
Content Manager OnDemand for i
Version 7 Release 2

Common Server Indexing Reference

SC19-2793-01

���

Content Manager OnDemand for i
Version 7 Release 2

Common Server Indexing Reference

SC19-2793-01

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 65.

This edition applies to version 7, release 2 of IBM Content Manager OnDemand for i (product number 5770-RD1)
and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2001, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

IBM Navigator for i v

Accessibility information for Content
Manager OnDemand vii

System requirements. ix

Content Manager OnDemand OS/400
indexer 1
Indexing concepts 1
Indexing parameters 2
Using BREAK=YES versus BREAK=NO in indexer
parameters 4
Controlling maximum number of pages per group. . 5
Defining multi-key indexes 5

Define a multi-key index example 5
Defining transaction fields 8

Define a transaction report example 9
Assigning default index values 11
Defining text search fields 12
Handling SCS spooled files that have AFP overlays 13
Using a mask when defining applications fields . . 13
Using Tag Logical Elements (TLEs) 14

Content Manager OnDemand PDF
indexer 17
How OnDemand uses index information 19
Processing PDF input files with the graphical
indexer 20
Manually indexing input data 22

Indexing concepts 23
Coordinate system 23
Indexing parameters 23

Indexing with Metadata Indexes 26
How to create indexing parameters 27
PDF resource collection 28
PDF indexing system requirements 29

Specifying the location of Adobe fonts 29
PDF indexing limitations 29
Input data requirements 30
National language support for indexed PDF
documents. 30

Parameter reference 31
BOOKMARKS 31
COORDINATES 32
FIELD 32
FONTLIB 36
HEX 36

INDEX 37
INDEXDD 38
INDEXMODE 38
INDEXSTARTBY. 39
INPUTDD 40
MSGDD 40
OUTPUTDD 41
PARMDD 41
REMOVERES. 42
RESOBJDD 42
RESTYPE 43
TEMPDIR 43
TRACEDD 43
TRIGGER 43

Message reference 46
ARSPDOCI reference 47

Purpose 47
Syntax 47
Description 47
Parameters 47
IFS location 47

ARSPDUMP reference 48
Purpose 48
Syntax 48
Description 48
Parameters 48
Examples 49
IFS location 49

Trace facility 49

Content Manager OnDemand generic
indexer 53
Loading data 53
Specifying the parameter file 56

CODEPAGE: 56
COMMENT: 56
GROUP_FIELD_NAME: 57
GROUP_FIELD_VALUE: 57
GROUP_FILENAME: 58
GROUP_LENGTH: 59
GROUP_OFFSET: 60
Parameter file examples 60
Additional indexing topics 62

Notices 65
Trademarks 67

Index 69

© Copyright IBM Corp. 2001, 2014 iii

||

iv Indexing Reference

IBM Navigator for i

IBM Navigator for i is a powerful graphical interface for managing your IBM® i
servers.

IBM Navigator for i functionality includes system navigation, configuration,
planning capabilities, and online help to guide you through your tasks. IBM
Navigator for i makes operation and administration of the server easier and more
productive and is the only user interface to the new, advanced features of the
operating system. It also includes Management Central for managing multiple
servers from a central system.

© Copyright IBM Corp. 2001, 2014 v

vi Indexing Reference

Accessibility information for Content Manager OnDemand

For complete information about accessibility features that are supported by this
product, see the IBM Content Manager OnDemand for i: Common Server
Administration Guide.

© Copyright IBM Corp. 2001, 2014 vii

viii Indexing Reference

System requirements

For administrative client system requirements, see: http://publib.boulder.ibm.com/
infocenter/prodguid/v1r0/clarity-reports/report/html/
softwareReqsForProduct?deliverableId=1301098213267

© Copyright IBM Corp. 2001, 2014 ix

http://publib.boulder.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=1301098213267
http://publib.boulder.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=1301098213267
http://publib.boulder.ibm.com/infocenter/prodguid/v1r0/clarity-reports/report/html/softwareReqsForProduct?deliverableId=1301098213267

x Indexing Reference

Content Manager OnDemand OS/400 indexer

The Content Manager OnDemand OS/400® indexer is the most common Content
Manager OnDemand indexer used for IBM i spooled files. The OS/400 indexer is
called by the ADDRPTOND command for SCS, SCS-extended, Advanced Function
Presentation (AFP), and Line spooled files. You use the Content Manager
OnDemand administrative client's graphical indexing tool to define the index
criteria that the OS/400 indexer uses to locate and create index data for your
spooled files.

The graphical tool can be invoked in one of two ways:
v By clicking the Select Sample Data button within the Report Wizard, or
v Selecting Sample Data and clicking the Modify button on the Indexer

Information panel while creating a Content Manager OnDemand application
definition

Content Manager OnDemand uses the OS/400 indexer by default for SCS,
SCS-extended, AFP, and Line spooled files. See the Report Wizard section in the
Introduction of the IBM Content Manager OnDemand for i: Common Server
Administration Guide for more information on the Report Wizard. See the section on
Adding the Application in the Examples chapter of the IBM Content Manager
OnDemand for i: Common Server Administration Guide for more information on
defining an application without using the Report Wizard.

Indexing concepts
Indexing parameters include information that allows Content Manager OnDemand
to identify key items in the print data stream and create index elements pointing to
these items. You can specify the index information that allows Content Manager
OnDemand to segment the data stream into individual items called groups. A
group is a collection of one or more pages. You define the bounds of the collection;
for example, a bank statement, insurance policy, phone bill, or other logical
segment of a report file. A group can also represent a specific number of pages in a
report. For example, you might decide to segment a 10,000 page report into groups
of 100 pages. Content Manager OnDemand creates indexes for each group. Groups
are determined when the value of an index changes (for example, account
number), or when the maximum number of pages for a group is reached.

Index data is made up of an attribute name (for example, Customer_Name) and an
attribute value (for example, Frank Booth), with a defined tag that identifies the
location of the data on the print page. For example, the Account_Number tag with
the pointer 1,21,16 means Content Manager OnDemand can expect to find
Account_Number values starting in column 21 of specific input records. Content
Manager OnDemand collects 16 bytes of information starting at column 21 and
adds it to a list of attribute values found in the input. Content Manager
OnDemand creates an index file when you index report files. The index file
includes index elements that contain the offset and length of a group. Content
Manager OnDemand calculates an index element for every group found in the
input file. Content Manager OnDemand then writes the attribute values extracted
from the input file to the index file.

© Copyright IBM Corp. 2001, 2014 1

Indexing parameters
Indexing parameters can contain indexing, conversion, and resource collection
parameters, options, and values. For most reports, Content Manager OnDemand
requires three indexing parameters to extract or generate index data:
v TRIGGER Content Manager OnDemand uses triggers to determine where to

locate data. A trigger instructs Content Manager OnDemand to look for certain
information in a specific location in the report file. When Content Manager
OnDemand finds a record in the data stream that contains the information
specified in the trigger, it can begin to look for index information.
– Content Manager OnDemand compares data in the report file with the set of

characters specified in a trigger, byte for byte.
– A maximum of 16 triggers can be specified.
– All fixed group triggers must match before Content Manager OnDemand can

generate index information. However, floating triggers can occur anywhere in
the data stream. That is, index data based on a floating trigger can be
collected from any record in the report file.

v FIELD The field parameter identifies the location, offset, and length of the data
Content Manager OnDemand uses to create index values.
– Field definitions are based on TRIGGER1 by default, but can be based on any

of 16 TRIGGER parameters.
– A maximum of 128 fields can be defined.
– A field can also specify all or part of the actual index value stored in the

database.
v INDEX The index parameter is where you specify the attribute name, identify

the field or fields on which the index is based, and specify the type of index that
Content Manager OnDemand generates. For the group-level indexes Content
Manager OnDemand stores in the database, you should name the attributes the
same as the application group database field names.
– Content Manager OnDemand can create indexes for a page, group of pages,

and the first and last sorted values on a page or group of pages. Content
Manager OnDemand stores group-level index values in the database. Users
can search for items using group-level indexes. Page-level indexes are stored
with the document (for example, a statement). After retrieving a document
that contains page-level indexes, you can move to a specific page by using the
page-level indexes.
Content Manager OnDemand can only generate this type of page-level
information when converting the input data to AFP. This type of page-level
information is generated by specifying the CONVERT=YES and
INDEXOBJ=ALL parameters, and by creating an index field with the
TYPE=PAGE option.

– You can concatenate field parameters to form an index.
– A maximum of 128 index parameters can be specified.

Content Manager OnDemand creates a new group and extracts new index values
when one or more of the fixed group index values change, or the
GROUPMAXPAGES value is reached.

2 Indexing Reference

The following indexing parameters can be used to generate index data for the
report shown in Figure 1. The TRIGGER definitions tell Content Manager
OnDemand how to identify the beginning of a group in the input. Content
Manager OnDemand requires two TRIGGER definitions to identify the beginning
of a group (statement) in the sample file. For example:
v TRIGGER1 looks for a 1 in the first byte of each input record.
v TRIGGER2 looks for the string Page 0001 in column 72 of the same record.

Together, the triggers uniquely identify the start of a statement in the report.

The FIELD definitions determine the location of the index values in a statement.
Fields are based on the location of trigger records. For example:
v FIELD1 identifies customer name index values, beginning in column 40 of the

second record following the TRIGGER1 record.
v FIELD2 identifies the statement date index values, beginning in column 56 of the

sixth record following the TRIGGER1 record.
v FIELD3 identifies the account number index values, beginning in column 56 of

the seventh record following the TRIGGER1 record.

An INDEX definition identifies the attribute name of the index field. Indexes are
based on one or more field definitions. For example:
v INDEX1 identifies the attribute name custnam, for values extracted using

FIELD1.
v INDEX2 identifies the attribute name sdate, for values extracted using FIELD2.
v INDEX3 identifies the attribute name acctnum, for values extracted using

FIELD3.

The following table lists the maximum values for certain indexing attributes:

Indexing attribute Maximum value

Maximum number of lines per spooled file page (greater than
printer file maximum due to allowance for overprint lines)

510

Maximum page width (positions per line) 378

Maximum number of triggers per page (for documents not using
multi-key)

16

Maximum number of index values per page (for documents not
using multi-key)

128

Maximum number of fields per page (for documents not using
multi-key)

128

Maximum number of triggers per page (for multi-key documents) 512

Maximum number of index values per page (for multi-key
documents)

1024

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9
01 Page 0001
1
2 Jack Straw
3 4 Buxanchange Way
4 Wichitaw KS 99999-9999
5
6 Statement Date: 06/15/07
7 Account Number: 1234-5678-9876-0000
8
9 Balance: $2,984.17

Figure 1. Indexing a report

Content Manager OnDemand OS/400 indexer 3

|||

|
|
|

||

|
|
|

|
|
|

|
|
|

||

|
|
|

Indexing attribute Maximum value

Maximum number of fields per page (for multi-key documents) 1024

Maximum number of index values per group (document) (for
multi-key documents)

9999

Maximum size of an AFP resource segment 16,000,000 bytes

Maximum size of any single AFP resource 16,000,000 bytes

Important: For the Maximum page width indexing attribute, when using the Print
Text for OnDemand (PRTTXTOND) command with STMF(*NONE), which directs
the output to a spooled file instead of a stream file, the maximum page width is
372.

Using BREAK=YES versus BREAK=NO in indexer parameters
A group is a set of pages that logically belong together. For example, all the pages
in a single bank statement could comprise a group. A group is a single document,
or a segment, as it was known in Spool File Archive. A group break is the process
of closing the current group and starting a new group. In Spool File Archive, this
process was known as segmentation. For a specific group index, the BREAK setting
determines whether the OS/400 indexer begins a new document when that index's
value changes.

When you specify BREAK=YES, the OS/400 indexer begins a new group when the
value of the field on which the index is based changes. BREAK=NO is useful when
you define two or more fields and you want the OS/400 indexer to begin a new
group only when the other of the two fields' value changes. Specify BREAK=YES
only for the index that is based on the field that you want the OS/400 indexer to
use to control the group break. Specify BREAK=NO for all the other indexes in the
group.

To expand on the bank statement example, consider storing bank statements. Each
statement begins with a change in account number from the previous statement.
You defined indexes for Account Number, Customer Name, and Statement Date.
Most likely, you want Account Number to be set to BREAK=YES, Customer Name
to BREAK=NO, and Statement Date to BREAK=NO. Doing this ensures that a
group break occurs only when Account Number changes. The corresponding
indexer parameters in the Application definition might look like this:
INDEX1=X’C1838396A495A3D5A494828599’,FIELD1,(TYPE=GROUP,BREAK=YES) /* AccountNumber */
INDEX2=X’C3A4A2A396948599D5819485’,FIELD2,(TYPE=GROUP,BREAK=NO) /* CustomerName */
INDEX3=X’E2A381A385948595A3C481A385’,FIELD3,(TYPE=GROUP,BREAK=NO) /* StatementDate */

The Content Manager OnDemand Administrator client's Report Wizard is designed
to simplify the process of defining application groups, applications, and folders.
The Wizard makes the assumption that any change in an index that is defined as
TYPE=GROUP should cause a group break. Thus, it sets all index fields to
BREAK=YES. If the index is based on a float trigger (TYPE=FLOAT), then
BREAK=NO is set by default. Indexes based on float triggers can be changed to
BREAK=YES, if necessary.

Note that if you have selected the Allow Multiple Values option, BREAK is
automatically set to NO and should not be changed.

If you already archived data with all of your indexes set to BREAK=YES, you can
still make this change. Changing some of your indexes from BREAK=YES to

4 Indexing Reference

||

||

|
|
|

||

||
|

|
|
|
|
|
|
|

|
|

BREAK=NO can be done at any time. As with any change to your indexer
parameters, you should verify that your reports archive correctly after the change.
Any reports already archived do not need to be rearchived; however, the change
will only affect reports that are archived after the change is made.

Controlling maximum number of pages per group
You might want to set a maximum number of pages for each group that is
indexed. Content Manager OnDemand can use the value of the
GROUPMAXPAGES indexer parameter to determine the number of pages in a
group. For example, you need to index a report consisting of thousands of pages of
detail. If your BREAK=YES criteria do not result in small enough groups of pages
(or segments) of the report, you can use GROUPMAXPAGES=100, for example, to
force Content Manager OnDemand to close the current group and begin a new
group for any group that reaches 100 pages. In other words, if the
GROUPMAXPAGES value is reached before the value of a group index changes,
Content Manager OnDemand forces the creation of a new group. If you do not
specify a value for the GROUPMAXPAGES parameter, Content Manager
OnDemand does not terminate the current group and begin a new group until the
value of one of the fields named by an INDEX with BREAK=YES changes.

Defining multi-key indexes
Multi-key indexes can be used when an index value occurs multiple times within a
single document. For example, invoices might have invoice number, customer
number, and customer name defined as the first three index fields, each occurring
once within a given invoice. Then you might also want to define item number as a
multi-key index, since there might be multiple item numbers within one invoice.
With multi-key support, an end-user could search by item number to find any
invoice for a given item number, no matter where that item number appeared in
the list of invoiced items. Without the multi-key capability, only the first item
number on the page would be indexed.

To enable multi-key indexing, the keyword ALLOWMULTIPLEVALUES=YES must
be added to each INDEX statement that is to have multiple values captured per
document. For example:
INDEX2=X’97969596’,FIELD2,(TYPE=GROUP,BREAK=NO,ALLOWMULTIPLEVALUES=YES)

The keyword would be added to the Content Manager OnDemand Application
definition. Go to the Indexer Information tab, then click on Keyboard and then
Modify to edit the Application's Indexer Parameters. Keyword
ALLOWMULTIPLEVALUES is only valid when BREAK=NO. Keyword
ALLOWMULTIPLEVALUES=YES is only supported by the OS/400 indexer. It is
not supported by the PDF indexer. Also note that unlike the Content Manager
OnDemand Spool File Archive multi-key rule, defining an index as multi-key does
not require all subsequent index fields to also be defined as multi-key. In a
Common Server environment, as is shown in the example, you can define an index
as multi-key and then define another one below it that is not multi-key. However,
a field used for a multi-key index must be found on or below the row containing
the float trigger used to locate that field.

Define a multi-key index example
The following example demonstrates how to define a multi-key index using the
Report Wizard and the graphical indexer. The sample report to be archived is an
AFP invoice. The following pieces of information should be used as indexes:

Content Manager OnDemand OS/400 indexer 5

v Customer Number
v Invoice Number
v Invoice Date
v Item Number (this will be the multi-key index)
v Total Due

As a general rule, you should define triggers and fields from top left to bottom
right of the report. This has the added benefit of making your indexer parameters
easier to understand.

Figure 2 shows a page from a sample report with a multi-key index.

To begin, first start the Content Manager OnDemand administrative client and log
on to your instance's server. Next, click the Report Wizard toolbar button. Then
select the data type; for the example, select AFP. Then select the sample input file.
The graphical indexer should now display the spooled file.

The sample report contains AFP data, and only the text is displayed by the
graphical indexer, not the AFP resources (such as special fonts, bar codes, graphics,
and overlays).

Define the first trigger. Select the / (forward slash) character in the ship date as
Trigger1. This trigger will be used to locate the Customer Number, Invoice
Number, and Ship Date.

Define the second trigger. Select the . (period) character in the price as Trigger2.
This trigger must be defined as a float trigger and will be used to locate the Item
Numbers.

Figure 2. Multi-key index sample report

6 Indexing Reference

Define the third trigger. Select the / (forward slash) character in the payment due
date as Trigger3. This trigger will be used to locate the Total Due.

After the triggers are defined, define the fields and indexes. When using the
Report Wizard, the fields and indexes are defined in one step. If using the
graphical indexer from within an application definition rather than the Report
Wizard, the fields and indexes are defined in separate steps.

The first field and index are for the customer number. The customer number is
located by using Trigger1. On the Database Field Attributes page, the customer
number field is defined as a string data type.

The second field and index are for the invoice number. The invoice number is
located by using Trigger1. On the Database Field Attributes page, invoice number
is defined as a string data type.

The third field and index are for the invoice date. The invoice date is located by
using Trigger1. On the Database Field Attributes page, invoice date is defined as a
date data type, and selected as our segment field.

The fourth field and index are for the item number. The item number is located by
using Trigger2. On the Database Field Attributes page, item number is defined as a
string data type.

The Mask parameter is used to specify a pattern that the field data must match in
order to be used as an index. In the example, a field must consist of eight numeric
characters (each # represents one numeric character). This could be useful if the
trigger (a period) could be present in row that did not contain an item number.

After defining all of the fields, you must go back and mark the item number index
as multi-key (as described below).

The fifth field and index are for the total due. The total due is located by using
Trigger3. On the Database Field Attributes page, total due is defined as a string
data type.

That completes defining the fields and the indexes.

Now you must go back and specify the item number, which is Index4, as the
multi-key. Click on the Toggle select Trigger, Index, Field Parameters toolbar
button.

The administrative client opens the Select dialog box.

Click on Index 4. Then click on the Properties button to open the Update an Index
dialog box.

Click on the Allow Multiple Values check box.

Click on the OK button to save the item number index as a multi-key index.

Close the Select dialog box.

To verify how the system will index the document, click on the Toggle between
Display and Add Parameters toolbar button.

Content Manager OnDemand OS/400 indexer 7

|

The defined triggers will be highlighted in red. The defined fields will be
highlighted in blue.

You can now close the graphical indexer window and complete the process of
using the Report Wizard to define the application group, application, and folder.

Figure 3 shows the indexer parameters that were generated for the example report.

After loading the example report, you can start the Content Manager OnDemand
Client, open the new folder, and search for documents.

Defining transaction fields
A transaction report contains pages of records with one or more columns of sorted
data. For example, each page of a general ledger report contains up to 80
transaction records. Each record contains a unique value, such as a transaction
number. The records in the report are sorted on the transaction number.

Rather than storing every transaction number in the database (perhaps hundreds of
thousands of rows), you can break the report into groups of pages (say, 100 pages
in a group), extract the beginning and ending transaction number for each group
of pages, and store the values in the database. Then, to retrieve the group of the
report that contains a specific transaction number, a user specifies a transaction
number. Content Manager OnDemand compares the transaction number with the
beginning and ending values stored in the database and retrieves the group that
matches the query.

To define a transaction report that contains one or more columns of sorted data as
described in the example, a transaction field is used. A transaction field allows
Content Manager OnDemand to index a group of pages using the first index value
on the first page and the last index value on the last page.

The easiest method of specifying a transaction field is to use the Report Wizard
and the graphical indexer.

The indexer parameter for the transaction field will look similar to the following:
FIELD1=*,*,10,(OFFSET=(3:12),MASK=’##########’,ORDER=BYCOL)

The indexer parameter for the index created from the transaction field will look
similar to the following:
INDEX1=X’D3968195’,FIELD1,(TYPE=GROUPRANGE,BREAK=NO)

TRIGGER1=*,55,X’61’,(TYPE=GROUP) /* / */
TRIGGER2=*,64,X’4B’,(TYPE=FLOAT) /* . */
TRIGGER3=*,31,X’61’,(TYPE=FLOAT) /* / */
FIELD1=0,15,6,(TRIGGER=1,BASE=0)
FIELD2=0,33,6,(TRIGGER=1,BASE=0)
FIELD3=0,50,8,(TRIGGER=1,BASE=0)
FIELD4=0,19,8,(TRIGGER=2,BASE=0,MASK=’########’)
FIELD5=0,69,12,(TRIGGER=3,BASE=0)
INDEX1=X’83A4A2A39596’,FIELD1,(TYPE=GROUP,BREAK=YES) /* custno */
INDEX2=X’8995A59596’,FIELD2,(TYPE=GROUP,BREAK=YES) /* invno */
INDEX3=X’8995A58481A385’,FIELD3,(TYPE=GROUP,BREAK=YES) /* invdate */
INDEX4=X’89A3859495A494’,FIELD4,(TYPE=GROUP,BREAK=NO,ALLOWMULTIPLEVALUES=YES)/* itemnum */
INDEX5=X’A396A3819384A485’,FIELD5,(TYPE=GROUP,BREAK=NO) /* totaldue*/

Figure 3. Multi-key index indexer parameters

8 Indexing Reference

These indexer parameters would be added by the Report Wizard to the Content
Manager OnDemand Application definition. To see them, go to the Indexer
Information tab, then click on Keyboard and then Modify to view the Application's
Indexer Parameters.

Define a transaction report example
The following example demonstrates how to define a transaction report using the
Report Wizard and the graphical indexer. The sample report that we are archiving
is a Loan Delinquency Report. Each page of the loan delinquency report contains
loan records. Each record contains a unique value, the loan number. The records in
the report are sorted on the loan number. We want to use the following pieces of
information as indexes:
v Report Date
v Starting Page Number
v Loan Number (this will be the transaction field)

As a general rule you should define triggers and fields from top left to bottom
right of the report. This has the added benefit of making your indexer parameters
easier to understand.

Figure 4 shows a sample page of the report.

To begin, first start the Content Manager OnDemand administrative client and log
on to your instance's server. Next, click the Report Wizard toolbar button. Then
select the data type; for the example, select SCS. Then select the sample input file.
The graphical indexer should now display the spooled file.

Define the first trigger. Select the word REPORT for Trigger1. This trigger will be
used to determine the start of the document, and to locate the Report Date and
Starting Page Number fields.

Trigger1 is the only trigger required. Next, define fields and indexes. When using
the report wizard, the fields and indexes are defined in one step. If using the
graphical indexer within the application definition rather than the Report Wizard,
the fields and indexes are defined in separate steps.

REPORT D33313001 ONDEMAND NATIONAL BANK DATE 01-15-00
BANK 001 TIME 16:03:46
FROM 01/01/99 MODE 9
TO 12/31/99 LOAN DELINQUENCY REPORT PAGE 0001

LOAN CUSTOMER LOAN DELINQUENT DELINQUENT DELINQUENT
NUMBER NAME AMOUNT 30 DAYS 60 DAYS 90 DAYS

0100000000 AARON, ROBERT $10000000.00 $ 50.00 $ 50.00 $.00
0100000001 ABBOTT, DAVID $ 11000.00 $ 100.00 $ 200.00 $.00
0100000002 ABBOTT, DAVID $ 12000.00 $ 140.00 $.00 $.00
0100000003 ABBOTT, DAVID $ 13000.00 $ 150.00 $.00 $.00
0100000005 ROBINS, STEVEN $ 500.00 $ 50.00 $.00 $.00
0100000006 ARNOLD, SAMUEL $ 1000.00 $ 75.00 $ 150.00 $ 225.00
0100000007 PETERS, PAUL $ 650.00 $ 50.00 $.00 $.00
0100000008 ROBERTS, ABRAHAM $ 9000.00 $ 120.00 $.00 $.00
0100000009 SMITH, RANDOLPH $ 8000.00 $ 115.00 $.00 $.00
0100000010 KLINE, PETER $ 8500.00 $ 110.00 $.00 $.00

Figure 4. Transaction Field sample report

Content Manager OnDemand OS/400 indexer 9

The first field and index are for the report date. The report date is located by using
Trigger1. On the Database Field Attributes page, the report date is defined as a
date data type and is selected as the segment field.

The second field and index are for the starting page number. The starting page
number is located by using Trigger1. On the Database Field Attributes page, the
starting page number is defined as an integer data type.

After defining all of the fields, you must change the starting page number field so
that a new document group is not created each time the page number changes.

The second field and index are for the loan number. The loan number is located by
using a mask. The Mask parameter is used to specify a pattern that the transaction
field data must match in order to be used as an index. In the example, the field
must consist of ten numeric characters (each # represents a numeric character). A
transaction field does not use a trigger to locate the data, it uses the mask to define
how the data must be structured, and uses any data on that page that matches that
mask.

The Database Field Attributes page has specific parameters to support a transaction
field. The end user of the sample report will see the folder field names. The
database field names are using internally to Content Manager OnDemand and are
not seen by end users.

The end user will enter search criteria (the loan number) into the field that is
identified by the Query Folder Field. The document list will show two loan
numbers. These are the starting and ending loan numbers of the group of the
report that contains the loan number that was searched for.

The loan number is defined as a string data type.

Now you must go back and specify that the starting page number, which is
Index2, should not start a new document group when the value changes. Click the
Toggle select Trigger, Index, Field Parameters toolbar button.

The administrative client opens the Select dialog box.

Click on Index 2. Then click on the Properties button to open the Update an Index
dialog box.

Under Break, select the No option. Click the OK button to save the starting page
number index as a Break=No index. A change in the starting page number will no
longer cause a new document group to be created.

Close the Select dialog box.

To verify how the system will index the document, click on the Toggle between
Display and Add Parameters toolbar button.

The defined triggers will be highlighted in red. The defined fields will be
highlighted in blue. The defined transactions fields will be highlighted in green.

You can now close the graphical indexer window and complete the process of
using the Report Wizard to define the application group, application, and folder.

10 Indexing Reference

Figure 5 shows the indexer parameters that were generated for the example report.

After archiving the example report, you can start the Content Manager OnDemand
client, open the new folder, and search for documents.

Assigning default index values
You can create a Content Manager OnDemand application definition with an index
field that does not always exist on the print page. If a value is not found for that
field during indexing (in other words, if only blanks are found or the field location
does not exist on the particular print page), then the DEFAULT keyword is used to
determine the default value to use. The DEFAULT keyword can be placed on the
FIELD indexer parameter line of the indexer parameters for a particular application
definition.

The DEFAULT keyword can be specified in one of two ways. The first method
allows you to specify an actual value (given in alphanumeric or hex format). The
second method allows you to use the default value that you have specified on the
Load Information tab of the Content Manager OnDemand application definition
and index propagation (described below).

Examples of the first method:

DEFAULT=’your_Value’ (such as DEFAULT=’ABC’)

or

DEFAULT=x’your_Hex’ (such as DEFAULT=x’C1C2C3’)

Examples of the second method:

DEFAULT=’_*USELOADDEFAULTORPROPAGATION’

or

DEFAULT=x’6D5CE4E2C5D3D6C1C4C4C5C6C1E4D3E3D6D9D7D9D6D7C1C7C1E3C9D6D55C6D’
(In this second case, the hex value specified is the hexadecimal representation of
the character string _*USELOADDEFAULTORPROPAGATION*_.)

The second method (using _*USELOADDEFAULTORPROPAGATION*_ or its
hexadecimal representation) allows the load process to assign the default value
from the Load Information tab of the application definition or for propagation to
occur. To have the load process assign a default from the Load Information tab,
you must specify one by using the Content Manager OnDemand Administrator
Client. If you have not specified a default, propagation occurs. Propagation is the
process of carrying a value over from its previously found value. This can be

TRIGGER1=*,2,X’D9C5D7D6D9E3’,(TYPE=GROUP) /* REPORT */
FIELD1=0,83,8,(TRIGGER=1,BASE=0)
FIELD2=3,87,4,(TRIGGER=1,BASE=0)
FIELD3=*,*,10,(OFFSET=(3:12),MASK=’##########’,ORDER=BYROW)
INDEX1=X’998481A385’,FIELD1,(TYPE=GROUP,BREAK=YES) /* rdate */
INDEX2=X’A297818785’,FIELD2,(TYPE=GROUP,BREAK=NO) /* spage */
INDEX3=X’D396819540D5A494828599’,FIELD3,(TYPE=GROUPRANGE,BREAK=NO) /* Loan Number */

Figure 5. Transaction Field indexer parameters

Content Manager OnDemand OS/400 indexer 11

useful but can also have unintended results. For example, if the field was a
customer number, the value for customer number is carried from the previous
document if one was not found for the current document. This might not be what
you intend to happen. Exercise caution when using this second method, as
propagation can occur.

Defining text search fields
The text search function is used to search for documents that contain a specified
word or phrase that is not already defined as an index field for the documents.
Initially, the specified index field values are used for the document search. Then,
any document that matches the index fields criteria is searched for the specified
text search word or phrase. For example, if the other index fields are date and
account number, only documents that match the specified date and account
number are searched for the specified text search word or phrase. Then, if a
document contains the specified word or phrase, the document is added to the
document list.
1. You can define only one text search field per folder.
2. The only valid search operator for a text search field is EQUAL.
3. Wildcards and pattern matching are not supported in a text search field.
4. The case of the specified word or phrase is ignored. For example, the phrase

customer xyz matches customer xyz, Customer Xyz, and CUSTOMER XYZ.

The text search function is performed entirely on the IBM i server. Any
performance impact will depend on the size and number of documents that are
searched and on the performance of the system under the pre-existing workload.
To limit the number of documents that are searched, users should specify criteria
for some or all of the other index fields.

To create a text search field folder definition:
1. Create the application group, application, and folder by using the Report

Wizard. (The Report Wizard does not include a provision for creating a text
search field. However, doing so can be accomplished in just a few steps outside
the Report Wizard.)

2. Copy the folder.
3. On the Field Definition tab, add a field named Full Text Search and select Text

Search for the field type. Click the Add button to add the field.
4. Click OK to update the folder.

After archiving some documents into the application group, you can try the text
search function.

You may want to set a number of options within the Content Manager Content
Manager OnDemand Windows client to enhance the use of text search:
v From the Options menu, select the Show Search String option. This option

causes the text search string that you enter to be highlighted within the
document after it is opened.

v If the Autoview option is set to either First Document or Single Document, the
document automatically displays with the text search string highlighted. Single
Document will cause the document to automatically display if only one
document meets the search criteria. First Document always causes the first
document in the document list to automatically display, not matter how many
documents meet the search criteria.

12 Indexing Reference

When you are ready to try your text search field, open the folder that contains the
text search field and perform a text search. The text search string can be one or
more words. Open one of the documents from the document list. The text search
string should be highlighted in the document. You can use the Find Next toolbar
button to find the next occurrence of the string in the document. Note that you can
still perform standard searches with the folder; you do not have to specify a text
search every time that you search for documents.

To use the text search function with AFP or SCS-Extended documents, you must
have the Portable Application Solutions Environment (PASE; a product option of
IBM i) installed. If PASE is not installed, you will receive message 161 in the
Content Manager OnDemand system log when attempting to perform a text search
on AFP or SCS-Extended documents. To use the text search function with SCS or
Line documents, you do not need PASE.

Handling SCS spooled files that have AFP overlays
The preferred method of handling SCS spooled files that have an AFP overlay
named in their associated printer file is to simply change the DEVTYPE parameter
of the printer file used to create the original spooled file to *AFPDS. This will
cause IBM i to put the data into spool as *AFPDS, which is the most efficient way
for Content Manager OnDemand to capture (load) this type of spooled data.
However, making this change will require the original, production spooled file to
be printed on an AFPDS printer. In most cases, if you really are printing it with an
overlay, then this should not be a problem. However, if you are printing it on a
line printer with preprinted forms, this approach will not work.

If, for some reason you cannot change the original printer file's DEVTYPE
parameter to *AFPDS, Content Manager OnDemand can do the conversion to AFP
automatically, allowing the spooled file to be viewed and printed with fidelity.
(This method is more time-consuming than letting IBM i do it using the DEVTYPE
parameter of the printer file.) To enable this conversion, simply specify both the
data type and the DOCTYPE indexer parameter in the Content Manager
OnDemand Application definition as AFP rather than SCS. When Content Manager
OnDemand encounters an *SCS spooled file that has an overlay, and the
Application definition and DOCTYPE indexer parameter both specify AFP as the
data type, Content Manager OnDemand will convert the *SCS data to *AFPDS and
store that newly created *AFPDS spooled file. Reprints out of Content Manager
OnDemand will require an AFP-capable printer, but that should be expected due to
the overlay. If you specify a data type of AFP in your Content Manager
OnDemand Application definitions for any other type of non-AFP spooled file, the
loading of the data will fail.

Using a mask when defining applications fields
A mask specifies the pattern of symbols that the indexing program matches with
data located for a particular field. With the OS/400 indexer, a mask can be used
with either a trigger-based field or a transaction field. If the data matches the
mask, then the indexer selects the field. If the data does not match the mask, then
the field is treated as if the trigger or transaction field was not found.

You can specify the following symbols in the mask:

@ Matches alphabetic characters

Matches numeric characters

Content Manager OnDemand OS/400 indexer 13

= Matches any character

¬ Matches any non-blank character

∧ Matches any non-blank character

% Matches the blank character and numeric characters

For example, a mask of ####.## would cause the indexer to select the field only if
the data in the field (from left to right) contains four numeric characters, followed
by a decimal point, followed by two numeric characters.

An example of the indexer parameter syntax for a field with a mask is as follows:
FIELD4=0,-24,7,(TRIGGER=3),BASE=TRIGGER,MASK=’####.##’)

Note: You may need to manually add the MASK keyword to the correct field
definition if you are using a group trigger-based field. Support for group
trigger-based field masks may not be available with the graphical indexing tool for
the version of the Content Manager OnDemand administrative client that you are
using.

Using Tag Logical Elements (TLEs)
Using Tag Logical Elements (TLEs) to identify index data requires no special check
boxes or other special setup. The Content Manager OnDemand graphical indexer
(which is invoked by the Content Manager OnDemand Administrator Client when
defining an application) automatically displays TLE data at the top of each print
page before displaying the data itself, allowing you to use the TLE data just as you
use the print data itself to extract index information (such as a customer number or
invoice number).

An example of the data you might see in the Content Manager OnDemand
Administrator Client's graphical indexer when you are working with TLEs in an
AFPDS spooled file is shown below. The four lines near the top, immediately
following the *GROUP_START line, represent the TLE information. The AFP
datastream text must be encoded in EBCDIC and not ASCII. This is also true of
TLEs.
*GROUP_START 113928
Invoice Number 113928
Invoice Date 06/15/07
Customer Number 44332
Invoice Total $ 2,859.36

ABC COMPANY
101 Plagioclase Blvd.
Deva Station VA 55564

528 555-1234

SHIP DATE 04/07/73
Dewey Cheatham & Howe
P.O. Box 47899
Ridiculous TN 79832

CUSTOMER NUMBER 44332

PURCHASE ORDER NO. - C3050279

17 IGUANAS 3.23 0.11 77.34
93 SHOE HORNS 18.95 13.13 127.83
55 RUNCIBLE SPOONS 43.43 9.23 239.01

14 Indexing Reference

55 HATRACKS 97.00 43.83 4,721.64
93 THELMIN WIRES 0.54 2.32 14.12
09 TOOTHPICKS 53.00 19.91 102.43

5282.37

Content Manager OnDemand OS/400 indexer 15

16 Indexing Reference

Content Manager OnDemand PDF indexer

The Content Manager OnDemand PDF indexer is a program that you can use to
extract index data from and generate index data about Adobe PDF input files. The
index data can enhance your ability to store, retrieve, and view documents with
Content Manager OnDemand. The PDF indexer supports PDF Version 1.3 or later
input and output data streams. For more information about the PDF data stream,
see the Portable Document Format Reference Manual, published by Adobe Systems
Incorporated. Adobe also provides online information with the Acrobat Exchange
and Acrobat Distiller products, including online guides for Adobe Capture,
PDFWriter, Distiller, and Exchange.

You define and store PDF documents on the server using standard Content
Manager OnDemand functions. You must define a Content Manager OnDemand
application and application group. As part of the application, you must define the
indexing parameters used by the PDF indexer to process input files. You can
automate the indexing and loading of data by using special parameters of the
ADDRPTOND (using *STMF for the INPUT parameter) or STRMONOND (using
*DIR for the TYPE parameter) commands or the ARSLOAD API program. See the
Command Reference appendix of the IBM Content Manager Content Manager
OnDemand for i: Common Server Administration Guide for more information on the
ADDRPTOND and STRMONOND commands. See the API Reference appendix of
the IBM Content Manager OnDemand for i: Common Server Administration Guide for
more information on the ARSLOAD API program and its parameters.

After you index and store input files in Content Manager OnDemand, you use the
Content Manager OnDemand Windows client program to work with the PDF
document or documents created during the indexing and loading process. See the
IBM Content Manager Content Manager OnDemand for i: Common Server Planning and
Installation Guide for more information about working with PDF documents with
the Content Manager OnDemand Windows client.

Figure 6 on page 18 illustrates the process of indexing and loading PDF input files.

© Copyright IBM Corp. 2001, 2014 17

The PDF indexer processes PDF input files. A PDF file is a distilled version of a
PostScript file, adding structure and efficiency.

Content Manager OnDemand retrieves processing information from application
and application group definitions that are stored in the database. The application
definition identifies the type of input data, the indexing program used to index the
input files, the indexing parameters, and other information about the input data.
The application group identifies the database and storage management
characteristics of the data. You can use the administrative client to create the
application and the indexing parameters.

When Content Manager OnDemand processes a PDF input file and the application
Indexing Information page specifies PDF as the indexer, Content Manager
OnDemand automatically calls the PDF indexer to process the input file. The PDF
indexer processes the PDF input file with indexing parameters that determine the
location and attributes of the index data. The PDF indexer extracts index data from
the PDF file and generates an index file and an output file. The output file contains
groups of indexed pages. A group of indexed pages can represent the entire input
file or, more typically, one or more pages from the input file. If the input file
contains logical groups of pages, such as statements or policies, the PDF indexer
can create an indexed group for each statement or policy in the input file and
users can retrieve a specific statement or set of statements, rather than the entire
file.

The PDF indexer can optionally extract embedded resources from the PDF input
files and store them in a resource file. The resource file is loaded into Content
Manager OnDemand at the same time as the output file. After indexing the data,

PostScript
Data

Application

Application
Group

Acrobat
Distiller

PDF Data

<keyword conref="ecmcf000.dita#key/ods"></keyword>
Indexer and
Loader

Database

Storage
Volumes

Index
Data

Indexed
Groups

Resources

Figure 6. Processing PDF input files in Content Manager OnDemand

18 Indexing Reference

Content Manager OnDemand stores the index data in the database and the
indexed groups and resources on storage volumes.

How OnDemand uses index information
Every item stored in Content Manager OnDemand is indexed with one or more
group-level indexes. Groups are determined when the value of an index changes
(for example, account number). When you load a PDF file into the system, Content
Manager OnDemand invokes the PDF indexer to process the indexing parameters
and create the index data. Content Manager OnDemand then loads the index data
into the database, storing the group-level attribute values that the PDF indexing
program extracted from the data into their corresponding database fields. Figure 7
illustrates the index creation and data loading process.

You typically create an application for each report that you plan to store in Content
Manager OnDemand. When you create an application, you define the indexing
parameters that the indexing program uses to process the report and create the
index data that is loaded into the database. For example, an INDEX parameter
includes an attribute name and identifies the FIELD parameter that the indexing
program uses to locate the attribute value in the input data. When you create an
application, you must assign the application to an application group. The attribute
name you specify on an INDEX parameter should be the same as the name of the
application group database field into which you want Content Manager
OnDemand to store the index values.

You define database fields when you create an application group. OnDemand
creates a column in the application group table for each database field that you
define. When you index a report, you create index data that contains index field
names and index values extracted from the report. Content Manager OnDemand
stores the index data into the database fields.

To search for reports stored in OnDemand, the user opens a folder. The search
fields that appear when the user opens the folder are mapped to database fields in
an application group (which, in turn, represent index attribute names). The user
constructs a query by entering values in one or more search fields. OnDemand
searches the database for items that contain the values (index attribute values) that
match the search values entered by the user. Each item contains group-level index

Report Indexer

Application
Definitions

Index
Data

Application
Group
Definitions

Index
Attribute
Names

Database
Field
Names

Indexed
Groups

Loader Database

Figure 7. Indexing and loading data

Content Manager OnDemand PDF indexer 19

information. OnDemand lists the items that match the query. When the user selects
an item for viewing, the OnDemand client program retrieves the selected item
from disk or archive storage.

Processing PDF input files with the graphical indexer
This section describes how to use the graphical indexer to create indexing
information for PDF input files.

Important: If you plan to use the Report Wizard or the graphical indexer to
process PDF input files, then you must first install Adobe Acrobat on the system
from which you plan to run the administrative client. You must purchase Adobe
Acrobat from Adobe or some other software vendor.

Content Manager OnDemand provides the ARSPDF32.API file to enable PDF
viewing from the client. If you install the client after you install Adobe Acrobat,
then the installation program will copy the API file to the Acrobat plug-in
directory. If you install the client before you install Adobe Acrobat, then you must
copy the API file to the Acrobat plug-in directory. Also, if you upgrade to a new
version of Acrobat, then you must copy the API file to the new Acrobat plug-in
directory. The default location of the API file is \Program Files\IBM\Content
Manager OnDemand32\PDF. The default Acrobat plug-in directory is \Program
Files\Adobe\Acrobat x.y\Acrobat\Plug_ins, where x.y is the version of Acrobat,
for example, 4.0, 5.0, and so forth.

You can define indexing information in a visual environment. You begin by
opening a sample input file with the graphical indexer. (Note: The input file is
limited to a PC file when using the graphical PDF indexer. The graphical PDF
indexer is designed to work with workstation PDF files, not PDF spooled files in
an output queue on the IBM i server.) You can run the graphical indexer from the
report wizard or by choosing the sample data option from the Indexing
Information page of the application. After you open an input file in the graphical
indexer, you define triggers, fields, and indexes. The PDF indexer uses the triggers,
fields, and indexes to locate the beginning of a document in the input data and
extract index values from the input data. Once you have defined the triggers,
fields, and indexes, you can save them in the application so that Content Manager
OnDemand can use them later on to process the input files that you load into the
system.

You define a trigger, field, or index by drawing a box around a text string with the
mouse and then specifying properties. For example, to define a trigger that
identifies the beginning of a document, you could draw a box around the text
string Account Number on the first page of a statement in the input file. Then, on
the Add a Trigger dialog box, you would accept the default values provided, such
as the location of the text string on the page. When processing an input file, the
PDF indexer attempts to locate the specified string in the specified location. When
a match occurs, the PDF indexer knows that it has found the beginning of a
document. The fields and indexes are based on the location of the trigger.

The PDF file that you open with the graphical indexer should contain a
representative sample of the type of input data that you plan to load into the
system. For example, the sample input file must contain at least one document. A
good sample should contain several documents so that you can verify the location
of the triggers, fields, and indexes on more than one document. The sample input
file must contain the information that you need to identify the beginning of a
document in the input file. The sample input file should also contain the

20 Indexing Reference

|
|
|
|

|
|
|
|
|
|
|
|
|
|

information that you need to define the indexes. When you load an input file into
the system, the PDF indexer will use the indexing information that you create to
locate and extract index values for each document in the input file.

The following example describes how to use the graphical indexer from the Report
Wizard to create indexing information for an input file. The indexing information
consists of a trigger that uniquely identifies the beginning of a document in the
input file and the fields and indexes for each document.
1. To begin, start the administrative client.
2. Log on to a server.
3. Start the report wizard by clicking the Report Wizard icon on the toolbar. The

report wizard opens the Sample Data dialog box.
4. Click Select Sample Data to open the Open dialog box. Note: The Sample Data

is limited to a PC file when using the graphical PDF indexer. The graphical
PDF indexer is designed to work with workstation PDF files, not PDF spooled
files in an output queue on the IBM i server.

5. Type the name or full path name of a file in the space provided or use the
Look in or Browse commands to locate a file.

6. Click Open. The graphical indexer opens the input file in the report window.
7. Press F1 to open the main help topic for the report window. The main help

topic contains general information about the report window and contains links
to other topics that describe how to add triggers, fields, and indexes. Under
Options and Commands, click Indexer Information page to open the Indexing
Commands topic. (You can also use the content help tool to display
information about the icons on the toolbar.) Under Tasks, Indexer Information
page, click Adding a trigger (PDF).

8. Close any open help topics and return to the report window.
9. Define a trigger.

v Find a text string that uniquely identifies the beginning of a document. For
example, Account Number, Invoice Number, Customer Name, and so forth.

v Using the mouse, draw a box around the text string. Start just outside of
the upper left corner of the string. Click and hold mouse button one. Drag
the mouse towards the lower right corner of the string. As you drag the
mouse, the graphical indexer uses a dotted line to draw a box. When you
have enclosed the text string completely inside of a box, release the mouse
button. The graphical indexer highlights the text string inside of a box.

v Click the Define a Trigger icon on the toolbar to open the Add a Trigger
dialog box. Verify the attributes of the trigger. For example, the text string
that you selected in the report window should be displayed under Value;
for Trigger1, the Pages to Search should be set to Every Page. Click Help for
assistance with the other options and values that you can specify.

v Click OK to define the trigger.
v To verify that the trigger uniquely identifies the beginning of a document,

first put the report window in display mode. Then click the Select tool to
open the Select dialog box. Under Triggers, double click the trigger. The
graphical indexer highlights the text string in the current document. Double
click the trigger again. The graphical indexer should highlight the text
string on the first page of the next document. Use the Select dialog box to
move forward to the first page of each document and return to the first
document in the input file.

v Put the report window in add mode.
10. Define a field and an index.

Content Manager OnDemand PDF indexer 21

v Find a text string that can be used to identify the location of the field. The
text string should contain a sample index value. For example, if you want
to extract account number values from the input file, then find where the
account number is printed on the page.

v Using the mouse, draw a box around the text string. Start just outside of
the upper left corner of the string. Click and hold mouse button one. Drag
the mouse towards the lower right corner of the string. As you drag the
mouse, the graphical indexer uses a dotted line to draw a box. When you
have enclosed the text string completely inside of a box, release the mouse
button. The graphical indexer highlights the text string inside of a box.

v Click the Define a Field icon on the toolbar to open the Add a Field dialog
box.

v On the Field Information page, verify the attributes of the index field. For
example, the text string that you selected in the report window should be
displayed under Reference String; the Trigger should identify the trigger on
which the field is based. Click Help for assistance with the options and
values that you can specify.

v On the Database Field Attributes page, verify the attributes of the database
field. In the Database Field Name space, enter the name of the application
group field into which you want Content Manager OnDemand to store the
index value. In the Folder Field Name space, enter the name of the folder
field that will appear on the client search screen. Click Help for assistance
with the other options and values that you can specify.

v Click OK to define the field and index.
v To verify the locations of the fields, first put the report window in display

mode. The fields should have a blue box drawn around them. Next, click
the Select tool to open the Select dialog box. Under Fields, double-click
Field 1. The graphical indexer highlights the text string in the current
document. Double click Field 1 again. The graphical indexer should move
to the next document and highlight the text string. Use the Select dialog
box to move forward to each document and display the field. Then return
to the first document in the input file.

v Put the report window in add mode.
11. Click the Display Indexer Parameters tool to open the Display Indexer

Parameters dialog box. The Display Indexer Parameters dialog box lists the
indexing parameters that the PDF indexer will use to process the input files
that you load into the application. At a minimum, you need one trigger, one
field, and one index. See “Parameter reference” on page 31 for details about
the indexing parameters.

12. When you have finished defining all of the triggers, fields, and indexes, close
the report window.

13. Click Yes to save the changes to the indexer parameters.
14. On the Sample Data window, click Next to continue with the report wizard.

Manually indexing input data

Note: If you prefer creating your own PDF indexing parameters manually rather
than using the graphical PDF indexer, you can use the instructions in the
remainder of this chapter to do so.

22 Indexing Reference

Indexing concepts
Indexing parameters include information that allow the PDF indexer to identify
key items in the print data stream, tag these items, and create index elements
pointing to the tagged items. Content Manager OnDemand uses the tag and index
data for efficient, structured search and retrieval. You specify the index information
that allows the PDF indexer to segment the data stream into individual items,
called groups. A group is a collection of one or more pages, such as a bank
statement, insurance policy, phone bill, or other logical segment of a report. The
PDF indexer creates indexes for each group when the value of an index changes
(for example, account number).

A tag is made up of an attribute name, for example, Customer Name, and an
attribute value, for example, Earl Hawkins. Tags also include information that tell
the PDF indexer where to locate the attribute value on a page. For example, a tag
used to collect customer name index values provides the PDF indexer with the
starting and ending position on the page where the customer name index values
appear. The PDF indexer generates index data and stores it in a generic index file.

Coordinate system
The location of the text strings the PDF indexer uses to determine the beginning of
a group and index values are described as x and y pairs in a coordinate system
imposed on the page. For each text string, you identify its upper left and lower
right position on the page. The upper left corner and lower right corner form a
string box. The string box is the smallest rectangle that completely encloses the text
string. The origin is in the upper left hand corner of the page. The x coordinate
increases to the right and y increases down the page. You also identify the page on
which the text string appears. For example, the text string Customer Name, that
starts 4 inches to the right and 1 inch down and ends 5.5 inches to the right and
1.5 inches down on the first page in the input file can be located as follows:

ul(4,1),lr(5.5,1.5),1,’Customer Name’

Content Manager OnDemand provides the ARSPDUMP command to help you
identify the locations of text strings on the page. See “ARSPDUMP reference” on
page 48 for more information about ARSPDUMP.

Indexing parameters
Processing parameters can contain index and conversion parameters, options, and
values. For most reports, the PDF indexer requires at least three indexing
parameters to generate index data:
v TRIGGER

The PDF Indexer supports the following types of triggers:
– GROUP TRIGGERS

The PDF Indexer compares words in the input file with the text string
specified in a trigger. The location of the trigger string value must be
identified using the x,y coordinate system and page offsets. A maximum of 16
triggers (group or float) can be specified. Group triggers are used in
conjunction. For example, all the group triggers must match before the PDF
Indexer can begin to locate index information. The group triggers and the
fields based on them are used to define the extent of the groups. The indexer
must find all the group triggers at least once within the document or it will
stop processing and issue an error message.

– FLOAT TRIGGERS

Content Manager OnDemand PDF indexer 23

Float triggers are used to locate fields which might occur more than once
within a group, or might not occur at all. The PDF Indexer compares words
in the input file with the text string specified in a trigger. The location of the
trigger string value must be identified using the x,y coordinate system and
page offsets. A maximum of 16 triggers (group or float) can be specified. A
single float trigger must match before the PDF Indexer can begin to locate
index information. The fields based on floating triggers do not define the
extent of the groups. If a floating trigger is not found, the indexer continues
processing with no error.
The following rules apply when using floating triggers:
1. Trigger1 must be a group trigger.
2. Fields based on floating trigger must contain a default value.
3. Fields based on floating triggers cannot be combined with any other field

in an index.
4. At least one index must contain a field (or fields) based on a group

trigger.
v FIELD

The field parameter specifies the location of the data that the PDF indexer uses
to create index values.
– Field definitions are based on TRIGGER1 by default, but can be based on any

of 16 TRIGGER parameters.
– The location of the field must be identified using the x,y coordinate system

and page offsets.
– A maximum of 128 fields can be defined.
– A field parameter can also specify all or part of the actual index value stored

in the database.
v INDEX

The index parameter is where you specify the attribute name and identify the
field or fields on which the index is based. We strongly encourage you to name
the attribute the same as the application group database field name.
– The PDF indexer creates indexes for a group of one or more pages.
– You can concatenate field parameters to form an index, unless any of the

fields was based on a floating trigger. Fields based on floating triggers cannot
be combined with any other field in an index.

– A maximum of 128 index parameters can be specified.
The PDF Indexer creates a new group and extracts new index values when one
or more of the index values change, unless the index contains a field based on a
floating trigger. Fields based on floating triggers cannot be used to create a new
group.

Figure 8 on page 25 depicts a portion of a page from a sample input file. The text
strings that determine the beginning of a group and the index values are enclosed
in rectangles.

24 Indexing Reference

TRIGGER parameters tell the PDF indexer how to identify the beginning of a
group in the input. The PDF indexer requires one TRIGGER parameter to identify
the beginning of a group (statement) in the sample file. FIELD parameters
determine the location of index values in a statement. A field is collected when the
trigger (or triggers) associated with the field is found. INDEX parameters identify
the attribute names of the index fields. Indexes are based on one or more field
parameters. The following parameters could be used to index the report depicted
in Figure 8. See “Parameter reference” on page 31 for details about the parameter
syntax.
v Define a trigger to search each page in the input data for the text string that

identifies the start of a group (statement):
TRIGGER1=ul(0,0),lr(.75,.25),*,’Page 001’

v Define fields to identify the location of index data. For the sample report, we
might define four fields:
– FIELD1 identifies the location of customer name index values.

FIELD1=ul(1,1),lr(2,1.25),0

– FIELD2 identifies the location of statement date index values.
FIELD2=ul(2,2),lr(2.75,2.25),0

– FIELD3 identifies the location of account number index values.
FIELD3=ul(2,2.25),lr(3.25,2.5),0

– FIELD4 identifies the location of the balance index values.

Page 001

08/31/2003Statement Date:

0000-3727-1644-0099Account Number:

$1,096.54Balance:

John Smyth

123 Ubik Way North

Meadow Ridge WV 99999-0000

0.
25

0.
75

0.
25

0.
75

0.
25

0.
25

0.
50

0.
25

3.
25

0.75 0.25 1.00 0.75 0.50

3.25

Figure 8. Indexing data with the PDF indexer

Content Manager OnDemand PDF indexer 25

FIELD4=ul(2,3),lr(2.75,3.25),0

v Define indexes to identify the attribute name for an index value and the field
parameter used to locate the index value.
– INDEX1 identifies the customer name, for values extracted using FIELD1.

INDEX1=’cust_name’,FIELD1

– INDEX2 identifies the statement date, for values extracted using FIELD2.
INDEX2=’sdate’,FIELD2

– INDEX3 identifies the account number, for values extracted using FIELD3.
INDEX3=’acct_num’,FIELD3

– INDEX4 identifies the balance, for values extracted using FIELD4.
INDEX4=’balance’,FIELD4

Indexing with Metadata Indexes
An Adobe PDF document can contain metadata, which is general information such
as title and author that applies to the entire document.

You typically create the document’s metadata when the document is created and
can modify the metadata at any time.

When INDEXMODE=METADATA is specified, the IBM Content Manager
OnDemand PDF Indexer extracts fields from the Document Information Dictionary
that correspond to the following metadata keywords, if they exist, and place their
values into the .ind file:
v Title
v Author
v Subject
v Keywords
v Creator
v Producer
v CreationDate
v ModDate
v Trapped

The metadata keywords are the group field names within the .ind file and can be
mapped to the application group fields in the application. You can opt not to map
any group field names. Because the metadata keywords apply to the entire
document, you can index the document only as one group. If TRIGGER, FIELD, or
INDEX parameters are specified, they are ignored. Metadata indexing cannot be
combined with indexing using a TRIGGER. If the document contains none of these
metadata fields, the IBM Content Manager OnDemand PDF Indexer issues the
following error message and stops processing: ARS4940 Index notfound by page
page number

where page number is the number specified in the INDEXSTARTBY parameter.

The PDF indexer converts dates that are specified in the PDF format of
(D:YYYYMMDDHHmmSSOHH'mm) to a format of YYYYMMDDHHmmSS. The
index values CreationDate and ModDate contain the date formatted with the local
time. If the time zone information is specified in the PDF date (the OHH'mm
section) the PDF indexer creates another index value named CreationDateTZ or

26 Indexing Reference

ModDateTZ which contains the date formatted with the time adjusted to Universal
Time. For more information on Adobe date formats, see the Adobe PDF Reference,
5th Edition, ISBN-10: 0321304748.

The only parameter required for metadata indexing is: indexmode=metadata

Here is an example of an index file created by Metadata indexing:
COMMENT:
COMMENT: Content Manager OnDemand Generic Index File Format
COMMENT:
COMMENT:
COMMENT:Code Page of the Index Data
CODEPAGE:1208
COMMENT:Index Field(s)
GROUP_FIELD_NAME:Title
GROUP_FIELD_VALUE:Content Manager OnDemand: Administrator’s Guide
GROUP_FIELD_NAME:Author
GROUP_FIELD_VALUE:IBM
GROUP_FIELD_NAME:Creator
GROUP_FIELD_VALUE:XPP
GROUP_FIELD_NAME:Producer
GROUP_FIELD_VALUE:IBM (ID Workbench)
GROUP_FIELD_NAME:CreationDate
GROUP_FIELD_VALUE:20090408173745
GROUP_FIELD_NAME:CreationDateTZ
GROUP_FIELD_VALUE:20090408233745
GROUP_FIELD_NAME:ModDate
GROUP_FIELD_VALUE:20090408173745
GROUP_FIELD_NAME:ModDateTZ
GROUP_FIELD_VALUE:20090408233745
COMMENT:Index Offsets and Length
GROUP_OFFSET:0
GROUP_LENGTH:748641
GROUP_PAGES:387
GROUP_FILENAME:\pdf\pdfoutput\admin.pdf
COMMENT:
COMMENT:
COMMENT:
COMMENT:End Generic Indexing File

How to create indexing parameters
About this task

There are two parts to creating indexing parameters. First, process sample input
data to determine the x,y coordinates of the text strings the PDF indexer uses to
identify groups and locate index data. Then, create the indexing parameters using
the administrative client.

Content Manager OnDemand provides the ARSPDUMP command to help you
determine the location of trigger and field string values in the input data. The
ARSPDUMP command processes one or more pages of sample report data and
generates an output file. The output file contains one record for each text string on
a page. Each record contains the x,y coordinates for a box imposed over the text
string (upper left, lower right).

The process works as follows:
v Obtain a printed copy of the sample report.
v Identify the string values that you want to use to locate triggers and fields

Content Manager OnDemand PDF indexer 27

v Identify the number of the page where each string value appears. The number is
the sheet number, not the page identifier. The sheet number is the order of the
page as it appears in the file, beginning with the number 1 (one), for the first
page in the file. A page identifier is user-defined information that identifies each
page (for example, iv, 5, and 17-3).

v Process one or more pages of the report with the ARSPDUMP command.
v In the output file, locate the records that contain the string values and make a

note of the x,y coordinates.
v Create TRIGGER and FIELD parameters using the x,y coordinates, page number,

and string value.

Indexing parameters are part of the Content Manager OnDemand application. The
administration client provides an edit window you can use to maintain indexing
parameters for the application.

PDF resource collection
The PDF reports that you store in Content Manager OnDemand might contain
embedded resources such as fonts and images. When the report is indexed, the
report is usually broken up into smaller pieces, and the resources are placed into
each new report. Reports contain their own resources, so the size of the indexed
reports can become much larger than the original PDF reports.

In order to decrease the size of the indexed reports, the PDF indexer can optionally
extract these resources from the PDF reports and place them in a resource file.
Content Manager OnDemand loads the resource file at the same time as Content
Manager OnDemand loads the indexed report files. When a report is retrieved for
viewing or printing, the resources are reinserted into the report, and then the
report is sent to the client.

A PDF report might contain no resources if the report uses only the fourteen
standard fonts that are listed in the PDF reference. These fonts are guaranteed to
be available on the client and are not embedded in the report.

The resources that the PDF indexer collects are based on the value of the RESTYPE
parameter. The following table lists values for this parameter. For a complete list,
see “RESTYPE” on page 43.

Table 1. Available values for the RESTYPE parameter

RESTYPE Function Description

NONE Do not collect resources. Report does not contain
resources, or the resources
are small.

ALL Collect fonts and images. To save space that is used to
store the reports.

FONT Collect fonts only. To save space that is used to
store the reports. Report
contains fonts only.

IMAGE Collect images only. To save space that is used to
store the reports. Report
contains images only.

FONT, IMAGE Collect fonts and images. To save space that is used to
store the reports.

28 Indexing Reference

There is no resource exit for the PDF indexer.

PDF indexing system requirements

Specifying the location of Adobe fonts
The PDF indexer must be able to access fonts to insert appropriate information in a
PDF output file. If a font is referenced in an input file but is not available on the
system, the PDF indexer might be unable to index the document.

If you installed fonts for use with the PDF indexer, you should verify the location
of the fonts. If necessary, you must move your existing fonts to the directory
structure specified in Table 2. If you do not move your existing fonts, documents
that indexed correctly with earlier versions of the PDF indexer might fail with this
version.

The directories specified in Table 2 must be used for any Adobe font sets that you
install (including but not limited to DBCS fonts).

Table 2. Location of Adobe font files

Directory type Directory Directory contents

Font directory /QIBM/ProdData/Content
Manager
OnDemand/Adobe/Fonts

contains font resources
ending in .PFM, .PFB, .TT,
.TTF, .MMM

CMap file directory /QIBM/ProdData/Content
Manager
OnDemand/Adobe/
Resource/CMap

contains font CMap
resources; files have no
extension

CIDFont file directory /QIBM/ProdData/Content
Manager
OnDemand/Adobe/
Resource/CIDFont

contains font resources
ending in .oft

The ACRO_RES_DIR and PSRESOURCEPATH environment variables used in
previous versions of Content Manager OnDemand for i are no longer required.

PDF indexing limitations
If you are using the PDF indexer to generate index data for PostScript and PDF
files that are created by user-defined programs, remember:
v The PDF Indexer was tested using documents containing up to 100,000 pages.

However, there are many factors that affect the number of pages that can be
successfully indexed and stored on your system. Those factors include:
– the system resources available such as CPU, memory, and disk
– the size of the PDF input file
– the type and number of resources such as fonts and images used in the PDF

input file

If your PDF file does not store successfully, consider:
– splitting the file into a number of separate, smaller files
– reducing the number of different fonts used
– changing the type of fonts used
– reducing the number or size of the images included in the file

Content Manager OnDemand PDF indexer 29

|
|
|

v IBM recommends that the CCSID of the PDF input file be 1252
(WinAnsiEncoding). Using another CCSID might cause unexpected results.

v The PDF indexer supports DBCS languages. However, IBM does not provide any
DBCS fonts. You can purchase DBCS fonts from Adobe. The PDF indexer
supports all DBCS fonts, except encrypted Japanese fonts.

v Input data delimited with PostScript Passthrough markers cannot be indexed.
v The PDF Indexer does not support documents containing Digital Signatures, or

that are password protected.
v The Adobe Toolkit does not validate link destinations or bookmarks to other

pages in a document or to other documents. Links or bookmarks may or may
not resolve correctly, depending on how you segment your documents.

Tip: We recommend using the PDF Indexer parameter BOOKMARKS=NO so
that bookmarks are not copied to the documents created by the indexing
process.

v If a font is referenced in an input file but not embedded in the file and the PDF
indexer cannot locate the font, the PDF Indexer may be unable to index the
document. If the fonts are available on the system, they can be accessed at
indexing time if they are referenced in an input file and the location is specified
on the FONTLIB parameter.

Input data requirements
The PDF Indexer processes PDF input data. The Content Manager OnDemand
directory monitor (started with the Start Monitor for OnDemand (STRMONOND)
command with *DIR specified for the Type parameter) and the Add Report to
OnDemand (ADDRPTOND) command are the two most common ways to invoke
the PDF Indexer to index and load PDF data into Content Manager OnDemand on
IBM i. You can also use the ARSLOAD API.

The PDF Indexer generates the index data and then adds the index information to
the database and loads the input data on to the storage media defined for the
particular Content Manager OnDemand application group to which the data
belongs.

If you plan to automate the data indexing and loading process on the Content
Manager OnDemand server, either the input file name, specific parameters on the
command used to load the data, or a monitor user exit program must identify the
application group and application to load. The PDF file name extension is required
to initiate a load process. The case (uppercase or lowercase) of the extension (.pdf)
is ignored. Application group and application names are case sensitive. Application
group and application names may include special characters such as the blank
character when using ADDRPTOND or ARSLOAD with a specific application
group and application name provided. However, STRMONOND and ARSLOAD
when using the MVS naming convention (-A and -G parameters) do not support
archiving PDF files that have spaces in the file name. See the IBM Content Manager
OnDemand for i: Common Server Administration Guide for more information about
using the STRMONOND and ADDRPTOND commands and the ARSLOAD API to
load data into Content Manager OnDemand.

National language support for indexed PDF documents
Consider the following when using the PDF indexer:
v The PDF indexer supports DBCS languages. However, IBM does not provide any

DBCS fonts. You can purchase DBCS fonts from Adobe. The PDF indexer

30 Indexing Reference

|
|

|
|
|
|
|

supports all DBCS fonts, except encrypted Japanese fonts. See “Specifying the
location of Adobe fonts” on page 29 if you plan to use DBCS font files.

v When loading data using the PDF indexer, the locale must be set appropriately
for the code page of the documents. For example, if the code page of the
documents is 954, set the locale environment variable to ja_JP or some other
locale that correctly identifies upper and lower case characters in code page 954.

v Data values that you specify on TRIGGER and FIELD parameters must be
encoded in the same code page as the document. For example, if the characters
in the document are encoded in code page 1252, any data values that you
specify on TRIGGER and FIELD parameters must be encoded in code page 1252.
Examples of data values that you might specify include TRIGGER string values
and FIELD default and constant values.

v Previous versions of the PDF indexer required that you change the output from
the graphical indexer from character to EBCDIC hexadecimal to index with a
DBCS TRIGGER value. The DBCS TRIGGER parameter will now accept the
character data from the graphical indexer. You are no longer required to change
the TRIGGER value to EBCDIC hexadecimal. Existing applications that are
currently coded using the EBCDIC hexadecimal format will still work without
modification.
There still might be situations where a DBCS hexadecimal TRIGGER value is
required. If you need to use a hexadecimal DBCS TRIGGER value, you first
mark the DBCS TRIGGER value by using the graphical indexer. Once the
indexing parameters are created, you must then edit the indexing parameters in
the Application definition and replace the marked-up TRIGGER value with its
EBCDIC hexadecimal equivalent. The TRIGGER value may be entered with or
without spaces between the DBCS characters. Also, the shift out/shift in
characters are not longer required between the DBCS characters.
An example of the TRIGGER indexing parameter specified with EBCDIC
hexadecimal follows:
TRIGGER1=UL(5.40,1.92),LR(6.00,2.07),*,X’0E438D438E439443A60F’

For more information about NLS in Content Manager OnDemand, see the IBM
Content Manager Content Manager OnDemand for i: Common Server Planning and
Installation Guide.

Parameter reference
This parameter reference assumes that you will use the Start Monitor for
OnDemand (STRMONOND) command, Add Report to OnDemand
(ADDRPTOND) command, or ARSLOAD API to process your input files. When
you use any one of these three methods to process input files, the PDF indexer
ignores any values that you may provide for the INDEXDD, INPUTDD, MSGDD,
OUTPUTDD, and PARMDD parameters. If you run the ARSPDOCI API from the
command prompt or call it from a user-defined program, then you must provide
values for the INPUTDD, OUTPUTDD, and PARMDD parameters and verify that
the default values for the INDEXDD and MSGDD parameters are correct.

If you must include spaces in a value for an option of a PDF Indexer parameter,
enclose the entire value in quotation marks.

BOOKMARKS
Indicates whether or not to copy the bookmarks from the original document to the
new documents. The default is YES, which indicates that all the bookmarks from
the original document are copied to each new document created by the PDF

Content Manager OnDemand PDF indexer 31

Indexer. Some of these bookmarks might no longer be valid. If the original
document contains many bookmarks, the size of the new documents can be
reduced by not copying the bookmarks.

Required?
No

Default Value
YES

Syntax
BOOKMARKS=[YES | NO]

Options and values
YES Bookmarks are copied to each new document (default).

NO Bookmarks are not copied to new documents.

COORDINATES
Identifies the metrics used for x,y coordinates in the FIELD and TRIGGER
parameters.

Required?
No

Default Value
IN

Syntax
COORDINATES=metric

Options and values
The metric can be:
v IN

The coordinate metrics are specified in inches (the default).
v CM

The coordinate metrics are specified in centimeters.
v MM

The coordinate metrics are specified in millimeters.

FIELD
Identifies the location of index data and can provide default and constant index
values. You must define at least one field. You can define up to 128 fields. You can
define two types of fields: a trigger field, which is based on the location of a trigger
string value and a constant field, which provides the actual index value that is
stored in the database.

Required?
Yes

Default Value
<none>

Trigger field syntax
FIELDn=ul(x,y),lr(x,y),page[,(TRIGGER=n,BASE={0 | TRIGGER},
MASK='field_mask',DEFAULT='value')]

32 Indexing Reference

Options and values:

v n

The field parameter identifier. When adding a field parameter, use the next
available number, beginning with 1 (one).

v ul(x,y)

The coordinates for the upper left corner of the field string box. The field string
box is the smallest rectangle that completely encloses the field string value (one
or more words on the page). The PDF indexer must find the field string value
inside the field string box. The supported range of values is 0 (zero) to 45, page
width and length, in inches.

v lr(x,y)

The coordinates for the lower right corner of the field string box. The field string
box is the smallest rectangle that completely encloses the field string value (one
or more words on the page). The PDF indexer must find the field string value
inside the field string box. The supported range of values is 0 (zero) to 45, page
width and length, in inches.

v page

The sheet number where the PDF indexer begins searching for the field, relative
to a trigger or 0 (zero) for the same page as the trigger. If you specify BASE=0,
the page value can be –16 to 16. If you specify BASE=TRIGGER, the page value
must be 0 (zero), which is relative to the sheet number where the trigger string
value is located.

v TRIGGER=n

Identifies the trigger parameter used to locate the field. This is an optional
keyword, but the default is TRIGGER1. Replace n with the number of a defined
TRIGGER parameter.

v BASE={0|TRIGGER}
Determines whether the PDF indexer uses the upper left coordinates of the
trigger string box to locate the field. Choose from 0 (zero) or TRIGGER. If
BASE=0, the PDF indexer adds zero to the field string box coordinates. If
BASE=TRIGGER, the PDF indexer adds the upper left coordinates of the location
of the trigger string box to the coordinates provided for the field string box. This
is an optional keyword, but the default is BASE=0.
You should use BASE=0 if the field data always starts in a specific area on the
page. You should use BASE=TRIGGER if the field is not always located in the
same area on every page, but is always located a specific distance from a trigger.
This capability is useful when the number of lines on a page varies, causing the
location of field values to change. For example, given the following parameters:
TRIGGER2=ul(4,4),lr(5,8),1,’Total’
FIELD2=ul(1,0),lr(2,1),0,(TRIGGER=2,BASE=TRIGGER)

The trigger string value can be found in a one by four inch rectangle. The PDF
indexer always locates the field in a one inch box, one inch to the right of the
location of the trigger string value. If the PDF indexer finds the trigger string
value in location ul(4,4),lr(5,5), it attempts to find the field in location
ul(5,4),lr(6,5). If the PDF indexer finds the trigger string value in location
ul(4,6),lr(5,7), it attempts to find the field in location ul(5,6),lr(6,7).

Note: A field that is based on the location of a trigger (BASE=TRIGGER) can be
defined at any location on the page that contains the trigger. Previously, a field
that was based on the location of a trigger had to be defined to the right and
below the upper left point of the trigger. With this change, the x or y values can
be negative, so long as the resulting absolute field coordinates of the field string

Content Manager OnDemand PDF indexer 33

rectangle are still in the range of 0 <= x <= 45 and 0 <= y <= 45. The ul(x,y)
and lr(x,y) coordinates of the FIELD parameter are relative offsets from the
ul(x,y) coordinates of the trigger. For example, suppose the field string
rectangle is located at ul(1,1), lr(2,2) which is an absolute location on the
page. If the trigger string rectangle is located at ul(5,5), lr(7,7), then the field
coordinates would be ul(-4,-4), lr(-3,-3).

v MASK='field_mask'

The pattern of symbols that the PDF indexer matches to data located in the field.
When you define a field that includes a mask, an INDEX parameter based on
the field cannot reference any other fields. Valid mask symbols can include:

@ Matches alphabetic characters. For example:
MASK=’@@@@@@@@@@@@@@@’

Causes the PDF indexer to match a 15-character alphabetic field, such as
a name.

Matches numeric characters. For example:
MASK=’##########’

Causes the PDF indexer to match a 10-character numeric field, such as
an account number.

∧ Matches any non-blank character.

% Matches the blank character and numeric characters.

= Matches any character.

Note: The string that you specify for the mask can contain any character. For
example, given the following definitions:

TRIGGER2=*,25,’ACCOUNT’
FIELD2=0,38,11,(TRIGGER=2,BASE=0,MASK=’@000-####-#’)

The PDF indexer selects the field only if the data in the field columns contains
an eleven-character string comprised of any letter, three zeros, a dash character,
any four numbers, a dash character, and any number.

v DEFAULT='value'

Defines the default index value when there are no words within the coordinates
provided for the field string box. You might specify the default value in
hexadecimal. A field that is based on a floating trigger must contain a default
value.
For example, assume that an application program generates statements that
contain an audit field. The contents of the field can be PASSED or FAILED.
However, if a statement has not been audited, the application program does not
generate a value. In that case, there are no words within the field string box. To
store a default value in the database for unaudited records, define the field as
follows:
FIELD3=ul(8,1),lr(8.5,1.25),1,(DEFAULT=’NOT AUDITED’)

The PDF indexer assigns the index associated with FIELD3 the value NOT
AUDITED, if the field string box is blank.

Examples:
The following field parameter causes the PDF indexer to locate the field at the
coordinates provided for the field string box. The field is based on TRIGGER1 and

34 Indexing Reference

located on the same page as TRIGGER1. Specify BASE=0 because the field string
box always appears in a specific location on the page.
TRIGGER1=ul(0,0),lr(.75,.25),*,’Page 0001’
FIELD1=ul(1,1),lr(3.25,1.25),0,(TRIGGER=1,BASE=0)

Hexadecimal default value:
TRIGGER1 = ul(4.5,1.25),lr(5.75,1.5), *,’ACCOUNT’
FIELD1 = ul(6.6,1.25),lr(7.2,1.25),0,(default=x’30313233’)
INDEX1 = ’Account’,FIELD1,(TYPE=GROUP)

Field based on a floating trigger:
TRIGGER1=UL(5.75,0.71),LR(7.93,1.06),*,'Bill Summary'
TRIGGER2=UL(1.82,7.56),LR(3.40,7.85),*,'Account Number',(TYPE=FLOAT)
FIELD1=UL(1.90,7.74),LR(3.24,8.04),0,(TRIGGER=2,BASE=0,DEFAULT='N/A')
FIELD2=UL(5.79,0.13),LR(8.25,0.34),0,(TRIGGER=1,BASE=0)
INDEX1='acctnum',FIELD1,(TYPE=GROUP)
INDEX2='name',FIELD2,(TYPE=GROUP)

Constant field syntax
FIELDn='constant'

Options and values:

v n

The field parameter identifier. When adding a field parameter, use the next
available number, beginning with 1 (one).

v 'constant'

The literal (constant) string value of the field. This is the index value stored in
the database. The constant value can be 1 to 250 bytes in length. The PDF
indexer does not validate the type or content of the constant. You might specify
the constant value in hexadecimal. See an example in “Examples.”

Examples:
The following field parameter causes the PDF indexer to store the same text string
in each INDEX1 value it creates.
FIELD1=’000000000’
INDEX1=’acct’,FIELD1

The following field parameters cause the PDF indexer to concatenate a constant
value with the index value extracted from the data. The PDF indexer concatenates
the constant value specified in the FIELD1 parameter to each index value located
using the FIELD2 parameter. The concatenated string value is stored in the
database. In this example, the account number field in the data is 14 bytes in
length. However, the account number in the database is 19 bytes in length. Use a
constant field to concatenate a constant five byte prefix (0000–) to all account
numbers extracted from the data.
FIELD1=’0000-’
FIELD2=ul(2,2),lr(2.5,2.25),0,(TRIGGER=1,BASE=0)
INDEX1=’acct_num’,FIELD1,FIELD2

Hexadecimal constant field:
FIELD1 = X’4D524830303252’
FIELD2 = ul(6.6,1.25),lr(7.2,1.25),0,(default=x’30313233’)
INDEX1 = ’Account’,FIELD1,FIELD2,(TYPE=GROUP)

You can combine a hexadecimal value and a value that is extracted from the
document in an index:

Content Manager OnDemand PDF indexer 35

FIELD1 = X’4D524830303252’
FIELD2 = ul(6.0,1.4),lr(7.2,1.75),0
INDEX1 = ’Account’,FIELD1,FIELD2,(TYPE=GROUP)

Related parameters
INDEX parameter on page “INDEX” on page 37.
TRIGGER parameter on page “TRIGGER” on page 43.

FONTLIB
Identifies the directory or directories in which fonts are stored. Specify any valid
path. The PDF indexer searches for fonts in the order that the paths are listed. If a
font is referenced in an input file but not embedded in the file, the PDF indexer
attempts to locate the font in the directory or directories listed on the FONTLIB
parameter.

If the font is not found, the indexing might fail. If the customer purchases
additional fonts and installs them on the system, the additional fonts can be found
at indexing time if they are referenced in an input file and are present in one of the
directories specified on the FONTLIB parameter.

Required?
No

Default Value
/QIBM/ProdData/Content Manager OnDemand/Adobe/fonts

Syntax
FONTLIB=pathlist

Options and values
The pathlist is a colon-separated string of one or more valid path names. For
example:
FONTLIB=/QIBM/ProdData/Content Manager OnDemand/fontlib:/QIBM/ProdData/Content Manager OnDemand/V9/fontlib

The PDF Indexer searches the paths in the order in which they are specified.
Delimit path names with the colon (:) character.

A maximum of 6 paths can be specified.

HEX
Indicates whether the hexadecimal strings in the TRIGGER and FIELD parameters
are in UTF-8 or EBCDIC. The default is EBCDIC.

Required?
No

Default Value
NO

v On i, the default is EBCDIC.
v On all other platforms, the default is UTF-8.

Syntax
HEX=code page indicator

Options and values
The code page indicator can be:

36 Indexing Reference

|

|
|

|
|

|
|

|

|

|
|

|
|

U The hexadecimal strings are specified in UTF-8.

INDEX
Identifies the index name and the field or fields on which the index is based. You
must specify at least one index parameter. You can specify up to 128 index
parameters. When you create index parameters, IBM recommends that you name
the index the same as the application group database field name.

Required?
Yes

Default Value
<none>

Syntax
INDEXn='name',FIELDnn[,...FIELDnn]

Options and values
v n

The index parameter identifier. When adding an index parameter, use the next
available number, beginning with 1 (one).

v 'name'

Determines the index name associated with the actual index value. For example,
assume INDEX1 is to contain account numbers. The string acct_num would be a
meaningful index name. The index value of INDEX1 would be an actual account
number, for example, 000123456789.
The index name is a string from 1 to 250 bytes in length.
If the name is not the same as an application group database field name, the
load fails. The name used in the INDEX parameter must match the Load ID
Name value provided on the Load Information tab for the application group
database field name.

v FIELDnn

The name of the field parameter or parameters that the PDF indexer uses to
locate the index. You can specify a maximum of 128 field parameters. When the
index value is constructed, the total length of all the concatenated index values
cannot exceed 2000 characters.
If the index contains a field which is based on a floating trigger, it must be the
only field in the index.

Examples
The following index parameter causes the PDF indexer to create group-level
indexes for date index values (the PDF indexer supports group-level indexes only).
When the index value changes, the PDF indexer closes the current group and
begins a new group.
TRIGGER1=UL(5.75,0.71),LR(7.93,1.06),*,'Bill Summary'
FIELD1=UL(5.79,0.13),LR(8.25,0.34),0,(TRIGGER=1,BASE=0)
INDEX1='report_date',FIELD1

The following index parameters cause the PDF indexer to create group-level
indexes for customer name and account number index values. The PDF indexer
closes the current group and begins a new group when either the customer name
or the account number index value changes.

Content Manager OnDemand PDF indexer 37

||

TRIGGER1=UL(5.75,0.71),LR(7.93,1.06),*,'Bill Summary'
FIELD1=UL(5.79,0.13),LR(8.25,0.34),0,(TRIGGER=1,BASE=0)
FIELD2=UL(1.90,7.74),LR(3.24,8.04),0,(TRIGGER=1,BASE=0)
INDEX1='name',FIELD1
INDEX2='acct_num',FIELD2

The following index parameters cause the PDF Indexer to create group-level
indexes for customer name and balance index values. The PDF Indexer closes the
current group and begins a new group only when the customer name index value
changes.
TRIGGER1=UL(5.75,0.71),LR(7.93,1.06),*,'Bill Summary'
TRIGGER2=UL(3.13,3.27),LR(5.59,4.32),*,'Total Balance',(TYPE=FLOAT)
FIELD1=UL(5.79,0.13),LR(8.25,0.34),0,(TRIGGER=1,BASE=0)
FIELD2=UL(1.90,7.74),LR(3.24,8.04),0,(TRIGGER=2,BASE=TRIGGER,DEFAULT='N/A'))
INDEX1='name',FIELD1
INDEX2='balance',FIELD2

Related parameters
FIELD parameter on page “FIELD” on page 32.

INDEXDD
Determines the name or the full path name of the index object file. The PDF
indexer writes indexing information to the index object file. If you specify the file
name without a path, the PDF indexer puts the index object file in the current
directory. If you do not specify the INDEXDD parameter, the PDF indexer writes
indexing information to the file INDEX.

Required?
No

When you process input files with the Start Monitor for OnDemand
(STRMONOND) command, Add Report to OnDemand (ADDRPTOND)
command, or ARSLOAD API, the PDF indexer ignores any value that you
might supply for the INDEXDD parameter. If you process input files with
the ARSPDOCI API, verify the value of the INDEXDD parameter.

Default Value
INDEX

Syntax
INDEXDD=filename

Options and values
The filename is a valid filename or full path name.

INDEXMODE
Determines whether the PDF Indexer uses metadata indexes instead of triggers,
fields, and indexes. If not specified, the PDF Indexer uses the trigger, field, and
index parameters to perform the indexing.

Required?
No

Default value
<none>

If INDEXMODE is specified along with TRIGGER, FIELD, or INDEX parameters,
they are ignored.

38 Indexing Reference

Syntax

INDEXMODE=mode

Options and values

The mode can be: METADATA - Use metadata indexes

Example

The following parameters cause the IBM Content Manager OnDemand PDF
Indexer to extract metadata indexes and create a resource file. No other parameters
are required.
RESTYPE=ALL
INDEXMODE=METADATA

INDEXSTARTBY
Determines the page number by which the PDF indexer must locate the first group
(document) within the input file. The first group is identified when all of the
triggers and fields are found. Fields based on floating triggers are ignored when
determining the INDEXSTARTBY page. For example, with the following
parameters:

TRIGGER1=ul(4.72,1.28),lr(5.36,1.45),*,’ACCOUNT’
TRIGGER2=ul(6.11,1.43),lr(6.79,1.59),1,’SUMMARY’
INDEX1=’Account’,FIELD1,FIELD2
FIELD1=ul(6.11,1.29).lr(6.63,1.45),2
FIELD2=ul(6.69,1.29),lr(7.04,1.45),2
INDEX2=’Total’,FIELD3
FIELD3=ul(6.11,1.43),lr(6.79,1.59),2
INDEXSTARTBY=3

The word ACCOUNT must be found on a page in the location described by
TRIGGER1. The word SUMMARY must be found on a page following the page on
which ACCOUNT was found, in the location specified by TRIGGER2. In addition,
there must be one or more words found for fields FIELD1, FIELD2, and FIELD3 in
the locations specified by FIELD1, FIELD2, and FIELD3 which are located on a
page that is two pages after the page on which TRIGGER1 was found.

In the example, the first group in the file must start on either page one, page two,
or page three. If TRIGGER1 is found on page one, then TRIGGER2 must be found
on page two and FIELD1, FIELD2, and FIELD3 must be found on page three.

The PDF indexer stops processing if it does not locate the first group by the
specified page number. This parameter is optional, but the default is that the PDF
indexer must locate the first group on the first page of the input file. This
parameter is helpful if the input file contains header pages. For example, if the
input file contains two header pages, you can specify a page number one greater
than the number of header pages (INDEXSTARTBY=3) so that the PDF indexer will
stop processing only if it does not locate the first group by the third page in the
input data.

Note: When you use INDEXSTARTBY to skip header pages, the PDF indexer does
not copy non-indexed pages to the output file or store them in Content Manager
OnDemand. For example, if you specify INDEXSTARTBY=3 and the first group is
found on page three, then pages one and two are not copied to the output file or

Content Manager OnDemand PDF indexer 39

stored in Content Manager OnDemand. If you specify INDEXSTARTBY=3 and the
first group is found on page two, then page one is not copied to the output file or
stored in Content Manager OnDemand.

However, if a field based on a floating trigger is collected from a page which
occurs before the first group, the PDF Indexer includes the page where the field
was found, and the pages between where the field was found and the start of the
first group as part of the first group. The field will be part of the first group in the
Search Results.

Required?
No

Default Value
1

Syntax
INDEXSTARTBY=value

Options and values
The value is the page number by which the PDF indexer must locate the first group
(document) in the input file.

INPUTDD
Identifies the name or the full path name of the PDF input file that the PDF
indexer will process.

Required?
No

When you process input files with the Start Monitor for OnDemand
(STRMONOND) command, Add Report to OnDemand (ADDRPTOND)
command, or ARSLOAD API, the PDF indexer ignores any value that you
might supply for the INPUTDD parameter. If you process input files with
the ARSPDOCI API, you must specify a value for the INPUTDD
parameter.

Default Value
<none>

Syntax
INPUTDD=name

Options and values
The name is the file name or full path name of the input file. If you specify the file
name without a path, the PDF indexer searches the current directory for the
specified file.

MSGDD
Determines the name or the full path name of the file where the PDF indexer
writes error messages. If you do not specify the MSGDD parameter, the PDF
indexer writes messages to the display (interactive) or the job log (batch).

Required?
No

When you process input files with the Start Monitor for OnDemand
(STRMONOND) command, Add Report to OnDemand (ADDRPTOND)
command, or ARSLOAD API, the PDF indexer ignores any value that you

40 Indexing Reference

might supply for the MSGDD parameter. If you process input files with the
ARSPDOCI API, verify the value of the MSGDD parameter.

Default Value
the display (interactive) or the job log (batch), which are sometimes
referred to as stderr (standard error)

Syntax
MSGDD=name

Options and values
The name is the file name or full path name where the PDF indexer writes error
messages. If you specify the file name without a path, the PDF indexer places the
error file in the current directory.

OUTPUTDD
Identifies the name or the full path name of the output file.

Required?
No

When you process input files with the Start Monitor for OnDemand
(STRMONOND) command, Add Report to OnDemand (ADDRPTOND)
command, or ARSLOAD API, the PDF indexer ignores any value that you
might supply for the OUTPUTDD parameter. If you process input files
with the ARSPDOCI API, you must specify a value for the OUTPUTDD
parameter.

Default Value
<none>

Syntax
OUTPUTDD=name

Options and values
The name is the file name or full path name of the output file. If you specify the
file name without a path, the PDF indexer puts the output file in the current
directory.

PARMDD
Identifies the name or the full path name of the file that contains the indexing
parameters used to process the input data.

Required?
No

When you process input files with the Start Monitor for OnDemand
(STRMONOND) command, Add Report to OnDemand (ADDRPTOND)
command, or ARSLOAD API, the PDF indexer ignores any value that you
might supply for the PARMDD parameter. If you process input files with
the ARSPDOCI API, you must specify a value for the PARMDD parameter.

Default Value
<none>

Syntax
PARMDD=name

Content Manager OnDemand PDF indexer 41

Options and values
The name is the file name or full path name of the file that contains the indexing
parameters. If you specify the file name without a path, the PDF indexer searches
for the file in the current directory.

REMOVERES
Indicates whether or not to remove unused resources before the indexer collects
resources and creates the indexes. The input file is examined and a new copy is
saved in the Content Manager OnDemand temporary directory. This new copy is
then used for processing and the original input file is not changed. You can change
the location of the temporary directory by specifying the PDF parameter
TEMPDIR. Ensure that the temporary directory has enough space to hold the file.
If a file contains many unused resources, you can greatly reduce the size of the
resource file and speed up the indexing process by using this parameter. If a file
does not contain any unused resources, then do not specify this parameter. You can
use this parameter without resource collection.

Required?
No

Default Value
NO

Syntax
REMOVERES=value

Options and values
The value indicates whether or not to remove unused resources before the indexer
collects resources and creates the indexes. The value can be one of the following:

YES The unused resources are removed before the indexer collects resources (if
requested) and creates the indexes.

NO The unused resources are not removed before the indexer collects resources
(if requested) and creates the indexes.

RESOBJDD
Specifies the name or the full path name of the resource object file. The PDF
indexer collects resources to the resource object file. If you specify the file name
without a path, the PDF indexer puts the resource object file in the current
directory. Use the RESOBJDD parameter in conjunction with the RESTYPE
parameter for the PDF indexer to collect resources.

Required?
No

When you process input files with the Start Monitor for OnDemand
(STRMONOND) command, Add Report to OnDemand (ADDRPTOND)
command, or ARSLOAD API, the PDF indexer ignores any value that you
might supply for the RESOBJDD parameter. If you process input files with
the ARSPDOCI API, you must specify a value for the RESOBJDD
parameter.

Default Value
<none>

Syntax
RESOBJDD=filename

42 Indexing Reference

Options and values
The filename is a valid file name or full path name. If the PDF file does not contain
resources, no RESOBJDD file is produced.

RESTYPE
Determines the types of PDF print resources that the PDF indexer should collect
and include in the resource group file.

Required?
No

Default Value
NONE

Syntax
RESTYPE={ NONE | ALL | [FONT] [,IMAGE] }

Options and values
NONE

No resource file is created.

ALL All fonts and images are collected in the resource file.

FONT Fonts are collected in the resource file.

IMAGE
Images are collected in the resource file.

TEMPDIR
Determines the name of the directory that the PDF indexer uses for temporary
work space.

Required?
No

Default Value
/arstmp

Syntax
TEMPDIR=directory

Options and values
The directory is a valid directory name.

TRACEDD
For more information, see “Trace facility” on page 49.

TRIGGER
Identifies locations and string values required to uniquely identify the beginning of
a group and the locations and string values of fields used to define indexes. You
must define at least one trigger, and can define up to 16 triggers.

Required?
Yes

Default Value
<none>

Content Manager OnDemand PDF indexer 43

Syntax
TRIGGERn=ul(x,y),lr(x,y),page,'value'[,(TYPE = {GROUP | FLOAT})]

Options and values
v n

The trigger parameter identifier. When adding a trigger parameter, use the next
available number, beginning with 1 (one).

v ul(x,y)

The coordinates for the upper left corner of the trigger string box. The trigger
string box is the smallest rectangle that completely encloses the trigger string
value (one or more words on the page). The PDF indexer must find the trigger
string value inside the trigger string box. The supported range of values is 0
(zero) to 45, page width and length, in inches.

v lr(x,y)

The coordinates for the lower right corner of the trigger string box. The trigger
string box is the smallest rectangle that completely encloses the trigger string
value (one or more words on the page). The PDF indexer must find the trigger
string value inside the trigger string box. The supported range of values are 0
(zero) to 45, page width and length, in inches.

v page

The page number in the input file on which the trigger string value must be
located.
– For TRIGGER1, the page value must be an asterisk (*), to specify that the

trigger string value can be located on any page in the input file. The PDF
indexer begins searching on the first page in the input file. The PDF indexer
continues searching until the trigger string value is located, the
INDEXSTARTBY value is reached, or the last page of the input file is
searched, whichever occurs first. If the PDF indexer reaches the
INDEXSTARTBY value or the last page and the trigger string value is not
found, then an error occurs and indexing stops.

– For all other triggers, the page value can be 0 (zero) to 16, relative to
TRIGGER1. For example, the page value 0 (zero) means that the trigger is
located on the same page as TRIGGER1; the value 1 (one) means that the
trigger is located on the page after the page that contains TRIGGER1; and so
forth. For TRIGGER2 through TRIGGER16, the trigger string value can be a
maximum of 16 pages from TRIGGER1.

v 'value'

The actual string value the PDF indexer uses to match the input data. The string
value is case sensitive. The value is one or more words that can be found on a
page. If the trigger is represented by a double byte or Unicode font in the
document, enter the trigger string in hexadecimal. You can use hexadecimal and
non-hexadecimal triggers together. See “Examples” on page 45 for a hexadecimal
trigger.

v TYPE
The default trigger type is GROUP.
– TRIGGER1 must be a group trigger. Valid trigger types are the following:

- GROUP Triggers that identify the beginning of a group. Group triggers,
and the fields based on them, define the extent of a group.

- FLOAT Triggers that identify field data that might not occur in the same
location on each page, the same page in each group, or in each group. The
PDF Indexer searches within the trigger string box for every occurrence of
the trigger. When it is found, any fields based on it will be collected. If a

44 Indexing Reference

field is not found, the default value defined for the field will be used.
Fields based on floating triggers cannot define the extent of a group.

Remember:

1. Trigger1 must be a group trigger.
2. Fields based on floating trigger must contain a default value.
3. Fields based on floating triggers cannot be combined with any other field in

an index.
4. At least one index must contain a field (or fields) based on a group trigger

v For Float Triggers, the page value must be an asterisk (*), to specify that the
trigger string value can be located on any page in the input file. The PDF
Indexer begins searching on the first page in the input file. If the trigger is not
found, this situation is not considered an error.

Examples

TRIGGER1:
The following TRIGGER1 parameter causes the PDF indexer to search the specified
location on every page of the input data for the specified string. You must define
TRIGGER1 and the page value for TRIGGER1 must be an asterisk.
TRIGGER1=ul(0,0),lr(.75,.25),*,’Page 0001’

Group triggers:
The following trigger parameter causes the PDF indexer to attempt to match the
string value Account Number within the coordinates provided for the trigger string
box. Specifying a page number of zero (0) for TRIGGER2 means that it can be
found on the same page as TRIGGER1.
TRIGGER2=ul(1,2.25),lr(2,2.5),0,’Account Number’

The following trigger parameter causes the PDF indexer to attempt to match the
string value Total within the coordinates provided for the trigger string box. In
this example, a one by four inch trigger string box is defined, because the vertical
position of the trigger on the page may vary. For example, assume that the page
contains account numbers and balances with a total for all of the accounts listed.
There can be one or more accounts listed. The location of the total varies,
depending on the number of accounts listed. The field parameter is based on the
trigger so that the PDF indexer can locate the field regardless of the actual location
of the trigger string value. The field is a one inch box that always begins one inch
to the right of the trigger. After locating the trigger string value, the PDF indexer
adds the upper left coordinates of the trigger string box to the coordinates
provided for the field. Specifying a page number of one (1) for TRIGGER2 means
that it can be found on the page following TRIGGER1.
TRIGGER2=ul(4,4),lr(5,8),1,’Total’
FIELD2=ul(1,0),lr(2,1),0,(TRIGGER=2,BASE=TRIGGER)

Float trigger

The following trigger parameter causes the PDF Indexer to attempt to match the
string value Total Balance within the coordinates provided for the trigger string
box. The field is on the same page as the trigger.
TRIGGER2=UL(0.57,0.71),LR(0.89,2.40),*,'Total Balance',(TYPE=FLOAT)
FIELD2=UL(1.06,1.77),LR(3.29,2.06),0,(TRIGGER=2,BASE=0,DEFAULT='N/A')
INDEX2='Balance',FIELD2,(TYPE=GROUP)

Hexadecimal trigger:

Content Manager OnDemand PDF indexer 45

The following example shows how to code a trigger that represents two
side-by-side UTF-8 characters in a document. In this example, each UTF-8 character
consists of three bytes. Do not code the index name in hexadecimal.
TRIGGER1=UL(1.54,5.40),LR(1.79,5.53),*,X’E6AC8AE79B8A’
FIELD1=UL(2.29,3.86),LR(3.34,4.04),0,(TRIGGER=1,BASE=0)
INDEX1=’emp_name’,FIELD1,(TYPE=GROUP)

In this example, hexadecimal and non-hexadecimal triggers are used together:
TRIGGER1=UL(6.49,1.72),LR(6.89,1.93),*,X’E8BD8920E7A7BB’
TRIGGER2=UL(7.02,2.34),LR(7.53,2.60),0,’Page 1’

Related parameters
The FIELD parameter on page “FIELD” on page 32.

Message reference
The PDF indexer creates a message list at the end of each indexing run. A return
code of 0 (zero) means that processing completed without any errors.

The PDF indexer detects a number of error conditions that can be logically
grouped into several categories:
v Informational

When the PDF indexer processes a file, it issues informational messages that
allow the user to determine if the correct processing parameters have been
specified. These messages can assist in providing an audit trail.

v Warning

The PDF indexer issues a warning message and a return code of 4 (four) when
the fidelity of the document may be in question.

v Error

The PDF indexer issues an error message and return code of 8 (eight) or 16
(sixteen) and terminates processing the current input file. Most error conditions
detected by the PDF indexer fall into this category. The exact method of
termination may vary. For certain severe errors, the PDF indexer may fail with a
segment fault. This is generally the case when some system service fails. In other
cases, the PDF indexer terminates with the appropriate error messages written
either to standard error or to a file. When the PDF indexer is invoked by the
ARSLOAD program, error messages are automatically written to the system log.
If you run the ARSPDOCI command, you can specify the name or the full path
name of the file to hold the processing messages by using the MSGDD
parameter.

v Internal Error

The PDF indexer issues an error message and return code of 16 (sixteen) and
terminates processing the current input file.

See IBM DB2® Content Manager Content Manager OnDemand: Messages and Codes,
SC27-1379 for a list of the messages that may be generated by the PDF indexer,
along with explanations of the messages and actions that you can take to respond
to the messages. The messages that are generated by the PDF indexer are listed in
the Common Server section of the messages publication.

46 Indexing Reference

ARSPDOCI reference

Purpose
Generate index data for a PDF file.

The ARSPDOCI program uses the identified locations of text strings on a page of a
PDF document to produce a text index file as well as a byte offset indexed PDF
document. You can use the ARSPDUMP program to list the locations of text strings
in a document. See “ARSPDUMP reference” on page 48 for more information.

Syntax

Note: The following syntax should be used only when you run the ARSPDOCI
program from the command line or call it from a user-defined program.

�� ARSPDOCI
COORDINATES= metric

FIELD n = spec �

�
FONTLIB= pathList

INDEX n = spec
INDEXDD= fileName

�

�
INDEXSTARTBY= pageNumber

INPUTDD= fileName
MSGDD= fileName

�

� OUTPUTDD= fileName PARMDD= fileName
TEMPDIR= fileSystem

�

� TRIGGER n = spec ��

Description
The ARSPDOCI program can be used to index a PDF file. The ARSLOAD program
automatically calls the ARSPDOCI program if the input data type is PDF and the
indexer is PDF. If you need to index a PDF file and you do not want to use the
ARSLOAD program to process the file, then you can run the ARSPDOCI program
from the command line or call it from a program.

The ARSPDOCI program requires two input files: a PDF document and a
parameter file.

If the customer purchases additional fonts and installs them on the system, the
additional fonts can be embedded at indexing time if they are referenced in an
input file and the location is specified on the FONTLIB parameter. See “FONTLIB”
on page 36 for more information.

Parameters
Refer to “Parameter reference” on page 31 for details about the parameters that
you can specify when you run the ARSPDOCI program from the command line or
a user-defined program.

IFS location
/usr/bin/arspdoci

The executable program.

Content Manager OnDemand PDF indexer 47

ARSPDUMP reference

Purpose
Print the locations of text strings on a page.

The ARSPDUMP program lists the locations of text strings on a page in a PDF file.
The output of the ARSPDUMP program contains a list of the text strings on the
page and the coordinates for each string. You can use the information that is
generated by the ARSPDUMP program to create the parameter file that is used by
the ARSPDOCI program to index PDF files. See “ARSPDOCI reference” on page 47
for more information.

Syntax

�� ARSPDUMP -f inputFile
-F fontFile -h -o outputFile

�

� -p sheetNumber
-t tempDir

��

Description
The ARSPDUMP program can be used to identify the locations of text strings on a
page in a PDF file.

The output of the ARSPDUMP program contains a list of the text strings on the
page and the coordinates for each string.

If a font is referenced in a PDF file, but not embedded, then the ARSPDUMP
program attempts to find the font using information provided with the -F
parameter. If the ARSPDUMP program does not find the font, then it uses a
substitute Adobe Type 1 font.

Parameters
-f inputFile

The file name or full path name of the PDF file to process.

-F fontDir
Identifies directories in which fonts are stored. Specify any valid path. Use
the colon (:) character to separate path names. The ARSPDUMP program
searches the paths in the order in which they are specified. If you do not
specify this flag and name a font directory, then the ARSPDUMP program
attempts to locate fonts in the /QIBM/ProdData/Content Manager
OnDemand/Adobe/fonts directory.

-h Lists the parameters and their descriptions for the ARSPDUMP program.

-o outputFile
The file name or full path name of the file into which the ARSPDUMP
program writes output messages. If you do not specify this flag and name
a file, then the ARSPDUMP program writes output to the display
(interactive) or the job log (batch).

-p sheetNumber
The number of the page in the PDF file that you want the ARSPDUMP

48 Indexing Reference

program to process. This is the page that contains the text strings that you
want to use to define triggers and fields. The sheet number is the order of
the page as it appears in the file, beginning with the number 1 (one), for
the first page in the file. Contrast with page identifier, which is
user-defined information that identifies each page (for example, iv, 5, and
17-3).

-t tempDir
Identifies the directory that the ARSPDUMP program uses for temporary
work space. Specify any valid directory name. If you do not specify this
flag and name a directory, then the ARSPDUMP program uses the /arstmp
directory for temporary work space.

Examples
The following example shows how to invoke the ARSPDUMP program within
QSHELL to print the strings and locations of text found on page number three of
sample.pdf to sample.out:

arspdump -f sample.pdf -o sample.out -p 3

See the IBM Content Manager OnDemand for i: Common Server Administration Guide
for more information about running ARSPDUMP using QSHELL.

IFS location
/usr/bin/arspdump

The executable program.

Trace facility
Beginning with Version 5.3, an enhanced tracing capability for the PDF indexer is
now available. The tracing capability provides assistance to users attempting to
debug problems, such as when the system fails during the indexing and loading of
PDF documents.

To trace or debug a problem with the PDF indexer, the following is required:
v The parameter file, which specifies the fields, triggers, indexes and other

indexing information
v The PDF input file to process

The parameter file and PDF input file can be processed by running the PDF
indexer from the command line. For example:
arspdoci parmdd=filen.parms inputdd=filen.pdf outputdd=filen.out indexdd=filen.ind
tracedd=filen.trace

Where:
arspdoci is the name of the command-line version of the PDF indexer program
parmdd= specifies the name of the input file that contains the indexing
parameters
inputdd= specifies the name of the PDF input file to process
outputdd= specifies the name of the output file that contains the indexed PDF
documents created by the PDF indexer
indexdd= specifies the name of the output file that contains the index
information that will be loaded into the database

Content Manager OnDemand PDF indexer 49

tracedd= specifies the name of the output file that contains the trace
information

Note: See “ARSPDOCI reference” on page 47 for more information about the
parameters that may be specified when running the ARSPDOCI program.

After running the PDF indexer with the trace, the output file specified by the
tracedd= parameter will contain detailed information about the processing that
took place and where the PDF indexer is failing during the process. The trace
information will identify whether a trigger was not found, a field was not found,
the PDF data is corrupted, there was a problem extracting a PDF page from the
document, or even if there is not enough memory or disk space to complete the
required operations. Figure 9 on page 51 shows an example of the trace
information that may be generated by the PDF indexer.

50 Indexing Reference

COORDINATES=IN
ARSPDOCI completed code get_keyword <------------------
ARSPDOCI completed code get_keyword 003 ------------------>
TRIGGER1=UL(7.00,0.25),LR(7.70,0.57),*,’Page:’
ARSPDOCI completed code get_keyword <------------------
ARSPDOCI completed code get_keyword 003 ------------------>
ARSPDOCI completed code parse_trigger <----------------
ARSPDOCI completed code parse_quoted_parm <----------------
ARSPDOCI completed code parse_quoted_parm 001 ---------------->
ARSPDOCI completed code parse_trigger 001 ---------------->
FIELD1=UL(7.00,0.48),LR(7.90,0.77),0,(TRIGGER=1,BASE=0)
ARSPDOCI completed code get_keyword <------------------
ARSPDOCI completed code get_keyword 003 ------------------>
ARSPDOCI completed code parse_field <----------------
ARSPDOCI completed code parse_subfields <----------------
ARSPDOCI completed code get_keyword <------------------
ARSPDOCI completed code get_keyword 003 ------------------>
ARSPDOCI completed code get_keyword <------------------
ARSPDOCI completed code get_keyword 003 ------------------>
ARSPDOCI completed code parse_subfields 001 ---------------->
ARSPDOCI completed code parse_field 001 ---------------->
FIELD2=UL(6.11,1.39),LR(7.2,1.57),0,(TRIGGER=1,BASE=0)
ARSPDOCI completed code get_keyword <------------------
ARSPDOCI completed code get_keyword 003 ------------------>
ARSPDOCI completed code parse_field <----------------
ARSPDOCI completed code parse_subfields <----------------
ARSPDOCI completed code get_keyword <------------------

.

.

.

ARSPDOCI completed code get_keyword <------------------
ARSPDOCI completed code get_keyword 003 ------------------>
ARSPDOCI completed code arspparm_final_sanity_check <----------------
ARSPDOCI completed code arspparm_final_sanity_check 001 ---------------->
ARSPDOCI completed code ArspProcessOpt <------------
ARSPDOCI completed code ArspOpenIndex <-------------
ARSPDOCI completed code ArspOpenIndex 001 ------------->
Adobe PDF Library version -732512488.-1
Editing is : -1
Number of input pages = 130
ARSPDOCI completed code ArspProcessOpt:Calling ArspSearchDocPages()
ARSPDOCI completed code ArspSearchDocPages <------------
ARSPDOCI completed code ArspSearchDocPages: ArspCreateWordFinder()
ARSPDOCI completed code ArspSearchDocPages: PDWordFinderAcquireWordList()
ARSPDOCI completed code ArspSearchDocPages: PDDocAcquirePage()
ARSPDOCI completed code ArspSearchDocPages: ArspSearchPage()
ARSPDOCI completed code ArspSearchDocPages: PDPageRelease()
ARSPDOCI completed code ArspSearchDocPages: PDWordFinderReleaseWordList()
Trigger(s) not found by page 1
ARSPDOCI completed code ArspSearchDocPages 004 ------------>
ARSPDOCI completed code ArspProcessOpt:Calling ArspCloseIndex()
ARSPDOCI completed code ArspCloseIndex <------------
ARSPDOCI completed code ArspCloseIndex 001 ------------>
ARSPDOCI completed code ArspProcessOpt:Calling PDDocClose()
ARSPDOCI completed code ArspProcessOpt 002 ------------>
ARSPDOCI completed code 1
ARSPDOCI completed code ArspFreeParms ()

Figure 9. Trace information for the PDF indexer

Content Manager OnDemand PDF indexer 51

52 Indexing Reference

Content Manager OnDemand generic indexer

Content Manager OnDemand provides the generic indexer to allow you to specify
indexing information for input data that you cannot or do not want to index with
the OS/400 Indexer or the PDF Indexer. For example, suppose that you want to
load files into the system that were created by using a word processor. The files
can be stored in the system in the same format in which they were created. The
files can be retrieved from the system and viewed by using the word processor.
However, because the documents do not contain PDF, SCS, SCS-extended, AFP, or
LINE spooled data, you cannot index them with the other indexers that are
provided with the Content Manager OnDemand product. You can specify index
information about the files in the format that is used by the Generic indexer, and
load the index data and files into the system. Users can then search for and
retrieve the files by using the OnDemand client program.

To use the Generic indexer, you must specify all of the index data for each input
file or document that you want to store in and retrieve from the system. You
specify the index data in a parameter file. The parameter file contains the index
fields, index values, and information about the input files or documents that you
want to process. The Generic indexer retrieves the index data from the parameter
file and generates the index information that is loaded into the database.
OnDemand creates one index record for each input file (or document) that you
specify in the parameter file. The index record contains the index values that
uniquely identify a file or document in OnDemand.

The generic indexer supports group-level indexes. Group indexes are stored in the
database and used to search for documents. You must specify one set of group
indexes for each file or document that you want to process with the Generic
indexer.

Loading data
The Content Manager OnDemand directory monitor started with the Start Monitor
for OnDemand (STRMONOND) command with *DIR or *DIR2 specified for the
Type parameter and the Add Report to OnDemand (ADDRPTOND) command are
the two most common ways to invoke the Generic Indexer on IBM i. You can also
use the ARSLOAD API.

The Generic Indexer uses the index data you provide and the input file you
specify, both located in the .IND parameter file. During processing, the index
information is added to the database and the input data is loaded on to the storage
media defined for the particular Content Manager OnDemand application group to
which the data belongs.

There are two ways to run the STRMONOND command:
v STRMONOND with TYPE(*DIR) parameter specified. The STRMONOND

command runs as a monitor to periodically check a specified directory for input
files to process. When running the STRMONOND command with TYPE(*DIR),
the Generic indexer parameter file (.IND) is required to initiate a load process.
The GROUP_FILENAME: parameter in the .IND file specifies the full path name
of the actual input file to be processed.

© Copyright IBM Corp. 2001, 2014 53

v STRMONOND with TYPE(*DIR2) parameter specified. The STRMONOND
command runs as a monitor to periodically check a specified directory for input
files to process. When running the STRMONOND command with TYPE(*DIR2),
a dummy file with the file type extension of .ARD is required to initiate a load
process. In addition, the Generic indexer parameter file (.IND) must be located
in the specified directory. The GROUP_FILENAME: parameter in the .IND file
specifies the full path name of the actual input file to be processed. This is
similar to running the ARSLOAD program in daemon mode.

There is one way to run the ADDRPTOND command:
v ADDRPTOND. The ADDRPTOND command is run from the command line to

process a specific file. When running the ADDRPTOND command, you specify
INPUT(*STMF) and provide the name of the .IND file to process in the Stream
file (STMF) parameter (omitting the .IND file extension). The ADDRPTOND
command adds the .IND file name extension to the name that you specify. For
example, if you specify STMF(po3510), where po3510 is the name of the input
file, the ADDRPTOND command looks for and processes the po3510.ind Generic
indexer parameter file. The GROUP_FILENAME: parameter in the Generic
indexer parameter file specifies the full path name of the actual input file to be
processed. This is similar to running the ARSLOAD program in manual mode.

When the data is successfully loaded, both STRMONOND and ADDRPTOND can
optionally delete the input file that is specified on the GROUP_FILENAME:
parameter if the Delete processed file (DLTSPLF) or Delete input (DLTINPUT)
parameters are set to *YES. For the input file to be deleted, the input file must be
located in the same directory as the file that triggered the loading of the data, and
the file extension must be .OUT. The system also deletes the .IND file (the Generic
indexer parameter file) and the .ARD file (the dummy file that is used to initiate a
load process in some cases) if the DLTSPLF or DLTINPUT parameter is set to *YES.

Example of file names for STRMONOND TYPE(*DIR):
po3510.IND
po3510.OUT

The 1 file is the input file that triggers a load process for STRMONOND
TYPE(*DIR). The po3510.IND file is the Generic indexer parameter file, and contains
a GROUP_FILENAME: parameter that specifies the input po3510.OUT file to
process. When the data is successfully loaded, the system deletes both files.

Example of file names for STRMONOND TYPE(*DIR2):
po3510.ARD
po3510.ARD.IND
po3510.ARD.OUT

The po3510.ARD file is the dummy file that triggers a load process for
STRMONOND TYPE(*DIR2). The po3510.ARD.IND file is the Generic indexer
parameter file, and contains a GROUP_FILENAME: parameter that specifies the
input file to process, which is po3510.ARD.OUT. When the data is successfully
loaded, the system deletes all three files.

There are two ways to run the ARSLOAD API:

Daemon mode
The ARSLOAD API runs as a daemon (monitor) to periodically check a

1. po3510.IND

54 Indexing Reference

specified directory for input files to process. When the ARSLOAD API is
running in daemon mode, a dummy file with the file type extension of
.ARD is required to initiate a load process. In addition, the Generic indexer
parameter file (.IND) must be located in the specified directory. The
GROUP_FILENAME: parameter in the .IND file specifies the full path
name of the actual input file to be processed.

Manual mode
The ARSLOAD API is run from the qshell command line to process a
specific file. When the ARSLOAD API is running in manual mode, specify
only the name of the file to process. The ARSLOAD API adds the .IND file
name extension to the name that you specify. For example, if you specify
arsload ... po3510, where po3510 is the name of the input file, the
ARSLOAD API processes the po3510.ind Generic indexer parameter file.
The GROUP_FILENAME: parameter in the Generic indexer parameter file
specifies the full path name of the actual input file to be processed.

When the data is successfully loaded, ARSLOAD deletes the input file that is
specified on the GROUP_FILENAME: parameter if the file name extension is .OUT,
and for daemon mode processing, the rest of the input file name is the same as the
.ARD file name. For the input file to be deleted, the input file must be located in
the same directory as the file that triggered the loading of the data, and the file
extension must be .OUT. The system also deletes the .IND file (the Generic indexer
parameter file) and the .ARD file (the dummy file that is used to initiate a load
process when the ARSLOAD program is running in daemon mode).

Example of file names in daemon processing mode:
po3510.ARD
po3510.ARD.IND
po3510.ARD.OUT

The po3510.ARD file is the dummy file that triggers a load process in daemon
mode. The po3510.ARD.IND file is the Generic indexer parameter file, and contains
a GROUP_FILENAME: parameter that specifies the input file to process, which is
po3510.ARD.OUT. When the data is successfully loaded, the system deletes all three
files.

If you plan to automate the data indexing and loading process on the Content
Manager OnDemand server, either the input file name, specific parameters on the
command used to load the data, or a monitor user exit program must identify the
application group and application to load. The .IND file name extension (for
STRMONOND *DIR processing) or the .ARD file name extension (for
STRMONOND *DIR2 or ARSLOAD daemon processing) is required to initiate a
load process. The case (uppercase or lowercase) of the extension (.ARD or .IND) is
ignored. Application group and application names are case sensitive. Application
group and application names might include special characters such as the blank
character when using ADDRPTOND or ARSLOAD with a specific application
group and application name provided. However, STRMONOND and ARSLOAD
when using the MVS naming convention (-A and -G parameters) do not support
archiving files that have spaces in the file name. See the IBM Content Manager
Content Manager OnDemand for i: Common Server Administration Guide for more
information about using the STRMONOND and ADDRPTOND commands and the
ARSLOAD API to load data into Content Manager OnDemand.

Content Manager OnDemand generic indexer 55

Specifying the parameter file
The Generic indexer requires one or more input files that you want to load into the
system and a parameter file that contains the indexing information for the input
files. To use the Generic indexer, you must create a parameter file that contains the
indexing information for the input files. This section describes the parameter file
that is used by the Generic indexer.

There are three types of statements that you can specify in a parameter file:
v Comments. You can place a comment line anywhere in the parameter file.
v Code page. You must specify a code page line at the beginning of the parameter

file, before you define any groups.
v Groups. A group represents a document that you want to index. Each group

contains the application group field names and their index values, the location
of the document in the input file, the number of bytes (characters) that make up
the document, and the name of the input file that contains the document.

Important:

1. The parameter names in the parameter file are case sensitive and must appear
in upper case. For example, GROUP_FIELD_NAME:account is valid, while
group_field_name:account is not.

2. When loading data using the Generic indexer, the locale must be set
appropriately for the CODEPAGE: parameter. For example, if CODEPAGE:954 is
specified, set the locale environment variable to ja_JP or some other locale that
correctly identifies upper and lower case characters in code page 954.

CODEPAGE:
Specifies the code page of the input data. You must specify one and only one code
page. The CODEPAGE: line must appear before you specify any of the groups.
The CODEPAGE: line is required.

Important: When loading data using the Generic indexer, the locale must be set
appropriately for the CODEPAGE: parameter. For example, if CODEPAGE:954 is
specified, set the locale environment variable to ja_JP or some other locale that
correctly identifies upper and lower case characters in code page 954.

Syntax
CODEPAGE:cpgid

Options and values
The character string CODEPAGE: identifies the line as specifying the code page of
the input data. The string cpgid can be any valid code page, a three to five
character identifier of an IBM-registered or user-defined code page.

The CODEPAGE: parameter is required.

Example
The following illustrates how to specify a code page of 37 for the input data:

CODEPAGE:37

COMMENT:
Specifies a comment line. You can place comment lines anywhere in the parameter
file.

56 Indexing Reference

Syntax
COMMENT: text on a single line

Options and values
The character string COMMENT: identifies the line as containing a comment.
Everything after the colon character to the end of the line is ignored.

Example
The following are examples of comment lines:

COMMENT:
COMMENT: this is a comment

GROUP_FIELD_NAME:
Specifies the name of an application group field. Each group that you specify in
the parameter file must contain one GROUP_FIELD_NAME: line for each
application group field. (The application group is where you store a file or
document in Content Manager OnDemand. You specify the name of the
application group to the ARSLOAD program.) Content Manager OnDemand
supports up to 128 fields per application group. If the field names that you specify
are different than the application group field names, then you must map the field
names that you specify to the application group field names on the application
Load Information page.

Specify a pair of GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines for
each application group field. For example, if the application group contains two
fields, then each group that you specify in the parameter file must contain two
pairs of GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines. The
following is an example of a group with two application group fields:

GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:05/31/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678

The group lines must appear after the CODEPAGE: line.

Syntax
GROUP_FIELD_NAME:applgrpFieldName

Options and values
The character string GROUP_FIELD_NAME: identifies the line as containing the
name of an application group field. The string applgrpFieldName specifies the
name of an application group field. Content Manager OnDemand ignores the case
of application group field names.

Example
The following shows examples of application group field names:

GROUP_FIELD_NAME:rdate
GROUP_FIELD_NAME:studentID
GROUP_FIELD_NAME:account#

GROUP_FIELD_VALUE:
Specifies an index value for an application group field. Each group that you
specify in the parameter file must contain one GROUP_FIELD_VALUE: line for
each application group field. (The application group is where you store a file or
document in Content Manager OnDemand. You specify the name of the
application group to the ARSLOAD program.) Content Manager OnDemand

Content Manager OnDemand generic indexer 57

supports up to 128 fields per application group. The GROUP_FIELD_VALUE: line
must follow the GROUP_FIELD_NAME: line for which you are specifying the
index value.

Specify a pair of GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines for
each application group field. For example, if the application group contains two
fields, then each group that you specify in the parameter file must contain two
pairs of GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines. The
following is an example of a group with two application group fields:

GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:05/31/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678

The group lines must appear after the CODEPAGE: line.

Syntax
GROUP_FIELD_VALUE:value

Options and values
The character string GROUP_FIELD_VALUE: identifies the line as containing an
index value for an application group field. The string value specifies the actual
index value for the field.

Example
The following shows examples of index values:

GROUP_FIELD_VALUE:05/31/00
GROUP_FIELD_VALUE:0012345678
GROUP_FIELD_VALUE:0000-1111-2222-3333

GROUP_FILENAME:
The file name or full path name of the input file. If you do not specify a path, then
the generic indexer searches the current directory for the specified file; however,
you should always specify the full path name of the input file.

Each group that you specify in the parameter file must contain one
GROUP_FILENAME: line. The GROUP_FILENAME: line must follow the
GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines that comprise a
group. The following is an example of a group:

GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:05/31/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:0
GROUP_LENGTH:0
GROUP_FILENAME:/tmp/statements.out

If the GROUP_FILENAME line does not contain a value (blank), the Generic
indexer uses the value of the GROUP_FILENAME line from the previous group to
process the current group. In the following example, the input data for the second
and third groups is retrieved from the input file that is specified for the first group:

GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:05/31/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:0
GROUP_LENGTH:8124
GROUP_FILENAME:/tmp/statements.out

58 Indexing Reference

GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:06/30/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:8124
GROUP_LENGTH:8124
GROUP_FILENAME:
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:07/31/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:16248
GROUP_LENGTH:8124
GROUP_FILENAME:

If the first GROUP_FILENAME line in the parameter file is blank, you must
specify the name of the input file when you run the ARSLOAD program.

The group lines must appear after the CODEPAGE: line.

After successfully loading the data, the system deletes the input file that is
specified on the GROUP_FILENAME: parameter if the file name extension is .OUT,
and for daemon mode processing, the rest of the input file name is the same as the
.ARD file name. The system also deletes the .IND file (the Generic indexer
parameter file) and the .ARD file (the dummy file that is used to initiate a load
process when the ARSLOAD program is running in daemon mode). See “Loading
data” on page 53 for more information.

Syntax
GROUP_FILENAME:fileName

Options and values
The character string GROUP_FILENAME: identifies the line as containing the
input file to process. The string fileName specifies the full path name of the input
file. You should always specify the full path name of the input file to process. For
example:
GROUP_FILENAME:/tmp/ondemand/inputfiles/f1b0a1600.out

Example
The following are valid file name lines:

GROUP_FILENAME:/tmp/statements
GROUP_FILENAME:D:\ARSTMP\statements
GROUP_FILENAME:/tmp/ondemand/inputfiles/f1b0a1600.out
GROUP_FILENAME:

GROUP_LENGTH:
Specifies the number of contiguous bytes that comprise the document to be
indexed. Specify 0 (zero) to indicate the entire input file or the remainder of the
input file. Each group that you specify in the parameter file must contain one
GROUP_LENGTH: line. The GROUP_LENGTH: line must follow the
GROUP_FIELD_NAME: and GROUP_FIELD_VALUE: lines that comprise a
group. For example:

GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:05/31/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:0
GROUP_LENGTH:0

Content Manager OnDemand generic indexer 59

The group lines must appear after the CODEPAGE: line.

Syntax
GROUP_LENGTH:value

Options and values
The character string GROUP_LENGTH: identifies the line as containing the byte
count of the data to be indexed. The string value specifies the actual byte count.
The default value is 0 (zero), for the entire (or remainder) of the file.

Example
The following illustrates how to specify length values:

GROUP_LENGTH:0
GROUP_LENGTH:8124

GROUP_OFFSET:
Specifies the starting location (byte offset) into the input file of the data to be
indexed. Specify 0 (zero) for the first byte (the beginning) of the file. Each group
that you specify in the parameter file must contain one GROUP_OFFSET: line. The
GROUP_OFFSET: line must follow the GROUP_FIELD_NAME: and
GROUP_FIELD_VALUE: lines that comprise a group. For example:

GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:05/31/00
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:0

The group lines must appear after the CODEPAGE: line.

Syntax
GROUP_OFFSET:value

Options and values
The character string GROUP_OFFSET: identifies the line as containing the byte
offset (location) of the data to be indexed. The string value specifies the actual byte
offset. Specify 0 (zero), to indicate the beginning of the file.

Example
The following illustrates offset values for three documents from the same input
file. The documents are 8 KB in length.

GROUP_OFFSET:0
GROUP_OFFSET:8124
GROUP_OFFSET:16248

Parameter file examples
The following example shows how to specify indexing information for three
groups or documents. Each document is indexed using two fields. The input data
for each document is contained in a different input file.

COMMENT:
COMMENT: Generic Indexer Example 1
COMMENT: Different input file for each document
COMMENT:
COMMENT: Specify code page of the index data
CODEPAGE:37
COMMENT: Document #1
COMMENT: Index field #1
GROUP_FIELD_NAME:rdate

60 Indexing Reference

GROUP_FIELD_VALUE:07/13/99
COMMENT: Index field #2
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
COMMENT: document data starts at beginning of file
GROUP_OFFSET:0
COMMENT: document data goes to end of file
GROUP_LENGTH:0
GROUP_FILENAME:/arstmp/statement7.out
COMMENT: Document #2
COMMENT: Index field #1
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:08/13/99
COMMENT: Index field #2
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:0
GROUP_LENGTH:0
GROUP_FILENAME:/arstmp/statement8.out
COMMENT: Document #3
COMMENT: Index field #1
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:09/13/99
COMMENT: Index field #2
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
GROUP_OFFSET:0
GROUP_LENGTH:0
GROUP_FILENAME:/arstmp/statement9.out
COMMENT:
COMMENT: End Generic Indexer Example 1

The following example shows how to specify indexing information for three
groups (documents). Each document will be indexed using two fields. The input
data for all of the documents is contained in the same input file.

COMMENT:
COMMENT: Generic Indexer Example 2
COMMENT: One input file contains all documents
COMMENT:
COMMENT: Specify code page of the index data
CODEPAGE:37
COMMENT: Document #1
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:07/13/99
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
COMMENT: first document starts at beginning of file (byte 0)
GROUP_OFFSET:0
COMMENT: document length 8124 bytes
GROUP_LENGTH:8124
GROUP_FILENAME:/arstmp/accounting.student information.loan.out
COMMENT: Document #2
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:08/13/99
GROUP_FIELD_NAME:studentID
GROUP_FIELD_VALUE:0012345678
COMMENT: second document starts at byte 8124
GROUP_OFFSET:8124
COMMENT: document length 8124 bytes
GROUP_LENGTH:8124
COMMENT: use prior GROUP_FILENAME:
GROUP_FILENAME:
COMMENT: Document #3
GROUP_FIELD_NAME:rdate
GROUP_FIELD_VALUE:09/13/99
GROUP_FIELD_NAME:studentID

Content Manager OnDemand generic indexer 61

GROUP_FIELD_VALUE:0012345678
COMMENT: third document starts at byte 16248
GROUP_OFFSET:16248
COMMENT: document length 8124 bytes
GROUP_LENGTH:8124
COMMENT: use prior GROUP_FILENAME:
GROUP_FILENAME:
COMMENT:
COMMENT: End Generic Indexer Example 2

Additional indexing topics
This section presents information on indexing topics not covered elsewhere in this
manual, that applies to all indexers (OS/400, PDF, and Generic), unless otherwise
specified.

Postprocessor program
If you require a postprocessor program to further process the index data that is
extracted from your input data, you can create a custom-written program that
Content Manager OnDemand calls to process all the index records immediately
before loading them into the database. For the latest instructions and sample
programs, go to the Content Manager OnDemand for i Support Web site at
http://www.ibm.com/software/data/ondemand/400/support.html, and search for
"postprocessor."

Index (.ind), output (.out), and resource (.res) files in IFS
You might notice files in IFS on your IBM i server that might look similar to this,
for example:
/SP_QPRLR133_QPRTJOB_TKRUPA_067503_000003_MYSYSTEM_1040629_083851.ind
/SP_QPRLR133_QPRTJOB_TKRUPA_067503_000003_MYSYSTEM_1040629_083851.out
/SP_QPRLR133_QPRTJOB_TKRUPA_067503_000003_MYSYSTEM_1040629_083851.res

These are either a result of running the Add Report to OnDemand (ADDRPTOND)
command with the Index Only (IDXONLY) parameter set to *YES, or from a failed
archive initiated by the ADDRPTOND command, a Content Manager OnDemand
monitor job, or one of the ARSxxx APIs. If a home directory exists for the user
profile running the archive job, these files are located in that user's home directory.
Otherwise, the files are located in the root directory, and may be a little harder to
notice and maintain.

The purpose of these files is to help determine why the archive processing failed.
The .ind files contain the index data captured during the processing of the file,
and might help to identify the cause of the problem. If you have a large number of
these files on your system, you should investigate the cause (unless you know that
testing has been done with IDXONLY(*YES) specified as described above).

Delete the files if they are not needed for problem determination or testing.

Recommended order for defining triggers and fields
As a general rule, you should define triggers and fields from the top left to the
bottom right of the report. This has the added benefit of making your indexer
parameters easier to understand.

62 Indexing Reference

Defining indexes for data to be retrieved using Content Manager
OnDemand Web Enablement Kit (ODWEK)
About this task

The percent sign (%) and colon (:) characters in index data will cause a failure or
unpredictable results when retrieving documents using the Content Manager
OnDemand Web Enablement Kit (ODWEK) interface. Care should be taken when
defining index fields for use with ODWEK if the data contained in the index fields
might contain percent sign (%) or colon (:) characters.

Content Manager OnDemand generic indexer 63

64 Indexing Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only the IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe on any IBM intellectual property right
may be used instead. However, it is the user's responsibility to evaluate and verify
the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2001, 2014 65

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator
3605 Highway 52 N
Rochester, MN 55901–7829
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:This information contains sample application programs in
source language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any
kind. IBM shall not be liable for any damages arising out of your use of the sample
programs.

66 Indexing Reference

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at “Copyright and trademark information” at www.ibm.com/legal/
copytrade.shtml

Adobe, the Adobe logo, Acrobat, and the Acrobat logo are trademarks of Adobe
Systems Incorporated, which may be registered in certain jurisdictions.

Java™ and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 67

68 Indexing Reference

Index

A
ACRO_RES_DIR environment

variable 29
Adobe font requirements

PDF indexer 29
ARSPDOCI

COORDINATES parameter 32
error messages 46
FIELD parameter 32
FONTLIB parameter 36
INDEX parameter 37
INDEXDD parameter 38
INDEXMODE parameter 38
INDEXSTARTBY parameter 39
INPUTDD parameter 40
messages 46
MSGDD parameter 40
OUTPUTDD parameter 41
PARMDD parameter 41
reference 31, 47
TEMPDIR parameter 43
TRACEDD parameter 43
TRIGGER parameter 43

ARSPDUMP program
reference 48

B
bookmarks

PDF indexer 29

C
code page

DBCS 30
generic indexer 56
PDF indexer 30

CODEPAGE: parameter 56
commands

ARSPDOCI 47
ARSPDUMP 48

COMMENT: parameter 56
constant field 35
coordinate system 23
coordinates

on FIELD parameter for PDF
indexer 33

on TRIGGER parameter for PDF
indexer 44

COORDINATES parameter 32
flags and values 32

D
DBCS

PDF indexer 30
DBCS font files

environment variables 29
where to install 29

DBCS fonts 29
debugging 49
default index value

FIELD parameter option 34
document

generic indexer parameter 58, 59, 60

E
environment variables

ACRO_RES_DIR 29
PSRESOURCEPATH 29

error messages
ARSPDOCI program 46
PDF indexer 46

examples
generic indexer 60

F
FIELD parameter 32

constant field 35
default index value 34
flags and values 32
mask option 34
trigger field 32

fields
constant field 35
default index value 34
generic indexer parameter 57
mask option 34
PDF indexer parameter 32
trigger field 32

files
PDF indexer 30

flags and values
HEX 36
REMOVERES 42
RESOBJDD 42
RESTYPE 43

font files
where to install 29

FONTLIB parameter 36
flags and values 36

fonts
DBCS 29
NLS 29
PDF indexer 29, 36

G
generic indexer

application group field names 57
code page 56
CODEPAGE: parameter 56
COMMENT: parameter 56
document 58, 59, 60
examples 60
field names 57
field values 57

generic indexer (continued)
group indexes, defining 57
GROUP_FIELD_NAME:

parameter 57
GROUP_FIELD_VALUE:

parameter 57
GROUP_FILENAME: parameter 58
GROUP_LENGTH: parameter 59
GROUP_OFFSET: parameter 60
input file 58, 59, 60
national language support (NLS) 56
NLS 56
parameter file 56, 60

graphical indexer 1
group indexes

defining 37, 57
defining for generic indexer 57

GROUP_FIELD_NAME: parameter 57
GROUP_FIELD_VALUE: parameter 57
GROUP_FILENAME: parameter 58
GROUP_LENGTH: parameter 59
GROUP_OFFSET: parameter 60

H
header pages

skipping 39
HEX 36

I
i Navigator

configuration v
Management Central v
system navigation v

IFS location 47
INDEX parameter 37

flags and values 37
INDEXDD parameter 38

flags and values 38
indexer parameters

using break=yes versus break=no 4
indexes

generic indexer parameter 57
PDF indexer parameter 37

indexing
constant field 35
default index value 34
field mask 34
fields for PDF indexer 32
group indexes 37
header pages 39
indexes 37
mask option 34
parameters 23
skipping header pages 39
trigger field 32
triggers 43

INDEXMODE parameter 38
flags and values 38

© Copyright IBM Corp. 2001, 2014 69

INDEXSTARTBY parameter 39
flags and values 39

input file
generic indexer parameter 58, 59, 60

INPUTDD parameter 40
flags and values 40

L
limitations

PDF indexer 29
links

PDF indexer 29

M
mask

FIELD parameter option 34
messages

ARSPDOCI program 46
PDF indexer 46

MSGDD parameter 40
flags and values 40

N
naming input files

PDF indexer 30
national language support (NLS) 56

PDF indexer 29, 30
NLS 56

PDF indexer 29, 30

O
OUTPUTDD parameter 41

flags and values 41

P
parameter file

ARSPDOCI program 31
generic indexer 60
PDF indexer 23, 31

parameters
ARSPDOCI program 31, 47
ARSPDUMP program 48
CODEPAGE: 56
COMMENT: 56
COORDINATES 32
FIELD 32
FONTLIB 36
generic indexer 56
GROUP_FIELD_NAME: 57
GROUP_FIELD_VALUE: 57
GROUP_FILENAME: 58
GROUP_LENGTH: 59
GROUP_OFFSET: 60
INDEX 37
INDEXDD 38
indexing 48
INDEXMODE 38
INDEXSTARTBY 39
INPUTDD 40
MSGDD 40

parameters (continued)
OUTPUTDD 41
PARMDD 41
PDF indexer 23, 31
TEMPDIR 43
TRACEDD 43
TRIGGER 43

PARMDD parameter 41
flags and values 41

PDF indexer
Adobe font requirements 29
Adobe PDF 47
ARSPDOCI reference 47
ARSPDUMP reference 48
bookmarks 29
code page 30
concepts 22
constant field 35
coordinate system 23
DBCS 30
DBCS fonts 29
default index value 34
error messages 46
field mask 34
fields 32
file naming conventions 30
font requirements 29
fonts 29, 36
group indexes 37
indexes 37
indexing concepts 22
limitations 29
links 29
mask option 34
messages 46
naming input files 30
national language support (NLS) 29,

30
NLS 29, 30
parameter file 23
parameter reference 31
printing 29
resource collection 28
restrictions 29
transferring input files to 30
trigger field 32
triggers 43
x, y coordinate system 23

PDF resource collection 28
printing

PDF indexer 29
PSRESOURCEPATH environment

variable 29

R
REMOVERES 42
report wizard 1
requirements

Adobe font requirements 29
fonts 29

RESOBJDD 42
restrictions

PDF indexer 29
RESTYPE 43

S
skipping header pages 39
Syntax

Constant field 31
COORDINATES 31
Field 31
FONTLIB 31
INDEXDD 31
INDEXn 31
INDEXSTARTBY 31
INPUTDD 31
MSGDD 31
OUTPUTDD 31
PARMDD 31
TEMPDIR 31
TRIGGER 31

system requirements
Adobe font requirements 29
fonts 29

T
TEMPDIR parameter 43

flags and values 43
trace facility 49
TRACEDD parameter 43

flags and values 43
trace facility 49

trigger field 32
TRIGGER parameter 43

options and values 43
triggers

PDF indexer parameter 43
Triggers

field syntax 31
Group Triggers 31
TRIGGER1 31

X
x,y coordinate system 23

70 Indexing Reference

����

Printed in USA

SC19-2793-01

	Contents
	IBM Navigator for i
	Accessibility information for Content Manager OnDemand
	System requirements
	Content Manager OnDemand OS/400 indexer
	Indexing concepts
	Indexing parameters
	Using BREAK=YES versus BREAK=NO in indexer parameters
	Controlling maximum number of pages per group
	Defining multi-key indexes
	Define a multi-key index example

	Defining transaction fields
	Define a transaction report example

	Assigning default index values
	Defining text search fields
	Handling SCS spooled files that have AFP overlays
	Using a mask when defining applications fields
	Using Tag Logical Elements (TLEs)

	Content Manager OnDemand PDF indexer
	How OnDemand uses index information
	Processing PDF input files with the graphical indexer
	Manually indexing input data
	Indexing concepts
	Coordinate system
	Indexing parameters

	Indexing with Metadata Indexes
	How to create indexing parameters
	PDF resource collection
	PDF indexing system requirements
	Specifying the location of Adobe fonts
	PDF indexing limitations
	Input data requirements
	National language support for indexed PDF documents

	Parameter reference
	BOOKMARKS
	Syntax
	Options and values

	COORDINATES
	Syntax
	Options and values

	FIELD
	Trigger field syntax
	Constant field syntax
	Related parameters

	FONTLIB
	Syntax
	Options and values

	HEX
	Syntax
	Options and values

	INDEX
	Syntax
	Options and values
	Examples
	Related parameters

	INDEXDD
	Syntax
	Options and values

	INDEXMODE
	INDEXSTARTBY
	Syntax
	Options and values

	INPUTDD
	Syntax
	Options and values

	MSGDD
	Syntax
	Options and values

	OUTPUTDD
	Syntax
	Options and values

	PARMDD
	Syntax
	Options and values

	REMOVERES
	Syntax
	Options and values

	RESOBJDD
	Syntax
	Options and values

	RESTYPE
	Syntax
	Options and values

	TEMPDIR
	Syntax
	Options and values

	TRACEDD
	TRIGGER
	Syntax
	Options and values
	Examples
	Related parameters

	Message reference
	ARSPDOCI reference
	Purpose
	Syntax
	Description
	Parameters
	IFS location

	ARSPDUMP reference
	Purpose
	Syntax
	Description
	Parameters
	Examples
	IFS location

	Trace facility

	Content Manager OnDemand generic indexer
	Loading data
	Specifying the parameter file
	CODEPAGE:
	Syntax
	Options and values
	Example

	COMMENT:
	Syntax
	Options and values
	Example

	GROUP_FIELD_NAME:
	Syntax
	Options and values
	Example

	GROUP_FIELD_VALUE:
	Syntax
	Options and values
	Example

	GROUP_FILENAME:
	Syntax
	Options and values
	Example

	GROUP_LENGTH:
	Syntax
	Options and values
	Example

	GROUP_OFFSET:
	Syntax
	Options and values
	Example

	Parameter file examples
	Additional indexing topics
	Postprocessor program
	Index (.ind), output (.out), and resource (.res) files in IFS
	Recommended order for defining triggers and fields
	Defining indexes for data to be retrieved using Content Manager OnDemand Web Enablement Kit (ODWEK)

	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	X

