
Linux on Z and LinuxONE

openCryptoki - An Open Source
Implementation of PKCS #11

IBM

SC34-7730-01

Edition notice

This edition applies to the openCryptoki version 3.17 and to all subsequent versions and modifications until otherwise
indicated in new editions.
© Copyright International Business Machines Corporation 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document..v

Summary of changes..vii
Edition SC34-7730-01: Updates for openCryptoki version 3.17..vii

Part 1. Common features of openCryptoki.. 1

Chapter 1. Introducing PKCS #11 and openCryptoki... 3
What is PKCS #11?...3
What is openCryptoki?..4

Chapter 2. Architecture and components of openCryptoki.. 5

Chapter 3. Installing openCryptoki .. 15

Chapter 4. Adjusting the openCryptoki configuration file...17

Chapter 5. openCryptoki environment variables.. 21

Part 2. Common tools of openCryptoki..23

Chapter 6. Managing tokens - pkcsconf utility...25

Chapter 7. Generating and listing keys - p11sak utility...29

Chapter 8. Migrating to FIPS compliance - pkcstok_migrate utility... 37

Part 3. Token specifications... 39

Chapter 9. Common token information...41
Adding tokens to openCryptoki..41
How to recognize tokens ... 42
ECC header file... 44
PKCS #11 Baseline Provider support.. 44

Chapter 10. CCA token...45
PKCS #11 mechanisms supported by the CCA token...45
ECC curves supported by the CCA token... 47
Usage notes for CCA library functions... 48
Migrate to a new CCA master key - pkcscca utility... 49

Chapter 11. ICA token... 51
PKCS #11 mechanisms supported by the ICA token..51
Usage notes for the ICA library functions..54
ECC curves supported by the ICA token..54

Chapter 12. EP11 token...57
Defining an EP11 token-specific configuration file... 57
PKCS #11 mechanisms supported by the EP11 token... 63
ECC curves supported by the EP11 token... 66

 iii

Usage notes for the EP11 library functions... 68
Restriction to extended evaluations.. 69
Migrating master keys - pkcsep11_migrate utility... 70
Managing EP11 sessions - pkcsep11_session utility... 71

Chapter 13. Soft token...75
PKCS #11 mechanisms supported by the Soft token... 75

Chapter 14. Directory content for CCA, ICA, EP11, and Soft tokens..81

Chapter 15. ICSF token... 85
Configuring the ICSF token - pkcsicsf utility... 85

Chapter 16. IBM-specific mechanisms and features for openCryptoki .. 87
IBM-specific mechanisms..87
Re-encrypting data with a mechanism..97

Part 4. Programming basics and user scenarios.. 99

Chapter 17. Programming with openCryptoki.. 101
How to create and modify objects...101
How to apply attributes to objects.. 102
Structure of an openCryptoki application..102
Sample openCryptoki program..105
openCryptoki code samples (C)...106
Trouble shooting.. 116

Chapter 18. Configuring a remote PKCS #11 service with openCryptoki..121
Server side setup..121
Client side setup...123

References.. 127

Accessibility.. 129

Notices..131
Trademarks.. 131

Index.. 133

iv

About this document

openCryptoki is an open source implementation of the Cryptoki API defined by the PKCS #11
Cryptographic Token Interface Standard.

This documentation is intended for the following audience:

openCryptoki administrators manage the so called tokens that are plugged into the openCryptoki
framework. They are responsible for adding these tokens to the slots of openCryptoki and, if applicable,
for configuring these tokens. They also use either openCryptoki common tools or token-specific tools for
administrating the configured tokens.

Application programmers write PKCS #11 programs that exploit the cryptographic services provided
by a configured openCryptoki token. The services of such a token either exploit IBM Z® cryptographic
hardware or they are also backed by software tokens (Soft token).

This documentation is divided into the following parts:

• Part 1, “Common features of openCryptoki,” on page 1 describes the openCryptoki architecture and
informs about configuration actions that must be performed for all applications that want to exploit
these openCryptoki features. Most of the provided information is of interest for both, openCryptoki
administrators and application programmers.

• Part 2, “Common tools of openCryptoki,” on page 23 documents management and key migration
tools that are helpful for openCryptoki administrators to enable openCryptoki exploitation through
programs.

• Part 3, “Token specifications,” on page 39 presents to application programmers the documentation
of the token-specific mechanisms and information about the contents of a token directory. If a token
needs additional token-specific configuration, before it can be accessed by a cryptographic application,
openCryptoki administrators find the required information here.

• Part 4, “Programming basics and user scenarios,” on page 99 documents the basic structure of
openCryptoki applications and presents a simple, but complete code sample for an RSA key pair
generation. This part also provides a user scenario showing how to set up a Soft token on a server for
use from an application on a remote client.

© Copyright IBM Corp. 2021 v

vi Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Summary of changes

Track the changes of this document for each new edition.

Edition SC34-7730-01: Updates for openCryptoki version 3.17
• A new information unit describing IBM®-specific mechanisms and attributes has been added (see

Chapter 16, “IBM-specific mechanisms and features for openCryptoki ,” on page 87).
• Conceptional information on the handling of objects and attributes in PKCS #11 has been added.
• openCryptoki code samples have been transferred from libica Programmer's Reference, SC34-2602, and

Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713, into this current edition.
• All openCryptoki-related information from libica Programmer's Reference, SC34-2602, has been

integrated into this current edition.
• Comprehensive extensions have been applied to the documentation of all tokens in Part 3, “Token
specifications,” on page 39.

• A new topic to assist you in solving problems while working with openCryptoki has been included (see
“Trouble shooting” on page 116).

• The p11sak offers a new option to obtain a listing of keys in a long output format.

© Copyright IBM Corp. 2021 vii

viii Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Part 1. Common features of openCryptoki
Read an introduction to openCryptoki and learn about its features that are relevant for all exploiting
applications.

The following topics explain the purpose of openCryptoki within the PKCS #11 standard and introduce the
concept of the openCryptoki framework:

• Chapter 1, “Introducing PKCS #11 and openCryptoki,” on page 3
• Chapter 2, “Architecture and components of openCryptoki,” on page 5
• Chapter 3, “Installing openCryptoki ,” on page 15
• Chapter 4, “Adjusting the openCryptoki configuration file,” on page 17
• Chapter 5, “openCryptoki environment variables,” on page 21

© Copyright IBM Corp. 2021 1

2 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 1. Introducing PKCS #11 and openCryptoki
The Public-Key Cryptography Standards (PKCS) comprise a group of cryptographic standards that provide
guidelines and application programming interfaces (APIs) for the usage of cryptographic methods. This
document describes the use of openCryptoki, which is an open source implementation of a C/C++ API
standard defined by PKCS #11, called Cryptoki.

openCryptoki is used for devices that hold cryptographic information and perform cryptographic
functions.

Though the openCryptoki standard offers C header files, you can also implement the interface in other
programming languages than C or C++.

What is PKCS #11?
PKCS #11 is a popular cryptographic standard for the support of cryptographic hardware. It defines a
platform-independent API called Cryptoki to access cryptographic devices, such as hardware security
modules (HSMs). With this API, applications can address these cryptographic devices through so-called
tokens and can perform cryptographic functions as implemented by these tokens. This standard, first
developed by the RSA Laboratories in cooperation with representatives from industry, science, and
governments, is now an open standard lead-managed by the OASIS PKCS 11 Technical Committee.

PKCS #11 can support so called hardware tokens which may be cryptographic accelerators or hardware
security modules (HSMs). The PKCS #11 standard is independent of specific cryptographic hardware, yet
allows to deal with many hardware specific implementations. It can support the use of multiple different
token types. Due to the popularity of PKCS #11, many software products that perform cryptographic
operations, provide plug-in mechanisms, which, if configured, will redirect cryptographic functions to a
PKCS #11 library of mechanisms. For example, the IBM WebSphere® Application Server and the IBM
HTTP Server can be configured to use a PKCS #11 library.

The Cryptoki API provides access to a number of so-called slots. A slot is a possibility to connect to a
cryptographic device (for example, to an IBM Crypto Express adapter). Typically, a slot contains a token,
while a cryptographic device is connected to the slot. An application can connect to multiple tokens in a
subset of those slots.

In addition, further cryptographic libraries can call PKCS #11 functions, for example, Java Cryptography
Architecture (JCA), IBM Global Security Kit (GSKit), GnuTLS, or, in case of OpenSSL, by using for example,
a PKCS #11 engine from the OpenSC project.

Cryptoki abstracts from the cryptographic device, that is, it makes each device look logically like every
other device, regardless of the implementation technology. Whether it is a specific hardware device
that requires a special device driver or a solution completely based on software (for example, a client
for a cryptographic service), the Cryptoki API looks exactly the same. Hence, applications (application
programmers) only interact with Cryptoki. The concrete Cryptoki implementation takes care of the
interaction with the selected token.

Cryptoki is likely to be implemented as a library supporting the functions in the interface, and applications
will be linked to the library. It follows an object-based approach, addressing the goals of technology
independence (any kind of HW device) and resource sharing. It also presents to applications a common,
logical view of the device that is called a cryptographic token. PKCS #11 assigns a slot ID to each
token. An application using the Cryptoki API identifies the token that it wants to access by specifying the
appropriate slot ID.

For more information about PKCS #11, refer to this URL:

PKCS #11 Cryptographic Token Interface Standard

© Copyright IBM Corp. 2021 3

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

What is openCryptoki?
The PKCS #11 standard comprises the definition of an API called Cryptoki (from cryptographic token
interface). However, the term PKCS #11 is often used instead, to refer to the API as well as to the
standard that defines it. openCryptoki in turn is an open source implementation of Cryptoki. As such,
openCryptoki provides a standard programming interface between applications and all kinds of portable
cryptographic devices.

openCryptoki consists of an implementation of the PKCS #11 Cryptoki API, a slot manager, a set of slot
token dynamic link libraries (STDLLs), and an API for these STDLLs. For example, the EP11 token type is a
STDLL introduced with openCryptoki version 3.1.

openCryptoki provides support for several cryptographic algorithms according to the PKCS #11 standard.
The openCryptoki library loads the tokens that provide hardware or software specific support for
cryptographic functions.

openCryptoki can be used directly through the openCryptoki shared library (C API) from all applications
which are written in a language that provides a foreign language interface for C.

openCryptoki is available for major Linux distributions, for example, Red Hat Enterprise Linux, SUSE Linux
Enterprise Server, or Ubuntu.

For more information about the openCryptoki services, or about the interfaces between the openCryptoki
main module and its tokens, see

https://github.com/opencryptoki/opencryptoki.

4 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://github.com/opencryptoki/opencryptoki

Chapter 2. Architecture and components of
openCryptoki

As implementation of the PKCS #11 API (Cryptoki), openCryptoki allows interfacing with devices
(such as a Crypto Express adapter) that hold cryptographic information and perform cryptographic
functions. openCryptoki provides application portability by isolating the application from the details of
the cryptographic device. Isolating the application also provides an added level of security because all
cryptographic information stays within the device.

openCryptoki consists of a slot manager and an API for slot token dynamic link libraries (STDLLs). The
slot manager runs as a daemon, provides the number of configured tokens to applications, and it interacts
with the tokens (that are used by the applications) using Unix domain sockets or a shared memory
segment. For each device with which a token should be associated, this token must be defined in a slot in
the openCryptoki configuration file (/etc/opencryptoki/opencryptoki.conf). The shared memory
segment allows for proper sharing of state information between applications to help ensure conformance
with the PKCS #11 specification.

Figure 1 on page 5 shows the architecture of openCryptoki:

Figure 1. openCryptoki architecture

openCryptoki supports different token types for SW tokens and for various forms of HW support, for
example, IBM Crypto Express adapters. openCryptoki allows to manage multiple tokens that can be used
in parallel by one or more processes. These multiple tokens can have the same or different types.

Users can configure openCryptoki and in particular, the set of tokens including their respective token
types, using the opencryptoki.conf file (see Chapter 4, “Adjusting the openCryptoki configuration
file,” on page 17). They can define and exploit multiple tokens of any token type, each with a different
token name. For multiple EP11 tokens, users can configure them using a token-specific configuration file
for each token instance. A sample of such a configuration file is shown in Figure 8 on page 42.

© Copyright IBM Corp. 2021 5

Each token uses a unique token directory. This token directory receives the token-individual information
(like for example, key objects, user PIN, SO PIN, or hashes). Thus, the information for a certain token
is separated from all other tokens. For example, for most Linux distributions, the CCA token directory
is /var/lib/opencryptoki/ccatok. The CCA token is called ccatok, if there is only one instance of a
CCA token, and no explicit name is defined in the openCryptoki configuration file.

Slots and tokens
Imagine the use of smart cards: In the same way a smart card is inserted into a smart card reader, a PKCS
#11 token is inserted into a PKCS #11 slot, where a slot is identified by its ID. A token is library code that
knows how to interface with the cryptographic hardware. However, there is no requirement for the token
to use any hardware at all, and accordingly there is a so called soft token (described in Chapter 13, “Soft
token,” on page 75) which represents a pure software library accessible via openCryptoki.

Each token is of a certain token-type, where a token-type is implemented by STDLLs. For example, all
EP11 tokens use the libpkcs11_ep11.so STDLL (see also Figure 4 on page 18). A certain instance of a
token is implemented by data structures allocated by an STDLL (and a token directory).

All tokens available to openCryptoki are configured in the opencryptoki.conf configuration
file. Each token configuration in opencryptoki.conf defines the token type of the token by
specifying the adequate STDLL. The opencryptoki.conf configuration file is used by all processes
(applications) using (linking to) openCryptoki. Each process may call some or all tokens defined in
opencryptoki.conf.

The PKCS #11 API provides a set of slot and token management functions. For example:

• C_GetSlotList() gets a list of available slots.
• C_GetSlotInfo() obtains information on each slot (for example, whether a token is present, or

whether the token represents a removable device).
• C_InitToken() initializes an inserted token.
• C_GetTokenInfo() provides information on such a token (for example, whether a login is required

to use the token, a count of failed log-ins, information on whether the token has a random number
generator).

• C_InitPIN() and C_SetPIN() manage the PIN used to protect a token from unauthorized access.

View an example for how to obtain slot information using the C_GetSlotInfo() function:

6 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

CK_RV getSlotInfo(CK_SLOT_ID slotID, CK_SLOT_INFO_PTR slotInfo);

/* typedef struct CK_SLOT_INFO { */
/* CK_UTF8CHAR slotDescription[64]; */
/* CK_UTF8CHAR manufacturerID[32]; */
/* CK_FLAGS flags; */
/* CK_VERSION hardwareVersion; */
/* CK_VERSION firmwareVersion; */
/* } CK_SLOT_INFO; */

/* Flags: */
/* CKF_TOKEN_PRESENT */
/* CKF_REMOVABLE_DEVICE */
/* CKF_HW_SLOT */

{
 rc = C_GetSlotInfo(slotID, &slotInfo);
 if (rc != CKR_OK) {
 printf("Error getting slot information: %x \n", rc);
 return rc;
 }

 if ((slotInfo.flags & CKF_TOKEN_PRESENT) == CKF_TOKEN_PRESENT)
 printf("A token is present in the slot.\n");

 if ((slotInfo.flags & CKF_REMOVABLE_DEVICE) == CKF_REMOVABLE_DEVICE)
 printf("The reader supports removable devices.\n");

 if ((slotInfo.flags & CKF_HW_SLOT) == CKF_HW_SLOT)
 printf("The slot is a hardware slot.\n"); /* opposed to a SW slot implementing a soft
token */

 return CKR_OK;
 }

Note: Linux on Z and LinuxONE do not support the Trusted Platform Module (TPM) token library.

Slot manager
The slot manager daemon (pkcsslotd) manages slots (and therefore the tokens plugged into these
slots) in the system. Its main task is to coordinate token accesses from multiple processes. A fixed
number of processes can attach themselves implicitly to pkcsslotd during openCryptoki initialization,
so a static table in shared memory is used. The current limit of the table is 1000 processes using the
subsystem. The daemon sets up this shared memory upon initialization and acts as a garbage collector
thereafter, helping to ensure that only active processes remain registered.

The POSIX shared memory segments for the available tokens are located in path /dev/shm and are
named either by their default names or by the name defined in the opencryptoki.conf file. For
example, the shared memory segments may be located and named as shown in the following example:

[root@system01 shm]# pwd
/dev/shm
[root@system01 shm]# ls -l
...
-rw-rw----. 1 root pkcs11 82792 Apr 8 12:04 var.lib.opencryptoki.ccatok
-rw-rw----. 1 root pkcs11 82792 Apr 8 12:04 var.lib.opencryptoki.ep11tok
-rw-rw----. 1 root pkcs11 82792 Apr 8 12:04 var.lib.opencryptoki.lite /* legacy name: ICA Tok */
-rw-rw----. 1 root pkcs11 82792 Apr 8 12:04 var.lib.opencryptoki.swtok
...

The pkcsslotd daemon also uses one System V shared memory segment in addition to the mentioned
POSIX shared memory segments. This System V shared memory segment can be listed with the ipcs
command. It is used to share information about the processes currently using openCryptoki services and
to share the global session count per slot.

Chapter 2. Architecture and components of openCryptoki 7

The slot manager also maintains Unix domain sockets between all openCryptoki processes (API layer).
There are the following sockets:

/var/run/pkcsslotd.socket
/var/run/pkcsslotd.admin.socket

When a process attaches to a slot and opens a session, pkcsslotd makes future processes aware that
a process has a session open and locks out certain function calls, if the process needs exclusive access
to the given token. The daemon constantly searches through its shared memory and ensures that when
a process is attached to a token, this process is actually running. If an attached process terminates
abnormally, pkcsslotd cleans up after the process and frees the slot for use by other processes.

Start the slot manager with the commands shown in “Starting the slot manager” on page 26.

Main API
The main API for the STDLLs lies in /usr/lib/pkcs11/PKCS11_API.so. This API includes all the
functions as outlined in the PKCS #11 API specification. The main API provides each application with the
slot management facility. The API also loads token-specific modules (STDLLs) that provide the contained
operations (cryptographic operations and session and object management). STDLLs are customized for
each token type and have specific functions, such as an initialization routine, to allow the token to work
with the slot manager. When an application initializes the subsystem with the C_Initialize call, the
API loads the STDLL shared objects for all the tokens that exist in the configuration (residing in the
shared memory) and invokes the token-specific initialization routines. In addition, a connection to the
pkcsslotd slot manager and its shared memory segment is established.

Roles and Sessions
PKCS #11 knows two different roles per token. Each role can authenticate itself by a PIN specific to that
role and a token.

• The security officer (SO) initializes and manages the token and can set the PIN of the User.
• The (normal) User can login to sessions, create and access private objects and perform cryptographic

operations. Users can also change their PINs.

A session is a token-specific context for one or more cryptographic operations. It maintains the
intermediate state of multi-part functions, like an encryption of a message that is worked on one
network packet at a time. Roughly speaking, within one session only one cryptographic operation can
be processed at a time, but a program may open multiple sessions concurrently.

There are different types of sessions: Each session is either a read-only session or a read-write session
and each session is either a public session or a User session. Read-only sessions may not create or
modify objects. A public session can only access public objects whereas a User session can access the
User's private and public objects. All sessions of a token become User sessions after a login to one of the
sessions of that token. Access to a specific token is controlled using PINs (User or security officer PINs).

The PKCS #11 API provides session functions like:

• C_OpenSession() and C_CloseSession() are used to open and close a session. A parameter in the
C_OpenSession() invocation indicates the type of the session.

• C_Login() and C_Logout() are used to toggle sessions from public to User sessions and reverse. In
order to login, the User PIN is required.

• C_GetSessionInfo() provides information on the type of a session.
• C_GetOperationState() and C_SetOperationState() are used to checkpoint and restart a

multi-part cryptographic operation. Note that not all operations may support saving and restoring the
state of operations.

8 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/os/pkcs11-base-v3.0-os.html#_Toc29976593

Functions and mechanisms
The PKCS #11 API defines a small set of generic cryptographic functions to do the following tasks:

• encrypting and decrypting messages,
• computing digests (also called hashes) of messages,
• signing messages and verifying signatures,
• generating symmetric keys or asymmetric key pairs and deriving keys,
• wrapping and unwrapping keys,
• generating random numbers.

With the exception of the functions to generate random numbers, these generic cryptographic functions
accept a mechanism parameter that defines the specific instance of that function. This is depicted
in Figure 2 where an encryption function takes an AES_CBC mechanism as argument to encrypt a
message with AES encryption in the cipher block chaining (CBC) mode of operation, using a key (and
an initialization vector not shown in the figure).

Figure 2. Functions and mechanisms

Each cryptographic function is executed in the context of a session. Most cryptographic functions must
be initialized by calling an initialization function that takes a session parameter, a mechanism parameter
and function specific parameters like keys. For a cryptographic function Xyz the initialization function is
called C_XyzInit(). Once a function is initialized, the actual function invocation can take place: either
as a single part function of the form C_Xyz() or as a multi-part function where one or more calls to a
function of the form C_XyzUpdate() are finalized by a call to C_XyzFinal().

Each token supports token-specific functions. The PKCS #11 API provides the function
C_GetFunctionList() to obtain the functions available with a specific token. A mechanism describes
a specific set of cryptographic operations. For example, the mechanism CKM_AES_CBC refers to AES
encryption with the cipher block chaining (CBC) mode of operation. A mechanism may be required
for performing one or more cryptographic functions, for example, the CKM_AES_CBC mechanism may
be used to define encryption, decryption, wrapping and unwrapping functions whereas the mechanism
CKM_ECDSA_KEY_PAIR_GEN which is a mechanism to generate keys for elliptic curve DSA signatures,
only supports the key (pair) generation function.

The list of mechanisms supported depends on the tokens and can be queried using the
C_GetMechanismList() function. Each mechanism has token-specific attributes like the set of
supported functions, minimal and maximal supported key sizes, or a hardware support flag. These
attributes are token-specific and can be queried with C_GetMechanismInfo(). Some mechanisms
have mechanism parameters, for example, CKM_AES_CBC has a mechanism parameter to define the
initialization vector (IV) required by the CBC mode of operation.

Slot token dynamic link libraries (STDLLs)
STDLLs are plug-in modules to the main API. They provide token-specific functions beyond the main
API functions. Specific devices can be supported by building an STDLL for the device. Each STDLL must

Chapter 2. Architecture and components of openCryptoki 9

provide at least a token-type specific initialization function. If the device is an intelligent device, such
as a hardware adapter that supports multiple mechanisms, the STDLL can be thin because much of the
session information can be stored on the device. If the device only performs a simple cryptographic
function, all of the objects and the device status must be managed by the STDLL. This flexibility allows
STDLLs to support any cryptographic device.

Shared memory
The slot manager sets up its database in a region of shared memory. Since the maximum number of
processes allowed to attach to pkcsslotd is finite, a fixed amount of memory can be set aside for token
management. This fixed memory allocation for token management allows applications easier access to
token state information and helps ensure conformance with the PKCS #11 specification. In addition, the
slot manager (pkcsslotd) communicates with the API layer using Unix domain sockets.

Also, each token sets up a shared memory segment to synchronize token objects across multiple
processes using the token.

Objects and keys
openCryptoki provides various functions to generate the applicable types of objects, for example, certain
types of keys.

In addition, openCryptoki recognizes a number of classes of objects, as defined in the CK_OBJECT_CLASS
data type. Object classes are defined with the objects that use them. Typically, objects are generated
by function calls that specify an appropriate mechanism used for the generation. Additionally, there
is a function C_CreateObject() to create objects that are defined by input templates containing
appropriate attributes. For example, data objects are defined by a data template CK_ATTRIBUTE
dataTemplate[], or certificate objects are defined by a certificate template CK_ATTRIBUTE
certificateTemplate[].

An object comprises a set of attributes, each of which has precisely one given value. For an
example, have a look at Step 6 of the “Sample openCryptoki program” on page 105, where function
C_GenerateKeyPair() uses the mechanism CKM_RSA_PKCS_KEY_PAIR_GEN to create an RSA private
and public key pair. The attributes are assigned to the public and private keys to be generated with two
different templates of type array of CK_ATTRIBUTE (one applicable for the private key and one applicable
to the public key), which are input to the function call.

PKCS #11 objects belong to different orthogonal classes depending on their life span, access restrictions
and modifiability:

• Session objects exist during the duration of a session whereas token objects are associated with a token
and not with any running code. In other words, token objects are stored persistently across sessions
and are visible for multiple processes using the token. Session objects disappear when the session is
closed, and are only visible within the session that created the object.

• Private objects can only be accessed by the PKCS #11 Users if they have logged into the token, whereas
public objects can always be accessed by both User and security officer.

• A token object that is read-write for a read-write session is read-only for a read-only session of another
application at the same time.

In addition, each object has a set of attributes, especially the CKA_CLASS attribute, which determines
which further attributes are associated with an object. Other typical attributes contain the value of an
object or determine whether an object is a token object.

The PKCS #11 API provides a set of functions to manage objects, like for example, C_CreateObject(),
C_CopyObject(), C_DestroyObject(), C_GetObjectSize(), C_GetAttributeValue(),
C_SetAttributeValue(), C_FindObjects().

Note: Token objects are stored in a token-specific object store, the token directory (see also Chapter 14,
“Directory content for CCA, ICA, EP11, and Soft tokens,” on page 81).

10 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

The most important object classes are those that implement keys: private keys (CKO_PRIVATE_KEY),
public keys (CKO_PUBLIC_KEY) and secret keys (CKO_SECRET_KEY). Private and public keys are the
members of an asymmetric key pair, whereas secret keys are symmetric keys or MAC keys.

There are many key specific attributes. For example, the Boolean attribute CKA_WRAP denotes whether a
key may be used to wrap another key. The Boolean attribute CKA_SENSITIVE is only applicable for private
and secret keys. If this attribute is TRUE, this means that the value of the key may never be revealed in
clear text. There are key-type specific attributes like CKA_MODULUS, which is an attribute specific to RSA
keys. Not all tokens support all key types with all possible attributes. CKA_PRIVATE causes the object
data to be encrypted when stored in the token directory.

Object management functions to create keys are C_GenerateKey(), C_GenerateKeyPair() and
C_DeriveKey(). To import a key not generated by one of the previously mentioned functions, you
can use C_CreateObject() with all key specific attributes specified in the template. Alternatively, a
wrapped key can be imported with C_Unwrap(), where a wrapped key is a standard representation of
a key specific to the key type (for example, a byte array for secret keys or a BER encoding for other key
types) that is encrypted by a wrapping key.

PKCS #11 defines multiple object classes, for example:

• Data objects
• Key objects
• Public key objects
• Private key objects
• Secret key objects
• Certificate objects

Each object class has its own set of attributes, where these attributes define an instance of an object from
this class. There is one common attribute called CKA_CLASS for all object classes. This attribute defines
the type (or class) of an object. For more information about objects, read “How to create and modify
objects” on page 101 and “How to apply attributes to objects” on page 102).

When an object is created or found on a token by an application, openCryptoki assigns it an object handle
for that application’s sessions to access it (CK_OBJECT_HANDLE, CK_OBJECT_HANDLE_PTR).

PKCS #11 also defines objects for certificates. However, other than functions to operate on generic
objects, no functions to operate on certificate objects are part of the PKCS #11 API.

Access control and groups
To properly configure the system, and to be authorized for performing the openCryptoki processes, for
example, running the slot manager daemon pkcsslotd, the pkcs11 group must be defined in file /etc/
group of the system. Every user of openCryptoki (including the users configuring openCryptoki and its
tokens) must be a member of this pkcs11 group. Use standard Linux management operations to create
the pkcs11 group if needed, and to add users to this group as required. You may also refer to the man
page of openCryptoki (man openCryptoki) which has a SECURITY NOTE section that is important from
the security perspective.

Logging and tracing in openCryptoki
You can enable logging support by setting the environment variable OPENCRYPTOKI_TRACE_LEVEL. If
the environment variable is not set, logging is disabled by default.

Table 1. openCryptoki log levels

Log level Description

0 Trace off.

1 Log error messages.

Chapter 2. Architecture and components of openCryptoki 11

Table 1. openCryptoki log levels (continued)

Log level Description

2 Log warning messages.

3 Log informational messages.

4 Log development debug messages. These messages may help debug while developing
openCryptoki applications.

5 Log debug messages that are useful to application programmers. This level must be
enabled at build time of the openCryptoki library via option --enable-debug in the
configure script.

If a log level > 0 is defined in the environment variable OPENCRYPTOKI_TRACE_LEVEL, then log entries
are written to file /var/log/opencryptoki/trace.<pid>. In this file name specification, <pid>
denotes the ID of the running process that uses the current token.

The log file is created with ownership user, and group pkcs11, and permission 0640 (user: read, write;
group: read only; others: nothing). For every application, which is using openCryptoki, a new log file is
created during token initialization.

A log level > 3 is only recommended for developers and for collecting more information during problem
reproductions.

Lock files
As of release 3.8, openCryptoki maintains the following lock files in the system: one global API lock file,
one lock file per token instance, except for the TPM token. For the TPM token, openCryptoki keeps one
lock file per user.

The lock files are stored in the following directories, if applicable:

ls -lh /var/lock/opencryptoki/

LCK..APIlock
ccatok/LCK..ccatok
ep11tok/LCK..ep11tok
icsf/LCK..icsf
lite/LCK..lite
swtok/LCK..swtok
tpm/<USER>/LCK..tpm

The LCK..APIlock file serializes access to the shared memory from the pkcsslotd daemon and from
the API calls issued from libopencryptoki.so.

The token-specific lock files serialize access to the shared memory and to objects in the token directory
from the respective token library (for example, from libpkcs11_cca.so for the CCA token).

Thus, each lock file is used to protect the respective shared memory segments and objects in the token
directory by letting threads wait for a required lock.

Use and purpose of openCryptoki features
In normal operation, the mentioned shared memory segments, the Unix domain sockets of the slot
manager daemon (pkcsslotd), and the lock files should be transparent to users of openCryptoki. But in
case of certain errors, such objects may remain from some previous use of openCryptoki and thus block
new operations. In such cases, you need to know the locations of these objects and you must typically
use certain operating system tools to remove them and enable a normal use of openCryptoki again.

Figure 3 on page 13 shows the process flow within the Linux on Z and LinuxONE crypto stack. For
example, an application sends an encryption request to the crypto adapter. Through various interfaces,
such a request is propagated from the application layer down to the target crypto adapter. On its
way down, the request passes through the involved layers: the standard openCryptoki interfaces, the

12 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

adequate IBM Z crypto libraries, and the operating system kernel. The zcrypt device driver finally sends
the request to the appropriate cryptographic coprocessor. The resulting request output is sent back to the
application just the other way round through the layer interfaces.

Figure 3. Linux on Z and LinuxONE crypto stack

Chapter 2. Architecture and components of openCryptoki 13

14 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 3. Installing openCryptoki
The available tokens are part of the openCryptoki package. The package comes with manual pages (man
pages) that describe the usage of the tools and the format of the configuration files. The openCryptoki
package in turn is shipped with the Linux on Z distributions. This package might be split into several
packages by the distributions, thus allowing to install individual tokens separately.

Check whether you already installed openCryptoki in your current environment, for example:

$ rpm -qa | grep -i opencryptoki /* for RPM */
$ dpkg -l | grep -i opencryptoki /* for DEB */

Note: The command examples are distribution dependent. opencryptoki must in certain distributions
be specified as openCryptoki (case-sensitive).

You should see all installed openCryptoki packages. If required packages are missing, use the installation
tool of your Linux distribution to install the appropriate openCryptoki RPM or DEB.

Notes:

• You can update an installed version of openCryptoki with a package of a newer version. Depending
on the tokens to be used, further libraries need to be installed and cryptographic adapters must
be enabled. If you had built openCryptoki from the source before, you must remove any previous
installation of openCryptoki (make uninstall), before you can install a distribution package for a new
openCryptoki version.

• Some tokens need a token-specific library to be installed on the system as a prerequisite for usage.
These are mentioned for each token in Part 3, “Token specifications,” on page 39.

Installing from the RPM or DEB package
The openCryptoki packages are delivered by the distributors. Distributors build these packages as RPM or
DEB packages for delivering them to customers.

Customers can install these openCryptoki packages by using the installation tool of their selected
distribution.

If you received openCryptoki as an RPM package, follow the RPM installation process that is described in
the RPM Package Manager man page. If you received an openCryptoki DEB package, you can use the dpkg
- package manager for Debian described in the dpkg man page.

The installation from either an RPM or DEB package is the preferred installation method.

Installing from the source package
As an alternative, for example for development purposes, you can get the latest version (inclusive latest
patches) from the GitHub repository and build it yourself. But this version is not serviced. It is suitable for
non-production systems and early feature testing, but you should not use it for production.

In this case, refer to the INSTALL file in the top level of the source tree. You can start from the
instructions that are provided with the subtopics of this INSTALL file and select from the described
alternatives. If you use this installation method parallel to the installation of a package from your
distributor, then you should keep both installations isolated from each other.

1. Download the latest version of the openCryptoki sources from:

https://github.com/opencryptoki/opencryptoki/releases

2. Decompress and extract the compressed tape archive (tar.gz - file). There is a new directory named
like opencryptoki-3.xx.x.

© Copyright IBM Corp. 2021 15

https://linux.die.net/man/8/rpm
https://linux.die.net/man/1/dpkg
https://github.com/opencryptoki/opencryptoki
https://github.com/opencryptoki/opencryptoki/releases

3. Change to that directory and issue the following scripts and commands:

$./bootstrap.sh
$./configure
$ make
$ make install

The scripts or commands perform the following functions:

bootstrap
Initial setup, basic configurations

configure
Check configurations and build the makefile. You can specify several options here to overwrite the
defaults. For example, not all tokens are built as the default. To build the CCA token as an example,
specify ./configure --enable_ccatok

make
Compile and link

make install
Install the libraries

Note: When installing openCryptoki from the source package, the location of some installed files will
differ from the location of files installed from an RPM or DEB package.

16 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 4. Adjusting the openCryptoki configuration
file

A preconfigured list of all available tokens that are ready to register to the openCryptoki slot daemon is
required before the slot daemon can start. This list is provided by the global configuration file called
opencryptoki.conf. Read this topic for information on how to adapt this file according to your
installation.

Table 2 on page 17 lists the available libraries that may be in place after you successfully installed
openCryptoki. It may vary for different distributions and is dependent from the installed packages.

Also, Linux on Z and LinuxONE do not support the Trusted Platform Module (TPM) token library.

A token is only available, if the token library is installed, and the appropriate software and hardware
support pertaining to the stack of the token is also installed. For example, the EP11 token is only available
if all parts of the EP11 library software are installed and a Crypto Express EP11 coprocessor is detected.
For more information, read Exploiting Enterprise PKCS #11 using openCryptoki.

A token needs not be available, even if the corresponding token library is installed. Display the list of
available tokens by using the command:

$ pkcsconf -t

For a sample output, see Figure 5 on page 27. Table 2 on page 17 shows available openCryptoki
libraries:

Table 2. openCryptoki libraries

Library Explanation

/usr/lib64/opencryptoki/libopencryptoki.so openCryptoki base library

/usr/lib64/opencryptoki/stdll/
libpkcs11_ica.so

ICA token library

/usr/lib64/opencryptoki/stdll/
libpkcs11_sw.so

Soft token library

/usr/lib64/opencryptoki/stdll/
libpkcs11_tpm.so

TPM token library (not supported by Linux
on Z and LinuxONE)

/usr/lib64/opencryptoki/stdll/
libpkcs11_cca.so

CCA token library

/usr/lib64/opencryptoki/stdll/
libpkcs11_ep11.so

EP11 token library

/usr/lib64/opencryptoki/stdll/
libpkcs11_icsf.so

ICSF token library

libopencryptoki.so is the openCryptoki shared base library. The main API for the STDLLs
PKCS11_API.so (mentioned in Chapter 2, “Architecture and components of openCryptoki,” on
page 5) is a link, or an alias. Besides the token library, an application needs to load either the
libopencryptoki.so object or the PKCS11_API.so link to be able to exploit a token.

lrwxrwxrwx 1 root root 18 May 19 20:05 PKCS11_API.so -> libopencryptoki.so

The /etc/opencryptoki/opencryptoki.conf file must exist and it must contain an entry for each
instance of a token to make these instances available (see the provided sample configuration from Figure
4 on page 18).

© Copyright IBM Corp. 2021 17

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html

You can check the current default opencryptoki.conf file on this URL:

https://github.com/opencryptoki/opencryptoki/blob/master/usr/sbin/pkcsslotd/opencryptoki.conf

version opencryptoki-3.17

The following defaults are defined:
hwversion = "0.0"
firmwareversion = "0.0"
description = Linux
manufacturer = IBM
#
The slot definitions below may be overriden and/or customized.
For example:
slot 0
{
stdll = libpkcs11_cca.so
description = "OCK CCA Token"
manufacturer = "MyCompany Inc."
hwversion = "2.32"
firmwareversion = "1.0"
}
See man(5) opencryptoki.conf for further information.
#

disable-event-support # not part of the default config file

slot 0
{
stdll = libpkcs11_tpm.so
}

slot 1
{
stdll = libpkcs11_ica.so
}

slot 2
{
stdll = libpkcs11_cca.so
}

slot 3
{
stdll = libpkcs11_sw.so
}

slot 4
{
stdll = libpkcs11_ep11.so
confname = ep11tok.conf
}

Figure 4. Default opencryptoki.conf

Note:

• The standard path for slot token dynamic link libraries (STDLLs) is: /usr/lib64/opencryptoki/
stdll/.

• The standard path for the token-specific configuration file (in our example, ep11tok.conf) is /etc/
opencryptoki/.

• You can specify multiple tokens of any type in different slots. Each token must be specified with a
unique token name in each slot. The tokens are located in different file paths in the token directory, but
use the same STDLL. For example:

18 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://github.com/opencryptoki/opencryptoki/blob/master/usr/sbin/pkcsslotd/opencryptoki.conf

slot 4
{
stdll = libpkcs11_ep11.so
confname = ep11tok01.conf
tokname = ep11token01
description = "Ep11 Token"
manufacturer = "IBM"
hwversion = "4.11"
firmwareversion = "2.0"
}

slot 5
{
stdll = libpkcs11_ep11.so
confname = ep11tok02.conf
tokname = ep11token02
}

Event notification support
You can enable openCryptoki to deliver notifications about a cryptographic external event to active token
instances. External events are for example configuration changes of a cryptographic coprocessor (APQNs
becoming available or unavailable), events initiated by an openCryptoki administrator via a command line
tool, or HSM master key changes.

Events are delivered to all active token instances. Each process using openCryptoki has access to a set of
instances of the configured tokens. Multiple processes that use openCryptoki can exist in a system. Thus,
events are delivered to all processes that currently use openCryptoki, and thus to all token instances
owned by each of the processes.

Event notification support is enabled by default. You can disable this support by specifying keyword
disable-event-support in the openCryptoki configuration file as shown in Figure 4 on page 18.

Chapter 4. Adjusting the openCryptoki configuration file 19

20 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 5. openCryptoki environment variables
View a table that documents the available openCryptoki environment variables and their purpose.

Table 3. openCryptoki environment variables

Name Purpose

PKCSLIB Used in some tools as path to the openCryptoki libary libopencryptoki.so.
You should never change this variable. Maybe useful for debugging
information.

OCK_EP11_LIBRARY Specifies the path to the EP11 library. Only of interest, if multiple EP11
libraries are installed. Normally, you should never change this variable.
Maybe useful for debugging information.

OCK_EP11_TOKEN_DIR The standard path for the token-specific EP11 token configuration file
is /etc/opencryptoki/. You can change this path by using this variable.

PKCS_APP_STORE Specifies the path to the main directory. Never change this variable. Maybe
useful for debugging information.

PKCS11_SHMEM_FILE Used for pointing to the SHM-Key Files. Only of interest, if you run multiple
slot manager daemons (pkcsslotd).

PKCS11_USER_PIN Provides a possibility to transfer the User PIN to the p11sak utility. It is
required for running the openCryptoki tests.

OPENCRYPTOKI_TRACE_L
EVEL

Enables logging support. If the environment variable is not set, logging is
disabled by default.

© Copyright IBM Corp. 2021 21

22 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Part 2. Common tools of openCryptoki
Learn how to use tools provided by openCryptoki that you can use for common purposes.

The following tools are documented:

• Chapter 6, “Managing tokens - pkcsconf utility,” on page 25
• Chapter 7, “Generating and listing keys - p11sak utility,” on page 29
• Chapter 8, “Migrating to FIPS compliance - pkcstok_migrate utility,” on page 37

© Copyright IBM Corp. 2021 23

24 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 6. Managing tokens - pkcsconf utility
openCryptoki provides a command line program (/sbin/pkcsconf) to configure and administer tokens
that are supported within the system. The pkcsconf capabilities include token initialization, and
security officer (SO) PIN and user PIN initialization and maintenance. These PINs are required for token
initialization.

pkcsconf operations that address a specific token must specify the slot that contains the token with
the -c option. You can view the list of tokens present within the system by specifying the -t option.
Type pkcsconf --help or pkcsconf -h into a command line to show the options for the pkcsconf
command:

pkcsconf -h
usage: pkcsconf [-itsmlIupPh] [-c slotnumber -U user-PIN -S SO-PIN -n new PIN]

The available options have the following meanings:

-i
display PKCS #11 info

-t
display token info

-s
display slot info

-m
display mechanism list

-l
display slot description

-I
initialize token

-u
initialize user PIN

-p
set the user PIN

-P
set the SO PIN

-h | --help | ?
show this help

-c
specify the token slot ID

-U
the current user PIN (for use when changing the user PIN with -u and -p options). If not specified,
user will be prompted.

-S
the current security officer (SO) PIN (for use when changing the SO PIN with -P option). If not
specified, user will be prompted.

-n
the new PIN (for use when changing either the user PIN or the SO PIN with -u, -p or -P options). If not
specified, user will be prompted.

For more information about the pkcsconf command, see the pkcsconf man page.

© Copyright IBM Corp. 2021 25

https://linux.die.net/man/1/pkcsconf

Starting the slot manager
A prerequisite for accessing a token is a running slot manager daemon (pkcsslotd) .

Use one of the following commands to start the slot daemon, which reads out the configuration
information and sets up the tokens:

$ service pkcsslotd start
$ systemctl start pkcsslotd.service /* for Linux distributions providing systemd */

For a permanent solution, specify:

$ chkconfig pkcsslotd on
$ systemctl enable pkcsslotd.service /* for Linux distributions providing systemd */

Initializing a token with pkcsconf

Once the openCryptoki configuration file and, if applicable, token-specific configuration files are set up,
and the pkcsslotd daemon is started, the token instances must be initialized. Use the pkcsconf
command as shown to perform this task.

Note: As mentioned in “Roles and Sessions” on page 8, PKCS #11 defines a security officer (SO) and a
(standard) User for each token instance. openCryptoki requires that for both a log-in PIN is defined as part
of the token initialization.

The following command provides some useful slot information:

pkcsconf -s

Slot #1 Info
 Description: ICA Token
 Manufacturer: IBM
 Flags: 0x1 (TOKEN_PRESENT)
 Hardware Version: 4.0
 Firmware Version: 2.11
...
...
Slot #4 Info
 Description: EP11 Token
 Manufacturer: IBM
 Flags: 0x1 (TOKEN_PRESENT)
 Hardware Version: 4.0
 Firmware Version: 2.10

Receive more detailed information about a token using the following command:

26 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

pkcsconf -t
...
...
Token #4 Info:
 Label: ep11tok
 Manufacturer: IBM
 Model: EP11
 Serial Number: 93AABC5H53107366
 Flags: 0x880045 (RNG|LOGIN_REQUIRED|CLOCK_ON_TOKEN|USER_PIN_TO_BE_CHANGED|
SO_PIN_TO_BE_CHANGED)
 Sessions: 0/[effectively infinite]
 R/W Sessions: [information unavailable]/[effectively infinite]
 PIN Length: 4-8
 Public Memory: [information unavailable]/[information unavailable]
 Private Memory: [information unavailable]/[information unavailable]
 Hardware Version: 7.24
 Firmware Version: 3.1
 Time: 2021031912021700

Figure 5. Token information with pkcsconf -t

Find the token instance you want to initialize in the output list and note the correct slot number. This
number is used in the next initialization steps to identify your token:

$ pkcsconf -I -c <slot> /* Initialize the Token and set up a Token Label */

$ pkcsconf -P -c <slot> /* change the SO PIN (recommended) */

$ pkcsconf -u -c <slot> /* Initialize the User PIN (SO PIN required) */

$ pkcsconf -p -c <slot> /* change the User PIN (optional) */

pkcsconf -I
During token initialization, you are asked for a token label. Provide a meaningful name, because you
may need this reference for identification purposes.

pkcsconf -P
For security reasons, openCryptoki requires that you change the default SO PIN (87654321) to a
different value. Use the pkcsconf -P option to change the SO PIN.

pkcsconf -u
When you enter the user PIN initialization you are asked for the newly set SO PIN. The length of the
user PIN must be 4 - 8 characters.

pkcsconf -p
You must at least once change the user PIN with pkcsconf -p option. After you completed the PIN
setup, the token is prepared and ready for use.

Note: Define a user PIN that is different from 12345678, because this pattern is checked internally and
marked as default PIN. A log-in attempt with this user PIN is recognized as not initialized.

Chapter 6. Managing tokens - pkcsconf utility 27

28 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 7. Generating and listing keys - p11sak
utility

Use the p11sak tool to list the token keys in an openCryptoki token repository with their PKCS #11
attributes. You can also use the tool to generate and delete symmetric and asymmetric keys in an
openCryptoki token repository.

The general invocation scheme of the command line tool is:

p11sak COMMAND [ARGS] [OPTIONS]

p11sak syntax - General invocation scheme
p11sak <subcommand>

 args options

where

subcommand
is described in the following sections:

• “Generating keys” on page 29
• “Listing keys in the repository” on page 31
• “Remove a key” on page 33

Also, read the information in section “Command help” on page 34 to learn how to use the tool efficiently.

Generating keys
Use the p11sak generate-key subcommand to generate keys in the openCryptoki token repository.
The tool supports the generation of:

• symmetric keys (AES, 3DES, DES) with PKCS #11 attributes
• asymmetric keys (RSA, EC) with PKCS #11 attributes.

© Copyright IBM Corp. 2021 29

p11sak syntax - Generate a key
p11sak generate-key

des

3des

aes 128

192

256

rsa 1024

2048

4096

--exponent  <number>

 ec prime256v1 | prime192

secp224 | secp384r1 | secp256k1 | secp521r1

brainpoolP160r1 | brainpoolP160t1 | brainpoolP192r1 | brainpoolP192t1

brainpoolP224r1 | brainpoolP224t1 | brainpoolP256r1 | brainpoolP256t1

brainpoolP320r1 | brainpoolP320t1 | brainpoolP384r1 | brainpoolP384t1

brainpoolP512r1 | brainpoolP512t1

--slot <slot ID> --pin <PIN> --label  <key name>

--attr [M | R | L | S | E | D | G | V | W | U | A | X | N]

where

des
specifies a symmetric DES key to be generated.

3des
specifies a symmetric triple DES key.

aes
specifies a symmetric AES key to be generated. You must specify a key length in bits: 128, 192, or
256.

rsa
specifies an asymmetric RSA key pair (private and public) to be generated. You must specify a key
length in bits: 1024, 2048, or 4096.

--exponent
specifies an exponent for an RSA key pair generation. This option is optional and only considered for
RSA key pair generation. The default is 65537.

ec
specifies an elliptic curve key pair (private and public) to be generated. You must specify an elliptic
curve for the ECC key pair. Select one supported curve as shown in the syntax diagram.

--slot
specifies the slot ID of an openCryptoki token with the repository.

--pin
specifies the openCryptoki token repository user PIN. If not specified, the user can enter the PIN on
request.

--label
specifies the label (name) of the generated key. This option is mandatory.

30 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

--attr
This option is optional and can be used to set one or more of the binary key attributes by specifying
one or more of the the respective letters from the subsequent list. With an upper case letter, the
respective attribute is set to TRUE and with a lower case letter it is set to FALSE. For multiple
attributes add the respective letters without space, for example: MLD or MrS.
M

CKA_MODIFIABLE
R

CKA_DERIVE
L

CKA_LOCAL
S

CKA_SENSITIVE
E

CKA_ENCRYPT
D

CKA_DECRYPT
G

CKA_SIGN
V

CKA_VERIFY
W

CKA_WRAP
U

CKA_UNWRAP
A

CKA_ALWAYS_SENSITIVE
X

CKA_EXTRACTABLE
N

CKA_NEVER_EXTRACTABLE

The key attributes CKA_TOKEN and CKA_PRIVATE are set by default.

Listing keys in the repository
The tool supports the listing of:

• symmetric keys (AES, 3DES, DES) with PKCS #11 attributes,
• asymmetric keys (RSA, EC) with PKCS #11 attributes,
• public, private and secure keys.
• all keys of any type

With the options in the list-key subcommand, you can filter the keys that you want to list. They have
the same meaning as described in section “Generating keys” on page 29, with additional options to filter
for public, private and secure keys. The --long or -l parameter produces the long output format. If
omitted, you obtain a short output format.

Chapter 7. Generating and listing keys - p11sak utility 31

p11sak syntax - Listing keys
p11sak list-key|ls-key|ls des

3des

aes

rsa

ec

public

private

secret

all, ALL

--slot <slot ID> --pin <PIN>

--long, -l

Example for a listing output in short format (default):

p11sak list-key aes --slot 2 --pin 98765432

| M R L S E D G V W U X A N * | KEY TYPE | LABEL
|---------------------------------------+-------------+-------------
| 0 0 1 0 0 0 0 0 0 0 0 0 1 1 | AES 128 | 2020-04-29_aes128-M-1.key
| 1 0 1 0 0 0 0 0 0 0 0 0 1 1 | AES 128 | 2020-04-29_aes128-M-2.key
| 0 0 1 0 0 0 0 0 0 0 0 0 1 1 | AES 128 | 2020-04-29_aes128-2.key
| 0 0 1 0 0 0 0 0 0 0 0 0 1 1 | AES 128 | 2020-04-29_aes128-2.key
| 1 1 1 0 0 0 0 0 0 0 0 0 1 1 | AES 128 | 2020-04-29_aes128-MR.key
| 1 1 1 1 1 0 0 0 0 0 0 1 1 1 | AES 128 | 2020-04-29_aes128-MRLSE.key
| 1 1 1 1 1 1 1 1 1 1 1 1 0 1 | AES 128 | 2020-04-29_aes128-MRLSEDGVWUAX

Note: The number 1 in column * indicates whether at least one attribute is defined in the output
configuration file. Otherwise, number 0 is shown. To see these attributes, use the long output format as
described hereafter.

How to get a listing output in long format

Request a long output format by specifying option --long or -l with the list-key command. You need
to provide an output configuration file called p11sak_defined_attrs.conf to specify attributes to
be printed in addition to the ones specified with key generation. You can use the environment variable
P11SAK_DEFAULT_CONF_FILE to set the full path name for this file. If this variable is not set, the system
looks for this configuration file in your user directory. If no configuration file is found there, the default
output configuration file /etc/opencryptoki/p11sak_defined_attrs.conf is used.

The output configuration file lists the desired attributes in the following format:

attribute {
 name = CKA_IBM_ATTRBOUND
 type = CK_BBOOL
 id = 0x80010004
}
attribute {
 name = CKA_IBM_USE_AS_DATA
 type = CK_BBOOL
 id = 0x80010008
}
attribute {
 name = CKA_IBM_PROTKEY_EXTRACTABLE
 type = CK_BBOOL
 id = 0x8001000c
}
attribute {
 name = CKA_MODULUS_BITS
 type = CK_ULONG

32 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

 id = 0x00000121
}
attribute {
 name = CKA_MODULUS
 type = CK_BYTE
 id = 0x00000120
}

Example for a listing output in long format:

p11sak list-key rsa --slot 1 --pin 11223344 -l

Label: rsa1:pub
 Key: public RSA
 Attributes:
 CKA_TOKEN: CK_TRUE
 CKA_PRIVATE: CK_TRUE
 CKA_MODIFIABLE: CK_TRUE
 CKA_DERIVE: CK_FALSE
 CKA_LOCAL: CK_FALSE
 CKA_ENCRYPT: CK_TRUE
 CKA_VERIFY: CK_TRUE
 CKA_WRAP: CK_TRUE
 CKA_IBM_PROTKEY_EXTRACTABLE: CK_FALSE
 CKA_MODULUS_BITS: 1024 (0x400)
 CKA_MODULUS: len=128 value:
 AD 8E A4 0C 3E 18 62 FE 3F 0B 95 F8 67 73 30 BF
 3B A6 83 18 4B 32 91 AD 37 7D D8 4E 35 6F 97 E3
 EC 22 34 E4 F9 7C 43 E5 6B 96 FE 65 AE 78 1C B2
 A8 81 24 5F 11 B2 8D 0F C6 13 A8 BA 41 75 E7 07
 A4 DC E3 53 95 0E D7 2E 55 7C 6D 1C 78 95 AF 9A
 5B 18 4C AC 43 C7 F4 51 73 8C 4B 07 A6 48 E2 28
 06 65 5A 22 F3 B9 7E C2 F6 5B B5 42 EB E5 CE 81
 29 C4 91 6B 43 3F 19 5C FB 0E 20 47 D4 4C C4 E1

Label: rsa-key:prv
 Key: private RSA
 Attributes:
 CKA_TOKEN: CK_TRUE
 CKA_PRIVATE: CK_TRUE
 CKA_MODIFIABLE: CK_TRUE
 CKA_DERIVE: CK_FALSE
 CKA_LOCAL: CK_FALSE
 CKA_SENSITIVE: CK_FALSE
 CKA_DECRYPT: CK_TRUE
 CKA_SIGN: CK_TRUE
 CKA_UNWRAP: CK_TRUE
 CKA_EXTRACTABLE: CK_TRUE
 CKA_ALWAYS_SENSITIVE: CK_FALSE
 CKA_NEVER_EXTRACTABLE: CK_FALSE
 CKA_IBM_ATTRBOUND: CK_FALSE
 CKA_IBM_USE_AS_DATA: CK_FALSE
 CKA_IBM_PROTKEY_EXTRACTABLE: CK_FALSE
 CKA_MODULUS: len=128 value:
 AD 8E A4 0C 3E 18 62 FE 3F 0B 95 F8 67 73 30 BF
 3B A6 83 18 4B 32 91 AD 37 7D D8 4E 35 6F 97 E3
 EC 22 34 E4 F9 7C 43 E5 6B 96 FE 65 AE 78 1C B2
 A8 81 24 5F 11 B2 8D 0F C6 13 A8 BA 41 75 E7 07
 A4 DC E3 53 95 0E D7 2E 55 7C 6D 1C 78 95 AF 9A
 5B 18 4C AC 43 C7 F4 51 73 8C 4B 07 A6 48 E2 28
 06 65 5A 22 F3 B9 7E C2 F6 5B B5 42 EB E5 CE 81
 29 C4 91 6B 43 3F 19 5C FB 0E 20 47 D4 4C C4 E1
...

Remove a key
Use the p11sak remove-key subcommand to remove keys from the openCryptoki token repository. The
tool supports the deletion of:

• symmetric keys (AES, 3DES, DES)
• asymmetric keys (RSA, EC).

Chapter 7. Generating and listing keys - p11sak utility 33

p11sak syntax - Removing keys
p11sak remove-key

des

3des

aes

rsa

ec

--slot <slot ID> --pin <PIN>

 --label  <key name> --force | -f

With the parameters you can select the key or the keys that you want to delete.

Either select a specific key for deletion by specifying its name with the --label option. Or select multiple
keys by specifying a key type together with the slot ID and the user PIN. The parameters and options that
define the key type are optional if the --label option is set. The --label option takes precedence over
the key type and deletes all keys with that label.

You are prompted to confirm the deletion of the selected key or keys. To suppress the confirmation, use
the --force | -f option.

Command help
Request general help with the following command:

p11sak -h

to receive the following information:

Usage: p11sak COMMAND [ARGS] [OPTIONS]

Commands:
 generate-key Generate a key
 list-key List keys in the repository
 remove-key Delete keys in the repository

Options:
-h, --help Show this help

Request help for a subcommand:

p11sak generate-key -h
p11sak list-key -h
p11sak remove-key -h

For the generate-key subcommand, you receive the following information:

34 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

p11sak generate-key -h

Usage: p11sak generate-key [ARGS] [OPTIONS]

Args:
 des
 3des
 aes [128 | 192 | 256]
 rsa [1024 | 2048 | 4096]
 ec [prime256v1 | prime192 | secp224 | secp384r1 | secp521r1 | secp256k1 |
 brainpoolP160r1 | brainpoolP160t1 | brainpoolP192r1 | brainpoolP192t1 |
 brainpoolP224r1 | brainpoolP224t1 | brainpoolP256r1 | brainpoolP256t1 |
 brainpoolP320r1 | brainpoolP320t1 | brainpoolP384r1 | brainpoolP384t1 |
 brainpoolP512r1 | brainpoolP512t1]

Options:
 --slot SLOTID openCryptoki repository token SLOTID.
 --pin PIN pkcs11 user PIN
 --label LABEL key label LABEL to be listed
 --exponent EXP set RSA exponent EXP
 --attr [M R L S E D G V W U A X N] set key attributes
 -h, --help Show this help

For the generate-key subcommand, you can request help for a selected key type, for example, for an
AES key:

p11sak generate-key aes -h

 Usage: p11sak generate-key aes [ARGS] [OPTIONS]

 Args:
 128
 192
 256

 Options:
 --slot SLOTID openCryptoki repository token SLOTID.
 --pin PIN pkcs11 user PIN
 --label LABEL key label LABEL to be listed
 --attr [M R L S E D G V W U A X N T] set key attributes
 -h, --help Show this help

Chapter 7. Generating and listing keys - p11sak utility 35

36 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 8. Migrating to FIPS compliance -
pkcstok_migrate utility

Use the pkcstok_migrate tool to migrate the data stores of an EP11 token, a CCA token, an ICA
token, or a Soft token to a FIPS compliant format. This FIPS compliant data format is available starting
with openCryptoki version 3.12. You can use this tool to migrate tokens created with all versions of
openCryptoki, because also for version 3.12 or later, the old non-compliant format is the default. Being
FIPS compliant, the token data is stored in a format that is better protected against attacks than the
previously used data format.

For further information, read the pkcstok_migrate man page.

Parameters

pkcstok_migrate -h

Help: pkcstok_migrate -h
-h, --help Show this help

Options:

-s, --slotid SLOTID PKCS slot number (required)
-d, --datastore DATASTORE token datastore location (required)
-c, --confdir CONFDIR location of opencryptoki.conf (required)
-u, --userpin USERPIN token user pin (prompted if not specified)
-p, --sopin SOPIN token SO pin (prompted if not specified)
-v, --verbose LEVEL set verbose level (optional):
 none (default), error, warn, info, devel, debug

Functionality
The utility:

• directly accesses the token objects via file operations;
• assumes that no other action is currently running. It checks if the slot manager pkcsslotd is running

and asks the user to end it if yes.

Before making any changes to the repository, a temporary copy is created. Migration takes place on
this copy. The copied folder is suffixed with _PKCSTOK_MIGRATE_TMP. If the migration fails, the old
repository is still available.

Running a migration again, would remove any remaining backups from previous runs, create a new
backup, and then do the migration.

• After successfully migrating all token objects, the original repository folder is renamed by appending the
suffix _BAK, and the new repository folder gets the name of the original one.

• Also, the opencryptoki.conf file is updated by inserting (or updating) the tokversion parameter in
the token’s slot configuration. The old configuration file is still available with the same suffix _BAK.

This makes the new repository immediately usable after restarting the pkcsslotd daemon, but also
allows the user to switch back manually to the old token format.

Example: To transform a CCA token into the FIPS compliant data format perform a sequence of
commands with your adequate input, similar to the following:

systemctl stop pkcsslotd.service /* for Linux distributions providing systemd */
/* or */
service pkcsslotd stop

pkcstok_migrate --slot 2 --sopin 76543210 --userpin 12345678
 --confdir /etc/opencryptoki

© Copyright IBM Corp. 2021 37

 --datastore /var/lib/opencryptoki/ccatok

service pkcsslotd start

The output may look similar to the following:

pkcstok_migrate:
Summary of input parameters:
 datastore = /var/lib/opencryptoki/ccatok
 confdir = /etc/opencryptoki
 slot ID = 2
 user PIN specified
 SO PIN specified

Slot ID 2 points to DLL name libpkcs11_cca.so, which is a CCA token.
Data store /usr/local/var/lib/opencryptoki/ccatok points to this token info:
 label : IBM CCA PKCS #11
 manufacturerID : IBM
 model : CCA
 serialNumber :
 hardwareVersion : 0.0
 firmwareVersion : 0.0
Migrate this token with given slot ID? y/n
y
Migrated 2 object(s) out of 2 object(s).
Pre-migration data backed up at '/usr/local/var/lib/opencryptoki/ccatok_BAK'
Config file backed up at '/usr/local/etc/opencryptoki/opencryptoki.conf_BAK'
Remove these backups manually after testing the new repository.
pkcstok_migrate finished successfully.

38 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Part 3. Token specifications
Application programmers find documentation about available token mechanisms to be invoked
from cryptographic applications. openCryptoki administrators find additional token-specific tools and
information about required token-specific configurations, if applicable.

Each token plugged into openCryptoki can implement a selection of the provided PKCS #11 mechanisms
to be used in application programs. The names of these mechanisms start with the prefix "CKM_". For
example, the CKM_AES_KEY_GEN mechanism generates an AES cryptographic key. This mechanism is
offered by the CCA token, the ICA token, the EP11 token, and the Soft token, and can therefore be used to
generate an AES key by any application that accesses one or more of these tokens.

Companies which collaborate with the openCryptoki open source community can contribute their
company-specific mechanisms to openCryptoki. For example, all mechanisms which IBM adds to
openCryptoki in addition to the PKCS #11 standard start with the vendor-specific prefix "CKM_IBM_".
An example for an IBM-specific PKCS #11 mechanisms is CKM_IBM_SHA3_384_HMAC which you can use
from an EP11 token to sign and verify a message using the SHA3-384 hash function.

Issue the pkcsconf command with the -m parameter to display all mechanisms that are supported by
the token of interest residing in the slot specified with parameter -c.

$ pkcsconf -m -c <slot>

For example, if you want to display all supported PKCS #11 mechanisms of an ICA token that resides in
slot number 1 in your environment, issue the following command:

pkcsconf -m -c 1

The output depends on the supported Crypto Express coprocessors together with the openCryptoki
version. The beginning of the output list may look as shown in Figure 6 on page 39. The name
corresponds to the PKCS #11 specification. Each mechanism provides its supported key size and some
further properties such as hardware support and mechanism information flags. These flags provide
information about the PKCS #11 functions that may use the mechanism. Typical functions are for
example, encrypt, decrypt, wrap key, unwrap key, sign, or verify. For some mechanisms, the flags show
further attributes that describe the supported variants of the mechanism.

Figure 6. List of supported mechanisms for a certain token

Mechanism #0
 Mechanism: 0x0 (CKM_RSA_PKCS_KEY_PAIR_GEN)
 Key Size: 512-4096
 Flags: 0x10001 (CKF_HW|CKF_GENERATE_KEY_PAIR)
Mechanism #1
 Mechanism: 0x1 (CKM_RSA_PKCS)
 Key Size: 512-4096
 Flags: 0x67B01 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_SIGN|CKF_SIGN_RECOVER|CKF_VERIFY|
CKF_VERIFY_RECOVER|CKF_WRAP|CKF_UNWRAP)
Mechanism #2
 Mechanism: 0x3 (CKM_RSA_X_509)
 Key Size: 512-4096
 Flags: 0x67B01 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_SIGN|CKF_SIGN_RECOVER|CKF_VERIFY|
CKF_VERIFY_RECOVER|CKF_WRAP|CKF_UNWRAP)
…

Chapter 9, “Common token information,” on page 41 provides documentation that applies to all
openCryptoki token types.

The following token-specific information is provided:

• Chapter 10, “CCA token,” on page 45
• Chapter 11, “ICA token,” on page 51

© Copyright IBM Corp. 2021 39

• Chapter 12, “EP11 token,” on page 57
• Chapter 13, “Soft token,” on page 75
• Chapter 14, “Directory content for CCA, ICA, EP11, and Soft tokens,” on page 81
• Chapter 15, “ICSF token,” on page 85

Note: Linux on Z and LinuxONE do not support the Trusted Platform Module (TPM) token library.

40 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 9. Common token information
Read information that applies to all openCryptoki token types.

You can introduce one or multiple token instances of all token types into the openCryptoki framework.
For this purpose, you must define a slot entry for each desired token instance in the global openCryptoki
configuration file called opencryptoki.conf.

If you use multiple token instances, you must specify a unique token directory in the slot entry for each
instance, using the tokname attribute. This token directory receives the token-individual information (like
for example, key objects, user PIN, SO PIN, or hashes). Thus, the information for a certain token instance
is separated from other tokens.

Adding tokens to openCryptoki
You can introduce one or multiple token instances of any type into the openCryptoki framework. For
this purpose, you must define a slot entry for each desired token instance in the global openCryptoki
configuration file called opencryptoki.conf.

Note: Currently, for EP11 tokens only, you can configure each token instance differently using a specific
EP11 token configuration file (see “Defining an EP11 token-specific configuration file” on page 57).

With multiple tokens of a specific token type configured, you can assign dedicated adapters and domains
to different tokens respectively. This ensures data isolation between multiple applications.

If you use multiple token instances of one certain token type, you must specify a unique token directory
in the slot entry for each token, using the tokname attribute. This token directory receives the token-
individual information (like for example, key objects, user PIN, SO PIN, or hashes). Thus, the information
for a certain token instance is separated from other token instances.

For example, the default EP11 token directory is /var/lib/opencryptoki/ep11tok/. You can use the
default only for a single EP11 token. Examples for multiple token directories can be:

/var/lib/opencryptoki/ep11token1/
/var/lib/opencryptoki/ep11token2/
/var/lib/opencryptoki/ccatoken1/
/var/lib/opencryptoki/ccatoken2/

Note: A certain token type configuration applies to all applications that use tokens of this type.

Adding a slot entry for each EP11 token in opencryptoki.conf

As already mentioned, the default openCryptoki configuration file opencryptoki.conf provides a slot
entry for the EP11 token. It is preconfigured to slot #4. Each slot entry must set the stdll attribute to
libpkcs11_ep11.so. Check this default entry to find out whether you can use it as is.

For each configured EP11 token, you must create a specific EP11 token configuration file. This EP11-
specific configuration file defines the target adapters and target adapter domains to which the EP11 token
sends its cryptographic requests.

In turn, each slot entry in the global openCryptoki configuration file must specify this EP11 token
configuration file. For this purpose, use the confname attribute with the unique name of the respective
EP11 token configuration file as value.

The example from Figure 7 on page 42 configures two EP11 tokens in slots 4 and 5 in the openCryptoki
configuration file. It defines the names of the specific token configuration files to be ep11tok01.conf
and ep11tok02.conf. Per default, these files are searched in the directory where openCryptoki

© Copyright IBM Corp. 2021 41

searches its global configuration file. Figure 8 on page 42 shows an example of an EP11 token
configuration file.

slot 4
 {
 stdll = libpkcs11_ep11.so
 confname = ep11tok01.conf
 tokname = ep11token01
 description = "Ep11 Token"
 manufacturer = "IBM"
 hwversion = "4.11"
 firmwareversion = "2.0"
 }

slot 5
 {
 stdll = libpkcs11_ep11.so
 confname = ep11tok02.conf /* only for EP11 tokens */
 tokname = ep11token02
 }

Figure 7. Multiple EP11 token instances

#
EP11 token configuration
#
APQN_WHITELIST
0 0
0 1
2 84
END
FORCE_SENSITIVE
STRICT_MODE
VHSM_MODE
CPFILTER /etc/opencryptoki/ep11cpfilter.conf
OPTIMIZE_SINGLE_PART_OPERATIONS
DIGEST_LIBICA DEFAULT
USE_PRANDOM

Figure 8. Sample of an EP11 token configuration file

How to recognize tokens
You can use the pkcsconf -t command to display information about all available tokens. You can check
the slot and token information, and the PIN status at any time.

The screen from Figure 9 on page 43 presents excerpts of a pkcsconf -t command output. The slot
number is associated with the shown token number. The ICA token is plugged into slot 1. Therefore, you
see information about the ICA token with the label IBM ICA PKCS #11 in section Token #1 Info.
Accordingly, in Figure 9 on page 43, you see a CCA token in slot 2, a Soft token in slot 3, and an EP11
token in slot 4.

42 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

$ pkcsconf -t

Token #1 Info:
 Label: IBM ICA PKCS #11
 Manufacturer: IBM
 Model: ICA
 Serial Number:
 Flags: 0x880445 (RNG|LOGIN_REQUIRED|CLOCK_ON_TOKEN|TOKEN_INITIALIZED|
USER_PIN_TO_BE_CHANGED|
SO_PIN_TO_BE_CHANGED)

 Sessions: 0/[effectively infinite]
 R/W Sessions: [information unavailable]/[effectively infinite]
 PIN Length: 4-8
 Public Memory: [information unavailable]/[information unavailable]
 Private Memory: [information unavailable]/[information unavailable]
 Hardware Version: 0.0
 Firmware Version: 0.0
 Time: 2021081811215500
Token #2 Info:
 Label: ccatok
 Manufacturer: IBM
 Model: CCA
 Serial Number:
 Flags: 0x880045 (RNG|LOGIN_REQUIRED|CLOCK_ON_TOKEN|USER_PIN_TO_BE_CHANGED|
SO_PIN_TO_BE_CHANGED)
 D|SO_PIN_TO_BE_CHANGED)
 Sessions: 0/[effectively infinite]
 R/W Sessions: [information unavailable]/[effectively infinite]
 PIN Length: 4-8
 ...
Token #3 Info:
 Label: softtok
 ...
Token #4 Info:
 Label: ep11tok
 Manufacturer: IBM
 Model: EP11
 Serial Number: 93AABC7X69330380
 Flags: 0x80004D (RNG|LOGIN_REQUIRED|USER_PIN_INITIALIZED|CLOCK_ON_TOKEN|
SO_PIN_TO_BE_CHANGED)
 SO_PIN_TO_BE_CHANGED)
 ...
 Hardware Version: 7.28
 Firmware Version: 3.1
 Time: 2021081811215500

Figure 9. Token information

The most important information is as follows:

• The token Label, either the default name or a name that you assigned at the initialization phase. In
the example, you see that the default name icatok was replaced by IBM ICA PKCS #11 during the
initialization phase. You can initialize a token and change a token label by using the pkcsconf -I
command. As a result, you see the flag TOKEN_INITIALIZED in the output.

• The Flags provide information about the token initialization status, the PIN status, and features such
as Random Number Generator (RNG). They also provide information about requirements, such as Login
required, which means that there is at least one mechanism that requires a session log-in to use that
cryptographic function.

The flag USER_PIN_TO_BE_CHANGED indicates that the user PIN must be changed before the token
can be used. The flag SO_PIN_TO_BE_CHANGED indicates that the SO PIN must be changed before
administration commands can be used.

• The PIN Length range declared for this token.

For more information about the flags provided in this output, see the description of the CK_TOKEN_INFO
structure in PKCS #11 Cryptographic Token Interface Base Specification Version 3.0.

Chapter 9. Common token information 43

https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html

ECC header file
For elliptic curve cryptography (ECC), openCryptoki ships the ec_curves.h header file. This file defines
the curves known by openCryptoki.

View an excerpt of the ec_curves.h file.

Note: Whether a curve is actually supported by openCryptoki depends on the utilized token and on the
available hardware.

/*
 * OIDs and their DER encoding for the EC curves supported by OpenCryptoki:
 */

/* brainpoolP160r1: 1.3.36.3.3.2.8.1.1.1 */
#define OCK_BRAINPOOL_P160R1 { 0x06, 0x09, 0x2B, 0x24, 0x03, 0x03, \
 0x02, 0x08, 0x01, 0x01, 0x01 }

/* brainpoolP160t1: 1.3.36.3.3.2.8.1.1.2 */
#define OCK_BRAINPOOL_P160T1 { 0x06, 0x09, 0x2B, 0x24, 0x03, 0x03, \
 0x02, 0x08, 0x01, 0x01, 0x02 }

/* brainpoolP192r1: 1.3.36.3.3.2.8.1.1.3 */
#define OCK_BRAINPOOL_P192R1 { 0x06, 0x09, 0x2B, 0x24, 0x03, 0x03, \
 0x02, 0x08, 0x01, 0x01, 0x03 }

Read the following topics:

• “ECC curves supported by the CCA token” on page 47
• “ECC curves supported by the ICA token” on page 54
• “ECC curves supported by the EP11 token” on page 66.

The selection of curves supported by the Soft token depends on the installed version of OpenSSL.

PKCS #11 Baseline Provider support
openCryptoki implements the PKCS #11 Baseline Provider specification. A library implementing PKCS #11
according to the standards of the Baseline Provider Clause is called a PKCS #11 Baseline Provider. Such
a provider has the ability to provide information about its cryptographic services.

A PKCS #11 Baseline Provider library can be exploited by an application conforming to the Baseline
Consumer Clause. Such an application is therefore called a PKCS #11 Baseline Consumer. A Baseline
Consumer calls a Baseline Provider implementation of the PKCS #11 API in order to use the cryptographic
functionality from that provider. Thus, at run-time, a consumer can query information about a provider, for
example, about the offered cryptographic services.

For detailed information about the conformance of a PKCS #11 Baseline Consumer and of a PKCS #11
Baseline Provider read PKCS #11 Cryptographic Token Interface Profiles Version 3.0.

44 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.0/pkcs11-profiles-v3.0.html

Chapter 10. CCA token
A CCA token is a secure key token. Any key generation is processed inside an IBM cryptographic
coprocessor. A clear key is generated and wrapped by a master key which resides only within the
cryptographic coprocessor. The clear key is then deleted and is never visible outside the coprocessor. The
wrapped clear key is called a secure key and can only be unwrapped by using the master key within the
coprocessor. Secure keys can safely be stored on a system, because they cannot be used for decrypting or
encrypting without the master key.

A list of PKCS #11 mechanisms supported by the CCA token is provided, as well as information about the
purpose and use of the pkcscca tool.

As a prerequisite for an operational CCA token, the CCA library (also called CCA host library in other
documentations) must be installed (see Figure 3 on page 13). For information on how to install the CCA
library, refer to Secure Key Solution with the Common Cryptographic Architecture Application Programmer's
Guide.

PKCS #11 mechanisms supported by the CCA token
View a list of mechanisms provided by PKCS #11 which you can use to exploit the openCryptoki
features for the CCA token from within your application. Use the pkcsconf -m -c <CCA_token_slot>
command to list the mechanisms (algorithms), that are supported by the CCA token.

The command output shown in Table 4 on page 45 lists all mechanisms that are supported by the CCA
token in the specified slot.

Table 4. PKCS #11 mechanisms supported by the CCA token

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_DES_KEY_GEN 8-8 bytes GENERATE before 3.16

CKM_DES3_KEY_GEN 24-24 bytes GENERATE before 3.16

CKM_RSA_PKCS_KEY_PAIR_GEN 512-4096 bits GENERATE_KEY_PAIR before 3.16

CKM_RSA_PKCS 512-4096 bits ENCRYPT, DECRYPT, SIGN,
VERIFY, WRAP, UNWRAP

before 3.16

CKM_RSA_PKCS_OAEP 512-4096 ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_RSA_PKCS_PSS 512-4096 bits ENCRYPT, DECRYPT, SIGN,
VERIFY

before 3.16

CKM_MD5_RSA_PKCS 512-4096 bits SIGN, VERIFY before 3.16

CKM_SHA1_RSA_PKCS 512-4096 bits SIGN, VERIFY before 3.16

CKM_SHA1_RSA_PKCS_PSS 512-4096 bits SIGN, VERIFY before 3.16

CKM_SHA224_RSA_PKCS 512-4096 bits SIGN, VERIFY before 3.16

CKM_SHA224_RSA_PKCS_PSS 512-4096 bits SIGN, VERIFY before 3.16

CKM_SHA256_RSA_PKCS 512-4096 bits SIGN, VERIFY before 3.16

CKM_SHA384_RSA_PKCS_PSS 512-4096 bits SIGN, VERIFY before 3.16

CKM_SHA512_RSA_PKCS_PSS 512-4096 bits SIGN, VERIFY before 3.16

© Copyright IBM Corp. 2021 45

https://www.ibm.com/docs/en/linux-on-systems?topic=chs-secure-key-solution-common-cryptographic-architecture-application-programmers-guide
https://www.ibm.com/docs/en/linux-on-systems?topic=chs-secure-key-solution-common-cryptographic-architecture-application-programmers-guide

Table 4. PKCS #11 mechanisms supported by the CCA token (continued)

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_DES_CBC 8-8 bytes ENCRYPT, DECRYPT before 3.16

CKM_DES_CBC_PAD 8-8 bytes ENCRYPT, DECRYPT before 3.16

CKM_DES3_CBC 24-24 bytes ENCRYPT, DECRYPT before 3.16

CKM_DES3_CBC_PAD 24-24 bytes ENCRYPT, DECRYPT before 3.16

CKM_AES_KEY_GEN 16-32 bytes GENERATE before 3.16

CKM_AES_ECB 16-32 bytes ENCRYPT, DECRYPT before 3.16

CKM_AES_CBC 16-32 bytes ENCRYPT, DECRYPT before 3.16

CKM_AES_CBC_PAD 16-32 bytes ENCRYPT, DECRYPT before 3.16

CKM_SHA512 n/a DIGEST before 3.16

CKM_SHA512_HMAC 256-2048 bits SIGN, VERIFY before 3.16

CKM_SHA512_HMAC_GENERAL 256-2048 bits SIGN, VERIFY before 3.16

CKM_SHA512_RSA_PKCS 512-4096 SIGN, VERIFY before 3.16

CKM_SHA384 n/a DIGEST before 3.16

CKM_SHA384_HMAC 192-2048 bits SIGN, VERIFY before 3.16

CKM_SHA384_HMAC_GENERAL 192-2048 bits SIGN, VERIFY before 3.16

CKM_SHA384_RSA_PKCS 512-4096 SIGN, VERIFY before 3.16

CKM_SHA256 n/a DIGEST before 3.16

CKM_SHA256_HMAC 128-2048 bits SIGN, VERIFY before 3.16

CKM_SHA256_HMAC_GENERAL 128-2048 bits SIGN, VERIFY before 3.16

CKM_SHA224 n/a DIGEST before 3.16

CKM_SHA224_HMAC 112-2048 bits SIGN, VERIFY before 3.16

CKM_SHA224_HMAC_GENERAL 112-2048 bits SIGN, VERIFY before 3.16

CKM_SHA_1 n/a DIGEST before 3.16

CKM_SHA_1_HMAC 80-2048 bits SIGN, VERIFY before 3.16

CKM_SHA_1_HMAC_GENERAL 80-2048 bits SIGN, VERIFY before 3.16

CKM_MD5 n/a DIGEST before 3.16

CKM_ECDSA_KEY_PAIR_GEN 160-521 bits GENERATE_KEY_PAIR, EC_F_P,
EC_NAMEDCURVE

before 3.16

CKM_ECDSA 160-521 bits SIGN, VERIFY, EC_F_P,
EC_NAMEDCURVE

before 3.16

CKM_ECDSA_SHA1 160-521 bits SIGN, VERIFY, EC_F_P,
EC_NAMEDCURVE

before 3.16

CKM_GENERIC_SECRET_KEY_GEN 80-2048 bits GENERATE before 3.16

46 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 4. PKCS #11 mechanisms supported by the CCA token (continued)

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_ECDSA_SHA224 160-521 bits SIGN, VERIFY, EC_F_P,
EC_NAMEDCURVE

before 3.16

CKM_GENERIC_SECRET_KEY_GEN 80-2048 bits GENERATE before 3.16

CKM_ECDSA_SHA256 160-521 bits SIGN, VERIFY, EC_F_P,
EC_NAMEDCURVE

before 3.16

CKM_GENERIC_SECRET_KEY_GEN 80-2048 bits GENERATE before 3.16

CKM_ECDSA_SHA384 160-521 bits SIGN, VERIFY, EC_F_P,
EC_NAMEDCURVE

before 3.16

CKM_GENERIC_SECRET_KEY_GEN 80-2048 bits GENERATE before 3.16

CKM_ECDSA_SHA512 160-521 bits SIGN, VERIFY, EC_F_P,
EC_NAMEDCURVE

before 3.16

CKM_GENERIC_SECRET_KEY_GEN 80-2048 bits GENERATE before 3.16

For explanations of the key object properties, see the PKCS #11 Cryptographic Token Interface Standard.

ECC curves supported by the CCA token
View a list of curves supported by the CCA token for elliptic curve cryptography (ECC).

Table 5 on page 47 shows the curves that the CCA token supports for elliptic curve cryptography.

Table 5. Curves supported by the CCA token for elliptic curve cryptography (ECC)

Curve Purpose

brainpoolP160r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP192r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP224r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP256r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP320r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP1384r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP512r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

Chapter 10. CCA token 47

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

Table 5. Curves supported by the CCA token for elliptic curve cryptography (ECC) (continued)

Curve Purpose

prime192v1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

prime256v1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

secp224r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

secp384r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

secp521r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

Usage notes for CCA library functions
Read important information about the usage and restrictions of CCA library functions.

• Plain CCA key objects (that is, CCA secure key objects generated by the CCA library libcsulcca.so)
can be extracted from sensitive openCryptoki key objects for the CCA token by accessing the value of
the CKA_IBM_OPAQUE attribute.

Plain CCA key objects can be imported into sensitive openCryptoki key objects for the CCA token by
assigning the plain CCA key objects to the CKA_IBM_OPAQUE attribute value. This import is supported
for key types:

– CCA DES key token
– CCA DES3 key token
– CCA AES data key token
– CCA internal RSA private key token (RSA-AESM and RSA-AESC)
– CCA RSA public key token (RSA-AESM and RSA-AESC)
– CCA HMAC key token
– CCA internal EC private key token
– CCA EC public key token

CCA AES cipher key token import is not supported and C_CreateObject() returns with
CKR_TEMPLATE_INCONSISTENT.

Plain CCA key objects can also be imported into sensitive openCryptoki key objects for the CCA token by
assigning the value to the CKA_VALUE attribute or other key-type specific attributes using the PKCS #11
C_CreateObject() function. This is supported for RSA private keys and for RSA public keys. Starting
with openCryptoki version 3.14, the CCA token supports the C_CreateObject() function for AES DATA,
DES, DES3, and generic secret keys in addition to RSA keys.

Starting with openCryptoki 3.14, the CCA token also supports plain HMAC and EC keys with different
curves.

• The default CKA_SENSITIVE setting for generating a key is CK_FALSE although the openCryptoki CCA
token handles only secure keys, which correspond to sensitive keys in PKCS #11.

Setting the value of CKA_SENSITIVE to CK_FALSE does not inhibit inspecting the value of CKA_VALUE.
This setting does not compromise security because CKA_VALUE does not contain any sensitive or secret

48 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

information. Also, CKA_IBM_OPAQUE does not contain any information that can be exploited without
the corresponding CCA master key.

• The function C_DigestKey is not supported by the CCA token.

Migrate to a new CCA master key - pkcscca utility
If you need to migrate a CCA key to a new wrapping CCA master key (MK), use the pkcscca tool.

Before you begin
Prerequisite for using the key migration function is that you have installed openCryptoki version 3.4 or
higher.

About this task
There may be situations when CCA master keys must be changed. All CCA secret and private keys
are enciphered (wrapped) with a master key (MK). After a CCA master key is changed, the keys
wrapped with an old master key need to be re-enciphered with the new master key. Only keys which
are marked as CKA_EXTRACTABLE=TRUE can be migrated. However, by default all keys are marked
as CKA_EXTRACTABLE. So only those keys where the user explicitly chooses to mark them as non
extractable, for example, by setting CKA_EXTRACTABLE=FALSE cannot be migrated.

Use the pkcscca tool to migrate wrapped CCA keys.

After a new master key is loaded and set, perform the following steps:

Procedure
1. Stop all processes that are currently using openCryptoki with the CCA token.

a) Stop all applications that use openCryptoki.
b) Find out whether the pkcsslotd daemon is running by issuing one (or both to cross-check) of the

following commands:

$ systemctl status pkcsslotd /* for Linux distributions providing systemd */
$ ps awx | grep pkcsslotd

If the daemon is running, the command output shows a process for pkcsslotd.
c) If applicable, stop the daemon by issuing a command of this form:

$ systemctl stop pkcsslotd.service /* for Linux distributions providing systemd */

2. Back up the token object repository of the CCA token. For example, you can use the following
commands:

cd /var/lib/opencryptoki/cca/
 tar -cvzf ~/cca/TOK_OBJ_backup.tgz TOK_OBJ

3. Migrate the keys of the CCA token object repository with the pkcscca migration tool.

pkcscca -m keys -s <slotid> -k <aes|apka|asym|sym>

The following parameters are mandatory:

-s
slot number for the CCA token

-k
master key type to be migrated: aes, apka, asym, or sym

Chapter 10. CCA token 49

The following parameter is optional:

-m keys
re-encipers private keys only with a new CCA master key.

All the specified token objects representing extractable keys that are found for the CCA token are
re-encrypted and ready for use. Keys with an attribute CKA_EXTRACTABLE=FALSE are not eligible for
migration. The keys that failed to migrate are displayed to the user.

Example:

$ pkcscca -m keys -s 2 -k sym

migrates all private keys wrapped with symmetric master keys found in the CCA plug-in for
openCryptoki in PKCS slot 2.

4. Re-start the previously stopped openCryptoki processes.
Start or restart pkcsslotd if it was stopped in step 1.

Results
All specified keys, for example, all private and secret keys (for asymmetric and symmetric cryptography)
are now re-encrypted with the new CCA master key and are ready for use in CCA verbs.

50 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 11. ICA token
Read about the tasks to be performed if you want to use the ICA token from within the openCryptoki
framework.

The legacy name and therefore the default name of an ICA token is lite.

As a prerequisite for an operational ICA token, the ICA library must be installed (see Figure 3 on page 13).

PKCS #11 mechanisms supported by the ICA token
View a list of mechanisms provided by PKCS #11 which you can use to exploit the openCryptoki
features for the ICA token from within your application. Use the pkcsconf -m -c <ICA_token_slot>
command to list the mechanisms (algorithms), that are supported by the ICA token.

The command output depends on the libica version, whether libica is running in FIPS mode, and on the
processor generation. The output of the pkcsconf -m -c <slot> command corresponds to the list
shown in Table 6 on page 51 which presents all mechanisms supported by the ICA token on an IBM
z15™ machine.

Table 6. Supported mechanism list for the ICA token

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_RSA_PKCS_KEY_PAIR_GEN 512-4096 bits HW, GENERATE_KEY_PAIR before 3.16

CKM_RSA_PKCS 512-4096 bits HW, ENCRYPT, DECRYPT,
SIGN, SIGN_RECOVER,
VERIFY, VERIFY_RECOVER,
WRAP, UNWRAP

before 3.16

CKM_RSA_X_509 512-4096 bits HW, ENCRYPT, DECRYPT,
SIGN, SIGN_RECOVER,
VERIFY, VERIFY_RECOVER,
WRAP, UNWRAP

before 3.16

CKM_SHA1_RSA_PKCS 512-4096 bits SIGN, VERIFY before 3.16

CKM_RSA_PKCS_OAEP 512-4096 bits HW, ENCRYPT, DECRYPT,
WRAP, UNWRAP

before 3.16

CKM_RSA_PKCS_PSS 512-4096 bits HW, SIGN, VERIFY before 3.16

CKM_SHA1_RSA_PKCS_PSS 512-4096 bits HW, SIGN, VERIFY before 3.16

CKM_SHA256_RSA_PKCS 512-4096 bits SIGN, VERIFY before 3.16

CKM_SHA384_RSA_PKCS 512-4096 bits HW, SIGN, VERIFY before 3.16

CKM_SHA512_RSA_PKCS 512-4096 bits SIGN, VERIFY before 3.16

CKM_SHA256_RSA_PKCS_PSS 512-4096 bits HW, SIGN, VERIFY before 3.16

CKM_SHA384_RSA_PKCS_PSS 512-4096 bits HW, SIGN, VERIFY before 3.16

CKM_SHA512_RSA_PKCS_PSS 512-4096 bits HW, SIGN, VERIFY before 3.16

CKM_SHA224_RSA_PKCS 512-4096 bits SIGN, VERIFY before 3.16

CKM_SHA224_RSA_PKCS_PSS 512-4096 bits HW, SIGN, VERIFY before 3.16

CKM_SHA512_224 n/a HW, DIGEST before 3.16

© Copyright IBM Corp. 2021 51

Table 6. Supported mechanism list for the ICA token (continued)

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_SHA512_224_HMAC n/a HW, SIGN, VERIFY before 3.16

CKM_SHA512_224_HMAC_GENERAL n/a HW, SIGN, VERIFY before 3.16

CKM_SHA512_256 n/a HW, DIGEST before 3.16

CKM_SHA512_256_HMAC n/a HW, SIGN, VERIFY before 3.16

CKM_SHA512_256_HMAC_GENERAL n/a HW, SIGN, VERIFY before 3.16

CKM_DES_KEY_GEN 8-8 bytes HW, GENERATE before 3.16

CKM_DES_ECB 8-8 bytes HW, ENCRYPT, DECRYPT,
WRAP, UNWRAP

before 3.16

CKM_DES_CBC 8-8 bytes HW, ENCRYPT, DECRYPT,
WRAP, UNWRAP

before 3.16

CKM_DES_CBC_PAD 8-8 bytes HW, ENCRYPT, DECRYPT,
WRAP, UNWRAP

before 3.16

CKM_DES3_KEY_GEN 24-24 bytes HW, GENERATE before 3.16

CKM_DES3_ECB 24-24 bytes HW, ENCRYPT, DECRYPT,
WRAP, UNWRAP

before 3.16

CKM_DES3_CBC 24-24 bytes HW, ENCRYPT, DECRYPT,
WRAP, UNWRAP

before 3.16

CKM_DES3_MAC 24-24 bytes SIGN, VERIFY before 3.16

CKM_DES3_MAC_GENERAL 24-24 bytes SIGN, VERIFY before 3.16

CKM_DES3_CBC_PAD 24-24 bytes HW, ENCRYPT, DECRYPT,
WRAP, UNWRAP

before 3.16

CKM_DES3_CMAC_GENERAL 16-24 bytes SIGN, VERIFY before 3.16

CKM_DES3_CMAC 16-24 bytes SIGN, VERIFY before 3.16

CKM_DES_OFB64 8-8 bytes ENCRYPT, DECRYPT before 3.16

CKM_DES_CFB64 8-8 bytes ENCRYPT, DECRYPT before 3.16

CKM_DES_CFB8 8-8 bytes ENCRYPT, DECRYPT before 3.16

CKM_MD5_HMAC n/a SIGN, VERIFY before 3.16

CKM_MD5_HMAC_GENERAL n/a SIGN, VERIFY before 3.16

CKM_SHA_1 n/a HW, DIGEST before 3.16

CKM_SHA_1_HMAC n/a HW, SIGN, VERIFY before 3.16

CKM_SHA_1_HMAC_GENERAL n/a HW, SIGN, VERIFY before 3.16

CKM_SHA256 n/a HW, DIGEST before 3.16

CKM_SHA256_HMAC n/a HW, SIGN, VERIFY before 3.16

CKM_SHA256_HMAC_GENERAL n/a HW, SIGN, VERIFY before 3.16

CKM_SHA224 n/a HW, DIGEST before 3.16

52 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 6. Supported mechanism list for the ICA token (continued)

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_SHA224_HMAC n/a HW, SIGN, VERIFY before 3.16

CKM_SHA224_HMAC_GENERAL n/a HW, SIGN, VERIFY before 3.16

CKM_SHA384 n/a HW, DIGEST before 3.16

CKM_SHA384_HMAC HW, n/a SIGN, VERIFY before 3.16

CKM_SHA384_HMAC_GENERAL n/a HW, SIGN, VERIFY before 3.16

CKM_SHA512 n/a HW, DIGEST before 3.16

CKM_SHA512_HMAC n/a HW, SIGN, VERIFY before 3.16

CKM_SHA512_HMAC_GENERAL n/a SIGN, VERIFY before 3.16

CKM_GENERIC_SECRET_KEY_GEN 80-2048 bits HW, GENERATE before 3.16

CKM_ECDSA_KEY_PAIR_GEN 160-521 bits HW, GENERATE_KEY_PAIR,
EC_F_P, EC_OID

before 3.16

CKM_ECDSA 160-521 bits HW, SIGN, VERIFY, EC_F_P,
EC_OID

before 3.16

CKM_ECDSA_SHA1 160-521 bits HW, SIGN, VERIFY, EC_F_P,
EC_OID

before 3.16

CKM_ECDSA_SHA224 160-521 bits HW, SIGN, VERIFY, EC_F_P,
EC_OID

before 3.16

CKM_ECDSA_SHA256 160-521 bits HW, SIGN, VERIFY, EC_F_P,
EC_OID

before 3.16

CKM_ECDSA_SHA384 160-521 bits HW, SIGN, VERIFY, EC_F_P,
EC_OID

before 3.16

CKM_ECDSA_SHA512 160-521 bits SIGN, VERIFY, EC_F_P,
EC_OID

before 3.16

CKM_ECDH1_DERIVE 160-521 bits HW, DERIVE, EC_F_P, EC_F_P,
EC_OID

before 3.16

CKM_AES_KEY_GEN 16-32 bytes HW, GENERATE before 3.16

CKM_AES_ECB 16-32 bytes HW, ENCRYPT, DECRYPT,
WRAP, UNWRAP

before 3.16

CKM_AES_CBC 16-32 bytes HW, ENCRYPT, DECRYPT,
WRAP, UNWRAP

before 3.16

CKM_AES_MAC 16-32 bytes SIGN, VERIFY before 3.16

CKM_AES_MAC_GENERAL 16-32 bytes SIGN, VERIFY before 3.16

CKM_AES_CBC_PAD 16-32 bytes HW, ENCRYPT, DECRYPT,
WRAP, UNWRAP

before 3.16

CKM_AES_CTR 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_AES_GCM 16-32 bytes ENCRYPT, DECRYPT before 3.16

Chapter 11. ICA token 53

Table 6. Supported mechanism list for the ICA token (continued)

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_AES_CMAC_GENERAL 16-32 bytes SIGN, VERIFY before 3.16

CKM_AES_CMAC 16-32 bytes SIGN, VERIFY before 3.16

CKM_AES_OFB 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_AES_CFB64 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_AES_CFB8 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_AES_CFB128 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_IBM_SHA3_224 n/a DIGEST before 3.16

CKM_IBM_SHA3_256 n/a DIGEST before 3.16

CKM_IBM_SHA3_384 n/a DIGEST before 3.16

CKM_IBM_SHA3_512 n/a DIGEST before 3.16

CKM_IBM_SHA3_224_HMAC n/a SIGN, VERIFY before 3.16

CKM_IBM_SHA3_256_HMAC n/a SIGN, VERIFY before 3.16

CKM_IBM_SHA3_384_HMAC n/a SIGN, VERIFY before 3.16

CKM_IBM_SHA3_512_HMAC n/a SIGN, VERIFY before 3.16

Certain mechanisms indicate the HW flag in the Properties column (short form for the CKF_HW). If
for theses mechanisms, the CKF_HW flag is set to TRUE, the pertaining cryptographic operations are
performed by the cryptographic hardware. If the flag is not set for these mechanisms, the operations are
performed in software.

For a description of mechanisms with a name pattern of CKM_IBM_... refer to “IBM-specific
mechanisms” on page 87.

Usage notes for the ICA library functions
As of openCryptoki version 3.6, the C_SeedRandom function of the ICA token always returns
CKR_RANDOM_SEED_NOT_SUPPORTED.

ECC curves supported by the ICA token
View a list of curves supported by the ICA token for elliptic curve cryptography (ECC).

Table 7 on page 55 shows the maximum number of curves that the ICA token can support if all
prerequisites are fulfilled at their best conditions. The following dependencies exist:

• Which openCryptoki version (and thus which libica version) is used? Refer to the applicable libica
documentation for information about supported curves.

• Which cryptographic coprocessors are available?
• Is the MSA9 component of IBM z15 or later available?

54 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

• Is libica or OpenSSL running in FIPS mode? When FIPS mode is active for libica, OpenSSL is also set into
FIPS mode. However, note that the case where libica does not run in FIPS mode, but OpenSSL does,
may cause errors when software fallbacks are used. If, for example, an elliptic curve is supported by
hardware in libica, but not by OpenSSL, because OpenSSL runs in FIPS mode, this software fallback
fails.

Table 7. Curves supported by the ICA token for elliptic curve cryptography (ECC)

Curve Purpose

brainpoolP160r1
(1), (3)

• for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP192r1
(1), (3)

• for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP224r1
(1), (3)

• for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP256r1
(1), (3)

• for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP320r1
(1), (3)

• for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP1384r1
(1), (3)

• for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP512r1
(1), (3)

• for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

prime192v1 (1),
(3)

• for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

prime256v1 (1),
(2)

• for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

secp224r1 (1) • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

secp384r1 (1), (2) • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

secp521r1 (1), (2) • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

Notes:

(1) supported via CryptoExpress CCA coprocessor
(2) supported via CPACF on processors with MSA9 component of IBM z15 or later
(3) not available if libica runs in FIPS mode

Chapter 11. ICA token 55

56 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 12. EP11 token
An EP11 token is a secure key token. A list of PKCS #11 mechanisms supported by the EP11 token
is provided, as well as information about the purpose and use of the tools pkcsep11_migrate and
pkcsep11_session.

You can read some information about secure keys in Chapter 10, “CCA token,” on page 45.

As a prerequisite for an operational EP11 token, the EP11 library (also called EP11 host library in other
documentations) must be installed (see Figure 3 on page 13).

For EP11 tokens, you can introduce one or multiple tokens into the openCryptoki framework (see “Adding
tokens to openCryptoki” on page 41) and configure them differently. For information on how to install the
EP11 library and on how to configure a certain EP11 token using a token specific configuration file, refer to
Exploiting Enterprise PKCS #11 using openCryptoki.

Defining an EP11 token-specific configuration file
One default configuration file for the EP11 token called ep11tok.conf is delivered by openCryptoki.
You must adapt it according to your installation's system environment. If you use multiple EP11 tokens,
you must provide an individual token configuration file for each token. Each slot entry in the global
configuration file opencryptoki.conf defines these configuration file names.

In the example from “Adding tokens to openCryptoki” on page 41, these names are defined as
ep11tok01.conf and ep11tok02.conf. If the environment variable OCK_EP11_TOKEN_DIR is set,
then the EP11 token looks for the configuration file or files in the directory specified with this variable.
If OCK_EP11_TOKEN_DIR is not set, then the EP11 token configuration files are searched in the global
openCryptoki directory, for example: /etc/opencryptoki/ep11tok.conf.

Example: If a slot entry in opencryptoki.conf specifies confname = ep11tok02.conf, and you
set the environment variable OCK_EP11_TOKEN_DIR like:

export OCK_EP11_TOKEN_DIR=/home/user/ep11token

then your EP11 token configuration file appears here:

<root>/home/user/ep11token/ep11tok02.conf

You can use the shown example to set your own token directory for test purposes.

Note: The setting of this environment variable is ignored, if a program trying to access the designated
EP11 token is marked with file permission setuid.

The following is a list of available options for an EP11 token configuration file. A sample of such a file is
shown in Figure 12 on page 62.

APQN_ALLOWLIST

Because different EP11 hardware security modules (HSM) can use different wrapping keys (referred
to as master keys in the TKE environment), users need to specify which HSM, in practice an adapter/
domain pair, can be used by the EP11 token as a target for cryptographic requests. Therefore, an EP11
token configuration file contains a list of adapter/domain pairs to be used.

You start this list of adapter/domain pairs starting with a line containing the keyword
APQN_ALLOWLIST. Next follows the list which can specify up to 512 adapter/domain pairs, denoted
by decimal numbers in the range 0 - 255. Each pair designates an adapter (first number) and a domain
(second number) accessible to the EP11 token. Close the list using the keyword END.

Alternatively, you can use the keyword APQN_ANY to define that all adapter/domain pairs with EP11
firmware, that are available to the system, can be used as target adapters. This is the default.

Notes:

© Copyright IBM Corp. 2021 57

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html

• The term APQN stands for adjunct processor queue number. It designates the combination of a
cryptographic coprocessor (adapter) and a domain, a so-called adapter/domain pair. At least one
adapter/domain pair must be specified.

• If more than one APQN is used by a token, then these APQNs must be configured with the same
master key.

• This attribute used to be APQN_WHITELIST but has been renamed due to the inclusive terminology
initiative. For compatibility reasons, you can still use the old name, but this is considered to be
deprecated.

An adapter/domain pair is displayed by the lszcrypt tool or in the sys file system (for example,
in /sys/bus/ap/devices) in the form card .domain, where both numbers are displayed in
hexadecimal format.

There are two ways to specify the cryptographic adapter:

• either as an explicit list of adapter/domain pairs:

 APQN_ALLOWLIST
 8 13
 10 13
 END

The adapter and domain can be given in decimal, octal (with leading 0), or hexadecimal (with
leading 0x) notation:

 APQN_ALLOWLIST
 8 0x0d
 0x0a 13
 END

Valid adapter and domain values are in the range 0 to 255.
• or as any available cryptographic adapters:

APQN_ANY

In the example from Figure 12 on page 62, adapter 0 with domains 0 and 1, and adapter 2 with
domain 84 are specified as target for requests from the EP11 token. In Figure 10 on page 59,
these adapter/domain pairs are shown in hexadecimal notation as APQNs (00,0000), (00,0001), and
(02,0054).

58 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Figure 10. Cryptographic configuration for an LPAR

CPFILTER
The list of mechanisms returned by C_GetMechanismList is filtered using the domain or access
control point (ACP) settings of the used cryptographic coprocessors. The EP11 access control point
filter configuration file (ACP-filter configuration file) is used to associate certain access (domain)
control points with mechanisms that are dependent on these access control points. The default
ACP-filter configuration file is ep11cpfilter.conf located in the same directory as this EP11 token
configuration file. You can optionally specify the name or location, or both, of the ACP-filter file:

CPFILTER /etc/opencryptoki/ep11cpfilter.conf

Chapter 12. EP11 token 59

#
EP11 token ACP-filter configuration
#
The list of mechanisms returned by C_GetMechanismList is filtered
using the access control point settings of the used crypto adapters.
The EP11 ACP-filter config file is used to associate certain access control
points with mechanisms that are dependent on these access control points.
#
Syntax:
acp: mech1, mech2, ...
#
Both, acp as well as mech<n> is specified as name or in decimal, octal
(with leading 0) or hexadecimal (with leading 0x):
#
XCP_CPB_SIGN_SYMM: CKM_SHA256_HMAC, CKM_SHA256_HMAC_GENERAL
4: 0x00000251, 0x00000252
#

sign with HMAC or CMAC
XCP_CPB_SIGN_SYMM: CKM_SHA256_HMAC, CKM_SHA256_HMAC_GENERAL, CKM_SHA224_HMAC,
CKM_SHA224_HMAC_GENERAL, CKM_SHA384_HMAC, CKM_SHA384_HMAC_GENERAL, CKM_SHA512_HMAC,
CKM_SHA512_HMAC_GENERAL, CKM_SHA_1_HMAC, CKM_SHA_1_HMAC_GENERAL, CKM_IBM_SHA3_224_HMAC,
CKM_IBM_SHA3_256_HMAC,CKM_IBM_SHA3_384_HMAC, CKM_IBM_SHA3_512_HMAC, CKM_IBM_CMAC,
CKM_DES3_CMAC, CKM_DES3_CMAC_GENERAL, CKM_AES_CMAC, CKM_AES_CMAC_GENERAL

verify with HMAC or CMAC
XCP_CPB_SIGVERIFY_SYMM: CKM_SHA256_HMAC, CKM_SHA256_HMAC_GENERAL, CKM_SHA224_HMAC,
CKM_SHA224_HMAC_GENERAL, CKM_SHA384_HMAC, CKM_SHA384_HMAC_GENERAL, CKM_SHA512_HMAC,
CKM_SHA512_HMAC_GENERAL, CKM_SHA_1_HMAC, CKM_SHA_1_HMAC_GENERAL, CKM_IBM_SHA3_224_HMAC,
CKM_IBM_SHA3_256_HMAC,CKM_IBM_SHA3_384_HMAC, CKM_IBM_SHA3_512_HMAC, CKM_IBM_CMAC,
CKM_DES3_CMAC, CKM_DES3_CMAC_GENERAL, CKM_AES_CMAC, CKM_AES_CMAC_GENERAL

encrypt with symmetric keys
XCP_CPB_ENCRYPT_SYMM: CKM_AES_ECB, CKM_AES_CBC, CKM_AES_CBC_PAD, CKM_DES3_ECB,
CKM_DES3_CBC, CKM_DES3_CBC_PAD, CKM_DES_ECB, CKM_DES_CBC

#decrypt with private keys
XCP_CPB_DECRYPT_ASYMM: CKM_RSA_PKCS

decrypt with symmetric keys
XCP_CPB_DECRYPT_SYMM: CKM_AES_ECB, CKM_AES_CBC, CKM_AES_CBC_PAD, CKM_DES3_ECB,
CKM_DES3_CBC, CKM_DES3_CBC_PAD, CKM_DES_ECB, CKM_DES_CBC

generate asymmetric keypairs
XCP_CPB_KEYGEN_ASYMM: CKM_RSA_PKCS_KEY_PAIR_GEN, CKM_RSA_X9_31_KEY_PAIR_GEN,
CKM_EC_KEY_PAIR_GEN, CKM_DSA_KEY_PAIR_GEN, CKM_DH_PKCS_KEY_PAIR_GEN

DSA private-key use
XCP_CPB_ALG_DSA: CKM_DSA_PARAMETER_GEN, CKM_DSA_KEY_PAIR_GEN, CKM_DSA, CKM_DSA_SHA1

Diffie-Hellman use (private keys)
XCP_CPB_ALG_DH: CKM_ECDH1_DERIVE, CKM_DH_PKCS_PARAMETER_GEN, CKM_DH_PKCS_KEY_PAIR_GEN,
CKM_DH_PKCS_DERIVE

enable support of curve25519, c448 and related algorithms incl. EdDSA (ed25519 and ed448)
XCP_CPB_ALG_EC_25519: CKM_IBM_EC_C25519, CKM_IBM_EDDSA_SHA512, CKM_IBM_EC_C448,
CKM_IBM_ED448_SHA3

#enable support of Dilithium
XCP_CPB_ALG_PQC_DILITHIUM: CKM_IBM_DILITHIUM

Figure 11. Excerpt of a sample ACP-filter configuration file

DIGEST_LIBICA <libica-path> | DEFAULT | OFF
To improve the performance of required hash functions, the EP11 token on initialization loads the
default libica library. If required, the EP11 token invokes the libica SHA-based hash functions,
because the libica library performs these hash functions on the CPACF, thus avoiding hash processing
on a cryptographic coprocessor which results in I/O operations to the adapter.

libica provides an OpenSSL based software fall-back, in case CPACF or a certain hashing function of
CPACF is not available. In case a libica operation fails, because neither the hardware nor the software
support is available, or if libica is not available at all, then the request is passed to the EP11 library
instead.

With the DIGEST_LIBICA option, you can control which libica library is loaded:

60 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

DEFAULT
The default libica library is loaded. If libica could not be found, a message is issued to syslog,
and all hash based functions use the EP11 library.

The same behavior is applied if the DIGEST_LIBICA option is not specified at all.

<libica-path>
The specified library is loaded. If it can not be found, a message is issued to syslog, and token
initialization fails.

OFF
No libica is loaded, and all hash based functions use the EP11 library.

If DIGEST_LIBICA is not specified, then the default libica library is loaded (same behavior as for
DIGEST_LIBICA DEFAULT).

FORCE_SENSITIVE
Specify this option to force that the default for CKA_SENSITIVE is CK_TRUE for secret keys. For more
information, see “Usage notes for the EP11 library functions” on page 68.

OPTIMIZE_SINGLE_PART_OPERATIONS
Set this option to optimize the performance of single part sign- and verify-operations, as well as of
single part encrypt- or decrypt-operations. Then the init call is not passed through the EP11 library
as long as there is no corresponding multi-part operation.

When this option is enabled, error handling can be slightly different, when errors from the deferred
init call are presented during the first update call or during the calls to C_Sign, C_Verify,
C_Encrypt, or C_Decrypt for a single part operation. That is, the first update call on a multi part
operation or the mentioned calls for a single part operation may return errors, which are usually not
returned by the update call. Such errors may be for example:

CKR_OBJECT_HANDLE_INVALID
CKR_ATTRIBUTE_VALUE_INVALID
CKR_KEY_HANDLE_INVALID
CKR_KEY_SIZE_RANGE
CKR_KEY_TYPE_INCONSISTENT
CKR_MECHANISM_INVALID
CKR_MECHANISM_PARAM_INVALID

PKEY_MODE
Use this option to define that for EP11 secure keys of type AES or EC an additional pertaining
protected key shall be created, and the protected keys shall be used whenever possible. This
significantly improves performance, because protected keys work on the CPACF feature, and calls
to CPACF are much faster than calls to an EP11 cryptographic coprocessor.

Notes:

• Processing of the PKEY_MODE option is performed by a transparent IBM-specific mechanism.
This mechanism in turn reads certain attributes of the processed key object to determine the
generation of the protected key. The new protected key is bound to the key object by the attribute
CKA_IBM_OPAQUE_PKEY. For an explanation of the involved attributes, read “Miscellaneous
attributes” on page 96.

• The PKEY_MODE option is effective only on IBM z15 processors or later, with EP11 cryptographic
coprocessors starting with CEX7P. It requires the EP11 host library 3.0 or later.

• Keys created before introducing the protected key option are not usable for protected key support,
because they do not have the CKA_IBM_PROTKEY_EXTRACTABLE attribute. Only keys created after
activating the protected key option with the CREATE4NONEXTR mode are eligible for getting a
protected key, depending on their key type (only AES and EC). See also “Miscellaneous attributes”
on page 96.

Set the PKEY_MODE option to one of the following modes:

Chapter 12. EP11 token 61

DISABLED
Protected key support is disabled. All keys are used as secure keys. This mode allows to
completely disable protected key support, for example, for performance comparisons.

USE_EXISTING
This is the default.
New keys

If the application did not specify attribute CKA_IBM_PROTKEY_EXTRACTABLE in its template
for key generation, new keys of any type get CKA_IBM_PROTKEY_EXTRACTABLE=CK_FALSE,
and no protected key is created.

Existing keys
Existing secure keys with a valid protected key are used via this protected key, and any invalid
protected key is re-created with the help of the current firmware master key.

CREATE4NONEXTR
New keys

If the application did not specify CKA_IBM_PROTKEY_EXTRACTABLE in its template for
key generation, new keys of any type with CKA_EXTRACTABLE=CK_FALSE get attribute
CKA_IBM_PROTKEY_EXTRACTABLE=CK_TRUE and a protected key is automatically created
at first use of the key.

Existing keys
Existing keys with a protected key bound to that key with attribute CKA_IBM_OPAQUE_PKEY
are used via this bound protected key. Also, if required, for example, after deactivating and
reactivating an LPAR, any invalid protected key is re-created by wrapping with the current
firmware master key.

STRICT_MODE
In strict-mode, all session-keys strictly belong to the PKCS #11 session that created it. When the
PKCS #11 session ends, all session keys created for this session can no longer be used.

For more information, read topic Controlling access to cryptographic objects in Exploiting Enterprise
PKCS #11 using openCryptoki.

USE_PRANDOM
Set this option to control from where the EP11 token reads random data. With USE_PRANDOM
specified, the EP11 token reads random data from /dev/prandom, or from /dev/urandom if /dev/
prandom is not available. The default is to read the random data using the m_GenerateRandom
function from the Crypto Express EP11 coprocessor.

VHSM_MODE
In VHSM-mode (virtual-HSM), all keys generated by the EP11 token strictly belong to the EP11 token
that created it. Every EP11 token running in this mode requires a VHSM card-PIN which must be set
using the pkcsep11_session tool.

#
EP11 token configuration
#
APQN_WHITELIST
0 0
0 1
2 84
END
FORCE_SENSITIVE
STRICT_MODE
VHSM_MODE
CPFILTER /etc/opencryptoki/ep11cpfilter.conf
OPTIMIZE_SINGLE_PART_OPERATIONS
DIGEST_LIBICA DEFAULT
USE_PRANDOM

Figure 12. Sample of an EP11 token configuration file

62 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://www.ibm.com/docs/en/linux-on-systems?topic=overview-exploiting-enterprise-pkcs-11-using-opencryptoki
https://www.ibm.com/docs/en/linux-on-systems?topic=overview-exploiting-enterprise-pkcs-11-using-opencryptoki

PKCS #11 mechanisms supported by the EP11 token
View a list of mechanisms provided by PKCS #11 which you can use to exploit the openCryptoki features
for the EP11 token from within your application.

Use the pkcsconf command with the shown parameters to retrieve a complete list of mechanisms that
are supported by the EP11 token:

$ pkcsconf -m -c <slot>
Mechanism #2
 Mechanism: 0x131 (CKM_DES3_KEY_GEN)
 Key Size: 24-24
 Flags: 0x8001 (CKF_HW|CKF_GENERATE)
…
Mechanism #10
 Mechanism: 0x132 (CKM_DES3_ECB)
 Key Size: 24-24
 Flags: 0x60301 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_WRAP|CKF_UNWRAP)
Mechanism #11
 Mechanism: 0x133 (CKM_DES3_CBC)
 Key Size: 24-24
 Flags: 0x60301 (CKF_HW|CKF_ENCRYPT|CKF_DECRYPT|CKF_WRAP|CKF_UNWRAP)
...

On an Crypto Express EP11 coprocessor (CEX*P) which is configured to support all applicable PKCS #11
mechanisms from the current openCryptoki version, the EP11 token can exploit the mechanisms listed
by the pkcsconf -m -c <slot> command output. This output corresponds to the list shown in Table
8 on page 63. Each mechanism provides its supported key size and some further properties such as
hardware support and mechanism information flags. These flags provide information about the PKCS
#11 functions that may use the mechanism. In some cases, the flags also provide further attributes that
describe the supported variants of the mechanism. Typical functions are for example, encrypt, decrypt,
wrap key, unwrap key, sign, or verify.

Table 8. PKCS #11 mechanisms supported by the EP11 token

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_RSA_PKCS_OAEP 1024-4096 bits ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_RSA_PKCS_KEY_PAIR_GEN 1024-4096 bits GENERATE_KEY_PAIR before 3.16

CKM_RSA_X9_31_KEY_PAIR_GEN 1024-4096 bits GENERATE_KEY_PAIR before 3.16

CKM_RSA_PKCS_PSS 1024-4096 bits SIGN, VERIFY before 3.16

CKM_SHA1_RSA_X9_31 1024-4096 bits SIGN, VERIFY before 3.16

CKM_SHA1_RSA_PKCS 1024-4096 bits SIGN, VERIFY before 3.16

CKM_SHA1_RSA_PKCS_PSS 1024-4096 bits SIGN, VERIFY before 3.16

CKM_SHA256_RSA_PKCS 1024-4096 bits SIGN, VERIFY before 3.16

CKM_SHA256_RSA_PKCS_PSS 1024-4096 bits SIGN, VERIFY before 3.16

CKM_SHA224_RSA_PKCS 1024-4096 bits SIGN, VERIFY before 3.16

CKM_SHA224_RSA_PKCS_PSS 1024-4096 bits SIGN, VERIFY before 3.16

CKM_SHA384_RSA_PKCS 1024-4096 bits SIGN, VERIFY before 3.16

CKM_SHA384_RSA_PKCS_PSS 1024-4096 bits SIGN, VERIFY before 3.16

CKM_SHA512_RSA_PKCS 1024-4096 bits SIGN, VERIFY before 3.16

CKM_SHA512_RSA_PKCS_PSS 1024-4096 bits SIGN, VERIFY before 3.16

Chapter 12. EP11 token 63

Table 8. PKCS #11 mechanisms supported by the EP11 token (continued)

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_AES_KEY_GEN 16-32 bytes GENERATE before 3.16

CKM_AES_ECB 16-32 bytes ENCRYPT, DECRYPT before 3.16

CKM_AES_CBC 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_AES_CBC_PAD 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_DES2_KEY_GEN 16-16 bytes GENERATE before 3.16

CKM_DES3_KEY_GEN 24-24 bytes GENERATE before 3.16

CKM_DES3_ECB 16-24 bytes ENCRYPT, DECRYPT before 3.16

CKM_DES3_CBC 16-24 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_DES3_CBC_PAD 16-24 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_SHA256 n/a DIGEST before 3.16

CKM_SHA256_KEY_DERIVATION n/a DERIVE before 3.16

CKM_SHA256_HMAC 128-256 bytes SIGN, VERIFY before 3.16

CKM_SHA224 n/a DIGEST before 3.16

CKM_SHA224_KEY_DERIVATION n/a DERIVE before 3.16

CKM_SHA224_HMAC 112-256 bytes SIGN, VERIFY before 3.16

CKM_SHA_1 n/a DIGEST before 3.16

CKM_SHA1_KEY_DERIVATION n/a DERIVE before 3.16

CKM_SHA_1_HMAC 80-256 bytes SIGN, VERIFY before 3.16

CKM_SHA384 n/a DIGEST before 3.16

CKM_SHA384_KEY_DERIVATION n/a DERIVE before 3.16

CKM_SHA384_HMAC 192-256 bytes SIGN, VERIFY before 3.16

CKM_SHA512 n/a DIGEST before 3.16

CKM_SHA512_KEY_DERIVATION n/a DERIVE before 3.16

CKM_SHA512_HMAC 256-256 bytes SIGN, VERIFY before 3.16

CKM_SHA512_256 n/a DIGEST before 3.16

CKM_SHA512_256_HMAC 128-256 bytes SIGN, VERIFY before 3.16

CKM_SHA512_224 n/a DIGEST before 3.16

CKM_SHA512_224_HMAC 112-256 bytes SIGN, VERIFY before 3.16

CKM_ECDSA_KEY_PAIR_GEN 192-521 bits GENERATE_KEY_PAIR,
EC_F_P, EC_F_P, EC_OID,
EC_UNCOMPRESS

before 3.16

64 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 8. PKCS #11 mechanisms supported by the EP11 token (continued)

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_ECDSA 192-521 bits SIGN, VERIFY, EC_F_P,
EC_F_P, EC_OID,
EC_UNCOMPRESS

before 3.16

CKM_ECDSA_SHA1 192-521 bits SIGN, VERIFY, EC_F_P,
EC_F_P, EC_OID,
EC_UNCOMPRESS

before 3.16

CKM_ECDH1_DERIVE 192-521 bits DERIVE, EC_F_P,
EC_UNCOMPRESS

before 3.16

CKM_DSA_PARAMETER_GEN 1024-3072 bits GENERATE before 3.16

CKM_DSA_KEY_PAIR_GEN 1024-3072 bits GENERATE_KEY_PAIR before 3.16

CKM_DSA 1024-3072 bits SIGN, VERIFY before 3.16

CKM_DSA_SHA1 1024-3072 bits SIGN, VERIFY before 3.16

CKM_DH_PKCS_PARAMETER_GEN 1024-3072 bits GENERATE before 3.16

CKM_DH_PKCS_KEY_PAIR_GEN 1024-3072 bits GENERATE_KEY_PAIR before 3.16

CKM_DH_PKCS_DERIVE 1024-3072 bits DERIVE before 3.16

CKM_IBM_DILITHIUM 256-256 bytes SIGN, VERIFY,
GENERATE_KEY_PAIR

before 3.16

CKM_RSA_X9_31 1024-4096 bits SIGN, VERIFY before 3.16

CKM_PBE_SHA1_DES3_EDE_CBC 24-24 bytes GENERATE before 3.16

CKM_IBM_SHA3_224 n/a DIGEST before 3.16

CKM_IBM_SHA3_256 n/a DIGEST before 3.16

CKM_IBM_SHA3_384 n/a DIGEST before 3.16

CKM_IBM_SHA3_512 n/a DIGEST before 3.16

CKM_IBM_SHA3_224_HMAC 112-256 bytes SIGN, VERIFY before 3.16

CKM_IBM_SHA3_256_HMAC 128-256 bytes SIGN, VERIFY before 3.16

CKM_IBM_SHA3_384_HMAC 192-256 bytes SIGN, VERIFY before 3.16

CKM_IBM_SHA3_512_HMAC 256-256 bytes SIGN, VERIFY before 3.16

CKM_ECDSA_SHA224 192-521 bits SIGN, VERIFY, EC_F_P,
EC_OID, EC_UNCOMPRESS

before 3.16

CKM_ECDSA_SHA256 192-521 bits SIGN, VERIFY, EC_F_P,
EC_OID, EC_UNCOMPRESS

before 3.16

CKM_ECDSA_SHA384 192-521 bits SIGN, VERIFY, EC_F_P,
EC_OID, EC_UNCOMPRESS

before 3.16

CKM_ECDSA_SHA512 192-521 bits SIGN, VERIFY, EC_F_P,
EC_OID, EC_UNCOMPRESS

before 3.16

CKM_IBM_EC_C25519 256-256 bytes DERIVE, EC_F_P,
EC_UNCOMPRESS

before 3.16

Chapter 12. EP11 token 65

Table 8. PKCS #11 mechanisms supported by the EP11 token (continued)

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_IBM_EC_X25519 is a synonym for
CKM_IBM_EC_C25519

CKM_IBM_EC_C448 448-448 bytes DERIVE, EC_F_P,
EC_UNCOMPRESS

before 3.16

CKM_IBM_EC_X448 is a synonym for
CKM_IBM_EC_C448

CKM_IBM_ED25519_SHA512 256-256 bytes SIGN, VERIFY, EC_F_P,
EC_UNCOMPRESS

before 3.16

CKM_IBM_EDDSA_SHA512 is a synonym for
CKM_IBM_ED25519_SHA512

before 3.16

CKM_IBM_ED448_SHA3 448-448 bytes SIGN, VERIFY, EC_F_P,
EC_UNCOMPRESS

before 3.16

CKM_IBM_CMAC 16-32 bytes SIGN, VERIFY before 3.16

CKM_AES_CMAC 16-32 bytes SIGN, VERIFY before 3.16

CKM_DES3_CMAC 16-24 bytes SIGN, VERIFY before 3.16

CKM_IBM_ATTRIBUTEBOUND_WRAP 0-4096 bits WRAP, UNWRAP 3.16

For a description of mechanisms with a name pattern of CKM_IBM_... refer to Chapter 16, “IBM-specific
mechanisms and features for openCryptoki ,” on page 87.

For more detailed information on how to use the EP11 token, refer to Exploiting Enterprise PKCS #11
using openCryptoki.

For explanation about the key object properties see the PKCS #11 Cryptographic Token Interface
Standard.

ECC curves supported by the EP11 token
View a list of curves that are supported by the EP11 token for elliptic curve cryptography (ECC).

For the support of elliptic curve cryptography, the EP11 token provides standard mechanisms and IBM-
specific mechanisms for key derivation and for sign and verify operations. For more information, refer to
“PKCS #11 mechanisms supported by the EP11 token” on page 63.

Table 9. Curves supported by the EP11 token for elliptic curve cryptography (ECC)

Curve Purpose

brainpoolP160r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP160t1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP192r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

66 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

Table 9. Curves supported by the EP11 token for elliptic curve cryptography (ECC) (continued)

Curve Purpose

brainpoolP192t1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP224r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP224t1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP256r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP256t1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP320r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP320t1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP1384r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP384t1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP512r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

brainpoolP512t1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

prime192v1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

prime256v1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

secp224r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

secp256k1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

secp384r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

Chapter 12. EP11 token 67

Table 9. Curves supported by the EP11 token for elliptic curve cryptography (ECC) (continued)

Curve Purpose

secp521r1 • for Sign/Verify operations with CKM_ECDSA and CKM_ECDSA_SHAnnn
• for ECDH with CKM_ECDH1_DERIVE

Montgomery curves, only for ECDH with certain IBM-specific mechanisms

X448 ECDH with CKM_IBM_EC_C448

X25519 ECDH with CKM_IBM_EC_C25519

Edwards Curves, only for Sign/Verify (EdDSA) with certain IBM-specific mechanisms

ed448 Sign/Verify with CKM_IBM_ED448_SHA3

ed25519 Sign/Verify with CKM_IBM_ED25519_SHA512

The EP11 library provides access control point 55 to enable support of curve25519, c448, and related
algorithms, including EdDSA:

55 XCP_CPB_ALG_EC_25519 enable support of curve25519, c448 and related algorithms
 incl. EdDSA

Usage notes for the EP11 library functions
In this topic, you find information about certain limitations of the EP11 library.

• The EP11 library implements the secure key concept as explained in the introduction of Chapter 10,
“CCA token,” on page 45.

Therefore, the EP11 token only knows sensitive secret keys (CKO_SECRET_KEY). However, the PKCS
#11 standard defines the default value of attribute CKA_SENSITIVE to be CK_FALSE. Thus, for
previous versions of the EP11 token, all applications must have the attribute value of CKA_SENSITIVE
explicitly changed to CK_TRUE whenever an EP11 secret key had been generated, unwrapped, or build
with C_CreateObject.

Starting with the EP11 token for openCryptoki version 3.10, an option is implemented to change
the default value of attribute CKA_SENSITIVE to be CK_TRUE for all secret keys created with
the EP11 token. This applies to functions C_GenerateKey, C_GenerateKeyPair, C_UnwrapKey,
and C_DeriveKey when creating key with CKA_CLASS = CKO_SECRET_KEY, if the attribute
CKA_SENSITIVE is not explicitly specified in the template.

To enable this option, you must specify keyword FORCE_SENSITIVE in the EP11 token configuration
file, as shown in Figure 13 on page 68. Note that the semantics specified with the FORCE_SENSITIVE
keyword matches the semantics used by z/OS for EP11.

#
EP11 token configuration
#
FORCE_SENSITIVE
#
APQN_WHITELIST
5 2
6 2
END

Figure 13. Sample of an EP11 token configuration file
• Keys leaving the hardware security module (HSM) are encrypted by the HSM master key (wrapping

key) and come as binary large object (BLOB). In openCryptoki, objects can have special attributes that
describe the key properties. Besides dedicated attributes defined by the application, there are some
attributes defined as token-specific by openCryptoki.

68 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 10 on page 69 and Table 11 on page 69 show the EP11 token-specific attributes and their
default values for private and secure keys.

Table 10. Private key (CKO_PRIVATE_KEY) default attributes of the EP11 token

Private key attributes value

CKA_SENSITIVE CK_TRUE

CKA_EXTRACTABLE CK_TRUE

Table 11. Secret key (CKO_SECRET_KEY) default attributes of the EP11 token

Secret key attributes value

CKA_EXTRACTABLE CK_TRUE

• When you create keys the default values of the attributes CKA_ENCRYPT, CKA DECRYPT, CKA_VERIFY,
CKA_SIGN, CKA_WRAP and CKA_UNWRAP are CK_TRUE. Note, no EP11 mechanism supports the Sign/
Recover or Verify/Recover functions.

Even if settings of CKA_SENSITIVE, CKA_EXTRACTABLE, or CKA_NEVER_EXTRACTABLE would allow
accessing the key value, then openCryptoki returns 00..00 as key value (due to the secure key
concept).

For information about the key attributes, see the PKCS #11 Cryptographic Token Interface Standard.
• All RSA keys must have a public exponent (CKA_PUBLIC_EXPONENT) greater than or equal to 17.
• The Crypto Express EP11 coprocessor restricts RSA keys (primes and moduli) according to ANSI X9.31.

Therefore, in the EP11 token, the lengths of the RSA primes (p or q) must be a multiple of 128 bits. Also,
the length of the modulus (CKA_MODULUS_BITS) must be a multiple of 256.

• The mechanisms CKM_DES3_CBC and CKM_AES_CBC can only wrap keys, which have a length that
is a multiple of the block size of DES3 or AES respectively. See the mechanism list and mechanism
information (pkcsconf -m) for supported mechanisms together with supported functions and key
sizes.

• The EP11 coprocessor adapter can be configured to restrict the cryptographic capabilities in order for
the adapter to comply with specific security requirements and regulations. Such restrictions on the
adapter impact the capability of the EP11 token.

• The PKCS #11 function C_DigestKey() is not supported by the EP11 library.
• Pure EP11 key objects can be extracted from sensitive openCryptoki key objects for the CCA token by

accessing the value of the CKA_IBM_OPAQUE attribute value.

Restriction to extended evaluations
For openCryptoki versions up to 3.8, the EP11 token only supported those functions and mechanisms
that are available on an adapter that is configured to comply to the extended evaluations. These extended
evaluations meet public sector requirements with regard to both FIPS and Common Criteria certifications.

For more details, see the IBM z14 Technical Guide.

Starting with the current version of the EP11 enablement, you can control the use of certain mechanisms
within a domain of an EP11 cryptographic coprocessor by configuring this coprocessor by means of
access control points (ACPs). So except for one restriction, the use of mechanisms is no longer restricted
to the limitations imposed by the extended evaluations.

Read the information about filter mechanisms in

Exploiting Enterprise PKCS #11 using openCryptoki

for information on how to manage the access to PKCS #11 mechanisms using ACPs.
The available mechanisms and their attributes are then reflected by the openCryptoki
functions C_GetMechanismList and C_GetMechanismInfo. However, there is one restriction

Chapter 12. EP11 token 69

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://www.redbooks.ibm.com/abstracts/sg248451.html?Open
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html

on RSA mechanisms that cannot be reflected in the result of C_GetMechanismInfo: The
CKA_PUBLIC_EXPONENT must have a value of at least 17.

Migrating master keys - pkcsep11_migrate utility
There may be situations when the master key on (a domain of) a Crypto Express EP11 coprocessor
(CEX*P) must be changed, for example, if company policies require periodic changes of all master keys.
Simply changing the master keys using the TKE results in all secure keys stored in the EP11 token to
become useless. Therefore all data encrypted by these keys are lost. To avoid this situation, you must
accomplish a master key migration process, where activities on the TKE and on the Linux system must be
interlocked.

All secret and private keys are secure keys, that means they are enciphered (wrapped) with the
master key (MK) of the CEX*P adapter domain. Therefore, the master key is often also referred to as
wrapping key. If master keys are changed in a domain of a CEX*P adapter, all key objects for secure
keys in the EP11 token object repository become invalid. Therefore, all key objects for secure keys
must be re-enciphered with the new MK. In order to re-encipher secure keys that are stored as EP11
key objects in the EP11 token object repository, openCryptoki provides the master key migration tool
pkcsep11_migrate.

How to access the master key migration tool
The pkcsep11_migrate key migration utility is part of openCryptoki versions 3.1 or later, which include the
EP11 support.

Prerequisites for the master key migration process
The master key migration process for the EP11 token requires a TKE version 7.3 environment. How to set
up this environment is described in topic Setting up the TKE environment of Exploiting Enterprise PKCS #11
using openCryptoki.

To use the pkcsep11_migrate migration tool, the EP11 crypto stack including openCryptoki must be
installed and configured. For information on how to set up this environment, read Exploiting Enterprise
PKCS #11 using openCryptoki.

The master key migration process
Prerequisite for re-encipherment: The EP11 token may be configured to use more than one adapter/
domain pair to perform its cryptographic operations. This is defined in the EP11 token configuration file.
If the EP11 token is configured to use more than one adapter/domain pair, then all adapter/domain pairs
must be configured to each have the same set of master keys. Therefore, if a master key on one of these
adapter/domain pairs is changed, it must be changed on all those other adapter/domain pairs, too.

To migrate master keys on the set of adapter/domain pairs used by an EP11 token, you must perform the
following steps:

1. On the TKE workstation (TKE), submit and commit the same new master key on all CEX*P adapter/
domain combinations used by the EP11 token.

2. On Linux, stop all processes that are currently using openCryptoki with the EP11 token.
3. On Linux, back up the token object repository of the EP11 token. For example, you can use the

following commands:

cd /var/lib/opencryptoki/ep11
tar -cvzf ~/ep11TOK_OBJ_backup.tgz TOK_OBJ

4. On Linux, migrate the keys of the EP11 token object repository with the pkcsep11_migrate
migration tool (see the invocation information provided at the end of these process steps). The
pkcsep11_migrate tool must only be called once for one of the adapter/domain pairs that the EP11
token uses. If a failure occurs, restore the backed-up token repository and try this step again.

70 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html

Attention: Do not continue with step “5” on page 71 unless step “4” on page 70 was
successful. Otherwise you will lose your encrypted data.

5. On the TKE, activate the new master keys on all EP11 adapter/domain combinations that the EP11
token uses.

6. On Linux, restart the applications that used openCryptoki with the EP11 token.

In step “1” on page 70 of the master key migration process, the new master key must be submitted
and committed via the TKE interface. That means the new EP11 master key must be in the state Full
Committed. The current MK is in the state Valid. Now both (current and new) EP11 master keys
are available and accessible. The utility can now decrypt all relevant key objects within the token and
re-encrypt all these key objects with the new master key.

Note: All the decrypt and encrypt operations are done inside the EP11 cryptographic coprocessor, that
means that at no time clear key values are visible within memory.

Invocation:

pkcsep11_migrate -slot <number> -adapter <number> -domain <number>

The following parameters are mandatory:

-slot
- slot number for the EP11 token

-adapter
- the card ID; can be retrieved form the card ID in the sysfs (to be retrieved from /sys/devices/ap/
cardxx, or with lszcrypt.

-domain
- the decimal card domain number (to be retrieved from /sys/bus/ap/ap_domain or with
lszcrypt -b)

All token objects representing secret or private keys that are found for the EP11 token, are re-encrypted.

Note: The adapter and domain numbers can be specified in decimal, octal (with prefix 0), or hexadecimal
(with prefix 0x) notation. The lszcrypt utility displays these fields in hexadecimal values.

Usage: You are prompted for your user PIN.

Examples:

pkcsep11_migrate -slot 2 -adapter 8 -domain 48
pkcsep11_migrate -slot 0x2 -adapter 010 -domain 0x30

Both invocations migrate the master key for the cryptographic coprocessor 8 (octal 010) and domain 48
(hex 0x30) used by the EP11 token from slot 2.

Note: The program stops if the re-encryption of a token object fails. In this case, restore the back-up.

After this utility re-enciphered all key objects, the new master key must be activated. This activation must
be done by using the TKE interface command Set, immediate. Finally, the new master key becomes
the current master key and the previous master key must be deleted.

Note: This tool is installed in the users sbin path and therefore callable from everywhere.

To prevent token object generation during re-encryption, openCryptoki with the EP11 token must not be
running during re-encryption. It is recommended to make a back-up of the EP11 token object directory
(/var/lib/opencryptoki/ep11tok/TOK_OBJ).

Managing EP11 sessions - pkcsep11_session utility
An EP11 session is a state on the EP11 cryptographic coprocessor and must not be confused with a
PKCS #11 session. An EP11 session is generated by the strict session mode or the VHSM mode. They
are implicitly stored and deleted by openCryptoki if the according modes are set. So under normal
circumstances, you need not care about the management of these EP11 sessions. But in some cases, for

Chapter 12. EP11 token 71

example, when programs crash or when programs do not close their sessions or do not call C_Finalize
before exiting, some explicit EP11 session management may be required.

EP11 sessions are a limited resources shared by all domains of an EP11 cryptographic coprocessor and
must be closed when no longer needed to avoid situations where the EP11 cryptographic coprocessor
runs out of session resources. Therefore the usage of the strict session mode and the VHSM mode is only
recommended in environments where all systems accessing EP11 cryptographic coprocessors can be
trusted to cooperate to not open or keep open EP11 sessions unnecessarily.

For more information about EP11 sessions, read Exploiting Enterprise PKCS #11 using openCryptoki.

The pkcsep11_session tool allows to delete an EP11 session from the EP11 cryptographic
coprocessors left over by programs that did not terminate normally. An EP11 cryptographic coprocessor
supports only a certain number of EP11 sessions at a time. Because of this, it is important to delete any
EP11 session, in particular when the program for which it was logged in, terminated unexpectedly. The
pkcsep11_session tool is also used to set the VHSM-PIN required for the VHSM mode.

pkcsep11_session syntax

To see all available sub commands of the pkcsep11_session utility, request help with the
pkcsep11_session -h or pkcsep11_session --help command:

pkcsep11_session -h

usage: pkcsep11_session show|logout|vhsmpin|status [-date <yyyy/mm/dd>] [-pid <pid>] [-id <sess-
id>] [-slot <num>] [-force] [-h]

pkcsep11_session sub-command usage examples

• show: Show all left over sessions:

pkcsep11_session show

A sample output for two left-over EP11 sessions could look as shown:

pkcsep11_session show -slot 4
Using slot #4...

Enter the USER PIN:
List of EP11 sessions:

30D5457762D8DDC158B558FCCC79FAB6:
 Pid: 48196
 Date: 2018/ 7/12
30D5457762D8DDC158B558FCCC79FAB6:
 Pid: 48196
 Date: 2018/ 7/12

2 EP11-Sessions displayed

Note that only the first 16 bytes of the EP11 session ID are stored in the session object and therefore,
the session IDs are displayed only partially. Otherwise, a user would be able to re-login on an EP11
adapter and re-use keys generated with this EP11 session, when the full EP11 session ID would be
visible to the outside. Thus there may be identical session IDs when the strict session mode and the
virtual HSM (VHSM) mode are combined for a session, as shown in the example.

• show: Show all left over EP11 sessions that belong to a specific process id (pid):

pkcsep11_session show -pid 1234

• show: Show all left over EP11 sessions that have been created before a specific date:

pkcsep11_session show -date 2018/06/29

72 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html

• logout: Logout all left over EP11 session:

pkcsep11_session logout

• logout: Logout all left over EP11 session that belong to a specific process id (pid):

pkcsep11_session logout -pid 1234

• logout: Logout all left over EP11 session that have been created before a specific date:

pkcsep11_session logout -date 2018/07/27

• logout: Logout all left over EP11 session even when the logout does not succeed on all adapters:

pkcsep11_session logout -force

• vhsmpin: Every EP11 token running in virtual HSM mode (VHSM_MODE configuration option) requires
a VHSM-PIN. The vhsmpin subcommand sets this VHSM-PIN used for the virtual HSM mode
(VHSM_MODE).

In VHSM mode, all keys generated by the EP11 token strictly belong to the EP11 token instance that
created it.

Note: When changing the VHSM-PIN, all existing keys stored as token objects become unusable.

See also “Defining an EP11 token-specific configuration file” on page 57 or read topic Controlling access
to cryptographic objects in Exploiting Enterprise PKCS #11 using openCryptoki.

pkcsep11_session vhsmpin -slot 4

Using slot #4...

Enter the USER PIN:

The VHSM-PIN must contain between 8 and 16 alphanumeric characters.
• status: Query the maximum and currently available number of EP11 sessions for each available EP11

APQN. :

pkcsep11_session status

See the following sample output:

APQN 0b.0024:
 Max Sessions: 1024
 Available Sessions: 234
APQN 0a.0024:
 Max Sessions: 1024
 Available Sessions: 0

The pkcsep11_session tool provides its own man page that is installed as part of the EP11 package.

Chapter 12. EP11 token 73

https://www.ibm.com/docs/en/linux-on-systems?topic=overview-exploiting-enterprise-pkcs-11-using-opencryptoki

74 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 13. Soft token
The Soft token is often used for test purposes before you let your application access one of the other
available tokens in openCryptoki. View a list of PKCS #11 mechanisms supported by the Soft token.

As a prerequisite for an operational Soft token, the OpenSSL library called libcrypto must be installed
(see Figure 3 on page 13).

With OpenSSL 3.0 there is no way for a Soft token to obtain the intermediate digest state from a digest
operation, which was possible with earlier versions of OpenSSL. This leads to the fact that for operations
that involve digests, function C_GetOperationState() returns CKR_STATE_UNSAVEABLE when built
against OpenSSL 3.0. This affects digest operations using C_DigestInit(), C_DigestUpdate(), and
C_DigestFinal(), but also sign and verify operations with mechanisms involving digests. This is
explicitly allowed by the PKCS #11 standard for function C_GetOperationState(): An attempt to save
the cryptographic operations state of a session which is performing an appropriate cryptographic operation
(or two), but which cannot be satisfied, for example, because certain necessary state or key information
cannot leave the token, should fail with the error CKR_STATE_UNSAVEABLE.

PKCS #11 mechanisms supported by the Soft token
View a list of mechanisms provided by PKCS #11 which you can use to exploit the openCryptoki features
for the Soft token from within your application.

Use the pkcsconf command with the shown parameters to retrieve a complete list of algorithms (or
mechanisms) that are supported by the Soft token:

$ pkcsconf -m -c <slot>

Mechanism #0
 Mechanism: 0x0 (CKM_RSA_PKCS_KEY_PAIR_GEN)
 Key Size: 512-4096
 Flags: 0x10000 (CKF_GENERATE_KEY_PAIR)
Mechanism #1
 Mechanism: 0x120 (CKM_DES_KEY_GEN)
 Key Size: 8-8
 Flags: 0x8000 (CKF_GENERATE)
Mechanism #2
 Mechanism: 0x131 (CKM_DES3_KEY_GEN)
 Key Size: 24-24
 Flags: 0x8000 (CKF_GENERATE)
…
…

The command output shown in Table 12 on page 75 displays all mechanisms that are supported by
the Soft token. Each mechanism provides its supported key size and some further properties such as
hardware support and mechanism information flags. These flags provide information about the PKCS
#11 functions that may use the mechanism. In some cases, the flags also provide further attributes that
describe the supported variants of the mechanism. Typical functions are for example, encrypt, decrypt,
wrap key, unwrap key, sign, or verify.

The pkcsconf -m -c <slot> command output corresponds to the list shown in “PKCS #11
mechanisms supported by the Soft token” on page 75.

Table 12. PKCS #11 mechanisms supported by the Soft token

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_RSA_PKCS_KEY_PAIR_GEN 512-4096 bits GENERATE KEY PAIR before 3.16

CKM_DES_KEY_GEN 8-8 bytes GENERATE before 3.16

© Copyright IBM Corp. 2021 75

Table 12. PKCS #11 mechanisms supported by the Soft token (continued)

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_DES3_KEY_GEN 24-24 bytes GENERATE before 3.16

CKM_RSA_PKCS 512-4096 bits ENCRYPT, DECRYPT, SIGN, SIGN
RECOVER, VERIFY, VERIFY
RECOVER, WRAP, UNWRAP

before 3.16

CKM_RSA_PKCS_PSS 512-4096 bits SIGN, VERIFY before 3.16

CKM_SHA1_RSA_PKCS_PSS 512-4096 bits SIGN, VERIFY 3.16

CKM_SHA224_RSA_PKCS_PSS 1024-4096
bits

SIGN, VERIFY 3.16

CKM_SHA256_RSA_PKCS_PSS 1024-4096
bits

SIGN, VERIFY 3.16

CKM_SHA384_RSA_PKCS_PSS 1024-4096
bits

SIGN, VERIFY 3.16

CKM_SHA512_RSA_PKCS_PSS 1024-4096
bits

SIGN, VERIFY 3.16

CKM_SHA224_RSA_PKCS 1024-4096
bits

SIGN, VERIFY 3.16

CKM_SHA256_RSA_PKCS 512-4096 bits SIGN, VERIFY 3.16

CKM_SHA384_RSA_PKCS 512-4096 bits SIGN, VERIFY 3.16

CKM_SHA512_RSA_PKCS 512-4096 bits SIGN, VERIFY 3.16

CKM_RSA_X_509 512-4096 bits ENCRYPT, DECRYPT, SIGN,
SIGN_RECOVER, VERIFY,
VERIFY_RECOVER, WRAP,
UNWRAP

before 3.16

CKM_RSA_PKCS_OAEP 512-4096 bits ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_MD5_RSA_PKCS 512-4096 bits SIGN, VERIFY before 3.16

CKM_SHA1_RSA_PKCS 512-4096 bits SIGN, VERIFY before 3.16

CKM_DH_PKCS_DERIVE 512-2048 bits DERIVE before 3.16

CKM_DH_PKCS_KEY_PAIR_GEN 512-2048 bits GENERATE KEY PAIR before 3.16

CKM_DES_ECB 8-8 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_DES_CBC 8-8 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_DES_CBC_PAD 8-8 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_DES3_ECB 24-24 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_DES3_CBC 24-24 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

76 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 12. PKCS #11 mechanisms supported by the Soft token (continued)

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_DES3_CBC_PAD 24-24 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_DES3_CMAC 16-24 bytes SIGN, VERIFY before 3.16

CKM_DES3_CMAC_GENERAL 16-24 bytes SIGN, VERIFY before 3.16

CKM_SHA_1 n/a DIGEST before 3.16

CKM_SHA_1_HMAC n/a SIGN, VERIFY before 3.16

CKM_SHA_1_HMAC_GENERAL n/a SIGN, VERIFY before 3.16

CKM_SHA224 n/a DIGEST before 3.16

CKM_SHA224_HMAC n/a SIGN, VERIFY before 3.16

CKM_SHA224_HMAC_GENERAL n/a SIGN, VERIFY before 3.16

CKM_SHA256 n/a DIGEST before 3.16

CKM_SHA256_HMAC n/a SIGN, VERIFY before 3.16

CKM_SHA256_HMAC_GENERAL n/a SIGN, VERIFY before 3.16

CKM_SHA384 n/a DIGEST before 3.16

CKM_SHA384_HMAC n/a SIGN, VERIFY before 3.16

CKM_SHA384_HMAC_GENERAL n/a SIGN, VERIFY before 3.16

CKM_SHA512 n/a DIGEST before 3.16

CKM_SHA512_HMAC n/a SIGN, VERIFY before 3.16

CKM_SHA512_HMAC_GENERAL n/a SIGN, VERIFY before 3.16

CKM_SHA512_224 n/a DIGEST before 3.16

CKM_SHA512_224_HMAC n/a SIGN, VERIFY before 3.16

CKM_SHA512_224_HMAC_GENERAL n/a SIGN, VERIFY before 3.16

CKM_SHA512_256 n/a DIGEST before 3.16

CKM_SHA512_256_HMAC n/a SIGN, VERIFY before 3.16

CKM_SHA512_256_HMAC_GENERAL n/a SIGN, VERIFY before 3.16

CKM_IBM_SHA3_224 n/a DIGEST before 3.16

CKM_IBM_SHA3_256 n/a DIGEST before 3.16

CKM_IBM_SHA3_384 n/a DIGEST before 3.16

CKM_IBM_SHA3_512 n/a DIGEST before 3.16

CKM_IBM_SHA3_224_HMAC 112-256 bytes SIGN, VERIFY before 3.16

CKM_IBM_SHA3_256_HMAC 128-256 bytes SIGN, VERIFY before 3.16

CKM_IBM_SHA3_384_HMAC n/a SIGN, VERIFY before 3.16

CKM_IBM_SHA3_512_HMAC 256-256 bytes SIGN, VERIFY before 3.16

Chapter 13. Soft token 77

Table 12. PKCS #11 mechanisms supported by the Soft token (continued)

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_MD5 n/a DIGEST before 3.16

CKM_MD5_HMAC n/a SIGN, VERIFY before 3.16

CKM_MD5_HMAC_GENERAL n/a SIGN, VERIFY before 3.16

CKM_SSL3_PRE_MASTER_KEY_GEN 48-48 bytes GENERATE before 3.16

CKM_SSL3_MASTER_KEY_DERIVE 48-48 bytes DERIVE before 3.16

CKM_SSL3_KEY_AND_MAC_DERIVE 48-48 bytes DERIVE before 3.16

CKM_DES3_MAC 16-24 bytes HW, SIGN, VERIFY before 3.16

CKM_DES3_MAC_GENERAL 16-24 bytes HW, SIGN, VERIFY before 3.16

CKM_AES_MAC 16-24 bytes HW, SIGN, VERIFY before 3.16

CKM_AES_MAC_GENERAL 16-24 bytes HW, SIGN, VERIFY before 3.16

CKM_SSL3_MD5_MAC 384-384 bits SIGN, VERIFY before 3.16

CKM_SSL3_SHA1_MAC 384-384 bits SIGN, VERIFY before 3.16

CKM_AES_CTR 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

3.17

CKM_AES_OFB 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

3.17

CKM_AES_CFB8 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

3.17

CKM_AES_CFB128 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

3.17

CKM_AES_GCM 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

3.17

CKM_DES_OFB64 24-24 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

3.17

CKM_DES_CFB8 24-24 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

3.17

CKM_DES_CFB64 24-24 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

3.17

CKM_AES_KEY_GEN 16-32 bytes GENERATE before 3.16

CKM_AES_ECB 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_AES_CBC 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_AES_CBC_PAD 16-32 bytes ENCRYPT, DECRYPT, WRAP,
UNWRAP

before 3.16

CKM_AES_CMAC 16-32 bytes SIGN, VERIFY before 3.16

CKM_AES_CMAC_GENERAL 16-32 bytes SIGN, VERIFY before 3.16

78 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 12. PKCS #11 mechanisms supported by the Soft token (continued)

Mechanism Key sizes in
bits or bytes

Properties Support
with OC
version

CKM_GENERIC_SECRET_KEY_GEN 80-2048 bits GENERATE before 3.16

CKM_ECDSA_KEY_PAIR_GEN 160-521 bits GENERATE_KEY_PAIR, EC_F_P,
EC_OID

before 3.16

CKM_ECDSA 160-521 bits SIGN, VERIFY, EC_F_P, EC_OID before 3.16

CKM_ECDSA_SHA1 160-521 bits SIGN, VERIFY, EC_F_P, EC_OID before 3.16

CKM_ECDSA_SHA224 160-521 bits SIGN, VERIFY, EC_F_P, EC_OID before 3.16

CKM_ECDSA_SHA256 160-521 bits SIGN, VERIFY, EC_F_P, EC_OID before 3.16

CKM_ECDSA_SHA384 160-521 bits SIGN, VERIFY, EC_F_P, EC_OID before 3.16

CKM_ECDSA_SHA512 160-521 bits SIGN, VERIFY, EC_F_P, EC_OID before 3.16

CKM_ECDH1_DERIVE 160-521 bits DERIVE, EC_F_P, EC_OID before 3.16

For a description of mechanisms with a name pattern of CKM_IBM_... refer to “IBM-specific
mechanisms” on page 87.

For explanation about the key object properties see the PKCS #11 Cryptographic Token Interface
Standard.

Chapter 13. Soft token 79

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

80 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 14. Directory content for CCA, ICA, EP11,
and Soft tokens

Each token uses a unique token directory. This token directory stores the token-specific objects (like
for example, key objects, user PIN, SO PIN, or hashes). Thus, the information for a certain token is
separated from all other tokens. Read the information about the format of data and objects stored
in these directories. openCryptoki users may need this information for example, when working with
containerized applications.

As of openCryptoki version 3.16, CCA, ICA, EP11, and Soft tokens have the same structure and content
within their directories.

The path name of the token directories is derived from either the token default name or by the token
name as defined in the opencryptoki.conf file. The location of the token directories may look similar
to the shown examples:

[root@t3545033 opencryptoki]# pwd
/var/lib/opencryptoki
[root@t3545033 opencryptoki]# ls -l
total 24
drwxrwx---. 3 root pkcs11 4096 Mar 19 11:47 ccatok
drwxrwx---. 3 root pkcs11 4096 Mar 19 12:35 ep11tok
drwxrwx---. 3 root pkcs11 4096 Mar 19 11:47 lite /* legacy name of ICA Tok */
drwxrwx---. 3 root pkcs11 4096 Mar 19 11:47 swtok

Note: With openCryptoki, you can select from two data store formats:

• Before openCryptoki version 3.12, there is only the one NVTOK.DAT format (the old format).
• Starting with openCryptoki version 3.12, you can choose to use a FIPS compliant data format. Being

FIPS compliant, the token data is stored in a format that is better protected against attacks than the
previously used data format.

If you want to use the token data format that was generated with FIPS compliant operations, you must
explicitly specify the tokversion option for the token's slot entry in the openCryptoki configuration file.
You must do this before token initialization with the pkcsconf command, for example:

slot 4
{
stdll = libpkcs11_ep11.so
confname = ep11tok01.conf
tokname = ep11token01
tokversion = 3.12
description = "Ep11 Token"
manufacturer = "IBM"
hwversion = "4.11"
firmwareversion = "2.0"
}

Figure 14. Slot entry for an EP11 token with FIPS compliant data format in the opencryptoki.conf file

You can use the pkcstok_migrate utility to transform an EP11 token, a CCA token, an ICA token,
or a Soft token created with any version of openCryptoki into a data format that was generated by
FIPS compliant operations. For more information, read Chapter 8, “Migrating to FIPS compliance -
pkcstok_migrate utility,” on page 37.

There are two objects derived from both a token’s user PIN and a token’s SO PIN:

• a non-secret password hash which is checked at login
• and a secret key encryption key (KEK) which is used to wrap the token’s master key (SO KEK or a user

KEK, respectively).

© Copyright IBM Corp. 2021 81

Therefore, the token’s master key is stored on disk twice:

• The MK_SO file holds the master key wrapped with the SO KEK.
• The MK_USER file holds the master key wrapped with the user KEK.

So both user and SO can access the master key. The password-based key derivation function PBKDF2 is
used to derive those four objects. An iteration count of 100000 is used with a salt consisting of different
purpose strings for each of the four derivations and a random part. Iteration count, purpose strings, and
the random parts are non-secret and can be stored on disk with the other non-volatile token data in
NVTOK.DAT, together with the corresponding data. The two password hashes are non-secret and can also
be stored unencrypted in NVTOK.DAT.

The two key-encryption keys (KEKs) are secret and cannot be stored with a token’s non-volatile token
data: They must be (re-)derived when needed and are cached on the stack for an application’s lifetime.

All following structures are C pseudo code, used to describe data structures at byte level.

The old NVTOK.DAT format (still valid)

struct TOKEN_DATA {
 CK_TOKEN_INFO info;
 u8 user_pin_sha1 [24];
 u8 so_pin_sha1 [24];
 u8 next_token_obj_name[8];
 u32 allow_weak_des;
 u32 check_des_parity;
 u32 allow_key_mods;
 u32 netscape_mods;
};

The new NVTOK.DAT format

Note: The new NVTOK.DAT is available starting with openCryptoki version 3.12 and is valid in parallel
with the old format.

struct TOKEN_DATA {
 /* --- old format for compat --- */
 CK_TOKEN_INFO info;
 u8 user_pin_sha1 [24];
 u8 so_pin_sha1 [24];
 u8 next_token_obj_name[8];
 u32 allow_weak_des;
 u32 check_des_parity;
 u32 allow_key_mods;
 u32 netscape_mods;

 /* --- 3.12 additions start here --- */

 u32 version; /* tokversion major<<16|minor */

 /* --- PBKDF2 ---
 * 64b salts are 32b purpose string concat 32b random */
 /* SO PW hash (login) */
 u64 so_login_it;
 u8 so_login_salt[64];
 u8 so_login_key[32];
 /* User PW hash (login) */
 u64 user_login_it;
 u8 user_login_salt[64];
 u8 user_login_key[32];
 /* SO MK KEK (wrap) */
 u64 so_wrap_it;
 u8 so_wrap_salt[64];
 /* User MK KEK (wrap) */
 u64 user_wrap_it;
 u8 user_wrap_salt[64];
};

82 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Changes from old to new data store format
In the old format, the multiple-byte-width data types were not serialized before stored to disk, so
NVTOK_DAT could not be used on little endian (LE) and big endian (BE) platforms. The new format
serializes those data types from host to BE byte order. The AES Key Wrap algorithm is used to wrap
a token’s master key (MK) with the KEKs. The token’s master key is randomly generated at token
initialization. In the old format, the master key was a 3DES CBC key. The KEK was a 2TDEA CBC key.
CBC was used with a per token (fixed) initialization vector (IV). Integrity was intended to be provided by a
SHA1 hash of the unencrypted key. The MK master key object had the following format:

struct MK {
 u8 MK [24];
 u8 sha1 [20];
 u8 padding[4];
};

It was wrapped by the SO KEK and stored to MK_SO and was also wrapped by the user KEK and stored to
MK_USER. The new format defines the MK to be an AES-256 key. Its unencrypted format is just the 32 key
bytes. Its encrypted format is a 40 byte key blob output by the AES Key Wrap algorithm (wrapped with the
SO or user KEK). The file names MK_SO and MK_USER are unchanged.

The old format stored non-private token objects unencrypted in the following format:

struct OBJECT_PUB {
 u32 total_len;
 u8 private_flag;
 u8 object[object_len];
};

The new format is:

struct OBJECT_PUB {
 //-------------- <--+
 u32 tokversion; | 16-byte header
 u8 private_flag; |
 u8 reserved[7]; |
 u32 object_len; |
 //-------------- <--+
 u8 object[object_len]; | body
 //-------------- <--+
};

The old format encrypted all private token objects under the MK. The unencrypted format was:

struct OBJECT_PRIV {
 u32 total_len;
 u8 private_flag;
 //--- enc ---
 u32 object_len;
 u8 object[object_len];
 u8 sha1[20];
 u8 padding[padding_len];
};

The new format features authenticated encryption via AES-256-GCM. To avoid initialization vector (IV)
uniqueness , instead of using the MK to encrypt all token objects, the MK is used to wrap a per-object key
using the AES Key Wrap algorithm. The wrapped per-object key is stored together with the IV and other
meta-data as additional authenticated data (AAD) in the authenticated object header. The 16 byte GMAC
tag is appended to the authenticated and encrypted object body which holds the private token object’s
data:

struct OBJECT_PRIV {
 u32 total_len;
 //- auth ------- <--+

Chapter 14. Directory content for CCA, ICA, EP11, and Soft tokens 83

 u32 tokversion; | 64-byte header
 u8 private_flag; |
 u8 reserved[3]; |
 u8 key_wrapped[40]; |
 u8 iv[12]; |
 u32 object_len; |
 //- auth+enc --- <--+
 u8 object[object_len]; | body
 //-------------- <--+
 u8 tag[16]; | 16-byte footer
 //-------------- <--+
};

In the old format, the multiple-byte-width data types were not serialized before stored to disk, so the
token objects could not be moved between LE and BE platforms. The new format serializes all header
and footer data from host to BE byte order, so all object data can always be encrypted and decrypted.
However, the decrypted object data itself (body) must still be interpreted in host byte order.

So the new format should only be used with fresh setups. The new format can be used by specifying the
new tokversion keyword in the token’s slot configuration in opencryptoki.conf. For a value of equal
or grater 3.12 the new format is used.

Here is a table of all key material that is used per version 3.12 token:

Table 13.

NAME TYPE GENERATION USAGE STORAGE

MK 256-bit AES random wrap tok.obj keys (AES-KW) wrapped on disk
(MK_SO,MK_USER)

SO KEK 256-bit AES derived from SO PIN
(PBKDF2)

wrap MK (AES-KW) cached on stack/heap

User KEK 256-bit AES derived from User PIN
(PBKDF2)

wrap MK (AES-KW) cached on stack/heap

SO PW
hash

256-bit derived from SO PIN
(PBKDF2)

SO login on disk (NVTOK.DAT)

User PW
hash

256-bit derived from User PIN
(PBKDF2)

User login on disk (NVTOK.DAT)

Tok.obj
keys

256-bit AES random auth.enc of tok.obj data wrapped on disk (in
tok.objs)

84 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 15. ICSF token
ICSF (Integrated Cryptographic Service Facility) is a software element of IBM z/OS. The ICSF token is a
clear-key, remote cryptographic token. The actual operations are performed remotely on a server and all
the PKCS #11 key objects are stored remotely on the server. Adding an ICSF token requires a running
remote z/OS instance.

PKCS #11 mechanisms supported by the ICSF token are not documented in this edition. Instead, read the
information about the purpose and use of the pkcsicsf tool.

For more information about PKCS #11 and ICSF, refer to Cryptographic Services ICSF: Writing PKCS #11
Applications.

Configuring the ICSF token - pkcsicsf utility
Use the pkcsicsf utility to add an ICSF token to openCryptoki or to list available ICSF tokens.

Adding an ICSF token to openCryptoki creates an entry in the opencryptoki.conf file for this token. It
also creates a token_name.conf configuration file in the same directory as the opencryptoki.conf
file, containing ICSF specific information. This information is read by the ICSF token.

The ICSF token must bind and authenticate to an LDAP server. Several SASL authentication mechanisms
(Simple Authentication and Security Layer mechanisms) are supported. You must specify one of these
mechanisms when listing the available ICSF tokens or when adding an ICSF token. openCryptoki currently
supports adding only one ICSF token.

openCryptoki administrators can either allow the LDAP calls to utilize existing LDAP configurations,
such as ldap.conf or .ldaprc for bind and authentication information. Or they can set the bind and
authentication information within openCryptoki by using this utility and its options. The information is
placed in the token_name.conf file to be used in the LDAP calls. When using simple authentication, the
user is prompted for the RACF password when listing or adding a token.

 pkcsicsf [-h] [-l|-a token name] [-b BINDDN] [-c client-cert-file] [-C CA-cert-file]
 [-k privatekey] [-m mechanism] [-u URI]

Options
-a token_name

adds the specified ICSF token to openCryptoki.
-b bind_name

specifies the distinguished name to bind when using simple authentication.
-c client_cert_file

specifies the client certification file when using SASL authentication.
-C CA_cert_file

specifies the certificate authority (CA) certification file when using SASL authentication.
-k private_key

specifies the client private key file when using SASL authentication.
-m auth_mechanism

specifies the authentication mechanism to use when binding to the LDAP server. Specify either
simple or sasl).

-l
lists available ICSF tokens.

-h
shows usage information for this utility.

© Copyright IBM Corp. 2021 85

https://www.ibm.com/docs/en/zos/2.4.0?topic=zcs-zos-cryptographic-services-icsf-writing-pkcs-11-applications
https://www.ibm.com/docs/en/zos/2.4.0?topic=zcs-zos-cryptographic-services-icsf-writing-pkcs-11-applications

86 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 16. IBM-specific mechanisms and features
for openCryptoki

Numerous IBM-specific mechanisms and features are available across multiple token-types or for certain
tokens only. Scan the content of this topic to find the appropriate information.

IBM-specific mechanisms
In your openCryptoki applications, you can apply IBM-specific mechanisms for special purposes as
offered by an exploited token. Information about which token or tokens support a given mechanism is
included in the description of each mechanism.

Table 14. IBM-specific mechanisms

Mechanism Reference

CKM_IBM_DILITHIUM “CKM_IBM_DILITHIUM” on page 87

CKM_IBM_SHA3_224 “CKM_IBM_SHA3_nnn” on page 90

CKM_IBM_SHA3_256 “CKM_IBM_SHA3_nnn” on page 90

CKM_IBM_SHA3_384 “CKM_IBM_SHA3_nnn” on page 90

CKM_IBM_SHA3_512 “CKM_IBM_SHA3_nnn” on page 90

CKM_IBM_SHA3_224_HMAC “CKM_IBM_SHA3_nnn_HMAC” on page 91

CKM_IBM_SHA3_256_HMAC “CKM_IBM_SHA3_nnn_HMAC” on page 91

CKM_IBM_SHA3_384_HMAC “CKM_IBM_SHA3_nnn_HMAC” on page 91

CKM_IBM_SHA3_512_HMAC “CKM_IBM_SHA3_nnn_HMAC” on page 91

CKM_IBM_CMAC “CKM_IBM_CMAC” on page 92

CKM_IBM_EC_C448
(synonym: CKM_IBM_EC_X448)

“Mechanisms for Edwards Curves 25519 and 448 for ECDH
and EdDSA” on page 92

CKM_IBM_EC_C25519
(synonym: CKM_IBM_EC_X25519)

“Mechanisms for Edwards Curves 25519 and 448 for ECDH
and EdDSA” on page 92

CKM_IBM_ED448_SHA3 “Mechanisms for Edwards Curves 25519 and 448 for ECDH
and EdDSA” on page 92

CKM_IBM_ED25519_SHA512
(synonym: CKM_IBM_EDDSA_SHA512)

“Mechanisms for Edwards Curves 25519 and 448 for ECDH
and EdDSA” on page 92

CKM_IBM_ATTRIBUTEBOUND_WRAP “CKM_IBM_ATTRIBUTEBOUND_WRAP” on page 94

CKM_IBM_DILITHIUM
Availability:

The CKM_IBM_DILITHIUM mechanism is available with the EP11 token.

Description:

© Copyright IBM Corp. 2021 87

Dilithium is a post-quantum signature scheme. That is, it can generate signatures that resist attacks
from quantum computers, but also from classical computers. Dilithium is one of the candidate algorithms
submitted to the NIST post-quantum cryptography project. At the time of writing, the NIST selection
process was in round 2, so all keys created with the CKM_IBM_DILITHIUM mechanism are internally
flagged as round2.

Because Dilithium keys can only sign or verify, the EP11 token only provides one single mechanism for all
three operations: key generation, sign, and verify.

With the EP11 token, you can also import and export Dilithium keys by wrapping or unwrapping them
using AES or TDES key encrypting keys (KEKs). That is, you can protect Dilithium keys that are sent to
another system, received from another system, or stored with data in a file. Use any mechanism to wrap
or unwrap IBM Dilithium keys that is convenient for your purposes, for example:

• CKM_AES_CBC_PAD
• CKM_DES3_CBC_PAD

On the TKE workstation, you must enable Dilithium processing by setting domain (access) control point
65 on the used cryptographic coprocessors :

65 XCP_CPB_ALG_PQC_DILITHIUM enable support for Dilithium algorithm

Prerequisites IBM Dilithium has the following prerequisites:

• EP11 library 3.0 or later. Dilithium support in the EP11 host library has oid = 1.3.6.1.4.1.2.267.1.6.5.
• A Crypto Express7S feature or later, configured as Crypto Express EP11 coprocessor (CEX7P) with
firmware level 4.7.15 or later

Key type The IBM-specific key type for an IBM Dilithium key object is:

#define CKK_IBM_PQC_DILITHIUM (CKK_VENDOR_DEFINED +0x10023)

Key form The EP11 host library uses the following key form for IBM Dilithium public and private keys:

• Public key

DilithiumPublicKey ::= BIT STRING {
 SEQUENCE {
 rho BIT STRING, [2] -- nonce
 t1 BIT STRING [3] -- from vector(L)
 }
}

• Private key

DilithiumPrivateKey ::= SEQUENCE {
 version INTEGER, -- v0, reserved 0
 rho BIT STRING, -- nonce
 key BIT STRING, -- key/seed/D
 tr BIT STRING, -- PRF bytes (’CRH’ in spec)
 s1 BIT STRING, -- vector(L)
 s2 BIT STRING, -- vector(K)
 t0 BIT STRING, -- low bits(vector L)
 t1 [0] IMPLICIT OPTIONAL {
 t1 BIT STRING, -- high bits(vector L)
 -- see also public key
 }
}

Attributes:

88 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Table 15. Attributes for IBM Dilithium key

Attribute Data type Meaning

CKA_IBM_DILITHIUM_KEYFORM CK_ULONG The Dilithium key form, currently only
round 2.

CKA_IBM_DILITHIUM_RHO CK_CHAR[32] The private rho key component

CKA_IBM_DILITHIUM_SEED CK_CHAR[32] The private seed key component

CKA_IBM_DILITHIUM_TR CK_CHAR[48] The private tr key component

CKA_IBM_DILITHIUM_S1 CK_CHAR[480] The private s1 key component

CKA_IBM_DILITHIUM_S2 CK_CHAR[576] The private s2 key component

CKA_IBM_DILITHIUM_T0 CK_CHAR[2688] The private t0 key component

CKA_IBM_DILITHIUM_T1 CK_CHAR[1728] The public t1 key component

A Dilithium key also contains the usual standard attributes for public and private key objects, such
as CKA_CLASS, CKA_KEYTYPE. See tables Common Key Attributes, Common Private Key Attributes, and
Common Public Key Attributes in

PKCS #11 Cryptographic Token Interface Base Specification Version 3.0.

All created keys are internally flagged as round2 keys via the CKA_IBM_DILITHIUM_KEYFORM
attribute. All attributes, except CKA_IBM_DILITHIUM_KEYFORM, are bit strings. The
CKA_IBM_DILITHIUM_KEYFORM attribute is a CK_ULONG, indicating the actual key form. The currently
only supported key form is:

#define IBM_DILITHIUM_KEYFORM_ROUND2 1

IBM Dilithium signatures have a length of 3366 bytes.

Functions for IBM Dilithium key creation and unwrapping:

Use function C_GenerateKeyPair() to create an IBM Dilithium key object consisting of a public/private
key pair. Note that the CKM_IBM_DILITHIUM mechanism has no mechanism-specific parameters. The
following is a sample for key object creation:

CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE public_template[] = {
 {CKA_VERIFY, &true, sizeof(true)},
};
CK_ATTRIBUTE private_template[] = {
 {CKA_SIGN, &true, sizeof(true)},
};

CK_MECHANISM mech;
CK_SESSION_HANDLE session;
CK_OBJECT_HANDLE publ_key = CK_INVALID_HANDLE, priv_key = CK_INVALID_HANDLE;
...
mech.mechanism = CKM_IBM_DILITHIUM;
mech.ulParameterLen = 0;
mech.pParameter = NULL;
CK_RV rv;

rv = C_GenerateKeyPair(session, &mech,
 public_template, 1,
 private_template, 1,
 &publ_key, &priv_key);
if (rv == CKR_OK) {
...
}

Chapter 16. IBM-specific mechanisms and features for openCryptoki 89

https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html

Use functions C_WrapKey() and C_UnwrapKey() if you need to transport IBM Dilithium keys. See the
following sample of an unwrapping operation:

CK_MECHANISM wrap_mech;
CK_OBJECT_HANDLE secret_key = CK_INVALID_HANDLE;
CK_BYTE_PTR wrapped_key = NULL;
CK_ULONG wrapped_keylen;
CK_OBJECT_HANDLE unwrapped_key = CK_INVALID_HANDLE;

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE key_type = CKK_IBM_PQC_DILITHIUM;
CK_OBJECT_HANDLE priv_key = CK_INVALID_HANDLE;
CK_BYTE unwrap_label[] = "unwrapped_private_Dilithium_Key";
CK_BBOOL true = TRUE;
CK_RV rv;

CK_ATTRIBUTE unwrap_tmpl[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_KEY_TYPE, &key_type, sizeof(key_type)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, &unwrap_label, sizeof(unwrap_label)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DECRYPT, &true, sizeof(true)},
 {CKA_SIGN, &true, sizeof(true)},
};

wrap_mech.mechanism = CKM_AES_CBC_PAD;
wrap_mech.pParameter = "0123456789abcdef";
wrap_mech.ulParameterLen = 16;

/* Generate wrapping key */
...

/* Wrap Dilithium key with wrapping key */
...

/* Unwrap Dilithium key */
rv = funcs->C_UnwrapKey(session, &wrap_mech, secret_key,
 wrapped_key, wrapped_keylen,
 unwrap_tmpl,
 sizeof(unwrap_tmpl) / sizeof(CK_ATTRIBUTE),
 &priv_key);
if (rv != CKR_OK) {
 ...
}

Restrictions for using IBM Dilithium keys:

• IBM Dilithium keys cannot actively be used to transport (wrap and unwrap) other keys, but they can be
wrapped and unwrapped for being transported using standard key types (AES, TDES).

• IBM Dilithium keys cannot be derived from given keys. They can only be generated or imported from
given key values.

• Only SignInit() and Sign() (single-part operations) is supported by the EP11 host library.
SignUpdate() and SignFinal() functions are not supported. The same restrictions apply for verify
operations accordingly.

CKM_IBM_SHA3_nnn
Availability:

The following SHA3 mechanisms are available for the ICA token, the EP11 token, and the Soft token:

• CKM_IBM_SHA3_224
• CKM_IBM_SHA3_256
• CKM_IBM_SHA3_384
• CKM_IBM_SHA3_512

Description:

90 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Use the listed mechanisms from the supporting tokens to perform the appropriate digest operations using
the secure hash algorithm SHA3, which is the latest version of the Secure Hash Algorithm family as
released by the National Institute of Standards and Technology (NIST).

CKM_IBM_SHA3_224

Flags and functions:

The CKF_DIGEST flag is set to true for this mechanism. Therefore, the function C_DigestInit()
accepts the CKM_IBM_SHA3_224 mechanism.

CKM_IBM_SHA3_256

Flags and functions:

Same as for mechanism CKM_IBM_SHA3_224.

CKM_IBM_SHA3_384

Flags and functions:

Same as for mechanism CKM_IBM_SHA3_224.

CKM_IBM_SHA3_512

Flags and functions:

Same as for mechanism CKM_IBM_SHA3_224.

CKM_IBM_SHA3_nnn_HMAC
Availability:

The following SHA3 - HMAC mechanisms are available for the ICA token, the EP11 token, and the Soft
token:

• CKM_IBM_SHA3_224_HMAC
• CKM_IBM_SHA3_256_HMAC
• CKM_IBM_SHA3_384_HMAC
• CKM_IBM_SHA3_512_HMAC

Description:

Use the listed mechanisms from the supporting tokens to perform hash-based message authentication
using the secure hash algorithm SHA3. The length of the HMAC output is according to the SHA3 hash
sizes:

• CKM_IBM_SHA3_224_HMAC: 28 byte
• CKM_IBM_SHA3_256_HMAC: 32 byte
• CKM_IBM_SHA3_384_HMAC: 48 byte
• CKM_IBM_SHA3_512_HMAC: 64 byte

Chapter 16. IBM-specific mechanisms and features for openCryptoki 91

CKM_IBM_SHA3_224_HMAC

Flags and functions:

The CKF_SIGN and CKF_VERIFY flags are set to true for this mechanism. Therefore, the functions
C_SignInit() and C_VerifyInit() accept the CKM_IBM_CMAC mechanism.

Possible processing sequences are:

• for single part sign or verify operations:

– C_SignInit() followed by C_Sign()
– C_VerifyInit() followed by C_Verify()

• for multi-part sign or verify operations:

– C_SignInit() followed by multiple C_SignUpdate(), then followed by C_SignFinal()
– C_VerifyInit() followed by multiple C_VerifyUpdate(), then followed by
C_VerifyFinal()

CKM_IBM_SHA3_256_HMAC

Flags and functions:

Same as for mechanism CKM_IBM_SHA3_224_HMAC.

CKM_IBM_SHA3_384_HMAC

Flags and functions:

Same as for mechanism CKM_IBM_SHA3_224_HMAC.

CKM_IBM_SHA3_512_HMAC

Flags and functions:

Same as for mechanism CKM_IBM_SHA3_224_HMAC.

CKM_IBM_CMAC
Availability:

The CKM_IBM_CMAC mechanism is available with the EP11 token.

Description:

Use the CKM_IBM_CMAC mechanism to produce a block cipher-based message authentication code
(CMAC) to assure the authenticity and integrity of a message. You can use this mechanism with AES or
TDES keys (according to the PKCS #11 mechanisms CKM_AES_CMAC or CKM_DES3_CMAC).

The length of the output MAC is according to either the AES block size (16 bytes) or the TDES block size (8
bytes).

Flags and functions:

The CKF_SIGN and CKF_VERIFY flags are set to true for this mechanism. Therefore, the functions
C_SignInit() and C_VerifyInit() accept the CKM_IBM_CMAC mechanism.

Mechanisms for Edwards Curves 25519 and 448 for ECDH and EdDSA
Availability:

The following mechanisms for Edwards Curves 25519 and 448 for ECDH and EdDSA are available with the
EP11 token.

• CKM_IBM_EC_C448 (synonym: CKM_IBM_EC_X448)
• CKM_IBM_EC_C25519 (synonym: CKM_IBM_EC_X25519)

92 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

• CKM_IBM_ED448_SHA3
• CKM_IBM_ED25519_SHA512 (synonym: CKM_IBM_EDDSA_SHA512)

Description:

The CKM_IBM_EC_* mechanisms are used for key derivation with function C_DeriveKey(), and use the
CK_ECDH1_DERIVE_PARAMS structure (same as for the CKM_ECDH1_DERIVE mechanism).

Mechanisms CKM_IBM_ED25519_SHA512 and CKM_IBM_ED448_SHA3 are used for sign/verify
actions using the functions C_SignInit()/C_Sign() and C_VerifyInit()/C_Verify(). These
mechanisms do not have a mechanism parameter.

Keys for use with these IBM-specific mechanisms are generated using mechanism
CKM_EC_KEY_PAIR_GEN with function C_GenerateKeyPair(), just like EC keys. Attribute
CKA_EC_PARAMS specifies the OID of the curves to generate keys for. Importing known clear key values
works the same as for EC keys.

No special key type is defined for keys for Edwards curves with above mechanisms. Key type
CKK_EC is also used for those keys. This is different to what is defined with the PKCS #11
version 3 standard, where additional key types are defined for such keys (CKK_EC_EDWARDS and
CKK_EC_MONTGOMERY). Also PKCS #11 version 3 defined new mechanisms for generating such keys
(CKM_EC_EDWARDS_KEY_PAIR_GEN and CKM_EC_MONTGOMERY_KEY_PAIR_GEN). Although different
to PKCS #11 version 3, key type CKK_EC is used with these IBM-specific mechanisms as long as
openCryptoki does not support the key types of PKCS #11 version 3.

CKM_IBM_EC_C448

Flags and functions:

• The CKF_DERIVE flag specifies that the mechanism can be used with C_DeriveKey().
• The CKF_EC_F_P flag specifies that the mechanism can be used with EC domain parameters over the
finite field Fp.

• The CKF_EC_UNCOMPRESS flag specifies that the mechanism can be used with elliptic curve point
uncompressed.

• This mechanism can also use the CK_ECDH1_DERIVE_PARAMS structure.

CKM_IBM_EC_C25519

Flags and functions:

Same as for mechanism CKM_IBM_EC_C448.

CKM_IBM_ED448_SHA3

Flags, functions, and parameters:

The CKF_SIGN and CKF_VERIFY flags are set to true for this mechanism. Therefore, the functions
C_SignInit() and C_VerifyInit() accept the CKM_IBM_ED448_SHA3 mechanism.

• Possible processing sequences are the same as described with mechanism
CKM_IBM_SHA3_224_HMAC.

• The CKF_EC_F_P flag specifies that the mechanism can be used with EC domain parameters over the
finite field Fp.

• The CKF_EC_UNCOMPRESS flag specifies that the mechanism can be used with elliptic curve point
uncompressed.

• This mechanism also must use the CK_ECDH1_DERIVE_PARAMS structure.

CKM_IBM_ED25519_SHA512

Flags and functions:

Same as for mechanism CKM_IBM_ED448_SHA3.

Chapter 16. IBM-specific mechanisms and features for openCryptoki 93

CKM_IBM_ATTRIBUTEBOUND_WRAP
Availability:

The CKM_IBM_ATTRIBUTEBOUND_WRAP mechanisms is available with the EP11 token.

Description:

Keys may have attributes bound to them that control the usage of these key, for example, restrictions
on operations, like exportability. Attribute-bound keys provide a different format for key wrapping and
unwrapping, where attributes cannot be separated from the key during transport and thus must be
contained in the wrapped format of the key. Therefore, you cannot use an attribute-bound key to wrap
a classical key or the other way round. For all operations except key wrapping and unwrapping, attribute-
bound keys behave exactly like regular keys. The CKM_IBM_ATTRIBUTEBOUND_WRAP mechanism
supports the wrapping of such attribute-bound keys.

As a prerequisite, you must specify attribute CKA_IBM_ATTRBOUND with value CK_TRUE when creating a
new key with bound attributes (default is CK_FALSE).

The goal of attribute-bound keys is to bind attributes to the key during transport via wrap and unwrap.
Additionally, the CKM_IBM_ATTRIBUTEBOUND_WRAP mechanism adds a signing/verification processing
to the wrapping/unwrapping actions. Part of the wrapped blob is signed and the signature is appended to
the blob. When unwrapping the transported key, the signature is verified. For both actions, wrapping and
unwrapping, the signing and verification key is propageted to the mechanism using a parameter (see the
description of the CK_IBM_ATTRIBUTEBOUND_WRAP parameter later in this topic). To this end, you need
both, a wrapping/unwrapping key pair and a signing/verification key pair for the key transport. Therefore,
to transport an attribute-bound key using asymmetric keys for all involved operations, both sender and
receiver create a key pair each, setting CKA_IBM_ATTRBOUND to CK_TRUE for both the public and the
private keys.

Thereafter, sender and receiver exchange the public keys via the usual public key transport and
then import this key using C_CreateObject(). Then, the sender applies wrapping using the
CKM_IBM_ATTRIBUTEBOUND_WRAP mechanism on the attribute-bound key and sends the resulting
blob to the receiver. The key is wrapped with the public key created by the receiver and signed by the
private key created by the sender.

The receiver can unwrap the blob with its own private key and verify the signature with the public
key created by the sender. Both, unwrapping and signature verification is done by the attribute-bound
unwrapping mechanism CKM_IBM_ATTRIBUTEBOUND_WRAP.

Only symmetric keys and RSA key(pairs) are supported as wrapping keys, also called key encrypting keys
(KEKs). The signing/verifying key can be a symmetric key, an RSA key, an EC key, or a DSA key.

Attribute-bound keys contain a number of Boolean attributes, controlling the usage and trust inside the
key blob. The attributes bound to the key are the following:

• CKA_EXTRACTABLE
• CKA_NEVER_EXTRACTABLE
• CKA_MODIFIABLE
• CKA_SIGN
• CKA_SIGN_RECOVER
• CKA_DECRYPT
• CKA_ENCRYPT
• CKA_DERIVE
• CKA_UNWRAP
• CKA_WRAP
• CKA_VERIFY
• CKA_VERIFY_RECOVER
• CKA_LOCAL

94 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

• CKA_WRAP_WITH_TRUSTED
• CKA_TRUSTED
• CKA_IBM_NEVER_MODIFIABLE (unsupported by openCryptoki)
• CKA_IBM_RESTRICTABLE (unsupported by openCryptoki)
• CKA_IBM_ATTRBOUND
• CKA_IBM_USE_AS_DATA
• CKA_KEY_TYPE
• CKA_VALUE_LEN

Following key types are supported as attribute-bound keys:

• CKK_AES
• CKK_DES2
• CKK_DES3
• CKK_GENERIC_SECRET
• CKK_RSA
• CKK_EC
• CKK_DSA
• CKK_DH
• CKK_IBM_PQC_DILITHIUM

Attempts to create an attribute-bound key of an unsupported type returns
CKR_TEMPLATE_INCONSISTENT.

Key and key-pair generation You can specify the attribute CKA_IBM_ATTRBOUND only during key
creation (for key pairs in both templates, private and public). If the attribute is specified as TRUE,
the attribute CKA_SENSITIVE must be set to CK_TRUE in the attribute template for the public key
as well. This can be implicitly done by the EP11 token configuration option FORCE_SENSITIVE.
If, however, the option has its default value CK_FALSE, key or key pair generation fails with
CKA_TEMPLATE_INCONSISTENT. Otherwise, attribute-bound keys behave exactly like non-attribute-
bound keys.

Key derivation You can only use attribute-bound input keys to produce attribute-bound derived keys.
That is, if the input key is not attribute-bound, but the attribute CKA_IBM_ATTRBOUND is set to CK_TRUE
in the template for the derived key, derivation fails with return code CKR_TEMPLATE_INCONSISTENT.

By default, a derived key inherits from the input key. That is, if CKA_IBM_ATTRBOUND is not specified
in the derivation template, it defaults to the value of the input key, or, if the input key does not
specify CKA_IBM_ATTRBOUND, it defaults to CK_FALSE. Thus, you can derive attribute-bound keys
from attribute-bound keys without specifying CKA_IBM_ATTRBOUND in the template for the derived key.
However, it is possible to derive classical PKCS #11 keys from attribute-bound keys. To do this, set the
attribute CKA_IBM_ATTRBOUND to FALSE in the template for the derived key. If CKA_IBM_ATTRBOUND
is specified when deriving asymmetric keys, it must be specified for both templates with the same value.
Otherwise, CKR_TEMPLATE_INCONSISTENT is returned.

Object creation Attribute-bound public keys can be created with C_CreateObject() by setting the
CKA_IBM_ATTRBOUND attribute to TRUE. Attribute-bound private keys or secret keys can only be
generated with the following functions:

• C_GenerateKey()
• C_GenerateKeyPair()
• C_DeriveKey()
• C_UnwrapKey()

C_CreateObject() returns CKR_ATTRIBUTE_VALUE_INVALID on an attempt to create attribute-bound
private keys.

Chapter 16. IBM-specific mechanisms and features for openCryptoki 95

Object copy When copying an object, the attribute CKA_IBM_ATTRBOUND cannot be changed. An
attempt to change it results in error CKA_ATTRIBUTE_READ_ONLY.

Attribute setting Since some boolean attributes, mostly key usage attributes, are bound to the key,
the key blob changes when changing those attributes. This change is reflected in the value of the
CKA_IBM_OPAQUE attribute. The attribute CKA_IBM_ATTRBOUND is read-only and cannot be changed.
Attempts to change it returns error CKA_ATTRIBUTE_READ_ONLY. All other attributes follow standard
PKCS #11 rules. However, attribute-bound keys must have CKA_SENSITIVE set to CK_TRUE and thus
have additional restrictions according to PKCS #11.

How to use the CKM_IBM_ATTRIBUTEBOUND_WRAP mechanism:

The mechanism requires a parameter of type CK_IBM_ATTRIBUTEBOUND_WRAP.

typedef struct CK_IBM_ATTRIBUTEBOUND_WRAP {
 CK_OBJECT_HANDLE hSignVerifyKey;
} CK_IBM_ATTRIBUTEBOUND_WRAP_PARAMS;

This parameter provides the key for signing and verifying the wrapped key.

The CKM_IBM_ATTRIBUTEBOUND_WRAP mechanism has the following restrictions:

• All keys involved (target, wrapping/unwrapping, signature/verification) must be attribute-bound keys
(CKA_IBM_ATTRBOUND = CK_TRUE). Otherwise:

– For the target key on C_WrapKey(), CKR_KEY_NOT_WRAPPABLE is returned.
– For the wrapping and unwrapping keys and the signature and verification keys,

CKR_KEY_FUNCTION_NOT_PERMITTED is returned.
• On C_WrapKey(), the signing private key must be capable of signing (CKA_SIGN = CK_TRUE).

Otherwise CKR_KEY_FUNCTION_NOT_PERMITTED is returned.
• On C_UnwrapKey(), the verification public key must be capable of verifying (CKA_VERIFY = CK_TRUE).

Otherwise CKR_KEY_FUNCTION_NOT_PERMITTED is returned.

Only RSA and symmetric keys are supported as wrapping keys. Usage of
other key types returns CKR_WRAPPING_KEY_TYPE_INCONSISTENT for wrapping, and
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT for unwrapping.

Since the input blob to be unwrapped contains both the key and the attributes, C_UnwrapKey() also
recreates all attributes bound to the key, except the ones flagged as not supported by openCryptoki (see
the previous list of attributes).

For unwrapping, CKA_KEY_TYPE must be specified in the unwrap template and must match the value
bound to the key. If the values do not match, unwrapping fails with CKR_TEMPLATE_INCONSISTENT.
Any key attribute of the wrapped key that is not specified in the unwrap template, is ignored. After a
successful unwrapping of the key and its attributes, the attributes are available via the standard PKCS
#11 methods. Remember that attribute-bound keys are sensitive keys and have additional restrictions on
attribute visibility.

Flags and functions:

CKF_WRAP and CKF_UNWRAP flags are set to true for this mechanism. Therefore, the functions
C_WrapKey() and C_UnwrapKey accept the CKM_IBM_ATTRIBUTEBOUND_WRAP mechanism.

Miscellaneous attributes
This section list IBM-specific attributes that apply to objects but do not adhere to certain mechanisms or
purposes.

CKA_IBM_PROTKEY_NEVER_EXTRACTABLE
Marks objects that are never importable as protected key. Does conflict with
CKA_IBM_PROTKEY_EXTRACTABLE and behaves the same as CKA_NEVER_EXTRACTABLE.

96 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

CKA_IBM_STD_COMPLIANCE1
Compliance attribute. For EP11 tokens only and for all types of EP11 keys. Compliance settings
correspond to standards-mandated sets of CPs. They are read-only, and are updated when CPs are
updated, or a domain changes state. See also Enterprise PKCS#11 (EP11) Library structure.

CKA_IBM_PROTKEY_EXTRACTABLE
This key attribute is internally set to CK_TRUE, if the EP11 configuration option PKEY_MODE is
enabled and the key has CKA_EXTRACTABLE set to FALSE. This makes the key eligible for being
transformed into a protected key for better performance, if applicable (see also “Defining an EP11
token-specific configuration file” on page 57).

CKA_IBM_OPAQUE_PKEY
If the option PKEY_MODE is enabled in the EP11 token configuration file, a protected key is generated
for the applicable key object and is added to the secure key object with this IBM-specific key attribute
at first use of the key. A new protected key is generated each time if required, for example, it an LPAR
has been deactivated and reactivated and its firmware master key has changed.

CKA_IBM_OPAQUE
Use this attribute for importing and exporting plain CCA key objects into or from sensitive
openCryptoki key objects. See also “Usage notes for CCA library functions” on page 48.

CKA_IBM_USE_AS_DATA
Set this attribute for keys where raw key bytes may be used as data of some cryptographic
operation, such as hashing (DigestKey()) or key derivation (DeriveKey()). This restriction further
controls key-based operations which do not involve key migration, therefore, are not controlled by
EXTRACTABLE or transport-related control points.

CKA_IBM_ATTRBOUND
Set this attribute for attribute-bound keys to enable these keys for being wrapped and unwrapped
using the CKM_IBM_ATTRIBUTEBOUND_WRAP mechanism.

Re-encrypting data with a mechanism
The vendor-specific function C_IBM_ReencryptSingle() is available in openCryptoki and is supported
by all tokens. You can use it to re-encrypt data encrypted with a given key and mechanism with another
key and mechanism. This function is useful for secure key encryption with an EP11 token or a CCA token,
because during the process, the data is never visible in the clear anywhere outside the cryptographic
coprocessor.

The C_IBM_ReencryptSingle function has the following signature:

CK_RV C_IBM_ReencryptSingle(CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pDecrMech,
 CK_OBJECT_HANDLE hDecrKey,
 CK_MECHANISM_PTR pEncrMech,
 CK_OBJECT_HANDLE hEncrKey,
 CK_BYTE_PTR pEncryptedData,
 CK_ULONG ulEncryptedDataLen,
 CK_BYTE_PTR pReencryptedData,
 CK_ULONG_PTR pulReencryptedDataLen);

Because the new function is non-standard, it does not appear in the PKCS #11 CK_FUNCTION_LIST
structure returned by C_GetFunctionList(). To invoke this function, you must either locate the
desired function in the main DLL using dlsym(), or link the application program with the main DLL. You
can also use C_GetInterface() to get the interface called Vendor IBM. This interface also provides
the C_IBM_ReencryptSingle() function.

Like other PKCS #11 functions, this function returns output in a variable-length buffer, conforming to the
convention defined by PKCS #11.

If pReencryptedData is NULL_PTR, then the function only uses parameter
*pulReencryptedDataLen to return a number of bytes which would suffice to hold the cryptographic
output produced from the input to the function. This number may exceed the precise number of bytes
needed, but not to a very high extent.

Chapter 16. IBM-specific mechanisms and features for openCryptoki 97

If pReencryptedData is not NULL_PTR, then *pulReencryptedDataLen must contain the size in
bytes of the buffer pointed to by pReencryptedData. If that buffer is large enough to hold the
cryptographic output produced by the function, then that cryptographic output is placed there, and
CKR_OK is returned. If the buffer is not large enough, then CKR_BUFFER_TOO_SMALL is returned. In
either case, *pulReencryptedDataLen is set to hold the exact number of bytes needed to hold the
produced cryptographic output.

The function generally allows to specify any combination of decryption and encryption mechanisms.
However, not all combinations work with all data sizes. Mechanisms that do not perform any padding,
require that the data to be encrypted is a multiple of the block size. Also some mechanisms have
certain size limitations (for example, RSA). If the data size after decryption with the decryption
mechanism conflicts with the requirements of the encryption mechanisms, then the re-encrypt operation
may fail with CKR_DATA_LEN_RANGE. Also, not all tokens may support all mechanism combinations.
CKR_MECHANISM_INVALID is returned if one of the mechanisms specified is not supported for the
re-encrypt operation.

98 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Part 4. Programming basics and user scenarios
Learn about use cases on how to take advantage of openCryptoki from new and existing applications.

The most common openCryptoki use cases fall into one of two types:

• scenarios where application programmers write new security applications using openCryptoki,
• scenarios where openCryptoki administrators want to configure an existing application with a PKCS #11

interface to use a certain openCryptoki token.

There are a variety of benefits why users may want to exploit the standardized openCryptoki
cryptographic functions:

• They can start using the cryptographic operations of a soft token and later switch to a hardware security
module (HSM) without changing the application code.

• They can switch between hardware security modules (HSM) from different suppliers without changing
the code.

• They can use the sophisticated services of a cryptographic library without coping with the complexity of
their APIs.

• They can use different openCryptoki tokens from within one application to enforce isolation between
the data.

• Many software products that support encryption provide plug-in mechanisms that, if configured,
will redirect cryptographic functions to a PKCS #11 library. For example, IBM middleware like the
WebSphere Application Server and the HTTP Server including IBM's internal cryptographic library
GSKIT can be configured to use a PKCS #11 library.

For developers of new openCryptoki applications, Chapter 17, “Programming with openCryptoki,” on page
101 first documents the basic structure of such applications. Additionally, a simple, but complete and
executable code sample for generating an RSA private and public key pair with a specified openCryptoki
token is provided.

Chapter 18, “Configuring a remote PKCS #11 service with openCryptoki,” on page 121 provides a user
scenario showing how to set up a Soft token on a server for use from an application on a remote client.

© Copyright IBM Corp. 2021 99

100 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 17. Programming with openCryptoki
Learn how to write applications from scratch that are using the functions from a certain token in the
openCryptoki framework.

How it works
Shortly spoken, an openCryptoki application must specify, which token(s) it uses. Then it can invoke
C_...() functions of openCryptoki. Where required, input to these functions is an appropriate CKM_
mechanism that must be offered by the selected token. The mechanism defines how to perform the
using function. For example, the CKM_RSA_PKCS mechanism defines to functions C_EncryptInit()
and C_Encrypt() to encrypt clear text with a (previously generated) private RSA key.

Each mechanism is coded in such a way that it exploits one or more adequate APIs from the connected
cryptographic library specified with the token definition in the opencryptoki.conf file.

Terminology
openCryptoki application programs deal with the following main items:

• Functions: Prefix C_
• Data types or general constants: Prefix CK_
• Attributes: Prefix CKA_
• Mechanisms: Prefix CKM_
• Return codes: Prefix CKR_

How to create and modify objects
All openCryptoki functions that create, modify, or copy objects take a template as one of their arguments,
where the template specifies attribute values. Cryptographic functions that create objects, for example,
C_GenerateKey, may also contribute some additional attribute values themselves. This depends on
which cryptographic mechanism is being performed. In any case, all the required attributes supported by
an object class that do not have default values, must be specified during object creation, either in the
template or by the function itself.

An application can use the following functions for creating objects:

• C_CreateObject
• C_GenerateKey
• C_GenerateKeyPair
• C_UnwrapKey
• C_DeriveKey

In addition, an application can create new objects using the C_CopyObject function.

To create an object with any of these listed functions, the application must supply an appropriate
template. This template specifies values for valid attributes. An attribute is valid if it is either one of
the attributes described in the PKCS #11 specification or it is an additional vendor-specific attribute
supported by the library and token. The attribute values supplied by the template, together with any
default attribute values and any attribute values contributed to the object by the object-creation function
itself, must fully define the object to create.

Look at the following code example, where function C_CreateObject is used to generate an RSA key,
using a template keyTempl to specify the key attributes. One of these attributes, CKA_KEY_TYPE, defines
the RSA type of the key:

© Copyright IBM Corp. 2021 101

/*
 * create an RSA key object with C_CreateObject
 */
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;

CK_OBJECT_CLASS
 dataClass = CKO_DATA,
 certificateClass = CKO_CERTIFICATE,
 keyClass = CKO_PUBLIC_KEY;

CK_KEY_TYPE keyType = CKK_RSA;

CK_ATTRIBUTE keyTemplate[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_MODULUS, modulus, sizeof(modulus)},
 {CKA_PUBLIC_EXPONENT, exponent, sizeof(exponent)}
};
CK_RV rc;

rc = C_CreateObject(hSession, keyTemplate, 5, &hKey);

if (rc != CKR_OK) {
 printf("Error creating key object: 0x%X\n", rc); return rc;
}

if (rc == CKR_OK) {
 printf("RSA key object creation successful.\n");
}

How to apply attributes to objects
In openCryptoki, an attribute defines a characteristic of an object, for example, for a generated key. In
openCryptoki, there are general attributes, such as whether the object is private or public. There are also
attributes that are specific to a particular type of object, such as a modulus or exponent for RSA keys.

Attributes determine the characteristics of an object or how a mechanism is applied to an object.

Attributes are denoted by names starting with the prefix 'CKA_'. Some attributes are valid for one certain
object type, others are valid for multiple object types.

The type is specified on an object through the CKA_CLASS attribute of the object. Especially, the
CKA_CLASS attribute determines which further attributes are associated with an object. Other typical
attributes contain the value of an object or determine whether an object is a token object.

Structure of an openCryptoki application
The basic structure of an application that uses an openCryptoki token in order to encrypt and decrypt
with an RSA key pair is described in this topic. You can use it as a template for general cryptographic
applications.

Before you begin
Consider two things:

1. Identify the slot ID of the token you want to utilize.
2. Check whether the mechanisms that you must use or want to use are supported by the selected token.

Procedure
1. Provide the openCryptoki data types, functions, attributes and all other available items for

programming via the following ANSI C header files.

#include <opencryptoki/pkcs11.h> /* top-level Cryptoki include file */
#include <stdlib.h>
#include <errno.h>

102 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

#include <stdio.h>
#include <dlfcn.h>
#include <defs.h>

2. Use function C_Initialize to initialize Cryptoki.

CK_RV C_Initialize(CK_VOID_PTR pInitArgs);

An application becomes an openCryptoki application by calling the C_Initialize function from one
of its threads. After this call, the application can call other openCryptoki functions.

3. Use function C_InitToken to initialize the desired token in the specified slot. (if token not yet
initialized, for example, with pkcsconf).

CK_RV C_InitToken(
 CK_SLOT_ID slotID,
 CK_UTF8CHAR_PTR pPin,
 CK_ULONG ulPinLen,
 CK_UTF8CHAR_PTR pLabel
);

4. Use function C_OpenSession to open a connection between an application and a particular token.

CK_RV openSession(CK_SLOT_ID slotID, CK_FLAGS sFlags,
CK_SESSION_HANDLE_PTR phSession) {
 CK_RV rc;
 rc = C_OpenSession(slotID, sFlags, NULL, NULL, phSession);

 printf("Open session successful.\n");
 return CKR_OK;
}

5. Use function C_Login to log a user into a token. Variable userType specifies the user role (SO or
normal User).

CK_RV loginSession(CK_USER_TYPE userType, CK_CHAR_PTR pPin,
CK_ULONG ulPinLen, CK_SESSION_HANDLE hSession) {
 CK_RV rc;
 rc = C_Login(hSession, userType, pPin, ulPinLen);

 printf("Login session successful.\n");
 return CKR_OK;
}

6. Use function C_GenerateKeyPair to generate an RSA private and public key pair. The used
mechanism is CKM_RSA_PKCS_KEY_PAIR_GEN.

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;
CK_MECHANISM mechanism = {
 CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0
};

CK_ULONG modulusBits = 768;
CK_BYTE publicExponent[] = { 3 };
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE publicKeyTemplate[] = {
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VERIFY, &true, sizeof(true)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
 {CKA_PUBLIC_EXPONENT, publicExponent, sizeof (publicExponent)}
};

CK_ATTRIBUTE privateKeyTemplate[] = {
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_PRIVATE, &true, sizeof(true)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},

Chapter 17. Programming with openCryptoki 103

 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DECRYPT, &true, sizeof(true)},
 {CKA_SIGN, &true, sizeof(true)},
 {CKA_UNWRAP, &true, sizeof(true)}
};

CK_RV rv;

rv = C_GenerateKeyPair(
 hSession, &mechanism,
 publicKeyTemplate, 5,
 privateKeyTemplate, 8,
 &hPublicKey, &hPrivateKey);
if (rv == CKR_OK) {
 .
 .
}

7. Use functions C_EncryptInit and C_Encrypt to initialize an encryption operation and to encrypt
data with the previously generated RSA private key.

#define PLAINTEXT_BUF_SZ 200
#define CIPHERTEXT_BUF_SZ 256

CK_ULONG firstPieceLen, secondPieceLen;
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {
 CKM_DES_CBC_PAD, iv, sizeof(iv)
};

CK_BYTE data[PLAINTEXT_BUF_SZ];
CK_BYTE encryptedData[CIPHERTEXT_BUF_SZ];
CK_ULONG ulEncryptedData1Len;
CK_ULONG ulEncryptedData2Len;
CK_ULONG ulEncryptedData3Len;
CK_RV rv;
...
firstPieceLen = 90;
secondPieceLen = PLAINTEXT_BUF_SZ-firstPieceLen;
rv = C_EncryptInit(hSession, &mechanism, hKey);

if (rv == CKR_OK) {
 /* Encrypt first piece */
 ulEncryptedData1Len = sizeof(encryptedData);
 rv = C_EncryptUpdate(
 hSession,
 &data[0], firstPieceLen,
 &encryptedData[0], &ulEncryptedData1Len);

 /* Encrypt second piece */
 ulEncryptedData2Len = sizeof(encryptedData)-ulEncryptedData1Len;
 rv = C_EncryptUpdate(
 hSession,
 &data[firstPieceLen], secondPieceLen,
 &encryptedData[ulEncryptedData1Len], &ulEncryptedData2Len);
 if (rv != CKR_OK) { ... }

 /* Get last little encrypted bit */

 ulEncryptedData3Len =
 sizeof(encryptedData)-ulEncryptedData1Len-ulEncryptedData2Len;
 rv = C_EncryptFinal(
 hSession,
 &encryptedData[ulEncryptedData1Len+ulEncryptedData2Len],
 &ulEncryptedData3Len);
 if (rv != CKR_OK) {...}

}

8. Use function C_Logout to logout from the openCryptoki session and close the session.

 rv = C_Logout(session);
 if (rv != CKR_OK) goto err;

104 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

 rv = C_CloseSession(session);
 if (rv != CKR_OK) goto err;

9. Use function C_Finalize to finalize the operation.

 rv = fn->C_Finalize(NULL);
 if (rv != CKR_OK) goto err;

Sample openCryptoki program
View a completely coded example of an openCryptoki application that performs an RSA key generation
operation.

Note: This sample program does not include the operation to encrypt data with the previously generated
RSA private key as described in step “7” on page 104 of “Structure of an openCryptoki application” on
page 102.

/*
 * Build:
 * cc -o pkcs11 pkcs11.c -ldl
 *
 * Usage:
 * pkcs11 <so_name> <slot_id> <user_pin>
 *
 * Description:
 * Loads the PKCS11 shared library <so_name>,
 * opens a session with slot <slot_id>,
 * logs the user in using the PIN <user_pin>,
 * and performs an RSA key generation operation.
 */
/* Step 1 */
#include <opencryptoki/pkcs11.h>
#include <string.h>
#include <stdlib.h>
#include <dlfcn.h>

#define NELEM(array) (sizeof(array) / sizeof((array)[0]))

int main(int argc, char *argv[])
{
 CK_C_GetFunctionList get_functionlist = {NULL};
 CK_SESSION_HANDLE session = CK_INVALID_HANDLE;
 CK_FUNCTION_LIST *fn = NULL;
 void *pkcs11so = NULL;
 CK_SLOT_ID slot_id;
 CK_FLAGS flags;
 int rc = -1;
 char *ptr;
 CK_RV rv;

 if (argc != 4) goto err;

 pkcs11so = dlopen(argv[1], RTLD_NOW);
 if (pkcs11so == NULL) goto err;

 slot_id = strtoul(argv[2], &ptr, 0);
 if (*(argv[2]) == '\0' || *ptr != '\0') goto err;

 *(void **)(&get_functionlist) = dlsym(pkcs11so, "C_GetFunctionList");
 if (get_functionlist == NULL) goto err;

 rv = get_functionlist(&fn);
 if (rv != CKR_OK || fn == NULL) goto err;

/* Step 2 */
 rv = fn->C_Initialize(NULL);
 if (rv != CKR_OK) goto err;

 flags = CKF_SERIAL_SESSION | CKF_RW_SESSION;
/* Step 4 (Step 3 assumed to be done by pkcsconf) */
 rv = fn->C_OpenSession(slot_id, flags, NULL, NULL, &session);
 if (rv != CKR_OK || session == CK_INVALID_HANDLE) goto err;

/* Step 5 */
 rv = fn->C_Login(session, CKU_USER, (CK_UTF8CHAR *)argv[3], strlen(argv[3]));
 if (rv != CKR_OK) goto err;

Chapter 17. Programming with openCryptoki 105

 /* Step 6 (Step 7 not coded in this example */
 {
 CK_MECHANISM mechanism = {CKM_RSA_PKCS_KEY_PAIR_GEN, NULL, 0};
 CK_BYTE e[] = {0x01, 0x00, 0x01};
 CK_ULONG modbits = 4096;
 CK_BYTE subject[] = "RSA4096 Test";
 CK_BYTE id[] = {1};
 CK_BBOOL true_ = CK_TRUE;

 CK_ATTRIBUTE template_publ[] = {
 {CKA_ENCRYPT, &true_, sizeof(true_)},
 {CKA_VERIFY, &true_, sizeof(true_)},
 {CKA_WRAP, &true_, sizeof(true_)},
 {CKA_MODULUS_BITS, &modbits, sizeof(modbits)},
 {CKA_PUBLIC_EXPONENT, e, sizeof(e)}
 };
 CK_ATTRIBUTE template_priv[] = {
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_TOKEN, &true_, sizeof(true_)},
 {CKA_PRIVATE, &true_, sizeof(true_)},
 {CKA_SENSITIVE, &true_, sizeof(true_)},
 {CKA_DECRYPT, &true_, sizeof(true_)},
 {CKA_SIGN, &true_, sizeof(true_)},
 {CKA_UNWRAP, &true_, sizeof(true_)}
 };

 CK_OBJECT_HANDLE publ, priv;

 rv = fn->C_GenerateKeyPair(session, &mechanism,
 template_publ, NELEM(template_publ),
 template_priv, NELEM(template_priv),
 &publ, &priv);
 if (rv != CKR_OK) goto err;
 }

/* Step 8 */
 rv = fn->C_Logout(session);
 if (rv != CKR_OK) goto err;

 rv = fn->C_CloseSession(session);
 if (rv != CKR_OK) goto err;

 /* Step 9 */
 rv = fn->C_Finalize(NULL);
 if (rv != CKR_OK) goto err;

 rc = 0;
err:
 if (pkcs11so != NULL)
 dlclose(pkcs11so);
 return rc;
}

openCryptoki code samples (C)
To develop an application that uses openCryptoki, you need to access the library.

There are two ways to access the library:

• Load shared objects using dynamic library calls (dlopen)
• Link the library to your application during build time

106 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Dynamic library call
View some openCryptoki code samples for a dynamic library call.

#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <dlfcn.h>
#include <opencryptoki/pkcs11.h>

CK_RV init();
CK_RV cleanup();
CK_RV rc; /* return code */
void *dllPtr, (*symPtr)(); /* pointer to the ock library */
CK_FUNCTION_LIST_PTR FunctionPtr = NULL; /* pointer to function list */

int main(int argc, char *argv[]){
 /* opencryptoki initialization */
 rc = init("/usr/lib64/opencryptoki/libopencryptoki.so");
 /* further opencryptoki commands */
 rc = cleanup(); /* cleanup/close shared library */
 return 0;
}

CK_RV init(char *libPath){

 dllPtr = dlopen(libPath, RTLD_NOW); /* open the PKCS11 library */
 if (!dllPtr) {
 printf("Error loading PKCS#11 library \n");
 return errno;
 }
 /* Get ock function list */
 symPtr = (void (*)())dlsym(dllPtr, "C_GetFunctionList");
 if (!symPtr) {
 printf("Error getting function list \n");
 return errno;
 }
 symPtr(&FunctionPtr);
 rc = FunctionPtr->C_Initialize(NULL); /* initialize opencryptoki/tokens) */
 if (rc != CKR_OK) {
 printf("Error initializing the opencryptoki library: 0x%X\n", rc);
 cleanup();
 }
 printf("Opencryptoki initialized.\n");
 return CKR_OK;
}

 CK_RV cleanup(void) {
 rc = FunctionPtr->C_Finalize(NULL);
 if (dllPtr)
 dlclose(dllPtr);
 return rc;
}

To compile your sample code you need to provide the path of the source/include files. Issue a command
of the form:

gcc sample_dynamic.c -g -O0 -o sample_dynamic

Shared linked library
When you use your sample code with a static linked library you can access the APIs directly.

At the compile time you need to specify the openCryptoki library:

gcc sample_shared.c -g -O0 -o sample_shared /usr/lib64/opencryptoki/libopencryptoki.so

The presented samples that interact with the openCryptoki API are based on the shared linked
openCryptoki library.

Chapter 17. Programming with openCryptoki 107

Base procedures
View some openCryptoki code samples for base procedures, such as a main program, an initialization
procedure, and finalize information.

Main program

/* Example program to test opencryptoki
 * build: gcc test_ock.c -g -O0 -o test_ock -lopencryptoki
 * execute: ./test_ock -c <slot> -p <PIN> */
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <dlfcn.h>
#include <opencryptoki/pkcs11.h>
#include <string.h>
#include <unistd.h>

void *lib_ock;
char *pin = NULL;
int count, arg;
CK_SLOT_ID slotID = 0;
CK_ULONG rsaKeyLen = 2048, cipherTextLen = 0, clearTextLen = 0;
CK_BYTE *pCipherText = NULL, *pClearText = NULL;
CK_BYTE *pRSACipher = NULL, *pRSAClear = NULL;
CK_FLAGS rw_sessionFlags = CKF_RW_SESSION | CKF_SERIAL_SESSION;
CK_SESSION_HANDLE hSession;
CK_BYTE keyValue[] = {0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,
 0xCA,0xFE,0xBE,0xEF,0xCA,0xFE,0xBE,0xEF};
CK_BYTE msg[] = "The quick brown fox jumps over the lazy dog";
CK_ULONG msgLen = sizeof(msg);
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;

/*** <insert helper functions (provided below) here> ***/
/*** usage / help ***/
void usage(void)
{
 printf("Usage:\n");
 printf(" -s <slot number> \n");
 printf(" -p <user PIN>\n");
 printf("\n");
 exit (8); }

int main(int argc, char *argv[]) {
 while ((arg = getopt (argc, argv, "s:p:")) != -1) {
 switch (arg) {
 case 's': slotID = atoi(optarg);
 break;
 case 'p': pin = malloc(strlen(optarg));
 strcpy(pin,optarg);
 break;
 default: printf("wrong option %c", arg);
 usage();
 } }

 if ((!pin) || (!slotID)) {
 printf("Incorrect parameter given!\n");
 usage();
 exit (8); }

 init();
 openSession(slotID, rw_sessionFlags, &hSession);
 loginSession(CKU_USER, pin, 8, hSession);
 createKeyObject(hSession, (CK_BYTE_PTR)&keyValue, sizeof(keyValue));
 AESencrypt(hSession, (CK_BYTE_PTR)&msg, msgLen, &pCipherText, &cipherTextLen);
 AESdecrypt(hSession, pCipherText, cipherTextLen, &pClearText, &clearTextLen);
 generateRSAKeyPair(hSession, rsaKeyLen, &hPublicKey, &hPrivateKey);
 RSAencrypt(hSession, hPublicKey, (CK_BYTE_PTR)&msg, msgLen, &pRSACipher, &rsaKeyLen);
 RSAdecrypt(hSession, hPrivateKey, pRSACipher, rsaKeyLen, &pRSAClear, &rsaKeyLen);
 logoutSession(hSession); closeSession(hSession);
 finalize();
 return 0;
}

108 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

C_Initialize

/*
 * initialize
 */
CK_RV init(void){
 CK_RV rc;
 rc = C_Initialize(NULL);
 if (rc != CKR_OK) {
 printf("Error initializing the opencryptoki library: 0x%X\n", rc);
 }
 return rc;
}

C_Finalize

/*
 * finalize
 */
CK_RV finalize(void) {
 CK_RV rc;
 rc = C_Finalize(NULL);
 if (rc != CKR_OK) {
 printf("Error during finalize: %x\n", rc);
 }
 if (pCipherText) free(pCipherText);
 if (pClearText) free(pClearText);
 if (pRSACipher) free(pRSACipher);
 if (pRSAClear) free(pRSAClear);
 return rc;
}

Session and log-in procedures
When you use your sample code with a static linked library you can access the APIs directly. View some
openCryptoki code samples for opening and closing sessions and for log-in.

C_OpenSession:

/*
 * opensession
 */

CK_RV openSession(CK_SLOT_ID slotID, CK_FLAGS sFlags,
 CK_SESSION_HANDLE_PTR phSession) {
 CK_RV rc;
 rc = C_OpenSession(slotID, sFlags, NULL, NULL, phSession);
 if (rc != CKR_OK) {
 printf("Error opening session: %x\n", rc);
 return rc;
 }
 printf("Open session successful.\n");
 return CKR_OK;
}

Chapter 17. Programming with openCryptoki 109

C_CloseSession:

/*
 * closesession
 */
CK_RV closeSession(CK_SESSION_HANDLE hSession) {
 CK_RV rc;
 rc = C_CloseSession(hSession);
 if (rc != CKR_OK) {
 printf("Error closing session: 0x%X\n", rc);
 return rc;
 }
 printf("Close session successful.\n");
 return CKR_OK;
}

C_Login:

/*
 * login
 */
CK_RV loginSession(CK_USER_TYPE userType, CK_CHAR_PTR pPin,
 CK_ULONG ulPinLen, CK_SESSION_HANDLE hSession) {
 CK_RV rc;
 rc = C_Login(hSession, userType, pPin, ulPinLen);
 if (rc != CKR_OK) {
 printf("Error login session: %x\n", rc);
 return rc;
 }
 printf("Login session successful.\n");
 return CKR_OK;
}

C_Logout:

/*
 * logout
 */
CK_RV logoutSession(CK_SESSION_HANDLE hSession) {
 CK_RV rc;
 rc = C_Logout(hSession);
 if (rc != CKR_OK) {
 printf("Error logout session: %x\n", rc);
 return rc;
 }
 printf("Logout session successful.\n");
 return CKR_OK;
}

110 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Object handling procedures
When you use your sample code with a static linked library you can access the APIs directly. View some
openCryptoki code samples for procedures dealing with object handling.

C_CreateObject:

/*
 * create a key object with C_CreateObject
 */
CK_RV createKeyObject(CK_SESSION_HANDLE hSession, CK_BYTE_PTR key, CK_ULONG keyLength) {
 CK_RV rc;

 CK_OBJECT_HANDLE hKey;
 CK_BBOOL true = TRUE;
 CK_BBOOL false = FALSE;
 CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
 CK_KEY_TYPE keyType = CKK_AES;
 CK_ATTRIBUTE keyTempl[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_DECRYPT, &true, sizeof(true)},
 {CKA_SIGN, &true, sizeof(true)},
 {CKA_VERIFY, &true, sizeof(true)},
 {CKA_TOKEN, &true, sizeof(true)}, /* token object */
 {CKA_PRIVATE, &false, sizeof(false)}, /* public object */
 {CKA_VALUE, keyValue, keyLength}, /* AES key */
 {CKA_LABEL, "My_AES_Key", sizeof("My_AES_Key")}
 };
 rc = C_CreateObject(hSession, keyTempl, sizeof (keyTempl)/sizeof (CK_ATTRIBUTE), &hKey);
 if (rc != CKR_OK) {
 printf("Error creating key object: 0x%X\n", rc); return rc;
 }
 printf("AES Key object creation successful.\n");
 return CKR_OK;
}

C_FindObjects:

/*
 * findObjects
 */
CK_RV getKey(CK_CHAR_PTR label, int labelLen, CK_OBJECT_HANDLE_PTR hObject,
 CK_SESSION_HANDLE hSession) {
 CK_RV rc;
 CK_ULONG ulMaxObjectCount = 1;
 CK_ULONG ulObjectCount;
 CK_ATTRIBUTE objectMask[] = { {CKA_LABEL, label, labelLen} };
 rc = C_FindObjectsInit(hSession, objectMask, 1);
 if (rc != CKR_OK) {
 printf("Error FindObjectsInit: 0x%X\n", rc); return rc;
 }
 rc = C_FindObjects(hSession, hObject, ulMaxObjectCount, &ulObjectCount);
 if (rc != CKR_OK) {
 printf("Error FindObjects: 0x%X\n", rc); return rc;
 }
 rc = C_FindObjectsFinal(hSession);
 if (rc != CKR_OK) {
 printf("Error FindObjectsFinal: 0x%X\n", rc); return rc;
 }
 return CKR_OK;
}

Chapter 17. Programming with openCryptoki 111

Cryptographic operations
When you use your sample code with a static linked library you can access the APIs directly. View some
openCryptoki code samples for procedures that perform cryptographic operations.

C_Encrypt (AES):

/*
 * AES encrypt
 */
CK_RV AESencrypt(CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pClearData, CK_ULONG ulClearDataLen,
 CK_BYTE **pEncryptedData, CK_ULONG_PTR pulEncryptedDataLen) {
 CK_RV rc;
 CK_MECHANISM myMechanism = {CKM_AES_CBC_PAD, "01020304050607081122334455667788", 16};
 CK_MECHANISM_PTR pMechanism = &myMechanism;
 CK_OBJECT_HANDLE hKey;
 getKey("My_AES_Key", sizeof("My_AES_Key"), &hKey, hSession);
 rc = C_EncryptInit(hSession, pMechanism, hKey);
 if (rc != CKR_OK) {
 printf("Error initializing encryption: 0x%X\n", rc);
 return rc;
 }
 rc = C_Encrypt(hSession, pClearData, ulClearDataLen,
 NULL, pulEncryptedDataLen);
 if (rc != CKR_OK) {
 printf("Error during encryption (get length): %x\n", rc);
 return rc;
 }
 *pEncryptedData = (CK_BYTE *)malloc(*pulEncryptedDataLen * sizeof(CK_BYTE));

 rc = C_Encrypt(hSession, pClearData, ulClearDataLen,
 *pEncryptedData, pulEncryptedDataLen);
 if (rc != CKR_OK) {
 printf("Error during encryption: %x\n", rc);
 return rc;
 }
 printf("Encrypted data: ");
 CK_BYTE_PTR tmp = *pEncryptedData;
 for (count = 0; count < *pulEncryptedDataLen; count++, tmp++) {
 printf("%X", *tmp);
 }
 printf("\n");

 return CKR_OK;
}

112 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

C_Decrypt (AES):

/*
 * AES decrypt
 */
CK_RV AESdecrypt(CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pEncryptedData, CK_ULONG ulEncryptedDataLen,
 CK_BYTE **pClearData, CK_ULONG_PTR pulClearDataLen) {
 CK_RV rc;
 CK_MECHANISM myMechanism = {CKM_AES_CBC_PAD, "01020304050607081122334455667788", 16};
 CK_MECHANISM_PTR pMechanism = &myMechanism;
 CK_OBJECT_HANDLE hKey;
 getKey("My_AES_Key", sizeof("My_AES_Key"), &hKey, hSession);
 rc = C_DecryptInit(hSession, pMechanism, hKey);
 if (rc != CKR_OK) {
 printf("Error initializing decryption: 0x%X\n", rc);
 return rc;
 }
 rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen, NULL, pulClearDataLen);
 if (rc != CKR_OK) {
 printf("Error during decryption (get length): %x\n", rc);
 return rc;
 }
 *pClearData = malloc(*pulClearDataLen * sizeof(CK_BYTE));
 rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen, *pClearData,
 pulClearDataLen);
 if (rc != CKR_OK) {
 printf("Error during decryption: %x\n", rc);
 return rc;
 }
 printf("Decrypted data: ");
 CK_BYTE_PTR tmp = *pClearData;
 for (count = 0; count < *pulClearDataLen; count++, tmp++) {
 printf("%c", *tmp);
 }
 printf("\n");
 return CKR_OK;
}

Chapter 17. Programming with openCryptoki 113

C_GenerateKeyPair (RSA):

/*
 * RSA key generate
 */
CK_RV generateRSAKeyPair(CK_SESSION_HANDLE hSession, CK_ULONG keySize,
 CK_OBJECT_HANDLE_PTR phPublicKey, CK_OBJECT_HANDLE_PTR phPrivateKey) {
 CK_RV rc;
 CK_BBOOL true = TRUE;
 CK_BBOOL false = FALSE;
 CK_OBJECT_CLASS keyClassPub = CKO_PUBLIC_KEY;
 CK_OBJECT_CLASS keyClassPriv = CKO_PRIVATE_KEY;
 CK_KEY_TYPE keyTypeRSA = CKK_RSA;
 CK_ULONG modulusBits = keySize;
 CK_BYTE_PTR pModulus = malloc(sizeof(CK_BYTE)*modulusBits/8);
 CK_BYTE publicExponent[] = {1, 0, 1};
 CK_MECHANISM rsaKeyGenMech = {CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0};
 CK_ATTRIBUTE pubKeyTempl[] = {
 {CKA_CLASS, &keyClassPub, sizeof(keyClassPub)},
 {CKA_KEY_TYPE, &keyTypeRSA, sizeof(keyTypeRSA)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_PRIVATE, &true, sizeof(true)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VERIFY, &true, sizeof(true)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
 {CKA_PUBLIC_EXPONENT, publicExponent, sizeof(publicExponent)},
 {CKA_LABEL, "My_Private_Token_RSA1024_PubKey",
 sizeof("My_Private_Token_RSA1024_PubKey")},
 {CKA_MODIFIABLE, &true, sizeof(true)},
 };
 CK_ATTRIBUTE privKeyTempl[] = {
 {CKA_CLASS, &keyClassPriv, sizeof(keyClassPriv)},
 {CKA_KEY_TYPE, &keyTypeRSA, sizeof(keyTypeRSA)},
 {CKA_EXTRACTABLE, &true, sizeof(true)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_PRIVATE, &true, sizeof(true)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DECRYPT, &true, sizeof(true)},
 {CKA_SIGN, &true, sizeof(true)},
 {CKA_UNWRAP, &true, sizeof(true)},
 {CKA_LABEL, "My_Private_Token_RSA1024_PrivKey",
 sizeof("My_Private_Token_RSA1024_PrivKey")},
 {CKA_MODIFIABLE, &true, sizeof(true)},
 };
 rc = C_GenerateKeyPair(hSession, &rsaKeyGenMech ,
 &pubKeyTempl, sizeof(pubKeyTempl)/sizeof (CK_ATTRIBUTE),
 &privKeyTempl, sizeof(privKeyTempl)/sizeof (CK_ATTRIBUTE),
 phPublicKey, phPrivateKey);
 if (rc != CKR_OK) {
 printf("Error generating RSA keys: %x\n", rc);
 return rc;
 }
 printf("RSA Key generation successful.\n");
 return CKR_OK;
}

114 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

C_Encrypt (RSA):

/*
 * RSA encrypt
 */
CK_RV RSAencrypt(CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey,
 CK_BYTE_PTR pClearData, CK_ULONG ulClearDataLen,
 CK_BYTE **pEncryptedData, CK_ULONG_PTR pulEncryptedDataLen) {
 CK_RV rc;
 CK_MECHANISM rsaMechanism = {CKM_RSA_PKCS, NULL_PTR, 0};
 rc = C_EncryptInit(hSession, rsaMechanism, hKey);
 if (rc != CKR_OK) {
 printf("Error initializing RSA encryption: %x\n", rc);
 return rc;
 }
 rc = C_Encrypt(hSession, pClearData, ulClearDataLen,
 NULL, pulEncryptedDataLen);
 if (rc != CKR_OK) {
 printf("Error during RSA encryption: %x\n", rc);
 return rc;
 }

 *pEncryptedData = (CK_BYTE *)malloc(rsaKeyLen * sizeof(CK_BYTE));
 rc = C_Encrypt(hSession, pClearData, ulClearDataLen,
 *pEncryptedData, pulEncryptedDataLen);
 if (rc != CKR_OK) {
 printf("Error during RSA encryption: %x\n", rc);
 return rc;
 }

 printf("Encrypted data: ");
 CK_BYTE_PTR tmp = *pEncryptedData;
 for (count = 0; count < *pulEncryptedDataLen; count++, tmp++) {
 printf("%X", *tmp);
 }
 printf("\n");
 return CKR_OK;
}

Chapter 17. Programming with openCryptoki 115

C_Decrypt (RSA):

/*
 * RSA decrypt
 */
CK_RV RSAdecrypt(CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey,
 CK_BYTE_PTR pEncryptedData, CK_ULONG ulEncryptedDataLen,
 CK_BYTE **pClearData, CK_ULONG_PTR pulClearDataLen) {
 CK_RV rc;
 CK_MECHANISM rsaMechanism = {CKM_RSA_PKCS, NULL_PTR, 0};
 rc = C_DecryptInit(hSession, rsaMechanism, hKey);
 if (rc != CKR_OK) {
 printf("Error initializing RSA decryption: %x\n", rc);
 return rc;
 }
 rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen,
 NULL, pulClearDataLen);
 if (rc != CKR_OK) {
 printf("Error during RSA decryption: %x\n", rc);
 return rc;
 }

 *pClearData = malloc(rsaKeyLen*sizeof(CK_BYTE));
 rc = C_Decrypt(hSession, pEncryptedData, ulEncryptedDataLen,
 *pClearData, pulClearDataLen);
 if (rc != CKR_OK) {
 printf("Error during RSA decryption: %x\n", rc);
 return rc;
 }
 printf("Decrypted data: ");
 CK_BYTE_PTR tmp = *pClearData;
 for (count = 0; count < *pulClearDataLen; count++, tmp++) {
 printf("%c", *tmp);
 }
 printf("\n");
 return CKR_OK;
}

Trouble shooting
When you run into troubles while working with openCryptoki, the information provided in this topic may
help you to resolve your problem.

To react on error messages related to openCryptoki, perform a series of checks:

1. “Walk through a check list” on page 116
2. “Checking the syslog messages” on page 117
3. “Apply tracing” on page 119
4. “Final check” on page 120

Walk through a check list
1. Is the current user authorized in the pkcs11 group?

The pkcs11 group must be defined in file /etc/group of the system. An entry in this file, like for
example: pkcs11:x:989:root, indicates that the root user is a member of the pkcs11 group. To add
a user to this group, issue the following command: usermod -aG pkcs11 <user>.

Every user of openCryptoki must be a member of this pkcs11 group. For more information, read
“Access control and groups” on page 11.

2. Is the slot manager daemon pkcsslotd up and running?

The pkcsslotd daemon must be active in the system to coordinate token accesses from multiple
processes. For more information, read “Slot manager” on page 7 and “Starting the slot manager” on
page 26.

3. Is the host library of the token installed that you want to exploit?

116 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

• For the CCA token, the host library and its default distribution location is /usr/lib64/
libcsulcca.so.<v>.<r>.<m>.

• For the ICA token, the library and its default distribution location is /usr/lib64/
libica.so.<v>.<r>.<m>.

• For the EP11 token, the library and its default distribution location is /usr/lib64/
libep11.so.<v>.<r>.<m>.

• For the Soft token, the library and its default distribution location is /usr/lib64/
libcrypto.so.<v>.<r>.<m>.

4. Are the required cryptographic coprocessors available and online?

Use the lszcrypt command to display a list of available cryptographic devices and their online
status.

lszcrypt

CARD.DOMAIN TYPE MODE STATUS REQUESTS
--
08 CEX7C CCA-Coproc online 10484
08.0031 CEX7C CCA-Coproc online 10484
09 CEX7C CCA-Coproc online 34
09.0031 CEX7C CCA-Coproc online 34
0a CEX7P EP11-Coproc online 24766
0a.0031 CEX7P EP11-Coproc online 24766
0b CEX7P EP11-Coproc online 15420
0b.0031 CEX7P EP11-Coproc online 15420

5. Are the slot definitions correctly specified in the openCryptoki configuration file (/etc/
opencryptoki/opencryptoki.conf)?

A list of all available tokens is required before you can use openCryptoki. This list is provided by
the global configuration file called opencryptoki.conf. For more information, read Chapter 4,
“Adjusting the openCryptoki configuration file,” on page 17.

Checking the syslog messages
openCryptoki issues the following syslog messages (alphabetically sorted). Numbers (placeholder x) and
names like for example <file>, will be replaced in the real output. Check the messages and correct the
mentioned error.

C_Initialize: Invalid number of functions passed in argument structure.
C_Initialize: Application specified that OS locking is invalid.
 PKCS11 Module requires OS locking.
C_Initialize: Module failed to attach to shared memory. Verify that the slot management daemon
 is running, errno=x
C_Initialize: Module failed to create a socket.
 Verify that the slot management daemon is running.
C_Initialize: Module failed to retrieve slot infos from slot deamon.
C_Initialize: Application specified that library can't create OS threads. PKCS11 Module
 requires to create threads when event support is enabled.

Cannot read size
Cannot read boolean
Cannot malloc x bytes to read in token object <file> (ignoring it)
Cannot read token object <file> (ignoring it)
Cannot restore token object <file> (ignoring it)
Cannot read header

chmod(<file>): <strerror>

connect_socket: failed to find socket file, errno=x
connect_socket: pkcs11 group does not exist, errno=x
connect_socket: incorrect permissions on socket file
connect_socket: failed to create socket, errno=x
connect_socket: failed to connect to slotmanager daemon, errno=x

Could not open <lockfilename>

Chapter 17. Programming with openCryptoki 117

<dlerror>

Directory(<dir>) missing: <strerror>

DL_Load: dlopen() failed for [<dll_location>]; dlerror = <dlerror>

ep11_load_host_lib: Error loading shared library <file>' [<strerror>]
ep11_load_host_lib: Error loading shared library 'libep11.so[.3|.2|.1]' [<strerror>]
ep11_login_handler: Error: VHSM-Pin blob of adapter <apqn> is not equal to other adapters
 for same session
ep11_login_handler: Error: Pin blob of adapter <apqn> is not equal to other adapters
 for same session
ep11_resolve_lib_sym: Error: <dlerror>

ep11tok_load_libica: Error loading shared library '<file>' [<strerror>]
ep11tok_load_libica: Failed to initialize the target lock
ep11tok_load_libica: Error: EP 11 library initialization failed
ep11tok_load_libica: Failed to get the EP11 library version rc=x
ep11tok_load_libica: Failed to get the target info rc=x
ep11tok_load_libica: Error: CKR_IBM_WK_NOT_INITIALIZED occurred, no master key set ?
ep11tok_load_libica: Error: CKR_FUNCTION_CANCELED occurred, control point 13
 (generate or derive symmetric keys including DSA parameters) disabled ?
ep11tok_load_libica: Warning: Could not get mk_vp, protected key support not available.
ep11tok_login_session: Error: A VHSM-PIN is required for VHSM_MODE.
ep11tok_handle_apqn_event: Failed to get the target info rc=x

fchmod(<file>): <strerror>
fchown(<file>): <strerror>
fchown(<file>,-1,pkcs11) failed: <strerror>. Tracing is disabled.

getgrnam() failed: <strerror>
getgrnam(pkcs11) failed: <strerror>. Tracing is disabled.
getgrnam(): <strerror>
getpwuid(): <strerror>

init_socket_data: read error on daemon socket, errno=x
init_socket_data: read returned with eof but we still expect x bytes from daemon

Invalid strength configuration in policy!

lock directory path too long
lock file path too long

mkdir(<file>): <strerror>

OPENCRYPTOKI_TRACE_LEVEL '<string>' is invalid. Tracing disabled.

open(<file>) failed: <strerror>. Tracing disabled.
open(<file>): <strerror>

Parsing policy configuration failed!

POLICY: Could not retrieve "pkcs11" group!
POLICY: Could not stat configuration file <file>: <strerror>
POLICY: Configuration file <file> should be owned by "root"
POLICY: Configuration file <file> should have group "pkcs11"!
POLICY: Configuration file <file> has wrong permissions!
POLICY: Unknown curve "<curve>" in line <line>
POLICY: allowedmechs has wrong type!
POLICY: allowedcurves has wrong type!
POLICY: allowedmgfs has wrong type!
POLICY: allowedkdfs has wrong type!
POLICY: allowedprfs has wrong type!
POLICY: Failed to open <file>: <strerror>
POLICY: Could not allocate policy private data!
POLICY: Strength definition <file> failed to parse!
POLICY: Failed to open <file>: <strerror>
POLICY: Policy definition <file> failed to parse!

POLICY VIOLATION: CKM_AES_KEY_GEN needed by Token-Store for slot <slot>
POLICY VIOLATION: CKM_AES_KEY_WRAP needed by Token-Store for slot <slot>
POLICY VIOLATION: CKM_AES_GCM needed by Token-Store for slot <slot>
POLICY VIOLATION: CKM_PKCS5_PBKD2 needed by Token-Store for slot <slot>
POLICY VIOLATION: CKP_PKCS5_PBKD2_HMAC_SHA512 needed by Token-Store for slot <slot>
POLICY VIOLATION: Token-Store encryption method not allowed for slot <slot>!
POLICY VIOLATION: Token-Store requires SHA1 for slot <slot>!
POLICY VIOLATION: Token-Store requires MD5 for slot <slot>!
POLICY VIOLATION: CKM_DES3_KEY_GEN needed by Token-Store for slot <slot>
POLICY VIOLATION: CKM_AES_KEY_GEN needed by Token-Store for slot <slot>
POLICY VIOLATION: Unknown Token-Store encryption method for slot <slot>!
POLICY VIOLATION: CKM_AES_KEY_GEN needed by Token-Store for slot <slot>

118 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

POLICY VIOLATION: CKM_AES_CBC needed by Token-Store for slot <slot>
POLICY VIOLATION: CKM_PKCS5_PBKD2 needed by Token-Store for slot <slot>
POLICY VIOLATION: CKP_PKCS5_PBKD2_HMAC_SHA256 needed by Token-Store for slot <slot>
POLICY VIOLATION: Token-Store encryption key too weak for slot <slot>!

read_adapter_config_file: Error: EP 11 config file ''<file>' not found
read_adapter_config_file: Error: EP 11 config file '<file>' is too large
read_adapter_config_file: Error: Expected APQN_ALLOWLIST, APQN_ANY, LOGLEVEL, FORCE_SENSITIVE,
 CPFILTER, STRICT_MODE, VHSM_MODE, OPTIMIZE_SINGLE_PART_OPERATIONS,
 PKEY_MODE, DIGEST_LIBICA, or USE_PRANDOM keyword, found '<token>
 in config file '<file>'
read_adapter_config_file: Error: Unexpected end of file found in config file '<file>',
 expected 'END' or adapter number
read_adapter_config_file: Error: Expected valid adapter number, found '<token>'
 in config file '<file>'
read_adapter_config_file: Error: Unexpected end of file found in config file '<file>,
 expected domain number (2nd number)
read_adapter_config_file: Error: Expected valid domain number (2nd number), found '<token>'
 in config file <file>
read_adapter_config_file: Error: Too many APQNs in config file '<file>'
read_adapter_config_file: Error: Unexpected end of file found in config file '<file>',
 expected LOGLEVEL value
read_adapter_config_file: Error: Invalid LOGLEVEL value '<token>' in config file <file>
read_adapter_config_file: Warning: LOGLEVEL setting is not supported any more. Use opencryptoki
 logging/tracing facilities instead.
read_adapter_config_file: Error: Unexpected end of file found in config file '<file>',
 expected CP-Filter file name
read_adapter_config_file: Error: CP-Filter config file name '<file>' is too long in
 config file '<file>'
read_adapter_config_file: Error: Unexpected end of file found in config file '<file>,
 expected libica path, 'DEFAULT', or 'OFF'
read_adapter_config_file: Error: libica path '<token>' is too long in config file '<file>'
read_adapter_config_file: Error: Unexpected end of file found in config file '<file>',
 expected pkey_mode 0 .. 3
read_adapter_config_file: Error: unsupported pkey mode '<token> in config file '<file>'
read_adapter_config_file: Error: At least one APQN mode needs to be present in config file
 '<file>': APQN_ALLOWLIST or APQN_ANY
read_adapter_config_file: Error: Only one APQN mode can be present in config file '<file>':
 APQN_ALLOWLIST or APQN_ANY
read_adapter_config_file: Error: At least one APQN needs to be defined in config file '<file>'
read_cp_filter_config_file: Warning: EP 11 CP-filter config file '<file>' does not exist,
 no filtering will be used
read_cp_filter_config_file: Error: Expected valid control point name or number,
 found '<ftoken>' in CP-filter config file '<file>'
read_cp_filter_config_file: Error: Expected valid mechanism name or number, found '<token>'
 in CP-filter config file '<file>'
read_cp_filter_config_file: Error: Out of memory while parsing CP-filter config file '<file>'

SHM segment has wrong gid/mode combination (expected: x/0x; got: x/0x)

start_event_thread: pthread_create failed, errno=x

token_specific_init: Error loading library: 'libcsulcca.so' [<dlerror>]

Trace level x is out of range. Tracing disabled.

Token object <file> appears corrupted (ignoring it)

Tspi_Key_GetPubKey failed: rc=x

Username(<name>) too long

Warning: CCA symmetric master key is not yet loaded
Warning: CCA asymmetric master key is not yet loaded
Warning: Your TPM is not configured to allow reading the public SRK by anyone but the owner.
 Use tpm_restrictsrk -a to allow reading the public SRK
Warning: Adapter <apqn1> has different control points than adapter <apqn2>, using minimum
Warning: Adapter <apqn1> has a different number of control points than adapter <apqn2>,
 using maximum
Warning: Adapter <apqn1> has a different API versionversion than the previous CEXxP adapters: x
Warning: Adapter <apqn1> has a different firmware version than the previous CEXxP adapters: x.x

Apply tracing
If you successfully checked all issues as described in the previous sections, you may start to exploit
the openCryptoki tracing capabilities. If a log level > 0 is activated by setting the environment
variable OPENCRYPTOKI_TRACE_LEVEL, then log entries are written to file /var/log/opencryptoki/
trace.<process_id>. Application programmers may apply the higher tracing log levels 4 and 5.

Chapter 17. Programming with openCryptoki 119

For detailed information, read “Logging and tracing in openCryptoki” on page 11.

Final check
Finally, if your openCryptoki environment is successfully set up, you can check your settings using the
pkcsconf utility as described in Chapter 6, “Managing tokens - pkcsconf utility,” on page 25.

120 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Chapter 18. Configuring a remote PKCS #11 service
with openCryptoki

A user scenario shows how to set up a Soft token on a server for use from an application on a remote
client.

The user scenario presented in this topic describes how you can set up a remote token on an IBM z15
system with an installed Ubuntu 21.04 Linux environment. This token is accessed and exploited from
an application running on an x86 client with an installed Red Hat Enterprise Linux 7.9 environment. The
Ubuntu 21.04 setup is selected, because at the time of writing, this distribution shipped all required
packages and package versions. An analogous setup is possible with subsequent distributions.

Information about the required set up on the server and client side is presented in the contained
subtopics:

• “Server side setup” on page 121
• “Client side setup” on page 123

Server side setup
The user scenario describes how to set up a Soft token on a server, which is an IBM z15 system running a
Linux operating system.

Before you begin
The server can be set up on various IBM Z systems and with various versions of Linux. For the scenario
illustrated here, it is assumed that you have an Ubuntu 21.04 installation on an IBM z15 machine. Open a
Linux command line on the server to set up an openCryptoki Soft token.

Procedure
1. Install the p11-kit package.

This tool provides a way to load and enumerate PKCS #11 modules and also provides a standard
configuration setup for installing PKCS #11 modules in such a way that they are discoverable.

To install the p11-kit package and the p11tool, enter the following command:

apt install p11-kit p11-kit-modules gnutls-bins

2. Create and edit an opencryptoki.module configuration file in the shown filepath: /etc/pkcs11/
modules/opencryptoki.module
Enter the following line into this configuration file:

module: /lib64/opencryptoki/libopencryptoki.so

3. To list the available PKCS #11 modules, enter the following command:

p11-kit list-modules

You will see an output similar to the following:

© Copyright IBM Corp. 2021 121

p11-kit-trust: p11-kit-trust.so
 library-description: PKCS#11 Kit Trust Module
 library-manufacturer: PKCS#11 Kit
 library-version: 0.23
 token: System Trust
 manufacturer: PKCS#11 Kit
 model: p11-kit-trust
 serial-number: 1
 hardware-version: 0.23
 flags:
 write-protected
 token-initialized
opencryptoki: /lib64/opencryptoki/libopencryptoki.so
 library-description: openCryptoki
 library-manufacturer: IBM
 library-version: 3.16
 token: soft
 manufacturer: IBM
 model: Soft
 serial-number:
 flags:
 rng
 login-required
 user-pin-initialized
 clock-on-token
 token-initialized

4. To list the available tokens using the p11tool utility, enter the following command:

p11tool --list-tokens

You will see an output similar to the following:

Token 0:
 URL: pkcs11:model=p11-kit-
trust;manufacturer=PKCS%2311%20Kit;serial=1;token=System%20Trust
 Label: System Trust
 Type: Trust module
 Flags: uPIN uninitialized
 Manufacturer: PKCS#11 Kit
 Model: p11-kit-trust
 Serial: 1
 Module: p11-kit-trust.so

Token 1:
 URL: pkcs11:model=Soft;manufacturer=IBM;serial=;token=soft
 Label: soft
 Type: Generic token
 Flags: RNG, Requires login
 Manufacturer: IBM
 Model: Soft
 Serial:
 Module: opencryptoki: /lib64/opencryptoki/libopencryptoki.so

As you can see in the example, the Soft token is available now as Token 1. With the shown URL, you
can access this token.

5. To start the p11-kit server to allow remote clients to access the token, enter the following command:

p11-kit server --provider opencryptoki: /lib64/opencryptoki/libopencryptoki.so
"pkcs11:model=Soft;manufacturer=IBM;serial=;token=soft"

As output, you will see the following generated commands:

P11_KIT_SERVER_ADDRESS=unix:path=/run/user/0/p11-kit/pkcs11-1296159; export
P11_KIT_SERVER_ADDRESS;
P11_KIT_SERVER_PID=1296160; export P11_KIT_SERVER_PID;

122 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

6. To set and export the following two environment variables, copy and paste the commands from the
output from step 5 and enter them into a command line:

P11_KIT_SERVER_ADDRESS=unix:path=/run/user/0/p11-kit/pkcs11-1296159; export
P11_KIT_SERVER_ADDRESS;
P11_KIT_SERVER_PID=1296160; export P11_KIT_SERVER_PID;

Results
You can now continue to set up the client as described in “Client side setup” on page 123.

Client side setup
Learn how to set up an x86 client in the client-server environment illustrated in this user scenario, so that
you can exploit a Soft token, previously installed on a remote server.

Before you begin
It is assumed that you want to access and exploit the functions of the remote Soft token from an x86
client running under a Linux system from a Red Hat Enterprise Linux 7.9 distribution.

Procedure
1. Open a Linux command line. To install the p11-kit utility, enter the following command:

$ sudo yum install p11-kit

2. To query the user run-time path, enter the following command:

$ systemd-path user-runtime

You will see an output similar to the following:

/run/user/1000

3. To forward the local UNIX socket to the remote socket, enter the following commands, using the
information from step 2 and then log in as a root user into the remote server:

$ mkdir /run/user/1000/p11-kit/
$ ssh -L /run/user/1000/p11-kit/pkcs11-1296159:/run/user/0/p11-kit/pkcs11-1296159
root@<remote_server_name>

4. To export the p11-kit server address environment variable, enter the following command:

$ P11_KIT_SERVER_ADDRESS=unix:path=/run/user/1000/p11-kit/pkcs11-1296159; export
P11_KIT_SERVER_ADDRESS;

5. As the Red Hat Enterprise Linux 7.9 distribution does not package the p11-kit-client.so file, you
need to build it from the source. Therefore, clone the shown GitHub repository. To achieve this, enter
the following command sequence:

Chapter 18. Configuring a remote PKCS #11 service with openCryptoki 123

$ git clone https://github.com/p11-glue/p11-kit.git
$ cd p11-kit
$ git checkout 0.23.10
$./autogen.sh
$./configure
$ make

6. To view a list of available tokens, use the p11tool:

$ p11tool --provider /<path>/p11-kit-client.so --list-tokens

You will see an output similar to the following, showing that the Soft token is remotely available.

Token 0:
 URL: pkcs11:model=Soft;manufacturer=IBM;serial=;token=soft
 Label: soft
 Type: Generic token
 Manufacturer: IBM
 Model: Soft
 Serial:

7. To view a list of available mechanisms of the Soft token, use the p11tool utility:

$ p11tool --provider /<path>/p11-kit-client.so --list-mechanisms
"pkcs11:model=Soft;manufacturer=IBM;serial=;token=soft"

You will see an output list similar to the following (see also “PKCS #11 mechanisms supported by the
Soft token” on page 75):

[0x0000] CKM_RSA_PKCS_KEY_PAIR_GEN
[0x0120] CKM_DES_KEY_GEN
[0x0131] CKM_DES3_KEY_GEN
[0x0001] CKM_RSA_PKCS
[0x0006] CKM_SHA1_RSA_PKCS
[0x0040] CKM_SHA256_RSA_PKCS
[0x0041] CKM_SHA384_RSA_PKCS
[0x0042] CKM_SHA512_RSA_PKCS
[0x000d] CKM_RSA_PKCS_PSS
[0x0003] CKM_RSA_X_509
[0x0009] CKM_RSA_PKCS_OAEP
[0x0005] CKM_MD5_RSA_PKCS
[0x0006] CKM_SHA1_RSA_PKCS
[0x0020] CKM_DH_PKCS_KEY_PAIR_GEN
[0x0121] CKM_DES_ECB
[0x0132] CKM_DES3_ECB
[0x0134] CKM_DES3_MAC
[0x0220] CKM_SHA_1
[0x0221] CKM_SHA_1_HMAC
[0x0250] CKM_SHA256
[0x0251] CKM_SHA256_HMAC
[0x0260] CKM_SHA384
[0x0261] CKM_SHA384_HMAC
[0x0270] CKM_SHA512
[0x0271] CKM_SHA512_HMAC
[0x0210] CKM_MD5
[0x0211] CKM_MD5_HMAC
[0x0370] CKM_SSL3_PRE_MASTER_KEY_GEN
[0x0380] CKM_SSL3_MD5_MAC
[0x0381] CKM_SSL3_SHA1_MAC
[0x1080] CKM_AES_KEY_GEN
[0x1081] CKM_AES_ECB
[0x1083] CKM_AES_MAC
[0x0350] CKM_GENERIC_SECRET_KEY_GEN
[0x1040] CKM_ECDSA_KEY_PAIR_GEN
[0x1041] CKM_ECDSA
[0x1042] CKM_ECDSA_SHA1

8. Use the p11tool utility to issue the following command to generate an RSA private and public key pair
of a length of 2048 bits:

124 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

$ p11tool --provider /<path>/p11-kit-client.so --generate-rsa --bits 2048 --login
"pkcs11:model=Soft;manufacturer=IBM;serial=;token=soft"

You will see an output similar to the following;

warning: no --outfile was specified and the generated public key will be printed on screen.
note: in some tokens it is impossible to obtain the public key in any other way after
generation.
warning: Label was not specified. Label: my-rsa-key Token 'soft' with URL
'pkcs11:model=Soft;manufacturer=IBM;serial=;token=soft' requires user PIN
Enter PIN:
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAzwrYewbV0LybCcb9inQ4
1n/jReFtjrYGx2M4B373em+gMiaDlc+T8Y9yvofDoEwZkjN2OOkUPD2GFb8P88a5
jGF8M+FlkZe+E7XlcHvttFPlULHDpAIXK0UnZJrbAR1ncP8O9lKqhV3CdrXw8dwm
ovdG/FVCyaKv4IlGVj4OKwx5IL0L9JBoSluRRtPNqwSYrXKGEYUjfko+PXm7MVuu
DQv2Ckr6KDEnIsk8U7W9hOHWfjZ4OVKSpbqPlRmG5whWL/hYoGQ181IDXeMajH/1
KgQAI7ree8JS2R4/Os0fzR7+Rp6AvpE4BQ6rXZOkO/7EQLbiCSq930TWsE9IEbMT
xQIDAQAB
-----END PUBLIC KEY-----

9. Issue the following command to list all available objects in the token:

$ p11tool --provider /<path>/p11-kit-client.so --list-all --login
"pkcs11:model=Soft;manufacturer=IBM;serial=;token=soft"

You are prompted for your user PIN:

Token 'soft' with URL 'pkcs11:model=Soft;manufacturer=IBM;serial=;token=soft' requires user PIN
 Enter PIN: <USER PIN>
 [...]

Object 6:
 URL:
pkcs11:model=Soft;manufacturer=IBM;serial=;token=soft;id=%8a%b8%84%b3%f0%60%1c%32%2e%19%6e%f1%5
5%7f%30%e3%bf%6c%f3%82;object=my-rsa-key;type=private
 Type: Private key
 Label: my-rsa-key
 Flags: CKA_WRAP/UNWRAP; CKA_PRIVATE; CKA_SENSITIVE;
 ID: 8a:b8:84:b3:f0:60:1c:32:2e:19:6e:f1:55:7f:30:e3:bf:6c:f3:82

Object 7:
 URL:
pkcs11:model=Soft;manufacturer=IBM;serial=;token=soft;id=%8a%b8%84%b3%f0%60%1c%32%2e%19%6e%f1%5
5%7f%30%e3%bf%6c%f3%82;object=my-rsa-key;type=public
 Type: Public key
 Label: my-rsa-key
 Flags: CKA_WRAP/UNWRAP;
 ID: 8a:b8:84:b3:f0:60:1c:32:2e:19:6e:f1:55:7f:30:e3:bf:6c:f3:82

Results
On your client, you can now write cryptographic applications that exploit the mechanisms of the Soft
token using the openCryptoki API (see also Chapter 17, “Programming with openCryptoki,” on page 101).

Chapter 18. Configuring a remote PKCS #11 service with openCryptoki 125

126 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

References

To learn more about the use and features of openCryptoki, you can read the referenced literature.

• PKCS #11 openCryptoki for Linux HOWTO

• Exploiting Enterprise PKCS #11 using openCryptoki

• Secure Key Solution with the Common Cryptographic Architecture Application Programmer's Guide

• libica Programmer's Reference

• PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40

OASIS Standards

• PKCS #11 Cryptographic Token Interface Base Specification Version 3.0

• PKCS #11 Cryptographic Token Interface Profiles Version 3.0

• PKCS #11 Cryptographic Token Interface Current Mechanisms Specification Version 3.0

• PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification Version 3.0

© Copyright IBM Corp. 2021 127

https://github.com/opencryptoki/opencryptoki/blob/master/doc/opencryptoki-howto.md
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ep.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ci.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-profiles/v3.0/pkcs11-profiles-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/pkcs11-curr-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-hist/v3.0/pkcs11-hist-v3.0.html

128 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Accessibility

Accessibility features help users who have a disability, such as restricted mobility or limited vision, to use
information technology products successfully.

Documentation accessibility
The Linux on Z and LinuxONE publications are in Adobe Portable Document Format (PDF) and should be
compliant with accessibility standards. If you experience difficulties when you use the PDF file and want
to request a Web-based format for this publication send an email to eservdoc@de.ibm.com or write to:

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

IBM and accessibility
See the IBM Human Ability and Accessibility Center for more information about the commitment that IBM
has to accessibility at

www.ibm.com/able

© Copyright IBM Corp. 2021 129

http://www.ibm.com/able

130 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems Incorporated in the United States,
and/or other countries.

© Copyright IBM Corp. 2021 131

https://www.ibm.com/legal/copytrade.shtml

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

132 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

Index

A
access control point

ACP 57
accessibility 129
ACP

access control point 57
ACP-filter configuration file 57
APQN_ALLOWLIST 57
attributes

openCryptoki 102
available libraries in openCryptoki 17

B
Baseline Provider 44
bit coin curve

secp256k1 66

C
C API v, 4
C_Decrypt (AES) 112
C_Decrypt (RSA) 112
C_Encrypt (AES) 112
C_Encrypt (RSA) 112
C_GenerateKeyPair (RSA) 112
C_GetMechanismInfo 69
C_GetMechanismList 69
C_IBM_ReencryptSingle 97
CCA library

usage notes 48
CCA library functions

restrictions 48
CCA master key migration 49
CCA token

directory content 81
supported ECC curves 47
supported PKCS #11 mechanisms 45

check list
trouble shooting) 116

client side setup 123
code sample

base procedures 108
cryptographic operations 112
dynamic library calls 108
object handling 111
static linked library 109

command pkcsconf 17
common token information 41
components of openCryptoki 5
configuration file

ep11tok01.conf 41
sample for opencryptoki.conf 17

configuring
EP11 token 41
extended evaluations 69

configuring (continued)
multiple EP11 tokens 41

configuring applications 121
configuring extended evaluations 69
CPFILTER 57
cryptographic operations 112
cryptographic token 3
cryptography

asymmetric 3
public key 3

Cryptoki 3

D
DEB 15
directory content

CCA token 81
EP11 token 81
ICA token 81
Soft token 81

domain control point
access control point 57

dynamic library call 107

E
ec_curves.h 44
ECC

ec_curves.h 44
header file 44

elliptic curve cryptography
EP11 token 66

elliptic curves
ec_curves.h 44
header file 44

environment variables 21
EP11 library

restrictions 68
EP11 session

definition 71
managing 71

EP11 session tool 71
EP11 token

bit coin curve 66
configuring 41
directory content 81
elliptic curve cryptography 66
secp256k1 66
supported PKCS #11 mechanisms 63

EP11 token configuration file
APQN_ALLOWLIST 57
CPFILTER 57
OPTIMIZE_SINGLE_PART_OPERATIONS 57
sample 57
STRICT_MODE 57
VHSM_MODE 57

ep11tok01.conf 41

Index 133

ep11tok01.conf configuration file 41
extended evaluations

configuring 69

F
features

common for openCryptoki 1

G
general structure

openCryptoki application 102

H
hardware security module (HSM) 68
header file

ec_curves.h 44
elliptic curves 44

HSM 68

I
IBM-specific mechanisms and features

common for openCryptoki 87
ICA token

directory content 81
restrictions 54
status information 42
supported ECC curves 54
supported PKCS #11 mechanisms 51

ICSF token 85
installing openCryptoki 15

L
log-in PIN 26

M
managing EP11 session 71
master key (MK)

migration process 70
master key (MK) migration tool

installing, configuring, using 70
pkcsep11_migrate 70

master key migration 49
migrating master keys 70
migration

CCA token master keys 49
master key 49

migration tool
for master (wrapping) keys 70

multiple EP11 tokens
configuring 41

N
NVTOK.DAT 81

O
object handling 111
objects

openCryptoki
create 101
modify 101

openCryptoki
application programmers v
attributes 102
base library 17
C_Decrypt (AES) 112
C_Decrypt (RSA) 112
C_Encrypt (AES) 112
C_Encrypt (RSA) 112
C_GenerateKeyPair (RSA) 112
CCA token 45
coding samples 106
common IBM-specific mechanisms and features 87
common token information 41
components 5
configuration file 17
ECC curves of the CCA token 47
ECC curves of the ICA token 54
environment variables 21
installing

from DEB 15
from RPM 15

installing from source package 15
mechanisms for the CCA token 45
mechanisms for the EP11 token 63
mechanisms for the ICA token 51
mechanisms for the Soft token 75
objects 101
shared library (C API) 4
SO PIN 26
standard PIN 26
status information 42
token library 17
token-specific configurations 39, 99
trouble shooting 116
users v

openCryptoki application
general structure 102
sample 105
template 102

openCryptoki features 1
openCryptoki token repository 29
openCryptoki tools 23
opencryptoki.conf

configuration file 17
OPTIMIZE_SINGLE_PART_OPERATIONS 57

P
p11sak tool 29
PIN 26
pk_config_data 17
PKCS #11 3
PKCS #11 and openCryptoki 1
PKCS #11 Baseline Provider

Baseline Provider 44
PKCS #11 44

pkcs11_startup 17

134 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

pkcscca tool
master key migration 49

pkcsconf 25, 26
pkcsconf -t 42
pkcsconf -t command 17
pkcsconf command 17
pkcsep11_migrate 70
pkcsep11_session 71
pkcsficsf tool 85
pkcsslotd

slot manager daemon 5
pkcstok_migrate 37
Public-Key Cryptography Standards 3

R
referenced literature 127
restrictions

ICA library 54
restrictions of EP11 library 68
RPM 15

S
sample code

cryptographic operations 112
dynamic library calls 108
object handling 111
static linked library 109

secp256k1
bit coin curve 66

secure key concept 48, 68
security officer (SO)

log-in PIN 26
server side setup 121
shared linked library 107
slot entry 17
slot entry, defining 41
slot manager

starting 17
slot manager daemon

pkcsslotd 5
SO

log-in PIN 26
Soft token

directory content 81
supported PKCS #11 mechanisms 75

source package 15
standard user (User)

log-in PIN 26
starting the slot manager 17
static linked library 109
status information 42
STRICT_MODE 57
summary of changes

edition SC34-7730-01 vii

T
template

openCryptoki application 102
token

initializing 26

token-specific configurations 39, 99
tools

common for openCryptoki 23
pkcscca 49
pkcsconf 25
pkcsep11_migrate 70
pkcsep11_session 71
pkcsficsf 85
pkcstok_migrate 37

trouble shooting 116

U
Ubuntu 21.04 121
usage notes

ICA library 54
usage notes for CCA library functions 48
User

log-in PIN 26
user scenario

client side setup 123
server side setup 121

utilities
pkcsep11_migrate 70
pkcsep11_session 71
pkcstok_migrate 37

utility
pkcscca 49
pkcsconf 25

V
VHSM_MODE 57
VHSM-PIN 71

W
wrapping key 70

Index 135

136 Linux on Z and LinuxONE: openCryptoki - An Open Source Implementation of PKCS #11

IBM®

SC34-7730-01

	Contents
	About this document
	Summary of changes
	Edition SC34-7730-01: Updates for openCryptoki version 3.17

	Part 1. Common features of openCryptoki
	Chapter 1. Introducing PKCS #11 and openCryptoki
	What is PKCS #11?
	What is openCryptoki?

	Chapter 2. Architecture and components of openCryptoki
	Chapter 3. Installing openCryptoki
	Chapter 4. Adjusting the openCryptoki configuration file
	Chapter 5. openCryptoki environment variables

	Part 2. Common tools of openCryptoki
	Chapter 6. Managing tokens - pkcsconf utility
	Chapter 7. Generating and listing keys - p11sak utility
	Chapter 8. Migrating to FIPS compliance - pkcstok_migrate utility

	Part 3. Token specifications
	Chapter 9. Common token information
	Adding tokens to openCryptoki
	How to recognize tokens
	ECC header file
	PKCS #11 Baseline Provider support

	Chapter 10. CCA token
	PKCS #11 mechanisms supported by the CCA token
	ECC curves supported by the CCA token
	Usage notes for CCA library functions
	Migrate to a new CCA master key - pkcscca utility

	Chapter 11. ICA token
	PKCS #11 mechanisms supported by the ICA token
	Usage notes for the ICA library functions
	ECC curves supported by the ICA token

	Chapter 12. EP11 token
	Defining an EP11 token-specific configuration file
	PKCS #11 mechanisms supported by the EP11 token
	ECC curves supported by the EP11 token
	Usage notes for the EP11 library functions
	Restriction to extended evaluations
	Migrating master keys - pkcsep11_migrate utility
	Managing EP11 sessions - pkcsep11_session utility

	Chapter 13. Soft token
	PKCS #11 mechanisms supported by the Soft token

	Chapter 14. Directory content for CCA, ICA, EP11, and Soft tokens
	Chapter 15. ICSF token
	Configuring the ICSF token - pkcsicsf utility

	Chapter 16. IBM-specific mechanisms and features for openCryptoki
	IBM-specific mechanisms
	Re-encrypting data with a mechanism

	Part 4. Programming basics and user scenarios
	Chapter 17. Programming with openCryptoki
	How to create and modify objects
	How to apply attributes to objects
	Structure of an openCryptoki application
	Sample openCryptoki program
	openCryptoki code samples (C)
	Dynamic library call
	Shared linked library
	Base procedures
	Session and log-in procedures
	Object handling procedures
	Cryptographic operations

	Trouble shooting

	Chapter 18. Configuring a remote PKCS #11 service with openCryptoki
	Server side setup
	Client side setup

	References
	Accessibility
	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

