Linux on IBM Z and IBM LinuxONE

openCryptoki - An Open Source
Implementation of PKCS #11

.||I

Edition notice

This edition applies to openCryptoki version 3.22 and to all subsequent versions and modifications until otherwise
indicated in new editions.

© Copyright International Business Machines Corporation 2021, 2023.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this documMENt.......c.ceiiiiiiiiiiiirrcrccce sttt tatsessessessassessassanas vii
Summary of CRANGES.....cuiuiiiiiiiiiiiiiiiiiiiiiiitirecitettetstestesstessesessessssessesassessasans iX
Edition SC34-7730-02: Updates for openCryptoki versions 3.18 - 3.22.....ccccceeevieeccreeecieeeeieeecvee e iX
Edition SC34-7730-01: Updates for openCryptoki Version 3.17.......cccveeeiieeeciieeciee e siee e e X
Part 1. Common features of openCryptoKi.....cccceceiieniiniiniiniiniieiieiieiieniecncncienieniens 1
Chapter 1. Introducing PKCS #11 and 0penCryPtoKi.....cceiccieeecieeeceeeccteeeceeeecieeeeveeeeveeeevee e vneesveeeenes 3
WRAL IS PKCS #1172, e iiiteeieiteiiectesiesresteeteseestesreestesseestesaestassaessaestesseessesssanseessesseessesseessesssessesssessennes 3

WHat IS OPENCIYPLOKI?...eeiiie ittt e e e e e e te e e e tee s eateeesateeeensaeeenseeeensasasnsaeesnseeennes 4
Chapter 2. Architecture and components of OpPENCIYPLOKI......ecccieeieciieieiie et 5
Part 2. Preparing openCryptokicccceieiieiieiieiieiieieiiiiiiiieiieiieiieniececscsssssssassens 15
Chapter 3. Fastpath t0 OpeNCIYPLOKI c....eiiciie ettt e e ate e e eate e e aae e e s 17
Chapter 4. Installing OPENCIYPLOKI vueccvieieieeeciieeetee ettt e ee e e ee e ee e s aae e e bee e e bee e ssaeeesaeesnnes 19
Chapter 5. Adjusting the openCryptoki configuration fil€.........cocceiieciiiciiiieeeceee e 21
Chapter 6. Supporting cryptographic policies for openCryptoKi......ccccceeeeceeerieeeciieecee e 25
Strength CONFIGUIAtION filE.....iii e e e e s e e e rae e e naeeennes 25

POLiCY CONFIGUIALION FIlE....uiiiceiee ettt e e e e et e e s bae e sbae e sbaeeebaeesbaeeeaes 28
Processing CoONfigUration filES.......iiciii i e e e e e e ree e e bee e e 32
Chapter 7. openCryptoki environment Variables........ccvviiriinieineinienieeneesieesee e sreesee e seeesae e 35
Part 3. Common tools of openCryptoki.....ccccciieiieiiniiniiiiiiiieiieiieiieiiecnciciesieciens 37
Chapter 8. Managing tokens - PKESCONE Utility.....cccceeiiiiieiiiiiiiece e 39
Chapter 9. Managing token keys - PAASaK Utility......cccoeeeiiiieeiiieeiieeeceeeee e e 43
Chapter 10. Migrating to FIPS compliance - pkestok_migrate utility.......ccccevveervinnieniiinieenieennienne, 65
Chapter 11. Displaying usage statistics - pkesstats Utility.......ccccoeereiiiiciiiiciicee e, 67
Chapter 12. Managing a concurrent master key change - pkcshsm_mk_change utility...................... 71
Part 4. Token specifications......ccccciiiiiieiieiiiieiieiiiiiiiiiiieiininiiieieiececssssssessens 79
Chapter 13. Common token iNformMation.......cc.cicciieeciie et e e ee e eaaae e 81
Adding toKENS 10 OPENCIYPIOKI...eeiietiieiciieecciee ettt e ree e e ree e e rtee e e re e e e bee e e bae e ebaeesabaaeenseas 81

HOW t0 rECOZNIZE TOKENSevteeiieeeiteeectte ettt ettt e et e et e et e e e ata e e abe e e abae s nbaeesabaeannsaeannsaeennses 82

OO o 1=F- Ta [T g 1 11 T RO PP PP PPRRUPRRUPRRPON 84

O1ID file for post-quantum algOrthmMS.......cccuii ittt e e e aeeenes 84

How and why t0 eXploit ProteCted KEYS.....iuiiiiciieiciieeeee ettt et e e te e s re e e e tae e e aaeeeaes 85

How to enable AES XTS support for CCA and EPLL tOKENS......uvieciieecieecieeeee e e 87

PKCS #171 Baseling Provider SUPPOIM....uii i iieeececiieeeeecitee e e crteeeessteeeesesstesessessasessssnsesessessssessesannes 88

Dual-function cryptographic fUNCLIONS SUPPOIT.....cciciiiiiiieriiieiiee ettt e s e s reesseeeeas 88
Supported features of PKCS #11 3.0 and 3.0.....uoiii it e e e e e e e e e nree e e e e nnees 89
(O aF= Vo] =Y S 6 07 N8 0] =Y o VSRR 91
Defining a CCA token configuration fileiiiiiiiiiiiiiiieeieeeieeeee ettt s e 91
PKCS #11 mechanisms supported by the CCA tOKEN......ccccuvie it 94
ECC curves supported by the CCA TOKEN....cc ettt e e eete e e e e te e e s e e rae e e e e eanaeeeaean 96
Usage notes for CCA LIDrary FUNCLIONS.cuiiiiiiiiiieeeieescie sttt sttt e s siae e s ae e s saaeessanae s 97
Migrate to a new CCA master key - PKCSCCa ULILiTy....cccevvuiiiiiiiiiiiiieiecceeceee e 98
(O] gF= Vo] L=Y i T {0788 (o] =Y o TSRS 101
PKCS #11 mechanisms supported by the ICA tOKEN......cccviie it 101
Usage notes for the ICA Library fUNCHIONS......cii it 104
ECC curves supported by the ICA TOKEN.......uuiii ittt e e e e e e re e e e e e naae e e 105
(O g T Vo] =Y N T = 5 A o] (=] 1O USRS 107
Defining an EP11 token configuration file. ... e 107
PKCS #11 mechanisms supported by the EPLL t0KEN......uuiviiiiiieeeeeeeeeeee e 113
ECC curves supported by the EPLL tOKEN.......eii ittt et ee e e rree e e e nneeee e 117
Migrating master keys - pkcsepld_migrate Utility......cccoceeoiiiriinceinie e 119
Managing EP11 sessions - pkcsepld_session Utility......cccccoeriiieniieniinnie s 121
Usage notes for the EP11 host library fuNCLIONS......ccuiiiiiiiiiiieiiecneeseesee e 123
Restriction to extended eValuationS........oociiiiciiiiiiiiiiieceeeeeee et e e 124
(O] aF= Vo] L=Y S Yo Yt (0= o PSR 125
PKCS #11 mechanisms supported by the Soft tOKEN........coviieciiieiiecee e 125
Chapter 18. Directory content for CCA, ICA, EP11, and Soft toKens........cccceeeieeeiccciiee e, 131
(01 aF= Vo] L=Y g o (OS] i (0] =Y o OSSR 135
Configuring the ICSF token - PKCSL1CSE ULility....ccevvieeciiiiiieiieeceeeeeeeec e 135

Part 5. IBM-specific mechanisms and features for openCryptokKicccceeuveveenee. 137
Chapter 20. IBM-SpeCifiCc MECRANISIMS.uiiiiieciieeececiiee e cecrtee e eeeeee e e e sree e e e e rabee e e s esnbteeeseesseeeeeennseneaeas 139
Chapter 21. Re-encrypting data with @ MeChanNiSM.....cocciiiiiiiiiiie e 157

Part 6. Programming basics and user Scenarios.......c.ccccceereeinineinecnecnecrecnecsecrecess 159

Chapter 22. Programming With OpenCryPLoKi......cceiicieiiiieiiieeccieccte et 161
How to create and MoOdify ODJECTS......uuiiie et e e e e e e are e e e e e nneeee e s 162
How to apply attributes 10 ODJECTS...cciiueiiie e s 163
Structure of an openCryptoKi @PPLICATION.ciiicciieee ettt e e e e ee e e rree e e e enees 163
Sample OPENCIYPLOKI PrOSIaM . i it iriieeiiterrirtereitessreessreessreesssreesssseesssseesssseessseesssseesssseesssseessssees 165
0pPeNCryptoki COAE SAMPLES (C)..ieiuieeciiee ettt ettt e e etee e e etee e e tee e e bee e e bee e e eteeeeseeeeaseeeennes 167

Chapter 23. TroubLle ShOOTING.....cuiiiiiiiriieeecie ettt s sbe e st e e s ste e s sbee s nbeesssbeesssbaesanseens 179

Chapter 24. Configuring a remote PKCS #11 service with openCryptoKi......cccoeveerrvveernieeeinieesnieeeennnen. 183
Y=Y e o [T T =Y (U] o RSP USRNS 183
(01 1=T Y A=Y o [T =Y (U] o JR RS 185
Support of IBM-specific mechanisms - pAA=Kit.........coooiiiiiiiiieeeeeeeee e 187

(202 (=] (=] 1 [=3 TSRS L. X |

ACCESSIDILItY..cciiuieiiniiiieiiiieiiiiiiiiiittiiieiteteitettetettetatestetastecstassnsastessssassesansaans 193
[\ 0] 1 o =Y - S 195

L =Te (=] = U TR PPPRR 195
e =) 197

About this document

openCryptoki is an open source implementation of the Cryptoki API defined by the PKCS #11
Cryptographic Token Interface Standard.

This documentation is intended for the following audience:

openCryptoki administrators manage the so called tokens that are plugged into the openCryptoki
framework. They are responsible for adding these tokens to the slots of openCryptoki and, if applicable,
for configuring these tokens. They also use either openCryptoki common tools or token-specific tools for
administrating the configured tokens.

Application programmers write PKCS #11 programs that exploit the cryptographic services provided
by a configured openCryptoki token. The services of such a token either exploit IBM Z° cryptographic
hardware or they are also backed by software tokens (Soft token).

This documentation is divided into the following parts:

« Part 1, “Common features of openCryptoki,” on page 1 describes the openCryptoki architecture and
informs about configuration actions that must be performed for all applications that want to exploit
these openCryptoki features. Most of the provided information is of interest for both, openCryptoki
administrators and application programmers.

 Part 3, “Common tools of openCryptoki,” on page 37 documents management and key migration
tools that are helpful for openCryptoki administrators to enable openCryptoki exploitation through
programs.

- Part 4, “Token specifications,” on page 79 presents to application programmers the documentation
of the token-specific mechanisms and information about the contents of a token directory. If a token
needs additional token-specific configuration, before it can be accessed by a cryptographic application,
openCryptoki administrators find the required information here.

« Part 5, “IBM-specific mechanisms and features for openCryptoki,” on page 137 documents numerous
mechanisms and features contributed by IBM to the openCryptoki framework. The described
mechanisms are available across multiple token-types or for certain tokens only. Described features
are normally applicable to all token-types or openCryptoki applications.

 Part 6, “Programming basics and user scenarios,” on page 159 documents the basic structure of
openCryptoki applications and presents a simple, but complete code sample for an RSA key pair
generation. This part also provides a user scenario showing how to set up a Soft token on a server for
use from an application on a remote client.

© Copyright IBM Corp. 2021, 2023 vii

viii Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Summary of changes

Track the changes of this document for each new edition.

Edition SC34-7730-02: Updates for openCryptoki versions 3.18 -

3.22

This edition has a new structure. There is a new topic Part 5, “IBM-specific mechanisms and features
for openCryptoki,” on page 137 which lets you find IBM-specific add-ons to openCryptoki at a glance.

Existing and new information is integrated into this part as applicable.

For CCA tokens and EP11 tokens, openCryptoki ensures that all APQNs assigned to such a token

are configured with the same master key. In either a CCA token or an EP11 token configuration file,

you can optionally specify an expected master key or wrapping key verification pattern (MKVP or
WKVP). If specified, all master or wrapping keys must match the pattern, If not specified, they just
must be the same. Additionally, the openCryptoki functions that create a key or key pair, for example
C_GenerateKey (), or C_DeriveKey (), now automatically check whether the resulting key or keys
are created with this specified expected MKVP or WKVP. If no pattern is specified, openCryptoki checks
against the verification pattern of the APQNs as determined during token initialization.

openCryptoki is extended with a possibility to restrict usage of mechanisms and keys via a global policy.
The policy is guided by the notion of cryptographic strength. The user specifies a minimal desired
strength, allowed mechanisms, and a way to derive the strength for a given key. openCryptoki then
blocks all keys that are not strong enough and mechanisms that are not allowed. The policy is set
globally for all applications using openCryptoki.

The usage of mechanisms is counted based on individual users and accumulated for all users on the
respective system. The usage is also counted on the basis if slot-IDs, mechanisms, and key-sizes.
Counting is applied transparently to the calling applications.

A new command line tool pkcsstats can be used to display the counter values for slot-IDs and
mechanisms, based on individual users or accumulated for all users on the respective system, and also
broken down to different key-size values.

openCryptoki provides a new utility called pkeshsm_mk_change to support the changing (rolling)

of master keys of cryptographic coprocessors running in CCA or EP11 mode concurrently while
applications using openCryptoki workload exploiting the CCA token or the EP11 token are running. All
secure keys enciphered by old master keys need to be re-enciphered with the new master key. However
applications using the mentioned tokens can continue to run while the master key change procedure is
performed.

Support for the CKA_DERIVE_TEMPLATE attribute as defined by PKCS #11 version 3.1 has been added
to all token types. The CKA_DERIVE_TEMPLATE attribute of a base key contains a template that is
applied to the derived key in addition to the user supplied derive template. Applications can use the
CKA_DERIVE_TEMPLATE attribute on base keys to control the attributes of the keys that are to be
derived from that base keys.

The EP11 token offers two new mechanisms that can be used by crypto currency applications:

— The CKM_IBM_BTC_DERIVE mechanism allows derivation of child keys from base ECC keys,
generated from a selection of elliptic curves, using the methods described in BIP-0032 and
SLIP-0010.

— The CKM_IBM_ECDSA_OTHER mechanism is a multi-variant signature mechanism for algorithms
used by crypto currency applications. You can use this mechanism to generate Schnorr signatures,
that is, ECC-based signatures that are not produced using the ECDSA or the EDDSA digital signature
algorithms.

© Copyright IBM Corp. 2021, 2023 ix

https://en.bitcoin.it/wiki/BIP_0032
https://github.com/satoshilabs/slips/blob/master/slip-0010.md

The openCryptoki pkcsslotd daemon is hardened, especially against privilege escalation attacks. It
does not run as root user anymore. It can still be started as root user, but will change its UID to a
special, but unprivileged pkcsslotd service user shortly after startup.

For PKCS #11 3.0, openCryptoki supports the new C_SessionCancel () function used to terminate
active session-based operations.

New mechanisms are provided by the CCA token, the ICA token, the EP11 token, and the Soft token to
enable AES XTS protected-key cryptographic support for openCryptoki (encryption, decryption and key
generation). The AES XTS mechanisms and key type are new for PKCS #11 version 3.0.

Also, a new feature of the pldsak utility now supports the generation and management of AES-XTS
keys.

Furthermore, for the mentioned tokens you can now import clear AES XTS keys to secure AES XTS keys,
for example, using the C_CreateObject () function of openCryptoki.

Background information about the use of protected keys in general and especially for AES XTS for the
CCA and EP11 tokens is provided in the new topics “How and why to exploit protected keys” on page
85 and “How to enable AES XTS support for CCA and EP11 tokens” on page 87.

The pddsak tool now supports x.509 public key certificates as token objects. This is needed for
compatibility with the use case where certificates are stored in a PKCS #11 token.

The openCryptoki tools pkecsconf and pllsak now support the output of the unified resource identifier
(URI) as defined by the RFC 7512: The PKCS #11 URI Scheme for PKCS #11 objects in PKCS #11
tokens.

As for EP11 tokens, you can now create an optional CCA token configuration file where you can specify
options to support protected key mode and to request a master key consistency check for the assigned
APQNSs.

For EP11 tokens, openCryptoki offers support of quantum-safe algorithms for Dilithium Round 2 and 3
variants and Kyber Round 2. All new features are available with IBM z16 systems on a CEX8P Crypto
Express EP11 coprocessor, including the latest EP11 host library and firmware code.

Since version 3.19, openCryptoki supports several functions to perform two cryptographic operations
simultaneously within a session. These functions are provided to avoid unnecessarily passing data back
and forth to and from a token.

There are attacks on RSA operations for which the timing of a computation may deliver a hint for well- or
malformed input and thus, whether an attack may have a chance to be successful. Starting with version
3.21, openCryptoki itself cares for hiding the computation times, however, PKCS #11 applications must
make sure to handle certain RSA decryption errors in a constant-time manner itself. In addition, the

ICA token and the Soft token apply RSA message blinding to messages on all operations using the RSA
private key (decryption and signature creation).

The pa1-kit utility is enhanced so that it supports IBM-specific mechanisms and attributes. The
p11-kit utility can especially be used to provide remote PKCS #11 API access to openCryptoki tokens
through an RPC-like communication protocol.

Edition SC34-7730-01: Updates for openCryptoki version 3.17

A new information unit describing IBM-specific mechanisms and attributes has been added (see
Chapter 20, “IBM-specific mechanisms,” on page 139).

Conceptional information on the handling of objects and attributes in PKCS #11 has been added.

openCryptoki code samples have been transferred from libica Programmer's Reference, SC34-2602, and
Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713, into this current edition.

All openCryptoki-related information from libica Programmer's Reference, SC34-2602, has been
integrated into this current edition.

Comprehensive extensions have been applied to the documentation of all tokens in Part 4, “Token
specifications,” on page 79.

X Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://www.rfc-editor.org/rfc/rfc7512
https://www.rfc-editor.org/rfc/rfc7512

« A new topic to assist you in solving problems while working with openCryptoki has been included (see
Chapter 23, “Trouble shooting,” on page 179).

« The p11sak offers a new option to obtain a listing of keys in a long output format.

Summary of changes xi

xii Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Part 1. Common features of openCryptoki

Read an introduction to openCryptoki and learn about its features that are relevant for all exploiting
applications.

The following topics explain the purpose of openCryptoki within the PKCS #11 standard and introduce
the concept of the openCryptoki framework. In addition, you find information on how to customize and
configure openCryptoki according to your requirements.

« Chapter 1, “Introducing PKCS #11 and openCryptoki,” on page 3

« Chapter 2, “Architecture and components of openCryptoki,” on page 5

« Chapter 4, “Installing openCryptoki,” on page 19

Chapter 5, “Adjusting the openCryptoki configuration file,” on page 21

Chapter 6, “Supporting cryptographic policies for openCryptoki,” on page 25

Chapter 7, “openCryptoki environment variables,” on page 35

© Copyright IBM Corp. 2021, 2023

2 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 1. Introducing PKCS #11 and openCryptoki

The Public-Key Cryptography Standards (PKCS) comprise a group of cryptographic standards that provide
guidelines and application programming interfaces (APIs) for the usage of cryptographic methods. This
document describes the use of openCryptoki, which is an open source implementation of a C/C++ API
standard defined by PKCS #11, called Cryptoki.

openCryptoki is used for devices that hold cryptographic information and perform cryptographic
functions.

Though the openCryptoki standard offers C header files, you can also implement the interface in other
programming languages than C or C++.

What is PKCS #11?

PKCS #11 is a popular cryptographic standard for the support of cryptographic hardware. It defines a
platform-independent API called Cryptoki to access cryptographic devices, such as hardware security
modules (HSMs). With this API, applications can address these cryptographic devices through so-called
tokens and can perform cryptographic functions as implemented by these tokens. This standard, first
developed by the RSA Laboratories in cooperation with representatives from industry, science, and
governments, is now an open standard lead-managed by the OASIS PKCS 11 Technical Committee.

PKCS #11 can support so called hardware tokens which may be cryptographic accelerators or hardware
security modules (HSMs). The PKCS #11 standard is independent of specific cryptographic hardware, yet
allows to deal with many hardware specific implementations. It can support the use of multiple different
token types. Due to the popularity of PKCS #11, many software products that perform cryptographic
operations, provide plug-in mechanisms, which, if configured, will redirect cryptographic functions to a
PKCS #11 library of mechanisms. For example, the IBM WebSphere® Application Server and the IBM
HTTP Server can be configured to use a PKCS #11 library.

The Cryptoki API provides access to a number of so-called slots. A slot is a possibility to connect to a
cryptographic device (for example, to an IBM Crypto Express adapter). Typically, a slot contains a token,
while a cryptographic device is connected to the slot. An application can connect to multiple tokens in a
subset of those slots.

In addition, further cryptographic libraries can call PKCS #11 functions, for example, Java Cryptography
Architecture (JCA), IBM Global Security Kit (GSKit), GnuTLS, or, in case of OpenSSL, by using for example,
a PKCS #11 engine from the OpenSC project.

Cryptoki abstracts from the cryptographic device, that is, it makes each device look logically like every
other device, regardless of the implementation technology. Whether it is a specific hardware device
that requires a special device driver or a solution completely based on software (for example, a client
for a cryptographic service), the Cryptoki API looks exactly the same. Hence, applications (application
programmers) only interact with Cryptoki. The concrete Cryptoki implementation takes care of the
interaction with the selected token.

Cryptoki is likely to be implemented as a library supporting the functions in the interface, and applications
will be linked to the library. It follows an object-based approach, addressing the goals of technology
independence (any kind of HW device) and resource sharing. It also presents to applications a common,
logical view of the device that is called a cryptographic token. PKCS #11 assigns a slot ID to each

token. An application using the Cryptoki API identifies the token that it wants to access by specifying the
appropriate slot ID.

For more information about PKCS #11, refer to this URL:
PKCS #11 Cryptographic Token Interface Standard

© Copyright IBM Corp. 2021, 2023 3

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

What is openCryptoki?

The PKCS #11 standard comprises the definition of an API called Cryptoki (from cryptographic token
interface). However, the term PKCS #11 is often used instead, to refer to the API as well as to the
standard that defines it. openCryptoki in turn is an open source implementation of Cryptoki. As such,
openCryptoki provides a standard programming interface between applications and all kinds of portable
cryptographic devices.

openCryptoki consists of an implementation of the PKCS #11 Cryptoki API, a slot manager, a set of slot
token dynamic link libraries (STDLLs), and an API for these STDLLs. For example, the EP11 token type is a
STDLL introduced with openCryptoki version 3.1.

openCryptoki provides support for several cryptographic algorithms according to the PKCS #11 standard.
The openCryptoki library loads the tokens that provide hardware or software specific support for
cryptographic functions.

openCryptoki can be used directly through the openCryptoki shared library (C API) from all applications
which are written in a language that provides a foreign language interface for C.

openCryptoki is available for major Linux distributions, for example, Red Hat Enterprise Linux, SUSE Linux
Enterprise Server, or Ubuntu.

For more information about the openCryptoki services, or about the interfaces between the openCryptoki
main module and its tokens, see

https://github.com/opencryptoki/opencryptoki.

4 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://github.com/opencryptoki/opencryptoki

Chapter 2. Architecture and components of
openCryptoki

As implementation of the PKCS #11 API (Cryptoki), openCryptoki allows interfacing with devices
(such as a Crypto Express adapter) that hold cryptographic information and perform cryptographic
functions. openCryptoki provides application portability by isolating the application from the details of
the cryptographic device. Isolating the application also provides an added level of security because all
cryptographic information stays within the device.

openCryptoki consists of a slot manager and an API for slot token dynamic link libraries (STDLLs). The
slot manager runs as a daemon, provides the number of configured tokens to applications, and it interacts
with the tokens (that are used by the applications) using Unix domain sockets or a shared memory
segment. For each device with which a token should be associated, this token must be defined in a slot in
the openCryptoki configuration file (/etc/opencryptoki/opencryptoki.conf). The shared memory
segment allows for proper sharing of state

e P appl app2
L opencryptoki.conj
eplltokeni.comj openCryptoki B openCryptoki
e common code daemon common code
S (pkesslotd)
stdll for stdll for stdll for || stdll for
[e d token token token token
token 1 L token 2 token 3 typel type 2 typel type 2
dir | dir dir |
o o o Shared
lock file mEeny =
Unix
domain
OCKlog of app1 sockets

OCKlog of app2 |

Figure 1. openCryptoki architecture

information between applications to help ensure conformance with the PKCS #11 specification.

Figure 1 on page 5 shows the architecture of openCryptoki:

openCryptoki supports different token types for SW tokens and for various forms of HW support, for
example, IBM Crypto Express adapters. openCryptoki allows to manage multiple tokens that can be used
in parallel by one or more processes. These multiple tokens can have the same or different types.

Users can configure openCryptoki and in particular, the set of tokens including their respective token
types, using the opencryptoki. conf file (see Chapter 5, “Adjusting the openCryptoki configuration
file,” on page 21). They can define and exploit multiple tokens of any token type, each with a different
token name. EP11 tokens and CCA tokens can be configured using a token-specific configuration file for
each token instance. Samples of such configuration files are shown in Figure 19 on page 113 and in
Figure 16 on page 93. An example of how to define multiple EP11 tokens in the overall openCryptoki
configuration file is shown in Figure 14 on page 82.

© Copyright IBM Corp. 2021, 2023 5

Each token uses a unique token directory. This token directory receives the token-individual information
(like for example, key objects, user PIN, SO PIN, or hashes). Thus, the information for a certain token

is separated from all other tokens. For example, for most Linux distributions, the CCA token directory

is /var/lib/opencryptoki/ccatok. The CCA token is called ccatok, if there is only one instance of a
CCA token, and no explicit name is defined in the openCryptoki configuration file.

For information on the location and content of the single token directories read Part 4, “Token
specifications,” on page 79.

Slots and tokens

Imagine the use of smart cards: In the same way a smart card is inserted into a smart card reader, a PKCS
#11 tokenis inserted into a PKCS #11 slot, where a slot is identified by its ID. A token is library code that
knows how to interface with the cryptographic hardware. However, there is no requirement for the token
to use any hardware at all, and accordingly there is a so called soft token (described in Chapter 17, “Soft
token,” on page 125) which represents a pure software library accessible via openCryptoki.

Each token is of a certain token-type, where a token-type is implemented by STDLLs. For example, all
EP11 tokens use the libpkcs11_epll.so STDLL (see also Figure 4 on page 22). A certain instance of a
token is implemented by data structures allocated by an STDLL (and a token directory).

All tokens available to openCryptoki are configured in the opencryptoki. conf configuration

file. Each token configuration in opencryptoki.conf defines the token type of the token by
specifying the adequate STDLL. The opencxyptoki.conf configuration file is used by all processes
(applications) using (linking to) openCryptoki. Each process may call some or all tokens defined in
opencryptoki.cont.

The PKCS #11 API provides a set of slot and token management functions. For example:

« C_GetSlotList() gets alist of available slots.

« C_GetSlotInfo() obtains information on each slot (for example, whether a token is present, or
whether the token represents a removable device).

« C_InitToken() initializes an inserted token.

« C_GetTokenInfo() provides information on such a token (for example, whether a login is required
to use the token, a count of failed log-ins, information on whether the token has a random number
generator).

« C_InitPIN() and C_SetPIN() manage the PIN used to protect a token from unauthorized access.

View an example for how to obtain slot information using the C_GetSlotInfo () function:

6 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

CK_RV getSlotInfo(CK_SLOT_ID slotID, CK_SLOT_INFO_PTR slotInfo);

/* typedef struct CK_SLOT_INFO { */
/* CK_UTF8CHAR slotDescription[64]; */
/* CK_UTF8CHAR manufacturerID[32]; */
/* CK_FLAGS flags; */
/* CK_VERSION hardwareVersion; */
/* CK_VERSION firmwareVersion; */
/* 3 CK_SLOT_INFO; x/
/* Flags: */

/* CKF_TOKEN_PRESENT x/

/* CKF_REMOVABLE_DEVICE */

/* CKF_HW_SLOT */

1

rc = C_GetSlotInfo(slotID, &slotInfo);

if (rc != CKR_OK) £
printf("Exrror getting slot information: %x \n", xc);
return zxc;

¥

if ((slotInfo.flags & CKF_TOKEN_PRESENT) == CKF_TOKEN_PRESENT)
printf("A token is present in the slot.\n");

if ((slotInfo.flags & CKF_REMOVABLE_DEVICE) == CKF_REMOVABLE_DEVICE)
printf("The reader supports removable devices.\n");

if ((slotInfo.flags & CKF_HW_SLOT) == CKF_HW_SLOT)
printf("The slot is a hardware slot.\n"); /* opposed to a SW slot for a soft token =x/

return CKR_OK;

Note: Linux on IBM Z and IBM LinuxONE do not support the Trusted Platform Module (TPM) token library.

Slot manager

The slot manager daemon (pkcsslotd) manages slots (and therefore the tokens plugged into these
slots) in the system. Its main task is to coordinate token accesses from multiple processes. A fixed
number of processes can attach themselves implicitly to pkcsslotd during openCryptoki initialization,
so a static table in shared memory is used. The current limit of the table is 2000 processes using the
subsystem. The daemon sets up this shared memory upon initialization and acts as a garbage collector
thereafter, helping to ensure that only active processes remain registered.

Starting with openCryptoki 3.21, the pkcsslotd daemon does no longer run as root user. Though you
can still start the daemon as root user, it changes its user ID to the pkcsslotd user shortly after
startup, thus dropping any root privileges. This protects your environment against privilege escalation
attacks. Applications must still be running under a user that is a member in the pkcs11 group (see
“Access control and groups” on page 12).

Note: The pkcsslotd user as well as the pkcs11 group are configurable via package configuration, but
they default to pkcsslotd and pkcs1l. That way distributions can choose to use a different user and
group names if desired.

The POSIX shared memory segments for the available tokens are located in path /dev/shmand are
named either by their default names or by the name defined in the opencryptoki. conf file. For
example, the shared memory segments may be located and named as shown in the following example:

[root@system®1l shm]# pwd
/dev/shm
[root@system@l shm]# 1ls -1

-rw-rw----. 1 root pkcsll 82792 Apr 8 12:04 var.lib.opencryptoki.ccatok

-rw-rw----. 1 root pkcsll 82792 Apr 8 12:04 var.lib.opencryptoki.eplltok

-Iw-Iw----. 1 root pkcsll 82792 Apr 8 12:04 var.lib.opencryptoki.lite /* legacy name: ICA Tok x*/
-rw-rw----. 1 root pkcsll 82792 Apr 8 12:04 var.lib.opencryptoki.swtok

Chapter 2. Architecture and components of openCryptoki 7

The pkecsslotd daemon also uses one System V shared memory segment in addition to the mentioned
POSIX shared memory segments. This System V shared memory segment can be listed with the ipcs
command. It is used to share information about the processes currently using openCryptoki services and
to share the global session count per slot.

The slot manager also maintains Unix domain sockets between all openCryptoki processes (API layer).
There are the following sockets:

/xrun/opencryptoki/pkcsslotd.socket
/xrun/opencryptoki/pkcsslotd.admin.socket

The /run/opencryptoki directory also contains the PID file (process identification file) that the
pkcsslotd daemon creates.

The /run/opencryptoki directory is owned by the pkcsslotd user and pkcs11 group, but only the
pkcsslotd user is allowed to write (drwx--x---). That way, only the pkcsslotd user (or root user) is able
to start the pkcsslotd daemon.

When a process attaches to a slot and opens a session, pkcsslotd makes future processes aware that
a process has a session open and locks out certain function calls, if the process needs exclusive access
to the given token. The daemon constantly searches through its shared memory and ensures that when
a process is attached to a token, this process is actually running. If an attached process terminates
abnormally, pkcsslotd cleans up after the process and frees the slot for use by other processes.

Starting the slot manager

A prerequisite for accessing a token is a running slot manager daemon (pkcsslotd) .

Use the following command to start the slot manager daemon. The slot manager then reads out the
configuration information and sets up the tokens.

$ systemctl start pkcsslotd.service /* for Linux distributions providing systemd x*/

For a permanent solution, specify:

$ systemctl enable pkcsslotd.service /* for Linux distributions providing systemd x/
To start the pkcsslotd daemon under the pkcsslotd user manually, use the following command:
runuser -u pkcsslotd pkcsslotd

This command can only be used as root user. Using the command su pkcsslotd pkcsslotd does not
work, because the pkcsslotd user does not allow a login.

Main API

The main API for the STDLLs lies in /usr/1ib/pkcs11/PKCS11_API.so. This API includes all the
functions as outlined in the PKCS #11 API specification. The main API provides each application with the
slot management facility. The API also loads token-specific modules (STDLLs) that provide the contained
operations (cryptographic operations and session and object management). STDLLs are customized for
each token type and have specific functions, such as an initialization routine, to allow the token to work
with the slot manager. When an application initializes the subsystem with the C_Initialize call, the
API loads the STDLL shared objects for all the tokens that exist in the configuration (residing in the
shared memory) and invokes the token-specific initialization routines. In addition, a connection to the
pkcsslotd slot manager and its shared memory segment is established.

8 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/os/pkcs11-base-v3.0-os.html#_Toc29976593

Roles and sessions

PKCS #11 knows two different roles per token. Each role can authenticate itself by a PIN specific to that
role and a token.

« The security officer (SO) initializes and manages the token and can set the PIN of the User.

« The (normal) User can login to sessions, create and access private objects and perform cryptographic
operations. Users can also change their PINs.

A session is a token-specific context for one or more cryptographic operations. It maintains the
intermediate state of multi-part functions, like an encryption of a message that is worked on one
network packet at a time. Roughly speaking, within one session only one cryptographic operation can
be processed at a time, but a program may open multiple sessions concurrently.

There are different types of sessions: Each session is either a read-only session or a read-write session
and each session is either a public session or a User session. Read-only sessions may not create or
modify objects. A public session can only access public objects whereas a User session can access the
User's private and public objects. All sessions of a token become User sessions after a login to one of the
sessions of that token. Access to a specific token is controlled using PINs (User or security officer PINs).

The PKCS #11 API provides session functions like:

« C_OpenSession() and C_CloseSession() are used to open and close a session. A parameter in the
C_OpenSession () invocation indicates the type of the session.

C_Login() and C_Logout () are used to toggle sessions from public to User sessions and reverse. In
order to login, the User PIN is required.

C_GetSessionInfo() provides information on the type of a session.

« C_GetOperationState() and C_SetOperationState() are used to checkpoint and restart a
multi-part cryptographic operation. Note that not all operations may support saving and restoring the
state of operations.

Functions and mechanisms

The PKCS #11 API defines a small set of generic cryptographic functions to do the following tasks:

« encrypting and decrypting messages,
computing digests (also called hashes) of messages,

« signing messages and verifying signatures,
- generating symmetric keys or asymmetric key pairs and deriving keys,

wrapping and unwrapping keys,

« generating random numbers.

With the exception of the functions to generate random numbers, these generic cryptographic functions
accept a mechanism parameter that defines the specific instance of that function. This is depicted

in Figure 2 where an encryption function takes an AES_CBC mechanism as argument to encrypt a

message with AES encryption in the cipher block chaining (CBC) mode of operation, using a key (and
an initialization vector not shown in the figure).

Chapter 2. Architecture and components of openCryptoki 9

- mechanism

cryptographic function

Figure 2. Functions and mechanisms

Each cryptographic function is executed in the context of a session. Most cryptographic functions must
be initialized by calling an initialization function that takes a session parameter, a mechanism parameter
and function specific parameters like keys. For a cryptographic function Xyz the initialization function is
called C_XyzInit (). Once afunction is initialized, the actual function invocation can take place: either
as a single part function of the form C_Xyz () or as a multi-part function where one or more calls to a
function of the form C_XyzUpdate () are finalized by a call to C_XyzFinal ().

Each token supports token-specific functions. The PKCS #11 API provides the function
C_GetFunctionList() to obtain the functions available with a specific token. A mechanism describes

a specific set of cryptographic operations. For example, the mechanism CKM_AES_CBC refers to AES
encryption with the cipher block chaining (CBC) mode of operation. A mechanism may be required

for performing one or more cryptographic functions, for example, the CKM_AES_CBC mechanism may
be used to define encryption, decryption, wrapping and unwrapping functions whereas the mechanism
CKM_ECDSA_KEY_PAIR_GEN which is a mechanism to generate keys for elliptic curve DSA signatures,
only supports the key (pair) generation function.

The list of mechanisms supported depends on the tokens and can be queried using the
C_GetMechanismList () function. Each mechanism has token-specific attributes like the set of
supported functions, minimal and maximal supported key sizes, or a hardware support flag. These
attributes are token-specific and can be queried with C_GetMechanismInfo (). Some mechanisms
have mechanism parameters, for example, CKM_AES_CBC has a mechanism parameter to define the
initialization vector (IV) required by the CBC mode of operation.

Slot token dynamic link libraries (STDLLs)

STDLLs are plug-in modules to the main API. They provide token-specific functions beyond the main
API functions. Specific devices can be supported by building an STDLL for the device. Each STDLL must
provide at least a token-type specific initialization function. If the device is an intelligent device, such
as a hardware adapter that supports multiple mechanisms, the STDLL can be thin because much of the
session information can be stored on the device. If the device only performs a simple cryptographic
function, all of the objects and the device status must be managed by the STDLL. This flexibility allows
STDLLs to support any cryptographic device.

Shared memory

The slot manager sets up its database in a region of shared memory. Since the maximum number of
processes allowed to attach to pkcsslotd is finite, a fixed amount of memory can be set aside for token
management. This fixed memory allocation for token management allows applications easier access to
token state information and helps ensure conformance with the PKCS #11 specification. In addition, the
slot manager (pkcsslotd) communicates with the API layer using Unix domain sockets.

Also, each token sets up a shared memory segment to synchronize token objects across multiple
processes using the token.

10 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Objects and keys

openCryptoki provides various functions to generate the applicable types of objects, for example, certain
types of keys.

In addition, openCryptoki recognizes a number of classes of objects, as defined in the CK_OBJECT_CLASS
data type. Object classes are defined with the objects that use them. Typically, objects are generated

by function calls that specify an appropriate mechanism used for the generation. Additionally, there

is a function C_CreateObject () to create objects that are defined by input templates containing
appropriate attributes. For example, data objects are defined by a data template CK_ATTRIBUTE
dataTemplate[], or certificate objects are defined by a certificate template CK_ATTRIBUTE
certificateTemplatel[].

An object comprises a set of attributes, each of which has precisely one given value. For an

example, have a look at Step 6 of the “Sample openCryptoki program” on page 165, where function
C_GenerateKeyPair () uses the mechanism CKM_RSA_PKCS_KEY_PAIR_GEN to create an RSA private
and public key pair. The attributes are assigned to the public and private keys to be generated with two
different templates of type array of CK_ATTRIBUTE (one applicable for the private key and one applicable
to the public key), which are input to the function call.

PKCS #11 objects belong to different orthogonal classes depending on their life span, access restrictions
and modifiability:

- Session objects exist during the duration of a session whereas token objects are associated with a token
and not with any running code. In other words, token objects are stored persistently across sessions
and are visible for multiple processes using the token. Session objects disappear when the session is
closed, and are only visible within the session that created the object.

- Private objects can only be accessed by the PKCS #11 Users if they have logged into the token, whereas
public objects can always be accessed by both User and security officer.

« A token object that is read-write for a read-write session is read-only for a read-only session of another
application at the same time.

In addition, each object has a set of attributes, especially the CKA_CLASS attribute, which determines
which further attributes are associated with an object. Other typical attributes contain the value of an
object or determine whether an object is a token object.

The PKCS #11 API provides a set of functions to manage objects, like for example, C_CreateObject (),
C_CopyObject(),C_DestroyObject(),C_GetObjectSize(),C_GetAttributeValue(),
C_SetAttributeValue(), C_FindObjects().

Note: Token objects are stored in a token-specific object store, the token directory (see also Chapter 18,
“Directory content for CCA, ICA, EP11, and Soft tokens,” on page 131).

The most important object classes are those that implement keys: private keys (CKO_PRIVATE_KEY),
public keys (CKO_PUBLIC_KEY) and secret keys (CKO_SECRET_KEY). Private and public keys are the
members of an asymmetric key pair, whereas secret keys are symmetric keys or MAC keys.

There are many key specific attributes. For example, the Boolean attribute CKA_WRAP denotes whether a
key may be used to wrap another key. The Boolean attribute CKA_SENSITIVE is only applicable for private
and secret keys. If this attribute is TRUE, this means that the value of the key may never be revealed in
clear text. There are key-type specific attributes like CKA_MODULUS, which is an attribute specific to RSA
keys. Not all tokens support all key types with all possible attributes. CKA_PRIVATE causes the object
data to be encrypted when stored in the token directory.

Object management functions to create keys are C_GenerateKey (), C_GenerateKeyPair () and
C_DeriveKey (). Toimport a key not generated by one of the previously mentioned functions, you
canuse C_CreateObject () with all key specific attributes specified in the template. Alternatively, a
wrapped key can be imported with C_Unwrap (), where a wrapped key is a standard representation of
a key specific to the key type (for example, a byte array for secret keys or a BER encoding for other key
types) that is encrypted by a wrapping key.

PKCS #11 defines multiple object classes, for example:

Chapter 2. Architecture and components of openCryptoki 11

Data objects

Key objects

Public key objects

Private key objects

Secret key objects

Certificate objects

Each object class has its own set of attributes, where these attributes define an instance of an object from
this class. There is one common attribute called CKA_CLASS for all object classes. This attribute defines
the type (or class) of an object. For more information about objects, read “How to create and modify
objects” on page 162 and “How to apply attributes to objects” on page 163).

When an object is created or found on a token by an application, openCryptoki assigns it an object handle
for that application’s sessions to access it (CK_OBJECT_HANDLE, CK_OBJECT_HANDLE_PTR).

PKCS #11 also defines objects for certificates. However, other than functions to operate on generic
objects, no functions to operate on certificate objects are part of the PKCS #11 APL.

Access control and groups

To properly configure the system, and to be authorized for performing the openCryptoki processes,

for example, running the slot manager daemon pkcsslotd, the pkcs11 group must be defined in

file /etc/group of the system. Every user of openCryptoki (including the pkcsslotd user running

the slot manager, and including the users configuring openCryptoki and its tokens) must be members of
this pkes11 group. Use standard Linux management operations to create the pkcs11 group if needed,
and to add users to this group as required. You may also refer to the man page of openCryptoki (man
openCryptoki) which has a SECURITY NOTE section that is important from the security perspective.

Logging and tracing in openCryptoki

You can enable logging support by setting the environment variable OPENCRYPTOKI_TRACE_LEVEL. If
the environment variable is not set, logging is disabled by default.

Table 1. openCryptoki log levels

Log level Description

0 Trace off.

Log error messages.

Log warning messages.

1
2
3 Log informational messages.
4

Log development debug messages. These messages may help debug while developing
openCryptoki applications.

5 Log debug messages that are useful to application programmers. This level must be
enabled at build time of the openCryptoki library via option --enable-debugin the
configure script.

If a log level > 0 is defined in the environment variable OPENCRYPTOKI_TRACE_LEVEL, then log entries
are written to file /var/log/opencryptoki/trace.<pid>. In this file name specification, <pid>
denotes the ID of the running process that uses the current token.

The log file is created with ownership user, and group pkcs11, and permission 0640 (user: read, write;
group: read only; others: nothing). For every application, which is using openCryptoki, a new log file is
created during token initialization.

12 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

A log level > 3 is only recommended for developers and for collecting more information during problem
reproductions.

Lock files

As of release 3.8, openCryptoki maintains the following lock files in the system: one global API lock file,
one lock file per token instance, except for the TPM token. For the TPM token, openCryptoki keeps one
lock file per user.

The lock files are stored in the following directories, if applicable:

1s -1h /var/lock/opencryptoki/

LCK. .APIlock
ccatok/LCK. .ccatok
eplltok/LCK. .eplltok
icsf/LCK..icst
lite/LCK..lite
swtok/LCK. .swtok
tpm/<USER>/LCK. .tpm

The LCK. .APIlock file serializes access to the shared memory from the pkcsslotd daemon and from
the API calls issued from 1ibopencryptoki. so.

The token-specific lock files serialize access to the shared memory and to objects in the token directory
from the respective token library (for example, from 1ibpkcsl11_cca.so for the CCA token).

Thus, each lock file is used to protect the respective shared memory segments and objects in the token
directory by letting threads wait for a required lock.

Use and purpose of openCryptoki features

In normal operation, the mentioned shared memory segments, the Unix domain sockets of the slot
manager daemon (pkcsslotd), and the lock files should be transparent to users of openCryptoki. But in
case of certain errors, such objects may remain from some previous use of openCryptoki and thus block
new operations. In such cases, you need to know the locations of these objects and you must typically
use certain operating system tools to remove them and enable a normal use of openCryptoki again.

Figure 3 on page 14 shows the process flow within the Linux on IBM Z and IBM LinuxONE crypto

stack. For example, an application sends an encryption request to the crypto adapter. Through various
interfaces, such a request is propagated from the application layer down to the target crypto adapter. On
its way down, the request passes through the involved layers: the standard openCryptoki interfaces, the
adequate IBM Z crypto libraries, and the operating system kernel. The zcrypt device driver finally sends
the request to the appropriate cryptographic coprocessor. The resulting request output is sent back to the
application just the other way round through the layer interfaces.

Chapter 2. Architecture and components of openCryptoki 13

Application A Application B

c
._g O CIC++/ CIC++/
© O CFFI CFFI
O >
B2
o
<
r-r---------"-"- - -"-"\"-~-"-"~—~--"~-—"~"=-=-=-=-= 1
| openCryptoki |
1 VL v I
| . I
% : slot manager «— openCryptoki API |
E., o | C_Encrypt |
C_Decrypt
© 0 ! c:s%%ryp I
e C_Digest
TS : o |
c =
© ! I
%)) I
| |
| |
1 STDLL STDLL STDLL STDLL STDLL 1
1 for EP11 for ICA for Soft for CCA for other | |
\ token type token type| |token type token type token type| |
| |
| |
| |
I R D e I
— — — — ‘r— — — — — — — — — — — — — — — — —
N -og_ % ‘ v CCA library
= §% EP11 library,
|m = _§ ’ ICA library il
I libcrypto
X ©
g £
58 zerypt
= device driver
T S e g
) Crypto Express
E Crypto Express Adapter
Adapter (CCA Coprocessor)
-% CPACF (EP11 Coprocessor) Y
E Crypto Accelerator
I

Figure 3. Linux on IBM Z and IBM LinuxONE crypto stack

14 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Part 2. Preparing openCryptoki

The first topic of this part presents a fastpath to the actions required for setting up a running openCryptoki
environment. Each step within this fastpath points to a subsequent topic or to other documentation
containing a detailed description of the action.

© Copyright IBM Corp. 2021, 2023 15

16 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 3. Fastpath to openCryptoki

Read this section for an overview of the steps and a fastpath to the most important actions required
for preparing openCryptoki to be used by an application. Each step contains a reference to a detailed
description in most cases within this document, or to external documentation.

1. Install openCryptoki and observe the post-installation checks: see Chapter 4, “Installing
openCryptoki,” on page 19 and “Post-installation checks” on page 20.

2. Start the pkcsslotd slot manager — unless this step is done by the installation: see “Starting the slot
manager” on page 8.

3. If you want to use CCA or EP11 tokens you may want to adjust their respective configuration files: see
“Defining a CCA token configuration file ” on page 91 and “Defining an EP11 token configuration file”
on page 107.

4. Before you use a CCA or EP11 token, you must install the CCA or EP11 host package and set the CCA
master keys or the EP11 wrapping key in the according domains of the Crypto Express adapter: see
Secure Key Solution with the Common Cryptographic Architecture Application Programmer's Guide or
Exploiting Enterprise PKCS #11 using openCryptoki.

5. Prepare the token you want to use by performing the following sub-steps:

a. Initialize the token.

b. Change the SO PIN of the token (required in order to change the default SO PIN applied by
openCryptoki during token initialization).

c. Set the User PIN of the token.

You can perform all of these sub-steps using the pkcsconf utility: see Chapter 8, “Managing tokens -
pkcsconf utility,” on page 39.

6. Add the user(s) of processes that use openCryptoki to thepkcs11 group: see “Access control and
groups” on page 12.

7. Optional: Apply global policies to restrict the usage of unwanted mechanisms and keys: see Chapter 6,
“Supporting cryptographic policies for openCryptoki,” on page 25.

Steps “1” on page 17 through “6” on page 17 are the minimal steps needed to prepare openCryptoki
for using the most basic functions. The purpose of this publication is to provides you with all
background information to understand how openCryptoki works and to document all options available
with openCryptoki.

© Copyright IBM Corp. 2021, 2023 17

https://www.ibm.com/docs/en/linux-on-systems?topic=chs-secure-key-solution-common-cryptographic-architecture-application-programmers-guide
https://www.ibm.com/docs/en/linux-on-systems?topic=support-exploiting-enterprise-pkcs-11-using-opencryptoki

18 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 4. Installing openCryptoki

The available tokens are part of the openCryptoki package. The package comes with manual pages (man
pages) that describe the usage of the tools and the format of the configuration files. The openCryptoki
package in turn is shipped with the Linux on IBM Z distributions. This package might be split into several
packages by the distributions, thus allowing to install individual tokens separately.

Check whether you already installed openCryptoki in your current environment, for example:

$ rpm -ga | grep -i opencryptoki /* for RPM =x/
$ dpkg -1 | grep -i opencryptoki /* for DEB */

Note: The command examples are distribution dependent. opencryptoki must in certain distributions
be specified as openCryptoki (case-sensitive).

You should see all installed openCryptoki packages. If required packages are missing, use the installation
tool of your Linux distribution to install the appropriate openCryptoki RPM or DEB.

Notes:

 You can update an installed version of openCryptoki with a package of a newer version. Depending
on the tokens to be used, further libraries need to be installed and cryptographic adapters must
be enabled. If you had built openCryptoki from the source before, you must remove any previous
installation of openCryptoki (make uninstall), before you can install a distribution package for a new
openCryptoki version.

- Some tokens need a token-specific library to be installed on the system as a prerequisite for usage.
These are mentioned for each token in Part 4, “Token specifications,” on page 79.

Installing from the RPM or DEB package

The openCryptoki packages are delivered by the distributors. Distributors build these packages as RPM or
DEB packages for delivering them to customers.

Customers can install these openCryptoki packages by using the installation tool of their selected
distribution.

If you received openCryptoki as an RPM package, follow the RPM installation process that is described in
the RPM Package Manager man page. If you received an openCryptoki DEB package, you can use the dpkg
- package manager for Debian described in the dpkg man page.

The installation from either an RPM or DEB package is the preferred installation method.

Installing from the source package

As an alternative, for example for development purposes, you can get the latest version (inclusive latest
patches) from the GitHub repository and build it yourself. But this version is not serviced. It is suitable for
non-production systems and early feature testing, but you should not use it for production.

In this case, refer to the INSTALL file in the top level of the source tree. You can start from the
instructions that are provided with the subtopics of this INSTALL file and select from the described
alternatives. If you use this installation method parallel to the installation of a package from your
distributor, then you should keep both installations isolated from each other.

1. Download the latest version of the openCryptoki sources from:

https://github.com/opencryptoki/opencryptoki/releases

2. Decompress and extract the compressed tape archive (tar.gz - file). There is a new directory named
like opencryptoki-3.xx.x.

© Copyright IBM Corp. 2021, 2023 19

https://linux.die.net/man/8/rpm
https://linux.die.net/man/1/dpkg
https://github.com/opencryptoki/opencryptoki
https://github.com/opencryptoki/opencryptoki/releases

3. Change to that directory and issue the following scripts and commands:

$./bootstrap.sh
$./configure

$ make

$ make install

The scripts or commands perform the following functions:

bootstrap
Initial setup, basic configurations

configure
Check configurations and build the makefile. You can specify several options here to overwrite the
defaults. For example, not all tokens are built as the default. To build the CCA token as an example,
specify . /configure --enable_ccatok

make
Compile and link

make install
Install the libraries

Note: When installing openCryptoki from the source package, the location of some installed files will
differ from the location of files installed from an RPM or DEB package.

Post-installation checks
After a successful installation, perform the following checks:

» Check the default global openCryptoki configuration file shipped with the package (/etc/
opencryptoki/opencryptoki.conf). Delete all slot entries for tokens that you do not use. See
Chapter 5, “Adjusting the openCryptoki configuration file,” on page 21.

« If you plan to use one or more CCA tokens or EP11 tokens, check the shipped default configuration
files ccatok.conf and eplltok. conf. Adapt them as required for your environment. Read “Defining
a CCA token configuration file ” on page 91 and “Defining an EP11 token configuration file” on page
107.

20 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 5. Adjusting the openCryptoki configuration
file

A preconfigured list of all available tokens that are ready to register to the openCryptoki slot daemon is
required before the slot daemon can start. This list is provided by the global configuration file called
opencryptoki.conif. Read this topic for information on how to adapt this file according to your
installation.

Table 2 on page 21 lists the available libraries that may be in place after you successfully installed
openCryptoki. It may vary for different distributions and is dependent from the installed packages.

Also, Linux on IBM Z and IBM LinuxONE do not support the Trusted Platform Module (TPM) token library.

A token is only available, if the token library is installed, and the appropriate software and hardware
support pertaining to the stack of the token is also installed. For example, the EP11 token is only available
if all parts of the EP11 host library software are installed and a Crypto Express EP11 coprocessor is
detected. For more information, read Exploiting Enterprise PKCS #11 using openCryptoki.

A token needs not be available, even if the corresponding token library is installed. Display the list of
available tokens by using the command:
$ pkcsconf -t

For a sample output, see Figure 7 on page 41. Table 2 on page 21 shows available openCryptoki
libraries:

Table 2. openCryptoki libraries

Library Explanation

/usr/1ib64/opencryptoki/libopencryptoki.so openCryptoki base library

/usr/1ib64/opencryptoki/stdll/ ICA token library
libpkcsll_ica.so

/usr/1ib64/opencryptoki/stdll/ Soft token library
libpkcsll_sw.so

Jusr/1ib64/opencryptoki/stdll/ TPM token library (not supported by Linux
libpkcsll_tpm.so on IBM Z and IBM LinuxONE)
/Jusxr/1ib64/opencryptoki/stdll/ CCA token library
libpkcsll_cca.so

/usr/1lib64/opencryptoki/stdll/ EP11 token library
libpkcsll_epll.so

/usr/1ib64/opencryptoki/stdll/ ICSF token library

libpkcsll_icsf.so

libopencryptoki.sois the openCryptoki shared base library. The main API for the STDLLs
PKCS11_API.so (mentioned in Chapter 2, “Architecture and components of openCryptoki,” on
page 5) is a link, or an alias. Besides the token library, an application needs to load either the
libopencryptoki.so object or the PKCS11_API. so link to be able to exploit a token.

lrwxrwxrwx 1 root root 18 May 19 20:05 PKCS11_API.so -> libopencryptoki.so

© Copyright IBM Corp. 2021, 2023 21

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html

The /etc/opencryptoki/opencryptoki.conf file must exist and it must contain an entry for each
instance of a token to make these instances available (see the provided sample configuration from Figure

4 on page 22).

You can check the current default opencryptoki.conf file on this URL:

https://github.com/opencryptoki/opencryptoki/blob/master/usr/sbhin/pkcsslotd/opencryptoki.conf

version opencryptoki-3.22

The following defaults are defined:

hwversion = "0.0"

i firmwareversion = "0.0"
description = Linux

manufacturer = IBM

##
The slot definitions below may be overridden and/or customized.
For example:

i slot O

$

H# stdll = libpkcsll_cca.so

i description = "OCK CCA Token"
3 manufacturer = "MyCompany Inc."
hwversion = "2.32"

firmwareversion = "1.0"

1
See man(5) opencryptoki.conf for further information.
i

disable-event-support # not part of the default config file
statistics (on,implicit,internal) # not part of the default config file
slot O

1

stdll = libpkcs1l_tpm.so
tokversion = 3.12

slot 1

1

stdll = libpkcs1l_ica.so
tokversion = 3.12

slot 2

1

stdll = libpkcs1l_cca.so
confname = ccatok.conf
tokversion = 3.12

slot 3

1

stdll = libpkcsll_sw.so
tokversion = 3.12

slot 4

1

stdll = libpkcsll_epll.so

confname = eplltok.conf
tokversion = 3.12

Figure 4. Default opencryptoki.conf

Note:

« The standard path for slot token dynamic link libraries (STDLLs) is: /usx/1ib64/opencryptoki/
stdll/ see Table 2 on page 21). These paths may be distribution-specific.

« The standard path for the token-specific configuration file (in our example, epl1tok.conf)is /etc/
opencryptoki/.

22 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://github.com/opencryptoki/opencryptoki/blob/master/usr/sbin/pkcsslotd/opencryptoki.conf

» You can specify multiple tokens of any type in different slots. Each token must be specified with a
unique token name in each slot. The tokens are located in different file paths in the token directory, but
use the same STDLL. For example:

slot 4

1

stdll = libpkcs11l_epll.so
confname = eplltokOl.cont
tokname = eplltoken®l
description = "Ep1l Token"
manufacturer = "IBM"
hwversion = "4.11"
firmwareversion = "2.0"

slot 5

)

stdll = libpkcsll_epll.so
confname = eplltok02.conf
tokname = eplltoken02

3

Event notification support

You can enable openCryptoki to deliver notifications about a cryptographic external event to active token
instances. External events are for example configuration changes of a cryptographic coprocessor (APQNs
becoming available or unavailable), events initiated by an openCryptoki administrator via a command line
tool, or HSM master key changes.

Events are delivered to all active token instances. Each process using openCryptoki has access to a set of
instances of the configured tokens. Multiple processes that use openCryptoki can exist in a system. Thus,
events are delivered to all processes that currently use openCryptoki, and thus to all token instances
owned by each of the processes.

Event notification support is enabled by default. You can disable this support by specifying keyword
disable-event-support in the openCryptoki configuration file as shown in Figure 4 on page 22.

Collecting statistics

You can enable or disable the collection of statistics about mechanism usage in the openCryptoki
configuration file at /etc/opencryptoki/opencryptoki.conf. Use the following option (see Figure 4

on page 22):

statistics (off|on[,implicit][,internal])

By default, statistics collection is enabled. A value of (off) disables all statistics collection. A value
of (on) enables collection of mechanism usage. The collected statistics can be displayed using the
pkcsstats utility (see Chapter 11, “Displaying usage statistics - pkcsstats utility,” on page 67).

In addition to enabling statistics collection for mechanisms used by PKCS #11 applications, you can
specify to also enable collection of implicit mechanism usage, where additional mechanisms are specified
in mechanism parameters. For example, RSA-PSS or RSA-OAEP allow to specify a hash mechanism

and a mask generation function (MGF) in the mechanism parameter. ECDH allows to specify a key
derivation function (KDF) in the mechanism parameter. For this purpose, use the option statistics
(on,implicit). By default only explicit mechanism usage statistics from PKCS #11 applications are
collected.

You can additionally enable statistics collection of mechanisms internally used by openCryptoki by
specifying (on, internal). This option additionally collects usage statistics for cryptographic operations
used internally for PIN handling and encryption of private token objects in the data store. You can also
combine implicit and internal statistics collection: (on,implicit,internal).

Chapter 5. Adjusting the openCryptoki configuration file 23

Collecting statistics can be a preparation step for enabling a policy (see Chapter 6, “Supporting
cryptographic policies for openCryptoki,” on page 25). With statistics you can see which mechanism
or key strengths would be rejected by a policy, even before the policy is made active. Look for all

mechanisms and key strengths that a planned policy will not allow and make sure that the corresponding
usage counters are zero.

Note: Implicit or internal mechanism usage can not be distinguished from explicit mechanism usage of
PKCS #11 applications in the statistics displayed by the pkcsstats utility.

24 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 6. Supporting cryptographic policies for
openCryptoki

For openCryptoki, you can apply global policies to restrict the usage of unwanted mechanisms and keys.
The policy is guided by the notion of cryptographic strength. You can specify a minimal strength, allowed
mechanisms, and a way to derive the strength for a given key. openCryptoki then blocks all keys that are
not strong enough and mechanisms that are not allowed. The policy is set globally for all applications
using openCryptoki.

Applying a cryptographic policy to openCryptoki applications is based on two configuration files.

You just need to adapt the strength configuration file strength.conf that is preinstalled in /etc/
opencryptoki, and create the policy configuration file policy.conf into this openCryptoki folder as
shown:

/etc/opencryptoki/strength.contf
/etc/opencryptoki/policy.cont

The strength configuration is mandatory. If you install openCryptoki from the source package, a default
strength configuration file based on NIST recommendations is installed if no strength configuration exists.
Only the root user can modify this file. A valid strength configuration file is prerequisite for activating a
policy defined in the policy configuration file. However, a policy configuration is optional.

The strength configuration file is also used for collecting statistics. The key strength as defined by that file
determines under which strength a key is counted.

Strength configuration file

The strength configuration file provides the definitions for the cryptographic strengths known to
openCryptoki.

For every used key, openCryptoki computes a strength value depending on the key type, and compares it
to the strengths found in the applicable strength configuration file to decide whether to accept or refuse
the key. The rules how key strengths are calculated are explained in “Rules for key strength calculation”
on page 27.

The content starts with a version specification of the file. The version specification must be the first
non-empty and non-comment line and must look like:

version strength-<n>
where <n> specifies the version number. For example, the supported version at the time of writing is

version strength-0

Before and after this line, you can have as many empty lines or comment lines that start with a hash (#)
sign.
A strength definition line within this file is an indexed structure of the form:

strength <num> § <content> %

where

<num>
isone of 112,128, 192, or 256, representing the corresponding strength.

<content>
is a sequence of keyword/value pairs, with valid keywords as described hereafter.

© Copyright IBM Corp. 2021, 2023 25

Comments are allowed before and after every keyword/value pair as well as before and after every braces

({ord.
Valid keywords defining the key constraint policy are:
MOD_EXP
describes the minimal size in bits of the modulus used by RSA, DSA, and DH algorithms.
ECC

for an ECDSA/EdDSA or ECDH/EdDH algorithm it describes the minimal size in bits of the prime
defining the Galois field over which the elliptic curve is defined.

SYMMETRIC
covers the minimal size of all symmetric keys. This includes GENERIC_SECRET, AES, and various
HMAC keys.

Valid keywords defining the output length constraints are:

digest
provides the minimal length that a digest must have to be in this strength class.

signature

provides the minimal length that a signature or a message authentication code must have to be in this
strength class.

If either of the MOD_EXP, ECC, or SYMMETRIC attributes are missing inside a strength definition, no
key that would be compared against this attribute will have the corresponding strength. If either of the
digest or signature attributes are missing, the output constraint represented by these attributes
defaults to 0, thus effectively allowing all output sizes.

Example of a strength.conf configuration file
Have a look at a sample strength configuration file.
strength.conf file with NIST recommendations

Figure 5 on page 27 provides a sample for a strength configuration file that is specifying NIST
recommendations on key and algorithm strength. The indentation is optional but helpful to simplify
the maintenance of the file. openCryptoki applies this configuration during installation from the source
package, if a strength configuration file does not yet exist in the target folder.

26 Linuxon IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

openCryptoki strength example corresponding to NIST recommendations
See https://www.keylength.com/en/4/

version strength-0
strength 112 {
MOD_EXP = 2048
ECC = 224
SYMMETRIC = 112
digest = 224
signature = 112

b

strength 128 {
MOD_EXP = 3072
ECC = 256
SYMMETRIC = 128
digest = 256
signature = 128

%

strength 192 {
MOD_EXP = 7680
ECC = 384
SYMMETRIC = 192
digest = 384
signature = 192

%

strength 256 {
MOD_EXP = 15360
ECC = 512
SYMMETRIC = 256
digest = 512
signature = 256

%

Figure 5. Sample of a strength.conf configuration file

Rules for key strength calculation

openCryptoki retrieves certain attributes of a key depending on the key type. The found value is compared
against the definitions in the strength configuration file and thus the resulting strength is found. The rules
in the policy configuration file finally decide whether the key is accepted or refused by the openCryptoki
application. Therefore, you need to know the calculation rules to understand why a key may be refused,
so that you can change your strength definition accordingly.

The strength of a key is calculated during key or key pair generation, key derivation, and key loading,

by comparing key attributes (for example, its modular exponent for RSA keys) with the values defined

in the strength configuration. This key strength is held in memory together with the key object. The
policies in the policy configuration file decide whether a key with the calculated strength is allowed for the
application.

Also the expected signature size when using this key is calculated and held in memory with the key. This
size is used to check if the key is allowed in a sign or verify operation by the policy.

Additionally, a flag used by policies to mark EC keys as usable is held in memory.

Shortly spoken, the key strength computation is based on the key attributes, especially its key type. The
value of the highest matching strength definition from the strength configuration file is used as strength.

RSA
For keys of type CKK_RSA, the length of CKA_MODULUS multiplied by 8 is compared to the setting of
the MOD_EXP property of the configurations.

DH and DSA
For keys of type CKK_DH, CKK_DSA, or CKK_X9_42_DH, the length of CKK_PRIME multiplied by 8 is
compared against the MOD_EXP property of the configurations.

EC (including Edwards and Montgomery)
Based on the curve type specified in CKK_EC_PARAMS, the size of the elliptic curve is determined.
This size is compared against the ECC property of the configurations.

Chapter 6. Supporting cryptographic policies for openCryptoki 27

https://www.keylength.com/en/4/

DES
The base strength of DES keys is fixed. Keys of type CKK_DES2 have 80 bits and keys of type
CKK_DES3 have 112 bits of base strength. The base value is then compared against the SYMMETRIC
property of the configurations.

AES and GENERIC_SECRET
For keys of type CKK_AES, CKK_AES_XTS, or CKK_GENERIC_SECRET, a base strength is computed by
multiplying CKA_VALUE_LEN with 8, for CKK_AES_XTS keys: CKA_VALUE_LEN * 8/2. The base value
is then compared against the SYMMETRIC property of the configurations.

Post-quantum algorithms (Dilithium and Kyber)
The strength of dilithium and kyber keys is always set to 256.

Note: All strength assignments for mechanisms are subject to change in accordance with new insights in
cryptography research.

Similarly to the strength determination based on attributes, for key types CKK_RSA, CKK_DSA and
CKK_ECC, a signature size is computed that would be achieved with this key. This signature size is also
held in memory within the key object. This size is used to check if the key is allowed in a sign or verify
operation by the policy.

Policy configuration file

If a policy configuration file is present in the openCryptoki folder, it can define certain cryptographic rules
for your applications.

The policy definition file is located in /etc/opencryptoki/policy.conf. It requires a valid strength
configuration file (“Strength configuration file” on page 25). If, however, only a strength definition is
available, openCryptoki just computes the strength of keys used for accounting statistics (pkcsstats),
but does not restrict any operation.

An existing policy definition file defines the cryptographic rules comprising the following aspects:

« specifying the minimum required strength of keys,

- allowing certain mechanisms,

« allowing certain EC curves, for example, NIST-approved curves,

- allowing certain mask generation functions (MGFs),

« allowing certain key derivation functions (KDFs),

« allowing certain pseudo random functions (PRFs) for use with PBKDF2.

The policy definition consists of various parameters specifying, for example, the desired minimal

cryptographic strength, the allowed mechanisms, or the allowed elliptic curves. For the syntax of the
policy configuration file view the sample in Figure 6 on page 31.

strength
specifies the minimal cryptographic strength supported by this policy. Currently, openCryptoki
supports five different strengths: 0, 112, 128, 192, and 256. The value must be an integer and is
rounded up to the next supported strength (with 256 as limit). A minimal strength of 0 means to allow
all key strengths (no restriction).

allowedmechs
specifies a list of mechanisms that should be allowed. This parameter is optional. If present, only the
values specified in this list are allowed. An empty list does not allow any mechanism. If you do not
specify this configuration option, all mechanisms are allowed if their parameters satisfy the required
strength.

allowedcurves
specifies which elliptic curves are allowed. You can select from the curves listed in “Reference for
valid values” on page 29. If this configuration is specified, it must list by name all curves that should
be allowed. The empty list forbids all curves. If you do not specify this configuration option, all curves
that satisfy the strength requirement are allowed.

28 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

allowedmgfs
specifies a list of allowed MGFs. This configuration is optional. If not specified, all MGFs are allowed.
Otherwise, only MGFs listed in “Reference for valid values” on page 29 are allowed.

allowedkdfs
specifies a list of allowed KDFs. This configuration is optional. If not specified, all KDFs are allowed.
Otherwise, only KDFs listed in “Reference for valid values” on page 29 are allowed.

allowedprfs
specifies the allowed PRFs that can be used in PBKD operations. At the time of writing, only
CKP_PKCS5_PBKD2_HMAC_SHA256 and CKP_PKCS5_PBKD2_HMAC_SHA512 are supported. This
configuration is optional. If not specified, all PRFs are allowed. Otherwise only the specified PRFs are
allowed.

Reference for valid values

This section provides a quick reference for valid curves or functions that you can specify with the
parameters in the policy configuration file.

Valid ECC curves

« BRAINPOOL_P160R1
« BRAINPOOL_P160T1
« BRAINPOOL_P192R1
« BRAINPOOL_P192T1
- BRAINPOOL_P224R1
« BRAINPOOL_P224T1
« BRAINPOOL_P256R1
« BRAINPOOL_P256T1
« BRAINPOOL_P320R1
« BRAINPOOL_P320T1
- BRAINPOOL_P384R1
« BRAINPOOL_P384T1
« BRAINPOOL_P512R1
« BRAINPOOL_P512T1
« PRIME192V1

« SECP224R1

« PRIME256V1

« SECP384R1

« SECP521R1

« SECP256K1

« CURVE25519

« CURVE448

- ED25519

- ED448

Valid mask generation functions (MGFs)
« CKG_MGF1_SHA1

« CKG_MGF1_SHA224
« CKG_MGF1_SHA256
« CKG_MGF1_SHA384

Chapter 6. Supporting cryptographic policies for openCryptoki 29

CKG_MGF1_SHA512

« CKG_IBM_MGF1_SHA3_224

e CKG_IBM_MGF1_SHA3_256

« CKG_IBM_MGF1_SHA3_384

« CKG_IBM_MGF1_SHA3_512
Valid key derivation functions (KDFs)
« CKD_NULL

« CKD_SHA1_KDF

« CKD_SHA1_KDF_ASN1

« CKD_SHA1_KDF_CONCATENATE
- CKD_SHA224_KDF

« CKD_SHA256_KDF

« CKD_SHA384_KDF

« CKD_SHA512_KDF

« CKD_IBM_HYBRID_SHA1_KDF

« CKD_IBM_HYBRID_SHA224_KDF
« CKD_IBM_HYBRID_SHA256_KDF
« CKD_IBM_HYBRID_SHA384_KDF
« CKD_IBM_HYBRID_SHA512_KDF

Example of a general policy configuration file

A policy configuration file starts with a version specification. The currently supported version specification
is policy-0. If you want to only allow the DES algorithm family without specifying a strength and allow
only the Brainpool curves, specify the following:

30 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

version policy-0

strength = 0

allowedmechs (
CKM_DES_KEY_GEN,
CKM_DES_CBC,
CKM_DES_CBC_PAD,
CKM_DES_CFB64,
CKM_DES_CFBS,
CKM_DES_ECB,
CKM_DES_OFB64,
CKM_DES2_KEY_GEN,
CKM_DES3_KEY_GEN,
CKM_DES3_CBC,
CKM_DES3_CBC_PAD,
CKM_DES3_CMAC,
CKM_DES3_CMAC_GENERAL,
CKM_DES3_ECB,
CKM_DES3_MAC,
CKM_DES3_MAC_GENERAL

)

allowedcurves (
BRAINPOOL_P160R1,
BRAINPOOL_P160T1,
BRAINPOOL_P192R1,
BRAINPOOL_P192T1,
BRAINPOOL_P224R1,
BRAINPOOL _P224T1,
BRAINPOOL_P256R1,
BRAINPOOL_P256T1,
BRAINPOOL_P320R1,
BRAINPOOL_P320T1,
BRAINPOOL_P384R1,
BRAINPOOL _P384T1,
BRAINPOOL_P512R1,
BRAINPOOL_P512T1

)

Figure 6. Example of a policy.conf configuration file

Whether or not an elliptic curve is allowed is stored alongside the strength in every elliptic curve key
object.

Examples of policy configuration files customized to token directories

In addition to affecting cryptographic processing of openCryptoki applications, an existing policy also
applies to all cryptographic operations internally performed by openCryptoki to encrypt token data
within the various token directories. Token directories exist in two versions: a legacy version and a
FIPS compliant version. In both cases, all internal operations needed by openCryptoki within the token
directory must be allowed by the policy. For the legacy format, TDES-CBC, AES-CBC, SHA1, and MD5
must be allowed mechanisms. Also, double-length TDES keys must be usable (which corresponds to a
value of 80 for the strength configuration).

View an example policy file allowing all legacy token directory operations. This example comprises
the minimal set of mechanisms required for openCryptoki internal legacy token format cryptographic
operations.

version policy-0

strength = 0

allowedmechs (
CKM_DES3_KEY_GEN,
CKM_DES3_CBC,
CKM_AES_KEY_GEN,
CKM_AES_CBC,
CKM_SHA1,
CKM_MD5

Chapter 6. Supporting cryptographic policies for openCryptoki 31

The FIPS compliant format needs AES key wrapping, AES-GCM, and PKCS5_PBKD2 as allowed
mechanisms and the CKP_PKCS5_PBKD2_HMAC_SHA512 pseudo random function allowed. Also, 256
bit AES keys must be usable according to the strength and policy definitions. View an example policy file
allowing all FIPS compliant operations required for openCryptoki internal FIPS compliant token format
cryptographic operations.

version policy-0

strength = 0

allowedmechs (CKM_AES_KEY_GEN, CKM_AES_KEY_WRAP, CKM_AES_GCM,
CKM_PKCS5_PBKD2)

allowedprfs (CKP_PKCS5_PBKD2_HMAC_SHA512)

The ICSF token has a different token directory. It needs AES CBC, SHA1, MD5 mechanisms, and
PKCS5_PBKD2 with the CKP_PKCS5_PBKD2_HMAC_SHA256 pseudo random function allowed:

version policy-0

strength = 0

allowedmechs (CKM_AES_KEY_GEN, CKM_AES_CBC,
CKM_SHA1, CKM_MD5, CKM_PKCS5_PBKD2)

allowedprfs (CKP_PKCS5_PBKD2_HMAC_SHA256)

Note: For all formats you can also remove the allowedmechs option completely. But in case you want to
restrict mechanisms, the list must include all the mentioned mechanisms. Similarly, you can remove the
allowedpx£s option, since this allows all pseudo random functions.

If the token directory operations are not supported by the policy, the token does not load but produces
error messages in the system log.

Processing configuration files

Strength and policy configuration files are loaded with C_Initialize () and translated into internal
data structures. Configuration files must be owned by the root user and group pkcs11. Only the root
user can modify these files. They must have mode bits 0640 (octal: owner read-write, group read, other
nothing), and describe a valid configuration.

Additional configuration options or duplicated options (for example, specifying a strength multiple times
in the policy) are invalid configurations. A valid strength configuration file is required by openCryptoki.
Otherwise, openCryptoki returns CKR_GENERAL_ERROR while processing the C_Initialize () function
and produces an error message in syslog. If a valid policy configuration file is found, openCryptoki
enforces the defined policy. If no policy configuration is found, openCryptoki does not restrict any key or
operation, but still computes the strength for all keys.

Processing of EP11 tokens: An EP11 token also checks the signing and verification key used for the
mechanism CKM_IBM_ATTRIBUTEBOUND_WRAP (that is, attribute-bound wrapping and unwrapping).

Processing of ICSF tokens: An ICSF token processing the CKM_TLS_KEY_AND_MAC_DERIVE mechanism
might generate up to four keys. All keys are checked for proper strength.

Providing information

For an existing policy configuration, the output of function C_GetMechanismlList () only returns
mechanisms that do apply to the defined policy. Consequently, function C_GetMechanismInfo ()
returns information only for allowed mechanisms and issues a CKR_MECHANISM_INVALID message for
mechanisms that are not allowed by the policy. The minimum and maximum key size of a mechanism
returned by C_GetMechanismInfo () is also adjusted to key sizes allowed by the policy.

Checking operations

openCryptoki performs checks to the initialization functions of the various encrypt, decrypt, digest, sign,
and verify functions. Furthermore, it also checks wrap, unwrap, derive and key(-pair) generation functions.
Checking depends on the attempted operation. If the policy forbids an operation either because the

32 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

mechanism is not allowed, or because one of the involved keys is too weak, or because the input or
output is too small, then CKR_FUNCTION_FAILED is returned and the function aborts. Furthermore, the
ulDevicekError field of the session info is set to CKR_POLICY_VIOLATION to aid in debugging the problem.
Also, various trace messages identify the policy violation.

Key loading
Keys are loaded either implicitly when the token initializes or when the user logs into the token.
Furthermore, keys are loaded during C_FindObjects (). In these cases, only sufficiently strong keys
can be loaded. The strength of the key is determined based on the attributes in the key object.

Key creation
During key creation with C_CreateObject (), the user provides a template for the key including the
key type and the attributes used to derive the strength. This is then used to classify the key and, if the
classification is too low or the elliptic curve is not supported, key creation is aborted.

Key or key pair generation
During key or key pair generation, the strength of the key or key pair to be generated is computed. If
it is too small or the elliptic curve is not supported, generation is aborted. Furthermore, the key or key
pair generation mechanism must be allowed by the profile.

Key derivation and unwrapping
During key derivation and unwrapping, both the input key and the output key(s) are checked for
appropriate strength and allowed elliptic curve. If either check fails, derivation or unwrapping is
aborted. Furthermore, the derivation and unwrapping mechanisms must be allowed.

Encryption and decryption
Keys are checked only during the initialization functions of these operations. For updates and
finalization no further checks are needed.

Signing and verifying
For signatures, the key must be allowed, and the size of the signature must be at least as big as the
signature property of the active strength configuration. If either the key is not allowed or the signature
is not large enough, the operation is aborted.

Digests
The digest output length in bits is compared to the digest property of the active strength configuration.
If it is smaller, the operation is aborted.

Chapter 6. Supporting cryptographic policies for openCryptoki 33

34 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 7. openCryptoki environment variables

View a table that documents the available openCryptoki environment variables and their purpose.

Table 3. openCryptoki environment variables
Name Purpose
PKCSLIB Used in some tools as path to the openCryptoki library libopencryptoki.so.

You should never change this variable. Maybe useful for debugging
information.

OCK_EP11_LIBRARY

Specifies the path to the EP11 host library. Only of interest, if multiple
EP11 libraries are installed. Normally, you should never change this variable.
Maybe useful for debugging information.

OCK_EP11_TOKEN_DIR

The standard path for the token-specific EP11 token configuration file
is /etc/opencryptoki/. You can change this path by using this variable.

PKCS_APP_STORE

Specifies the path to the main directory. Never change this variable. Maybe
useful for debugging information.

PKCS11_SHMEM_FILE

Used for pointing to the SHM-Key Files. Only of interest, if you run multiple
slot manager daemons (pkcsslotd).

PKCS11_USER_PIN

Provides a possibility to transfer the User PIN to the pddsak utility. It is
required for running the openCryptoki tests.

OPENCRYPTOKI_TRACE_LEVEL

Enables logging support. If the environment variable is not set, logging is
disabled by default.

© Copyright IBM Corp. 2021, 2023

35

36 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Part 3. Common tools of openCryptoki

Learn how to use tools provided by openCryptoki that you can use for common purposes.
The following tools are documented:

« Chapter 8, “Managing tokens - pkcsconf utility,” on page 39

« Chapter 9, “Managing token keys - p11sak utility,” on page 43
Chapter 10, “Migrating to FIPS compliance - pkcstok_migrate utility,” on page 65

Chapter 11, “Displaying usage statistics - pkcsstats utility,” on page 67
Chapter 12, “Managing a concurrent master key change - pkcshsm_mk_change utility,” on page 71

© Copyright IBM Corp. 2021, 2023

37

38 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 8. Managing tokens - pkcsconf utility

openCryptoki provides a command line program (/sbin/pkcsconf) to configure and administer tokens
that are supported within the system. The pkcsconf capabilities include token initialization, and

security officer (SO) PIN and user PIN initialization and maintenance. These PINs are required for token
initialization.

pkcsconf operations that address a specific token must specify the slot that contains the token with

the =c option. You can view the list of tokens present within the system by specifying the =t option.

Type pkcsconf --help or pkcsconf -hintoacommand line to show the options for the pkcsconf
command:

pkcsconf -h
usage: pkcsconf [-itsmlIupPh] [-c slotnumber -U user-PIN -S SO-PIN -n new PIN]

The available options have the following meanings:
=i

display PKCS #11 info
-t

display token info
-s

display slot info
-m

display mechanism list
-l

display slot description
-1

initialize token
-u

initialize user PIN
-p

set the user PIN
-P

set the SO PIN
=h | --help | ?

show this help
-C

specify the token slot ID
-U

the current user PIN (for use when changing the user PIN with -u and -p options). If not specified,

user will be prompted.

the current security officer (SO) PIN (for use when changing the SO PIN with -P option). If not
specified, user will be prompted.

the new PIN (for use when changing either the user PIN or the SO PIN with -u, -p or -P options). If
not specified, user will be prompted.

The pkecsconf functions for obtaining PKCS #11 information (pkcsconf -1i), token information
(pkcsconf -t), and slot information (pkcsconf -s) also display the current information in form of
a PKCS #11 Unified Resource Identifier (URI).

© Copyright IBM Corp. 2021, 2023 39

Examples:

$ pkcsconf -s
Slot #0 Info
Description: Linux
Manufacturer: IBM
Flags: Ox1 (TOKEN_PRESENT)
Hardware Version: 0.0
Firmware Version: 0.0
URI: pkcsll:slot-id=0;slot-description=Linux;slot-manufacturexr=IBM

$ pkcsconf -t
Token #0 Info:
Label: softtok
Manufacturer: IBM
Model: Soft
Serial Number:
Flags: Ox44D (RNG|LOGIN_REQUIRED|USER_PIN_INITIALIZED|CLOCK_ON_TOKEN|TOKEN_INITIALIZED)
Sessions: 0/[effectively infinite]
R/W Sessions: [information unavailable]/[effectively infinite]
PIN Length: 4-8
Public Memory: [information unavailable]/[information unavailable]
Private Memory: [information unavailable]/[information unavailable]
Hardware Version: 0.0
Firmware Version: 0.0
Time: 2022042908395700
URI: pkcsll:manufacturer=IBM;model=Soft;token=softtok

For more information about the pkcsconf command, see the pkcsconf man page.

Initializing a token with pkcsconf

Once the openCryptoki configuration file and, if applicable, token-specific configuration files are set up,
and the pkcsslotd daemon is started, the token instances must be initialized. Use the pkcsconf
command as shown to perform this task.

Note: As mentioned in “Roles and sessions” on page 9, PKCS #11 defines a security officer (SO) and a
(standard) User for each token instance. openCryptoki requires that for both a log-in PIN is defined as part
of the token initialization.

The following command provides some useful slot information:

pkcsconf -s

Slot #1 Info
Description: ICA Token
Manufacturer: IBM
Flags: 0x1 (TOKEN_PRESENT)
Hardware Version: 4.0
Firmware Version: 2.11

Slot #4 Info
Description: EP11 Token
Manufacturer: IBM
Flags: Ox1 (TOKEN_PRESENT)
Hardware Version: 4.0
Firmware Version: 2.10

Receive more detailed information about a token using the following command:

40 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://linux.die.net/man/1/pkcsconf

pkcsconf -t

Token #4 Info:

Label: eplltok

Manufacturer: IBM

Model: EP11

Serial Number: 93AABC5H53107366

Flags: 0x880045 (RNG|LOGIN_REQUIRED|CLOCK_ON_TOKEN|USER_PIN_TO_BE_CHANGED |
SO_PIN_TO_BE_CHANGED)

Sessions: 0/[effectively infinite]

R/W Sessions: [information unavailable]/[effectively infinite]

PIN Length: 4-8

Public Memory: [information unavailable]/[information unavailable]

Private Memory: [information unavailable]/[information unavailable]

Hardware Version: 7.24

Firmware Version: 3.1

Time: 2021031912021700

Figure 7. Token information with pkcsconf -t

Find the token instance you want to initialize in the output list and note the correct slot number. This
number is used in the next initialization steps to identify your token:

$ pkcsconf -I -c <slot> /* Initialize the Token and set up a Token Label %/
$ pkcsconf -P -c <slot> /* change the SO PIN (recommended) x/
$ pkcsconf -u -c <slot> /* Initialize the User PIN (SO PIN required) x/

$ pkcsconf -p -c <slot> /* change the User PIN (optional) =/

pkcsconf -I
During token initialization, you are asked for a token label. Provide a meaningful name, because you
may need this reference for identification purposes.

pkcsconf -P
For security reasons, openCryptoki requires that you change the default SO PIN (87654321) to a
different value. Use the pkcsconf -P option to change the SO PIN.

pkcsconf -u
When you enter the user PIN initialization you are asked for the newly set SO PIN. The length of the
user PIN must be 4 - 8 characters.

pkcsconf -p
You must at least once change the user PIN with pkcsconf -p option. After you completed the PIN
setup, the token is prepared and ready for use.

Note: Define a user PIN that is different from 12345678, because this pattern is checked internally and
marked as default PIN. A log-in attempt with this user PIN is recognized as not initialized.

Chapter 8. Managing tokens - pkcsconf utility 41

42 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

| Chapter 9. Managing token keys - pd1sak utility

Use the p11sak tool to manage token keys and certificates in an openCryptoki token repository with

their PKCS #11 attributes. You can generate, import, export, change, copy, and remove symmetric and
asymmetric keys in an openCryptoki token repository. With this tool, you can also import, export, copy and
list certificates.

The general invocation scheme of the command line tool is:

pllsak COMMAND [ARGS] [OPTIONS]

plisak syntax - General invocation scheme

»— pllsak — <subcommand> >
L args J L options —J

where
subcommand

- generate-key: “Generating keys in the openCryptoki repository” on page 43

« list-key: “Listing keys in the repository” on page 47

« remove-key: “Removing keys” on page 50

- set-key-attr: “Setting attributes of keys” on page 51

« copy-key: “Copying keys in the repository” on page 53

- import-key: “Importing keys from a binary file or a PEM file” on page 54

- expoxrt-key: “Exporting keys to a binary file or a PEM file” on page 54

- extract-pubkey: “Extracting the public key from a private key” on page 55

list-cert: “Listing certificates in the repository” on page 57

- remove-cexrt: “Removing certificates from the repository” on page 58

« set-cert-attr: “Setting or updating attributes of certificates” on page 58

« copy-cert: “Copying certificates in the repository” on page 59

« impoxt-cert: “Importing certificates from a binary file or a PEM file” on page 59

« export-cext: “Exporting certificates to a binary file or PEM file” on page 60

- extract-cert-pubkey: “Extracting public keys from certificates” on page 60

Also, read the information in section “Command help” on page 61 to learn how to use the tool efficiently.

Generating keys in the openCryptoki repository

Use the pllsak generate-key subcommand to generate keys in the openCryptoki token repository.
The tool supports the generation of:

I « symmetric keys (AES, AES-XTS, 3DES, DES, generic secret) with PKCS #11 attributes
I « asymmetric keys (RSA, DH, DSA, EC, IBM Kyber, IBM Dilithium) with PKCS #11 attributes.

© Copyright IBM Corp. 2021, 2023 43

plisak syntax - Generating keys

»— pllsak — generate-key | gen-key | gen —»

des >

3des

aes 128
256
128

aes-xts
L 256 —I

generic ber_of key _bits>

rsa 512
1024 L <public_exponent> —J
2048
4096
ec prime256v1 | prime192v1

secp224rl | secp384rl | secp256k1 | secp521rl
——— brainpoolP160rl | brainpoolP160t1 | brainpoolP192rl | brainpoolP192t1 —
——— brainpoolP224r1 | brainpoolP224t1 | brainpoolP256r1 | brainpoolP25611 —

—— brainpoolP320r1 | brainpoolP320t1 | brainpoolP384r1 | brainpoolP384t1 —

“— brainpoolP512r1 | brainpoolP512t1 | curve25519 | curve448 | ed25519 | ed448 —/

\— dh ffdhe2048 | fidhe3072 | fidhe4096 | ffdhe6144 | fidhe8192 L _J
F modp1536 | modp2048 | modp3072 | modpa096 | modp6144 | modp8192 4 <number_of priv_key_bits>

<dh_param_pem_file>

dsa <dsa_param_pem_file>

ibm-dilithium r2_65

r2_87
13_44
13_65
r3_87

ibm-kyber r2_768

L r2_1024
»— --slot | -s <s/ot /D> R
L --pin | -p <PIN> —I L --no-login|-N —I L --s0 J

> L J --label | -L <key_name> —»
--force-pin-prompt

>

L--attrl-aPILIMIBIYIRIEIDIGICIVIOIWIUISIAIXINITIIIKIZ LJ L _J
: PILIMIBIYIRIEIDIGICIVIOIWIUISIAIXINITII|IKIZ

L --id|-i <id_hex_string> —J

where

des
specifies a symmetric DES key to be generated.

3des
specifies a symmetric triple DES key.

aes
specifies a symmetric AES key to be generated. You must specify a key length in bits: 128, 192, or

256.

aes-xts
specifies a symmetric AES-XTS key to be generated. You must specify a key length in bits: 128 or 256.

44 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

generic

specifies a generic secret key to be generated (CKK_GENERIC_SECRET), which you can use for
example, for HMAC. You must specify a key length in bits.

rsa
specifies an asymmetric RSA key pair (private and public) to be generated. You must specify a key
length in bits: 512, 1024, 2048, or 4096. Optionally, you can specify a public exponent (parameter
<public_exponent>) for an RSA key pair generation. The default is 65537.

ec
specifies an elliptic curve key pair (private and public) to be generated. You must specify an elliptic
curve for the ECC key pair. Select one supported curve as shown in the syntax diagram.

dh
specifies a Diffie-Hellman key pair (private and public) to be generated. You must specify a group
name or the name of a PEM file (<dh-param-pem-£ile>) containing the DH-parameter for the key
pair. Valid group names as shown in the syntax diagram are:

ffdhe2048|ffdhe3072|£fdhe4096 | ffdhe6144 | ffdhe8192
modp1536 |modp2048 | modp3072 | modp4096 |modp6144 |modp8192

Optionally specify the size of the private key in bits in parameter <numbex_of_priv_key_bits>.

dsa
specifies a DSA key pair (private and public) to be generated. In parameter <dsa_paxram_pem_£file>
you must specify the name of a PEM file containing the DSA-parameter for the key pair.

ibm-dilithium
specifies an IBM Dilithium key pair (private and public) to be generated. You must specify a version for
the IBM Dilithium key pair. Select one supported version as shown in the syntax diagram.

ibm-kyber
specifies an IBM Kyber key pair (private and public) to be generated. You must specify a version for
the IBM Kyber key pair. Select one supported version as shown in the syntax diagram.

--slot|-s
specifies the slot ID of an openCryptoki token within the repository.
--pin|-p
specifies the openCryptoki token user PIN. If not specified, the user can enter the PIN on request.
--no-login|-N
Do not login to the session. This means that only public token objects (CKA_PRIVATE=FALSE) can be
accessed.

--S0
Login as SO (security officer). Option - -pin|-p must specify the SO pin, or if the --pin| -p option
is not specified, environment variable PKCS11_SO_PIN is used. If PKCS11_SO_PIN is not set, then
you are prompted for the SO PIN. The security officer (SO) can only access public token objects
(CKA_PRIVATE=FALSE).

--force-pin-prompt
enforces a PIN prompt regardless whether a PIN has been specified elsewhere.

--label|-L
specifies the label (name) of the generated key. This option is mandatory.

For asymmetric keys, set individual labels for public and private key, separated by a colon:
pub_label:priv_label, for example, rsal_public:rsal_pzrivate. You can use the same label
for public and private keys by specifying the equal sign ('=") for the private key label part, for example,
rsal:=. If only one label is specified for an asymmetric key, the label is automatically extended

by :puband :pzrv for the public and private keys respectively, for example, - -1label rsalis
extended to rsal:puband rsal:pzrv.

Chapter 9. Managing token keys - pd1sak utility 45

--attr|-a
This parameter is optional and can be used to set one or more of the binary key attributes by
specifying one or more of the respective letters from the subsequent list. With an upper case letter,
the respective attribute is set to TRUE and with a lower case letter it is set to FALSE. For multiple
attributes add the respective letters without space, for example: MLD or MxS.

For asymmetric keys set individual key attributes for public and private key separated by a colon:
public_attributes:private_attributes, for example, MLD:M1S.

P
CKA_PRIVATE

CKA_LOCAL (read only)
CKA_MODIFIABLE

CKA_COPYABLE

CKA_DESTROYABLE

CKA_DERIVE

CKA_ENCRYPT

CKA_DECRYPT

CKA_SIGN

CKA_SIGN_RECOVER

CKA_VERIFY

CKA_VERIFY_RECOVER

CKA_WRAP

CKA_UNWRAP

CKA_SENSITIVE
CKA_ALWAYS_SENSITIVE (read only)
CKA_EXTRACTABLE
CKA_NEVER_EXTRACTABLE (read only)
CKA_TRUSTED (can be set to TRUE by the security officer (SO) only)
CKA_WRAP_WITH_TRUSTED

CKA_IBM_PROTKEY_EXTRACTABLE (IBM specific, not all tokens support this)

46 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

z
CKA_IBM_PROTKEY_NEVER_EXTRACTABLE (IBM specific, not all tokens support this, read only)

An uppercase letter sets the corresponding attribute to CK_TRUE, a lower case letter to CK_FALSE. If
an attribute is not set explicitly, its default value is used. Not all attributes may be accepted for all key
types. Attribute CKA_TOKEN is always set to CK_TRUE.

--id]-i
specifies a hex string (not prefixed with 0x) of any number of bytes. For asymmetric keys the same ID
is set for both, the public and the private key.

Example for generating an RSA private and public key pair:

pllsak generate-key rsa 1024 --slot 1 --pin 11111111 -label test

The resulting key pair of this command is shown in Figure 8 on page 49. If you do not specify attributes
using the —attr option, the resulting key will obtain the default attributes as shown. Also, if you would
specify the label using --label test:= ,you getjust test as the key names, without prv or pub
appended.

Listing keys in the repository

The tool supports the listing of:

« symmetric keys (AES, AES-XTS, 3DES, DES, generic secret) with PKCS #11 attributes,
« asymmetric keys (RSA, DH, DSA, EC, IBM Kyber, IBM Dilithium),

« public, private and secret keys,

- all keys of any type.

With the options in the 1ist-key subcommand, you can filter the keys that you want to list. They have
the same meaning as described in section “Generating keys in the openCryptoki repository” on page 43,
with additional options to filter for public, private and secure keys. The --1ong or -1 parameter produces
the long output format. If omitted, you obtain a short output format.

Chapter 9. Managing token keys - p11sak utility 47

plisak syntax - Listing keys

»w— pllsak — list-key|ls-key|ls

(— all

des

3des

aes
M—— aes-xts —

M—— generic —

rsa

ec

dh

dsa

M ibm-dilithium —

M ibm-kyber —

public

private

~—— secret ——

»— --slot|-s <slot /D>

L --pin|-p <PIN> —J L --no-login|-N —J L --so J L --force-pin-prompt —J L --long|-1 J]

»
>

L --label|-L <key_name> J L --id|-i <id_hex_string> J L --attr|-a </list_of _attribute_letters> —J

] L--detailed-uri J L--sortl-s <sort_specification> —J)

The parameters and options for the pllsak list-key subcommand are the same as for the
generate-key subcommand (“pllsak syntax - Generating keys” on page 44). Differences in the use

and meaning are described hereafter.

In addition to the pd1sak generate-key subcommand, there are the following key types which you can
use to filter for listing keys:

secret

lists all symmetric keys (for example, AES and DES) that are created with the CKO_SECRET attribute.

public

lists the public key part of a public/private asymmetric key pair that is created with the
CKO_PUBLIC_KEY attribute.

private

lists the private key part of a public/private asymmetric key pair (for example, AES and DES) that is
created with the CKO_PRIVATE_KEY attribute.

all

lists all keys no matter of which type.

--attr|-a

Attributes whose letters are not specified in parameter 1ist_of_attribute_lettexs are not used
to filter the keys. The format of the list of attributes is shown in “p11sak syntax - Generating keys” on

page 44.

--sort|-S <sort_specification>
Sort the keys by label, key type, object class, and key size. Specify a <soxrt_specification>
parameter of up to four criteria, each represented by its corresponding letter, separated by a comma:

48 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

label

k

key type
c

object class
s

key size

The sort order (a = ascending (default), d = descending)) can be appended to the criteria designators
by a colon. Example: 1:a, k:d will sort by label in ascending order and then by key type in descending
order.

--label|-L
You can use wildcards (x and ?) in the label specification. To specify a wildcard character that should
not be treated as a wildcard, it must be escaped using a backslash (* or \ ?). Also, a backslash
character that should not be treated as an escape character must be escaped (\\).

--detailed-uri
includes all information into the Unified Resource Identifier (URI). This detailed URI is only printed if
the option --long has been specified. If this parameter is not set, the URI will not contain information
about the library (CK_INFO) and the slot (CK_SLOT_INFO).

Example for a listing output in short format (default):

pllsak list-key rsa --slot 1 --pin 11111111

| PLMBYREDGCVOWUSAXNTTIKZ | KEY TYPE | LABEL
I e B B
|

l®21212-1---121---- - 0 - - public RSA 1024 | "test:pub"
/1111 --1121---10010-00 private RSA 1024 | "test:prv"

2 key(s) displayed
Figure 8. Listing RSA key pairs

How to get a listing output in long format

Request a long output format by specifying option --1long or -1 with the 1ist-key command. You
optionally can provide an output configuration file called p11sak_defined_attrs.conf to specify
attributes to be printed in addition to the ones defined by the PKCS #11 standard. You can use the
environment variable P11SAK_DEFAULT_CONF_FILE to set the full path name for this file. If this variable
is not set, the system looks for this configuration file in your user directory. If no configuration file is found
there, the default output configuration file /etc/opencryptoki/pllisak_defined_attrs.confis
used.

The output configuration file lists the desired attributes in the following format:

attribute §
name = CKA_IBM_RESTRICTABLE
id = 0x80010001
type = CK_BBOOL

attribute §
name = CKA_IBM_ATTRBOUND
id = 0x80010004
type = CK_BBOOL

attribute {
name = CKA_IBM_USE_AS_DATA

id = Ox80010008
type = CK_BBOOL

Example for a listing output in long format:

Chapter 9. Managing token keys - p11sak utility 49

pllisak list-key rsa --slot 1 --pin 11111111 --detailed-uri --long
Please enter user PIN:

Label: "test:pub"

URI: pkcsll:library-description=openCryptoki;library-manufacturer=IBM;
library-version=3.20;slot-id=1;slot-description=Linux;slot-manufacturer=IBM;
manufacturer=IBM;model=ICA;token=ica;object=test:pub;type=public

Key: public RSA 1024

Attributes:

CKA_TOKEN: CK_TRUE
CKA_PRIVATE: CK_FALSE
CKA_LOCAL: CK_TRUE

CKA_ALLOWED_MECHANISMS: [no restriction]
CKA_SUBJECT: [no value]
CKA_WRAP_TEMPLATE: O attributes
CKA_PUBLIC_KEY_INFO: len=162 value:

30 81 9F 30 OD 06 09 2A 86 48 86 F7 OD 01 01 01

CKA_MODULUS: len=128 value:
C6 F3 7A E4 19 09 C5 6B C3 5F 21 1E 50 3A D 45

CKA_MODULUS_BITS: 1024 (0x400)
CKA_PUBLIC_EXPONENT: len=3 value:
01 00 01
CKA_IBM_PROTKEY_EXTRACTABLE: CK_FALSE
Label: "test:prv"

URI: pkcsll:library-description=openCryptoki;library-
manufacturer=IBM;library-version=3.20;slot-id=1;slot-description=Linux;slot-
manufacturer=IBM;manufacturer=IBM;model=ICA;token=ica;object=test:prv;type=private

Key: private RSA 1024

Attributes:

CKA_TOKEN: CK_TRUE
CKA_PRIVATE: CK_FALSE
CKA_LOCAL: CK_TRUE

CKA_ALLOWED_MECHANISMS: [no restriction]
CKA_SUBJECT: [no value]
CKA_UNWRAP_TEMPLATE: 0 attributes
CKA_PUBLIC_KEY_INFO: len=162 value:

30 81 9F 30 OD 06 09 2A 86 48 86 F7 0D 01 01 01

CKA_DERIVE_TEMPLATE: 0 attributes
CKA_MODULUS: 1len=128 value:
Cé6 F3 7A E4 19 09 C5 6B C3 5F 21 1E 50 3A 0D 45
CKA_PUBLIC_EXPONENT: len=3 value:
01 00 01
CKA_PRIVATE_EXPONENT: [no valuel]
CKA_PRIME_1: len=64 value:
ED 9D EC 54 69 F2 C6 BE F7 04 4C 70 46 3B 64 EB

CKA_ﬁﬁiME_Z: len=64 value:
D6 57 C4 CB F4 25 FE F3 E8 6C AD 12 89 29 19 OE

CKA_EXPONENT_1: len=64 value:
8F 42 1F 31 E5 8E 91 74 A® C8 DE AC F2 2A EC F5

CKA_EXPONENT_2: len=64 value:
68 12 93 A6 67 F4 6E F7 64 FA 27 8A E1 78 48 07

CKA_COEFFICIENT: len=64 value:
91 00 DO 24 BD 15 7A 27 57 C8 81 A4 F2 C3 62 F5

CKA_IBM_PROTKEY_ EXTRACTABLE: CK_FALSE

2 key(s) displayed

Removing keys

Use the pldsak remove-key subcommand to delete keys from the openCryptoki token repository.

50 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

plisak syntax - Removing keys

»— pllisak — — remove-key L J --slot|-s <slot_ID> L J >
<key type> --pin|-p <PIN>

\ 4

L --no-login|-N J L --S0 J L --force-pin-prompt J]

A 4

A 4

L --label|-L <key_name> —J L --id|-i <id_hex_string> —J]

L --attr|-a <list_of attribute_letters> —J L --force|-f J A

The parameters and options for the pllsak remove-key subcommand that are not listed here, are
the same as for the genexrate-key subcommand. Differences in the use and meaning are described
hereafter.

With the parameters you can select the key or the keys that you want to delete:

Use the <key_type> parameter to select the type or types of keys to be deleted. Possible values for the
<key_type> argument are the following (as explained in “pl1sak syntax - Generating keys” on page 44
and “Listing keys in the repository” on page 47):

des|3des|generic|aes|aes—xts|rsaldh|dsalec|ibm-dilithium|ibm-kybexr|public|private|secret|all

If <key_type> is omitted, then all key types are selected for deleting.

--slot|-s
specifies the slot ID of an openCryptoki token within the repository from which you want to delete the
matching keys.

--id|-i
specifies a hex string (not prefixed with 0x) of any number of bytes. For asymmetric keys the same ID
is set for both, the public and the private key.

--attr|-a
Attributes whose letters are not specified in this list are not used to filter the keys.

You are prompted to confirm the deletion of the selected key or keys. To suppress the confirmation, use
the --force| - £ option.
Setting attributes of keys

Use the pllsak set-key-attr subcommand and the optional key_type argument to set or update
boolean attributes of symmetric or asymmetric keys. Public, private, secret, or all keys can also be
selected for updating, irrespective of the key type.

Chapter 9. Managing token keys - p11sak utility 51

plisak syntax - Setting attributes of keys

»w— pllisak — set-key-attr|set-key|set L J --slot|-s <slot_ID> —»
<key type>

»
»

A 4

--pin|-p <PIN> —J L --no-login|-N J L --S0 J L --force-pin-prompt J

A 4

\ 4

»
>

--attr|-a </ist_of attribute_letters> J L --force|-f J

>
»

Y

L
L ~-label|-L <key_name> J L idl-i <id_hex_string> J ;
L
L

--new-attr|-A <list_of attribute_letters> —J L --new-labell|-l <key_name> J

A 4

L --new-id|-1 <id_hex_string> J

Most of the options are the same as used for and explained in “pllsak syntax - Generating keys” on page
44

Use the <key_type> parameter to select the type or types of keys to be updated. Possible values for the
<key_type> parameter are the following (as explained in “p1l1sak syntax - Generating keys” on page 44
and “Listing keys in the repository” on page 47):

des|3des|generic|aes|aes—xts|rsaldh|dsalec|ibm-dilithium|ibm-kyber|public|private|secret|all

If <key_type> is omitted, then all key types are selected for updating.

Specify the ——label|-L <key_name>, the ——id|-i <id_hex_string>, orthe ——attr|-a
<list_of_attribute_letters> options to filter the keys to be updated. The <id_hex_string>
must be specified as hex string (not prefixed with 0x) of any number of bytes. You can use wildcards (*
and ?) in the <key_name> specification.

Use the --new-attr|-A <list_of_attribute_letters> option to specify the boolean attributes
of the key you want to update. Keys can be filtered by all attributes, setting is possible for all except L

| A | N | Z Anuppercase letter sets the corresponding attribute to CK_TRUE, a lower case letter to
CK_FALSE. If an attribute is not set explicitly, its value is not changed. Not all attributes may be allowed to
be changed for all key types, or to all values.

The boolean attributes to set for the filtered key or keys:

| M|
m

P B|lY|RI|E/| |
p | | blylzx]e

D|GI|C|V]|]O|W[JU|SI|X]|T]|TI]|
| | ldlglclv]iolw]luls|x|t]i

K
lviolwluls| x| t]lilk
Use the ——new-1abel|-1 <key_name> option to specify the new label, or use the ——new-id|-1I
<id_hex_string> option to specify the new ID to be set for the key.

At least one of the - -new-attr|-A <list_of_attribute_letters>, ——new-label|-1
<key_name>, or ——new-id |-I <id_hex_string> options must be specified.

You are prompted to confirm the updating of the key or keys. To suppress the prompt, use the ——force|
- option.

52 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Copying keys in the repository

Use the pllsak copy-key subcommand to copy symmetric or asymmetric keys. You can change
attributes, the label, or the ID of the copied key or keys.

plisak syntax - Copying keys in the repository

»— plisak — copy-key|copy|cp L J --slot|-s <slot_ID> L J
<key type> --pin|-p <PIN>

[
>

»
»

--no-login|-N J L --So J L --force-pin-prompt J

»
»

A 4

A 4

--label|-L <key_name> —J L --id|-i <id_hex_string> —J

»
»

A 4

T
T
L --attrl|-a <list_of_attribute_letters> —J L --force|-f J ;
T

--new-attr|-A <list of attribute letters> —J L --new-label|-l <key_name> J

A 4

L --new-id|-1 <id_hex_string> J

The parameters are the same as for “Setting attributes of keys” on page 51.

Use the <key_type> parameter to select the type or types of keys to be copied. Possible values for the
<key_type> argument are the following (as explained in “pl1sak syntax - Generating keys” on page 44
and “Listing keys in the repository” on page 47):

des|3des|generic|aes|aes—xts|rsaldh|dsalec|ibm-dilithium|ibm-kybexr|public|private|secret|all

If <kkey_type> is omitted, then all key types are selected for copying.

Besides filtering the keys to be copied by the key types, use the ——attr|-a
<list_of_attribute_letters> options to additionally filter the keys with matching key types by
their attributes.

Use the --new-attr|-A <list_of_attribute_letters> option to specify the boolean attributes to
be set for the copied key(s). Attributes that are not specified are not set. Restrictions on attribute values
may apply.

Keys can be filtered by all attributes, setting is possible forallexceptL | A | N | Z.An uppercase
letter sets the corresponding attribute to CK_TRUE, a lower case letter to CK_FALSE. If an attribute is not
set explicitly, its value is not changed. Not all attributes may be allowed to be changed for all key types, or
changed to all values.

The boolean attributes to set for the key or keys to be copied:

| M|
m

P B|Y]|R|E/| |
p | I blylzx]e

D|IG|C|VI]O|W]|]UJIS|X]|T]|TI|
| [ld]lglclv]iolw]uls]|x]|t]i

K
lviolw]luls | x| t]il]k

Use the ——new-1label|-1 <key_name> option to specify the new label to be stet for the copied key or
keys (optional).

Use the ——new-id |-I <id_hex_string> option to specify the new ID to be set for the copied key or
keys (optional).

Chapter 9. Managing token keys - p11sak utility 53

Importing keys from a binary file or a PEM file

Use the pllsak import-key subcommand together with the <key_type> argument to import
symmetric or asymmetric keys from a file.

plisak syntax - Importing keys from a binary file or a PEM file

»— pllsak — import—key|importlimp — <key_type> L J --slot|-s <slot_/ID> —»
<kind>

»
»

»
»

L --pin|-p <PIN> J L --no-login|-N J L Y J L --force-pin-prompt J

»— --label|-L <key_name> L J L J >
--id|-i <id_hex_string> --force|-f

A 4

--file|-F <file_name> —»

A 4

L --attr|-a <list_of afttribute_letters> —J

»
»

L --pem-password|-P <password> J L --force-pem-pwd-prompt J

E --opaque|-o j

The options and parameters that are specific to the impoxrt-key subcommand have the following
meaning:

<kind>

When importing an asymmetric key, the <kind> argument is required and specifies to either import a
private or public key.

<key_type>

Possible values for the <key_type> argument are:

des|3des|generic|aes|aes—xts|rsaldh|dsalec|ibm-dilithium|ibm-kyber|public|private|secret|all

--pem-password|-P

--opaque|-o
Specify this option to import the opaque secure key blobs of the key. Not all tokens support this.

Other options have a similar purpose as in previously described options. The ——1abel | -L
<key_name> option sets the CKA_LABEL attribute of the key and the option ——attr|-a
<list_of_attribute_lettexrs> can be used to set the boolean attributes of the key as described
in “Generating keys in the openCryptoki repository” on page 43. Use the ——id | -1 <id_hex_string>
option to set the value of the CKA_ID attribute of the key.

Exporting keys to a binary file or a PEM file

Use the pl1sak export-key|export|exp subcommand and the optional <key_type> parameter to
export symmetric and asymmetric keys to a file. Public, private, secret, or all keys can also be selected for
export, irrespective of the key type.

54 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

plisak syntax -Exporting keys to a binary file or a PEM file

»— pllisak — export—keylexportlexp — <key_type> — --slot|-s <slot /D> L J >
--pin|-p <PIN>

[
>

A 4

>
>

--no-login|-N J L --So J L --force-pin-prompt J

A 4

L
L --label|-L <key_name> —J L --id|-i <id_hex_string> —J]
L

_J L J --file|-F <file_name> —»
--attr|-a <list_of aftribute_letfers> --force|-f

A 4

L --opaque|-o —J L --spkil-S J A

Possible values for the <key_type> argument are:
des|3des|generic|aes|aes—xts|rsaldh|dsalec|ibm-dilithium|ibm-kybexr|public|private|secret|all

If <key_type> is omitted, then all key types are selected for export.

Specify one or more of the ——1label|-L <key_name>, the -—id|-i <id_hex_string>, orthe -
—attr|-a <list_of_attribute_letters> options to filter the list of keys for which to change the
attributes. You can use wildcards (* and ?) in the <key_name> specification. The —-id | - i option must be
specified as hex string (not prefixed with 0x) of any number of bytes.

The ——file|-F <file_name> option specifies the file name of the file to which the keys to be exported
are written to. For symmetric keys, this is a binary file where the key material in clear is written to.

For asymmetric keys, this is an OpenSSL PEM file where the public or private keys are written to. If
multiple asymmetric keys match the filter, the keys are appended to the PEM file specified with the
—-—file|-F <file_name> option. If multiple symmetric keys or a mixture of asymmetric and symmetric
keys match the filter, then you are prompted to confirm to overwrite the previously created file, unless the
[--force|-f] option is specified.

Specify the ——opaque | -0 option to export the opaque secure key blobs of the key. Not all tokens support
this.

Specify the ——spki | =S option to export the Subject Public Key Info (SPKI) from the CKA_PUBLIC_
KEY_INFO attribute of an asymmetric private key instead of its private key material. This option can only
be used with private keys.

Note: Not all keys can be exported, because its attribute setting may forbid to reveal the values of

certain attributes. To allow exporting of a secret (CKO_SECRET_KEY) or private (CKO_PRIVATE_KEY) key,
attribute CKA_SENSITIVE must be CK_FALSE and attribute CKA_EXTRACTABLE must be CK_TRUE. Secret
or private keys that contain an opaque secure key blob (attribute CKA_IBM_OPAQUE) can also not be
exported in clear, even if the attributes would allow it. For such keys only the opaque secure key blob can
be exported by using the-—opaque | —o option.

Extracting the public key from a private key

Use the plisak extract-pubkey subcommand to extract the public key from a private key. Use the
label, the ID and existing attributes to filter the private key from which you want to extract the public key.

Chapter 9. Managing token keys - p11sak utility 55

plisak syntax - Extracting the public key from a private key

»- plisak extract-pubkey L<key_type> | ~-slot|-s <sfot_ID> L_-pim_p ™ N
U o T U ammpingmom J

L--labelI-L <key_name> J L--idl-i <id_hex_string> J ;

L ~-attr|-a </ist_of attribute_letters> J L --force|-f J ;

»
»

\ 4

A 4

A 4

»
»

A 4

L --new-attr|-A </list of aftribute_letfers> —J L --new-label|-l <key_name> J

L --new-id|-1 <id_hex_string> J

A 4

where the following arguments and options have a specific use or meaning for this subcommand:

<key_type>
Optional. The type of the private key from which you want to extract the public key. If no key type is
specified, all private key types are selected. Possible values for the <key_type> parameter are:

rsa|dh|dsalec|ibm-dilithium|ibm-kyber|private|all

--attr|-a
Optional. Filter the key by its boolean attribute values:

PILIMIBI|IY|RIJEIDI|IG|]C|IVIO|IW[JUISIAI|IXI|INI|TI|I|KIZ

Specify a set of these letters without any blanks in between. The meaning for each of the attribute
letters is explained in “Generating keys in the openCryptoki repository” on page 43. Attributes that
are not specified are not used to filter the keys.

--new-attr|-A
Optional. The boolean attributes to set for the extracted public key:

PIM|BI|]Y]|RI|E/
plmliblyl|x]|e

D|G|C|V]|]O|W[]U]S|X|T]|TI]|K
| | ld]lglclv]iolw]uls]|x|t]il]Kk

lviolwluls x| t]i]
Specify a set of these letters without any blanks in between. The meaning for each of the attribute

letters is explained in “Generating keys in the openCryptoki repository” on page 43. Restrictions on
attribute values may apply.

Note: Keys can be filtered by all attributes, setting is possible for allexceptL | A | N | Z.

An uppercase letter sets the corresponding attribute to CK_TRUE, a lower case letter to CK_FALSE.
If an attribute is not set explicitly, its value is not changed. Not all attributes may be allowed to be
changed for all key types, or to all values.

--new-label|-l
The new label to set for the extracted public key (optional). If no new label is specified, the new label
is derived from the private key label by appending _pubkey.

--new-id|-I
Optional. The new ID to be set for the extracted public key.

56 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Listing certificates in the repository

Use the plisak list-cext subcommand to show existing certificates that match the specified
parameters. As for keys, there is a short and a long output. Matching certificates can be sorted by label
and common name.

plisak syntax - Listing certificates

»— pllsak — list—cert L J --slot|-s <slot_ID> >
<cert_type> L --pin|-p <PIN> J

[
>

A 4

>
>

--no-login|-N J L --So J L --force-pin-prompt J

A 4

L
L --label|-L <key_name> —J L --id|-i <id_hex_string> —J]
L --attr|-a <list_of attribute_letters> —J L --long|-1 —J L --detailed-uri —J]

Y

>d
>4

L --sort|-S <sort_specification> —J

where the following arguments and options have a specific use or meaning for this subcommand:

<cert_type>
The type of the certificate to be listed. If no certificate type is specified, certificate type x509 is used.

--attr|-a
Filter the certificate by its boolean attribute values: PM B Y T (optional). Specify a set of these letters
without any blanks in between. Attributes that are not specified are not used to filter the certificates.
For the meaning of these attributes, see “Generating keys in the openCryptoki repository” on page 43.

--sort|-S <sort_specification>
Sort the certificates by label or subject common name (CN), or both. Specify a sort specification of up
to two fields, each represented by its corresponding letter, separated by comma:

l
label

subject common name

The sort order (default: a = ascending, d = descending) can be appended to the criteria designators
by a colon. Example: 1:a, n:d sorts by label in ascending order and then by common name in
descending order.

All other options are explained in “p11sak syntax - Generating keys” on page 44 or in “Listing keys in the
repository” on page 47.

Example of a short output

pllsak list-cert x509 --slot 4 --pin 11111111

| PMBYT | CERT TYPE | SUBJECT-CN | LABEL

BT R e e PP
| 121211- | X.509 | /C=DE/ST=BB/L=BB/0=... | mycert2

| 1211 - | X.509 | systeml | mycertl

| 21211 - | X.509 | userl | dsacertl

To obtain a long output, specify a command similar to the following:

Chapter 9. Managing token keys - p11sak utility 57

pllisak list-cert x509 --slot 4 --pin 11111111 --long

Removing certificates from the repository

Use the pldsak remove-cexrt subcommand to delete certificates in the repository.

pllsak syntax - Removing certificates

»— plisak — remove—cert T S 7 --slot|-s <slot_ID> T o N >
U roognin) s U rpromet J

L —labell-L <key_name> J L ~-id|-i <id_hex_string> J]

L ~-attr|-a </ist_of attribute_letters> J L ~-force|-f J "

A 4

A 4

Y

The arguments and options have the same meaning as described in “p11sak syntax - Generating keys” on

page 44 or “Listing certificates in the repository” on page 57.

Setting or updating attributes of certificates

Use the pllsak set-cexrt-attxr subcommand to set or update boolean attributes of certificates.
Optionally, a new label, a new ID, and new attributes can be specified for the token object.

plisak syntax - Setting or updating attributes of certificates

»— pllsak — set-cert-attr — <cert_type> — --slot|-s <slot_/D> L J >
--pin|-p <PIN>

»
»

--no-login|-N J L --so J L --force-pin-prompt —J

A 4

»
»

--label|-L <key_name> J L --id|-i <id_hex_string> J

--attr|-a <list_of aftribute_letfers> —J L --force|-f J

A 4

A 4

»
»

L
L
L
L ~-new-attr|-A <list_of attribute_letters> J L ~-new-labell-1 <key_name> J

L --new-id|-1 <id_hex_string> J

A 4

where the following argument is specific for this subcommand:

<cert_type>
The type of the certificate. Must be set to x509.

The other arguments and options have the same meaning as described in “Setting attributes of keys” on
page 51 or “Listing certificates in the repository” on page 57.

58 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Copying certificates in the repository

Use the pllsak copy-cexrt subcommand to copy certificates in the repository.

plisak syntax - Copying certificates in the repository

»— pllsak — copy-cert L J --slot|-s <slot /D> L J >
<cert_type> --pin|-p <PIN>

--no-login|-N J L --So J L --force-pin-prompt J

>
>

A 4

»
»

--label|-L <key_name> —J L --id|-i <id_hex_string> —J

T
T
L --attrl|-a <list_of_attribute_letters> —J L --force|-f J ;
T

A 4

A 4

»
»

--new-attr|-A <list of attribute letters> —J L --new-label|-l <key_name> J

A 4

L --new-id|-1 <id_hex_string> J

The following arguments and options have a specific use or meaning for this subcommand:

<cert_type>
The type of the certificate to be listed. If no certificate type is specified, certificate type x509 is used.

--attr|-a
Filter the certificate by its boolean attribute values: PM B Y T (optional). Specify a set of these letters
without any blanks in between. Attributes that are not specified are not used to filter the certificates.
For the meaning of these attributes, see “Generating keys in the openCryptoki repository” on page 43.

All other options and parameters are the same as for “Generating keys in the openCryptoki repository” on
page 43 or for “Setting attributes of keys” on page 51.

Importing certificates from a binary file or a PEM file

Use the pl1sak import-cert subcommand to import x.509 public certificates into the openCryptoki
token repository. Importing is supported in two formats: Base64 (PEM) form and binary (DER-encoded)
form. The format is detected from the given input and does not need to be specified as input parameter.

plisak syntax - Importing certificates from a binary file or a PEM file

»— pllsak — import-cert — <cert_type> — --slot|-s <slot_/D> L J >
--pin|-p <PIN>

»
»

L --no-login|-N J L --S0 J L --force-pin-prompt J]

L --label|-L <key_name> —J L --attr|-a <list_of_attribute_letters> —J

L J --file|-F <file_name> L J >4
--id|-i <id_hex_string> --ca-cert|-C

Y

A 4

Chapter 9. Managing token keys - p11sak utility 59

where the following arguments and options are specific for this subcommand:

<cert_type>
The type of the certificate. Must be set to x509.

--attr|-a
The boolean attributes to set for the certificate: P M B Y (optional). Specify a set of these letters
without any blanks in between. For the meaning of these attributes, see “Generating keys in the
openCryptoki repository” on page 43.

--file|-F
The name of the file that contains the certificate to be imported. Supported input formats are PEM and
binary (DER-encoded). The format is automatically detected.

--ca-cert|-C
The certificate is a Certificate Authority (CA) certificate.

Exporting certificates to a binary file or PEM file

Use the pl1sak export-cert subcommand to export certificates. Exporting of public key certificates
is supported in two formats: Base64 (PEM) and binary (DER encoding). The default is PEM. Exporting
multiple certificates into the same output file is only possible in PEM format.

plisak syntax -Export certificates to a binary file or a PEM file

»— pllsak — export-cert — <cert_type> — --slot|-s <slot_ID> L _J >
--pin|-p <PIN>

»
»

L --no-login|-N J L --S0 J L --force-pin-prompt J]

Y

\ 4

L --label|-L <key_name> —J L --id|-i <id_hex_string> —J]

L J L J --file|-F <file_name> —»
--attr|-a </ist_of attribute_letters> --force|-f

E --der|-D j

where the following arguments and parameters are specific for this subcommand:

<cert_type>
The type of the certificate. Must be set to x509.

--attr|-a
Filter the certificate by its boolean attribute values: PM B Y T (optional). Specify a set of these letters
without any blanks in between. Attributes that are not specified are not used to filter the certificates.
For the meaning of these attributes, see “Generating keys in the openCryptoki repository” on page 43.

--der|-D
The certificate is written to the file in binary (DER-encoded) form. Default is Base64 (PEM).

The other options and parameters are the same as for “Exporting keys to a binary file or a PEM file” on
page 54.

Extracting public keys from certificates

Use the pllsak extract-cert-pubkey subcommand to extract the public key of a given certificate
into a new token object. Supported public key types are RSA, EC, and DSA. If no new label is specified as

60 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

input parameter, the labels for extracted public keys are derived from the certificate labels by appending
_pubkey.

plisak syntax - Extract the public keys from certificates

»— plisak extract-cert-pubkey — <cert_type> — --slot|-s <slot /D> L J >
--pin|-p <PIN>

>
>

\ 4

L --no-login|-N J L --S0 J L --force-pin-prompt J
L --label|-L <key_name> —J L --id|-i <id_hex_string> —J]
L --attr|-a <list_of attribute_letters> —J L --force|-f J

A 4

A 4

A 4

»
»

L --new-attr|-A </list of aftribute_letfers> —J L --new-label|-l <key_name> J

L --new-id|-1 <id_hex_string> J

A 4

where the following argument is specific for this subcommand:

<cert_type>
The type of the certificate. Must be set to x509.

The other parameters are the same as for “Extracting the public key from a private key” on page 55.

Command help

Request general help with the following command:
pllsak -h

to receive the following information:

Chapter 9. Managing token keys - p11sak utility 61

Usage: pllsak COMMAND [ARGS]

COMMANDS :

generate-key
list-key
remove-key
set-key-attr
copy-key
import-key
export-key
extract-pubkey

list-cert
remove-cert
set-cert-attr

copy-cert
import-cert

export-cert

extract-cert-pubkey

COMMON OPTIONS

-h, --help
-v, --version

[OPTIONS]

Generate a key.

List keys in the repository.

Delete keys in the repository.

Set attributes of keys in the repository.
Copy keys in the repository.

Import a key from a binary file or PEM file.
Export keys to a binary file or PEM file.
Extract the public key from private keys in
the repository.

List certificates in the repository.

Delete certificates in the repository.

Set attributes of certificates in the
repository.

Copy certificates in the repository.

Import a certificate from a binary file or
PEM file.

Export certificates to a binary file or PEM
file.

Extract the public key from certificates in
the repository.

Print this help, then exit.
Print version information, then exit.

For more information use 'pllsak COMMAND --help'.

Request help for a subcommand:

#
1
#
#
1
#
#
1

#
1
#
#
1
#
#

pllsak
pllsak
pllsak
pllsak
pllsak
pllsak
pllsak
pllsak

copy-key -h
export-key -h
extract-pubkey -h
generate-key -h
import-key -h
list-key -h
remove-key -h
set-key-attr -h

pllsak
pllsak
pllsak
pllsak
pllsak
pllsak
pllsak

copy-cert -h
export-cert -h

import-cert -h
list-cert -h
remove-cert -h
set-cert-attr -h

(see Figure 9 on page 63 and Figure 10 on page 64)

extract-cert-pubkey -h

For the generate-key subcommand, you receive the following information:

62 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

pllsak generate-key -h

Usage: pllsak generate-key [ARGS] [OPTIONS]

ARGS:
KEYTYPE
des
3des
generic KEYBITS
KEYBITS
rsa KEYBITS [PUBL-EXP]

KEYBITS
512

PUBL-EXP
dh GROUP [PRIV-BITS]
GROUP
ffdhe2048
modp1536
DH-PARAM-PEM-FILE
PRIV-BITS
dsa DSA-PARAM-PEM-FILE
ec CURVE

CURVE
prime256vi1

edaas
ibm-dilithium VERSION

VERSION
r2_65

ibm-kyber VERSION
VERSION
r2_768
OPTIONS:

-s,
-pl

--slot SLOT
--pin USER-PIN

--force-pin-prompt
--label LABEL
--attr ATTRS

--id ID

--help

--version
ATTRIBUTES:

p.
M

CKA_PRIVATE
CKA_MODIFIABLE

An uppercase letter sets the corresponding attribute to CK_TRUE, a lower case letter to

CK_FALSE.

The type of the key. One of the following:

Size of the generic key in bits.

Size of the RSA key in bits:

The public exponent for RSA (optional).

The Diffie-Hellman FFC group name or the
name of a DH parameters PEM file:

Size of the DH private key in bits
(optional).

The name of a DSA parameters PEM file.

The curve name. One of the following:

The version of the IBM Dilithium key pair:

The version of the IBM Kyber key pair:

The PKCS#11
The PKCS#11
specified,
Enforce user PIN prompt, even if environment
variable PKCS11_USER_PIN is set, ...

The label of the key to be generated.

slot ID.
user pin. If this option is not

The boolean attributes to set for the key:
PLMBYREDGCVOWUSAXNTTI
The ID of the key to be generated.

Print this help, then exit.

Print version information, then exit.

If an attribute is not set explicitly, its default value is used.

Figure 9. Request help for generate-key

For the generate-key subcommand, you can request help for a selected key type, for example, for an

AES key:

Chapter 9. Managing token keys - p11sak utility 63

Figure 10. Request help for generating AES keys

pllsak generate-key aes -h
Usage: pllsak generate-key [ARGS] [OPTIONS]

ARGS:
KEYTYPE The type of the key. One of the following:
aes KEYBITS
KEYBITS Size of the AES key in bits:
128
192
256
OPTIONS:

-s, --slot SLOT The PKCS#11 slot ID.

-p, --pin USER-PIN The PKCS#11 user pin. If this option is not
specified,

--force-pin-prompt Enforce user PIN prompt, even if environment
variable PKCS11_USER_PIN is set, ...

-L, --label LABEL The label of the key to be generated. For
asymmetric keys set individual labels for
public and private key, ...

-a, --attr ATTRS The boolean attributes to set for the key:
PLMBYREDGCVOWUSAXNTTI
(optional). ...

-i, --id ID The ID of the key to be generated.

-h, --help Print this help, then exit.

-v, --version Print version information, then exit.

ATTRIBUTES:

‘P CKA_PRIVATE

‘M CKA_MODIFIABLE

'B': CKA_COPYABLE

An uppercase letter sets the corresponding attribute to CK_TRUE, a lower
case letter to CK_FALSE.

If an attribute is not set explicitly, its default value is used.

Not all attributes may be accepted for all key types.

Attribute CKA_TOKEN is always set to CK_TRUE.

64 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 10. Migrating to FIPS compliance -
pkcstok_migrate utility

Use the pkcstok_migrate tool to migrate the data stores of an EP11 token, a CCA token, an ICA
token, or a Soft token to a FIPS compliant format. This FIPS compliant data format is available starting
with openCryptoki version 3.12. You can use this tool to migrate tokens created with all versions of
openCryptoki, because also for version 3.12 or later, the old non-compliant format is the default. Being
FIPS compliant, the token data is stored in a format that is better protected against attacks than the
previously used data format.

For further information, read the pkcstok_migrate man page.

Parameters

pkcstok_migrate -h

Help: pkcstok_migrate -h
-h, --help Show this help
Options:
-s, --slotid SLOTID PKCS slot number (required)
-d, --datastore DATASTORE token datastore location (required)
-c, --confdir CONFDIR location of opencryptoki.conf (required)
-u, --userpin USERPIN token user pin (prompted if not specified)
-p, --sopin SOPIN token SO pin (prompted if not specified)
-v, --verbose LEVEL set verbose level (optional):
none (default), error, warn, info, devel, debug
Functionality
The utility:

« directly accesses the token objects via file operations;

- assumes that no other action is currently running. It checks if the slot manager pkecsslotd is running
and asks the user to end it if yes.

Before making any changes to the repository, a temporary copy is created. Migration takes place on
this copy. The copied folder is suffixed with _PKCSTOK_MIGRATE_TMP. If the migration fails, the old
repository is still available.

Running a migration again, would remove any remaining backups from previous runs, create a new
backup, and then do the migration.

- After successfully migrating all token objects, the original repository folder is renamed by appending the
suffix _BAK, and the new repository folder gets the name of the original one.

« Also, the opencryptoki.conf file is updated by inserting (or updating) the tokvexrsion parameterin
the token’s slot configuration. The old configuration file is still available with the same suffix _BAK.

This makes the new repository immediately usable after restarting the pkcsslotd daemon, but also
allows the user to switch back manually to the old token format.

Example: To transform a CCA token into the FIPS compliant data format perform a sequence of
commands with your adequate input, similar to the following:

systemctl stop pkcsslotd.service /* for Linux distributions providing systemd x/
/* or x/
service pkcsslotd stop

pkcstok_migrate --slot 2 --sopin 76543210 --userpin 12345678
--confdir /etc/opencryptoki

© Copyright IBM Corp. 2021, 2023 65

https://www.mankier.com/1/pkcstok_migrate

--datastore /var/lib/opencryptoki/ccatok

service pkcsslotd start

The output may look similar to the following:

pkcstok_migrate:
Summary of input parameters:
datastore = /var/lib/opencryptoki/ccatok
confdir = /etc/opencryptoki
slot ID = 2
user PIN specified
SO PIN specified

Slot ID 2 points to DLL name libpkcsll_cca.so, which is a CCA token.
Data store /usr/local/var/lib/opencryptoki/ccatok points to this token info:

label : IBM CCA PKCS #11
manufacturerID : IBM

model : CCA

serialNumber

hardwareVersion : 0.0
firmwareVersion : 0.0
Migrate this token with given slot ID? y/n

y

Migrated 2 object(s) out of 2 object(s).

Pre-migration data backed up at '/usr/local/var/lib/opencryptoki/ccatok_BAK'
Config file backed up at '/usr/local/etc/opencryptoki/opencryptoki.conf_BAK'
Remove these backups manually after testing the new repository.
pkcstok_migrate finished successfully.

66 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 11. Displaying usage statistics - pkcsstats
utility

openCryptoki provides a command line program pkcsstats to display usage statistics of mechanisms
per slot IDs, either on the basis of individual users or accumulated for all users, and broken down to
available key-sizes.

Description

The pkcsstats utility displays mechanism usage statistics for openCryptoki. Usage statistics are
collected per user. For each user, mechanism usage is counted per configured slot and mechanism.

For each mechanism, one counter exists for each cryptographic strength of the key used with the
mechanism. The available strengths are defined in the strength configuration file /etc/opencryptoki/
strength.conf (see “Strength configuration file” on page 25). A strength of zero is used to count those
mechanisms that do not use a key, or where the key strength is less than 112 bits.

Note: The strength does not specify the cryptographic strength of the mechanism, but the cryptographic
strength of the key used with the mechanism (if any). For example, usage of mechanism CKM_SHA256 is
reported under strength 0, because no key is used with this mechanism. However, usage of mechanism
CKM_AES_CBC is reported under strength 128, 192, or 256, dependent on the cryptographic size of the
used AES key.

Statistics collection is enabled by default. You can disable and configure the collection in the
openCryptoki configuration file /etc/opencryptoki/opencryptoki.conf using option statistics
(off|on[,implicit][,internal]). For example, you can collect only mechanisms that are explicitly
called by a PKCS #11 application or also collect those mechanisms that are called implicitly by another
mechanism. So before using the pkcsstats utility, be sure to understand the information provided in
“Collecting statistics” on page 23.

The usage of a mechanism is counted once when the cryptographic operation is successfully

initialized, that is, during C_DigestInit (), C_EncryptInit(), C_DecryptInit(),C_SignInit(),
C_SignRecoverInit(),and C_VerifyInit (). Multi-part operations involving the update functions
like C_DigestUpdate(), C_EncryptUpdate(), C_DecryptUpdate(),C_SignUpdate(), and
C_VerifyUpdate (), are not counted additionally. Other operations such as key generation,

key derivation, key wrapping and unwrapping are counted during the respective functions like
C_GenerateKey(), C_GenerateKeyPair (), C_DeriveKey (), C_UnwrapKey().

Statistics are collected in a POSIX shared memory segment per user. This shared memory segment
contains all counters for all configured slots, mechanisms, and key-strengths. The shared memory
segments are named var.lib.opencryptoki_stats_<uid>, where <uid> is the numeric user ID of
the user the statistics belong to. The shared memory segments are automatically created for a user on the
first attempt to collect statistics. All users can only display their own statistics, and only the root user can
display all users' statistics.

Invocation and usage

Get an overview about available options using the pkcsstats -h command:

pkcsstats -h
Usage: pkcsstats [OPTIONS]

Display mechanism usage statistics for openCryptoki.

OPTIONS:

-U, --user USERID show the statistics from one user. (root user only)

-S, --summary show the accumulated statistics from all users. (root user only)
-A, --all show the statistic tables from all users. (root user only)

-a, --all-mechs show all mechanisms, also those with all zero countezrs.

-s, --slot SLOTID show the statistics from one slot only.

-r, --reset set the own statistics to zero.

© Copyright IBM Corp. 2021, 2023 67

-R, --reset-all reset the statistics from all users. (root user only)
-d, --delete delete your own statistics.

-D, --delete-all delete the statistics from all users. (root user only)
-j, --json output the statistics in JSON format.

-h, --help display help information.

where

-U, --user <user_id>
specifies the user ID of the user who wants to display, reset, or delete statistics. If this option is
omitted, the statistics of the current user are displayed, reset, or deleted. Only the root user can
display, reset, or delete statistics of other users.

=S, ==-summary
shows the accumulated statistics from all users. Only the root user can display the accumulated
statistics from other users.

-A, —-all
shows the statistics from all users. Only the root user can display statistics from all users.

-a, ——all-mechs
shows the statistics for all mechanisms, also those with all-zero counters. If this option is omitted,
only those mechanisms are displayed where at least one counter is non-zero.

-s, —=slot <slot_id>
specifies the slot ID for which to display statistics. If this option is omitted, the statistics for all
configured slots are displayed.

-r, ——reset
resets the statistics counters for the current user, or for the user specified with the ——usex option.
Only the root user can reset the statistics from other users.

-R, —-reset-all
resets the statistics counters for all users. Only the root user can reset the statistics from other users.

-d, --delete
deletes the shared memory segment containing the statistics counters for the current user, or for the
user specified with the ——user option. Only the root user can delete the statistics from other users.

-D, —-delete-all
deletes the shared memory segment containing the statistics counters for all users. Only the root user
can delete the statistics from other users.

=j, ~—ison
shows the statistics in JSON format to obtain the values in a machine readable format for automatic
processing.

=h, ==help
displays help text and exits.
Example (default table format):

To obtain the statistics for the root user in slot 2, where a CCA token is installed, enter the shown
command:

pkcsstats -s 2 -U root
User: root
Slot: 2 (label: 'cca' model: 'CCA')

mechanism | strength 0 strength 112 strength 128 strength 192 strength 256
| or no key
_______________________________ B m o m e e e e e
CKM_AES_CBC | 0 0 16 16 16
CKM_AES_CBC_PAD | 0 0 8 8 8
CKM_AES_ECB | 0 0 18 16 16
CKM_AES_KEY_GEN | 0 0 22 20 20
CKM_RSA_PKCS_KEY_PAIR_GEN | 24 0 0 0 0
_______________________________ o e e e e e

Figure 11. pkcsstats output in table format

68 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Example (JSON format):

The example from Figure 11 on page 68 requested in JSON format looks like shown in Figure 12 on page
69:

[root@systeml opencryptoki]# pkcsstats -s 2 -U root --json

"host": §
"nodename": "al1l251960.domain.com",
"sysname": "systeml",
"release": "6.0.7-301.fc37.s390x",
"machine": "s390x",
"date": "2023-06-02T11:14:25Z2"
Fo
"users": [
1
"user": "root",
"slots": [
1
"slot": 2,
"token-present": true,
“label": "cca",
"model": "CCA",
"mechanisms": [
1
"mechanism": "CKM_AES_CBC",
"strength-0": 0,
"strength-112": 0,
"strength-128": 16,
"strength-192": 16,
"strength-256": 16
o
1
"mechanism": "CKM_AES_CBC_PAD",
"strength-0": 0O,
"strength-112": 0O,
"strength-128": 8,
"strength-192": 8,
"strength-256": 8
§o
i
"mechanism": "CKM_AES_ECB",
"strength-0": 0O,
"strength-112": 0O,
"strength-128": 18,
"strength-192": 16,
"strength-256": 16
}I
1
"mechanism": "CKM_AES_KEY_GEN",
"strength-0": 0,
"strength-112": 0,
"strength-128": 22,
"strength-192": 20,
"strength-256": 20
Fo
1
"mechanism": "CKM_RSA_PKCS_KEY_PAIR_GEN",
"strength-0": 24,
"strength-112": 0O,
"strength-128": 0O,
"strength-192": 0O,
"strength-256": 0
3
]
3
]
¥
]
3

Figure 12. pkcsstats output in JSON format

For further information you can read the pkcsstats man page.

Chapter 11. Displaying usage statistics - pkcsstats utility 69

70 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 12. Managing a concurrent master key
change - pkcshsm_mk_change utility

For CCA tokens and EP11 tokens, openCryptoki provides a command line program pkcshsm_mk_change
to manage the concurrent re-enciphering of secure keys for a HSM master key change while applications
using openCryptoki workload are running.

Description

The pkcshsm_mk_change utility initiates and maintains master key changes for openCryptoki. It
manages and controls the re-enciphering of secure keys for a concurrent HSM master key change. It
maintains the state of each master key change operation on files stored in the file system (that is, in
directory /var/lib/opencryptoki/HSM_MK_CHANGE/). Multiple master key change operations can be
ongoing concurrently to running workloads. Concurrency between multiple master key change operations
themselves is only possible if these changes do not apply to the same APQNs and the same master key
types simultaneously. Such a concurrency is only possible on the same APQN for different master key
types or on different APQNs.

Notes:

- A master key is called wrapping key in EP11. In the pkcshsm_mk_change utility, the term master key is
generally used and applies to both and therefore, this term might denote an EP11 wrapping key.

Coordination of a concurrent master key rotation

Your security policies may require that in certain time intervals a new master key must be generated,
for example, using a Trusted Key Entry workstation. This new master key must be loaded onto the
cryptographic coprocessors . Changing master keys needs to be coordinated between the HSM security
officer and an openCryptoki administrator and possibly also between further applications. All secure
keys enciphered by the master key need to be re-enciphered with the new master key as part of the
master key change process. However, when performing the master key change process with the help
of pkcshsm_mk_change, applications can continue to run while the master key change procedure is
performed.

Two parties are involved in a master key change on the HSM. The openCryptoki administrator uses the
pkcshsm_mk_change tool to initiate and control a master key change operation, coordinated with the
HSM security officer who performs the master key changes on the HSMs via the TKE (Trusted Key Entry)
workstation. During the ongoing master key change, applications using openCryptoki can continue to
run without being affected, besides possibly a slight performance degradation while master key change
actions are performed.

A concurrent master key change works as follows:

1. The HSM security officer loads the new master key(s) using the TKE into the NEW register of the set of
APQNSs logically belonging together, that is, APQNs configured with the same master key.

2. The HSM security officer notifies the openCryptoki administrator that a new master key has been
loaded for all the APQNs. Preferably, the HSM security officer also communicates the master key
verification pattern of the new master key to the openCryptoki administrator.

3. The openCryptoki administrator uses the pkcshsm_mk_change tool to initiate a master key change
for openCryptoki, specifying the set of APQNs that are to be changed, and the verification patterns of
the new master keys to be set (per master key type). The tool communicates with the openCryptoki
runtime used by the running applications and performs and controls the re-encipherment of the key
objects with the new master key.

© Copyright IBM Corp. 2021, 2023 71

4. When the pkcshsm_mk_change tool has completed its re-encipherment processing, the
openCryptoki administrator notifies the HSM security officer that openCryptoki is prepared to have
the new master keys being activated.

5. The HSM security officer coordinates with other (non-openCryptoki) applications and once all users of
the APQNs are prepared, he or she activates the new master keys on the APQNs.

6. The HSM security officer notifies the openCryptoki administrator as soon as for all APQNs the new
master key has been activated.

7. The openCryptoki administrator uses the pkcshsm_mk_change tool to finalize the master key
change for openCryptoki. The tool communicates with the openCryptoki runtime used by the running
applications and performs and controls the finalization of the re-encipherment of the key objects with
the new master key.

8. When the pkcshsm_mk_change utility has completed its finalizing processing, the master key change
operation is complete.

The time between the moment when the new master key has been loaded on all APQNSs, and the
moment when the new master keys are activated can even last several days, due to the time required for
coordination with other (non-openCryptoki) applications or users of the APQNs.

You can restart the Linux system where openCryptoki runs while a master key change is ongoing, provided
that the re-encipherment and finalization steps (step “3” on page 71 and step “7” on page 72) are not
interrupted.

You can cancel an ongoing master key change operation, as long as for none of the APQNs the new master
key has been activated, that is up to step “5” on page 72.

A backup of the old secure keys is kept in attribute CKA_IBM_OPAQUE_OLD of the key objects. In case
something goes wrong, you can restore the old secure keys from that attribute. For this purpose, you must
implement a PKCS #11 application accessing all the key objects through regular PKCS #11 API calls to
restore the secure keys by moving the secure keys from CKA_IBM_OPAQUE_OLD to CKA_IBM_OPAQUE.

Considerations for a master key rotation on CCA cryptographic coprocessors
A CCA cryptographic adapter has four different master key types:

SYM
A Triple-DES master key, used to encipher DES and Triple-DES secure keys.

ASYM:
A Triple-DES master key, used to encipher older RSA secure keys.

AES
An AES master key, used to encipher AES secure keys.

APKA
An AES master key, used to encipher ECC secure keys, and newer RSA secure keys (those with section
X’30’ and X’37’). This master key type is also used for QSA key types in CCA, wich are currently not yet
supported by openCryptoki.

All four master keys can be changed together, or individually. Consequently, though this is not typical for
a security environment, one can initiate multiple concurrent master key change operations, separated for
the different CCA master key types, possibly for the same APQNs. An openCryptoki CCA token uses only
the SYM, AES and APKA master keys. The ASYM master key is not used, because only newer RSA secure
key types are used.

A CCA cryptographic adapter has three registers per master key type:

NEW
New master keys are loaded into this register. Master keys in the NEW register can only be used to
re-encipher secure keys.

CURRENT
The current master key to perform cryptographic operations with secure keys.

72 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

OLD
The previous master key. Secure keys enciphered with the master key in the OLD register can still be
used to perform cryptographic operations.

Invocation and usage

The general invocation scheme of the command line tool is:

pkcshsm_mk_change syntax - General invocation scheme

»— pkcshsm_mk_change — <subcommand> L J L J >«
args options

where

subcommand
may accept one of the following values:

- reencipher (see “Initiate a master key change plus re-encryption for openCryptoki” on page 73)

« list (see “List master key change operations” on page 75)

« finalize (see “Finalize a master key change for openCryptoki” on page 75)

- cancel (see “Cancel a master key change for openCryptoki” on page 76)

For further information you can read the pkcshsm_mk_change man page.

Initiate a master key change plus re-encryption for openCryptoki

Use the pkcshsm_mk_change reenciphex subcommand to initiate a master key change for the
specified APQNs and the specified master key (wrapping key) types together with the verification patterns
of the new master keys to be set. This subcommand also re-enciphers all session and token key objects
of the affected tokens. It stores information persistently, returns and prints the ID of the initiated master
key change operation. You must use this subcommand at the point in time when all APQNs have the new
master key loaded but not yet set (that is, not yet activated). This subcommand tells the openCryptoki
runtime within all applications using openCryptoki to re-encipher their key objects. It waits until all
applications' openCryptoki runtime instances have completed to re-encipher their key objects. For each
master key type that is changed, the verification pattern of the new, to be set master key must be
specified.

A cryptographic adapter in CCA coprocessor mode can have four different types of master keys: SYM,
ASYM, AES, and APKA. The CCA token of openCryptoki only uses SYM, AES, and APKA. Each master key
type can be changed individually, or together with others. You can use the TKE or the panel.exe tool to
qguery the master key verification patterns issuing the following command:

panel.exe --mk-query --mktype=<type> --mkregister=NEW

For master key types SYM and ASYM, use the hex string under [RND], for types AES and APKA use the hex
string under [VER]. For AES and APKA you can also find the master key verification patterns in sysfs:

cat /sys/bus/ap/devices/<card>.<domain>/mkvps
A cryptographic coprocessor in EP11 coprocessor mode has only one master key, called the EP11
wrapping key (WK).

The pkcshsm_mk_change reenciphexr subcommand queries all available slots and determines if the
token in the slot is affected by the master key change, based on the list of APQNs and master key types.
For each affected slot, it prompts for the USER PIN.

Chapter 12. Managing a concurrent master key change - pkcshsm_mk_change utility 73

On successful completion, the ID of the master key change operation is displayed. This ID must be
specified when finalizing or canceling the operation with the £finalize or cancel subcommand.

pkcshsm_mk_change syntax - Initiate a master key change

»— pkcshsm_mk_change — reencipher L J >
--apqgns|-a <apgns>

»
»

A 4

»
»

L --epl1-wkvp|-e <wrapping key verification pattern> J

A 4

»
»

L --cca-sym-mkvpl-s <master_key,_verification_pattern> J

»
»

L --cca-asym-mkvp|-S <master_key _verification_pattern> —J

A 4

A 4

L --cca-aes-mkvp|-A <master_key _verification_pattern> —J

»d

>4

L --cca-apka-mkvp|-p <master_key verification_pattern> J L --verbosel|-v </eve/> J

The options for all subcommands are explained in “Options for the pkcshsm_mk_change utility” on page
76.

Example: Initialization of an EP11 wrapping key change:

The following example shows how to initiate a master key change for all EP11 tokens that are allowed

to access the specified APQNs. This master key change will then start concurrently to all running
applications that exploit the applicable EP11 tokens. A prerequisite of this action is that a new EP11
wrapping key (or master key) has been loaded into the NEW register using the TKE. You need to know the
USER PINs of all affected slots.

pkcshsm_mk_change reencipher --apqns 06.0033,0e.0033,1c.0033 --epll-wkvp
e£92899ebe57291ec8e8716d850ee2£7

WARNING: The following slots have no token present:
Slot ©
ATTENTION: If you start a concurrent master key change operation while not
all expected tokens are present, the key objects of those tokens may be lost,
if the token would be affected by the master key change.
Continue [y/N]? vy
The following tokens are affected by this master key change:
Slot 4: Label: epll
Enter the USER PIN for slot 4:
Re-enciphering, please wait...
Completed.

Master key change operation 'uNA5QP' created.

Once the new master keys have been set/activated:
- If you specified EXPECTED_MKVPS in your token configuration file(s),
you must now replace the old MKVPs with the new MKVPs.
- Run 'pkcshsm_mk_change finalize --id uNA5QP' when the new master
keys have been set/activated.

The ID of this master key change operation is uNA5QP and can or must be re-used in option --id|-1iin
subsequent subcommands.

Example: Initialization of a CCA master key change for various master key types:

74 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

pkcshsm_mk_change reencipher --apqns 08.0033,09.0033,1b.0033 --cca-sym-mkvp 130E2053F18E5F4C
--cca-asym-mkvp FS8AE2ACF8BFC57F0
--cca-aes-mkvp 7D10D17BC8A409C4
--cca-apka-mkvp 82A5E2CD5030D5EC

WARNING: The following slots have no token present:

fﬁé following tokens are affected by this master key change:
Slot 2: Label: cca

Master key change operation 'FYZ4WC' created.

The ID of this master key change operation is FYZ4WC and can or must be re-used in option -i| --id in
subsequent subcommands.

For further information you can read the pkcshsm_mk_change man page.

List master key change operations

Use the pkcshsm_mk_change list subcommand to list currently active master key change operations.
If you do not specify an operation ID in option --id| - i (described in “Initiate a master key change

plus re-encryption for openCryptoki” on page 73), all currently active master key change operations are
displayed, otherwise only the specified one is displayed.

pkcshsm_mk_change syntax - List master key change operations

»— pkcshsm_mk_change — list >4
L --id|-i <operation_id> —J L --verbosel|-v <fevel> J

Example of listing a master key change operation:

To display information about the current master key change process as initialized with the command
shown in “Initiate a master key change plus re-encryption for openCryptoki” on page 73, enter the
following command:

{# pkcshsm_mk_change list -i uNA5QP

Operation: uNA5QP
State: Key objects have been re-enciphered,
new master key(s) can now be set/activated
APQNs:
06.0033
OE.0033
1C.0033
New master key verification patterns:
Type: EP11
MKVP : EF92899EBE57291EC8E8716D850EE2F7

Affected slots:
Slot: 4 Label: epll
Current master key verification patterns:
Type: EP11
MKVP : 8B991263E3A8FAE4BEOD5ECBFOA4DFIE

The optional -i parameter specifies the operation ID of the current master key change process. For a
detailed description, see “Initiate a master key change plus re-encryption for openCryptoki” on page 73.

Now you need to activate the new EP11 master key using the TKE. Then you can finalize the master key
change process as described in “Finalize a master key change for openCryptoki” on page 75.

Finalize a master key change for openCryptoki

Chapter 12. Managing a concurrent master key change - pkcshsm_mk_change utility 75

Use the pkcshsm_mk_change finalize subcommand to finalize a master key change operation when
the new master key has been activated on the APQNs. You must specify the ID of the master key change
operation to be finalized.

pkcshsm_mk_change syntax - Finalize a master key change

»— pkcshsm_mk_change — finalize — --id|-i <operation_id> >«
L --verbose|-v </eve/> J

Example of finalizing a master key change:

To finalize the current master key change process as initialized with the command shown in “Initiate a
master key change plus re-encryption for openCryptoki” on page 73, enter the following command.

pkcshsm_mk_change finalize --id uNA5QP
Enter the USER PIN for slot 4:
Finalizing, please wait...

Master key change operation 'uNA5QP' successfully finalized.

Cancel a master key change for openCryptoki

Use the pkcshsm_mk_change cancel subcommand to cancel a master key change operation. You must
specify the ID of the master key change operation to be canceled. You can only cancel a master key
change operation as long as for none of the APQNs the new master key has been set (activated).

pkcshsm_mk_change syntax - Cancel a master key change

»— pkcshsm_mk_change — cancel — --id|-i <operation_id> L _J >«
--verbose|-v <leve/>

Example of canceling a master key change:

To cancel the current master key change, as initialized with the command shown in “Initiate a master key
change plus re-encryption for openCryptoki” on page 73, enter the following command:

i# pkcshsm_mk_change cancel --id uNA5QP
Enter the USER PIN for slot x:

/* (==> prompted for every effected token) */
Canceling, please wait...

Master key change operation 'uNA5QP' successfully canceled.

Options for the pkcshsm_mk_change utility
The following list describes the meanings of all options available for all subcommands:

--apqns|-a
This option specifies a comma separated list of APQNs for which a master key change is to be
performed. Each APQN must be specified in the form card.domain, denoting the cryptographic
adapter and the domain on the adapter card, for example, Oa. 0024, where both numbers are
specified with hexadecimal format, as displayed by the 1szcxrypt command.

--ep1l1-wkvp|-e
In parameter <wrapping_key_verification_pattexrn>, this option specifies the EP11 wrapping

key verification pattern (WKVP) of the new EP11 wrapping key (master key) to be set as a 16 bytes
hexadecimal string.

76 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

You can use the TKE or the ep11info tool to query the current wrapping key verification pattern
(WKVP) of an EP11 APQN:

epllinfo -m <adapter> -d <domain> -D
You can also find the wrapping key verification pattern for EP11 APQNs in sysfs:
cat /sys/bus/ap/devices/<card>.<domain>/mkvps

For more information about the epddinfo tool, see Obtaining information about an EP11 environment
with the epl1l1info tool.

--cca-sym-mkvp|-s
In parameter <mastex_key_verification_pattexn>, this option specifies the CCA master key
verification pattern (MKVP) of the new CCA SYM master key to be set as an eight bytes hex string. You
can use the TKE or the panel. exe tool to query the master key verification patterns. Use the hex
string under [RND].

panel.exe --mk-query --mktype=SYM --mkregister=NEW

--cca-asym-mkvp|-S
In parameter <mastex_key_verification_pattexn>, this option specifies the CCA master key
verification pattern (MKVP) of the new CCA ASYM master key to be set as an eight bytes hex string.
You can use the TKE or the panel. exe tool to query the master key verification patterns. Use the hex
string under [RND].

panel.exe --mk-query --mktype=ASYM --mkregister=NEW

--cca-aes-mkvp|-A
In parameter <mastex_key_verification_pattexn>, this option specifies the CCA master key
verification pattern (MKVP) of the new CCA AES master key to be set as an eight bytes hex string. You
can use the TKE or the panel. exe tool to query the master key verification patterns. Use the hex
string under [VER].

panel.exe --mk-query --mktype=AES --mkregister=NEW

You can also find the AES master key verification patterns in sysfs as previously described.
--cca-apka-mkvp|-p

In parameter <mastex_key_verification_pattexn>, this option specifies the CCA master key

verification pattern (MKVP) of the new CCA APKA master key to be set as an eight bytes hex string.

You can use the TKE or the panel.exe tool to query the master key verification patterns. Use the hex

string under [VER].

panel.exe --mk-query --mktype=APKA --mkregister=NEW

You can also find the APKA master key verification patterns in sysfs as previously described.
--id|-i

This option specifies the ID of the master key change operation in parameter <operation_id>,

for example, in the pkcshsm_mk_change finalize subcommand. You cannot specify this option

for the reenciphex subcommand, however this ID is produced and displayed as a result of a

successful completion of the xreenciphex subcommand. The use of this option is only required for

the £inalize and cancel subcommands, and is optional for the 1ist subcommand.

--verbose|-v
Specifies the verbose level (optional): none (default), error, warn, info, devel, or debug.

Chapter 12. Managing a concurrent master key change - pkcshsm_mk_change utility 77

https://www.ibm.com/docs/en/linux-on-systems?topic=utilities-ep11-information-tool-ep11info
https://www.ibm.com/docs/en/linux-on-systems?topic=utilities-ep11-information-tool-ep11info

--help|-h
Displays help text and exits. For example you can request help for the complete tool or for the
subcommands separately:

pkcshsm_mk_change -h
pkcshsm_mk_change initialize -h
pkcshsm_mk_change finalize -h
pkcshsm_mk_change cancel -h
pkcshsm_mk_change list -h

78 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Part 4. Token specifications

Application programmers find documentation about available token mechanisms to be invoked
from cryptographic applications. openCryptoki administrators find additional token-specific tools and
information about required token-specific configurations, if applicable.

Each token plugged into openCryptoki can implement a selection of the provided PKCS #11 mechanisms
to be used in application programs. The names of these mechanisms start with the prefix "CKM_". For
example, the CKM_AES_KEY_GEN mechanism generates an AES cryptographic key. This mechanism is
offered by the CCA token, the ICA token, the EP11 token, and the Soft token, and can therefore be used to
generate an AES key by any application that accesses one or more of these tokens.

Companies which collaborate with the openCryptoki open source community can contribute their
company-specific mechanisms to openCryptoki. For example, all mechanisms which IBM adds to
openCryptoki in addition to the PKCS #11 standard start with the vendor-specific prefix "CKM_IBM_".

An example for an IBM-specific PKCS #11 mechanisms is CKM_IBM_SHA3_384_HMAC which you can use
from an EP11 token to sign and verify a message using the SHA3-384 hash function.

Issue the pkesconf command with the -m parameter to display all mechanisms that are supported by
the token of interest residing in the slot specified with parameter -c.

$ pkcsconf -m -c <slot>

For example, if you want to display all supported PKCS #11 mechanisms of an ICA token that resides in
slot number 1 in your environment, issue the following command:

pkcsconf -m -c 1

The output depends on the supported Crypto Express coprocessors together with the openCryptoki
version. The beginning of the output list may look as shown in Figure 13 on page 79. The name
corresponds to the PKCS #11 specification. Each mechanism provides its supported key size and some
further properties such as hardware support and mechanism information flags. These flags provide
information about the PKCS #11 functions that may use the mechanism. Typical functions are for
example, encrypt, decrypt, wrap key, unwrap key, sign, or verify. For some mechanisms, the flags show
further attributes that describe the supported variants of the mechanism.

Figure 13. List of supported mechanisms for a certain token

Mechanism #0
Mechanism: Ox0 (CKM_RSA_PKCS_KEY_PAIR_GEN)
Key Size: 512-4096
Flags: 0x10001 (CKF_HW|CKF_GENERATE_KEY_PAIR)
Mechanism #1
Mechanism: Ox1 (CKM_RSA_PKCS)
Key Size: 512-4096
Flags: 0x67B01 (CKF_HW|CKF_ENCRYPT |CKF_DECRYPT|CKF_SIGN|CKF_SIGN_RECOVER|
CKF_VERIFY|CKF_VERIFY_RECOVER|CKF_WRAP | CKF_UNWRAP)
Mechanism #2
Mechanism: 0x3 (CKM_RSA_X_509)
Key Size: 512-4096
Flags: 0x67BO1 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_SIGN|CKF_SIGN_RECOVER|
CKF_VERIFY|CKF_VERIFY_RECOVER|CKF_WRAP | CKF_UNWRAP)

The following information about openCryptoki token types is provided:

Chapter 13, “Common token information,” on page 81
Chapter 14, “CCA token,” on page 91

Chapter 15, “ICA token,” on page 101

Chapter 16, “EP11 token,” on page 107

© Copyright IBM Corp. 2021, 2023 79

« Chapter 17, “Soft token,” on page 125
« Chapter 18, “Directory content for CCA, ICA, EP11, and Soft tokens,” on page 131
« Chapter 19, “ICSF token,” on page 135

Note: Linux on IBM Z and IBM LinuxONE do not support the Trusted Platform Module (TPM) token library.

80 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 13. Common token information

Read information that applies to all openCryptoki token types.

You can introduce one or multiple token instances of all token types into the openCryptoki framework.
For this purpose, you must define a slot entry for each desired token instance in the global openCryptoki
configuration file called opencryptoki.conf.

If you use multiple token instances, you must specify a unique token directory in the slot entry for each
instance, using the tokname attribute. This token directory receives the token-individual information (like
for example, key objects, user PIN, SO PIN, or hashes). Thus, the information for a certain token instance
is separated from other tokens.

Adding tokens to openCryptoki

You can introduce one or multiple token instances of any type into the openCryptoki framework. For
this purpose, you must define a slot entry for each desired token instance in the global openCryptoki
configuration file called opencryptoki.conf.

Note: For CCA tokens and EP11 tokens, you can configure each token instance differently using a token-
specific configuration file (CCA token configuration file or EP11 token configuration file, specified with the
confname option, see “Defining a CCA token configuration file ” on page 91 or “Defining an EP11 token
configuration file” on page 107).

With multiple tokens of a specific token type configured, you can assign dedicated adapters and domains
to different tokens respectively. This ensures data isolation between multiple applications.

If you use multiple token instances of one certain token type, you must specify a unique token directory
in the slot entry for each token, using the tokname attribute. This token directory receives the token-
individual information (like for example, key objects, user PIN, SO PIN, or hashes). Thus, the information
for a certain token instance is separated from other token instances.

For example, the default EP11 token directory is /var/lib/opencryptoki/eplltok/. You can use the
default only for a single EP11 token. Examples for multiple token directories can be:

/var/lib/opencryptoki/eplltokendl/
/var/lib/opencryptoki/eplltokend2/
/var/lib/opencryptoki/ccatokendl/
/var/lib/opencryptoki/ccatokend2/

Note: A certain token type configuration applies to all applications that use tokens of this type.

Adding a slot entry for a token in opencryptoki.conf

The default openCryptoki configuration file opencryptoki.conf (see Figure 4 on page 22) provides a
slot entry for a CCA token, preconfigured to slot #2 and a slot entry for an EP11 token, preconfigured to
slot #4. Each slot entry must set the std11 attribute to the appropriate slot token dynamic link library
(STDLLs), for example, 1ibpkcs11_epll.so for an EP11 token.

You can check the entries in the default opencryptoki. conf file to find out whether you can use it as is.

For each configured EP11 token, you must create a specific token configuration file. For a CCA token,
such a configuration file is optional. A default configuration file is shipped with openCryptoki for both
token types. The default EP11 token configuration file is only valid if all APQNs assigned to the token are
configured with the same master key. For the CCA token, the CCA adapter selected as default adapter
must be configured with the desired master keys.

An EP11 token configuration file, for example, defines the target adapters and target adapter domains to
which the EP11 token sends its cryptographic requests.

© Copyright IBM Corp. 2021, 2023 81

In turn, each slot entry in the global openCryptoki configuration file for CCA and EP11 tokens must specify
the name of the used token-specific configuration file (if applicable for a CCA token). For this purpose,

for both token types, use the confname attribute with the unique name of the respective CCA token
configuration file or EP11 token configuration file as value.

The example from Figure 14 on page 82 configures two EP11 tokens in slots 4 and 5 in the openCryptoki
configuration file. It defines the names of the specific token configuration files to be ep11tok01.conf
and epll1tok02.conf. Per default, these files are searched in the directory where openCryptoki
searches its global configuration file. Figure 19 on page 113 shows an example of an EP11 token
configuration file and Figure 16 on page 93 shows an example of a CCA token configuration file.

slot 4
i

stdll = libpkcsl1ll_epll.so
confname = eplltokOl.cont
tokname = eplltokenOl
description = "Epll Token"
manufacturer = "IBM"
hwversion = "4.11"
firmwareversion = "2.0"

slot 5
stdll = libpkcsll_epll.so
confname = eplltok02.conf

tokname = eplltoken02
b

Figure 14. Multiple EP11 token instances

How to recognize tokens

You can use the pkesconf -t command to display information about all available tokens. You can check
the slot and token information, and the PIN status at any time.

The screen from Figure 15 on page 83 presents excerpts of a pkcsconf -t command output. The slot
number is associated with the shown token number. The ICA token is plugged into slot 1. Therefore, you
see information about the ICA token with the label IBM ICA PKCS #11 in section Token #1 Info.
Accordingly, in Figure 15 on page 83, you see a CCA token in slot 2, a Soft token in slot 3, and an EP11
token in slot 4.

82 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

$ pkcsconf -t

Token #1 Info:
Label: IBM ICA PKCS #11
Manufacturer: IBM
Model: ICA
Serial Number:
Flags: 0x880445 (RNG|LOGIN_REQUIRED|CLOCK_ON_TOKEN|TOKEN_INITIALIZED|
USER_PIN_TO_BE_CHANGED |
SO_PIN_TO_BE_CHANGED)

Sessions: 0/[effectively infinite]
R/W Sessions: [information unavailable]/[effectively infinite]
PIN Length: 4-8
Public Memory: [information unavailable]/[information unavailable]
Private Memory: [information unavailable]/[information unavailable]
Hardware Version: 0.0
Firmware Version: 0.0
Time: 2021081811215500
Token #2 Info:
Label: ccatok
Manufacturer: IBM
Model: CCA
Serial Number:
Flags: 0x880045 (RNG|LOGIN_REQUIRED|CLOCK_ON_TOKEN|USER_PIN_TO_BE_CHANGED]|

SO_PIN_TO_BE_CHANGED)

Sessions: 0/[effectively infinite]
R/W Sessions: [information unavailable]/[effectively infinite]
PIN Length: 4-8

Token #3.iﬁfo:
Label: softtok

Token #4 Info:
Label: eplltok
Manufacturer: IBM
Model: EP11
Serial Number: 93AABC7X69330380
Flags: 0x80004D (RNG|LOGIN_REQUIRED|USER_PIN_INITIALIZED|CLOCK_ON_TOKEN]|

SO_PIN_TO_BE_CHANGED)

Héfdware Version: 7.28
Firmware Version: 3.1
Time: 2021081811215500

Figure 15. Token information

The most important information is as follows:

- The token Label, either the default name or a name that you assigned at the initialization phase. In
the example, you see that the default name icatok was replaced by IBM ICA PKCS #11 during the
initialization phase. You can initialize a token and change a token label by using the pkcsconf -I
command. As a result, you see the flag TOKEN_INITIALIZED in the output.

- The Flags provide information about the token initialization status, the PIN status, and features
such as RNG (random number generator). They also provide information about requirements, such
as LOGIN_REQUIRED, which means that there is at least one mechanism that requires a session log-in
to use that cryptographic function.

The flag USER_PIN_TO_BE_CHANGED indicates that the user PIN must be changed before the token
can be used. The flag SO_PIN_TO_BE_CHANGED indicates that the SO PIN must be changed before
administration commands can be used.

- The PIN Length range declared for this token.

For more information about the flags provided in this output, see the description of the CK_TOKEN_INFO
structure in PKCS #11 Cryptographic Token Interface Base Specification Version 3.0.

Chapter 13. Common token information 83

https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html

ECC header file

For elliptic curve cryptography (ECC), openCryptoki ships the ec_cuzrves.h header file. This file defines
the curves known by openCryptoki.

View an excerpt of the ec_cuzrves. hfile.

Note: Whether a curve is actually supported by openCryptoki depends on the utilized token and on the
available hardware.

/*
* 0IDs and their DER encoding for the EC curves supported by OpenCryptoki:
*/

/* brainpoolP160rl: 1.3.36.3.3.2.8.1.1.1 %/
#define OCK_BRAINPOOL_P160R1 i Ox06, 0x09, 0x2B, 0x24, 0x03, 0x03, \
0x02, Ox08, Ox01, Ox01, Ox01 %

/* brainpoolP160t1: 1.3.36.3.3.2.8.1.1.2 %/

#define OCK_BRAINPOOL_P160T1 i Ox06, 0x09, 0x2B, 0x24, 0x03, 0x03, \
0x02, 0x08, O0x01, Ox01, Ox02 t

/* brainpoolP192r1: 1.3.36.3.3.2.8.1.1.3 %/

#define OCK_BRAINPOOL_P192R1 1 0x06, 0x09, 0x2B, 0x24, 0x03, Ox03, \
0x02, 0x08, 0x01, 0x01, Ox03 %

Read the following topics:

« “ECC curves supported by the CCA token” on page 96

« “ECC curves supported by the ICA token” on page 105
« “ECC curves supported by the EP11 token” on page 117.

The selection of curves supported by the Soft token depends on the installed version of OpenSSL.

OID file for post-quantum algorithms

View an excerpt of the pgc_oids. h file.

#ifndef _PQC_OIDS_H_
#tdefine _PQC_OIDS_H_

/*

* 0IDs and their DER encoding for the post-quantum crypto algorithms
* supported by OpenCryptoki:

*/

/* Dilithium Round 2 high-security (SHAKE-256): 1.3.6.1.4.1.2.267.1.6.5 %/
#define OCK_DILITHIUM_R2_65 i 0x06, Ox0B, 0x2B, 0x06, 0x01, Ox04, \
0x01, Ox02, Ox82, Ox0B, 0x01, Ox06, Ox05 %

/* Dilithium Round 2 for outbound authentication: 1.3.6.1.4.1.2.267.1.8.7 %/
#tdefine OCK_DILITHIUM_R2_87 3 Ox06, OxOB, 0x2B, 0x06, Ox01, Ox04, \
Ox01, Ox02, Ox82, OxOB, OxO01, O0x08, 0x07 %

/* Dilithium Round 3 weak (SHAKE-256): 1.3.6.1.4.1.2.267.7.4.4 %/
jtfdefine OCK_DILITHIUM_R3_44 i Ox06, Ox0B, Ox2B, Ox06, Ox01, 0Ox04, \
0x01, Ox02, Ox82, OxOB, Ox07, Ox04, Ox04 %

/* Kyber Round 2 768 (SHAKE-128): 1.3.6.1.4.1.2.267.5.3.3 %/
#define OCK_KYBER_R2_768 i 0x06, OxOB, 0x2B, 0x06, 0x01, Ox04, \
0x01, O0x02, 0x82, O0xO0B, O0x05, Ox03, 0x03 %

/% Kyber Round 2 1024 (SHAKE-128): 1.3.6.1.4.1.2.267.5.4.4 %/
#tdefine OCK_KYBER_R2_1024 5 0x06, Ox0B, 0x2B, 0x06, 0x01, 0x04, \
0x01, 0x02, 0x82, OxOB, Ox05, Ox04, 0x04 }

fendif // _PQC_OIDS_H_

84 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Also read the following topic:

« Chapter 20, “IBM-specific mechanisms,” on page 139

How and why to exploit protected keys

For the CCA token and the EP11 token you can optionally improve the performance of your cryptographic
processing of certain algorithms by enabling the use of protected keys for these tokens. For the use of the
AES XTS cipher mode, exploitation of protected keys is mandatory for these tokens.

The keys processed by the openCryptoki tokens fall into one of the following categories:

clear key
A clear key is an effective key in plain text. That is, the bit pattern of a clear key is the one that is used
by the cipher algorithm. Thus, the clear key is the same as the effective key. The term clear key is
commonly used in the context of IBM Z cryptographic hardware. Therefore, whoever knows the clear
key can perform cryptographic operations (like encrypt or decrypt) using that clear key.

secure key
A secure key is a clear or effective key encrypted by an HSM master key. Secure keys can be used
in cryptographic functions performed by the HSM. Thus, each cryptographic function on a secure key
requires I/O operations to the HSM. A secure key is only usable in the HSM in which it was generated,
or in an HSM that is configured with the same master key as the HSM that was used to generate the
secure key.

protected key
Protected keys are keys encrypted by the machine-generated IBM firmware wrapping key of an LPAR,
a virtual server, or a z/VM® or KVM guest. A protected key is created by IBM Z firmware and can
only be used by the instance of the operating system that created that key. Also, protected keys are
volatile, because they are only valid as long as the LPAR, the virtual server, or the z/VM or KVM guest
that generated the key is running. The operating system has no access to the effective key within
a protected key, and protected keys are useless on any other system. Protected keys are used for
high performance symmetric AES cryptographic functions processed by the CPACF. The CPACF also
provides protected key support for DES/TDES and ECDSA and EdDSA signing functions. As the CPACF
is implemented as a feature of an IBM Z CPU, it performs cryptographic operations at CPU speed.

IBM Z cryptographic hardware can use clear keys, secure keys or protected keys. The difference between
these key types is not the value of the effective key which is the plain text key that is used to encrypt

the data. However, the difference is the strength of protection that is applied to the effective key. And, of
course, resulting from the different strength of protection, there is also a difference in the performance.
There is no difference in the cryptographic algorithms used by the hardware, and the resulting cipher text
is the same for all types of key if the underlying effective key is the same.

When working within the openCryptoki environment, the type of key that you use is determined by the
token type. That is, in openCryptoki there are clear key tokens and secure key tokens:

« ICA tokens and Soft tokens are clear key tokens.

« CCA tokens and EP11 tokens are secure key tokens. Secure keys can only be processed on IBM Z
cryptographic coprocessors configured as HSM with a valid master key. However, openCryptoki on
IBM Z provides an option for these token types to transparently derive a high performance protected
key from a strongly shielded secure key, which provides advantages for certain use cases.

Protected keys versus secure keys
The differences between protected and secure keys are the following:

« In contrast to cryptographic operations performed with protected keys on the CPACF, operations with
secure keys are performed on IBM Z cryptographic coprocessors.

- Protected keys offer performance advantages, but are not quite as secure than secure keys. On the
other hand, secure keys work on tamper-proof hardware security modules like the IBM Z cryptographic
adapters, and therefore require input/output operations.

Chapter 13. Common token information 85

- With CCA tokens and EP11 tokens you can explicitly set a configuration option PKEY_MODE to allow the
derivation of a protected key from a secure key if adequate and required. This derivation then works
transparently during the affected cryptographic operations.

Thus, you can optionally enable CCA and EP11 tokens to exploit the performance optimization provided
by protected keys in contrast to secure keys. If you enable option PKEY_MODE, then all applicable
cryptographic operations are performed with derived or existing protected keys on the CPACF. If no
protected key is allowed or cannot currently be derived, then the affected cryptographic operations are
performed with a secure key on the cryptographic coprocessor.

Protected keys in read-only and read-write sessions
In PKCS #11, an application either opens a read-only or a read-write session.

- In both session types, applications can create, read, modify, and delete session objects. Session
objects have the attribute CKA_TOKEN=FALSE.

« Inread-write sessions, applications can additionally create, read, modify, and delete token objects.
Token objects have the attribute CKA_TOKEN=TRUE.

« Read-only sessions can also read token objects.

Token objects are persistent and are saved on disk in the token repository. Session objects are non-
persistent and are destroyed when the session ends.

If you create a key object with CCA or EP11 tokens where the PKEY_MODE option is enabled, then the
protected key is not derived from the secure key immediately, but only at the first use of the key object
(valid for both session or token objects).

« With a key object that is a persistent token object (CKA_TOKEN=TRUE), a derived protected key is
bound to the key object as attribute CKA_IBM_OPAQUE_PKEY and thus is saved in the token repository
as part of the key object (see also “Miscellaneous attributes” on page 154). This is, however, only
possible in a read-write session, because only in a read-write session, an application can create, modify,
and delete persistent token objects.

« With a non-persistent key object (CKA_TOKEN=FALSE), a derived protected key is also bound to the key
object as attribute CKA_IBM_OPAQUE_PKEY, but is not saved in the token repository and only exists
within memory as long as the creating session exists.

With all this background knowledge, the implemented processing and its consequences for the use of
protected keys may be understandable:

If a key object is used for a cryptographic operation, the CCA or EP11 tokens check whether a valid
protected key is available (valid means: the current firmware master key can still unwrap the protected
key). If this is the case, the protected key is used for improved performance.

If no (or no valid) protected key is available, then the CCA or EP11 tokens try to derive a new protected
key. Derivation is of course only performed if the prerequisites of an enabled PKEY_MODE are fulfilled.

- If the derivation succeeds, the new protected key is used.

- If a protected key cannot be derived, then the current cryptographic operation is performed with the
secure key on the cryptographic coprocessor, which works slower than protected key processing on the
CPACF.

Note: However, if you use the AES XTS cipher mode, then the current cryptographic operation fails,
because for CCA and EP11 tokens there is no AES XTS processing possible on the cryptographic
COprocessors.

Conditions for a protected key derivation

A protected key can be successfully derived from a key object if several conditions are fulfilled. In
addition, a derivation can only be performed in session types where the PKCS #11 standard allows object
modification. For a detailed information you can read about PKCS #11 session types.

« The hardware supports protected keys: CPACF is required.

86 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/cn02/pkcs11-ug-v2.40-cn02.html#_Toc406759992

PKEY_MODE is enabled.
The key object has boolean attribute CKA_IBM_PROTKEY_EXTRACTABLE=TRUE.
« For persistent token key objects (CKA_TOKEN=TRUE):

— If they have attribute CKA_PRIVATE=TRUE, then derivation is only allowed in R/W User sessions.

— If they have attribute CKA_PRIVATE=FALSE, then derivation is allowed in R/W Public sessions, R/W
User sessions, or R/W SO sessions.

« For non-persistent session key objects (CKA_TOKEN=FALSE):

— If they have attribute CKA_PRIVATE=TRUE, then derivation is only allowed in R/W or R/O User
sessions.

— If they have attribute CKA_PRIVATE=FALSE, then derivation is always allowed.

An example where protected key derivation does not work: A persistent key token object that has been
created in a R/W session may be used for cryptographic operations for the first time in another session. If
this session is for example, a read-only session, it is not possible to derive a protected key, because the
key object would need to be updated. For AES XTS keys, such a scenario would lead to an error.

Prerequisites

Note: The documented prerequisites (including a functioning configuration of the PKEY_MODE option in
the respective configuration files) are required for protected key processing. For the AES XTS cipher
mode, a functioning PKEY_MODE setting is mandatory. For secure key types other than AES XTS, secure
key processing on cryptographic coprocessors is used if PKY_MODE is not enabled or other prerequisites
are not fulfilled. All detailed information is provided in “Defining a CCA token configuration file ” on page
91 and “Defining an EP11 token configuration file” on page 107.

There are the following hardware and software prerequisites for enabling protected key support in CCA
tokens and EP11 tokens:

Hardware prerequisites common for CCA and EP11 tokens

Using the protected key support is possible on IBM z15™ or later processors with a CEX7C coprocessor in
CCA mode for CCA tokens or on CEX7P EP11 cryptographic coprocessors for EP11 tokens.

Software prerequisites - CCA token:

« the CCA host library 7.0 or later,
« the Linux kernel 5.10 or later.

Software prerequisites - EP11 tokens:
« the EP11 host library version 3.0 or later.
Configurations in the ccatok.conf and ep11tok. conf configuration files

« CCA and EP11 tokens must have protected keys enabled using the PKEY_MODE option set as ENABLED
(for CCA tokens), ENABLEANONEXTR (for EP11 tokens), or DEFAULT (valid for both).

« If PKEY_MODE is set to DISABLED, no protected keys can be used and AES XTS mechanisms are not
supported.

How to enable AES XTS support for CCA and EP11 tokens

AES XTS support is provided for CCA tokens, EP11 tokens, ICA tokens and Soft tokens. With AES XTS
support, you can exploit the AES XTS block cipher mode together with a key that is composed from two
concatenated AES keys.

For ICA tokens and Soft tokens, AES XTS support is provided with clear keys. These tokens can exploit
AES XTS support without any preparation.

Exploiting the AES XTS support with CCA tokens and EP11 tokens is only possible with the use
of protected keys on the CP Assist for Cryptographic Functions (CPACF) feature of IBM Z systems.

Chapter 13. Common token information 87

Protected keys are derived from secure keys and therefore requires a functioning configuration of the
PKEY_MODE option in the applicable configuration files. Therefore, some background knowledge about
the transformation of secure keys into protect keys and the use of protected keys in openCryptoki
sessions is required. Read “How and why to exploit protected keys” on page 85 for more information.

Generating and importing AES XTS keys

All openCryptoki token types documented in this publication support the generation of AES XTS keys
either with PKCS #11 function C_GenerateKey () or with the p11sak utility (see Chapter 9, “Managing
token keys - p11sak utility,” on page 43).

Furthermore, with the C_CreateObject () function, you can import a key for all token types into
openCryptoki.

An AES XTS key import for CCA tokens offers two options:

Importing clear keys for AES XTS (works for CCA and EP11 tokens): Double length AES XTS clear keys,
consisting of a pair of two keys are internally converted into a pair of secure keys using a CCA function.
These two secure keys are then concatenated to each other and stored in the CKA_IBM_OPAQUE
attribute.

Importing CCA secure keys for AES XTS: In case of a secure key blob import for AES XTS, the
CKA_IBM_OPAQUE attribute contains two secure key blobs concatenated to each other. openCryptoki
checks if the properties of each key of the key pair match the CCA AESDATA secure key type in the
CKA_IBM_OPAQUE attribute. It sets CKA_SENSITIVE to TRUE and clears the CKA_VALUE attribute.

See also “Usage notes for CCA library functions” on page 97).

Restrictions for CCA tokens and EP11 tokens

- With CCA and EP11 tokens, AES XTS keys cannot be used for wrapping and unwrapping other keys using
the CKM_AES_XTS mechanism, in contrast to the specifications in the AES XTS section of PKCS #11
Specification Version 3.1.

« The CCA and EP11 tokens also do not support wrapping and unwrapping of AES XTS keys.

« With CCA and EP11 tokens, AES XTS keys cannot be used for deriving other keys, nor can AES XTS keys
be derived from other keys.

« The EP11 token does not support function C_IBM_ReencryptSingle () with AES XTS keys.

PKCS #11 Baseline Provider support

openCryptoki implements the PKCS #11 Baseline Provider specification. A library implementing PKCS #11
according to the standards of the Baseline Provider Clause is called a PKCS #11 Baseline Provider. Such
a provider has the ability to provide information about its cryptographic services.

A PKCS #11 Baseline Provider library can be exploited by an application conforming to the Baseline
Consumer Clause. Such an application is therefore called a PKCS #11 Baseline Consumer. A Baseline
Consumer calls a Baseline Provider implementation of the PKCS #11 API in order to use the cryptographic
functionality from that provider. Thus, at run-time, a consumer can query information about a provider, for
example, about the offered cryptographic services.

For detailed information about the conformance of a PKCS #11 Baseline Consumer and of a PKCS #11
Baseline Provider read PKCS #11 Cryptographic Token Interface Profiles Version 3.0.

Dual-function cryptographic functions support

Since version 3.19, openCryptoki supports several functions to perform two cryptographic operations
simultaneously within a session. These functions are provided so as to avoid unnecessarily passing data
back and forth to and from a token.

The following dual-function operations are provided:

88 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/csd01/pkcs11-spec-v3.1-csd01.html
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/csd01/pkcs11-spec-v3.1-csd01.html
https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.0/pkcs11-profiles-v3.0.html

Table 4. Dual-function cryptographic functions

Function Purpose

C_DigestEncryptUpdate() continues multiple-part digest and encryption operations, processing
another data part. Digest and encryption operations must both be
active (they must have been initialized with C_DigestInit() and
C_EncryptInit(), respectively). This function may be called any
number of times in succession, and may be interspersed with
C_DigestUpdate() and C_EncryptUpdate() calls.

C_DecryptDigestUpdate() continues a multiple-part combined decryption and digest operation,
processing another data part. Decryption and digesting operations must
both be active (they must have been initialized with C_DecryptInit()
and C_DigestInit(), respectively). This function may be called

any number of times in succession, and may be interspersed with
C_DecryptUpdate() and C_DigestUpdate () calls.

C_SignEncryptUpdate() continues a multiple-part combined signature and encryption operation,
processing another data part. Signature and encryption operations must
both be active (they must have been initialized with C_SignInit()

and C_EncryptInit (), respectively). This function may be called

any number of times in succession, and may be interspersed with
C_SignUpdate() and C_EncryptUpdate() calls

C_DecryptVerifyUpdate() continues a multiple-part combined decryption and verification
operation, processing another data part. Decryption and signature
operations must both be active (they must have been initialized

with C_DecryptInit() and C_VerifyInit(), respectively). This
function may be called any number of times in succession, and may
be interspersed with C_DecryptUpdate () and C_VerifyUpdate()
calls.

You can find detailed information about dual-function cryptographic functions, illustrated with code
samples, in PKCS #11 Specification Version 3.1.

Supported features of PKCS #11 3.0 and 3.1

The contained sections describe enhancements of openCryptoki that support new versions of PKCS #11,
starting with version 3.0.

AES XTS support

The AES XTS mechanisms and the AES XTS key type are new for PKCS #11 version 3.0. The AES XTS
support of PKCS #11 3.0 is described in detail in “How to enable AES XTS support for CCA and EP11
tokens” on page 87.

C_SessionCancel()

All openCryptoki token types support the C_SessionCancel () function which you can use to terminate
active operations on a session. Operations are usually initialized by the C_XyzInit () function for a
specific operation, and are terminated by the successful completion of either the single block function
C_Xyz (), or by the multi block final function C_XyzFinal() (see also “Functions and mechanisms” on
page 9). In case a regular termination is not possible or wanted, you can terminate the operation also by
using the C_SessionCancel () function with the corresponding operation flag. All operation flags are
documented in

PKCS #11 Cryptographic Token Interface Base Specification Version 3.0.

Chapter 13. Common token information 89

https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/csd01/pkcs11-spec-v3.1-csd01.html
https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html

After a successful C_SessionCancel () invocation for an operation, the operation is no longer active,
and a new operation can be initialized on that session, if wanted. The C_SessionCancel () function
is new with PKCS #11 version 3.0, and thus is contained in function list CK_FUNCTION_LIST_3_0O
which must be explicitly obtained via C_GetInterface () with interface name PKCS 11 and version
3.0. The function list returned by the regular C_GetFunctionList () function does not contain the
C_SessionCancel () function.

CKA_DERIVE_TEMPLATE

The CKA_DERIVE_TEMPLATE attribute of a base key contains a template that is applied to the derived
key in addition to the user supplied derive template. Applications can use the CKA_DERIVE_TEMPLATE
attribute on base keys to control the attributes of the keys that are to be derived from that base keys.

A private or secret key that is used as base key to derive other keys from can contain attribute
CKA_DERIVE_TEMPLATE, which contains an array of attributes that are to be applied to the derived key.
The number of array elements is determined by the ulValuelen component of the attribute divided by
the size of CK_ATTRIBUTE.

Attribute CKA_DERIVE_TEMPLATE is allowed for private and secret keys only. It defaults to an
empty array. If the attributes specified by the CKA_DERIVE_TEMPLATE conflict with those attributes
that are explicitly specified in the derive template with the C_DexriveKey () function, then
CKR_TEMPLATE_INCONSISTENT is returned.

The CKA_DERIVE_TEMPLATE attribute as such is not stored within the base keys’s secure key blobs of
EP11 or CCA, but only in the openCryptoki key object.

For more information, read PKCS #11 Specification Version 3.1.

90 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/csd01/pkcs11-spec-v3.1-csd01.html

Chapter 14. CCA token

A CCA token is a secure key token. Any key generation is processed inside an IBM cryptographic
coprocessor. A clear key is generated and wrapped by a master key which resides only within the
cryptographic coprocessor. The clear key is then deleted and is never visible outside the coprocessor. The
wrapped clear key is called a secure key and can only be unwrapped by using the master key within the
coprocessor. Secure keys can safely be stored on a system, because they cannot be used for decrypting or
encrypting without the master key.

A list of PKCS #11 mechanisms supported by the CCA token is provided, as well as information about the
purpose and use of the pkescca tool.

Prerequisites for exploiting a CCA token:

As a prerequisite for an operational CCA token, the CCA library (also called CCA host library in other
documentations) must be installed (see Figure 3 on page 14).

Additionally, a running CCA token requires certain types of master keys to be set on the applicable
cryptographic adapters:

« Up to openCryptoki 3.15: AES, SYM, and ASYM master keys are required.
- Starting with openCryptoki 3.15: AES, SYM, and APKA master keys are required.

To query the master key verification pattern of available keys for any master-key register in the current
domain, use the panel. exe utility and issue a command similar to the following:

panel.exe --mk-query --mktype=SYM --mkregister=CURRENT

where --mktype can be one of [ASYM|SYM|AES | APKA] and --mkregistex must be CURRENT to query
the information from the currently active master key.

Or you can use the ivp. e utility. This is an easy-to-use utility which you can invoke without any
arguments. It is used to verify an installation, and among others, provides information about current
master keys for all available CEX*C features on the system.

For AES and APKA master keys, you can also find the master key verification patterns in sysfs using the
following command:

$ cat /sys/bus/ap/devices/<card>.<domain>/mkvps

For information on how to install the CCA library and on how to use the panel.exe and ivp. e utilities,
read Secure Key Solution with the Common Cryptographic Architecture Application Programmer's Guide.

Note: The CCA token directory must not be located in a directory that is either an NFS or a CIFS file
system, but must be located in a file system that supports the £lock () function which manages file
locks.

Defining a CCA token configuration file

You can define an optional configuration file for a CCA token.

Other than for the EP11 token, there is no default CCA token configuration file name, and also no
environment variable to specify the directory containing the configuration file. Instead, you can specify
the CCA token configuration file name (and optionally its absolute path) in the global openCryptoki
configuration file called opencryptoki. conf using the keyword confname. If no path is specified,
then a specified CCA token configuration file must exist within the openCryptoki directory /etc/
opencryptoki/.

© Copyright IBM Corp. 2021, 2023 921

https://www.ibm.com/docs/en/linux-on-systems?topic=chs-secure-key-solution-common-cryptographic-architecture-application-programmers-guide

Example for a CCA token configuration file specification in opencryptoki.conf:

slot 2
stdll = libpkcs1l_cca.so
confname = /etc/opencryptoki/ccatokl.conf

You can specify the following options in the CCA token configuration file:

EXPECTED_MKVPS
This option defines the expected master key verification patterns for the three CCA master key types:
SYM, AES, and APKA. Master key type ASYM is not used by the CCA token. At token initialization, the
CCA token checks whether the expected MKVP value is consitent on all assigned APQNs. The set of
APOQONs is determined by the CCA host library, based on the specifications of the CCA environment
variables CSU_DEFAULT_ADAPTER and CSU_DEFAULT_DOMAIN.

Syntax:

EXPECTED_MKVPS
1

SYM "<8-bytes-hex-string>"

AES "<8-bytes-hex-string>"

APKA = "<8-bytes-hex-string>"
§

For function calls to the key generation functions C_GenerateKey (), C_GenerateKeyPair(),
C_UnwrapKey (), C_DeriveKey (), or C_CreateObject(), the CCA token also performs a master
key verification check to verify if the master key is generated with the correct and expected master
key verification pattern (MKVP). That means, that for an existing EXPECTED_MKVPS specification,
the MKVP of the generated key must match the specified value, or, if no EXPECTED_MKVPS value is
specified, it must be the MKVP encountered at token initialization time.

In case of a mismatch, token initialization or key generation fails and a syslog message is issued and a
flag is set in the token to reject all subsequent cryptographic operations with CKR_DEVICE_ERROR.

PKEY_MODE
Prerequisite for exploiting the PKEY_MODE option is the Linux kernel 5.10 or later. You can specify
this option to define that for CCA secure keys of type AES, AES XTC, or EC, an additional pertaining
protected key shall be created, and this protected key shall be used by CPACF whenever possible
because of performance reasons (see “How and why to exploit protected keys” on page 85).

« Supported AES key lengths are 128, 192, and 256 bits.

« EC key support is limited to the curves supported both by CPACF with MSA9 and by the CCA token.
Therefore only the following three curves are supported:

— prime256 with OID 1.2.840.10045.3.1.7
— secp384 with OID 1.3.132.0.34
- secp521 with OID 1.3.132.0.35
« The following mechanisms are supported for protected keys:
- CKM_AES_ECB
- CKM_AES_CBC
- CKM_AES_CBC_PAD
- CKM_AES_XTS
- CKM_ECDSA
- CKM_ECDSA_SHA1
— CKM_ECDSA_SHA224

92 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

— CKM_ECDSA_SHA256
— CKM_ECDSA_SHA384
— CKM_ECDSA_SHA512

The creation of protected keys requires that the native CCA key object (blob) has been created with
the CCA keyword XPRTCPAC which is equivalent with the boolean attribute CKA_IBM_PROTKEY_
EXTRACTABLE = TRUE. This keyword has been introduced with CCA 7.0 and CEX7C. Therefore,
using the protected key support is possible on IBM z15 or later processors with a CEX7C
coprocessor in CCA mode.

In CCA a key can be both CKA_EXTRACTABLE and CKA_IBM_ PROTKEY_EXTRACTABLE. Therefore,
all new keys may get attribute CKA_IBM_PROTKEY_EXTRACTABLE = TRUE if the application did not
explicitly specify CKA_IBM_PROTKEY_EXTRACTABLE = FALSE. If you also work with EP11 tokens,
you might notice that this is in contrast to EP11.

CCA protected keys are added to key objects via the IBM-specific key attribute
CKA_IBM_OPAQUE_PKEY at first use of the key.

Protected keys are created only from symmetric and private keys, not from public keys.

For information how to use protected keys for AES XTS support, read “How to enable AES XTS
support for CCA and EP11 tokens” on page 87.

Set the PKEY_MODE option to one of the following modes:
DISABLED

Protected key support is disabled. All keys are used as secure keys. This mode allows to completely
disable protected key support, for example, for performance comparisons.

DEFAULT

This option specifies to apply the default and works like follows:

If the application did not specify attribute CKA_IBM_PROTKEY_EXTRACTABLE = TRUE in its template
for key generation, new keys of any type get CKA_IBM_PROTKEY_EXTRACTABLE= FALSE and
CKA_EXTRACTABLE = TRUE and no protected key is created.

Existing secure keys with a valid protected key and CKA_IBM_PROTKEY_EXTRACTABLE = TRUE are
used via this protected key, and any invalid protected key is re-created if required with the help of the
current firmware master key.

ENABLED

Enable protected key support for all keys. If the application did not specify

CKA_IBM_ PROTKEY_EXTRACTABLE = FALSE in its template, new keys of any type get
CKA_IBM_PROTKEY_EXTRACTABLE = TRUE and a protected key is automatically created at first use
of the key.

version cca-0

#

CCA token configuration

#

EXPECTED_MKVPS

1

¥

SYM = "130E2053F18E5F4C"
AES = "7D10D17BC8A409C4"
APKA = "82A5E2CD5030D5EC"

PKEY_MODE = ENABLED

Figure 16. Sample of a CCA token configuration file

Chapter 14. CCA token 93

PKCS #11 mechanisms supported by the CCA token

View a list of mechanisms provided by PKCS #11 which you can use to exploit the openCryptoki
features for the CCA token from within your application. Use the pkcsconf -m -c <CCA_token_slot>
command to list the mechanisms (algorithms), that are supported by the CCA token.

The command output shown in Table 5 on page 94 lists all mechanisms that are supported by the CCA
token in the specified slot.

Table 5. PKCS #11 mechanisms supported by the CCA token
Mechanism Key sizes in Properties Support
bits or bytes with‘oc
version
CKM_DES_KEY_GEN 8-8 bytes GENERATE before 3.16
CKM_DES3_KEY_GEN 24-24 bytes GENERATE before 3.16
CKM_RSA_PKCS_KEY_PAIR_GEN |512-4096 bits | GENERATE_KEY_PAIR before 3.16
CKM_RSA_PKCS 512-4096 bits | ENCRYPT, DECRYPT, SIGN, before 3.16
VERIFY, WRAP, UNWRAP
CKM_RSA_PKCS_OAEP 512-4096 ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_RSA_PKCS_PSS 512-4096 bits | ENCRYPT, DECRYPT, SIGN, before 3.16
VERIFY
CKM_MD5_RSA_PKCS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA1_RSA_PKCS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA1_RSA_PKCS_PSS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA224_RSA_PKCS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA224_RSA_PKCS_PSS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA256_RSA_PKCS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA256_RSA_PKCS_PSS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA384_RSA_PKCS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA384_RSA_PKCS_PSS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA512_RSA_PKCS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA512_RSA_PKCS_PSS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_DES_CBC 8-8 bytes ENCRYPT, DECRYPT before 3.16
CKM_DES_CBC_PAD 8-8 bytes ENCRYPT, DECRYPT before 3.16
CKM_DES3_CBC 24-24 bytes ENCRYPT, DECRYPT before 3.16
CKM_DES3_CBC_PAD 24-24 bytes ENCRYPT, DECRYPT before 3.16
CKM_AES_KEY_GEN 16-32 bytes GENERATE before 3.16
CKM_AES_ECB 16-32 bytes ENCRYPT, DECRYPT before 3.16
CKM_AES_CBC 16-32 bytes ENCRYPT, DECRYPT before 3.16
CKM_AES_CBC_PAD 16-32 bytes ENCRYPT, DECRYPT before 3.16
CKM_AES_XTSY 32-64bytes |ENCRYPT, DECRYPT 3.22

94 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 5. PKCS #11 mechanisms supported by the CCA token (continued)

Mechanism Key sizes in Properties Support
bits or bytes with‘oc
version
CKM_AES_XTS_KEY_GENY 32 - 64 bytes GENERATE 3.22
CKM_SHA512 n/a DIGEST before 3.16
CKM_SHA512_HMAC 256-2048 bits | SIGN, VERIFY before 3.16
CKM_SHA512_HMAC_GENERAL 256-2048 bits | SIGN, VERIFY before 3.16
CKM_SHA512_RSA_PKCS 512-4096 SIGN, VERIFY before 3.16
CKM_SHA384 n/a DIGEST before 3.16
CKM_SHA384_HMAC 192-2048 bits | SIGN, VERIFY before 3.16
CKM_SHA384_HMAC_GENERAL 192-2048 bits | SIGN, VERIFY before 3.16
CKM_SHA384_RSA_PKCS 512-4096 SIGN, VERIFY before 3.16
CKM_SHA256 n/a DIGEST before 3.16
CKM_SHA256_HMAC 128-2048 bits | SIGN, VERIFY before 3.16
CKM_SHA256_HMAC_GENERAL 128-2048 bits | SIGN, VERIFY before 3.16
CKM_SHA224 n/a DIGEST before 3.16
CKM_SHA224_HMAC 112-2048 bits | SIGN, VERIFY before 3.16
CKM_SHA224_HMAC_GENERAL 112-2048 bits | SIGN, VERIFY before 3.16
CKM_SHA_1 n/a DIGEST before 3.16
CKM_SHA_1_HMAC 80-2048 bits SIGN, VERIFY before 3.16
CKM_SHA_1_HMAC_GENERAL 80-2048 bits SIGN, VERIFY before 3.16
CKM_MD5 n/a DIGEST before 3.16
CKM_ECDSA_KEY_PAIR_GEN 160-521 bits GENERATE_KEY_PAIR, EC_F_P, |before 3.16
EC_NAMEDCURVE
CKM_ECDSA 160-521 bits SIGN, VERIFY, EC_F_P, before 3.16
EC_NAMEDCURVE
CKM_ECDSA_SHA1 160-521 bits SIGN, VERIFY, EC_F_P, before 3.16
EC_NAMEDCURVE
CKM_GENERIC_SECRET_KEY_GEN |80-2048 bits GENERATE before 3.16
CKM_ECDSA_SHA224 160-521 bits SIGN, VERIFY, EC_F_P, before 3.16
EC_NAMEDCURVE
CKM_GENERIC_SECRET_KEY_GEN [80-2048 bits GENERATE before 3.16
CKM_ECDSA_SHA256 160-521 bits SIGN, VERIFY, EC_F_P, before 3.16
EC_NAMEDCURVE
CKM_GENERIC_SECRET_KEY_GEN [80-2048 bits GENERATE before 3.16
CKM_ECDSA_SHA384 160-521 bits SIGN, VERIFY, EC_F_P, before 3.16
EC_NAMEDCURVE
CKM_GENERIC_SECRET_KEY_GEN | 80-2048 bits GENERATE before 3.16

Chapter 14. CCA token 95

Table 5. PKCS #11 mechanisms supported by the CCA token (continued)

Mechanism Key sizes in Properties Support
bits or bytes with OC
version
CKM_ECDSA_SHA512 160-521 bits SIGN, VERIFY, EC_F_P, before 3.16
EC_NAMEDCURVE
CKM_GENERIC_SECRET_KEY_GEN | 80-2048 bits GENERATE before 3.16

Note: 1) only applicable with protected key (see “How and why to exploit protected keys” on page 85).

For explanations of the key object properties, see the PKCS #11 Cryptographic Token Interface Standard.

ECC curves supported by the CCA token

View a list of curves supported by the CCA token for elliptic curve cryptography (ECC).
Table 6 on page 96 shows the curves that the CCA token supports for elliptic curve cryptography.

Table 6. Curves supported by the CCA token for elliptic curve cryptography (ECC)

Curve Purpose

brainpoolP160r1l |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnNnN
. for ECDH with CKM_ECDH1_DERIVE

brainpoolP192rl |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnn
« for ECDH with CKM_ECDH1_DERIVE

brainpoolP224r1 |, for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnn
. for ECDH with CKM_ECDH1_DERIVE

brainpoolP256r1 . for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnNNN
« for ECDH with CKM_ECDH1_DERIVE

brainpoolP320r1 |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnn
« for ECDH with CKM_ECDH1_DERIVE

brainpoolP384r1l |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnNN
« for ECDH with CKM_ECDH1_DERIVE

brainpoolP512r1 |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnNnN
. for ECDH with CKM_ECDH1_DERIVE

prime192vl « for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANNN
. for ECDH with CKM_ECDH1_DERIVE

prime256v1 - for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANNN
. for ECDH with CKM_ECDH1_DERIVE

secp224rl - for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANNN
« for ECDH with CKM_ECDH1_DERIVE

96 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

Table 6. Curves supported by the CCA token for elliptic curve cryptography (ECC) (continued)

Curve Purpose

secp384rl « for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
» for ECDH with CKM_ECDH1_DERIVE

secp521rl - for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANNn
« for ECDH with CKM_ECDH1_DERIVE

Usage notes for CCA library functions

Read important information about the usage and restrictions of CCA library functions.

- Plain CCA key objects, that is, CCA secure key objects generated by the CCA token internally via the
CCA library 1ibcsulcca. so, which can also be imagined as a blob (binary large object), can be
extracted from sensitive openCryptoki key objects for the CCA token by accessing the value of the
CKA_IBM_OPAQUE attribute.

A CCA key blob created by a native CCA application via the CCA library 1ibcsulcca.so can be
imported into sensitive openCryptoki key objects for the CCA token by assigning the content of the CCA
key blob to the CKA_IBM_OPAQUE attribute. This is valid for the C_CreateObject () function. This
import is supported for key types (called key tokens in CCA):

— CCA DES key token

— CCA DES3 key token

— CCA AESDATA key token. For AES XTS, two such AESDATA key tokens are concatenated.
— CCA internal RSA private key token (RSA-AESM and RSA-AESC)

— CCA RSA public key token (RSA-AESM and RSA-AESC)

— CCA HMAC key token

— CCAinternal EC private key token

— CCA EC public key token

CCA AESCIPHER key token import is not supported and C_CreateObject () returns with
CKR_TEMPLATE_INCONSISTENT.

Clear keys can also be imported into sensitive openCryptoki key objects for the CCA token by assigning

the clear key value to the CKA_VALUE attribute or other key-type specific attributes using the PKCS #11
C_CreateObject () function. This is supported for RSA private keys and for RSA public keys. The CCA
token also supports the C_CreateObject () function for AES, DES, DES3, and generic secret keys, as
well as plain HMAC and EC keys with different curves.

e The default CKA_SENSITIVE setting for generating a key is CK_FALSE although the openCryptoki CCA
token handles only secure keys, which correspond to sensitive keys in PKCS #11.

Setting the value of CKA_SENSITIVE to CK_FALSE does not inhibit inspecting the value of CKA_VALUE.
This setting does not compromise security because CKA_VALUE does not contain any sensitive or secret
information. Also, CKA_IBM_OPAQUE does not contain any information that can be exploited without
the corresponding CCA master key.

« The function C_DigestKey is not supported by the CCA token.

Chapter 14. CCA token 97

Migrate to a new CCA master key - pkcscca utility

If you need to migrate a CCA key to a new wrapping CCA master key (MK), use the pkcscca tool.

Before you begin

Prerequisite for using the key migration function is that you have installed openCryptoki version 3.4 or
higher.

About this task

There may be situations when CCA master keys must be changed. With openCryptoki, you can choose
between a concurrent master key change described in Chapter 12, “Managing a concurrent master key
change - pkcshsm_mk_change utility,” on page 71 or an offline master key change where you need to
stop all openCryptoki applications that access the CCA token. Use the tool described in this topic to
perform this offline scenario.

All CCA secret and private keys are enciphered (wrapped) with a master key (MK). After a CCA master key
is changed, the keys wrapped with an old master key need to be re-enciphered with the new master key.
Only keys which are marked as CKA_EXTRACTABLE=TRUE can be migrated. However, by default all keys
are marked as CKA_EXTRACTABLE. So only those keys where the user explicitly chooses to mark them as
non extractable, for example, by setting CKA_EXTRACTABLE=FALSE cannot be migrated.

Use the pkcscca tool to migrate wrapped CCA keys.

After a new master key is loaded and set, perform the following steps:

Procedure

1. Stop all processes that are currently using openCryptoki with the CCA token.
a) Stop all applications that use openCryptoki.

b) Find out whether the pkcsslotd daemon is running by issuing one (or both to cross-check) of the
following commands:

$ systemctl status pkcsslotd /* for Linux distributions providing systemd x*/
$ ps awx | grep pkcsslotd

If the daemon is running, the command output shows a process for pkcsslotd.
c¢) If applicable, stop the daemon by issuing a command of this form:

$ systemctl stop pkcsslotd.service /* for Linux distributions providing systemd =%/
2. Back up the token object repository of the CCA token. For example, you can use the following
commands:

cd /var/lib/opencryptoki/cca/
tar -cvzf ~/cca/TOK_0BJI_backup.tgz TOK_0BJ

3. Migrate the keys of the CCA token object repository with the pkcscca migration tool.

pkcscca -m keys -s <slotid> -k <aes|apka|asym|sym>

Specify the following parameters:

-s
slot number for the CCA token
-k
master key type to be migrated: aes, apka, asym, or sym

98 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

-m keys
re-encipers private keys only with a new CCA master key.

All the specified token objects representing extractable keys that are found for the CCA token are
re-encrypted and ready for use. Keys with an attribute CKA_EXTRACTABLE=FALSE are not eligible for
migration. The keys that failed to migrate are displayed to the user.

Example:
$ pkcscca -m keys -s 2 -k sym

migrates all private keys wrapped with symmetric master keys found in the CCA plug-in for
openCryptoki in PKCS slot 2.

4. Re-start the previously stopped openCryptoki processes.
Start or restart pkcsslotd if it was stopped in step 1.

Results
All specified keys, for example, all private and secret keys (for asymmetric and symmetric cryptography)
are now re-encrypted with the new CCA master key and are ready for use in CCA verbs.

Migrate to a new RSA format - pkcscca utility

Up to openCryptoki version 3.14, RSA keys were created using the RSA-CRT key token format (private
key section X'08"). RSA-CRT keys are encrypted with the CCA ASYM master key, and can not be used for
certain mechanisms, for example, RSA-PSS or RSA-OAEP. Starting with openCryptoki version 3.15.0, RSA
keys are created using the RSA-AESC key token format (private key section X'31").

To convert old RSA keys (RSA-CRT) to the new format (RSA-AESC) of a CCA token in a selected slot, issue
a command similar to the following:

pkcscca -m oldrsakeys -s <slotid>

RSA public keys created with openCryptoki up to version 3.16.0 also may contain a full CCA secure key
token, including the private key section (which is encrypted by the CCA master key). The oldrsakeys
migration option extracts the public key sections only from RSA public key tokens containing a full RSA
CCA secure key token.

Chapter 14. CCA token 99

100 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 15. ICA token

Read about the tasks to be performed if you want to use the ICA token from within the openCryptoki

framework.

The legacy name and therefore the default name of an ICA token is lite.

As a prerequisite for an operational ICA token, the ICA library must be installed (see Figure 3 on page 14).

Note: The ICA token directory must not be located in a directory that is either an NFS or a CIFS file
system, but must be located in a file system that supports the £lock () function which manages file

locks.

PKCS #11 mechanisms supported by the ICA token

View a list of mechanisms provided by PKCS #11 which you can use to exploit the openCryptoki
features for the ICA token from within your application. Use the pkcsconf -m -c <ICA_token_slot>
command to list the mechanisms (algorithms), that are supported by the ICA token.

The command output depends on the libica version, whether libica is running in FIPS mode, and on the
processor generation. The output of the pkcsconf -m -c <slot> command corresponds to the list
shown in Table 7 on page 101 which presents all mechanisms supported by the ICA token on an IBM z15

machine.

Table 7. Supported mechanism list for the ICA token

Mechanism Key sizes in Properties Support
bits or bytes with OC
version
CKM_RSA_PKCS_KEY_PAIR_GEN 512-4096 bits |HW, GENERATE_KEY_PAIR before 3.16
CKM_RSA_PKCS 512-4096 bits | HW, ENCRYPT, DECRYPT, before 3.16
SIGN, SIGN_RECOVER,
VERIFY, VERIFY_RECOVER,
WRAP, UNWRAP
CKM_RSA_X_509 512-4096 bits | HW, ENCRYPT, DECRYPT, before 3.16
SIGN, SIGN_RECOVER,
VERIFY, VERIFY_RECOVER,
WRAP, UNWRAP
CKM_SHA1_RSA_PKCS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_RSA_PKCS_OAEP 512-4096 bits | HW, ENCRYPT, DECRYPT, before 3.16
WRAP, UNWRAP
CKM_RSA_PKCS_PSS 512-4096 bits | HW, SIGN, VERIFY before 3.16
CKM_SHA1_RSA_PKCS_PSS 512-4096 bits | HW, SIGN, VERIFY before 3.16
CKM_SHA256_RSA_PKCS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA384_RSA_PKCS 512-4096 bits | HW, SIGN, VERIFY before 3.16
CKM_SHA512_RSA_PKCS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA256_RSA_PKCS_PSS 512-4096 bits | HW, SIGN, VERIFY before 3.16
CKM_SHA384_RSA_PKCS_PSS 512-4096 bits | HW, SIGN, VERIFY before 3.16
CKM_SHA512_RSA_PKCS_PSS 512-4096 bits | HW, SIGN, VERIFY before 3.16
© Copyright IBM Corp. 2021, 2023 101

Table 7. Supported mechanism list for the ICA token (continued)

Mechanism Key sizes in Properties Support
bits or bytes with‘oc
version
CKM_SHA224_RSA_PKCS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA224_RSA_PKCS_PSS 512-4096 bits | HW, SIGN, VERIFY before 3.16
CKM_SHA512 224 n/a HW, DIGEST before 3.16
CKM_SHA512_224_HMAC n/a HW, SIGN, VERIFY before 3.16
CKM_SHA512_224_HMAC_GENERAL [n/a HW, SIGN, VERIFY before 3.16
CKM_SHA512_256 n/a HW, DIGEST before 3.16
CKM_SHA512_256_HMAC n/a HW, SIGN, VERIFY before 3.16
CKM_SHA512_256_HMAC_GENERAL |[n/a HW, SIGN, VERIFY before 3.16
CKM_AES_XTS 32 -64 bytes HW, ENCRYPT, DECRYPT, 3.20
WRAP, UNWRAP
CKM_AES_XTS_KEY_GEN 32 -64 bytes HW, GENERATE 3.20
CKM_DES_KEY_GEN 8-8 bytes HW, GENERATE before 3.16
CKM_DES_ECB 8-8 bytes HW, ENCRYPT, DECRYPT, before 3.16
WRAP, UNWRAP
CKM_DES_CBC 8-8 bytes HW, ENCRYPT, DECRYPT, before 3.16
WRAP, UNWRAP
CKM_DES_CBC_PAD 8-8 bytes HW, ENCRYPT, DECRYPT, before 3.16
WRAP, UNWRAP
CKM_DES3_KEY_GEN 24-24 bytes HW, GENERATE before 3.16
CKM_DES3_ECB 24-24 bytes HW, ENCRYPT, DECRYPT, before 3.16
WRAP, UNWRAP
CKM_DES3_CBC 24-24 bytes HW, ENCRYPT, DECRYPT, before 3.16
WRAP, UNWRAP
CKM_DES3_MAC 24-24 bytes SIGN, VERIFY before 3.16
CKM_DES3_MAC_GENERAL 24-24 bytes SIGN, VERIFY before 3.16
CKM_DES3_CBC_PAD 24-24 bytes HW, ENCRYPT, DECRYPT, before 3.16
WRAP, UNWRAP
CKM_DES3_CMAC_GENERAL 16-24 bytes SIGN, VERIFY before 3.16
CKM_DES3_CMAC 16-24 bytes SIGN, VERIFY before 3.16
CKM_DES_OFB64 8-8 bytes ENCRYPT, DECRYPT before 3.16
CKM_DES_CFB64 8-8 bytes ENCRYPT, DECRYPT before 3.16
CKM_DES_CFB8 8-8 bytes ENCRYPT, DECRYPT before 3.16
CKM_MD5_HMAC n/a SIGN, VERIFY before 3.16
CKM_MD5_HMAC_GENERAL n/a SIGN, VERIFY before 3.16
CKM_SHA_1 n/a HW, DIGEST before 3.16

102 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 7. Supported mechanism list for the ICA token (continued)

Mechanism Key sizes in Properties Support
bits or bytes with OC
version
CKM_SHA_1_HMAC n/a HW, SIGN, VERIFY before 3.16
CKM_SHA_1_HMAC_GENERAL n/a HW, SIGN, VERIFY before 3.16
CKM_SHA256 n/a HW, DIGEST before 3.16
CKM_SHA256_HMAC n/a HW, SIGN, VERIFY before 3.16
CKM_SHA256_HMAC_GENERAL n/a HW, SIGN, VERIFY before 3.16
CKM_SHA224 n/a HW, DIGEST before 3.16
CKM_SHA224_HMAC n/a HW, SIGN, VERIFY before 3.16
CKM_SHA224_HMAC_GENERAL n/a HW, SIGN, VERIFY before 3.16
CKM_SHA384 n/a HW, DIGEST before 3.16
CKM_SHA384_HMAC n/a HW, SIGN, VERIFY before 3.16
CKM_SHA384_HMAC_GENERAL n/a HW, SIGN, VERIFY before 3.16
CKM_SHA512 n/a HW, DIGEST before 3.16
CKM_SHA512_HMAC n/a HW, SIGN, VERIFY before 3.16
CKM_SHA512_HMAC_GENERAL n/a SIGN, VERIFY before 3.16
CKM_GENERIC_SECRET_KEY_GEN 80-2048 bits HW, GENERATE before 3.16
CKM_ECDSA_KEY_PAIR_GEN 160-521 bits HW, GENERATE_KEY_PAIR, before 3.16
EC_F_P,EC_OID
CKM_ECDSA 160-521 bits HW, SIGN, VERIFY, EC_F_P, before 3.16
EC_OID
CKM_ECDSA_SHA1 160-521 bits HW, SIGN, VERIFY, EC_F_P, before 3.16
EC_OID
CKM_ECDSA_SHA224 160-521 bits HW, SIGN, VERIFY, EC_F_P, before 3.16
EC_OID
CKM_ECDSA_SHA256 160-521 bits HW, SIGN, VERIFY, EC_F_P, before 3.16
EC_OID
CKM_ECDSA_SHA384 160-521 bits HW, SIGN, VERIFY, EC_F_P, before 3.16
EC_OID
CKM_ECDSA_SHA512 160-521 bits SIGN, VERIFY, EC_F_P, before 3.16
EC_OID
CKM_ECDH1_DERIVE 160-521 bits HW, DERIVE, EC_F_P, EC_F_P, |before 3.16
EC_OID
CKM_AES_KEY_GEN 16-32 bytes HW, GENERATE before 3.16
CKM_AES_ECB 16-32 bytes HW, ENCRYPT, DECRYPT, before 3.16
WRAP, UNWRAP
CKM_AES_CBC 16-32 bytes HW, ENCRYPT, DECRYPT, before 3.16
WRAP, UNWRAP
CKM_AES_MAC 16-32 bytes SIGN, VERIFY before 3.16

Chapter 15.

ICA token 103

Table 7. Supported mechanism list for the ICA token (continued)
Mechanism Key sizes in Properties Support
bits or bytes with OC
version
CKM_AES_MAC_GENERAL 16-32 bytes SIGN, VERIFY before 3.16
CKM_AES_CBC_PAD 16-32 bytes HW, ENCRYPT, DECRYPT, before 3.16
WRAP, UNWRAP
CKM_AES_CTR 16-32 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_AES_GCM 16-32 bytes ENCRYPT, DECRYPT before 3.16
CKM_AES_CMAC_GENERAL 16-32 bytes SIGN, VERIFY before 3.16
CKM_AES_CMAC 16-32 bytes SIGN, VERIFY before 3.16
CKM_AES_OFB 16-32 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_AES_CFB64 16-32 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_AES_CFBS8 16-32 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_AES_CFB128 16-32 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_IBM_SHA3_224 n/a DIGEST before 3.16
CKM_IBM_SHA3_256 n/a DIGEST before 3.16
CKM_IBM_SHA3_384 n/a DIGEST before 3.16
CKM_IBM_SHA3_512 n/a DIGEST before 3.16
CKM_IBM_SHA3_224 HMAC n/a SIGN, VERIFY before 3.16
CKM_IBM_SHA3_256_HMAC n/a SIGN, VERIFY before 3.16
CKM_IBM_SHA3_384_HMAC n/a SIGN, VERIFY before 3.16
CKM_IBM_SHA3_512_HMAC n/a SIGN, VERIFY before 3.16

Certain mechanisms indicate the HW flag in the Properties column (short form for the CKF_HW). If

for theses mechanisms, the CKF_HW flag is set to TRUE, the pertaining cryptographic operations are
performed by the cryptographic hardware. If the flag is not set for these mechanisms, the operations are
performed in software.

For a description of mechanisms with a name pattern of CKM_IBM_. .
mechanisms,” on page 139.

. refer to Chapter 20, “IBM-specific

Usage notes for the ICA library functions

Read important information about the usage and restrictions of libica library functions.

« As of openCryptoki version 3.6, the C_SeedRandom () function of the ICA token always returns
CKR_RANDOM_SEED_NOT_SUPPORTED.

« If your system is running in FIPS mode, libica also runs in FIPS mode and only provides a FIPS-
compliant subset of algorithms and key lengths. For example, all Brainpool curves listed in Table 8 on
page 105 are not supported in FIPS mode.

104 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

ECC curves supported by the ICA token

View a list of curves supported by the ICA token for elliptic curve cryptography (ECC).

Table 8 on page 105 shows the maximum number of curves that the ICA token can support if all

prerequisites are fulfilled at their best conditions. The following dependencies exist:

Which openCryptoki version (and thus which libica version) is used? Refer to the applicable libica
documentation for information about supported curves.

Which cryptographic coprocessors are available?

Is the MSA9 component of IBM z15 or later available?

Is libica or OpenSSL running in FIPS mode? When FIPS mode is active for libica, OpenSSL is also set into
FIPS mode. However, note that the case where libica does not run in FIPS mode, but OpenSSL does,
may cause errors when software fallbacks are used. If, for example, an elliptic curve is supported by
hardware in libica, but not by OpenSSL, because OpenSSL runs in FIPS mode, this software fallback

fails.

Table 8. Curves supported by the ICA token for elliptic curve cryptography (ECC)

Curve

Purpose

brainpoolP160rl
(2), 3)

- for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnNnn

- for ECDH with CKM_ECDH1_DERIVE

brainpoolP192r1
(2), 3)

- for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnNnn

« for ECDH with CKM_ECDH1_DERIVE

brainpoolP224r1
(2), 3)

- for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn

« for ECDH with CKM_ECDH1_DERIVE

brainpoolP256r1
(2), 3)

« for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnnnN

- for ECDH with CKM_ECDH1_DERIVE

brainpoolP320rl1
(1), (3)

- for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnnnN

- for ECDH with CKM_ECDH1_DERIVE

brainpoolP384r1
(1), (3)

« for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnNnnN

- for ECDH with CKM_ECDH1_DERIVE

brainpoolP512r1
(2), 3)

- for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnNnnN

- for ECDH with CKM_ECDH1_DERIVE

primel92v1 (1),
(3)

- for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnnn

« for ECDH with CKM_ECDH1_DERIVE

prime256v1 (1),
(2)

- for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn

« for ECDH with CKM_ECDH1_DERIVE

secp224rl (1) . for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnNN
. for ECDH with CKM_ECDH1_DERIVE
secp384r1(1),(2) |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn

- for ECDH with CKM_ECDH1_DERIVE

Chapter 15. ICA token 105

Table 8. Curves supported by the ICA token for elliptic curve cryptography (ECC) (continued)

Curve Purpose

secp521r1 (1), (2) |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
» for ECDH with CKM_ECDH1_DERIVE

Notes:

(1) supported via Crypto Express CCA coprocessor
(2) supported via CPACF on processors with MSA9 component of IBM z15 or later

(3) not available if libica runs in FIPS mode

106 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 16. EP11 token

An EP11 token is a secure key token. A list of PKCS #11 mechanisms supported by the EP11 token
is provided, as well as information about the purpose and use of the tools pkcsepl1_migrate and
pkcsepll_session.

You can read some information about secure keys in Chapter 14, “CCA token,” on page 91.

As a prerequisite for an operational EP11 token, the EP11 host library (also called EP11 host library in
other documentations) must be installed (see Figure 3 on page 14).

For EP11 tokens, you can introduce one or multiple tokens into the openCryptoki framework (see “Adding
tokens to openCryptoki” on page 81) and configure them differently. For information on how to install

the EP11 host library, refer to Exploiting Enterprise PKCS #11 using openCryptoki. You can download the
EP11 host library from:

IBM PCIe Cryptographic Coprocessors

Note: The EP11 token directory must not be located in a directory that is either an NFS or a CIFS file
system, but must be located in a file system that supports the £lock () function which manages file
locks.

Defining an EP11 token configuration file

One default configuration file for the EP11 token called epl1tok. cont is delivered by openCryptoki.
You must adapt it according to your installation's system environment. If you use multiple EP11 tokens,
you must provide an individual token configuration file for each token. Each slot entry in the global
configuration file opencryptoki. conf defines these configuration file names.

In the example from “Adding tokens to openCryptoki” on page 81, these names are defined as
eplltokOl1.conf and eplltok02. conf. If the environment variable OCK_EP11_TOKEN_DIR is set,
then the EP11 token looks for the configuration file or files in the directory specified with this variable.
If OCK_EP11_TOKEN_DIR is not set, then the EP11 token configuration files are searched in the global
openCryptoki directory, for example: /etc/opencryptoki/eplltok.conf.

Example: If a slot entry in opencryptoki.conf specifies confname = eplltok02.conf, andyou
set the environment variable OCK_EP11_TOKEN_DIR like:

export OCK_EP11_TOKEN_DIR=/home/user/eplltoken
then your EP11 token configuration file appears here:
<root>/home/user/eplltoken/eplltok02.cont

You can use the shown example to set your own token directory for test purposes.

Note: The setting of this environment variable is ignored, if a program trying to access the designated
EP11 token is marked with file permission setuid.

The following is a list of available options for an EP11 token configuration file. A sample of such afile is
shown in Figure 19 on page 113.

APQN_ALLOWLIST

Because different EP11 hardware security modules (HSM) can use different wrapping keys (referred
to as master keys in the TKE environment), users need to specify which HSM, in practice an adapter/
domain pair, can be used by the EP11 token as a target for cryptographic requests. Therefore, an EP11
token configuration file contains a list of adapter/domain pairs to be used.

You start this list of adapter/domain pairs starting with a line containing the keyword
APQN_ALLOWLIST. Next follows the list which can specify up to 512 adapter/domain pairs, denoted

© Copyright IBM Corp. 2021, 2023 107

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/docs/en/cryptocards?topic=4770-linux-z-software

by decimal numbers in the range 0 - 255. Each pair designates an adapter (first number) and a domain
(second number) accessible to the EP11 token. Close the list using the keyword END.

Alternatively, you can use the keyword APQN_ANY to define that all adapter/domain pairs with EP11
firmware, that are available to the system, can be used as target adapters. This is the default.

Notes:

- The term APQN stands for adjunct processor queue number. It designates the combination of a
cryptographic coprocessor (adapter) and a domain, a so-called adapter/domain pair. At least one
adapter/domain pair must be specified.

« If more than one APQN is used by a token, then these APQNs must be configured with the same
master key.

« This attribute used to be APQN_WHITELIST but has been renamed due to the inclusive terminology
initiative. For compatibility reasons, you can still use the old name, but this is considered to be
deprecated.

An adapter/domain pair is displayed by the 1szcxypt tool or in the sys file system (for example,
in /sys/bus/ap/devices) in the form card .domain, where both numbers are displayed in
hexadecimal format.

There are two ways to specify the cryptographic adapter:

« either as an explicit list of adapter/domain pairs:

APQN_ALLOWLIST
8 13

10 13

END

The adapter and domain can be given in decimal, octal (with leading 0), or hexadecimal (with
leading 0x) notation:

APQN_ALLOWLIST
8 0x0d
Ox0a 13

END

Valid adapter and domain values are in the range 0 to 255.
« or as any available cryptographic adapters:

APQON_ANY

In the example from Figure 19 on page 113, adapter O with domains 0 and 1, and adapter 2 with
domain 84 are specified as target for requests from the EP11 token. In Figure 17 on page 109,

these adapter/domain pairs are shown in hexadecimal notation as APQNs (00,0000), (00,0001), and
(02,0054).

108 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Linux LPAR

/ APQN_ALLOWLIST /

Domain 0000
“ APQN 00,0000 |

g

7

| APQN 01,0000

""""""""""""" 00
Application EP11 token 01
,,,,,,,,, 284
7
S
S
Cryptographic 4 //Cryptographic Cryptographic
coprocessor 00 ~ | / coprocessor 01 | coprocessor 02
/:/ \\

_ APQN 02,0000 |

»
_ APQN 00,0001 |

Domain 0001

\ APQN 01,0001

_ APQN 02,0001 |

Domain 0054
 APQN 00,0054 |

\ APQN 01,0054

\

<
\ APQN 02,0054

|

Figure 17. Cryptographic configuration for an LPAR

CPFILTER

The list of mechanisms returned by C_GetMechanismList is filtered using the domain or access
control point (ACP) settings of the used cryptographic coprocessors. The EP11 access control point
filter configuration file (ACP-filter configuration file) is used to associate certain access (domain)
control points with mechanisms that are dependent on these access control points. The default
ACP-filter configuration file is epllcpfiltexr.conf located in the same directory as this EP11 token
configuration file. You can optionally specify the name or location, or both, of the ACP-filter file:

CPFILTER /etc/opencryptoki/eplicpfilter.conf

Chapter 16. EP11 token 109

EP11 token CP-filter configuration

3

The list of mechanisms returned by C_GetMechanismList is filtered
using the control point settings of the used crypto adapters.

The EP11 CP-filter config file is used to associate certain control
points with mechanisms that are dependent on these control points.
#

Syntax:

it cp: mechl, mech2,

#

Both, cp as well as mech is specified as name or in decimal, octal
(with leading 0) or hexadecimal (with leading 0x):

#

3 XCP_CPB_SIGN_SYMM: CKM_SHA256_HMAC, CKM_SHA256_HMAC_GENERAL
El3 4: Ox00000251, 0x00000252

sign with HMAC or CMAC
XCP_CPB_SIGN_SYMM: CKM_SHA256 HMAC, CKM_SHA256 HMAC_GENERAL, CKM_SHA224_HMAC,

verify with HMAC or CMAC
XCP_CPB_SIGVERIFY_SYMM: CKM_SHA256_HMAC, CKM_SHA256_HMAC_GENERAL, CKM_SHA224_HMAC,

sign with private keys
XCP_CPB_SIGN_ASYMM: CKM_RSA_PKCS, CKM_RSA_PKCS_PSS, CKM_SHA1_RSA_X9_31, CKM_SHA1_RSA_PKCS,

encrypt with symmetric keys
XCP_CPB_ENCRYPT_SYMM: CKM_AES_ECB, CKM_AES_CBC, CKM_AES_CBC_PAD, CKM_DES3_ECB,

decrypt with symmetric keys
XCP_CPB_DECRYPT_SYMM: CKM_AES_ECB, CKM_AES_CBC, CKM_AES_CBC_PAD, CKM_DES3_ECB, CKM_DES3_CBC,

key export with symmetric keys
XCP_CPB_WRAP_SYMM: CKM_AES_CBC, CKM_AES_CBC_PAD, CKM_DES3_CBC, CKM_DES3_CBC_PAD

key import with symmetric keys
XCP_CPB_UNWRAP_SYMM: CKM_AES_CBC, CKM_AES_CBC_PAD, CKM_DES3_CBC, CKM_DES3_CBC_PAD

generate asymmetric keypairs
XCP_CPB_KEYGEN_ASYMM: CKM_RSA_PKCS_KEY_PAIR_GEN, CKM_RSA_X9_31_KEY_PAIR_GEN,

generate or derive symmetric keys
XCP_CPB_KEYGEN_SYMM: CKM_AES_KEY_GEN, CKM_DES2_KEY_GEN, CKM_DES3_KEY_GEN,

RSA private-key or key-encrypt use

XCP_CPB_ALG_RSA: CKM_RSA_PKCS, CKM_RSA_PKCS_KEY_PAIR_GEN, CKM_RSA_X9_31_KEY_PAIR_GEN,
DSA private-key use

XCP_CPB_ALG_DSA: CKM_DSA_KEY_PAIR_GEN, CKM_DSA, CKM_DSA_SHA1

EC private-key use

XCP_CPB_ALG_EC: CKM_EC_KEY_PAIR_GEN, CKM_ECDH1_DERIVE, CKM_ECDSA, CKM_ECDSA_SHA224,
Diffie-Hellman use (private keys)

XCP_CPB_ALG_DH: CKM_ECDH1_DERIVE, CKM_DH_PKCS_KEY_PAIR_GEN, CKM_DH_PKCS_DERIVE

allow key derivation (symmetric+EC/DH)

XCP_CPB_DERIVE: CKM_SHA1_KEY_DERIVATION, CKM_SHA256_KEY_DERIVATION,

enable support of curve25519, c448 and related algorithms incl. EdDSA (ed25519 and ed448)
XCP_CPB_ALG_EC_25519: CKM_IBM_EC_X25519, CKM_IBM_ED25519 SHA512, CKM_IBM_EC_X448,

#enable support of Dilithium
XCP_CPB_ALG_PQC: CKM_IBM_DILITHIUM, CKM_IBM_KYBER

Figure 18. Excerpt of a sample ACP-filter configuration file

110 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

DIGEST_LIBICA <libica-path> | DEFAULT | OFF
To improve the performance of required hash functions, the EP11 token on initialization loads the
default libica library. If required, the EP11 token invokes the libica SHA-based hash functions,
because the libica library performs these hash functions on the CPACF, thus avoiding hash processing
on a cryptographic coprocessor which results in I/O operations to the adapter.

libica provides an OpenSSL based software fall-back, in case CPACF or a certain hashing function of
CPACEF is not available. In case a libica operation fails, because neither the hardware nor the software
support is available, or if libica is not available at all, then the request is passed to the EP11 library
instead.

With the DIGEST_LIBICA option, you can control which libica library is loaded:

DEFAULT
The default libica library is loaded. If libica could not be found, a message is issued to syslog,
and all hash based functions use the EP11 host library.

The same behavior is applied if the DIGEST_LIBICA option is not specified at all.

<libica-path>
The specified library is loaded. If it can not be found, a message is issued to syslog, and token
initialization fails.

OFF
No libica is loaded, and all hash based functions use the EP11 host library.

If DIGEST_LIBICA is not specified, then the default libica library is loaded (same behavior as for
DIGEST_LIBICA DEFAULT).

FORCE_SENSITIVE
Specify this option to force that the default for CKA_SENSITIVE is CK_TRUE for secret keys. For more
information, see “Usage notes for the EP11 host library functions” on page 123.

OPTIMIZE_SINGLE_PART_OPERATIONS
Set this option to optimize the performance of single part sign- and verify-operations, as well as of

single part encrypt- or decrypt-operations. Then the init call is not passed through the EP11 host
library as long as there is no corresponding multi-part operation.

When this option is enabled, error handling can be slightly different, when errors from the deferred
init call are presented during the first update call or during the calls to C_Sign, C_Verify,
C_Encrypt, or C_Deczrypt for a single part operation. That is, the first update call on a multi part
operation or the mentioned calls for a single part operation may return errors, which are usually not
returned by the update call. Such errors may be for example:

CKR_OBJECT_HANDLE_INVALID
CKR_ATTRIBUTE_VALUE_INVALID
CKR_KEY_HANDLE_INVALID
CKR_KEY_SIZE_RANGE
CKR_KEY_TYPE_INCONSISTENT
CKR_MECHANISM_INVALID
CKR_MECHANISM_PARAM_INVALID

PKEY_MODE
Use this option to define that for EP11 secure keys of type AES or EC, an additional pertaining
protected key shall be created, and this protected key shall be used whenever possible. This
optimizes the performance, because protected keys work on the CPACF feature, and calls to CPACF
are faster than calls to an EP11 cryptographic coprocessor.

Secure keys for which you want a pertaining protected key being produced and used, must have the
CKA_IBM_PROTKEY_EXTRACTABLE = TRUE attribute specified in their template when being created.
Secure keys with this attribute set to FALSE are not eligible for protected key support. See also “How
and why to exploit protected keys” on page 85.

Chapter 16. EP11 token 111

Keys created before introducing the protected key option are not usable for protected key support,
because they do not have the CKA_IBM_PROTKEY_EXTRACTABLE = TRUE attribute. Only keys
created after activating the protected key option with the ENABLEANONEXTR mode are eligible for
getting a protected key, depending on their key type (only AES and EC) and attributes. See also
“Miscellaneous attributes” on page 154.

Keys created before introducing the protected key option do not have a
CKA_IBM_PROTKEY_EXTRACTABLE attribute and are considered to be not usable for protected key
support.

Notes:

» Protected keys are created only from symmetric and private keys, not from public keys. They are
created by a transparent IBM-specific mechanism. This mechanism in turn reads certain attributes
of the processed key object to determine the generation of the protected key. The new protected
key is bound to the original secure key object by the attribute CKA_IBM_OPAQUE_PKEY (see also
“Miscellaneous attributes” on page 154.

« The PKEY_MODE option is only supported on IBM z15 processors or later, with EP11 cryptographic
coprocessors starting with CEX7P. It requires the EP11 host library 3.0 or later.

« Currently, an EP11 secure key (AES or EC) cannot be both CKA_EXTRACTABLE = TRUE and
CKA_IBM_PROTKEY_EXTRACTABLE = TRUE. Therefore, an application that wants to use the
PKEY_MODE support, must explicitly specify CKA_EXTRACTABLE=FALSE for all keys, which do
not require to be extractable for other reasons, for example, because (according to the PKCS#11
standard,) keys to be wrapped must be extractable. In addition, the EP11 host library 3.0 or later
does not allow attribute-bound keys to be transformed into protected keys.

Set the PKEY_MODE option to one of the following modes:

DISABLED
Protected key support is disabled. All keys are used as secure keys. This mode allows to
completely disable protected key support, for example, for performance comparisons.

DEFAULT
This option specifies to apply the default and works like follows:

If the application did not specify attribute CKA_IBM_PROTKEY_EXTRACTABLE = TRUE or
CKA_EXTRACTABLE = FALSE in its template for key generation, new keys of any type get
CKA_IBM_PROTKEY_EXTRACTABLE= FALSE and CKA_EXTRACTABLE = TRUE and no protected
key is created.

Existing secure keys with a valid protected key and CKA_IBM_PROTKEY_EXTRACTABLE = TRUE
are used via this protected key, and any invalid protected key is re-created if required with the
help of the current firmware master key.

ENABLE4ANONEXTR
Enable protected key support for non-extractable keys. If the application did not
specify CKA_IBM_PROTKEY_EXTRACTABLE = FALSE in its template for key generation,
new keys of any type with CKA_EXTRACTABLE = FALSE (non-extractable keys) get
CKA_IBM_PROTKEY_EXTRACTABLE = TRUE and a protected key is automatically created at first
use of the key.

STRICT_MODE
In strict-mode, all session-keys strictly belong to the PKCS #11 session that created it. When the
PKCS #11 session ends, all session keys created for this session can no longer be used.

For more information, read topic Controlling access to cryptographic objects in Exploiting Enterprise
PKCS #11 using openCryptoki.

USE_PRANDOM
Set this option to control from where the EP11 token reads random data. With USE_PRANDOM
specified, the EP11 token reads random data from /dev/prandom, or from /dev/urandomif /dev/
prandom is not available. The default is to read the random data using the m_GenerateRandom
function from the Crypto Express EP11 coprocessor.

112 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://www.ibm.com/docs/en/linux-on-systems?topic=overview-exploiting-enterprise-pkcs-11-using-opencryptoki
https://www.ibm.com/docs/en/linux-on-systems?topic=overview-exploiting-enterprise-pkcs-11-using-opencryptoki

VHSM_MODE
In VHSM-mode (virtual-HSM), all keys generated by the EP11 token strictly belong to the EP11 token
that created it. Every EP11 token running in this mode requires a VHSM card-PIN which must be set
using the pkcsepl11_session tool.

EXPECTED_WKVP
Use this option to ensure that all APQNs assigned to an EP11 token - dependent on the APQN
configuration (APQN_ANY or APQN_ALLOWLIST) - are configured with the same wrapping key. You
specify the expected wrapping key verification pattern (WKVP) as hex string. With this option, the
assigned APQNSs are checked to all match the specified expected WKVP during token initialization, or
if no EXPECTED_WKVP is specified, all WKVPs must match on all assigned APQNs anyway.

For functions calls to the key generation functions C_GenerateKey (), C_GenerateKeyPair (),
C_UnwrapKey (), C_DeriveKey (), or C_CreateObject(), the EP11 token also performs a
wrapping key verification pattern check to verify if the wrapping key is generated with the

correct and expected wrapping key verification pattern (WKVP). That means, that for an existing
EXPECTED_WKVP specification, the WKVP of the generated key must match the specified value, or, if
no EXPECTED_WKVP value is specified, it must be the WKVP encountered at token initialization time.

In case of a mismatch, token initialization or key generation fails and a syslog message is issued and a
flag is set in the token to reject all subsequent cryptographic operations with CKR_DEVICE_ERROR.

The EP11 verification pattern is 16 bytes in length, although sometimes 32 bytes are reported.
Nevertheless, only the first 16 bytes are compared.

##
EP11 token configuration
#
APQON_ALLOWLIST
00
01
2 84
END
FORCE_SENSITIVE
STRICT_MODE
VHSM_MODE
CPFILTER /etc/opencryptoki/eplicpfilter.conf
OPTIMIZE_SINGLE_PART_OPERATIONS
DIGEST_LIBICA DEFAULT
USE_PRANDOM
EXPECTED_WKVP "303344b12b8258840fal1852a4eccé6d5"

Figure 19. Sample of an EP11 token configuration file

PKCS #11 mechanisms supported by the EP11 token

View a list of mechanisms provided by PKCS #11 which you can use to exploit the openCryptoki features
for the EP11 token from within your application.

Use the pkecsconf command with the shown parameters to retrieve a complete list of mechanisms that
are supported by the EP11 token:

$ pkcsconf -m -c <slot>

Mechanism 2
Mechanism: 0x131 (CKM_DES3_KEY_GEN)
Key Size: 24-24
Flags: 0x8001 (CKF_HW|CKF_GENERATE)

Mechanism #10

Mechanism: 0x132 (CKM_DES3_ECB)

Key Size: 24-24

Flags: 0x60301 (CKF_HW|CKF_ENCRYPT |CKF_DECRYPT |CKF_WRAP |CKF_UNWRAP)
Mechanism #11

Mechanism: 0x133 (CKM_DES3_CBC)

Key Size: 24-24

Flags: 0x60301 (CKF_HW|CKF_ENCRYPT |CKF_DECRYPT |CKF_WRAP |CKF_UNWRAP)

Chapter 16. EP11 token 113

On an Crypto Express EP11 coprocessor (CEX*P) which is configured to support all applicable PKCS #11
mechanisms from the current openCryptoki version, the EP11 token can exploit the mechanisms listed
by the pkesconf -m -c <slot> command output. This output corresponds to the list shown in Table
9 on page 114. Each mechanism provides its supported key size and some further properties such as
hardware support and mechanism information flags. These flags provide information about the PKCS
#11 functions that may use the mechanism. In some cases, the flags also provide further attributes that
describe the supported variants of the mechanism. Typical functions are for example, encrypt, decrypt,
wrap key, unwrap key, sign, or verify.

Table 9. PKCS #11 mechanisms supported by the EP11 token
Mechanism Key sizes in Properties Support
bits or bytes with‘oc
version
CKM_RSA_PKCS_OAEP 1024-4096 bits | ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_RSA_PKCS_KEY_PAIR_GEN 1024-4096 bits | GENERATE_KEY_PAIR before 3.16
CKM_RSA_X9_31_KEY_PAIR_GEN 1024-4096 bits | GENERATE_KEY_PAIR before 3.16
CKM_RSA_PKCS_PSS 1024-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA1_RSA_X9_31 1024-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA1_RSA_PKCS 1024-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA1_RSA_PKCS_PSS 1024-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA256_RSA_PKCS 1024-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA256_RSA_PKCS_PSS 1024-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA224_RSA_PKCS 1024-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA224_RSA_PKCS_PSS 1024-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA384_RSA_PKCS 1024-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA384_RSA_PKCS_PSS 1024-4096 bits | SIGN, VERIFY before 3.16
CKM_SHAL12_RSA_PKCS 1024-4096 bits | SIGN, VERIFY before 3.16
CKM_SHAB512 RSA_PKCS_PSS 1024-4096 bits | SIGN, VERIFY before 3.16
CKM_AES_KEY_GEN 16-32 bytes GENERATE before 3.16
CKM_AES_ECB 16-32 bytes ENCRYPT, DECRYPT before 3.16
CKM_AES_CBC 16-32 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_AES_CBC_PAD 16-32 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_AES_XTSY 32-64 bytes |ENCRYPT, DECRYPT 3.20
CKM_AES_XTS_KEY_GENY 32- 64 bytes | GENERATE 3.20
CKM_DES2_KEY_GEN 16-16 bytes GENERATE before 3.16
CKM_DES3_KEY_GEN 24-24 bytes GENERATE before 3.16
CKM_DES3_ECB 16-24 bytes ENCRYPT, DECRYPT before 3.16
CKM_DES3_CBC 16-24 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP

114 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 9. PKCS #11 mechanisms supported by the EP11 token (continued)

Mechanism Key sizes in Properties Support
bits or bytes with OC
version
CKM_DES3_CBC_PAD 16-24 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_SHA256 n/a DIGEST before 3.16
CKM_SHA256_KEY_DERIVATION n/a DERIVE before 3.21
CKM_SHA256_HMAC 128-256 bytes |SIGN, VERIFY before 3.16
CKM_SHA224 n/a DIGEST before 3.16
CKM_SHA224 KEY_DERIVATION n/a DERIVE before 3.21
CKM_SHA224_HMAC 112-256 bytes | SIGN, VERIFY before 3.16
CKM_SHA_1 n/a DIGEST before 3.16
CKM_SHA1_KEY_DERIVATION n/a DERIVE before 3.21
CKM_SHA_1_HMAC 80-256 bytes SIGN, VERIFY before 3.16
CKM_SHA384 n/a DIGEST before 3.16
CKM_SHA384_KEY_DERIVATION n/a DERIVE before 3.21
CKM_SHA384_HMAC 192-256 bytes | SIGN, VERIFY before 3.16
CKM_SHA512 n/a DIGEST before 3.16
CKM_SHA512_KEY_DERIVATION n/a DERIVE before 3.21
CKM_SHA512_HMAC 256-256 bytes |SIGN, VERIFY before 3.16
CKM_SHA512_256 n/a DIGEST before 3.16
CKM_SHA512_256_HMAC 128-256 bytes |SIGN, VERIFY before 3.16
CKM_SHA512_224 n/a DIGEST before 3.16
CKM_SHA512_224 HMAC 112-256 bytes | SIGN, VERIFY before 3.16
CKM_ECDSA_KEY_PAIR_GEN 192-521 bits GENERATE_KEY_PAIR, before 3.16
EC_F_P,EC_F_P, EC_OID,
EC_UNCOMPRESS
CKM_ECDSA 192-521 bits SIGN, VERIFY, EC_F_P, before 3.16
EC_F_P, EC_OID,
EC_UNCOMPRESS
CKM_ECDSA_SHA1 192-521 bits SIGN, VERIFY, EC_F_P, before 3.16
EC_F_P, EC_OID,
EC_UNCOMPRESS
CKM_ECDH1_DERIVE 192-521 bits DERIVE, EC_F_P, before 3.16
EC_UNCOMPRESS
CKM_DSA_PARAMETER_GEN 1024-3072 bits | GENERATE before 3.16
CKM_DSA_KEY_PAIR_GEN 1024-3072 bits | GENERATE_KEY_PAIR before 3.16
CKM_DSA 1024-3072 bits | SIGN, VERIFY before 3.16
CKM_DSA_SHA1 1024-3072 bits | SIGN, VERIFY before 3.16

Chapter 16. EP11 token 115

Table 9. PKCS #11 mechanisms supported by the EP11 token (continued)

CKM_IBM_ED25519_SHA512

Mechanism Key sizes in Properties Support
bits or bytes with OC
version
CKM_DH_PKCS_PARAMETER_GEN 1024-3072 bits | GENERATE before 3.16
CKM_DH_PKCS_KEY_PAIR_GEN 1024-3072 bits | GENERATE_KEY_PAIR before 3.16
CKM_DH_PKCS_DERIVE 1024-3072 bits | DERIVE before 3.21
CKM_IBM_DILITHIUM 256-256 bytes | SIGN, VERIFY, before 3.16
GENERATE_KEY_PAIR
CKM_IBM_KYBER 204-396 bytes | ENCRYPT, DECRYPT, 3.21
GENERATE, DERIVE
CKM_RSA_X9_31 1024-4096 bits | SIGN, VERIFY before 3.16
CKM_PBE_SHA1_DES3_EDE_CBC 24-24 bytes GENERATE before 3.16
CKM_IBM_SHA3_224 n/a DIGEST before 3.16
CKM_IBM_SHA3_256 n/a DIGEST before 3.16
CKM_IBM_SHA3_384 n/a DIGEST before 3.16
CKM_IBM_SHA3_512 n/a DIGEST before 3.16
CKM_IBM_SHA3_224 HMAC 112-256 bytes |SIGN, VERIFY before 3.16
CKM_IBM_SHA3_256_HMAC 128-256 bytes |SIGN, VERIFY before 3.16
CKM_IBM_SHA3_384_HMAC 192-256 bytes | SIGN, VERIFY before 3.16
CKM_IBM_SHA3_512_HMAC 256-256 bytes | SIGN, VERIFY before 3.16
CKM_ECDSA_SHA224 192-521 bits SIGN, VERIFY, EC_F_P, before 3.16
EC_OID, EC_UNCOMPRESS
CKM_ECDSA_SHA256 192-521 bits SIGN, VERIFY, EC_F_P, before 3.16
EC_OID, EC_UNCOMPRESS
CKM_ECDSA_SHA384 192-521 bits SIGN, VERIFY, EC_F_P, before 3.16
EC_OID, EC_UNCOMPRESS
CKM_ECDSA_SHA512 192-521 bits SIGN, VERIFY, EC_F_P, before 3.16
EC_OID, EC_UNCOMPRESS
CKM_IBM_EC_C25519 256-256 bytes | DERIVE, EC_F_P, before 3.16
EC_UNCOMPRESS
CKM_IBM_EC_X25519 is a synonym for
CKM_IBM_EC_C25519
CKM_IBM_EC_C448 448-448 bytes |DERIVE, EC_F_P, before 3.16
EC_UNCOMPRESS
CKM_IBM_EC_X448 is a synonym for
CKM_IBM_EC_C448
CKM_IBM_ED25519_SHA512 256-256 bytes |SIGN, VERIFY, EC_F_P, before 3.16
EC_UNCOMPRESS
CKM_IBM_EDDSA_SHA512 is a synonym for before 3.16

116 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 9. PKCS #11 mechanisms supported by the EP11 token (continued)

Mechanism Key sizes in Properties Support
bits or bytes with OC

version
CKM_IBM_ED448_SHA3 448-448 bytes |SIGN, VERIFY, EC_F_P, before 3.16
EC_UNCOMPRESS

CKM_IBM_CMAC 16-32 bytes SIGN, VERIFY before 3.16

CKM_AES_CMAC 16-32 bytes SIGN, VERIFY before 3.16

CKM_DES3_CMAC 16-24 bytes SIGN, VERIFY before 3.16

CKM_IBM_ATTRIBUTEBOUND_WRAP |0-4096 bits WRAP, UNWRAP 3.16

Note: 1) only applicable with protected key (see “How and why to exploit protected keys” on page 85).

For a description of mechanisms with a name pattern of CKM_IBM_. .. refer to Chapter 20, “IBM-specific
mechanisms,” on page 139.

For more detailed information on how to use the EP11 token, refer to Exploiting Enterprise PKCS #11
using openCryptoki.

For explanation about the key object properties see the PKCS #11 Cryptographic Token Interface
Standard.

ECC curves supported by the EP11 token

View a list of curves that are supported by the EP11 token for elliptic curve cryptography (ECC).

For the support of elliptic curve cryptography, the EP11 token provides standard mechanisms and IBM-
specific mechanisms for key derivation and for sign and verify operations. For more information, refer to
“PKCS #11 mechanisms supported by the EP11 token” on page 113.

Table 10. Curves supported by the EP11 token for elliptic curve cryptography (ECC)

Curve Purpose

brainpoolP160rl . for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnNNN
» for ECDH with CKM_ECDH1_DERIVE

brainpoolP160t1l |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnn
« for ECDH with CKM_ECDH1_DERIVE

brainpoolP192r1 |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnNN
« for ECDH with CKM_ECDH1_DERIVE

brainpoolP192t1 |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnnN
. for ECDH with CKM_ECDH1_DERIVE

brainpoolP224r1l |, for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnn
« for ECDH with CKM_ECDH1_DERIVE

brainpoolP224t1 |, for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnn
. for ECDH with CKM_ECDH1_DERIVE

Chapter 16. EP11 token 117

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

Table 10. Curves supported by the EP11 token for elliptic curve cryptography (ECC) (continued)

Curve Purpose

brainpoolP256r1 . for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANNN
» for ECDH with CKM_ECDH1_DERIVE

brainpoolP256t1 |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnn
« for ECDH with CKM_ECDH1_DERIVE

brainpoolP320r1 |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnNN
« for ECDH with CKM_ECDH1_DERIVE

brainpoolP320t1 |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnNN
. for ECDH with CKM_ECDH1_DERIVE

brainpoolP384rl |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnn
« for ECDH with CKM_ECDH1_DERIVE

brainpoolP384t1 |. for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnn
. for ECDH with CKM_ECDH1_DERIVE

brainpoolP512r1 . for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnNNN
» for ECDH with CKM_ECDH1_DERIVE

brainpoolP512t1 |, for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANnn
« for ECDH with CKM_ECDH1_DERIVE

prime192v1 - for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANNN
« for ECDH with CKM_ECDH1_DERIVE

prime256v1 - for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnNN
« for ECDH with CKM_ECDH1_DERIVE

secp224rl « for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANNN
. for ECDH with CKM_ECDH1_DERIVE

secp256k1 - for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANNN
. for ECDH with CKM_ECDH1_DERIVE

secp384rl « for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
» for ECDH with CKM_ECDH1_DERIVE

secp521rl - for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHANNn
« for ECDH with CKM_ECDH1_DERIVE

Montgomery curves, only for ECDH with certain IBM-specific mechanisms

X448 ECDH with CKM_IBM_EC_C448

X25519 ECDH with CKM_IBM_EC_C25519

Edwards Curves, only for Sign/Verify (EdDSA) with certain IBM-specific mechanisms

118 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 10. Curves supported by the EP11 token for elliptic curve cryptography (ECC) (continued)
Curve Purpose

ed448 Sign/Verify with CKM_IBM_ED448_SHA3

ed25519 Sign/Verify with CKM_IBM_ED25519_SHA512

The EP11 host library provides access control point 55 to enable support of curve25519, c448, and
related algorithms, including EADSA:

55 XCP_CPB_ALG_EC_25519 enable support of curve25519, c448 and related algorithms
incl. EdDSA

Migrating master keys - pkcsepl1l_migrate utility

There may be situations when the master key on (a domain of) a Crypto Express EP11 coprocessor
(CEX*P) must be changed, for example, if company policies require periodic changes of all master keys.
Simply changing the master keys using the TKE results in all secure keys stored in the EP11 token to
become useless. Therefore all data encrypted by these keys are lost. To avoid this situation, you must
accomplish a master key migration process, where activities on the TKE and on the Linux system must be
interlocked.

With openCryptoki, you can choose between a concurrent master key change described in Chapter 12,
“Managing a concurrent master key change - pkcshsm_mk_change utility,” on page 71 or an offline
master key change where you need to stop all openCryptoki applications that access the EP11 token. Use
the tool described in this topic to perform this offline scenario.

All secret and private keys are secure keys, that means they are enciphered (wrapped) with the
master key (MK) of the CEX*P adapter domain. Therefore, the master key is often also referred to as
wrapping key. If master keys are changed in a domain of a CEX*P adapter, all key objects for secure
keys in the EP11 token object repository become invalid. Therefore, all key objects for secure keys
must be re-enciphered with the new MK. In order to re-encipher secure keys that are stored as EP11
key objects in the EP11 token object repository, openCryptoki provides the master key migration tool
pkcsepll_migrate.

How to access the master key migration tool

The pkcsepll1_migrate key migration utility is part of openCryptoki versions 3.1 or later, which include the
EP11 support.

Prerequisites for the master key migration process

The master key migration process for the EP11 token requires a TKE version 7.3 environment. How to set
up this environment is described in topic Setting up the TKE environment of Exploiting Enterprise PKCS #11
using openCryptoki.

To use the pkcsepl1l1_migrate migration tool, the EP11 crypto stack including openCryptoki must be
installed and configured. For information on how to set up this environment, read Exploiting Enterprise
PKCS #11 using openCryptoki.

The master key migration process

Prerequisite for re-encipherment: The EP11 token may be configured to use more than one adapter/
domain pair to perform its cryptographic operations. This is defined in the EP11 token configuration file.
If the EP11 token is configured to use more than one adapter/domain pair, then all adapter/domain pairs
must be configured to each have the same set of master keys. Therefore, if a master key on one of these
adapter/domain pairs is changed, it must be changed on all those other adapter/domain pairs, too.

Chapter 16. EP11 token 119

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html

To migrate master keys on the set of adapter/domain pairs used by an EP11 token, you must perform the
following steps:

1. On the TKE workstation (TKE), submit and commit the same new master key on all CEX*P adapter/
domain combinations used by the EP11 token.

2. On Linux, stop all processes that are currently using openCryptoki with the EP11 token.

3. On Linux, back up the token object repository of the EP11 token. For example, you can use the
following commands:

cd /var/lib/opencryptoki/epll
tar -cvzf ~/epl1TOK_OBJ_backup.tgz TOK_OBJ

4. On Linux, migrate the keys of the EP11 token object repository with the pkcsep11_migrate
migration tool (see the invocation information provided at the end of these process steps). The
pkcsepll_migrate tool must only be called once for one of the adapter/domain pairs that the EP11
token uses. If a failure occurs, restore the backed-up token repository and try this step again.

Attention: Do not continue with step “5” on page 120 unless step “4” on page 120 was
successful. Otherwise you will lose your encrypted data.

5. On the TKE, activate the new master keys on all EP11 adapter/domain combinations that the EP11
token uses.

6. On Linux, restart the applications that used openCryptoki with the EP11 token.

In step “1” on page 120 of the master key migration process, the new master key must be submitted
and committed via the TKE interface. That means the new EP11 master key must be in the state Full
Committed. The current MK is in the state Valid. Now both (current and new) EP11 master keys
are available and accessible. The utility can now decrypt all relevant key objects within the token and
re-encrypt all these key objects with the new master key.

Note: All the decrypt and encrypt operations are done inside the EP11 cryptographic coprocessor, that
means that at no time clear key values are visible within memory.

Invocation:
pkcsepll_migrate -slot <number> -adapter <number> -domain <number>
The following parameters are mandatory:

-slot
- slot number for the EP11 token

-adapter
- the card ID; can be retrieved form the card ID in the sysfs (to be retrieved from /sys/devices/ap/
cardxx, or with 1szcrypt.

-domain
- the decimal card domain number (to be retrieved from /sys/bus/ap/ap_domain or with
1szcrypt -b)

All token objects representing secret or private keys that are found for the EP11 token, are re-encrypted.

Note: The adapter and domain numbers can be specified in decimal, octal (with prefix 0), or hexadecimal
(with prefix 0x) notation. The 1szcrypt utility displays these fields in hexadecimal values.

Usage: You are prompted for your user PIN.

Examples:

pkcsepll_migrate -slot 2 -adapter 8 -domain 48
pkcsepll_migrate -slot Ox2 -adapter 010 -domain 0x30

Both invocations migrate the master key for the cryptographic coprocessor 8 (octal 010) and domain 48
(hex 0x30) used by the EP11 token from slot 2.

120 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Note: The program stops if the re-encryption of a token object fails. In this case, restore the back-up.

After this utility re-enciphered all key objects, the new master key must be activated. This activation must
be done by using the TKE interface command Set, immediate. Finally, the new master key becomes
the current master key and the previous master key must be deleted.

Note: This tool is installed in the users sbin path and therefore callable from everywhere.

To prevent token object generation during re-encryption, openCryptoki with the EP11 token must not be
running during re-encryption. It is recommended to make a back-up of the EP11 token object directory
(/var/lib/opencryptoki/eplltok/TOK_0BJ).

Managing EP11 sessions - pkcsepll_session utility

An EP11 session is a state on the EP11 cryptographic coprocessor and must not be confused with a
PKCS #11 session. An EP11 session is generated by the strict session mode or the VHSM mode. They

are implicitly stored and deleted by openCryptoki if the according modes are set. So under normal
circumstances, you need not care about the management of these EP11 sessions. But in some cases, for
example, when programs crash or when programs do not close their sessions or do not call C_Finalize
before exiting, some explicit EP11 session management may be required.

EP11 sessions are a limited resources shared by all domains of an EP11 cryptographic coprocessor and
must be closed when no longer needed to avoid situations where the EP11 cryptographic coprocessor
runs out of session resources. Therefore the usage of the strict session mode and the VHSM mode is only
recommended in environments where all systems accessing EP11 cryptographic coprocessors can be
trusted to cooperate to not open or keep open EP11 sessions unnecessarily.

For more information about EP11 sessions, read Exploiting Enterprise PKCS #11 using openCryptoki.

The pkcsepll1_session tool allows to delete an EP11 session from the EP11 cryptographic
coprocessors left over by programs that did not terminate normally. An EP11 cryptographic coprocessor
supports only a certain number of EP11 sessions at a time. Because of this, it is important to delete any
EP11 session, in particular when the program for which it was logged in, terminated unexpectedly. The
pkcsepll_session tool is also used to set the VHSM-PIN required for the VHSM mode.

pkcsepll_session syntax

To see all available sub commands of the pkcsepl11_session utility, request help with the
pkcsepll_session -horpkcsepll_session --helpcommand:

pkcsepll_session -h

usage: pkcsepll_session show|logout|vhsmpin|status [-date <yyyy/mm/dd>] [-pid <pid>] [-id <sess-
id>] [-slot <num>] [-force] [-h]

pkcsepll_session sub-command usage examples

« show: Show all left over sessions:

pkcsepll_session show

A sample output for two left-over EP11 sessions could look as shown:

Chapter 16. EP11 token 121

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html

pkcsepll_session show -slot 4
Using slot #4...

Enter the USER PIN:
List of EP11 sessions:

30D5457762D8DDC158B558FCCC79FAB6:
Pid: 48196
Date: 2018/ 7/12
30D5457762D8DDC158B558FCCC79FAB6:
Pid: 48196
Date: 2018/ 7/12

2 EP11-Sessions displayed

Note that only the first 16 bytes of the EP11 session ID are stored in the session object and therefore,
the session IDs are displayed only partially. Otherwise, a user would be able to re-login on an EP11
adapter and re-use keys generated with this EP11 session, when the full EP11 session ID would be
visible to the outside. Thus there may be identical session IDs when the strict session mode and the
virtual HSM (VHSM) mode are combined for a session, as shown in the example.

« show: Show all left over EP11 sessions that belong to a specific process ID (pid):
pkcsepll_session show -pid 1234

« show: Show all left over EP11 sessions that have been created before a specific date:
pkcsepll_session show -date 2018/06/29

« logout: Logout all left over EP11 session:
pkcsepll_session logout

« logout: Logout all left over EP11 session that belong to a specific process id (pid):
pkcsepll_session logout -pid 1234

« logout: Logout all left over EP11 session that have been created before a specific date:
pkcsepll_session logout -date 2018/07/27

« logout: Logout all left over EP11 session even when the logout does not succeed on all adapters:
pkcsepll_session logout -force

- vhsmpin: Every EP11 token running in virtual HSM mode (VHSM_MODE configuration option) requires
a VHSM-PIN. The vhsmpin subcommand sets this VHSM-PIN used for the virtual HSM mode
(VHSM_MODE).

In VHSM mode, all keys generated by the EP11 token strictly belong to the EP11 token instance that
created it.

Note: When changing the VHSM-PIN, all existing keys stored as token objects become unusable.

See also “Defining an EP11 token configuration file” on page 107 or read topic Controlling access to
cryptographic objects in Exploiting Enterprise PKCS #11 using openCryptoki.

pkcsepll_session vhsmpin -slot 4
Using slot #4...
Enter the USER PIN:

The VHSM-PIN must contain between 8 and 16 alphanumeric characters.

122 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://www.ibm.com/docs/en/linux-on-systems?topic=overview-exploiting-enterprise-pkcs-11-using-opencryptoki

« status: Query the maximum and currently available number of EP11 sessions for each available EP11
APQN. :

pkcsepll_session status

See the following sample output:

APQN 0b.0024:
Max Sessions: 1024
Available Sessions: 234
APQN 0a.0024:
Max Sessions: 1024
Available Sessions: 0

The pkcsepll_session tool provides its own man page that is installed as part of the EP11 package.

Usage notes for the EP11 host library functions

In this topic, you find information about certain limitations of the EP11 host library.

- The EP11 host library implements the secure key concept as explained in the introduction of Chapter 14,
“CCA token,” on page 91.

Therefore, the EP11 token only knows sensitive secret keys (CKO_SECRET_KEY). However, the PKCS
#11 standard defines the default value of attribute CKA_SENSITIVE to be CK_FALSE. Thus, for
previous versions of the EP11 token, all applications must have the attribute value of CKA_SENSITIVE
explicitly changed to CK_TRUE whenever an EP11 secret key had been generated, unwrapped, or build
with C_CreateObject.

Starting with the EP11 token for openCryptoki version 3.10, an option is implemented to change
the default value of attribute CKA_SENSITIVE to be CK_TRUE for all secret keys created with

the EP11 token. This applies to functions C_GenerateKey, C_GenerateKeyPair, C_UnwrapKey,
and C_DeriveKey when creating key with CKA_CLASS = CKO_SECRET_KEY, if the attribute
CKA_SENSITIVE is not explicitly specified in the template.

To enable this option, you must specify keyword FORCE_SENSITIVE in the EP11 token configuration
file, as shown in Figure 20 on page 123. Note that the semantics specified with the FORCE_SENSITIVE
keyword matches the semantics used by z/OS for EP11.

i
EP11 token configuration
i
FORCE_SENSITIVE
i
APQN_ALLOWLIST
52
6 2
END

Figure 20. Sample of an EP11 token configuration file

 Keys leaving the hardware security module (HSM) are encrypted by the HSM master key (wrapping
key) and come as binary large object (BLOB). In openCryptoki, objects can have special attributes that
describe the key properties. Besides dedicated attributes defined by the application, there are some
attributes defined as token-specific by openCryptoki.

Table 11 on page 123 and Table 12 on page 124 show the EP11 token-specific attributes and their
default values for private and secure keys.

Table 11. Private key (CKO_PRIVATE_KEY) default attributes of the EP11 token

Private key attributes value
CKA_SENSITIVE CK_TRUE
CKA_EXTRACTABLE CK_TRUE

Chapter 16. EP11 token 123

Table 12. Secret key (CKO_SECRET_KEY) default attributes of the EP11 token

Secret key attributes value
CKA_EXTRACTABLE CK_TRUE

« When you create keys the default values of the attributes CKA_ENCRYPT, CKA DECRYPT, CKA_VERIFY,
CKA_SIGN, CKA_WRAP and CKA_UNWRAP are CK_TRUE. Note, no EP11 mechanism supports the Sign/
Recover or Verify/Recover functions.

Even if settings of CKA_SENSITIVE, CKA_EXTRACTABLE, or CKA_NEVER_EXTRACTABLE would allow
accessing the key value, then openCryptoki returns 00. . 00 as key value (due to the secure key
concept).

For information about the key attributes, see the PKCS #11 Cryptographic Token Interface Standard.
« All RSA keys must have a public exponent (CKA_PUBLIC_EXPONENT) greater than or equal to 17.

« The Crypto Express EP11 coprocessor restricts RSA keys (primes and moduli) according to ANSI X9.31.
Therefore, in the EP11 token, the lengths of the RSA primes (p or q) must be a multiple of 128 bits. Also,
the length of the modulus (CKA_MODULUS_BITS) must be a multiple of 256.

« The mechanisms CKM_DES3_CBC and CKM_AES_CBC can only wrap keys, which have a length that
is a multiple of the block size of DES3 or AES respectively. See the mechanism list and mechanism
information (pkcsconf -m) for supported mechanisms together with supported functions and key
sizes.

« The EP11 coprocessor adapter can be configured to restrict the cryptographic capabilities in order for
the adapter to comply with specific security requirements and regulations. Such restrictions on the
adapter impact the capability of the EP11 token.

The PKCS #11 function C_DigestKey () is not supported by the EP11 host library.

Pure EP11 key objects can be extracted from sensitive openCryptoki key objects for the CCA token by
accessing the value of the CKA_IBM_OPAQUE attribute value.

Restriction to extended evaluations

For openCryptoki versions up to 3.8, the EP11 token only supported those functions and mechanisms
that are available on an adapter that is configured to comply to the extended evaluations. These extended
evaluations meet public sector requirements with regard to both FIPS and Common Criteria certifications.

For more details, see the IBM z14 Technical Guide.

Starting with the current version of the EP11 enablement, you can control the use of certain mechanisms
within a domain of an EP11 cryptographic coprocessor by configuring this coprocessor by means of
access control points (ACPs). So except for one restriction, the use of mechanisms is no longer restricted
to the limitations imposed by the extended evaluations.

Read the information about filter mechanisms in

Exploiting Enterprise PKCS #11 using openCryptoki

for information on how to manage the access to PKCS #11 mechanisms using ACPs.

The available mechanisms and their attributes are then reflected by the openCryptoki

functions C_GetMechanismlList and C_GetMechanismInfo. However, there is one restriction
on RSA mechanisms that cannot be reflected in the result of C_GetMechanismInfo: The
CKA_PUBLIC_EXPONENT must have a value of at least 17.

124 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://www.redbooks.ibm.com/abstracts/sg248451.html?Open
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html

Chapter 17. Soft token

The Soft token is often used for test purposes before you let your application access one of the other
available tokens in openCryptoki. View a list of PKCS #11 mechanisms supported by the Soft token.

As a prerequisite for an operational Soft token, the OpenSSL library called 1ibcrypto must be installed
(see Figure 3 on page 14).

With OpenSSL 3.0 there is no way for a Soft token to obtain the intermediate digest state from a digest
operation, which was possible with earlier versions of OpenSSL. This leads to the fact that for operations
that involve digests, function C_GetOperationState () returns CKR_STATE_UNSAVEABLE when built
against OpenSSL 3.0. This affects digest operations using C_DigestInit (), C_DigestUpdate(), and
C_DigestFinal(), but also sign and verify operations with mechanisms involving digests. This is
explicitly allowed by the PKCS #11 standard for function C_GetOperationState(): An attempt to save
the cryptographic operations state of a session which is performing an appropriate cryptographic operation
(or two), but which cannot be satisfied, for example, because certain necessary state or key information
cannot leave the token, should fail with the error CKR_STATE_UNSAVEABLE.

Note: The Soft token directory must not be located in a directory that is either an NFS or a CIFS file
system, but must be located in a file system that supports the £lock () function which manages file
locks.

PKCS #11 mechanisms supported by the Soft token

View a list of mechanisms provided by PKCS #11 which you can use to exploit the openCryptoki features
for the Soft token from within your application.

Use the pkcsconf command with the shown parameters to retrieve a complete list of mechanisms that
are supported by the Soft token:

$ pkcsconf -m -c <slot>

Mechanism #0
Mechanism: Ox0@ (CKM_RSA_PKCS_KEY_PAIR_GEN)
Key Size: 512-4096
Flags: 0x10000 (CKF_GENERATE_KEY_PAIR)
Mechanism #1
Mechanism: 0x120 (CKM_DES_KEY_GEN)
Key Size: 8-8
Flags: 0x8000 (CKF_GENERATE)
Mechanism #2
Mechanism: 0x131 (CKM_DES3_KEY_GEN)
Key Size: 24-24
Flags: 0x8000 (CKF_GENERATE)

The command output shown in Table 13 on page 125 displays all mechanisms that are supported by
the Soft token. Each mechanism provides its supported key size and some further properties such as
hardware support and mechanism information flags. These flags provide information about the PKCS
#11 functions that may use the mechanism. In some cases, the flags also provide further attributes that
describe the supported variants of the mechanism. Typical functions are for example, encrypt, decrypt,
wrap key, unwrap key, sign, or verify.

The pkcsconf -m -c <slot>command output corresponds to the list shown in Table 13 on page 125.

Table 13. PKCS #11 mechanisms supported by the Soft token
Mechanism Key sizes in Properties Support
bits or bytes with OC
version
CKM_RSA_PKCS_KEY_PAIR_GEN 512-4096 bits | GENERATE KEY PAIR before 3.16

© Copyright IBM Corp. 2021, 2023 125

Table 13. PKCS #11 mechanisms supported by the Soft token (continued)

Mechanism Key sizes in Properties Support
bits or bytes with OC
version
CKM_DES_KEY_GEN 8-8 bytes GENERATE before 3.16
CKM_DES3_KEY_GEN 24-24 bytes GENERATE before 3.16
CKM_RSA_PKCS 512-4096 bits | ENCRYPT, DECRYPT, SIGN, SIGN | before 3.16
RECOVER, VERIFY, VERIFY
RECOVER, WRAP, UNWRAP
CKM_RSA_PKCS_PSS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA1_RSA_PKCS_PSS 512-4096 bits | SIGN, VERIFY 3.16
CKM_SHA224 RSA_PKCS_PSS 512-4096 bits | SIGN, VERIFY 3.16
CKM_SHA256_RSA_PKCS_PSS 512-4096 bits | SIGN, VERIFY 3.16
CKM_SHA384_RSA_PKCS_PSS 512-4096 bits | SIGN, VERIFY 3.16
CKM_SHA512_RSA_PKCS_PSS 512-4096 bits | SIGN, VERIFY 3.16
CKM_SHA224 RSA_PKCS 512-4096 bits | SIGN, VERIFY 3.16
CKM_SHA256_RSA_PKCS 512-4096 bits | SIGN, VERIFY 3.16
CKM_SHA384_RSA_PKCS 512-4096 bits | SIGN, VERIFY 3.16
CKM_SHA512_RSA_PKCS 512-4096 bits | SIGN, VERIFY 3.16
CKM_RSA_X_509 512-4096 bits | ENCRYPT, DECRYPT, SIGN, before 3.16
SIGN_RECOVER, VERIFY,
VERIFY_RECOVER, WRAP,
UNWRAP
CKM_RSA_PKCS_OAEP 512-4096 bits | ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_MD5_RSA_PKCS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_SHA1_RSA_PKCS 512-4096 bits | SIGN, VERIFY before 3.16
CKM_DH_PKCS_DERIVE 512-8192 bits | DERIVE before 3.16
CKM_DH_PKCS_KEY_PAIR_GEN 512-8192 bits | GENERATE KEY PAIR before 3.16
CKM_AES_XTS 32 -64 bytes ENCRYPT, DECRYPT, WRAP, 3.20
UNWRAP
CKM_AES_XTS_KEY_GEN 32 -64 bytes GENERATE 3.20
CKM_DES_ECB 8-8 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_DES_CBC 8-8 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_DES_CBC_PAD 8-8 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_DES3_ECB 24-24 bytes ENCRYPT, DECRYPT, WRAP, before 3.16

UNWRAP

126 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 13. PKCS #11 mechanisms supported by the Soft token (continued)

Mechanism Key sizes in Properties Support

bits or bytes with.OC

version
CKM_DES3_CBC 24-24 bytes ENCRYPT, DECRYPT, WRAP, before 3.16

UNWRAP
CKM_DES3_CBC_PAD 24-24 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP

CKM_DES3_CMAC 16-24 bytes SIGN, VERIFY before 3.16
CKM_DES3_CMAC_GENERAL 16-24 bytes SIGN, VERIFY before 3.16
CKM_SHA_1 n/a DIGEST before 3.16
CKM_SHA_1_HMAC n/a SIGN, VERIFY before 3.16
CKM_SHA_1_HMAC_GENERAL n/a SIGN, VERIFY before 3.16
CKM_SHA224 n/a DIGEST before 3.16
CKM_SHA224_HMAC n/a SIGN, VERIFY before 3.16
CKM_SHA224_HMAC_GENERAL n/a SIGN, VERIFY before 3.16
CKM_SHA256 n/a DIGEST before 3.16
CKM_SHA256_HMAC n/a SIGN, VERIFY before 3.16
CKM_SHA256_HMAC_GENERAL n/a SIGN, VERIFY before 3.16
CKM_SHA384 n/a DIGEST before 3.16
CKM_SHA384_HMAC n/a SIGN, VERIFY before 3.16
CKM_SHA384_HMAC_GENERAL n/a SIGN, VERIFY before 3.16
CKM_SHA512 n/a DIGEST before 3.16
CKM_SHA512_HMAC n/a SIGN, VERIFY before 3.16
CKM_SHA512_HMAC_GENERAL n/a SIGN, VERIFY before 3.16
CKM_SHA512 224 n/a DIGEST before 3.16
CKM_SHA512_224_HMAC n/a SIGN, VERIFY before 3.16
CKM_SHA512_224_HMAC_GENERAL |n/a SIGN, VERIFY before 3.16
CKM_SHA512_256 n/a DIGEST before 3.16
CKM_SHAbK12_256_HMAC n/a SIGN, VERIFY before 3.16
CKM_SHA512_256_HMAC_GENERAL [n/a SIGN, VERIFY before 3.16
CKM_IBM_SHA3_224 n/a DIGEST before 3.16
CKM_IBM_SHA3_256 n/a DIGEST before 3.16
CKM_IBM_SHA3_384 n/a DIGEST before 3.16
CKM_IBM_SHA3_512 n/a DIGEST before 3.16
CKM_IBM_SHA3_224_HMAC 112-256 bytes [SIGN, VERIFY before 3.16
CKM_IBM_SHA3_256_HMAC 128-256 bytes | SIGN, VERIFY before 3.16
CKM_IBM_SHA3_384_HMAC n/a SIGN, VERIFY before 3.16

Chapter 17. Soft token 127

Table 13. PKCS #11 mechanisms supported by the Soft token (continued)

Mechanism Key sizes in Properties Support
bits or bytes with OC
version
CKM_IBM_SHA3_512_HMAC 256-256 bytes | SIGN, VERIFY before 3.16
CKM_MD5 n/a DIGEST before 3.16
CKM_MD5_HMAC n/a SIGN, VERIFY before 3.16
CKM_MD5_HMAC_GENERAL n/a SIGN, VERIFY before 3.16
CKM_SSL3_PRE_MASTER_KEY_GEN | 48-48 bytes GENERATE before 3.16
CKM_SSL3_MASTER_KEY_DERIVE 48-48 bytes DERIVE before 3.16
CKM_SSL3_KEY_AND_MAC_DERIVE |48-48 bytes DERIVE before 3.16
CKM_DES3_MAC 16-24 bytes HW, SIGN, VERIFY before 3.16
CKM_DES3_MAC_GENERAL 16-24 bytes HW, SIGN, VERIFY before 3.16
CKM_AES_MAC 16-24 bytes HW, SIGN, VERIFY before 3.16
CKM_AES_MAC_GENERAL 16-24 bytes HW, SIGN, VERIFY before 3.16
CKM_SSL3_MD5_MAC 384-384 bits | SIGN, VERIFY before 3.16
CKM_SSL3_SHA1_MAC 384-384 bits | SIGN, VERIFY before 3.16
CKM_AES_CTR 16-32 bytes ENCRYPT, DECRYPT, WRAP, 3.17
UNWRAP
CKM_AES_OFB 16-32 bytes ENCRYPT, DECRYPT, WRAP, 3.17
UNWRAP
CKM_AES_CFB8 16-32 bytes ENCRYPT, DECRYPT, WRAP, 3.17
UNWRAP
CKM_AES_CFB128 16-32 bytes ENCRYPT, DECRYPT, WRAP, 3.17
UNWRAP
CKM_AES_GCM 16-32 bytes ENCRYPT, DECRYPT, WRAP, 3.17
UNWRAP
CKM_DES_OFB64 24-24 bytes ENCRYPT, DECRYPT, WRAP, 3.17
UNWRAP
CKM_DES_CFBS8 24-24 bytes ENCRYPT, DECRYPT, WRAP, 3.17
UNWRAP
CKM_DES_CFB64 24-24 bytes ENCRYPT, DECRYPT, WRAP, 3.17
UNWRAP
CKM_AES_KEY_GEN 16-32 bytes GENERATE before 3.16
CKM_AES_ECB 16-32 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_AES_CBC 16-32 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_AES_CBC_PAD 16-32 bytes ENCRYPT, DECRYPT, WRAP, before 3.16
UNWRAP
CKM_AES_CMAC 16-32 bytes SIGN, VERIFY before 3.16

128 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 13. PKCS #11 mechanisms supported by the Soft token (continued)

Mechanism Key sizes in Properties Support
bits or bytes with.OC
version
CKM_AES_CMAC_GENERAL 16-32 bytes SIGN, VERIFY before 3.16
CKM_GENERIC_SECRET_KEY_GEN 80-2048 bits | GENERATE before 3.16
CKM_ECDSA_KEY_PAIR_GEN 160-521 bits | GENERATE_KEY_PAIR, EC_F_P, |before 3.16
EC_OID
CKM_ECDSA 160-521 bits [SIGN, VERIFY, EC_F_P, EC_OID |[before 3.16
CKM_ECDSA_SHA1 160-521 bits [SIGN, VERIFY, EC_F_P, EC_OID |[before 3.16
CKM_ECDSA_SHA224 160-521 bits | SIGN, VERIFY, EC_F_P, EC_OID |before 3.16
CKM_ECDSA_SHA256 160-521 bits | SIGN, VERIFY, EC_F_P, EC_OID |before 3.16
CKM_ECDSA_SHA384 160-521 bits | SIGN, VERIFY, EC_F_P, EC_OID |before 3.16
CKM_ECDSA_SHA512 160-521 bits | SIGN, VERIFY, EC_F_P, EC_OID |before 3.16
CKM_ECDH1_DERIVE 160-521 bits | DERIVE, EC_F_P, EC_OID before 3.16
For a description of mechanisms with a name pattern of CKM_IBM_. .. refer to Chapter 20, “IBM-specific

mechanisms,” on page 139.

For an explanation of the key object properties see the PKCS #11 Cryptographic Token Interface
Standard.

Chapter 17. Soft token 129

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

130 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 18. Directory content for CCA, ICA, EP11,
and Soft tokens

© Copyright IBM Corp. 2021, 2023

Each token uses a unique token directory. This token directory stores the token-specific objects (like
for example, key objects, user PIN, SO PIN, or hashes). Thus, the information for a certain token is
separated from all other tokens. Read the information about the format of data and objects stored

in these directories. openCryptoki users may need this information for example, when working with
containerized applications.

As of openCryptoki version 3.16, CCA, ICA, EP11, and Soft tokens have the same structure and content
within their directories.

The path name of the token directories is derived from either the token default name or by the token
name as defined in the opencryptoki.conf file. The location of the token directories may look similar
to the shown examples:

[root@t3545033 opencryptokil# pwd
/var/lib/opencryptoki
[root@t3545033 opencryptokil# 1s -1

total 24

drwxrwx---. 3 root pkcsll 4096 Mar 19 11:47 ccatok

drwxrwx---. 3 root pkcsll 4096 Mar 19 12:35 eplltok

drwxrwx---. 3 root pkcsll 4096 Mar 19 11:47 lite /* legacy name of ICA Tok x/
drwxrwx---. 3 root pkcsll 4096 Mar 19 11:47 swtok

The directory containing the token directories, in our example /var/lib/opencryptoki, must not be
an NFS nor a CIFS file system, but must be a file system that supports the £lock () function which
manages file locks.

Note: With openCryptoki, you can select from two data store formats:

« Before openCryptoki version 3.12, there is only the one NVTOK.DAT format (the old format).

- Starting with openCryptoki version 3.12, you can choose to use a FIPS compliant data format. Being
FIPS compliant, the token data is stored in a format that is better protected against attacks than the
previously used data format.

If you want to use the token data format that was generated with FIPS compliant operations, you must
explicitly specify the tokversion option for the token's slot entry in the openCryptoki configuration file.
You must do this before token initialization with the pkcsconf command, for example:

slot 4

{

stdll = libpkcsll_epll.so
confname = eplltok0l.conf
tokname = eplltokenOl
tokversion = 3.12
description = "Epll Token"
manufacturer = "IBM"
hwversion = "4.11"
firmwareversion = "2.0"

Figure 21. Slot entry for an EP11 token with FIPS compliant data format in the opencryptoki.conf file

You can use the pkcstok_migrate utility to transform an EP11 token, a CCA token, an ICA token,
or a Soft token created with any version of openCryptoki into a data format that was generated by
FIPS compliant operations. For more information, read Chapter 10, “Migrating to FIPS compliance -
pkcstok_migrate utility,” on page 65.

There are two objects derived from both a token’s user PIN and a token’s SO PIN:

- a non-secret password hash which is checked at login

131

- and a secret key encryption key (KEK) which is used to wrap the token’s master key (SO KEK or a user
KEK, respectively).

Therefore, the token’s master key is stored on disk twice:

« The MK_SO file holds the master key wrapped with the SO KEK.
« The MK_USER file holds the master key wrapped with the user KEK.

So both user and SO can access the master key. The password-based key derivation function PBKDF2 is
used to derive those four objects. An iteration count of 200000 is used with a salt consisting of different
purpose strings for each of the four derivations and a random part. Iteration count, purpose strings, and
the random parts are non-secret and can be stored on disk with the other non-volatile token data in
NVTOK. DAT, together with the corresponding data. The two password hashes are non-secret and can also
be stored unencrypted in NVTOK. DAT.

The two key-encryption keys (KEKs) are secret and cannot be stored with a token’s non-volatile token
data: They must be (re-)derived when needed and are cached on the stack for an application’s lifetime.

All following structures are C pseudo code, used to describe data structures at byte level.
The old NVTOK. DAT format (still valid)

struct TOKEN_DATA {
CK_TOKEN_INFO info;
u8 user_pin_shal [24];
u8 so_pin_shal [24];
u8 next_token_obj_name[8];
u32 allow_weak_des;
u32 check_des_parity;
u32 allow_key_mods;
u32 netscape_mods;

55

The new NVTOK.DAT format

Note: The new NVTOK. DAT is available starting with openCryptoki version 3.12 and is valid in parallel
with the old format.

struct TOKEN_DATA $
/* --- old format for compat --- %/
CK_TOKEN_INFO info;
u8 user_pin_shal [24];
u8 so_pin_shal [24];
u8 next_token_obj_name[8];
u32 allow_weak_des;
u32 check_des_parity;
u32 allow_key_mods;
u32 netscape_mods;

/* --- 3.12 additions start here --- %/
u32 version; /% tokversion major<<l1l6|minor */

/* --- PBKDF2 ---

* 64b salts are 32b purpose string concat 32b random %/
/* SO PW hash (login) =/
ub4 so_login_it;
u8 so_login_salt[64];
u8 so_login_key[32];

/* User PW hash (login) =/
ub4 user_login_it;

u8 user_login_salt[64];

u8 user_login_key[32];

/* SO MK KEK (wrap) =/

ub4 so_wrap_it;

u8 so_wrap_salt[64];

/* User MK KEK (wrap) =/
ub4 user_wrap_it;

u8 user_wrap_salt[64];

132 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Changes from old to new data store format

In the old format, the multiple-byte-width data types were not serialized before stored to disk, so
NVTOK_DAT could not be used on little endian (LE) and big endian (BE) platforms. The new format
serializes those data types from host to BE byte order. The AES Key Wrap algorithm is used to wrap

a token’s master key (MK) with the KEKs. The token’s master key is randomly generated at token
initialization. In the old format, the master key was a 3DES CBC key. The KEK was a 2TDEA CBC key.

CBC was used with a per token (fixed) initialization vector (IV). Integrity was intended to be provided by a
SHA1 hash of the unencrypted key. The MK master key object had the following format:

struct MK {
u8 MK [24];
u8 shal [20];
u8 padding[4];

’

It was wrapped by the SO KEK and stored to MK_SO0 and was also wrapped by the user KEK and stored to
MK_USER. The new format defines the MK to be an AES-256 key. Its unencrypted format is just the 32 key
bytes. Its encrypted format is a 40 byte key blob output by the AES Key Wrap algorithm (wrapped with the
SO or user KEK). The file names MK_S0 and MK_USER are unchanged.

The old format stored non-private token objects unencrypted in the following format:

struct OBJECT_PUB $
u32 total_len;
u8 private_flag;
u8 object[object_len];

’

The new format is:

struct OBJECT_PUB $
R <--+
u32 tokversion; | 16-byte header
u8 private_flag;
u8 reserved[7];
u32 object_len;

[[mmmmmmme e <--+
u8 object[object_len]; | body
[]-mmmmmem e <--+

G5

The old format encrypted all private token objects under the MK. The unencrypted format was:

struct OBJECT_PRIV {

u32 total_len;

u8 private_flag;

//--- enc ---

u32 object_len;

u8 object[object_len];

u8 shal[20];

u8 padding[padding_len];
iH

The new format features authenticated encryption via AES-256-GCM. To avoid initialization vector (IV)
uniqueness, instead of using the MK to encrypt all token objects, the MK is used to wrap a per-object key
using the AES Key Wrap algorithm. The wrapped per-object key is stored together with the IV and other
meta-data as additional authenticated data (AAD) in the authenticated object header. The 16 byte GMAC
tag is appended to the authenticated and encrypted object body which holds the private token object’s
data:

struct OBJECT_PRIV %
u32 total_len;
//- auth ------- <--+

Chapter 18. Directory content for CCA, ICA, EP11, and Soft tokens 133

u32 tokversion;
u8 private_flag;
u8 reserved[3];

| 64-byte header

|
u8 key_wrapped[40];

|

|

u8 iv[12];

u32 object_len;

//- auth+enc --- <--+

u8 object[object_len]; | body
R <--+

u8 tagl[16]; | 16-byte footer
VR <--+

53

In the old format, the multiple-byte-width data types were not serialized before stored to disk, so the
token objects could not be moved between LE and BE platforms. The new format serializes all header
and footer data from host to BE byte order, so all object data can always be encrypted and decrypted.
However, the decrypted object data itself (body) must still be interpreted in host byte order.

So the new format should only be used with fresh setups. The new format can be used by specifying the
new tokversion keyword in the token’s slot configuration in opencxryptoki.conf. For a value of equal
or grater 3.12 the new format is used.

Here is a table of all key material that is used per version 3.12 token:

Table 14.

NAME TYPE GENERATION USAGE STORAGE

MK 256-bit AES | random wrap tok.obj keys (AES-KW) | wrapped on disk

(MK_SO,MK_USER)

SO KEK 256-bit AES | derived from SO PIN wrap MK (AES-KW) cached on stack/heap
(PBKDF2)

User KEK | 256-bit AES | derived from User PIN [wrap MK (AES-KW) cached on stack/heap
(PBKDF2)

SO PW 256-bit derived from SO PIN SO login on disk (NVTOK.DAT)

hash (PBKDF2)

User PW 256-bit derived from User PIN [User login on disk (NVTOK.DAT)

hash (PBKDF2)

Tok.obj 256-bit AES | random auth.enc of tok.obj data wrapped on disk (in

keys tok.objs)

134 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 19. ICSF token

ICSF (Integrated Cryptographic Service Facility) is a software element of IBM z/0S. The ICSF token is a
clear-key, remote cryptographic token. The actual operations are performed remotely on a server and all
the PKCS #11 key objects are stored remotely on the server. Adding an ICSF token requires a running
remote z/0S instance.

PKCS #11 mechanisms supported by the ICSF token are not documented in this edition. Instead, read the
information about the purpose and use of the pkcsicsf tool.

For more information about PKCS #11 and ICSF, refer to Cryptographic Services ICSF: Writing PKCS #11
Applications.

Configuring the ICSF token - pkcsicst utility

Use the pkcsicsE utility to add an ICSF token to openCryptoki or to list available ICSF tokens.

Adding an ICSF token to openCryptoki creates an entry in the opencryptoki.conf file for this token. It
also creates a token_name. conf configuration file in the same directory as the opencryptoki.conf
file, containing ICSF specific information. This information is read by the ICSF token.

The ICSF token must bind and authenticate to an LDAP server. Several SASL authentication mechanisms
(Simple Authentication and Security Layer mechanisms) are supported. You must specify one of these
mechanisms when listing the available ICSF tokens or when adding an ICSF token. openCryptoki currently
supports adding only one ICSF token.

openCryptoki administrators can either allow the LDAP calls to utilize existing LDAP configurations,

such as 1dap.conf or . 1ldapzrc for bind and authentication information. Or they can set the bind and
authentication information within openCryptoki by using this utility and its options. The information is
placed in the token_name. conf file to be used in the LDAP calls. When using simple authentication, the
user is prompted for the RACF password when listing or adding a token.

pkcsicst [-h] [-1|-a token name] [-b BINDDN] [-c client-cert-file] [-C CA-cert-file]
[-k privatekey] [-m mechanism] [-u URI]

Options
-a token_name
adds the specified ICSF token to openCryptoki.

-b bind_name
specifies the distinguished name to bind when using simple authentication.

-c client_cert_file
specifies the client certification file when using SASL authentication.
-C CA_cert_file
specifies the certificate authority (CA) certification file when using SASL authentication.
-k private_key
specifies the client private key file when using SASL authentication.
-m auth_mechanism
specifies the authentication mechanism to use when binding to the LDAP server. Specify either
simple or sasl).
-l
lists available ICSF tokens.
-h
shows usage information for this utility.

© Copyright IBM Corp. 2021, 2023 135

https://www.ibm.com/docs/en/zos/2.4.0?topic=zcs-zos-cryptographic-services-icsf-writing-pkcs-11-applications
https://www.ibm.com/docs/en/zos/2.4.0?topic=zcs-zos-cryptographic-services-icsf-writing-pkcs-11-applications

136 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Part 5. IBM-specific mechanisms and features for
openCryptoki

Numerous IBM-specific mechanisms and features are available across multiple token-types or for certain
tokens only. Scan the content of this topic to find the appropriate information.

The following topics are presented:

« Chapter 20, “IBM-specific mechanisms,” on page 139
- Chapter 21, “Re-encrypting data with a mechanism,” on page 157

© Copyright IBM Corp. 2021, 2023 137

138 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 20. IBM-specific mechanisms

In your openCryptoki applications, you can apply IBM-specific mechanisms for special purposes as
offered by an exploited token. Information about which token or tokens support a given mechanism is
included in the description of each mechanism.

Table 15. IBM-specific mechanisms

Mechanism Reference

CKM_IBM_DILITHIUM “CKM_IBM_DILITHIUM” on page 139
CKM_IBM_KYBER “CKM_IBM_KYBER” on page 143
CKM_IBM_SHA3_224 “CKM_IBM_SHA3_nnn” on page 146
CKM_IBM_SHA3_256 “CKM_IBM_SHA3_nnn” on page 146
CKM_IBM_SHA3_384 “CKM_IBM_SHA3_nnn” on page 146
CKM_IBM_SHA3 512 “CKM_IBM_SHA3_nnn” on page 146
CKM_IBM_SHA3_224_HMAC “CKM_IBM_SHA3_nnn_HMAC” on page 147
CKM_IBM_SHA3_256_HMAC “CKM_IBM_SHA3_nnn_HMAC” on page 147
CKM_IBM_SHA3_384_HMAC “CKM_IBM_SHA3_nnn_HMAC” on page 147
CKM_IBM_SHA3_512_HMAC “CKM_IBM_SHA3_nnn_HMAC” on page 147
CKM_IBM_CMAC “CKM_IBM_CMAC” on page 148

“Mechanisms for Edwards Curves 25519 and 448 for ECDH

CKM_IBM_EC_C448
iy Ay and EdDSA” on page 148

(synonym: CKM_IBM_EC_X448)

“Mechanisms for Edwards Curves 25519 and 448 for ECDH
and EdDSA” on page 148

CKM_IBM_EC_C25519
(synonym: CKM_IBM_EC_X25519)

CKM_IBM_ED448_SHA3 “Mechanisms for Edwards Curves 25519 and 448 for ECDH
and EdDSA” on page 148

“Mechanisms for Edwards Curves 25519 and 448 for ECDH
and EdDSA” on page 148

CKM_IBM_ED25519_SHA512
(synonym: CKM_IBM_EDDSA_SHA512)

CKM_IBM_ATTRIBUTEBOUND_WRAP “CKM_IBM_ATTRIBUTEBOUND_WRAP” on page 149
CKM_IBM_BTC_DERIVE “CKM_IBM_BTC_DERIVE” on page 152
CKM_IBM_ECDSA_OTHER “CKM_IBM_ECDSA_OTHER” on page 153

CKM_IBM_DILITHIUM

Availability:
The CKM_IBM_DILITHIUM mechanism is available with the EP11 token.
Description:

Dilithium is a post-quantum signature scheme. That is, it can generate signatures that resist attacks
from quantum computers, but also from classical computers. Dilithium is one of the candidate algorithms
submitted to the NIST post-quantum cryptography project.

© Copyright IBM Corp. 2021, 2023 139

Because Dilithium keys can only sign or verify, the EP11 token only provides one single mechanism for all
three operations: key generation, sign, and verify.

With the EP11 token, you can also import and export Dilithium keys by wrapping or unwrapping them
using AES or TDES key encrypting keys (KEKs). That is, you can protect Dilithium keys that are sent to
another system, received from another system, or stored with data in a file. Use any mechanism to wrap
or unwrap IBM Dilithium keys that is convenient for your purposes, for example:

« CKM_AES_CBC_PAD
« CKM_DES3_CBC_PAD

On the TKE workstation, you must enable Dilithium processing by setting domain (access) control point
65 on the used cryptographic coprocessors :

65 XCP_CPB_ALG_PQC enable support for post quantum cryptographic algorithms

Prerequisites:
Using the CKM_IBM_DILITHIUM mechanism requires the following prerequisites:

« For the IBM Dilithium key form CK_IBM_DILITHIUM_KEYFORM_ROUND2_65, the EP11 host library 3.0
or later is required. For all other IBM Dilithium keys available with openCryptoki 3.20 or later, the EP11
host library 4.0 or later is required.

« A Crypto Express7S feature or later, configured as Crypto Express EP11 coprocessor (CEX7P) with
firmware level 7.15 or later

 Not all firmware versions of EP11 cryptographic coprocessors support all Round 2 and Round 3 variants.
Thus, a specific variant can only be used when all APQNs configured for the EP11 token support the
desired variant. The EP11 token checks if all configured APQNs support the desired variant, and only
then it allows to generate, import, or use an IBM Dilithium key with the desired variant.

Key type:
The IBM-specific key type for an IBM Dilithium key object is:

J#define CKK_IBM_PQC_DILITHIUM (CKK_VENDOR_DEFINED + 0x10023)

Key form:
The EP11 host library uses the following key form for IBM Dilithium public and private keys:
« Public key

DilithiumPublicKey ::= BIT STRING f{
SEQUENCE {
rho BIT STRING, [2] -- nonce
t1 BIT STRING [3] -- from vector(L)
k;
b

« Private key

DilithiumPrivateKey ::= SEQUENCE f{
version INTEGER, -- vO, reserved 0
rho BIT STRING, -- nonce
key BIT STRING, -- key/seed/D

tr BIT STRING, PRF bytes (’'CRH’ in specification)

sl BIT STRING, -- vector(L)
s2 BIT STRING, -- vector(K)
t0 BIT STRING, -- low bits(vector L)
t1 [O0] IMPLICIT OPTIONAL %
t1 BIT STRING, -- high bits(vector L)

-- see also public key/SPKI

140 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

The currently supported key forms are:

Table 16. Supported IBM Dilithium key forms

0ID Key form and value

Meaning

1.3.6.1.4.1.2.267.1.6.5 [CK_IBM_DILITHIUM_KEYFORM_ROUND2_65=1 [Round 2 dilithium-high
(Alias: IBM_DILITHIUM_KEYFORM_ROUND?2)

1.3.6.1.4.1.2.267.1.8.7 |CK_IBM_DILITHIUM_KEYFORM_ROUND2_87 =2 |Round 2 dilithium-87

1.3.6.1.4.1.2.267.7.4.4 |CK_IBM_DILITHIUM_KEYFORM_ROUND3_44 =3 |Round 3 dilithium-r3-

weak

1.3.6.1.4.1.2.267.7.6.5 |CK_IBM_DILITHIUM_KEYFORM_ROUND3_65=4 [Round 3 dilithium-r3-rec

1.3.6.1.4.1.2.267.7.8.7 |CK_IBM_DILITHIUM_KEYFORM_ROUND3_87 =5 [Round 3 dilithium-r3-

vhigh

Attributes:

Table 17. Attributes for IBM Dilithium key

(CKA_VENDOR_DEFINED +
0xd0007)

Attribute Data type [Meaning

CKA_IBM_DILITHIUM_KEYFORM | CK_ULONG | The Dilithium key form, currently Round 2 and Round

(CKA_VENDOR_DEFINED + 3. Can be one of the following:

0xd0001) « CK_IBM_DILITHIUM_KEYFORM_ROUND2_65=1
« CK_IBM_DILITHIUM_KEYFORM_ROUND2_87 =2
« CK_IBM_DILITHIUM_KEYFORM_ROUND3_44 =3
« CK_IBM_DILITHIUM_KEYFORM_ROUND3_65=4
« CK_IBM_DILITHIUM_KEYFORM_ROUND3_87 =5

CKA_IBM_DILITHIUM_MODE CK_BYTE Specifies the OID of the Dilithium variant used as byte

(CKA_VENDOR_DEFINED + 0x10) array.

CKA_IBM_DILITHIUM_RHO CK_BYTE The private rho key component

(CKA_VENDOR_DEFINED +

0xd0002)

CKA_IBM_DILITHIUM_SEED CK_BYTE The private seed key component

(CKA_VENDOR_DEFINED +

0xd0003)

CKA_IBM_DILITHIUM_TR CK_BYTE The private tr key component

(CKA_VENDOR_DEFINED +

0xd0004)

CKA_IBM_DILITHIUM_S1 CK_BYTE The private s1 key component

(CKA_VENDOR_DEFINED +

0xd0005)

CKA_IBM_DILITHIUM_S2 CK_BYTE The private s2 key component

(CKA_VENDOR_DEFINED +

0xd0006)

CKA_IBM_DILITHIUM_TO CK_BYTE The private t0 key component

Chapter 20. IBM-specific mechanisms 141

Table 17. Attributes for IBM Dilithium key (continued)

Attribute Data type [Meaning

CKA_IBM_DILITHIUM_T1 CK_BYTE The public t1 key component
(CKA_VENDOR_DEFINED +

0xd0008)

CKA_VALUE CK_BYTE For a public Dilithium key, this attribute contains the

BER encoded SPKI of the public key. For a private
Dilithium key, it contains the PKCS#8 encoded private
key value in case of clear key import, otherwise it is
empty.

A Dilithium key also contains the usual standard attributes for public and private key objects, such
as CKA_CLASS, CKA_KEYTYPE. See tables Common Key Attributes, Common Private Key Attributes, and
Common Public Key Attributes in

PKCS #11 Cryptographic Token Interface Base Specification Version 3.0.

When generating Dilithium keys, an application can specify the CKA_IBM_DILITHIUM_KEYFORM

or CKA_IBM_DILITHIUM_MODE attribute and thus select the variant to be used. For backward
compatibility, if neither the CKA_IBM_DILITHIUM_KEYFORM nor CKA_IBM_DILITHIUM_MODE attribute
is specified, it defaults to IBM_DILITHIUM_KEYFORM_ROUND2_65.

Key generation and unwrap operations supply the public Dilithium key

attributes CKA_IBM_DILITHIUM_RHO and CKA_IBM_DILITHIUM_T1, as well as attributes
CKA_IBM_DILITHIUM_KEYFORM and CKA_IBM_DILITHIUM_MODE to both, the public and the private
key.

The SPKI is supplied in attribute CKA_VALUE to the public key.
When importing Dilithium keys from clear key values, you have two options:

« Specify the CKA_IBM_DILITHIUM_KEYFORM or CKA_IBM_DILITHIUM_MODE attribute together with
the other public or private Dilithium key attributes. In this case, openCryptoki supplies the SPKI in the
CKA_VALUE attribute to the public key during import.

« Specify the CKA_VALUE attribute to contain the SPKI or PKCS#8 encoding of the public or private key
to import. In this case, CKA_IBM_DILITHIUM_KEYFORM and CKA_IBM_DILITHIUM_MODE must not be
specified, since the OID is contained within the SPKI and PKCS#8 encoded key material.

Attributes CKA_IBM_DILITHIUM_KEYFORM and CKA_IBM_DILITHIUM_MODE are supplied to both, the
public key and the private key during import.

The different Dilithium variants have different cryptographic strengths associated. The strength
calculation used for openCryptoki policies and statistics take the used variant into consideration.

Functions for IBM Dilithium key creation and unwrapping:

Use function C_GenerateKeyPaix () to create an IBM Dilithium key object consisting of a public/private
key pair. Note that the CKM_IBM_DILITHIUM mechanism has no mechanism-specific parameters. The
following is a sample for key object creation:

CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE public_template[] = $
$CKA_VERIFY, &true, sizeof(true)t,

e

CK_ATTRIBUTE private_template[] = {
$CKA_SIGN, &true, sizeof(true)l,

iH

CK_MECHANISM mech;
CK_SESSION_HANDLE session;
CK_OBJECT_HANDLE publ_key = CK_INVALID_HANDLE, priv_key = CK_INVALID_HANDLE;

mech.mechanism = CKM_IBM_DILITHIUM:

142 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html

mech.ulParameterLen = 0;
mech.pParameter = NULL;
CK_RV zv;

rv = C_GenerateKeyPair(session, &mech,
public_template, 1,
private_template, 1,
&publ_key, &priv_key);
if (xrv == CKR_OK) 1%

i

Use functions C_WrapKey () and C_UnwrapKey () if you need to transport IBM Dilithium keys. See the
following sample of an unwrapping operation:

CK_MECHANISM wrap_mech;

CK_OBJECT_HANDLE secret_key = CK_INVALID_HANDLE;
CK_BYTE_PTR wrapped_key = NULL;

CK_ULONG wrapped_keylen;

CK_OBJECT_HANDLE unwrapped_key = CK_INVALID_HANDLE;

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;

CK_KEY_TYPE key_type = CKK_IBM_PQC_DILITHIUM;
CK_OBJECT_HANDLE priv_key = CK_INVALID_HANDLE;

CK_BYTE unwrap_label[] = "unwrapped_private_Dilithium_Key";
CK_BBOOL true = TRUE;

CK_RV zv;

CK_ATTRIBUTE unwrap_tmpl[] = $
$CKA_CLASS, &class, sizeof(class)t,
1CKA_KEY_TYPE, &key_type, sizeof(key_type)},
$CKA_TOKEN, &true, sizeof(true)},
$CKA_LABEL, &unwrap_label, sizeof(unwrap_label)?,
$CKA_SENSITIVE, &true, sizeof(true)},
$CKA_DECRYPT, &true, sizeof(true)t,
$CKA_SIGN, &true, sizeof(true)tl,

i

wrap_mech.mechanism = CKM_AES_CBC_PAD;

wrap_mech.pParameter = "0123456789abcdef";

wrap_mech.ulParameterLen = 16;

/* Generate wrapping key x/
/* Wrap Dilithium key with wrapping key x/

/* Unwrap Dilithium key x/

rv = funcs->C_UnwrapKey(session, &wrap_mech, secret_key,
wrapped_key, wrapped_keylen,
unwrap_tmpl,
sizeof (unwrap_tmpl) / sizeof(CK_ATTRIBUTE),
&priv_key);

if (zv != CKR_OK) {

%

Restrictions for using IBM Dilithium keys:

« IBM Dilithium keys cannot actively be used to transport (wrap and unwrap) other keys, but they can be
wrapped and unwrapped for being transported using standard key types (AES, TDES).

- IBM Dilithium keys cannot be derived from given keys. They can only be generated or imported from
given key values.

« Only SignInit () and Sign() (single-part operations) is supported by the EP11 host library.
SignUpdate() and SignFinal () functions are not supported. The same restrictions apply for verify
operations accordingly.

CKM_IBM_KYBER

Availability:

Chapter 20. IBM-specific mechanisms 143

The CKM_IBM_KYBER mechanism is available with the EP11 token.
Description:

You can use this mechanism to generate quantum-safe Kyber key pairs as well as to perform encryption
and decryption operations using Kyber keys. In addition, this mechanism offers methods to encapsulate
or decapsulate (wrap or unwrap) keys (key encapsulation methods, KEM) which you can use to create
shared secrets between to communicating parties.

On the TKE workstation, you must enable Kyber processing by setting domain (access) control point 65 on
the used cryptographic coprocessors :

65 XCP_CPB_ALG_PQC enable support for post quantum cryptographic algorithms

Prerequisites:
Using the CKM_IBM_KYBER mechanism has the following prerequisites:

e The EP11 host library 4.0 or later is required.

« A Crypto Express8S feature, configured as Crypto Express EP11 coprocessor (CEX8P) with firmware
level 8.9 or later is required.

 Not all firmware versions of EP11 cryptographic coprocessors support all Round 2 and Round 3 variants.
Thus, a specific variant can only be used when all APQNs configured for the EP11 token support the
desired variant. The EP11 token checks if all configured APQNs support the desired variant, and only
then it allows to generate, import, or use an IBM Dilithium key with the desired variant.

Key type:

The IBM-specific key type for an IBM Kyber key object is:

#tdefine CKK_IBM_PQC_KYBER CKK_VENDOR_DEFINED + 0x00010024
#define CKK_IBM_KYBER CKK_IBM_PQC_KYBER
Key form:
Kyber keys consist of a private key component sk and public key component pk, as defined by the ANS1
encodings:
KyberPublicKey ::= BIT STRING {
SEQUENCE §
pk BIT STRING -- public key
%
KyberPrivateKey := SEQUENCE {
version INTEGER, -- vO; reserved O
sk BIT STRING -- secret key material

[0] IMPLICIT OPTIONAL %
pk||xrs BIT STRING
-- public key (pk) concatenated with 2x32 bytes rs (rs = 64 times 0x30)

%

The currently supported key forms are:

Table 18. Supported IBM Kyber key forms

oIiD Key form and value Meaning

1.3.6.1.4.1.2.267.5.3.3 |CK_IBM_KYBER_KEYFORM_ROUND2_768 =1 Round 2 Kyber-r2rec

1.3.6.1.4.1.2.267.5.4.4 |CK_IBM_KYBER_KEYFORM_ROUND2_1024 =2 Round 2 Kyber-r2high

Attributes:

According to the key components, the following Kyber key component attributes are defined:

144 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 19. Attributes for an IBM Kyber key

Attribute Data type Meaning

CKA_IBM_KYBER_KEYFORM | CK_ULONG The Kyber key form, currently Round 2. Can be one of
(CKA_VENDOR_DEFINED + the following:

0x000d0009)

« (CK_IBM_KYBER_KEYFORM_ROUND2_768 =1
» CK_IBM_KYBER_KEYFORM_ROUND2_1024 =2

CKA_IBM_KYBER_MODE CK_BYTE Specifies the OID of the Kyber variant used as byte
(CKA_VENDOR_DEFINED + array.
0x0000000E)

CKA_IBM_KYBER_PK CK_BYTE public Kyber key component
(CKA_VENDOR_DEFINED +
0x000d000A)

CKA_IBM_KYBER_SK CK_BYTE private Kyber key component
(CKA_VENDOR_DEFINED +
0x000d000B)

When generating Kyber keys, an application can specify the CKA_IBM_KYBER_KEYFORM or
CKA_IBM_KYBER_MODE attribute and thus select the variant to be used. If neither the
CKA_IBM_KYBER_KEYFORM nor CKA_IBM_KYBER_MODE attribute is specified, it defaults to
CK_IBM_KYBER_KEYFORM_ROUND2_HIGH.

Key generation and unwrap operations supply the public Kyber key attribute CKA_IBM_KYBER_PK, as
well as attributes CKA_IBM_KYBER_KEYFORM and CKA_IBM_KYBER_MODE to both, the public and the
private key.

The SPKI is supplied in attribute CKA_VALUE to the public key.

When importing Kyber keys from clear key values, an application must either specify the
CKA_IBM_KYBER_KEYFORM attribute together with the other public or private Kyber key attribute(s), or
the application must specify CKA_VALUE containing the SPKI or PKCS#8 encoding of the public or private
key to import. In this case, CKA_IBM_KYBER_MODE must not be specified, since the OID is contained
within the SPKI and PKCS#8 encoded key material.

Import supplies the SPKI in CKA_VALUE to the public key, if the public key is imported from the individual
Kyber key component attributes. Attributes CKA_IBM_KYBER_KEYFORM and CKA_IBM_KYBER_MODE
are supplied to both, the public key and the private key during import.

Kyber offers both encryption/decryption and encapsulation/decapsulation mechanisms.

Encapsulation or decapsulation mechanisms, also summarized by the term key encapsulation
mechanisms (KEM) can be used for creating shared secrets between two parties. Respective functionality
is implemented using the C_DeriveKey () interface for key encapsulation and decapsulation.

The base key argument to C_DeriveKey () is either a public or a private Kyber key, respectively.
Encapsulation generates a new secret and encrypts it using Kyber encryption. Both, the cipher text used
for exchanging the generated secret as well as a handle of a new key are output from the encapsulation
operation.

Kyber KEM functions

Use the following functions and parameters for Kyber KEM processing.

fidefine CKD_IBM_HYBRID_NULL CKD_VENDOR_DEFINED + 0x00000001UL
#tdefine CKD_IBM_HYBRID_SHA1_KDF CKD_VENDOR_DEFINED + 0x00000002UL
#tdefine CKD_IBM_HYBRID_SHA224_KDF CKD_VENDOR_DEFINED + 0x00000003UL
#tdefine CKD_IBM_HYBRID_SHA256_KDF CKD_VENDOR_DEFINED + 0x00000004UL
#tdefine CKD_IBM_HYBRID_SHA384_KDF CKD_VENDOR_DEFINED + 0x00000005UL
#tdefine CKD_IBM_HYBRID_SHA512_KDF CKD_VENDOR_DEFINED + 0x00000006UL

Chapter 20. IBM-specific mechanisms 145

Structure for Kyber KEM parameters:

typedef struct CK_IBM_KYBER_PARAMS §
CK_ULONG ulVersion;
CK_IBM_KYBER_KEM_MODE mode;
CK_IBM_KYBER_KDF_TYPE kdf;
CK_BBOOL bPrepend;
CK_BYTE *pCipher;
CK_ULONG ulCipherlLen;
CK_BYTE %xpSharedData;
CK_ULONG ulSharedDatalen;
CK_OBJECT_HANDLE hSecret;

t CK_IBM_KYBER_PARAMS;

The mechanism parameter CK_IBM_KYBER_PARAMS is used with the C_DeriveKey () function

to provide Kyber-KEM parameters. For encapsulation with a public key, field mode is set to
CK_IBM_KYBER_KEM_ENCAPSULATE. Fields pCipher and ulCipherlLen are output in this case, and
must specify a buffer large enough to hold the returned cipher text. A symmetric key with a key type
according to attribute CKA_KEY_TYPE in the derive template is returned, together with the cipher text in
field pCipher. Field ulCipherlLen is updated to hold the size of the returned cipher text. If the supplied
cipher text buffer is too small to hold the returned cipher text, CKR_BUFFER_TOO_SMALL is returned.

For decapsulation with a private key, field mode is set to CK_IBM_KYBER_KEM_DECAPSULATE. Fields
pCipher and ulCipherLen are input in this case and must specify the cipher text that was generated
by the encapsulation step. A symmetric key with a key type according to attribute CKA_KEY_TYPE in the
derive template is returned.

Hybrid key generation or derivation can be performed to concatenate multiple secrets into a generic
secret key.

Initialize a hybrid secret using either an ECDH key derivation, or a Kyber KEM using
CKD_IBM_HYBRID_NULL as key derivation function (KDF) in field kdf of CK_IBM_KYBER_PARAMS or
CK_ECDH1_DERIVE_PARAMS.

It can then be concatenated with other secrets using Kyber KEM by specifying the hybrid secret in field
hSeczret together with a CKD_IBM_HYBRID_SHAxxx key derivation function in field kd£, and set field
bPrepend to CK_TRUE. Optionally you can specify additional shared data in fields pSharedData and
ulSharedDatalen for the ANSI 9.63 key derivation.

For key encapsulation, the derive template for the resulting key must have CKA_EXTRACTABLE =
CK_TRUE. All Kyber keys used in the derivation must have CKA_DERIVE = CK_TRUE. Hybrid secrets used
in hybrid key derivation must have CKA_IBM_USE_AS_DATA = CK_TRUE.

The different Kyber variants have different cryptographic strength associated. The strength calculation
used for openCryptoki policies and statistics must be adjusted to additionally take the used variant or
keyform into consideration.

CKM_IBM_SHA3_nnn

Availability:

The following SHA3 mechanisms are available for the ICA token, the EP11 token, and the Soft token:
-« CKM_IBM_SHA3_224

« CKM_IBM_SHA3_256

- CKM_IBM_SHA3_384

« CKM_IBM_SHA3_512

Description:

Use the listed mechanisms from the supporting tokens to perform the appropriate digest operations using
the secure hash algorithm SHA3, which is the latest version of the Secure Hash Algorithm family as
released by the National Institute of Standards and Technology (NIST).

146 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Mechanism Flags and functions

CKM_IBM_SHA3_224 | The CKF_DIGEST flag is set to true for this mechanism. Therefore, the function
C_DigestInit() acceptsthe CKM_IBM_SHA3_224 mechanism.

CKM_IBM_SHA3_256 | Same as for mechanism CKM_IBM_SHA3_224.
CKM_IBM_SHA3_384 | Same as for mechanism CKM_IBM_SHA3_224.
CKM_IBM_SHA3_512 | Same as for mechanism CKM_IBM_SHA3_224.

CKM_IBM_SHA3_nnn_HMAC

Availability:

The following SHA3 - HMAC mechanisms are available for the ICA token, the EP11 token, and the Soft
token:

« CKM_IBM_SHA3_224_HMAC
« CKM_IBM_SHA3_256_HMAC
« CKM_IBM_SHA3_384_HMAC
« CKM_IBM_SHA3_512_HMAC
Description:

Use the listed mechanisms from the supporting tokens to perform hash-based message authentication
using the secure hash algorithm SHA3. The length of the HMAC output is according to the SHA3 hash
sizes:

« CKM_IBM_SHA3_224_HMAC: 28 byte
« CKM_IBM_SHA3_256_HMAC: 32 byte
. CKM_IBM_SHA3_384_HMAC: 48 byte
« CKM_IBM_SHA3_512_HMAC: 64 byte

Mechanism Flags and functions

CKM_IBM_SHA3_224_HMAC | The CKF_SIGN and CKF_VERIFY flags are set to true for
this mechanism. Therefore, the functions C_SignInit() and
C_VerifyInit() acceptthe CKM_IBM_CMAC mechanism.

Possible processing sequences are:
- for single part sign or verify operations:
— C_SignInit() followed by C_Sign()
— C_VerifyInit() followed by C_Verify()
« for multi-part sign or verify operations:

— C_SignInit() followed by multiple C_SignUpdate (), then
followed by C_SignFinal()

— C_VerifyInit() followed by multiple C_VerifyUpdate(),
then followed by C_VerifyFinal ()

CKM_IBM_SHA3_256_HMAC | Same as for mechanism CKM_IBM_SHA3_224_HMAC.
CKM_IBM_SHA3_384_HMAC | Same as for mechanism CKM_IBM_SHA3_224_HMAC.
CKM_IBM_SHA3_512_HMAC | Same as for mechanism CKM_IBM_SHA3_224_HMAC.

Chapter 20. IBM-specific mechanisms 147

CKM_IBM_CMAC

Availability:
The CKM_IBM_CMAC mechanism is available with the EP11 token.
Description:

Use the CKM_IBM_CMAC mechanism to produce a block cipher-based message authentication code
(CMAQC) to assure the authenticity and integrity of a message. You can use this mechanism with AES or
TDES keys (according to the PKCS #11 mechanisms CKM_AES_CMAC or CKM_DES3_CMAC).

The length of the output MAC is according to either the AES block size (16 bytes) or the TDES block size (8
bytes).

Flags and functions:

The CKF_SIGN and CKF_VERIFY flags are set to true for this mechanism. Therefore, the functions
C_SignInit() and C_VerifyInit() acceptthe CKM_IBM_CMAC mechanism.

Mechanisms for Edwards Curves 25519 and 448 for ECDH and EdDSA

Availability:

The following mechanisms for Edwards Curves 25519 and 448 for ECDH and EdDSA are available with the
EP11 token.

« CKM_IBM_EC_C448 (synonym: CKM_IBM_EC_X448)

« CKM_IBM_EC_C25519 (synonym: CKM_IBM_EC_X25519)

« CKM_IBM_ED448_SHA3

« CKM_IBM_ED25519_SHA512 (synonym: CKM_IBM_EDDSA_SHA512)

Description:

The CKM_IBM_EC_* mechanisms are used for key derivation with function C_DeriveKey (), and use the
CK_ECDH1_DERIVE_PARAMS structure (same as for the CKM_ECDH1_DERIVE mechanism).

Mechanisms CKM_IBM_ED25519_SHA512 and CKM_IBM_ED448_SHA3 are used for sign/verify
actions using the functions C_SignInit()/C_Sign() and C_VerifyInit()/C_Verify().These
mechanisms do not have a mechanism parameter.

Keys for use with these IBM-specific mechanisms are generated using mechanism
CKM_EC_KEY_PAIR_GEN with function C_GenerateKeyPair (), just like EC keys. Attribute
CKA_EC_PARAMS specifies the OID of the curves to generate keys for. Importing known clear key values
works the same as for EC keys.

No special key type is defined for keys for Edwards curves with above mechanisms. Key type

CKK_EC is also used for those keys. This is different to what is defined with the PKCS #11

version 3 standard, where additional key types are defined for such keys (CKK_EC_EDWARDS and
CKK_EC_MONTGOMERY). Also PKCS #11 version 3 defined new mechanisms for generating such keys
(CKM_EC_EDWARDS_KEY_PAIR_GEN and CKM_EC_MONTGOMERY_KEY_PAIR_GEN). Although different
to PKCS #11 version 3, key type CKK_EC is used with these IBM-specific mechanisms as long as
openCryptoki does not support the key types of PKCS #11 version 3.

148 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Mechanism Flags and functions

CKM_IBM_EC_C448 « The CKF_DERIVE flag specifies that the mechanism can be used with
C_DeriveKey ().

» The CKF_EC_F_P flag specifies that the mechanism can be used with
EC domain parameters over the finite field F,.

» The CKF_EC_UNCOMPRESS flag specifies that the mechanism can be
used with elliptic curve point uncompressed.

« This mechanism can also use the CK_ECDH1_DERIVE_PARAMS

structure.
CKM_IBM_EC_C25519 Same as for mechanism CKM_IBM_EC_C448.
CKM_IBM_ED448_SHA3 The CKF_SIGN and CKF_VERIFY flags are set to true for

this mechanism. Therefore, the functions C_SignInit () and
C_VerifyInit() acceptthe CKM_IBM_ED448_SHA3 mechanism.

« Possible processing sequences are the same as described with
mechanism CKM_IBM_SHA3_224_ HMAC.

» The CKF_EC_F_P flag specifies that the mechanism can be used with
EC domain parameters over the finite field F,.

« The CKF_EC_UNCOMPRESS flag specifies that the mechanism can be
used with elliptic curve point uncompressed.

« This mechanism also must use the CK_ECDH1_DERIVE_PARAMS
structure.

CKM_IBM_ED25519_SHA512 |Same as for mechanism CKM_IBM_ED448_SHA3.

CKM_IBM_ATTRIBUTEBOUND_WRAP

Availability:
The CKM_IBM_ATTRIBUTEBOUND_WRAP mechanisms is available with the EP11 token.
Description:

Keys may have attributes bound to them that control the usage of these key, for example, restrictions

on operations, like exportability. Attribute-bound keys provide a different format for key wrapping and
unwrapping, where attributes cannot be separated from the key during transport and thus must be
contained in the wrapped format of the key. Therefore, you cannot use an attribute-bound key to wrap

a classical key or the other way round. For all operations except key wrapping and unwrapping, attribute-
bound keys behave exactly like regular keys. The CKM_IBM_ATTRIBUTEBOUND_WRAP mechanism
supports the wrapping of such attribute-bound keys.

As a prerequisite, you must specify attribute CKA_IBM_ATTRBOUND with value CK_TRUE when creating a
new key with bound attributes (default is CK_FALSE).

The goal of attribute-bound keys is to bind attributes to the key during transport via wrap and unwrap.
Additionally, the CKM_IBM_ATTRIBUTEBOUND_WRAP mechanism adds a signing/verification processing
to the wrapping/unwrapping actions. Part of the wrapped blob is sighed and the signature is appended to
the blob. When unwrapping the transported key, the signature is verified. For both actions, wrapping and
unwrapping, the signing and verification key is propagated to the mechanism using a parameter (see the
description of the CK_IBM_ATTRIBUTEBOUND_WRAP parameter later in this topic). To this end, you need
both, a wrapping/unwrapping key pair and a signing/verification key pair for the key transport. Therefore,
to transport an attribute-bound key using asymmetric keys for all involved operations, both sender and
receiver create a key pair each, setting CKA_IBM_ATTRBOUND to CK_TRUE for both the public and the
private keys.

Chapter 20. IBM-specific mechanisms 149

Thereafter, sender and receiver exchange the public keys via the usual public key transport and

then import this key using C_CreateObject (). Then, the sender applies wrapping using the
CKM_IBM_ATTRIBUTEBOUND_WRAP mechanism on the attribute-bound key and sends the resulting
blob to the receiver. The key is wrapped with the public key created by the receiver and signed by the
private key created by the sender.

The receiver can unwrap the blob with its own private key and verify the signature with the public
key created by the sender. Both, unwrapping and signature verification is done by the attribute-bound
unwrapping mechanism CKM_IBM_ATTRIBUTEBOUND_WRAP.

Only symmetric keys and RSA key(pairs) are supported as wrapping keys, also called key encrypting keys
(KEKs). The signing/verifying key can be a symmetric key, an RSA key, an EC key, or a DSA key.

Attribute-bound keys contain a number of Boolean attributes, controlling the usage and trust inside the
key blob. The attributes bound to the key are the following:

« CKA_EXTRACTABLE

« CKA_NEVER_EXTRACTABLE
« CKA_MODIFIABLE

« CKA_SIGN

« CKA_SIGN_RECOVER

« CKA_DECRYPT

« CKA_ENCRYPT

- CKA_DERIVE

« CKA_UNWRAP

« CKA_WRAP

« CKA_VERIFY

« CKA_VERIFY_RECOVER

« CKA_LOCAL

« CKA_WRAP_WITH_TRUSTED
« CKA_TRUSTED

« CKA_IBM_NEVER_MODIFIABLE (unsupported by openCryptoki)
« CKA_IBM_RESTRICTABLE (unsupported by openCryptoki)
« CKA_IBM_ATTRBOUND

« CKA_IBM_USE_AS_DATA

- CKA_KEY_TYPE

« CKA_VALUE_LEN

Following key types are supported as attribute-bound keys:
- CKK_AES

« CKK_DES2

« CKK_DES3

« CKK_GENERIC_SECRET

« CKK_RSA

« CKK_EC

. CKK_DSA

« CKK_DH

« CKK_IBM_PQC_DILITHIUM

Attempts to create an attribute-bound key of an unsupported type returns
CKR_TEMPLATE_INCONSISTENT.

150 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Key and key-pair generation You can specify the attribute CKA_IBM_ATTRBOUND only during key
creation (for key pairs in both templates, private and public). If the attribute is specified as TRUE,

the attribute CKA_SENSITIVE must be set to CK_TRUE in the attribute template for the public key

as well. This can be implicitly done by the EP11 token configuration option FORCE_SENSITIVE.

If, however, the option has its default value CK_FALSE, key or key pair generation fails with
CKA_TEMPLATE_INCONSISTENT. Otherwise, attribute-bound keys behave exactly like non-attribute-
bound keys.

Key derivation You can only use attribute-bound input keys to produce attribute-bound derived keys.
That is, if the input key is not attribute-bound, but the attribute CKA_IBM_ATTRBOUND is set to CK_TRUE
in the template for the derived key, derivation fails with return code CKR_TEMPLATE_INCONSISTENT.

By default, a derived key inherits from the input key. That is, if CKA_IBM_ATTRBOUND is not specified

in the derivation template, it defaults to the value of the input key, or, if the input key does not

specify CKA_IBM_ATTRBOUND, it defaults to CK_FALSE. Thus, you can derive attribute-bound keys

from attribute-bound keys without specifying CKA_IBM_ATTRBOUND in the template for the derived key.
However, it is possible to derive classical PKCS #11 keys from attribute-bound keys. To do this, set the
attribute CKA_IBM_ATTRBOUND to FALSE in the template for the derived key. If CKA_IBM_ATTRBOUND
is specified when deriving asymmetric keys, it must be specified for both templates with the same value.
Otherwise, CKR_TEMPLATE_INCONSISTENT is returned.

Object creation Attribute-bound public keys can be created with C_CreateObject () by setting the
CKA_IBM_ATTRBOUND attribute to TRUE. Attribute-bound private keys or secret keys can only be
generated with the following functions:

« C_GenerateKey()

« C_GenerateKeyPair()
« C_DeriveKey ()

« C_UnwrapKey ()

C_CreateObject () returns CKR_ATTRIBUTE_VALUE_INVALID on an attempt to create attribute-bound
private keys.

Object copy When copying an object, the attribute CKA_IBM_ATTRBOUND cannot be changed. An
attempt to change it results in error CKA_ATTRIBUTE_READ_ONLY.

Attribute setting Since some boolean attributes, mostly key usage attributes, are bound to the key,

the key blob changes when changing those attributes. This change is reflected in the value of the
CKA_IBM_OPAQUE attribute. The attribute CKA_IBM_ATTRBOUND is read-only and cannot be changed.
Attempts to change it returns error CKA_ATTRIBUTE_READ_ONLY. All other attributes follow standard
PKCS #11 rules. However, attribute-bound keys must have CKA_SENSITIVE set to CK_TRUE and thus
have additional restrictions according to PKCS #11.

How to use the CKM_IBM_ATTRIBUTEBOUND_WRAP mechanism:
The mechanism requires a parameter of type CK_IBM_ATTRIBUTEBOUND_WRAP.

typedef struct CK_IBM_ATTRIBUTEBOUND_WRAP {
CK_OBJECT_HANDLE hSignVerifyKey;
+ CK_IBM_ATTRIBUTEBOUND_WRAP_PARAMS;

This parameter provides the key for signing and verifying the wrapped key.
The CKM_IBM_ATTRIBUTEBOUND_WRAP mechanism has the following restrictions:

« All keys involved (target, wrapping/unwrapping, signature/verification) must be attribute-bound keys
(CKA_IBM_ATTRBOUND = CK_TRUE). Otherwise:

— For the target key on C_WrapKey (), CKR_KEY_NOT_WRAPPABLE is returned.

— For the wrapping and unwrapping keys and the signature and verification keys,
CKR_KEY_FUNCTION_NOT_PERMITTED is returned.

Chapter 20. IBM-specific mechanisms 151

« On C_WrapKey (), the signing private key must be capable of signing (CKA_SIGN = CK_TRUE).
Otherwise CKR_KEY_FUNCTION_NOT_PERMITTED is returned.

« On C_UnwrapKey (), the verification public key must be capable of verifying (CKA_VERIFY = CK_TRUE).
Otherwise CKR_KEY_FUNCTION_NOT_PERMITTED is returned.

Only RSA and symmetric keys are supported as wrapping keys. Usage of
other key types returns CKR_WRAPPING_KEY_TYPE_INCONSISTENT for wrapping, and
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT for unwrapping.

Since the input blob to be unwrapped contains both the key and the attributes, C_UnwrapKey () also
recreates all attributes bound to the key, except the ones flagged as not supported by openCryptoki (see
the previous list of attributes).

For unwrapping, CKA_KEY_TYPE must be specified in the unwrap template and must match the value
bound to the key. If the values do not match, unwrapping fails with CKR_TEMPLATE_INCONSISTENT.

Any key attribute of the wrapped key that is not specified in the unwrap template, is ignored. After a
successful unwrapping of the key and its attributes, the attributes are available via the standard PKCS
#11 methods. Remember that attribute-bound keys are sensitive keys and have additional restrictions on
attribute visibility.

Flags and functions:

CKF_WRAP and CKF_UNWRAP flags are set to true for this mechanism. Therefore, the functions
C_WrapKey () and C_UnwrapKey accept the CKM_IBM_ATTRIBUTEBOUND_WRAP mechanism.

CKM_IBM_BTC_DERIVE

Availability:

The CKM_IBM_BTC_DERIVE mechanism is available with the EP11 token. On the TKE workstation, you
must enable bitcoin derivation by setting the following access control point 66 on the used cryptographic
COProcessors:

66 XCP_CPB_BTC enable bitcoin (BTC) derivation with the CKM_IBM_BTC_DERIVE mechanism

Description:

You can use the CKM_IBM_BTC_DERIVE mechanism to derive a number of child keys from parent ECC
keys generated from certain elliptic curves. The derived keys can be applied for encryption used by
bitcoin. This mechanism in turn uses the methods described in BIP-0032 and SLIP-0010.

With method BIP-0032 you can derive keys from SECP256K1 curve EC keys. With method SLIP-0010 you
can derive EC keys from secp256k1, prime256v1, or ED25519 curves.

Derivation is furthermore restricted to keys bearing the attributes CKA_IBM_USE_AS_DATA and
CKA_DERIVE. For SLIP-0010 key derivation, EC keys on different curves can be derived. Thus, the
CKA_EC_PARAMS attribute needs to be present in the key attribute templates of both base and child
key. The only exception is SLIP-0010 master key derivation for which the key type is determined solely
from the attributes of the child key.

Each parent key can derive 231 normal and 23 hardened child keys given by a child key index.

In order to prevent the derived keys from depending solely on the parent key itself, both private and
public keys are at first extended with an entropy of 256 bits (32 bytes). This extension, called the chain
code, is identical for corresponding private and public keys.

The following derivation types are supported:

- Private parent key derives private child keys
« Public parent key derives public child keys

« Private parent key derives public child keys
« Master key derivation

152 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://en.bitcoin.it/wiki/BIP_0032
https://github.com/satoshilabs/slips/blob/master/slip-0010.md
https://en.bitcoin.it/wiki/BIP_0032
https://github.com/satoshilabs/slips/blob/master/slip-0010.md

The output of this mechanism contains the derived key, public or private, and the corresponding chain
code.

For master key derivation, a generic secret key (CKK_GENERIC_SECRET) must be specified as base key.
The mechanism parameter called CK_IBM_BTC_DERIVE_PARAMS (see Figure 22 on page 153) must
specify a buffer of 32 bytes size for the returned chain code, but the chain code length field within this
parameter must be zero, because no chain code is input to the operation.

For child key derivation, an EC private or public key (CKK_EC) must be specified as base key. The
CK_IBM_BTC_DERIVE_PARAMS mechanism parameter must specify a buffer of 32 bytes size containing
the chain code corresponding to the base key. The chain code of the derived child key is also returned in
this buffer. Thus you can use the derived child key again as a base key. The chain code length field must
be 32 bytes.

For SLIP-0010 key derivation with ED25519 curves, only hardened key generation from private parent key
to private or public child key is supported.

The following definitions are provided in header file pkcslltypes.h whichisin turnincluded in file
pkcsl1l.h (see also “Sample openCryptoki program” on page 165).

#define CKM_IBM_BTC_DERIVE CKM_VENDOR_DEFINED + 0x70001

typedef struct CK_IBM_BTC_DERIVE_PARAMS {
CK_ULONG type;
CK_ULONG childKeyIndex;
CK_BYTE_PTR pChainCode;
CK_ULONG ulChainCodelen;
CK_ULONG version;
1 CK_IBM_BTC_DERIVE_PARAMS;

typedef CK_IBM_BTC_DERIVE_PARAMS CK_PTR CK_IBM_BTC_DERIVE_PARAMS_PTR;
#define CK_IBM_BIPOO32_HARDENED 0x80000000 // key index flag

#define CK_IBM_BIPOO32_PRV2PRV 1
#define CK_IBM_BIPOO32_PRV2PUB 2
#define CK_IBM_BIP0032_PUB2PUB 3

#tdefine CK_IBM_BIPOO32_MASTERK 4
#idefine CK_IBM_SLIPGO1®_PRV2PRV 5

#idefine CK_IBM_SLIPOO1@_PRV2PUB 6
J#define CK_IBM_SLIPOO10_PUB2PUB 7

#define CK_IBM_SLIPOO10_MASTERK 8

#tdefine CK_IBM_BTC_CHAINCODE_LENGTH 32
#tdefine CK_IBM_BTC_DERIVE_PARAMS_VERSION_1 1

Figure 22. Definitions for the CKM_IBM_BTC_DERIVE mechanism

CKM_IBM_ECDSA_OTHER

Availability:
The CKM_IBM_ECDSA_OTHER mechanism is available with the EP11 token.
Description:

You can use this mechanism to generate Schnorr signatures, that is, EC-based signatures that are not
produced using the ECDSA or the EDDSA digital signature algorithms.

On the TKE workstation, you must enable non-ECDSA and non-EdDSA elliptic curve signature algorithms,
by setting the following access control point 67 on the used cryptographic coprocessors:

67 XCP_CPB_ECDSA_OTHER enable non-ECDSA and non-EdDSA elliptic
curve signature algorithms with the CKM_IBM_ECDSA_OTHER mechanism

Chapter 20. IBM-specific mechanisms 153

The CKM_IBM_ECDSA_OTHER mechanism is a multi-variant signature mechanism for algorithms used by
crypto-currency applications which differ from ECDSA or EDDSA. Several of these elliptic curve signature

algorithms are generally variations of Schnorr signatures. The CKM_IBM_ECDSA_OTHER mechanism uses
a mechanism parameter CK_IBM_ECDSA_OTHER_PARAMS that specifies the sub-mechanism to perform:

« CKM_IBM_ECSDSA_RAND: Randomized Schnorr signatures (BSI TR03111 ECSDSA, no pre-hashing,
SHA-256 only)

« CKM_IBM_ECSDSA_COMPR_MULTI: Randomized Schnorr sighatures (BSI TR03111 ECSDSA 2012,
internally using compressed key format, and including signing party’s public key, no pre-hashing,
SHA-256 only)

Only 256-bit elliptic curves are supported, in particular secp256ki, prime256v1, brainpoolP256r1, and
brainpoolP256t1 curves.

The following definitions are provided in header file pkcs11types.h which isin turn included in file
pkcsll.h (see also “Sample openCryptoki program” on page 165).

#tdefine CKM_IBM_ECDSA_OTHER CKM_VENDOR_DEFINED + 0x00010031

typedef struct CK_IBM_ECDSA_OTHER_PARAMS {
CK_MECHANISM_TYPE submechanism;
1 CK_IBM_ECDSA_OTHER_PARAMS;

typedef CK_IBM_ECDSA_OTHER_PARAMS CK_PTR CK_IBM_ECDSA_OTHER_PARAMS_PTR;

/* CKM_IBM_ECDSA_OTHER sub-mechanisms =x/
#tdefine CKM_IBM_ECSDSA_RAND 3
jtfdefine CKM_IBM_ECSDSA_COMPR_MULTI 5

Figure 23. Definitions for the CKM_IBM_ECDSA_OTHER mechanism

Miscellaneous attributes

This section lists IBM-specific attributes that apply to objects but do not adhere to certain mechanisms or
purposes.

CKA_IBM_ATTRBOUND
Set this attribute for attribute-bound keys to enable these keys for being wrapped and unwrapped
using the CKM_IBM_ATTRIBUTEBOUND_WRAP mechanism.

CKA_IBM_OPAQUE
Use this attribute for importing and exporting plain CCA key objects into or from sensitive
openCryptoki key objects. See also “Usage notes for CCA library functions” on page 97.

CKA_IBM_OPAQUE_PKEY
If the option PKEY_MODE is enabled in the EP11 token configuration file or in the CCA token
configuration file, a protected key is generated for the applicable key object and is added to the
secure key object with this IBM-specific key attribute at first use of the key. A new protected key is
generated each time if required, for example, it an LPAR has been deactivated and reactivated and its
firmware master key has changed.

CKA_IBM_PROTKEY_EXTRACTABLE
This key attribute is internally set to CK_TRUE, if for CCA tokens or for EP11 tokens the configuration
option PKEY_MODE is enabled and the key has CKA_EXTRACTABLE set to FALSE. This makes the
key eligible for being transformed into a protected key for better performance, if applicable (see also
“Defining an EP11 token configuration file” on page 107).

CKA_IBM_PROTKEY_NEVER_EXTRACTABLE
Marks objects that are never importable as protected key. Does conflict with
CKA_IBM_PROTKEY_EXTRACTABLE and behaves the same as CKA_NEVER_EXTRACTABLE.

154 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

CKA_IBM_STD_COMPLIANCE1
Compliance attribute. For EP11 tokens only and for all types of EP11 keys. Compliance settings
correspond to standards-mandated sets of CPs. They are read-only, and are updated when CPs are
updated, or a domain changes state. See also Enterprise PKCS#11 (EP11) Library structure.

CKA_IBM_USE_AS_DATA
Set this attribute for keys where raw key bytes may be used as data of some cryptographic
operation, such as hashing (DigestKey ()) or key derivation (DeriveKey ()). This restriction further
controls key-based operations which do not involve key migration, therefore, are not controlled by
EXTRACTABLE or transport-related control points.

Chapter 20. IBM-specific mechanisms 155

156 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 21. Re-encrypting data with a mechanism

The vendor-specific function C_IBM_ReencryptSingle () is available in openCryptoki and is supported
by all tokens. You can use it to re-encrypt data encrypted with a given key and mechanism with another
key and mechanism. This function is useful for secure key encryption with an EP11 token or a CCA token,
because during the process, the data is never visible in the clear anywhere outside the cryptographic
COprocessor.

The C_IBM_ReencryptSingle function has the following signature:

CK_RV C_IBM_ReencryptSingle (CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pDeczxMech,
CK_OBJECT_HANDLE hDeczrKey,
CK_MECHANISM_PTR pEncrMech,
CK_OBJECT_HANDLE hEncrKey,
CK_BYTE_PTR pEncryptedData,
CK_ULONG ulEncryptedDatalen,
CK_BYTE_PTR pReencryptedData,
CK_ULONG_PTR pulReencryptedDatalen);

Because the new function is non-standard, it does not appear in the PKCS #11 CK_FUNCTION_LIST
structure returned by C_GetFunctionList (). To invoke this function, you must either locate the
desired function in the main DLL using d1sym(), or link the application program with the main DLL. You
can also use C_GetInterface () to get the interface called Vendor IBM. This interface also provides
the C_IBM_ReencryptSingle () function.

Like other PKCS #11 functions, this function returns output in a variable-length buffer, conforming to the
convention defined by PKCS #11.

If pReencryptedDatais NULL_PTR, then the function only uses parameter
*pulReencryptedDatalen to return a number of bytes which would suffice to hold the cryptographic
output produced from the input to the function. This number may exceed the precise number of bytes
needed, but not to a very high extent.

If pReencryptedDatais not NULL_PTR, then *pulReencryptedDatalen must contain the size in
bytes of the buffer pointed to by pReencryptedData. If that buffer is large enough to hold the
cryptographic output produced by the function, then that cryptographic output is placed there, and
CKR_OK is returned. If the buffer is not large enough, then CKR_BUFFER_TOO_SMALL is returned. In
either case, *pulReencryptedDatalen is set to hold the exact number of bytes needed to hold the
produced cryptographic output.

The function generally allows to specify any combination of decryption and encryption mechanisms.
However, not all combinations work with all data sizes. Mechanisms that do not perform any padding,
require that the data to be encrypted is a multiple of the block size. Also some mechanisms have

certain size limitations (for example, RSA). If the data size after decryption with the decryption
mechanism conflicts with the requirements of the encryption mechanisms, then the re-encrypt operation
may fail with CKR_DATA_LEN_RANGE. Also, not all tokens may support all mechanism combinations.
CKR_MECHANISM_INVALID is returned if one of the mechanisms specified is not supported for the
re-encrypt operation.

© Copyright IBM Corp. 2021, 2023 157

158 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Part 6. Programming basics and user scenarios

Learn about use cases on how to take advantage of openCryptoki from new and existing applications.
The most common openCryptoki use cases fall into one of two types:

- scenarios where application programmers write new security applications using openCryptoki,

« scenarios where openCryptoki administrators want to configure an existing application with a PKCS #11
interface to use a certain openCryptoki token.

There are a variety of benefits why users may want to exploit the standardized openCryptoki
cryptographic functions:

- They can start using the cryptographic operations of a soft token and later switch to a hardware security
module (HSM) without changing the application code.

« They can switch between hardware security modules (HSM) from different suppliers without changing
the code.

- They can use the sophisticated services of a cryptographic library without coping with the complexity of
their APIs.

« They can use different openCryptoki tokens from within one application to enforce isolation between
the data.

- Many software products that support encryption provide plug-in mechanisms that, if configured,
will redirect cryptographic functions to a PKCS #11 library. For example, IBM middleware like the
WebSphere Application Server and the HTTP Server including IBM's internal cryptographic library
GSKIT can be configured to use a PKCS #11 library.

For developers of new openCryptoki applications, Chapter 22, “Programming with openCryptoki,” on page
161 first documents the basic structure of such applications. Additionally, a simple, but complete and
executable code sample for generating an RSA private and public key pair with a specified openCryptoki
token is provided.

Chapter 24, “Configuring a remote PKCS #11 service with openCryptoki,” on page 183 provides a user
scenario showing how to set up a Soft token on a server for use from an application on a remote client.

© Copyright IBM Corp. 2021, 2023 159

160 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 22. Programming with openCryptoki

Learn how to write applications from scratch that are using the functions from a certain token in the
openCryptoki framework.

How it works

Shortly spoken, an openCryptoki application must specify, which token(s) it uses. Then it can invoke
C_... () functions of openCryptoki. Where required, input to these functions is an appropriate CKM_
mechanism that must be offered by the selected token. The mechanism defines how to perform the
using function. For example, the CKM_RSA_PKCS mechanism defines to functions C_EncryptInit ()
and C_Encrypt () to encrypt clear text with a (previously generated) private RSA key.

Each mechanism is coded in such a way that it exploits one or more adequate APIs from the connected
cryptographic library specified with the token definition in the opencryptoki.conf file.

Terminology

openCryptoki application programs deal with the following main items:
« Functions: Prefix C_

« Data types or general constants: Prefix CK_

Attributes: Prefix CKA_

« Mechanisms: Prefix CKM_

Return codes: Prefix CKR_

Handling RSA decrypt operation errors

There are attacks on RSA operations for which the timing of a computation may deliver a hint for well- or
malformed input and thus, whether an attack may have a chance to be successful. RSA operations that
may be the target of such attacks are for example, wrong RSA-OAEP padding or malformed RSA PKCS#1
v1.5 input messages. Starting with version 3.21, openCryptoki itself cares for hiding the computation
times, however, PKCS #11 applications that might be subject to RSA timing attacks (for example, a
SSL/TLS software stack) must make sure to handle certain RSA decryption errors in a constant-time
manner itself.

openCryptoki can only make internal differences in computation times transparent, but can not influence
the code in the cryptographic coprocessors, in the respective host libraries, nor in the calling applications.
Therefore, it is the PKCS #11 application’s responsibility to further handle such an error situation in a
constant-time manner to not be vulnerable to timing attacks. That is, the PKCS #11 application should not
expose a timing difference when an RSA decryption operation fails (for example. due to wrong padding),
compared to a successful operation.

For example, to mitigate the Bleichenbacher attack on SSL/TLS RSA key exchange, the application should
return a random pre-computed RSA secret, if the RSA decryption using PKCS#1 v1.5 padding fails due

to padding errors. The random secret must be generated in any case, prior to performing the decrypt
operation.

To protect PKCS #11 applications using the ICA token and the Soft token from attacks against RSA
operations, RSA message blinding is applied to messages on all operations using the RSA private key
(decryption and signature creation).

© Copyright IBM Corp. 2021, 2023 161

How to create and modify objects

All openCryptoki functions that create, modify, or copy objects take a template as one of their arguments,
where the template specifies attribute values. Cryptographic functions that create objects, for example,
C_GenerateKey, may also contribute some additional attribute values themselves. This depends on
which cryptographic mechanism is being performed. In any case, all the required attributes supported by
an object class that do not have default values, must be specified during object creation, either in the
template or by the function itself.

An application can use the following functions for creating objects:

« C_CreateObject

« C_GenerateKey

« C_GenerateKeyPair

« C_UnwrapKey

« C_DeriveKey

In addition, an application can create new objects using the C_CopyObject function.

To create an object with any of these listed functions, the application must supply an appropriate
template. This template specifies values for valid attributes. An attribute is valid if it is either one of

the attributes described in the PKCS #11 specification or it is an additional vendor-specific attribute
supported by the library and token. The attribute values supplied by the template, together with any
default attribute values and any attribute values contributed to the object by the object-creation function
itself, must fully define the object to create.

Look at the following code example, where function C_CreateObject is used to generate an RSA key,
using a template keyTempl to specify the key attributes. One of these attributes, CKA_KEY_TYPE, defines
the RSA type of the key:

/*

* create an RSA key object with C_CreateObject
*/

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hKey;

CK_OBJECT_CLASS
dataClass = CKO_DATA,
certificateClass = CKO_CERTIFICATE,
keyClass = CKO_PUBLIC_KEY;

CK_KEY_TYPE keyType = CKK_RSA;
CK_ATTRIBUTE keyTemplate[] = {
$CKA_CLASS, &keyClass, sizeof(keyClass)}t,
SCKA_KEY_TYPE, &keyType, sizeof(keyType)?,
$CKA_WRAP, &true, sizeof(true)},
$CKA_MODULUS, modulus, sizeof(modulus)},
$CKA_PUBLIC_EXPONENT, exponent, sizeof(exponent)}?
i
CK_RV zc;
rc = C_CreateObject(hSession, keyTemplate, 5, &hKey);
if (xrc != CKR_OK) {
printf("Error creating key object: Ox%X\n", rc); zreturn rc;

if (xrc == CKR_OK) {
printf("RSA key object creation successful.\n");

162 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

How to apply attributes to objects

In openCryptoki, an attribute defines a characteristic of an object, for example, for a generated key. In
openCryptoki, there are general attributes, such as whether the object is private or public. There are also
attributes that are specific to a particular type of object, such as a modulus or exponent for RSA keys.

Attributes determine the characteristics of an object or how a mechanism is applied to an object.

Attributes are denoted by names starting with the prefix ' CKA_'. Some attributes are valid for one certain
object type, others are valid for multiple object types.

The type is specified on an object through the CKA_CLASS attribute of the object. Especially, the
CKA_CLASS attribute determines which further attributes are associated with an object. Other typical
attributes contain the value of an object or determine whether an object is a token object.

Structure of an openCryptoki application

The basic structure of an application that uses an openCryptoki token in order to encrypt and decrypt
with an RSA key pair is described in this topic. You can use it as a template for general cryptographic
applications.

Before you begin
Consider two things:

1. Identify the slot ID of the token you want to utilize.
2. Check whether the mechanisms that you must use or want to use are supported by the selected token.

Procedure

1. Provide the openCryptoki data types, functions, attributes and all other available items for
programming via the following ANSI C header files.

#include <opencryptoki/pkcsll.h> /* top-level Cryptoki include file x/
#include <stdlib.h>

#include <errno.h>

f##include <stdio.h>

#include <dlfcn.h>

#include <defs.h>

2. Use function C_Initialize to initialize Cryptoki.

CK_RV C_Initialize(CK_VOID_PTR pInitAxgs);

An application becomes an openCryptoki application by calling the C_Initialize function from one
of its threads. After this call, the application can call other openCryptoki functions.

3. Use function C_InitToken to initialize the desired token in the specified slot. (if token not yet
initialized, for example, with pkcsconf).

CK_RV C_InitToken(
CK_SLOT_ID slotID,
CK_UTF8CHAR_PTR pPin,
CK_ULONG ulPinLen,
CK_UTF8CHAR_PTR pLabel

)8

4. Use function C_OpenSession to open a connection between an application and a particular token.
CK_RV openSession(CK_SLOT_ID slotID, CK_FLAGS sFlags,
CK_SESSION_HANDLE_PTR phSession) {1

CK_RV zxc;
rc = C_OpenSession(slotID, sFlags, NULL, NULL, phSession);

Chapter 22. Programming with openCryptoki 163

printf("Open session successful.\n");
return CKR_OK;
¥

5. Use function C_Login to log a user into a token. Variable usexType specifies the user role (SO or
normal User).

CK_RV loginSession(CK_USER_TYPE userType, CK_CHAR_PTR pPin,
CK_ULONG ulPinLen, CK_SESSION_HANDLE hSession) $

CK_RV rc;

rc = C_Login(hSession, userType, pPin, ulPinLen);

printf("Login session successful.\n");
return CKR_OK;
%

6. Use function C_GenerateKeyPair to generate an RSA private and public key pair. The used
mechanism is CKM_RSA_PKCS_KEY_PAIR_GEN.

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;
CK_MECHANISM mechanism = §
CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, O
&

CK_ULONG modulusBits = 768;
CK_BYTE publicExponent[] = § 3 %;
CK_BYTE subject[] = §...%;
CK_BYTE id[] = $123%;

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE publicKeyTemplate[] = {
$CKA_ENCRYPT, &true, sizeof(true)t,
$CKA_VERIFY, &true, sizeof(true)t,
$CKA_WRAP, &true, sizeof(true)},
$CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)i¥,
$CKA_PUBLIC_EXPONENT, publicExponent, sizeof (publicExponent)}?
i

CK_ATTRIBUTE privateKeyTemplate[] = §
$CKA_TOKEN, &true, sizeof(true)},
$CKA_PRIVATE, &true, sizeof(true)t,
$CKA_SUBJECT, subject, sizeof(subject)i,
$CKA_ID, id, sizeof(id)i,
$CKA_SENSITIVE, &true, sizeof(true)},
$CKA_DECRYPT, &true, sizeof(true)t,
$CKA_SIGN, &true, sizeof(true)},
$CKA_UNWRAP, &true, sizeof(true)}

iH

CK_RV zrv;

rv = C_GenerateKeyPair(
hSession, &mechanism,
publicKeyTemplate, 5,
privateKeyTemplate, 8,
&hPublicKey, &hPrivateKey);
if (xrv == CKR_OK) {

¥

7. Use functions C_EncryptInit and C_Encrypt to initialize an encryption operation and to encrypt
data with the previously generated RSA private key.

f#fdefine PLAINTEXT_BUF_SZ 200
jidefine CIPHERTEXT_BUF_SZ 256

CK_ULONG firstPiecelen, secondPiecelen;
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;

CK_BYTE iv[8];

CK_MECHANISM mechanism = {
CKM_DES_CBC_PAD, iv, sizeof(iv)

58

164 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

CK_BYTE data[PLAINTEXT_BUF_SZ];

CK_BYTE encryptedData[CIPHERTEXT_BUF_SZ];
CK_ULONG ulEncryptedDatallen;

CK_ULONG ulEncryptedData2len;

CK_ULONG ulEncryptedData3lLen;

CK_RV zv;

fiistPieceLen = 90;
secondPiecelen = PLAINTEXT_BUF_SZ-firstPiecelen;
rv = C_EncryptInit(hSession, &mechanism, hKey);

if (xrv == CKR_OK) {
/* Encrypt first piece */
ulEncryptedDatallen = sizeof(encryptedData);
rv = C_EncryptUpdate(
hSession,
&data[0], firstPiecelen,
&encryptedData[0], &ulEncryptedDatallen);

/* Encrypt second piece %/

ulEncryptedData2len = sizeof(encryptedData)-ulEncryptedDatallen;

rv = C_EncryptUpdate(
hSession,
&data[firstPiecelen], secondPiecelen,

&encryptedData[ulEncryptedDatallLen], &ulEncryptedData2len);

if (zv != CKR_OK) {
/> Get last little encrypted bit =/

ulEncryptedData3lLen =

sizeof(encryptedData)-ulEncryptedDatallen-ulEncryptedData2len;

rv = C_EncryptFinal(
hSession,

&encryptedData[ulEncryptedDatallen+ulEncryptedData2len],

&ulEncryptedData3Llen);
if (zv != CKR_OK) $...%

¥

8. Use function C_Logout to logout from the openCryptoki session and close the session.

rv = C_Logout(session);
if (zv != CKR_OK) goto err;

rv = C_CloseSession(session);
if (zv != CKR_OK) goto err;

9. Use function C_Finalize to finalize the operation.

rv = fn->C_Finalize (NULL);
if (xv != CKR_OK) goto err;

Sample openCryptoki program

View a completely coded example of an openCryptoki application that performs an RSA key generation
operation.

Note: This sample program does not include the operation to encrypt data with the previously generated
RSA private key as described in step “7” on page 164 of “Structure of an openCryptoki application” on

page 163.
/*
* Build:
* cc -o pkecsll pkcsll.c -1dl
*
* Usage:
* pkcsll <so_name> <slot_id> <user_pin>
*
* Description:
* Loads the PKCS11 shared library <so_name>,
* opens a session with slot <slot_id>,
* logs the user in using the PIN <user_pin>,
* and performs an RSA key generation operation.

Chapter 22

. Programming with openCryptoki 165

*/
/* Step 1 %/
#include <opencryptoki/pkcsll.h>
#include <string.h>
#include <stdlib.h>
#include <dlfcn.h>

#define NELEM(array) (sizeof(array) / sizeof((array)[0]))

int main(int argc, char xargv[])

1
CK_C_GetFunctionList get_functionlist = {NULL};
CK_SESSION_HANDLE session = CK_INVALID_ HANDLE:
CK_FUNCTION_LIST =fn = NULL;
void *pkcsllso = NULL;
CK_SLOT_ID slot_id;
CK_FLAGS flags;
int rc = -1;
char *ptr;
CK_RV zrv;
if (argc != 4) goto err;
pkcsllso = dlopen(argv[1], RTLD_NOW);
if (pkcsllso == NULL) goto err;
slot_id = strtoul(argv[2], &ptr, 0);
if (x(argv[2]) == '\0' || *ptr != '\Q') goto err;
*(void *«) (&get_functionlist) = dlsym(pkcsllso, "C_GetFunctionList");
if (get_functionlist == NULL) goto err;
rv = get_functionlist(&fn);
if (xrv != CKR_OK || fn == NULL) goto err;
/* Step 2 %/

rv = fn->C_Initialize(NULL);
if (xv != CKR_OK) goto err;

flags = CKF_SERIAL_SESSION | CKF_RW_SESSION;

/* Step 4 (Step 3 assumed to be done by pkcsconf) x/
rv = fn->C_OpenSession(slot_id, flags, NULL, NULL, &session);
if (xv != CKR_OK || session == CK_INVALID_HANDLE) goto err;

/* Step 5 %/
rv = fn->C_Login(session, CKU_USER, (CK_UTF8CHAR x)argv[3], strlen(argv[3]));
if (xv != CKR_OK) goto err;

/* Step 6 (Step 7 not coded in this example x/
1

CK_MECHANISM mechanism = $CKM_RSA_PKCS_KEY_PAIR_GEN, NULL, 0%;
CK_BYTE e[] = {0x01, 0x00, Ox01%;

CK_ULONG modbits = 4096;

CK_BYTE subject[] = "RSA4096 Test";

CK_BYTE id[] = §1%;

CK_BBOOL true_ = CK_TRUE;

CK_ATTRIBUTE template_publ[] = §

$CKA_ENCRYPT, &true_, sizeof(true_)}%,
$CKA_VERIFY, &true_, sizeof(true_)%,
$CKA_WRAP, &true_, sizeof(true_)%,
$CKA_MODULUS_BITS, &modbits, sizeof(modbits)?,
SCKA_PUBLIC_EXPONENT, e, sizeof(e)?

i

CK_ATTRIBUTE template_priv[] = $
$CKA_SUBJECT, subject, sizeof(subject)},
$CKA_ID, id, sizeof(id)?,
$CKA_TOKEN, &true_, sizeof(true_)}%,
$CKA_PRIVATE, &true_, sizeof(true_)%,
$CKA_SENSITIVE, &true_, sizeof(true_)%,
$CKA_DECRYPT, &true_, sizeof(true_)}%,
$CKA_SIGN, &true_, sizeof(true_)%,
$CKA_UNWRAP, &true_, sizeof(true_)?¥

§s

CK_OBJECT_HANDLE publ, priv;

rv = fn->C_GenerateKeyPair(session, &mechanism,
template_publ, NELEM(template_publ),
template_priv, NELEM(template_priv),

&publ, &priv);
if (xzv != CKR_OK) goto err;

166 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

¥

/* Step 8 x/
rv = fn->C_Logout(session);
if (xv != CKR_OK) goto err;

rv = fn->C_CloseSession(session);
if (xv != CKR_OK) goto err;

/* Step 9 x/
rv = fn->C_Finalize(NULL);
if (xv != CKR_OK) goto err;

rc = 0;
err:
if (pkcsllso != NULL)
dlclose(pkcsllso);
return zxc;
3

openCryptoki code samples (C)

To develop an application that uses openCryptoki, you need to access the library.

There are two ways to access the library:

« Dynamic linking and loading: Load the shared 1ibopencryptoki.so library using dynamic library
calls (dlopen).

« Static linking: Link the static 1ibopencryptoki. so library to your application during build time.

Chapter 22. Programming with openCryptoki 167

Dynamic library call

View a openCryptoki code sample for a dynamic library call.

#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <dlfcn.h>
#include <opencryptoki/pkcsll.h>

CK_RV init();

CK_RV cleanup();

CK_RV rc; /* return code *x/

void *d11Ptr, (*symPtr)(); /* pointer to the ock library =/
CK_FUNCTION_LIST_PTR FunctionPtr = NULL; /* pointer to function list */

int main(int argc, char xargv[])i{
/* opencryptoki initialization */
rc = init("/usxr/lib64/opencryptoki/libopencryptoki.so");
/* further opencryptoki commands x/
rc = cleanup(); /* cleanup/close shared library =/
return 0;

b
CK_RV init(char *x1libPath)$

d11Ptr = dlopen(libPath, RTLD_NOW); /* open the PKCS11 library =/
if (!d11Ptr) £
printf("Error loading PKCS#11 library \n");
. return errno;
/* Get ock function list */
symPtr = (void (%) ())dlsym(dllPtr, "C_GetFunctionList");
if (!symPtr) §
printf("Error getting function list \n");
return errno;

%

symPtr (&FunctionPtr);

rc = FunctionPtr->C_Initialize(NULL); /* initialize opencryptoki/tokens) x/
if (rc != CKR_OK) 3
printf("Exrror initializing the opencryptoki library: Ox%X\n", zxc);
cleanup();

printf("Opencryptoki initialized.\n");
return CKR_OK;

CK_RV cleanup(void) %
rc = FunctionPtr->C_Finalize(NULL);
if (d11Ptr)
dlclose(dl1Ptr);
return rc;

%

To compile your sample code you need to provide the path of the source/include files. Issue a command
of the form:

gcc sample_dynamic.c -g -00 -o sample_dynamic

Statically linked library
When you use your sample code with a statically linked library you can access the APIs directly.

At the compile time you need to specify the openCryptoki library:

gcc sample_shared.c -g -00 -o sample_shared /usr/libé4/opencryptoki/libopencryptoki.so

The presented samples that interact with the openCryptoki API are based on the shared and statically
linked openCryptoki library.

168 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Base procedures

View some openCryptoki code samples for base procedures, such as a main program, an initialization
procedure, and finalize information.

Main program

/* Example program to test opencryptoki
* build: gcc test_ock.c -g -00 -o test_ock -lopencryptoki
* execute: ./test_ock -c <slot> -p <PIN> %/

#include <stdlib.h>

#include <errno.h>

#include <stdio.h>

#include <dlfcn.h>

#include <opencryptoki/pkcsll.h>

#include <string.h>

#include <unistd.h>

void *1ib_ock;

char xpin = NULL;

int count, arg;

CK_SLOT_ID slotID = 0O;

CK_ULONG rsaKeylLen = 2048, cipherTextlLen 0, clearTextlLen = 0;

CK_BYTE *pCipherText = NULL, *pClearText NULL;

CK_BYTE *pRSACipher = NULL, %*pRSAClear = NULL;

CK_FLAGS rw_sessionFlags = CKF_RW_SESSION | CKF_SERIAL_SESSION;

CK_SESSION_HANDLE hSession;

CK_BYTE keyValue[] = $0x01,0x23,0x45,0x67,0x89,0xab,0xcd,Oxef,
OxCA, OXFE,OxBE, OxEF, OxCA, OXFE, OxBE, OXEF};

CK_BYTE msg[] = "The quick brown fox jumps over the lazy dog";

CK_ULONG msglLen = sizeof(msg);

CK_OBJECT_HANDLE hPublicKey, hPrivateKey;

/**% <insert helper functions (provided below) here> *%x/
/*%% usage / help xxx/
void usage(void)

printf("Usage:\n");

printf(" -s <slot number> \n");
printf(" -p <user PIN>\n");
printf("\n");

exit (8); t?

int main(int argc, char *xargv[]) %
while ((arg = getopt (argc, argv, "s:p:")) != -1) {
switch (arg) 3
case 's': slotID = atoi(optarg);
break;

case 'p': pin = malloc(strlen(optarg));
strcpy(pin,optarg);
break;
default: printf("wrong option %c", arg);
usage();
3

if ((!pin) || (!slotID)) £
printf("Incorrect parameter given!\n");
usage();
exit (8); t

init();

openSession(slotID, rw_sessionFlags, &hSession);

loginSession (CKU_USER, pin, 8, hSession);

createKeyObject(hSession, (CK_BYTE_PTR)&keyValue, sizeof(keyValue));

AESencrypt (hSession, (CK_BYTE_PTR)&msg, msglLen, &pCipherText, &ciphexrTextLen);
AESdecrypt(hSession, pCiphexrText, ciphexrTextlLen, &pClearText, &clearTextlLen);
generateRSAKeyPair(hSession, rsaKeylLen, &hPublicKey, &hPrivateKey);
RSAencrypt(hSession, hPublicKey, (CK_BYTE_PTR)&msg, msglLen, &pRSACipher, &rsaKeylen);
RSAdecrypt (hSession, hPrivateKey, pRSACipher, rsaKeylLen, &pRSAClear, &rsaKeylen);
logoutSession(hSession); closeSession(hSession);

finalize();

return 0;

Chapter 22. Programming with openCryptoki 169

C_Initialize

/*

* initialize

*/
CK_RV init(void){

CK_RV zc;

rc = C_Initialize(NULL);

if (zc != CKR_OK) {

printf("Error initializing the opencryptoki library: 0x%X\n", zxc);

return rc;

C_Finalize

/*

* finalize

*/
CK_RV finalize(void) {
CK_RV zc;
rc = C_Finalize(NULL);
if (xc != CKR_OK) f{
printf("Exrror during finalize: 9%x\n", zxc);
3

if (pCipherText) free(pCipherText);
if (pClearText) free(pClearText);
if (pRSACipher) free(pRSACipher);
if (pRSAClear) free(pRSAClear);
return zrc;

Session and log-in procedures

View some openCryptoki code samples for opening and closing sessions and for log-in.

C_OpenSession:

/*
* opensession

*/

CK_RV openSession(CK_SLOT_ID slotID, CK_FLAGS sFlags,
CK_SESSION_HANDLE_PTR phSession) %
CK_RV zc;
rc = C_OpenSession(slotID, sFlags, NULL, NULL, phSession);
if (xc != CKR_OK) f{
printf("Exrror opening session: %x\n", xc);
return rc;

printf("Open session successful.\n");
return CKR_OK;

C_CloseSession:

170 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

/*
* closesession
*/
CK_RV closeSession(CK_SESSION_HANDLE hSession) 1
CK_RV zrc;
rc = C_CloseSession(hSession);
if (rc != CKR_OK) £
printf("Exrror closing session: Ox%X\n", xc);
return zxc;

printf("Close session successful.\n");
return CKR_OK;

C_Login:

/*
* login
*/
CK_RV loginSession(CK_USER_TYPE userType, CK_CHAR_PTR pPin,
CK_ULONG ulPinLen, CK_SESSION_HANDLE hSession) 1
CK_RV zc;
rc = C_Login(hSession, userType, pPin, ulPinLen);
if (xc != CKR_OK) {
printf("Error login session: %x\n", zxc);
return rc;

printf("Login session successful.\n");
return CKR_OK;

C_Logout:

/*

* logout
*

CK_RV logoutSession(CK_SESSION_HANDLE hSession) %
CK_RV zc;
rc = C_Logout(hSession);
if (xrc != CKR_OK) £
printf("Error logout session: %x\n", rc);
return rc;

printf("Logout session successful.\n");
return CKR_OK;

Object handling procedures

When you use your sample code with a static linked library you can access the APIs directly. View some
openCryptoki code samples for procedures dealing with object handling.

C_CreateObject:

Chapter 22. Programming with openCryptoki 171

/*

* create a key object with C_CreateObject

*/

CK_RV createKeyObject(CK_SESSION_HANDLE hSession, CK_BYTE_PTR key, CK_ULONG keyLength) %
CK_RV zc;

CK_OBJECT_HANDLE hKey;
CK_BBOOL true = TRUE;
CK_BBOOL false = FALSE;
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_AES;
CK_ATTRIBUTE keyTempl[] = $
1CKA_CLASS, &keyClass, sizeof(keyClass)},
$CKA_KEY_TYPE, &keyType, sizeof(keyType)}t,
$CKA_ENCRYPT, &true, sizeof(true)t,
$CKA_DECRYPT, &true, sizeof(true)t,
$CKA_SIGN, &true, sizeof(true)il,
$CKA_VERIFY, &true, sizeof(true)t,
$CKA_TOKEN, &true, sizeof(true)}, /* token object *x/
$CKA_PRIVATE, &false, sizeof(false)t, /* public object %/
iCKA_VALUE, keyValue, keylLengthi, /* AES key */
SCKA_LABEL, "My_AES_Key", sizeof("My_AES_Key")?
i
rc = C_CreateObject(hSession, keyTempl, sizeof (keyTempl)/sizeof (CK_ATTRIBUTE), &hKey);
if (rc != CKR_OK) £
printf("Exrror creating key object: Ox¥X\n", rc); return xc;

printf("AES Key object creation successful.\n");
return CKR_OK;

C_FindObjects:

/*
* findObjects
*/
CK_RV getKey (CK_CHAR_PTR label, int labellen, CK_OBJECT_HANDLE_PTR hObject,
CK_SESSION_HANDLE hSession) $
CK_RV rc;
CK_ULONG ulMaxObjectCount = 1;
CK_ULONG ulObjectCount;
CK_ATTRIBUTE objectMask[] = § {CKA_LABEL, label, labellen? %;
rc = C_FindObjectsInit(hSession, objectMask, 1);
if (xrc != CKR_OK) ¢
printf("Exrror FindObjectsInit: Ox%X\n", rc); return rc;

rc = C_FindObjects(hSession, hObject, ulMaxObjectCount, &ulObjectCount);
if (xc != CKR_OK) {
printf("Exrror FindObjects: Ox%X\n", rc); return xc;
rc = C_FindObjectsFinal(hSession);
if (xc != CKR_OK) £
printf("Exror FindObjectsFinal: Ox%X\n", rc); return rc;

return CKR_OK;

172 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Cryptographic operations

When you use your sample code with a static linked library you can access the APIs directly. View some
openCryptoki code samples for procedures that perform cryptographic operations.

C_Encrypt (AES):

/*
* AES encrypt
*/
CK_RV AESencrypt (CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pClearData, CK_ULONG ulClearDatalen,
CK_BYTE **pEncryptedData, CK_ULONG_PTR pulEncryptedDatalen) $
CK_RV zc;
CK_MECHANISM myMechanism = $CKM_AES_CBC_PAD, "01020304050607081122334455667788", 16%;
CK_MECHANISM_PTR pMechanism = &myMechanism;
CK_OBJECT_HANDLE hKey;
getKey ("My_AES_Key", sizeof("My_AES_Key"), &hKey, hSession);
rc = C_EncryptInit(hSession, pMechanism, hKey);
if (xc != CKR_OK) £
printf("Exror initializing encryption: Ox¥X\n", zxc);
return rc;
b
rc = C_Encrypt(hSession, pClearData, ulClearDatalen,
NULL, pulEncryptedDatalen);
if (xc != CKR_OK) f{
printf("Exrror during encryption (get length): %x\n", rc);
return rc;

ks
*pEncryptedData = (CK_BYTE *)malloc(*pulEncryptedDatalen * sizeof(CK_BYTE));

rc = C_Encrypt(hSession, pClearData, ulClearDatalen,
*pEncryptedData, pulEncryptedDatalen);
if (xc != CKR_OK) 1§
printf("Exrror during encryption: %x\n", xc);
return rc;

3

printf("Encrypted data: ");

CK_BYTE_PTR tmp = *pEncryptedData;

for (count = 0; count < *pulEncryptedDatalen; count++, tmp++) {
printf ("%X", xtmp);

printf("\n");

return CKR_OK;

Chapter 22. Programming with openCryptoki 173

C_Decrypt (AES):

/*
* AES decrypt
/

*
CK_RV AESdecrypt(CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pEncryptedData, CK_ULONG ulEncryptedDatalen,
CK_BYTE **pClearData, CK_ULONG_PTR pulClearDatalen) %
CK_RV rc;
CK_MECHANISM myMechanism = $CKM_AES_CBC_PAD, "01020304050607081122334455667788", 16%;
CK_MECHANISM_PTR pMechanism = &myMechanism;
CK_OBJECT_HANDLE hKey;
getKey ("My_AES_Key", sizeof("My_AES_Key"), &hKey, hSession);
rc = C_DecryptInit(hSession, pMechanism, hKey);
if (rc != CKR_OK) £
printf("Exrror initializing decryption: Ox%X\n", xc);
return zxc;

rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDatalen, NULL, pulClearDatalen);
if (xc != CKR_OK) %

printf("Error during decryption (get length): %x\n", rc);

return rc;

¥
*pClearData = malloc(*xpulClearDatalen * sizeof(CK_BYTE));
rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDatalLen, *pClearData,
pulClearDatalen);
if (rc != CKR_OK) £
printf("Exrror during decryption: %x\n", xc);
return zxc;

3

printf("Decrypted data: ");

CK_BYTE_PTR tmp = *pClearData;

for (count = 0; count < *pulClearDatalen; count++, tmp++) $
printf("%c", *tmp);

printf("\n");
return CKR_OK;

174 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

C_GenerateKeyPair (RSA):

/*
* RSA key generate
/

*
CK_RV generateRSAKeyPair (CK_SESSION_HANDLE hSession, CK_ULONG keySize,
CK_OBJECT_HANDLE_PTR phPublicKey, CK_OBJECT_HANDLE_PTR phPrivateKey) %
CK_RV zxc;
CK_BBOOL true = TRUE;
CK_BBOOL false = FALSE;
CK_OBJECT_CLASS keyClassPub = CKO_PUBLIC_KEY;
CK_OBJECT_CLASS keyClassPriv = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyTypeRSA = CKK_RSA;
CK_ULONG modulusBits = keySize;
CK_BYTE_PTR pModulus = malloc(sizeof(CK_BYTE)*modulusBits/8);
CK_BYTE publicExponent[] = {1, 0, 1%;
CK_MECHANISM rsakKeyGenMech = $CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0%;
CK_ATTRIBUTE pubKeyTempl[] = $
$CKA_CLASS, &keyClassPub, sizeof(keyClassPub)i,
$CKA_KEY_TYPE, &keyTypeRSA, sizeof(keyTypeRSA)%,
$CKA_TOKEN, &true, sizeof(true)},
$CKA_PRIVATE, &true, sizeof(true)t,
$CKA_ENCRYPT, &true, sizeof(true)i,
$CKA_VERIFY, &true, sizeof(true)t,
$CKA_WRAP, &true, sizeof(true)}l,
$CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
1CKA_PUBLIC_EXPONENT, publicExponent, sizeof(publicExponent)?,
$CKA_LABEL, "My_Private_Token_RSA1024_PubKey",
sizeof ("My_Private_Token_RSA1024_PubKey")%,
$CKA_MODIFIABLE, &true, sizeof(true)},
i
CK_ATTRIBUTE privKeyTempl[] = $
iCKA_CLASS, &keyClassPriv, sizeof(keyClassPriv)},
$CKA_KEY_TYPE, &keyTypeRSA, sizeof(keyTypeRSA)%,
$CKA_EXTRACTABLE, &true, sizeof(true)},
$CKA_TOKEN, &true, sizeof(true)},
$CKA_PRIVATE, &true, sizeof(true)t,
SCKA_SENSITIVE, &true, sizeof(true)}?,
$CKA_DECRYPT, &true, sizeof(true)t,
$CKA_SIGN, &true, sizeof(true)il,
SCKA_UNWRAP, &true, sizeof(true)t,
$CKA_LABEL, "My_Private_Token_RSA1024_PrivKey",
sizeof ("My_Private_Token_RSA1024_PrivKey")}%,
$CKA_MODIFIABLE, &true, sizeof(true)}l,
[iF;
rc = C_GenerateKeyPair(hSession, &rsaKeyGenMech ,
&pubKeyTempl, sizeof(pubKeyTempl)/sizeof (CK_ATTRIBUTE),
&privKeyTempl, sizeof(privKeyTempl)/sizeof (CK_ATTRIBUTE),
phPublicKey, phPrivateKey);
if (xc != CKR_OK) f{
printf("Error generating RSA keys: %x\n", rc);
return rc;

printf("RSA Key generation successful.\n");
return CKR_OK;

Chapter 22. Programming with openCryptoki 175

C_Encrypt (RSA):

/*
* RSA encrypt
/

*
CK_RV RSAencrypt (CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey,
CK_BYTE_PTR pClearData, CK_ULONG ulClearDatalen,
CK_BYTE **pEncryptedData, CK_ULONG_PTR pulEncryptedDatalen) %
CK_RV rc;
CK_MECHANISM rsaMechanism = {CKM_RSA_PKCS, NULL_PTR, 0%;
rc = C_EncryptInit(hSession, rsaMechanism, hKey);
if (xc != CKR_OK) £
printf("Exrror initializing RSA encryption: %x\n", xc);
return rc;

rc = C_Encrypt(hSession, pClearData, ulClearDatalen,
NULL, pulEncryptedDatalen);
if (xc != CKR_OK) 1§
printf("Exrror during RSA encryption: %x\n", xc);
return rc;

¥

*pEncryptedData = (CK_BYTE %)malloc(rsaKeylLen % sizeof(CK_BYTE));
rc = C_Encrypt(hSession, pClearData, ulClearDatalen,
*pEncryptedData, pulEncryptedDatalen);
if (xc != CKR_OK) §
printf("Error during RSA encryption: %x\n", rc);
return rc;

%

printf("Encrypted data: ");

CK_BYTE_PTR tmp = *pEncryptedData;

for (count = 0; count < *pulEncryptedDatalen; count++, tmp++) {
printf ("%X", *tmp);

printf("\n");
return CKR_OK;

176 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

C_Decrypt (RSA):

/*
* RSA decrypt
/

*
CK_RV RSAdecrypt (CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey,
CK_BYTE_PTR pEncryptedData, CK_ULONG ulEncryptedDatalen,
CK_BYTE **pClearData, CK_ULONG_PTR pulClearDatalen) %
CK_RV zc;
CK_MECHANISM rsaMechanism = {CKM_RSA_PKCS, NULL_PTR, 0%;
rc = C_DecryptInit(hSession, rsaMechanism, hKey);
if (rc != CKR_OK) £
printf("Exrror initializing RSA decryption: %x\n", xc);
return zxc;

3
rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDatalen,
NULL, pulClearDatalen);
if (xc != CKR_OK) %
printf("Exrror during RSA decryption: %x\n", xc);
return zxc;

¥

*pClearData = malloc(rsaKeylLenxsizeof (CK_BYTE));
rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDatalen,
*pClearData, pulClearDatalen);
if (xc != CKR_OK) %
printf("Error during RSA decryption: %x\n", rc);
return rc;

%

printf("Decrypted data: ");

CK_BYTE_PTR tmp = %pClearData;

for (count = 0; count < *xpulClearDatalen; count++, tmp++) $
printf("%c", xtmp);

printf("\n");
return CKR_OK;

Chapter 22. Programming with openCryptoki 177

178 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 23. Trouble shooting

When you run into troubles while working with openCryptoki, the information provided in this topic may
help you to resolve your problem.

To react on error messages related to openCryptoki, perform a series of checks:

1. “Walk through a check list” on page 179
2. “Checking the syslog messages” on page 180

3. “Apply tracing” on page 182
4. “Final check” on page 182

In addition, you may find helpful information in the following topic:

« “Re-initialize a token” on page 182

Walk through a check list
1. Is the current user authorized in the pkcs11 group?

The pkcs11 group must be defined in file /etc/group of the system. An entry in this file, like for
example: pkcs11:x:989:root, indicates that the root user is a member of the pkcs11 group. To add
a user to this group, issue the following command: usermod -aG pkcsll <user>.

Every user of openCryptoki must be a member of this pkcs11 group. For more information, read
“Access control and groups” on page 12.

2. Is the slot manager daemon pkcsslotd up and running?

The pkesslotd daemon must be active in the system to coordinate token accesses from multiple
processes. For more information, read “Slot manager” on page 7.

3. Is the host library of the token installed that you want to exploit?

« For the CCA token, the host library and its default distribution location is /usx/1ib64/
libcsulcca.so.<v>.<r>.<m>.

« For the ICA token, the library and its default distribution location is /usr/1ibé64/
libica.so.<v>.<r>.<m>.

« For the EP11 token, the library and its default distribution location is /usx/1ib64/
libepll.so.<v>.<1>.<m>.

« For the Soft token, the library and its default distribution location is /usx/1ib64/
libcrypto.so.<v>.<r>.<m>.

4. Are the required cryptographic coprocessors available and online?

Use the 1szcxypt command to display a list of available cryptographic devices and their online
status.

lszcrypt

CARD.DOMAIN TYPE MODE STATUS REQUESTS
08 CEX7C CCA-Coproc online 10484
08.0031 CEX7C CCA-Coproc online 10484
09 CEX7C CCA-Coproc online 34
09.0031 CEX7C CCA-Coproc online 34
Oa CEX7P EP11-Coproc online 24766
0a.0031 CEX7P EP11-Coproc online 24766
Ob CEX7P EP11-Coproc online 15420
0b.0031 CEX7P EP11-Coproc online 15420

© Copyright IBM Corp. 2021, 2023 179

5. Are the slot definitions correctly specified in the openCryptoki configuration file (/etc/
opencryptoki/opencryptoki.conf)?

A list of all available tokens is required before you can use openCryptoki. This list is provided by
the global configuration file called opencryptoki.conf. For more information, read Chapter 5,
“Adjusting the openCryptoki configuration file,” on page 21.

Checking the syslog messages

openCryptoki issues the following syslog messages (alphabetically sorted). Numbers (placeholder x) and
names like for example <file>, will be replaced in the real output. Check the messages and correct the
mentioned error.

C_Initialize: Invalid number of functions passed in argument structure.

C_Initialize: Application specified that 0S locking is invalid.
PKCS11 Module requires 0S locking.

C_Initialize: Module failed to attach to shared memory. Verify that the slot management daemon
is running, errno=x

C_Initialize: Module failed to create a socket.
Verify that the slot management daemon is running.

C_Initialize: Module failed to retrieve slot infos from slot deamon.

C_Initialize: Application specified that library can't create 0S threads. PKCS11 Module
requires to create threads when event support is enabled.

Cannot read size

Cannot read boolean

Cannot malloc x bytes to read in token object <file> (ignoring it)
Cannot read token object <file> (ignoring it)

Cannot restore token object <file> (ignoring it)

Cannot read header

chmod(<file>): <strerror>

connect_socket: failed to find socket file, errno=x
connect_socket: pkcsll group does not exist, errno=x
connect_socket: incorrect permissions on socket file
connect_socket: failed to create socket, errno=x

connect_socket: failed to connect to slotmanager daemon, errno=x

Could not open <lockfilename>

<dlerror>

Directory(<dir>) missing: <strerror>

DL_Load: dlopen() failed for [<dll_location>]; dlerror = <dlerror>

epll_load_host_lib: Error loading shared library <file>' [<strerror>]
epll_load_host_lib: Error loading shared library 'libepll.so[.3].2].1]"' [<strerror>]
epll_login_handler: Error: VHSM-Pin blob of adapter <apgn> is not equal to other adapters
for same session
epll_login_handler: Error: Pin blob of adapter <apgn> is not equal to other adapters
for same session
epll_resolve_lib_sym: Error: <dlerror>

eplltok_load_libica: Error loading shared library '<file>' [<strerror>]
eplltok_load_libica: Failed to initialize the target lock
eplltok_load_libica: Exrror: EP 11 library initialization failed
eplltok_load_libica: Failed to get the EP11 library version rc=x
eplltok_load_libica: Failed to get the target info rc=x
eplltok_load_libica: Exrror: CKR_IBM_WK_NOT_INITIALIZED occurred, no master key set ?
eplltok_load_libica: Error: CKR_FUNCTION_CANCELED occurred, control point 13

(generate or derive symmetric keys including DSA parameters) disabled ?
eplltok_load_libica: Warning: Could not get mk_vp, protected key support not available.
eplltok_login_session: Error: A VHSM-PIN is required for VHSM_MODE.
eplltok_handle_apgn_event: Failed to get the target info rc=x

fchmod(<file>): <strerror>
fchown(<file>): <strerror>
fchown(<file>, -1,pkcs1l) failed: <strerror>. Tracing is disabled.

getgrnam() failed: <strerror>

getgrnam(pkcsll) failed: <strerror>. Tracing is disabled.
getgrnam(): <strerror>

getpwuid(): <strerror>

180 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

init_socket_data: read error on daemon socket, errno=x
init_socket_data: read returned with eof but we still expect x bytes from daemon

Invalid strength configuration in policy!

lock directory path too long

lock file path too long

mkdir(<file>): <strerror>

OPENCRYPTOKI_TRACE_LEVEL

'<string>' is invalid. Tracing disabled.

open(<file>) failed: <strerror>. Tracing disabled.

open(<file>): <strerror>
Parsing

POLICY:
POLICY:
POLICY:
POLICY:
POLICY:
POLICY:
POLICY:
POLICY:
POLICY:
POLICY:
POLICY:
POLICY:
POLICY:
POLICY:
POLICY:
POLICY:

Unknown cuzrve

POLICY
POLICY
POLICY
POLICY
POLICY
POLICY
POLICY
POLICY
POLICY
POLICY
POLICY
POLICY
POLICY
POLICY
POLICY
POLICY

VIOLATION:
VIOLATION:
VIOLATION:
VIOLATION:
VIOLATION:
VIOLATION:
VIOLATION:
VIOLATION:
VIOLATION:
VIOLATION:
VIOLATION:
VIOLATION:
VIOLATION:
VIOLATION:
VIOLATION:
VIOLATION:

read_adapter_config_file:
read_adapter_config_file:
read_adapter_config_file:

read_adapter_config_file:
read_adapter_config_file:
read_adapter_config_file:
read_adapter_config_file:

read_adapter_config_file:
read_adapter_config_file:

read_adapter_config_file:
read_adapter_config_file:

read_adapter_config_file:
read_adapter_config_file:
read_adapter_config_file:

read_adapter_config_file:
read_adapter_config_file:

read_adapter_config_file:

policy configuration failed!

Could not retrieve "pkcsll" group!

Could not stat configuration file <file>: <strerror>
Configuration file <file> should be owned by "root"
Configuration file <file> should have group "pkcs11"!
Configuration file <file> has wrong permissions!
"<curve>"
allowedmechs has wrong type!

allowedcurves has wrong type!

allowedmgfs has wrong type!

allowedkdfs has wrong type!

allowedprfs has wrong type!

Failed to open <file>: <strerror>

Could not allocate policy private data!
Strength definition <file> failed to parse!
Failed to open <file>: <strerror>

Policy definition <file> failed to parse!

in line <line>

CKM_AES_KEY_GEN needed by Token-Store for slot <slot>
CKM_AES_KEY_WRAP needed by Token-Store for slot <slot>
CKM_AES_GCM needed by Token-Store for slot <slot>

CKM_PKCS5_PBKD2 needed by Token-Store for slot <slot>
CKP_PKCS5_PBKD2_HMAC_SHA512 needed by Token-Store for slot <slot>
Token-Store encryption method not allowed for slot <slot>!
Token-Store requires SHA1l for slot <slot>!

Token-Store requires MD5 for slot <slot>!

CKM_DES3_KEY_GEN needed by Token-Store for slot <slot>
CKM_AES_KEY_GEN needed by Token-Store
Unknown Token-Store encryption method
CKM_AES_KEY_GEN needed by Token-Store
CKM_AES_CBC needed by Token-Store for
CKM_PKCS5_PBKD2 needed by Token-Store
CKP_PKCS5_PBKD2_HMAC_SHA256 needed by
Token-Store encryption key too weak for slot <slot>!

for slot <slot>

for slot <slot>!

for slot <slot>

slot <slot>

for slot <slot>

Token-Store for slot <slot>

Error: EP 11 config file ''<file>' not found

Error: EP 11 config file '<file>' is too large

Error: Expected APQN_ALLOWLIST, APQN_ANY, LOGLEVEL, FORCE_SENSITIVE,
CPFILTER, STRICT_MODE, VHSM_MODE, OPTIMIZE_SINGLE_PART_OPERATIONS,
PKEY_MODE, DIGEST_LIBICA, or USE_PRANDOM keyword, found '<token>

in config file '<file>'

Exrror: Unexpected end of file found in config file '<file>',

expected 'END' or adapter number

Error: Expected valid adapter number, found '<token>'

in config file '<file>'

Error: Unexpected end of file found in config file '<file>,

expected domain number (2nd number)

Exrror: Expected valid domain number (2nd number), found '<token>'

in config file <file>

Error: Too many APQNs in config file '<file>'

Exrror: Unexpected end of file found in config file '<file>',

expected LOGLEVEL value

Error: Invalid LOGLEVEL value '<token>' in config file <file>
Warning: LOGLEVEL setting is not supported any more. Use opencryptoki
logging/tracing facilities instead.

Error: Unexpected end of file found in config file '<file>',

expected CP-Filter file name

Error: CP-Filter config file name '<file>' is too long in

config file '<file>'

Error: Unexpected end of file found
expected libica path, 'DEFAULT', ox
Error: libica path '<token>' is too
Error: Unexpected end of file found
expected pkey_mode 0 .. 3

Error: unsupported pkey mode '<token> in config file '<file>'

in config file '<file>,
'OFF'

long in config file '<file>'
in config file '<file>"',

Chapter 23. Trouble shooting 181

read_adapter_config file: Error: At least one APQN mode needs to be present in config file
'<file>': APQN_ALLOWLIST or APQN_ANY
read_adapter_config_file: Error: Only one APQN mode can be present in config file '<file>':
APQN_ALLOWLIST or APQN_ANY
read_adapter_config file: Error: At least one APQN needs to be defined in config file '<file>
read_cp_filter_config_file: Warning: EP 11 CP-filter config file '<file>' does not exist,
no filtering will be used
read_cp_filter_config _file: Error: Expected valid control point name or number,
found '<ftoken>' in CP-filter config file '<file>'
read_cp_filter_config file: Error: Expected valid mechanism name or number, found '<token>'
in CP-filter config file '<file>'
read_cp_filter_config_file: Error: Out of memory while parsing CP-filter config file '<file>'

SHM segment has wrong gid/mode combination (expected: x/0x; got: x/0x)
start_event_thread: pthread_create failed, errno=x

token_specific_init: Error loading library: 'libcsulcca.so' [<dlerror>]
Trace level x is out of range. Tracing disabled.

Token object <file> appears corrupted (ignoring it)

Tspi_Key_GetPubKey failed: rc=x

Username (<name>) too long

Warning: CCA symmetric master key is not yet loaded
Warning: CCA asymmetric master key is not yet loaded
Warning: Your TPM is not configured to allow reading the public SRK by anyone but the owner.
Use tpm_restrictsrk -a to allow reading the public SRK
Warning: Adapter <apgnl> has different control points than adapter <apqn2>, using minimum
Warning: Adapter <apgnl> has a different number of control points than adapter <apgn2>,
using maximum
Warning: Adapter <apgnl> has a different API versionversion than the previous CEXxP adapters: x
Warning: Adapter <apgnl> has a different firmware version than the previous CEXxP adapters: x.x

Apply tracing

If you successfully checked all issues as described in the previous sections, you may start to exploit

the openCryptoki tracing capabilities. If a log level > 0 is activated by setting the environment

variable OPENCRYPTOKI_TRACE_LEVEL, then log entries are written to file /var/log/opencryptoki/
trace.<process_id>. Application programmers may apply the higher tracing log levels 4 and 5.

For detailed information, read “Logging and tracing in openCryptoki” on page 12.

Final check

Finally, if your openCryptoki environment is successfully set up, you can check your settings using the
pkcsconf utility as described in Chapter 8, “Managing tokens - pkcsconf utility,” on page 39.

Re-initialize a token

In case you need to clean a token and initialize it freshly (for example, because you forgot the SO PIN, or
the SO PIN got locked), perform the following actions:

1. Remove all the files in the token directory (for example, /var/1ib/opencrptoki/<token>/), that
is, MK_SO, MK_USER, NVTOK.DAT, as well as all files inside TOK_0BJ (but do not remove the TOK_0BJ
directory itself).

2. Remove the shared memory segment under /dev/shm for that token using the command:
rm /dev/shm/var.lib.opencryptoki.<token>

3. Freshly initialize the token using the command pkcsconf -I.
4. Set the SO and USER PINs.

Q Attention: You will loose all token objects, and you need to setup the PINs freshly.

182 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 24. Configuring a remote PKCS #11 service
with openCryptoki

A user scenario shows how to set up a Soft token on a server for use from an application on a remote
client.

The user scenario presented in this topic describes how you can set up a remote token on an IBM z15
system with an installed Ubuntu 21.04 Linux environment. This token is accessed and exploited from
an application running on an x86 client with an installed Red Hat Enterprise Linux 7.9 environment. The
Ubuntu 21.04 setup is selected, because at the time of writing, this distribution shipped all required
packages and package versions. An analogous setup is possible with subsequent distributions.

Information about the required set up on the server and client side is presented in the contained
subtopics:

« “Server side setup” on page 183

« “Client side setup” on page 185

Server side setup

The user scenario describes how to set up a Soft token on a server, which is an IBM z15 system running a
Linux operating system.

Before you begin

The server can be set up on various IBM Z systems and with various versions of Linux. For the scenario
illustrated here, it is assumed that you have an Ubuntu 21.04 installation on an IBM z15 machine. Open a
Linux command line on the server to set up an openCryptoki Soft token.

Procedure

1. Install the p11-kit package (see “Support of IBM-specific mechanisms - p11-kit” on page 187).

This tool provides a way to load and enumerate PKCS #11 modules and also provides a standard
configuration setup for installing PKCS #11 modules in such a way that they are discoverable.

To install the p11-kit package and the p11tool, enter the following command:

apt install pll-kit pll-kit-modules gnutls-bins

2. Create and edit an opencryptoki.module configuration file in the shown filepath: /etc/pkcs1l/
modules/opencryptoki.module

Enter the following line into this configuration file:

module: /lib64/opencryptoki/libopencryptoki.so

3. To list the available PKCS #11 modules, enter the following command:
pll-kit list-modules

You will see an output similar to the following;:

© Copyright IBM Corp. 2021, 2023 183

pll-kit-trust: pll-kit-trust.so
library-description: PKCS#11 Kit Trust Module
library-manufacturer: PKCS#11 Kit
library-version: 0.23
token: System Trust
manufacturer: PKCS#11 Kit
model: pll-kit-trust
serial-number: 1
hardware-version: 0.23
flags:
write-protected
token-initialized
opencryptoki: /libé4/opencryptoki/libopencryptoki.so
library-description: openCryptoki
library-manufacturer: IBM
library-version: 3.16
token: soft
manufacturer: IBM
model: Soft
serial-number:
flags:
rng
login-required
user-pin-initialized
clock-on-token
token-initialized

4. To list the available tokens using the p11tool utility, enter the following command:

plitool --list-tokens

You will see an output similar to the following:

Token 0:

URL: pkcsll:model=p11-kit-
trust;manufacturer=PKCS%2311%20Kit;serial=1;token=System%20Trust

Label: System Trust

Type: Trust module

Flags: uPIN uninitialized

Manufacturer: PKCS#11 Kit

Model: pll-kit-trust

Serial: 1

Module: pll-kit-trust.so

Token 1:
URL: pkcsll:model=Soft;manufacturer=IBM;serial=;token=soft
Label: soft
Type: Generic token
Flags: RNG, Requires login
Manufacturer: IBM
Model: Soft
Serial:
Module: opencryptoki: /libé64/opencryptoki/libopencryptoki.so

As you can see in the example, the Soft token is available now as Token 1. With the shown URL, you
can access this token.

5. To start the pd1-kit server to allow remote clients to access the token, enter the following command:

pll-kit server --provider /libé64/opencryptoki/libopencryptoki.so
"pkcsll:model=Soft;manufacturer=IBM;serial=;token=soft"

As output, you will see the following generated commands:

P11_KIT_SERVER_ADDRESS=unix:path=/run/user/0/pll-kit/pkcs11-1296159; export
P11_KIT_SERVER_ADDRESS;
P11_KIT_SERVER_PID=1296160; export P11_KIT_SERVER_PID;

184 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

6. To set and export the following two environment variables, copy and paste the commands from the
output from step 5 and enter them into a command line:

P11_KIT_SERVER_ADDRESS=unix:path=/run/user/0/pll-kit/pkcsl1-1296159; export
P11_KIT_SERVER_ADDRESS;
P11_KIT_SERVER_PID=1296160; export P11_KIT_SERVER_PID;

Results
You can now continue to set up the client as described in “Client side setup” on page 185.

Client side setup

Learn how to set up an x86 client in the client-server environment illustrated in this user scenario, so that
you can exploit a Soft token, previously installed on a remote server.

Before you begin
It is assumed that you want to access and exploit the functions of the remote Soft token from an x86
client running under a Linux system from a Red Hat Enterprise Linux 7.9 distribution.

Procedure

1. Open a Linux command line. To install the p11-kit utility (see “Support of IBM-specific mechanisms -
pll-kit” on page 187), enter the following command:

$ sudo yum install pl1-kit

2. To query the user run-time path, enter the following command:

$ systemd-path user-runtime

You will see an output similar to the following;:

/run/user/1000

3. To forward the local UNIX socket to the remote socket, enter the following commands, using the
information from step 2 and then log in as a root user into the remote server:

$ mkdir /run/user/1000/pll-kit/
$ ssh -L /run/user/1000/pll-kit/pkcs11-1296159:/run/user/0/pll-kit/pkcs1l-1296159
root@<remote_server_name>

4. To export the p11-kit server address environment variable, enter the following command:

$ P11_KIT_SERVER_ADDRESS=unix:path=/run/user/1000/pl11-kit/pkcsl11-1296159; export
P11_KIT_SERVER_ADDRESS;

5. As the Red Hat Enterprise Linux 7.9 distribution does not package the p11-kit-client.so file, you
need to build it from the source. Therefore, clone the shown GitHub repository. To achieve this, enter
the following command sequence:

Chapter 24. Configuring a remote PKCS #11 service with openCryptoki 185

$ git clone https://github.com/pll-glue/pll-kit.git
$ cd p11-kit

$ git checkout 0.23.10

$./autogen.sh

$./configure

$ make

6. To view a list of available tokens, use the p11tool:

$ plltool --provider /<path>/pll-kit-client.so --list-tokens

You will see an output similar to the following, showing that the Soft token is remotely available.

Token 0:
URL: pkcsll:model=Soft;manufacturer=IBM;serial=;token=soft
Label: soft
Type: Generic token
Manufacturer: IBM
Model: Soft
Serial:

7. To view a list of available mechanisms of the Soft token, use the p11tool utility:

$ plitool --provider /<path>/pll-kit-client.so --list-mechanisms
"pkcsll:model=Soft;manufacturer=IBM;serial=;token=soft"

You will see an output list similar to the following (see also “PKCS #11 mechanisms supported by the
Soft token” on page 125):

[0x0000] CKM_RSA_PKCS_KEY_PAIR_GEN
[0x0120] CKM_DES_KEY_GEN

[0x0131] CKM_DES3_KEY_GEN
[0x0001] CKM_RSA_PKCS

[0x0006] CKM_SHAL_RSA_PKCS
[0x0040] CKM_SHA256_RSA_PKCS
[0x0041] CKM_SHA384_RSA_PKCS
[0x0042] CKM_SHA512_RSA_PKCS
[0x000d] CKM_RSA_PKCS_PSS
[0x0003] CKM_RSA_X_509

[0x0009] CKM_RSA_PKCS_OAEP
[0x0005] CKM_MD5_RSA_PKCS
[0x0006] CKM_SHAT_RSA_PKCS
[0x0020] CKM_DH_PKCS_KEY_PAIR_GEN
[0x0121] CKM_DES_ECB

[0x0132] CKM_DES3_ECB

[0x0134] CKM_DES3_MAC

[0x0220] CKM_SHA_1

[0x0221] CKM_SHA_1_HMAC

[0x0250] CKM_SHA256

[0x0251] CKM_SHA256_HMAC

[0x0260] CKM_SHA384

[0x0261] CKM_SHA384_HMAC

[0x0270] CKM_SHA512

[0x0271] CKM_SHA512_HMAC

[0x0210] CKM_MD5

[0x0211] CKM_MD5_HMAC

[0x0370] CKM_SSL3_PRE_MASTER_KEY_GEN
[0x0380] CKM_SSL3_MD5_MAC
[0x0381] CKM_SSL3_SHAT_MAC
[0x1080] CKM_AES_KEY_GEN

[0x1081] CKM_AES_ECB

[0x1083] CKM_AES_MAC

[0x0350] CKM_GENERIC_SECRET_KEY_GEN
[0x1040] CKM_ECDSA_KEY_PAIR_GEN
[0x1041] CKM_ECDSA

[0x1042] CKM_ECDSA_SHA1

8. Use the p11tool utility to issue the following command to generate an RSA private and public key pair
of a length of 2048 bits:

186 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

$ plitool --provider /<path>/pll-kit-client.so --generate-rsa --bits 2048 --login
"pkcs1l:model=Soft;manufacturer=IBM;serial=;token=soft"

You will see an output similar to the following;

warning: no --outfile was specified and the generated public key will be printed on screen.
note: in some tokens it is impossible to obtain the public key in any other way after
generation.

warning: Label was not specified. Label: my-rsa-key Token 'soft' with URL
'pkcsll:model=Soft;manufacturer=IBM;serial=;token=soft' requires user PIN

Enter PIN:

----- BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9wOBAQEFAAOCAQS8AMIIBCgKCAQEAZzwWrYewbVOLYbCch9inQ4
1n/jReFtjrYGx2M4B373em+gMiaDlc+T8Y9yvofDoEwZkjN200kUPD2GFbh8P88a5
jGF8M+F1kZe+E7X1cHvttFPLULHDpAIXKOUNZJIxrbARINcP8091KghV3CdrXw8dwm
ovdG/FVCyaKv4I1GVj40Kwx5ILOL9IBoS1uRRtPNqwSYTXKGEYUjfko+PXm7MVuu
DQv2Ckr6KDENIsk8U7WOhOHWE§Z40VKSpbgP1RMG5whWL /hYoGQ181IDXeMajH/1
KgQAI7ree8IS2R4/0s0fzR7+Rp6AVPE4ABQ6TXZ0k0/7EQLbiCSq930TWSEQIELMT

xQIDAQAB

----- END PUBLIC KEY-----

9. Issue the following command to list all available objects in the token:

$ pllitool --provider /<path>/pll-kit-client.so --list-all --login
"pkcs1l:model=Soft;manufacturer=IBM;serial=;token=soft"

You are prompted for your user PIN:

Token 'soft' with URL 'pkcsll:model=Soft;manufacturer=IBM;serial=;token=soft' requires user PIN
Enter PIN: <USER PIN>

[...]

Object 6:

URL:
pkcsll:model=Soft;manufacturer=IBM;serial=;token=soft;id=%8a%b8%84%b3%Lf0%60%1c%32%2e%19%6e%L1%5
%7£%30%e3%bE%6c%£3%82; object=my-rsa-key;type=private

Type: Private key

Label: my-rsa-key

Flags: CKA_WRAP/UNWRAP; CKA_PRIVATE; CKA_SENSITIVE;

ID: 8a:b8:84:b3:f0:60:1c:32:2e:19:6e:f1:55:7£:30:e3:bf:6c:£3:82

Object 7:

URL:
pkcsll:model=Soft;manufacturer=IBM;serial=;token=soft;id=%8a%b8%84%b3%Lf0%60%1c%32%2e%19%6e%L1%5
%7£%30%e3%bE%6c%£3%82; object=my-rsa-key; type=public

Type: Public key

Label: my-rsa-key

Flags: CKA_WRAP/UNWRAP;

ID: 8a:h8:84:h3:f0:60:1c:32:2e:19:6e:f1:55:7f:30:e3:bf:6c:£3:82

Results
On your client, you can now write cryptographic applications that exploit the mechanisms of the Soft
token using the openCryptoki API (see also Chapter 22, “Programming with openCryptoki,” on page 161).

Support of IBM-specific mechanisms - p11-kit

You can use the p11-kit command line tool to perform operations on PKCS #11 tokens configured on
the system. It can especially be used to provide remote PKCS #11 API access to openCryptoki tokens
through an RPC-like communication protocol.

The p11-kit tool is enhanced so that it supports IBM-specific mechanisms and attributes used by
openCryptoki. You should verify which mechanisms and attributes are exactly supported by the p11-kit
version packaged by your distribution.

Chapter 24. Configuring a remote PKCS #11 service with openCryptoki 187

Using p11-kit to access an openCryptoki token from a remote system

On the client side, a p11-kit client library acts as a PKCS #11 interface for the application. It forwards
all API calls to a p11-kit server over a network connection. On the server side, the API calls are then
passed to another PKCS #11 interface library, that is, to openCryptoki’s API library.

The communication between p11-kit client and p11-kit server is based on UNIX domain sockets,
which are forwarded through an SSH tunnel from the client to the server. Because an SSH tunnel is used,
the communication is encrypted and authenticated by means of regular SSH authentication.

The client side may run on a different architecture than the server, because the RPC protocol is
endianess-save. It is for example possible to run the client application on an x86-Linux, connecting to
an s390x-Linux running openCryptoki with the EP11 token.

The p11-kit tool needs to explicitly know all mechanisms and attributes in order to support them.

For mechanisms, it needs to know if a mechanism uses a mechanism parameter, and if so, how to
serialize the mechanism parameter. Some complex mechanism parameters require specific serialization,
especially when the mechanism parameter structure contains pointers to other buffers.

Mechanisms that are not known by p11-kit on the client side are filtered out. The mechanism list
retrieved by the application only contains those mechanisms that are supported by both sides.

For attributes, the p11-kit tool needs to know the data type of each attribute, that is, if the attribute
contains a boolean value, an ULONG value, or a byte array (binary) value, in order to serialize it properly
(that means,. endianess for ULONG attributes).

Support for the following mechanisms (including mechanism parameter serialization support as needed)
is added:

« CKM_IBM_SHA3_224

« CKM_IBM_SHA3_256

« CKM_IBM_SHA3_384

« CKM_IBM_SHA3_512

« CKM_IBM_CMAC

« CKM_IBM_EC_X25519 (mechanism parameter: CK_ECDH1_DERIVE_PARAMS)
« CKM_IBM_ED25519_SHA512

« CKM_IBM_EC_X448 (mechanism parameter: CK_ECDH1_DERIVE_PARAMS)
« CKM_IBM_ED448_SHA3

« CKM_IBM_DILITHIUM

« CKM_IBM_SHA3_224_HMAC

« CKM_IBM_SHA3_256_HMAC

« CKM_IBM_SHA3_384_HMAC

« CKM_IBM_SHA3_512_HMAC

« CKM_IBM_ATTRIBUTEBOUND_WRAP (mechanism parameter:
CK_IBM_ATTRIBUTEBOUND_WRAP_PARAMS)

Support for the following attributes is added:
« CKA_IBM_OPAQUE (binary)

« CKA_IBM_RESTRICTABLE (boolean)

« CKA_IBM_NEVER_MODIFIABLE (boolean)
« CKA_IBM_RETAINKEY (boolean)

« CKA_IBM_ATTRBOUND (boolean)

« CKA_IBM_KEYTYPE (ULONG)

« CKA_IBM_CV (binary)

188 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

« CKA_IBM_MACKEY (binary)

« CKA_IBM_USE_AS_DATA (boolean)

« CKA_IBM_STRUCT_PARAMS (binary)

« CKA_IBM_STD_COMPLIANCE1 (ULONG)

« CKA_IBM_PROTKEY_EXTRACTABLE (boolean)

« CKA_IBM_PROTKEY_NEVER_EXTRACTABLE (boolean)
« CKA_IBM_DILITHIUM_KEYFORM (ULONG)

« CKA_IBM_DILITHIUM_RHO (binary)

« CKA_IBM_DILITHIUM_SEED (binary, sensitive)

Support for the following key type is added:
« CKK_IBM_PQC_DILITHIUM

Besides the previously listed IBM-specific mechanisms, support for the following standard mechanisms is
added, which require special mechanism parameter serialization support:

« CKM_ECDH1_DERIVE (Mechanism parameter: CK_ECDH1_DERIVE_PARAMS)
« CKM_SHA1_RSA_PKCS_PSS

« CKM_SHA224_RSA_PKCS_PSS

« CKM_SHA256_RSA_PKCS_PSS

« CKM_SHA384_RSA_PKCS_PSS

« CKM_SHA512_RSA_PKCS_PSS

« CKM_AES_CBC (mechanism parameter: 16 bytes IV)

« CKM_AES_CBC_PAD (mechanism parameter: 16 bytes IV)

« CKM_AES_OFB (mechanism parameter: 16 bytes IV)

« CKM_AES_CFB1 (mechanism parameter: 16 bytes IV)

« CKM_AES_CFB8 (mechanism parameter: 16 bytes IV)

« CKM_AES_CFB64 (mechanism parameter: 16 bytes IV)

« CKM_AES_CFB128 (mechanism parameter: 16 bytes IV)

« CKM_AES_CTS (mechanism parameter: 16 bytes IV)

« CKM_AES_CTR (mechanism parameter: CK_AES_CTR_PARAMS)
« CKM_AES_GCM (mechanism parameter: CK_GCM_PARAMS)
« CKM_DES_CBC (mechanism parameter: 8 bytes IV)

« CKM_DES_CBC_PADC (mechanism parameter: 8 bytes IV)

« CKM_DES3_CBCC (mechanism parameter: 8 bytes IV)

« CKM_DES3_CBC_PADC (mechanism parameter: 8 bytes IV)
« CKM_DES_CFB8C (mechanism parameter: 8 bytes IV)

« CKM_DES_CFB64C (mechanism parameter: 8 bytes IV)

« CKM_DES_OFB64C (mechanism parameter: 8 bytes IV)

« CKM_SHA_1_HMAC_GENERAL (mechanism parameter: CK_MAC_GENERAL_PARAMS, which is a
CK_ULONG)

« CKM_SHA224 HMAC_GENERAL (mechanism parameter: CK_MAC_GENERAL_PARAMS, which is a
CK_ULONG)

« CKM_SHA256_HMAC_GENERAL (mechanism parameter: CK_MAC_GENERAL_PARAMS, which is a
CK_ULONG)

« CKM_SHA384_HMAC_GENERAL (mechanism parameter: CK_MAC_GENERAL_PARAMS, which is a
CK_ULONG)

Chapter 24. Configuring a remote PKCS #11 service with openCryptoki 189

« CKM_SHA512_HMAC_GENERAL (mechanism parameter: CK_MAC_GENERAL_PARAMS, which is a

CK_ULONG)

« CKM_SHA512_224_HMAC_GENERAL (mechanism parameter: CK_MAC_GENERAL_PARAMS, which is a
CK_ULONG)

« CKM_SHA512_256_HMAC_GENERAL (mechanism parameter: CK_MAC_GENERAL_PARAMS, which is a
CK_ULONG)

« CKM_AES_MAC_GENERAL (mechanism parameter: CK_MAC_GENERAL_PARAMS, which is a
CK_ULONG)

« CKM_AES_CMAC_GENERAL (mechanism parameter: CK_MAC_GENERAL_PARAMS, which is a
CK_ULONG)

« CKM_DES3_MAC_GENERAL (mechanism parameter: CK_MAC_GENERAL_PARAMS, which is a
CK_ULONG)

« CKM_DES3_CMAC_GENERAL (mechanism parameter: CK_MAC_GENERAL_PARAMS, which is a
CK_ULONG)

« CKM_DH_PKCS_DERIVE (mechanism parameter: public value of the other party)
The following features of openCryptoki are not supported by the p11-kit:

« Attribute-array attributes are not supported by p11-kit (CKA_WRAP_TEMPLATE,
CKA_UNWRAP_TEMPLATE, CKA_DERIVE_TEMPLATE).

« PKCS #11 version 3.0 interfaces are not supported (C_GetInterfacelist(),C_GetInterface()).

« C_IBM_ReencryptSingle() is not supported because it is available only via a vendor specific
interface obtainable from C_GetInterface().

190 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

References

To learn more about the use and features of openCryptoki, you can read the referenced literature.

* PKCS #11 openCryptoki for Linux HOWTO

e Exploiting Enterprise PKCS #11 using openCryptoki

* Secure Key Solution with the Common Cryptographic Architecture Application Programmer's Guide

e libica Programmer's Reference

e PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40

OASIS Standards

* PKCS #11 Specification Version 3.1

e PKCS #11 Profiles Version 3.1

* PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification Version 3.0

© Copyright IBM Corp. 2021, 2023 191

https://github.com/opencryptoki/opencryptoki/blob/master/doc/opencryptoki-howto.md
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ci.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/csd01/pkcs11-spec-v3.1-csd01.html
https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.1/pkcs11-profiles-v3.1.html
https://docs.oasis-open.org/pkcs11/pkcs11-hist/v3.0/pkcs11-hist-v3.0.html

192 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

ity

Accessibil

Accessibility features help users who have a disability, such as restricted mobility or limited vision, to use
information technology products successfully.

Documentation accessibility

The Linux on IBM Z and IBM LinuxONE publications are in Adobe Portable Document Format (PDF) and
should be compliant with accessibility standards. If you experience difficulties when you use the PDF file
and want to request a Web-based format for this publication send an email to eservdoc@de.ibm.com or
write to:

IBM Deutschland Research & Development GmbH
Information Development

Department 3282

Schoenaicher Strasse 220

71032 Boeblingen

Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about the commitment that IBM
has to accessibility at

www.ibm.com/able

© Copyright IBM Corp. 2021, 2023 193

https://www.ibm.com/able

194 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at

www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems Incorporated in the United States,
and/or other countries.

© Copyright IBM Corp. 2021, 2023 195

https://www.ibm.com/legal/copytrade.shtml

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

196 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Index

A

access control 12

access control point
ACP 107

accessibility 193

ACP
access control point 107, 152
XCP_CPB_BTC 152

ACP-filter configuration file 107

AES XTS
CCA token 87
EP11 token 87

APQN_ALLOWLIST 107

attributes
CKA_IBM_ATTRBOUND 154
CKA_IBM_OPAQUE 154
CKA_IBM_OPAQUE_PKEY 154
CKA_IBM_PROTKEY_EXTRACTABLE 154
CKA_IBM_PROTKEY_NEVER_EXTRACTABLE 154
CKA_IBM_STD_COMPLIANCE1 154
CKA_IBM_USE_AS_DATA 154
openCryptoki 163

available libraries in openCryptoki 21

Baseline Provider 88

bit coin curve
secp256k1 117

bitcoin derivation
CKM_IBM_BTC_DERIVE 152

C

C AP vii, 4
C_CloseSession 170
C_CreateObject 171
C_Decrypt (AES) 173
C_Decrypt (RSA) 173
C_Encrypt (AES) 173
C_Encrypt (RSA) 173
C_FindObjects 172
C_GenerateKeyPair (RSA) 173
C_GetMechanismInfo 124
C_GetMechanismList 124
C_IBM_ReencryptSingle 157
C_Initialize sample 170
C_login171
C_Logout 171
C_OpenSession 170
C_SessionCancel 89
cancel subcommand

pkcshsm_mk_change 76
CCA library

usage notes 97
CCA library functions

CCA library functions (continued)

restrictions 97
CCA master key migration 98
CCA token

AES XTS 87

directory content 131

migration of RSA format 99

supported ECC curves 96

supported PKCS #11 mechanisms 94
CCA token configuration file 81, 82, 91
CCA tokenCCA token configuration file 91
check list

trouble shooting) 179
CKA_DERIVE_TEMPLATE 89
CKA_IBM_ATTRBOUND 154
CKA_IBM_OPAQUE 154
CKA_IBM_OPAQUE_PKEY 154
CKA_IBM_PROTKEY_EXTRACTABLE 154
CKA_IBM_PROTKEY_NEVER_EXTRACTABLE 154
CKA_IBM_STD_COMPLIANCE1 154
CKA_IBM_USE_AS_DATA 154
CKM_IBM_ATTRIBUTEBOUND_WRAP 149
CKM_IBM_BTC_DERIVE

bitcoin derivation 152
CKM_IBM_CMAC 148
CKM_IBM_DILITHIUM 139
CKM_IBM_ECDSA_OTHER

Schnorr signatures 153
CKM_IBM_KYBER 143
CKM_IBM_SHA3_nnn 146
CKM_IBM_SHA3_nnn_HMAC 147
clear keys 85
client side setup 185
code sample

base procedures 169

cryptographic operations 173

dynamic library calls 168

object handling 171

session and log-in procedures 170

statically linked library 168
collecting statistics 23
command pkcsconf 21
common token information 81
components of openCryptoki 5
concurrent HSM master key change

pkcshsm_mk_change 71
configuration file

eplltokOl.conf 81
configuring

CCA token 91

EP11 token 81

extended evaluations 124

multiple EP11 tokens 81
configuring applications 183
configuring extended evaluations 124
CPFILTER 107
Crypto Express adapter 5

Index 197

crypto stack with Linux on IBM Z and IBM LinuxONE 13 EP11 token configuration file (continued)

cryptographic operations 173 STRICT_MODE 107
cryptographic policies 25, 28 VHSM_MODE 107
cryptographic token 3 epllinfo tool 73
cryptography eplltokOl.conf 81
asymmetric 3 epl1tok01.conf configuration file 81
public key 3 event notification 23
Cryptoki 3 extended evaluations
Cryptoki API 3 configuring 124
D F
DEB 19 fastpath openCryptoki 17
Dilithium key mechanism 139 features
directory content common for openCryptoki 1
CCA token 131 finalize subcommand
EP11 token 131 pkcshsm_mk_change 75
ICA token 131 FIPS compliance
Soft token 131 pkcstok_migrate 65
disable-event-support 23 function specific parameter 9
domain control point
access control point 107 G
dual-function cryptographic functions 88
dynamic library call 168 general structure
openCryptoki application 163
E
ec_curves.h 84 H
ECC hardware security module
ec_curves.h 84 HSM 3
header file 84 hardwaregecurity module (HSM) 123
ECDH 148 header file
EdDSA 148 ec_curves.h 84
Edwards Curves elliptic curves 84
25519 148 HSM T
448 148

70 120 hardware security module 3
effective key 85 -

elliptic curve cryptography
EP11 token 117 I

elliptic curves i .
ec_curves.h 84 IBM-specific mechanisms and features

header file 84 common for openCryptoki 137, 139
complete list 139
ICA token
directory content 131
restrictions 104
status information 82
supported ECC curves 105

environment variables 35
EP11 host library
restrictions 123
EP11 session
definition 121

Eplrsa;n;;ggr]]gt%lzl supported PKCS #11 mechanisms 101
EP11 token o ICSF token 135

initiate subcommand
AES XTS 87 pkcshsm_mk_change 73

bit coin curve 117 installing openCryptoki 19

configuring 81

directory content 131

elliptic curve cryptography 117 K

master key change, concurrent 71

secp256k1 117 keyword

supported PKCS #11 mechanisms 113 disable-event-support 23
EP11 token configuration file statistics 23

APON_ALLOWLIST 107 Kyber key mechanism 143

CPFILTER 107

OPTIMIZE_SINGLE_PART_OPERATIONS 107

sample 107

198 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

L

libopencryptoki.so 21

Linux on IBM Z and IBM LinuxONE crypto stack 13

list subcommand
pkcshsm_mk_change 75

lock files 13

log-in PIN 40

logging with openCryptoki 12

M

managing EP11 session 121
managing token keys
pllsak 43
managing tokens
pkcsconf 39
master key (MK)
migration process 119
master key (MK) migration tool
installing, configuring, using 119
pkcsepll_migrate 119
master key change
concurrent 71
concurrently with pkcshsm_mk_change 71
EP11 token 71
master key migration
pkcscca utility 98
mechanism parameter 9
migrating master keys 119
migrating to FIPS compliance
pkcstok_migrate 65
migration
CCA token master keys 98
master key 98
migration of RSA format
RSA-AESC 99
RSA-CRT 99
migration tool
for master (wrapping) keys 119
multiple CCA tokens
configuring 91
multiple EP11 tokens
configuring 81

N
NVTOK.DAT 131

o

object handling 171
objects
openCryptoki
create 162
modify 162
OID file
post-quantum algorithms 84
pqc_oids.h 84
openCryptoki
application programmers vii
architecture 5
attributes 163

openCryptoki (continued)
base library 21
C_Decrypt (AES) 173
C_Decrypt (RSA) 173
C_Encrypt (AES) 173
C_Encrypt (RSA) 173
C_GenerateKeyPair (RSA) 173
CCA token 91
coding samples 167

common IBM-specific mechanisms and features 137

common token information 81
components 5
configuration file 21
definition) 4
ECC curves for the ICA token 105
ECC curves of the CCA token 96
environment variables 35
fastpath 17
IBM-specific mechanisms and features 139
ICA token 101
installing
from DEB 19
from RPM 19
installing from source package 19
logging and tracing 12
mechanisms for the CCA token 94
mechanisms for the EP11 token 113
mechanisms for the ICA token 101
mechanisms for the Soft token 125
objects create 162
objects modify 162
preparing 15
programming 161
programming basics 159
roles 9
sessions 9
shared library (C API) 4
slot 6
SO PIN 40
standard PIN 40
status information 82
terminology 161
token libraries 21
token-specific configurations 79
trouble shooting 179
user scenarios 159
users vii
openCryptoki application
general structure 163
sample 165
template 163
openCryptoki configuration file
sample for opencryptoki.conf 21
openCryptoki features 1
openCryptoki lock files 13
openCryptoki main API
PKCS11_APIL.so 8
openCryptoki token repository 43
openCryptoki tools 37
opencryptoki.conf
openCryptoki configuration file 21
OPTIMIZE_SINGLE_PART_OPERATIONS 107

Index 199

P
pl1-kit

support of IBM-specific mechanisms 187

pllsak tool 43
PIN 40
PKCS #11
Baseline Provider 88
PKCS #11 3.0
C_SessionCancel 89
Supported features 89
PKCS #11 3.1
CKA_DERIVE_TEMPLATE 89
PKCS #11 and openCryptoki 1
pkcs11 group 7, 12
PKCS11_API.so
main API 8
pkcscca
RSA format migration 99
RSA-AESC 99
RSA-CRT 99
pkcscca tool
master key migration 98
pkcsconf 39, 40
pkcsconf -t 82
pkcsconf -t command 21
pkcsconf command 21
pkcsepll_migrate 119
pkcsepll_session 121
pkesficsf tool 135
pkcshsm_mk_change
cancel subcommand 76
finalize subcommand 75
initiate subcommand 73
list subcommand 75
reencipher subcommand 73
pkcsslotd
slot manager daemon 7
starting 8
pkcsslotd user 12
pkcsstats 67
pkcstok_migrate 65
policy configuration 25
policy configuration file
policy.conf 28
processing 32
policy.conf 28
POSIX shared memory segments 7
post-quantum algorithms
pqc_oids.h 84
pqc_oids.h 84
preparing openCryptoki 15
processing policy configuration files 32
processing strength configuration files 32
programming basics 159
protected keys 85
Public-Key Cryptography Standards 3

R

reencipher subcommand

pkcshsm_mk_change 73
referenced literature 191
restrictions

200 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

restrictions (continued)
ICA token 104
restrictions of EP11 host library 123
roles 9
RPM 19
RSA decrypt operation errors 161
RSA format migration
RSA-AESC 99
RSA-CRT 99
RSA-AESC 99
RSA-CRT 99

S

sample code
object handling 171
Schnorr signatures
CKM_IBM_ECDSA_OTHER 153
secp256kl
bit coin curve 117
secure key concept 97, 123
security officer (S0)
log-in PIN 40
server side setup 183
session and log-in procedures 170
session functions 9
sessions 9
shared memory segments
POSIX 7
SystemV 7
slot
management functions 6
slot entry 21
slot entry, defining 81
slot manager
starting 8
slot manager daemon
pkcsslotd 7
slot token dynamic link libraries
STDLLs 5, 10
SO
log-in PIN 40
Soft token
directory content 131
supported PKCS #11 mechanisms 125
source package 19
standard user (User)
log-in PIN 40
starting
pkcsslotd 8
slot manager 8
statically linked library 168
statistics 23
statistics collection 23
status information 82
STDLL
slot token dynamic link library 5, 10
strength configuration 25
strength configuration file
processing 32
strength.conf 25
strength.conf 25
STRICT_MODE 107
summary of changes

summary of changes (continued)
edition SC34-7730-01 x
edition SC34-7730-02 ix
version 3.17 x
versions 3.18 - 3.21 ix

support of IBM-specific mechanisms
pl1-kit 187

System V shared memory segments 7

T

template
openCryptoki application 163
token
initializing 40
management functions 6
token descriptions 79
token information 82
token information, common for all tokens 81
token libraries 21
token recognizing 82
token status information 82
token-specific configurations 79
tools
common for openCryptoki 37
managing token keys 43
pllsak 43
pkcscca 98
pkcsconf 39
pkcsepll_migrate 119
pkcsepll_session 121
pkcsficsf 135
pkcshsm_mk_change 71
pkcsstats 67
pkcstok_migrate 65
usage statistics 67
tracing with openCryptoki 12
trouble shooting 179

U

Ubuntu 21.04 183
Unified Resource Identifier
URI 39
URI
Unified Resource Identifier 39
usage notes
ICA token 104
usage notes for CCA library functions 97
usage statistics
pkcsstats 67
User
log-in PIN 40
normal user 9
user scenario
client side setup 185
server side setup 183
user scenarios 159
utilities
pkcsepll_migrate 119
pkcsepll_session 121
pkcstok_migrate 65
utility

utility (continued)
managing tokens 39
pllsak 43
pkcscca 98
pkcsconf 39
pkcshsm_mk_change 71
pkcsstats 67

\'

VHSM_MODE 107
VHSM-PIN 121

w
wrapping key 119

X
XCP_CPB_BTC access control point 152

Index 201

202 Linux on IBM Z and IBM LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

SC34-7730-02

	Contents
	About this document
	Summary of changes
	Edition SC34-7730-02: Updates for openCryptoki versions 3.18 - 3.22
	Edition SC34-7730-01: Updates for openCryptoki version 3.17

	Part 1. Common features of openCryptoki
	Chapter 1. Introducing PKCS #11 and openCryptoki
	What is PKCS #11?
	What is openCryptoki?

	Chapter 2. Architecture and components of openCryptoki

	Part 2. Preparing openCryptoki
	Chapter 3. Fastpath to openCryptoki
	Chapter 4. Installing openCryptoki
	Chapter 5. Adjusting the openCryptoki configuration file
	Chapter 6. Supporting cryptographic policies for openCryptoki
	Strength configuration file
	Policy configuration file
	Processing configuration files

	Chapter 7. openCryptoki environment variables

	Part 3. Common tools of openCryptoki
	Chapter 8. Managing tokens - pkcsconf utility
	Chapter 9. Managing token keys - p11sak utility
	Chapter 10. Migrating to FIPS compliance - pkcstok_migrate utility
	Chapter 11. Displaying usage statistics - pkcsstats utility
	Chapter 12. Managing a concurrent master key change - pkcshsm_mk_change utility

	Part 4. Token specifications
	Chapter 13. Common token information
	Adding tokens to openCryptoki
	How to recognize tokens
	ECC header file
	OID file for post-quantum algorithms
	How and why to exploit protected keys
	How to enable AES XTS support for CCA and EP11 tokens
	PKCS #11 Baseline Provider support
	Dual-function cryptographic functions support
	Supported features of PKCS #11 3.0 and 3.1

	Chapter 14. CCA token
	Defining a CCA token configuration file
	PKCS #11 mechanisms supported by the CCA token
	ECC curves supported by the CCA token
	Usage notes for CCA library functions
	Migrate to a new CCA master key - pkcscca utility

	Chapter 15. ICA token
	PKCS #11 mechanisms supported by the ICA token
	Usage notes for the ICA library functions
	ECC curves supported by the ICA token

	Chapter 16. EP11 token
	Defining an EP11 token configuration file
	PKCS #11 mechanisms supported by the EP11 token
	ECC curves supported by the EP11 token
	Migrating master keys - pkcsep11_migrate utility
	Managing EP11 sessions - pkcsep11_session utility
	Usage notes for the EP11 host library functions
	Restriction to extended evaluations

	Chapter 17. Soft token
	PKCS #11 mechanisms supported by the Soft token

	Chapter 18. Directory content for CCA, ICA, EP11, and Soft tokens
	Chapter 19. ICSF token
	Configuring the ICSF token - pkcsicsf utility

	Part 5. IBM-specific mechanisms and features for openCryptoki
	Chapter 20. IBM-specific mechanisms
	Chapter 21. Re-encrypting data with a mechanism

	Part 6. Programming basics and user scenarios
	Chapter 22. Programming with openCryptoki
	How to create and modify objects
	How to apply attributes to objects
	Structure of an openCryptoki application
	Sample openCryptoki program
	openCryptoki code samples (C)

	Chapter 23. Trouble shooting
	Chapter 24. Configuring a remote PKCS #11 service with openCryptoki
	Server side setup
	Client side setup
	Support of IBM-specific mechanisms - p11-kit

	References
	Accessibility
	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

