IBMi
7.2

Database
Commitment control

.||I




Note

Before using this information and the product it supports, read the information in “Notices” on page
111.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.

© Copyright International Business Machines Corporation 1998, 2013.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.



Contents

COMMIEMENT CONTIOL...c.ueneieiiiieirieieiereereteseesesessecesessasessssesessssesessssessssssessssesessnsesssss L

PDF file for COmMmMItMENt CONTIOL...iicuiiiiiiieiiieiieereeete ettt sttt s be e saaesbeesbaesteenaaesssaensaas 1
CommMItMENT CONTIOL CONCEPLS.....uiiiieiieieiee ettt et e e e e e e te e e tteeseateesesteesssteesastesestesenssessnsseesnes 1
How commMItMeENnt CONTIOL WOTKS...ccviiiiiniiiiiirieeeerte ettt ettt a e s be e sabeesbe e saseesbeesane s 1
How commit and rollback 0perations WOrK..........ccueeeciieiiiie ettt ssre e et e earee s reeeareeens 2
(080T 0] 0 a T Ao T o= =N o] VO USRI 3

[ Yo] 1 oF- Vo [qo] 0 1=T = 1 4 o] o RS SS 4
CommMiIEMENT AETINITION. .o ittt s e e saa e sbe e sbeesabeebeesaseesbeessnesnseenes 5
Scope for a commitment definitioN.......ccciiieiiieeceee e e e 5
Commitment defiNitioN NAMES......ciciiiiieieeeeeteete et sbe e se e s be e saaesbeesbaesaseeneas 8
Example: Jobs and commitment definitionS.......cceieiir e 9

How commitment control Works With 0bjECtS......cccuiiiiiiiiee e 11
Types of COMMItTADLIE FESOUICES.......uii et te e e eaee e e aee e e aes 12

Local and remote commIittable FESOUMCES.......iviiiriiiiiieerte ettt ee s 14
Access intent of @ COMMIttAbLlE FESOUMCE.....iiiviiiriiriiiie e seneen 14

The commit protocol of a committable rESOUICE......cccuuiiciiiieiiieeteeeeeee e 15
Journaled files and cOMMITMENT CONTIOL...ciiuiiriiiriiiiieiciieree ettt s se e st e sae e e ens 16
Sequence of journal entries under commitment CONTrol........cccveeeciieiiiiecceeeee e 16
(00T 0] 0 a1 oY o1 Lol o 1T oY =T USSR 19
Yoo T I (oTel {1 ¥ = PRt 20
Commitment control and independent disk POOLS........cueieiiiieciieccie e e e 21
Independent disk pool considerations for commitment definitions.......ccccveevveenienieeniiencieennen. 21
Considerations for XA tranSaCHiONS.....cuivciiiiiiniierrieerte ettt ettt sresre e st e sbe e s e e sasessbeesaneens 23
Considerations and restrictions for commitment CONrol.........oeccuiieeciieeeiiieeceeeceeee e 24
Commitment control for batch appliCationS.......iccuiiieiieceee e e e 25
Two-phase COMMITMENT CONTIOL....ciiiiieiciieeciie ettt et e et e e be e e b e e s abee e saaesnnsaeans 26
ROLES IN COMMIt PrOCESSING..eccuiieiciieeiieeecteeecteeecteeeeteeeetteeseteesestee s sseeesssaesssseesasseeensseeenssessnnseen 27
States of the transaction for two-phase commitment control........ccceeccveeeiieecciecccie e, 29
Commitment definitions for two-phase commitment CONtrol.......ccccevveeniercieinieeniieeneenieeeennnn 32
Commitment definition for two-phase commit: Allow vote read-only.......cccceeveveriieeneerciennnen. 33
Commitment definition for two-phase commit: Not wait for outcome.......cccceveercvvrieennenne. 35
Commitment definition for two-phase commit: Indicate OK to leave Out......ccocvvvveervernennne. 38
Commitment definition for two-phase commit: Not select a last agent.......ccceceevceeeneernenne. 40

Vote reliable effect on flow of commit ProcesSiNgG......cueeecvieicciiiiciieeceeceeee e 40

XA transaction support for commitment CONTrOL......c.uiiiciiiecieecieecee e e 43
SQL server mode and thread-scoped transactions for commitment control.........ccceeecveeeciieecieennee. 47
Starting ComMMItMENT CONTIOL.....uiiiiciie e ee e e rare e e bee e e bee e ebeeesbeeeeareaennnes 48
(07T a1 a1y f e o1 41 4V o] o] =Y o1 S5 R S 49
COMMUE LOCK LBVEL c.utiiiiiieieeieeieeeee ettt ettt et et e e s be e sbe e sateesbeesasesabeesaaesnsessaasaseens 51
ENding COMMItMENT CONTIOL.....uviiiiiieeeiieecee ettt e ee e e ee e e ba e e e aae e e aae e ebaeesneee e naeeennes 53
System-initiated end of cCOMMItMENT CONTIOL.......ciiciiiieiiecee e e et aee e 55
Commitment control during activation Sroup €Nd..........cccueieiieieiieeeieeccee e e e 55
Implicit commit and rollback OPErationS.........cccviiiciiiiciie ettt sevre e e erreeeans 55
Commitment control during normal routing Step ENd......cccueeeiiieeiiieccee e e 59
Commitment control during abnormal system or jJOb €nd........cceeeieeeciiicciiececce e 59
Updates to the NOtifY 0DJECT.......uii e e e e e e e e e 60
Commitment control recovery during initial program load after abnormal end.........cccccevevvvieennenee. 62
Managing transactions and commitMeNnt CONTIOL......c.eicciiiieiieeiie et e e 63
Displaying commitment control informMation..........c.eeecee i 64
Displaying locked objects for a tranSaCtioN......c.ccccueiieiieiciie et e 64
Displaying jobs associated with @ tranSaCtioN.........cccuieiciieiciee e 65



Displaying resource status of @ tranSaCTION......c.ciivviiiiiieirieeee et 65

Displaying tranSaction PrOPEITIES.....cicciiieiiieeiiterte et e e srre e ssee e s see e s seeessseeessaeeessaeeessseeesnneeas 65
Optimizing performance for commitment CONTIOL.....coocuiiiiiieiiiieiiieeeeeeee e 66
T a 1T a 4T o =3 (o Yol <3 OSSO PPPRT 68
ManNagiNg traNSACTION SIZE....ccuiiiiiieiiiieirieeeeiee et et esete e s see e serteesssteesssteesssteesssteesssteesssseesnseeesanes 69
1ST0) oo 1 0] 1 411 FR PRSP 70
Scenarios and examples: CommiItMENt CONTIOL......ciiiiciiiii i e e e e e e ee e e 71
Scenario: CoOmMMITMENT CONTIOL...ciiiiiiiiiiiieiierrteeete e e s e e s sbee e sbee s saee e sbeeesseeesnneas 71
Practice problem for commitment CONTIOL.....cc.uviieiieciiie e e 74
[We}={Tol {[o)VVA {o] g o] r-Tot { ot o] fo] o] 1= 2 ) FOS O OO SPPPR 79
Steps associated with the logic flow for the practice program.......ccccoeceeveveeinieeinceeesee e 81
Example: Using a transaction logging file to start an application.......ccoeceeirviieiiiieinsieinieeeriee e 82
Example: Using a notify object to start an appliCation........ccceeiieiriieiriiiennteeeccee e 86
Example: Unique notify object for each program.........cceeeeirieiniienniieeneessee e seee s 87
Example: Single notify object for all Programs.........cceevcieeriiiiiiieniciecrecere e 92
Example: Using a standard processing program to start an application......cccccevvceiviceenniieennceennnnen. 92
Example: Code for a standard proCessing Programi....c.c.ecccueeerueeriueernueesseeesseeesseeesssseessseesssees 93
PrOCESSING TLOW...iiiiiiiiiiiiiiie ettt s st e st e e st e e s ateesasteesssteessbaesassaesnnseenn 94
Example: Code for a standard commit proCessing Program....c..cceceeeereeerrieeernieeessieeessieeessseeesnnens 95
Example: Using a standard processing program to decide whether to restart the application... 97
Troubleshooting transactions and commitmMeNt CONTIrOL......ccivciiiiriiiiiiiiiee e 98
COMMITMENT CONTIOL EITOIS. .uiiiiiiieicteeiciee ettt e sere e sttt e setee e sebee e s reeesebteessaeesaseeesneessseeesassessassessans 98
] o] dfoTo] aTo 11 1 o] =TSP 99
NONEITOI CONAITIONS. . eiiiiieieiieieiee ittt et e st e st e ssareessteesesteesssteesssteesssteesassaesantaesassassnsseesanes 100
Error messages to monitor during commitment CONtrol......occiiieviiiiieeinieeirieeeec e 100
Monitoring for errors after @ CALL COMMANG..ccuuiiiiiiiiiiieiiieenieestee e e seieeeseieeesseeessneeessneeesane 103
Failure of normal commit or rollback ProCESSING......cuiiiriiiriiiiiiieiee et 103
DeteCting AEAULOCKS. ... vttt ittt ettt ee e s saee e s ebee s sbee e s bt e e sbeeessbeeessaeesaseessaseesnnses 105
Recovering transactions after communications failure......ccoceiievieiiiieeiiieeciecce e 106
When to force commit and rollback operations and when to cancel resynchronization................. 107
Ending a long-running rOlDACK.......c.uiiiiiiieieeceeecte ettt s re e s te e s sbe e e sba e s sraesenee 108
Finding large or 0ld tranSaCtiONS.....ciiciiiicieeicieecte ettt sbe e e sbe e s sbe e s sbee s sabeessareas 109
Related INTOrMATION.....uiiiee ettt e s s e e s bt e s s be e e s sbee e s beeessbeeessbeeesaseeesanes 109

[\ 0] ([ od =1 - TR, b & |

Programming interface iNfOrmMation. ... e s e saees 112
TrAAEMAIKS ..ttt ettee ettt ettt ettt ettt e et e e sttt e e bt e e s bt e e sbeeesabeeesbeeessteesasaeesasaessseesssaeesasaeesaseeesnseeennn 112
BT g 0TS TaTo eleTa Ve L1 AT ] o T3 PRSP 113



Commitment control

Commitment control is a function that ensures data integrity. It defines and processes a group of changes
to resources, such as database files or tables, as a transaction.

Commitment control either ensures that the entire group of individual changes occur on all systems
that participate in the transaction, or ensures that none of the changes occur. Db2° for IBM® i uses the
commitment control function to commit and rollback database transactions that are running with an
isolation level other than *NONE (no commit).

You can use commitment control to design an application so that the system can restart the application
if a job, an activation group within a job, or the system ends abnormally. With commitment control, you
can have assurance that when the application starts again, no partial updates are in the database due to
incomplete transactions from a prior failure.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 110.

PDF file for Commitment control

You can view and print a PDF file of this information.

To view or download the PDF version of this document, select Commitment control .

Saving PDF files
To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.

2. Click the option that saves the PDF locally.

3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (www.adobe.com/products/acrobat/readstep.html) 5.

Related reference

Related information for Commitment control

Product manuals, IBM Redbooks publications, Web sites, and other information center topic collections
contain information that relates to the Commitment control topic collection. You can view or print any of
the PDF files.

Commitment control concepts

These commitment control concepts help you understand how commitment control works, how it
interacts with your system, and how it interacts with other systems in your network.

How commitment control works

Commitment control ensures that either the entire group of individual changes occurs on all systems that
participate or that none of the changes occur.

For example, when you transfer funds from a savings to a checking account, more than one change occurs
as a group. To you, this transfer seems like a single change. However, more than one change occurs to

© Copyright IBM Corp. 1998, 2013 1


http://www.adobe.com/products/acrobat/readstep.html

t

he database because both savings and checking accounts are updated. To keep both accounts accurate,

either all the changes or none of the changes must occur to the checking and savings account.

Commitment control allows you to complete the following tasks:

Ensure that all changes within a transaction are completed for all resources that are affected.
Ensure that all changes within a transaction are removed if processing is interrupted.

Remove changes that are made during a transaction when the application determines that a transaction
is in error.

You can also design an application so that commitment control can restart the application if a job,
an activation group within a job, or the system ends abnormally. With commitment control, you can
have assurance that when the application starts again, no partial updates are in the database due to
incomplete transactions from a prior failure.

Transaction

A transaction is a group of individual changes to objects on the system that appears as a single atomic
change to the user.

Note: IBM Navigator for i uses the term transaction, whereas the character-based interface uses the term
logical unit of work (LUW). The two terms are interchangeable. This topic, unless specifically referring to

t

he character-based interface, uses the term transaction.

A transaction can be any of the following situations:

Inquiries in which no database file changes occur.
Simple transactions that change one database file.
Complex transactions that changes one or more database files.

Complex transactions that change one or more database files, but these changes represent only a part
of a logical group of transactions.

Simple or complex transactions that involve database files at more than one location. The database files
can be in one of the following situations:

— On asingle remote system.
— On the local system and one or more remote systems.

— Assigned to more than one journal on the local system. Each journal can be thought of as a local
location.

Simple or complex transactions on the local system that involve objects other than database files.

How commit and rollback operations work

Commit and rollback operations affect changes that are made under commitment control.

The following programming languages and application programming interfaces (APIs) support commit
and rollback operations.

Language or API Commit Rollback

CL COMMIT command ROLLBACK command
IBM Integrated Language COMIT operation code ROLBK operation code
Environment® (ILE) RPG

ILE COBOL COMMIT verb ROLLBACK verb

ILEC _Rcommit function _Rrollbck function

PLI PLICOMMIT subroutine PLIROLLBACK subroutine
SOL COMMIT statement ROLLBACK statement

2 IBMi

: Commitment control




Language or API Commit Rollback

SOQL Call Level Interface (CLI) SQLTransact() function (It is used to commit and roll back a
transaction)

XA APIs xa_commit() and xa_rollback() and
db2xa_commit() APIs db2xa_rollback() APIs

Related concepts

SQL call level interface

Database programming

Related information

WebSphere development studio: ILE C/C++ programmer's guide PDF
CL programming

Application programming interfaces

Commit operation

A commit operation makes permanent all changes made under commitment control since the previous
commit or rollback operation. The system also releases all locks related to the transaction.

The system performs the following steps when it receives a request to commit:

« The system saves the commit identification, if one is provided, for use at recovery time.

- The system writes records to the file before performing the commit operation if both of the following
conditions are true:

— Records were added to a local or remote database file under commitment control.

— SEQONLY(*YES) was specified when the file was opened so that blocked I/0 feedback is used by the
system and a partial block of records exists.

Otherwise, the I/0 feedback area and I/O buffers are not changed.

« The system makes a call to the commit and rollback exit program for each API commitment resource
that is present in the commitment definition. If a location has more than one exit program registered,
the system calls exit programs for that location in the order that they were registered.

« If any record changes were made to resources assigned to a journal, the system writes a C CM journal
entry to every local journal associated with the commitment definition. Sequence of journal entries
under commitment control shows the entries that are typically written while a commitment definition is
active.

« The system makes permanent object-level changes that are pending.

« The system unlocks record and object locks that were acquired and kept for commitment control
purposes. Those resources are made available to other users.

« The system changes information in the commitment definition to show that the current transaction has
been ended.
The system must perform all of the previous steps correctly for the commit operation to be successful.

Related concepts

Commitment definition
The commitment definition contains information that pertains to the resources that are being changed
under commitment control during a transaction.

Sequence of journal entries under commitment control

Commitment control 3



http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc092712.pdf

This table shows the sequence of entries that are typically written while a commitment definition is active.
You can use the Journal entry information finder to get more information about the contents of the journal
entries.

Rollback operation

A rollback operation removes all changes made since the previous commit or rollback operation. The
system also releases all locks related to the transaction.

The system performs the following steps when it receives a request to roll back:

The system clears records from the I/O buffer if both of the following conditions are true:

— If records were added to a local or remote database file under commitment control.

— If SEQONLY(*YES) was specified when the file was opened so that blocked I/0 is used by the system
and a partial block of records exists that has not yet been written to the database.

Otherwise, the I/0 feedback area and I/O buffers remain unchanged.

The system makes a call to the commit or rollback exit program for each API commitment resource
that is present in the commitment definition. If a location has more than one exit program registered,
the system calls the exit programs for that location in reverse order from the order in which they were
registered.

If a record was deleted from a file, the system adds the record back to the file.

The system removes any changes to records that have been made during this transaction, and places
the original records (the before-images) back into the file.

If any records were added to the file during this transaction, they remain in the file as deleted records.

If any record changes were made to resources assigned to a journal during the transaction, the system
adds a journal entry of C RB to the journal, indicating that a rollback operation occurred. The journal
also contains images of the record changes that were rolled back. Before the rollback operation was
requested, the before-images and after-images of changed records were placed in the journal. The
system also writes C RB entry to the default journal if any committable resources are assigned to that
journal.

The system positions the open files under commitment control at one of the following positions:

— The last record accessed in the previous transaction

— At the open position if no commit operation has been performed for the file using this commitment
definition

This consideration is important if you are doing sequential processing.

The system does not roll back noncommittable changes for database files. For example, opened files
are not closed, and cleared files are not restored. The system does not reopen or reposition any files
that were closed during this transaction.

The system unlocks record locks that were acquired for commitment control purposes and makes those
records available to other users.

The commit identification currently saved by the system remains the same as the commit identification
provided with the last commit operation for the same commitment definition.

The system reverses or rolls back object-level committable changes made during this transaction.

Object locks that were acquired for commitment control purposes are unlocked and those objects are
made available to other users.

The system establishes the previous commitment boundary as the current commitment boundary.

The system changes information in the commitment definition to show that the current transaction has
been ended.

The system must perform all of the previous steps correctly for the rollback operation to be successful.

4 IBMi:

Commitment control



Commitment definition

The commitment definition contains information that pertains to the resources that are being changed
under commitment control during a transaction.

To create a commitment definition, use the Start Commitment Control (STRCMTCTL) command to start
commitment control on your system. Also, Db2 for i automatically creates a commitment definition when
the isolation level is other than *NONE (ho commit).

The system maintains the commitment control information in the commitment definition as the
commitment resources change, until the commitment definition is ended. Each active transaction on the
system is represented by a commitment definition. A subsequent transaction can reuse a commitment
definition after each commit or rollback of an active transaction.

A commitment definition generally includes the following information:

« The parameters on the STRCMTCTL command.
« The current status of the commitment definition.

 Information about database files and other committable resources that contain changes that are made
during the current transaction.

For commitment definitions with job-scoped locks, only the job that starts commitment control knows
that commitment definition. No other job knows that commitment definition.

Programs can start and use multiple commitment definitions. Each commitment definition for a job
identifies a separate transaction that has committable resources associated with it. These transactions
can be committed or rolled back independently from transactions that are associated with other
commitment definitions that are started for the job.

Related concepts

Commit operation

A commit operation makes permanent all changes made under commitment control since the previous
commit or rollback operation. The system also releases all locks related to the transaction.

Commitment control and independent disk pools
Independent disk pools and independent disk pool groups can each have a separate i5/0S database. You
can use commitment control with these databases.

Independent disk pool considerations for commitment definitions
You must be aware of these considerations for commitment definitions when you use independent disk
pools.

Scope for a commitment definition

The scope of a commitment definition determines which programs use that commitment definition, and
how locks acquired during transactions are scoped.

The interface that starts the commitment definition determines the scope of the commitment definition.
There are four possible scopes for a commitment definition, which fall under two general categories:

Commitment definitions with job-scoped locks

- Activation-group-level commitment definition
« Job-level commitment definition
« Explicitly-named commitment definition

Commitment definitions with transaction-scoped locks
« Transaction-scoped commitment definition

Commitment definitions with job-scoped locks can be used only by programs that run in the job that
started the commitment definitions. In comparison, more than one job can use commitment definitions
with transaction-scoped locks.

Commitment control 5



Applications typically use either activation-group-level or job-level commitment definitions. These
commitment definitions are created either explicitly with the Start Commitment Control (STRCMTCTL)
command, or implicitly by the system when an SQL application runs with an isolation level other than
*NONE.

Activation-group-level commitment definition

The most common scope is to the activation group. The activation-group-level commitment definition

is the default scope when the STRCMTCTL command explicitly starts the commitment definition, or
when an SQL application that runs with an isolation level other than *NONE (no commit) implicitly starts
the commitment definition. Only programs that run within that activation group use that commitment
definition. Many activation-group-level commitment definitions can be active for a job at one time.
However, each activation-group-level commitment definition can be associated only with a single
activation group. The programs that run within that activation group can associate their committable
changes only with that activation-group-level commitment definition.

When IBM Navigator for i, the Work with Commitment Definitions (WRKCMTDFN) command, the Display
Job (DSPJOB) command, or the Work with Job (WRKJOB) command displays an activation-group-level
commitment definition, these fields display the following information:

« The commitment definition field displays the name of the activation group. It shows the special value
*DFTACTGRP to indicate the default activation group.

The activation group field displays the activation group number.

The job field displays the job that started the commitment definition.
The thread field displays *NONE.

Job-level commitment definition

A commitment definition can be scoped to the job only by issuing STRCMTCTL CMTSCOPE (*JOB).
Any program running in an activation group that does not have an activation-group-level commitment
definition started uses the job-level commitment definition, if it has already been started by another
program for the job. You can only start a single job-level commitment definition for a job.

When IBM Navigator for i, the Work with Commitment Definitions (WRKCMTDFN) command, the Display
Job (DSPJOB) command, or the Work with Job (WRKJOB) command displays a job-level commitment
definition, these fields display the following information:

« The commitment definition field displays the special value *JOB.
 The activation group field displays a blank.

The job field displays the job that started the commitment definition.
The thread field displays *NONE.

For a given activation group, the programs that run within that activation group can use only a single
commitment definition. Therefore, programs that run within an activation group can either use the
job-level or the activation-group-level commitment definition, but not both at the same time. In a
multi-threaded job that does not use SQL server mode, transactional work for a program is scoped to
the appropriate commitment definition with respect to the activation group of the program, regardless
of which thread performs it. If multiple threads use the same activation group, they must cooperate to
perform the transactional work and ensure that commits and rollbacks occur at the correct time.

Even when the job-level commitment definition is active for the job, a program can still start the
activation-group-level commitment definition if no program running within that activation group has
performed any commitment control requests or operations for the job-level commitment definition.
Otherwise, you must first end the job-level commitment definition before you can start the activation-
group-level commitment definition. The following commitment control requests or operations for the
job-level commitment definition can prevent the activation-group-level commitment definition from being
started:

« Opening (full or shared) a database file under commitment control.

6 IBM i: Commitment control



 Using the Add Commitment Resource (QTNADDCR) API to add an API commitment resource.
« Committing a transaction.

- Rolling back a transaction.

- Adding a remote resource under commitment control.

« Using the Change Commitment Options (QTNCHGCO) API to changing commitment options.

- Bringing the commitment definition to a rollback required state using the Rollback Required
(QTNRBRQD) API.

- Sending a user journal entry that includes the current commit cycle identifier by using the Send Journal
Entry (QJOSJIRNE) API with the Include Commit Cycle Identifier parameter.

Likewise, if the programs within an activation group are currently using the activation-group-level
commitment definition, the commitment definition must first be ended before programs running within
that same activation group can use the job-level commitment definition.

When opening a database file, the open scope for the opened file can be either to the activation group
or to the job with one restriction: if a program is opening a file under commitment control and the file
is scoped to the job, then the program making the open request must use the job-level commitment
definition.

Explicitly-named commitment definition

Explicitly-named commitment definitions are started by the system when it needs to perform its own
commitment control transactions without affecting any transactions used by an application. An example
of a function that starts these types of commitment definitions is the problem log. An application cannot
start explicitly-named commitment definitions.

When IBM Navigator for i, the Work with Commitment Definitions (WRKCMTDFN) command, the Display
Job (DSPJOB) command, or the Work with Job (WRKJOB) command displays an explicitly-named
commitment definition, these fields display the following information:

« The commitment definition field displays the name given to it by the system.
« The activation group field displays a blank.

The job field displays the job that started the commitment definition.
The thread field displays *NONE.

Transaction-scoped commitment definitions
Transaction-scoped commitment definitions are started with the XA APIs for Transaction Scoped Locks.

These APIs use commitment control protocols that are thread based or SQL connection based, and not
activation group based. In other words, the APIs are used to associate the commitment definition with a
particular thread or SQL connection while the transactional work is performed, and to commit or rollback
the transactions. The system attaches these commitment definitions to the threads that perform the
transactional work, with respect to the API protocols. They can be used by threads in different jobs.

When IBM Navigator for i, the Work with Commitment Definitions (WRKCMTDFN) command, the Display
Job (DSPJOB) command, or the Work with Job (WRKJOB) command displays a transaction-scoped
commitment definition, these fields display the following information:

« The commitment definition field displays the special value *TNSOBJ.
 The activation group field displays a blank.

The job field displays the job that started the commitment definition. Or, if the commitment definition is
currently attached to a thread, the thread's job is displayed.

The thread field displays the thread to which the commitment definition is attached (or *NONE if the
commitment definition is not currently attached to any thread).

Commitment control 7



Related reference
XA APIs

Commitment definition names
The system gives names to all commitment definitions that are started for a job.

The following table shows various commitment definitions and their associated names for a particular job.

Activation group Commit scope Commitment definition name
Any Job *JOB

Default activation group Activation group *DFTACTGRP

User-named activation group Activation group Activation group name (for

example, PAYROLL)

System-named activation group | Activation group Activation group number (for
example, 0000000145)

None Explicitly named QDIRO001 (example of a system-
defined commitment definition
for system use only). System-
defined commitment definition
names begin with Q.

None Transaction *TNSOBJ

Only IBM Integrated Language Environment (ILE) compiled programs can start commitment control for
activation groups other than the default activation group. Therefore, a job can use multiple commitment
definitions only if the job is running one or more ILE compiled programs.

Original Program Model (OPM) programs run in the default activation group, and by default use the
*DFTACTGRP commitment definition. In a mixed OPM and ILE environment, jobs must use the job-level
commitment definition if all committable changes made by all programs are to be committed or rolled
back together.

An opened database file scoped to an activation group can be associated with either an activation-group-
level or job-level commitment definition. An opened database file scoped to the job can be associated
only with the job-level commitment definition. Therefore, any program, OPM or ILE, which opens a
database file under commitment control scoped to the job needs to use the job-level commitment
definition.

Application programs do not use the commitment definition name to identify a particular commitment
definition when making a commitment control request. Commitment definition names are primarily used
in messages to identify a particular commitment definition for a job.

For activation-group-level commitment definitions, the system determines which commitment definition
to use, based on which activation group the requesting program is running in. This is possible because
the programs that run within an activation group at any point in time can only use a single commitment
definition.

For transactions with transaction-scoped locks, the XA APIs and the transaction related attributes added
to the CLI determine which commitment definition the invoking thread uses.

Related information
ILE concepts PDF

8 IBMi: Commitment control



Example: Jobs and commitment definitions
This figure shows an example of a job that uses multiple commitment definitions.

The figure indicates which file updates are committed or rolled back at each activation group level. The
example assumes that all of the updates that are made to the database files by all of the programs are

made under commitment control.

Commitment control 9



*JOB Commitment Definition

A A
CFTACTGRP Commitrmeant
Commitmeant Crafimition ¥
Crastinniticn
[} '
Calawlt Aclivation Activation Activation
Activation Group X Group ¥ Group Z
Graup
Program KMAIN |/ Programs PGRMX ™= Pragram PGMY | ™ Program PGMZ
STHCMTCTL STHCMTCTL STRHCMTCTL
LCKLWL ("ALL) LCKLYL ("CHIE) LCKLYL ("CHG)
CMTSCOPFE ("JOB)
Update files Lipdate lilss Updale liles
F1 ard F2 F3 ard F4 F5 and F&
Call PGMY, —— | Gall PGMY Errar delactad
1= ROLLBACK
(Filas F5
and F&)
ipdate files
F5 ard FB&
2=-COMMIT
(Filas F5
and F&)
= HETUEM
Call PGEME Lipdate ik
F7
= HRETURM
J=-COMMIT
(Filas F3,
F4 and F7)
- HETUEM
4==COMMIT
iFilas F1
and F2)

The following table shows how files are committed or rolled back if the scenario in the previous figure
changes.

10 IBM i: Commitment control



Additional examples of multiple commitment definitions in a job

Change in
scenario

Effect on changes to these files

F1 and F2

F3 and F4

F5 and F6

F7

PGMX performs a
rollback operation
instead of a
commit operation
(3==COMMIT
becomes
ROLLBACK).

Still pending

Rolled back

Already committed

Rolled back

PGMZ performs a
commit operation
before returning to
PGMX.

Still pending

Committed by
PGMZ

Already committed

Committed

PGMZ attempts to
start commitment
control specifying
CMTSCOPE (*ACTG
RP) after updating
file F7. The
attempt fails
because changes
are pending using
the job-level
commitment
definition.

Still pending

Still pending

Already committed

Still pending

PGMX does not
start commitment
control and does
not open files

F3 and F4 with
COMMIT(*YES).
PGMZ attempts to
open file F7 with
COMMIT(*YES).

Still pending

Not under
commitment
control

Already committed

File F7 cannot be
opened because no
*JOB commitment
definition exists
(PGMX did not
create it).

How commitment control works with objects

When you place an object under commitment control, it becomes a committable resource. It is registered
with the commitment definition. It participates in each commit operation and rollback operation that

occurs for that commitment definition.

The following topics describe these attributes of a committable resource:

Resource type
Location

Commit protocol
Access intent

Commitment control 11




Types of committable resources

This table lists the different types of committable resources, including FILE, Data Definition Language
(DDL), distributed data management (DDM), logical unit (LU) 6.2, Distributed Relational Database
Architecture™ (DRDA), API, and TCP.

The table shows the following items:

« The types of committable resources.

« How they are placed under commitment control.

« How they are removed from commitment control.

« Restrictions that apply to the resource type.

Resource type

How to place

How to remove it

What kinds of

Restrictions

changes to local
SQL tables and SOL

under commitment
control

commit or rollback
operation after

changes, such as:
« Create SQL

it under from commitment |changes are
commitment control committable
control
FILE- local Opening under Closing the file, Record-level No more than 500
database files commitment if no changes are changes 000 000 records
control® pending. can be locked for a
. . 2
If changes are single transaction=.
pending when the
file is closed,
after performing
the next commit or
rollback operation.
DDL- object-level [Running SQL Performing a Object-level Only object-level

changes made
using SQL are

control support

for DDM has

more information
about commitment
control and
distributed data
management.

If changes are
pending when the
file is closed,

after performing
the next commit or
rollback operation.

collections. the object-level under commitment
package
change. control.

« Create SQL table

 Drop SQL table
DDM- remote Opening under Closing the file, Record-level
distributed data commitment if no changes are changes
management control. pending.
(DDM) file Commitment

LU 6.2- protected
conversation

Starting the
conversation3

Ending the
conversation

DRDA- distributed
relational database

Using SQL
CONNECT
statement

Ending the
connection

12 IBM i: Commitment control




Resource type

How to place

How to remove it

What kinds of

Restrictions

page 69 for instructions.

3 When a DDM connection is started, the DDM file specifies PTCCNV(*YES), and the DDM file is
defined with an SNA remote location; an LU 6.2 resource is added with the DDM resource.

it under from commitment |changes are
commitment control committable
control
API- local Add Commitment | Remove The user program | The application
API commitment Resource Commitment determines this. must provide
resource (QTNADDCR) API [ Resource Journal entries an exit program
(QTNRMVCR) API might be written to be called
by the user during commit,
program using the |rollback, or
Send Journal Entry [ resynchronization
(QJOSJIRNE) API to | operations.
assist with tracking
these changes.
TCP-TCP/IP Using SQL Ending the SQL
connection CONNECT connection, or
statement to closing the DDM
an RDB defined file if no changes
to use TCP/IP are pending. If
connections, or the DDM file
opening a DDM is closed with
file defined witha |changes pending,
TCP/IP location the connection
is closed after
performing the
next commit or
rollback operation.
Notes:

1 For details on how to place a database file under commitment control, see the appropriate
language reference manual. Related information for commitment control links to language manuals
that you can use.

2 You can use a QAQQINI file to reduce the limit of 500 000 000. See “Managing transaction size” on

« The program is using the distributed unit of work connection protocols.

information about starting protected conversions, see APPC Programming @

When a DRDA connection is started, an LU 6.2 resource is added with the DRDA resource if both of the
following conditions are true:

« The connection is to a rational database (RDB) that is defined with an SNA remote location. For more

Related concepts

Distributed database programming

Updates to the notify object

The system updates the notify object with the commit identification of the last successful commit

operation for that commitment definition.
Related reference

Add Commitment Resource (QTNADDCR) API

Remove Commitment Resource (QTNRMVCR) API

Send Journal Entry (QJOSJIRNE) API

Commitment control 13


http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415443.pdf

Local and remote committable resources

A committable resource can be either a local resource or a remote resource.

Local committable resource

A local committable resource is on the same system as the application. Each journal associated with
resources under commitment control can be thought of as a local location. All the resources that are
registered without a journal (optionally for both DDL resources and API resources) can be thought of as a
separate local location.

If a committable resource is on an independent disk pool and the commitment definition is on a different
disk pool, the resource is not considered local.

Remote committable resources

A remote committable resource is on a different system from the application. A remote location exists for
each unique conversation to a remote system. A commitment definition might have one or more remote
locations on one or more remote systems.

When you place a local resource under commitment control for the system disk pool, or any independent
disk pools, you must use Distributed Relational Database Architecture (DRDA) to access resources under
commitment control in any other independent disk pools.

The following table shows the types of committable resources and their locations.

Resource type Location

API Local

DDL Local

DDM Remote

DRDA Local or remote
FILE Local

LU62 Remote

TCP Remote

Related concepts

Commitment control and independent disk pools
Independent disk pools and independent disk pool groups can each have a separate i5/0S database. You
can use commitment control with these databases.

Access intent of a committable resource
The access intent determines how the resources participate together in a transaction.

When a resource is placed under commitment control, the resource manager indicates how the resource
is accessed:

« Update
« Read-only
« Undetermined

The following table shows what access intents are possible for a particular type of resource and how the
system determines the access intent for a resource when it is registered.

14 IBM i: Commitment control



Resource type Possible access intents How the access intent is

determined

FILE Update, read-only Based on how the file was
opened

DDL Update Always update

API Update Always update

DDM Update, read-only Based on how the file was
opened

LU62 Undetermined Always undetermined

DRDA Update, read-only, undetermined | For DRDA Level 1, the access

intent is update if no other
remote resources are registered.
Otherwise, the access intent

is read-only. For DRDA Level

2, the access intent is always
undetermined.

TCP Undetermined Always undetermined

The access intent of resources that are already registered determines whether a new resource can be
registered. The following rules apply:

- A one-phase resource whose access intent is update cannot be registered when any of the following
conditions is true:

— Resources whose access intent is update are already registered at other locations.
— Resources whose access intent is undetermined are already registered at other locations.

— Resources whose access intent is undetermined are already registered at the same location and the
resources have been changed during the current transaction.

- A two-phase resource whose access intent is update cannot be registered when a one-phase resource
whose access intent is update is already registered.

The commit protocol of a committable resource

Commit protocol is the capability a resource has to participate in one-phase or two-phase commit
processing. Local resources, except API committable resources, are always two-phase resources.

If a committable resource resides on an independent disk pool and the commitment definition resides on
a different disk pool, the resource is not considered as a local resource or a two-phase resource.

A two-phase resource is also called a protected resource. Remote resources and API committable
resources must be registered as one-phase resources or two-phase resources when they are placed
under commitment control. The following table shows what types of committable resources can coexist in
a commitment definition with a one-phase resource.

Resource type Can coexist with

One-phase API resource Other local resources. No remote resources.

One-phase remote resource Other one-phase resources at the same location.
No local resources.

Related concepts
Commitment control and independent disk pools

Commitment control 15



Independent disk pools and independent disk pool groups can each have a separate i5/0S database. You
can use commitment control with these databases.

Journaled files and commitment control

You must journal (log) a database file (resource type FILE or DDM) before it can be opened for output
under commitment control or referenced by an SQL application that uses an isolation level other than
*NONE (no commit). A file does not need to be journaled in order to open it for input only under
commitment control.

An error occurs if any of the following conditions is true:

« An attempt is made to open a database file for output under commitment control, but the file is not
currently journaled.

« No commitment definition is started that can be used by the file being opened under commitment
control.

If only the after-images are being journaled for a database file when that file is opened under
commitment control, the system automatically starts journaling both the before-images and after-images.
The before-images are written only for changes to the file that occur under commitment control. If other
changes that are not under commitment control occur to the file at the same time, only after-images are
written for those changes.

The system automatically writes record-level committable changes and object-level committable changes
to a journal. For record-level changes, the system then uses the journal entries, if necessary, for recovery
purposes; the system does not use entries from object-level committable changes for recovery purposes.
Furthermore, the system does not automatically write journal entries for API commitment resources.
However, the exit program for the API resource can use the Send Journal Entry (QJOSJIRNE) API to write
journal entries to provide an audit trail or to assist with recovery. The content of these entries is controlled
by the user exit program.

The system uses a technique other than a journal to perform recovery for object-level commitment
resources. Recovery for API commitment resources is accomplished by calling the commit and rollback
exit program associated with each particular API commitment resource. The exit program has the
responsibility for performing the actual recovery that is necessary for the situation.

Related concepts
Journal management

Sequence of journal entries under commitment control

This table shows the sequence of entries that are typically written while a commitment definition is active.
You can use the Journal entry information finder to get more information about the contents of the journal
entries.

Commitment control entries are written to a local journal if at least one of the following conditions is true:

« The journalis specified as the default journal on the Start Commitment Control (STRCMTCTL) command.
« At least one file journaled to the journal is opened under commitment control.

At least one API commitment resource associated with the journal is registered under commitment
control.

16 IBM i: Commitment control



Entry type Description Where it is written When it is written
CBC Begin commitment To the default journal, if | When the STRCMTCTL
control one is specified on the command is used.

STRCMTCTL command.

To the journal. When the first file
journaled to a journal is
opened or when an API
resource is registered
for ajournal.

csc Start commit cycle To the journal. When the first record

change occurs for
the transaction for a
file journaled to this
journall.

To the journal for an API
resource.

When the QJOSIRNE
API is first used with the
Include Commit Cycle
Identifier key.

Journal codes D and F

DDL object-level entries

To the journal
associated with the
object being updated.
Only journal entries that
contain a commit cycle
identifier represent a
DDL object-level change
that is part of the
transaction.

When updates occur.

Journal code R

Record-level entries

To the journal
associated with the file
being updated.

When the updates occur.

Journal code U

User-created entries

To the journal
associated with an API
resource.

If the application
program uses the
QJOSJIRNE API is first
used with the Include
Commit Cycle Identifier
key.

CCM

Commit

To the journal.

When the commit has
completed successfully.

To the default journal.

If any committable
resources are
associated with the
journal.

CRB

Rollback

To the journal.

After the rollback
operation has
completed.

To the default journal.

If any committable
resources are
associated with the
journal.

Commitment control 17



Entry type Description Where it is written When it is written
CLW End transaction To the default journal, When the commit or
if one is specified rollback operation has
on the STRCMTCTL completed.
command. The system
writes an LW header
record and one or more
detail records. These
entries are written only
if OMTIRNE(*NONE)
is specified on the
STRCMTCTL command
orif a system error
occurs.
CEC End commitment control | To the journal. When the End
Commitment Control
(ENDCMTCTL) command
is completed.
To a local journal thatis | When a commit
not the default journal. | boundary is established,
following the point
when all committable
resources associated
with that journal have
been removed from
commitment control.
csB Start of savepoint or To the journal. When the application
nested commit cycle. creates an SQL
SAVEPOINT, or when
the system creates an
internal nested commit
cycle to handle a series
of database functions as
a single operation?.
CSQ Release of savepoint To the journal. When the application
or commit of nested releases an SQL
commit cycle. SAVEPOINT, or when
the system commits an
internal nested commit
cycle?.
Csu Rollback of savepoint or | To the journal. When the application
nested commit cycle. rolls back an SQL
SAVEPOINT, or when the
system rolls back an
internal nested commit
cycle?.

18 IBM i: Commitment control




Entry type Description Where it is written When it is written

Notes:

1 You can specify that the fixed-length portion of the journal entry includes transaction information

by specifying the Logical Unit of Work (*LUW) value for the Fixed-Length Data (FIXLENDTA) parameter
of the Create Journal (CRTIRN) or Change Journal (CHGIRN) command. By specifying the FIXLENDTA
(*LUW) parameter, the fixed-length portion of each C SC journal entry will contain the Logical Unit

of Work ID (LUWID) of the current transaction. Likewise for XA transactions, if you specify the
FIXLENDTA(*XID) parameter, the fixed-length portion of each C SC journal entry will contain the XID
of the current transaction. The LUWID or XID can help you find all the commit cycles for a particular
transaction if multiple journals or systems are involved in the transaction.

2 These entries are sent only if you set the QTN_JRNSAVPT_MYLIB_MYJRN environment variable to
*YES where MYJRN is the journal you are using and MYLIB is the library the journal is stored in. Special
value *ALL is supported for the MYLIB and MYJRN values. You can set these variables system-wide or
for a specific job. To have the entries sent for journal MYLIB/MYJRN for just one job, use this command
in that job:

« ADDENVVAR ENVVAR(QTN_JRNSAVPT_MYLIB_MYJRN) VALUE(*YES)
To have entries sent for all journals for all jobs, use this command:
» ADDENVVAR ENVVAR('QTN_JRNSAVPT_*ALL_*ALL') VALUE(*YES) LEVEL(*SYS)

This environment variable value is cached internally for each commitment definition the first time a
resource related to a particular journal is placed under commitment control. If the environment variable
is changed after that point, the cached value must be refreshed for it to become effective for that
journal. Any call to the Retrieve Commit Information (QTNRCMTI) API refreshes the cached
value in the calling job.

Related concepts

Commit operation

A commit operation makes permanent all changes made under commitment control since the previous
commit or rollback operation. The system also releases all locks related to the transaction.

Journal entry information finder
Related reference
End Commitment Control (ENDCMTCTL) command

Commit cycle identifier

A commit cycle is the time from one commitment boundary to the next. The system assigns a commit cycle
identifier to associate all of the journal entries for a particular commit cycle together. Each journal that
participates in a transaction has its own commit cycle and its own commit cycle identifier.

The commit cycle identifier is the journal sequence number of the C SC journal entry written for the
commit cycle. The commit cycle identifier is placed in each journal entry written during the commit cycle.
If more than one journal is used during the commit cycle, the commit cycle identifier for each journal is
different.

You can specify that the fixed-length portion of the journal entry includes transaction information by
specifying the Logical Unit of Work (*LUW) value for the Fixed-Length Data (FIXLENDTA) parameter

of the Create Journal (CRTIRN) or Change Journal (CHGJRN) command. By specifying the FIXLENDTA
(*LUW) parameter, the fixed-length portion of each C SC journal entry will contain the Logical Unit of
Work ID (LUWID) of the current transaction. Likewise for XA transactions, if you specify the FIXLENDTA
(*XID) parameter, the fixed-length portion of each C SC journal entry will contain the XID of the current
transaction. The LUWID or XID can help you find all the commit cycles for a particular transaction if
multiple journals or systems are involved in the transaction.

You can use the Send Journal Entry (QJOSIRNE) API to write journal entries for API resources. You have
the option of including the commit cycle identifier on those journal entries.

Commitment control 19



You can use the commit cycle identifier to apply or remove journaled changes to a commitment
boundary using the Apply Journaled Changes (APYJRNCHG) command or the Remove Journaled Changes
(RMVJIRNCHG) command. These limitations apply:

« Most object-level changes made under commitment control are written to the journal but are not
applied or removed using the APYJRNCHG and RMVJRNCHG commands.

« The QJOSIRNE API writes user-created journal entries with a journal code of U. These entries cannot
be applied or removed using the APYJRNCHG and RMVIJRNCHG commands. They must be applied or
removed with a user-written program.

Record locking

When a job holds a record lock and another job attempts to retrieve that record for update, the requesting
job waits and is removed from active processing.

The requesting job will be active till one of the following events occurs:

« The record lock is released.
« The specified wait time ends.

More than one job can request a record to be locked by another job. When the record lock is released, the
first job to request the record receives that record. When waiting for a locked record, specify the wait time
in the WAITRCD parameter on the following create, change, or override commands:

« Create Physical File (CRTPF)

Create Logical File (CRTLF)

« Create Source Physical File (CRTSRCPF)
Change Physical File (CHGPF)

Change Logical File (CHGLF)

Change Source Physical File (CHGSRCPF)
« Override Database File (OVRDBF)

When you specify wait time, consider the following information:

- If you do not specify a value, the program waits the default wait time for the process.

« For commitment definitions with transaction-scoped locks only, the job default wait time can be
overridden by a transaction lock-wait time that can be specified on:

— The xa_open APL.
— A JDBC or JTA interface. Distributed transactions lists these APIs.

- If the record cannot be allocated within the specified time, a notify message is sent to the high-level
language program.

- If the wait time for a record is exceeded, the message sent to the job log gives the name of the
job holding the locked record that caused the requesting job to wait. If you experience record lock
exceptions, you can use the job log to help determine which programs to alter so they will not hold locks
for long durations.

Programs keep record locks over long durations for one of the following reasons:

« The record remains locked while the workstation user is considering a change.

- The record lock is part of a long commitment transaction. Consider making smaller transactions so a
commit operation can be performed more frequently.

« An undesired lock has occurred. For example, assume that a file is defined as an update file with unique
keys, and that the program updates and adds additional records to the file. If the workstation user
wants to add a record to the file, the program might attempt to access the record to determine whether
the key already exists. If it does, the program informs the workstation user that the request made is not
valid. When the record is retrieved from the file, it is locked until it is implicitly released by another read
operation to the same file, or until it is explicitly released.

20 IBM i: Commitment control



Note: For more information about how to use each high-level language interface to release record locks,
see the appropriate high-level language reference manual. Related information for commitment control
has links to high-level language manuals that you can use with commitment control.

The duration of the lock is much longer if LCKLVL(*ALL) is specified because the record that was
retrieved from the file is locked until the next commit or rollback operation. It is not implicitly released
by another read operation and cannot be explicitly released.

Another function that can put a lock on a file is the save-while-active function.

Related concepts

JDBC Distributed transactions
Save-while-active function
Related reference

Related information for Commitment control

Product manuals, IBM Redbooks publications, Web sites, and other information center topic collections
contain information that relates to the Commitment control topic collection. You can view or print any of
the PDF files.

Commitment control and independent disk pools

Independent disk pools and independent disk pool groups can each have a separate i5/0S database. You
can use commitment control with these databases.

However, because each independent disk pool or independent disk pool group has a separate SQL
database, you should be aware of some considerations.

Related concepts

Commitment definition

The commitment definition contains information that pertains to the resources that are being changed
under commitment control during a transaction.

Local and remote committable resources
A committable resource can be either a local resource or a remote resource.

The commit protocol of a committable resource
Commit protocol is the capability a resource has to participate in one-phase or two-phase commit
processing. Local resources, except API committable resources, are always two-phase resources.

Independent disk pool considerations for commitment definitions

You must be aware of these considerations for commitment definitions when you use independent disk
pools.

QRECOVERY library considerations

When you start commitment control, the commitment definition is created in the QRECOVERY library.
Each independent disk pool or independent disk pool group has its own version of a QRECOVERY library.
On an independent disk pool, the name of the QRECOVERY library is QRCYxxxxx, where xxxxx is the
number of the independent disk pool. For example, the name of the QRECOVERY library for independent
disk pool 39 is QRCY00039. Furthermore, if the independent disk pool is part of a disk pool group, only
the primary disk pool has a QRCYxxxxx library.

When you start commitment control, the commitment definition is created in the QRECOVERY library of
the independent disk pool that is associated with that job, making commitment control active on the
independent disk pool.

Set ASP Group considerations

Using the Set ASP Group (SETASPGRP) command while commitment control is active on an independent
disk pool has the following effects:

Commitment control 21



If you switch from an independent disk pool and resources are registered with commitment control on
the disk pool, the SETASPGRP command fails with message CPDB8EC, reason code 2, The thread
has an uncommitted transaction. This message is followed by message CPFB8E9.

If you switch from an independent disk pool and no resources are registered with commitment control,
the commitment definitions are moved to the independent disk pool to which you are switching.

If you switch from the system disk pool (ASP group *NONE), commitment control is not affected. The
commitment definitions stay on the system disk pool. If you subsequently place independent disk pool
resources under commitment control before system disk pool resources, the commitment definition is
moved to the independent disk pool.

If you use a notify object, the notify object must reside on the same independent disk pool or
independent disk pool group as the commitment definition.

If you move the commitment definition to another independent disk pool or independent disk pool
group, the notify object must also reside on that other independent disk pool or independent disk pool
group. The notify object on the other independent disk pool or independent disk pool group is updated
if the commitment definition ends abnormally. If the notify object is not found on the other independent
disk pool or independent disk pool group, the update fails with message CPF8358.

The current name space of the job determines which independent ASP the commitment definition is
created in. If the job is not associated with an independent ASP, the commitment definition is created in
*SYSBAS, otherwise it is created in the independent ASP. If the job is associated with an independent ASP,
you can open files under commitment control that reside in the current library name space, i.e. they may
reside in the independent ASP or *SYSBAS. If the first resource that is placed under commitment control
does not reside in the same ASP as the commitment definition, the commitment definition is moved to the
resource's ASP. If both *SYSBAS and independent ASP resources are registered in the same commitment
definition, the system implicitly uses a two-phase commit protocol to ensure the resources are committed
atomically in the event of a system failure. Therefore, transactions that involve data in both *SYSBAS and
an independent ASP will not perform as well as transactions that are isolated to a single ASP group.

Default journal considerations

You should be aware of the following default journal considerations:

If you use the default journal, the journal must reside on the same independent disk pool or
independent disk pool group as the commitment definition.

If the default journal is not found on the other independent disk pool or independent disk pool group
when commitment control starts, the commitment control start fails with message CPF9873.

If you move the commitment definition to another independent disk pool or independent disk pool
group, the default journal must also reside on that other independent disk pool or independent disk
pool group. If the journal is not found on the other independent disk pool or independent disk pool
group, the commitment definition is moved, but no default journal is used from this point on.

Initial program load (IPL) and vary off considerations

You should be aware of the following IPL and vary off considerations:

Recovery of commitment definitions residing on an independent disk pool is performed during the vary
on processing of the independent disk pool and is similar to IPL recovery.

Commitment definitions in an independent disk pool are not recovered during the system IPL.

When recovery is required for a commitment definition that contains resources that reside in both
*SYSBAS and an independent ASP, the commitment definition will be split into two commitment
definitions during the recovery, one in *SYSBAS and one in the independent ASP, as though there
were a remote database connection between the two ASP groups. Resynchroniziation may be initiated
by the system during the recovery to ensure the data in both ASP groups is committed or rolled back
atomically.

The vary off of an independent disk pool has the following effects on commitment definitions:

— Jobs associated with the independent disk pool end.

22 IBM i: Commitment control



— No new commitment definitions are allowed to be created on the independent disk pool.
— Commitment definitions residing on the independent disk pool become unusable.

— Commitment definitions residing on the independent disk pool, but not attached to a job, release
transaction scoped locks.

Remote database considerations
You should be aware of the following remote database considerations:

« You cannot use an LU 6.2 SNA connection (protected conversations or Distributed Unit of Work (DUW))
to connect to a remote database from an independent disk pool database. You can use unprotected
SNA conversations to connect from an independent disk pool database to a remote database.

« When commitment control is active for a job or thread, access to data outside the independent disk
pool or disk pool group to which the commitment definition belongs is only possible remotely, as if it
were data that resides on another system. When you issue an SQL CONNECT statement to connect to
the relational database (RDB) on the independent disk pool, the system makes the connection a remote
connection.

« The system disk pool and basic disk pools do not require a remote connection for read-only access to
data that resides on an independent disk pool. Likewise, an independent disk pool does not require a
remote connection for read-only access to data that resides on the system disk pool or a basic disk
pool.

Related concepts

Commitment definition
The commitment definition contains information that pertains to the resources that are being changed
under commitment control during a transaction.

Commit notify object

A notify object is a message queue, data area, or database file that contains information identifying
the last successful transaction completed for a particular commitment definition if that commitment
definition did not end normally.

Commitment control recovery during initial program load after abnormal end
When you perform an initial program load (IPL) after your system ends abnormally, the system attempts
to recover all the commitment definitions that were active when the system ended.

Considerations for XA transactions

In the XA environment, each database is considered a separate resource manager. When a transaction
manager wants to access two databases under the same transaction, it must use the XA protocols to
perform two-phase commit with the two resource managers.

Because each independent disk pool is a separate SQL database, in the XA environment each
independent disk pool is also considered a separate resource manager. For an application server to
perform a transaction that targets two different independent disk pools, the transaction manager must
also use a two-phase commit protocol.

Related concepts

XA transaction support for commitment control
Db2 for i can participate in X/Open global transactions.

Independent disk pool examples

Commitment control 23



Considerations and restrictions for commitment control

You need to be aware of these considerations and restrictions for commitment control.

Database file considerations

- If you specify that a shared file be opened under commitment control, all subsequent uses of that file
must be opened under commitment control.

« If SEQONLY(*YES) is specified for the file opened for read-only with LCKLVL(*ALL) (either implicitly or
by a high-level language program, or explicitly by the Override with Database File (OVRDBF) command),
then SEQONLY(*YES) is ignored and SEQONLY(*NO) is used.

« Record-level changes made under commitment control are recorded in a journal. These changes can be
applied to or removed from the database with the Apply Journaled Changes (APYJRNCHG) command or
the Remove Journaled Changes (RMVIJRNCHG) command.

- Both before-images and after-images of the files are journaled under commitment control. If you
specify only to journal the after-images of the files, the system also automatically journals the before-
image of the file changes that occurred under commitment control. However, because the before-
images are not captured for all changes made to the files, you cannot use the RMVIJRNCHG command
for these files.

Considerations for object-level and record-level changes

« Object-level and record-level changes made under commitment control using SQL use the commitment
definition that is currently active for the activation group that the requesting program is running in. If
neither the job-level nor the activation-group-level commitment definition is active, SQL will start an
activation-group-level commitment definition.

One-phase and two-phase commit considerations

« While a one-phase remote conversation or connection is established, remote conversations or
connections to other locations are not allowed. If a commitment boundary is established and all
resources are removed, the location can be changed.

- If you are using two-phase commit, you do not need to use the Submit Remote Command
(SBMRMTCMD) command to start commitment control or perform any other commitment control
operations at the remote locations. The system performs these functions for you.

« For a one-phase remote location, the COMMIT and ROLLBACK CL commands will fail if SQL is in the call
stack and the remote relational database is not on a system. If SQL is not on the call stack, the COMMIT
and ROLLBACK commands will not fail.

« For a one-phase remote location, commitment control must be started on the source system before
making committable changes to remote resources. The system automatically starts commitment
control for distributed database SQL on the source system at connection time if the SQL program is
running with the commitment control option other than *NONE. When the first remote resource is
placed under commitment control, the system starts commitment control on the target system.

Save consideration

A save operation is prevented if the job performing the save has one or more active commitment
definitions with any of the following types of committable changes:

« A record change to a file that resides in the library being saved. For logical files, all the related physical
files are checked.

« Any object-level changes within a library that is being saved.

« Any API resource that was added using the Add Commitment Resource (QTNADDCR) API and with the
Allow normal save processing field set to the default value of N.

24 IBM i: Commitment control



This prevents the save operations from saving to the save media changes that are due to a partial
transaction.

Note: If you use the new save with partial transactions feature, the object can be saved without ending a
commitment definition.

Object locks and record locks prevent pending changes from commitment definitions in other jobs from
being saved to the save media. This is true only for API commitment resources if locks are acquired when
changes are made to the object or objects associated with the API commitment resource.

Miscellaneous considerations and restrictions

- Before upgrading your system to a new release, all pending resynchronizations must either be
completed or canceled.

e The COMMIT and ROLLBACK values are shown on the WRKACTJOB Function field during a commit or

rollback. If the Function remains COMMIT or ROLLBACK for a long time, one of the following events
might have occurred:

— A resource failure during the commit or rollback requires resynchronization. Control will not return to
the application until the resynchronization completes or is canceled.

— This system voted read-only during the commit. Control will not return to the application until the
system that initiated the commit sends data to this system.

— This system voted OK to leave out during the commit. Control will not return to the application until
the system that initiated the commit sends data to this system.

Related concepts
Ensuring two-phase commit integrity

Commit lock level

The value you specify for the LCKLVL parameter on the Start Commitment Control (STRCMTCTL)
command becomes the default level of record locking for database files that are opened and placed
under commitment control for the commitment definition.

Related reference

Override with Database File (OVRDBF) command
Apply Journaled Changes (APYJRNCHG) command
Remove Journaled Changes (RMVJRNCHG) command
SQL programming

Submit Remote Command (SBMRMTCMD) command
Commit (COMMIT) command

Rollback (ROLLBACK) command

Add Commitment Resource (QTNADDCR) API

Commitment control for batch applications

Batch applications might or might not need commitment control. In some cases, a batch application
can perform a single function of reading an input file and updating a master file. However, you can use
commitment control for this type of application if it is important to start it again after an abnormal end.

The input file is an update file with a code in the records to indicate that a record was processed. This file
and any files updated are placed under commitment control. When the code is present in the input file, it
represents a completed transaction. The program reads through the input file and bypasses any records
with the completed code. This allows the same program logic to be used for normal and starting-again
conditions.

If the batch application contains input records dependent on one another and contains switches or totals,
a notify object can be used to provide information about starting again. The values held in the notify
object are used to start processing again from the last committed transaction within the input file.

Commitment control 25



If input records are dependent on one another, they can be processed as a transaction. A batch job

can lock a maximum of 500 000 000 records. You can reduce this limit by using a Query Options File
(QAQQINI). Use the QRYOPTLIB parameter of the Change Query Attributes (CHGQRYA) command to
specify a Query Options File for a job to use. Use the COMMITMENT_CONTROL_LOCK_LEVEL value in

the Query Options File as the lock limit for the job. The lock limit value is cached internally for each
commitment definition the first time a journaled resource is placed under commitment control. If the lock
limit is changed after that point, the cached value must be refreshed for it to become effective for that
commitment definition. Any call to the Retrieve Commit Information (QTNRCMTI) API refreshes
the cached value in the calling job. The new value will not apply to transactions that started before the
cache is refreshed.

Any commit cycle that exceeds 2000 locks probably slows down system performance noticeably.
Otherwise, the same locking considerations exist as for interactive applications, but the length of time
records are locked in a batch application might be less important than in interactive applications.

Related concepts

Commit notify object

A notify object is a message queue, data area, or database file that contains information identifying
the last successful transaction completed for a particular commitment definition if that commitment
definition did not end normally.

Managing transaction size
Another way to minimize record locks is to manage the size of the transaction.

Related reference
Change Query Attributes (CHGQRYA) command

Two-phase commitment control

Two-phase commitment control ensures that committable resources on multiple systems remain
synchronized.

i5/0S operating system supports two-phase commit in accordance with the SNA LU 6.2 architecture. For
more detailed information about the internal protocols used by the system for two-phase commit, see
the SNA Transaction Programmer's Reference for LU Type 6.2, GC30-3084-05. All supported releases of
i5/0S operating system support the Presumed Nothing protocols of SNA LU 6.2 and the Presumed Abort
protocols of SNA LU 6.2.

Two-phase commit is also supported using TCP/IP as a Distributed Unit of Work (DUW) Distributed
Relational Database Architecture (DRDA) protocol. To use TCP/IP DUW connections, all of the systems
(both the application requester and the application server) must be at V5R1MO or newer. For more
information about DRDA, see the Open Group Technical Standard, DRDA V2 Vol. 1: Distributed Relational
Database Architecture at the Open Group Web site.

Under two-phase commit, the system performs the commit operation in two waves:

« During the prepare wave, a resource manager issues a commit request to its transaction manager. The
transaction manager informs any other resources it manages and the other transaction managers that
the transaction is ready to be committed. All the resource managers must respond that they are ready
to commit. This is called the vote.

« During the committed wave, the transaction manager that initiates the commit request decides what
to do, based on the outcome of the prepare wave. If the prepare wave completes successfully and all
participants vote ready, the transaction manager instructs all the resources it manages and the other
transaction managers to commit the transaction. If the prepare wave does not complete successfully,
all the transaction managers and resource managers are instructed to roll back the transaction.

Commit and rollback operations with remote resources

When remote resources are under commitment control, the initiator sends a commit request to all remote
agents. The request is sent throughout the transaction program network. Each agent responds with the
results of the commit operation.

26 IBM i: Commitment control



If errors occur during the prepare wave, the initiator sends a rollback request to all agents. If errors occur
during the committed wave, the system attempts to bring as many locations as possible to committed
status. These attempts might result in a heuristic mixed state. See States of the transaction for two-phase
commitment control for more information about the possible states.

Any errors are sent back to the initiator where they are signaled to the user. If a default journal was
specified on the Start Commitment Control (STRCMTCTL) command, C LW entries are written. If errors
occur, these entries are written, even if OMTIRNE(*LUWID) was specified. You can use these entries,
along with the error messages and the status information for the commitment definition, to attempt to
synchronize the committable resources manually.

When remote resources are under commitment control, the initiator sends a rollback request to all
remote agents. The request is sent throughout the transaction program network. Each agent responds
with the results of the rollback operation.

Related concepts

The Open Group Web site

Related reference

Start Commitment Control (STRCMTCTL) command

Roles in commit processing

If a commit of a transaction involves more than one resource manager, each resource manager plays a
role in the transaction. A resource manager is responsible for committing or rolling back changes made
during the transaction.

The resource managers by resource type are as follows:
FILE
Database manager
DDM
Database manager
DDL
Database manager

DRDA
Communications transaction program

LU62
Communications transaction program

API
API exit program

The following figures shows the basic roles in a transaction. The structure shown in the figures is called a
transaction program network. The structure can be in a single-level tree and a multilevel tree.

Roles in two-phase commit processing: Single-level tree

When an application on System A issues a commit request, the resource manager on System A becomes
the initiator. For Distributed Relational Database Architecture (DRDA) distributed unit of work over TCP/IP,
the initiator is called the coordinator.

The resource managers for the other three systems (B, C, and D) become agents for this transaction. For
DRDA distributed unit of work over TCP/IP, agents are sometimes called participants.

Commitment control 27


http://www.opengroup.org/

System B

Agent
System C
Agent
System A
Initiator
System D
Agent

Roles in two-phase commit processing: Multi-level tree

If the application is using APPC communications to perform the two-phase commit, the relationship
between systems can change from one transaction to the next. The following figure shows the same
systems when an application on System B issues the commit request. This configuration is a multi-level
tree.

The roles in this figure do not apply to DRDA distributed unit of work over TCP/IP because multi-level
transactions trees are not supported.

28 IBM i: Commitment control



System C
Agent

System B System A
Initiator Agent
Cascaded
Initiator
System D
Agent

The transaction program network has another level because System B is not communicating directly with
System C and System D. The resource manager in System A now has the roles of agent and cascaded
initiator.

To improve performance of LU 6.2 two-phase transactions, the initiator might assign the role of last agent
to one of the agents. The last agent does not participate in the prepare wave. In the committed wave, the
last agent commits first. If the last agent does not commit successfully, the initiator instructs the other
agents to roll back.

For DRDA distributed unit of work over TCP/IP, the coordinator might assign the role of resync server to a
participant. The resync server is responsible to resynchronize the other participants in the event in which
there is a communications failure with the coordinator, or the coordinator has a systems failure.

Related concepts

Commitment definition for two-phase commit: Allow vote read-only

Normally, a transaction manager participates in both phases of commit processing. To improve the
performance of commit processing, you can set up some or all locations in a transaction to allow the
transaction manager to vote read-only.

States of the transaction for two-phase commitment control

A commitment definition is established at each location that is part of the transaction program network.
For each commitment definition, the system keeps track of the state of its current transaction and
previous transaction.

The system uses the state to decide whether to commit or roll back if a transaction is interrupted by
a communication or system failure. If multiple locations are participating in a transaction, the states
of the transactions at each location might be compared to determine the correct action (commit or
rollback). This process of communicating between locations to determine the correct action is called
resynchronization.

Commitment control 29



The following table shows

these items:

« The basic states that might occur during a transaction.

- Additional states that might occur.

« Whether a state requires resynchronization if the transaction is interrupted by a communications or

system failure. The poss
Not needed

ible values are as follows:

Each location can make the correct decision independently.

May be necessary

Each location can make the correct decision, but the initiator might need to be informed of the

decision.
Required

The state of each location must be determined before the correct decision can be made.

« Action taken by a communications or system failure.

State name

Description

Resynchronization if
the transaction is
interrupted

Action taken by a
communications or
system failure

Basic states during two-

phase commit processing:

Reset (RST)

From the commitment
boundary until a
program issues a
request to commit or roll
back.

Not needed.

Pending changes are
rolled back.

Prepare in Progress
(PIP)

The initiator has started
the prepare wave. All
locations have not yet
voted.

May be necessary.

Pending changes are
rolled back.

(CIP)

voted to commit. The
initiator has started the
committed wave.

Prepared (PRP) This location and all Required. In doubt. It depends
locations further down on the results of
in the transaction the resynchronization
program network have process.
voted to commit. This
location has not yet
received notification
from the initiator to
commit.
Commit in Progress All locations have Required. Pending changes

are committed.
Resynchronization is
performed to ensure
that all locations have
committed. If a heuristic
rollback is reported by
another location, an
error is reported.

Committed (CMT)

All agents have
committed and returned
a reply to this node.

May be necessary.

None.

Additional states during two-phase commit processing:

30 IBMi: Commitment control




State name

Description

Resynchronization if
the transaction is
interrupted

Action taken by a
communications or
system failure

Last Agent Pending
(LAP)

If alast agent is
selected, this state
occurs at the initiator
between the PIP state
and the CIP state. The
initiator has instructed
the last agent to commit
and has not yet received
a response.

Required.

In doubt. It depends
on the results of

the resynchronization
process.

Vote-Read-Only (VRO)

This agent responded
to the prepare wave by
indicating that it has

no pending changes. If
the vote-read-only state
is permitted, this agent
is not included in the
committed wave.

May be necessary.

None.

Rollback Required (RBR)

One of the following
events occurred:

« An agentissued
a rollback request
before the commit
operation.

« A transaction failure
has occurred.

« The QTNRBRQD API
was used to place
the transaction in
a rollback required
state.

The transaction program
is not allowed

to perform any
additional changes
under commitment
control.

May be necessary.

Pending changes are
rolled back.

Conditions that occur be

cause of operator actions

or errors:

Forced Rollback

This location and all
locations further down
the transaction program
network, except the last
agent, have been rolled
back through operator
intervention.

May be necessary.

Pending changes have
already been rolled
back.

Commitment control 31



State name Description Resynchronization if Action taken by a
the transaction is communications or
interrupted system failure

Forced Commit This location and all May be necessary. Pending changes
locations further down have already been
the transaction program committed.
network, except the
last agent, have
committed through
operator intervention.

Heuristic Mixed (HRM) Some resource May be necessary. The operator must
managers have perform a restore
committed. Some have operation at all
rolled back. Operator participating locations to
intervention was used bring the database to a
or a system error consistent state.
occurred. Heuristic
mixed does not appear
as a status on the
commitment definition
displays. Notification
messages are sent to
the operator.

Related concepts

Commitment definition for two-phase commit: Allow vote read-only

Normally, a transaction manager participates in both phases of commit processing. To improve the
performance of commit processing, you can set up some or all locations in a transaction to allow the
transaction manager to vote read-only.

Commitment definition for two-phase commit: Not wait for outcome

When a communication or system failure occurs during a commit operation so that resynchronization
is required, the default is to wait until the resynchronization is finished before the commit operation
completes.

Starting commitment control
To start commitment control, use the Start Commitment Control (STRCMTCTL) Command.

Commitment control recovery during initial program load after abnormal end
When you perform an initial program load (IPL) after your system ends abnormally, the system attempts
to recover all the commitment definitions that were active when the system ended.

Commitment control errors
When you use commitment control, it is important to understand which conditions cause errors and which
do not.

Commitment definitions for two-phase commitment control

To change the commitment options for your transaction after you start commitment control, use the
Change Commitment Options (QTNCHGCO) API.

Depending on your environment and your applications, changing the commitment options can improve
your system's performance.

Note: If you are using a DRDA distributed unit of work over TCP/IP connection, the only option that
applies is Allow vote read-only.

Related reference
Change Commitment Options (QTNCHGCO) API

32 IBMi: Commitment control



Commitment definition for two-phase commit: Allow vote read-only

Normally, a transaction manager participates in both phases of commit processing. To improve the
performance of commit processing, you can set up some or all locations in a transaction to allow the
transaction manager to vote read-only.

If the location has no committable changes during a transaction, the transaction manager votes read-only
during the prepare wave. The location does not participate in the committed wave. This improves overall
performance because the communication flows that normally occur during the committed wave are
eliminated during transactions in which no updates are made at one or more remote locations.

After you start commitment control, you can use the Change Commitment Options (QTNCHGCO) API
to change the Vote read-only permitted optionto Y. You might want to do this if the following
conditions are true:

- One or more remote systems often do not have any committable changes for a transaction.

« Atransaction does not depend on where the file cursor (next record) was set by the previous
transaction. When a location votes read-only, the application is never notified if the transaction is rolled
back. The location has committed any read operations to the database files and, thus, moved the cursor
position. The position of the file cursor is typically important only if you do sequential processing.

If your commitment definition is set up to allow vote read-only, the application waits for the next message
flow from another location.

The Vote read-only permitted option isintended for applications that are client/server in nature. If
the purpose of program A is only to satisfy requests from program I, not to do any independent work, it is
appropriate to allow the Vote read-only option for program A.

Flow of commit processing without last agent optimization when agent votes read-
only

The following figure shows the flow of messages among the application programs and the transaction
managers when an application program issues a commit instruction without last agent optimization when
the agent votes read-only. Neither the initiator application program nor the agent application programs is
aware of the two-phase commit processing. The numbers in parentheses () in the figure correspond to the
numbered items in the description that follows.

Commitment control 33



TM-I TM-A

Receive (1)
Commit (2)
Prepare (3)
RCVTKCMT indicator {4}
Commit {5)
Fteset (6)
Return (7}
any verb (new LUW ID]
= Return (9)

Legend

I = |nitiator {Application that initiates commit request)
TM-I = Transaction manager for initiator

A = Agent (Application thal receives commit request)
TM-A = Transaction manager for agent

o]

]

The following list is a description of the events for normal processing without last agent optimization
when the agent votes read only. This describes a basic flow. The sequence of events can become much
more complex when the transaction program network has multiple levels or when errors occur.

1. Application program A does a receive request to indicate that it is ready to receive a request from
program I.

2. The initiator application (I) issues a commit instruction.

3. The transaction manager for the initiator (TM-I) takes the role of initiator for this transaction. It starts
the prepare wave by sending a prepare message to all the other locations that are participating in the
transaction.

4. The transaction managers for every other location take the role of agent (TM-A). The application
program A is notified by TM-A that a request to commit has been received. For ICF files, the
notification is in the form of the Receive Take Commit (RCVTKCMT) ICF indicator being set on.

5. The application program A responds by issuing a commit instruction (or a rollback instruction). This is
the application program's vote.

6. If application program A has used the Change Commitment Options API (QTNCHGCO) to set the Vote
read-only permitted commitment option to Y and no changes have been made at the agent during
the transaction, the agent (TM-A) responds to the initiator (TM-I) with a reset message. There is no
committed wave for the agent.

7. A return is sent to the application program (A) to indicate that the transaction is complete at agent
TM-A.

8. The next time the initiator (TM-I) issues any messages to the agent (TM-A), either a data flow or
a commitment instruction, TM-I causes its current transaction ID to be sent with the message. The
reason for this is that a new transaction ID might have been generated at TM-I if a communications
failure had occurred between TM-I and another system during the commit operation.

9. Areturn is sent to the application program (A) to indicate that the transaction is complete at agent
TM-A. The return is delayed until after the next message is received because a new transaction ID
must be received from TM-I before the next transaction can be started by application A.

34 IBMi: Commitment control



Related concepts

Roles in commit processing

If a commit of a transaction involves more than one resource manager, each resource manager plays a
role in the transaction. A resource manager is responsible for committing or rolling back changes made
during the transaction.

States of the transaction for two-phase commitment control

A commitment definition is established at each location that is part of the transaction program network.
For each commitment definition, the system keeps track of the state of its current transaction and
previous transaction.

Optimizing performance for commitment control
Using commitment control requires resources that can affect system performance. Several factors affect
system performance regarding commitment control.

Related reference
Change Commitment Options (QTNCHGCO) API

Commitment definition for two-phase commit: Not wait for outcome

When a communication or system failure occurs during a commit operation so that resynchronization
is required, the default is to wait until the resynchronization is finished before the commit operation
completes.

Note: The Not wait for outcome option does not apply if you are using a Distributed Relational Database
Architecture (DRDA) distributed unit of work over TCP/IP connection. DRDA distributed unit of work over
TCP/IP connections never waits for outcome.

Consider changing this behavior if the following conditions are true:

« The applications that participate are independent of each other.

« Your program logic does not need the results of previous transactions to ensure that your database files
remain synchronized.

After you start commitment control, you can use the Change Commitment Options (QTNCHGCO) API to
specify that the commitment definition does not wait for the outcome of resynchronization. If you specify
N (No) for the Wait for outcome option, the system uses a database server job (QDBSRVnn) to handle
resynchronization asynchronously.

Note: These database server jobs are started during the initial program load (IPL) process. If you change
the options for commitment control, this has no effect on the number of jobs that the system starts.

This topic only refers to two values for the resolved Wait for outcome option, Y (Yes) and N (No).
There are actually two more values that you can specify, L (Yes or Inherit from Initiator) and U (No or
Inherit from Initiator). When you use these values, the actual value used during each commit operation is
resolved to Yes or No by the system. The QTNCHGCO (Change Commitment Options) API topic has more
details about these values.

Note: The initiator's value can only be inherited by an agent if both the initiator and the agent support
presumed abort.

Thewait for outcome (WFO) option does not affect normal, error-free commit processing. If an error
occurs, the WFO option determines whether the application waits for resynchronization or not, with the
following conditions:

« If the resolved WFO option is Y (Yes), the application waits for the result of the resynchronization.

« If the resolved WFO option is N (No) and a communication failure occurs during the prepare wave or
rollback of a location that supports presumed abort protocols, no resynchronization is performed and
the commitment definition is rolled back.

- If the commitment definition is in doubt (transaction state is prepared or Last Agent Pending), the
application will wait for the result of the resynchronization regardless of the resolved WFO value.

Commitment control 35



« If the resolved WFO option is N and neither one of conditions two or three is true, the system attempts
to resynchronize once. If it is not successful, the system signals STATUS message CPF83E®6 to the
application to indicate that resynchronization is in progress.

Because CPF83E6 is a STATUS message, it only has an effect if the application is monitoring for

it. Normally, your application can treat this message as an informational message. The systems

that are participating in the transaction attempt to resynchronize the transaction until the failure is
repaired. These subsequent resynchronization attempts are performed in the database server jobs. If
a subsequent resynchronization attempt that is performed in a database server job fails, the message
CPIB3DO is sent to QSYSOPR.

Wait for outcome value: Yes

In the following figure, the commitment definition for the initiator (I) uses the default value of Y (Yes) for
the Wait for outcome option. When communications between TM-I and TM-A is lost, both application
A and application I wait until the transaction is resynchronized.

I TM-I TM-A A
Haceive
Commit
= Hrepare
- RCVTECMT indicator
Commit
Requeast Commit -
Commit ) S _
- (Communications is
. ost)
Resynchronize ’
Resyne. - B
- Raesynchronize
in process - -
Resynchronize , R _
- - (Communications is
regstablhished)
Heturn
Heturn -

-

Wait for outcome value: No

In the following figure, the commitment definition for the initiator has the resolved WFO set to N (No). TM-
A meets condition 3 in the preceding list, while TM-I meets condition 4. Control is returned to application
I after one attempt to resynchronize with TM-A. A database server job attempts to resynchronize.
Application I never receives the return indicator when the commit request has completed successfully.
Control is not returned to the agent application (A) until after communications is reestablished. This
depends on the timing of the failure. In this case, the communications failure occurs before the commit
message is received from the initiator, leaving TM-A in doubt as to whether to commit or rollback. When
the transaction manager is in doubt, it retains control until the resynchronization is completed, regardless
of the resolved WFO value at that system.

36 IBMi: Commitment control



If you want the applications at all systems to continue before resynchronization completes, you must

either change the resolved WFO option to N (No) on all systems, or set the initiator to N and the rest of
the systems to U (No or Inherit from Initiator). But remember that the resolved WFO option is ignored

when the transaction manager is in doubt as to whether to commit or rollback, and always waits until

resynchronization completes before returning control.

[ TM-I TM-A A
Haceive
Commit
- Hrapare
- RCVTECMT indicator
Commit
Fequeast Commit -
Commit ) o _
- (Communications is
. ost)
Fesynchronize
Resync. h "
- Fasses
N Orocess resynchronization
task toa
database server
job
Lg
Server Job
Resynchronize
]
Fesynchronize
—_——
Resynchronize (Communications is
- o regstablished)
Heturn

When a connection is made to a remote relational database, and no protected conversations have already
been started, the system implicitly changes the Wait for outcome value to N. The reason for this is
that the performance of commit operations is improved when the Wait for outcome valueis N and the
remote system supports presumed abort. This implicit change of the Wait for outcome value is only
performed for DRDA and DDM applications. APPC applications use the default Wait for outcome value
of Y unless they call the QTNCHGCO API to change it.

Related concepts
States of the transaction for two-phase commitment control

Commitment control 37



A commitment definition is established at each location that is part of the transaction program network.
For each commitment definition, the system keeps track of the state of its current transaction and
previous transaction.

Commitment control errors
When you use commitment control, it is important to understand which conditions cause errors and which
do not.

Related reference
Change Commitment Options (QTNCHGCO) API

Commitment definition for two-phase commit: Indicate OK to leave out

Normally, the transaction manager at every location in the transaction program network participates in
every commit or rollback operation. To improve performance, you can set up some or all locations in a
transaction to allow the transaction manager to indicate OK to leave out.

Note: The Indicate OK to leave out option does not apply if you are using a DRDA distributed unit of work
over TCP/IP connection.

If no communications flows are sent to the location during a transaction, the location is left out
when a commit or rollback operation is performed. This improves overall performance because
the communications flows that normally occur during the commit or rollback are eliminated during
transactions in which no data is sent to one or more remote locations.

After you start commitment control, you can use the Change Commitment Options (QTNCHGCO) API to
change the OK to leave out option to Y (Yes). You might want to do this if one or more remote systems
often are not involved in a transaction.

If your commitment definition is set up to indicate OK to leave out, the application waits for the next
message flow from another location.

The OK to leave out option is intended for applications that are client/server in nature. If the only purpose
of program A is to satisfy requests from program I and not to do any independent work, then it is
appropriate to allow the OK to leave out option for program A.

Flow of commit processing without last agent optimization when agent votes OK to
leave out

The following figure shows the flow of messages among the application programs and the transaction
managers when an application program issues a commit instruction without last agent optimization when
the agent indicates OK to leave out. Both the initiator application program and the agent application
programs are unaware of the two-phase commit processing. The numbers in parentheses () in the figure
correspond to the numbered items in the description that follows.

38 IBMi: Commitment control



TM-I TM-A

]

(ok to leave oul) =

i
.-

M-
Receive (1)
Commit (2) -
=W Prepare (3)

RCVTKCMT indicator (4)
Request Commit (6) Commit {5)

[]

[]

Y
s 4 5 $ bg

Commit {7)
Reset (8)
Return {9} -
Moo more [] (left out) (10)
B Luws ||
data 2 new LUW ID (11)
I ==I - I Return {12)
Legend -

= |nitiator {Application that initiates commit request)

TM-I = Transaction manager for initiator

A

= Agent (Application thal receives commit request)

TM-A = Transaction manager for agent

Here is a description of the events for normal processing without last agent optimization when the agent
votes OK to leave out. This describes a basic flow. The sequence of events can become much more
complex when the transaction program network has multiple levels or when errors occur.

1.

Application program A does a receive request to indicate that it is ready to receive a request from
program I.

. The initiator application (I) issues a commit instruction.

3. The transaction manager for the initiator (TM-I) takes the role of initiator for this transaction. It starts

the prepare wave by sending a prepare message to all the other locations that are participating in the
transaction.

. The transaction managers for every other location take the role of agent (TM-A). The application

program A is notified by TM-A that a request to commit has been received. For ICF files, the
notification is in the form of the Receive Take Commit (RCVTKCMT) ICF indicator being set on.

. The application program A responds by issuing a commit instruction (or a rollback instruction). This is

the application program's vote.

. If application program A has used the Change Commitment Options API (QTNCHGCO) to set the OK

to leave out commitment option to Y, an indicator is sent when the agent (TM-A) responds to the
initiator (TM-I) with a request commit message.

Note: Any change to the OK to leave out commitment option does not take effect until the next
successful commit operation.

. When the initiator (TM-I) receives all the votes, the TM-I sends a commit message. This starts the

committed wave.

Commitment control 39



8. Each agent (TM-A) commits and responds with a reset message.
9. Areturn is sent to the application program (I) to indicate that the transaction is complete at the
initiator.
10. Any number of transactions might occur on TM-I, none of which requires changes to TM-A or data
from TM-A. TM-A is not included in these transactions.

11. The next time the initiator (TM-I) issues a message to the agent (A), a new transaction ID is sent with
the message. If the initiator performs any commit or rollback operations before sending a message to
the agent, no messages are sent to the agent during those operations (the agent is 'left out' of those
commits or rollbacks). Because one or more transactions might have been committed or rolled back
at the initiator while the agent was left out, the initiator must communicate its current transaction ID
when the next message is sent to the agent.

12. Areturn is sent to the application program (A) to indicate that the original commit is complete and
that it is participating in the current transaction.

Related concepts

Optimizing performance for commitment control

Using commitment control requires resources that can affect system performance. Several factors affect
system performance regarding commitment control.

Commitment definition for two-phase commit: Not select a last agent
By default, the transaction manager for the initiator is free to select any agent as a last agent during a
commit operation.

Note: The Not select last agent option does not apply if you are using a DRDA distributed unit of work over
TCP/IP connection.

In case of a multi-level tree, any agent selected as a last agent by its initiator is also free to select a last
agent of its own. Performance is improved when a last agent is selected during the commit operation
because two communications flows are eliminated between an initiator and its last agent (the prepare
phase is eliminated for these systems).

However, when the initiator sends the request commit to its last agent, it must wait until it has received
the last agent's vote before it can continue. This is regardless of the Wait for outcome value for the
commitment definition. During normal, error-free commit processing, this is not an issue. But, if an error
occurs during this window, the initiator cannot continue until resynchronization completes. If the initiator
application is handling requests from a user at a terminal, this can be a usability consideration.

You must consider whether the improved performance during normal commit operations is more

important than the impact on usability when such an error occurs. Note that if the error occurs before the
request commit is sent to the last agent, the LUW will immediately roll back and the initiator will not wait.
Therefore, the window when an error can cause the initiator to wait is quite small, so such an error is rare.

If you decide that the usability impact is not worth the improved performance, you can change your
commitment definitions to not select a last agent. After you start commitment control, you can use the
Change Commitment Options (QTNCHGCO) API to change the Last agent permitted optionto N.

Related reference
Change Commitment Options (QTNCHGCO) API

Vote reliable effect on flow of commit processing
Vote reliable is an optimization that improves performance by returning earlier to the initiator application
after a commit operation and eliminating one message during a commit operation.

There is no explicit vote reliable optimization for Distributed Relational Database Architecture (DRDA)
distributed unit of work over TCP/IP. However, i5/0S operating system never requests a reset (forget)
confirmation for TCP/IP connections. Therefore, a reset (forget) is always implied for TCP/IP connections.

After you start commitment control, you can use the Change Commitment Options (QTNCHGCO) API to
change the Accept vote reliable optionto.

40 IBM i: Commitment control



Vote reliable can be thought of as a promise by an agent to its initiator that no heuristic decisions will

be made at the agent if communications failure occurs while the agent is in doubt. An agent that is using
the vote reliable optimization sends an indicator to the initiator during the prepare wave of the commit.
If the initiator is also using the vote reliable optimization, it then sends an indicator to the agent that no
reset is required in response to the commit message. This eliminates the reset message, and allows the
transaction manager to return to the application at the initiator as soon as the commit message is sent.

Consider using the vote reliable optimization if the following conditions are true:

- Itis unlikely that a heuristic decision is made at an in doubt agent in the event of a systems or
communications failure unless the failure cannot be repaired.

« Your program logic does not need the results of previous transactions to ensure that your database files
remain synchronized.

The vote reliable optimization is used by the i5/0S operating system only if all the following conditions are
true:

« The initiator and agent locations support the presumed abort level of commitment control.

« The initiator location accepts the vote reliable indication from the agent. On i5/0S initiators, this
depends on the value of two commitment options:

— The value of the Wait for outcome commitment option must be No (Yes is the default).
— The value of the Accept vote reliable commitment option must be Yes (Yes is the default).

« The agent location votes reliable during the prepare wave. i5/0S agents always vote reliable. This is
because heuristic decisions can be made only through a manual procedure that warns of the possible
negative side-effects of making a heuristic decision.

Flow of commit processing with vote reliable optimization

The following figure shows the flow of messages among the application programs and the transaction
managers when the vote reliable optimization is used. Both the initiator application program and

the agent application programs are unaware of the two-phase commit processing. The numbers in
parentheses () in the figure correspond to the numbered items in the description that follows.

Commitment control 41



TM-I TM-A A
Receive (1)
Commit (2) B
=W Frepare (3)
- RCVTKCMT indicator (4)
Request Commit (6) Commit {5)
(vote reliable) -
Commit {7)
(no reset)
Return (8) Return (8)
Implied resat (9) any ver
Legend
I = Initiator {Application that initiates commit request)
TM-l = Transaction manager for initiator
A = Agent (Application that receives commit request)
TM-A = Transaction manager for agent

The following list describes the events for normal processing without last agent optimization when
the agent votes reliable. This describes a basic flow. The sequence of events can become much more
complex when the transaction program network has multiple levels or when errors occur.

1. Application program A does a receive request to indicate that it is ready to receive a request from
program I.

2. The initiator application (I) issues a commit instruction.

3. The transaction manager for the initiator (TM-I) takes the role of initiator for this transaction. It starts
the prepare wave by sending a prepare message to all the other locations that are participating in the
transaction.

4. The transaction managers for every other location take the role of agent (TM-A). The application
program A is notified by TM-A that a request to commit has been received. For ICF files, the
notification is in the form of the Receive Take Commit (RCVTKCMT) ICF indicator being set on.

5. The application program A responds by issuing a commit instruction (or a rollback instruction). This is
the application program's vote.

6. The agent (TM-A) responds to the initiator (TM-I) with a request commit message. i5/0S systems send
a vote reliable indicator with the request commit.

7. When the initiator (TM-I) receives all the votes, the TM-I sends a commit message. If the Wait for
outcome commitment option is N (No) and the Accept vote reliable commitment optionis Y (Yes), a no
reset indicator is sent with the commit message. This tells the agent that no reset message is required
in response to the commit.

8. The transaction is complete. A return is sent to the application programs (I and A). This return
indicates that the commit operation was successful. If a heuristic damage occurs at system A due
to a heuristic decision being made before the committed message is received, application I is not
informed. Instead, a message is sent to the QSYSOPR message queue. However, application A receives
the heuristic damage indication.

42 IBM i: Commitment control



9. The next time the agent (TM-A) sends any message to the initiator (TM-I), either a data flow or a
commitment instruction, an implied reset indicator is sent with the message to inform TM-I that TM-A
completed the commit successfully. The reason for this is that TM-I must retain information about the
completed transaction until it has confirmed that TM-A successfully received the commit message in

step “7” on page 42
Related reference
Change Commitment Options (QTNCHGCO) API

XA transaction support for commitment control
Db2 for i can participate in X/Open global transactions.

The Open Group has defined an industry-standard model for transactional work that allows changes
made against unrelated resources to be part of a single global transaction. An example of this is changes
to databases that are provided by two separate vendors. This model is called the X/Open Distributed
Transaction Processing model.

The following publications describe the X/Open Distributed Transaction Processing model in detail:

« X/Open Guide, February 1996, Distributed Transaction Processing: Reference Model, Version 3
(ISBN:1-85912-170-5, G504), The Open Group.

« X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA Specification
(ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

= X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

Be familiar with the information in these books, particularly the XA Specification, before attempting to use
the XA transaction support provided by Db2 for i. You can find these books at the Open Group Web site.

There are five components to the distributed transaction processing (DTP) model:

Application program (AP)
It implements the required function of the user by specifying a sequence of operations that involves
resources such as databases. It defines the start and end of global transactions, accesses resources
within transaction boundaries, and normally makes the decision whether to commit or roll back each
transaction.

Transaction manager (TM)
It manages global transactions and coordinates the decision to start them and commit them, or
roll them back in order to ensure atomic transaction completion. The TM also coordinates recovery
activities with the RMs after a component fails.

Resource manager (RM)
It manages a defined part of the computer's shared resources, such as a database management
system. The AP uses interfaces defined by each RM to perform transactional work. The TM uses
interfaces provided by the RM to carry out transaction completion.

Communications resource manager (CRM)
It allows an instance of the model to access another instance either inside or outside the current TM
domain. CRMs are outside the scope of Db2 for i and are not discussed here.

Communication protocol
The protocols are used by CRMs to communicate with each other. This is outside the scope of Db2 for i
and is not discussed here.

The XA Specification is the part of the DTP model that describes a set of interfaces that is used by

the TM and RM components of the DTP model. Db2 for i implements these interfaces as a set of UNIX
platform-style APIs and exit programs. See XA APIs for detailed documentation of these APIs and for
more information about how to use Db2 for i as an RM.

IBM Navigator for i and XA transactions

IBM Navigator for i supports the management of XA transactions as Global Transactions.

Commitment control 43



A global transaction might contain changes both outside and within Db2 for i. A global transaction is
coordinated by an external transaction manager using the Open Group XA architecture, or using another
similar architecture. An application commits or rolls back a global transaction using interfaces provided by
the transaction manager. The transaction manager uses commit protocols defined by the XA architecture,
or by another architecture, to complete the transaction. Db2 for i acts as an XA resource manager when
participating in a global transaction. There are two types of global transactions:

« Transaction-scoped locks: Locks acquired on behalf of the transaction are scoped to the transaction.
The transaction can move from one job or thread to another.

« Job-scoped locks: Locks acquired on behalf of the transaction are scoped to the job. The transaction
cannot move from the job that started it.

Considerations for XA transactions

The XA APIs for transaction-scoped locks are recommended for new users of the XA transaction support.
The XA APIs for job-scoped locks will continue to be supported, but no longer have any advantages

over the XA APIs for transaction-scoped locks. The XA APIs for transaction-scoped locks have fewer
restrictions and better performance in the following situations:

« If multiple SQL connections are ever used to work on a single XA transaction branch.
« If asingle SQL connection is used to work on multiple, concurrent XA transaction branches.

In these situations, a separate job must be started to run XA transaction branches when you use the XA
APIs for Job Scoped Locks.

Understand the following considerations and restrictions before using Db2 for i as an RM. The term thread
refers to either a job that is not thread capable, or a single thread within a thread-capable job.

The following considerations apply to both transactions with transaction-scoped locks and transactions
with job-scoped locks unless noted otherwise.

Db2 for i considerations

- XA transactions against a local database must be performed in jobs that are running in SQL server
mode. For such transactions, if the xa_open() or db2xa_open() API is used in a job that is not already
running in SQL server mode, SQL server mode is implicitly started. You can refer to XA APIs for
restrictions on the supported database interfaces.

- XA transactions against a remote database are required to use SQL server mode when you use the
XA APIs for job-scoped locks. However, server mode is optional for XA transactions against a remote
database when you use the XA APIs for transaction-scoped locks. Furthermore, changes to DDM files
using traditional i5/0S database access methods are allowed within XA transactions against a remote
database when SQL server mode is not used.

« During the XA API invocations, the XA specification reports any errors that are detected by Db2 for i
through return codes. Diagnostic messages are left in the job log when the meaning of the error cannot
be determined from the return code alone.

Embedded SQL considerations

« In order to use a Structured Query Language (SQL) connection for XA transactions, you must use the
xa_open() or db2xa_open() application programming interface (API) before the SQL connection is made.
The relational database that will be connected to must be passed to the xa_open() or db2xa_open()

API by the xainfo parameter. The user profile and password to be used in the job that the connection is
routed to might be passed to the xa_open() or db2xa_open() API. If it is not passed, the profile uses the
one that was specified or used as the default during the connection attempt.

Note: The following consideration applies only to transactions with job-scoped locks.

« If embedded SQL is used to perform XA transactions, the work performed for each connection is routed
to a different job, even if the connections are made in the same thread. This is different than SQL server
mode without XA, where work performed for all connections in a single thread is routed to the same

44 1BM i: Commitment control



job. This is because the XA specification requires a separate prepare, commit or rollback call for each
resource manager instance.

Note: The following consideration applies only to transactions with job-scoped locks.

- If embedded SQL is used to perform XA transactions, only one connection per relational database can
be made per thread. Whenever the thread is not actively associated with a transaction branch, work
requested over one of the thread's connections will cause the RM to use the TM's ax_reg() exit program
to determine whether the work is to start, resume or join a transaction branch.

If the work is to start a transaction branch, it is performed over that thread's connection to the
corresponding relational database.

If the work is to join a transaction branch, it is rerouted over the connection to the corresponding
relational database that was made in the thread that started the transaction branch. Note that the
system does not enforce that the user profile for that connection is the same as the one for the
connection of the joining thread. The TM is responsible to ensure that this is not a security concern.
Typical TMs use the same user profile for all connections. This user profile is authorized to all data that
is managed by the TM. Further security of access to this data is managed by the TM or AP instead of
using the standard IBM i security techniques.

Note: The following consideration applies only to transactions with job-scoped locks.

- If the work is to resume a transaction branch, the connection that is used depends on whether the
suspended transaction branch association was established by starting or joining the transaction branch.

Subsequent work is performed over the same connection until the db2xa_end() API is used to suspend
or end the thread's association with that transaction branch.

CLI considerations

« If the CLI is used to perform XA transactions, more than one connection might be made in the same
thread after the db2xa_open() API is used. The connections can be used in other threads to perform
XA transactions, as long as those other threads first use the db2xa_open() API with the same xainfo
parameter value.

Note: The following consideration applies only to transactions with job-scoped locks.

- If the CLIis used to perform XA transactions, the connection that is used to start a transaction branch
must be used for all work on that transaction branch. If another thread is to join the transaction branch,
the connection handle for the connection used to start the transaction branch must be passed to the
joining thread so that it can perform work over that same connection. Likewise, if a thread is to resume
the transaction branch, the same connection must be used.

Because CLI connection handles cannot be used in a different job, the join function is limited to threads
running in the same job that started the transaction branch when the CLI is used.

Remote relational database considerations

Note: These considerations for a remote relational database apply only to transactions with job-scoped
locks.

« XA connections to a remote relational database are supported only if the relational database resides
on a system that supports Distributed Unit of Work (DUW) DRDA connections. This includes System i®
products that run Distributed Relational Database Architecture (DRDA) over SNA LU 6.2 conversations,
or that use V5R1 or later when running DRDA using TCP/IP connections. This also includes other
platforms that support DRDA over SNA LU 6.2 or that support the XA protocol using DRDA over TCP/IP.

« Before using the XA join function, the db2xa_open() API must be used in the joining thread. The same
relational database name and RMID must be specified on the db2xa_open() API in both the thread that
started the transaction branch and the joining thread. If the transaction branch is active when a join
is attempted, the joining thread is blocked. The joining thread remains blocked until the active thread
suspends or ends its association with the transaction branch.

Commitment control 45



Recovery considerations

« The manual heuristic commit and rollback support that is provided for all commitment definitions can
be used if it becomes necessary to force a transaction branch to commit or roll back while itis in a
prepared state.

« The manual heuristic rollback support is also allowed for transaction branches that are in an active
or idle state. This support is especially important when a client connection fails after the xa_end API
has been used to move the transaction branch to the idle state, but before xa_commit or xa_rollback
has been used to complete the transaction. If the client transaction manager does not come back
to complete the idle transaction branch after the connection failure, the idle transaction branch is
orphaned and will remain pending until the system is restarted or a manual heuristic rollback is
performed.

- There is also a manual option to forget transaction branches that are in a heuristically completed state.
If a transaction manager does not follow the XA protocol to issue the xa_forget API after receiving a
heuristic decision return code, the transaction branch is orphaned and will remain in the heuristically
completed state, even through a restart of the system. The transaction branch does not hold any
pending changes or locks in this state, but it does consume system storage that is freed when the forget
option is exercised.

Transaction branch considerations

« Information about XA transaction branches is shown as part of the commitment control information
displayed by IBM Navigator for i and by the Work with Job (WRKJOB), Display Job (DSPJOB), and
Work with Commitment Definition (WRKCMTDFN) commands. The TM name, transaction branch state,
transaction identifier, and branch qualifier are all shown. The commitment definitions related to all
currently active XA transactions can be displayed by using the command WRKCMTDFN JOB (*ALL)
STATUS (xXOPEN) or by displaying the Global Transactions folder in IBM Navigator for i.

Note: The following item applies only to transactions with job-scoped locks.

« If an association between a thread and an existing transaction branch is suspended or ended using
the db2xa_end() API, the thread might start a new transaction branch. If the connection used to start
the new transaction branch was used earlier to start a different transaction branch and the thread's
association with that transaction branch has been ended or suspended by the db2xa_end() APL, a
new SQL server job might be started. A new SQL server job is needed only if the first transaction
branch has not yet been completed by the db2xa_commit() or db2xa_rollback() API. In this case,
another completion message SQL7908 is sent to the job log identifying the new SQL server job, just as
the connection's original SQL server job was identified when the connection was established. All SQL
requests for the new transaction branch are routed to the new SQL server job. When the transaction
branch is completed by the db2xa_commit() or db2xa_rollback() API, the new SQL server job is recycled
and returned to the prestart job pool.

- Atransaction branch is marked Rollback Only in the following situations only for the XA transactions
for job-scoped locks:

— Athread ends when it is still associated with the transaction branch. This includes a thread ending as
the result of process termination.

— The system fails.

« With XA transactions for transaction-scoped locks, a transaction branch is rolled back by the system if
any threads are still associated with it when any of the following situations occur:

— The connection that is related to the transaction branch is ended.

— The job that started the transaction branch is ended.

— The system fails.

Note: The following consideration applies only to transactions with job-scoped locks.

« There is one situation where a transaction branch will be rolled back by the system, regardless of
whether there are still associated threads. This occurs when the SQL server job that the connection's

46 IBM i: Commitment control



work is being routed to is ended. This can only happen when the End Job (ENDJOB) CL command is
used against that job.

- Atransaction branch is not affected if no threads have an active association with it when any of the
following situations occur. The TM can commit or roll back the transaction branch from any thread that
has used the xa_open() or db2xa_open() API with the same xainfo parameter value that was specified in
the thread that started the transaction branch.

— The connection that is related to the transaction branch is ended.

— Athread or job that performed work for the transaction branch uses the xa_close() or db2xa_close()
API.

— The system fails. In this case, the transaction branch is not affected only if it is in prepared state. If it
is in idle state, the system rolls it back.

« When the transaction identifier (XID) of two XA transaction branches have the same global transaction
identifier (GTRID), but different branch qualifiers (BQUALs), they are said to be loosely coupled. By
default, loosely coupled transaction branches do not share locks. However, when using the XA APIs for
transaction-scoped locks, there is an option that allows loosely coupled transactions to share locks.

Related concepts

Considerations for XA transactions

In the XA environment, each database is considered a separate resource manager. When a transaction
manager wants to access two databases under the same transaction, it must use the XA protocols to
perform two-phase commit with the two resource managers.

The Open Group Web site

SQL server mode and thread-scoped transactions for commitment control

Commitment definitions with job-scoped locks are normally scoped to an activation group.
Related tasks

When to force commit and rollback operations and when to cancel resynchronization
The decision to force a commit or rollback operation is called a heuristic decision. This action enables an
operator to manually commit or roll back the resources for a transaction that is in a prepared state.

SQL server mode and thread-scoped transactions for commitment control
Commitment definitions with job-scoped locks are normally scoped to an activation group.

If ajob is multithreaded, all threads in the job have access to the commitment definition and changes
made for a particular transaction can be spread across multiple threads. That is, all threads whose
programs run in the same activation group participate in a single transaction.

There are cases where it is desirable for transactional work to be scoped to the thread, rather than an
activation group. In other words, each thread has its own commitment definition and transactional work
for each commitment definition is independent of work performed in other threads.

Db2 for i provides this support by using the Change Job (QWTCHGIB) API to change the job to runin SQL
server mode. When an SQL connection is requested in SQL server mode, it is routed to a separate job.

All subsequent SQL operations that are performed for that connection are also routed to that job. When
the connection is made, completion message SQL7908 is sent to the job log of the SQL server mode job
indicating which job the SQL requests are being routed to. The commitment definition is owned by the
job that is indicated in this message. If errors occur, it might be necessary to look at the job logs for both
jobs to understand the source of the problem because no real work is done in the job performing the SQL
statements.

When running in SQL server mode, only SQL interfaces can be used to perform work under commitment
control. Embedded SQL or Call Level Interface (CLI) can be used. All connections made through
embedded SQL in a single thread are routed to the same back-end job. This allows a single commit
request to commit the work for all the connections, just as it can be in a job that is not running in SQL
server mode. Each connection made through the CLI is routed to a separate job. The CLI requires work
that is performed for each connection to be committed or rolled back independently.

Commitment control 47


http://www.opengroup.org

You cannot perform the following operations under commitment control when running in SQL server
mode:

« Record changes that are made with interfaces that are not SQL interfaces

« Changes to DDM files

- Changes to API commitment resources

You cannot start commitment control directly in a job running in SQL server mode.

Related concepts

XA transaction support for commitment control
Db2 for i can participate in X/Open global transactions.

Running DB2 CLI in server mode

Starting DB2 CLI in SQL server mode
Restrictions for running DB2 CLI in server mode
Related reference

Change Job (QWTCHGJB) API

Starting commitment control

To start commitment control, use the Start Commitment Control (STRCMTCTL) Command.

Note: Commitment control does not need to be started by SQL applications. SQL implicitly starts
commitment control at connect time when the SQL isolation level is not *NONE.

When you use the STRCMTCTL command, you can specify these parameters.

Commit lock-level

Specify the lock-level with the LCKLVL parameter on the STRCMTCTL command. The level you specify

becomes the default level of record locking for database files that are opened and placed under
commitment control for the commitment definition.

Commit notify object
Use the NTFY parameter to specify the notify object. A notify object is a message queue, data area,

or database file that contains information identifying the last successful transaction completed for a

particular commitment definition if that commitment definition did not end normally.

Commit scope parameter
Use the CMTSCOPE parameter to specify commit scope. When commitment control is started, the
system creates a commitment definition. The commit scope parameter identifies the scope for the

commitment definition. The default is to scope the commitment definition to the activation group of

the program making the start commitment control request. The alternative scope is to the job.
Default journal parameter

You can specify a default journal when you start commitment control. You might use a default journal

for these reasons:

« You want to capture transaction journal entries. These entries can assist you in analyzing the history

of what resources are associated with a transaction. They are not used for applying and removing

journaled changes. The omit journal entries (OMTIRNE) parameter determines whether the system

writes transaction entries.

 You want to improve performance for jobs that close files and open them again within a routing
step. If you close all the files assigned to a journal that is not the default journal, all the system
information about the journal is removed from the routing step. If a file that is assigned to that
journal is opened later, all the information about the journal must be created again. The system

keeps information about the default journal with the commitment definition, whether any resources

that are assigned to the journal are active.

48 IBM i: Commitment control



Commit text parameter
Use the TEXT parameter to identify the specific text to be associated with a commitment definition
when displaying information about the commitment definitions started for a job. If no text is specified,
the system provides a default text description.

Omit journal entries parameter
If you specify a default journal to improve performance, you can use the OMTIRNE parameter to
prevent the system from writing transaction journal entries. Having the system write transaction
entries significantly increases the size of your journal receiver and degrades performance during
commit and rollback operations.

Transaction entries can be useful when you are setting up and testing either your commitment control
environment or a new application.

Transaction entries are written to the default journal regardless of the value of the OMTIRNE
parameter under these conditions:

« A system error occurs during a commit or rollback operation.

« A manual change is made to a resource that participated in a transaction, and the change caused
a heuristic mixed condition. See States of the transaction for two-phase commitment control for
a description of the heuristic mixed condition. This type of manual change is called a heuristic
decision.

You can use the information about what resources participated in the transaction to determine what
action to take in these situations.

You can use the Journal entry information finder to show the layouts for the entry-specific data for
transaction (commitment control) journal entries.

Related concepts

States of the transaction for two-phase commitment control

A commitment definition is established at each location that is part of the transaction program network.
For each commitment definition, the system keeps track of the state of its current transaction and
previous transaction.

Journal entry information finder
Related tasks
When to force commit and rollback operations and when to cancel resynchronization

The decision to force a commit or rollback operation is called a heuristic decision. This action enables an
operator to manually commit or roll back the resources for a transaction that is in a prepared state.

Related reference
Start Commitment Control (STRCMTCTL) command

Commit notify object

A notify object is a message queue, data area, or database file that contains information identifying
the last successful transaction completed for a particular commitment definition if that commitment
definition did not end normally.

The information used to identify the last successful transaction for a commitment definition is given by
the commit identification that associates a commit operation with a specific set of committable resource
changes.

The commit identification of the last successful transaction for a commitment definition is placed in the
notify object only if the commitment definition does not end normally. This information can be used to
help determine where processing for an application ended so that the application can be started again.

For independent disk pools, the notify object must reside on the same independent disk pool or
independent disk pool group as the commitment definition. If you move the commitment definition to
another independent disk pool or independent disk pool group, the notify object must also reside on that
other independent disk pool or independent disk pool group. The notify object on the other independent
disk pool or independent disk pool group is updated if the commitment definition ends abnormally. If the

Commitment control 49



notify object is not found on the other independent disk pool or independent disk pool group, the update
fails with message CPF8358.

If journaled resources participate in the current transaction and a commit operation is performed with a
commit identification, the commit identification is placed in the commit journal entry (journal code and
entry type of C CM) that identifies that particular transaction as being committed. A commit journal entry
containing the commit identification is sent to each journal associated with resources that participated in
the transaction.

The following table shows how you specify the commit identification and its maximum size. If the commit
identification exceeds its maximum size, it is truncated when it is written to the notify object.

Language Operation Maximum characters in commit
identification

CL COMMIT command 30001

Integrated Language COMIT operation code 40001

Environment (ILE) RPG

PLI PLICOMMIT subroutine 40001

ILEC _Rcommit function 40001

ILE COBOL COMMIT verb Not supported

SQL COMMIT statement Not supported

Note: 1If the notify object is a data area, the maximum size is 2000 characters.

When a notify object is updated with the commit identification, it is updated as follows:

Database file
If a database file is used as the notify object, the commit identification is added to the end of the file.
Any existing records will be left in the file. Because several users or jobs can be changing records at
the same time, each commit identification in the file contains unique information to associate the data
with the job and commitment definition that failed. The file that serves can be journaled

Data area
If a data area is used as the notify object, the entire content of the data area is replaced when
the commit identification is placed in the data area. If more than one user or job is using the same
program, only the commit identification from the last commitment definition that did not end normally
will be in the data area. Consequently, a single data area notify object might not produce the correct
information for starting the application programs again. To solve this problem, use a separate data
area for each commitment definition for each workstation user or job.

Message queue
If a message queue is used as a notify object, message CPI8399 is sent to the message queue.
The commit identification is placed in the second-level text for message CP18399. As with using
a database file for the notify object, the contents of each commit identification uniquely identify a
particular commitment definition for a job so that an application program can be started again.

Related concepts

Commitment control for batch applications

Batch applications might or might not need commitment control. In some cases, a batch application
can perform a single function of reading an input file and updating a master file. However, you can use
commitment control for this type of application if it is important to start it again after an abnormal end.

Example: Using a notify object to start an application

50 IBM i: Commitment control



When a program is started after an abnormal end, it can look for an entry in the notify object. If the entry
exists, the program can start a transaction again. After the transaction has been started again, the notify
object is cleared by the program to prevent it from starting the same transaction yet another time.

Commit lock level

The value you specify for the LCKLVL parameter on the Start Commitment Control (STRCMTCTL)
command becomes the default level of record locking for database files that are opened and placed
under commitment control for the commitment definition.

The default level of record locking cannot be overridden when opening local database files. However,
database files accessed by SQL use the current SQL isolation level in effect at the time of the first SQL
statement issued against it.

The lock level must be specified with respect to your needs, the wait periods allowed, and the release
procedures used most often.

The following descriptions apply only to files that are opened under commitment control:

*CHG Lock Level
Use this value if you want to protect changed records from changes by other jobs running at the same
time. For files that are opened under commitment control, the lock is held for the duration of the
transaction. For files not opened under commitment control, the lock on the record is held only from
the time the record is read until the update operation is complete.

*CS Lock Level
Use this value to protect both changed and retrieved records from changes by other jobs running at
the same time. Retrieved records that are not changed are protected only until they are released, or a
different record is retrieved.

The *CS lock level ensures that other jobs are not able to read a record for update that this job has
read. In addition, the program cannot read records for update that have been locked with a record
lock type of *UPDATE in another job until that job accesses a different record.

*ALL Lock Level
Use this value to protect changed records and retrieved records that are under commitment control
from changes by other jobs running under commitment control at the same time. Records that are
retrieved or changed are protected until the next commit or rollback operation.

The *ALL lock level ensures that other jobs are not able to access a record for update that this job has
read. This is different from normal locking protocol. When the lock level is specified as *ALL, even a
record that is not read for update cannot be accessed if it is locked with a record lock type of *UPDATE
in another job.

The following table shows the duration of record locks for files under and not under commitment control.

Request LCKLVL parameter Duration of lock Lock type
Read-only No commitment control |No lock None
*CHG No lock None
*CS From read to next read, |*READ
commit, or rollback
*ALL From read to commit or | *READ
rollback

Commitment control 51



commit or rollback

Request LCKLVL parameter Duration of lock Lock type
Read for update then No commitment control |From read to update or [*UPDATE
update or delete® delete
*CHG From read to update or | *UPDATE
delete
Then from update or *UPDATE
delete to next commit or
rollback?
*CS From read to update or | *UPDATE
delete
Then from update or *UPDATE
delete to next commit or
rollback?
*ALL From read to update or | *UPDATE
delete
Then from update or
delete to next commit or
rollback?
Read for update then No commitment control |From read to release *UPDATE
L 1
release *CHG From read to release *UPDATE
*CS From read to release, *UPDATE
commit, or rollback
Then from release to *UPDATE
next read, commit, or
rollback
*ALL From read to release, *UPDATE
commit, or rollback
Then from release to
next commit or rollback
Add No commitment control | No lock None
*CHG From add to commit or | *UPDATE
rollback
*CS From add to commit or | *UPDATE
rollback
*ALL From add to commit or | *UPDATE
rollback
Write direct No commitment control | For duration of write *UPDATE
direct
*CHG From write direct to *UPDATE
commit or rollback
*CS From write direct to *UPDATE
commit or rollback
*ALL From write direct to *UPDATE

52 IBM i: Commitment control




Request LCKLVL parameter Duration of lock Lock type

Notes:

11f a commit or rollback operation is performed after a read-for-update operation but before the record
is updated, deleted, or released, the record is unlocked during the commit or rollback operation. The
protection on the record is lost as soon as the commit or rollback completes.

2If a record is deleted but the commit or rollback has not yet been issued for the transaction, the
deleted record does not remain locked. If the same or a different job attempts to read the deleted
record by key, the job receives a record not found indication. However, if a unique keyed access path
exists over the file, another job is prevented from inserting or updating a record with the same unique
key value as that of the deleted record until the transaction is committed.

A record lock type of *READ is obtained on records that are not read for update when the lock level is *CS
or *ALL. This type of lock prevents other jobs from reading the records for update but does not prevent the
records from being accessed from a read-only operation.

A record lock type of *UPDATE is obtained on records that are updated, deleted, added, or read for
update. This type of lock prevents other jobs from reading the records for update, and prevents jobs
running under commitment control with a record lock level of *CS or *ALL from accessing the records for
even a read-only operation.

Programs that are not using commitment control can read records locked by another job, but cannot read
records for update, regardless of the value specified for the LCKLVL parameter.

The lock level, specified for a commitment definition when commitment control is started for an activation
group or for the job, applies only to opens associated with that particular commitment definition.

Note: The *CS and *ALL lock-level values protect you from retrieving a record that currently has a
pending change from a different job. However, the *CS and *ALL lock-level values do not protect you from
retrieving a record using a program running in one activation group that currently has a pending change
from a program running in a different activation group within the same job.

Within the same job, a program can change a record that has already been changed within the current
transaction as long as the record is accessed again using the same commitment definition. When using
the job-level commitment definition, the access to the changed record can be made from a program
running within any activation group that is using the job-level commitment definition.

Related concepts

Considerations and restrictions for commitment control
You need to be aware of these considerations and restrictions for commitment control.

Related reference
Start Commitment Control (STRCMTCTL) command

Ending commitment control

The End Commitment Control (ENDCMTCTL) command ends commitment control for either the
job-level or activation-group-level commitment definition.

Issuing the ENDCMTCTL command indicates to the system that the commitment definition in use by
the program making the request is to be ended. The ENDCMTCTL command ends only one commitment
definition for the job and all other commitment definitions for the job remain unchanged.

If the activation-group-level commitment definition is ended, then programs running within that
activation group can no longer make changes under commitment control, unless the job-level
commitment definition is already started for the job. If the job-level commitment definition is active,

then it is immediately made available for use by the programs running within the activation group that just
ended commitment control.

Commitment control 53



If the job-level commitment definition is ended, then any program running within the job that was using
the job-level commitment definition can no longer make changes under commitment control without first
starting commitment control again with the STRCMTCTL command.

Before issuing the ENDCMTCTL command, the following conditions must be satisfied for the commitment
definition to be ended:

« All files opened under commitment control for the commitment definition to be ended must first
be closed. When ending the job-level commitment definition, this includes all files opened under
commitment control by any program running in any activation group that is using the job-level
commitment definition.

« ALl API commitment resources for the commitment definition to be ended must first be removed
using the QTNRMVCR APIL. When ending the job-level commitment definition, this includes all API
commitment resources added by any program running in any activation group that is using the job-level
commitment definition.

« A remote database associated with the commitment definition to be ended must be disconnected.

- All protected conversations associated with the commitment definition must be ended normally using
the correct synchronization level.

If commitment control is being ended in an interactive job and one or more committable resources
associated with the commitment definition have pending changes, inquiry message CPA8350 is sent to
the user asking whether to commit the pending changes, roll back the pending changes, or cancel the
ENDCMTCTL request.

If commitment control is being ended in a batch job, and one or more closed files associated with
the commitment definition to be ended still have pending changes, the changes are rolled back and a
message is sent:

- CPF8356 if only local resources are registered
« CPF835C if only remote resources are registered
« CPF83E4 if both local and remote resources are registered

If a notify object is defined for the commitment definition being ended, it might be updated.

When an activation group that has an API registered as the last agent is ending, the exit program for the
API is called to receive the commit or rollback decision. In this case, even though the activation group
is ending normally, a rollback request can still be returned from the API exit program. Thus, the implicit
commit operation might not be performed.

After the commitment definition has successfully ended, all the necessary recovery, if any, has been
performed. No additional recovery is performed for the commitment resources associated with the
commitment definition just ended.

After the commitment definition is ended, the job-level or activation-group-level commitment definition
can then be started again for the programs running within the activation group. The job-level commitment
definition can be started only if it is not already started for the job.

Although commitment definitions can be started and ended many times by the programs that run within
an activation group, the amount of system resources required for the repeated start and end operations

can cause a decrease in job performance and overall system performance. Therefore, it is recommended
that a commitment definition be left active if a program to be called later will use it.

Related concepts

Updates to the notify object

The system updates the notify object with the commit identification of the last successful commit
operation for that commitment definition.

Related reference
End Commitment Control (ENDCMTCTL) command

54 IBM i: Commitment control



System-initiated end of commitment control

The system can end commitment control, or perform an implicit commit or rollback operation. Sometimes
the system-initiated end of commitment control is normal. Other times, commitment control ends with an
abnormal system or job end.

Commitment control during activation group end

The system automatically ends an activation-group-level commitment definition when an activation group
ends.

If pending changes exist for an activation-group-level commitment definition and the activation group
is ending normally, the system performs an implicit commit operation for the commitment definition
before it is ended. Otherwise, an implicit rollback operation is performed for the activation-group-level
commitment definition before being ended if the activation group is ending abnormally, or if errors were
encountered by the system when closing any files opened under commitment control scoped to the
activation group.

Note: An implicit commit or rollback operation is never performed during activation-group end processing
for the *JOB or *DFTACTGRP commitment definitions. This is because the *JOB and *DFTACTGRP
commitment definitions are never ended due to an activation group ending. Instead, these commitment
definitions are either explicitly ended with an ENDCMTCTL command or ended by the system when the job
ends.

The system automatically closes any files scoped to the activation group when the activation group ends.
This includes any database files scoped to the activation group opened under commitment control. The
close for any such file occurs before any implicit commit operation that might be performed for the
activation-group-level commitment definition. Therefore, any records that reside in an I/O buffer are first
forced to the database before any implicit commit operation is performed.

As part of the implicit commit or rollback operation that might be performed, a call is made to the

API commit and rollback exit program for each API commitment resource associated with the activation-
group-level commitment definition. The exit program must complete its processing within 5 minutes.
After the API commit and rollback exit program is called, the system automatically removes the API
commitment resource.

If an implicit rollback operation is performed for a commitment definition that is being ended due to an
activation group being ended, then the notify object, if one is defined for the commitment definition, might
be updated.

Related concepts

Updates to the notify object
The system updates the notify object with the commit identification of the last successful commit
operation for that commitment definition.

Implicit commit and rollback operations

In some instances, a commit or rollback operation is initiated by the system for a commitment definition.
These types of commit and rollback operations are known as implicit commit and rollback requests.

Typically, a commit or rollback operation is initiated from an application program using one of the
available programming languages that supports commitment control. These types of commit and rollback
operations are known as explicit commit and rollback requests.

The following two tables show what the system does when certain events occur related to a commitment
definition that has pending changes. A commitment definition has pending changes if any of the following
conditions is true:

« Any committable resource has been updated.

« A database file opened under commitment control has been read because reading a file changes the file
position.

Commitment control 55



« The commitment definition has an API resource. Because changes to API resources are done by a user
program, the system must assume that all API resources have pending changes.

The C CM (commit operation) journal entry and C RB (rollback operation) journal entry indicate whether
the operation was explicit or implicit.

The following table shows the actions the system takes when a job ends, either normally or abnormally,
based on the following situations:

« The state of the transaction.

 Th