on page 201.

E ZT Auditing change The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Auditing Change (E ZT, J ZT, Q
ZT, Y ZT) journal entries” on page 193.

F AY Journaled changes
applied to a physical file
member (APYJRNCHG)

See the layout for the “APYJRNCHG (B AT, D DD, E EQ,
F AY, Q QH, Y YH) and RMVJRNCHG (E EX, F RC)
journal entries” on page 191.

F CB Physical file member
changed

See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

F CE Change end of data for
physical file member

See the layout for the “Change end of data (F CE)
journal entry” on page 199.

F CH Change file As of V5R1M0, the journal entry D CG is also being
sent for the change file operations. IBM strongly
recommends that you do your processing based on
the D CG entry instead of the F CH entry because the F
CH entry may be retired in a future release.

F CL Physical file member
closed (for shared files, a
close entry is made for the
last close operation of the
file)

See the layout for the “Database file OPEN (F OP) and
database file CLOSE (F CL) journal entries” on page
222.

Journal management 135

Journal
code

Entry type Description Notes

F CR Physical file member
cleared (CLRPFM)

F C1 Rollback ended early See the layout for the “Rollback ended early (C CN, F
C1) journal entries” on page 293.

F DE Physical file member
deleted record count

F DM Delete member Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

F EJ Journaling for a physical
file member ended
(ENDJRNPF)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

F EP Journaling access path for
a database file member
ended (ENDJRNAP)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

F FD Physical file member
forced (written) to
auxiliary storage

See the layout for the “Force data to auxiliary storage
(F FD) journal entry” on page 233.

F FI System-generated journal
entry format information

F IT Identity value See the layout for the “Identity Value (F IT) journal
entries” on page 249.

F IU Physical file member in
use at the time of
abnormal system end

See the layout for the “IPL (J IA, J IN) and in-use (B
OI, C BA, D ID, E EI, F IU, I DA, J JI, Q QI) journal
entries” on page 252.

F IZ Physical file member
initialized (INZPFM)

This journal entry may have data which can only be
accessed by using either the
QjoRetrieveJournalEntries API or the RCVJRNE
command. For the RCVJRNE command, use the
ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 313.

See the layout for the “INZPFM (F IZ) journal entry” on
page 249.

136 IBM i: Journal management

Journal
code

Entry type Description Notes

F JC Change journaled object
attribute

See the layout for the “Change journaled object
attributes (B JA, D DJ, E EK, F JC, Q QF, Y YK) journal
entries” on page 199.

F JM Journaling for a physical
file member started
(STRJRNPF)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Start journal (B JT, D JF, E EG, F
JM, Q QB) journal entries” on page 297.

F JP Journaling access path for
a database file member
started (STRJRNAP)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

F MC Create member See the layout for the “Object level (D AC, D CG, D CT,
D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1,
D P2, D P3, D RV, D TC, D TD, D TG, D TQ, F CB, F DM, F
MC) journal entries” on page 285.

F MD Physical file member
deleted. This entry is
created when you remove
the member (RMVM) or
delete the file (DLTF)
containing the member.

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

F MF Physical file member
saved with storage freed
(SAVOBJ, SAVCHGOBJ, or
SAVLIB)

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

F MM Physical file containing
the member moved to a
different library (MOVOBJ
or RNMOBJ
OBJTYPE(*LIB))

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Moving and renaming objects
(D FM, D FN, E EM, E EN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q QN) journal entries” on page 283.

F MN Physical file containing
the member renamed
(RNMM or RNMOBJ)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Moving and renaming objects
(D FM, D FN, E EM, E EN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q QN) journal entries” on page 283.

F MO Allow use with partial
transactions

See the layout for the “Allow use with partial
transactions (F MO) journal entry” on page 190.

F MR Physical file member
restored (RSTOBJ or
RSTLIB)

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

Journal management 137

Journal
code

Entry type Description Notes

See the layout for the “Object restored (B FR, D DZ, E
EL, F MR, J RR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 288.

F MS Physical file member
saved (SAVOBJ, SAVLIB,
or SAVCHGOBJ)

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

See the layout for the “Object saved (B FS, D DH, E ES,
F MS, Q QY, Y YS) journal entries” on page 289.

F OP Physical file member
opened (for shared files,
an open entry is added for
the first open operation
for the file)

See the layout for the “Database file OPEN (F OP) and
database file CLOSE (F CL) journal entries” on page
222.

F PD Database file member's
access path deleted (this
entry is created when you
remove the member
(RMVM) or delete the file
(DLTF) containing the
member)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The object name for this entry might be misleading. It
is the original name the path had when journaling
started. The name is not updated if the access path is
moved, renamed, or if it is implicitly shared by another
logical file.

See the layout for the “Delete access path (F PD)
journal entry” on page 221.

F PM The logical owner of a
journaled access path was
moved (MOVOBJ or
RNMOBJ OBJTYPE(*LIB))

After you have installed V4R2M0 or a later release,
this journal type is no longer generated.

See the layout for the “Moving and renaming objects
(D FM, D FN, E EM, E EN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q QN) journal entries” on page 283.

F PN The logical owner of a
journaled access path was
renamed (RNMOBJ or
RNMM)

After you have installed V4R2M0 or a later release,
this journal type is no longer generated.

See the layout for the “Moving and renaming objects
(D FM, D FN, E EM, E EN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q QN) journal entries” on page 283.

F RC Journaled changes
removed from a physical
file member
(RMVJRNCHG)

See the layout for the “APYJRNCHG (B AT, D DD, E EQ,
F AY, Q QH, Y YH) and RMVJRNCHG (E EX, F RC)
journal entries” on page 191.

F RG Physical file member
reorganized (RGZPFM)

See the layout for the “RGZPFM (F RG) journal entry”
on page 293.

F RM Member reorganized

F SA The point at which the
APYJRNCHG command
started running

138 IBM i: Journal management

Journal
code

Entry type Description Notes

F SR The point at which the
RMVJRNCHG command
started running

F SS The start of the save of a
physical file member
using the save-while-
active function

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

See the layout for the “Start of save-while-active (B
FW, D DW, E EW, F SS, Q QX, Y YW) journal entries” on
page 295.

I DA Directory in use at
abnormal end

See the layout for the “IPL (J IA, J IN) and in-use (B
OI, C BA, D ID, E EI, F IU, I DA, J JI, Q QI) journal
entries” on page 252.

I DK Internal entry

I IB Internal recovery

I IC Access path protection

I IE Directory recovery

I IF Access path protection

I IG Access path restored

I IH Access path protection

I II Access path in use at
abnormal end

I IK Access path protection

I IO Access path protection

I IQ Access path protection

I IV Access path protection

I IW Access path protection

I IX Start of save for access
path

I IY Access path saved

I UE Unknown entry type

J CI Journal caching started Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

J CX Journal caching ended Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

Journal management 139

Journal
code

Entry type Description Notes

J EZ End journaling for journal
receiver

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

J IA System IPL after
abnormal end

See the layout for the “IPL after abnormal end (J IA)
journal entries” on page 250.

J IN System IPL after normal
end

See the layout for the “IPL after normal end(J IN)
journal entries” on page 250.

J JI Journal receiver in use at
abnormal end

See the layout for the “IPL (J IA, J IN) and in-use (B
OI, C BA, D ID, E EI, F IU, I DA, J JI, Q QI) journal
entries” on page 252.

J JR Start journaling for journal
receiver

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

J KR Keep journal receivers for
recovery

J LA Activate local journal Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

J LI Inactivate local journal Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

J MJ Journal receiver moved Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QWCJRNL.H.

See the layout for the “Moving and renaming objects
(D FM, D FN, E EM, E EN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q QN) journal entries” on page 283.

J NK Do not keep journal
receivers for recovery

J NR Identifier for the next
journal receiver (the
receiver that was attached
when the indicated
receiver was detached)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “CHGJRN (J NR, J PR) journal
entries” on page 204.

J PR Identifier for the previous
journal receiver (the
receiver that was
detached when the
indicated receiver was
attached)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “CHGJRN (J NR, J PR) journal
entries” on page 204.

140 IBM i: Journal management

Journal
code

Entry type Description Notes

J RD Deletion of a journal
receiver (DLTJRNRCV)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

See the layout for the “Delete receiver (J RD, J RF)
journal entries” on page 221.

J RF Storage for a journal
receiver freed (SAVOBJ,
SAVCHGOBJ, or SAVLIB)

See the layout for the “Delete receiver (J RD, J RF)
journal entries” on page 221.

J RR Restore operation for a
journal receiver (RSTOBJ
or RSTLIB)

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

See the layout for the “Object restored (B FR, D DZ, E
EL, F MR, J RR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 288.

J RS Save operation for a
journal receiver (SAVOBJ,
SAVCHGOBJ, or SAVLIB)

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

See the layout for the “Object restored (B FR, D DZ, E
EL, F MR, J RR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 288.

J SI Enter journal state
(*STANDBY)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

J SL Severed link Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

This is the start of the savepoint or nested commit
cycle where it is written to the journal and occurs
when the application creates an SQL SAVEPOINT. The
system can also create an internal nested commit
cycle to handle a series of database functions as a
single operation. The entry-specific data for this
journal entry is all internal data.

J SX Exit journal state
(*STANDBY)

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

J UA User independent
auxiliary storage pool vary
on abnormal

See the layout for the “User IASP vary on abnormal (J
UA) journal entries” on page 299.

J UN User independent
auxiliary storage pool vary
on normal

See the layout for the “User IASP vary on normal (J
UN) journal entries” on page 299.

Journal management 141

Journal
code

Entry type Description Notes

J XP Internal entry Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

J ZA Change authority for
journal receiver

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Change authority (E ZA, J ZA, Q
ZA, Y ZA) journal entry” on page 193.

J ZB Change attribute for
journal receiver

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Change object attribute (E ZB,
D ZB, J ZB, Q ZB, Y ZB) journal entry” on page 200.

J ZO Change owner for journal
receiver

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Ownership change (E ZO, J ZO,
Q ZO, Y ZO) journal entries” on page 291.

J ZP Change primary group for
journal receiver

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Change primary group (E ZP, J
ZP, Q ZP, Y ZP) journal entry” on page 201.

J ZT Change audit attribute for
journal receiver

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Auditing Change (E ZT, J ZT, Q
ZT, Y ZT) journal entries” on page 193.

L LK License key is not valid See the layout for the “License key not valid (L LK)
journal entry” on page 253.

L LL Usage limit changed See the layout for the “Usage limit changed (L LL)
journal entry” on page 298.

L LU Usage limit exceeded See the layout for the “Usage limit exceeded (L LU)
journal entry” on page 298.

M MP Modification of QoS
policies

M SN Simple Network
Management Protocol
(SNMP) information

See Simple Network Management Protocol (SNMP)

Support for information about the entry specific
data for SNMP journal entries.

M TF IP filter rules actions See the layout for the “IP Packet Filter (M TF) journal
entry” on page 251.

M TN IP NAT rules actions See the layout for the “IP NAT rules actions (M TN)
journal entry” on page 250.

142 IBM i: Journal management

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/books_web/sc415412.pdf
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/books_web/sc415412.pdf

Journal
code

Entry type Description Notes

M TS Virtual private networking
(VPN) information

P TP Performance shared pool
change

See Work Management for the layout of the entry
specific data.

Q QA Create data queue The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Create data queue (Q QA)
journal entry” on page 215.

Q QB Start data queue
journaling

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Start journal (B JT, D JF, E EG, F
JM, Q QB) journal entries” on page 297.

Q QC Data queue cleared, no
key

See the layout for the “Database file OPEN (F OP) and
database file CLOSE (F CL) journal entries” on page
222.

Q QD Data queue deleted Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

There is no entry-specific data for this entry.

Q QE End data queue journaling Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

There is no entry-specific data for this entry.

Q QF Change journal object
attribute

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Change journaled object
attributes (B JA, D DJ, E EK, F JC, Q QF, Y YK) journal
entries” on page 199.

Q QG Data queue attributes
changed

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Data queue attributes changed
(Q QG) journal entry” on page 220.

Q QH Data queue changes
applied

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “APYJRNCHG (B AT, D DD, E EQ,
F AY, Q QH, Y YH) and RMVJRNCHG (E EX, F RC)
journal entries” on page 191.

Journal management 143

Journal
code

Entry type Description Notes

Q QI Queue in use at abnormal
end

There is no entry-specific data for this entry.

Q QJ Data queue cleared, has
key

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Data queue cleared, has key (Q
QJ) journal entry” on page 221.

Q QK Send data queue entry,
has key

This journal entry may have data which can only be
accessed by using either the
QjoRetrieveJournalEntries API or the RCVJRNE
command. For the RCVJRNE command, use the
ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 313.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Send data queue, has key (Q
QK) journal entry” on page 294.

Q QL Receive data queue entry,
has key

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Received data queue, has key
(Q QL) journal entry” on page 292.

Q QM Data queue moved Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Moving and renaming objects
(D FM, D FN, E EM, E EN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q QN) journal entries” on page 283.

Q QN Data queue renamed Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Moving and renaming objects
(D FM, D FN, E EM, E EN, F MM, F MN, F PM, F PN, J
MJ, Q QM, Q QN) journal entries” on page 283.

Q QR Receive data queue entry,
no key

This entry only has entry-specific data which the
system uses for internal processing. There is no
structure for it in the QSYSINC include file,
QMHQJRNL.H.

144 IBM i: Journal management

Journal
code

Entry type Description Notes

Q QS Send data queue entry, no
key

This journal entry may have data which can only be
accessed by using either the
QjoRetrieveJournalEntries API or the RCVJRNE
command. For the RCVJRNE command, use the
ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 313.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Send data queue, no key (Q QS)
journal entry” on page 295.

Q QW Apply journaled changes
(APYJRNCHG) command
started

The entry specific data for this entry varies, and only
represents data required internally by the operation
system. Therefore, the entry layout is not
documented.

Q QX Start of save for data
queue

These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Start of save-while-active (B
FW, D DW, E EW, F SS, Q QX, Y YW) journal entries” on
page 295.

Q QY Data queue saved These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Object saved (B FS, D DH, E ES,
F MS, Q QY, Y YS) journal entries” on page 289.

Q QZ Data queue restored These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QMHQJRNL.H.

See the layout for the “Object restored (B FR, D DZ, E
EL, F MR, J RR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 288.

Q VE Internal entry This is an internal entry. No layout of entry-specific
data is provided.

Journal management 145

Journal
code

Entry type Description Notes

Q VQ Internal entry This is an internal entry. No layout of entry-specific
data is provided.

Q VW Internal entry This is an internal entry. No layout of entry-specific
data is provided.

Q ZA Change authority The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Change authority (E ZA, J ZA, Q
ZA, Y ZA) journal entry” on page 193.

Q ZB Change object attribute The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Change object attribute (E ZB,
D ZB, J ZB, Q ZB, Y ZB) journal entry” on page 200.

Q ZO Ownership change The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Ownership change (E ZO, J ZO,
Q ZO, Y ZO) journal entries” on page 291.

Q ZP Change primary group The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Change primary group (E ZP, J
ZP, Q ZP, Y ZP) journal entry” on page 201.

Q ZT Auditing change The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Auditing Change (E ZT, J ZT, Q
ZT, Y ZT) journal entries” on page 193.

R BR Before-image of record
updated for rollback
operation

This journal entry may have data which can only be
accessed by using either the
QjoRetrieveJournalEntries API or the RCVJRNE
command. For the RCVJRNE command, use the
ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to Work with pointers in
journal entries.

This entry may have minimized entry specific data
(ESD). It will have minimized ESD if its corresponding
object type deposits minimized journal entries through
the MINENTDTA parameter for this journal or journal
receiver.

See the layout for the “Journal code R, all journal entry
types except IL” on page 252.

R DL Record deleted in the
physical file member

This journal entry may have data which can only be
accessed by using either the

146 IBM i: Journal management

Journal
code

Entry type Description Notes

QjoRetrieveJournalEntries API or the RCVJRNE
command. For the RCVJRNE command, use the
ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 313

See the layout for the “Journal code R, all journal entry
types except IL” on page 252.

R DR Record deleted for
rollback operation

This journal entry may have data which can only be
accessed by using either the
QjoRetrieveJournalEntries API or the RCVJRNE
command. For the RCVJRNE command, use the
ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 313.

See the layout for the “Journal code R, all journal entry
types except IL” on page 252.

R IL Increment record limit These entries have entry-specific data which the
system uses for internal processing.

R PT Record added to a
physical file member. If
the file is set up to reuse
deleted records, then you
may receive either a PT or
PX journal entry for the
change

This journal entry may have data which can only be
accessed by using either the
QjoRetrieveJournalEntries API or the RCVJRNE
command. For the RCVJRNE command, use the
ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 313.

See the layout for the “Journal code R, all journal entry
types except IL” on page 252.

R PX Record added directly by
RRN (relative record
number) to a physical file
member. If the file is set
up to reuse deleted
records, then you may
receive either a PT or PX
journal entry for the
change

This journal entry may have data which can only be
accessed by using either the
QjoRetrieveJournalEntries API or the RCVJRNE
command. For the RCVJRNE command, use the
ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to“Working with pointers in
journal entries” on page 313.

This entry may have minimized entry specific data
(ESD). It will have minimized ESD if its corresponding
object type deposits minimized journal entries through

Journal management 147

Journal
code

Entry type Description Notes

the MINENTDTA parameter for this journal or journal
receiver.

See the layout for the “Journal code R, all journal entry
types except IL” on page 252.

R UB Before-image of a record
that is updated in the
physical file member (this
entry is present only if
IMAGES(*BOTH) is
specified on the
STRJRNPF command)

Neither the before-image nor after-image is deposited
into the journal if the after-image is exactly the same
as the before-image.

This journal entry may have data which can only be
accessed by using either the
QjoRetrieveJournalEntries API or the RCVJRNE
command. For the RCVJRNE command, use the
ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 313.

This entry may have minimized entry specific data
(ESD). It will have minimized ESD if its corresponding
object type deposits minimized journal entries through
the MINENTDTA parameter for this journal or journal
receiver.

See the layout for the “Journal code R, all journal entry
types except IL” on page 252.

R UP After-image of a record
that is updated in the
physical file member

Neither the before-image nor after-image is deposited
into the journal if the after-image is exactly the same
as the before-image.

This journal entry may have data which can only be
accessed by using either the
QjoRetrieveJournalEntries API or the RCVJRNE
command. For the RCVJRNE command, use the
ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 313.

This entry may have minimized entry specific data
(ESD). It will have minimized ESD if its corresponding
object type deposits minimized journal entries through
the MINENTDTA parameter for this journal or journal
receiver.

See the layout for the “Journal code R, all journal entry
types except IL” on page 252.

R UR After-image of a record
that is updated for
rollback information

This journal entry may have data which can only be
accessed by using either the
QjoRetrieveJournalEntries API or the RCVJRNE
command. For the RCVJRNE command, use the

148 IBM i: Journal management

Journal
code

Entry type Description Notes

ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT)
parameters. In all other interfaces, if the data is not
visible, the incomplete data indicator will be on and
*POINTER will appear in the Entry Specific Data. For
more information, refer to “Working with pointers in
journal entries” on page 313 .

This entry may have minimized entry specific data
(ESD). It will have minimized ESD if its corresponding
object type deposits minimized journal entries through
the MINENTDTA parameter for this journal or journal
receiver.

See the layout for the “Journal code R, all journal entry
types except IL” on page 252.

S AL SNA alert focal point
information

S CF Mail configuration
information

See the layout for the “Change distribution queues (S
CF) journal entry” on page 195.

S DX X.400 process debug
entry

S ER Mail error information See the layout for the “Distribution errors (S ER)
journal entry” on page 222.

S LG Mail logging table
information

See the layout for the “Completed distributions (S LG)
journal entry” on page 205.

S MX A change was made to
X.400 MTA configuration

S NX A change was made to
X.400 delivery notification

S RT Mail routing information See the layout for the “Change routing table and
secondary system name table (S RT) journal entries”
on page 202.

S RX A change was made to
X.400 route configuration

S SY Mail system information See the layout for the “Mail server framework system
level events (S SY) journal entry” on page 282.

S UX A change was made to
X.400 (R) user or probe

S XE DSNX error entry See the layout for the “Distribution errors (S XE)
journal entries” on page 230.

S XL DSNX logging entry See the layout for the “DSNX log (S XL) journal entries”
on page 232.

Journal management 149

Journal
code

Entry type Description Notes

S XX An error was detected by
the X.400 process

T AD A change was made to the
auditing attribute

See the layout for the Security Reference: Layout of
audit journal entries.

T AF All authority failures See the layout for the Security Reference: Layout of
audit journal entries.

T AP A change was made to
program adopt

See the layout for the Security Reference: Layout of
audit journal entries.

T AU Attribute change See the layout for the Security Reference: Layout of
audit journal entries.

T AX Row and column access
control

See the layout for the Security Reference: Layout of
audit journal entries.

T CA Changes to object
authority (authorization
list or object)

See the layout for the Security Reference: Layout of
audit journal entries.

T CD A change was made to a
command string

See the layout for the Security Reference: Layout of
audit journal entries.

T CO Create object See the layout for the Security Reference: Layout of
audit journal entries.

T CP Create, change, restore
user profiles

See the layout for the Security Reference: Layout of
audit journal entries.

T CQ A change was made to a
change request descriptor

See the layout for the Security Reference: Layout of
audit journal entries.

T CU Cluster operation See the layout for the Security Reference: Layout of
audit journal entries.

T CV Connection verification See the layout for the Security Reference: Layout of
audit journal entries.

T CY Cryptographic
configuration

See the layout for the Security Reference: Layout of
audit journal entries.

T DI Directory services See the layout for the Security Reference: Layout of
audit journal entries.

T DO All delete operations on
the system

See the layout for the Security Reference: Layout of
audit journal entries.

T DS DST security officer
password reset

See the layout for the Security Reference: Layout of
audit journal entries.

150 IBM i: Journal management

Journal
code

Entry type Description Notes

T EV Environment variable See the layout for the Security Reference: Layout of
audit journal entries.

T GR General purpose audit
record

See the layout for the Security Reference: Layout of
audit journal entries.

T GS A descriptor was given See the layout for the Security Reference: Layout of
audit journal entries.

T IM Intrusion monitor See the layout for the Security Reference: Layout of
audit journal entries.

T IP Inter-process
communication event

See the layout for the Security Reference: Layout of
audit journal entries.

T IR IP rules actions See the layout for the Security Reference: Layout of
audit journal entries.

T IS Internet security
management

See the layout for the Security Reference: Layout of
audit journal entries.

T JD Changes to the USER
parameter of a job
description

See the layout for the Security Reference: Layout of
audit journal entries.

T JS A change was made to job
data

See the layout for the Security Reference: Layout of
audit journal entries.

T KF Key ring file name See the layout for the Security Reference: Layout of
audit journal entries.

T LD A link, unlink, or lookup
operation to a directory

See the layout for the Security Reference: Layout of
audit journal entries.

T ML A change was made to
office services mail

See the layout for the Security Reference: Layout of
audit journal entries.

T NA Changes to network
attributes

See the layout for the Security Reference: Layout of
audit journal entries.

T ND Directory search
violations

See the layout for the Security Reference: Layout of
audit journal entries.

T NE End point violations See the layout for the Security Reference: Layout of
audit journal entries.

T OM Object management
change

See the layout for the Security Reference: Layout of
audit journal entries.

T OR Object restored See the layout for the Security Reference: Layout of
audit journal entries.

Journal management 151

Journal
code

Entry type Description Notes

T OW Changes to object
ownership

See the layout for the Security Reference: Layout of
audit journal entries.

T O1 Single optical object
access

See the layout for the Security Reference: Layout of
audit journal entries.

T O2 Dual optical object access See the layout for the Security Reference: Layout of
audit journal entries.

T O3 Optical volume access See the layout for the Security Reference: Layout of
audit journal entries.

T PA Changes to programs
(CHGPGM) that will now
adopt the owner's
authority

See the layout for the Security Reference: Layout of
audit journal entries.

T PF PTF operations See the layout for the Security Reference: Layout of
audit journal entries.

T PG Changes to an object's
primary group

See the layout for the Security Reference: Layout of
audit journal entries.

T PO A change was made to
printed output

See the layout for the Security Reference: Layout of
audit journal entries.

T PS Profile swap See the layout for the Security Reference: Layout of
audit journal entries.

T PU PTF object changes See the layout for the Security Reference: Layout of
audit journal entries.

T PW Passwords used that are
not valid

See the layout for the Security Reference: Layout of
audit journal entries.

T RA Restore of objects when
authority changes

See the layout for the Security Reference: Layout of
audit journal entries.

T RJ Restore of job
descriptions that contain
user profile names

See the layout for the Security Reference: Layout of
audit journal entries.

T RO Restore of objects when
ownership information
changes

See the layout for the Security Reference: Layout of
audit journal entries.

T RP Restore of programs that
adopt their owner's
authority

See the layout for the Security Reference: Layout of
audit journal entries.

T RQ A change request
descriptor was restored

See the layout for the Security Reference: Layout of
audit journal entries.

T RU Restore of authority for
user profiles

See the layout for the Security Reference: Layout of
audit journal entries.

152 IBM i: Journal management

Journal
code

Entry type Description Notes

T RZ The primary group for an
object was changed
during a restore operation

See the layout for the Security Reference: Layout of
audit journal entries.

T SD A change was made to the
system directory

See the layout for the Security Reference: Layout of
audit journal entries.

T SE Changes to subsystem
routing

See the layout for the Security Reference: Layout of
audit journal entries.

T SF A change was made to a
spooled output file

See the layout for the Security Reference: Layout of
audit journal entries.

T SG Asynchronous signals See the layout for the Security Reference: Layout of
audit journal entries.

T SK Secure sockets
connection

See the layout for the Security Reference: Layout of
audit journal entries.

T SM A change was made by
system management

See the layout for the Security Reference: Layout of
audit journal entries.

T SO A change was made by
server security

See the layout for the Security Reference: Layout of
audit journal entries.

T ST A change was made by
system tools

See the layout for the Security Reference: Layout of
audit journal entries.

T SV Changes to system values See the layout for the Security Reference: Layout of
audit journal entries.

T VA Changes to access control
list

See the layout for the Security Reference: Layout of
audit journal entries.

T VC Connection started or
ended

See the layout for the Security Reference: Layout of
audit journal entries.

T VF Server files were closed See the layout for the Security Reference: Layout of
audit journal entries.

T VL An account limit was
exceeded

See the layout for the Security Reference: Layout of
audit journal entries.

T VN A logon or logoff operation
on the network

See the layout for the Security Reference: Layout of
audit journal entries.

T VO Actions on validation lists See the layout for the Security Reference: Layout of
audit journal entries.

T VP A network password error See the layout for the Security Reference: Layout of
audit journal entries.

Journal management 153

Journal
code

Entry type Description Notes

T VR A network resources was
accessed

See the layout for the Security Reference: Layout of
audit journal entries.

T VS A server session started
or ended

See the layout for the Security Reference: Layout of
audit journal entries.

T VU A network profile was
changed

See the layout for the Security Reference: Layout of
audit journal entries.

T VV Service status was
changed

See the layout for the Security Reference: Layout of
audit journal entries.

T XD Extension of the directory
services entry

See the layout for the Security Reference: Layout of
audit journal entries.

T X0 Network authentication See the layout for the Security Reference: Layout of
audit journal entries.

T X1 Identity token See the layout for the Security Reference: Layout of
audit journal entries.

T X2 Query manager profile
changes

See the layout for the Security Reference: Layout of
audit journal entries.

T X3 Reserved for future audit
entry

See the layout for the Security Reference: Layout of
audit journal entries.

T X4 Reserved for future audit
entry

See the layout for the Security Reference: Layout of
audit journal entries.

T X5 Reserved for future audit
entry

See the layout for the Security Reference: Layout of
audit journal entries.

T X6 Reserved for future audit
entry

See the layout for the Security Reference: Layout of
audit journal entries.

T X7 Reserved for future audit
entry

See the layout for the Security Reference: Layout of
audit journal entries.

T X8 Reserved for future audit
entry

See the layout for the Security Reference: Layout of
audit journal entries.

T X9 Reserved for future audit
entry

See the layout for the Security Reference: Layout of
audit journal entries.

T YC A change was made to
DLO change access

See the layout for the Security Reference: Layout of
audit journal entries.

T YR A change was made to
DLO read access

See the layout for the Security Reference: Layout of
audit journal entries.

154 IBM i: Journal management

Journal
code

Entry type Description Notes

T ZC A change was made to
object change access

See the layout for the Security Reference: Layout of
audit journal entries.

T ZR A change was made to
object read access

See the layout for the Security Reference: Layout of
audit journal entries.

U User-specified. The Entry-
specific data is the value
specified on the ENTDTA
parameter of the
SNDJRNE command or
with the entry data
parameter for the
QJOSJRNE API

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

Y LF Logical file associated
with the library

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Logical file associated with the
library or based on physical file (D LF, Y LF) journal
entry” on page 254.

Y YA Change library attributes The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Change library attributes (Y YA)
journal entry” on page 200.

Y YB Journaling for library
started

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Journaling for library started (Y
YB) journal entry” on page 253.

Y YD Library deleted Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

There is no entry-specific data for this entry.

Y YE Journaling for library
ended

Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

There is no entry-specific data for this entry.

Y YH Library changes applied The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “APYJRNCHG (B AT, D DD, E EQ,
F AY, Q QH, Y YH) and RMVJRNCHG (E EX, F RC)
journal entries” on page 191.

Journal management 155

Journal
code

Entry type Description Notes

Y YI Library in use at abnormal
end

There is no entry-specific data for this entry.

Y YK Change journaled object
attribute

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Change journaled object
attributes (B JA, D DJ, E EK, F JC, Q QF, Y YK) journal
entries” on page 199.

Y YN Library renamed Even if this journal has a journal state of *STANDBY,
this entry type will still be deposited in the journal
receiver.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Library renamed (Y YN) journal
entry” on page 254.

Y YO Object added to library The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Object added to library (Y YO)
journal entry” on page 284.

Y YS Library saved These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Object saved (B FS, D DH, E ES,
F MS, Q QY, Y YS) journal entries” on page 289.

Y YW Start of save for library These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Start of save-while-active (B
FW, D DW, E EW, F SS, Q QX, Y YW) journal entries” on
page 295.

Y YY Apyjrnchg command
started

Y YZ Library restored These entries do not indicate that they occurred as the
result of a trigger program, even if a trigger program
caused the event. That information is not available at
the time the entry is written to the journal.

The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

156 IBM i: Journal management

Journal
code

Entry type Description Notes

See the layout for the “Object restored (B FR, D DZ, E
EL, F MR, J RR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 288.

Y ZA Change authority The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Object restored (B FR, D DZ, E
EL, F MR, J RR, Q QZ, Y YZ) and receiver saved (J RS)
journal entries” on page 288.

Y ZB Object attribute change The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QLIJRNL.H.

See the layout for the “Change object attribute (E ZB,
D ZB, J ZB, Q ZB, Y ZB) journal entry” on page 200.

Y ZO Change owner The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Ownership change (E ZO, J ZO,
Q ZO, Y ZO) journal entries” on page 291.

Y ZP Change primary group The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Change primary group (E ZP, J
ZP, Q ZP, Y ZP) journal entry” on page 201.

Y ZT Change audit attribute The entry-specific data for these journal entries is laid
out in the QSYSINC include file, QSYJRNL.H.

See the layout for the “Auditing Change (E ZT, J ZT, Q
ZT, Y ZT) journal entries” on page 193.

Fixed-length portion of the journal entry
This topic provides the layouts of the fixed-length portion of the journal entries.

When you use the Display Journal (DSPJRN) command, Receive Journal Entry (RCVJRNE) command,
Retrieve Journal Entry (RTVJRNE) command, or the Retrieve Journal Entries (QjoRetrieveJournalEntries)
API you can select one of the formats in which to receive the layout for the fixed-length portion of the
journal entry:

• *TYPE1
• *TYPE2
• *TYPE3
• *TYPE4
• *TYPE5

*TYPE1 format
The *TYPE1 format shows the fields that are common for all journal entry types. These fields are
shown when you request *TYPE1 for the output file format or the entry type format.

*TYPE2 format
If you request OUTFILFMT(*TYPE2) on the DSPJRN command, or ENTFMT(*TYPE2) on the RCVJRNE
or RTVJRNE command, then the fixed-length portion of each converted journal entry is the same as

Journal management 157

the format in *TYPE1, except for the information that follows the commit cycle identifier field. The
fields of the prefix that follow the commit cycle identifier are shown in *TYPE2 field descriptions.

TYPE3 field descriptions
A third value, *TYPE3, is supported on the OUTFILFMT parameter for the DSPJRN command, and the
ENTFMT parameter for the RCVJRNE and RTVJRNE commands. If either OUTFILFMT(*TYPE3) is
specified on the DSPJRN command or ENTFMT(*TYPE3) is specified on the RCVJRNE or RTVJRNE
command, the information in the prefix portion of a converted journal entry is shown in *TYPE3 field
descriptions. *TYPE3 has the same information as the *TYPE1 and *TYPE2 formats, except that it has
a different date format and a null-values indicator.

*TYPE4 field descriptions
A fourth value, *TYPE4, is supported on the OUTFILFMT parameter for the DSPJRN command and the
ENTFMT parameter for the RCVJRNE and RTVJRNE commands. If either OUTFILFMT(*TYPE4) is
specified on the DSPJRN command or ENTFMT(*TYPE4) is specified on the RCVJRNE or RTVJRNE
command, the information in the prefix portion of a converted journal entry is shown in Table 4.
*TYPE4 output includes all of the *TYPE3 information, plus information about journal identifiers,
triggers, and referential constraints and entries which will be ignored by the APYJRNCHG or
RMVJRNCHG commands.

*TYPE5 field descriptions
The *TYPE5 format is only available with the DSPJRN and RTVJRNE commands. The *TYPE5 format is
supported on the OUTFILFMT parameter for the DSPJRN command and ENTFMT parameter of the
RTVJRNE command. If you specify OUTFILFMT(*TYPE5) on the DSPJRN command or
ENTFMT(*TYPE5) on the RTVJRNE command, the information in the prefix portion of a converted
journal entry is shown in Table 5. *TYPE5 output includes all of the *TYPE4 information, plus
information about the following:

• System sequence number
• Thread identifier
• Remote address
• Address family
• Remote port
• Arm number
• Receiver name
• Receiver library name
• Receiver library ASP device name
• Program library name
• Program library ASP device name
• Program library ASP number
• Logical unit of work
• Transaction identifier
• Receiver library ASP number
• Object type
• File type
• Nested commit level

The RCVJRNE command also supports the *TYPEPTR and *JRNENTFMT formats. The layout of the
journal entry data for the *TYPEPTR interface is the same as the RJNE0100 format which is described
in the QjoRetrieveJournalEntries API.

The layout of the journal entry data for the *JRNENTFMT interface is the same as either the
RJNE0100 format or the RJNE0200 format of the QjoRetrieveJournalEntries API. You can select
which format to use by selecting the RJNE0100 or the RJNE0200 value for the Journal Entry Format
(JRNENTFMT) parameter of the RCVJRNE command.

158 IBM i: Journal management

You can find the field descriptions for layouts *TYPE1, *TYPE2, *TYPE3, *TYPE4, and *TYPE5 in the
Journal entry information finder.

Related reference
Retrieve Journal Entries (QjoRetrieveJournalEntries) API
Related information
Journal entry information finder

Layouts for the fixed-length portion of journal entries
Use this topic to determine layouts for the fixed-length portion of journal entries.

TYPE1 field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPE1 for the output file format or the entry type format. The
uppercase field names shown in parentheses are used in the system-supplied output file QSYS/
QADSPJRN. The field names that are in italics are the variable names for these fields in the
QjoRetrieveJournalEntries API header file. These variables are under the type definition for the
RJNE0100 format. The QjoRetrieveJournalEntries API header is in the QJOURNAL.H file of the
QSYSINC library.

Relativ
e offset

Field Format Description

1 Entry length (JOENTL) Zoned (5,0) Specifies the length of the journal entry
including the entry length field, all subsequent
positions of the journal entry, and any portion
of the journal entry that was truncated if the
length of the output record is less than the
length of the record created for the journal
entry.

If the journal entry has the incomplete data
indicator on, then this length does not include
that additional data which could be pointed to.
This length includes the length of the data that
is actually returned, which includes entry
specific data of up to 32 766 bytes.

6 Sequence number
(JOSEQN, Seq_Number)

Zoned (10,0) Assigned by the system to each journal entry.
It is initially set to 1 for each new or restored
journal and is incremented until you request
that it be reset when you attach a new
receiver. There are occasional gaps in the
sequence numbers because the system uses
internal journal entries for control purposes.
These gaps occur if you use commitment
control, journal physical files, or journal
access paths.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the sequence number
is larger than 9 999 999 999.

Journal management 159

Relativ
e offset

Field Format Description

16 Journal code (JOCODE,
Jrn_Code)

Char (1) Identifies the primary category of the journal
entry:

A = System accounting entry
B = Integrated file system operation
C = Commitment control operation
D = Database file operation
E = Data area operation
F = Database file member operation
I = Internal operation
J = Journal or receiver operation
L = License management
M = Network management data
P = Performance tuning entry
Q = Data queue operation
R = Operation on a specific record
S = Distributed mail services
T = Audit trail entry
U = User-generated entry (added by the
SNDJRNE command or QJOSJRNE API)

The journal codes are described in more detail
in Journal code descriptions.

17 Entry type (JOENTT,
Entry_Type)

Char (2) Further identifies the type of user-created or
system-created entry. See the Journal code
finder for descriptions of the entry types.

19 Date stamp (JODATE) Char (6) Specifies the system date when the entry was
added and is in the format of the job attribute
DATFMT. The system cannot assure that the
date stamp is always in ascending order for
sequential journal entries because you can
change the value of the system date.

25 Time stamp (JOTIME) Zoned (6,0) Corresponds to the system time (in the format
hhmmss) when the entry was added. The
system cannot assure that the time stamp is
always in ascending order for sequential
journal entries because you can change the
value of the system time.

31 Job name (JOJOB,
Job_Name)

Char (10) Specifies the name of the job that added the
entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then *OMITTED is given
for the job name.

2. If the job name was not available when the
journal entry was deposited, then *NONE is
written for the job name.

160 IBM i: Journal management

Relativ
e offset

Field Format Description

41 User name (JOUSER,
User_Name)

Char (10) Specifies the user profile name of the user
that started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then blanks are written for
the user name.

51 Job number (JONBR,
Job_Number)

Zoned (6,0) Specifies the job number of the user that
started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then zeroes are written for
the job number.

57 Program name (JOPGM,
Program_Name)

Char (10) Specifies the name of the program that added
the entry. If an application or CL program did
not add the entry, the field contains the name
of a system-supplied program such as QCMD
or QPGMMENU. If the program name is the
special value *NONE, then one of the following
is true:

• The program name does not apply to this
journal entry.

• The program name was not available when
the journal entry was made.

For example, the program name is not
available if the program was destroyed.

Notes:

1. If the program that deposited the journal
entry is an original program model
program, this data will be complete.
Otherwise, this data will be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, *OMITTED is given for the
program name.

67 Object name (JOOBJ,
Object)

Char (10) Specifies the name of the object for which the
journal entry was added.1 This is blank for
some entries.

If the journaled object is an integrated file
system object, then this field is the first 10
bytes of the file identifier.

77 Library name (JOLIB) Char (10) Specifies the name of the library containing
the object1.

If the journaled object is an integrated file
system object, then the first 6 characters of
this field are the last 6 bytes of the file
identifier.

Journal management 161

Relativ
e offset

Field Format Description

87 Member name (JOMBR) Char (10) Specifies the name of the physical file
member or is blank if the object is not a
physical file1.

97 Count/relative record
number (JOCTRR,
Count_Rel_Rec_Num)

Zoned (10,0) Contains either the relative record number
(RRN) of the record that caused the journal
entry or a count that is pertinent to the
specific type of journal entry. The following
tables show specific values for this field, if
applicable:

• APYJRNCHG and RMVJRNCHG journal
entries

• Change end of data journal entry
• CHGJRN journal entries
• COMMIT journal entry
• INZPFM journal entry

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the count or relative
record number is larger than 9 999 999 999.

107 Indicator flag (JOFLAG,
Indicator_Flag)

Char (1) Contains an indicator for the operation. The
following tables show specific values for this
field, if applicable:

• APYJRNCHG and RMVJRNCHG journal
entries

• COMMIT journal entry
• INZPFM journal entry
• IPL and in-use journal entries
• Journal code R (all journal entry types

except IL)
• ROLLBACK journal entry
• Start-journal journal entries

108 Commit cycle identifier
(JOCCID,
Commit_Cycle_Id)

Zoned (10,0) Contains a number that identifies the commit
cycle. A commit cycle is from one commit or
rollback operation to another.

The commit cycle identifier is found in every
journal entry that is associated with a
commitment transaction. If the journal entry
was not made as part of a commitment
transaction, this field is zero.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the commit cycle
identifier is larger than 9 999 999 999.

162 IBM i: Journal management

Relativ
e offset

Field Format Description

118 Incomplete data
(JOINCDAT,
Incomplete_Data)

Char (1) Indicates whether this entry has data that is
not being retrieved for one of the following
reasons:

• The length of the entry-specific data
exceeds 32 766 bytes.

• The entry is associated with a database file
that has one or more fields of data type
BLOB (binary large object), CLOB (character
large object), or DBCLOB (double-byte
character large object).

The possible values are:

0 = This entry has all possible data
1 = This entry has incomplete data.

Any data which is marked as incomplete, can
only be viewed by using either the
QjoRetrieveJournalEntries API, or the
command RCVJRNE with any of the following
parameters:

• ENTFMT(*TYPEPTR)
• ENTFMT(*JRNENTFMT)
• RTNPTR (with any value specified other than

*NONE)

119 Minimized entry specific
data (JOMINESD,
Min_ESD)

Char (1) Indicates whether this entry has minimized
entry specific data.

The possible values are:

0 = This entry has all possible data
1 = This entry has incomplete data.
2 = This entry has entry specific data that
has been minimized on field boundaries.

120 Reserved field (JORES) Char (6) Always contains zeros. Contains hexadecimal
zeros in the output file.

Note:
1If the journal receiver was attached prior to installing V4R2M0 on your system, then the following items
are true:

• If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVJRNE, or RTVJRNE command, then
the fully qualified name is the most recent name of the file when the newest receiver in the receiver
range was the attached receiver and when the file was still being journaled.

• If a file name is specified or if library *ALL is specified on the FILE parameter, the current fully
qualified name of the file appears in the converted journal entry.

If the journal receiver was attached while V4R2M0 or a later release was running on the system, the
fully qualified name is the name of the object at the time the journal entry was deposited.

Journal management 163

*TYPE2 field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPE2 for the output file format or the entry type format. The
uppercase field names shown in parentheses are used in the system-supplied output file QSYS/
QADSPJR2. The field names that are in italics are the variable names for these fields in the
QjoRetrieveJournalEntries API header file. These variables are under the type definition for the
RJNE0100 format. The QjoRetrieveJournalEntries API header is in the QJOURNAL.H file of the
QSYSINC library.

Offset Field Format Description

1 Entry length (JOENTL) Zoned (5,0) Specifies the length of the journal entry
including the entry length field, all subsequent
positions of the journal entry, and any portion
of the journal entry that was truncated if the
length of the output record is less than the
length of the record created for the journal
entry.

If the journal entry has the incomplete data
indicator on, then this length does not include
that additional data which could be pointed to.
This length includes the length of the data that
is actually returned, which includes entry
specific data of up to 32 766 bytes.

6 Sequence number
(JOSEQN, Seq_Number)

Zoned (10,0) Assigned by the system to each journal entry.
It is initially set to 1 for each new or restored
journal and is incremented until you request
that it be reset when you attach a new
receiver. There are occasional gaps in the
sequence numbers because the system uses
internal journal entries for control purposes.
These gaps occur if you use commitment
control, journal physical files, or journal
access paths.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the sequence number
is larger than 9 999 999 999.

164 IBM i: Journal management

Offset Field Format Description

16 Journal code (JOCODE,
Jrn_Code)

Char (1) Identifies the primary category of the journal
entry:

A = System accounting entry
B = Integrated file system operation
C = Commitment control operation
D = Database file operation
E = Data area operation
F = Database file member operation
I = Internal operation
J = Journal or receiver operation
L = License management
M = Network management data
P = Performance tuning entry
Q = Data queue operation
R = Operation on a specific record
S = Distributed mail services
T = Audit trail entry
U = User-generated entry (added by the
SNDJRNE command or QJOSJRNE API)

The journal codes are described in more detail
in Journal code descriptions.

17 Entry type (JOENTT,
Entry_Type)

Char (2) Further identifies the type of user-created or
system-created entry. See the Journal code
finder for descriptions of the entry types.

19 Date stamp (JODATE) Char (6) Specifies the system date when the entry was
added and is in the format of the job attribute
DATFMT. The system cannot assure that the
date stamp is always in ascending order for
sequential journal entries because you can
change the value of the system date.

25 Time stamp (JOTIME) Zoned (6,0) Corresponds to the system time (in the format
hhmmss) when the entry was added. The
system cannot assure that the time stamp is
always in ascending order for sequential
journal entries because you can change the
value of the system time.

31 Job name (JOJOB,
Job_Name)

Char (10) Specifies the name of the job that added the
entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then *OMITTED is given
for the job name.

2. If the job name was not available when the
journal entry was deposited, then *NONE is
written for the job name.

Journal management 165

Offset Field Format Description

41 User name (JOUSER,
User_Name)

Char (10) Specifies the user profile name of the user
that started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then blanks are written for
the user name.

51 Job number (JONBR,
Job_Number)

Zoned (6,0) Specifies the job number of the user that
started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then zeroes are written for
the job number.

57 Program name (JOPGM,
Program_Name)

Char (10) Specifies the name of the program that added
the entry. If an application or CL program did
not add the entry, the field contains the name
of a system-supplied program such as QCMD
or QPGMMENU. If the program name is the
special value *NONE, then one of the following
is true:

• The program name does not apply to this
journal entry.

• The program name was not available when
the journal entry was made.

For example, the program name is not
available if the program was destroyed.

Notes:

1. If the program that deposited the journal
entry is an original program model
program, this data will be complete.
Otherwise, this data will be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, *OMITTED is given for the
program name.

67 Object name (JOOBJ,
Object)

Char (10) Specifies the name of the object for which the
journal entry was added.1 This is blank for
some entries.

If the journaled object is an integrated file
system object, then this field is the first 10
bytes of the file identifier.

77 Library name (JOLIB) Char (10) Specifies the name of the library containing
the object1.

If the journaled object is an integrated file
system object, then the first 6 characters of
this field are the last 6 bytes of the file
identifier.

166 IBM i: Journal management

Offset Field Format Description

87 Member name (JOMBR) Char (10) Specifies the name of the physical file
member or is blank if the object is not a
physical file1.

97 Count/relative record
number (JOCTRR,
Count_Rel_Rec_Num)

Zoned (10,0) Contains either the relative record number
(RRN) of the record that caused the journal
entry or a count that is pertinent to the
specific type of journal entry. The following
tables show specific values for this field, if
applicable:

• APYJRNCHG and RMVJRNCHG journal
entries

• Change end of data journal entry
• CHGJRN journal entries
• COMMIT journal entry
• INZPFM journal entry

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the count or relative
record number is larger than 9 999 999 999.

107 Indicator flag (JOFLAG,
Indicator_Flag)

Char (1) Contains an indicator for the operation. The
following tables show specific values for this
field, if applicable:

• APYJRNCHG and RMVJRNCHG journal
entries

• COMMIT journal entry
• INZPFM journal entry
• IPL and in-use journal entries
• Journal code R (all journal entry types

except IL)
• ROLLBACK journal entry
• Start-journal journal entries

108 Commit cycle identifier
(JOCCID,
Commit_Cycle_Id)

Zoned (10,0) Contains a number that identifies the commit
cycle. A commit cycle is from one commit or
rollback operation to another.

The commit cycle identifier is found in every
journal entry that is associated with a
commitment transaction. If the journal entry
was not made as part of a commitment
transaction, this field is zero.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the commit cycle
identifier is larger than 9 999 999 999.

Journal management 167

Offset Field Format Description

118 User profile (JOUSPF,
User_Profile)

Char (10) Specifies the name of the user profile under
which the job was running when the entry was
created.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then *OMITTED is given for
the user profile.

128 System name (JOSYNM,
System_Name)

Char (8) Specifies the name of the system on which the
entry is being displayed, printed, retrieved, or
received if the journal receiver was attached
prior to installing V4R2M0 on the system. If
the journal receiver was attached while the
system was running V4R2M0 or a later
release, the system name is the system where
the journal entry was actually deposited.

136 Incomplete data
(JOINCDAT,
Incomplete_Data)

Char (1) Indicates whether this entry has data that is
not being retrieved for one of the following
reasons:

• The length of the entry-specific data
exceeds 32 766 bytes.

• The entry is associated with a database file
that has one or more fields of data type
BLOB (binary large object), CLOB (character
large object), or DBCLOB (double-byte
character large object).

The possible values are:

0 = This entry has all possible data
1 = This entry has incomplete data

Any data which is marked as incomplete, can
only be viewed by using either the
QjoRetrieveJournalEntries API, or the
command RCVJRNE with any of the following
parameters:

• ENTFMT(*TYPEPTR)
• ENTFMT(*JRNENTFMT)
• RTNPTR (with any value specified other than

*NONE)

137 Minimized entry specific
data (JOMINESD,
Min_ESD)

Char (1) Indicates whether this entry has minimized
entry specific data.

The possible values are:

0 = This entry has complete entry specific
data.
1 = This entry has minimized entry specific
data.
2 = This entry has entry specific data that
has been minimized on field boundaries.

168 IBM i: Journal management

Offset Field Format Description

138 Reserved field (JORES) Char (18) Always contains zeros. Contains hexadecimal
zeros in the output file.

Note:
1 If the journal receiver was attached prior to installing V4R2M0 on your system, then the following
items are true:

• If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVJRNE, or RTVJRNE command, then
the fully qualified name is the most recent name of the file when the newest receiver in the receiver
range was the attached receiver and when the file was still being journaled.

• If a file name is specified or if library *ALL is specified on the FILE parameter, the current fully
qualified name of the file appears in the converted journal entry.

If the journal receiver was attached while V4R2M0 or a later release was running on the system, the
fully qualified name is the name of the object at the time the journal entry was deposited.

*TYPE3 field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPE3 for the output file format or the entry type format. The
uppercase field names shown in parentheses are used in the system-supplied output file QSYS/
QADSPJR3. The field names that are in italics are the variable names for these fields in the
QjoRetrieveJournalEntries API header file. These variables are under the type definition for the
RJNE0100 format. The QjoRetrieveJournalEntries API header is in the QJOURNAL.H file of the
QSYSINC library.

Offset Field Format Description

1 Entry length (JOENTL) Zoned (5,0) Specifies the length of the journal entry
including the entry length field, all subsequent
positions of the journal entry, and any portion
of the journal entry that was truncated if the
length of the output record is less than the
length of the record created for the journal
entry.

If the journal entry has the incomplete data
indicator on, then this length does not include
that additional data which could be pointed to.
This length includes the length of the data that
is actually returned, which includes entry
specific data of up to 32 766 bytes.

Journal management 169

Offset Field Format Description

6 Sequence number
(JOSEQN, Seq_Number)

Zoned decimal
(10,0)

Assigned by the system to each journal entry.
It is initially set to 1 for each new or restored
journal and is incremented until you request
that it be reset when you attach a new
receiver. There are occasional gaps in the
sequence numbers because the system uses
internal journal entries for control purposes.
These gaps occur if you use commitment
control, journal physical files, or journal
access paths.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the sequence number
is larger than 9 999 999 999.

16 Journal code (JOCODE,
Jrn_Code)

Char (1) Identifies the primary category of the journal
entry:

A = System accounting entry
B = Integrated file system operation
C = Commitment control operation
D = Database file operation
E = Data area operation
F = Database file member operation
I = Internal operation
J = Journal or receiver operation
L = License management
M = Network management data
P = Performance tuning entry
Q = Data queue operation
R = Operation on a specific record
S = Distributed mail services
T = Audit trail entry
U = User-generated entry (added by the
SNDJRNE command or QJOSJRNE API)

The journal codes are described in more detail
in Journal code descriptions.

17 Entry type (JOENTT,
Entry_Type)

Char (2) Further identifies the type of user-created or
system-created entry. See the Journal code
finder for descriptions of the entry types.

19 Time stamp (JOTMST,
Time_Stamp)

Char (26) Corresponds to the system date and time
when the journal entry was added in the
journal receiver. The time stamp is in SAA
format. The system cannot assure that the
time stamp is always in ascending order for
sequential journal entries because you can
change the value of the system time.

170 IBM i: Journal management

Offset Field Format Description

45 Job name (JOJOB,
Job_Name) 1

Char (10) Specifies the name of the job that added the
entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then *OMITTED is given
for the job name.

2. If the job name was not available when the
journal entry was deposited, then *NONE is
written for the job name.

55 User name (JOUSER,
User_Name)

Char (10) Specifies the user profile name of the user
that started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then blanks are written for
the user name.

65 Job number (JONBR,
Job_Number)

Zoned (6,0) Specifies the job number of the user that
started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then zeroes are written for
the job number.

71 Program name (JOPGM,
Program_Name)

Char (10) Specifies the name of the program that added
the entry. If an application or CL program did
not add the entry, the field contains the name
of a system-supplied program such as QCMD
or QPGMMENU. If the program name is the
special value *NONE, then one of the following
is true:

• The program name does not apply to this
journal entry.

• The program name was not available when
the journal entry was made.

For example, the program name is not
available if the program was destroyed.

Notes:

1. If the program that deposited the journal
entry is an original program model
program, this data will be complete.
Otherwise, this data will be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, *OMITTED is given for the
program name.

Journal management 171

Offset Field Format Description

81 Object name (JOOBJ,
Object)

Char (10) Specifies the name of the object for which the
journal entry was added.1 This is blank for
some entries.

If the journaled object is an integrated file
system object, then this field is the first 10
bytes of the file identifier.

91 Library name (JOLIB) Char (10) Specifies the name of the library containing
the object1.

If the journaled object is an integrated file
system object, then the first 6 characters of
this field are the last 6 bytes of the file
identifier.

101 Member name (JOMBR) Char (10) Specifies the name of the physical file
member or is blank if the object is not a
physical file1.

111 Count/relative record
number (JOCTRR,
Count_Rel_Rec_Num)

Zoned (10,0) Contains either the relative record number
(RRN) of the record that caused the journal
entry or a count that is pertinent to the
specific type of journal entry.

• APYJRNCHG and RMVJRNCHG journal
entries

• Change end of data journal entry
• CHGJRN journal entries
• COMMIT journal entry
• INZPFM journal entry

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the count or relative
record number is larger than 9 999 999 999.

121 Indicator flag (JOFLAG,
Indicator_Flag)

Char (1) Contains an indicator for the operation. The
following tables show specific values for this
field, if applicable:

• APYJRNCHG and RMVJRNCHG journal
entries

• COMMIT journal entry
• INZPFM journal entry
• IPL and in-use journal entries
• Journal code R (all journal entry types

except IL)
• ROLLBACK journal entry
• Start-journal journal entries

172 IBM i: Journal management

Offset Field Format Description

122 Commit cycle identifier
(JOCCID,
Commit_Cycle_Id)

Zoned (10,0) Contains a number that identifies the commit
cycle. A commit cycle is from one commit or
rollback operation to another.

The commit cycle identifier is found in every
journal entry that is associated with a
commitment transaction. If the journal entry
was not made as part of a commitment
transaction, this field is zero.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the commit cycle
identifier is larger than 9 999 999 999.

132 User profile (JOUSPF,
User_Profile)

Char (10) Specifies the name of the user profile under
which the job was running when the entry was
created.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then *OMITTED is given for
the user profile.

142 System name (JOSYNM,
System_Name)

Char (8) Specifies the name of the system on which the
entry is being displayed, printed, retrieved, or
received if the journal receiver was attached
prior to installing V4R2M0 on the system. If
the journal receiver was attached while the
system was running V4R2M0 or a later
release, the system name is the system where
the journal entry was actually deposited.

Journal management 173

Offset Field Format Description

150 Incomplete data
(JOINCDAT,
Incomplete_Data)

Char (1) Indicates whether this entry has data that is
not being retrieved for one of the following
reasons:

• The length of the entry-specific data
exceeds 32 766 bytes.

• The entry is associated with a database file
that has one or more fields of data type
BLOB (binary large object), CLOB (character
large object), or DBCLOB (double-byte
character large object).

The possible values are:

0 = This entry has all possible data
1 = This entry has incomplete data.

Any data which is marked as incomplete, can
only be viewed by using either the
QjoRetrieveJournalEntries API, or the
command RCVJRNE with any of the following
parameters:

• ENTFMT(*TYPEPTR)
• ENTFMT(*JRNENTFMT)
• RTNPTR (with any value specified other than

*NONE)

151 Minimized entry specific
data (JOMINESD,
Min_ESD)

Char (1) Indicates whether this entry has minimized
entry specific data.

The possible values are:

0 = This entry has complete entry specific
data.
1 = This entry has minimized entry specific
data.
2 = This entry has entry specific data that
has been minimized on field boundaries.

152 Reserved field (JORES) Char (18) Always contains zeros. Contains hexadecimal
zeros in the output file.

Note:
1If the journal receiver was attached prior to installing V4R2M0 on your system, then the following items
are true:

• If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVJRNE, or RTVJRNE command, then
the fully qualified name is the most recent name of the file when the newest receiver in the receiver
range was the attached receiver and when the file was still being journaled.

• If a file name is specified or if library *ALL is specified on the FILE parameter, the current fully
qualified name of the file appears in the converted journal entry.

If the journal receiver was attached while V4R2M0 or a later release was running on the system, the
fully qualified name is the name of the object at the time the journal entry was deposited.

174 IBM i: Journal management

*TYPE4 field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPE4 for the output file format or the entry type format. The
uppercase field names shown in parentheses are used in the system-supplied output file QSYS/
QADSPJR4. The field names which are in italics are the variable names for these fields in the
QjoRetrieveJournalEntries API header file. These variables are under the type definition for the
RJNE0100 format. The QjoRetrieveJournalEntries API header is in the QJOURNAL.H file of the
QSYSINC library.

Offset Field Format Description

1 Entry length (JOENTL) Zoned (5,0) Specifies the length of the journal entry
including the entry length field, all subsequent
positions of the journal entry, and any portion
of the journal entry that was truncated if the
length of the output record is less than the
length of the record created for the journal
entry.

If the journal entry has the incomplete data
indicator on, then this length does not include
that additional data which could be pointed to.
This length includes the length of the data that
is actually returned, which includes entry
specific data of up to 32 766 bytes.

6 Sequence number
(JOSEQN, Seq_Number)

Zoned decimal
(10,0)

Assigned by the system to each journal entry.
It is initially set to 1 for each new or restored
journal and is incremented until you request
that it be reset when you attach a new
receiver. There are occasional gaps in the
sequence numbers because the system uses
internal journal entries for control purposes.
These gaps occur if you use commitment
control, journal physical files, or journal
access paths.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the sequence number
is larger than 9 999 999 999.

Journal management 175

Offset Field Format Description

16 Journal code (JOCODE,
Jrn_Code)

Char (1) Identifies the primary category of the journal
entry:

A = System accounting entry
B = Integrated file system operation
C = Commitment control operation
D = Database file operation
E = Data area operation
F = Database file member operation
I = Internal operation
J = Journal or receiver operation
L = License management
M = Network management data
P = Performance tuning entry
Q = Data queue operation
R = Operation on a specific record
S = Distributed mail services
T = Audit trail entry
U = User-generated entry (added by the
SNDJRNE command or QJOSJRNE API)

The journal codes are described in more detail
in Journal code descriptions.

17 Entry type (JOENTT,
Entry_Type)

Char (2) Further identifies the type of user-created or
system-created entry. See the Journal code
finder for descriptions of the entry types.

19 Time stamp (JOTMST,
Time_Stamp)

Char (26) Corresponds to the system date and time
when the journal entry was added in the
journal receiver. The time stamp is in SAA
format. The system cannot assure that the
time stamp is always in ascending order for
sequential journal entries because you can
change the value of the system time.

45 Job name (JOJOB,
Job_Name) 1

Char (10) Specifies the name of the job that added the
entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then *OMITTED is given
for the job name.

2. If the job name was not available when the
journal entry was deposited, then *NONE is
written for the job name.

55 User name (JOUSER,
User_Name)

Char (10) Specifies the user profile name of the user
that started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then blanks are written for
the user name.

176 IBM i: Journal management

Offset Field Format Description

65 Job number (JONBR,
Job_Number)

Zoned (6,0) Specifies the job number of the user that
started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then zeroes are written for
the job number.

71 Program name (JOPGM,
Program_Name)

Char (10) Specifies the name of the program that added
the entry. If an application or CL program did
not add the entry, the field contains the name
of a system-supplied program such as QCMD
or QPGMMENU. If the program name is the
special value *NONE, then one of the following
is true:

• The program name does not apply to this
journal entry.

• The program name was not available when
the journal entry was made.

For example, the program name is not
available if the program was destroyed.

Notes:

1. If the program that deposited the journal
entry is an original program model
program, this data will be complete.
Otherwise, this data will be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, *OMITTED is given for the
program name.

81 Object name (JOOBJ,
Object)

Char (10) Specifies the name of the object for which the
journal entry was added.1 This is blank for
some entries.

If the journaled object is an integrated file
system object, then this field is the first 10
bytes of the file identifier.

91 Library name (JOLIB) Char (10) Specifies the name of the library containing
the object1.

If the journaled object is an integrated file
system object, then the first 6 characters of
this field are the last 6 bytes of the file
identifier.

101 Member name (JOMBR) Char (10) Specifies the name of the physical file
member or is blank if the object is not a
physical file1.

Journal management 177

Offset Field Format Description

111 Count/relative record
number (JOCTRR,
Count_Rel_Rec_Num)

Zoned (10,0) Contains either the relative record number
(RRN) of the record that caused the journal
entry or a count that is pertinent to the
specific type of journal entry.

• APYJRNCHG and RMVJRNCHG journal
entries

• Change end of data journal entry
• CHGJRN journal entries
• COMMIT journal entry
• INZPFM journal entry

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the count or relative
record number is larger than 9 999 999 999.

121 Indicator flag (JOFLAG,
Indicator_Flag)

Char (1) Contains an indicator for the operation. The
following tables show specific values for this
field, if applicable:

• APYJRNCHG and RMVJRNCHG journal
entries

• COMMIT journal entry
• INZPFM journal entry
• IPL and in-use journal entries
• Journal code R (all journal entry types

except IL)
• ROLLBACK journal entry
• Start-journal journal entries

122 Commit cycle identifier
(JOCCID,
Commit_Cycle_Id)

Zoned (10,0) Contains a number that identifies the commit
cycle. A commit cycle is from one commit or
rollback operation to another.

The commit cycle identifier is found in every
journal entry that is associated with a
commitment transaction. If the journal entry
was not made as part of a commitment
transaction, this field is zero.

This field can contain a -1 if receiver-size
option RCVSIZOPT(*MAXOPT3) is selected
and the actual value of the commit cycle
identifier is larger than 9 999 999 999.

132 User profile (JOUSPF,
User_Profile)

Char (10) Specifies the name of the user profile under
which the job was running when the entry was
created.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then *OMITTED is given for
the user profile.

178 IBM i: Journal management

Offset Field Format Description

142 System name (JOSYNM,
System_Name)

Char (8) Specifies the name of the system on which the
entry is being displayed, printed, retrieved, or
received if the journal receiver was attached
prior to installing V4R2M0 on the system. If
the journal receiver was attached while the
system was running V4R2M0 or a later
release, the system name is the system where
the journal entry was actually deposited.

150 Journal identifier (JOJID,
Jid)

Char(10) Specifies the journal identifier (JID) for the
object. When journaling is started for an
object, the system assigns a unique JID to
that object. The JID remains constant even if
the object is renamed or moved. However, if
journaling is stopped, there is no guarantee
that the JID will be the same if journaling is
started again for the same object.

If no JID is associated with the entry, this field
has hexadecimal zeros.

160 Referential constraint
(JORCST,
Referential_Constraint)

Char(1) Indicates whether this entry was recorded for
actions that occurred on records that are part
of a referential constraint.

The possible values are:

0 = This entry was not created as part of a
referential constraint.
1 = This entry was created as part of a
referential constraint.

161 Trigger (JOTGR, Trigger) Char(1) Indicates whether this entry was created as
result of a trigger program.

The possible values are:

0 = This entry was not created as the result
of a trigger program.
1 = This entry was created as the result of
a trigger program.

Journal management 179

Offset Field Format Description

162 Incomplete data
(JOINCDAT,
Incomplete_Data)

Char (1) Indicates whether this entry has data that is
not being retrieved for one of the following
reasons:

• The length of the entry-specific data
exceeds 32 766 bytes.

• The entry is associated with a database file
that has one or more fields of data type
BLOB (binary large object), CLOB (character
large object), or DBCLOB (double-byte
character large object).

The possible values are:

0 = This entry has all possible data.
1 = This entry has incomplete data.

Any data which is marked as incomplete, can
only be viewed by using either the
QjoRetrieveJournalEntries API, or the
command RCVJRNE with any of the following
parameters:

• ENTFMT(*TYPEPTR)
• ENTFMT(*JRNENTFMT)
• RTNPTR (with any value specified other than

*NONE)

163 Ignored by APYJRNCHG or
RMVJRNCHG (JOIGNAPY,
Ignore_during_APYRMV)

Char (1) Indicates whether this journal entry will be
ignored by the execution of the APYJRNCHG or
RMVJRNCHG commands, even though normally
this journal entry type has an effect during
those command invocations.

The possible values are:

0 = This entry is not ignored by the
APYJRNCHG or RMVJRNCHG commands.
1 = This entry is ignored by the APYJRNCHG
or RMVJRNCHG commands.

164 Minimized entry specific
data (JOMINESD,
Min_ESD)

Char (1) Indicates whether this entry has minimized
entry specific data.

The possible values are:

0 = This entry has complete entry specific
data.
1 = This entry has minimized entry specific
data.
2 = This entry has entry specific data that
has been minimized on field boundaries.

165 Reserved area (JORES) Char (5) Always contains zeros. Contains hexadecimal
zeros in the output file.

180 IBM i: Journal management

Offset Field Format Description

Note: 1If the journal receiver was attached prior to installing V4R2M0 on your system, then the following
items are true:

• If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVJRNE, or RTVJRNE command, then
the fully qualified name is the most recent name of the file when the newest receiver in the receiver
range was the attached receiver and when the file was still being journaled.

• If a file name is specified or if library *ALL is specified on the FILE parameter, the current fully
qualified name of the file appears in the converted journal entry.

If the journal receiver was attached while V4R2M0 or a later release was running on the system, the
fully qualified name is the name of the object at the time the journal entry was deposited.

*TYPE5 field descriptions of the fixed-length portion of a journal entry

These fields are shown when you request *TYPE5 for the output file format or the entry type format. The
uppercase field names shown in parentheses are used in the system-supplied output file QSYS/
QADSPJR5. The field names that are italics are the variable names for these fields in the
QjoRetrieveJournalEntries API header file. These variables are under the type definition for the
RJNE0200 format. The QjoRetrieveJournalEntries API header is in the QJOURNAL.H file of the
QSYSINC library.

Offset Field Format Description

1 Entry length (JOENTL) Zoned (5,0) Specifies the length of the journal entry
including the entry length field, all subsequent
positions of the journal entry, and any portion
of the journal entry that was truncated if the
length of the output record is less than the
length of the record created for the journal
entry.

If the journal entry has the incomplete data
indicator on, then this length does not include
that additional data which could be pointed to.
This length includes the length of the data that
is actually returned, which includes entry
specific data of up to 32 766 bytes.

6 Sequence number
(JOSEQN, Seq_Number)

Char (20) Assigned by the system to each journal entry.
It is initially set to 1 for each new or restored
journal and is incremented until you request
that it be reset when you attach a new
receiver. There are occasional gaps in the
sequence numbers because the system uses
internal journal entries for control purposes.
These gaps occur if you use commitment
control, journal physical files, or journal
access paths.

Journal management 181

Offset Field Format Description

26 Journal code (JOCODE,
Jrn_Code)

Char (1) Identifies the primary category of the journal
entry:

A = System accounting entry
B = Integrated file system operation
C = Commitment control operation
D = Database file operation
E = Data area operation
F = Database file member operation
I = Internal operation
J = Journal or receiver operation
L = License management
M = Network management data
P = Performance tuning entry
Q = Data queue operation
R = Operation on a specific record
S = Distributed mail services
T = Audit trail entry
U = User-generated entry (added by the
SNDJRNE command or QJOSJRNE API)

The journal codes are described in more detail
in Journal code descriptions.

27 Journal entry type
(JOENTT, Entry_Type)

Char (2) Further identifies the type of user-created or
system-created entry. See the Journal code
finder for descriptions of the entry types.

29 Time stamp (JOTSTP) Char (26) Corresponds to the system date and time
when the journal entry was added in the
journal receiver. The time stamp is in SAA
format. The system cannot assure that the
time stamp is always in ascending order for
sequential journal entries because you can
change the value of the system time.

55 Job name (JOJOB,
Job_Name)

Char (10) Specifies the name of the job that added the
entry.

Notes:

1. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then *OMITTED is given
for the job name.

2. If the job name was not available when the
journal entry was deposited, then *NONE is
written for the job name.

65 User name (JOUSER,
User_Name)

Char (10) Specifies the user profile name of the user
that started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then blanks are written for
the user name.

182 IBM i: Journal management

Offset Field Format Description

75 Job number (JONBR,
Job_Number)

Zoned (6, 0) Specifies the job number of the user that
started the job.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then zeroes are written for
the job number.

81 Program name (JOPGM,
Program_Name)

Char (10) Specifies the name of the program that added
the entry. If an application or CL program did
not add the entry, the field contains the name
of a system-supplied program such as QCMD
or QPGMMENU. If the program name is the
special value *NONE, then one of the following
is true:

• The program name does not apply to this
journal entry.

• The program name was not available when
the journal entry was made.

For example, the program name is not
available if the program was destroyed.

Notes:

1. If the program that deposited the journal
entry is an original program model
program, this data will be complete.
Otherwise, this data will be unpredictable.

2. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, *OMITTED is given for the
program name.

91 Program library name
(JOPGMLIB,
Program_Library_Name)

Char (10) The name of the library that contains the
program that added the library. If a
RCVSIZOPT or a FIXLENDTA option was
specified that omitted the collection of this
information, then *OMITTED will be returned
for the program library name.

IF *NONE is returned for Program name, then
*NONE is also returned for the program library
name.

101 Program library ASP device
name (JOPGMDEV,
Program_ASP_Device_Nam
e)

Char (10) The name of the ASP device that contains the
program. If a RCVSIZOPT or a FIXLENDTA
option was specified that omitted the
collection of this information, then *OMITTED
will be returned for the program library ASP
device name.

IF *NONE is returned for Program name, then
*NONE is also returned for the program library
ASP device name.

Journal management 183

Offset Field Format Description

111 Program library ASP
number (JOPGMASP,
Program_ASP)

Zoned (5,0) The number for the auxiliary storage pool that
contains the program that added the journal
entry. If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then hexadecimal 0 will be
returned for the program library ASP number.

116 Object name (JOOBJ,
Object)

Char (10) Specifies the name of the object for which the
journal entry was added.1 This is blank for
some entries.

If the journaled object is an integrated file
system object, then this field is the first 10
bytes of the file identifier.

126 Object library (JOLIB) Char (10) Specifies the name of the library containing
the object1.

If the journaled object is an integrated file
system object, then the first 6 characters of
this field are the last 6 bytes of the file
identifier.

136 Member name (JOMBR) Char (10) Specifies the name of the physical file
member or is blank if the object is not a
physical file1.

146 Count or relative record
number (JOCTRR,
Count_Rel_Rec_Num)

Char (20) Contains either the relative record number
(RRN) of the record that caused the journal
entry or a count that is pertinent to type of
journal entry.

166 Indicator flag (JOFLAG,
Indicator_Flag)

Char (1) Contains an indicator for the operation. The
following tables show specific values for this
field, if applicable:

• APYJRNCHG and RMVJRNCHG journal
entries

• COMMIT journal entry
• INZPFM journal entry
• IPL and in-use journal entries
• Journal code R (all journal entry types

except IL)
• ROLLBACK journal entry
• Start-journal journal entries

167 Commit control ID
(JOCCID,
Commit_Cycle_Identifier)

Char (20) Contains a number that identifies the commit
cycle. A commit cycle is from one commit or
rollback operation to another.

The commit cycle identifier is found in every
journal entry that is associated with a
commitment transaction. If the journal entry
was not made as part of a commitment
transaction, this field is zero.

184 IBM i: Journal management

Offset Field Format Description

187 User profile (JOUSPF,
User_profile)

Char (10) Specifies the name of the user profile under
which the job was running when the entry was
created.

Note: If a RCVSIZOPT or a FIXLENDTA option
was specified that omitted the collection of
this information, then *OMITTED is given for
the user profile.

197 System name (JOSYNM,
System_Name)

Char (8) Specifies the name of the system on which the
entry is being displayed, printed, retrieved, or
received if the journal receiver was attached
prior to installing V4R2M0 on the system. If
the journal eceiver was attached while the
system was running V4R2M0 or a later
release, the system name is the system where
the journal entry was actually deposited.

205 Journal identifier (JOJID,
Jid)

Char (10) Specifies the journal identifier (JID) for the
object. When journaling is started for an
object, the system assigns a unique JID to
that object. The JID remains constant even if
the object is renamed or moved. However, if
journaling is stopped, there is no guarantee
that the JID will be the same if journaling is
started again for the same object.

If no JID is associated with the entry, this field
has hexadecimal zeros.

215 Referential constraint
(JORCST,
Referential_Constraint)

Char (1) Indicates whether this entry was recorded for
actions that occurred on records that are part
of a referential constraint.

The possible values are:

0 = This entry was not created as part of a
referential constraint.
1 = This entry was created as part of a
referential constraint.

216 Trigger (JOTGR, Trigger) Char (1) Indicates whether this entry was created as
result of a trigger program.

The possible values are:

0 = This entry was not created as the
result of a trigger program.
1 = This entry was created as the result of
a trigger program.

Journal management 185

Offset Field Format Description

217 Incomplete data
(JOINCDAT,
Incomplete_Data)

Char (1) Indicates whether this entry has data that is
not being retrieved for one of the following
reasons:

• The length of the entry-specific data
exceeds 32 766 bytes.

• The entry is associated with a database file
that has one or more fields of data type
BLOB (binary large object), CLOB (character
large object), or DBCLOB (double-byte
character large object).

The possible values are:

0 = This entry has all possible data
1 = This entry has incomplete data.

Any data which is marked as incomplete, can
only be viewed by using either the
QjoRetrieveJournalEntries API, or the
command RCVJRNE with any of the following
parameters:

• ENTFMT(*TYPEPTR)
• ENTFMT(*JRNENTFMT)
• RTNPTR (with any value specified other than

*NONE)

218 Ignored by APYJRNCHG or
RMVJRNCHG (JOIGNAPY,
Ignore_during_APYRMV)

Char (1) Indicates whether this journal entry will be
ignored by the execution of the APYJRNCHG
or RMVJRNCHG commands, even though
normally this journal entry type has an effect
during those command invocations.

The possible values are:

0 = This entry is not ignored by the
APYJRNCHG or RMVJRNCHG commands.
1 = This entry is ignored by the APYJRNCHG
or RMVJRNCHG commands.

219 Minimized entry-specific
data (JOMINESD,
Min_ESD)

Char (1) Indicates whether this entry has minimized
entry specific data.

The possible values are:

0 = This entry has complete entry specific
data.
1 = This entry has minimized entry specific
data.
2 = This entry has entry specific data that
has been minimized on field boundaries.

186 IBM i: Journal management

Offset Field Format Description

220 Object indicator
(JOOBJIND,
Object_Name_Indicator)

Char (1) An indicator with respect to the information in
the object field2. The valid values are:

0 = Either the journal entry has no object
information or the object information in the
journal entry header does not necessarily
reflect the name of the object at the time
the journal entry was deposited into the
journal.
1 = The object information in the journal
entry header reflects the name of the
object at the time the journal entry was
deposited into the journal.
2 = The object information in the journal
entry header does not necessarily reflect
the name of the object at the time the
journal entry was deposited into the
journal. The object information may be
returned as a previously known name for
the object prior to the journal entry being
deposited into the journal or be returned
as *UNKNOWN.

221 System sequence number
(JOSYSSEQ,
System_Sequence_Number
)

Char (20) The system sequence number indicates the
relative sequence of when this journal entry
was deposited into the journal. You can use
the sequence number to sequentially order
journal entries that are in separate journal
receivers. If a RCVSIZOPT or a FIXLENDTA
option was specified that omitted the
collection of this information, then
hexadecimal 0 will be returned for the system
sequence number.

241 Receiver name (JORCV) Char (10) The name assigned to the journal receiver

251 Receiver library name
(JORCVLIB)

Char (10) The name of the library in which the journal
receiver resides.

261 Receiver library ASP device
name (JORCVDEV)

Char (10) The name of the ASP device for journal
receivers that reside on an independent disk
pool

271 Receiver library ASP
number (JORCVASP)

Zoned (5,0) The number of the ASP on which the journal
receiver resides.

276 Arm number (JOARM,
Arm_Number)

Zoned (5,0) The number of the disk arm that contains the
journal entry.

281 Thread identifier (JOTHDX,
Thread_ID)

Hexadecimal (8) Identifies the thread within the process that
added the journal entry. If a RCVSIZOPT or a
FIXLENDTA option was specified that omitted
the collection of this information, then
hexadecimal 0 will be returned for the thread
identifier.

289 Thread identifier formatted
(JOTHD)

Char (16) See Thread identifier.

Journal management 187

Offset Field Format Description

305 Address family (JOADF,
Address_Family)

Char (1) The address family identifies the format of the
remote address for this journal entry. If a
RCVSIZOPT or a FIXLENDTA option was
specified that omitted the collection of this
information, then 0 will be returned for the
address family.

The possible values are:

0 = This entry was not associated with any
remote address.
4 = The format of the remote address is
Internet protocol version 4.
6 = The format of the remote address is
Internet protocol version 6.

306 Remote port (JORPORT) Zoned (5, 0) The remote port of a the journal entries. If a
RCVSIZOPT or a FIXLENDTA option was
specified that omitted the collection of this
information, then hexadecimal 0 will be
returned for the remote port.

311 Remote address (JORADR) Char (46) The remote address of a the journal entries. If
a RCVSIZOPT or a FIXLENDTA option was
specified that omitted the collection of this
information, then hexadecimal 0 will be
returned for the remote address.

357 Logical unit of work
(JOLUW)

Char (39) The logical unit of work identifies entries to be
associated with a given unit of work, usually
within a commit cycle. If a RCVSIZOPT or a
FIXLENDTA option was specified that omitted
the collection of this information, then blanks
will be returned for the logical unit of work.

396 Transaction identifier
(JOXID)

Char (140) See the QSYSINC/H.XA header file for the
layout of this data. If a RCVSIZOPT or a
FIXLENDTA option was specified that omitted
the collection of this information, then the
displacement to the transaction identifier is 0
and no transaction identifier is returned.

536 Object type (JOOBJTYP) Char (7) The type of object associated with this entry.
(*FILE, *DTAARA, etc)

543 File type indicator
(JOFILTYP)

Char (1) The type of object associated with this entry.
('0' is physical, '1' is logical)

544 Nested commit level
(JOCMTLVL)

Char (7) The nested transaction level at which this
entry was deposited.

551 Reserved Char (5) Reserved area. It always contains
hexadecimal zeros.

188 IBM i: Journal management

Offset Field Format Description

Notes:
1If the journal receiver was attached prior to installing V4R2M0 on your system, then the following items
are true:

• If *ALLFILE is specified for the FILE parameter on the DSPJRN, RCVJRNE, or RTVJRNE command, then
the fully qualified name is the most recent name of the file when the newest receiver in the receiver
range was the attached receiver and when the file was still being journaled.

• If a file name is specified or if library *ALL is specified on the FILE parameter, the current fully
qualified name of the file appears in the converted journal entry.

If the journal receiver was attached while V4R2M0 or a later release was running on the system, the
fully qualified name is the name of the object at the time the journal entry was deposited.
2This value will be returned only when retrieving journal entries from a remote journal and the remote
journal is currently being caught up from its source journal. A remote journal is being caught up from its
source journal when the Change Remote Journal (CHGRMTJRN) command or Change Journal
State (QjoChangeJournalState) API is called and is currently replicating journal entries to the
remote journal. After the call to the CHGRMTJRN command or QjoChangeJournalState API returns,
the remote journal is maintained with a synchronous or asynchronous delivery mode, and the remote
journal is no longer being caught up.

Related concepts
Journal code descriptions
This topic provides a description of all of the journal codes and categories.
Related information
Journal entry information finder

Variable-length portion of the journal entry
This topic provides the layouts of the variable-length portion of the journal entries.

For output formats *TYPE1 and *TYPE2, the variable length portion of the journal entry includes just the
Entry-specific data field. The contents of the Entry-specific data field depends on the journal entry code
and entry type. For the layout of the output format *TYPEPTR or *JRNENTFMT, see the
QjoRetrieveJournalEntries API. For all other output formats, the variable-length portion of the converted
journal entry potentially has two fields:

• Null value indicators
• Entry-specific data

The Null Value Indicators field, contains relevant information only for entries with journal code R. Null
value indicators are present in journal entries for record level operations as follows:

• The corresponding physical file has null capable fields.
• The record image has been minimized in the entry specific data.

Otherwise, it contains blanks. If the record image has not been minimized in the entry specific data, the
Null Value Indicators field is a character string with one character for each field in the physical file that
has record images appearing in the journal. Each character has the following interpretation:

• 0 = corresponding field in the record is not NULL.
• 1 = corresponding field in the record is NULL.

If the record image was minimized on field boundaries (MINENTDTA(*FLDBDY), and it has been formatted
when reading (FMTMINDTA(*YES)) then each character has the following interpretation:

• 0 = The corresponding field was recorded and is not NULL.
• 1 = The corresponding field was recorded and is NULL.

Journal management 189

• 9 = The corresponding field was not recorded and it's default value was returned.

System-supplied output files

The following system-supplied output files define the Null Value Indicators and Entry-Specific Data fields
as variable-length character fields:

• QSYS/QADSPJR3
• QSYS/QADSPJR4
• QSYS/QADSPJR5

For additional details regarding the *TYPE3, *TYPE4, and *TYPE5 formats and the exact layout of these
two fields, see the following commands:

• Display Journal (DSPJRN)
• Receive Journal Entry (RCVJRNE)
• Retrieve journal entry (RTVJRNE)

Layouts for journal entry types

Use the Journal entry information finder to find the layout for the variable-length portion of the journal
entry. Some one journal entry types are described in other places than this topic. The Journal entry
information finder indicates those journal entries.

Some journal entry types are documented in QSYSINC library includes, as indicated in the Journal code
finder. Some entry types do not have entry-specific data.

These layouts include specific values for fields in the fixed-length portion of the entry and the fields in the
entry-specific portion of the entry. The offsets show the relative offset within the Entry-specific data field.
The beginning position of the Entry-specific data field depends on the format type that you specify. You
can also use the Journal entry information finder to see these layouts.

Related reference
Retrieve Journal Entries (QjoRetrieveJournalEntries) API
Display Journal (DSPJRN) command
Receive Journal Entry (RCVJRNE) command
Retrieve journal entry (RTVJRNE) command

Layouts for variable-length portion of journal entries
The following tables contain the variable-length portion of the layouts for journal entries.

Allow use with partial transactions (F MO) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Reason code Char (1) 01 = Partial transactions exist due to restore.
02 = Partial transactions exist because a
rollback was ended early.

2 Reserved Char (3) Reserved. Set to zeros.

5 Number commit IDs Bin (32) The number of commit identifiers.

9 Reserved Char (72) Reserved. Set to zeros.

81 Commit IDs Bin (64) [*] The array of commit cycle identifiers for partial
transactions that remain in the object.

190 IBM i: Journal management

APYJRNCHG (B AT, D DD, E EQ, F AY, Q QH, Y YH) and RMVJRNCHG (E EX, F RC) journal entries

Relative
offset

Field Format Description

Specific values for this entry type:

Count or Relative Record
Number (JOCTRR)

Zoned (10,0) Contains the number of journal entries applied or
removed. For *TYPE5 output files, the format of
this field is Char (20).

Flag (JOFLAG) Char (1) The results of the apply or remove operation:

0 = Command completed normally.
1 = Command completed abnormally.

Entry-specific data. This data appears as one field in the standard output formats:

1 First entry applied or
removed

Zoned (10,0) The sequence number of the first entry actually
applied or removed. This field is set to -1 if the
actual value is larger than 9 999 999 999. See
the First entry applied or removed--large field for
the actual value.

11 Last entry applied or
removed.

Zoned (10,0) The sequence number of the last entry actually
applied or removed. This field is set to -1 if the
actual value is larger than 9 999 999 999. See
the Last entry applied or removed--large field for
the actual value.

21 Starting receiver name Char (10) The name of the first receiver from which entries
were applied or removed.

31 Library name Char (10) The name of the library for the starting journal
receiver.

41 Ending receiver name Char (10) The name of the last or ending receiver from
which entries were applied or removed.

51 Library name Char (10) The library for the ending journal receiver.

61 Starting sequence number Char (10) The specified starting sequence number for the
apply or remove operation. This field is set to -1 if
the actual value is larger than 9 999 999 999.
See the Starting sequence number--large field
for the actual value.

71 Ending sequence number Char (10) The specified ending sequence number for the
apply or remove operation. This field is set to -1 if
the actual value is larger than 9 999 999 999.
See the Ending sequence number--large field for
the actual value.

Journal management 191

Relative
offset

Field Format Description

81 Incomplete commit
transaction not applied or
removed

Char (1) 0 = Indicates that either CMTBDY(*NO) was
specified or CMTBDY(*YES) was specified and
no partial commitment control transactions
were found in the range specified by the
starting and ending sequence numbers
1 = Indicates that CMTBDY(*YES) was
specified and one or more partial commitment
control transactions were found in the range
specified by the starting and ending sequence
numbers

82 First entry applied or
removed--large

Char (20) The sequence number of the first entry actually
applied or removed. This field always contains a
sequence number.

102 Last entry applied or
removed--large

Char (20) The sequence number of the last entry actually
applied or removed. This field always contains a
sequence number.

122 Starting sequence number--
large

Char (20) The specified starting sequence number for the
apply or remove operation. This field always
contains a sequence number.

142 Ending sequence number--
large

Char (20) The specified ending sequence number for the
apply or remove operation. This field always
contains a sequence number.

162 Number of entries Char (20) The number of entries that were applied or
removed.

182 Partial transaction starting
sequence number

Char (20) Starting sequence number for any partial
transactions that were removed. For integrated
file system objects and data areas, this field is
always zero.

202 Partial transaction ending
sequence number

Char (20) Ending sequence number for any partial
transactions that were removed. For integrated
file system objects and data areas, this field is
always zero.

222 Number of partial
transaction removed

Char (20) Count of number of entries removed for partial
transactions. For integrated file system objects
and data areas, this number is always zero.

242 Object deleted Char (1) Indicates that the object was deleted during the
apply or remove operation.

Y = Yes
N = No

243 Object created Char (1) Indicates that the object was created during the
apply operation.

Y = Yes
N = No

192 IBM i: Journal management

Relative
offset

Field Format Description

244 Early end Char (1) Indicates if the apply or remove operation ended
early for this object.

Y = Yes
N = No

245 Change not made Char (1) Indicates that a change was found for this object
after an early end to the apply operation.

Y = Yes
N = No

246 End reason code Char (1) Reason code for early end. See message
MCH4801 for the possible values.

247 End message ID Char (7) The message identifier associated with an early
end to the apply operation.

254 Error condition Bin (31) The error condition code associated with an early
end to the apply operation.

258 Partial transactions remain Char (1) Indicates that partial transactions remain for this
object.

Y = Yes
N = No

259 Partial transactions removed Char (1) Indicates that at least some partial transactions
were removed during the apply operation.

Y = Yes
N = No

Auditing Change (E ZT, J ZT, Q ZT, Y ZT) journal entries

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Audit value Char (10) Object audit value

Change authority (E ZA, J ZA, Q ZA, Y ZA) journal entry

Relativ
e offset

Field Format Description

Specific values for this entry type:

1 User Char (10) The user profile or REFUSER on GRTUSRAUT
command.

11 Authorization list Char (10) The name of the authorization list name.

Journal management 193

Relativ
e offset

Field Format Description

21 Object existence authority Char (1) Y = User has *OBJEXIST authority to the
object.
blank = User does not have *OBJEXIST
authority to the object.

22 Object management
authority

Char (1) Y = User has *OBJMGT authority to the object.
blank = User does not have *OBJMGT
authority to the object.

23 Object operational authority Char (1) Y = User has *OBJOPR authority to the object.
blank = User does not have *OBJOPR
authority to the object.

24 Authorization list
management authority

Char (1) Blank if user does not have authorization list
management authority to the object.

25 Authorization list *PUBLIC
authority

Char (1) Y = User has *PUBLIC authority to the object.
blank = User does not have *PUBLIC authority
to the object.

26 Read authority Char (1) Y = User has *READ authority to the object.
blank = User does not have *READ authority
to the object.

27 Add authority Char (1) Y = User has *ADD authority to the object.
blank = User does not have *ADD authority to
the object.

28 Update authority Char (1) Y = User has *UPD authority to the object.
blank = User does not have *UPD authority to
the object.

29 Delete authority Char (1) Y = User has *DLT authority to the object.
blank = User does not have *DLT authority to
the object.

30 Exclude authority Char (1) Y = User has *EXCLUDE authority to the
object.
blank = User does not have *EXCLUDE
authority to the object.

31 Execute authority Char (1) Y = User has *EXECUTE authority to the
object.
blank = User does not have *EXECUTE
authority to the object.

32 Object alter authority Char (1) Y = User has *OBJALTER authority to the
object.
blank = User does not have *OBJALTER
authority to the object.

194 IBM i: Journal management

Relativ
e offset

Field Format Description

33 Object reference authority Char (1) Y = User has *OBJREF authority to the object.
blank = User does not have *OBJREF
authority to the object.

34 Reserved Char (4) Reserved.

38 Operation type Char (3) Possible values are:

GRT = Grant.
RPL = Grant with replace.
RVK = Revoke.

Change distribution queues (S CF) journal entry

Table 2. SNADS entries

Relative
offset

Field Format Description

1 Entry length Zoned(5,0) Total length of the journal entry including the entry length
field.

6 Sequence number Zoned(10,0) Applied to each journal entry. Initially set to 1 for each new
or restored journal. Reset when a new receiver is attached.

16 Journal code Char(1) Always S for QSNADS journal.

17 Entry type Char(2) Always CF for distribution queue change.

19 Date stamp Char(6) The system date that the entry was made.

25 Time stamp Zoned(6,0) The system time that the entry was made.

31 (Reserved area) Char(95)

126 Job name Char(10) The name of the job that caused the entry to occur.

136 User name Char(10) The user profile name associated with the job.

146 Job number Zoned(6,0) The job number.

152 Distribution queue Char(16) The distribution queue that was added, changed, or
removed during configuration.

168 Network identifier Char(8) The system name of the remote system to which the
distributions are sent.

176 Remote location Char(8) The name of the logical location in an APPN
communications route where distributions are sent to a
remote system.

184 Mode Char(8) The mode name further qualifies the remote location name.

Journal management 195

Table 2. SNADS entries (continued)

Relative
offset

Field Format Description

192 Queue type Char(2) • SN = *SNADS
• DL = *DLS
• RS = *RPDS
• SV = *SVDS

The default is *NETATR.

194 Local location Char(8) Name used to identify your system to remote systems in
the network.

202 Send queue Char(1) Specifies whether, when a SNADS receiver becomes active,
a SNADS sender is started on the same connection (Y or N).

203 (Reserved area) Char(6)

209 Normal from time Char(4) The time specified to start sending distributions from the
normal priority queue.

213 Normal to time Char(4) The time specified to stop sending distributions from the
normal priority queue.

217 Normal force time Char(4) The time specified to send any distributions from the
normal priority queue regardless of the queue depth.

221 Normal send
depth

Char(3) The queue depth specified to start sending distributions
from the normal priority queue when that many
distributions are queued.

224 High from time Char(4) The time specified to start sending distributions from the
high priority queue.

228 High to time Char(4) The time specified to stop sending distributions from the
high priority queue.

232 High force time Char(4) The time specified to send any distributions from the high
priority queue regardless of queue depth.

236 High send depth Char(3) The queue depth specified to start sending distributions
from the high priority queue when that many distributions
are queued.

239 Function Char(1) Function (distribution queue change) that was entered:
A

A queue was added
C

A queue was changed
D

A queue was deleted

240 Number of tries Zoned (4,0) The number of times the system should try to resend the
distribution.

244 Number of
minutes between
tries

Zoned (4,0) The elapsed time that should occur between retries.

248 (Reserved area) Char(9)

196 IBM i: Journal management

Table 3. MSF configuration change entry

Relative
offset

Field Format Description

1 Entry length Zoned(5,0) Total length of the journal entry, including the entry length
field.

6 Sequence number Zoned(10,0) Applied to each journal entry. Initially set to 1 for each new
or restored journal. Reset when a new receiver is attached.

16 Journal code Char(1) Always S for MSF entries.

17 Entry type Char(2) Always CF for MSF configuration change entries.

19 Date stamp Char(6) The system date that the entry was made.

25 Time stamp Zoned(6,0) The system time that the entry was made.

31 (Reserved area) Char(95)

126 Job name Char(10) The name of the job that caused the entry to occur.

136 User name Char(10) The user profile name associated with the job.

146 Job number Zoned(6,0) The job number.

152 Program name Char(8) The name of the MSF program that made the journal entry.

Journal management 197

Table 3. MSF configuration change entry (continued)

Relative
offset

Field Format Description

160 Function identifier Char(1) Function that was being performed when the entry was
made. The possible values are:
1

MSF data type configured added to configuration
database by QZMFCOPN program. MSF type tables
initialized with shipped type definitions.

2
Reserved.

3
Added configuration to the configuration database. New
MSF data type defined by using the QzmfAddMailCfg
API.

4
Configuration removed from the configuration
database. MSF data type removed by using the
QzmfRmvMailCfg API.

5
Exit program removed from MSF exit point.

6
Exit program added to MSF exit point, except
QIBM_QZMFMSF_VLD_TYP and
QIBM_QZMFMSF_TRK_CHG.

7
Exit program added to QIBM_QZMFMSF_VLD_TYP or
QIBM_QZMFMSF_TRK_CHG.

A
Install program started.

B
Install program ended.

C
Type not deleted during install.

D
Type not added during install.

E
Exit point program not deleted during install.

F
Exit point program not added during install.

161 Data length Zoned(5,0) The length of the logged data.

198 IBM i: Journal management

Table 3. MSF configuration change entry (continued)

Relative
offset

Field Format Description

166 Logged data Char(256) The data logged by MSF when the function identifier is:
1

The record for the MSF data type that was added.
3

The record for the MSF data type that was added.
4

The record for the MSF data type that was removed.
5

The information about the MSF exit point program that
was removed during install.

6
The information about the MSF exit point program that
was added during install.

7
The information about the MSF exit point program that
was added during install.

C
The record for the MSF data type that the install
program failed to delete.

D
The record for the MSF data type that the install
program failed to add.

E
The information about the MSF exit point program that
the install program failed to delete.

F
The information about the MSF exit point program that
the install program failed to add.

Change end of data (F CE) journal entry

Relative
offset

Field Format Description

Specific values for this entry type:

Count or relative record
number (JOCTRR)

Zoned (10,0) The relative record number of the last record
kept in the physical file member.

Change journaled object attributes (B JA, D DJ, E EK, F JC, Q QF, Y YK) journal entries

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

Journal management 199

Relative offset Field Format Description

1 Attribute changed Char (1) Identifies which journal attribute was
changed:

1 = IMAGES
2 = OMTJRNE
3 = INHERIT
4 = INHRULES
5 = RMTJRNFTR

2 New attributes value Char (10) The new value for the attribute that
changed. The valid values for each attribute
are as follows:

• IMAGES(*BOTH)
• IMAGES(*AFTER)
• OMTJRNE(*NONE)
• OMTJRNE(*OPNCLOSYN)
• INHERIT(*YES)
• INHERIT(*NO)
• RMTJRNFTR(*YES)
• RMTJRNFTR(*NO)

Note: Only the characters in the
parenthesis appear in this field.

12 Displacement to inherit
rules

Bin(16)
unsigned short
integer

Displacement to inheritance rules, 0 if
Attribute changed field is not '4'.

Offset determined
by Displacement to
Inherit Rules

Inherit Rules See Journal Inherit Rules

Change library attributes (Y YA) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Library type Char (10) blanks if *SAME

11 Create authority Char (10) blanks if *SAME

21 Create object auditing Char (10) blanks if *SAME

Change object attribute (E ZB, D ZB, J ZB, Q ZB, Y ZB) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

200 IBM i: Journal management

Relative
offset

Field Format Description

1 Number of records Bin (4) The number of variable length records that
follow.

5 Key Bin (4) The field of an object attribute to change. See
Change Object Description (QLICOBJD)
API.

9 Length of data Bin (4) The length of the data used to change a specific
field of an object attribute.

13 Data Char (*) The data used to change a specific field of an
object attribute.

Change primary group (E ZP, J ZP, Q ZP, Y ZP) journal entry

Relativ
e offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Old group Char (10) The name of the old primary group.

11 New group Char (10) The name of the new primary group.

21 Object existence authority Char (1) Y = *PUBLIC has *OBJEXIST authority to the
object.
blank = *PUBLIC does not have *OBJEXIST
authority to the object. This field is only used
when Authorization list *PUBLIC is blank.

22 Object management
authority

Char (1) Y = *PUBLIC has *OBJMGT authority to the
object.
blank = *PUBLIC does not have *OBJMGT
authority to the object. This field is only used
when Authorization list *PUBLIC is blank.

23 Object operational authority Char (1) Y = *PUBLIC has *OBJOPR authority to the
object.
blank = *PUBLIC does not have *OBJOPR
authority to the object. This field is only used
when Authorization list *PUBLIC is blank.

24 Object alter authority Char (1) Y = *PUBLIC has *OBJALTER authority to the
object.
blank = *PUBLIC does not have *OBJALTER
authority to the object. This field is only used
when Authorization list *PUBLIC is blank.

25 Object reference authority Char (1) Y = *PUBLIC has *OBJREF authority to the
object.
blank = *PUBLIC does not have *OBJREF
authority to the object. This field is only used
when Authorization list *PUBLIC is blank.

Journal management 201

Relativ
e offset

Field Format Description

26 Reserved Char (10) Reserved. Set to blank.

36 Authorization list
management

Char (1) Blank if user does not have authorization list
management authority to the object.

37 Read authority Char (1) Y = *PUBLIC has *READ authority to the
object.
blank = *PUBLIC does not have *READ
authority to the object. This field is only used
when Authorization list *PUBLIC is blank.

38 Add authority Char (1) Y = *PUBLIC has *ADD authority to the object.
blank = *PUBLIC does not have *ADD
authority to the object. This field is only used
when Authorization list *PUBLIC is blank.

39 Update authority Char (1) Y = *PUBLIC has *UPD authority to the object.
blank = *PUBLIC does not have *UPD
authority to the object. This field is only used
when Authorization list *PUBLIC is blank.

40 Delete authority Char (1) Y = *PUBLIC has *DLT authority to the object.
blank = *PUBLIC does not have *DLT
authority to the object. This field is only used
when Authorization list *PUBLIC is blank.

41 Execute authority Char (1) Y = *PUBLIC has *EXECUTE authority to the
object.
blank = *PUBLIC does not have *EXECUTE
authority to the object. This field is only used
when Authorization list *PUBLIC is blank.

42 Reserved Char (10) Reserved. Set to blank.

52 Exclude authority Char (1) Y = *PUBLIC has *EXCLUDE authority to the
object.
blank = *PUBLIC does not have *EXCLUDE
authority to the object. This field is only used
when Authorization list *PUBLIC is blank.

53 Revoke Char (1) Y = The previous primary group authority to
the object was revoked.
blank = The previous primary group authority
to the object was not revoked.

Change routing table and secondary system name table (S RT) journal entries

Relative offset Field Format Description

1 Entry length Zoned(5,0) Total length of the journal entry including the entry
length field.

202 IBM i: Journal management

Relative offset Field Format Description

6 Sequence
number

Zoned(10,0) Applied to each journal entry. Initially set to 1 for each
new or restored journal. Reset when a new receiver is
attached.

16 Journal code Char(1) Always S for QSNADS journal.

17 Entry type Char(2) Always RT for routing or secondary system name table
change.

19 Date stamp Char(6) The system date that the entry was made.

25 Time stamp Zoned(6,0) The system time that the entry was made.

31 (Reserved area) Char(95)

126 Job name Char(10) The name of the job that caused the entry to occur.

136 User name Char(10) The user-profile name associated with the job.

146 Job number Zoned(6,0) The job number.

152 Destination
system name

Char(16) The system name of the destination system that is
routed to using this entry. If this entry is a secondary
system name table change, this is the name of the
secondary system name.

168 Service priority
(see note)

Char(1) The value that indicates the service level priority
value. This is currently used to maintain sequential
ordering of service level. The possible values are:
X'F0'

Fast
X'D0'

Status
X'60'

Data high
X'20'

Data low

169 Service level
(see note)

Char(8) The service level for which the entry was made. When
a routing table entry is added or changed, one entry
will be made for each service level. The possible
values are:
FAST

Fast
STATUS

Status
DATAHIGH

Data high
DATALOW

Data low

177 Distribution
queue name
(see note)

Char(16) The name of the distribution queue used to forward
distributions to the destination system using the
service level specified by this routing table entry.

Journal management 203

Relative offset Field Format Description

193 Hop count (see
note)

Zoned(4,0) The hop count specified to be assigned to an
originating distribution. If this value is *DFT, then the
current system default hop count at the time of the
distribution is used.

197 Description Char(50) Text description of this routing or secondary system
name table entry.

247 Table Char(1) The table that was changed when this entry was
made.
S

Secondary system name table
R

Routing table

248 Function Char(1) Function (routing or secondary system name table
change) that was entered:
A

An entry was added
C

An entry was changed
D

An entry was deleted

249 (Reserved area) Char(25)

CHGJRN (J NR, J PR) journal entries

Relative
offset

Field Format Description

Specific values for this entry type:

Count or relative record
number (JOCTRR)

Zoned (10,0) Contains the number of receivers attached or
detached.

Entry-specific data. This data appears as one field in the standard output formats:

1 First receiver name Char (10) The name of the first receiver that is attached or
detached.

11 First receiver library name Char (10) The name of the library for the first receiver that
is attached or detached.

21 Dual receiver name Char (10) The name of the dual receiver that is attached or
detached. Blank if only one receiver is used for
the journal.

31 Dual receiver library name Char (10) The name of the library for the dual receiver that
is attached or detached. Blank if only one
receiver is used for the journal.

204 IBM i: Journal management

COMMIT (C CM) journal entry

Relative
offset

Field Format Description

Specific values for this entry type:

Count or relative record
number (JOCTRR)

Zoned (10,0) Contains the length of the commit identification.

Flag (JOFLAG) Char (1) Whether the commit operation was initiated by
the system or the user:

0 = All record-level changes were committed
for a commit operation initiated by a user.
2 = All record-level changes were committed
for a commit operation initiated by the
operating system.
3 = All changes were committed for a commit
operation initiated by a user but the commit
was not durable.
4 = All changes were committed for a commit
operation initiated by the operating system
but the commit was not durable.

Entry-specific data. This data appears as one field in the standard output formats:

1 Commit ID Char (*) Contains the commit identification specified by
the operation. The Count field specifies the
length of this field.

Completed distributions (S LG) journal entry

Table 4. SNADS entries

Relative offset Field Format Description

1 Entry length Zoned(5,0) Total length of the journal entry including the entry
length field.

6 Sequence
number

Zoned(10,0) Applied to each journal entry. Initially set to 1 for each
new or restored journal. Reset when a new receiver is
attached.

16 Journal code Char(1) Always S for QSNADS journals

17 Entry type Char(2) Always LG for SNADS distributions entered.

19 Date stamp Char(6) The system date that the entry was made.

25 Time stamp Zoned(6,0) The system time that the entry was made.

31 (Reserved area) Char(95)

126 Program name Char(8) The name of the program that made the journal entry.

134 Job name Char(10) The name of the job that caused the entry to occur.

144 User name Char(10) The user-profile name associated with the job.

154 Job number Zoned(6,0) The job number.

Journal management 205

Table 4. SNADS entries (continued)

Relative offset Field Format Description

160 Origin system
name/group

Char(16) The system name/group of the system that the
distribution originated on.

176 Origin user ID/
address

Char(16) The user ID/address that originated the distribution.
This is not set if the distribution is a status distribution
caused by a SNADS error.

192 Sequence
number

Zoned(4,0) The sequence number of the distribution entry. This is
0000 if the distribution is a status distribution.

196 Date/time stamp Char(8) A representation of the date and time of origin of the
distribution.

204 Correlation ID Char(44) The correlation ID of the distribution.

248 Prefix
correlation ID

Char(16) The prefix correlation ID of the distribution.

264 Priority Char(1) The priority of the queue that the distribution is on (N
for normal or P for high queue). Not used if function is
X'01'.

265 Destination TP
Name

Char(64) The destination transaction program name of the
distribution entered.
X'20F0F0F0'

Personal Services/Office
X'30F0F0F2'

Object Distribution
X'23F0F0F0'

SNA/MS Change Management

206 IBM i: Journal management

Table 4. SNADS entries (continued)

Relative offset Field Format Description

329 Function Char(1) Function that was being performed when the error
entry was made. The possible values are:
X'01'

SNADS router
X'02'

SNADS sender
X'03'

SNADS receiver
X'04'

SNADS remove entry (DSPDSTSTS)
X'05'

SNADS reroute queue (DSPDSTSTS)
X'06'

SNADS reroute entry (DSPDSTSTS)
X'07'

SNADS gateway queue entry dequeued
X'08'

SNADS gateway entry received
X'09'

VM/MVS bridge outbound transform completed
X'0A'

VM/MVS bridge inbound transform completed
X'0B'

SNADS originator
X'0C'

SNADS receiver of local distributions
X'0D'

SNADS distribution queue cleared
X'0E'

SNADS distribution queue initialized
X'0F'

SNADS distribution queue removed

330 Number of
recipients

Zoned(5,0) The number of recipients for the distribution. This is
set only when function is equal to X'01' (SNADS
router).

335 Number of errors Zoned(5,0) The number of recipients that resulted in errors for the
distribution. This is set only when function is equal to
X'01' (SNADS router). There should be an ER type
entry in the QSNADS journal for every recipient that
caused an error during routing.

340 Send size Char(4) The total number of bytes sent when the distribution
was sent to another system. The number has a 4-byte,
unsigned binary format.

344 Queue name Char(17) The distribution queue name.

361 Send size
packed

Packed(15,0)

Journal management 207

Table 4. SNADS entries (continued)

Relative offset Field Format Description

376 Distribution type Char(1) The distribution type of the distribution being sent.
'F2'X

SVDS distributions
'40'X or 'F1'X

All other distributions

377 Extension offset Char(2) The offset to the log entry extension. The number has
a 2-byte, signed format.

379 Internal
sequence
number

Char(4) The internal sequence number of the distribution
entry. This number applies only to *SVDS
distributions. The number has a 4-byte, signed binary
format.

383 Message unit ID Char(4) The message unit ID assigned by the transport layer to
*SVDS distributions. The number has a 4-byte, signed
binary format.

387 Message unit
instance number

Char(2) The instance number assigned by the transport layer
to *SVDS distributions only. The number has a 2-byte,
signed binary format.

389 Number of
logged
recipients

Zoned(5,0) The number of recipients that are logged (up to 10).

394 (Reserved area) Char(320)

Table 5. MSF Message entries

Relative
offset

Field Format Description

1 Entry length Zoned(5,0) Total length of the journal entry, including the entry
length field.

6 Sequence
number

Zoned(10,0) Applied to each journal entry. Initially set to 1 for each
new or restored journal. Reset when a new receiver is
attached.

16 Journal code Char(1) Always S for MSF entries.

17 Entry type Char(2) Always LG for MSF message entries.

19 Date stamp Char(6) The system date that the entry was made.

25 Time stamp Zoned(6,0) The system time that the entry was made.

31 (Reserved area) Char(95)

126 Job name Char(10) The name of the job that caused the entry to occur.

136 User name Char(10) The user profile name associated with the job.

142 Job number Zoned(6,0) The job number.

150 Program name Char(8) The name of the MSF program that made the journal
entry.

208 IBM i: Journal management

Table 5. MSF Message entries (continued)

Relative
offset

Field Format Description

158 Function
identifier

Char(1) Function that was being performed when the entry was
made. The possible values are:
1

MSF message created log entry
2

MSF message ended normally
3

MSF message reset by STRMSF command (STRMSF
MSGOPT(*RESET))

4
MSF message removed by STRMSF command
(STRMSF MSGOPT(*CLEAR))

5
MSF message acted on by address switcher

159 MSF message ID Char(32) The MSF message ID logged.

191 Length of entry
data

Zoned(5,0) The length of the logged data.

196 Logged data Char(256) The data logged by MSF when the function identifier is:
2

Data is three Zoned(5,0) numbers. The first number is
the number of entries in the recipient list when the
message was created. The second number is the
number of entries in the recipient list when
processing was completed for the message. The third
number is the number of recipients that had a non-
deliverable status when processing was completed
for the message.

5
Data is two Zoned(5,0) numbers. The first number is
the number of recipients that had their address
switched by program QZMFSNPA. The second
number is the total number of recipients that were in
the recipient list of the MSF message processed by
QZMFSNPA.

Create data area (E EE) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Create time of day and date Char (8) The date and timestamp when the data area was
created.

9 Data area name Char (10) The data area name.

19 Data area library name Char (10) The data area library name.

Journal management 209

Relative
offset

Field Format Description

29 Data area type Char (5) The created data area type. The valid types are:

• *CHAR - character
• *DEC - decimal
• *LOG - logical

34 Reserved Char (3) The filler to maintain alignment.

37 Number of elements Bin (32) The number of elements. If the type is *CHAR or
*LGL, only Length will contain a value. If the type
is *DEC, both Length and Fraction length will
contain values.

41 Length Bin (32) The declared length.

45 Fraction length Bin (32) The decimal positions.

49 Actual value length Bin (32) The length of entered data as seen by the user.

53 Value Char (2000) The data or value.

2053 Public authority Char (10) The public authority. The valid authorities are:

*LIBCRTAUT
*CHANGE
*ALL
*EXCLUDE
*NAME

2063 Text description Text (50) The description or text.

2113 Owner Char (10) Object owner.

2123 Object existence authority Char (1) Y = *PUBLIC has *OBJEXIST authority to the
object.
blank = *PUBLIC does not have *OBJEXIST
authority to the object.

2124 Object management
authority

Char (1) Y = *PUBLIC has *OBJMGT authority to the
object.
blank = *PUBLIC does not have *OBJMGT
authority to the object.

2125 Object operational authority Char (1) Y = *PUBLIC has *OBJOPR authority to the
object.
blank = *PUBLIC does not have *OBJOPR
authority to the object.

2126 Reserved Char (4) Reserved. Set to blank.

2130 Authorization list
management

Char (1) Y = Object is secured by an authorization list.
The authorization list name can be found in
the Resulting authority field later in this
journal entry.
blank = Object is not secured by an
authorization list.

210 IBM i: Journal management

Relative
offset

Field Format Description

2131 Read authority Char (1) Y = *PUBLIC has *READ authority to the
object.
blank = *PUBLIC does not have *READ
authority to the object.

2132 Add authority Char (1) Y = *PUBLIC has *ADD authority to the object.
blank = *PUBLIC does not have *ADD
authority to the object.

2133 Update authority Char (1) Y = *PUBLIC has *UPD authority to the object.
blank = *PUBLIC does not have *UPD
authority to the object.

2134 Delete authority Char (1) Y = *PUBLIC has *DLT authority to the object.
blank = *PUBLIC does not have *DLT
authority to the object.

2135 Exclude authority Char (1) Y = *PUBLIC has no authority to the object.
blank = *PUBLIC has authority to the object.

2136 Execute authority Char (1) Y = *PUBLIC has *EXECUTE authority to the
object.
blank = *PUBLIC does not have *EXECUTE
authority to the object.

2137 Object alter authority Char (1) Y = *PUBLIC has *OBJALTER authority to the
object.
blank = *PUBLIC does not have *OBJALTER
authority to the object.

2138 Object reference authority Char (1) Y = *PUBLIC has *OBJREF authority to the
object.
blank = *PUBLIC does not have *OBJREF
authority to the object.

Journal management 211

Relative
offset

Field Format Description

2139 Resulting authority Char (10) The public authority resulting from the
processing of the Create Data Area (CRTDTAARA)
command. The value can be *CHANGE, *ALL,
*USE, *EXCLUDE, or an authorization list name if
the Authorization list management field in this
journal entry is Y.

For example, if *LIBCRTAUT was specified for the
AUTHORITY keyword on the CRTDTAARA
command, the value *LIBCRTAUT would be in the
Public authority field and a value such as *USE
could be found in this Resulting authority field.
And the *USE value in this field could be specified
for the AUTHORITY keyword on a subsequent
CRTDTAARA command.

If an error occurred, this field could be blank or a
value that could not be specified for the
AUTHORITY keyword on the CRTDTAARA
command.

2149 Reserved Char(2)

The following authority fields pertain to the object owner's authority for the data area associated with this
journal entry.

2151 Object existence authority Char(1) Y = Object owner has *OBJEXIST authority to
the object.
blank = Object owner does not have
*OBJEXIST authority to the object.

2152 Object management
authority

Char (1) Y = Object owner has *OBJMGT authority to
the object.
blank = Object owner does not have
*OBJMGT authority to the object.

2153 Object operational authority Char (1) Y = Object owner has *OBJOPR authority to
the object.
blank = Object owner does not have *OBJOPR
authority to the object.

2154 Reserved Char (2)

2156 Read authority Char (1) Y = Object owner has *READ authority to the
object.
blank = Object owner does not have *READ
authority to the object.

2157 Add authority Char (1) Y = Object owner has *ADD authority to the
object.
blank = *Object owner does not have *ADD
authority to the object.

212 IBM i: Journal management

Relative
offset

Field Format Description

2158 Update authority Char (1) Y = Object owner has *UPD authority to the
object.
blank = Object owner does not have *UPD
authority to the object.

2159 Delete authority Char (1) Y = Object owner has *DLT authority to the
object.
blank = Object owner does not have *DLT
authority to the object.

2160 Exclude authority Char (1) Y = Object owner has no authority to the
object.
blank = Object owner has authority to the
object.

2161 Execute authority Char (1) Y = Object owner has *EXECUTE authority to
the object.
blank = Object owner does not have
*EXECUTE authority to the object.

2162 Object alter authority Char (1) Y = Object owner has *OBJALTER authority to
the object.
blank = Object owner does not have
*OBJALTER authority to the object.

2163 Object reference authority Char (1) Y = Object owner has *OBJREF authority to
the object.
blank = Object owner does not have *OBJREF
authority to the object.

2164 Reserved Char(2)

The following authority fields pertain to the primary group's authority for the data area associated with this
journal entry. If the primary group is *NONE the following authority fields will be blank.

2166 Primary group Char (10) This will be *NONE if there is no primary group
associated with the object.

2167 Object existence authority Char(1) Y = Object primary group has *OBJEXIST
authority to the object.
blank = Object primary group does not have
*OBJEXIST authority to the object.

2168 Object management
authority

Char (1) Y = Object primary group has *OBJMGT
authority to the object.
blank = Object primary group does not have
*OBJMGT authority to the object.

2169 Object operational authority Char (1) Y = Object primary group has *OBJOPR
authority to the object.
blank = Object primary group does not have
*OBJOPR authority to the object.

2170 Reserved Char (2)

Journal management 213

Relative
offset

Field Format Description

2172 Read authority Char (1) Y = Object primary group has *READ authority
to the object.
blank = Object primary group does not have
*READ authority to the object.

2173 Add authority Char (1) Y = Object primary group has *ADD authority
to the object.
blank = *Object primary group does not have
*ADD authority to the object.

2174 Update authority Char (1) Y = Object primary group has *UPD authority
to the object.
blank = Object primary group does not have
*UPD authority to the object.

2175 Delete authority Char (1) Y = Object primary group has *DLT authority
to the object.
blank = Object primary group does not have
*DLT authority to the object.

2176 Exclude authority Char (1) Y = Object primary group has no authority to
the object.
blank = Object primary group has authority to
the object.

2177 Execute authority Char (1) Y = Object primary group has *EXECUTE
authority to the object.
blank = Object primary group does not have
*EXECUTE authority to the object.

2178 Object alter authority Char (1) Y = Object primary group has *OBJALTER
authority to the object.
blank = Object primary group does not have
*OBJALTER authority to the object.

2179 Object reference authority Char (1) Y = Object primary group has *OBJREF
authority to the object.
blank = Object primary group does not have
*OBJREF authority to the object.

2180 Reserved Char(2)

The following fields are used when replaying an E EE (create) journal entry. If the journal ID and name/library
are not available in the entry-specific data when an entry is replayed, then the object would be created but
journaling would not automatically be started for the object.

2182 Journal identifier (JOJID) Char (10) Journal identifier for the data area associated
with this journal entry.

2192 Journal name Char (10) The journal name.

2202 Journal library Char (10) The journal library.

214 IBM i: Journal management

Relative
offset

Field Format Description

2203 Images Char (1) Images value that the data area received when it
started journaling

'0' - *AFTER
'1' - *BOTH

2204 Remote journal filter Char (1) Remote journal filter value that the data area
received when it started journaling

'0' - *NO
'1' - *YES

Create data queue (Q QA) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Create time of day and date Char (8) The date and timestamp when the data queue
was created.

9 Data queue name Char (10) The data queue name.

19 Data queue library Char (10) The library containing the data queue.

29 Maximum entry length Bin (32) Maximum entry length. Possible values are 1
through 64512.

33 Force auxiliary storage Char (1) Force queue to auxiliary storage on send and
receive:

N = Force is not done
Y = Force is done

34 Reserved Char (8) Reserved.

42 Sequence Char (1) Sequence in which entries are received from the
data queue:

F = FIFO queue
K = Keyed queue
L = LIFO queue

43 Key length Bin (16) Key length of a keyed queue. Possible values are
1 through 256.

45 Include sender ID Char (1) Attach a sender ID to each entry sent to the
queue:

N = Do not include ID
Y = Include ID

46 Queue type Char (1) Type of data queue:

S = Standard data queue

Note: DDM data queues cannot be journaled

Journal management 215

Relative
offset

Field Format Description

47 Reserved Bin (32) Reserved. This field is set to zero.

51 Queue size maximum entries Bin (32) The maximum number of entries to allow:

-1 = *MAX16MB
-2 = *MAX2GB

55 Queue size initial entries Bin (32) Initial number of entries to allocate.

Note: The default on the CRTDTAQ command is
16.

59 Automatic reclaim Char (1) The settings for this field are:

0 = no storage released
1 = storage is released

60 Reserved Char (481) Reserved. This field is set to zero.

541 Public authority Char (10) The public authority to the data queue.

551 Text Char (50) Text description.

601 Owner Char (10) Object owner.

611 Object existence authority Char (1) Y = *PUBLIC has *OBJEXIST authority to the
object.
blank = *PUBLIC does not have *OBJEXIST
authority to the object.

612 Object management
authority

Char (1) Y = *PUBLIC has *OBJMGT authority to the
object.
blank = *PUBLIC does not have *OBJMGT
authority to the object.

613 Object operational authority Char (1) Y = *PUBLIC has *OBJOPR authority to the
object.
blank = *PUBLIC does not have *OBJOPR
authority to the object.

614 Reserved Char (4) Reserved. Set to blank.

618 Authorization list
management

Char (1) Y = Object is secured by an authorization list.
The authorization list name can be found in
the Resulting authority field later in this
journal entry.
blank = Object is not secured by an
authorization list.

619 Read authority Char (1) Y = *PUBLIC has *READ authority to the
object.
blank = *PUBLIC does not have *READ
authority to the object.

620 Add authority Char (1) Y = *PUBLIC has *ADD authority to the object.
blank = *PUBLIC does not have *ADD
authority to the object.

216 IBM i: Journal management

Relative
offset

Field Format Description

621 Update authority Char (1) Y = *PUBLIC has *UPD authority to the object.
blank = *PUBLIC does not have *UPD
authority to the object.

622 Delete authority Char (1) Y = *PUBLIC has *DLT authority to the object.
blank = *PUBLIC does not have *DLT
authority to the object.

623 Exclude authority Char (1) Y = *PUBLIC has no authority to the object.
blank = *PUBLIC has authority to the object.

624 Execute authority Char (1) Y = *PUBLIC has *EXECUTE authority to the
object.
blank = *PUBLIC does not have *EXECUTE
authority to the object.

625 Object alter authority Char (1) Y = *PUBLIC has *OBJALTER authority to the
object.
blank = *PUBLIC does not have *OBJALTER
authority to the object.

626 Object reference authority Char (1) Y = *PUBLIC has *OBJREF authority to the
object.
blank = *PUBLIC does not have *OBJREF
authority to the object.

627 Resulting authority Char (10) The public authority resulting from the
processing of the Create Data Queue (CRTDTAQ)
command. The value can be *CHANGE, *ALL,
*USE, *EXCLUDE, or an authorization list name if
the Authorization list management field in this
journal entry is Y.

For example, if *LIBCRTAUT was specified for the
AUTHORITY keyword on the CRTDTAQ
command, the value *LIBCRTAUT would be in the
Public authority field and a value such as *USE
could be found in this Resulting authority field.
And the *USE value in this field could be specified
for the AUTHORITY keyword on a subsequent
CRTDTAQ command.

If an error occurred, this field could be blank or a
value that could not be specified for the
AUTHORITY keyword on the CRTDTAQ
command.

The following authority fields pertain to the object owner's authority for the data area associated with this
journal entry.

2151 Object existence authority Char(1) Y = Object owner has *OBJEXIST authority to
the object.
blank = Object owner does not have
*OBJEXIST authority to the object.

Journal management 217

Relative
offset

Field Format Description

2152 Object management
authority

Char (1) Y = Object owner has *OBJMGT authority to
the object.
blank = Object owner does not have
*OBJMGT authority to the object.

2153 Object operational authority Char (1) Y = Object owner has *OBJOPR authority to
the object.
blank = Object owner does not have *OBJOPR
authority to the object.

2154 Reserved Char (2)

2156 Read authority Char (1) Y = Object owner has *READ authority to the
object.
blank = Object owner does not have *READ
authority to the object.

2157 Add authority Char (1) Y = Object owner has *ADD authority to the
object.
blank = *Object owner does not have *ADD
authority to the object.

2158 Update authority Char (1) Y = Object owner has *UPD authority to the
object.
blank = Object owner does not have *UPD
authority to the object.

2159 Delete authority Char (1) Y = Object owner has *DLT authority to the
object.
blank = Object owner does not have *DLT
authority to the object.

2160 Exclude authority Char (1) Y = Object owner has no authority to the
object.
blank = Object owner has authority to the
object.

2161 Execute authority Char (1) Y = Object owner has *EXECUTE authority to
the object.
blank = Object owner does not have
*EXECUTE authority to the object.

2162 Object alter authority Char (1) Y = Object owner has *OBJALTER authority to
the object.
blank = Object owner does not have
*OBJALTER authority to the object.

2163 Object reference authority Char (1) Y = Object owner has *OBJREF authority to
the object.
blank = Object owner does not have *OBJREF
authority to the object.

2164 Reserved Char(2)

218 IBM i: Journal management

Relative
offset

Field Format Description

The following authority fields pertain to the primary group's authority for the data area associated with this
journal entry. If the primary group is *NONE the following authority fields will be blank.

2166 Primary group Char (10) This will be *NONE if there is no primary group
associated with the object.

2167 Object existence authority Char(1) Y = Object primary group has *OBJEXIST
authority to the object.
blank = Object primary group does not have
*OBJEXIST authority to the object.

2168 Object management
authority

Char (1) Y = Object primary group has *OBJMGT
authority to the object.
blank = Object primary group does not have
*OBJMGT authority to the object.

2169 Object operational authority Char (1) Y = Object primary group has *OBJOPR
authority to the object.
blank = Object primary group does not have
*OBJOPR authority to the object.

2170 Reserved Char (2)

2172 Read authority Char (1) Y = Object primary group has *READ authority
to the object.
blank = Object primary group does not have
*READ authority to the object.

2173 Add authority Char (1) Y = Object primary group has *ADD authority
to the object.
blank = *Object primary group does not have
*ADD authority to the object.

2174 Update authority Char (1) Y = Object primary group has *UPD authority
to the object.
blank = Object primary group does not have
*UPD authority to the object.

2175 Delete authority Char (1) Y = Object primary group has *DLT authority
to the object.
blank = Object primary group does not have
*DLT authority to the object.

2176 Exclude authority Char (1) Y = Object primary group has no authority to
the object.
blank = Object primary group has authority to
the object.

2177 Execute authority Char (1) Y = Object primary group has *EXECUTE
authority to the object.
blank = Object primary group does not have
*EXECUTE authority to the object.

Journal management 219

Relative
offset

Field Format Description

2178 Object alter authority Char (1) Y = Object primary group has *OBJALTER
authority to the object.
blank = Object primary group does not have
*OBJALTER authority to the object.

2179 Object reference authority Char (1) Y = Object primary group has *OBJREF
authority to the object.
blank = Object primary group does not have
*OBJREF authority to the object.

2180 Reserved Char(2)

The following fields are used when replaying a Q QA (create) journal entry. If the journal ID and name/library
are not available in the entry-specific data when an entry is replayed, then the object would be created but
journaling would not automatically be started for the object.

2182 Journal identifier (JOJID) Char (10) Journal identifier for the data area associated
with this journal entry.

2192 Journal name Char (10) The journal name.

2202 Journal library Char (10) The journal library.

2212 Remote journal filter Char (1) Remote journal filter value that the data area
received when it started journaling

'0' - *NO
'1' - *YES

Data queue attributes changed (Q QG) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Enforce data queue locks Char(1) Identifies whether IBM-supplied data queue
operations will enforce a lock on the data queue.
Possible values are:

'0' = Data queue changed to ignore locks
'1' = Data queue changed to enforce locks
' ' = Attribute was not changed

2 Automatic reclaim Char(1) Identifies whether allocated storage is
automatically reclaimed (released) when the
queue is empty:

'0' = No storage released
'1' = Storage is released
' ' = Attribute was not changed

220 IBM i: Journal management

Data queue cleared, has key (Q QJ) journal entry

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Reserved Char (2) Reserved for future use.

3 Key length Bin (16) The number of characters
in the key.

5 Key order Char (2) The Key order is as
follows:

GT = Greater than
LT = Less than
NE = Not equal
EQ = Equal
GE = Greater than or
equal
LE = Less than or
equal

7 Key Char (*) The data to be used to
remove a message from
the data queue.

Delete access path (F PD) journal entry

Relative
offset

Field Format Description

Specific values for this entry type:

Journal identifier (JOJID) Char (10) The JID is not provided with the *TYPE1, *TYPE2,
and *TYPE3 formats. It can be used with the
QJORJIDI API.

Delete receiver (J RD, J RF) journal entries

Relative
offset

Field Format Description

Specific values for this entry type:

Journal identifier (JOJID) Char (10) The JID is not provided with the *TYPE1, *TYPE2,
and *TYPE3 formats. It can be used with the
QJORJIDI API.

Journal management 221

Database file OPEN (F OP) and database file CLOSE (F CL) journal entries

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats.

1 File name Char (10) The name of the file that was opened or closed. If
a physical file is opened, this field and the JOOBJ
field are the same. If a logical file is opened, this
field contains the name of the logical file. JOOBJ
field contains the name of the physical file.

11 Library name Char (10) The library containing the file.

21 Member name Char (10) The file member that was opened of closed.

31 Open options Char (4) Only used for file open (entry type OP). Values of
the bytes follow:

31 Input Char (1) Whether the file was opened for input:

I = File opened for input
blank = Input not specified

32 Output Char (1) Whether the file was opened for output:

O = File opened for output
blank = Output not specified

33 Update Char (1) Whether the file was opened for update:

U = File opened for update
blank = Update not specified

34 Delete Char (1) Indicates if the file was opened for delete:

D = File opened for delete
blank = Delete not specified

Distribution errors (S ER) journal entry

Table 6. SNADS entries

Relative
offset

Field Format Description

1 Entry length Zoned(5,0) Total length of the journal entry including the entry length
field.

6 Sequence number Zoned(10,0) Applied to each journal entry. Initially set to 1 for each
new or restored journal. Reset when a new receiver is
attached.

16 Journal code Char(1) Always S for QSNADS journal.

17 Entry type Char(2) Always ER for SNADS errors entered.

19 Date stamp Char(6) The system date that the entry was made.

25 Time stamp Zoned(6,0) The system time that the entry was made.

31 (Reserved area) Char(95)

222 IBM i: Journal management

Table 6. SNADS entries (continued)

Relative
offset

Field Format Description

126 Job name Char(10) The name of the job that caused the entry to occur.

136 User name Char(10) The user-profile name associated with the job.

146 Job number Zoned(6,0) The job number.

152 Origin system
name/group

Char(16) The system name/group of the system that the distribution
originated on.

168 Origin user ID/
address

Char(16) The user ID/address of the user that originated the
distribution. This is not set if the distribution is a status
distribution caused by a SNADS error.

184 Sequence number Zoned(4,0) The sequence number of the distribution entered. This is
0000 if the distribution is a status distribution.

188 Date/time stamp Char(8) A representation of the date and time of origin of the
distribution.

196 Correlation ID Char(44) The correlation ID of the distribution.

200 Prefix correlation
ID

Char(16) The prefix correlation ID of the distribution.

216 Error queue Char(17) The SNADS queue that the distribution was on when the
error occurred.

233 Exception class Char(1) Class of the exception that occurred.

Note: Applies only to errors entered by SNADS sender and
receiver jobs.

The possible values are:
X'C2'

Syntax error
X'C3'

Semantic error
X'C4'

Process error
X'C5'

Catastrophic sender error

Journal management 223

Table 6. SNADS entries (continued)

Relative
offset

Field Format Description

234 Condition code Char(1) Code that provides additional qualification pertaining to
the exception class. These apply only to errors entered by
SNADS sender and receiver jobs. The possible values are:
X'01'

Function not supported
X'02'

Data not supported
X'04'

Resource not available
X'06'

Processing stopped
X'07'

Data not found
X'08'

Segmentation error
X'0A'

Sequence error
X'0B'

I/O error
X'0C'

ID not valid
X'0E'

Format not valid
X'0F'

Length not valid
X'10'

Indicator not valid
X'11'

Range exceeded
X'15'

Subfield length not valid
X'16'

Subfield length type not valid
X'17'

Parameters not valid
X'18'

Content error

224 IBM i: Journal management

Table 6. SNADS entries (continued)

Relative
offset

Field Format Description

235 Exception object Char(1) Code that indicates what part of a DIU was being sent or
received when the error that is entered occurred.

Note: Applies only to errors entered by SNADS sender and
receiver jobs.

The possible values are:
X'01'

Prefix
X'02'

IU identifier
X'07'

Command
X'08'

Command operand
X'09'

Operand value
X'13'

Suffix
X'14'

Segment
X'16'

Unsupported subfield
X'17'

Unknown subfield
X'1A'

Data object prefix
X'1B'

Data object data

Journal management 225

Table 6. SNADS entries (continued)

Relative
offset

Field Format Description

236 Status condition
codes

Char(2) These condition codes identify errors that occur during the
handling of a distribution.
(Hex) Code

Condition
X'01'

The distribution could not be routed through the
network.

X'02'
A distribution contained a destination user ID that was
not valid.

X'03'
A distribution was canceled because it attempted to
pass through more systems than specified by the hop
count.

X'04'
An error was detected in the format of the DIU used to
transmit information on the APPC session.

X'05'
The distribution requested a function that is not
supported by the receiving system.

X'06'
A permanent error occurred in the system program
used to store transaction program data at the receiving
system.

X'07'
The system program to be used to store transaction
program data is not supported by the receiving system.

X'08'
The parameters for the system program used to store
transaction program data are not valid.

X'09'
The transaction program that is to receive the
distribution is not supported on the receiving system.

X'0A'
The destination system has received the distribution
(SNADS confirmation of the receive function is not
supported).

226 IBM i: Journal management

Table 6. SNADS entries (continued)

Relative
offset

Field Format Description

238 Status condition
codes (continued)

Char(2) These condition codes identify errors that occur during the
handling of a distribution.
(Hex) Code

Condition
X'0B'

The distribution has been received and forwarded by
an intermediate system (SNADS confirmation of the
forwarding function is not supported).

X'0C'
A distribution request was deleted because it could
not be processed, or it was canceled by the system
operator or a user.

X'0D'
One or more user ID/addresses in the destination list
were lost (This condition not likely to occur.)

X'0E'
The system resource needed to process the
distribution is not available.

X'0F'
A system error of an unknown nature occurred.

X'10'
A temporary error occurred in the system program
used to store transaction program data on the
receiving system.

X'11'
An irrecoverable I/O error occurred during the
processing of the distribution (This condition not likely
to occur.)

X'12'
An error occurred while the sender was processing the
recipient's acknowledgement.

X'13'
The size of the transaction program data being
transmitted is larger than the maximum size allowed
by the service level.

240 Receiving system
name/group

Char(16) The system name/group of the SNADS node that was
receiving a DIU when the error occurred. This applies only
to errors entered by SNADS sender and receiver jobs.

256 Exception data Char(247) If the entry was made by the SNADS router, this field
contains the distribution recipient's system name/group
and user ID/address and the recipient will not receive the
distribution. Otherwise this may contain data that is
associated with the error entered.

Journal management 227

Table 6. SNADS entries (continued)

Relative
offset

Field Format Description

503 Function Char(1) Function that was being performed when the error
occurred. The possible values are:
X'01'

SNADS router
X'02'

SNADS sender put its queues on hold as a result of an
error

X'03'
SNADS receiver

X'04'
SNADS asynchronous feedback creation

X'05'
SNADS enqueue function

X'06'
SNADS dequeue function

X'07'
SNADS time of starting

X'08'
SNADS recovery

X'09'
SNADS sender deleted a distribution due to an error

X'0A'
SNADS sender was parsing a negative
acknowledgement

X'0B'
SNADS gateway outbound error

X'0C'
SNADS gateway inbound error

X'0D'
VM/MVS bridge function outbound transform error

X'0E'
VM/MVS bridge function inbound transform error while
parsing a SNADS ID

X'0F'
VM/MVS bridge function inbound transform error

X'11'
Temporary SNADS sender error

504 Destination TPN Char(8) The destination transaction program name of the
distribution entered.

512 Distribution type Char(1) The distribution type of the distribution being sent.
'F2'X

SVDS distributions
'40'X or 'F1'X

All other distributions

228 IBM i: Journal management

Table 6. SNADS entries (continued)

Relative
offset

Field Format Description

513 Program name Char(8) The name of the SNADS program that made the journal
entry.

521 Internal sequence
number

Char(4) The internal sequence number of the distribution entry.
This number applies only to *SVDS distributions. The
number has a 4-byte signed binary format.

525 Message unit ID Char(4) The message unit ID assigned by the transport layer to
*SVDS distributions only. The number has a 4-byte signed
binary format.

529 Message unit
instance number

Char(2) The instance number assigned by the transport layer to
*SVDS distributions only. The number has a 2-byte signed
binary format.

531 SNA response
code

Char(4) The SNA response code for an *SVDS distribution. See the
SNA/Distribution Services Reference for possible values.

Table 7. MSF message errors entries

Relative
offset

Field Format Description

1 Entry length Zoned(5,0) Total length of the journal entry, including the entry length
field.

6 Sequence number Zoned(10,0) Applied to each journal entry. Initially set to 1 for each
new or restored journal. Reset when a new receiver is
attached.

16 Journal code Char(1) Always S for MSF entries.

17 Entry type Char(2) Always ER for MSF message error entries.

19 Date stamp Char(6) The system date that the entry was made.

25 Time stamp Zoned(6,0) The system time that the entry was made.

31 (Reserved area) Char(95)

126 Job name Char(10) The name of the job that caused the entry to occur.

136 User name Char(10) The user profile name associated with the job.

142 Job number Zoned(6,0) The job number.

150 Program name Char(8) The name of the MSF program that made the journal entry.

Journal management 229

Table 7. MSF message errors entries (continued)

Relative
offset

Field Format Description

158 Error ID Char(1) The MSF error ID. The possible values are:
2

MSF message ended by an exit program
3

QMSF job ended by an exit program
4

An exit program returned data that was not valid
5

An exit program failed

159 MSF message ID Char(32) The MSF message ID logged.

191 Data length Char(5) The length of the logged data.

196 Logged data Char(256) The data logged by MSF when the error ID is:
2

Exit program name char(10) and library char(10)
3

Exit program name char(10) and library char(10)
4

Exit program name char(10) and library char(10)
5

Exit program name char(10) and library char(10)

Distribution errors (S XE) journal entries

Relative
offset Field Format Description

1 Length of
Entry

Zoned(5,0) Total length of the journal entry including the entry length field.

5 Sequence
Number

Zoned(10,0) Applied to each journal entry. Initially set to 1 for each new or
restored journal. Reset to 1 when a new receiver is attached.

16 Journal
Code

Char(1) Always S.

17 Entry Type Char(2) Always XE for DSNX-logged errors.

19 Date of
Entry

Char(6) The system date that the entry was made.

25 Time of
Entry

Zoned(6,0) The system time that the entry was made.

31 (Reserved
Area)

Char(95)

126 Program
Name

Char(8) The name of the DSNX program that made the journal entry.

230 IBM i: Journal management

Relative
offset Field Format Description

134 Name of
Job

Char(10) The name of the job that caused the entry to be generated.

144 User Name Char(10) The user profile name associated with the job.

154 Job Number Zoned(6,0) The job number.

160 Function Char(1) DSNX function that was being performed when the logged entry was
made. The possible values are:
Hex

Function
11

Host interface receive.
12

Object distribution error, host interface distribute through
SNADS to destination node.

13
NetView® DM protocol error, host interface receive.

14
Host interface initialization or router errors.

15
Response indicates SNADS error detected.

16
Request processor could not run NetView DM function.

17
Host interface send.

18
Object distribution error for local distribution.

1A
DSNX/ in send mode.

1B
DSNX/ in receive mode.

1C
Unexpected condition detected in host interface.

1D
Unexpected SNUF major/minor return code detected in host
interface.

1E
Object distribution detected a SNADS-generated error.

1F
Object distribution error detected by DSNX.

161 Correlation
ID

Char(44) Identifier of the logged DSNX distribution.

205 Exception
Data

Char(297)

Journal management 231

DSNX log (S XL) journal entries

Relative
offset Field Format Description

1 Length of
Entry

Zoned(5,0) Total length of the journal entry including the entry length field.

6 Sequence
Number

Zoned(10,0) Applied to each journal entry. Initially set to 1 for each new or
restored journal. Reset to 1 when a new receiver is attached.

16 Journal
Code

Char(1) Always S.

17 Entry Type Char(2) Always XL for DSNX-logged event.

19 Date of
Entry

Char(6) The system date that the entry was made.

25 Time of
Entry

Zoned(6,0) The system time that the entry was made.

31 (Reserved
Area)

Char(95)

126 Program
Name

Char(8) The name of the DSNX program that made the journal entry.

134 Name of
Job

Char(10) The name of the job that caused the entry to be generated.

144 User Name Char(10) The user profile name associated with the job.

154 Job Number Zoned(6,0) The job number.

232 IBM i: Journal management

Relative
offset Field Format Description

160 Function Char(1) DSNX function that was being performed when the logged entry was
made. The possible values are:
Hex

Function
03

A DSNX reply distribution was received at the host interface.
04

Request processor ran the NetView DM request.
05

Value for host interface receiver entry when a NetView DM
request header is received.

06
Value for host interface query response when a delayed ACK
response is completed to the NetView DM host.

07
Value for host interface response when a data set ready
response is completed to the NetView DM host.

08
Value for host interface response when a NetView DM
resynchronization is completed.

09
Value for host interface remote distribution.

0A
Value for host interface local distribution.

0B
Entry deleted from DSNX/PC queue via WRKDPCQ command.

0C
Value for DSNX/ in send mode.

0D
Value for DSNX/ in receive mode.

161 Correlation
ID

Char(44) Identifier of the logged DSNX distribution.

205 Logged Data Char(100)

Force data to auxiliary storage (F FD) journal entry

Relative
offset

Field Format Description

Specific values for this entry type:

Job name (JOJOB) Char (10) Blank if the entry is written during IPL or vary on
of an independent disk pool.

Job number (JONBR) Zoned (6,0) Zero if entry is written during IPL or vary on of an
independent disk pool.

Program name (JOPGM) Char (10) Blank if the entry is written during IPL or vary on
of an independent disk pool.

Journal management 233

Integrated file system begin create (B B0) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object name offset Bin (32) The offset from the beginning of the entry-
specific data to the beginning of the Object name
field.

5 Object type Char (7) The object type that was created.

12 Start journaling indicator Char (1) Indicates whether journaling will be started.

Y = Journaling will be started
blank = Journaling will not be started

13 Reserved Bin (32) Reserved. This field is set to zero.

17 Object name Char (*) See the Object name table for the layout of this
field.

Integrated file system bytes cleared, after-image (B B6) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

17 Data length Bin (64) The length of the data.

25 Offset Bin (64) The offset to begin write of hex zeros (clear).

33 Reserved Char (16) Reserved. Set to zeros.

Integrated file system change audit attribute (B AA) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Entry type Char (1) The type of entry is as follows:

D = Changed DLO authority
O = Changed object authority

2 Object name Char (10) The name of the object for which the auditing
attributes were changed. *N if the object is not in
a library.

12 Library name Char (10) The name of the library for the object. *N if the
object is not in a library.

22 Object type Char (8) The type of object.

234 IBM i: Journal management

Relative
offset

Field Format Description

30 Auditing value Char (10) The new value specified on the Change Auditing
Value CHGAUD command.

40 Reserved Char (135) Reserved. This field is set to blanks.

175 Object name CCSID Bin (31) The coded character set identifier (CCSID) for the
object name.

179 Reserved Char (8) Reserved. This field is set to blanks.

187 Parent FID Char (16) The file identifier of the parent directory.

203 Object FID Char (16) The file identifier of the object.

Integrated file system change object authority (B OA) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Entry type Char (1) The type of entry.

A = Change authorization.

2 Object name Char (10) The object name. *N if the object is not in a
library.

12 Library name Char (10) The library name. *N if the object is not in a
library.

22 Object type Char (8) The type of object.

30 User name Char (10) The name of the user profile whose authorization
is being granted or revoked.

40 Authorization list name Char (10) The name of the authorization list.

50 Object existence authority Char (1) Y = User has *OBJEXIST authority to the
object.
blank = User does not have *OBJEXIST
authority to the object.

51 Object management
authority

Char (1) Y = User has *OBJMGT authority to the object.
blank = User does not have *OBJMGT
authority to the object.

52 Object operational authority Char (1) Y = User has *OBJOPR authority to the object.
blank = User does not have *OBJOPR
authority to the object.

53 Authorization list
management

Char (1) Blank if user does not authorization list
management to the object.

54 Authorization list *PUBLIC
authority

Char (1) Y = User has *PUBLIC authority to the object.
blank = User does not have *PUBLIC authority
to the object.

Journal management 235

Relative
offset

Field Format Description

55 Read authority Char (1) Y = User has *READ authority to the object.
blank = User does not have *READ authority
to the object.

56 Add authority Char (1) Y = User has *ADD authority to the object.
blank = User does not have *ADD authority to
the object.

57 Update authority Char (1) Y = User has *UPD authority to the object.
blank = User does not have *UPD authority to
the object.

58 Delete authority Char (1) Y = User has *DLT authority to the object.
blank = User does not have *DLT authority to
the object.

59 Exclude authority Char (1) Y = User has *EXCLUDE authority to the
object.
blank = User does not have *EXCLUDE
authority to the object.

60 Execute authority Char (1) Y = User has *EXECUTE authority to the
object.
blank = User does not have *EXECUTE
authority to the object.

61 Object alter authority Char (1) Y = User has *OBJALTER authority to the
object.
blank = User does not have *OBJALTER
authority to the object.

62 Object reference Char (1) Y = User has *OBJREF authority to the object.
blank = User does not have *OBJREF
authority to the object.

63 Reserved Char (4) Reserved. Set to blanks.

67 Operation type Char (3) Possible values are:

GRT = Grant
RPL = Grant with replace
RVK = Revoke

70 Reserved Char (149) Reserved. Set to blanks.

19 Object name CCSID Bin (31) The coded character set identifier (CCSID) for the
object name.

223 Reserved Char (8) Reserved. Set to blanks.

231 Parent FID Char (16) The file identifier of the parent directory. This
field is not set or used.

247 Object FID Char (16) The file identifier of the object.

236 IBM i: Journal management

Integrated file system change object owner (B OO) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Entry type Char (1) The type of entry.

A = Change owner

2 Object name Char (10) The object name. *N if object is not in a library.

12 Library name Char (10) The library name. *N if object is not in a library.

22 Object type Char (8) The object type.

30 Old owner Char (10) The old owner.

40 New owner Char (10) The new owner.

50 Reserved Char (143) Reserved. Set to blanks.

193 Object name CCSID Bin (31) The coded character set identifier (CCSID) for the
object name.

197 Reserved Char (8) Reserved. Set to blanks.

205 Parent FID Char (16) The file identifier of the parent directory.

221 Object FID Char (16) The file identifier of the object.

Integrated file system change primary group (B OG) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Entry type Char (1) Type of entry

A = Change primary group profile

2 Object name Char (10) The object name. *N if object is not in a library.

12 Library name Char (10) The library name. *N if object is not in a library.

22 Object type Char (8) The type of object.

30 Old primary group Char (10) The old primary group.

40 New primary group Char (10) The new primary group.

50 Object existence authority Char (1) Y = New primary group has *OBJEXIST
authority to the object.
blank = New primary group does not have
*OBJEXIST authority to the object.

Journal management 237

Relative
offset

Field Format Description

51 Object management
authority

Char (1) Y = New primary group has *OBJMGT
authority to the object.
blank = New primary group does not have
*OBJMGT authority to the object.

52 Object operational authority Char (1) Y = New primary group has *OBJOPR
authority to the object.
blank = New primary group does not have
*OBJOPR authority to the object.

53 Object alter authority Char (1) Y = New primary group has *OBJALTER
authority to the object.
blank = New primary group does not have
*OBJALTER authority to the object.

54 Object reference authority Char (1) Y = New primary group has *OBJREF authority
to the object.
blank = New primary group does not have
*OBJREF authority to the object.

55 Reserved Char (10) Reserved. Set to blanks.

65 Authorization list
management

Char (1) Blank if new primary group does not
authorization list management to the object.

66 Read authority Char (1) Y = New primary group has *READ authority to
the object.
blank = New primary group does not have
*READ authority to the object.

67 Add authority Char (1) Y = New primary group has *ADD authority to
the object.
blank = New primary group does not have
*ADD authority to the object.

68 Update authority Char (1) Y = New primary group has *UPD authority to
the object.
blank = New primary group does not have
*UPD authority to the object.

69 Delete authority Char (1) Y = New primary group has *DLT authority to
the object.
blank = New primary group does not have
*DLT authority to the object.

70 Execute authority Char (1) Y = New primary group has *EXECUTE
authority to the object.
blank = New primary group does not have
*EXECUTE authority to the object.

71 Reserved Char (10) Reserved. Set to blanks.

238 IBM i: Journal management

Relative
offset

Field Format Description

81 Exclude authority Char (1) Y = New primary group has *EXCLUDE
authority to the object.
blank = New primary group does not have
*EXCLUDE authority to the object.

82 Revoke previous primary
group authority

Char (1) Y = The previous primary group authority to
the object was revoked.
blank = The previous primary group authority
to the object was not revoked.

83 Reserved Char 143 Reserved. Set to blanks.

226 Object name CCSID Bin (31) The coded character set identifier (CCSID) for the
object name.

230 Reserved Char (8) Reserved. Set to blanks.

238 Parent FID Char (16) The file identifier of the parent directory.

254 Object FID Char (16) The file identifier of the object.

Integrated file system created object authority (B B7) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the created object.

17 Number of authorities Bin (32) The number of private authorities in this entry.

21 Offset to object name Bin (32) The offset from the beginning of the entry-
specific data to the beginning of the Object name
field.

25 Offset to path name Bin (32) The offset from the beginning of the entry-
specific data to the beginning of the Path name
field.

29 Offset to authority
information

Bin (32) The offset from the beginning of the entry-
specific data to the beginning of the Authority
information field.

33 Format indicator Char (1) The format indicator is set to the following:

0 = The original layout of this journal entry
(FORMAT1)

34 Reserved Char (15) Reserved. Set to zeros.

* Object name Char (*) See the Object name table for the layout of this
field.

* Path name Char (*) See the Path name table for the layout of this
field.

Journal management 239

Relative
offset

Field Format Description

* Authority information Char (*) The array of private authority information that
has been set for the created object. See the
Private authority table for the layout of one array
element in this field. If the incomplete data
indicator is off, the information is a character
string. Otherwise, it is a pointer to the actual
data. See “Working with pointers in journal
entries” on page 313 for more information.

Integrated file system create-summary (B B1) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Offset to name Bin (32) The offset from the beginning of the entry-
specific data to the beginning of the Object name
field.

5 Offset to path name Bin (32) The offset from the beginning of the entry-
specific data to the beginning of the Path name
field.

9 Offset to symbolic link
contents field.

Bin (32) The offset from the beginning of the entry-
specific data to the beginning of the Symbolic link
contents field.

13 Object type Char (7) The object type that was created.

20 Scan attribute Char (1) If the new object is a stream file (*STMF), this
field is the scan (QP0L_ATTR_SCAN) attribute as
described in the Set Attributes
(Qp0lSetAttr()) API. If the new object is a
directory (*DIR), this field is the create object
scanning (QP0L_ATTR_CRTOBJSCAN) attribute
of the Qp0lSetAttr()) API.

21 File ID of object Char (16) The new object file identifier.

37 Owner name Char (10) The user profile name of the owner.

47 Group name Char (10) The primary group profile name.

57 Auditing value Char (10) The auditing value of the new object.

67 Object CCSID Bin (16) The coded character set identifier (CCSID) for the
object.

69 Owner private authority Char (12) Private authorities assigned to the owner. See
the Private authority information table.

81 Primary group private
authority

Char (12) Private authorities assigned to the primary group.
See the Private authorities for specified profile
table.

93 *PUBLIC private authority Char (12) Private authorities assigned to the *PUBLIC. See
the Private authorities for specified profile table..

240 IBM i: Journal management

Relative
offset

Field Format Description

105 Authorization list name Char (10) The authorization list name for the new object.

115 Authorization list *PUBLIC Char (1) The authorization List *PUBLIC authority.
Possible values are Y or blank.

116 Format indicator Char (1) The format indicator is set to one of the following
values:

• 0 = The original layout of this journal entry
(FORMAT1)

• 1 = The layout of FORMAT1 plus the Device id
field is set appropriately (FORMAT2)

• 2 = The layout for all of FORMAT2 plus the
following fields are set appropriately
(FORMAT3)

– Scan attribute
– Create object auditing
– S_ISVTX value
– S_ISUID value
– S_ISGID valuemy first point

For information about the values in this field see
the Get Attributes (Qp0lGetAttr()) API.

117 PC read-only Char (1) The PC read Only flag. For information about the
values in this field see the Get Attributes
(Qp0lGetAttr()) API.

118 PC hidden Char (1) The PC hidden flag. For information about the
values in this field see the Get Attributes
(Qp0lGetAttr()) API.

119 PC system Char (1) The PC System file flag. For information about the
values in this field see the Get Attributes
(Qp0lGetAttr()) API.

120 PC changed Char (1) The PC changed flag. For information about the
values in this field see the Get Attributes
(Qp0lGetAttr()) API..

121 Journal information Char (36) The journaling information for the new object.
This field indicates if journaling is now active on
the new object. If so, it also contains the
information the information used to start
journaling. See the Journal information table for
the layout of this field.

157 Device ID Bin (64) This field is only valid when the object type is
*CHRSF.

165 Create object auditing Char (10) The create object auditing value. This value only
applies to directories (*DIR).

175 S_ISVTX value Char (1) The restricted rename and unlink (S_ISVTX)
mode bit. For information about the values in this
field see the Get Attributes
(Qp0lGetAttr()) API.

Journal management 241

Relative
offset

Field Format Description

176 S_ISUID value Char (1) The S_ISUID mode bit. For information about the
values in this field see the Get Attributes
(Qp0lGetAttr()) API.

177 S_ISGID value Char (1) The S_ISGID mode bit. For information about the
values in this field see the Get Attributes
(Qp0lGetAttr()) API.

178 Object name Char (*) See the Object name table for the layout of this
field.

* Path name Char (*) See the Path name table for the layout of this
field.

* Symbolic link contents Char (*) See the Symbolic link contents table for the
layout of this field.

Integrated file system end journaling for object (B ET) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

Integrated file system link to existing object (B B2) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the existing object.

17 Link offset Bin (32) The offset from beginning of this entry-specific
data to the beginning of the Link name field.

21 Path offset Bin (32) The offset from beginning of this entry-specific
data to the beginning of the Path name field.

25 Start journaling Char (1) The start journaling indicator.

Y = Journaling starts on the existing object as
a result of this operation. The Journal
information field has start journaling
information.
blank = Journaling is not started on the
existing object as a result of this operation.
The Journal information field contains all hex
zeros.

242 IBM i: Journal management

Relative
offset

Field Format Description

26 Summary Char (1) The summary record indicator.

Y = This journal entry was deposited after the
actual operation was completed. If the Start
journaling field is Y, then the Journal
information field contains the actual
information related to starting journaling on
the target object. If the Start journaling field
is blank, then the Journal information field
contains all hex zeros.
blank = This journal entry was deposited
before the actual operation was attempted. If
the Start journaling field is Y, then the
Journal information field contains the journal
information inherited from its new parent.
This information is used to attempt a start
journaling operation. If the Start journaling
field is blank, then the Journal information
field contains all hex zeros.

27 Reserved Char (2) Reserved. Set to zero.

29 Journal information Char (36) The journaling information for the new object.
This field is defined in the Journal information
table.

65 Link name Char (*) The name of the new link to the object. See the
Object name table for the layout of this field.

* Path name Char (*) The existing object path name. If this B2 journal
entry was deposited as a result of a rollback of a
B5 entry, then this will actually be the path to the
parent directory to which the link is being added.
See the Path name table for the layout of this
field.

Integrated file system object attribute changed (B FA) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

17 Parent FID Char (16) The file identifier of the parent directory.

33 Object type Char (7) The type of object.

40 Reserved Char (9) Reserved. This field is set to hex zeros.

49 Next attribute offset Bin (32) The offset to the next attribute. All of the offsets
49, 53, 57, 61, and 65 will repeat for each
attribute set for this entry.

Journal management 243

Relative
offset

Field Format Description

53 Attribute identifier Bin (32) The attribute identifier. See the Set Attributes
(Qp0lSetAttr()) API for information about the
structure and content of this field. All of the
offsets 49, 53, 57, 61, and 65 will repeat for each
attribute set for this entry.

57 Attribute data size Char (32) Size of attribute data in bytes. All of the offsets
49, 53, 57, 61, and 65 will repeat for each
attribute set for this entry.

61 Reserved Char (4) Reserved. All of the offsets 49, 53, 57, 61, and
65 will repeat for each attribute set for this entry.

65 Changed data Char (*) The data that was changed. All of the offsets 49,
53, 57, 61, and 65 will repeat for each attribute
set for this entry.

Integrated file system object closed (B CS) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Open flags Bin (31) Open flags. See the Open API for a description of
these flags.

Integrated file system object deleted (B BD) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

Integrated file system object forced (B FC) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

244 IBM i: Journal management

Integrated file system object opened (B OF) journal entries

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Open flags Bin (31) Open flags. See the Open API for a description of
these flags.

Integrated file system object truncated (B TR) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

17 Old size Bin (64) The size of the object in bytes before it was
truncated.

25 New size Bin (64) The size of the object in bytes after it was
truncated.

Integrated file system remove link (link) (B B5) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the existing object.

17 Parent FID Char (16) The file identifier of the object parent directory.

33 Link offset Bin (32) The offset from beginning of this entry-specific
data to the beginning of the Link name field.

37 Parent path offset Bin (32) The offset from beginning of this entry-specific
data to the beginning of the Parent path field.

41 Parent directory JID Char (10) The journal identifier of parent directory.

51 Object type Char (7) The type of the object.

58 Reserved Char (3) Reserved. Set to zero.

61 Internal data offset Bin (32) The offset from beginning of this field to the
beginning of Internal data field.

65 Link name Char (*) The name of link. See the Object name layout of
this field.

* Parent path Char (*) The path to the parent that used to contain this
link. See the Path name layout of this field.

* Internal data Char (*) Internal data.

Journal management 245

Integrated file system remove link (parent directory) (B B4) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the existing object.

17 Parent FID Char (16) The parent directory of the link file identifier.

33 Link offset Bin (32) The offset from beginning of this entry-specific
data to the beginning of the Link name field.

37 Object JID Char (10) The journal identifier of the object.

47 Object type Char (7) The type of the object.

54 Reserved Char (7) Reserved. Set to zero.

61 System offset Bin (32) The offset from beginning of this entry-specific
data to the beginning of Internal data.

65 Link name Char (*) The name of link. See the Object name layout of
this field.

* Internal data Char (*) Internal data.

Integrated file system rename file identifier (B RN) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Old FID Char (16) The file identifier of the object before the rename
operation.

17 Reserved Char (14) Reserved. Set to blanks.

31 New FID Char (16) The file identifier of the object after the rename
operation.

47 Reserved Char (14) Reserved. Set to blanks.

Integrated file system rename, move object (B B3) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object for the renamed
link.

17 Source parent FID Char (16) The file identifier of the source object directory.

33 Target parent FID Char (16) The file identifier of the target object directory.

49 Replaced object FID Char (16) The file identifier of the object that was replaced
by this operation. This field contains all hex zeros
if no object was replaced.

246 IBM i: Journal management

Relative
offset

Field Format Description

65 Source offset Bin (32) The offset from beginning of this entry-specific
data to the beginning of the Source name field.

69 Target offset Bin (32) The offset from beginning of this entry-specific
data to the beginning of the Target name field.

73 Source parent offset Bin (32) The offset from beginning of this entry-specific
data to the beginning of the Source parent path
field.

77 Target parent offset Bin (32) The offset from beginning of this entry-specific
data to the beginning of the Target parent path
field.

81 Start journaling Char (1) The start journaling indicator:

Y = Journaling starts on the existing object as
a result of this operation. The Journal
information field contains the information
used to start journaling.
blank = Journaling does not start on the
existing object as a result of this operation.
The Journal information field contains all hex
zeros.

82 Summary Char (1) The summary record indicator:

Y = This journal entry was deposited after the
actual operation was completed. If the Start
journaling field is also Y, then the Journal
information field contains the actual
information related to starting journaling on
the target object. If the Start journaling field
is blank, then the Journal information record
will contain all hex zeros.
blank = This journal entry was deposited
before the actual operation was attempted. If
Start journaling is Y, then the Journal
information field contains the journal
information inherited from its new parent.
That information is used to attempt a start
journaling operation. If the Start journaling
field is blank, then the Journal information
field contains all hex zeros.

83 Replace Char (1) The replace indicator. Indicates if the target was
replaced as a result of this operation.

Y = Indicates that the target was replaced.
blank = Indicates that the target did not exist
before this operation.

Journal management 247

Relative
offset

Field Format Description

84 Journal entry flags Bin (32) The fields for journal entry flags are as follows:
Both journaled

Bit(0)--1 = Indicates that this entry is one of a
pair of B3 entries sent for this move
operation. This occurs when both the source
and target parent directories are journaled at
the time of the move operation.

Source entry
Bit(1)--1 = Indicates that this entry was
deposited because the source parent was
journaled.

Reserved
Bits(2-7)--Reserved. Set to zero.

88 Reserved Char (4) Reserved field.

92 Journal information Char (37) The journaling information for the new object.
This field is defined in Journal information.

129 System offset Bin (32) The offset from beginning of this entry-specific
data to the beginning of Internal data field.

133 Source name Char (*) The name of object being renamed or moved. See
the Object name layout of this field.

* Target name Char (*) The new name of object after being renamed or
moved. See the Object name layout.

* Source parent path Char (*) The path to the parent directory from which the
object previously belonged. See Path name for
the layout of this field.

* Target parent path Char (*) The path to the parent directory to which the
object now belongs. See Path name for the layout
of this field.

* Internal data Char (*) Internal data.

Integrated file system storage for object freed (B FF) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

17 Old size Bin (64) The old size of the object.

248 IBM i: Journal management

Integrated file system write, after-image (B WA) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object FID Char (16) The file identifier of the object.

17 Data length Bin (64) Length of the data.

25 Offset Bin (64) The offset to begin write.

33 Reserved Char (16) Reserved.

49 Data Char (*) The actual data that was written. If the
incomplete data indicator is off, the information
is a character string. Otherwise, it is a pointer to
the actual data. See Work with pointers in journal
entries for more information.

Identity Value (F IT) journal entries

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Version Bin(15) Version number

3 Identity Value DECIMAL(31,0) The last identity value
allocated in the current
CACHE

INZPFM (F IZ) journal entry

Relative
offset

Field Format Description

Specific values for this entry type:

Count or relative record
number (JOCTRR)

Zoned (10,0) Contains the number of records specified on the
TOTRCDS parameter of the Initialize Physical File
Member (INZPFM) command.

Flag (JOFLAG) Char (1) Indicates the type of record initialization that was
done:

0 = *DFT (default)
1 = *DLT (delete)

Entry-specific data. This data appears as one field in the standard output formats:

1 Entry-specific data If the member is initialized with default records,
this field contains the default record image.

Journal management 249

IPL after abnormal end (J IA) journal entries

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 System name Char (8) Name of the system IPLed.

IPL after normal end(J IN) journal entries

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 System name Char (8) Name of the system IPLed.

IP NAT rules actions (M TN) journal entry

Relativ
e
offset Field Format Description

1 Entry length Zoned(5,0) Total length of the journal entry including the entry
length field.

6 Sequence
number

Zoned(10,0) Applied to each journal entry. Initially set to 1 for each
new or restored journal. Reset when a new receiver is
attached.

16 Journal code Char(1) Always “M”

17 Entry type Char(2) Always “TN”

19 Date stamp Char(6) The system date that the entry was made.

25 Time stamp Zoned(6,0) The system time that the entry was made.

31 (Reserved area) Char(95)

126 Line description Char(10) “*ALL” if TFREVT is “U*”. Blank if TFREVT is “L*”. Line
name if TFREVT is “L”.

136 Rule Event Char(2) “L*” or “L” when rules are loaded. “U*” when rules are
unloaded. “A”when filter action.

138 IP Packet
Direction

Char(1) “O” is outbound. “I” is inbound.

139 Rule Number Char(5) Applies to the rule number in the active rules file.

144 Transport
Protocol

Char(4) 1 is ICMP
6 is TCP
17 is UDP

149 Source IP
Address

Char(15)

164 Source Port Char(5)

250 IBM i: Journal management

Relativ
e
offset Field Format Description

169 Destination IP
Address

Char(15)

184 Destination Port Char(5)

189 Translated IP
Address

Char(15)

204 Translated
source port

Char(5)

209 Translated
Destination IP

Char(15)

224 Translated
Destination Port

Char(5)

229 Text Information Char(76) Contains description if TFREVT = “L*” or “L” or “U*”

IP Packet Filter (M TF) journal entry

Relativ
e offset

Field Format Description

1 Entry length Zoned(5,0) Total length of the journal entry including the entry length
field.

6 Sequence number Zoned(10,0) Applied to each journal entry. Initially set to 1 for each new
or restored journal. Reset when a new receiver is attached.

16 Journal code Char(1) Always “M”

17 Entry type Char(2) Always “TF”

19 Date stamp Char(6) The system date that the entry was made.

25 Time stamp Zoned(6,0) The system time that the entry was made.

31 (Reserved area) Char(95)

126 Line description Char(10) “*ALL” if TFREVT is “U*”. Blank if TFREVT is “L*”. Line name
if TFREVT is “L”.

136 Rule Event Char(2) “L*” or “L” when rules are loaded. “U” when rules unloaded.
“A” when filter action.

138 IP Packet
Direction

Char(1) “O” is outbound. “I” is inbound.

139 Rule Number Char(5) Applies to the rule number in the active rules file.

144 Filter Action
Taken

Char(6) “PERMIT” or “DENY”

148 Transport
Protocol

Char(4) 1 is ICMP
6 is TCP
17 is UDP

152 Source IP Address Char(15)

Journal management 251

Relativ
e offset

Field Format Description

157 Source Port Char(5) Garbage if TFPROT =1 (ICMP)

162 Destination IP
Address

Char(15)

177 Destination Port Char(5) Garbage if TFPROT =1 (ICMP)

182 Additional Text Char(76) Contains description if TFRVET = “L*” or “L” or "U"

IPL (J IA, J IN) and in-use (B OI, C BA, D ID, E EI, F IU, I DA, J JI, Q QI) journal entries

Relative
offset

Field Format Description

Specific values for this entry type:

Time stamp (JOTIME) Zoned (6,0) The timestamp created at IPL is read from the
battery-powered clock. If the battery-powered
clock cannot be read, the time is that of the
system power down, not the time of the IPL,
because the system time has not yet been
updated at the time the journal entry is written.

Flag (JOFLAG) Char (1) For in-use entries, indicates whether the object
was synchronized with the journal:

0 = Object was synchronized with journal
1 = Object was not synchronized with journal

Journal code R, all journal entry types except IL

Relative
offset

Field Format Description

Specific values for this entry type:

Flag (JOFLAG) Char (1) Whether a before-image is present1:

0 = Before-image is not present. If before-
images are being journaled, this indicates that
an update operation or delete operation is
being requested for a record that has already
been deleted.
1 = Before-image is present.

Journal identifier (JOJID) Char (10) The JID is not provided with the *TYPE1, *TYPE2,
and *TYPE3 formats. It can be used with the
QJORJIDI API.

Entry-specific data. This data appears as one field in the standard output formats:

252 IBM i: Journal management

Relative
offset

Field Format Description

1 Entry-specific data Char (*) After-image of the record for entry types PT, PX,
UP, or UR. Before-image of the record for entry
types UB, DL, BR, or DR if before-images are
being journaled and the record was not
previously deleted.

Note: 1The flag does not apply to these entry types: PT, PX, UP, and UR.

Journaling for library started (Y YB) journal entry

Relative offset Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Omit journal entries Char (1) Identifies whether entries are to be omitted
from journaling:

'0' = no entries are to be omitted
'1' = entries are to be omitted

2 New objects inherit
journaling

Char (1) Identifies whether new objects created
within a library or directory should inherit
journaling

'0' = no, or inherit does not apply to this
object
'1' = yes, new objects inherit journaling

3 Reserved Char(4)

6 Displacement to
additional information

Bin(16) unsigned
short integer

Offset determined
by Displacement
to additional
information

Version Bin(32) unsigned
integer

Version number for this structure

Displacement to Inherit
Rules

Bin(32) unsigned
integer

Displacement to Inherit Rules information
from the beginning of the Version field

Offset determined
by Displacement
to Inherit Rules

Inherit Rules See Journal Inherit Rules

License key not valid (L LK) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Product ID Char (7) The ID of the product whose license key was not
valid.

Journal management 253

Relative
offset

Field Format Description

8 License term Char (6) The term of the license.

14 Feature Char (4) The product feature code.

18 Usage limit Zoned (6,0) The usage limit for the product.

24 License key Char (18) The license key for the product.

42 Expiration date Char (7) The expiration date for the license key.

49 Vendor data Char (8) Data placed in the entry by the product vendor.

57 Processor group Char (3) The processor group for the license key.

Library renamed (Y YN) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Old library name Char(10)

11 Reserved Char(20)

31 New library name Char(10)

41 Reserved Char(20)

Logical file associated with the library or based on physical file (D LF, Y LF) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Logical file name Char(10)

11 Logical file library name Char(10)

21 Logical file journal identifier Char(10)

Logical unit of work (C LW) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 LUW header portion 416 The header portion of the entry-specific data
contains general information about the logical
unit of work (LUW). The layout for the “Logical
unit of work (C LW) journal entry - header record”
on page 265 describes the contents of the
header portion.

254 IBM i: Journal management

Relative
offset

Field Format Description

After
the
header
portion

LUW local portion 80 Information about local resources that
participated in the LUW. The entry might have 0
to n records for local locations. Each local record
is 48 characters long. The layout for the “Logical
unit of work (C LW) journal entry - local record”
on page 275 describes the local record.

After
the local
portion

LUW API portion 112 Information about API resources that
participated in the LUW. The entry might have 0
to n records for API resources. Each API resource
record is 80 characters long. The layout for the 0
“Logical unit of work (C LW) journal entry - API
record” on page 255 describes the API record.

After
the API
portion

LUW DDL portion 96 Information about DDL resources that
participated in the LUW. The entry might have 0
to n records for DDL resources. Each DDL
resource record is 80 characters long. The layout
for the “Logical unit of work (C LW) journal entry -
DDL record” on page 259 describes the DDL
record.

After
the DDL
portion

LUW remote portion 128 Information about remote locations that
participated in the LUW. The entry might have 0
to n records for remote locations. Each remote
location record is 128 characters long. The layout
for the “Logical unit of work (C LW) journal entry -
RMT record” on page 277 describes the remote
record.

After
the
remote
portion

LUW DDM portion 96 Information about DDM resources that
participated in the LUW. The entry might have 0
to n records for DDM resources. Each DDM
resource record is 96 characters long. The layout
for the “Logical unit of work (C LW) journal entry -
DDM record” on page 262 describes the DDM
record.

Logical unit of work (C LW) journal entry - API record

Relative
offset

Field Format Description

1 Record type Char (4) Type of record:

API = API Commitment resource record

5 Record length Bin (15) Length of record. Currently 80 for API record.

Journal management 255

Relative
offset

Field Format Description

7 Record position (4) 1 This identifies the position in the LUW journal
entry where this record starts. It is made up of
two numbers:

• Bin (15): The relative number of the journal
entry that contains this record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains this record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where this record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where this
record starts. For example, 0 means the first
byte in the entry.

11 Resource location position (4)1 This identifies the position in the LUW journal
entry where the LCL record starts for this API
resource's location. It is made up of two
numbers:

• Bin (15): The relative number of the journal
entry that contains the record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains the record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where the record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where the
record starts. For example, 0 means the first
byte in the entry.

256 IBM i: Journal management

Relative
offset

Field Format Description

15 Next resource position (4)1 This identifies the position in the LUW journal
entry where the next API or DDL record starts for
this API resource's location. It is made up of two
numbers:

• Bin (15): The relative number of the journal
entry that contains the record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains the record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where the record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where the
record starts. For example, 0 means the first
byte in the entry.

Position 0 0 indicates that this is the last
resource for this API resource's location.

19 API resource Char (10) Name of API resource.

29 API program Char (20) Name of the exit program for the API resource:

• Char (10): exit program name
• Char (10): exit program library

49 Journal Char (20) Journal related to the location for this resource:

• Char (10): Journal name (blank if this resource
belongs to the location with no journal)

• Char (10): Journal library (blank if this resource
belongs to the location with no journal)

69 Commit cycle ID Bin (31) The commit cycle identifier for the journal. This is
0 if this resource belongs to the location with no
journal. This is -1 if the actual commit cycle
identifier value is larger than 2 147 483 647. The
Commit cycle ID Long field always contains the
correct value.

73 Commit protocol Char (1) The commit protocol for this resource:

2 = This is a two-phase resource (API
resources are always two-phase resources).

Journal management 257

Relative
offset

Field Format Description

74 Resource usage Char (2) The currently allowed access for this resource.
The allowed access for some resources can
change from one LUW to another depending on
whether one-phase resources are registered:

RO = This resource is currently read-only.
Updates were not made during the LUW.
UP = This resource is currently able to be
updated. Updates might or might not have
been made during the LUW.

76 API state Char (2) Indicates whether the API resource was
committed or rolled back successfully:

CS = This resource was committed
successfully.
RS = This resource was rolled back
successfully.
CF = An attempt to commit this resource
failed.
RF = An attempt to rollback this resource
failed.

78 API last agent flag Char (1) Whether this resource is to be selected as the
last agent during all commit requests:

Y = This resource is to be selected as the last
agent.
N = This resource is not to be selected as the
last agent.

79 Allow remote resources Char (1) Whether remote resources are allowed to
participate in a LUW with this resource:

Y = Remote resources are allowed with this
resource.
N = Remote resources are not allowed with
this resource.

80 Save while active flag Char (1) Whether this resource will hold out a save-while-
active request until a commitment boundary is
reached:

Y = This resource will hold save-while-active
requests.
N = This resource will not hold save-while-
active requests.

81 Commit cycle ID long Zoned (20,0) The commit cycle identifier for the journal. This is
0 if this resource belongs to the location with no
journal.

101 Reserved Char (12) Reserved for future use.

Note: 1The format for this field is in the description.

258 IBM i: Journal management

Logical unit of work (C LW) journal entry - DDL record

Relative
offset

Field Format Description

1 Record type Char (4) Type of record:

DDL = SQL Object Change record.

5 Record length Bin (15) Length of record. Currently 624 for DDL record.

7 Record position (4)1 This identifies the position in the LUW journal
entry where this record starts. It is made up of
two numbers:

• Bin (15): The relative number of the journal
entry that contains this record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains this record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where this record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where this
record starts. For example, 0 means the first
byte in the entry.

11 Resource location position (4)1 This identifies the position in the LUW journal
entry where the LCL record starts for this DDL
resource's location. It is made up of two
numbers:

• Bin (15): The relative number of the journal
entry that contains the record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains the record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where the record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where the
record starts. For example, 0 means the first
byte in the entry.

Journal management 259

Relative
offset

Field Format Description

15 Next resource position (4)1 This identifies the position in the LUW journal
entry where the next API or DDL record starts for
this DDL resource's location. It is made up of two
numbers:

• Bin (15): The relative number of the journal
entry that contains the record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains the record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where the record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where the
record starts. For example, 0 means the first
byte in the entry.

Position 0 0 indicates that this is the last
resource for this DDL resource's location.

260 IBM i: Journal management

Relative
offset

Field Format Description

19 DDL resource information Char (29) Object identification and operation performed on
object:

• Char (10): First 10 characters of object name.
The object name field always contains the full
object name.

• Char (10): Object library name
• Char (7): Object type (*FILE, *LIB or *SQLPKG)
• Char (2): Object operation

The possible object operations and their
meanings are the following:

AC = Add PF Constraint
CC = Create Collection
CF = Create File
CG = Create Program
CM = Create Member
CP = Create SQL Package
CS = Create Service Program
CT = Create User Defined Type
DC = Delete Collection
DF = Delete File
DG = Drop Program
DP = Delete SQL Package
DS = Drop Service Program
DT = Drop User Defined Type
FC = Change File
FR = Rename File
GF = Grant Files
GG = Grant Program
GP = Grant to SQL Package
GR = Grant Java™ Routine
GS = Grant Service Program
GT = Grant User Defined Type
OP = COMMENT ON SQL Package
OT = COMMENT User Defined Type
RC = Remove PF Constraint
RG = Revoke Program
RF = Revoke Files
RP = Revoke from SQL Package
RR = Revoke Java Routine
RS = Revoke Service Program
RT = Revoke User Defined Type
TA = Add PF Trigger
TR = Remove PF Trigger
UL = Unlink Datalink
XF = Transfer Files

48 Reserved Char (1) Reserved for future use.

Journal management 261

Relative
offset

Field Format Description

49 Journal Char (20) Journal related to the location for this resource:

• Char (10): Journal name (blank if this resource
belongs to the location with no journal)

• Char (10): Journal library (blank if this resource
belongs to the location with no journal)

69 Commit cycle ID Bin (31) The commit cycle identifier for the journal. This is
0 if this resource belongs to the location with no
journal. This is -1 if the actual commit cycle
identifier value is larger than 2 147 483 647. The
Commit cycle ID Long field always contains the
correct value.

73 Commit protocol Char (1) The commit protocol for this resource:

2 = This is a two-phase resource (DDL
resources are always two-phase resources).

74 DDL state Char (2) Indicates whether the DDL resource was
committed or rolled back successfully:

CS = This resource was committed
successfully.
RS = This resource was rolled back
successfully.
CF = An attempt to commit this resource
failed.
RF = An attempt to rollback this resource
failed.

76 Commit cycle ID long Zoned (20,0) The commit cycle identifier for the journal. This is
0 if this resource belongs to the location with no
journal.

96 Object name Char (288) The full object name.

384 Reserved Char (1) Reserved for future use.

Note: 1The format for this field is in the description.

Logical unit of work (C LW) journal entry - DDM record

Relative
offset

Field Format Description

1 Record type Char (4) Type of record:

DDM = Remote Database file record.

5 Record length Bin (15) Length of record. Currently 96 for DDM record.

262 IBM i: Journal management

Relative
offset

Field Format Description

7 Record position (4) 1 This identifies the position in the LUW journal
entry where this record starts. It is made up of
two numbers:

• Bin (15): The relative number of the journal
entry that contains this record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains this record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where this record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where this
record starts. For example, 0 means the first
byte in the entry.

11 Resource location position (4) 1 This identifies the position in the LUW journal
entry where the RMT record starts for this DDM
file's location. It is made up of two numbers:

• Bin (15): The relative number of the journal
entry that contains the record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains the record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where the record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where the
record starts. For example, 0 means the first
byte in the entry.

Journal management 263

Relative
offset

Field Format Description

15 Next resource position (4)1 This identifies the position in the LUW journal
entry where the next DDM record starts for this
DDM file's location. It is made up of two
numbers:

• Bin (15): The relative number of the journal
entry that contains the record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains the record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where the record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where the
record starts. For example, 0 means the first
byte in the entry.

Position 0 0 indicates that this is the last
resource for this DDM file's location.

19 DDM file Char (20) Name of the DDM file and library for the open
remote file:

• Char (10): DDM file name
• Char (10): DDM file library name

29 Remote position information Char (54) Identification of the remote location and
communication information for this resource's
location:

• Char (10): Remote position name
• Char (10): Device name
• Char (10): Mode
• Char (8): Remote network ID
• Char (8): Conversation correlator network ID
• Char (8): Transaction program name

93 Open flag Char (1) Whether the DDM file was open or closed when
this LUW ended:

O = The DDM file was open.
C = The DDM file was closed.

94 Commit protocol Char (1) The commit protocol for this resource:

1 = This is a one-phase resource.
2 = This is a two-phase resource.

264 IBM i: Journal management

Relative
offset

Field Format Description

95 Resource usage Char (2) The currently allowed access for this resource.
The allowed access for some resources can
change from one LUW to another depending on
whether one-phase resources are registered:

RO = This resource is currently read-only.
Updates were not made during the LUW.
UP = This resource is currently able to be
updated. Updates might or might not have
been made during the LUW.

Note: This does not indicate whether updates
were actually made during the LUW. It only
indicates whether updates are allowed, given the
other resources currently registered.

Note: 1The format for this field is in the description.

Logical unit of work (C LW) journal entry - header record

Relative
offset

Field Format Description

1 Record type Char (4) Type of record:

HDR = Header record.

5 Record length Bin (15) Length of record. Currently 400 for HDR record.

7 Record position (4)1 This identifies the position in the LUW journal
entry where this record starts. It is made up of
two numbers:

• Bin (15): The relative number of the journal
entry that contains this record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains this record (1 for the
first, 2 for the second, and so forth). Note that
this is not the actual journal entry sequence
number.

• Bin (15): The offset where this record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where this
record starts. For example, 0 means the first
byte in the entry. Because they always start at
the beginning of the journal entry, this offset is
always 0 for HDR records.

11 Number of journal entries Bin (15) The number of actual journal entries sent for this
LUW journal entry. This is 1 unless the LUW
journal entry is greater than 32K-1 bytes.

Journal management 265

Relative
offset

Field Format Description

13 position with no journal
position

(4) 1 This identifies the position in the LUW journal
entry where the LCL record starts for the local
location with no journal. It is made up of two
numbers:

• Bin (15): The relative number of the journal
entry that contains the record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains the record (1 for the
first, 2 for the second, and so forth). Note that
this is not the actual journal entry sequence
number.

• Bin (15): The offset where the record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where the
record starts. For example, 0 means the first
byte in the entry.

Position 0 0 means that there is no local location
that does not have a journal.

17 First location with journal
position

(4)1 This identifies the position in the LUW journal
entry where the LCL record starts for the first
local location with a journal. It is made up of two
numbers:

• Bin (15): The relative number of the journal
entry that contains the record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains the record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where the record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where the
record starts. For example, 0 means the first
byte in the entry.

Position 0 0 means that there are no local
locations with a journal.

266 IBM i: Journal management

Relative
offset

Field Format Description

21 First remote location
position

(4)1 This identifies the position in the LUW journal
entry where the RMT record starts for the first
remote location. It is made up of two numbers:

• Bin (15): The relative number of the journal
entry that contains the record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains the record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where the record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where the
record starts. For example, 0 means the first
byte in the entry.

Position 0 0 means there are no remote
locations.

25 LUW operation Char (2) The operation that was performed to end this
LUW:

CM = A commit operation was performed. This
does not necessarily mean that the resources
were committed. In some cases a commit
operation is changed to a rollback operation
with respect to two-phase commit rules.
RB = A rollback operation was performed. An
attempt was made to roll back all resources.

27 Protected logical unit of
work identifier (LUWID)

Char (41) The format for the LUWID is:

• Bin (15): The total length of the LUWID not
including this field

• Char (0 to 8): The network ID
• Char (1): The separator character .
• Char (0 to 8): The local location name
• Char (3): The separator characters .X'
• Char (12): The hex value of the instance

number converted to character
• Char (2): The separator characters '.
• Char (5): The hex value of the sequence

number converted to decimal

68 Unprotected logical unit of
work identifier

Char (41) The format for the LUWID for unprotected
conversations is the same as for protected
conversations.

Journal management 267

Relative
offset

Field Format Description

109 Default journal commit cycle
ID

Bin (31) The commit cycle identifier for the default journal
for this LUW. This is 0 if no commit cycle was
started for this journal during this LUW. This is -1
if the actual commit cycle identifier value is
larger than 2 147 483 647. The Default Journal
Commit cycle ID Long field always contains the
correct value.

113 Commitment definition
name

Char (10) The name of the commitment definition for which
this LUW took place.

123 Commitment definition
identifier

Char (10) The commitment definition identifier of the
commitment definition. This is not useful to the
user.

133 Qualified job name Char (26) The job that created the commitment definition.

159 Reserved Char (1) Reserved for future use. Currently always blank.

160 Commitment definition
scope

Char (1) The scope of the commitment definition:

A = Activation group level commitment
definition.
E = Explicitly named commitment definition.
J = JOB commitment definition.

161 Activation group mark Bin (31) The activation group mark for the commitment
definition:

0 = This is the *JOB or an explicitly named
commitment definition.
2 = This is the *DFTACTGRP commitment
definition.
= The number of the activation group for
this activation group level commitment
definition.

165 Notify object Char (37) The notify object for the commitment definition:

• Char (10) - Object name
• Char (10) - Object library
• Char (10) - Object member (blank if object is

not a file)
• Char (7) - Object type (*MSGQ, *DTAARA or

*FILE)

202 Default journal Char (20) The default journal for the commitment
definition:

• Char (10): Journal name
• Char (10): Journal library

268 IBM i: Journal management

Relative
offset

Field Format Description

222 Initiation type Char (1) Whether this commit or rollback operation was
initiated by the user or by the system:

E = Explicit commit or rollback operation
initiated by the user.
I = Implicit commit or rollback operation due
to activation group end, job end, or system
end.

If the LUW was finished after a system end, this
is set to I, even if an explicit commit or rollback
operation was running at the time the system
ended.

223 LUW end status Char (1) Indication of when this LUW ended with respect
to the job that created the commitment definition
for which this LUW took place:

N = The LUW ended while the job was running
normally.
E = The LUW ended during job end. This
means that the LUW was still pending when a
request was made to end the job. If the
requested operation is CM, then a commit
request had started before the request to end
the job and was finished during the job-end
phase.
I = The LUW ended during the IPL following a
system end. If the requested operation is CM,
then a commit request was started before the
system end and was finished during the IPL.
P = The LUW ended after the IPL following a
system end. In this case, the requested
operation is CM and the LUW was prepared
pending the commit/rollback decision from
the initiator or last agent when the system
ended. During the IPL, local resources were
brought back to a prepared state in a system
database server job. After resynchronization
was performed to learn the commit/rollback
decision, the LUW ended by committing or
rolling back the local resources in that same
system database server job.

224 Sync-point role Char (1) The sync-point role played by this location during
a commit operation:

I = Initiator: the root of the sync-point tree.
C = Cascaded initiator: an intermediate
location in the sync-point tree.
A = Agent: a leaf location in the sync-point
tree.C tree.
blank = This LUW ended in a rollback request.

Journal management 269

Relative
offset

Field Format Description

225 Partner role Char (1) The partner role played by this location during a
commit:

I = Initiator: the root of the sync-point tree.
N = Not-last agent: a prepare request was
sent to this location during the prepare wave.
L = Last agent: a prepare request was not sent
to this location during the prepare wave.
Instead, a request was made to this location
during the committed wave to attempt a full
commit operation before reporting results
back to its initiator.
blank = This LUW ended in a rollback request

270 IBM i: Journal management

Relative
offset

Field Format Description

226 LUW disposition Char (2) The overall disposition of the LUW:

RO = This location and all downstream
locations voted read-only. These resources
were not committed or rolled back because
they were not changed during the LUW. It is
not known whether the other locations in the
sync-point tree committed or rolled back.
CM = All resources committed. No errors have
been detected to this point. If the Resync In
Progress indicator field is N, the LUW has
completely committed. Otherwise,
resynchronization is still going on to assure
this location that other locations committed
completely.
CF = An attempt was made to commit all
resources, but one or more errors have
occurred. The job log, QHST, and QSYSOPR
*MSGQ can be checked to determine the
errors.
RB = All resources rolled back successfully.
RF = An attempt was made to roll back all
resources, but one or more errors have
occurred. The job log, QHST, and QSYSOPR
*MSGQ can be checked to determine the
errors.
HD = Heuristic damage has occurred. This
means one of two things:

1. Some of the resources at this location or
downstream locations committed while
others rolled back because an operator
performed a heuristic commit operation or
rollback operation.

2. An unexpected error occurred while
committing or rolling back resources at this
location or downstream locations due to a
hardware or software problem.

When heuristic damage occurs, the following
LUW journal entry records can be checked to
learn the status of the changes made during the
LUW to individual resources:

LCL = The Record I/O State field indicates the
status of the record I/O performed on files
journaled to the journal related to that
location.
API = The API State field indicates the status
of that API Commitment resource.
DDL = The DDL State field indicates the status
of that SQL Object Change.
RMT = The Resource State field indicates the
status of the resources at the remote location.

Journal management 271

Relative
offset

Field Format Description

228 Heuristic operation indicator Char (1) Whether a heuristic commit or rollback operation
occurred at this location while a commit request
was being performed for this LUW:

blank = No heuristic operation occurred.
C = A heuristic commit operation occurred.
R = A heuristic rollback operation occurred.

A heuristic commit operation or rollback
operation means that the operator took explicit
action (while this location was waiting for the
commit or rollback decision from the initiator or
the last agent) to commit or to roll back the
resources at this location and all prepared
downstream locations. Heuristic operations can
result in some resources committing while others
roll back. The LUW Disposition field can be
checked to see if this has happened (it would be
HD). The Resync In Progress indicator field can
also be checked. If it is O, heuristic damage
might have occurred or it might still occur
because the state of the resources at the
locations where resynchronization is still going
on is unknown. Messages are written to the
history log and to the system database server job
logs when the resynchronization processes
complete to indicate whether damage occurred.
If damage occurs, messages are also sent to the
system operator when it is detected.

229 Resync in progress indicator Char (1) Whether resync to one or more remote locations
was still ongoing when the LUW ended:

N = Either no resynchronization was required
during this LUW, or it was required and
completed before the LUW ended.
O = Resynchronization was going on with one
or more of the locations. This can occur only if
the WAIT_FOR_OUTCOME synchronization
point option is NO, or if the LUW was
interrupted by job or system end.

272 IBM i: Journal management

Relative
offset

Field Format Description

230 Wait for outcome Char (1) The value of the Wait for outcome commitment
option. This indicates whether to wait for
resynchronization to complete if a
communication or system failure occurs during a
commit or rollback.

Y = Wait for outcome.
L = Wait for outcome during commits initiated
by this commitment definition or during
commits initiated at a system that does not
support presumed abort. Inherit the initiator's
wait for outcome value during commits
initiated at a system that supports presumed
abort.
N = Do not wait for outcome.
U = Do not wait for outcome during commits
initiated by this commitment definition or
during commits initiated at a system that does
not support presumed abort. Inherit the
initiator's wait for outcome value during
commits initiated at a system that supports
presumed abort.

231 Action if problems Char (1) The value of the Action if problems commitment
option. This indicates whether to commit or
rollback when problems occur during a two-
phase commit.

R = Rollback if problems occur.
C = Commit if problems occur.

232 Vote read-only permitted Char (1) The value of the Vote read-only permitted
commitment option. This indicates whether this
commitment definition is allowed to return a
read-only vote to a remote initiator during a two-
phase commit.

N = Do not allow a read-only vote.
Y = Allow a read-only vote.

233 Action if ENDJOB Char (1) The value of the Action if ENDJOB commitment
option. This indicates the action to take for
changes associated with the LUW when the job
the LUW is a part of is ended.

W = Wait to allow normal processing of the
LUW to complete.
R = Rollback during ENDJOB.
C = Commit during ENDJOB.

Journal management 273

Relative
offset

Field Format Description

234 OK to leave out Char (1) The value of the OK to leave out commitment
option. This indicates whether this location is
allowed to be left out during the next commit/
rollback if no activity occurred to this location
during the LUW.

N = Do not leave this location out of the next
commit or rollback operation.
Y = It is OK to leave this location out of the
next commit or rollback operation.

235 Last agent permitted Char (1) The value of the Last agent permitted
commitment option. This indicates whether last
agent optimization may be used.

S = The system is allowed to select a last
agent.
N = The system is not allowed to select a last
agent.

236 Accept vote reliable Char (1) The value of the Accept vote reliable
commitment option. This indicates whether the
vote reliable indicator received from agents
during a commit operation is accepted by this
location. If an agent votes reliable, and this
location accepts it, control is returned to the
application before the committed wave is
completed for that agent. If this location does not
accept vote reliable, control is returned to the
application only after the LUW is completely
committed or rolled back.

Y = Accept the vote reliable indicator from
agents during commit operations.
N = Do not accept the vote reliable indicator
from agents during commit operations.

237 Resolved wait for outcome
value

Char (1) This indicates the actual wait for outcome value
that was used during the commit or rollback of
this LUW. If the Wait for outcome commitment
option is L or U, this value might have been
inherited from this location's initiator.

Y = Wait for outcome of resynchronization.
N = Do not wait for outcome of
resynchronization.

238 XA transaction manager Char (10) If this was an X/Open transaction, this is the
name of the XA Transaction Manager that was
specified on the db2xa_open API. This field will
be hex zeros if this was not an XA transaction.

274 IBM i: Journal management

Relative
offset

Field Format Description

248 XID Char (140) If this was an X/Open Transaction, this is the X/
Open Transaction Identifier associated with this
transaction. This field will be hex zeros if this was
not an X/Open transaction, or if it was an X/Open
local transaction. The format of this field is as
follows:

Bin(31) format identifier
Bin(31) global transaction identifier
length
Bin(31) branch qualifier length
Char (128) XID value

388 Default journal commit cycle
ID long

Zoned (20,0) The commit cycle identifier for the default journal
for this LUW. This is 0 if no commit cycle was
started for this journal during this LUW.

408 Reserved Char (9) Reserved for future use.

Note: 1The format for this field is in the description.

Logical unit of work (C LW) journal entry - local record

Relative
offset

Field Format Description

1 Record type Char (4) Type of record:

LCL = Local location record.

5 Record length Bin (15) Length of record. Currently 48 for LCL record.

7 Record position (4)1 This identifies the position in the LUW journal
entry where this record starts. It is made up of
two numbers:

• Bin (15): The relative number of the journal
entry that contains this record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains this record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where this record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where this
record starts. For example, 0 means the first
byte in the entry.

Journal management 275

Relative
offset

Field Format Description

11 Next local location position (4) 1 This identifies the position in the LUW journal
entry where the next LCL record starts. It is made
up of two numbers:

• Bin (15): The relative number of the journal
entry that contains the record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains the record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where the record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where the
record starts. For example, 0 means the first
byte in the entry.

Position 0 0 indicates that this is the last local
location.

15 First resource position (4)1 This identifies the position in the LUW journal
entry where the first API or DDL record starts for
this location. It is made up of two numbers:

• Bin (15): The relative number of the journal
entry that contains the record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains the record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where the record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where the
record starts. For example, 0 means the first
byte in the entry.

276 IBM i: Journal management

Relative
offset

Field Format Description

19 Record I/O state Char (2) Indicates whether the record I/O performed
during this LUW for files journaled to the journal
related to this location was committed or rolled
back successfully:

CS Record I/O for this location was committed
successfully.
RS = Record I/O for this location was rolled
back successfully.
CF = An attempt to commit record I/O for this
location failed.
RF = An attempt to rollback record I/O for this
location failed.
blank = This is the location with no journal so
there is no record I/O associated with it.

21 Journal Char (20) Journal related to this location:

• Char (10): Journal name (blank if this is the
location with no journal)

• Char (10): Journal library (blank if this is the
location with no journal)

41 Commit cycle ID Bin (31) The commit cycle identifier for the journal. This is
0 for the location with no journal. It might be 0
for the location related to the default journal if
there were no resources for that location during
this LUW. This is -1 if the actual commit cycle
identifier value is larger than 2 147 483 647. The
Default Journal Commit cycle ID Long field
always contains the correct value.

45 Default journal flag Char (1) Indicates whether the journal related to this
location is the default journal:

Y = It is the default journal.
N = It is not the default journal.

46 Commit cycle ID Long Zoned (20,0) The commit cycle identifier for the journal. This is
0 for the location with no journal. It might be 0
for the location related to the default journal if
there were no resources for that location during
this LUW.

66 Reserved Char (15) Reserved for future use.

Note: 1The format for this field is in the description.

Logical unit of work (C LW) journal entry - RMT record

Relative
offset

Field Format Description

1 Record type Char (4) Remote position (RMT) record.

Journal management 277

Relative
offset

Field Format Description

5 Record length Bin (15) RMT record is currently 128.

7 Record position (4)1 This identifies the position in the LUW journal
entry where this record starts. It is made up of
two numbers:

• Bin (15): The relative number of the journal
entry that contains this record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains this record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where this record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where this
record starts. For example, 0 means the first
byte in the entry.

11 Next Rrmote location
position

(4)1 This identifies the position in the LUW journal
entry where the next RMT record starts. It is
made up of two numbers:

• Bin (15): The relative number of the journal
entry that contains the record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains the record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where the record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where the
record starts. For example, 0 means the first
byte in the entry.

Position 0 0 indicates that this is the last remote
location.

278 IBM i: Journal management

Relative
offset

Field Format Description

15 First resource position (4) 1 This identifies the position in the LUW journal
entry where the first DDM record starts for this
location. It is made up of two numbers:

• Bin (15): The relative number of the journal
entry that contains the record. If the LUW
journal entry is greater than 32K-1 bytes,
multiple entries are actually sent to the journal.
This number represents which of these actual
journal entries contains the record (1 for the
first, 2 for the second, and so on). Note that this
is not the actual journal entry sequence
number.

• Bin (15): The offset where the record starts
within this journal entry. This is the number of
bytes past the beginning of the entry where the
record starts. For example, 0 means the first
byte in the entry.

Position 0 0 indicates that there are no DDM
records for this location.

19 Remote position information Char (54) Identification of the remote location and
communication information for this location:

• Char (10): Remote position name
• Char (10): Device name
• Char (10): Mode
• Char (8): Remote network ID
• Char (8): Conversation correlator network ID
• Char (8): Transaction program name

73 Relational database name Char (18) The name of the relational database opened at
this remote location (blank if no relational
database has been opened).

91 Conversation deallocation
flag

Char (1) Whether the conversation was deallocated
because of this LUW:

N = This conversation is still active.
Y = This conversation was deallocated
because the LUW committed, the system
ended, a resource failed, or an unbind was
performed.

92 Commit protocol Char (1) The commit protocol for the resources at this
location:

1 = The resources are one-phase.
2 = The resources are two-phase.

Journal management 279

Relative
offset

Field Format Description

93 Resource usage Char (2) The currently allowed access for this resource.
The allowed access for some resources can
change from one LUW to another depending on
whether one-phase resources are registered:

RO = This resource is currently read-only.
Updates were not made during the LUW.
UP = This resource is currently able to be
updated. Updates might or might not have
been made during the LUW.

Note: This does not indicate whether updates
were actually made during the LUW. It indicates
only whether updates are allowed, given the
other resources currently registered.

95 Resource state Char (2) The state of the resources at this location:

CS = The resources were committed
successfully.
CF = An attempt to commit the resources
failed. This value is only used for one-phase
locations.
RS = The resources were rolled back
successfully.
RF = An attempt to rollback the resources
failed. This value is only used for one-phase
locations.
NC = The resources had no changes for the
current transaction.
FC = A communications failure occurred for
this location. It is not known whether
resources at the location committed or rolled
back.
HC = The resources were heuristically
committed.
HR = The resources were heuristically rolled
back.
HM = Heuristic damage was detected at this
location. Some of the resources at the
location, or locations further downstream,
committed while others rolled back.
ER = An unexpected error occurred while
communicating with this location. This is due
to a hardware or software problem. The state
of the resources is unknown.
RI = We have not yet learned the state of the
resources because resync is still ongoing.

97 Allocator flag Char (1) Indicates whether this is the allocator location,
for example, the location that called the
transaction program running on this system:

Y = This location is the allocator.
N = This location is not the allocator.

280 IBM i: Journal management

Relative
offset

Field Format Description

98 Remote last agent flag Char (1) Indicates whether this location was selected as
the last agent if a commit request was performed
to end this LUW:

Y = This is the last agent.
N = This is not the last agent.

Note: A last agent will not be selected at this
location unless the Partner Role field in the HDR
record is I or L.

99 Two-phase protocol Char (1) The two-phase commit protocol options
supported at this location.

0 = Two-phase commit protocols are not
supported.
1 = Two-phase commit presumed nothing
protocols are supported.
2 = Two-phase commit presumed abort
protocols are supported.

100 Resync initiator Char (1) If resync with this location is still ongoing (the
Resource State field is RI), this value indicates
whether the local location is initiating the resync
attempts.

I = The local system is initiating resync with
this remote location.
N = Resync is not being performed with this
remote location.
W = The local system is waiting for resync to
be initiated from this remote location.

101 Voted reliable Char (1) Whether this location voted reliable during the
commit of this LUW.

Y = The location voted reliable.
N = The location did not vote reliable.

102 OK to leave out Char (1) Whether this location indicated it may be left out
of the next commit or rollback operation if no
communications flows occur to that location
during the next LUW.

Y = The location indicated it may be left out.
N = The location indicated it may not be left
out.

103 Left out Char (1) Whether this location was left out of the LUW
that was just committed or rolled back.

Y = The location was left out.
N = The location was not left out.

Journal management 281

Relative
offset

Field Format Description

104 Initiator flag Char (1) Indicates whether this location is the initiator
location, i.e. the location that sent the commit or
rollback request to this system.

Y = The location is the initiator.
N = The location is not the initiator.

Note: The system cannot determine the initiator
location if the initiator does not support two-
phase commit protocols. This field will always be
set to N for locations that do not support two-
phase commit protocols.

105 Reserved Char (24) Reserved for future use.

Note: 1The format for this field is in the description.

Mail server framework system level events (S SY) journal entry

Relative
offset

Field Format Description

1 Entry length Zoned(5,0) Total length of the journal entry, including the entry length
field.

6 Sequence number Zoned(10,0) Applied to each journal entry. Initially set to 1 for each
new or restored journal. Reset when a new receiver is
attached.

16 Journal code Char(1) Always S for MSF entries.

17 Entry type Char(2) Always SY for MSF system level events entries.

19 Date stamp Char(6) The system date that the entry was made.

25 Time stamp Zoned(6,0) The system time that the entry was made.

31 (Reserved area) Char(95)

126 Job name Char(10) The name of the job that caused the entry to occur.

136 User name Char(10) The user-profile name associated with the job.

146 Job number Zoned(6,0) The job number.

152 Program name Char(8) The name of the MSF program that made the journal entry.

282 IBM i: Journal management

Relative
offset

Field Format Description

160 Function identifier Char(1) Function that was being performed when the entry was
made. The possible values are:
1

STRMSF command started (QMSF jobs)
2

Internal tables initialized (part of STRMSF command
function)

3
Internal queues initialized (part of STRMSF command
function)

4
Space pool index created and initialized

5
ENDMSF command started (ended QMSF jobs)

6
Damaged or destroyed internal space found

7
Message destroyed by using DATAAREA QZMFKQ
value

8
Abnormal IPL destroyed in internal MSF space index

9
MSF clean up functions (part of Reclaim Storage
(RCLSTG) command) started

A
MSF space clean up function started

B
MSF clean up functions completed

C
MSF reclaim storage function ended

161 Data length Zoned(5,0) The length of the logged data.

166 Logged data Char(256) The data logged by MSF when the function identifier is:
6

32 character MSF message ID
7

32 character MSF message ID followed by total
number of internal entries destroyed

Moving and renaming objects (D FM, D FN, E EM, E EN, F MM, F MN, F PM, F PN, J MJ, Q QM, Q QN)
journal entries

Relative
offset

Field Format Description

Specific values for this entry type:

Journal management 283

Relative
offset

Field Format Description

Journal identifier (JOJID) Char (10) Records for the entries will have a journal
identifier. The JID is not provided with the
*TYPE1, *TYPE2, and *TYPE3 formats. It can be
used with the QJORJIDI API.

Flag (JOFLAG) Char (1) The status of the object's library:

0 = The object's library is not journaled or is
journaled to a different journal.
1 = The object's library is journaled to the
same journal as the object.

Entry-specific data. This data appears as one field in the standard output formats:

1 Object name before Char (10) The name of the object before the object was
moved or renamed.

11 Library name before Char (10) The name of the library before the object was
moved or renamed.

21 Member name before Char (10) The name of the member before it was moved or
renamed. This field is blank if the object is not a
physical database file.

31 Object name after Char (10) The name of the object after the object was
moved or renamed.

41 Library name after Char (10) The name of the library after the object was
moved or renamed.

51 Member name after Char (10) The name of the member after it was moved or
renamed. This field is blank if the object is not a
physical database file.

61 Internal data Char (*) Internal system information.

Note: This field does not apply to E EM, E EN, Q
QM, or Q QN entries.

Object added to library (Y YO) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object name Char (10)

11 Object type Char (10)

21 Reserved Char (20)

31 Insert operation Char (1) Insert operation:

'C' - create
'M' - move
'R' - restore

41 Object JID Char (10) Object's journal identifier

284 IBM i: Journal management

Relative
offset

Field Format Description

51 Inherit journaling Char (1) Did object inherit journaling from library:

'0' - No
'1' - Yes

Object level (D AC, D CG, D CT, D DC, D DT, D GC, D GO, D GT, D M1, D M2, D M3, D P1, D P2, D P3, D
RV, D TC, D TD, D TG, D TQ, F CB, F DM, F MC) journal entries

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Object name Char (10) The name of the object that was operated on.

11 Library name Char (10) The name of the library for the object that was
operated on.

21 Member name Char (10) The name of the member that was operated on, if
applicable. This field is blank if it does not apply.

31 New Object name Char (10) The new name of the file if this is a rename file,
rename member or move file operation. This field
is blank if it does not apply.

41 New object library Char (10) The new name of the lib if this is a move file,
rename file or rename member operation. This
field is blank if it does not apply.

51 New member name Char (10) The new name of the member if this is a rename
member operation. This field is blank if it does
not apply.

61 Reserved Char (12) Reserved

73 Apply length Bin (31) The length of the extra ESD data pointed to by
the teraspace pointer if the incomplete flag is on.

77 Reserved Char (32) Reserved

Journal management 285

Relative
offset

Field Format Description

109 Change field type Char (1) If the journal entry is CG, the following subtype
values are returned:

0 = SQL ALTER TABLE
1 = CHGPF, CHGLF, or CHGSRCPF CL
command
2 = Miscellaneous change file operations
3 = SQL DELETE FROM table (without a
WHERE clause)
4 = Restore deferred MQT
5 = Internal change file operation
6 = Internal change file operation
7 = Create/Replace SQL view
8 = SQL TRUNCATE TABLE
J = Activate/Deactivate row and column
access control

If the journal entry is TG the following subtype
values are returned:

4 = Disable Trigger
5 = Enable Trigger
6 = Miscellaneous change trigger operations
7 = Change trigger to secured
8 = Change trigger to unsecured

If the journal entry is CT or MC, these subtype
values are returned:

7 = Restore
8 = CPYF CRTFILE(*YES) or CRTDUPOBJ
9 = Other Create

If the journal entry is CB, the following subtype
values are returned:

A = CHGPFM or CHGLFM
B = CHGDBMI macro
C = Statistics request
D = Increment request

If the journal entry is GC, the following subtype
values are returned:

G = Comment or label on constraint
H = Enable constraint checked
I = Enable constraint unchecked
'XX'x = Internal

If the journal entry is M3, the following subtype
values are returned:

4 = Disable mask
5 = Enable mask
6 = Miscellaneous change mask operations
7 = Regenerate

If the journal entry is P3, the following subtype
values are returned:

4 = Disable permission
5 = Enable permission
6 = Miscellaneous change permission
operations
7 = Regenerate

If the journal entry is RM, the following subtype
values are returned:

E = Classic RGZPFM
F = Concurrent RGZPFM

This field is not applicable if the entry type is not
CG, CT, MC, M3, P3, RM, TG, CB, or GC.

286 IBM i: Journal management

Relative
offset

Field Format Description

110 State Char (1) New state of the constraint (GC entry only)

0 - Not applicable
1 - Enabled
2 - Disabled
x00 - Not GC entry

111 Reserved Char (2) Reserved.

113 Length of trigger library
name

Bin (15) The length of the trigger library name for a
Change Trigger operation. Contains 0 if the
Change Trigger operation includes multiple
triggers. This field is not applicable if the entry
type is not TG.

115 Offset to trigger library name Bin (31) The offset to the trigger library name for a
Change Trigger operation from the beginning of
the journal entry specific data. Contains hex
zeros if the Change Trigger operation includes
multiple triggers. This field is not applicable if the
entry type is not TG.

119 Length of trigger name Bin (15) Length of the trigger name for a Change Trigger
operation. Contains 0 if the Change Trigger
operation includes multiple triggers. This field is
not applicable if the entry type is not TG.

121 Offset to trigger name Bin (31) The offset to the trigger name for a Change
Trigger operation from the beginning of the
journal entry specific data. Contains hex zeros if
the Change Trigger operation includes multiple
triggers. This field is not applicable if the entry
type is not TG.

These fields only exist in
V5R4 or later journal entries.

125 Object attribute Char (10) OIR attribute of the object (for example: PF, LF,
etc.)

135 Number of based on physical
files

Bin (15) Number of based on physical files. This field is
only applicable to logical file CT entries.

137 Offset to name of first based
on physical file

Bin (31) Offset to 20 byte field consisting of a 10 byte file
name followed by 10 byte library name. The file
name is the first based on physical file of the
logical file. The offset is from the beginning of the
journal entry specific data.

Note:

This field is only applicable for logical file CT
entries.

Journal management 287

Relative
offset

Field Format Description

141 Next offset Bin (15) Offset from start of prior based on file name to
the next based on file name.

Note:

This field is only applicable for logical file CT
entries.

143 Not logged indicator Char (1) This entry applies only to CT (create database
file) and CG (change database file) entries.

0 = Not logged was not requested on either
the CREATE or ALTER operation.
1 = NOT LOGGED request

For a CT entry, journaling will be started for the
members when the transaction is committed.

For a CG entry, journaling was ended for the
members and will be restarted when the
transaction is committed or rolled back.

144 Source file indicator Char (1) 0 = Not a source file
1 = Source file

145 Internal data Char(*) Internal system information

Notes:

1. This data does not apply to integrated file system objects.
2. If the data for these entries exceeds 32 KB, then a pointer is returned to the actual data when the entry is

retrieved using an option to return pointers. If the return pointer option is not used, then *POINTER is
returned for the entry-specific data.

Object restored (B FR, D DZ, E EL, F MR, J RR, Q QZ, Y YZ) and receiver saved (J RS) journal entries

Relative
offset

Field Format Description

Specific values for this entry type:

Journal identifier (JOJID) Char (10) Records for the entries will have a journal
identifier. The JID is not provided with the
*TYPE1, *TYPE2, and *TYPE3 formats. It can be
used with the QJORJIDI API.

Entry-specific data. This data appears as one field in the standard output formats:

1 Media type Char (3) The type of media used for the save or restore
operation:

DKT= Diskette
OPT= Optical
SAV= Save file
TAP= Tape

288 IBM i: Journal management

Relative
offset

Field Format Description

4 First volume ID Char (6) The ID of the first volume used. The optical
volume ID might contain up to 32 characters of
which the first six characters are displayed.

10 Start save or restore date Char (6)1 The date the save or restore operation was
started. The date is in the format of the DATFMT
attribute of the job that performed the save or
restore operation.

16 Start save or restore time Zoned (6,0) The time the save or restore operation was
started.

22 Update history Char (1) Whether the save history is updated:

0 = UPDHST(*NO) specified on save
command.
1 = UPDHST(*YES) specified on save
command.

23 Save file name Char (10) The name of the save file used for the operation.
This field is blank if a save file was not used.

33 Save file library Char (10) The name of the library for the save file. This field
is blank if a save file was not used.

43 Media file identifier2 Char (16) File identifier for the integrated file system object
on the media. This applies only to B FR entries.

59 Restored file identifier Char (16) File identifier for the restored integrated file
system object. This applies only to B FR entries.

75 Restored over file identifier Char (16) File identifier for the integrated file system object
that was restored over. This applies only to B FR
entries.

Note:

1. See the “Layouts for the fixed-length portion of journal entries” on page 159 of the journal entry for any
information pertaining to the century of this date.

2. In place of the media finder, the Q QZ entry has a 1-byte character (Char (1)) field with the following
possible values to indicate if the contents of the data queue were restored:

0 = No
1 = Yes

Object saved (B FS, D DH, E ES, F MS, Q QY, Y YS) journal entries

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

Journal management 289

Relative
offset

Field Format Description

1 Media type Char (3) The type of media used to save the object:

DKT = Diskette
OPT = Optical
SAV = Save file
TAP = Tape

4 First volume ID Char (6) The ID of the first volume used to save the
object. The optical volume ID might contain up to
32 characters of which the first six characters are
displayed.

10 Start save date Char (6) 1 The date the save operation was started. The
date is in the format of the DATFMT attribute of
the job that saved the object.

16 Start save time Zoned (6,0) The time the save operation was started.

22 Update history Char (1) Whether the save history is updated:

0 = UPDHST(*NO) specified on save
command.
1 = UPDHST(*YES) specified on save
command.

23 Save file name Char (10) The name of the save file used for the operation.
This field is blank if a save file was not used.

33 Save file library Char (10) The name of the library for the save file. This field
is blank if a save file was not used.

43 Save active value Char (10) The value specified for the SAVACT parameter on
the SAVOBJ, SAVCHGOBJ, SAV, or SAVLIB
command.

53 Start save active date Char (6) 1 For a save-while-active operation, this is the date
when checkpoint processing was completed for
the object. For a normal save operation, this is
the same as the start date.

59 Start save active time Zoned (6,0) For a save-while-active operation, this is the time
when checkpoint processing was completed for
the object. For a normal save operation, this is
the same as the start time.

65 Primary receiver name Char (10) The name of the first of dual receivers that
contains the start-of-save entry.

75 Primary receiver Library Char (10) The name of the library containing the primary
receiver.

85 Dual receiver name Char (10) The name of the second of dual receivers that
contains the start-of-save entry. This entry is
blank if only a single receiver was used when the
start-of-save entry was added.

95 Dual receiver library Char (10) The name of the library containing the dual
receiver. This entry is blank if only a single
receiver was used when the start-of-save entry
was added.

290 IBM i: Journal management

Relative
offset

Field Format Description

105 Sequence number of
matching start-of-save entry

Zoned (10, 0) For a save-while-active operation, the sequence
number of the corresponding start-of-save entry.
For a normal save operation, this is the sequence
number of the current object saved entry. A -1 is
returned if the sequence number is greater than
9 999 999 999. If -1, see Large sequence
number of matching start-of-save entry.

115 File ID of object or reserved Char (16) The file identifier for the object for B FS entries,
otherwise blank.4

131 Large sequence number of
matching start-of-save entry

Char (20) For a save-while-active operation, the sequence
number of the corresponding start-of-save entry.
For a normal save operation, this is the sequence
number of the current object saved entry.

151 Library ASP device Char (10) The ASP device on which the library that contains
the primary receiver resides.

161 Contents saved Char(1) Whether the contents of the data queue were
saved:

0 = No
1 = Yes

Note: This field only applies to Q QY entries.

Notes:

1. See the fixed-length portion of the journal entry for any information pertaining to the century of this date.
2. If an object was saved using the save-while-active function, the saved copy of the object includes all of the

changes found in the journal entries up to the corresponding object start of save-while-active entry. For
more information see the layout for the “Start of save-while-active (B FW, D DW, E EW, F SS, Q QX, Y YW)
journal entries” on page 295.

3. If an object was NOT saved using the save-while-active function, the saved copy of the object includes all of
the changes found in the journal entries up to the corresponding object saved entry. For more information
see the layout for “Object saved (B FS, D DH, E ES, F MS, Q QY, Y YS) journal entries” on page 289.

Ownership change (E ZO, J ZO, Q ZO, Y ZO) journal entries

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Old owner Char (10) The name of the old owner.

11 New owner Char (10) The name of the new owner.

Journal management 291

Prepare commit (C PC) journal entries

Relative
offset

Field Format Description

1 Reserved Char (1) Reserved field

2 Journal count Bin (16) The number of journals on this system that
participated in the transaction

Received data queue, has key (Q QL) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Reserved Char (18) Reserved for future use.

19 Key length Bin (16) The number of characters in the key.

21 Key order Char (2) The Key order is as follows:

GT = Greater than
LT = Less than
NE = Not equal
EQ = Equal
GE = Greater than or equal
LE = Less than or equal

23 Key Char (*) The data to be used to receive a message from
the data queue.

ROLLBACK (C RB) journal entry

Relative
offset

Field Format Description

Specific values for this entry type:

Job name (JOJOB) Char (10) Blank if the entry was added during an IPL vary
on of an independent disk pool.

Program name (JOPGM) Char (10) Blank if the entry was added during an IPL or vary
on of an independent disk pool.

292 IBM i: Journal management

Relative
offset

Field Format Description

Flag (JOFLAG) Char (1) How the rollback operation was initiated and
whether it was successful:

0 = All record-level changes were rolled back
for a rollback operation initiated by a user.
1 = Not all record-level changes were
successfully rolled back for a rollback
operation initiated by a user.
2 = All record-level changes were rolled back
for a rollback operation initiated by the
operating system.
3 = Not all record-level changes were rolled
back for a rollback operation initiated by the
operating system.

Rollback ended early (C CN, F C1) journal entries

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 User profile Char (10) The user profile that requested to end the
rollback.

11 Process Char (26) The process that requested to end the rollback.

RGZPFM (F RG) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 File name Char (10) The name of the file specified for the KEYFILE
parameter on the RGZPFM command. If
KEYFILE(*NONE) was specified, this field is
blank.

11 Library name Char (10) The name of the library specified in the KEYFILE
parameter of the RGZPFM command. If
KEYFILE(*NONE) was specified, this field is
blank.

21 Member name Char (10) The name of the member specified in the
KEYFILE parameter of the RGZPFM command. If
KEYFILE(*NONE) was specified, this field is
blank.

Journal management 293

Savepoint released (C SQ) and savepoint rolled back (C SU) journal entries

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Sequence number Char (20) The sequence number where the savepoint was
established

Send data queue, has key (Q QK) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Data length Bin (32) The length of the Data field (which is the last field
in the ESD of this journal entry). When replicating
a data queue entry with this journal entry, this
length field should be specified on the QSNDDTAQ
API in association with the Data field below. See
the details in the description of the Data field.

5 Offset to data Bin (32) Offset to the Data field (which is the last field in
the ESD of this journal entry). The offset is
calculated from the beginning of the entry-
specific data (ESD).

9 Reserved Char (2) Reserved for future use.

11 Key length Bin (16) The number of characters in a key.

13 Reserved Char (4) Reserved for future use.

17 Key Char (*) A prefix added to an entry by its sender.

Reserved Char (*) Padding to align fields.

Offset
to data

Data Char (*) The data that was placed on the data queue. If
the journal entry is marked as having 'incomplete
data' in the journal entry header, then this field is
returned as a pointer. Otherwise, it is returned as
a character string. For either type of entry, the
Data length field contains the length of the data.
The first 16 bytes of the Data field are API
information required by the Send Data Queue
(QSNDDTAQ) API. When replicating a data queue
entry with this journal entry, this entire Data field
(including the 16 bytes of API information) must
be passed to the QSNDDTAQ API when it is called
with parameter eight (Data is from a journal
entry) set to *YES. These 16 bytes are not placed
on the data queue. The remainder of the Data
field is placed on the data queue.

294 IBM i: Journal management

Send data queue, no key (Q QS) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Reserved Char (28) Reserved for future use.

29 Data length Bin (32) The length of the Data field (which is the last field
in the ESD of this journal entry). When replicating
a data queue entry with this journal entry, this
length field should be specified on the QSNDDTAQ
API in association with the Data field below. See
the details in the description of the Data field.

33 Data Char (*) The data that was placed on the data queue. If
the journal entry is marked as having 'incomplete
data' in the journal entry header, then this field is
returned as a pointer. Otherwise, it is returned as
a character string. For either type of entry, the
Data length field contains the length of the data.
The first 16 bytes of the Data field are API
information required by the Send Data Queue
(QSNDDTAQ) API. When replicating a data queue
entry with this journal entry, this entire Data field
(including the 16 bytes of API information) must
be passed to the QSNDDTAQ API when it is called
with parameter eight (Data is from a journal
entry) set to *YES. These 16 bytes are not placed
on the data queue. The remainder of the Data
field is placed on the data queue.

Start of commit cycle (C SC) journal entry

Relative
offset

Field Format Description

Entry-specific data:

Flag (JOFLAG) Char (1) Indicates whether the commit cycle was on
behalf of an X/Open global transaction or not:

0 = The commit cycle is not on behalf of an X/
Open global transaction.
1 = The commit cycle is on behalf of an X/
Open global transaction.

Start of save-while-active (B FW, D DW, E EW, F SS, Q QX, Y YW) journal entries

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

Journal management 295

Relative
offset

Field Format Description

1 Media type Char (3) The type of media used to save the object:

DKT = Diskette
OPT = Optical
SAV = Save file
TAP = Tape

4 First volume ID Char (6) The ID of the first volume used to save the
object. The optical volume ID might contain up to
32 characters of which the first six characters are
displayed. This field will be blank for the Y YW
entry.

10 Start save date Char (6) 1 The date the save operation was started. The
date is in the format of the DATFMT attribute of
the job that saved the object.

16 Start save Time Zoned (6,0) The time the save operation was started.

22 Update history Char (1) Whether the save history is updated:

0 = UPDHST(*NO) specified on the save
command.
1 = UPDHST(*YES) specified on the save
command.

23 Save file name Char (10) The name of the save file used for the operation.
This field is blank if a save file was not used.

33 Save file library Char (10) The name of the library for the save file. This field
is blank if a save file was not used.

43 Save active value Char (10) The value specified for the SAVACT parameter on
the SAVOBJ, SAVCHGOBJ, SAV, or SAVLIB
command.

53 Save active date Char (6)1 For a save-while-active operation, this is the date
when checkpoint processing was completed for
the object. For a normal save operation, this is
the same as the start date.

59 Save active Time Char (6) For a save-while-active operation, this is the time
when checkpoint processing was completed for
the object. For a normal save operation, this is
the same as the start time.

65 Object file ID4 Char (16) The file identifier of the integrated file system
object. This applies only to B FW entries.

296 IBM i: Journal management

Relative
offset

Field Format Description

Notes:

1. See the fixed-length portion of the journal entry for any information pertaining to the century of this date.
2. If an object was saved using the save-while-active function, the saved copy of the object includes all of the

changes found in the journal entries up to the corresponding object start of save-while-active entry. For
more information see the layout for “Start of save-while-active (B FW, D DW, E EW, F SS, Q QX, Y YW)
journal entries” on page 295.

3. If an object was NOT saved using the save-while-active function, the saved copy of the object includes all of
the changes found in the journal entries up to the corresponding object saved entry. See the entry-specific
data for “Object saved (B FS, D DH, E ES, F MS, Q QY, Y YS) journal entries” on page 289.

4. In place of the Object file ID, the Q QY entry has a 1-byte character (Char(1)) field with the following
possible values to indicate if the contents of the data queue were saved:

0 = No
1 = Yes

Start journal (B JT, D JF, E EG, F JM, Q QB) journal entries

Relative
offset

Field Format Description

Specific values for this entry type:

Flag (JOFLAG) Char (1) Indicates the type of images selected:

0 = After images are journaled.
1 = Before and after images are journaled.

Entry-specific data. This data appears as one field in the standard output formats:

1 Omit journal entry Char (1) Indicates the value of the OMTJRNE parameter
on the Start Journal command.

0 = No entries are omitted from journaling.
1 = Open and Close (*FILE), or Open, Close,
and Force (*DIR or *STMF) entries are not
journaled.

2 New object inherit journaling Char (1) Specifies whether journaling starts automatically
for new objects created in the directory.

0 = No or does not apply
1 = Yes

3 Remote journal filter Char (1) 0 = No, entries are not eligible for remote
journal filtering by object or does not apply
1 = Yes, entries are eligible for remote journal
filtering by object

4 Reserved Char (5) Reserved field

9 File identifier Char (16) The file identifier for the integrated file system
object. This only applies to B JT entries.

Journal management 297

Relative
offset

Field Format Description

25 Path name Char (*) The path name information optionally follows the
file identifier. This only applies to BJT entries.

Usage limit changed (L LL) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Product ID Char (7) The ID of the product whose usage limit was
changed.

8 License term Char (6) The term of the license.

14 Feature Char (4) The product feature code.

18 Previous usage limit Zoned (6,0) The usage limit before the change.

24 Current usage limit Zoned (6,0) The usage limit after the change.

30 Old expiration date Char (7) The expiration date before the change.

37 New expiration date Char (7) The expiration date after the change.

Usage limit exceeded (L LU) journal entry

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Product ID Char (7) The ID of the product whose usage limit was
exceeded.

8 License term Char (6) The term of the license.

14 Feature Char (4) The product feature code.

18 Usage limit Zoned (6,0) The usage limit for the product.

24 Request flag Char (1) Whether the request was successful:

0 = License request was successful.
1 = License request was not successful.

25 Number of licensed users Zoned (6,0) The number of users currently licensed for the
product.

31 Licensed user name Char (26) x 100 The names of up to 100 users who are licensed
for the product.

298 IBM i: Journal management

Update data area (E EA, E EB) journal entries

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 Starting position Bin (32) Starting position of change as specified by the
user (1 for decimal).

5 Length of change Bin (32) Length of change to be applied as specified by
the user.

9 Number Bin (32) Number of decimal positions as specified by the
user.

13 Offset to change Bin (32) Offset to change value field from the beginning of
the entry-specific data (ESD).

17 Type Char (10) Type of data area. Data area types are *CHAR,
*DEC, and *LGL.

Padding for alignment Char (*) Padding to align fields.

Offset
to
change

Change value Char (*) Value of the change.

User IASP vary on abnormal (J UA) journal entries

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 System name Char (8) System name for the IASP vary-on.

User IASP vary on normal (J UN) journal entries

Relative
offset

Field Format Description

Entry-specific data. This data appears as one field in the standard output formats:

1 System name Char (8) System name for the IASP vary-on.

Common fields

The following tables contain fields of entry-specific data that are common to more than one journal entry
layout.

Journal information

This table contains entry-specific data for journal information. For an explanation of these fields, see the
Get Attributes (Qp0lGetAttr()) API.

Journal management 299

Relative
offset

Field Format Description

1 Journaling status Char (1) Indicates whether the object is journaled.

2 Options Char (1) The journaling options or attributes.

3 JID Char (10) The journal identifier.

13 Journal name Char (10) The journal name.

23 Journal library Char (10) The journal library.

33 Time journaling was last
started

Bin (32) Time journaling was last started.

Object name

This table contains entry-specific data for the name of an integrated file system object. For more
information about the object name see Path name format in the API topic.

Relative
offset

Field Format Description

1 Length Bin (32) The length of the object name field.

5 Path name CCSID Bin (31) The coded character set identifier (CCSID) for the
object name.

9 Object name country ID Char (2) The country identifier for national language
support.

11 Object name language ID Char (3) The language identifier for national language
support.

14 Reserved Char (3) Reserved. This field contains all hex zeros.

17 Object name Char (*) The object name. The field is of variable length.

Path name

This table contains entry-specific data for the path name of an integrated file system object. For more
information about the path name see Path name format in the API topic.

Relative
offset

Field Format Description

1 Path indicator Char (1) The absolute or relative path indicator. This field
uses one of the following values:

0 = The path contains an absolute path name.
The Relative directory FID field is hex zeros.
1 = The path contains a relative path name.
The Relative directory FID field is valid and
can be used to form a complete path name.

2 Relative directory FID Char (16) If the path indicator is 1, this is the file identifier
for the directory that contains the object
indicated in the path name field. Otherwise, this
will be zeros.

300 IBM i: Journal management

Relative
offset

Field Format Description

18 Path name CCSID Bin (31) The coded character set identifier (CCSID) for the
path name.

22 Path name country ID Char (2) The country identifier for national language
support.

24 Path name language ID Char (3) The language identifier for national language
support.

27 Reserved Char (3) Reserved. This field contains all hex zeros.

30 Path name type Bin (32) The path name type uses one of the following
values:

0 = The path name is a character string with a
one byte delimiter.
2 = The path name is a character string with a
two byte delimiter.

34 Path length Bin (31) The path length.

38 Path name delimiter Char (2) The path name delimiter.

40 Reserved Char (10) Reserved. Set to blanks.

50 Path name Char (*) The object path name. This field is of variable
length.

Private authority information

This table contains entry-specific data for the private authority information that has been set for an
integrated file system object when an object is created.

Relative
offset

Field Format Description

1 User name Char (10) The name of the user profile whose authority is
being granted.

11 Operation type Char (3) GRT = Grant authority.

14 Reserved Char (7) Reserved. Set to zeros.

21 Private authority Char (12) Private authorities assigned to the given user
profile.

Private authorities for specified profile

Relative
offset

Field Format Description

1 Object existence authority Char (1) Y = The specified profile has *OBJEXIST
authority to the object.
blank = The specified profile does not have
*OBJEXIST authority to the object.

Journal management 301

Relative
offset

Field Format Description

2 Object management
authority

Char (1) Y = The specified profile has *OBJMGT
authority to the object.
blank = The specified profile does not have
*OBJMGT authority to the object.

3 Object operational authority Char (1) Y = The specified profile has *OBJOPR
authority to the object.
blank = The specified profile does not have
*OBJOPR authority to the object.

4 Object alter authority Char (1) Y = The specified profile has *OBJALTER
authority to the object.
blank = The specified profile does not have
*OBJALTER authority to the object.

5 Object reference authority Char (1) Y = The specified profile has *OBJREF
authority to the object.
blank = The specified profile does not have
*OBJREF authority to the object.

6 Read authority Char (1) Y = The specified profile has *READ authority
to the object.
blank = The specified profile does not have
*READ authority to the object.

7 Add authority Char (1) Y = The specified profile has *ADD authority to
the object.
blank = The specified profile does not have
*ADD authority to the object.

8 Update authority Char (1) Y = The specified profile has *UPD authority to
the object.
blank = The specified profile does not have
*UPD authority to the object.

9 Delete authority Char (1) Y = The specified profile has *DLT authority to
the object.
blank = The specified profile does not have
*DLT authority to the object.

10 Exclude authority Char (1) Y = The specified profile has *EXCLUDE
authority to the object.
blank = The specified profile does not have
*EXCLUDE authority to the object.

11 Execute authority Char (1) Y = The specified profile has *EXECUTE
authority to the object.
blank = The specified profile does not have
*EXECUTE authority to the object.

12 Reserved Char (1) Reserved. Set to blank.

302 IBM i: Journal management

Symbolic link contents

Relative
offset

Field Format Description

1 Contents included Char (1) Indicates if the entire symbolic link contents are
included in the Contents field. The possible
values are:

0 = The entire symbolic link contents cannot
be included in the Contents field because the
maximum possible has been exceeded. The
symbolic link contents are truncated in this
entry.
1 = The entire symbolic link contents are
included in the Contents field.

2 Contents CCSID Bin (31) The coded character set identifier (CCSID) for the
symbolic link contents.

6 Contents country ID Char (2) The country identifier for national language
support for the symbolic link contents.

8 Contents language ID Char (3) The language identifier for national language
support for the symbolic link contents.

11 Reserved Char (3) Reserved. This field contains all hex zeros.

14 Contents path type Bin (32) The possible values for the contents path type
are:

0 = The path name is a character string with a
one byte delimiter.
2 = The path name is a character string with a
two byte delimiter.

18 Contents path length Bin (31) The path length for the symbolic link contents.

22 Contents path name
delimiter

Char (2) The path name delimiter for the symbolic link
contents.

24 Reserved Char (10) Reserved. This field contains all hex zeros.

34 Symbolic link contents Char (*) The symbolic link contents. This field is of
variable length.

Related reference
Set Attributes (Qp0lSetAttr()) API
Get Attributes (Qp0lGetAttr()) API
Send Data Queue (QSNDDTAQ) API
Path name format

Working with journal entry information
This topic provides ways that you can display, retrieve, and receive journal entries.

Every journal entry is stored internally in a compressed format and must be converted by the operating
system to an external form before it can be shown to the user. You cannot change or access the journal
entries directly. Not even the security officer can remove or change journal entries in a journal receiver.

Journal management 303

You can use these journal entries to help you recover your objects or analyze changes that were made to
the objects.

Following are the various ways that you can retrieve, display, and print journal entry information:

Note: Read the Code example disclaimer for important legal information.

Displaying and printing journal entries
You can use the Display Journal (DSPJRN) command to display journal entries. The entries are
displayed at a work station, printed, or written to an output file. You cannot directly access the journal
entries in the form in which they are contained in the journal receivers.

The Journal entry information finder describes each type of journal entry and the information that it
contains. It also provides links for topics that provide the layouts for the fixed-length portion and the
variable-length portion of the journal entry. See the Display Journal (DSPJRN) Command
Description for complete layouts for the model database output files that are provided by the system.

Often, to prepare for a recovery, you display or print the journal entries first. The Journal code
descriptions provides a description of each code. Use this list to help you analyze the journal entries and
to do the following:

• Prepare for the recovery of a particular object. The list contains the information you need to specify the
starting and ending points for applying and removing journaled changes.

• Determine the functions that have been performed on the objects that are being journaled (such as save
and restore, clear, reorganize).

• Determine the functions that have been performed on the journal (such as attaching new journal
receivers).

• Determine the functions that have been performed on the associated journal receivers (such as save
and restore).

• Review the activity that has occurred on an object.
• Analyze journal entries for debugging or problem analysis.
• Analyze journal entries for an audit trail.

The DSPJRN command can either selectively list journal entries for a particular object or list entries for all
objects within a particular library or directory subtree. You can further identify journal entries by
specifying other selection criteria such as:

• Journal entries for specific entry types or journal codes, such as U (user-created entries)
• Journal entries for a particular job, program, or file
• Commit cycle identifier
• Date and time
• Dependent entries (referential integrity, triggers, and entries that will be ignored during an Apply
Journaled Changes (APYJRNCHG) or Remove Journaled Changes (RMVJRNCHG) operation)

• Any combination of these

The online help describes all the parameters for the DSPJRN command. To view the help, type DSPJRN on
a command line and press F1.

Specifying journal codes

You can display entries that have specific journal codes, such as all file-member-level entries (F), all
record-level entries (R), or all security entries (T). You specify journal codes in paired values. The first
value in the pair is the journal code. The second value indicates whether the object selections you have
specified apply when deciding to display entries with the journal code.

304 IBM i: Journal management

Following is an example:

DSPJRN JRN($JRNLIB/JRNA) FILE(CUSTLIB/FILEA)
 JRNCDE((F *ALLSLT) (R *ALLSLT)
 (U *IGNFLSLT))...

In this example, entries for the FILEA file with journal codes F and R are displayed if the entries meet all
other selection criteria, such as date and time. Entries with journal code U are displayed regardless of
whether they are for file FILEA, because ignore file selection (*IGNFLSLT) is specified for journal code U.
Entries with journal code U must meet all other selection criteria, such as date and time, to be displayed.

Note: You can select similar entries for other object types using the OBJ or OBJPATH parameters and
specifying *IGNOBJSLT for the second value of the journal code.

Related concepts
Layouts for the fixed-length portion of journal entries
Use this topic to determine layouts for the fixed-length portion of journal entries.
Layouts for variable-length portion of journal entries
The following tables contain the variable-length portion of the layouts for journal entries.
Journal code descriptions
This topic provides a description of all of the journal codes and categories.
Related reference
Display Journal (DSPJRN) command
Related information
Journal entry information finder

Output for journal entries directed to a workstation
If you direct the output from the Display Journal (DSPJRN) command to the requesting workstation, basic
information about the journal entries appears. Use the roll key to display the next sequential set of
entries.

If you specify a receiver range that includes an attached journal receiver, and you specify TOENT(*LAST)
or TOENTLRG(*LAST), the display shows last journal entries in the journal. Press the Page Down key to
see any new journal entries that are added to the attached receiver since the last time you pressed the
Page Down key.

The attached journal receiver in receiver range refers to the journal receiver that was currently attached
when the DSPJRN command was first issued. That journal receiver could be detached while you are
looking at the data online. If that occurs, paging down does not display any entries added after that
receiver was detached.

Related reference
Display Journal (DSPJRN) command

Output for journal entries directed to a database output file
If you direct the output from the Display Journal (DSPJRN) command to a database output file, you can
further restrict the journal entries you want to process by creating logical files over the database output
file.

Each journal entry occupies one record in the output file. Each has a fixed-length portion for standard
files. Before-images and after-images occupy separate records. The ENTDTALEN parameter controls the
length of the field that is used to contain the record image. The ENTDTALEN parameter also controls
whether the field is a fixed or variable length field. If the journal entry is smaller than the output file
record, the journal entry is padded with blanks. If the journal entry is larger than the output file record,
the remainder of the journal entry is truncated, and the system issues a warning message. To avoid
truncation, specify the maximum record length in your files for the ENTDTALEN parameter on the DSPJRN
command or specify *CALC for the ENTDTALEN parameter to allow the system to calculate the length of
the specific data field so no entry is truncated.

Journal management 305

If you write journal entries to a database output file, you can write application programs that will process
the data to:

• Write your own apply program.
• Correct data that has been incorrectly updated.
• Remove or review all changes that were made by a particular program.

If you remove all changes that were made by a particular program, you could remove some valid updates.
For example, assume that two work station users are using the same program to update an object, and
one user enters some data that is not valid. If you remove all invalid data changes that are made by that
program, you also remove the valid data that is entered by the other work station user.

Related reference
Display Journal (DSPJRN) command

Format of database output files
When you direct the output of the Display Journal (DSPJRN) command to a database file, the system
creates the output file records in a standard format.

The system creates the database file in one of these standard formats that are determined by the value
that is specified for the OUTFILFMT parameter:

• *TYPE1
• *TYPE2
• *TYPE3
• *TYPE4
• *TYPE5

Fixed-length portion of the journal entry has a complete description of these formats.

You can create an output file to hold the output from the DSPJRN command, but the format has to match
the format of one of the IBM-supplied output files.

Processing journal entry data

There are many ways to work with the journal entry data, including the entry-specific data, depending on
the command that you use to process the journal entry data.

• Use your high-level language (HLL) to subdivide the fields into subfields.
• Use the Retrieve Journal Entry (RTVJRNE) command and the substring built-in function.
• Use the Receive Journal Entry (RCVJRNE) command and the substring built-in function.
• Use the Retrieve Journal Entries (QjoRetrieveJournalEntries) API and map out the data that is returned.

Analyzing your journal activity

You can use the DSPJRN command to help analyze your journal entries. For example, you could
determine how many of each type of entry (such as add or update) was done for a specific object or by a
specific user.

Related concepts
Layouts for the fixed-length portion of journal entries
Use this topic to determine layouts for the fixed-length portion of journal entries.
Related reference
Display Journal (DSPJRN) command
Retrieve Journal Entry (RTVJRNE) command
Receive Journal Entry (RCVJRNE) command
Retrieve Journal Entries (QjoRetrieveJournalEntries) API

306 IBM i: Journal management

Displaying journal information for a table using IBM Navigator for i
You can get journal information for a table from IBM Navigator for i. This is the one interface where you
can see the entry specific data for a database table row separated by columns.

To display journal information for a table, follow these steps:

1. From IBM Navigator for i, expand your system > Databases.
2. Expand the database that you want to work with.
3. Expand Schemas and the schema that contains the table for which you want to display journal

information.
4. Click Tables.
5. Right-click the table for which you want to display journal information, and click Journaling.
6. If the table has never been journaled, you can specify the journal that you want to use by typing the

journal and library names in the appropriate fields, or by clicking the Browse button and navigating to
the location of the journal that you want to use for the table.

7. To journal before images, select the Journal image before change check box.
8. To omit open and close entries from being journaled, clear the Include open and close entries check

box.

Displaying journal entry information using the Display_Journal table function
You can view journal entries in SQL by running a query using the table function QSYS2/Display_Journal.

Using the table function QSYS2/Display_Journal should be more efficient then displaying journal entries
to an output file via the Display Journal (DSPJRN) command and then querying the resulting file for
the data of interest. For more details on the Display_Journal table function see the ../rzajq/
rzajqudfdisplayjournal.htm topic.

Receiving journal entries in an exit program
You can write a program to receive journal entries as they are written to the journal receiver.

When you use the Receive Journal Entry (RCVJRNE) command, you can specify a user-defined program,
called an exit program, to receive journal entries. The program can, for example, write the entries to tape
or to an i5/OS intersystem communications function (ICF) file that sends them to a backup system. You
can use the received entries to update a backup copy of the primary object on the backup system. You
cannot use these received entries with system-supplied recovery commands (Apply Journaled Changes
(APYJRNCHG) and Remove Journaled Changes (RMVJRNCHG)) to update your objects because the
RCVJRNE command converts the entries to their external form. You must write your own program to
apply the changes that are contained in the entries to the objects.

The RCVJRNE command supports the same selection criteria (database files, data areas, data queues, or
integrated file system objects) as the Display Journal (DSPJRN) command. You can specify which entries
go to the exit program.

For example, you can choose not to receive journal entries that are generated by the action of trigger
programs or referential constraints. If you have a user-written program that updates the files on a second
system with the journal entries, you probably want to specify DEPENT(*NONE). The actions performed by
trigger programs or referential constraints are duplicated automatically on the second system if your
database definitions are the same and you replay the original file operations.

You can specify DELAY(*NEXTENT) to have journal entries sent to your program as soon as they are
written to the journal receiver. You can also specify a time interval. The exit program will be called
sometime within that time interval. Either new entries are sent or an indicator is sent that there are no
new entries.

Related reference
Receive Journal Entry (RCVJRNE) command
Display Journal (DSPJRN) command

Journal management 307

Exit program to receive journal entries
Use the parameters in this topic to determine how the exit program will receive journal entries.

You use two parameters to communicate between your exit program and the system when you are
receiving journal entries. The system uses the first parameter for the contents of one or more journal
entries that it is passing to the exit program. The exit program uses the first parameter to indicate the
block length if the exit program requests block mode.

The system and the exit program use the second parameter to communicate about status changes, such
as requesting block mode or ending the RCVJRNE command. The second parameter is a character field
that is three bytes long. Following are the possible values for the first byte of the second parameter:

Possible values for the first byte of the second parameter

0 This value is passed from the system to the exit program. It indicates that no journal entry
is being passed on this call of the exit program.

1 This value is passed from the system to the exit program. It indicates that a single journal
entry is being passed on this call of the exit program. If the specified entry format is not
*TYPEPTR or *JRNENTFMT, then the figure, First parameter of RCVJRNE command: Single-
entry mode shows the layout of the first parameter. Otherwise, the layout is the same as
returned to the Retrieve Journal Entries (QjoRetrieveJournalEntries) API interface.

2 This value is passed from the system to the exit program. It indicates that block mode is in
effect. One or more journal entries are being passed on this call of the exit program. If the
specified entry format is not *TYPEPTR or *JRNENTFMT, then the figure, First parameter of
RCVJRNE command: Block mode shows the layout of the first parameter. Otherwise, the
layout is the same as returned to the QjoRetrieveJournalEntries API interface.

3 This value is passed from the system to the exit program. It indicates that no journal entry
is being passed on this call of the exit program because the journal receiver that was
attached when the Receive Journal Entry (RCVJRNE) command was started is no longer
attached. The system ends the RCVJRNE command after returning this value to the exit
program.

4 No journal entry is passed on this call to the exit program, and no more entries can be
passed unless the local or remote journal is activated.

This value can only be passed to the exit program when receiving journal entries from the
attached receiver of a local or remote journal. The journal state for the journal must be
*INACTIVE.

8 This value is passed from the exit program to the system. It indicates that the system must
begin block mode and pass multiple entries to the exit program.

You can also specify block mode by using the BLKLEN parameter of the RCVJRNE
command. If you specify a BLKLEN value other than *NONE, then specifying 8 in the first
byte of the second parameter will have no impact and the first 5 bytes of the first
parameter bill be ignored. However even if BLKLEN(*NONE) is specified, the system will
begin block mode if you specify 8 for the first byte of the second parameter.

9 This value is passed from the exit program to the system. It indicates that the RCVJRNE
command will be ended.

Possible Values for the Second Byte of the Second Parameter:

N This value is passed from the system to the exit program. Additional journal entries are not
currently available to be passed after this call of the exit program, or the RCVJRNE
command will end after this call of the exit program.

Y This value is passed from the system to the exit program. Additional journal entries are
currently available to be passed after this call of the exit program.

308 IBM i: Journal management

Possible values for the third byte of the second parameter:

'00' x One or more journal entries are being passed to the exit program and the object names in
the fixed-length portion of each journal entry do not necessarily reflect the name of the
object at the time the journal entry was deposited into the journal.

This value is only returned when receiving journal entries from a journal receiver that was
attached to a journal prior to V4R2M0.

0 No journal entries are currently being passed, so the information that is normally returned
in this byte is not applicable.

1 One or more journal entries are being passed to the exit program. The object names in the
fixed-length portion of each journal entry reflect the name of the object at the time the
journal entry was deposited into the journal.

2 One or more journal entries are being passed to the exit program. The object names in the
fixed-length portion of each journal entry do not necessarily reflect the name of the object
at the time the journal entry was deposited into the journal. The object name in the fixed-
length portion of the journal entry may be returned as a known name for the object prior to
the journal entry being deposited into the journal. The object name in the fixed-length
portion of the journal entry may also be returned as *UNKNOWN.

This value will only be returned when receiving journal entries from a remote journal and
the remote journal is currently being caught up from its source journal. A remote journal is
being caught up from its source journal when the Change Journal State
(QjoChangeJournalState) API or Change Remote Journal (CHGRMTJRN) command is
invoked and is currently replicating journal entries to the remote journal. After the call to
the QjoChangeJournalState API or CHGRMTJRN command returns, the remote journal is
maintained with a synchronous or asynchronous delivery mode, and the remote journal is
no longer being caught up.

Refer to Retrieve journal entries from a remote journal during the catch-up phase for more
information.

Any information that is passed from the exit program to the system in the second byte or third byte is
ignored.

The second byte of the second exit program parameter is provided whether journal entries are being
processed as a single journal entry per call of the exit program, or as a block of journal entries per call.

When an N is passed to the exit program in the second byte of the second parameter indicated that no
additional journal entries are currently available, it does not necessarily mean that when the exit program
returns, that the RCVJRNE command will have to wait for additional journal entries to be deposited into
the journal. By the time the exit program returns, additional journal entries may already be available and
depending upon what was specified on the DELAY parameter, may or may not be immediately passed to
the exit program. If DELAY(N) was specified the system will wait N seconds before passing the journal
entries to the exit program. If DELAY(*NEXTENT) was specified, the journal entries will immediately be
passed to the exit program.

Related concepts
Requesting block mode
You can use block mode to specify whether the system will be sending one or more journal entries to the
exit program and specifies the block length of the buffer passed to the exit program.
Retrieving journal entries from a remote journal during the catch-up phase
During the catch-up phase, journal entries that have been replicated to the target system can be retrieved
from the remote journal.
Related reference
Retrieve Journal Entries (QjoRetrieveJournalEntries) API
Receive Journal Entry (RCVJRNE) command

Journal management 309

Change Journal State (QjoChangeJournalState) API
Change Remote Journal (CHGRMTJRN) command

Requesting block mode
You can use block mode to specify whether the system will be sending one or more journal entries to the
exit program and specifies the block length of the buffer passed to the exit program.

When you request block mode, the system sends more than one journal entry to the exit program at a
time. You can request block mode at any time. There are two ways that you can request block mode:

• Specify the BLKLEN parameter on the Receive Journal Entry (RCVJRNE) command
• Specify 8 for the value of the first byte of the second parameter of the exit program

BLKLEN parameter of the RCVJRNE command

When you specify the BLKLEN parameter of the RCVJRNE command you can select one of three values:

*NONE
At most one journal entry will be sent to the exit program.

*CALC
One or more journal entries will be passed to the exit program in a block. The length of the block
passed (the first parameter passed to the exit program) is determined by the system and will be
optimal.

block-length
Specify the length in kilobytes of the buffer passed to the exit program (EXITPGM parameter). Valid
values range from 32 to 4000

If you specify BLKLEN(*CALC) or BLKLEN(block-length), specifying 8 in the first byte of the second
parameter will have no impact and the first 5 bytes of the first parameter will be ignored.

Specifying 8 for the value of the first byte of the second parameter of the exit program

When you specify 8 for the value of the first byte of the second parameter, you must specify the block
length in the first 5 bytes of the first parameter as a zoned decimal (Zoned (5,0)) field. 99999 bytes is the
maximum block size. After you have requested block mode, the system remains in block mode until the
RCVJRNE processing is ended.

If you request block mode and the system is already using block mode, your request is ignored. You
cannot change the size of the block from the size you specified when you first requested block mode.

Even if BLKLEN(*NONE) is specified, if you specify 8 for the value of the first byte of the second
parameter, the system will use block mode.

Format of the first Parameter

If the specified entry format is not *TYPEPTR or *JRNENTFMT, and if you are using single-entry mode, the
format of the first parameter looks like the following figure:

First parameter of RCVJRNE command: Single-entry mode

310 IBM i: Journal management

The first 5 bytes contains the length of the entry. The last 5 bytes contains all zeroes. The length of the
entry does not include the 5 bytes of zeroes at the end of the record.

If the specified entry format is not *TYPEPTR or *JRNENTFMT, and if you are using block mode, the
format of the first parameter looks like the following figure:

First parameter of RCVJRNE command: Block mode

The first 5 bytes contains the total length of the block. This length includes the 5 bytes for the total block
length, the 5 bytes of the End of Record field at the end of the block, and all of the length and data fields
in between. If no entry is being passed, this Block Length field contains zeroes. The block always ends
with a 5-byte End of Record field containing zeroes.

If you specify BLKLEN(*NONE), then the system fills the block with as many complete entries as it can fit
within the block size that you specified. The system does not send a partial entry to fill the block size. If
the specified entry format is not *TYPEPTR or *JRNENTFMT, the maximum number of bytes that are
available for the journal entries is 99989 bytes. 10 bytes in each block are reserved for the Block Length
field and for the End of Record field. If the specified entry format is *TYPEPTR or *JRNENTFMT, the
maximum number of bytes that are available is 99999 bytes.

If you specify a block size that is not valid, the system begins block mode but it sends only one journal
entry per block. The system sends message CPD7095 to indicate that you have specified a block size that
is not valid. If you specify a block size that is not valid or too small for a single journal entry, the system
still returns at least one journal entry to the exit program. If the specified entry format is *TYPEPTR or
*JRNENTFMT, the block size must be at least 13 bytes to be considered valid.

Journal management 311

When the System Sends a Record

When block mode is in effect, the system uses the following rules to determine when to call the exit
program:

• If the block does not contain any entries but the next entry would exceed the maximum size for the
block, then the entry is placed into the block. The exit program is called. The system always passes at
least one complete journal entry to the exit program.

• If the next entry to be put into the block would exceed the maximum size for the block and the current
block has entries in it, then the current block of entries is passed to the exit program.

• If the current block has one or more entries in it and no additional entries in the journal meet the
selection criteria, the current block of entries is passed to the exit program.

When in block mode, the specification for the DELAY parameter is used only when the current block is
empty and no entries are currently available to be returned to the exit program.

Using ENTFMT(*TYPEPTR) or ENTFMT(*JRNENTFMT) with the RCVJRNE command

If the specified entry format is *TYPEPTR or *JRNENTFMT, the layout of the journal entry data is the same
as the layout that is described in the QjoRetrieveJournalEntries API interface. The layout is the same for
both single entry and block entry mode when you specify *TYPEPTR or *JRNENTFMT.

If you specify *TYPEPTR, the format will be the same as the RJNE0100 format of the
QjoRetrieveJournalEntries API.

When you specify *TYPEPTR or *JRNENTFMT, the journal entry data may have pointers that will point to
additional entry-specific data.

Related concepts
Working with pointers in journal entries
Under certain conditions, not all of the journal entry data will be immediately retrievable from a journal
entry. Instead, part of the journal entry information will include pointers to additional journal entry-
specific data.
Related reference
Receive Journal Entry (RCVJRNE) command
Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Retrieving journal entries in a program
Use the Retrieve Journal Entry (RTVJRNE) command or the Retrieve Journal Entries
(QjoRetrieveJournalEntries) API in a program to retrieve a journal entry and place it in a variable in the
program.

You can also use the QjoRetrieveJournalEntries API to retrieve a journal entry and return data which can
include pointers.

RTVJRNE command

Use the RTVJRNE command in a program to retrieve a journal entry and place it in variables in the
program. You can retrieve the following:

• Sequence number
• Journal code
• Entry type
• Journal receiver name

312 IBM i: Journal management

• Library name for the journal receiver
• Journal entry-specific data

You can use this method to create programs to automate recovery. For layout of the fixed-length portion
and variable-length portion of a journal entry see the Journal entry information finder.

The RTVJRNE command supports the same selection criteria (database files, data areas, data queues, or
integrated file system objects) as the Display Journal (DSPJRN) command. You can specify which entries
go to the exit program. For the format of the record for the RTVJRNE command, see the Retrieve Journal
Entry (RTVJRNE) Command Description.

The QjoRetrieveJournalEntries API

The QjoRetrieveJournalEntries API allows you to retrieve journal entries into a receiver variable. The
available journal entry information is similar to what is provided by using the Display Journal (DSPJRN),
Receive Journal Entry (RCVJRNE), and Retrieve Journal Entry (RTVJRNE) commands, ",but it also provides
additional journal entry data that cannot be retrieved with the Display Journal (DSPJRN) or Retrieve
Journal Entry (RTVJRNE) commands. This additional data is accessed using pointers. Refer to Working
with pointers in journal entries for more information.

Related concepts
Working with pointers in journal entries
Under certain conditions, not all of the journal entry data will be immediately retrievable from a journal
entry. Instead, part of the journal entry information will include pointers to additional journal entry-
specific data.
Related reference
Retrieve Journal Entry (RTVJRNE) command
Related information
Journal entry information finder

Working with pointers in journal entries
Under certain conditions, not all of the journal entry data will be immediately retrievable from a journal
entry. Instead, part of the journal entry information will include pointers to additional journal entry-
specific data.

These pointers will only be retrieved if you use following:

• Retrieve Journal Entries (QjoRetrieveJournalEntries) API
• The *TYPEPTR format on the Receive Journal Entry (RCVJRNE) command
• The *JRNENTFMT format on the RCVJRNE command (you must also specify the RTNPTR parameter for

the RCVJRNE command)

In all other retrievals of journal entry data, *POINTER would be in the field where a pointer could exist. An
incomplete data indicator has been added to indicate if the journal entry-specific data has data missing
which can only be retrieved through a pointer

If the QjoRetrieveJournalEntries API or the *TYPEPTR or *JRNENTFMT format on RCVJRNE
command is used and the incomplete data indicator field is 1, the journal entry-specific data will contain
pointers. For all other interfaces, if the incomplete data indicator is 1, the journal entry-specific data will
have the character string *POINTER in the field where an actual pointer would be placed if the API or
*TYPEPTR or *JRNENTFMT interfaces were used. The incomplete data indicator field could be set to 1 if
the journal entry-specific data exceeds 32766 bytes, or if the journal entry is associated with a database
file which has one or more fields of data type BLOB (binary large object), CLOB (character large object), or
DBCLOB (double-byte character large object). Use the Journal entry information finder to find which
journal entry types can set the incomplete data indicator on.

These pointers can only be used with the V4R4M0 and later versions of the following languages:

• ILE/COBOL

Journal management 313

• ILE/RPG
• ILE/C if the TERASPACE parameter is used when compiling the program.

There are some considerations you need to be aware of when using the pointer data:

• The pointer can only be used by the process or job which retrieved or received the journal entry which
contained the pointer. The pointer cannot be passed on to another job, nor can it be stored to use at a
later date by a different job or process.

• The pointer will only give you read access to the additional data. Write operations to that pointer are not
allowed.

• The data that is being pointed to actually resides in the journal receiver. Therefore, ensure that you
protect the journal receiver from deletion until you use the data. To prevent a journal receiver from
being deleted before the data is used, you can register an exit point for the Delete Journal
Receiver (DLTJRNRCV) command.

• For files with fields of data type BLOB (binary large object), CLOB (character), or DBCLOB (double-byte
character large object), use SQL to update the files.

If any journal entries are returned with pointers, the journal entry will also contain a pointer handle. This
pointer handle must be used to free up any allocations associated with the pointer data once the pointer
data has been used. The considerations for this pointer handle are as follows:

• Using the pointer data means any of the following:

– Addressing the information and copying the addressed data to another object
– Using the journal entry-specific data directly to modify another object. For example, using the data to

update a database file with the journal entry which represents a database record update for a file
which included LOBs.

– Ignoring the additional data that is pointed to
• If you used the QjoRetrieveJournalEntries API, use the Delete Pointer Handle
(QjoDeletePointerHandle) API to delete the pointer handle when you are done using it.

• If you use the RCVJRNE command with the RTNPTR(*SYSMNG) parameter, you must use the associated
pointer prior to returning control from the exit program. The system will delete all pointer handles after
the return from the exit program call.

• If you use the RCVJRNE command with the RTNPTR(*USRMNG) parameter, then it is your responsibility
to use the Delete Pointer Handle (QjoDeletePointerHandle) API to delete the pointer
handle when you are done using it.

Related tasks
Deleting journal receivers
Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal
management task is to delete journal receivers after you no longer need them.
Related reference
Retrieve Journal Entries (QjoRetrieveJournalEntries) API
Receive Journal Entry (RCVJRNE) command
Delete Journal Receiver (DLTJRNRCV) command
Delete Pointer Handle (QjoDeletePointerHandle) API
Related information
Journal entry information finder

Replaying a database operation from a single journal entry
Use the Replay Database Operation (QDBRPLAY) API to replay a database operation from a single
journal entry. You can only use the QDBRPLAY API to replay journal entries for database file objects. Also,

314 IBM i: Journal management

the API does not run under commitment control even if the original journal entry was performed as part of
a committable transaction.

Since these database journal entries can be very large, be sure to retrieve the journal entries using an
interface that supports pointers (either the Retrieve Journal Entries
(QjoRetrieveJournalEntries) API or the Receiver Journal Entry (RCVJRNE) command).

You can use the QDBRPLAY API to replay the following journal entries. You can get more information
about these journal entries in the Journal entry information finder.

Journal code Entry type Description

D AC Add Constraint

D CG Change File

D CT Create File

D DC Remove Constraint

D DT Delete File

D FM Move File

D FN Rename File

D GC Change Constraint

D GO Change Owner

D GT Grant File

D RV Revoke File

D TC Add Trigger

D TD Remove Trigger

D TG Change Trigger

D TQ Refresh Table

F CB Change Member

F DM Remove Member

F MC Add Member

F MN Rename Member

F RM Reorganize Member

Renaming exit program

The QDBRPLAY API has an exit program that can change the names of the objects that are referenced in
the journal entry. If a rename exit program is specified, each name referenced during the replay of the
operation will be passed to the rename exit program. The names passed to the rename exit program
might be short names or long SQL names. The same name might be passed to the exit program more than
once if it is referenced in the internal journal entry specific data more than once. If the names are
changed by the rename exit program, the names are case sensitive and must conform to any i5/OS and
SQL rules for object names.

Related concepts
Retrieving journal entries in a program

Journal management 315

Use the Retrieve Journal Entry (RTVJRNE) command or the Retrieve Journal Entries
(QjoRetrieveJournalEntries) API in a program to retrieve a journal entry and place it in a variable in the
program.
Related reference
Replay Database Operation (QDBRPLAY) API
Retrieve Journal Entries (QjoRetrieveJournalEntries) API
Related information
Journal entry information finder

Replaying a non-database operation from a single journal entry
Use the Replay Journal Entry (QjoReplayJournalEntry) API to replay an operation from a
single journal entry.

You can use the QjoReplayJournalEntry API to replay the following journal entries. You can get more
information about these journal entries in the Journal entry information finder.

Journal code Entry type Description

E EE Create data area

Q QA Create data queue

Q QL Receive data queue entry, has
key

Q QR Receive data queue entry, no key

Like the QDBRPLAY API, the QjoReplayJournalEntry API also has an exit program that can change
the names of the objects that are referenced in the journal entry.

Considerations for entries which contain minimized entry-specific data
Reduce the size of journal receivers by specifying minimized entry-specific data on the Create Journal
(CRTJRN) and Change Journal (CHGJRN) commands.

If you have selected to use the MINENTDTA parameter for the journal, then some of your journal entries'
entry-specific data will be minimized. The entries will only be minimized if the minimization technique will
deposit a journal entry which is smaller in size than the complete entry would be. Use the Journal entry
information finder to see which specific journal entry types can possibly be minimized. When the entry is
minimized, the fixed-length portion of the journal entry will have the minimized entry-specific data
indicator on. Currently, only data areas and database physical files can have their entry-specific data
minimized.

Data area considerations

The layout of the data area entries which are minimized is exactly the same as the layout if the entry was
not minimized. The only difference is that only the bytes which actually changed are deposited rather
than depositing all the bytes on the change request.

Database physical file considerations

The layout of the minimized record changes entries is completely different than the layout when the entry
is not minimized. If MINENTDTA(*FILE) is used, the data is not readable because sophisticated hash
techniques are used in addition to only operating on actual changed bytes. Additionally, the Null-value-
indicators field will be used, even if the file is not null capable, to provide additional information that can
be used by database operations. Therefore, if you want to use the journal as an audit mechanism, you
may not want to choose the MINENTDTA(*FILE) option for database physical files since you will not be
able to read the actual change made.

If minimized journal entries are collected on field boundaries using the MINENTDTA(*FLDBDY) option, the
data within the journal entries may be displayed in the recognizable record layout of the file. When this
option is used, fields that were not collected will display default data and the null value indicator table

316 IBM i: Journal management

will use a new value to indicate which fields are showing the actual data versus which ones are showing
default data because the fields were not collected. A ‘9’ in the null value field will indicate the data is not
actual data and that it was filled in with default data.

Even if the file is not null capable, the Null value indicators field is used to provide additional information
that can be used by database operations. Therefore, if you want to use the journal for auditing purposes,
you may want to use the *FLDBDY value on the Minimized entry specific data (MINENTDTA) parameter for
the CRTJRN and CHGJRN commands discussed below.

Viewing of minimized entry-specific data

The *FLDBDY value indicates that minimizing of record level changes should be done on field/column
boundaries for all files journaled to the specified journal. Using the Display Journal (DSPJRN)
command, entries are viewable to the screen, an outfile, or printed output. If a journal entry has been
minimized on field boundaries, the value of 2 is returned in the Minimized entry specific data field of the
*OUTFILE and in the Min field of the printed output. The RCVJRNE and RTVJRNE commands can also be
used to view entries that were minimized on field boundaries by specifying *YES on the Format minimized
data (FMTMINDTA) parameter. The QjoRetrieveJournalEntries API can be used to view entries that
were minimized on field boundaries by specifying *YES for the Format minimized data (FMTMINDTA) key.

Related concepts
Layouts for variable-length portion of journal entries
The following tables contain the variable-length portion of the layouts for journal entries.
Related reference
Create Journal (CRTJRN) command
Change Journal (CHGJRN) command
Related information
Journal entry information finder

Remote journal management
Use remote journal management to establish journals and journal receivers on a remote system that are
associated with specific journals and journal receivers on a local system. Remote journal management
replicates journal entries from the local system to the journals and journal receivers that are located on
the remote system after they have been established.

Remote journal management allows you to establish journals and journal receivers on a remote system or
to establish journal and receivers on independent disk pools that are associated with specific journals and
journal receivers on a local system. The remote journaling function can replicate journal entries from the
local system to the journals and journal receivers that are located on the remote system or independent
disk pools after they have been established.

Use the following information to set up remote journal management:

Remote journal concepts
Remote journal management helps to efficiently replicate journal entries to one or more systems. You can
use remote journal management with application programs to maintain a data replica. A data replica is a
copy of the original data that resides on another system or independent disk pool. The original data
resides on a primary system. Applications make changes to the original data during normal operations.

Prior to V4R2M0, you could have accomplished a similar function by using the Receive Journal Entry
(RCVJRNE) command. In that environment, the RCVJRNE exit program receives journal entries from a
journal, and then sends the journal entries to the remote system by using whatever communications
method is available. All of this processing occurs asynchronously to the operation that is causing the
journal entry deposit and takes place at an application layer of the system.

The remote journal function, however, replicates journal entries to the remote system at the Licensed
Internal Code layer. Moving the replication to this lower layer provides the following:

Journal management 317

• The remote system handles more of the replication overhead
• Overall system performance and journal entry replication performance is improved
• Replication can (optionally) occur synchronously to the operation that is causing the journal entry

deposit
• Journal receiver save operations can be moved to the remote system.

The figures below illustrate a comparison of a hot-backup environment with and without remote journal
management. Hot-backup is the function of replicating an application's dependent data from a primary
system to a backup system. The primary system is the system where the original data resides. The
backup system is the system where a replica of the original data is being maintained. In the event of a
primary system failure, you can perform a switch-over to the backup system.

Hot-backup environment without remote journal function, and application-code based apply

This figure above illustrates that processing with the RCVJRNE command occurs asynchronously to the
operation that is causing the journal entry deposit. This processing requires more overhead than the
remote journal function.

Hot-backup environment with remote journal function, and application-code based apply

318 IBM i: Journal management

This figure above illustrates that processing with the remote journal function occurs synchronously to the
operation that is causing the journal entry deposit. This processing requires less overhead than the
RCVJRNE command.

The following topics provide more information about remote journaling:

Related reference
Receive Journal Entry (RCVJRNE) command

Network configurations for remote journals
This topic describes various network configuration for remote journals.

The following figure shows the two basic remote journal function configurations.

A broadcast configuration is a journal that replicates its journal entries to one or more remote journals. A
cascade configuration is a remote journal that replicates its journal entries to an additional remote
journal. The additional remote journal can replicate the entries to yet another remote journal, and so on.
The remote journal function configurations can stand alone or can be combined with one another. For
example, one or more of the remote journals in the broadcast configuration could cascade down to
several additional remote journals. Likewise, one or more remote journals in the cascade configuration
could broadcast out to one or more remote journals.

A local journal is populated by applications that are depositing journal entries. A remote journal is
populated by receiving its journal entries from either a local or another remote journal. The journals are
paired, as depicted in the preceding figure where (S) represents a journal on a source system, and (T)

Journal management 319

represents a journal on a target system. In the cascade configuration, a remote journal can be a recipient
of journal entries (a target), and a replicator of journal entries (a source) at the same time.

A source system is a system where a journal resides and is having its journal entries replicated to a
remote journal on a target system.

Note: A source system is not necessarily the primary system. For example, a remote journal that is
cascading its journal entries to another remote journal is said to reside on a source system.

A target system is a system where a remote journal resides and is receiving journal entries from a journal
on a source system.

A remote journal network includes the local journal and all of the remote journals that are downstream
from that local journal. You can set up the remote journal network in broadcast configuration, cascade
configuration, or a combination of the two configurations.

In many environments, users attempt to minimize the amount of processing that the local or primary
system performs by shifting as much of the processing as possible to other systems in the network. A
combination of the broadcast and cascade configurations allows for this when replicating the journal
entries from a single system to multiple other systems. For example, replicating a local journal to a single
remote journal on a target system will minimize the replication cost on the primary system. Then, from
the target system, the replicated journal can be asynchronously replicated by either a broadcast or
cascade configuration to other remote journals on other systems. This allows all of the journal entries to
be known to all desired systems, while requiring a minimal amount of processing on the primary system.

The following characteristics apply to local journals and to any journal receivers that were attached to
local journals:

• Objects can be journaled to local journals.
• Journal entries can be directly deposited to local journals. For example, the Send Journal Entry

(SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API can be used to send journal entries
directly to a local journal.

The following characteristics apply to remote journals and to any journal receivers that were attached to
remote journals:

• Objects cannot be journaled to remote journals.
• Journal entries cannot be directly deposited to remote journals. For example, the Send Journal Entry

(SNDJRNE) command or API (QJOSJRNE) cannot be used to send journal entries directly to a remote
journal.

• Journal entries are only replicated to remote journals from an associated source journal. A source
journal is the journal on the source system to which a remote journal has been added. A source journal
can be either a local or a remote journal.

• The information in the journal entries such as time stamps, system name, and qualified journal receiver
names reflect information as deposited in the local journal for this remote journal network.

• The information in the journal receiver such as attach time and detach time reflect the information as it
is for the local journal for the remote journal network.

• Certain attributes of the remote journal are fixed and determined based on the source journal, such as
the values for the journal receiver, manage receiver, manage receiver delay, receiver size options,
journal cache, fix length data, threshold, journal object limit, and journal recovery count. These
attributes cannot be changed because either they do not apply for a remote journal or they can only be
changed by changing the attributes of the source journal.

Types of remote journals
The two types of remote journals are *TYPE1 and *TYPE2. The two types identify operational
characteristics of a remote journal and its associated journal receivers. The following table is an overview

320 IBM i: Journal management

of the different remote journal types and their characteristics. There are no performance differences
between the types of remote journals.

For help in determining which remote journal to use see IBM Redbooks® technote Remote Journaling on

i5/OS - Are You Selecting the Right Type?

Local journal *TYPE1 remote journal *TYPE2 remote journal

Remote journal types
that can be added

*TYPE1 *TYPE2 *TYPE1 *TYPE2 *TYPE2

Remote journal name N/A Journal name must be
the same as the local
journal.

Journal name may be
different from the
source journal.

Journal library
redirection

N/A Journal library name
may be redirected to a
single different library
from that of the local
journal. Subsequent
adds of *TYPE1 remote
journals must specify
the same library
redirection that was
specified on the
previously added
*TYPE1 remote journal.

A given redirected
library may be specified
when adding a remote
journal. Subsequent
adds of *TYPE2 remote
journals may specify a
different library
redirection than was
specified on any
previously added
remote journal.

Journal receiver library
redirection

N/A Receiver library name
may be redirected to a
single different library
from that of the
receivers associated
with the local journal.
Subsequent adds of
*TYPE1 remote journals
must specify the same
library redirection that
was specified on the
previously added
*TYPE1 remote journal.

A given redirected
library may be specified
when adding a remote
journal. Subsequent
adds of *TYPE2 remote
journals may specify a
different library
redirection than was
specified on any
previously added
remote journal.

Journal receiver library
redirection used on
activate

N/A The target library used
when replicating a
receiver from the source
journal to this remote
journal will reflect the
library redirection that
was in place for the
receiver, if any, at the
time the receiver was
attached to the source
journal.1

The target library used
when replicating a
receiver from the source
journal to this remote
journal will reflect the
library redirection that is
currently defined for the
target journal.

Journal management 321

http://www.redbooks.ibm.com/abstracts/tips0629.html?Open
http://www.redbooks.ibm.com/abstracts/tips0629.html?Open

Local journal *TYPE1 remote journal *TYPE2 remote journal

Receiver restore
characteristics2, 3

Receivers associated
with the local journal
can be saved and
restored to the local
system or to any of the
systems for the *TYPE1
remote journals and be
linked into the correct
receiver chain of the
local journal or the
*TYPE1 remote journal.

Receivers associated
with the local journal or
any of the *TYPE1
remote journals can be
saved and restored to
the local system or to
any of the systems
where the *TYPE1
remote journals reside
and be linked into the
correct receiver chain of
the journal.

Receivers associated
with a given *TYPE2
remote journal can be
saved and restored to
the local system or to
the same system where
the *TYPE2 remote
journal resides and be
linked into the correct
receiver chain of the
journal.

Notes:
1If the journal receiver was attached to a journal when no remote journals were added, then no library
redirection is assumed for that journal receiver if that receiver is specified during activation. Therefore,
the journal receiver will be created in the same library on the target system as it is on the local system.
2A journal receiver from any system in the remote journal network may always be restored to any
system if the receiver is being restored into the original or redirected receiver library. Otherwise,
receivers can always be restored to any system and associated with a local journal if a local journal by
the same name as the original local journal is found residing in the same named original local journal
library.
3If a journal receiver's original or redirected library exists in an independent disk pool, then the ASP
group name for the independent disk pool is used in place of the system name when making restore
decisions.

See Considerations for save and restore operations with remote journals for more information.

Related concepts
Considerations for save and restore operations with remote journals
The following information describes general considerations for save and restore operations with remote
journals:

Filtered remote journals
Remote journal filtering allows for the journal receiver on the target system to not be a complete copy of
the journal receiver on the source system. Filtering allows some number of journal entries to not be sent
to the target system. Not sending all journal entries decreases the amount of data on the communication
line. Care must be taken when defining remote journal filtering to ensure that critical data is not filtered.

Remote journal filtering is available under Option 42 of the IBM i Operating System, feature 5117 (HA
Journal Performance). Three criteria can be used to filter entries sent to the remote system; before
images, individual objects, and the name of the program that deposited the journal entry on the source
system. The filtering criteria are specified when activating a remote journal. Different remote journals
associated with the same local journal can have different filter criteria. Remote journal filtering can only
be specified for asynchronous remote journal connections. Note: Since journal entries might be missing,
filtered remote journal receivers cannot be used with the Remove Journaled Changes (RMVJRNCHG)
command. Similarly, journal receivers that filtered journal entries by object or by program cannot be used
with the Apply Journaled Change (APYJRNCHG) command or the Apply Journaled Change
Extend (APYJRNCHGX) command.

Often, before images are captured on the source system to allow for debugging, or for commitment
control purposes. Sometimes these entries are not required on the target system. All before images can
easily be filtered from a remote journal.

In some environments, non-critical files are journaled on the source system because of commitment
control requirements. The journal entries for these non-critical objects can be filtered out in a remote

322 IBM i: Journal management

journal environment and not sent to the target system if they are not needed there. Each object that is to
have journal entries filtered must be changed to contain the remote journal filter indication. The Change
Journaled Object (CHGJRNOBJ) command can be used to set this remote journal filter indication.
Objects that automatically start journaling due to library journaling can have the indication set when they
start journaling based on the inherit rules defined for library journaling.

Occasionally, journal entries deposited on behalf of a given program are not needed on the target system.
These journal entries can be omitted with remote journal program filtering. This filtering can only be
specified by using the QjoChangeJournalState API.

See these commands and API for details on remote journal filtering:

• Change Remote Journal (CHGRMTJRN)
• Change Journal State (QjoChangeJournalState) API
• Start Journal Library (STRJRNLIB)

Journal state and delivery mode
The journal state describes an attribute for a journal. The attribute value can be *ACTIVE, *INACTIVE
(remote journal only), or *STANDBY (local journal only). For a local journal, *ACTIVE indicates that journal
entries are currently allowed to be deposited into the journal. *STANDBY indicates that most journal
entries are not deposited.

You can view the journal state for a remote journal on a target system that is associated with a journal on
a source system in one of two ways:

• When viewing the remote journal information of the local journal from the source, *ACTIVE indicates
that journal entries are currently being replicated to that remote journal on the target system.
*INACTIVE indicates that journal entries are not currently being replicated.

• When viewing the journal attributes of the remote journal from the target, *ACTIVE indicates that
journal entries are currently being received from the journal on the source system. *INACTIVE indicates
that the target journal is not ready to receive journal entries from the source journal.

The following table provides a summary of the journal type, delivery mode and journal state interactions.

Journal type Delivery mode Journal state Comments

*LOCAL Not applicable *ACTIVE Objects journaled to the
local journal can be
changed, and entries
can also be deposited
into the local journal
using the Send Journal
Entry (SNDJRNE)
command or the Send
Journal Entry
(QJOSJRNE) API
interfaces. The currently
attached journal
receiver may or may not
be currently replicated
to one or more remote
journals. This depends
upon whether any
remote journals have
been added to the local
journal's definition, and
if so, the current journal
state for each of those
remote journals.

Journal management 323

Journal type Delivery mode Journal state Comments

*LOCAL Not applicable *STANDBY This is the state of a
local journal after the
Change Journal
(CHGJRN) command
specifying
JRNSTATE(*STANDBY)
is used to not allow
deposits into the local
journal. The local can
journal can also be in
*STANDBY state after an
IPL if the local journal is
in *STANDBY state when
the system ends.

Objects journaled to the
local journal can be
restored or changed, but
most journal entries are
not deposited until the
journal state for the
local journal is again
changed to *ACTIVE.
This can be performed
by using the Change
Journal (CHGJRN)
command specifying
JRNSTATE(*ACTIVE).

*REMOTE *SYNCPEND *ACTIVE This is the state after a
remote journal has been
activated using the
Change Journal State
(QjoChangeJournalState
) API or CHGRMTJRN
command and the
processing is still in the
catch-up phase of
remote journal
activation. Synchronous
delivery mode was
requested on the API
invocation.

324 IBM i: Journal management

Journal type Delivery mode Journal state Comments

*REMOTE *SYNC *ACTIVE This is the state after a
remote journal has been
activated using the
Change Journal State
(QjoChangeJournalState
) API or CHGRMTJRN
command, after catch-
up has completed, and
changes to the currently
attached journal
receiver for the journal
on the source system
are being replicated
synchronously to the
remote journal on the
target system.

*REMOTE *ASYNCPEND *ACTIVE This is the state after a
remote journal has been
activated using the
Change Journal State
(QjoChangeJournalState
) API or CHGRMTJRN
command and the
processing is still in the
catch-up phase of
remote journal
activation.
Asynchronous delivery
mode was requested on
the API invocation.

*REMOTE *ASYNC *ACTIVE This is the state after a
remote journal has been
activated using the
Change Journal State
(QjoChangeJournalState
) API or CHGRMTJRN
command, after catch-
up has completed, and
changes to the currently
attached journal
receiver for the journal
on the source system
are being replicated
asynchronously to the
remote journal on the
target system.

Journal management 325

Journal type Delivery mode Journal state Comments

*REMOTE *SYNC *INACTPEND This is the state of a
remote journal, viewed
from the target system
where some failure has
occurred and either the
system is in the process
of inactivating the
remote journal, or
unconfirmed journal
entries exist in the
remote journal. See
Confirmed and
unconfirmed journal
entries for more
information.

*REMOTE *ASYNC *INACTPEND This is the state of a
remote journal, viewed
from the target system
where some failure has
occurred and the system
is in the process of
inactivating the remote
journal.

*REMOTE *ASYNC *CTLINACT This is the state after a
remote journal has been
made inactive using the
Change Journal State
(QjoChangeJournalState
) API or CHGRMTJRN
command, a controlled
deactivate was
requested on that call
and that controlled
deactive has not yet
completed.

*REMOTE Not applicable *INACTIVE This is the state after a
remote journal has been
added and associated
with a journal on a
source system.
However, the journal
state for the added
remote journal has yet
to be activated or has
been made inactive
using the Change
Journal State
(QjoChangeJournalState
) API, CHGRMTJRN
command, or by an IPL.
No delivery mode is in
effect for an inactive
remote journal.

326 IBM i: Journal management

Related concepts
Confirmed and unconfirmed journal entries
For a local journal, all entries are confirmed entries. There is no concept of unconfirmed entries.

Journal receivers associated with a remote journal
Journal receivers that are associated with a remote journal are exact replicas of the corresponding journal
receivers that are associated with the journal on the source system. The one exception to this rule is
filtered remote journal receivers. In that case the remote journal receiver may not contain all the journal
entries that the local journal receiver contains.

The receiver directory for a remote journal is maintained in the same way as the receiver directory is
maintained for the related source journal. Consecutive receivers associated with a remote journal are
linked together to form a receiver chain. Receiver chain breaks are forced and maintained in a similar
manner for local and remote journals.

However, the following are some other differences for remote journals and the journal receivers that were
attached to remote journals:

• A remote journal does not have to have a currently attached journal receiver. However, if the remote
journal is ready to receive journal entries, then it must have an attached receiver; all the journal entries
will be replicated to that attached receiver.

• The receiver that is currently attached to a remote journal that is in the catch-up phase can be a
different journal receiver than is currently attached to the source journal.

• The receiver that is currently attached to an asynchronously maintained remote journal can be a
different journal receiver than is currently attached to the source journal.

• The receiver that is currently attached to a synchronously maintained remote journal is the same journal
receiver as is currently attached to the source journal.

• You can delete the journal receiver that is attached to a remote journal if the journal state of that journal
is not *ACTIVE.

• You can delete the journal receivers that are associated with a remote journal in any order, regardless of
their position within the receiver directory chain.

• The creation date and time stamps for remote journals are always those of the system on which the
journals were created by the remote journal function. This is also true for journal receivers that were
attached to remote journals.

• The save and restore date and time stamps for remote journals are always those of the system on which
the save or restore operation took place. This is also true for the journal receivers that are associated
with the remote journals.

• The attach and detach time stamps for a journal receiver that was attached to a remote journal are
always those of the attach and detach time stamps of the local journal receiver.

• When a journal receiver that is associated with a remote journal is saved, deleted or restored, the
following journal entries are not deposited:

– J RD - Journal receiver deleted
– J RF - Journal receiver saved, storage freed
– J RR - Journal receiver restored
– J RS - Journal receiver saved

For more information about journal receiver directory chains, see Keep track of journal receiver chains.

Related concepts
Journal receiver chains
Journal receivers that are associated with a journal (that is presently or previously attached to the journal)
are linked in one or more receiver chains. Each journal receiver, except the first one, has a previous
receiver that was detached when the current receiver was attached. Each journal receiver, except the one
that is currently attached, also has a next receiver.

Journal management 327

Process of adding remote journal
Adding a remote journal creates a remote journal on a target system or independent disk pool and
associates that remote journal with the journal on the source system. This occurs if this is the first time
the remote journal is being established for a journal. The journal on the source system can be either a
local or remote journal.

If a remote journal environment has previously been established, adding a remote journal re-associates
the remote journal on the target system with the journal on the source system.

You can establish and associate a remote journal on a target system with a journal on the source system
by one of the following methods:

• System i Navigator.
• Add Remote Journal (QjoAddRemoteJournal) API on the source system.
• Add Remote Journal (ADDRMTJRN) command on the source system.

What happens during add remote journal processing

Some of the processing which takes place as part of adding a remote journal is as follows:

• A check is performed on the target system to verify that the user profile adding the remote journal
exists. A user profile with the same name as the user profile which is adding a remote journal must exist
on the target system. If the profile does not exist on the target system, then an exception is signaled,
and the processing ends.

• A check is performed to verify that the target system has a library by the same name as the library for
the journal on the source system. If the library does not exist on the target system, then an exception is
signaled, and the processing ends.

• A check is performed on the target system to determine if a journal by the same qualified name as the
journal on the source system already exists. If a journal already exists, it can be used for the remainder
of the add remote journal processing if it meets the following conditions:

1. It is a remote journal.
2. It was previously associated with this same source journal or part of the same remote journal

network.
3. The type of the remote journal matches the specified remote journal type.

• If a journal was found, but does not meet the above criteria, then an exception is signaled, and the
processing ends. Otherwise, the remote journal is used for the rest of the add remote journal
processing.

• If no journal is found on the specified target system, then a remote journal is created on the target
system. The new remote journal has the same configuration, authority, and audit characteristics of the
source journal. The journal that is created has a journal type of *REMOTE.

The creation of the journal on the target system is performed as though the journal was being saved and
restored to the target system. Therefore, the ownership of the journal on a target system will follow the
same rules as with the existing save and restore functions. If the user profile which owns the journal on
the source system is on the target system, then that profile will own the created journal on the target
system. If the user profile does not exist on the target system, then the profile QDFTOWN will own the
journal on the target system.

Additionally, if the remote journal is created, the values for the journal attributes of text, journal message
queue, delete receivers value, and delete receiver delay time will be taken from what is specified on the
API invocation. After the remote journal has been created, these values can be changed by using the
Change Journal (CHGJRN) command for the remote journal on the remote system. After the remote
journal is created, any changes to these attributes on the source journal will not cause equivalent changes
to the remote journal.

When adding the remote journal, you must specify the type of remote journal to add. The remote journal
type influences the library redirection rules and other operational characteristics for the journal.

328 IBM i: Journal management

Guidelines for adding a remote journal

Here are guidelines for adding a remote journal.

• You can only associate a remote journal with a single source journal.

Note: The same remote journal can then have additional remote journals that are associated with it that
are located on other target systems. This is the cascade configuration that is shown in Network
configurations for remote journals.

• The remote journal will only have its attached receiver populated with journal entries that are replicated
from the corresponding journal receiver on the source system. No journal entries can be directly
deposited to a remote journal.

• A maximum of 255 remote journals can be associated with a single journal on a source system. This can
be any combination of asynchronously maintained or synchronously maintained remote journals.

Synchronous and asynchronous delivery mode has more information. Library redirection with remote
journals and Remote journal attributes provide more concepts about the add remote journal process. Add
remote journals provides the steps for adding a remote journal.

Related concepts
Types of remote journals
The two types of remote journals are *TYPE1 and *TYPE2. The two types identify operational
characteristics of a remote journal and its associated journal receivers. The following table is an overview
of the different remote journal types and their characteristics. There are no performance differences
between the types of remote journals.
Network configurations for remote journals
This topic describes various network configuration for remote journals.
Synchronous and asynchronous delivery mode for remote journals
The terms asynchronously maintained and synchronously maintained both describe a remote journal
function delivery mode for journal entry replication.
Related tasks
Adding remote journals
This topic provides instructions for adding a remote journal.

Library redirection with remote journals
Library redirection provides a means for remote journals and any of their associated journal receivers to
optionally reside in differently named libraries on the target system from the corresponding local journal
and journal receivers on the local system.

You can specify library redirection by using one of the following:

• System i Navigator
• Add Remote Journal (QjoAddRemoteJournal) API
• Add Remote Journal (ADDRMTJRN) command

When using the QjoAddRemoteJournal API, specify a different name in the Remote Journal Library name
field or the Remote Journal Receiver Library field. When using the ADDRMTJRN command, specify a
different name for the Target Journal Library parameter or the Remote Receiver Library parameter. When
a remote journal is added, its journal type specification influences how much redirection you can specify.

Types of remote journals describes the various types of remote journals that can be added, as well as a
description of their redirection characteristics.

If redirection is not specified, then the remote journal will reside in a library that has the same name as
the library that contains the source journal.

Note: Library redirection for the journal object must be specified when replicating the journal entries to a
target system for any journal starting with the letter Q in a library starting with Q. This does not apply to
the QGPL library. This restriction prevents collisions between local and remote journals that are used for

Journal management 329

system functions. One example of this is journal QAUDJRN in library QSYS which is used for security
auditing.

If no redirection is specified for the journal receiver, then the remote journal receiver will reside in a
library whose name is the same as the library for the source journal receiver. For example, the source
journal has two receivers that are associated with it, receiver RCV0001 in library LIBA, and receiver
RCV0002 in library LIBB. If no journal receiver library redirection is specified, then the journal entries in
RCV0001 in library LIBA on the source will be replicated to RCV0001 in library LIBA on the target system.
The journal entries in RCV0002 in library LIBB on the source will be replicated to RCV0002 in library LIBB
on the target system. Therefore, both libraries, LIBA and LIBB, will need to exist on the target system
prior to the invocation of the remote journal function. If journal receiver library redirection is specified
with a redirected receiver library specification of RMTLIB, then both RCV0001 and RCV0002 would be in
library RMTLIB on the target system.

For *TYPE1 remote journals, the library redirection or the selection of no library redirection for the journal
and journal receivers can only be modified by doing the following:

• Remove all *TYPE1 remote journals.
• Change the local journal and attach a new journal receiver.
• Delete the remote journal from the target system.
• Add the *TYPE1 remote journal, specifying the new library redirection, if any.

For *TYPE2 remote journals, the library redirection or the selection of no library redirection for the journal
and journal receivers can only be modified by doing the following:

• Remove the *TYPE2 remote journal.
• Delete the remote journal from the target system.
• Add the *TYPE2 remote journal, specifying the new library redirection, if any.

Independent disk pools and library redirection

If you want the remote journal on an independent disk pool on the target system, specify a library on the
target system that is on an independent disk pool for that system and specify an RDB entry for the
independent disk pool.

If you place your remote journal on an independent disk pool on the target system, the following rules
apply:

• The independent disk pool on the target system must be varied on.
• The independent disk pool must be a library capable disk pool.
• The remote journal, the remote journal receiver, and the message queue must be in the same

independent disk pool group.
• When TCP communications are being used to connect to an independent disk pool, the Relational

Database (RDB) entry to the independent disk pool must have the Relational database value set to the
target system's local RDB entry and the relational database alias value set to the independent disk
pool's name.

Related concepts
Types of remote journals
The two types of remote journals are *TYPE1 and *TYPE2. The two types identify operational
characteristics of a remote journal and its associated journal receivers. The following table is an overview
of the different remote journal types and their characteristics. There are no performance differences
between the types of remote journals.
Journal management and independent disk pools

330 IBM i: Journal management

Independent disk pools are disk pools 33 through 255. Independent disk pools can be user-defined file
system (UDFS) independent disk pools or library-capable independent disk pools.

Remote journal attributes
When a remote journal is created by the add remote journal processing, the remote journal's initial
attributes are defined by the add request and the source journal.

Various journal attributes for a remote journal are treated as follows:

Disk pool
If the library for the remote journal resides in a disk pool, the remote journal will be created in that
disk pool.

Journal message queue
Defined on add request. Once the remote journal is created, the journal message queue, can be
modified by using the Change Journal (CHGJRN) command on the remote journal on the remote
system.

Delete receivers
Defined on add request. Once the remote journal is created, the delete receivers attribute can be
modified by using the CHGJRN command on the remote journal on the remote system.

Manage receivers
Does not apply. The managing of the receivers for the remote journal is driven by the management of
the source journal.

Minimize entry-specific data options
Does not apply. The minimize entry-specific data options in effect for the remote journal are driven by
the minimize entry-specific data options in effect for the local journal.

Receiver size options
Does not apply. The receiver size options in effect for the remote journal are driven by the receiver
size options in effect for the source journal.

Text
Defined on add request. Once the remote journal is created, the text can be modified by using the
CHGJRN command on the remote journal on the remote system.

Manage receiver delay
The managing of the receivers for the remote journal is determined by the management of the source
journal.

Delete receiver delay
Defined on add request. Once the remote journal is created, the delete receiver delay attribute can be
modified by using the CHGJRN command on the remote journal on the remote system.

Fixed-length data
Does not apply. The fixed-length data options in effect for the remote journal are driven by the fixed-
length data options in effect for the local journal.

Journal cache
Does not apply.

Journal object limit
Does not apply.

Journal recovery count
Does not apply.

Related reference
Change Journal (CHGJRN) command

Journal management 331

Supported communications protocols for remote journals
The remote journal function supports the following communications protocols for replicating the journal
entries to the remote systems:

• OptiConnect for IBM i. If you want to use the OptiConnect for IBM i support, you must purchase and
install the required hardware and software for that support. Refer to OptiConnect for IBM i for more
information.

• Systems Network Architecture (SNA). If you want to use SNA for the transport, there are no additional
software considerations. The software support is in the base operating system. You must purchase
whatever hardware is appropriate for your configuration. For more information, see the SNA Distribution
Services manual in the IBM Publications Center at http://www.elink.ibmlink.ibm.com/publications/
servlet/pbi.wss? .

• Transmission Control Protocol/Internet Protocol(TCP/IP). If you want to use TCP/IP for the
transport, there are no additional software considerations. The software support is in the base
operating system. You must purchase whatever hardware is appropriate for your configuration.

Note: All remote journal TCP connections use the TCP local port of 3777.
• Data port. Allows you to run remote journal over a cluster and specify up to four lines of

communication, allowing for greater resiliency.
• Sockets (IPv6). Allows you to run remote journal over a Sockets IPv6 TCP/IP connection.

Note: All remote journal Sockets IPv6 connections use the TCP local port of 3888.
• Secure Sockets (SSL). Allows you to run remote journal over a Secure Sockets TCP/IP connection.

Note: All remote journal Secure Sockets connections default to using the TCP local port of 3889. If you
want remote journal Secure Sockets connections to use a different port, you can remove the rmtjournal-
ssl service table entry and add a rmtjournal-ssl service table entry with the port you want on both the
source and target system using the WRKSRVTBLE command. Using Secure Sockets incurs a larger
performance impact compared with any of the other supported communication protocols. The
performance impact of Secure Sockets is dependent on the level of cipher/protocol chosen when
configuring the remote journal application ID (QIBM_QJO_RMT_JRN_SRC and
QIBM_QJO_RMT_JRN_TGT) using Digital Certificate Manager (DCM). For information on setting up SSL,
see the configuring DCM topic Configuring DCM

Specifying a relational database (RDB) directory entry identifies the communications protocol that the
remote journal function uses. The RDB that is specified must meet the following rules:

• The communications protocol must be one of the remote journal function supported protocols.
• The remote location name in the RDB cannot refer to the *LOCAL database.
• The RDB cannot use an application requester driver program (*ARDPGM) to locate the target system.
• When TCP communications are being used to connect to an independent disk pool, the Relational

Database (RDB) entry to the independent disk pool must have the Relational database value set to the
target system's local RDB entry and the relational database alias value set to the independent disk
pool's name.

For more information about creating relational databases, refer to the Distributed Database Programming
topic.

Security of the remote journal function is dependent on the communications protocol security. The
remote journal function does not alter the security characteristics that are available.

When sending data to the target system using TCP (IPV4) or Sockets (IPV6) remote journal uses the
greater value of 256 KB, or the size specified on CHGTCPA for TCP send buffer size (TCPSNDBUF) on the
source system, or TCP receive buffer size (TCPRCVBUF) on the target system.

Implementing a Virtual Private Network (VPN) should provide a secure solution for the traffic between the
VPN client and server in your remote journal environment. While VPN does not preclude data interception,
use of VPN encryption does prevent the intercepted data from being interpreted or deciphered.

332 IBM i: Journal management

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?

The communications function that is identified by the RDB can be shared by other activity. However, you
may consider isolating the remote journal function activity in order to have the best performance.

Release-to-release considerations for remote journals
Release-to-release considerations for remote journals are discussed in this topic.

The release-to-release considerations for remote journals are:

• Information APAR II12556 contains a list of program temporary fixes (PTF) to apply for V5R1 support of
remote journaling.

• If you specify RCVSIZOPT(*MAXOPT2) on the journal that you attach a journal receiver to, you cannot
replicate the journal receivers to any remote journals on any systems at a release prior to V5R1M0.

• If you specify minimized-entry specific data (MINENTDTA) for either *FILE or *DTAARA on the journal to
which you attached a journal receiver, you cannot replicate the journal receivers to any remote journals
on any systems at a release before V5R1M0.

• If you specify minimized-entry specific data (MINENTDTA) for *FLDBDY on the journal to which you
attached a journal receiver, you cannot replicate the journal receivers to any remote journals on any
systems at a release before V5R4M0.

• If you specify RCVSIZOPT(*MAXOPT3) on the journal that you attach a journal receiver to, you cannot
replicate the journal receivers to any remote journals on any systems at a release prior to V5R3M0.

• If JRNOBJLMT(*MAX10M) is specified for a local journal, the remote journal must exist on a system at a
release of V5R4M0 or later.

• If remote journal filtering is used when activating the remote journal connection then the target system
must be at release i 7.1 or later.

Planning for remote journals
This topic provide information for planning to set up remote journals.

Candidates for remote journal management
Journals that you are currently replicating, or that you plan to replicate to one or more systems, are
excellent candidates for the remote journal function.

Journals with high activity that require frequent saves and deletes of the associated journal receivers
during the day are also good candidates for the remote journal function. If you use remote journaling, you
can specify that the backup system takes over the journal receiver save processing. Then the primary
system can specify system journal-receiver management and automatic deletion of journal receivers. This
frees up disk space on the primary system as quickly as possible. The backup system is the system where
a replica of the original data is being maintained. The primary system is the system where the original
data resides.

Also, you might have applications that are so critical to your business that any downtime will impact your
operations. The application dependent data is a good candidate to protect with the remote journal
function. Application dependent data is any data that a particular application depends on if that
application is interrupted and has to be restarted.

For example, you may have a database that has a lot of query activity that impacts your system
performance. That local database is a good candidate to replicate to another system so that the query
activity moves from the local system to that remote system. The remote journal function can assist this
process of replicating the database.

Related concepts
Manual versus system journal-receiver management
When you create a journal with System i Navigator or the Create Journal (CRTJRN) command, you can
select to have either system managed or user managed journal receivers.
Automatic deletion of journal receivers

Journal management 333

If you choose system journal receiver management, you can also have the system delete journal receivers
that are no longer needed for recovery. You can only specify this if you are using system journal receiver
management.

Synchronous and asynchronous delivery mode for remote journals
The terms asynchronously maintained and synchronously maintained both describe a remote journal
function delivery mode for journal entry replication.

If a journal is asynchronously maintained, control is returned to the application generating the journal
entry on the source system without waiting for the journal entry to be replicated to the remote journal. An
asynchronously maintained remote journal might lag several journal entries behind the total number of
journal entries in the journal on the source system. If a journal is synchronously maintained, control is not
returned to the application generating the journal entry on the local system until the journal entry is
replicated to the remote journal.

Synchronous delivery mode

Synchronous delivery means that the journal entry is replicated to the target system concurrently with
the entry being written to the local receiver on the source system. The entry is known on the target
system, in main storage, prior to returning control to the user application that deposited the journal entry
on the source system. Therefore, the target system knows of all journal entries as they are being made in
real-time on the source system. Using this mode allows for recovery without losing journal entries on the
target system if the source system fails. Providing journal entries synchronously to a target system will
have some affect to the journaling throughput on the local system.

Synchronous delivery mode is only supported when a remote journal is associated with a local journal.

There are certain circumstances, when using synchronous mode, when some journal entries are not
immediately sent to the target system. These entries are either not necessary for recovery or the user did
not specify that they be forced to disk. Journal entries are sent to the remote journal at the same time
that they are forced to disk for the source journal. Since these entries are not forced to disk at deposit
time, they are not sent to the remote system.

• Some entries that are not required for data recovery might not be immediately sent to the target
system. For example, journal entries for a file close (journal code 'F', entry type 'CL') or a stream file
open, (journal code 'B', entry type 'OF').

• User-generated journal entries that use the Send Journal Entry (SNDJRNE) command or the Send
Journal Entry API (QJOSJRNE) might not be sent to the target system. If either you, or your application,
do not request to force these user-generated entries they will only be replicated to the remote journal
when some other action forces them. Therefore, periodically specify FORCE(*YES) when using the send
journal entry functions.

• Journal entries that are associated with commitment control transactions might not be immediately
sent to the remote system. These entries will be retrievable after the following journal entries have
been deposited into the source journal:

– Journal code 'C', journal entry type 'CM' (Commit)
– Journal code 'C', journal entry type 'RB' (Rollback)

• See Remote journal considerations for retrieving journal entries when using commitment control for
more information.

• When journal caching is being used (JRNCACHE(*YES) on the CHGJRN command), entries that exist
only in the cache are not available on the target system. With journal caching, entries are not sent to the
target system until they are written from the cache to disk on the source system.

• If the local journal is using journal caching, then journal entries will be bundled up before they are sent
to the target.

Asynchronous delivery mode

Replicating a journal entry asynchronously means that the journal entry is replicated to the target system
after control is returned to the application depositing the journal entry on the source system. Using this

334 IBM i: Journal management

mode allows for recovery that might lose some journal entries if the source system fails. However, this
mode has less affect to the journal throughput on the local system in comparison with the synchronous
mode.

Journal entry latency might occur when remote journals are asynchronously maintained. Journal entry
latency is the difference between the journal entries that exist in the remote journal on the target system
from those residing in the journal on the source system. From a recovery standpoint, the source system
might be some number of journal entries ahead of what journal entries are known on the target system.

Related concepts
Remote journal considerations for retrieving journal entries when using commitment control
Special performance related processing is done by the system when depositing entries that are
associated with commitment control transactions to a local journal.

Communications protocol and delivery mode for remote journals
The greater the volume of traffic, that is the higher the rate of journal entry deposits, the faster
communications method you must choose. If your traffic is minimal, then a slower communications
method can be adequate.

The delivery mode defines how journal entries are replicated to a remote journal. The delivery mode only
applies when actively replicating the journal entries from a journal on a source system to a remote journal
on a target system. The delivery mode can be either synchronous or asynchronous.

If the application dependent data is critical and the loss of journal entries can impact your business, then
use the synchronous delivery mode. Synchronous delivery mode is only valid when activating a remote
journal that is associated with a local journal.

It may be acceptable that the remote system does not have all the journal entries as they are being
deposited or replicated into the source journal. If this is true, the asynchronous delivery mode is a good
choice to minimize the impact to the source journaling throughput.

The choice of delivery mode and communications protocol are closely linked. Since the synchronous
delivery mode will affect the interactive users response time, the faster the communications protocol the
better. This again will be dependent on the journal entry deposit rate.

Where the replication of journal entries start
When you specify a journal receiver for remote journaling, you are specifying where the replication of
journal entries will start.

You can choose from the following options:

Attached receiver on target system

The replication of journal entries starts with the journal receiver that is currently attached to the remote
journal on the target system. The journal entries are replicated from the corresponding journal receiver
that is associated with the journal on the source system. The replication starts with the journal entries
that follow the last journal entry that currently exists in the attached journal receiver on the target
system.

The remote journal on the target system might not have an attached journal receiver. If this occurs, the
journal receiver that is currently attached to the journal on the source system is created on the target
system. That journal receiver is then attached to the remote journal on the target system. Then journal
entries are replicated starting with the first journal entry in the journal receiver that is currently attached
to the journal on the source system.

If the journal on the source system does not have an attached journal receiver, no journal entries can be
replicated, and an error is returned. This is only possible in the case of a remote journal that is associated
with another remote journal.

To use this option specify one of the following:

• Use the *ATTACHED special value for the Starting journal receiver (STRJRNRCV) parameter on the
Change Remote Journal (CHGRMTJRN) command.

Journal management 335

• Use the *ATTACHED special value for the Starting journal receiver (STRJRNRCV)parameter on the
Change Remote Journal (CHGRMTJRN) command.

Attached receiver on source system only

The replication of journal entries starts with the journal receiver that is currently attached to the journal
on the source system.

If the corresponding journal receiver exists and is attached to the remote journal on the target system,
journal entries are replicated. Replication starts with the journal entries that follow the last journal entry
that currently exists in the attached journal receiver on the target system. Otherwise, if the corresponding
journal receiver exists but is not attached to the remote journal on the target system, no journal entries
can be replicated. The system returns an error.

If the corresponding journal receiver does not exist on the target system, the journal receiver is created
and attached to the remote journal on the target system. Journal entries then are replicated starting with
the first journal entry in the journal receiver that is currently attached to the journal on the source system.

If the journal on the source system does not have an attached journal receiver, journal entries cannot be
replicated, and the system returns an error. This is only possible in the case of a remote journal that is
associated with another remote journal.

To use this option specify one of the following:

• Use the *SRCSYS special value for the Starting journal receiver (STRJRNRCV) parameter on the Change
Remote Journal (CHGRMTJRN) command.

• Use attached receiver on source system only in the Activate dialog in System i Navigator.

Qualified journal receiver name

The replication of journal entries starts with the specified journal receiver name for the journal on the
source system.

If the corresponding journal receiver exists and is attached to the remote journal on the target system,
journal entries are replicated. Replication starts with the journal entries that follow the last journal entry
that currently exists in the attached journal receiver on the target system. Otherwise, if the corresponding
journal receiver exists but is not attached to the remote journal on the target system, no journal entries
can be replicated. The system returns an error.

If the corresponding journal receiver does not exist on the target system, the journal receiver is created
and attached to the remote journal on the target system. Journal entries then are replicated starting with
the first journal entry in the specified journal receiver.

If the journal on the source system is not associated with the specified journal receiver, no journal entries
can be replicated, and an error is returned.

The creation of any receiver on the target system by the change journal state processing is performed as
though the receiver was being saved and restored to the target system. Therefore, the ownership of the
receiver on a target system will follow the same rules as with the existing save and restore functions. If
the user profile which owns the receiver on the source system is on the target system, then that profile
will own the created receiver on the target system. If the user profile does not exist on the target system,
then the profile QDFTOWN will own the receiver on the target system.

Additionally, information such as the audit attributes, public authority, and primary group of the source
journal receiver at the time it was attached to the source journal will be incorporated into the created
journal receiver on the target system. If the owner, owner's authority, public authority, primary group, or
audit attributes of the source system's receiver are changed, those changes will be propagated to the
target system when the next receiver is attached to the target journal. Changes made to other private
authorities of the source system's receiver must be maintained separately on the target system.

If the library for the journal receiver resides in an ASP, the journal receiver will be created in that ASP. The
remote journal function does not support nonlibrary ASPs for the ASP of the remote journal receiver.

336 IBM i: Journal management

Related concepts
Journal receiver disk pool considerations
The receiver configuration is the disk pool the receiver resides in, and how the data for the receiver is
spread across the disk arms within that disk pool.

Factors that affect remote journal performance
There are two main performance objectives for the remote journal function. To provide a timely delivery of
journal entries to a target system and to minimize impacts to the journaling throughput on the source
system.

Even though both aspects are very important for both synchronous and asynchronous delivery modes,
each mode prioritizes the two in a different order. The top priority for synchronous delivery is to guarantee
that the remote journal is always up to date with the source journal. For asynchronous delivery mode, the
top priority is to minimize impacts to journaling throughput.

All performance considerations that are currently used for a local journal still apply and must continue to
be employed. The following are additional factors that may affect the performance of the remote journal
function. The factors are listed in the order of importance.

1. Transport method

Your choice of transport depends on the rate of the journal activity in your environment. Make special
consideration for using a fast transport method when you use synchronous delivery mode. Weigh the
response time impacts of the synchronous delivery mode in your environment against the
communications overhead of the transport method you choose.

When replicating journal entries over a long distance, the most important performance factors
regarding a communications transport method are the overall rated speed of the communications
resource and any existing traffic already using the communications resource.

For more information about transport methods, see the Networking topic.
2. Network problems

Problems in the communication network can result in retransmissions of data, these retransmissions
can affect remote journal performance. To see if retransmissions are occurring, use the Work with
TCP/IP Network Status (NETSTAT) command to check the number of retransmissions. Ideally,
you would see no retransmissions.

On the Work with TCP/IP Network Status menu, select the appropriate option for your remote
journal connections: option 3 for IPV4 connection status, or option 6 for IPV6 connection status. On
the IPV4 connection status panel, look for local ports with the value “rmtjour >” or 3777 or 3889.
They are the remote journal connections. Option 5 displays the connection-specific information. The
retransmission information is available on the resulting panels. On the IPV6 connection status panel,
look for local ports with the value "rmtjo>" or 3888 or 3889. If there are a significant number of
retransmissions, or if the count is changing, a communication network problem exists and could affect
your remote journal performance.

3. Number of remote journals that are being maintained

With respect to the job performing the journal entry deposit, the impact of the remote journal function
for asynchronously maintained journals is not noticeable. For synchronously maintained journals, the
impact depends on the slowest connection rather than number of remote journals.

The impact to the job performing the journal entry deposit for an asynchronously maintained journal is
significantly less than that for a synchronously maintained journal. Also, it is recommended that only
one synchronous remote journal be maintained for a given local journal.

With respect to the system performance impacts, the processor use typically increases by less than an
equal factor for each additional remote journal.

4. Arrival rate of journal entries that are being deposited on the local system

The higher the arrival rate of journal entries being deposited on the local system, the greater the
chance journaling throughput will increase for synchronous or asynchronous delivery. A high arrival
rate might cause asynchronous journaling to fall further behind.

Journal management 337

5. Batch versus interactive

In general, higher local and remote journal throughput can be maintained when many interactive jobs
generate the journal throughput rather than a single-threaded batch job. Journal caching can also
increase this throughput for batch processing regardless of the number of jobs.

6. Processor utilization on the source system

The higher the processor utilization of the source system, the greater the chance of affecting
journaling throughput for synchronous or asynchronous delivery. This may cause asynchronous
journaling to fall further behind.

7. Processor utilization on the target system

The higher the processor utilization of the target system, the greater the chance of affecting journaling
throughput for synchronous or asynchronous delivery. This may cause asynchronous journaling to fall
further behind.

8. The value set for the sending task priority when using the asynchronous delivery mode

The larger the value, the smaller effect the remote journal function will have on the system, but the
further the target system may lag behind the source system.

Performance considerations regarding the catch-up phase

Performance considerations regarding the catch-up phase when activating the remote journal function
include the following in order of importance:

1. Total number of bytes for all of the journal entries that need to be caught up

The larger the total size, the longer the catch-up phase will run.
2. Transport method

Select a transport method that is appropriate for your remote journaling environment.
3. Disk protection on the target system

At high data transfer rates, disk units with device parity protection in the ASP on the target system can
limit the performance of the catch-up phase, unless the target system has sufficient write cache
configured in the I/O adaptors servicing the disk units that house the journal receiver. One example of
this is when you use the OptiConnect for IBM i bus transport method. Having mirrored or unprotected
disk units in the ASP on the target system would eliminate this effect.

4. Processor utilization on the source system

The higher the processor utilization of the source system, the greater the chance of affecting the
performance for the catch-up phase.

5. Processor utilization on the target system

The higher the processor utilization of the target system, the greater the chance of affecting the
performance for the catch-up phase.

6. Delivery mode

The performance of the catch-up phase does not depend on the delivery mode that was specified,
synchronous or asynchronous.

Note: The catch-up processing that is performed by the remote journal function is the most efficient
method of replicating the journal entries with the remote journal function.

How the journal attributes affect the remote journal performance

Reducing the size of the journal receivers on the source system will reduce the communications overhead
of the remote journal function. Therefore, you may want to consider journaling *AFTER images and not
journaling open, close, or force entries.

Some of the most common attributes you may want to use for auditing journal entries are the following:

338 IBM i: Journal management

• Maximum receiver size - RCVSIZOPT(*MAXOPT1, *MAXOPT2, or *MAXOPT3)
• Remove internal entries - RCVSIZOPT(*RMVINTENT)
• Minimized entry specific data - MINENTDTA(*FILE) or *FLDBDY

Attributes such as the FIXLENDTA can also cause minimal performance improvements.

Refer to the Remote journal attributes and Remote journals and auxiliary storage links below for more
details about remote journal performance.

Related concepts
Journal management and system performance
Journal management prevents transactions from being lost if your system ends abnormally or has to be
recovered. Journal management writes changes to journaled objects immediately to the journal receiver
in auxiliary storage. Journaling increases the disk activity on your system and can have a noticeable affect
on system performance.
Methods to reduce the storage that journal receivers use
Reduce the size of journal entries by methods such as journaling after-images only, or specifying certain
journaling options including the Fixed Length Data (FIXLENDTA) option on the Create Journal
(CRTJRN) and Change Journal (CHGJRN) commands.
Remote journal attributes
When a remote journal is created by the add remote journal processing, the remote journal's initial
attributes are defined by the add request and the source journal.
Remote journals and auxiliary storage
Auxiliary storage will be required on both the source and target systems. The amount that is required will
be about the same on both systems unless remote journal filtering is used. If remote journal filtering is
used then the amount of storage used on the target system may be less than the storage required on the
source system. The storage reduction depends on how many journal entries meet the filter criteria and
are actually not sent to the target system.
Related information
Networking
AS/400 Remote Journal Function for High Availability and Data Replication

Remote journals and auxiliary storage
Auxiliary storage will be required on both the source and target systems. The amount that is required will
be about the same on both systems unless remote journal filtering is used. If remote journal filtering is
used then the amount of storage used on the target system may be less than the storage required on the
source system. The storage reduction depends on how many journal entries meet the filter criteria and
are actually not sent to the target system.

Anything that is done to minimize the amount of auxiliary storage required on the source system will
reduce the amount of auxiliary storage required on the target system. Additionally, the less auxiliary
storage used, or smaller the journal receivers are, the less data is transmitted on the communications
links. Therefore, the communications overhead will be reduced.

If the target system is not working for any extended period of time, enough auxiliary storage on the
source system is needed to keep the journal receivers online. This will be required until the target system
becomes available at which time the journal receivers can be replicated to the target and deleted from
the source.

See Methods to reduce the storage that journal receivers use for more information about ways to reduce
the auxiliary storage usage.

Related concepts
Methods to reduce the storage that journal receivers use

Journal management 339

http://www.redbooks.ibm.com/abstracts/sg245189.html?Open

Reduce the size of journal entries by methods such as journaling after-images only, or specifying certain
journaling options including the Fixed Length Data (FIXLENDTA) option on the Create Journal
(CRTJRN) and Change Journal (CHGJRN) commands.

Journal receiver disk pool considerations
The receiver configuration is the disk pool the receiver resides in, and how the data for the receiver is
spread across the disk arms within that disk pool.

A remote journal receiver has the same receiver configuration as its corresponding source receiver. When
possible, the remote journal receiver is configured to use the same number of disk units as the source
journal receiver. The remote journal receiver might be in a disk pool that has fewer disk units than the disk
pool that contains the journal receiver on the source system. If this imbalance occurs, the remote journal
receiver is configured to use the available disk units in the pool.

Note: If the remote journal receiver is in a disk pool with fewer disk arms than the source journal receiver,
then performance may be impacted. Therefore, we recommend that the number of disk arms is the same
on the source and remote journal receivers disk pools.

Likewise, the journal receiver on the source system may be in a disk pool that has fewer disk units than
the disk pool that contains the remote journal receiver. If this occurs, the remote journal receiver will not
take advantage of all possible disk units on the target system.

Independent disk pool considerations

The following considerations apply if the remote journal receiver is on an independent disk pool:

• If the local system has the journaling environment in a basic, system disk pool, or independent disk
pool, the remote journal can be in an independent disk pool. Likewise, if the local system has the
journaling environment in an independent disk pool, the remote journal can be in a basic, system disk
pool, or independent disk pool.

• The independent disk pool on the remote system must be varied on.
• The independent disk pool must be a library capable independent disk pool.
• The remote journal and remote journal receiver must be in the same disk pool group.

Determine the type of disk pool in which to place journal receivers has more information about journal
receivers and disk pools. The Independent disk pools topic has detailed information about independent
disk pools.

Related concepts
Determining the type of disk pool in which to place journal receivers
Use disk pools (auxiliary storage pool) to control which objects are allocated to which groups of disk units.
If you are journaling many active objects to the same journal, the journal receiver can become a
performance bottleneck. One way to minimize the performance impact of journaling is to put the journal
receiver in a separate disk pool. This also provides additional protection because your objects are on
different disk units from the journal receiver, which contains a copy of changes to the objects.
Independent disk pools

Remote journals and main storage
Providing greater amounts of main storage in the *BASE main storage pool on the source system might
improve remote journal performance. Improvements are most likely in environments with one or more
asynchronously maintained remote journals.

Providing greater amounts of main storage in the *BASE main storage pool on the target system will
improve remote journal performance. This is especially true in a remote journal network with a high
volume of activity. The additional storage will keep the number of page faults to a minimum, and reduce
the impacts to the target system.

340 IBM i: Journal management

Setting up remote journals
You can establish and maintain one remote journal that is associated with one local journal.

If you want to make a more complicated broadcast or cascade configuration, use the following steps for
each of the remote journals in the configuration.

Preparing to use remote journals
This topic outlines the basic steps for preparing to use remote journals.

Before establishing the remote journal environment, complete the following steps:

1. Determine the extent of your remote journal network or environment.

See Plan for remote journals.
2. Determine what library redirection, if any, you will be using for the remote journals and associated

journal receivers. Library redirection is the ability to allow the remote journal and associated journal
receivers to reside in different libraries on the target system from the corresponding source journal
and its associated journal receivers.

See Library redirection with remote journals.
3. Ensure that all selected libraries exist on the target systems. You will need to consider whether or not

library redirection will be used when adding the remote journal.
4. Create the appropriate local journal if it does not already exist.

See Set up journaling for more information about creating local journals.
5. Configure and activate the communications protocol you have chosen to use.

See the Supported communications protocols for remote journals link below for more information.

After you have configured the communications protocol, it must be active while you are using the
remote journal function. For example, if you are using the OptiConnect for IBM i bus transport method,
then the OptiConnect for IBM i subsystem, QSOC, must be active. QSOC must be active for both the
source system and the target system, and the appropriate controllers and devices must be varied on.
If you are using a SNA communications transport, vary on the appropriate line, controller, and devices
and ensure subsystem QCMN is active on both systems. If you are using TCP/IP or Sockets IPv6, you
must start TCP/IP by using the Start TCP/IP (STRTCP) command, including the distributed data
management (DDM) servers. If you are using data port, you must configure a cluster, make sure that
the cluster is active, and start the internet Daemon (INETD) server using the Start TCP/IP Server
(STRTCPSVR) command.

See the Networking topic and OptiConnect for IBM i for more detailed information.
6. If one does not already exist, create the appropriate relational database (RDB) directory entry that will

be used to define the communications protocol for the remote journal environment. When TCP
communications are being used to connect to an independent disk pool, the Relational Database
(RDB) entry to the independent disk pool must have the Relational database value set to the target
system's local RDB entry and the relational database alias value set to the independent disk pool's
name.

Related concepts
Planning for remote journals
This topic provide information for planning to set up remote journals.
Library redirection with remote journals
Library redirection provides a means for remote journals and any of their associated journal receivers to
optionally reside in differently named libraries on the target system from the corresponding local journal
and journal receivers on the local system.
Supported communications protocols for remote journals

Journal management 341

The remote journal function supports the following communications protocols for replicating the journal
entries to the remote systems:
Related tasks
Setting up journaling
This topic provides instructions on how to set up journals and journal receivers.
Related information
Networking
OptiConnect for i5/OS

Adding remote journals
This topic provides instructions for adding a remote journal.

The following is the input that you must provide to add a remote journal to a source journal:

• The journal name and library on the source system to which the remote journal is being added.
• The remote journal name and library on the target system that is being added.
• A relational database directory entry, which identifies the target system and other necessary

communications information.
• The type of remote journal to be added.
• Optionally, the journal or journal receiver library redirection.
• Optionally, the values for the journal message queue, text, delete receivers, and delete receiver delay

attributes to be applied to any newly created remote journal.
• Optionally, the filtering criteria to be used.

If a different target journal library or remote receiver library is specified, then those libraries will be used
to hold the remote journal and receivers on the target system. This is what is referred to as library
redirection.

To add a remote journal, take the following steps:

1. Using IBM Navigator for i connect to the system you want to use.
2. Expand Journal Management.
3. Select Set Database/Library to use with Journal Tasks and specify the database and library you

want to use.
4. Select Journals.
5. Select the journal you want to add a remote journal to and select the Add remote journal action.

Alternatively, you can use the Add Remote Journal (ADDRMTJRN) Command or the Add Remote Journal
(QjoAddRemoteJournal) API to add a remote journal.

The remote journal does not have an attached journal receiver after the add remote journal processing
completes. In addition, the journal state for the remote journal is set to *INACTIVE. A journal state of
*INACTIVE means that the remote journal is not ready to receive any journal entries from the journal on
the source system. During this time, journal entries can continue to be deposited or replicated into the
journal on the source system. However, no entries are replicated to the newly added remote journal until
you activate that remote journal. Refer to Activate the replication of journal entries to a remote journal for
information about activating a remote journal.

Related tasks
Activating the replication of journal entries to a remote journal
In order to activate the replication of journal entries to a given remote journal, the following must be true:
Related reference
Add Remote Journal (ADDRMTJRN) command
Add Remote Journal (QjoAddRemoteJournal) API

342 IBM i: Journal management

Removing remote journals
You must be aware whether library redirection is in effect for the remote journal when you remove a
remote journal. If it is in effect, any library name processing will substitute the redirected library name for
the library name that is used for the operation on the target system.

You can also use one of the following to remove a remote journal:

• IBM Navigator for i
• System i Navigator
• Remove Remote Journal (QjoRemoveRemoteJournal) API
• Remove Remote Journal (RMVRMTJRN) command

You must start Navigator for i, System i Navigator, the QjoRemoveRemoteJournal API, or the
RMVRMTJRN command on the source system for the journal on the source system identifying which
remote journal to remove.

When using any of these methods, the replication of journal entries to the remote journal to be removed
cannot be currently active. If the remote journal state is *ACTIVE, you must inactivate the replication of
journal entries to the remote journal.

The remote journal, and any associated journal receivers, are not deleted from the target system when
you remove a remote journal. Removing a remote journal does not initiate any processing on the target
system. Once the remote journal is removed from the journal on the source system, you are responsible
for deleting the remote journal and associated journal receivers, if desired.

You can add this remote journal back to the remote journal function definition for the journal on the
source system.

Once a remote journal is removed, the journal receivers are no longer protected from deletion.

The following is the input that you must provide to remove a remote journal on a target system:

• The journal name and library on the source system from which the remote journal is being removed.
• The remote journal name and library on the target system that is being removed.
• A relational database directory entry, which identifies the target system and other necessary

communications information.

To disassociate a remote journal on a target system from a journal on a source system with Navigator for
i, do the following steps:

1. Using Navigator for i connect to the system you want to use.
2. Expand Journal Management.
3. Select Set Database/Library to use with Journal Tasks and specify the database and library you

want to use.
4. Select Journals.
5. Select the journal from which you want to remove a remote journal and select the Remote journals

action.
6. On the Remote journals list, select the remote journal to remove and select the Remove action.
7. On the Remove remote journal dialog, click OK.

Related tasks
Inactivating the replication of journal entries to a remote journal
When you end replication of journal entries to a remote journal, it is recommended that the replication of
entries be ended from the source system whenever possible, rather than from the target system. Usually,
ending replication from the target system for a remote journal is only necessary when the source system
has failed, and the system has not ended the remote journal function.
Adding remote journals

Journal management 343

This topic provides instructions for adding a remote journal.
Related reference
Remove Remote Journal (QjoRemoveRemoteJournal) API
Remove Remote Journal (RMVRMTJRN) command

Activating and inactivating remote journals
Activating a remote journal means starting and then maintaining the replication of journal entries from a
source journal to a remote journal. Activating a remote journal always occurs from the source system.

Inactivating a remote journal means ending the replication of journal entries from the source journal to
the remote journal. Inactivating a remote journal can be performed from the source or target systems.
However, the preferred method is to inactivate from the source system.

If this is the first time the remote journal is being activated, activating a remote journal creates one or
more journal receivers on the target system. Activating the remote journal also establishes the connection
between the source and remote journal so that journal entry replication can begin.

If the remote journal has previously been activated, the system may or may not create additional
receivers on the target system. This would occur prior to establishing the connection between the source
and remote journal so that journal entry replication can resume.

You must be aware if library redirection is in effect for the remote journal when you activate or inactivate
a remote journal. If it is in effect, any library name processing will substitute the redirected library name
for the library name that is used for the operation on the target system.

Activating the replication of journal entries to a remote journal
In order to activate the replication of journal entries to a given remote journal, the following must be true:

• The remote journal that you wish to activate must not have a journal state of *ACTIVE. For instance, this
might seem to be a reasonable request if you wanted to simply change the delivery mode from
synchronous to asynchronous. However, the remote journal must be inactive before you can activate it.

• The remote journal that you wish to activate must not be actively replicating journal entries to other
remote journals, as in a cascade configuration. You must inactivate the remote journals that are
immediately downstream before activating the remote journal.

You need to provide the following input in order to activate the replication of journal entries to a remote
journal on a target system:

• The journal name and library on the source system from which journal entries will be replicated.
• The remote journal name and library on the target system to which journal entries will be replicated.
• A relational database directory entry, which identifies the target system and other necessary

communications information.
• The delivery mode to be used. Specify either synchronous or asynchronous delivery mode.
• The journal receiver from which to start journal entry replication which defines the starting point for

journal entry replication.
• If an asynchronous delivery mode was specified, then the sending task priority may also be specified.

If a value is not specified, the system selects a default priority, which is higher than what the user can
specify for this value. Setting this value too large may cause a greater journal entry latency or lag.

• If synchronous delivery mode was specified, then a synchronous sending time-out value may be
specified. If a value is not specified, then the system uses 60 seconds.

• Optionally, if validity checking should be enabled.
• Optionally, if the remote journal should try to automatically restart if the connection ends.
• Optionally, remote journal filtering criteria to be used for the remote journal.

To activate the remote journal, proceed as follows:

1. With IBM Navigator for i connect to the system you want to use.

344 IBM i: Journal management

2. Expand Journal Management.
3. Select Set Database/Library to use with Journal Tasks and specify the database and library that

contains the journal.
4. Select Journals.
5. Select the journal, and select the Remote journals action.
6. On the Remote journals list, select the remote journal from the list of remote journals, and then select

the Activate action to activate the selected remote journal.

You can also activate the replication of journal entries from a journal on a source system to a remote
journal on a target system by using one of the following methods:

• The Change Journal State (QjoChangeJournalState) API
• The Change Remote Journal (CHGRMTJRN) command

Both the QjoChangeJournalState API and the CHGRMTJRN command must be issued from the source
system.

The activation of the remote journal can be a long running process. This may occur if there are a large
number of journal receivers and entries that initially must be caught-up in the remote journal.

Catch-up phase for remote journals has more detailed information about the catch-up phase.

For additional insight into activating remote journals see IBM Redbooks technote Journaling - Common

Remote Journal Questions

Related concepts
Synchronous and asynchronous delivery mode for remote journals
The terms asynchronously maintained and synchronously maintained both describe a remote journal
function delivery mode for journal entry replication.
Where the replication of journal entries start
When you specify a journal receiver for remote journaling, you are specifying where the replication of
journal entries will start.
Related reference
Change Journal State (QjoChangeJournalState) API
Change Remote Journal (CHGRMTJRN) command

Catch-up phase for remote journals
Catch-up refers to the process of replicating journal entries that existed in the journal receivers of the
source journal before the remote journal was activated.

The catch-up phase is the most efficient method of replicating journal entries to a remote journal. Control
does not return to the requester of the activation of the remote journal until this catch-up processing has
completed. You will want to consider this when deciding the starting point for journal entry replication.

Catch-up phase is initiated after the following actions occur:

• A request has been issued on the source system to activate a remote journal.
• The system has determined which journal receivers and journal entries to replicate to the target system.

There is a difference between the catch-up phase processing and the run-time synchronous or
asynchronous processing. Catch-up processing replicates the following to the target system:

• Those journal entries that already exist in the journal on the source system.
• Those journal entries that are deposited or replicated to the source journal during the catch-up

processing.

Run-time synchronous or asynchronous processing occurs as part of the actual deposit or replication of
journal entries into the currently attached receiver on the source system. While in the catch-up phase, the
journal delivery mode will be either asynchronous pending (*ASYNCPEND) or synchronous pending
(*SYNCPEND), depending on the delivery mode that was specified.

Journal management 345

http://www.redbooks.ibm.com/abstracts/tips0724.html?Open
http://www.redbooks.ibm.com/abstracts/tips0724.html?Open

The catch-up phase is the most efficient method of transporting journal entries to a remote journal in
bulk.

The following is a high-level overview of the catch-up phase and related processing:

1. The starting point in the journal receiver on the source system is determined.
2. If necessary, the system creates a receiver on the target system and attaches it to the remote journal.
3. The system replicates or completes replication for all of the journal entries that are contained in the

receiver on the source system to the corresponding receiver on the target system.
4. If the receiver on the source system is the currently attached receiver, the system completes the

catch-up processing by transitioning into synchronous or asynchronous remote journal delivery mode.
Catch-up phase is complete, and control returns to the requester of the remote journal activation.

The remote journal will now be maintained synchronously or asynchronously as additional journal
entries are deposited, or replicated, into the attached receiver on the source system.

5. If the receiver on the source system is not the currently attached receiver for the journal on the source
system, one of the following steps are performed:

• If there is a next receiver within the source journal's chain of receivers, go back to step 2. The
system replicates journal entries by starting with the first entry in the next receiver.

• If there is no next receiver, (which indicates that a receiver chain break exists), the catch-up phase is
complete. Processing does not transition into synchronous or asynchronous mode and the change
journal state processing ends. A final escape message is sent indicating that processing has ended.

After the system transitions a given remote journal to either the synchronous or asynchronous remote
journal delivery mode, the system continues to maintain that mode. This continues until the remote
journal function is inactivated for that remote journal by using the Change Journal State
(QjoChangeJournalState) API or Change Remote Journal (CHGRMTJRN) command, or a failure occurs.

The replication of journal entries to an individual remote journal is performed independently from the
replication of journal entries to any other defined remote journal. This is important if a given target system
fails or if communications to a target system fails from a particular source system. If either one occurs,
the remote journal function will end to those affected remote journals that reside on that target system
and are maintained from the source system. All other remote journals that are being maintained from the
source system will continue to function normally. For example, a source journal could have two remote
journals on two different systems. In this situation, if the replication of entries from the source journal to
the second remote journal ended, the replication of entries from the source journal to the first remote
journal would not necessarily end. If a given remote journal has any type of failure, the system ends the
remote journal function. Appropriate messages are signaled to either system or both systems involved,
but the remote journal function for other remote journals would not be affected. Likewise, the
communications line speed for a given asynchronously maintained remote journal will not affect the
speed for another asynchronously maintained remote journal using a different physical transport.

Related concepts
Where the replication of journal entries start
When you specify a journal receiver for remote journaling, you are specifying where the replication of
journal entries will start.
Journal receiver chains
Journal receivers that are associated with a journal (that is presently or previously attached to the journal)
are linked in one or more receiver chains. Each journal receiver, except the first one, has a previous
receiver that was detached when the current receiver was attached. Each journal receiver, except the one
that is currently attached, also has a next receiver.
Working with remote journal error messages
Several different error conditions can occur when the remote journal function is active.
Related tasks
Inactivating the replication of journal entries to a remote journal
When you end replication of journal entries to a remote journal, it is recommended that the replication of
entries be ended from the source system whenever possible, rather than from the target system. Usually,

346 IBM i: Journal management

ending replication from the target system for a remote journal is only necessary when the source system
has failed, and the system has not ended the remote journal function.

Relational database considerations for remote journal state
Once a remote journal is activated, the remote journal function will work with the communications
configuration defined by the specified relational database (RDB) entry as long as the remote journal is
active. However, the information will be taken from the RDB at the point in time when the remote journal
was activated. Therefore, even if the definition of the RDB entry is changed while a remote journal has a
journal state of *ACTIVE, none of those changes will take effect immediately.

If the remote journal is inactivated, and then activated again, the new RDB entry definition will take effect.
When you view the remote journal information, the RDB entry information that is displayed represents the
state of the RDB entry information when the remote journal was last activated.

Related tasks
Displaying remote journal function information
When you are working with the remote journal function, you will want to be able to view the remote
journal network. You may also want to view the various attributes, journal states, or delivery modes. The
status of the remote journal environment is also available to display.

Automatically restarting remote journal
Remote journaling is dependent on communications networks staying active. But, the reality is that
remote journal connections can be dropped for various reasons. To help limit the effect of
communications outages, remote journaling has an automatic restart capability. This restart capability is
indicated when activating remote journaling.

During the activation of a remote journal connection, you can choose to use the automatic restart
capability or not. When you choose to use the automatic restart capability, you specify the number of
restart attempts to be made, and the amount of time to wait between each restart attempt.

When remote journaling ends for a recoverable error, a job is started in the QSYSWRK subsystem for the
restart attempts. If the first attempt to restart fails, message CPI7027 is sent to QSYSOPR indicating
when the next restart attempt will be made. If all restart attempts fail, or one of them fails for an
unrecoverable error then message CPI7028 is sent.

These are the recoverable errors that will trigger an automatic restart:

These reason codes for message CPF70D5 (Remote journal environment ended for journal) indicate a
recoverable error that will trigger an automatic restart:

4 - Communication line error or target system error.
5 - Target system error.
7 - Storage limit exceeded for system, user or group profile.
11 - Time out waiting for a response from the target system.
12 - Asynchronous remote journaling could not keep up.
21 - Source system could not detect the target system.
28 - Communication validity check failed.

These reason codes for message CPF70C5 (Remote journal environment ended for journal) indicate a
recoverable error that will trigger an automatic restart:
48 - Data port services error.
49 - Node identifier &11 is unavailable for data port services.
50 - Connections down for data port services.
52 - Destination internet address unreachable for data port services.
53 - Hardware error for data port services.
54 - Insufficient memory to perform data port services request.
55 - Client closed for data port services.

Inactivating the replication of journal entries to a remote journal
When you end replication of journal entries to a remote journal, it is recommended that the replication of
entries be ended from the source system whenever possible, rather than from the target system. Usually,

Journal management 347

ending replication from the target system for a remote journal is only necessary when the source system
has failed, and the system has not ended the remote journal function.

If you are inactivating an asynchronously maintained remote journal, you can request that the remote
journal function be ended immediately or in a controlled fashion. For an immediate end, any journal
entries which have already been queued for replication will not be sent to the remote journal. For a
controlled end, any journal entries which have already been queued for replication will be sent to the
remote journal. When all queued entries have been sent to the target system, the system sends message
CPF70D3 to the journal message queue. The message indicates that the remote journal function has been
ended. If you are inactivating a synchronously maintained journal, the remote journal function is ended
immediately, regardless of whether an immediate or controlled end was requested. Similarly, if the
remote journal is in the catch-up phase of processing, the remote journal function is ended immediately.
This is also regardless of whether an immediate or controlled end was requested.

To inactivate the replication of journal entries proceed as follows:

1. With IBM Navigator for i connect to the system you want to use.
2. Expand Journal Management.
3. Select Set Database/Library to use with Journal Tasks and specify the database and library that

contains the journal.
4. Select Journals.
5. Select the journal, and select the Remote Journals action.
6. On the Remote Journals list, select the remote journal in the list of remote journals, and then select

the Deactivate action to inactivate the selected remote journal.
7. Click OK on the Deactivate dialog.

You can also use the Change Journal State (QjoChangeJournalState) API and Change Remote Journal
(CHGRMTJRN) command to inactivate the replication of journal entries to a remote journal. For this
purpose, the API can be initiated from either the source system or the target system. The CHGRMTJRN
command can only be initiated from the source system. You can also use the Change Journal (CHGJRN)
command on the target system to inactivate the remote journal.

Related reference
Change Journal State (QjoChangeJournalState) API
Change Remote Journal (CHGRMTJRN) command
Change Journal (CHGJRN) command

Managing remote journals
Managing the remote journal function requires basic tasks such as:

• Keeping records of your remote journal network.
• Evaluating the impact on the remote journal network as new applications are added or the system

workload grows.
• Considering the ramifications of journal receivers on two systems which require regular save and delete

processing.
• Considering the save and restore implications of the remote journal network.

The following information describes the management tasks for remote journals:

Keeping records of your remote journal network
Always have a current list of the remote journals that are associated with local journals, and their
associated communications information.

For each journal which has remote journals associated with it, use the following command: WRKJRNA
JRN(library-name/journal-name) OUTPUT(*PRINT).

To get only the remote journal information of a journal, use WRKJNA with DETAIL(*RMTJRN) as an added
parameter.

348 IBM i: Journal management

Alternatively, you can use the Retrieve Journal Information (QjoRetrieveJournalInformation) API to
retrieve the information and place it in a file.

To get the related relational database information, use the following command: WRKRDBDIRE
RDB(*ALL) OUTPUT(*PRINT).

Remember to do this for all cascaded remote journals as well, not just the local (or primary) system.

Related reference
Retrieve Journal Information (QjoRetrieveJournalInformation) API

Displaying remote journal function information
When you are working with the remote journal function, you will want to be able to view the remote
journal network. You may also want to view the various attributes, journal states, or delivery modes. The
status of the remote journal environment is also available to display.

To View the remote journal details from the source side, proceed as follows:

1. With IBM Navigator for i, connect to the system that contains the local journal.
2. Expand Journal Management.
3. Select Set Database/Library to use with Journal Tasks and specify the database and library that

contains the local journal.
4. Select Journals.
5. Select the journal, and then select the Remote Journals action.
6. On the Remote Journals list, select the remote journal, and then select the Properties action to view

the details about the remote journal connection

To view the remote journal details from the target side, proceed as follows:

1. With Navigator for i, connect to the system that contains the remote journal.
2. Expand Journal Management.
3. Select Set Database/Library to use with Journal Tasks and specify the database and library that

contains the remote journal.
4. Select Journals.
5. Select the remote journal, and select the Properties action.

The Work with Journal Attributes (WRKJRNA) command display includes the list of all remote
journals that are associated with a given journal. When looking at a specific journal, you can see
information about the journal's source journal, if any. Additionally, you can see all remote journals which
are immediately downstream from the specified journal. If those remote journals are cascaded to other
remote journals, you will not be able to see any cascaded remote journal information. To see that
information, you must invoke the WRKJRNA command for that remote journal on its own system. This
information is also available through the Retrieve Journal Information
(QjoRetrieveJournalInformation) API.

The remote journal information available with these interfaces includes latency information. From the
source side, you can see how far the source system is behind in sending entries in an asynchronous
remote journal environment. You can also see when remote journal was last activated and any filtering
criteria being used. From the target side, you can see when remote journal was last activated, an estimate
of how many seconds behind the target system is, and any filtering criteria that is being used.

Additionally, the Display Journal Receiver Attributes (DSPJRNRCVA) command display
provides additional information about the remote journal characteristics of the journal receivers. The
DSPJRNRCVA command also has an API counterpart to allow program retrieval of the journal receiver
information, the Retrieve Journal Receiver Information
(QjoRtvJrnReceiverInformation) API. The IBM Navigator for i equivalent information is available
by selecting the Properties action for a journal receiver.

Journal management 349

Evaluating how system changes affect your remote journal network
After you have initially established your remote journal network, you need to keep up with changes that
occur on the system.

If the amount of work that is going to the journals which you are replicating increases, you may need to
consider upgrading the communications method.

The traffic rate for work other than the remote journal function may increase on a communications
method that is shared. If this occurs, you may need to consider separating the various pieces of
communications traffic so that the remote journal function is not impaired. This is especially important if
you are using the synchronous delivery mode.

An application that is being protected may become more critical to your business, where any time that the
system is not working is considered disastrous. If this occurs, you may need to consider upgrading that
application's remote journal to using the synchronous delivery mode so that no journal entries are lost.

Getting information about remote journal entries
Working with the journal entries in a remote journal is essentially the same as working with the journal
entries in a local journal. But there are exceptions.

Note: The system name, date, and time stamp in the journal entries are based on the original local
journal. They are not based on the system of the remote journal where the entries are viewed.

Related concepts
Working with journal entry information
This topic provides ways that you can display, retrieve, and receive journal entries.
Related tasks
Displaying information for journaled objects, journals, and receivers
IBM Navigator for i, Control Language commands, and APIs provide several ways for you to display
information about journaled objects, journals, and journal receivers.

File identifier considerations for working with integrated file system entries
If you plan to replay the integrated file system operations in the remote journal to objects on the target
system, and if you primed that target system with objects that were restored from the source system,
then some additional considerations apply to replaying those journal entries.

Integrated file system journal entries on remote journals are only identified by the file identifier in the
object name field. They are not identified by path name. When you restore an integrated file system
object on a remote system, the remote system does not maintain the same file identifier that was used on
the source system. It assigns that object a new file ID. However, the journal entries in the remote journal
receiver refer to that object's original file ID. Therefore when you replay the journal entries you cannot use
the file ID on the remote journal to find the path of the object. That file ID will either not exist or be the file
ID for the wrong object.

To prevent potential problems, it is recommended that you create a table that maps the old and new file
IDs with the object's path. The map can be something like the following table:

Object path Source file ID Target file ID

/myFolder/subFolder/MyObject 123456... 789123...

/myNextFolder/anotherFolder/MyObject2 654321... 321987...

Collecting the information for mapping file IDs

You can use different methods to determine the file IDs:

• Use local journaling on the target system where you restore the object.
• Use the object's path to find its file ID with the Get Attributes (Qp0lGetAttr()) API on the source system.

350 IBM i: Journal management

• Use the object's file ID to find its path with the Get Path Name of Object from Its File ID
(Qp0lGetPathFromFileID()) API on the source system.

Using local journaling on the target system

If an object is journaled when you restore it to the target system, a B FR journal entry is deposited on the
target system's local journal receiver. The entry-specific data of the B FR journal entry contains the
following:

• Media file identifier--the file ID of the object on the media. This file ID is the same as the object's file ID
on the source system.

• Restored file identifier--the object's new file ID after it is restored to the target system.
• Restored over file identifier--the file ID of the object that was restored over.

If you are concerned about the demand that journaling puts on the remote system's resources and
storage space, you can put the journal in *STANDBY state. Even though the journal is in standby state, the
system still deposits B FR entries.

Using the object's path to find its file ID with the Qp0lGetAttr() API

On the source side, if you know the object's path but do not know its file ID, you can use the Qp0lGetAttr()
API to get the file ID. This is especially helpful if you do not want to use journaling on the remote system.
You then need to send that information over to the target system to update the table which must exist on
the target system.

Using the object's file ID to find its path with the Qp0lGetPathFromFileID() API

On the source side, if you know the object's file ID, but do not know it's path, you can find it using the
Qp0lGetPathFromFileID() API. You can then use this path to replay the journal entries on the target
system, assuming that the path on the target system is the same as the path on the source system. This
API will only return an absolute path name of the object. If the object has more than one path name, the
API only returns one path. You then need to send that information over to the target system to build the
table which must exist on the target system.

Maintaining the table as the replicator job applies journal entries

Once you have the table created, you must keep it updated. One way to keep the table updated is to
update the table as the replicator job applies journal entries. On the target system, when the replicator
job applies entries to do operations such as creating objects, adding links, or removing links, the journal
entry information in these entries has the path name and file ID in it at that time. As the operation is
replayed you can use this information to build the table on the target system.

Related concepts
Layouts for variable-length portion of journal entries
The following tables contain the variable-length portion of the layouts for journal entries.
Related tasks
Changing the state of local journals
Local journals can be in one of two states, active or standby. When the journal state of a local journal is
active, journal entries are allowed to be deposited to the journal receiver.
Related reference
Get Attributes (Qp0lGetAttr()) API
Get Path Name of Object from Its File ID (Qp0lGetPathFromFileID()) API

Confirmed and unconfirmed journal entries
For a local journal, all entries are confirmed entries. There is no concept of unconfirmed entries.

For a remote journal that is maintained asynchronously, all entries are confirmed entries. For a remote
journal that is maintained synchronously, there are both confirmed and unconfirmed entries. Unconfirmed
entries will only become important if you are using the remote journal support for a hot-backup or data

Journal management 351

replication environment, and the source system has a failure such that the target system will take over
processing.

Confirmed journal entries are journal entries replicated to a target system, and the state of the I/O to
auxiliary storage for the same journal entries on the primary system is known to have completed.

Unconfirmed journal entries are entries replicated to a target system, but the state of the I/O to auxiliary
storage for the same journal entries on the primary system is not known. Unconfirmed entries only pertain
to remote journals that are maintained synchronously. The remote I/O to the remote journal is overlapped
with the local I/O to the local journal for better performance. Such journal entries on the target system are
held in the data portion of the journal receiver. However, the journal entries are not officially included with
the remainder of the journal entries until the confirmation of the I/O for the same entries is received from
the primary system. For performance reasons, confirmation of these entries is not typically sent to the
target system until some later delivery of journal data to the target system.

While the journal entries are unconfirmed on a target system, the entries typically cannot be retrieved
from the remote journal. You can retrieve the journal entries by using the INCENT(*ALL) parameter on the
following commands:

• Display Journal (DSPJRN)
• Retrieve Journal Entry (RTVJRNE)
• Receive Journal Entry (RCVJRNE)

You can also retrieve the journal entries by specifying *ALL for the include entries key for the Retrieve
Journal Entries (QjoRetrieveJournalEntries) API. The INCENT(*ALL) parameter, or include entries key
specification of *ALL, requests that all confirmed and unconfirmed entries are included. This means that
for synchronous remote journal function, the last few journal entries are not immediately retrievable from
the remote journal by using the default command invocations. This is true even though all journal entries
physically reside in both the local journal and the remote journal. This is done so that application
programs do not make decisions on the target system by using journal entries that may not end up being
deposited into the local journal. This is because those journal entries would not cause a change to the
original data.

With respect to a hot-backup application apply, in most circumstances only the confirmed journal entries
in the remote journal are of interest. In the data replication environment, a hot-backup application apply
would probably never want to apply any unconfirmed journal changes. This is because any subsequent
activation of the remote journal will ensure that the journal entries in the remote journal will match the
journal entries in the source journal. However, as described in Scenario: Recovery for remote journaling,
knowledge of the unconfirmed journal entries is essential during the switch-over and switch-back
processing for a hot-backup environment.

When a remote journal is inactivated, all unconfirmed entries are removed from the remote journal. It is
important that those entries are retrieved prior to the remote journal being inactivated, if those entries are
desired for additional processing on the backup system. The message that is sent to the journal message
queue when the remote journal is inactivated by the system will indicate if the remote journal has any
unconfirmed journal entries.

Related concepts
Synchronous and asynchronous delivery mode for remote journals
The terms asynchronously maintained and synchronously maintained both describe a remote journal
function delivery mode for journal entry replication.
Working with remote journal error messages
Several different error conditions can occur when the remote journal function is active.
Related reference
Retrieve Journal Entries (QjoRetrieveJournalEntries) API
Related information
Scenario: Recovery for remote journaling

352 IBM i: Journal management

This scenario describes a hot-backup environment in which the local system, JKLINT fails. It is necessary
to restore the local system, and synchronize it with the remote system, JKLINT2.

Journal entries from a remote journal with library redirection
All journal entries that are retrieved from a remote journal will have the object names as they exist on the
local system.

The following journal entries will show the name of the journal receiver as it was on the local system even
if the entry is displayed on a remote system. This is because these entries really apply to the version of
the journal receiver that existed on the local system.

• J PR - Previous Receiver entry
• J NR - Next Receiver entry
• J RD - Receiver Deleted
• J RR - Receiver Restored
• J RS - Receiver Saved
• J RF - Receiver Saved with storage Freed
• Object saved entries - See the Journal entry information finder for a list of the possible entry types.
• Journal changes applied entries - See the Journal code finder for a list of the possible entry types.
• Journal changes removed entries - See the Journal code finder for a list of the possible entry types.

Related information
Journal entry information finder

Retrieving journal entries from a remote journal during the catch-up phase
During the catch-up phase, journal entries that have been replicated to the target system can be retrieved
from the remote journal.

You can activate and inactivate the remote journal function while concurrently running the following
commands to view journal entries on the target system:

• Display Journal (DSPJRN)
• Retrieve Journal Entry (RTVJRNE)
• Receive Journal Entry (RCVJRNE)
• Retrieve Journal Entries (QjoRetrieveJournalEntries) API

When the remote journal is in the process of being caught-up from the attached journal receiver on the
source system, two things can happen with respect to objects and their names in the journal entries.

• If journaling is started for any objects on the source system, the object name that is given on the target
system in the start journal entry may be *UNKNOWN.

• If any move or rename operations take place, the last object name that was known before the catch-up
phase started is what will be given. The actual new name may not be available until the catch-up phase
is complete.

If you are using the DSPJRN or RTVJRNE command, additional informational messages will indicate that
this situation occurred. If you are using the RCVJRNE command, additional information is provided on the
exit program interface to help distinguish these situations as well. If you are using the
QjoRetrieveJournalEntries API, additional information is provided in the returned data to help distinguish
these situations. When necessary, the system attempts to minimize the possibility of showing these
inconsistencies by temporarily delaying the processing performed by these commands.

Once the catch-up phase is completed, these inconsistencies will be resolved, and complete information
will again be available.

Related concepts
Activating and inactivating remote journals

Journal management 353

Activating a remote journal means starting and then maintaining the replication of journal entries from a
source journal to a remote journal. Activating a remote journal always occurs from the source system.
Receiving journal entries in an exit program
You can write a program to receive journal entries as they are written to the journal receiver.
Related reference
Display Journal (DSPJRN) command
Retrieve Journal Entry (RTVJRNE) command
Receive Journal Entry (RCVJRNE) command
Retrieve Journal Entries (QjoRetrieveJournalEntries) API

Remote journal considerations for retrieving journal entries when using commitment control
Special performance related processing is done by the system when depositing entries that are
associated with commitment control transactions to a local journal.

When a job deposits a journal entry that is not associated with a commitment control transaction, that job
waits for the local journal I/O to auxiliary storage to complete. After completion, control is given back to
the application. A different technique is used for those journal entries that are associated with a
commitment control transaction which results in the application being given control back before the local
journal I/O is complete. This special processing has some ramifications when you retrieve journal entries
from a remote journal.

For journal entries deposited related to a commitment control transaction, a job only waits for the local
journal I/O to complete when the following journal entries are being deposited into the local journal:

• Journal code C, journal entry type CM (Commit)
• Journal code C, journal entry type RB (Rollback)

For remote journals, those journal entries that the job that is making the deposit does not wait for are not
immediately replicated or scheduled to be replicated to the remote journal. Prior to the CM (Commit) or
RB (Rollback) entry being deposited, there is no guarantee as to when the journal entries for open
commitment control transactions will be retrievable from the remote journal.

After the commit or rollback operation is complete for a particular commitment control transaction, all
journal entries associated with that transaction are immediately retrievable from an asynchronously
maintained remote journal. However, there may be some journal entry delivery latency due to the
transport method that is being used.

For a synchronously maintained remote journal, all journal entries associated with the commitment
control transaction are assured to be retrievable after the CM (Commit) or RB (Rollback) entry is
deposited.

Interspersed local journal I/O, for journal entries not associated with a commitment control transaction,
can also affect when the journal entries associated with a commitment control transaction can be
retrieved from the remote journal. In this I/O a job actually waits for the local journal I/O to complete.
This interspersed local journal I/O will also cause the journal entries related to the commitment control
transaction to be replicated to the remote journal. Once in the remote journal, and when later remote
journal I/O makes them confirmed, the journal entries that are related to the commitment control
transaction are retrievable.

Note: These considerations also apply if you generated entries that use the Send Journal Entry
(SNDJRNE) command or Send Journal Entry (QJOSJRNE) API. If the application or user never requests to
force these user generated entries, they will only be replicated to the remote journal when some other
action forces the journal entries. Therefore, you will wish to periodically specify FORCE(*YES) when using
these send journal entry functions.

These considerations also apply to any database physical file open or close journal entries; or directory or
stream file open, close, or force entries.

Related concepts
Commitment control

354 IBM i: Journal management

Related reference
Send Journal Entry (SNDJRNE) command
Send Journal Entry (QJOSJRNE) API

Remote journal considerations for retrieving journal entries when using journal caching
When you use journal caching for the local journal, the system performs special performance-related
processing when it deposits journal entries.

With journal caching, the system waits longer to write journal entries to disk, leading to fewer but larger
disk writes. This action helps performance, but also delays the journal entries from being sent to the
target system, even if you are using synchronous remote journaling.

For more information about journal caching see IBM Redbooks Technote: Journal Caching: Understanding

the Risk of Data Loss

Journal receiver management with remote journals
As with local journals, regularly save and delete your journal receivers to minimize the amount of online
auxiliary storage which is used by the journal receivers.

The swapping of journal receivers for a remote journal is driven by the swapping of journal receivers on
the source journal.

If you plan to move the responsibility for storing journal receiver data from the primary system to the
remote system, you can elect to quickly delete journal receivers from the primary system after they have
been replicated to the backup system with automatic deletion of journal receivers. On your backup
system, you can then select to not use the automatic deletion of journal receivers on the remote journal,
and manage the receiver save processing as you did before. Remember that once you add a remote
journal, you cannot delete the source journal receiver until it has been replicated to all associated remote
journals. Any journal receivers that are attached subsequently are also protected. The protection is
eliminated when you remove the remote journal. If you have cascaded remote journals, consider using
automatic deletion of journal receivers on the local journal, and on the lowest level remote journal. You
would then not use automatic deletion of journal receivers on the cascaded remote journal since you plan
to do your save processing on that system.

The Delete Journal Receiver exit point, QIBM_QJO_DLT_JRNRCV can be of assistance as well. For
example, you might want to add an exit program to QIBM_QJO_DLT_JRNRCV which verifies that the
journal receiver is no longer needed for any hot-backup application apply processing before it can be
deleted. Refer to Delete journal receivers for information about this exit program.

Related concepts
Swapping journal receiver operations with remote journals
To swap journal receivers on a remote journal, perform a swap journal receiver operation on the source
system to attach a new receiver to a local journal. When this happens, the remote journal function
automatically attaches a new receiver to the remote journals that are currently being maintained
synchronously or asynchronously.
Automatic deletion of journal receivers
If you choose system journal receiver management, you can also have the system delete journal receivers
that are no longer needed for recovery. You can only specify this if you are using system journal receiver
management.
Related tasks
Deleting journal receivers
Journal receivers can quickly use a lot of auxiliary storage space. Therefore an important journal
management task is to delete journal receivers after you no longer need them.

Swapping journal receiver operations with remote journals
To swap journal receivers on a remote journal, perform a swap journal receiver operation on the source
system to attach a new receiver to a local journal. When this happens, the remote journal function

Journal management 355

http://www.redbooks.ibm.com/abstracts/tips0627.html?Open
http://www.redbooks.ibm.com/abstracts/tips0627.html?Open

automatically attaches a new receiver to the remote journals that are currently being maintained
synchronously or asynchronously.

If the journal sequence numbers were reset as part of the swap journal receiver operation performed for
the local journal, the remote journal function will also reset the journal sequence number for each remote
journal. This keeps the journal sequence numbers synchronized between the local journal and the remote
journal. For remote journals that are being synchronously maintained, a coordinated swap journal receiver
operation is performed for the local journal on the source system and the remote journals on the target
systems. For asynchronously maintained remote journals, the new receiver is attached when the target
system receives the journal entry with journal code 'J' and entry type 'PR' (previous receiver).

If the swap journal receiver operation fails on the target system, the remote journal function ends for that
remote journal, and processing continues on the source system. The system sends a message to the
journal message queue that indicates that the remote journal function failed. When applicable, the
system sends remote journal failure type messages to the related journal message queues on both the
affected source and target systems.

You cannot initiate a swap journal receiver operation to attach a new receiver directly for a remote
journal. New journal receivers are always attached to the remote journal by the remote journal function as
new receivers are attached to the local journal. However, you can perform a change journal operation on a
remote journal to change several other attributes for the remote journal such as the journal message
queue or delete receivers value.

A swap journal receiver operation to attach a new receiver to a local journal that has an associated remote
journal in the catch-up phase can be performed. This is regardless of whether the remote journal is
currently being caught-up from a detached or the currently attached receiver on the local system. The
catch-up phase of processing will not transition into synchronous or asynchronous delivery mode until the
end of the currently attached receiver for the local journal is reached.

Related concepts
Working with remote journal error messages
Several different error conditions can occur when the remote journal function is active.
Related tasks
Swapping journal receivers
An important task for journal management is to swap journal receivers. You typically swap journal
receivers when they reach their storage threshold. You can swap journal receivers either with IBM
Navigator for i or with the Change Journal (CHGJRN) command. If you use system journal-receiver
management, the system changes journal receivers for you.

Considerations for save and restore operations with remote journals
The following information describes general considerations for save and restore operations with remote
journals:

• Rules for saving and restoring journals
• Rules for saving and restoring journal receivers
• File identifier considerations for working with integrated file system entries
• Considerations for restoring journaled objects
• Considerations for restoring objects saved with SAVSTG

Related concepts
File identifier considerations for working with integrated file system entries

356 IBM i: Journal management

If you plan to replay the integrated file system operations in the remote journal to objects on the target
system, and if you primed that target system with objects that were restored from the source system,
then some additional considerations apply to replaying those journal entries.

Rules for saving and restoring journals
It is recommended that you save the remote journal network after the addition of any and all remote
journals that will be associated with the journal. This includes saving the local journal and any associated
remote journals, as well as the journal receivers that are associated with the local journal.

Follow the basic save and restore rules for journals that are listed here:

• A saved local journal is always restored as a local journal.
• A saved remote journal is always restored as a remote journal.
• As with all prior save and restore support for journals, the support will not allow a restore-over

operation for a journal. This is true for both local and remote journals.
• When restored, a local or remote journal is always restored to the library from which it was saved. For a

local journal, this library is referred to as the original journal library. For a remote journal, this library is
referred to as the redirected journal library.

For a remote journal, library redirection may not have been specified when adding the remote journal to
the local journal's definition. If this occurs, then the redirected journal library name is the same name as
the original journal library name.

Note: This is always true except in the case where the journal was saved from library QRCL. (The journal
could reside in library QRCL due to prior Reclaim Storage processing.) In that case, the RSTLIB
parameter must be specified on the restore request, and you must specify the library where the journal
originally resided. For a local journal, this is existing support and is not new. For a local journal, the
library that must be explicitly specified is the original library.

This support logically extends to remote journals. For a remote journal, the redirected library must be
explicitly specified on the RSTLIB parameter of the restore request.

• If remote journals are associated with a journal when a journal is saved, the information that is related
to the added remote journals is also saved.

When the journal is restored, the information that is saved about its remote journals is also restored if
restored to the same system with the same name. If the system is different or the name of the system
was changed since the save, the remote journal information will not be restored when the journal is
restored. This information is included as part of that journal's definition. This is true whether the journal
being saved is a local or a remote journal. When restored, the restored journal's definition will only
include the saved, immediately downstream remote journal definitions.

Note: None of the actual downstream remote journals are actually verified as part of the restore
operation. Any necessary validation of the remote journal information occurs when you activate that
particular remote journal by using the Change Journal State (QjoChangeJournalState) API or Change
Remote Journal (CHGRMTJRN) command.

• Local journals are restored to the same state in which they are saved.

Related reference
Change Journal State (QjoChangeJournalState) API
Change Remote Journal (CHGRMTJRN) command

Rules for saving and restoring journal receivers
The restore relationships for journal receivers associated with remote journals are described in this topic.

The following figure illustrates the restore relationships for journal receivers that are associated with
remote journals, based on the remote journal type.

Journal management 357

There are several unique rules which govern where the journal receivers that are associated with a
remote journal can be restored. The rules also discuss the placement of the journal receivers in the
receiver directory chain of a local or remote journal. These rules are influenced by the remote journal type
of the journal to which the journal receiver was attached. These rules are also influenced by the library
redirection that was in effect when that receiver was attached. See Types of remote journals.

Note: You can always save receivers from a journal, and then restore the receivers to another local journal
of the same name. However, they will be placed in their own separate receiver chain.

The following items describe the rules that the system uses when restoring journal receivers:

1. The system first attempts to find an appropriate remote journal. When searching for a remote journal,
the system follows the following rules:

• If the saved receiver was originally associated with a local or *TYPE1 remote journal, then the
system searches for a *TYPE1 remote journal.

– If a *TYPE1 remote journal was defined at the time this receiver was attached, then use the
journal and receiver library redirection that was in effect and saved with the receiver. If no *TYPE1

358 IBM i: Journal management

remote journal was defined at the time this receiver was attached, then the original journal library
and receiver library names will be used when searching for the *TYPE1 remote journal.

– If a *TYPE1 remote journal is found, and the current receiver library redirection for the found
*TYPE1 remote journal matches the library name where the receiver is being restored, the journal
receiver will be associated with the found *TYPE1 remote journal.

• If the receiver was originally associated with a *TYPE2 remote journal, then the system searches for
a *TYPE2 remote journal. When searching for the *TYPE2 remote journal, a journal with the same
name as the name that was saved with the receiver will be used. The journal receiver will be
associated with a found *TYPE2 remote journal if the following conditions are met:

– A *TYPE2 remote journal is found with the correct name in the correct library.
– The found journal is in the exact same remote journal network as that of the saved receiver.
– The receiver is being restored to the same named system or same named ASP group as the name

of the system or ASP group at the time the receiver was saved.
2. If a remote journal was not found, then the system searches for a local journal. When searching for a

local journal, the original journal and journal library names are used. The journal receiver will be
associated with a found local journal if the following conditions are met:

• A local journal is found by the correct name in the correct library.
• The original journal receiver library name for the found journal matches the library name where the

receiver is being restored.
3. If a local journal cannot be found, the restore operation will be allowed to proceed. The journal

receiver will not be associated with any journal, if the receiver is being restored to the original or
redirected receiver library.

4. Still honoring the previous receiver restore rules, the following must also be true if the receiver is being
restored over an existing receiver:

• If the receiver is not being associated with any journal (as previously determined from the prior
receiver restored rules), then following items apply:

– The receiver creation time stamps must match.
– If the saved receiver was ever associated with a journal, then it must have been previously

associated with a journal of the same type as that of the existing receiver.
– If the saved receiver was ever associated with a remote journal network, then it must have been

previously associated with the same remote journal network as that of the existing receiver.
– The saved receiver must have at least as many entries as the existing receiver.

• If the receiver is being associated with a local journal, then the following items apply:

– If the saved receiver was originally associated with a local journal, then the receiver creation time
stamps must match.

– If the saved receiver was not originally associated with a local journal, then the saved receiver
must have been originally associated with the same remote journal network as that of the existing
receiver.

– The saved receiver must have at least as many entries as the existing receiver.
• If the receiver is being associated with a *TYPE1 remote journal, then the receiver creation time

stamps must match, and the saved receiver must have been originally associated with a local or
*TYPE1 remote journal.

• If the receiver is being associated with a *TYPE2 remote journal, then the receiver creation time
stamps must match, and the saved receiver must have been originally associated with the same
*TYPE2 remote journal.

When receivers are saved from or restored to a target system and associated with a remote journal, no
journal entries are deposited to indicate that the save or restore occurred. However, the object save and
restored date and time stamps are updated accordingly.

Journal management 359

Save and restore considerations
Considerations for remote journal receivers

Do not save the receiver while it is attached to the remote journal. If it is a long running save it can
inhibit a change journal operation that was initiated by the source and the remote journaling
environment can time out and fail.

Nonreplicated journal receiver protection considerations
The protection provided, which prevents journal receivers that are not fully replicated to all
associated remote journals from being deleted, is removed when the journal receiver is restored.

Unconfirmed journal entries save considerations
When a journal receiver that is associated with a remote journal is saved, only those journal entries
which have been confirmed are saved to the media. Therefore, no unconfirmed journal entries, nor
any journal entries that would not survive any IPL journal recovery processing, will be saved.

Journal receivers saved with STG(*FREE) considerations
Even if a journal receiver has not been fully sent to all known remote journals, such a journal receiver
can be saved with STG(*FREE). However, a diagnostic message is left in the job log indicating the
freeing of the journal receiver storage without the journal receiver first being fully replicated to all
downstream remote journals. This is in contrast to the default action taken when attempting to delete
a receiver that has not been fully replicated to all downstream remote journals.

Related concepts
Types of remote journals
The two types of remote journals are *TYPE1 and *TYPE2. The two types identify operational
characteristics of a remote journal and its associated journal receivers. The following table is an overview
of the different remote journal types and their characteristics. There are no performance differences
between the types of remote journals.

Considerations for restoring journaled objects
For an object that is restored and associated with a local journal in standby state, journaling starts for that
object, but no restore entry is deposited in the journal receiver. If the object is being restored-over and is
currently journaled to a local journal in standby state, the restore is not prevented, and no restore entry is
deposited in the journal receiver.

The system will send a diagnostic message for any object in which the 'object restored' journal entry
cannot be sent due to a problem with the journal or attached journal receiver, unless the journal is in
standby state. The system always attempts to start journaling for an object that was journaled at save
time to the same named journal, in the same named library, during a restore operation. This is still true,
and there are no processing changes to note if a local journal is found by the restore processing. However,
if a remote journal is found by the restore processing, the restore is completed successfully, but
journaling is not started for the restored object. A diagnostic message is sent that indicates that a remote
journal was found by the restore processing. This message is followed by the message that is already sent
that indicates journaling was not started.

In a hot-backup configuration, a local journal is used on the backup system to capture the changes that
are made to the objects on the remote system. This occurs when the remote system is logically promoted
to assume the role of the primary system. The local journal that is being used on a backup system might
not be in the exact same-named library as the journal that is being used for the object at save time. If this
occurs, you are responsible for starting journaling for the restored objects. This is a fundamental reason
to use library redirection for all defined remote journals.

Considerations for restoring objects saved with SAVSTG
If you restore a system from Save Storage (SAVSTG) media, the primary remote journal function concerns
have to do with configuration changes involving additionally defined remote journals.

These remote journals were established after the SAVSTG media was produced. If a primary system is
restored from SAVSTG media, journal receivers can be restored back to the primary system from versions
saved from any of the associated remote journals in the remote journal environment. If a backup system
is restored from SAVSTG media, then the catch-up phase for activating the remote journal can replicate
all necessary journal receivers that are still online from the primary system to the restored backup

360 IBM i: Journal management

system. Those journal receivers that are not online, and were attached to a *TYPE1 remote journal, can be
restored back to the backup system. They can be restored from any saved versions of the journal
receivers that were previously taken from one of the following:

• The primary system
• Any of the associated remote journals in the remote journal environment

See the Rules for saving and restoring journal receivers link below for the journal receiver restore rules
which is typically used for this type of restore.

Another consideration occurs as part of the processing that is performed by the system when restoring
journal receivers. Before associating a journal receiver with a local journal and retaining any remote
journal information, the journal library name, and the system name or the independent disk pool name
must be correct. This allows the system to differentiate between a local journal that was originally
created and one that was restored to a different physical system using SAVSTG media. This case assumes
that the user assigns a new system name as part of the SAVSTG procedure.

In one example case, the system was restored using SAVSTG media but was not restored to the same
physical system. However, the restored system still had the same name as the system from where the
media was produced. This situation can cause problems and should be avoided.

Related concepts
Rules for saving and restoring journal receivers
The restore relationships for journal receivers associated with remote journals are described in this topic.

Remote journal considerations when restarting the server
This topic discusses the considerations for remote journaling when you restart the server.

Considerations for restarting replication of journal entries

The replication of journal entries to each of the associated remote journals ends implicitly when the local
system ends. To begin replicating journal entries to the remote journal, you must restart the remote
journal on the target system. After an IPL or vary on operation, you are not required to reassociate the
remote journals with the journal on the source system.

Considerations for main storage preservation

In addition to unconfirmed I/O for journal entries, you also need to consider the preservation of main
storage for a failed system during recovery processing. Given certain system failures, main storage might
or might not be preserved during the following IPL to recover from the system failure. Therefore, it is
possible for journal entries to survive in a local journal after a system failure, even if the local or remote
I/O was never performed for those journal entries.

Therefore, IPL recovery on a primary system might preserve changes that are not yet replicated to any of
the remote journals, even the remote journals that are synchronously maintained. Scenario: Recovery for
remote journaling demonstrates that you can use the remote journal function to account for journal
entries that survive a system failure in this manner. These journal entries do not cause a total re-priming
of the original data when switching back from a backup system which took over the role of the primary
system.

In the scenario, when the system ends, the system does not return control to the application programs
that are in the process of generating these surviving journal entries. Therefore, the application does not
know whether or not any of operations completed when the system ends. Also, the application does not
make dependencies or decisions on these operations. This includes dependencies or decisions by the
application performing the operation or any other application that could be possibly dependent upon the
data affected by the operation.

Because of this consideration, it is recommended that you journal both the before-images and after-
images for any objects, if possible. With the before-images, the work can then be backed out after the IPL
or vary on operation. If the data activity is not backed out after the IPL or vary on operation, the

Journal management 361

alternative is to re-prime the primary system data completely from the backup data which had assumed
the role of the primary.

Considerations for when the target system ends

When remote journaling is active, if the target system ends whether normal or abnormal, journaling on the
source system is not affected. The local system continues to deposit entries into the local journal without
an error. The system sends a message to the message queue of the local journal to alert the operator that
remote journaling ended. When the target is again available, you can reactivate remote journaling from
the source system. When you activate remote journaling, the default is for the local system to start
sending journal entries starting with the first entry the target system is missing. Additionally, you can
specify that remote journaling automatically try to restart when the target system ends.

Considerations for commitment control

Commitment control, especially two-phase commitment control, can cause some additional
considerations and potential complications. For example, if any of the entries that were preserved but not
yet confirmed were a commit or a rollback operation, then the transaction will have to be reconciled
accordingly between the primary system, and the backup system.

Considerations for journal caching

Journal caching affects remote journaling. Since journal entries are not sent to the target system right
away, the number of journal entries that are not confirmed in a synchronous remote journal environment
are always greater than if you are not using journal caching.

Related tasks
Inactivating the replication of journal entries to a remote journal
When you end replication of journal entries to a remote journal, it is recommended that the replication of
entries be ended from the source system whenever possible, rather than from the target system. Usually,
ending replication from the target system for a remote journal is only necessary when the source system
has failed, and the system has not ended the remote journal function.
Activating the replication of journal entries to a remote journal
In order to activate the replication of journal entries to a given remote journal, the following must be true:
Related information
Scenario: Recovery for remote journaling
This scenario describes a hot-backup environment in which the local system, JKLINT fails. It is necessary
to restore the local system, and synchronize it with the remote system, JKLINT2.

Working with remote journal error messages
Several different error conditions can occur when the remote journal function is active.

When an error condition is encountered, the system automatically ends the remote journal function on
the source system to that remote journal. The system notifies you that a failure occurred. Failure
notification is made on both the source system and the target system. Notification is made by sending a
message to the journal message queues associated with the source and target journals as appropriate. If
remote journal is to automatically restart then additional messages are sent to the journal message queue
to indicate the restarting attempts have started, and to indicate that the final restart attempt was not
successful.

For help determining why remote journaling ended, see IBM Redbooks technote Journaling - Common

Remote Journal Questions

Additional messages can be sent to the journal message queue for normal remote journal processing. For
example, if you requested a controlled inactivate of the remote journal, a message will be sent to the
message queue when the inactivate processing has completed.

Even though the remote journal function has been ended, the local journal is not automatically
inactivated. Therefore the local system journal entry deposits will continue normally.

362 IBM i: Journal management

http://www.redbooks.ibm.com/abstracts/tips0724.html?Open
http://www.redbooks.ibm.com/abstracts/tips0724.html?Open

The remote journal function messages that are sent to the journal message queue are listed as follows:

CPI7012
Recovery procedures for messages CPF70D4 and CPF70D5.

CPI7016
Recovery procedures for messages CPF70C4 and CPF70C5.

CPI7027
An attempt to restart remote journaling failed, another will be attempted.

CPI7028
Remote journaling could not be restarted because either an unrecoverable error was encountered, or
the maximum restart attempts were made.

CPI7031
Additional recovery procedures for messages CPF70D4 and CPF70D5.

CPExxxx
When remote journaling ends due to communication errors, the communication messages are also
sent to the journal message queue. These messages will help address communication related
problems.

CPF70C4
The data port services remote journal function is no longer active due to various reasons. For a
synchronously maintained remote journal, there may be unconfirmed entries which may need to be
processed prior to the remote journal being inactivated.

CPF70C5
The data port services remote journal function is no longer active and has been ended due to various
reasons. There are no unconfirmed entries.

CPF70D3
A controlled inactivate of a remote journal has completed.

CPF70D4
The remote journal function is no longer active due to various reasons. For a synchronously
maintained remote journal, there may be unconfirmed entries which may need to be processed prior
to the remote journal being inactivated.

CPF70D5
The remote journal function is no longer active and has been ended due to various reasons. There are
no unconfirmed entries.

CPF70D6
The remote journal function was ended due to storage constraints.

CPF70D7
There was a problem on the target system while attempting to execute a change journal.

CPF70DB
A severe error has occurred with the remote journal function, and service must be notified.

CPF70DC
There was a timeout on the target system while attempting to attach a new journal receiver to the
remote journal.

Display the messages on your system for more information.

Related concepts
Confirmed and unconfirmed journal entries
For a local journal, all entries are confirmed entries. There is no concept of unconfirmed entries.
Related reference
Change Journal State (QjoChangeJournalState) API
Change Journal (CHGJRN) command

Journal management 363

Scenarios: Remote journal management and recovery
These scenarios describe the possible ways that JKL Toy Company can use remote journal management.
JKL Toy Company uses the server JKLINT as their web server.

They need 24x7 availability for the critical data on this server, and they accomplish that by having a
second server, JKLINT2, that shadows JKLINT. They use a high availability replication solution to copy
the data from JKLINT to JKLINT2. Then, if JKLINT goes down, they can switch to JKLINT2.

The following scenarios describe two possible environments in which they can use remote journaling. The
first scenario describes how JKL Toy Company can set up a data replication environment. The second
scenario describes how they set up a hot-backup environment. The third scenario describes recovery
steps if one of the servers fails.

Note: Scenario: Journal management contains a complete description of JKL Toy Company's network and
their overall strategy for journaling.

Related information
Scenario: Journal management
This topic provides the steps that a fictitious company, JKL Toy company, takes as it implements journal
management.

Scenario: Data replication environment for remote journals
In this scenario, JKLINT and JKLINT2 use remote journaling for data replication purposes only.

The following figure illustrates this remote journaling environment. Data replication is the function of
maintaining a separate copy of data from an original copy, keeping the two copies consistent with each
other.

Typical data replication environment with remote journal function

How the data replication environment works

Local objects, F1, F2, and F3, on JKLINT are journaled to local journal JRN in library JLB1. A remote
journal is defined on JKLINT2, where JRN has been redirected to library JLB2. This remote journal
receives journal entries from the local journal on JKLINT. A hot-backup application apply replays the
changes to the data replica on system JKLINT2.

364 IBM i: Journal management

The data replica is journaled to a local journal, JRN in library JLB1, for system recovery purposes only, so
this journal must be in active state. If system JKLINT2 fails, the system performs recovery for the objects
by using this local journal.

A hot-backup application assists in replicating data from one system to another. The hot-backup
application apply is only performing the replay of operations to the data replica on the target system.

Since this scenario is for a data replication environment, the hot-backup application does not perform a
switch-over to the backup system. See Scenario: Hot-backup environment for more details about hot-
backup applications applies and hot-backup switch-overs.

How to establish the data replication environment for JKLINT and JKLINT2

The objects and local journal on JKLINT are already assumed to exist. The journal state for the local
journal is also assumed to be active. The communications environment and associated RDB entries
already exist and are established.

Establishing the data replication environment for JKLINT and JKLINT2 requires the following:

1. Create the remote journal on JKLINT2, and specify library redirection. Library redirection indicates that
the journal's library, JLB1 on JKLINT, is redirected to library JLB2 on JKLINT2. The journal receiver's
library, RLB1 on JKLINT, is redirected to library RLB2 on JKLINT2.

After this step, the remote journal exists, but no receiver is currently attached.
2. To establish a clean breakpoint, perform a change journal operation to attach a new journal receiver at

this time.

Note: The next step restores local journal JRN in library JLB1 and attaches receiver X1002 in library
RLB1. It then restores the objects, and starts journaling for the objects to the restored local journal.

3. Save the local journal and objects from JKLINT and restore them to JKLINT2. This primes the data
replica and establishes the local journaling environment on JKLINT2.

4. Activate the remote journal on system JKLINT2. Specify that the remote journal must start with the
attached receiver. Since no receiver is attached to the remote journal, the receiver that is currently
attached to the local journal on JKLINT (X2) is created on JKLINT2. This receiver is then attached to
the remote journal. Journal entries are replicated, starting with the first journal entry in receiver X2.

An additional parameter on the Change Journal State (QjoChangeJournalState) API and Change
Remote Journal (CHGRMTJRN) command indicates whether the remote journal function is to be
maintained synchronously or asynchronously. Depending on how the remote journal is maintained,
other parameters may also apply.

5. The hot-backup application apply process receives or retrieves journal entries from the remote
journal, starting with the entries that were deposited after the data was saved and primed into the data
replica. The process then starts replaying the changes that are contained in these journal entries to the
data replica.

Normal run-time environment for the data replication environment

You can activate and inactivate the replication of journal entries to the remote journal as needed. Each
time you activate the remote journal, *ATTACHED is specified as the point in the receiver chain to start
receiving journal entries. The system checks the currently attached remote journal receiver for journal
entries and replicates the next journal entry in sequence.

You must specify the delivery mode when activating the remote journal. If needed, the delivery mode can
be different on each activation of the remote journal.

Change journal operations that attach a new receiver to the local journal on system JKLINT are performed
by the remote journal function as required on the target system. The remote journal function attaches the
associated receivers to the remote journal automatically. If the remote journal is being maintained
synchronously, the change journal operation to attach a new receiver is essentially a coordinated
operation between the source and target systems. If the remote journal is being maintained
asynchronously, the change journal operation to attach a new receiver on the target system is performed

Journal management 365

differently. In this case, it is triggered when the journal entry with journal code 'J' and entry type 'PR' is
received by the remote journal on the target system.

The hot-backup application apply continues to replay changes to the data replica as received or retrieved
from the receivers associated with the remote journal.

If needed, you can delete the receivers that are associated with the local journal on JKLINT when each
receiver is replicated to JKLINT2. Sharon can accomplish this by specifying automatic deletion of journal
receivers or manually deleting the receivers on JKLINT.

You can save the receivers from JKLINT2. If necessary, you can use the receivers for recovery of the
original data on system JKLINT at a later time.

Data replication recovery if JKLINT fails

Recovery for JKLINT and JKLINT2 is simpler than environments that involve hot-backup because the hot-
backup application does not switch-over to the backup system. What prevents the complications is an
assumption that the hot-backup application apply logic will not receive and replay unconfirmed journal
entries to the data replica if system JKLINT2 loses communications with system JKLINT. Therefore, the
data replica on system JKLINT2 can never get ahead of the data on system JKLINT. This greatly simplifies
data synchronization.

Related concepts
Where the replication of journal entries start
When you specify a journal receiver for remote journaling, you are specifying where the replication of
journal entries will start.
Activating and inactivating remote journals
Activating a remote journal means starting and then maintaining the replication of journal entries from a
source journal to a remote journal. Activating a remote journal always occurs from the source system.
Automatic deletion of journal receivers
If you choose system journal receiver management, you can also have the system delete journal receivers
that are no longer needed for recovery. You can only specify this if you are using system journal receiver
management.
Related tasks
Adding remote journals
This topic provides instructions for adding a remote journal.
Activating the replication of journal entries to a remote journal
In order to activate the replication of journal entries to a given remote journal, the following must be true:
Related reference
Change Journal State (QjoChangeJournalState) API
Change Remote Journal (CHGRMTJRN) command
Related information
Scenario: Hot-backup environment
In this scenario, the remote journaling environment uses a hot-backup application that causes JKLINT2
to replace JKLINT in the case that JKLINT has a failure.

Scenario: Hot-backup environment
In this scenario, the remote journaling environment uses a hot-backup application that causes JKLINT2
to replace JKLINT in the case that JKLINT has a failure.

A hot-backup application typically performs the following:

1. If the primary system fails, it performs a switch-over to the backup system. This function then logically
promotes the backup system to assume the role of the primary system.

2. After the failed primary system is restarted, it performs a switch-back operation so that the primary
system can again assume the role of the primary system.

366 IBM i: Journal management

A hot-backup application apply defines the part of a hot-backup application that actually performs the
replay operations to the data replica. This usually occurs on the backup system when maintaining a data
replica.

The following figure describes a typical remote journal environment that is used for hot-backup purposes.
The following occurs in this illustration:

• Server JKLINT is the primary server while JKLINT2 is the backup server.
• Server JKLINT journals objects to local journal JKLB1/JRN.
• Changes to those journaled objects are also journaled to remote journal JLB2/JRN on server JKLINT2.
• On JKLINT2 a hot backup-apply replays changes to the data replica. When the hot backup-apply

replays these changes, JKLINT2 journals the changes to its own local journal, JLB1/JRN.
• If JKLINT fails, JKLINT2 assumes the role of primary server and all local journaling of changes to the

data replica (now acting as the original data) continue on JKLINT2's local journal, JLB1/JRN.
• When it is time to switch the role of primary server back to JKLINT, JKLINT2 sends changes from its

local journal, JLB1/JRN, to remote journal JLB2/JRN on server JKLINT (the transport from JKLINT2 to
JKLINT is only used for this purpose).

• JKLINT then uses its remote journal, JLB2/JRN, to replay changes to the original data.

Typical hot-backup environment with remote journal function

How to establish the hot-backup environment

The steps to establish a hot-backup environment the are the same as establishing data replication
environment except for this additional last step:

Sharon also establishes a remote journal JKLINT that is associated with the local journal that she creates
on JKLINT2. This remote journal receives or retrieves the journaled changes that are made when JKLINT2
assumes the role of the primary system. This local journal and remote journal pair will only be used when
replicating changes back to the original data. During normal run-time processing, the remote journal,
JLB2/JRN, that is defined on JKLINT is not active. When it is not active, it is not receiving or retrieving
journal entries from the local journal, JLB1/JRN, on JKLINT2.

Journal management 367

Normal run-time environment for the hot-backup environment
The details for run-time environment for the hot-backup environment is the same as the data replication
environment.

Hot-backup recovery if JKLINT fails

If you use a hot-backup application where the logical ownership of the data is given to JKLINT2, recovery
is more complicated. In this case, the hot-backup application logically promotes JKLINT to assume the
role of the primary system. Recovery is more complicated because after JKLINT has completed its IPL,
the remote journal function catch-up phase from the local journal on system JKLINT to the remote journal
on system JKLINT2 will always allow a resynchronization of the two sets of data.

Data resynchronization is recovery processing that is performed during switch-back processing by a hot-
backup application apply. This processing ensures that the original data is consistent with the data
replica, and contains all the correct changes. The main objective of this, besides assuring data
consistency, is to eliminate re-priming the original data from the data replica.

Related information
Scenario: Data replication environment for remote journals
In this scenario, JKLINT and JKLINT2 use remote journaling for data replication purposes only.
Scenario: Recovery for remote journaling
This scenario describes a hot-backup environment in which the local system, JKLINT fails. It is necessary
to restore the local system, and synchronize it with the remote system, JKLINT2.

Scenario: Recovery for remote journaling
This scenario describes a hot-backup environment in which the local system, JKLINT fails. It is necessary
to restore the local system, and synchronize it with the remote system, JKLINT2.

Details: Recovery for remote journaling scenario has step-by-step instructions for recovering from this
failure this scenario describes.

This scenario, and the details for this scenario, only discuss database physical files. All the concepts,
however, apply to any journaled object type.

Example remote journal environment for hot-backup recovery

The following figure illustrates the hot-backup environment for JKLINT and JKLINT2. The following items
list considerations for this environment:

• The remote journal BJ2 is only active after JKLINT fails. JKLINT2 assumes the role of primary system
and JKLINT is running again (as the secondary system).

• Journal receivers are not specifically called out in the figure. They have been omitted in an attempt to
simplify the scenario and to focus on the recovery steps for the database. Where necessary, processing
specific to journal receivers is referred to in the scenario.

• Likewise, library redirection for the journals and journal receivers is not specifically called out in the
figure. Again, this is omitted in an attempt to simplify the scenario. In the scenario, the libraries for any
of the journals or journal receivers could be redirected to a library that is different from that being used
for the corresponding objects on the other system.

• The figure simply refers to the original data in the figure as DB on the primary system JKLINT and DB' as
the data replica on the backup system JKLINT2. DB can be one or more journaled objects, and DB'
contains a replica for each of the journaled objects in DB.

368 IBM i: Journal management

For simplicity, the scenario below treats DB as a single database file and DB' as its replica.

The following items describe the scenario at the time JKLINT fails:

• System JKLINT is the primary system.
• The original data that is denoted by DB is journaled to an active local journal PJ1.
• Remote journal BJ1 on backup system JKLINT2 is active, and unless otherwise noted, is synchronously

receiving journal entries from journal PJ1.
• A hot-backup application apply, not shown in the diagram, is asynchronously replaying, or applying, the

changes to the data replica, DB'.
• The data replica DB' is journaled to local journal PJ2 on system JKLINT2.

The journal state for journal PJ2 is *STANDBY.
• Remote journal BJ2 has a journal state of *INACTIVE (journal entries are not replicated to it). Remote

journal BJ2 is only active when accepting the data changes back from system JKLINT2. This occurs
after system JKLINT2 had been promoted to assume the role of the primary system due to a planned or
unplanned outage of system JKLINT, and after system JKLINT has resumed operations.

• The primary system, JKLINT, has failed.
• The decision has been made to switch-over to the backup system, JKLINT2.

Related tasks
Details: Recovery for remote journaling scenario
This topic describes the details of the recovery process for remote journaling.

Details: Recovery for remote journaling scenario
This topic describes the details of the recovery process for remote journaling.

These details provide a step-by-step description of the process that occurs in Scenario: Recovery for
remote journaling.

At the time of the system failure, the state of JKL and JKLINT is as follows:

• Journal entries 12-19 are already deposited into PJ1 and confirmed in BJ1.
• The corresponding data changes are also already reflected in the data replica, DB', on system JKLINT2.

Journal management 369

• Journal entries 20-25 are built and validated in main storage on JKLINT and sent to BJ1, and then
system JKLINT fails.

• Main storage is not preserved when JKLINT fails, so at the time of the failure, the last known confirmed
sequence number in BJ1 is 19. Sequence numbers 20 through 25 are all unconfirmed.

• The last known sequence number in PJ1 will be 19 when system JKLINT restarts.

The hot-backup recovery strategy in these details does not require that both before-images and after-
images are journaled to the local journal. However, the strategy would require before-images if, during
the resynchronization process of the switch-back to the primary system, the strategy requires that the
hot-backup application remove journaled changes.

To recover system JKLINT, the following steps are required:

1. Update DB' by using the hot-backup application to replay the unconfirmed journal entries.
a) On system JKLINT2, allow the hot-backup application apply processing to complete the replay of

confirmed operations as identified in journal BJ1. This is the first step of the switch-over
processing. The apply processing includes replaying all journal entries up through and including
sequence number 19.

b) The hot-backup application does not replay sequence numbers 20-25 because the I/O for those
journal entries is not yet confirmed from the local journal PJ1. The Receive Journal Entry
(RCVJRNE) command or Retrieve Journal Entries (QjoRetrieveJournalEntries) API that is being used
to retrieve the entries from the remote journal will not return sequence numbers 20-25 to the exit
program, unless specifically requested to do so. To specify that sequence numbers 20 - 25 are
returned to the exit program, use the INCENT(*ALL) parameter on the command. You can also
request this by specifying *ALL for the include entries key on the API.

c) After the hot-backup application replays all confirmed journal entries, perform a change journal
operation to attach a new journal receiver to local journal PJ2 on system JKLINT2 and change the
state of journal PJ2 in *ACTIVE state. The change journal operation establishes a clean recovery
point. It also makes clear what information needs to be sent back to system JKLINT later to replay
back to the original data. Performing the change journal operation also prevents the remote journal
function from having to re-replicate all of the journal entries that were previously generated into
the currently attached journal receiver of PJ2. (The journal entries were generated into the receiver
as part of replaying the database changes to the data replica on system JKLINT2.)

The following figure shows that more unconfirmed journal entries are present in BJ1 than are known in
PJ1.

370 IBM i: Journal management

2. Perform switch-over processing and prepare JKLINT2 to run applications
a) The hot-backup application reads unconfirmed journal entries from BJ1 and replays them to the

data replica. They are retrieved from BJ1 by using the Receive Journal Entry (RCVJRNE) command
or QjoRetrieveJournalEntries API, specifically requesting that unconfirmed journal entries be
returned. Journal entries 140-145 are generated into journal PJ2 when replaying these changes to
the data replica.

b) The QjoChangeJournalState API or CHGJRN command inactivates the remote journal BJ1. During
this operation, the system physically removes the unconfirmed journal entries from BJ1. The last
known sequence number in BJ1 is now 19.

c) The replay processing on JKLINT2 sends a user entry that indicates the point in time when the
database was switched-over. The user entry in the following figure is sequence number 146,
journal code 'U', entry type 'SW'.

d) After these steps are performed on system JKLINT2, applications can now be started on JKLINT2
and use DB' as the database to be updated. Applications continue to work and deposit journal
entries 147-200.

Journal management 371

e) System JKLINT restarts and normal IPL recovery finds the end of the journal for PJ1 to be
sequence number 19. IPL recovery ensures that all changes up to sequence number 19 are
reflected in the original data. The IPL for JKLINT completes with journal PJ1 being left in the
*ACTIVE state, as this was the state of the journal when the system failed.

The following figure shows the state of BJ1, PJ2, and DB' when system JKLINT2 is ready to assume
the role of the primary system.

372 IBM i: Journal management

3. Activate remote journal PJ2 and transport journal to JKLINT

Journal management 373

a) After JKLINT restarts, activate the remote journal BJ2. Specify that the process will start with the
attached journal receiver on JKLINT2. This starts the transport of journal entries representing the
changes made on JKLINT2 as part of replaying the unconfirmed journal entries plus all changes
made to DB' while JKLINT was unavailable. While this transfer is progressing (during catch-up
processing, which then transitions into synchronous or asynchronous remote journal function
mode), changes are still being made by applications to DB'.

b) Either before or during the transport of journal entries to BJ2, send and make known the last known
sequence number in BJ1 (19) to the hot-backup application apply. This can be included as
information in the SW user journal entry.

c) The hot-backup application backs-out changes that are known to PJ1 (after the last known
sequence number in BJ1) from the original data DB on system JKLINT. For this particular scenario,
no changes need to be backed out of the original data.

Note: For scenarios which require this back-out processing, both before-image and after-image
journal entries are required.

The following figure shows the state of both systems after system JKLINT has completed its IPL. This
is after system JKLINT2 has been running as the primary system, but before database DB is
resynchronized with DB'. (The database changes represented in PJ2 by journal sequence numbers
147-200 are not shown in DB' for simplicity.)

374 IBM i: Journal management

4. Replay changes to DB on JKLINT
a) The hot-backup application replays the changes back to the original data on system JKLINT. The

changes that are replayed include those changes that were made to DB' as part of the switch-over
processing. The switch-over processing replayed the data changes for the unconfirmed journal

Journal management 375

entries (sequence numbers 140-145)). Additional changes include those data changes that were
deposited while system JKLINT2 had assumed the role of the primary system (sequence numbers
147-300). Note that changes are still being made to DB' on system JKLINT2 and journal entries are
still being generated into local journal PJ2 on system JKLINT2.

b) When you decide that JKLINT must again assume the role of the primary system, end the
applications on JKLINT2. The following figure shows the state of both systems just before system
JKLINT is going to assume the role of the primary system.

c) Allow the remaining changes to be replicated to BJ2. After all changes have been sent to BJ2, you
can inactivate BJ2.

d) After all of the journal entries have been replayed to the original data on JKLINT, attach a new
journal receiver to PJ1 to clearly denote a new recovery point.

The change journal operation is not absolutely essential. However, attaching a new journal receiver
to PJ1 at this time makes clear where to start replaying changes back to the data replica on system
JKLINT2. Performing the change journal operation also prevents the remote journal function from
having to send back all of the journal entries that were previously generated into the currently
attached journal receiver of PJ1. (The journal entries were generated in the receiver as part of
replaying the data changes back to the original data on system JKLINT.)

The following figure shows the state of the journals and data just before starting to replay the changes
back to the original data DB.

376 IBM i: Journal management

5. Allow JKLINT to again assume role of the primary system
a) Application programs can now make changes to the original data DB on system JKLINT.
b) When you determine that it is time to start replicating the changes made on the primary system to

the backup system, you can activate the remote journal BJ1.

Journal management 377

When activating the remote journal, you can indicate to send journal entries starting with the
attached journal receiver on the source system. If this occurs, then only those journal entries that
are required to be replayed to the data replica will be sent to system JKLINT2.

Note: You can start with the attached receiver, only if you did the change journal to attach a new
receiver that was mentioned in step 4.

c) If you want the complete chain of journal receivers from system JKLINT on JKLINT2, when you
activate the remote journal, indicate to start with the attached journal receiver as known to the
remote journal, BJ1. This will complete the sending of the journal receiver that contains the IPL
entry (sequence number 20). The process will then move on to the next journal receiver that
contains the journal entries where the hot-backup application apply will start replaying changes to
the data replica. An alternative to that approach is to save and restore the detached journal receiver
to system JKLINT2.

d) You change the state of local journal PJ2 on system JKLINT2 to *STANDBY state.
e) After local journal PJ2 has put in *STANDBY state, perform a change journal operation to attach a

new journal receiver to PJ2.

The change journal operation is not absolutely essential. However, attaching a new journal receiver
to PJ2 at this time makes clear where the replaying of changes back to the data replica started on
system JKLINT2. Performing the change journal operation also avoids the remote journal function
from having to later send all of these hot-backup application apply generated journal entries back
to system JKLINT.

The newly attached journal receiver contains journal entries that will not have to be sent back to
system JKLINT.

f) After the operation is performed, the hot-backup application apply can be started on system
JKLINT2 to start replaying changes to the data replica. The hot-backup application apply starts
with the source system sending the newly attached journal receiver.

The following figure shows that JKLINT is preparing again assume the role of the primary system.

378 IBM i: Journal management

Related tasks
Swapping journal receivers

Journal management 379

An important task for journal management is to swap journal receivers. You typically swap journal
receivers when they reach their storage threshold. You can swap journal receivers either with IBM
Navigator for i or with the Change Journal (CHGJRN) command. If you use system journal-receiver
management, the system changes journal receivers for you.
Activating the replication of journal entries to a remote journal
In order to activate the replication of journal entries to a given remote journal, the following must be true:
Inactivating the replication of journal entries to a remote journal
When you end replication of journal entries to a remote journal, it is recommended that the replication of
entries be ended from the source system whenever possible, rather than from the target system. Usually,
ending replication from the target system for a remote journal is only necessary when the source system
has failed, and the system has not ended the remote journal function.
Related reference
Receive Journal Entry (RCVJRNE) command
Retrieve Journal Entries (QjoRetrieveJournalEntries) API
Related information
Scenario: Recovery for remote journaling
This scenario describes a hot-backup environment in which the local system, JKLINT fails. It is necessary
to restore the local system, and synchronize it with the remote system, JKLINT2.

Related information for journal management
Product manuals, IBM Redbooks, Web sites, and other information center topic collections contain
information that relates to the Journal management topic. You can view or print any of the PDF files.

Manuals

• AnyMail/400 Mail Server Framework Support (623 KB)

• Performance Tools for IBM i (1.9 MB)

• Simple Network Management Protocol (SNMP) Support (391 KB)

• WebSphere® Development Studio: ILE C/C++ Programmer's Guide (2.1 MB)

IBM Redbooks

• Striving for Optimal Journal Performance on DB2 Universal Database for iSeries (3.1 MB)

• AS/400 Remote Journal Function for High Availability and Data Replication (1 MB)

IBM Redbooks Technotes

• Journaling - User ASPs versus the System ASP

• *RMVINTENT: The preferred fork in the road for heavy journal traffic

• Journaling - How many journals should I configure

• Journal Receiver Diet Tip 1: Eliminating Open and Close Journal Entries

• Soft Commit: Worth a try on IBM i5/OS v5r4

380 IBM i: Journal management

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/rzaki/sc415411.pdf
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/rzahx/sc415340.pdf
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_61/books_web/sc415412.pdf
http://www.redbooks.ibm.com/abstracts/sg246286.html?Open
http://www.redbooks.ibm.com/abstracts/sg245189.html?Open
http://www.redbooks.ibm.com/abstracts/tips0602.html?Open
http://www.redbooks.ibm.com/abstracts/tips0605.html?Open
http://www.redbooks.ibm.com/abstracts/tips0606.html?Open
http://www.redbooks.ibm.com/abstracts/tips0607.html?Open
http://www.redbooks.ibm.com/abstracts/tips0623.html?Open

• The Journal Recovery Count: Making it Count on IBM i5/OS
• Journaling - How to View and More Easily Audit Minimized Journal Entries on The IBM System i Platform

• Journal Caching: Understanding the Risk of Data Loss

• Journal Standby Mode on IBM i5/OS: When it Makes Sense to Use

• Remote Journal on i5/OS - Are you Selecting the Right Type?

• Journaling - Unraveling the Mysteries of Sporadic Growth of Journal Receivers

• Journaling - Configuring Your Fair Share of Write Cache

• Journaling - Journal Receiver Diet Tip 2: Consider Using Skinny Headers

• Journaling at Object Creation with i5/OS v6r1m0

• Journaling - Why is My Logical File Journaled?

• Journaling - Using APYJRNCHG for Disaster Recovery

• Journaling - Common Remote Journal Questions

Web sites

DB2 for IBM i Coding examples

Other information

• Backup and recovery
• CL programming
• OptiConnect for i5/OS
• Security Reference
• Work management
• The IBM Publications Center at: http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (http://get.adobe.com/reader/) .

Journal management 381

http://www.redbooks.ibm.com/abstracts/tips0625.html?Open
http://www.redbooks.ibm.com/abstracts/tips0626.html?Open
http://www.redbooks.ibm.com/abstracts/tips0627.html?Open
http://www.redbooks.ibm.com/abstracts/tips0628.html?Open
http://www.redbooks.ibm.com/abstracts/tips0629.html?Open
http://www.redbooks.ibm.com/abstracts/tips0652.html?Open
http://www.redbooks.ibm.com/abstracts/tips0653.html?Open
http://www.redbooks.ibm.com/abstracts/tips0654.html?Open
http://www.redbooks.ibm.com/abstracts/tips0662.html?Open
http://www.redbooks.ibm.com/abstracts/tips0677.html?Open
http://www.redbooks.ibm.com/abstracts/tips0680.html?Open
http://www.redbooks.ibm.com/abstracts/tips0724.html?Open
http://www.ibm.com/servers/eserver/iseries/db2/db2code.html
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?
http://get.adobe.com/reader/

Code license and disclaimer information
IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS PROGRAM
DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, REGARDING
THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF
THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT
APPLY TO YOU.

382 IBM i: Journal management

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 2004, 2013 383

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information
This Journal management publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of IBM i.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

384 Notices

http://www.ibm.com/legal/copytrade.shtml

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Oracle, Inc. in the United States, other
countries, or both.

Other product and service names might be trademarks of IBM or other companies.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 385

386 IBM i: Journal management

IBM®

	Contents
	Journal management
	What's new for IBM i 7.2
	PDF file for Journal management
	System-managed access-path protection
	Benefits of SMAPP
	How SMAPP works
	How the system chooses access paths to protect
	Effects of SMAPP on performance and storage
	How SMAPP handles changes in disk pool configuration
	SMAPP and access path journaling
	SMAPP and independent disk pools
	Starting SMAPP or changing SMAPP values
	Displaying SMAPP status

	Local journal management
	Journal management concepts
	Benefits of journal management
	How journal management works
	Journal entries
	Journal management and system performance
	Journal management with the save-while-active function

	Planning for journal management
	IBM Navigator for i versus the character-based interface for journaling objects
	Planning which objects to journal
	Reasons to journal access paths
	Reasons to journal before-images

	Planning for journal use of auxiliary storage
	Frequently asked questions about journaling and disk arm usage
	Functions that increase the journal receiver size
	Methods to estimate the size of a journal receiver
	Journal sizing and planning tool
	Estimating the size of the journal receiver manually
	Methods to reduce the storage that journal receivers use
	Determining the type of disk pool in which to place journal receivers
	Journal management and independent disk pools

	Planning setup for journal receivers
	Disk pool assignment for journal receivers
	Library assignment for journal receivers
	Naming conventions for journal receivers
	Threshold (disk space) for journal receivers
	Basing the size on your available auxiliary storage
	Basing the size on how often you want to change journal receivers

	Security for journal receivers

	Planning setup for journals
	Disk pool assignment for journals
	Library assignment for journals
	Naming conventions for journals
	Journal and journal receiver association
	Journal message queue
	Manual versus system journal-receiver management
	Automatic deletion of journal receivers
	Receiver size options for journals
	Journal object limit
	Minimized entry-specific data for journal entries
	Example: MINENTDTA (*FLDBDY)

	Customization of the journal recovery count
	Fixed-length options for journal entries
	Journal cache
	Object assignment to journals

	Setting up journaling
	Example: Setting up journaling

	Starting and ending journaling and changing journaling attributes
	Why you must save objects after you start journaling
	Starting journaling
	Journaling libraries
	Journaling database physical files (tables)
	Journal DB2 Multisystem files
	Logical file journaling
	Journaling integrated file system objects
	Journal access paths
	Journaling data areas and data queues
	Automatically starting journaling

	Changing journaling attributes of journaled objects without ending journaling
	Ending journaling

	Managing journals
	Swapping, deleting, saving and restoring journals and receivers
	Swapping journal receivers
	Journal receiver chains
	Resetting the sequence number of journal entries
	Deleting journal receivers
	Deleting journals
	Saving and restoring journals and journal receivers
	Using SAVCHGOBJ to save journal receivers
	Methods to save journal receivers
	Correct order for restoration of journaled objects
	Deferring object journaling during restore

	Evaluation of how system changes affect journal management
	Keeping records of journaled objects
	Security management for journals
	Displaying information for journaled objects, journals, and receivers
	Working with inoperable journal receivers
	Comparing journal images
	Working with IBM-supplied journals
	Sending your own journal entries
	Changing the state of local journals
	Work with messages on the journal message queue

	Scenario: Journal management
	JKLPROD
	JKLINT
	JKLDEV

	Recovery operations for journal management
	Determining recovery needs using journal status
	Recovery for journal management after abnormal system end
	Recovering from a damaged journal receiver
	Recovering a damaged journal
	Associating receivers with journals
	Recovering a damaged journal with the WRKJRN command

	Recovery of journaled objects
	Applying journaled changes
	Integrated file system considerations for applying journaled changes
	Applying journaled changes with the WRKJRN command

	Removing journaled changes
	Removing journaled changes with the WRKJRN command

	Use of the QAJRNCHG file
	Journaled changes with trigger programs
	Journaled changes with referential constraints
	Actions of applying or removing journaled changes by journal code
	When the system ends applying or removing journaled changes
	Example: Applying journaled changes
	Example: Removing journaled changes
	Example: Recovering objects with partial transactions

	Journal entry information
	Journal code descriptions
	All journal entries by code and type
	Fixed-length portion of the journal entry
	Layouts for the fixed-length portion of journal entries
	Variable-length portion of the journal entry
	Layouts for variable-length portion of journal entries
	Working with journal entry information
	Displaying and printing journal entries
	Output for journal entries directed to a workstation
	Output for journal entries directed to a database output file
	Format of database output files

	Displaying journal information for a table using IBM Navigator for i
	Displaying journal entry information using the Display_Journal table function
	Receiving journal entries in an exit program
	Exit program to receive journal entries
	Requesting block mode

	Retrieving journal entries in a program
	Working with pointers in journal entries
	Replaying a database operation from a single journal entry
	Replaying a non-database operation from a single journal entry
	Considerations for entries which contain minimized entry-specific data

	Remote journal management
	Remote journal concepts
	Network configurations for remote journals
	Types of remote journals
	Filtered remote journals
	Journal state and delivery mode
	Journal receivers associated with a remote journal
	Process of adding remote journal
	Library redirection with remote journals
	Remote journal attributes

	Supported communications protocols for remote journals
	Release-to-release considerations for remote journals

	Planning for remote journals
	Candidates for remote journal management
	Synchronous and asynchronous delivery mode for remote journals
	Communications protocol and delivery mode for remote journals
	Where the replication of journal entries start
	Factors that affect remote journal performance
	Remote journals and auxiliary storage
	Journal receiver disk pool considerations
	Remote journals and main storage

	Setting up remote journals
	Preparing to use remote journals
	Adding remote journals

	Removing remote journals
	Activating and inactivating remote journals
	Activating the replication of journal entries to a remote journal
	Catch-up phase for remote journals

	Relational database considerations for remote journal state
	Automatically restarting remote journal
	Inactivating the replication of journal entries to a remote journal

	Managing remote journals
	Keeping records of your remote journal network
	Displaying remote journal function information
	Evaluating how system changes affect your remote journal network
	Getting information about remote journal entries
	File identifier considerations for working with integrated file system entries
	Confirmed and unconfirmed journal entries
	Journal entries from a remote journal with library redirection
	Retrieving journal entries from a remote journal during the catch-up phase
	Remote journal considerations for retrieving journal entries when using commitment control
	Remote journal considerations for retrieving journal entries when using journal caching

	Journal receiver management with remote journals
	Swapping journal receiver operations with remote journals
	Considerations for save and restore operations with remote journals
	Rules for saving and restoring journals
	Rules for saving and restoring journal receivers
	Considerations for restoring journaled objects
	Considerations for restoring objects saved with SAVSTG

	Remote journal considerations when restarting the server
	Working with remote journal error messages

	Scenarios: Remote journal management and recovery
	Scenario: Data replication environment for remote journals
	Scenario: Hot-backup environment
	Scenario: Recovery for remote journaling
	Details: Recovery for remote journaling scenario

	Related information for journal management

	Notices
	Programming interface information
	Trademarks
	Terms and conditions

