IBM i
Version 7.2

Programming
IBM Rational Development Studio for i
ILE RPG Reference

.||I

Note

Before using this information and the product it supports, read the information in “Notices” on page
875.

This edition applies to IBM® Rational® Development Studio for i (product number 5770-WDS) and to all subsequent
releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction
set computer (RISC) models nor does it run on CISC models.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.

© Copyright International Business Machines Corporation 1994, 2013.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Part 1. ILE RPG Ref@rEeNCe..ccucceieriretieteetereeseeseeseetensessessesensensessessessessasassessasaessnses L

Chapter 1. ADOUL ILE RPG REFEIENCE.....iiiiiiiectieectee ettt ettt e et ee e e st e e s e e s e be e e e ba e e sbaeesssaeesssaeennsaeans 3
Who Should Use This REFEIENCE.....ccuuiiiiee ettt ee e e aee e s eaee e e rae e eares 3
Prerequisite and Related INfOrmation.........c.eieiiieiieeeeee et rae e e 3
HOW t0 SENA YOUr COMMENTS.....uiiiiiiieeitiieeiiieeciteeete e et e et e e e te e esate e e aaee s ssae e asaeesssaeennsaeenssaeanssaeennsens 3

Chapter 2. WHat's NEW....cuiiiiciiecciee ettt ettt e sete e s tte e stte e s tte e s bteesbtee s baeesseeesaseeessaaesseessseessnsenesnns 5
WHAt's NEW SINCE 7.2 . eiiiciiee et cite et etee e tee e e tee e e te e e e tae e sabae s eataeesasaeesstaeesntaeesssaeaassaeennseeensseesnees 5
WHAL'S NEW IN 7,272, ettt ettt e e e e tee e e te e e e tee e ebaeesbaeesasaeesssaeesnsasesnsasesnsaseansasesnsesessaeanns 10
WHAL'S NEW IN 7.2 ettt ettt e e e e te e e e e e e e bae e eataeesbaeesstaeessbaeasssaseansasesssasesnsasesnsasesnsananns 19
WHAL'S NEW IN 6,172 ettt ettt e et e e e te e e e te e e etaeesbeeesabaeeessaeeensasesnsaseensaeesssesesnsaessnsaeanns 23
WHAt's NEW INVBRAD..... ettt e e e ette e st e e e tee e e tee e s baeesbaeesabaeeeasaeesnsaeesnsaeeansaseanseeeasaeennes 27
WHat's NEW INVBR3B 2. ittt ettt e e e e tee e e te e e s tee e sbae e sbaeeeabaeesasaessnsaeesnsaeesnsasesnseaeasaeannes 31
WHaAt's NEW INVBR22.... . ittt e e ette e e te e e e tee e s vee e sbaeesabaeesabaeeensaeesnsaeesnsaeesnsaseenseeeasaeennes 35
WHaAt's NEW INVBRL?.....iiieciieecte ettt e e ette e etee e e te e e s te e e sbaeesabaeesabaeesnsaeeensasesnsaeesnsasesnseaeasaeannes 38
WHA's NEW INVARAD.......eeeeeeeeeeee ettt e et e et e e e vt e e e te e e s vae e s baeesbaeesabaeeeasaeeensaeesnsaeeansasesnseeeasaeennes 43
WHAt's NEW INVAR2?.... . ittt ettt e e e e tee e et e e e e tee e s tae e sbaeesabaeseabaeesasaeesnsaeesnsaeeansasesnsaaeasaeennes a7
WHAt's NEW INVBR7 2.ttt e e e ette e et e e e tee e e te e e stae e sabaeesabaeeeabaeeensaeesnsaeesnsaseansaaessaeennes 51
What's NEeW iN VIRO/VIR2?....cuiciiiieiirieenieetesiesteseestesseessessaessesseessesssessesssesssessesssessesssessssssesssessessses 54

Chapter 3. RPG IV CONCEPLS..iiiciieicieeccteecctteeeete e sette e eette e e etee e e tee e eeteeeeesaeeseseeesbeeeesteesnseesssesssseessnsessansens 59
Symbolic Names and ReServed WOIS.......c.uiiciieeiiieecieeeeciee ettt e etee e tee e tee s ete e s saee e s vaesensaeenneeas 59

SYMBDOLIC NAMES...uii ittt et e e e e et e e e stae e etee e e taeeetaeeensaeesnteeesnsasssnsesensaeannes 59
RPG IV Words with Special Functions/Reserved WOords........cccecueeeeieeecieeeccieeeccieeseveeeevee e 61
User Date SPECIAL WOITS.......uiiieiieeeiie ettt ettt e s te e e ate e e eate e s ate e e nteeeeateesnteesnnteesnneeesnnens 63
PAGE, PAGEL-PAGET......ciititieeeteetesiesteseesteseessesseesteeeestesssessassesssessesssessesssessesssesssessesssesseensenes 64
(07T 0 0] o1 L=T gl D11 = Tot 4 1V PRSPPI 65
JFREE... [END=FREE......ciiitistiteitietesteetesesste et esteseeste st e sveeaesreesaesseessesssesseessesseessesseessesssessesnsennes 66
JTITLE ettt ettt ettt st e e e e s te et e st e et e s st et e e s e e st e e st e e s e e st e sseesseessessaesseaseassesssenseeseessesssessaensenseenes 66
JETECT ceiteettetesteecte st et e e e s e st et e et e s b e et e sae e s e e s e e besse e st e essesbeeateese e st e esa e seenteare e s e er e e aeera e teeneesreensenreans 66
JSPACE..... ettt ettt ettt e st et e st e te s e et e e e e s be et e s b e et e e s e et e et et e et e e b e et e ere e te e R e e beeneesreenteereentenren 66
2] TSRS 67
JRESTORE ...ttt ettt st te st e te st e st e et e s re e aessa e besseesbeestessaesbeeneesseessessaessesneessesssessaessesseans 68
JCOPY OF [INCLUDE.....cccttiteiteetestesteseesteseestessestesaessessessaessesseassesssessesssessesssesssessesssesseensessaessenns 69
Conditional Compilation DirECLIVES.....cccuiieciee ettt ree e e ree e s eree e s ree e e ree e sbeeeeneeas 71
Procedures and the Program LOZGIC CYCLE....cuiiiiiiiieiieeeiee ettt ettt e te e e te e e te e e svae e earae e 76
YUl oYoT e ol=Yo (U gl 1= 1T Te] o OSSR 76
Program Flow in RPG Modules: Cycle VErsus LINEar......cceeccieeecieeeiieeciieeccreeectreeecveeeeeveeesevnee e 81
RPG Cycle and other impliCit LOZIC.....uiiiiiiiiieicciee ettt ettt ee e e e tee e s aee e s e e 85
o] S G AV N o [o= o] =TSSR 100
Indicators Defined on RPG IV SpecCifications.......cccieeiciieecieecciee ettt 100
Indicators Not Defined on the RPG IV Specifications........cccceeecieeeiieeeciiecceeecceeeecvee e 111
6] o T N a o [oF=1 o] =TS 113
Indicators Referred t0 AS Data.....cceiccieieciiieeiiiecciee et erre et e e e e re e e te e e abe e e abee e sabaeesabaeeenreas 122
SUMMANY Of INAICATOIS..eiiiiiiieiieecee ettt et e et e e tae e e rae e e abe e e ateesstee e saaesnnsaeenees 124
File and Program EXCEPIION/EITOIS. . .ii i ccieectiee et cctte et e ette e etee e etee e s steeestaeestaeesbaeesbaeesnseaennes 127
=N oot T o AL oA = o T U SO 127
oYl = T T o Cet=T o4 o] A = o] TR 143
General File CONSIAEIAtiONS. ...cccciieieiieiciee ettt cetee e e e te e s e te e e te e eeteeeesteeessteeessteesesteeesstessansesanns 154
RULES fOr FIle NAMES.....ciiciiieeiieecte ettt ettt e e tte e et e e e sta e e e areeebae e e saeessaeeeasseesnsaeesnsseeesseenn 154

(R 1N LNV (o= TSRS 155

(€] Lo oF- 1= o o [l Mo Yot | I 1] 1= PSPPSR 155
OPEN ACCESS FIlES..uiiiiiiiiiieieectieee e ectee e eectee e e e e e e e e et e e e s e btee e e e s s teeeesensteeeeeansteaessanstenessennsrnes 156
ol Y= 10 0= (T TP 164
Variables Associated WIth FIlES.....uiiiiiiiiiiiiieiiectecete e e s aee e s aee e s 164
FULL PrOCEAUIAL FIlES..iiiiiiiiiiieiiiieeeiieeeite ettt stte s tte s svae e sbte e sba e e sbae e sbaeesbaeessaesssaeesane 167
Primary/Secondary Multi-file ProCESSING......ccccviiviieiiiieiiiieesieeste e ste e see s sree e sree s ssaee s s bee e 167
[T =T I - T =] £ (oo OO PO 174

(04 g TV o1 C=T g B 1= 1T T o] o 1= S 179
Defining Data and ProtOtYPeS. ... iiiiiieiiiesite ettt e st e st e e s s e e s st e s sbee s s beeesbeessseeesseessnsens 179
CToY a1 - O] a1 Te L=Y = L o o 1< RS 179
STANAALONE FIBLUS .o iutiiiieeeeteee ettt e s st e s s ee e s sbe e e sabe e e sabeessataesesraesans 181

(070] 0153 €=) £ T OO O T OO PP P PSPPSR 182
Data STIUCTUIES . ettt e ettt e e sttt e e e e bt e e e e s bt e e e e s anetee e e e nseeeesanneeeessenneeas 189
Prototypes and ParameETerS.ttt e e e e e cree e e s e etae e e e e e nba e e e s e nbaee e e e nnaeees 203
USING Arrays @Nd TabLleS....ui ittt ettt ettt ste e s saee e s sate e s ste e sasaeessbeesstaessseesanseenn 208
AITTAY S ttttteeeee et e e eeeeecrtereeeeeeeeeeeee e e uaratareeaeeeaeaeaaaa s raaaaaaaaaeeeteeaaaa e arataraeaeeeeeeeeaaanraraaaaaeeeeeeeeeanannns 208
TNITIALIZING ATTAYS e itteiiiietiiiee ettt st eee e st e e st e e st e e s bee e sbee e s bt e s sabeeesabeeesasaessaseessseessseesnnsees 216
DefiNING RELATEA ATTAYS..iiciiiieiieiiiiereiterrte ettt e st s s ee s st e s s sbe e s s bee e s bt e e sbeeessbeessseessseessnsens 216
SEANCNING ATTAYS..uiiiiiieiiiteieiee ettt st e sste e s st e sesteesesteesasteesasteesasteesastaesasteesastessnsseesnsseesasseesnseesans 218
USTINE ATTAYS e eutteeeitreeriireeeiteesateeestteesateesasteesasseesasseesasseesassaesasseesssseesssseesssseessseesssseesssseesssseessssens 220
SOTTING ATTAY S uttieiteeeitreeeiteesiteesateesateesateeesaaeeesaseaesassaesassaesassaesassaesasseesssseesnsseesnsseessseesnseesssees 221

FN = Y@ LU o LU S SUPPRRRNE 222
UsiNg DYNamiCally=SiZE AITAYS ...cciccuiiriiieriiieriiiesiieessieessteessieeesssteesssseesssseesssseesssseesssseessseesas 222

L= 101 L3OO RO PRRPPRRRPPPRNE 223
Data Types and Data FOrMALS......ciiic ittt e e e e e e stee e e e e rre e e e e s nree e e s eenseeeeeeennraneseans 225
Internal and EXTErNal FOrMAtS. ..ot iiiiieieeiiee ettt ee s iee s s iee s s aee s sbee s srae e saneas 225

(O] g U= ot L=Y D = - B Y/ o1 TSR 228
L g T A (ol D ¥ 2= T NV o = SRS 242
DY (=N D - = T Y o 1= TP 250
LA TCI Dy €= Y o 1= TSRS 252
RIS E=Ya T o T D) €= Y o = T 254

(O] o] [=To3 A F- ¥ 7= N IV o TSR 255
BasSing POINtEr DAta TYP..uiiiiiiiiiiieiiieereite sttt st s st e st e s s te e s s te e s s beessabaesssbaesssbeesssbaeesssaens 256
Procedure POINTEI DAta TYPE..cui i e ceciieeeeecttee e eete e e se e teee e e e ebtee e e e eaaee e e s enseeeeesensseaeesenssnesaann 262
Database NULLValue SUPPOIt...... . uieiee ettt ecctee e eetree e e e erre e e e e beee e s eebeeeeseessaeeesesnssnsessanns 263
Error Handling for Database Data Mapping ErTOrS......ooiiiiiieiniieinieeeciee e ssieessveesseeesseee e 269
Editing NUMETIC FIELAS...ciuiiiiiiieeiteecteee ettt s st e st e s aee e s ata e ssaeeesnaeaesnneas 269
T L1 oY =13 OO 270
BT WWOTOS. ettt ettt ettt e st e st e s ate e s s ate e s e sbeesssbeessstaessstaesnsteesanseesanseesnnseesns 276
Editing Externally DeSCribed FilES.....cuiiiiiiiiiiiiiiiencieessiee sttt ettt s e s e s e snaeee s 282
(0o T Vo] (=T ST o1 Tod | o= LA o] o USSR 283
FAN oo LU}] o T=Y ot) (o= o 1= UST 283
R AV Y o T=Tod | o= LA o] o TN Y/ 01T USRS 283
Free-FOrm StatemeNntS. .. .o ettt st e e e et e e s e e e e e e nreeeas 285
(600] 0 aTo] AT =1 014 T PRSI 288
(070] 2 (o] IRy o =Tl 1 [oF= o o 1= 75U 295
Using a Data Area as a Control SPecifiCation........ccvviierieeniiienrieeciee st 296
Free-Form Control STatemMENT......coicii ittt sttt eaee e s eaee e seree e sneeesreaesane 296
Traditional Control-Specification State€mMENT.......ccocciiii i e 297
Control-SpecCifiCation KEYWOITS. ...ciiicciiieeeeeciieeeeecieee e eccteee e eee e e e e eeare e e e e sareeeesenbeeeeeesnseneesennnnes 298
File DesCription SPECITICAtIONS. ..iicciiieeecccieee et e et et e e e eeree e e e eree e s s e areeeeeeenbeeeeeennseeeesennnees 322
Free-Form File Definition STatement. ..ottt ssaee e ssee e 323
Traditional File Description Specification Statement........cccveeieeciieei e e 325
File-DeSCription KEYWOITS. . .cii i iiieeeeeciiieeeeecitee e e eetee e e setteee s seetaeeseeestaessesasseeeesesnsenesssnnssnesssnnsnes 336

File Types and Processing Methods.......uuivciiiiiieiiiieicieecee ettt 361

DefiNItioN SPECITICATIONS. .. .uiii ittt e e e re e e e e et e e e e enbee e e s enbeeee e e nsteseeesssenesaans 362

Free-Form Definition StatemenT.. ...t 362
Traditional Definition Specification StatemMeNt.........coeiicciiii e 376
Definition-SpecifiCation KEYWOITS........uiiiii ettt e e e e e e e e e ebree e e e nseeeeeennes 382
Summary According to Definition Specification TYPe....cuccivvrieiriienrieeeree e 437
L] oTU LAY o =Tod) Tox=Y o] a1 442
Input Specification StAtEMENT......cii e et e e e e e e e are e e e e nnees 442
Program DESCIHDEA FilES....iuuiiiiiiieiieieiee ittt sttt e st e st e s ste e s steessateesssteessaeeessssaessssaesnns 443
Record Identification ENTIIES.....c.uii ittt see s e s sbae s sbae s sraeeens 443
(aIT=1 o B B L=t ol] o) 4o o I =1) { =R 448
Externally DeSCIIDEA FIlES.... . ittt e e e e tee e e e e s tbe e e e s e bt e e e e s ntaeeaeeensaneas 453
Record Identification ENTIIES.....c.uii ittt ettt s sre e s sta e s sbae e svaeeens 453
(IT=1 o B B L=t ol] o) 4o o I =1) { =TSR 454

(OF- 1110 =X {1 IS o 1= Tod | o= | £ o] o 1R 456
L= Te [ToT A F= 1 B 11 - D USSR 456
EXtENdEd FACIOr 2 SYNTAX.iiiiiiiiiieiieiiiiee ettt e e et e e e e e e e ste e e s e e ebae e e e e snteeeesenbaeeesennstaeessnnnseneas 462
Free-Form Calculation STatement......ccociiiiiiiiiiiieiieccee ettt see e s sre e s ae e s sate e s saeaesns 463
(@101 oTUL Y o1=Tox) Tox=Y £ o[- SR 465
Output Specification StATEMENT......coic e e e e e ree e e s e abeeeeeennnes 465
Program DESCIHDEA FilES...ciuiiiiiiiieiieieieeieiee ettt e et e s st e s ste e s sateessateesssteessseaessssaesssseesnne 466
Record Identification and Control ENTrES......uiieiiiiiiieiecciecere ettt 466
Field Description and CoNtrol ENTriES.. ... uiiieiieciieeecccieeeeeecieee e eecttee e s e esree e e e evee e e s eevaaee e e e nnaneas 472
Externally DeSCIIDEA FIlES...... ittt e e e et e e e e s tre e e e s s bt e e e e s ntaeeaeennseneas 477
Record Identification and Control ENTHES......uiiviiiiiiieieeeiecete et 477
Field Description and CoNtrol ENTriES.....ccuiiieiieciieeeecccieee e ceciete e eectree e s e ervee e e e eree e e s eevaae e e e enaaneas 478
Procedure SPECITICATIONS.uiiei ittt e e ee e e ree e e e e te e e s eenbe e e e eenbeeeesenasreeeeeannrenes 479
Free-Form Procedure STatemMeNT.. ... iieiiieeciee ettt sttt ee e s see e s ee e s 479
Traditional Procedure Specification Statement..........ceeieeciiieiieciiiee e 480
Procedure-SpecifiCation KEYWOITS. ...cuiucuiiieiceciieee e ectiee e eectie e e e ecte e e e eeatee e e senrae e e s esasseeeeeenseeaeean 483
Chapter 6. Operations, EXpressions, and FUNCLIONS.......ccuuiiiiiciiiiee ettt e eecveee e eeveee e e saree e e e enees 487
(0] 01T =] 1SR 487
(O] 01T =Y 4o a1 6o [T SR 487
BUILE=IN FUNCHIONS. ettt sttt ettt e e s te e e st e e s e e s sbe e e s beeesabeessbeessnseasnans 496

LAY hd] gL ATl @1 0 1=T =1 o o 1= SRS 502

FAN = LV @] o= - L 0] o TSRS 506
1O T=T =Y (o] TSR 506
BranChing OPErationS....ccucuiiieiieieiieesite et et et e s s ee e st e e s bt e e s bee e ssbeeesseeesseeesseassnseeesnens 507
(0211 I O] 0 1=T =Y o] - TS 508

(07 g0} o= TSN O] 01T = 4T [T USRS 511
(0701 0N 2T o] A I @ 01T = o 1T SRR 513

D L= B AN =Y W O 01T =\ o] o [T USSR 514

(D L=l O] 01=T = (o] =TSSRt 515
DECLlarative OPEIatiONS.iiicciiieeeeectiee e eccee e e ectre e e eerre e e sester e e e eesteeeesenbeeeeeennsaaeeeeasseeessennseneannn 517
Error-Handling OpPerationS.......ccviicieiiiieeiiee sttt scite e siee e sieesssiee s sstee s ssbee s sbeessbeessseessssaessnseessnnes 518
1 ECR O 0 T=T =Y o =SS 519
INdicator-Setting OPEratioNS.....ccuciii ittt sttt et e s s e e s sbe e s sbe e s sbeeesssaessabeessnns 522
INfOrMAation OPEIATIONS. .. .uviiiiiiciieee ettt e e e e erte e e e e sbee e e e s e ateeeeeeessseeeesennsaneesennsenesessnes 522
LT =Y = AT AT O o 1T =N o] 1SR 523
Memory Management OPEratioNS......cuucieircieiriieeeeeeeite et et e st e e steeesbeessbeesssaeesssseesssaesnns 523
MESSALEE OPEIATION...eiictiiieiiieriite et st e ettt e st esstreessre e s aeeessabeesasbeesssseessssaeessbaesssseessseessseessnses 525
N1V Sl @] 0 =T = o] o 1= SRR 525
MOVE ZONE OPEIATIONS....uuiieieeciiieeeeeiitieeeesiteeeeeeeteeeeeeesteeeesessteeesaessseseessaasseeesssasseeessesssesessnnssenees 530
ST 0§ A O =T =1 4o =PSRN 531
Y4 O] o 1Y = A] 1TSS 531
SEIING OPEIATIONS.ceiutieiciee ittt et et e st e s ste e s te e st e e s ateesssteesesteesaseeesasteesasteesastaesassaesnnseesnnes 531
Structured Programming OPerationNS.. ... ueeieieeieiieeinieeseieesseeessteesseeesseeessseeessseeessseesssneessnees 532
YUl e AL TeN O] o1 =X o] a1 535

LT A0 01T = o o 1= SRS 537

D IO o T=1 = 4 o] 1R 538
D q 0T =11 o - R 538
GENEIAl EXPreSSION RULES....ciiiiciieee ettt e ettt e e et e e e e eteee e s e ettt e e e s eabeeeessensteeessenstenessssssnesasnnses 539
oL (ol A [O 01=T =12 e =SSR 540
[0 =TT (o AT O 0 1=T =1 (] TSRS 540
(O] o1 =N o] ol o (= Tod=Te [T [=TSRSS 542
DY = B Y 0T PPN 543
Precision Rules for NUMEriC OPerationS.......cuiiccuiieeiiecieeeececirie e eeectrre e e e ecree e e e senreee s sesraee s e e enneneas 548
ShOrt CIrCUIT EVAlUATION.cc.eiiiiiiiiciieecte ettt sttt s e s be e s abe e s s e e s s abeeesaneas 552
Order Of EVAlUBTION...cii ittt sttt e s s be e s s be e e sbe e e sbe e s sabeessabeessaseesnasaas 553
BUILE=IN FUNCEIONS. .. ittt ettt saee e st e e s bee e sbee e sbee e sabeeesaseeesaseessaseeesnseeesnsens 553
%ABS (Absolute Value of EXPreSSiON).......iccciieeciieeeiieeeecieeeecieeeesteeeesteeeesteeesseeeeseeeessseessseesseeeas 553
%ADDR (Get Address Of Variable).....cuiu ettt e e e s 554
Y Y O O CAN L (o Tor= Y 4B o] =Y == ISP 556
%BITAND (Bitwise AND OPEIation)....cccceececiieeeirieeeiieeeeitieeeiteeeeiteeeeiteeeeteeeeseeesseeesssaeessesesssesans 556
YOBITNOT (TNVEI BItS)eeueeecieeieerieeieesieerieesieesteesseesstessseesseessseesseesseesseessseessesssseesseesssesssessseesnses 557
%BITOR (BitwiS@ OR OPEIation)....ccccueeeciieeiiieecieeecieeecteeeetteeeeareeeesreeesaseeeesseesassessesseesassessssseens 557
%BITXOR (Bitwise EXClusive-OR OpPeration).......ccceecueeeecuieeeiieeeiieeecieeeesieeeecieeeecreeeeereeeeeneeeeneas 558
%CHAR (Convert to Character DAta)......ccceeceercierrieeieesteeieeseeeeeseeeseeseeesreessseesseesseesseesseesnes 560
YCHECK (ChECK CharaCterS)..cuuieceeseeeieeieeeieesieesieessteeseeesseesseessessseessseessessssesssessssssnsesssessnsennns 563
YCHECKR (ChECK REVEISE)..uiieuiietieeieecitesieecteesteesteesttesteesteesteesseesnteesseesseesseesssesnseesseesnseesseenn 564
Y%DATA (dOCUMENT {IOPHIONS]) ittt et ee e et e e e e b e e e re e e abeeeesseeeeaseeann 565
10y N S (O] 1Y o A o T) PSS 567
YODAYS (NUMDET OF DAYS).uveeiuiiieeiieeeiieeeteeeeieeeectte e teeeeteeeeteeeebeeeeseeesseeaeseeasseeaensesasnseeesnsees 567
%DEC (Convert to Packed Decimal FOrmMat).....cccueceeceeecierceeniecieeseesie e see e seee e 567
%DECH (Convert to Packed Decimal Format with Half Adjust)......ccecveeeiieeeciieeeeeceeeee e, 569
%DECPOS (Get Number of Decimal POSItIONS).....cccuieceirierieecieceeceesie e e see e see e e seeseeenes 569
%DIFF (Difference Between Two Date, Time, or Timestamp Values).....ccccecceeeeieeeccieeceieeennien. 570
%DIV (Return Integer Portion of QUOTIENT)....cccieiiiecieeceeee et 572
%EDITC (Edit Value Using an EAItCOTE)....cccuiiiiieciieciecieccieeieee ettt seee e 572
%EDITFLT (Convert to Float External Representation)........cccceeecieeeciieeecieececiee et e 574
%EDITW (Edit Value Using an EAitWOrd)....c.cecueeceeeeeecieeceecieesee st etee e sve s sve e e seeevee e an 574
%ELEM (Get NUMDBEr Of ELEMENTS)..cccuiiiciieiieeiiecie ettt et ste e see e e ete e e st e e ae e eneeeeeas 574
%EOF (Return End or Beginning of File CONdition).......ccceceeeviierieriiieceecie e 576
%EQUAL (Return Exact MatCh CoNdition)...cc.ueeiieeceeeeiieeeieee ettt eetre e e e eeavee e e s eesaeeeesennes 577
%ERROR (Return Error CONAItioNn).....cceieeeeceeeieecieeeiesieesee st esreesresseeesee e e e ssaeeseesasesseesnnesnes 578
YFIELDS (Fields 10 UPAAte)...icccieeeiiee ettt ettt e et etee e e tee e ebee e e tee e e etaeeebaeesabaeesaraeanans 578
%FLOAT (Convert to FLloating FOrMat).....cceeceereeeieeieeeieeceeseeeeesreesteestessae e e sraeeeeesreeeeeees 579
%FOUND (Return FOUNd CONAition)....cueeceeceeeieeceeeieeciteseeete e e steeseee e esveesneesveesraesreesneesneas 580
%GRAPH (Convert to Graphic ValU@).......ccueeeciieecieecceeee ettt ettt et e ree e e 581
%HANDLER (handlingProcedure : commMuUNICAtiONAIEA).uveeeiereeeeieeieeseeeieeseeete e e e seeeee e 582
YHOURS (NUMDBET Of HOUIS)..eiiiiiciiecieeete ettt sttt et esaae s vaesae e naeenaeesnaeenes 585
%INT (Convert t0 INtEEEr FOIMAL)...c.uiiiieeieeieecie ettt ete ettt ere s see e e e s ae e reessaeeree e 585
%KDS (Search Arguments in Data StrUCLUME)....ccuiecieeieeceecie ettt e e e n 586
YOLEN (Get OF SET LENGEN)...uiiieiieiiieeeeeee ettt ettt et e s te e be e st e e ae e s raeeaeesnneenes 587
%LOOKUPxx (Look Up an Array ELEMENT).....cii ittt ettt e tee e tee e bee e ree e 590
YOMAX (MAXIMUM VALUE) ... eiitiieieeieeeieeteestte et estte e e et e e te e te e sreesteesseessseesseessseesessnseenseessnesnses 593
YOMIN (MINIMUM VALUE)...ccuiieiteieieeceesite et eseeeste et eeteesae s st e e teessee s teesseessseeseesnseeseesnsesnseesseesnses 593
%MAX and %MIN (Maximum or Minimum ValUE).......cccueeierreenieecieesieesiee e eseee e eeeeseeesee s 593
YOMINUTES (NUMDBET OFf MINULES).c.uviicuiieiiectiecieesee st eseeste e teesae e e saeeae e s se e e te e s aeeeaeesaeeeneeens 595
Y%MONTHS (NUMDEE Of MONTNS) .. tiiceieciiecie ettt sttt ae e et eesaaesneeens 596
%MSECONDS (NUMber of MiCrOSECONMS)..cccuiieciiieieeiieeieeieeseeestesseeeteesteeseeeseeesreeereesaeeenseenes 596
%NULLIND (Query or Set NULL INAICAON)....uiiccieieiieeciie ettt ettt et vee e vee e e 596
%OCCUR (Set/Get Occurrence of @ Data StrUCTUIE).....ccuuveviiieeeeiiieieeeeciireeeeeeee e e e e s eeeeaaaaeeeeees 597
%O0PEN (Return File Open CoNAition).......ccuiecciieieciieeciee e eetee et e tee et e e ae e e ree e eeennas 597
%PADDR (Get Procedure AQAIESS)...uiuiiiiieeieeceeeieeseeeiesceeseessseesseesseesseesseesseesssesnsessssssnsensens 598

%PARMS (Return NUMDBEr Of PAramEtErS)....uuu i e it ieeeeceeeieieeeeeeeeeeeeesssseeeeeeeeeessessssssssssssesesesses 600

%PARMNUM (Return Parameter NUMDED) ...ttt e 602
Y%PARSER (Parser {2 OPtIONS])..uuiii i ettt ettt et e et e e te e e be e e ate e e ate e e ntae e naaeennes 603
%PROC (Return Name of CUIrent ProCEAUIE)......iiiiiicieeciecieecee st et et ete e e ste e e s eeeseeesnneens 604
YREALLOC (REAllOCALE StOrAZE). . iiueieiieieiieieeiitieieesteeseescteesreesteesreeseeeseesseeeseesseesnseesseesnsesnnes 605
%REM (Return Integer REMAINAEI)....icciiiieeieeceeeie ettt e ee e te e eesteesre e seeesaeesraeeseessnesnseanns 606
%REPLACE (Replace Character STriNg) ... e cceeeeeeceecieeieeseesteesteeseeeteesreesaeesseesaeesseesseeeseesns 606
(07 A N I (o= T g I o T O s F= T = ot 41) 1SR 608
%SCANRPL (Scan and Replace CharaCters).......cuieccueeccieeeeeeeeeieeeeiee et e eeteeeetee e vee e aeeeeaneas 609
%SECONDS (NUMDBETI Of SECONMS)....iicviieeiieiieeieeieeeie et eree et ste e sae e e st e e beesnaeereesnneenes 610
YOSHTDN (ShUt DOWN)..uureetieeieiiieetie et este et eseesteesseeste e seesneeesseesnsessseesnsesseesssesnseesssesnseesseesnses 611
YOSIZE (GOt SIZE IN BYIES)eeiiuiiieiieeeie ettt ettt et e e et e e et e e e e teeeebeeeebeeeenseeeenseeesnsaaans 611
%SQRT (Square ROOt Of EXPreSSION).....ccccueeeeiieecieeceiiee et e eeteeeeeeeeeteeeeeaeeeeeaeeeeeaeeesseeesseeaeaneas 614
%STATUS (Return File or Program Status)....ccceceeeceeeeeerieeseeeieeseesteeieeseeseeeseesveesaeeseeenseenns 614
%STR (Get or Store Null-Terminated String).....ccccveceerciriieeeeee e e 616
%SUBARR (Set/Get Portion 0f @n ArTAY)......eccceeeeccieeeciieeeceeeecte et e e e e e seeeeeaae e e re e s naeeeeaseeenes 618
%SUBDT (Extract a Portion of a Date, Time, or TIMestamp)......ccccceeeeiieeeecieeecieeeeieeeeieeeeeee e 620
Y6SUBST (GEt SUDSTIING)...uiicuieiiiicieeieeete et ete et es e e te e te e s e e s teesreesteesseesnseesseesnseeseesneeenseesneenn 621
%THIS (Return Class Instance for Native Method).......ccceeeieecienieccicceececeece e 622
N I S (07T 0 1Y7=Y o i o T [o= TS 623
Y%TIMESTAMP (Convert t0 TIMESTAMP)...iccciiecciee et e ccte et eectreeeeteeeeeteeesseeeeeraeesseeesseaenans 624
%TLOOKUPxxX (Look Up a Table ELEMENT).....uiiiiieeceeecee ettt ettt ettt e e 625
%TRIM (Trim Characters at EAZES)...cuiuierrerrieeeesiesieesieesteesteesteesteesseesreesseesseesseesnseenseesnsens 626
% TRIML (Trim Leading CharaCters)......cieceeeeeeceeeieeseeeiessteeseeesseesseesseesseeseeesseesssesssesssessnsenns 627
%TRIMR (Trim Trailing CharaCters).....cuccieecieeeieeieeseeeieeseesteeste e st e eteeseeeesteesseesteessaesneeenseesnes 627
%UCS2 (CONVEIt 10 UCS-2 ValUB)...iiiieeciiieeieeiieeie et eeee st esteesteesteeste s seesneeesseesnaeenseesseesnsesnneenn 628
%UNS (Convert 10 UNSiNed FOrMAL)....c.ciciieceeeeeerieeceeeie st e seeeeeseeeaeeseeesveesseessseesseesnaeenseens 629
%XFOOT (Sum Array EXpression EL@MENTS).....cc.uiiiciieiiiie ettt et e e e e aae e e e ea 630
YOXLATE (TraNSLAte).ueccueeseeeieeieeeiieeseeeiessteeetessteeseesseesseesseesseesssassseessseessessssesssessssesssesssessnsenn 630
%XML (XmMIDoCcUMENT {ZOPHIONS]) .uuiiieeiie ettt e e ae e e e e e 631
YOYEARS (NUMDET Of YEAIS) e uiiiuiiiieeeiictteste ettt st s e et esteeste e saae e ae e sneeeteessaeenseessaeenseennes 632
(0] 01T =N A T0] g I 0o =T3S 632
ACQ (ACUITE) cureeeeeieee ettt e eete e ettt e eette e e etteeeetteeeeteeeseteeaeeseeeaaseeeasaeasaseesasaseaseeaansaeaanseesanseesansesennsens 632
ADD (AT) ittt ettt et e et e e et e e e tr e e e ba e e e abe e e bae e e aae e e tbea e taeeaaateeeasteeeaataeentaeantaeenres 633
ADDDUR (Add DUIALION)...ceictteeteeiteesieesieesteeestessseesteesseessessseesssesssesssesassesssesssesssesssesssesssssessenses 633
ALLOC (ALLOCAE STOrAZE)..uueecieiireerieririeeieestteeteeseeste e teesseessseesseessseesseessseesseessseesseesssesseessesensens 635
F 100 (21 e IS RS SRPSRP 636
BEGSR (Beginning of SUDIOULING)......uieciieieeeeeeeee ettt et te s st re e saeeae e 637
BITOFF (St BitS Off)..eiccuiiieciieciee ettt ettt ete e et e e tte e ette e et e e s tee e s ateesesseeeseeessaeesseaenans 637
BITON (SE1E BitS ON).eecuieeieeieieeieeiteeeieeseesteesteeseessseesseesseesseessseesseesnsessesssessnsesssessnsesssessssesnsessnns 638
CABXX (Compare and BranCh)......ccueecciee ittt et ctee e etee e e aee e e ree e ebee e e rae e e neeeenneas 639
CALL (Call @ PrOSIram)..cccuecceeeieesieeseeesieesseestessseesstesssessseesssesssessssesssesssesssessssesssesssesssesssesssesses 641
CALLB (Call @ BOUNT PrOCEUUIE)...cicieecteeeieecieeeeeecieeseesteesreesteesseesseeesseesseesseessessnsesssessssesnseesnns 642
CALLP (Call a Prototyped Procedure or Program)......ccceceeceeeeerseeseesseeseessesssesseesssesssesssesnes 643
CASxx (Conditionally INVOKE SUBIOULING)....ccccuiiieiieieiieeeee ettt ettt et 646
CAT (Concatenate TWO STHNES)...uiiciiiceeriieeie et eseesteesteeseeesreeseessteesseesseesseessseesseesnsessseesnsesnses 647
CHAIN (Random Retrieval from @ File).....ccvecieeceeeieeceeeieeieeseesiesseeete e e seeesve e sae e e s reesee e 650
CHECK (CheCk CharaCters)....ccueccueeceerieeeieesteesieeseessteeseeeesseesseesseesssesssesssessssesssessssesssessnsesssessnes 652
CHECKR (ChECK REVEISE).ccuuvieiieiieeieeiteeeieecteestessteesseesseesseesssessessssesssessssessesssessnsesssessssesssessnns 654
O I Y o (01 1= 1) TSR 656
(OO 1] (01 Fo =Y i 1= PSR 659
COMMIT (COMMIL)tutieitieeteeiteerteeiteeseeeseeesseeesaessseessteesseesssessseesssessseessessseessessssesssessssesssesssessnsensns 660
COMP (COMPAIE).cciutieieuieeeeteeeeieeeeteeeetteeeeteeeesteesesteaesseeesasteaeaseaeaasesesseesaseseasesesasessssessensesannses 661
DATA-INTO (Parse a Document into a Variable)........cccueecieeiecciecee e 662
DEALLOC (FrE@ STOMAZE)...utieueecieeerreesieesreesitesseestessseessessseesssesssesssessseassesssesssesssesssessssesssesssenans 671
DEFINE (Field DefiNition)...ccicceeceeeieecieeteeseeeie et e seeeteesveeste e veesnaeebeessaeeseesseesnseesseesnsesnsnenns 672
B I o (D= 1= 4 =Y ol TSR 675
D) YA (BI1VI o =) USRS 676
DO (DI0)...utteeetieeeeitee ettt e e etteeeette e e etteeeetaeeeebeeeeabeeeabaeeabaaaebaea e saae e baaeabaaeabeeeaabteeasaeeeasaeesasaeesaseeeaans 676

vii

viii

DOU (DO UNTIL) ettt ettt ettt ettt ettt sa et e sat e bt st e s be et e sbe e b e satenbesatenbesabanaean 678

DOUXX (DO UNTIL).teeuieeiieitieecieesiteeieestte e e et e s teesteestteste e s vt e sstessseesnseesseesnsessseesssesnseasssesnsessseesnsennns 679
DOW (DO WHILE) ... tieeetieeeiiee ettt ettt ettt e ettt e e ctte e et e e e tte e e aaeeesaee e sbae e ssaeensaesassaesasseesansaasanseeennsens 681
DOWXX (DO WHILE)....eeteeieeeeteeieieeieesieeeie et e s testeeseesteesseesseesseesssessseesnsesseesseesnseessessssesnsessnsesnses 681
DSPLY (DiSPLay MESSAZE)...uueecueeerieriresreeriteesreesteeseesseesseesssessseesssssssessssssssessssesssesssessssesssesssessses 683
DUMP (Program DUMIP)cccueeceeerueeseeeeeesreeseeesseeseesssessseesseessessssesssessssssssessssssssessssesssessssssnsessses 686
ELSE (ELSE)..uutiiieiieieiieeeieeeetee et e e ettt e e eteeeeteeeeateeeeateeesasaeeessaeaassaeaessaseassasaassasaansaseassaseassasennsaannnes 687
ELSETF (ELSE TH) . .uutiiieiie ettt ettt et ee e et e e et e e e et e e e atee s ataeeesteeeesteeeessaseesseeeessesenssaannns 687
ENDYY (ENd @ StrUCTUrEA GrOUP)..ccccuieeeetieeeitieeeiteeectieeeitteeeiteeeeiteeeetaeeeseeeeseessseeassaeesseeessseeannns 688
ENDSR (ENd Of SUDIOULING) . ..uiiiiiiciieeieeteeeie ettt ste et e s te e e ste et essaeebeesnaeeseesnaeenseennnean 689
EVAL (EVAlUALE EXPIrESSION)...iiiciieeetieeeitieeeteeeetteeeteeeeteeeeteeeesseeeestaeeessaseesseeasssesaensaseassesasseenanes 689
EVALR (Evaluate expression, right @djUsSt)....cccceeeceeceeeciieceeeie et sae et e 691
EVAL-CORR (Assign corresponding SUBTIELAS)....cuueeieeceeiiieee ettt 692
EXCEPT (Calculation Time OULPUL)...ccuiieceeeeee ettt et tee e tee e e saee e e eaae e e aee e ene e e e naaeenneas 697
EXFMT (Write/Then REad FOIMAt)......ccceeeeieiiieiee it eeeectereeeeee e e e e e eeseeasaaaeeeeeeeessesessnssssssseseseeess 698
) L 1Yo TS YU o] o TU L 1T S 699
EXTRCT (Extract Date/Time/TiIMeEStamP)....ccccciececeeeerieeeiee et e eetee e e e eeeeeeeteeeeaeeeeeneeeseaeeeenneas 700
FEOD (FOrce ENd Of DAta)....ueeiuieeieeiieeieeiteesteesteestesstesseeeste s veesneeessessnsesseesseesnsessseesnsesnsessnsesnses 701
L0] (o T S 702
FORCE (Force a Certain File to Be Read NexXt CYCLE).....ccuuireeieieeiieeeeeeetee ettt 703
LCT0 L@ I (CTo T e TSR 704
TF (L) ettt eetee et e ettt e et eee e e et e eee et e e e et e e eeteeeeteeeeaseaeassaaeassaeaassaeeensaeeanseeeantaseasseeaanteeeansaeeanraaanns 705
It 1 T TSP 706
IN (REtriEVE @ Data AlCA)...ccceeeeieeieeirteeieesteeeiessrtestessteesstessseesseessseesseessseesseessseenseesssessseessessnsenn 707
L R LT = = PSSR 708
KFLD (Defing Parts 0f @ KBY)..ocuii ettt ettt ettt e e te e e te e e ae e e ate e e aeea e nreaenns 710
KLIST (Define @ COMPOSITE KEBY)...uuiiiieieeciieeeieeeetteeetteeetee e tee e teeeeteeeesreeeebeeeeseeesseeaenseeeennens 711
LEAVE (LEAVE @ DO/FOI GIOUP)..ceccuueeeeurieeiireeeeiteeeireeeaseeeasseeeasseesssseasassesessseesassesssseessssesssssesssnses 712
LEAVESR (LEAVE @ SUDFOULINE).....viiiieceieeieereeeteeeee et estteeteesteesteeteessaeesteessaeeseesaneeneaessneenseennns 713
LOOKUP (Look Up a Table or Array EL€MENT)....cc.uiieiiecieeeiee ettt ettt e e e 714
MHHZO (Move High t0 High ZONE).....ccueiiiieieeeecteece ettt ettt sae e s e 716
MHLZO (MOVE High 10 LOW ZONE)..c.uuiicuiieiieitieeieesiteeiessieee e st esseestessseessseesseesssessessssssnsesssnesnees 717
MLHZO (MOVE LOW 10 HiZh ZONE)..ccuuieeeiieieeciieeieeteeeeteeste st eseeetessveesae s veesnseeaeesneeenseesnaeeneas 717
MLLZO (MOVE LOW t0 LOW ZONE)...utieuiiireeeieeiieeeieesteeetessseesseesseesseesseessessssesssessnsssssessssssssesssennns 717
MONITOR (Begin @ MONITOr GrOUP)..ccuereeeerieeereeeieeereeseeseseesseessseesseesseessessseesseessssessessssssssessseenn 717
MOVE (MOVE) . eeuieeteeeeieeiteestessteesttestessteeste e st e sseesssaesseesssaesseesssaesseesnseesseessseenseessseanseesssensensseenns 719
MOVEA (MOVE AITAY)..eecueeeeitieeeitieeeetteeeeteeeeseeeeeseeesaseeesasasesasasesasssesasesesasssesasssssasseesasssesasssesasesesnns 733
MOVEL (MOVE LETL) . utiitiieieeiieeeestte ettt te ettt st e st e s teesree s te e be e s seebeesseeesbeesnseenseesneesnseesseenn 738
IMULT (MULIPLY) vttt eeee e eseeeeeeeeeeeseeeseeseeeeaseaeseseeseesseaneeseeseassaeseeseeeesneeseeseeseesees 747
Va7 o1V L= =T g =Y aTa 1= o S 748
NEXT (NEXL) . utteeeitieeeitieeeitieeeiteeeeteeee bt e e e teeeebeeeebeeeebeeeesaeeessasaansasaassasasssesasnsasasssaseansaseansasesnsanannss 748
OCCUR (Set/Get Occurrence of @ Data STrUCTUIE)....uuuveiiieeeeeiiieeieciireeeeeeeeeeeseeesesseereeeeeeeesssseens 749
ON-ERROR (ON EFTO).utieutieiteesieeieeseesiteeseesteesteesasesseesssesssessssesseasssssssssssssnsesssessnsesssessssesssessnes 752
ON-EXTIT (ON EXIt)eeeteeieiieieitieeeieeeeieeeeteeeetteeeeteesetteeseaeeesetaeeseseeeeeseeessesessesassesesseeesseaesseeesnsens 753
OPEN (Open File fOr ProCESSING)...ccciieieriiieeieeieesiee et esteesteesteeseeeeeesaeesseassaesseesseesssesssessnsesnnes 756
(01 30 G (5 TSP 757
OTHER (OtherWiSe SELECE)...cccuiiiieeieecieeeiiectee et et te e see e e e sreesteesreesae e reessse e seesneeeseesneeennes 758
OUT (Wit @ DAt AlB@)...uiciueeeieeieeeieeiteesiessteeseessteesseesseesseesssesssessssessseesssssnseesseesssesssessssssssesnns 759
PARM (Identify PAramEters).....ccccuiecciieecieeecteeectee ettt e ettt e ettt e e e e e aree e asee e nbeesnseesesseasnsesennseenn 759
PLIST (Identify @ Parameter LiSt)......ccciee ettt et etee et e et e et e e e ree e ae e e 761
OIS I (5 T=] TS 762
READ (REA @ RECOI)...uiiitiieieicieieieecteeete et esteste et este e beeseeesbeessaeebeesseessseesssesnseesseesnseesessnsenn 763
READC (Read Next Changed RECOI)......cccueiueicierieeieecieeiteeseeeteesieeete e e e s eeesseeseeesreeseeeseesns 765
READE (REAA EQUAL KEBY) .. .eeiieiieeeee ettt ettt ettt e et e e e te e e e te e e eabe e e aaeeeenraesentaeeentaeennes 766
READP (Read Prior RECOI)..cicuuiiciieiieeiiestiesteestee st et e saeesteestesteesseesseasseseseesseesnsesseesnsessseennes 768
READPE (Read Prior EQUAL).......eieeeie ettt ettt ettt et tee e e tae e e eaee e e aae e e areeenaae e nneeennns 770
REALLOC (Reallocate Storage with New LENGth)....ccceicuiieiieiiecieecee e 772
REL (RELEASE)...eeuteeieeiteeeieeiteeeieesteeste e st esseessteessee s teesseesstesssessnsessesssssansesssessnsessseesnsessseesssesnsensns 773

RESET (RESEL)..cuteiuteetietesttete ettt ettt st ettt sa et st e bt et e s bt e te s bt et e sat et e sat e beeabe st eatesbeebesaeenesaeens 774

RETURN (REEUIN 10 CAllEI).uuueiiiieieeeee ettt et ceevre e e e eenate e e e eeavee e e ssesseeeessenseenessennensessanns 778
(O =] G (R TeT LT = =Tl T 780

1O N 1ot T TS AT = SR 781
SELECT (Begin @ SELECE GrOUP)..eiiveecieeereeeiieecteeeieesteestessteestessteesseesseesseessseessessssessseessessnsessseenns 783
SETGT (St Greater TRAN)....cicceeeee ettt et e eeie e e et e e s seateressessaaeeeesessreeessessseeeessssseeesssnrenes 784
SETLL (St LOWET LIMIt)eiiieeieieiieeieeieeeteeee e et eeceereee e e e eraee e e e eaaee e e s ssnbaeeessensaeeessenvsnessessssnessesnnes 787

o] =B O T o S Y=Y d LT [or=1 (o] SO i T 790

o] =R O NI =Y A Te [Te=Y o] GO o) PN 791
SHTDN (SHUT DOWN)..vtiiiiieieieee et e eetteee e eett e e ce bt e e e eesaeeessessseeeesensseesessenseesessessranesssssrnessesnes 791
SORTA (SO @N AITAY)..utieeitiieeiiieeiteeeiteeeeteeeeiteeeeteeeasseeeasseeeaseesassasaasssesaseseasessasesssnsesssseesanses 792

SORT (SUAIE ROOT)..uiiiiiiieeiieeceiiee ettt e ettt e eette e eetteeeetteeeetteeseteeeeesteessteesaseeesaseessaseeesasesesasasesasseesans 796

U= R 0] o] =3 RS 797
SUBDUR (SUBTIraCt DUIATION)....ccccuveiieieireeeecceteiee ettt e e eesaee e e e eeate e e e eeaveeessesveeesessnsseesssesreesessnnns 797

YU 12 R I STV o153 4 = SR 799

B Y - =) S 802

TEST (Test Date/Time/ TiMEStaAMP)...cccii e ecie ettt eette e eetee e e etee e e tee e e tee e eaee e e reeeeseeeenns 802
TESTB (TS Bit)eeeiiiiieeeeeiiriiieeeeeeeeeeeeeeittrtttee et et eesseessssssaeeeeeeeeessesessssssssseeseseeesesssssssssssseesaeeesssnsns 804
TESTN (TSt NUMEBIIC) ..ciieteieeieeteeeee ettt e e et ee e eeetve e e e e eabee e e s essbaeeessesaeeeessssseeeessessenesssssseessesne 806

L S A QU 4 o] 1 =) TSR 807

TIME (RetrieVe TIimMeE and Dat@).....cciccueeiiiieieiee et eeeteee e e eeieeee s eesvaee s esessaeeeeesnsseeesssnnseneessennnes 807
UNLOCK (Unlock a Data Area or Release @ RECOI).....ccoouueiiiiecueeeiieieeee et et eeeveeee e 809
UPDATE (Modify EXiStiNG RECOI)....ueiiiiiiieiieecieesieeeesie et e s teste st e steeseeeseeesveesneeeseesnaeenseennns 810
WHEN (WHhen True THen SELECT) ..ottt et e e e eaae e e s e e saaae e e s snaees 812
WHENXX (WHhen True TheN SELECE) ...ttt eare e e e e eavee e e senreeeessennees 813
WRITE (Create NEW RECOIUS)...uuuiiiiieeiie e eeete et e e e ettt e s eebve e e s seaveeessensseeeseesnsneeesssnnnens 815
XFOOT (Summing the Elements Of an Array)....cuecceeceeceeeceeeee e ste e ee e e 816
XLATE (TranSLate).ccuueeeiiieeieiie ettt ee e e e e et e e e e eesaaaee s esessaeeeesssseeeessesseenessenssnneseesnnes 817
XML-INTO (Parse an XML Document into @ Variable).......ccoueeiieeeeeeiieeieeec e 818
XML-SAX (Parse an XML DOCUMENT).....uuiiiiieiiieecereeeeceeteeeeceeitee e e eeaveeeeesnbeeeessensaeeessensssnessennnes 852
AT\ B | DN A=Y fo Y= TaTe 1Yo [«) FO 865
A U] S M A= Lo =1 e BSTU1 o) - Lot) F R 865

(61 g T T o] (=T g A o] 0 1= o [1= TS 867
APPENdiX A. RPG IV RESIIICHIONS. . ittt ieciiiee ettt ettt e et e e e et e e e s e abe e e e e e beaeeseeassaeeeeenneeaeean 867
Appendix B. EBCDIC Collating SEQUENCE.......uiirciiiiriieeeiieeerittessiteessireessiteessateessseeessseeessseeessseaessenens 868
Chapter 8. BibliOZraphy....ccccuii ittt sttt e st e st e e s saee e s sate e seateeseateesaseeesaseeessseaesnns 873
(10 o == RO - 4 -
Programming interface iINfOrmMation..... ..o s s sbee e s 876
BIE= (e L] F= T TS O ORI 876
TEIMS ANA CONAITIONS...uttiiiiiieiieiicecicieeee e eeeeceree e e e e e eeeeseeesssssrseareeeeeeeesseesassssssasssseeeeseesesessssssrsnees 877

| L =) PR - 3 A°

Part 1. ILE RPG Reference

This reference provides information about the RPG IV language as it is implemented using the ILE RPG
compiler with the IBM i operating system.

This reference covers:
« Basics of RPGIV:

— RPG IV character set
— RPG 1V reserved words

— Compiler directives

— RPG 1V program cycle

- Files
— Indicators
— Error Handling
— Subprocedures
- Definitions:

— Defining Data and Prototypes

— Data types and Data formats

« RPG IV specifications:

Control

File description

Definition
— Input

Calculation

Output

Procedure
« Ways to manipulate data or devices:

— Built-in Functions

— Expressions
— Operation Codes

© Copyright IBM Corp. 1994, 2013

2 IBMi: ILE RPG Reference

Chapter 1. About ILE RPG Reference

Read this section for information about the reference.

Read this section for information about the reference.

Who Should Use This Reference

This reference is for programmers who are familiar with the RPG IV programming language.

This reference provides a detailed description of the RPG IV language. It does not provide information on
how to use the ILE RPG compiler or how to convert RPG III programs to ILE RPG. For information on
those subjects, see the IBM Rational Development Studio for i: ILE RPG Programmer's Guide, SC09-2507.

Before using this reference, you should

« Know how to use applicable IBM i menus and displays or Control Language (CL) commands.

« Have a firm understanding of Integrated Language Environment® as described in detail in ILE Concepts,
S5C41-5606.

Prerequisite and Related Information

Use the IBM i Information Center as your starting point for looking up IBM i technical information. You can
access the Information Center from the following Web site:

http://www.ibm.com/systems/i/infocenter/

The IBM i Information Center contains new and updated system information, such as software
installation, Linux, WebSphere®, Java™, high availability, database, logical partitions, CL commands, and
system application programming interfaces (APIs). In addition, it provides advisors and finders to assist in
planning, troubleshooting, and configuring your system hardware and software.

For a list of related publications, see the Chapter 8, “Bibliography,” on page 873.

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and high-quality information. IBM
welcomes any comments about this book or any other IBM i documentation.

« If you prefer to send comments by mail, use the the following address:

IBM Canada Ltd. Laboratory
Information Development

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

If you are mailing a readers' comment form from a country other than the United States, you can give
the form to the local IBM branch office or IBM representative for postage-paid mailing.

- If you prefer to send comments by fax, use 1-845-491-7727, attention: RCF Coordinator.
« If you prefer to send comments electronically, use one of these e-mail addresses:

— Comments on books:

RCHCLERK@us.ibm.com
— Comments on the IBM i Information Center:

© Copyright IBM Corp. 1994, 2013 3

RCHINFOC@us.ibm.com
Be sure to include the following;:

« The name of the book.
 The publication number of the book.
« The page number or topic to which your comment applies.

4 IBMi: ILE RPG Reference

What's New

Chapter 2. What's New

New and changed features in each release of the ILE RPG compiler since V3R1

There have been several releases of RPG IV since the first V3R1 release. The following is a list of
enhancements made for each release since V3R1 to the current release:

« “What's New since 7.2?” on page 5
« “What's New in 7.2?” on page 10

« “What's New in 7.1?” on page 19

« “What's New in 6.1?” on page 23

« “What's New in V5R4?” on page 27
« “What's New in V5R3?” on page 31
« “What's New in V5R2?” on page 35
« “What's New in V5R1?” on page 38
« “What's New in VAR4?” on page 43
« “What's New in V4AR2?” on page 47
e “What's New in V3R7?” on page 51
« “What's New in V3R6/V3R2?” on page 54

You can use this section to link to and learn about new RPG IV functions.

Note: The information for this product is up-to-date with the 7.2 release of RPG IV. If you are using a
previous release of the compiler, you will need to determine what functions are supported on your
system. For example, if you are using a 6.1 system, the functions new to the 7.2 release will not be
supported.

What's New since 7.2?

This section describes the enhancements made to ILE RPG after 7.2.

New operation code DATA-INTO
DATA-INTO reads data from a structured document, such as JSON, into an RPG variable. It requires a
parser to parse the document. The DATA-INTO operation calls the parser, and the parser passes the
information in the document back to the DATA-INTO operation, which places the information into the
RPG variable.

DCL-DS product QUALIFIED;
name VARCHAR(25);
id CHAR(10);
price PACKED(9 : 2);
END-DS product;

DATA-INTO product %DATA('ProductInfo.JSON' : 'doc=file')
%PARSER ('MYLIB/MYJSONPARS');

See “DATA-INTO (Parse a Document into a Variable)” on page 662, “%DATA (document {:options})”
on page 565, “%PARSER (parser {: options})” on page 603.
Built-in function %PROC()

%PROC() returns the external name of the current procedure. See “%PROC (Return Name of Current
Procedure)” on page 604.

More places that complex qualified names can be used
Complex qualified names are now allowed in the following places:

© Copyright IBM Corp. 1994, 2013 5

What's New

« Built-in function %ELEM. See “%ELEM (Get Number of Elements)” on page 574.
« Built-in function %SIZE. See “%SIZE (Get Size in Bytes)” on page 611.

« Operation code DEALLOC. See “DEALLOC (Free Storage)” on page 671.

« Operation code RESET. See “RESET (Reset)” on page 774.

Support for PCML version 7.0
With PCML version 7.0, the restriction against varying-length arrays and subfields is removed. The
value '7.0" is now supported for the QIBM_RPG_PCML_VERSION environment variable, and
parameters *V6 and *V7 are supported for the Control specification PGMINFO keyword. See
“PGMINFO(*PCML | *NO | *DCLCASE { : *MODULE | *V6 | *V7...1)” on page 316.

Nested data structure subfields
When a qualified data structure is defined using free-form syntax, a subfield can be directly defined as
a nested data structure subfield. The street subfield in the following data structure is referred to as
product.manufacturer.address.street.

DCL-DS product QUALIFIED;
name VARCHAR(25);

id CHAR(10);

DCL-DS manufacturer;
name VARCHAR(10);
DCL-DS address;

street VARCHAR(50);
city VARCHAR(25);
END-DS address;
active IND;
END-DS manufacturer;
price PACKED(9 : 2);
END-DS product;

See “Nested data structure subfield” on page 371.

New built-in functions %MAX and %MIN
%MAX returns the maximum value of its operands. %MIN returns the minimum value of its operands.
There must be at least two operands, but there is no upper limit on the number of operands when
%MAX or %MIN are used in calculations. When %MAX or %MIN are used in Declaration statements,
there must be exactly two numeric operands.

In the following example, after the assignment operations, maxval has the value 'Zorro' and minval
has the value 'Batman’.

DCL-S maxval VARCHAR(10);
DCL-S minval VARCHAR(10);
DCL-S namel VARCHAR(20) INZ('Robin')

DCL-S name2 VARCHAR(10) INZ('Batman 5;

maxval = %MAX(namel : name2 : 'Zorro');
minval = %¥MIN(namel : name2 : 'Zorro');

See “%MAX and %MIN (Maximum or Minimum Value)” on page 593.

ALIGN(*FULL) to define the length of a data structure as a multiple of its alignment
When *FULL is specified for the ALIGN keyword, the length of the data structure is a multiple of the
alignment size. Without *FULL, the length of the data structure is determined by highest end position
of the subfields. Specify the *FULL parameter when defining an aligned data structure to be passed as
a parameter to a function or API, or if you use %SIZE to determine the distance between the elements
in an array of aligned data structures.

For example, the following two data structures have a float subfield followed by a character subfield
with length 1. The alignment size for both data structures is 8. The size of data structure
DS_ALIGN_FULL is 16, while the size of data structure DS_ALIGN is 9.

6 IBMi: ILE RPG Reference

What's New

DCL-DS ds_align_full ALIGN(*FULL) QUALIFIED;
subl FLOAT(8);
sub2 CHAR(1);

END-DS;

DCL-DS ds_align ALIGN QUALIFIED;
subl FLOAT(8);
sub2 CHAR(1);

END-DS;

See “ALIGN{(*FULL)}” on page 384.

ON-EXIT section
The ON-EXIT section runs every time that a procedure ends, whether the procedure ends normally or
abnormally.

In the following example, the procedure allocates heap storage. The code that follows the ON-EXIT
operation is always run, so the heap storage is always deallocated. The ON-EXIT section is run
whether the procedure ends suddenly due to an unhandled exception, or the procedure is canceled
due to the job ending, or the procedure returns normally due to reaching the end of the main part of
the procedure or due to reaching a RETURN operation.

dcl-proc myproc;
= %alloc(100);

on—éiit;
dealloc(n) p;
end-proc;

See “ON-EXIT (On Exit)” on page 753

Support for fully free-form source
RPG source with the special directive **FREE in the first line contains only free-form code. The code
can begin in column 1 and extend to the end of the line.

There is no practical limit on the length of a source line in fully free-form source.

Fixed-form code is not allowed in fully free-form source, but column-limited source that uses only
columns 6-80 can be included by using the /COPY or /INCLUDE directive.

See “Fully free-form statements” on page 286

Extended ALIAS support for files
The ALIAS keyword can now be specified for any externally-described file.

If the ALIAS keyword is specified for a global file that is not qualified, the alternate names of the fields
are available for use in the RPG program.

In the following example, the field REQALC in the file MYFILE has the alternate name
REQUIRED_ALLOCATION. The ALIAS keyword indicates that the name for this field within the RPG
program is REQUIRED_ALLOCATION. See “ALIAS” on page 336

dcl-f myfile ALIAS;

read myfile;
if required_allocation <> 0
and size > 0;

Chapter 2. What's New 7

What's New

Relaxed rules for data structures for I/O operations

« An externally-described data structure or LIKEREC data structure defined with type *ALL can be
used as the result data structure for any I/O operation. See “File Operations” on page 519

dcl-f myfile usage(*input : *output : *update);
dcl-ds ds extname('MYFILE' : *ALL);

read myfile ds;
update myfmt ds;
write myfmt ds;

- When a data structure is defined for a record format of a DISK file using LIKEREC without the
second parameter, and the output buffer layout is identical to the input buffer layout, the data
structure can be used as the result data structure for any I/O operation.

dcl-f myfile usage(*input : *output : *update);
dcl-ds ds likerec(fmt);

read myfile ds;
update myfmt ds;
write myfmt ds;

PCML enhancements

« Specify the *DCLCASE parameter for the PGMINFO Control specification keyword to have the names
in the program-interface information generated in the same case as the names are defined in the
RPG source file. See “PGMINFO(*PCML | *NO | *DCLCASE { : *MODULE | *V6 | *V7 ...})” on page 316

« Specify PGMINFO(*YES) in the Procedure specification keywords for the procedure that should be
included in the program-interface information when a module is being created, or specify
PGMINFO(*NO) for the procedures that should not be included. See “PGMINFO(*YES | *NO)” on
page 483

DCLOPT(*NOCHGDSLEN)
Specify DCLOPT(*NOCHGDSLEN) to prevent changing the length of a data structure on an Input,
Output, or Calculation specification. Specifying DCLOPT(*NOCHGDSLEN) allows %SIZE(data-
structure) to be used in more free-form declarations. See “DCLOPT(*NOCHGDSLEN” on page 306

New parameter TGTCCSID for CRTBNDRPG and CRTRPGMOD to support compiling from Unicode
source
The ILE RPG compiler normally reads the source files for a compile in the CCSID of the primary source
file. Since the compiler supports reading the source only in an EBCDIC CCSID, this means that the
compile fails when the primary source file has a Unicode CCSID such as UTF-8 or UTF-16.

The TGTCCSID parameter for the CRTBNDRPG and CRTRPGMOD allows the RPG programmer to
specify the CCSID with which the compiler reads the source files for the compile. Specify
TGTCCSID(*JOB) or specify a specific EBCDIC CCSID such as TGTCCSID(37) or TGTCCSID(5035).

The default is TGTCCSID(*SRC).

Table 1. Changed Language Elements Since 7.2: Control specification keywords

Element Description

PGMINFO *DCLCASE parameter to generate the names in the program-interface information in

keyword the same case as the names are coded in the RPG source file. See
“PGMINFO(*PCML | *NO | *DCLCASE { : *MODULE | *Vé6 | *V7 ... })” on page 316.

8 IBMi: ILE RPG Reference

What's New

Table 2. Changed L

anguage Elements Since 7.2: File specification keywords

Element

Description

ALIAS keyword

Allowed for all externally-described files See “ALIAS” on page 336.

Table 3. Changed L

anguage Elements Since 7.2: Definitions

Element

Description

DCL-DS operation
code

DCL-DS can be nested within a qualified data structure. See “Nested data structure
subfield” on page 371.

ALIGN(*FULL)

The ALIGN keyword can have parameter *FULL causing the length of a data
structure to be a multiple of its alignment. See “ALIGN{(*FULL)}” on page 384.

Table 4. New Language Elements Since 7.2: Directives

Element

Description

Special directive
**FREE

**FREE indicates that the source is fully free-form, with RPG code from column 1 to
the end of the source line. See “Fully free-form statements” on page 286.

Table 5. New Language Elements Since 7.2: Control specification keywords

Element Description

DCLOPT Disallow changing the size of a data structure on an Input, Output, or Calculation
(*NOCHGDSLEN) | specification. See “DCLOPT(*NOCHGDSLEN” on page 306.

keyword

Table 6. New Language Elements Since 7.2: Built-in functions

Element Description

%DATA Specifies the document to be parsed by the DATA-INTO operation code See
“%DATA (document {:options})” on page 565.

%MAX Returns the maximum value of its operands See “%MAX (Maximum Value)” on page
593.

%MIN Returns the minimum value of its operands See “%MIN (Minimum Value)” on page
593.

%PARSER Specifies the parser for the DATA-INTO operation code See “%PARSER (parser {:
options})” on page 603.

%PROC Returns the external name of the current procedure See “%PROC (Return Name of

Current Procedure)” on page 604.

Table 7. New Language Elements Since 7.2: Control specification keywords

Element Description

DCLOPT Disallow changing the size of a data structure on an Input, Output, or Calculation
(*NOCHGDSLEN) | specification. See “DCLOPT(*NOCHGDSLEN” on page 306.

keyword

Chapter 2. What's New 9

What's New

Table 8. New Language Elements Since 7.2: Operation codes

Element Description

DATA-INTO Import data from a structured document into an RPG variable. See “DATA-INTO
(Parse a Document into a Variable)” on page 662.

ON-EXIT Begin the ON-EXIT section. See “ON-EXIT (On Exit)” on page 753.

What's New in 7.2?

This section describes the enhancements made to ILE RPG in 7.2.

Free-form Control, File, Definition, and Procedure statements

« Free-form Control statements begin with CTL-OPT and end with a semicolon. See “Free-Form
Control Statement” on page 296.

CTL-OPT OPTION(*SRCSTMT : *NODEBUGIO)
ALWNULL (*USRCTL) ;

 Free-form File definition statements begin with DCL-F and end with a semicolon. See “Free-Form
File Definition Statement” on page 323.

The following statements define three files

1. An externally-described DISK file opened for input and update.
2. An externally-described WORKSTN file opened for input and output.
3. A program-described PRINTER file with record-length 132.

DCL-F custFile usage(xupdate) extfile(custFilename);

DCL-F screen workstn;
DCL-F gprint printer(132) oflind(gprintOflow);

 Free-form data definition statements begin with DCL-C, DCL-DS, DCL-PI, DCL-PR, or DCL-S, and end
with a semicolon. See “Free-Form Definition Statement” on page 362.

The following statements define several items

1. A named constant MAX_ELEMS.

2. A standalone varying length character field fullName.

3. A qualified data structure with an integer subfield num and a UCS-2 subfield address.
4. A prototype for the procedure 'QpOlRenameUnlink’.

DCL-C MAX_ELEMS 1000;
DCL-S fullName VARCHAR(50)
INZ('Unknown name');
DCL-DS dsl1 QUALIFIED;
num INT(10);
address UCS2(100);

END-DS;

DCL-PR QpOlRenameUnlink INT(10) EXTPROC (*DCLCASE);
oldName POINTER VALUE OPTIONS (*STRING);
newName POINTER VALUE OPTIONS(*xSTRING);

END-PR;

 Free-form Procedure definition statements begin with DCL-PROC and end with a semicolon. The
END-PROC statement is used to end a procedure. See “Free-Form Procedure Statement” on page
479.

The following example shows a free-form subprocedure definition.

DCL-PROC getCurrentUserName EXPORT;
DCL-PI *n CHAR(10) END-PI;
DCL-S curUser CHAR(10) INZ(*USER);

10 IBMi: ILE RPG Reference

What's New

RETURN cuzUser;
END-PROC;

« The /FREE and /END-FREE directives are no longer required. The compiler will ignore them.
 Free-form statements and fixed-form statements may be intermixed.

IF endDate < beginDate;
© GOTO internalErroxr
ENDIF;
duration = %DIFF(endDate : beginDate : *days);

C intérﬁaiError TAG

Tip: See “Differences between fixed-form and free-form to be aware of” on page 287.

CCSID support for alphanumeric data

« The default alphanumeric CCSID for the module can be set to many more CCSIDs including UTF-8
and hexadecimal.

 Alphanumeric data can be defined with a CCSID. Supported CCSIDs include
Single-byte and mixed-byte EBCDIC CCSIDs

Single-byte and mixed-byte ASCII CCSIDs

UTF-8

Hexadecimal

See “CCSID definition keyword” on page 387.

CCSID of external alphanumeric subfields
Use CCSID(*EXACT) for an externally-described data structure to indicate that the alphanumeric
subfields should have the same CCSID as the fields in the file.

CCSID conversion is not performed for hexadecimal data
CCSID conversion is not allowed for implicit or explicit conversion of hexadecimal data.

Hexadecimal data includes

« Hexadecimal literals
« Alphanumeric and graphic data defined with CCSID(*HEX)

 Alphanumeric and graphic data in buffers for externally-described files when the DATA keyword is
in effect for the file and the CCSID of the field in the file is 65535

« Alphanumeric and graphic data in externally-described data structures defined with CCSID(*EXACT)
when the CCSID of the field in the file is 65535

Implicit conversion for concatenation
The compiler will perform implicit conversion between alphanumeric, graphic, and UCS-2 data for
concatenation expressions. See “Conversions” on page 239.

Open database files without conversion to the job CCSID
Use Control keyword OPENOPT(*NOCVTDATA) or File keyword DATA(*NOCVT) to specify that a
database file will be opened so that alphanumeric and graphic data will not be converted to and from
the job CCSID for input and output operations. See “OPENOPT (*{NO}INZOFL *{NO}CVTDATA)” on
page 315.

Temporarily change the default CCSIDs, date format, or time format
Use the /SET and /RESTORE directives to set default values for date formats, time formats, and
CCSIDs. See “/SET” on page 67.

Control the length returned by %SUBDT
An optional third parameter for %SUBDT allows you to specify the number of digits in the result. For
example, you can return the value of the years as a four-digit value: %SUBDT(MyDate:*YEARS:4).

See “%SUBDT (Extract a Portion of a Date, Time, or Timestamp)” on page 620.

Chapter 2. What's New 11

What's New

Increased precision for timestamp data
Timestamp data can have between 0 and 12 fractional seconds. See “Timestamp Data Type” on page
254,

Open Access files
An Open Access file is a file which has all its operations handled by a user-written program or
procedure, rather than by the operating system. This program or procedure is called an "Open Access
Handler" or simply a "handler". The HANDLER keyword specifies the handler. See “Open Access
Files” on page 156.

New XML-INTO options

« XML namespaces are supported by the "ns" and "nsprefix" options. See ns option and nsprefix
option.

« XML names with characters that are not supported by RPG for subfield names are supported by the
"case=convert" option. See case option.

Support for CCSID conversions that cause a loss of data when a source character does not exist in
the target character set
Control-specification keyword CCSIDCVT(*EXCP : *LIST). See “CCSIDCVT(*EXCP | *LIST)” on page
303.

« Use CCSIDCVT(*EXCP) to get an exception if a CCSID conversion loses data due to the source
character not having a match in the target character set.

« Use CCSIDCVT(*LIST) to get a listing of every CCSID conversion in the module, with a diagnostic
message indicating whether the conversion has the potential of losing data.

VALIDATE(*NODATETIME) to allow the RPG compiler to skip the validation step when working with
date, time and timestamp data

Use Control-specification keyword VALIDATE(*NODATETIME) to allow the RPG compiler to treat date,
time, and timestamp data as character data, without performing the checks for validity. See
“VALIDATE(*NODATETIME)” on page 321.

This may improve the performance of some date, time, and timestamp operations.

Warning: Skipping the validation step can lead to serious data corruption problems. You
should only use this feature when you are certain that your date, time, and timestamp data is
always valid.

Table 9. Changed Language Elements In 7.2: Control specification keywords

Element Description

CCSID keyword « CCSID(*EXACT) instructs the compiler to be aware of the CCSID of all
alphanumeric data in the module.

— Alphanumeric and graphic literals have the CCSID of the source file
— Alphanumeric data is always considered to have a CCSID

When CCSID(*EXACT) is not specified, the RPG compiler may make incorrect
assumptions about CCSIDs of data in literals, variables, or the input and output
buffers of database files.

See “CCSID(*EXACT)” on page 301.

« CCSID(*CHAR:ccsid) supports *HEX, *JOBRUNMIX, *UTF8, ASCII CCSIDs, and
EBCDIC CCSIDs.

« CCSID(*GRAPH:ccsid) supports *HEX, *JOBRUN.
« CCSID(*UCS2:ccsid) supports *UTF16.

DFTACTGRP DFTACTGRP(*NO) is assumed if there are any free-form Control specifications, and
keyword at least one of the ACTGRP, BNDDIR, or STGMDL keywords is used. See
“DFTACTGRP(*YES | *NO)” on page 309.

12 IBMi: ILE RPG Reference

What's New

Table 9. Changed Language Elements In 7.2: Control specification keywords (continued)

Element Description
OPENOPT OPENOPT(*{NO}CVT) controls the default for the DATA keyword for database files.
keyword

« OPENOPT(*CVTDATA) indicates that DATA(*CVT) should be assumed for DISK and
SEQ files if the DATA keyword is not specified for the file.

« OPENOPT(*NOCVTDATA) indicates that DATA(*NOCVT) should be assumed for
DISK and SEQ files if the DATA keyword is not specified for the file.

See “OPENOPT (*{NO}INZOFL *{NO}CVTDATA)” on page 315.

Table 10. Changed Language Elements In 7.2: Directives

Element Description

/FREE and /END- | These directives are no longer necessary to indicate the beginning and ending of
FREE directives free-form code. They are ignored by the compiler. See “/FREE... /END-FREE” on
page 66.

Table 11. Changed Language Elements In 7.2: Definition-specification keywords

Element Description

CCSID keyword « Supported for alphanumeric data

« Supported for externally-described data structures to control the CCSID of
alphanumeric subfields

« The parameter can be *HEX and *JOBRUN for graphic data
« The parameter can be *UTF16 for UCS-2 data.

DTAARA keyword | In a free-form definition:

« *VAR is not used. If the name is specified without quotes, it is assumed to be the
name of a variable or named constant.

« For a data structure, *AUTO is used to specify that it is a Data Area Data Structure.
*USRCTL is used to specify that the data area can be manipulated using IN, OUT
and UNLOCK operations.

See “DTAARA keyword” on page 391.

EXTFLD keyword | In a free-form subfield definition

« The parameter is optional

« If the parameter is specified without quotes, it is assumed to be the name of a
previously-defined named constant.

See “EXTFLD{(field_name)}” on page 395.

EXTNAME In a free-form data structure definition

keyword « If the file-name or format-name parameter is specified without quotes, it is

assumed to be the name of a previously-defined named constant.

See “EXTNAME(file-name{:format-name}{:*ALL| *INPUT|*OUTPUT|*KEY})” on page
397.

Chapter 2. What's New 13

What's New

Table 11. Changed Language Elements In 7.2: Definition-specification keywords (continued)

Element Description

EXPORT and In a free-form definition

IMPORT « *DCLCASE may be specified for the external name indicating that the external
keywords

name is identical to the way the stand-alone field or data structure is specified,
with the same mixed case letters.

See “EXPORT{(external_name)}” on page 394 and “IMPORT{(external_name)}” on

page 404.
EXTPROC In a free-form prototype definition or a procedure-interface definition
keyword « *DCLCASE may be specified for the external procedure or method name indicating
that the external name is identical to the way the prototype or procedure interface
is specified, with the same mixed case letters.
« If the procedure interface name is specified as *N, the external name is taken
from the DCL-PROC statement.
See “EXTPROC({*CL|*CWIDEN|*CNOWIDEN]| {*JAVA:class-name:}}name)” on page
398.
LIKE keyword In a free-form definition, the LIKE keyword has an optional second parameter
specifying the length adjustment.
See “LIKE(name {: length-adjustment})” on page 407.
LEN keyword In a free-form definition, the LEN keyword is allowed only for a data structure

definition. For other free-form definitions, the length is specified as part of the data-
type keyword.

See “LEN(length)” on page 407.

CLASS, DATFMT, |These keywords are not used in a free-form definition. The information specified by

PROCPTR, these keywords is specified as part of the related data-type keywords.
TIMFMT, and

VARYING

keywords

FROMFILE, These keywords are not allowed in a free-form definition.

PACKEVEN, and
TOFILE keywords

OVERLAY The parameter cannot be the name of the data structure for a free-form subfield
keyword definition. The POS keyword is used instead.

See “POS(starting-position)” on page 426.

Table 12. Changed Language Elements In 7.2: Literals

Element Description
Timestamp Timestamp literals can have between 0 and 12 fractional seconds.
literals

See “Literals” on page 182.

14 IBMi: ILE RPG Reference

What's New

Table 13. Changed Language Elements In 7.2: Order of statements

Element Description

File and Definition | File and Definition statements can be intermixed.

statements See “RPG IV Specification Types” on page 283.

Table 14. Changed Language Elements In 7.2: Built-in functions

Element Description

%CHAR When the operand is a timestamp, the length of the returned value depends on the
number of bytes in the timestamp. If the format is *ISO0, the number of bytes can
be between 14 and 26. If the format is *ISO, the number of bytes can be 19, or
between 21 and 32.

See “%CHAR(date|time|timestamp {: format})” on page 560.

%DEC When the operand is a timestamp, the number of digits can be between 14 and 26,
depending on the number of fractional seconds in the timestamp.

See “ Date, time or timestamp expression ” on page 568.

%DIFF When the operand is a timestamp, an optional fourth parameter specifies the
number of fractional seconds to return.

See “%DIFF (Difference Between Two Date, Time, or Timestamp Values)” on page
570.

%SECONDS When %SECONDS is used to add seconds to a timestamp, the parameter can have
decimal positions specifying the number of fractional seconds.

See “%SECONDS (Number of Seconds)” on page 610.

%SUBDT - An optional third parameter specifies the number of digits in the result.

« If the first operand is a timestamp, and the second operand is *SECONDS, an
optional fourth operand indicates the number of fractional seconds in the result.

See “%SUBDT (Extract a Portion of a Date, Time, or Timestamp)” on page 620.

%TIMESTAMP - The first parameter can be a timestamp.
« The first parameter can be *SYS.

« If the first parameter is date, timestamp, or *SYS, a second optional parameter
can be a value between 0 and 12 indicating the number of fractional seconds.

If the first parameter is character or numeric, a third optional parameter can be a
value between 0 and 12 indicating the number of fractional seconds.

See “%TIMESTAMP (Convert to Timestamp)” on page 624.

Table 15. Changed Language Elements In 7.2: Fixed form Definition Specification

Element Description

Length entry The length entry for a timestamp can be 19, or a value between 21 and 32.

See “Positions 33-39 (To Position / Length)” on page 380.

Decimal-positions | The decimal-positions entry for a timestamp can be a value between 0 and 12.

entry See “Positions 41-42 (Decimal Positions)” on page 382.

Chapter 2. What's New 15

What's New

Table 16. New Language Elements In 7.2: Directives

Element

Description

/SET directive

Temporarily set a new value for the following Control statement keywords:

« CCSID(*CHAR:ccsid)
« CCSID(*GRAPH:ccsid)
« CCSID(*UCS2:ccsid)
e DATFMT(format)

« TIMFMT(format)

These values are used to supply a default value for definition statements when the
value is not explicitly provided on the definition.

See “/SET” on page 67.

/RESTORE
directive

Restore the previous setting to the value it had before the most recent /SET
directive that set the value.:

- CCSID(*CHAR)
« CCSID(*GRAPH)
- CCSID(*UCS2)
« DATFMT

o TIMFMT

See “/RESTORE” on page 68.

Table 17. New Language Elements In 7.2: Free-form statements

Element Description

CTL-OPT Begins a free-form Control statement
See “Free-Form Control Statement” on page 296.

DCL-F Begins a free-form File definition
See “Free-Form File Definition Statement” on page 323.

DCL-C Begins a free-form Named Constant definition
See “Free-Form Named Constant Definition” on page 366.

DCL-DS Begins a free-form Data Structure definition
See “Free-Form Data Structure Definition” on page 367.

DCL-SUBF Begins a free-form Subfield definition. Specifying "DCL-SUBF" is optional unless the
subfield name is the same as an operation code allowed in free-form calculations.
See “Free-Form Subfield Definition” on page 370.

END-DS Ends a free-form Data Structure definition. If there are no subfields, it can be
specified after the last keyword of the DCL-DS statement.
See “Free-Form Data Structure Definition” on page 367.

DCL-PI Begins a free-form Procedure Interface definition

See “Free-Form Procedure Interface Definition” on page 373.

16 IBMi: ILE RPG Reference

What's New

Table 17. New Language Elements In 7.2: Free-form statements (continued)

Element

Description

DCL-PR

Begins a free-form Prototype definition

See “Free-Form Prototype Definition” on page 372.

DCL-PARM

Begins a free-form Parameter definition. Specifying "DCL-PARM" is optional unless
the parameter name is the same as an operation code allowed in free-form
calculations

See “Free-Form Parameter Definition” on page 375.

END-PI

Ends a free-form Procedure Interface definition. If there are no parameters, it can
be specified after the last keyword of the DCL-PI statement.

See “Free-Form Procedure Interface Definition” on page 373.

END-PR

Ends a free-form Prototype definition. If there are no parameters, it can be specified
after the last keyword of the DCL-PR statement.

See “Free-Form Prototype Definition” on page 372.

DCL-S

Begins a free-form Standalone Field definition

See “Free-Form Standalone Field Definition” on page 366.

DCL-PROC

Begins a free-form Procedure definition

See “Free-Form Procedure Statement” on page 479.

END-PROC

Ends a free-form Procedure definition

See “Free-Form Procedure Statement” on page 479.

Table 18. New Language Elements in 7.2: Control specification keywords

Element Description
CCSIDCVT(*EXCP [Allows you to control how the compiler handles conversions between data with
| *LIST) different CCSIDs.

See “CCSIDCVT(*EXCP | *LIST)” on page 303.
VALIDATE Specifies whether Date, Time and Timestamp data must be validated before it is
(*NODATETIME) |used.

See “VALIDATE(*NODATETIME)” on page 321.

Table 19. New Language Elements In 7.2: File definition keywords

Element Description

DATA(*{NOICVT) |[Controls whether a file is opened so that database performs CCSID conversion to
and from the job CCSID for alphanumeric and graphic fields.
See “DATA(*CVT | *NOCVT)” on page 338.

HANDLER(handle | Specifies that the file is an Open Access file.

r
{:communication-
area})

See “HANDLER(program-or-procedure { : communication-area)})” on page 344.

Chapter 2. What's New 17

What's New

Table 19. New Language Elements In 7.2: File definition keywords (continued)

Element Description

DISK{(*EXT | Device keywords to specify the device type of a free-form File definition.

record-length)} « The default device type is DISK.

PRINTER{(*EXT | |. The default parameter for each device-type keyword is *EXT, indicating that it is
record-length)} an externally-described file.

SEQ{(*EXT | See “File devices” on page 155.
record-length)}

SPECIAL{(*EXT |
record-length)}

WORKSTN{(*EXT |
record-length)}

USAGE(*INPUT Specifies the usage of the file in a free-form file definition.

*OUTPUT « " * * * ”
*UPDATE See “USAGE(*INPUT *OUTPUT *UPDATE *DELETE)” on page 360.

*DELETE)

KEYED{(*CHAR : |Indicates that the file is keyed in a free-form file definition.
key-length)} See “KEYED{(*CHAR : key-length)}” on page 347.

Table 20. New Language Elements In 7.2: Free-form data-type keywords

Element Description

CHAR(length) Fixed-length alphanumeric data type
See “CHAR(length)” on page 389.

VARCHAR(length | Varying-length alphanumeric data type
{:prefix-size}) See “VARCHAR(length {:2 | 4})” on page 435.

GRAPH(length) Fixed-length Graphic data type
See “GRAPH(length)” on page 404.

VARGRAPH(lengt | Varying-length Graphic data type
hizprefix-size) | goq «yARGRAPH(length {:2 | 41)” on page 435.

UCS2(length) Fixed-length UCS-2 data type
See “UCS2(length)” on page 434.

VARUCS2(length | Varying-length UCS-2 data type
Lprefix-size} See “VARUCS2(length {:2 | 4})” on page 436.

IND Indicator data type
See “IND” on page 405.

INT(digits) Integer data type
See “INT(digits)” on page 405.

UNS(digits) Unsigned integer data type
See “UNS(digits)” on page 434.

18 IBMi: ILE RPG Reference

What's New

Table 20. New Language Elements In 7.2: Free-form data-type keywords (continued)

Element

Description

PACKED(digits
{:decimals})

Packed decimal data type
See “PACKED(digits {: decimal-positions})” on page 425.

ZONED(digits
{:decimals})

Zoned decimal data type

See “ZONED(digits {: decimal-positions})” on page 437.

BINDEC(digits
{:decimals})

Binary decimal data type

See “BINDEC(digits {: decimal-positions})” on page 387.

class-name)}

FLOAT (size) Float data type
See “FLOAT(bytes)” on page 403.
DATE{(format)} Date data type
See “DATE{(format{separator})}” on page 390.
TIME{(format)} Time data type
See “TIME{(format{separator})}” on page 433.
TIMESTAMP Timestamp data type
{(fractional « ;) ”
seconds)} See “TIMESTAMP{(fractional-seconds)}” on page 433.
POINTER{(*PROC | Pointer data type. The optional parameter *PROC indicates that it is a procedure
)} pointer.
See “POINTER{(*PROC)}” on page 426.
OBJECT{(*JAVA : |Object data type. The parameters are optional if it is defining the return type of a

Java constructor.
See “OBJECT{(*JAVA:class-name)}” on page 413.

Table 21. New Language Elements In 7.2: Free-form data definition keywords

start-position)

Element Description

EXT Indicates that a data structure is externally described. This keyword is optional if
the EXTNAME keyword is specified as the first keyword for a data structure
definition. See “EXT” on page 395.

POS(subfield- Specifies the starting position of a subfield in the data structure.

See “POS(starting-position)” on page 426.

PSDS

Specifies that the data structure is a Program Status Data Structure. See “PSDS” on
page 428.

What's New in 7.1?

This section describes the enhancements made to ILE RPG in 7.1.

Chapter 2. What's New 19

What's New

Sort and search data structure arrays

Data structure arrays can be sorted and searched using one of the subfields as a key.

// Sort the custDs array by the amount_owing subfield
SORTA custDs(*).amount_owing;

// Search for an element in the custDs array where the
// account_status subfield is "K"
elem = %LOOKUP("K" : custDs(*).account_status);

Sort an array either ascending or descending

An array can be sorted ascending using SORTA(A) and descending using SORTA(D). The array cannot
be a sequenced array (ASCEND or DESCEND keyword).

// Sort the salary array in descending order
SORTA(D) salary;

New built-in function %SCANRPL (scan and replace)

The %SCANRPL built-in function scans for all occurrences of a value within a string and replaces them
with another value.

// Replace NAME with 'Tom'

stringl = 'See NAME. See NAME run. Run NAME run.';
string2 = %ScanRpl('NAME' : 'Tom' : stringl);

// string2 = 'See Tom. See Tom run. Run Tom run.'

%LEN(varying : *MAX)

The %LEN builtin function can be used to obtain the maximum number of characters for a varying-
length character, UCS-2 or Graphic field.

Use ALIAS names in externally-described data structures

Use the ALIAS keyword on a Definition specification to indicate that you want to use the alternate
names for the subfields of externally-described data structures. Use the ALIAS keyword on a File
specification to indicate that you want to use the alternate names for LIKEREC data structures defined
from the records of the file.

A R CUSTREC
A CUSTNM 25A ALIAS (CUSTOMER_NAME)
A CUSTAD 25A ALIAS (CUSTOMER_ADDRESS)
A ID 10P 0
D custDs e ds ALIAS
D QUALIFIED EXTNAME (custFile)
/fxee
custDs.customexr_name = 'John Smith';
custDs.customer_address = '123 Mockingbird Lane';

custDs.id = 12345;

Faster return values

A procedure defined with the RTNPARM keyword handles the return value as a hidden parameter.
When a procedure is prototyped to return a very large value, especially a very large varying value, the
performance for calling the procedure can be significantly improved by defining the procedure with
the RTNPARM keyword.

D getFileData pr a varying len(1000000)

D rtnparm

D file a const varying len(500)

D data S a varying len(1600)
/fxee

data = getFileData ('/home/mydir/myfile.txt');

20 IBMi: ILE RPG Reference

What's New

%PARMNUM built-in function

The %PARMNUM(parameter_name) built-in function returns the ordinal number of the parameter
within the parameter list. It is especially important to use this built-in function when a procedure is
coded with the RTNPARM keyword.

D pi

D name 100a const varying

D id 10i 0 value

D errorInfo likeds (erxs_t)

D options (*nopass)
/free

// Check if the "errorInfo" parameter was passed
if 9%parms >= %parmnum(exrrorInfo);

Optional prototypes

If a program or procedure is not called by another RPG modaule, it is optional to specify the prototype.
The prototype may be omitted for the following types of programs and procedures:

« A program that is only intended to be used as an exit program or as the command-processing
program for a command

« A program that is only intended to be called from a different programming language
« A procedure that is not exported from the module

A procedure that is exported from the module but only intended to be called from a different
programming language

Pass any type of string parameter
Implicit conversion will be done for string parameters passed by value or by read-only reference. For
example, a procedure can be prototyped to have a CONST UCS-2 parameter, and character
expression can be passed as a parameter on a call to the procedure. This enables you to write a single
procedure with the parameters and return value prototyped with the UCS-2 type. To call that
procedure, you can pass any type of string parameter, and assign the return value to any type of string
variable.

// The makeTitle procedure upper-cases the value
// and centers it within the provided length
alphaTitle = makeTitle(alphaValue : 50);
ucs2Title makeTitle(ucs2Value : 50);

dbcsTitle makeTitle(dbcsValue : 50);

Two new options for XML-INTO
- The datasubf option allows you to name a subfield that will receive the text data for an XML element
that also has attributes.

- The countprefix option reduces the need for you to specify the allowmissing=yes option. It specifies
the prefix for the names of the additional subfields that receive the number of RPG array elements
or non-array subfields set by the XML-INTO operation.

These options are also available through a PTF for 6.1.
Teraspace storage model

RPG modules and programs can be created to use the teraspace storage model or to inherit the
storage model of their caller. With the teraspace storage model, the system limits regarding
automatic storage are significantly higher than those for the single-level storage model. There are
limits for the amount of automatic storage for a single procedure and for the total automatic storage
of all the procedures on the call stack.

Use the storage model (STGMDL) parameter on the CRTRPGMOD or CRTBNDRPG command, or use
the STGMDL keyword on the Control specification.

*TERASPACE
The program or module uses the teraspace storage model.

Chapter 2. What's New 21

What's New

*SNGLVL
The program or module uses the single-level storage model.

*INHERIT
The program or module inherits the storage model of its caller.

Change to the ACTGRP parameter of the CRTBNDRPG command and the ACTGRP keyword on the
Control specification

The default value of the ACTGRP parameter and keyword is changed from QILE to *STGMDL.

ACTGRP(*STGMDL) specifies that the activation group depends on the storage model of the program.
When the storage model is *TERASPACE, ACTGRP(*STGMDL) is the same as ACTGRP(QILETS).
Otherwise, ACTGRP(*STGMDL) is the same as ACTGRP(QILE).

Note: The change to the ACTGRP parameter and keyword does not affect the default way the
activation group is assigned to the program. The default value for the STGMDL parameter and
keyword is *SNGLVL, so when the ACTGRP parameter or keyword is not specified, the activation group
of the program will default to QILE as it did in prior releases.

Allocate teraspace storage

Use the ALLOC keyword on the Control specification to specify whether the RPG storage-management
operations in the module will use teraspace storage or single-level storage. The maximum size of a
teraspace storage allocation is significantly larger than the maximum size of a single-level storage
allocation.

Encrypted listing debug view

When a module's listing debug view is encrypted, the listing view can only be viewed during a debug
session when the person doing the debugging knows the encryption key. This enables you to send
debuggable programs to your customers without enabling your customers to see your source code
through the listing view. Use the DBGENCKEY parameter on the CRTRPGMOD, CRTBNDRPG, or
CRTSQLRPGI command.

Table 22. Changed Language Elements Since 6.1

Language Unit Element Description

Control specification keywords ACTGRP(*STGMDL) *STGMDL is the new default for
the ACTGRP keyword and
command parameter. If the
program uses the teraspace
storage module, the activation
group is QILETS. Otherwise it is
QILE.

Built-in functions %LEN(varying-field : *MAX) Can now be used to obtain the
maximum number of characters
of a varying-length field.

Operation codes SORTA(A | D) The SORTA operation code now
allows the A and D operation
extenders indicating whether the
array should be sorted ascending
(A) or descending (D).

22 IBMi: ILE RPG Reference

What's New

Table 23. New Language Elements Since 6.1

Language Unit

Element

Description

Control specification keywords

STGMDL(*INHERIT |
*TERASPACE | *SNGLVL)

Controls the storage model of the
module or program

ALLOC(*STGMDL | *TERASPACE |
*SNGLVL)

Controls the storage model for
the storage-managent operations
%ALLOC, %REALLOC, DEALLOC,
ALLOC, REALLOC

File specification keywords

ALIAS

Use the alternate field names for
the subfields of data structures
defined with the LIKEREC
keyword

Definition specification keywords

ALIAS

Use the alternate field names for
the subfields of the externally-
described data structure

RTNPARM

Specifies that the return value for
the procedure should be handled
as a hidden parameter

Built-in functions

%PARMNUM

Returns the ordinal number of
the parameter in the parameter
list

%SCANRPL

Scans for all occurrences of a
value within a string and replaces
them with another value

XML-INTO options

datasubf

Name a subfield that will receive
the text data for an XML element
that also has attributes

countprefix

Specifies the prefix for the names
of the additional subfields that
receive the number of RPG array
elements or non-array subfields
set by the XML-INTO operation

What's New in 6.1?

This section describes the enhancements made to ILE RPG in 6.1.

THREAD(*CONCURRENT)

When THREAD(*CONCURRENT) is specified on the Control specification of a module, it provides
ability to run concurrently in multiple threads:

« Multiple threads can run in the module at the same time.

« By default, static variables will be defined so that each thread will have its own copy of the static

variable.

« Individual variables can be defined to be shared by all threads using STATIC(*ALLTHREAD).

« Individual procedures can be serialized so that only one thread can run them at one time, by
specifying SERIALIZE on the Procedure-Begin specification.

Chapter 2. What's New 23

What's New

Ability to define a main procedure which does not use the RPG cycle

Using the MAIN keyword on the Control specification, a subprocedure can be identified as the
program entry procedure. This allows an RPG application to be developed where none of the modules
uses the RPG cycle.

Files defined in subprocedures

Files can be defined locally in subprocedures. I/0 to local files can only be done with data structures;
I and O specifications are not allowed in subprocedures, and the compiler does not generate I and O
specifications for externally described files. By default, the storage associated with local files is
automatic; the file is closed when the subprocedure returns. The STATIC keyword can be used to
indicate that the storage associated with the file is static, so that all invocations of the subprocedure
will use the same file, and if the file is open when the subprocedure returns, it will remain open for the
next call to the subprocedure.

Qualified record formats

When afile is defined with the QUALIFIED keyword, the record formats must be qualified by the file
name, MYFILE.MYFMT. Qualified files do not have I and O specifications generated by the compiler;
I/O can only be done through data structures.

Files defined like other files

Using the LIKEFILE keyword, a file can be defined to use the same settings as another File
specification, which is important when passing a file as a parameter. If the file is externally-described,
the QUALIFIED keyword is implied. I/O to the new file can only be done through data structures.

Files passed as parameters

A prototyped parameter can be defined as a File parameter using the LIKEFILE keyword. Any file
related through the same LIKEFILE definition may be passed as a parameter to the procedure. Within
the called procedure or program, all supported operations can be done on the file; I/O can only be
done through data structures.

EXTDESC keyword and EXTFILE(*EXTDESC)

The EXTDESC keyword identifies the file to be used by the compiler at compile time to obtain the
external decription of the file; the filename is specified as a literal in one of the forms 'LIBNAME/
FILENAME' or 'FILENAME'. This removes the need to provide a compile-time override for the file.

The EXTFILE keyword is enhanced to allow the special value *EXTDESC, indicating that the file
specified by EXTDESC is also to be used at runtime.

EXTNAME to specify the library for the externally-described data structure

The EXTNAME keyword is enhanced to allow a literal to specify the library for the external file.
EXTNAME('LIBNAME/FILENAME') or EXTNAME('FILENAME') are supported. This removes the need to
provide a compile-time override for the file.

EXFMT allows a result data structure

The EXFMT operation is enhanced to allow a data structure to be specified in the result field. The data
structure must be defined with usage type *ALL, either as an externally-described data structure for
the record format (EXTNAME(file:fmt:*ALL), or using LIKEREC of the record format
(LIKEREC(fmt:*ALL).

Larger limits for data structures, and character, UCS-2 and graphic variables

« Data structures can have a size up to 16,773,104.

« Character definitions can have a length up to 16,773,104. (The limit is 4 less for variable length
character definitions.)

« UCS-2 definitions can have a length up to 8,386,552 UCS-2 characters. (The limit is 2 less for
variable length UCS-2 definitions.)

« Graphic definitions can have a length up to 8,386,552 DBCS characters. (The limit is 2 less for
variable length graphic definitions.)

24 IBMi: ILE RPG Reference

What's New

- The VARYING keyword allows a parameter of either 2 or 4 indicating the number of bytes used to
hold the length prefix.

%ADDR(varying : *DATA)

The %ADDR built-in function is enhanced to allow *DATA as the second parameter to obtain the
address of the data part of a variable length field.

Larger limit for DIM and OCCURS

An array or multiple-occurrence data structure can have up to 16,773,104 elements, provided that
the total size is not greater than 16,773,104.

Larger limits for character, UCS-2 and DBCS literals

 Character literals can now have a length up to 16380 characters.
« UCS-2 literals can now have a length up to 8190 UCS-2 characters.
 Graphic literals can now have a length up to 16379 DBCS characters.

TEMPLATE keyword for files and definitions

The TEMPLATE keyword can be coded for file and variable definitions to indicate that the name will
only be used with the LIKEFILE, LIKE, or LIKEDS keyword to define other files or variables. Template
definitions are useful when defining types for prototyped calls, since the compiler only uses them at
compile time to help define other files and variables, and does not generate any code related to them.

Template data structures can have the INZ keyword coded for the data structure and its subfields,
which will ease the use of INZ(*LIKEDS).

Relaxation of some UCS-2 rules

The compiler will perform some implicit conversion between character, UCS-2 and graphic values,
making it unnecessary to code %CHAR, %UCS2 or %GRAPH in many cases. This enhancement is also
available through PTFs for V5R3 and V5R4. Implicit conversion is now supported for

- Assignment using EVAL and EVALR.
« Comparison operations in expressions.
« Comparison using fixed form operations IFxx, DOUxx, DOWxx, WHxx, CASxx, CABxx, COMP.

« Note that implicit conversion was already supported for the conversion operations MOVE and
MOVEL.

UCS-2 variables can now be initialized with character or graphic literals without using the %UCS2
built-in function.

Eliminate unused variables from the compiled object

New values *UNREF and *NOUNREF are added to the OPTION keyword for the CRTBNDRPG and
CRTRPGMOD commands, and for the OPTION keyword on the Control specification. The default is
*UNREF. *NOUNREF indicates that unreferenced variables should not be generated into the RPG
module. This can reduce program size, and if imported variables are not referenced, it can reduce the
time taken to bind a module to a program or service program.

PCML can now be stored in the module

Program Call Markup Language (PCML) can now be stored in the module as well as in a stream file. By
using combinations of the PGMINFO command parameter and/or the new PGMINFO keyword for the
Control specification, the RPG programmer can choose where the PCML information should go. If the
PCML information is placed in the module, it can later be retrieved using the QBNRPII API. This
enhancement is also available through PTFs for V5R4, but only through the Control specification
keyword.

Chapter 2. What's New 25

What's New

Table 24. Changed Language Elements Since V5R4

Language Unit Element Description

Control specification keywords OPTION(*UNREF | *NOUNREF) Specifies that unused variables
should not be generated into the
modaule.

THREAD(*CONCURRENT) New parameter *CONCURRENT
allows running concurrently in
multiple threads.

File specification keywords EXTFILE(*EXTDESC) Specifies that the value of the
EXTDESC keyword is also to be
used for the EXTFILE keyword.

Built-in functions %ADDR(varying-field : *DATA) Can now be used to obtain the
address of the data portion of a
varying-length variable.

Definition specification keywords | DIM(16773104) An array can have up to
16773104 elements.
EXTNAME('LIB/FILE") Allows a literal for the file name.
The literal can include the library
for the file.
OCCURS(16773104) A multiple-occurrence data

structure can have up to
16773104 elements.

VARYING{(2|4)} Can now take a parameter
indicating the number of bytes
for the length prefix.

Definition specifications Length entry Can be up to 9999999 for Data
Structures, and definitions of
type A, C or G. (To define a longer
item, the LEN keyword must be
used.)

Input specifications Length entry Can be up to 99999 for
alphanumeric fields, and up to
99998 for UCS-2 and Graphic
fields.

Calculation specifications Length entry Can be up to 99999 for
alphanumeric fields.

Operation codes EXFMT format { result-ds } Can have a data structure in the
result entry.

Table 25. New Language Elements Since V5R4

Language Unit Element Description
Control specification keywords MAIN(subprocedure-name) Specifies the program-entry
procedure for the program.
PGMINFO(*NO | *PCML{: Indicates whether Program
*MODULE }) Information is to be placed

directly in the module.

26 IBMi: ILE RPG Reference

What's New

Table 25. New Language Elements Since V5R4 (continued)

Language Unit Element Description
File specification keywords STATIC Indicates that a local file retains
its program state across calls to a
subprocedure.
QUALIFIED Indicates that the record format

names of the file are qualified by
the file name, FILE.FMT.

LIKEFILE(filename) Indicates that the file is defined
the same as another file.

TEMPLATE Indicates that the file is only to
be used for later LIKEFILE
definitions.

EXTDESC(constant-filename) Specifies the external file used at
compile time for the external
definitions.

Definition specification keywords | STATIC(*ALLTHREAD) Indicates that the same instance
of the static variable is used by
all threads running in the module.

LIKEFILE(filename) Indicates that the parameter is a
file.

TEMPLATE Indicates that the definition is
only to be used for LIKE or
LIKEDS definitions.

LEN(length) Specifies the length of a data
structure, or a definition of type
A, CorG.

Procedure specification SERIALIZE Indicates that the procedure can
keywords be run by only one thread at a
time.

What's New in V5R4?

The following list describes the enhancements made to ILE RPG in V5R4:
New operation code EVAL-CORR

EVAL-CORR{ (EH)} dsl1 = ds2

New operation code EVAL-CORR assigns data and null-indicators from the subfields of the source
data structure to the subfields of the target data structure. The subfields that are assigned are the
subfields that have the same name and compatible data type in both data structures.

For example, if data structure DS1 has character subfields A, B, and C, and data structure DS2 has
character subfields B, C, and D, statement EVAL-CORR DS1 = DS2; will assign data from subfields
DS2.B and DS2.C to DS1.B and DS1.C. Null-capable subfields in the target data structure that are

affected by the EVAL-CORR operation will also have their null-indicators assigned from the null-

Chapter 2. What's New 27

What's New

indicators of the source data structure's subfields, or set to *OFF, if the source subfield is not null-

capable.
// DS1 subfields DS2 subfields
// sl character sl packed
// s2 character s2 character
// s3 numeric
// s4 date s4 date
// s5 character

EVAL-CORR dsi1 = ds2;

// This EVAL-CORR operation is equivalent to the following EVAL operations
// EVAL dsl.s2 = ds2.s2

// EVAL dsl.s4 = ds2.s4

// Other subfields either appear in only one data structure (S3 and S5)

// or have incompatible types (S1).

EVAL-CORR makes it easier to use result data structures for I/O operations to externally-described
files and record formats, allowing the automatic transfer of data between the data structures of
different record formats, when the record formats have differences in layout or minor differences in
the types of the subfields.

New prototyped parameter option OPTIONS(*NULLIND)

When OPTIONS(*NULLIND) is specified for a parameter, the null-byte map is passed with the
parameter, giving the called procedure direct access to the null-byte map of the caller's parameter.

New builtin function % XML

%XML (xmldocument { : options %)

The % XML builtin function describes an XML document and specifies options to control how the
document should be parsed. The xmldocument parameter can be a character or UCS-2 expression,
and the value may be an XML document or the name of an IFS file containing an XML document. If the
value of the xmldocument parameter has the name of a file, the "doc=file" option must be specified.

New builtin function %HANDLER

%HANDLER (handlingProcedure : communicationArea)

%HANDLER is used to identify a procedure to handle an event or a series of events. %HANDLER does
not return a value, and it can only be specified as the first operand of XML-SAX and XML-INTO.

The first operand, handlingProcedure, specifies the prototype of the handling procedure. The return
value and parameters specified by the prototype must match the parameters required for the
handling procedure; the requirements are determined by the operation that %HANDLER is specified
for.

The second operand, communicationArea, specifies a variable to be passed as a parameter on every
call to the handling procedure. The operand must be an exact match for the first prototyped
parameter of the handling procedure, according to the same rules that are used for checking
prototyped parameters passed by reference. The communication-area parameter can be any type,
including arrays and data structures.

New operation code XML-SAX

XML-SAX{ (e) ¥ %HANDLER(eventHandler : commArea) 9%XML(xmldoc { : options %);

XML-SAX initiates a SAX parse for the XML document specified by the %XML builtin function. The
XML-SAX operation begins by calling an XML parser which begins to parse the document. When the
parser discovers an event such as finding the start of an element, finding an attribute name, finding
the end of an element etc., the parser calls the eventHandler with parameters describing the event.
The commArea operand is a variable that is passed as a parameter to the eventHandler providing a
way for the XML-SAX operation code to communicate with the handling procedure. When the

28 IBMi: ILE RPG Reference

What's New

eventHandler returns, the parser continues to parse until it finds the next event and calls the
eventHandler again.

New operation code XML-INTO

XML-INTO$ (EH) % wvariable %XML (xmlDoc { : options %);
XML-INTO{ (EH) % %HANDLER(handler : commArea) %XML(xmlDoc {1 : options });

XML-INTO reads the data from an XML document in one of two ways:

- directly into a variable

- gradually into an array parameter that it passes to the procedure specified by %HANDLER.
Various options may be specified to control the operation.

The first operand specifies the target of the parsed data. It can contain a variable name or the %
HANDLER built-in function.

The second operand contains the % XML builtin function specifying the source of the XML document
and any options to control how the document is parsed. It can contain XML data or it can contain the
location of the XML data. The doc option is used to indicate what this operand specifies.

// Data structure "copyInfo" has two subfields, "from"

// and "to". Each of these subfields has two subfields

// "name" and "lib".

// File cpyA.xml contains the following XML document

// <copyinfo>

// <from><name>MASTFILE</name><1ib>CUSTLIB</1ib></from>
// <to><name>MYFILE</name><1lib>*LIBL</1ib>

// <copyinfo>

xml-into copyInfo %XML('cpyA.xml' : 'doc=file');

// After the XML-INTO operation, the following

// copyInfo.from .name = 'MASTFILE ' .lib
// copyInfo.to .hame '"MYFILE " .1lib

‘CUSTLIB '
"xLIBL '

Use the PREFIX keyword to remove characters from the beginning of field names

PREFIX('' : number_of characters)

When an empty character literal (two single quotes specified with no intervening characters) is
specified as the first parameter of the PREFIX keyword for File and Definition specifications, the
specified number of characters is removed from the field names. For example if a file has fields
XRNAME, XRIDNUM, and XRAMOUNT, specifying PREFIX ("' ' :2)on the File specification will cause
the internal field names to be NAME, IDNUM, and AMOUNT.

If you have two files whose subfields have the same names other than a file-specific prefix, you can
use this feature to remove the prefix from the names of the subfields of externally-described data
structures defined from those files. This would enable you to use EVAL-CORR to assign the same-
named subfields from one data structure to the other. For example, if file FILE1 has a field FAINAME
and file FILE2 has a field F2NAME, and PREFIX('':2) is specified for externally-described data
structures DS1 for FILE1 and DS2 for FILE2, then the subfields FAINAME and F2NAME will both
become NAME. An EVAL-CORR operation between data structures DS1 and DS2 will assign the NAME
subfield.

New values for the DEBUG keyword
DEBUG § (*INPUT «DUMP *XMLSAX *NO *YES) %

The DEBUG keyword determines what debugging aids are generated into the module. *NO and *YES
are existing values. *INPUT, *DUMP and *XMLSAX provide more granularity than *YES.

*INPUT
Fields that are in Input specifications but are not used anywhere else in the module are read into
the program fields during input operations.

*DUMP
DUMP operations without the (A) extender are performed.

Chapter 2. What's New 29

What's New

*XMLSAX
An array of SAX event names is generated into the module to be used while debugging a SAX
event handler.

*NO
Indicates that no debugging aids are to be generated into the module. Specifying DEBUG(*NO) is
the same as omitting the DEBUG keyword.

*YES
This value is kept for compatibility purposes. Specifying DEBUG(*YES) is the same as specifying
DEBUG without parameters, or DEBUG(*INPUT : *DUMP).

Syntax-checking for free-form calculations

In SEU, free-form statements are now checked for correct syntax.

Improved debugging support for null-capable subfields of a qualified data structure

When debugging qualified data structures with null-capable subfields, the null-indicators are now
organized as a similar data structure with an indicator subfield for every null-capable subfield. The
name of the data structure is _QRNU_NULL_data_structure_name, for example _QRNU_NULL_MYDS.
If a subfield of the data structure is itself a data structure with null-capable subfields, the null-
indicator data structure will similarly have a data structure subfield with indicator subfields. For
example, if data structure DS1 has null-capable subfields DS1.FLD1, DS1.FLD2, and DS1.SUB.FLD3,
you can display all the null-indicators in the entire data structure using the debug instruction.

===> EVAL _QRNU_NULL_DS
> EVAL _QRNU_NULL_DS1
_OQRNU_NULL_DS1.FLD1 = '1'
“QRNU_NULL_DS1.FLD2 = '0'
“ORNU_NULL_DS1.SUB.FLD3 = '1°
===> EVAL _QRNU_NULL_DS.FLD2
_QRNU_NULL_DS1.FLD2 = 'O
===> EVAL _QRNU_NULL_DS.FLD2 = '1'
===> EVAL DSARR(1).FLD2
DSARR(1) .FLD2 = 'abcde’

===> EVAL _QRNU_NULL_DSARR(1).FLD2
_ORNU_NULL_DSARR(1) .FLD2 = '@"

Change to end-of-file behaviour with shared files

If a module performs a keyed sequential input operation to a shared file and it results in an EOF
condition, and a different module sets the file cursor using a positioning operation such as SETLL, a
subsequent sequential input operation by the first module may be successfully done. Before this
change, the first RPG module ignored the fact that the other module had repositioned the shared file.

This change in behaviour is available with PTFs for releases V5R2M0 (S113932) and V5R3MO0
(S114185).

Table 26. Changed Language Elements Since V5R3

Language Unit

Element

Description

Control specification keywords

DEBUG(*INPUT[*DUMP
*XMLSAX|*NO|*YES)

New parameters *INPUT, *DUMP
and *XMLSAX give more options
for debugging aids.

File specification keywords

PREFIX('':2)

An empty literal may be specified
as the first parameter of the
PREFIX keyword, allowing
characters to be removed from
the beginning of names.

30 IBMi: ILE RPG Reference

What's New

Table 26. Changed Language Elements Since V5R3 (continued)

Language Unit Element Description

Definition specification keywords [OPTIONS(*NULLIND) Indicates that the null indicator is
passed with the parameter.

PREFIX('':2) An empty literal may be specified
as the first parameter of the
PREFIX keyword, allowing
characters to be removed from
the beginning of names.

Table 27. New Language Elements Since V5R3

Language Unit Element Description
Built-in functions %HANDLER(prototype: Specifies a handling procedure
parameter) for an event.
%XML(document{:options}) Specifies an XML document and
options to control the way it is
parsed.
Operation codes EVAL-CORR Assigns data and null-indicators

from the subfields of the source
data structure to the subfields of
the target data structure.

XML-INTO Reads the data from an XML
document directly into a program
variable.

XML-SAX Initiates a SAX parse of an XML
document.

What's New in V5R3?

The following list describes the enhancements made to ILE RPG in V5R3:
« New builtin function %SUBARR:

New builtin function %SUBARR allows assignment to a sub-array or returning a sub-array as a value.

Along with the existing %LOOKUP builtin function, this enhancements enables the implementation of
dynamically sized arrays with a varying number of elements.

%SUBARR(array : start) specifies array elements array(start) to the end of the array
%SUBARR(array : start : num) specifies array elements array(start) to array(start + num - 1)

Example:

// Copy part of an array to another array:
resultArr = %subarr(arrayl:start:num);
// Copy part of an array to part of another array:
%subarr (Arrayl:x:y) = %subarr(Array2:m:n);
// Sort part of an array
sorta %subarr(Array3:x:y);

// Sum part of an array
sum = %xfoot(%subarr(Array4:x:y));

- The SORTA operation code is enhanced to allow sorting of partial arrays.

Chapter 2. What's New 31

What's New

When %SUBARR is specified in factor 2, the sort only affects the partial array indicated by the
%SUBARR builtin function.

« Direct conversion of date/time/timestamp to numeric, using %DEC:

%DEC is enhanced to allow the first parameter to be a date, time or timestamp, and the optional second
parameter to specify the format of the resulting numeric value.

Example:
D numDdMmYy s 6p O
D date s d datfmt (*jul)
date = D'2003-08-21";
numDdMmYy = %dec(date : *dmy); // now numDdMmYy = 210803

« Control specification CCSID(*CHAR : *JOBRUN) for correct conversion of character data at
runtime:

The Control specification CCSID keyword is enhanced to allow a first parameter of *CHAR. When the
first parameter is *CHAR, the second parameter must be *JOBRUN. CCSID(*CHAR : *JOBRUN) controls
the way character data is converted to UCS-2 at runtime. When CCSID(*CHAR:*JOBRUN) is specified,
character data will be assumed to be in the job CCSID; when CCSID(*CHAR : *JOBRUN) is not specified,
character data will be assumed to be in the mixed-byte CCSID related to the job CCSID.

- Second parameter for %TRIM, %TRIMR and %TRIML indicating what characters to trim:

%TRIM is enhanced to allow an optional second parameter giving the list of characters to be trimmed.

Example:
trimchaxrs = '*-.';
data = 'xxxa-b-c-.'
result = %trim(data : trimchars);
// now result = 'a-b-c'. All x - and . were trimmed from the ends of the data

« New prototype option OPTIONS(*TRIM) to pass a trimmed parameter:

When OPTIONS(*TRIM) is specified on a prototyped parameter, the data that is passed be trimmed of
leading and trailing blanks. OPTIONS(*TRIM) is valid for character, UCS-2 and graphic parameters
defined with CONST or VALUE. It is also valid for pointer parameters defined with OPTIONS(*STRING).
With OPTIONS(*STRING : *TRIM), the passed data will be trimmed even if a pointer is passed on the

call.
Example:
D proc px
D parml 5a const options(*txrim)
D parm2 5a const options(*trim : *rightadj)
D parm3 5a const varying options(*txrim)
D parm4 * value options(*string : xtrim)
D parm5 * value options(*string : xtxrim)
D ptr S *
D data s 10a
D flda s 5a
/free
data = ' rst ' + x'00';

ptr = %addr(data);
proc (' xyz ' : ' @#$ ' : ' 123 ' : ' abc ' : ptr);

// the called procedure receives the following parameters
/ parml = 'xyz '

// parm2 = ' @#$'

// parm3 = '123'

// parm4 = a pointer to 'abc.' (where . is x'00')

// parm5 = a pointer to 'rst.' (where . is x'00')

« Support for 63 digit packed and zoned decimal values

Packed and zoned data can be defined with up to 63 digits and 63 decimal positions. The previous limit
was 31 digits.

32 IBMi: ILE RPG Reference

What's New

- Relaxation of the rules for using a result data structure for I/0 to externally-described files and

record formats

— The result data structure for I/0 to a record format may be an externally-described data structure.

— Adata structure may be specified in the result field for I/O to an externally-described file name for

operation codes CHAIN, READ, READE, READP and READPE.

Examples:

1. The following program writes to a record format using from an externally-described data structure.

Foutfile o e k disk
D outrecDs e ds extname (outfile) prefix(0_)
/fxree

0_FLD1 = 'ABCDE';

O0_FLD2 = 7;

write outrec outrecDs;
*inlr = *on;
/end-free

2. The following program reads from a multi-format logical file into data structure INPUT which
contains two overlapping subfields holding the fields of the respective record formats.

if e k disk infds (infds)

ds

Flog
D infds
D recname
D input
D recl
D rec2
/free
read log input;
dow not %eof(log);
dsply recname;
if recname = 'REC1';
// handle recl
elseif recname = 'REC2';
// handle rec2
endif;
read log input;
enddo;
*inlx = *on;
/end-free

261 270

ds qualified
likerec(xrecl) overlay(input)

likerec(rec2) overlay(input)

- If a program/module performs a keyed sequential input operation to a shared file and it results in an
EOF condition, a subsequent sequential input operation by the same program/module may be
attempted. An input request is sent data base and if a record is available for input, the data is moved

into the program/module and the EOF condition is set off.

 Support for new environment variables for use with RPG programs calling Java methods
— QIBM_RPG_JAVA_PROPERTIES allows RPG users to explicitly set the Java properties used to start

the JVM

This environment variable must be set before any RPG program calls a Java method in a job.

This environment variable has contains Java options, separated and terminated by some character
that does not appear in any of the option strings. Semicolon is usually a good choice.

Examples:

1. Specifying only one option: If the system's default JDK is 1.3, and you want your RPG programs to

use JDK 1.4, set environment variable QIBM_RPG_JAVA_PROPERTIES to

'-Djava.version=1.4;"'

Note that even with just one option, a terminating character is required. This example uses the

semicolon.

Chapter 2. What's New 33

What's New

2. Specifying more than one option: If you also want to set the 0s400.stdout option to a different
value than the default, you could set the environment variable to the following value:

'-Djava.version=1.4!-Dos400.stdout=file:mystdout.txt!"

This example uses the exclamation mark as the separator/terminator. Note: This support is also
available in V5R1 and V5R2 with PTFs. V5R1: SI10069, V5R2: S110101.

— QIBM_RPG_JAVA_EXCP_TRACE allows RPG users to get the exception trace when an RPG call to a
Java method ends with an exception

This environment variable can be set, changed, or removed at any time.

If this environment variable contains the value 'Y', then when a Java exception occurs during a Java
method call from RPG, or a called Java method throws an exception to its caller, the Java trace for
the exception will be printed. By default, it will be printed to the screen, and may not be possible to
read. To get it printed to a file, set the Java option 0s400.stderr. (This would have to be done in a new
job; it could be done by setting the QIBM_RPG_JAVA_PROPERTIES environment variable to

'-Dos400.stderr=file:stdexrr.txt;"'

« An RPG preprocessor enabling the SQL preprocessor to handle conditional compilation and
nested /COPY

When the RPG compiler is called with a value other than *NONE for parameter PPGENOPT, it will
behave as an RPG preprocessor. It will generate a new source file rather than generating a program.
The new source file will contain the original source lines that are accepted by the conditional
compilation directives such as /DEFINE and /IF. It will also have the source lines from files included by /
COPY statements, and optionally it will have the source lines included by /INCLUDE statements. The
new source file will have the comments from the original source file if PPGENOPT(*DFT) or
PPGENOPT(*NORMVCOMMENT) is specified.

When the SQL precompiler is called with a value other than *NONE for new parameter RPGPPOPT, the
precompiler will use this RPG preprocessor to handle /COPY, the conditional compilation directives and
possibly the /INCLUDE directive. This will allow SQLRPGLE source to have nested /COPY statements,
and conditionally used statements.

Table 28. Changed Language Elements Since V5R2

Language Unit Element Description
Eontroldspeciﬁcation CCSID(*GRAPH:parameter| Sgﬂggw t'?ﬁe a first I(Jjaramete: of f
eywords *UCS2:number| , With a second parameter o

*JOBRUN, to control how character

*CHAR:*JOBRUN) . .
data is treated at runtime.

Built-in Functions %DEC(expression {format}) Can now take a parameter of type
Date, Time or Timestamp

%TRIM(expression:expression) Can now take a second parameter
indicating the set of characters to
be trimmed

Definition Specification | OPTIONS(*TRIM) Indicates that blanks are to be
Keywords trimmed from passed parameters

Definition Specifications | Length and decimal place entries The length and number of decimal
places can be 63 for packed and
zoned fields.

34 IBMi: ILE RPG Reference

What's New

Table 28. Changed Language Elements Since V5R2 (continued)

Language Unit

Element

Description

Input specifications

Length entry

The length can be 32 for packed
fields and 63 for zoned fields.

Decimal place entry

The number of decimal places can
be 63 for packed and zoned fields.

Calculation
specifications

Length and decimal place entries

The length and number of decimal
places can be 63 for packed and
zoned fields.

CHAIN, READ, READE, READP, AND
READPE operations

Allow a data structure to be
specified in the result field when
Factor 2 is the name of an
externally-described file.

CHAIN, READ, READC, READE, READP,
READPE, WRITE, UPDATE operations

Allow an externally-described data
structure to be specified in the
result field when Factor 2 is the
name of an externally-described
record format.

SORTA operation

Now has an extended Factor 2,
allowing %SUBARR to be specified.

Table 29. New Language Elements Since V5R2

Language Unit

Element

Description

Built-in Functions

{:number of elements})

%SUBARR(array:starting element

Returns a section of the array, or
allows a section of the array to be
modified.

What's New in V5R2?

The following list describes the enhancements made to ILE RPG in V5R2:

« Conversion from character to numeric

Built-in functions %DEC, %DECH, %INT, %INTH, %UNS, %UNSH and %FLOAT are enhanced to allow
character parameters. For example, %DEC('-12345.67': 7 : 2) returns the numeric value -12345.67.

- Bitwise logical built-in functions
%BITAND, %BITOR, %BITXOR and %BITNOT allow direct bit manipulation within RPG expressions.

« Complex data structures

Data structure definition is enhanced to allow arrays of data structures and subfields of data structures
defined with LIKEDS that are themselves data structures. This allows the coding of complex structures
such as arrays of arrays, or arrays of structures containing subarrays of structures.

Example: family (f) .child (i) .hobbyInfo.pets(p).type

family (f) .child (i) .hobbyInfo.pets(p).name

Idogl;
'Spot’;

In addition, data structures can be defined the same as a record format, using the new LIKEREC
keyword.

« Enhanced externally-described data structures

Externally-described data structures can hold the programmer's choice of input, output, both, key or all
fields. Currently, externally-described data structures can only hold input fields.

Chapter 2. What's New 35

What's New

« Enhancments to keyed I/O

Programmers can specify search arguments in keyed Input/Output operations in /FREE calculations in
two new ways:

1. By specifying the search arguments (which can be expressions) in a list.
2. By specifying a data structure which contains the search arguments.

Examples: D custkeyDS e ds extname (custfile:xkey)
/free
CHAIN (keyA : keyB : key3) custrec;
CHAIN %KDS(custkeyDS) custrec;

« Data-structure result for externally-described files

A data structure can be specified in the result field when using I/0 operations for externally-described
files. This was available only for program-described files prior to V5R2. Using a data structure can
improve performance if there are many fields in the file.

« UPDATE operation to update only selected fields

A list of fields to be updated can be specified with an UPDATE operation. Tthis could only be done by
using exception output prior to V5R2.

Example: update record %fields(salary:status).
- 31 digit support

Supports packed and zoned numeric data with up to 31 digits and decimal places. This is the maximum
length supported by DDS. Only 30 digits and decimal places were supported prior to V5R2.

« Performance option for FEOD

The FEOD operation is enhanced by supporting an extender N which indicates that the operation should
simply write out the blocked buffers locally, without forcing a costly write to disk.

« Enhanced data area access

The DTAARA keyword is enhanced to allow the name and library of the data area to be determined at
runtime

- New assignment operators

The new assignment operators +=, -=, *=, /=, **= allow a variable to be modified based on its old value
in a more concise manner.

Example: totals(current_customer) += count;
This statement adds "count" to the value currently in "totals(current_customer)" without having to code

"totals(current_customer)" twice.
« IFS source files

The ILE RPG compiler can compile both main source files and /COPY files from the IFS. The /COPY and /
INCLUDE directives are enhanced to support IFS file names.

« Program Call Markup Language (PCML) generation

The ILE RPG compiler will generate an IFS file containing the PCML, representing the parameters to the
program (CRTBNDRPG) or to the exported procedures (CRTRPGMOD).

36 IBMi: ILE RPG Reference

What's New

Table 30. Changed Language Elements Since V5R1

Language Unit

Element

Description

Built-in %DEC(expression) Can now take parameters of type character.
functi .
unctions %DECH(expression)
%FLOAT (expression)
%INT(expression)
%INTH(expression)
%UNS(expression)
%UNSH(expression)
Definition DTAARA({*VAR:}data-area-name) | The data area name can be a name, a character literal
specification specifying 'LIBRARY/NAME' or a character variable
keywords which will determine the actual data area at runtime.
DIM Allowed for data structure specifications.
LIKEDS Allowed for subfield specifications.
EXTNAME(filename{:extrecname} 'fl;h[edo.ptlo?al ttydp]? ptiramiter Cﬁnt(rfls WE'C(;]dtyfe of
{*ALLl*INPUTI*OUTPUTl*KEY} eld Is extracted 1or the externally-describe ala
structure.
)
Definition Length and decimal place entries The length and number of decimal places can be 31

Specifications

for packed and zoned fields.

Operation codes

CHAIN, DELETE, READE, READPE,
SETGT, SETLL

In free-form operations, Factor 1 can be a list of key
values.

CHAIN, READ, READC, READE,
READP, READPE, UPDATE, WRITE

When used with externally-described files or record
formats, a data structure may be specified in the
result field.

UPDATE In free-form calculations, the final argument can
contain a list of the fields to be updated.
FEOD Operation extender N is allowed. This indicates that

the unwritten buffers must be made available to the
database, but not necessarily be written to disk.

Calculation
specifications

Length and decimal place entries

The length and number of decimal places can be 31
for packed and zoned fields.

Table 31. New Language Elements Since V5R1

Language Unit

Element

Description

Expressions

ok

Assignment Operators += -=*= /=

When these assignment operators are used, the
target of the operation is also the first operand
of the operation.

Control Specification

Keywords

DECPREC(30]31)

Controls the precision of decimal intermediate
values for presentation, for example, for
%EDITC and %EDITW

Definition specification

keywords

LIKEREC(intrecname{:*ALL|
*INPUT|*OUTPUT|*KEY?})

Defines a data structure whose subfields are the
same as a record format.

Chapter 2. What's New 37

What's New

Table 31. New Language Elements Since V5R1 (continued)

Language Unit Element Description

Built-in functions %BITAND(expression : expression) | Returns a result whose bits are on if the
corresponding bits of the operands are both on.

%BITNOT (expression) Returns a result whose bits are the inverse of
the bits in the argument.

%BITOR(expression : expression) Returns a result whose bits are on if either of
the corresponding bits of the operands is on.

%BITXOR(expression : expression) | Returns a result whose bits are on if exactly one
of the corresponding bits of the operands is on.

%FIELDS(name{:name...}) Used in free-form "UPDATE to specify the fields
to be updated.

%KDS(data structure) Used in free-form keyed operation codes
CHAIN, SETLL, SETGT, READE and READPE, to
indicate that the keys for the operation are in
the data structure.

What's New in V5R1?

The ILE RPG compiler is part of the IBM Rational Development Studio for i product, which now includes
the C/C++ and COBOL compilers, and the Application Development ToolSet tools.

The major enhancements to RPG IV since V4R4 are easier interfacing with Java, new built-in functions,
free form calculation specifications, control of which file is opened, qualified subfield names, and
enhanced error handling.

The following list describes these enhancements:

« Improved support for calls between Java and ILE RPG using the Java Native Interface (JNI):

A new data type: Object

A new definition specification keyword: CLASS

The LIKE definition specification keyword has been extended to support objects.

The EXTPROC definition specification keyword has been extended to support Java procedures.
New status codes.

« New built-in functions:

— Functions for converting a number into a duration that can be used in arithmetic expressions:
%MSECONDS, %SECONDS, %MINUTES, %HOURS, %DAYS, %MONTHS, and %YEARS.

— The %DIFF function, for subtracting one date, time, or timestamp value from another.

— Functions for converting a character string (or date or timestamp) into a date, time, or timestamp:
%DATE, %TIME, and % TIMESTAMP.

— The %SUBDT function, for extracting a subset of a date, time, or timestamp.
— Functions for allocating or reallocating storage: %ALLOC and %REALLOC.

— Functions for finding an element in an array: %LOOKUP, %LOOKUPGT, %LOOKUPGE, %LOOKUPLT,
and %LOOKUPLE.

— Functions for finding an element in a table: % TLOOKUP, % TLOOKUPGT, % TLOOKUPGE,
%TLOOKUPLT, and %TLOOKUPLE.

— Functions for verifying that a string contains only specified characters (or finding the first or last
exception to this rule): %CHECK and %CHECKR

38 IBMi: ILE RPG Reference

What's New

The %XLATE function, for translating a string based on a list of from-characters and to-characters.

The %0CCUR function, for getting or setting the current occurrence in a multiple-occurrence data
structure.

The %SHTDN function, for determining if the operator has requested shutdown.

The %SQRT function, for calculating the square root of a number.

- A new free-form syntax for calculation specifications. A block of free-form calculation specifcations is
delimited by the compiler directives /FREE and /END-FREE.

Note: These directives are no longer needed. See “/FREE... /[END-FREE” on page 66.

 You can specify the EXTFILE and EXTMBR keywords on the file specification to control which external
file is used when a file is opened.

« Support for qualified names in data structures:

— A new definition specification keyword: QUALIFIED. This keyword specifies that subfield names will
be qualified with the data structure name.

— A new definition specification keyword: LIKEDS. This keyword specifies that subfields are replicated
from another data structure. The subfield names will be qualified with the new data structure name.
LIKEDS is allowed for prototyped parameters; it allows the parameter's subfields to be used directly
in the called procedure.

— The INZ definition specification keyword has been extended to allow a data structure to be initialized
based on its parent data structure.

« Enhanced error handling:

— Three new operation codes (MONITOR, ON-ERROR, and ENDMON) allow you to define a group of
operations with conditional error handling based on the status code.

Other enhancements have been made to this release as well. These include:

» You can specify parentheses on a procedure call that has no parameters.

 You can specify that a procedure uses ILE C or ILE CL calling conventions, on the EXTPROC definition
specification keyword.

« The following /DEFINE names are predefined: *VYnRnMn, *ILERPG, *CRTBNDRPG, and *CRTRPGMOD.

« The search string in a %SCAN operation can now be longer than string being searched. (The string will
not be found, but this will no longer generate an error condition.)

« The parameter to the DIM, OCCURS, and PERRCD keywords no longer needs to be previously defined.

« The %PADDR built-in function can now take either a prototype name or an entry point name as its
argument.

- A new operation code, ELSEIF, combines the ELSE and IF operation codes without requiring an
additional ENDIF.

- The DUMP operation code now supports the A extender, which means that a dump is always produced -
even if DEBUG(*NO) was specified.

« A new directive, /INCLUDE, is equivalent to /COPY except that /INCLUDE is not expanded by the SQL
preprocessor. Included files cannot contain embedded SQL or host variables.

- The OFLIND file-specification keyword can now take any indicator, including a named indicator, as an
argument.

« The LICOPT (licensed internal code options) keyword is now available on the CRTRPGMOD and
CRTBNDRPG commands.

- The PREFIX file description keyword can now take an uppercase character literal as an argument. The
literal can end in a period, which allows the file to be used with qualified subfields.

« The PREFIX definition specification keyword can also take an uppercase character literal as an
argument. This literal cannot end in a period.

The following tables summarize the changed and new language elements, based on the part of the
language affected.

Chapter 2. What's New 39

What's New

Table 32. Changed Language Elements Since V4R4

Language Unit

Element

Description

Built-in functions

%CHAR(expression{:format})

The optional second parameter specifies the
desired format for a date, time, or timestamp.
The result uses the format and separators of the
specified format, not the format and separators
of the input.

%PADDR(prototype-name)

This function can now take either a prototype
name or an entry point name as its argument.

Definition specification
keywords

EXTPROC(*JAVA:class-name:proc-
name)

Specifies that a Java method is called.

EXTPROC(*CL:proc-name)

Specifies a procedure that uses ILE CL
conventions for return values.

EXTPROC(*CWIDEN:proc-name)

Specifies a procedure that uses ILE C
conventions with parameter widening.

EXTPROC(*CNOWIDEN:proc-name)

Specifies a procedure that uses ILE C
conventions without parameter widening.

INZ(*LIKEDS)

Specifies that a data structure defined with the
LIKEDS keyword inherits the initialization from
its parent data structure.

LIKE(object-name)

Specifies that an object has the same class as
another object.

PREFIX(character-literal{:number})

Prefixes the subfields with the specified
character literal, optionally replacing the
specified number of characters.

File specification
keywords

OFLIND(name)

This keyword can now take any named indicator
as a parameter.

PREFIX(character-literal{:number})

Prefixes the subfields with the specified
character literal, optionally replacing the
specified number of characters.

Operation codes

DUMP (A)

This operation code can now take the A
extender, which causes a dump to be produced
even if DEBUG(*NO) was specified.

Table 33. New Language Elements Since V4R4

Language Unit

Element

Description

Data types

Object

Used for Java objects

Compiler directives

/FREE ... /JEND-FREE

The /FREE... /JEND-FREE compiler directives
denote a free-form calculation specifications
block.

/INCLUDE

Equivalent to /COPY, except that it is not
expanded by the SQL preprocessor. Can be used
to inlcude nested files that are within the copied
file. The copied file cannot have embedded SOQIL
or host variables.

40 IBMi: ILE RPG Reference

What's New

Table 33. New Language Elements Since V4R4 (continued)

Language Unit Element Description
Definition specification | CLASS(*JAVA:class-name) Specifies the class for an object.
k d —
eywords LIKEDS(dsname) Specifies that a data structure, prototyped
parameter, or return value inherits the subfields
of another data strucutre.
QUALIFIED Specifies that the subfield names in a data

structure are qualified with the data structure
name.

File specification
keywords

EXTFILE(filename)

Specifies which file is opened. The value can be
a literal or a variable. The default file name is
the name specified in position 7 of the file
specification. The default library is *LIBL.

EXTMBR(membername)

Specifies which member is opened. The value
can be a literal or a variable. The default is
*FIRST.

Chapter 2. What's New 41

What's New

Table 33. New Language Elements Since V4R4 (continued)

Language Unit

Element

Description

Built-in functions

%ALLOC(num)

Allocates the specified amount of storage.

%CHECK(comparator:base{:start})

Finds the first character in the base string that is
not in the comparator.

%CHECKR(comparator:base{:start}
)

Finds the last character in the base string that is
not in the comparator.

%DATE(expression{:date-format})

Converts the expression to a date.

%DAYS(num)

Converts the number to a duration, in days.

%DIFF(opl:0p2:unit)

Calculates the difference (duration) between
two date, time, or timestamp values in the
specified units.

%HOURS(num)

Converts the number to a duration, in hours.

%LOOKUPxx(arg:array{:startindex
{:numelems}})

Finds the specified argument, or the specified
type of near-match, in the specified array.

%MINUTES(hum) Converts the number to a duration, in minutes.
%MONTHS(hum) Converts the number to a duration, in months.
%MSECONDS(num) Converts the number to a duration, in

microseconds.

%O0CCUR(dsn-name)

Sets or gets the current position of a multiple-
occurrence data structure.

%REALLOC(pointer:number)

Reallocates the specified amount of storage for
the specified pointer.

%SECONDS(num)

Converts the number to a duration, in seconds.

%SHTDN

Checks if the system operator has requested
shutdown.

%SQRT(numeric-expression)

Calculates the square root of the specified
number.

%SUBDT (value:unit)

Extracts the specified portion of a date, time, or
timestamp value.

%THIS

Returns an Object value that contains a
reference to the class instance on whose behalf
the native method is being called.

%TIME(expression{:time-format})

Converts the expression to a time.

%TIMESTAMP(expression {:*ISO|
*ISO0})

Converts the expression to a timestamp.

%TLOOKUP(arg:search-table {:alt-
table})

Finds the specified argument, or the specified
type of near-match, in the specified table.

%XLATE(from:to:string{:startpos})

Translates the specified string, based on the
from-string and to-string.

%YEARS(num)

Converts the number to a duration, in years.

42 IBMi: ILE RPG Reference

What's New

Table 33. New Language Elements Since V4R4 (continued)

Language Unit Element Description
Operation codes MONITOR Begins a group of operations with conditional
error handling.
ON-ERROR Performs conditional error handling, based on
the status code.
ENDMON Ends a group of operations with conditional
error handling.
ELSEIF Equivalent to an ELSE operation code followed
by an IF operation code.
CRTBNDRPG and LICOPT(options) Specifies Licensed Internal Code options.
CRTRPGMOD
keywords

What's New in V4R4?

The major enhancements to RPG IV since V4R2 are the support for running ILE RPG modules safely in a
threaded environment, the new 3-digit and 20-digit signed and unsigned integer data types, and support
for a new Universal Character Set Version 2 (UCS-2) data type and for conversion between UCS-2 fields
and graphic or single-byte character fields.

The following list describes these enhancements:

« Support for calling ILE RPG procedures from a threaded application, such as Domino® or Java.

The new control specification keyword THREAD(*SERIALIZE) identifies modules that are enabled to
run in a multithreaded environment. Access to procedures in the module is serialized.

 Support for new 1-byte and 8-byte integer data types: 31 and 201 signed integer, and 3U and 20U
unsigned integer

These new integer data types provide you with a greater range of integer values and can also improve
performance of integer computations, taking full advantage of the 64-bit AS/400 RISC processor.

The new 3U type allows you to more easily communicate with ILE C procedures that have single-byte
character (char) return types and parameters passed by value.

The new INTPREC control specification keyword allows you to specify 20-digit precision for
intermediate values of integer and unsigned binary arithmetic operations in expressions.

Built-in functions %DIV and %REM have been added to support integer division and remainder
operations.

« Support for new Universal Character Set Version 2 (UCS-2) or Unicode data type

The UCS-2 (Unicode) character set can encode the characters for many written languages. The field
is a character field whose characters are two bytes long.

By adding support for Unicode, a single application can now be developed for a multinational
corporation, minimizing the necessity to perform code page conversion. The use of Unicode permits
the processing of characters in multiple scripts without loss of integrity.

Support for conversions between UCS-2 fields and graphic or single-byte character fields using the
MOVE and MOVEL operations, and the new %UCS2 and %GRAPH built-in functions.

Support for conversions between UCS-2 fields or graphic fields with different Coded Character Set
Identifiers (CCSIDs) using the EVAL, MOVE, and MOVEL operations, and the new %UCS2 built-in
function.

Other enhancements have been made to this release as well. These include:

Chapter 2. What's New 43

What's New

« New parameters for the OPTION control specification keyword and on the create commands:

— *SRCSTMT allows you to assign statement numbers for debugging from the source IDs and SEU
sequence numbers in the compiler listing. (The statement number is used to identify errors in the
compiler listing by the debugger, and to identify the statement where a run-time error occurs.)
*NOSRCSTMT specifies that statement numbers are associated with the Line Numbers of the listing
and the numbers are assigned sequentially.

— Now you can choose not to generate breakpoints for input and output specifications in the debug
view with *NODEBUGIO. If this option is selected, a STEP on a READ statement in the debugger will
step to the next calculation, rather than stepping through the input specifications.

« New special words for the INZ definition specification keyword:

— INZ(*EXTDFT) allows you to use the default values in the DDS for initializing externally described data
structure subfields.
— Character variables initialized by INZ(*USER) are initialized to the name of the current user profile.
« The new %XFOOT built-in function sums all elements of a specified array expression.

« The new EVALR operation code evaluates expressions and assigns the result to a fixed-length character
or graphic result. The assignment right-adjusts the data within the result.

« The new FOR operation code performs an iterative loop and allows free-form expressions for the initial,
increment, and limit values.

« The new LEAVESR operation code can be used to exit from any point within a subroutine.

« The new *NEXT parameter on the OVERLAY(name:*NEXT) keyword indicates that a subfield overlays
another subfield at the next available position.

« The new *START and *END values for the SETLL operation code position to the beginning or end of the
file.

« The ability to use hexadecimal literals with integer and unsigned integer fields in initialization and free-
form operations, such as EVAL, IF, etc.

« New control specification keyword OPENOPT{(*NOINZOFL | *INZOFL)} to indicate whether the overflow
indicators should be reset to *OFF when a file is opened.

- Ability to tolerate pointers in teraspace —a memory model that allows more than 16 megabytes of
contiguous storage in one allocation.

The following tables summarize the changed and new language elements, based on the part of the
language affected.

Table 34. Changed Language Elements Since V4R2

Language Unit Element Description
Control specification [OPTION(*{NO}SRCSTMT) *SRCSTMT allows you to request that the
keywords compiler use SEU sequence numbers and

source IDs when generating statement
numbers for debugging. Otherwise,
statement numbers are associated with the
Line Numbers of the listing and the numbers
are assigned sequentially.

OPTION(*{NO}DEBUGIO) *{NO}DEBUGIO, determines if breakpoints
are generated for input and output
specifications.

44 1BMi: ILE RPG Reference

What's New

Table 34. Changed Language Elements Since V4R2 (continued)

Language Unit

Element

Description

Definition
specification
keywords

INZ(*EXTDFT)

All externally described data structure
subfields can now be initialized to the default
values specified in the DDS.

INZ(*USER)

Any character field or subfield can be
initialized to the name of the current user
profile.

OVERLAY(name:*NEXT)

The special value *NEXT indicates that the
subfield is to be positioned at the next
available position within the overlayed field.

OPTIONS(*NOPASS *OMIT
*VARSIZE *STRING *RIGHTADJ)

The new OPTIONS(*RIGHTADJ) specified on
a value or constant parameter in a function
prototype indicates that the character,
graphic, or UCS-2 value passed as a
parameter is to be right adjusted before
being passed on the procedure call.

Definition
specification
positions 33-39 (To
Position/Length)

3 and 20 digits allowed for I and
U data types

Added to the list of allowed values for
internal data types to support 1-byte and 8-
byte integer and unsigned data.

Internal data type

C (UCS-2 fixed or variable-length
format)

Added to the list of allowed internal data
types on the definition specifications. The
UCS-2 (Unicode) character set can encode
the characters for many written languages.
The field is a character field whose
characters are two bytes long.

Data format

C (UCS-2 fixed or variable-length
format)

UCS-2 format added to the list of allowed
data formats on the input and output
specifications for program described files.

Command parameter

OPTION

*NOSRCSTMT, *SRCSTMT, *NODEBUGIO,
and *DEBUGIO have been added to the
OPTION parameter on the CRTBNDRPG and
CRTRPGMOD commands.

Chapter 2. What's New 45

What's New

Table 35. New Language Elements Since V4R2

Language Unit Element Description
Control specification [CCSID(*GRAPH: *IGNORE | *SRC | Sets the default graphic CCSID for the
keywords | number) module. This setting is used for literals,

compile-time data and program-described
input and output fields and definitions. The
default is *IGNORE.

CCSID(*UCS2: number) Sets the default UCS-2 CCSID for the
module. This setting is used for literals,
compile-time data and program-described
input and output fields and definitions. The
default is 13488.

INTPREC(10 | 20) Specifies the decimal precision of integer and
unsigned intermediate values in binary
arithmetic operations in expressions. The
default, INTPREC(10), indicates that 10-digit
precision is to be used.

OPENOPT{(*NOINZOFL | Indicates whether the overflow indicators

*INZOFL)} should be reset to *OFF when a file is
opened.

THREAD(*SERIALIZE) Indicates that the module is enabled to run

in a multithreaded environment. Access to
the procedures in the module is to be

serialized.
Definition CCSID(number | *DFT) Sets the graphic and UCS-2 CCSID for the
specification definition.
keywords
Built-in functions %DIV(n:m) Performs integer division on the two

operands n and m; the result is the integer
portion of n/m. The operands must be
numeric values with zero decimal positions.

%GRAPH(char-expr | graph-expr | Converts to graphic data from single-byte
| UCS2-expr {: ccsid}) character, graphic, or UCS-2 data.

%REM(n:m) Performs the integer remainder operation on
two operands n and m; the result is the
remainder of n/m. The operands must be
numeric values with zero decimal positions.

%UCS2(char-expr | graph-expr| | Converts to UCS-2 data from single-byte
UCS2-expr {: ccsid}) character, graphic, or UCS-2 data.

%XFOOT (array-expr) Produces the sum of all the elements in the
specified numeric array expression.

46 IBMi: ILE RPG Reference

What's New

Table 35. New Language Elements Since V4R2 (continued)

Language Unit Element Description

Operation codes EVALR Evaluates an assignment statement of the
form result=expression. The result will be
right-justified.

FOR Begins a group of operations and indicates
the number of times the group is to be
processed. The initial, increment, and limit
values can be free-form expressions.

ENDFOR ENDFOR ends a group of operations started
by a FOR operation.

LEAVESR Used to exit from anywhere within a
subroutine.

What's New in V4R2?

The major enhancements to RPG IV since V3R7 are the support for variable-length fields, several
enhancements relating to indicators, and the ability to specify compile options on the control
specifications. These further improve the RPG product for integration with the operating system and ILE
interlanguage communication.

The following list describes these enhancements:

I

Support for variable-length fields

This enhancement provides full support for variable-length character and graphic fields. Using variable-
length fields can simplify many string handling tasks.

Ability to use your own data structure for INDARA indicators

Users can now access logical data areas and associate an indicator data structure with each WORKSTN
and PRINTER file that uses INDARA, instead of using the *IN array for communicating values to data
management.

Ability to use built-in functions instead of result indicators

Built-in functions %EOF, %EQUAL, %FOUND, and %0OPEN have been added to query the results of
input/output operations. Built-in functions %ERROR and %STATUS, and the operation code extender 'E'
have been added for error handling.

Compile options on the control specification

Compile options, specified through the CRTBNDRPG and CRTRPGMOD commands, can now be
specified through the control specification keywords. These compile options will be used on every
compile of the program.

n addition, the following new function has been added:

Support for import and export of procedures and variables with mixed case names

Ability to dynamically set the DECEDIT value at runtime

Built-in functions %CHAR and %REPLACE have been added to make string manipulation easier
New support for externally defined *CMDY, *CDMY, and *LONGJUL date data formats

An extended range for century date formats

Ability to define indicator variables

Ability to specify the current data structure name as the parameter for the OVERLAY keyword
New status code 115 has been added to indicate variable-length field errors

Chapter 2. What's New 47

What's New

 Support for application profiling

« Ability to handle packed-decimal data that is not valid when it is retrieved from files using
FIXNBR(*INPUTPACKED)

« Ability to specify the BNDDIR command parameter on the CRTRPGMOD command.

The following tables summarize the changed and new language elements, based on the part of the

language affected.

Table 36. Changed Language Elements Since V3R7

Language Unit

Element

Description

Control specification

DECEDIT(*JOBRUN | 'value")

The decimal edit value can now be

keywords determined dynamically at runtime from the
job or system value.

Definition DTAARA {(data_area_name)} Users can now access logical data areas.

specification

keywords

EXPORT {(external_name)}

The external name of the variable being
exported can now be specified as a
parameter for this keyword.

IMPORT {(external_name)}

The external name of the variable being
imported can now be specified as a
parameter for this keyword.

OVERLAY(namef{:pos})

The name parameter can now be the name of
the current data structure.

Extended century
format

*CYMD (cyy/mm/dd)

The valid values for the century character 'c'
are now:

'c' Years

0 1900-1999
1 2000-2099
9 2800-2899

Internal data type

N (Indicator format)

Added to the list of allowed internal data
types on the definition specifications. Defines
character data in the indicator format.

Data format

N (Indicator format)

Indicator format added to the list of allowed
data formats on the input and output
specifications for program described files.

Data Attribute *VAR Added to the list of allowed data attributes
on the input and output specifications for
program described files. It is used to specify
variable-length fields.

Command parameter | FIXNBR The *INPUTPACKED parameter has been

added to handle packed-decimal data that is
not valid.

48 IBMi: ILE RPG Reference

What's New

Table 37. New Language Elements Since V3R7

Language Unit New Description
Control specification [ACTGRP(*NEW | *CALLER | The ACTGRP keyword allows you to specify
keywords 'activation- group-name') the activation group the program is

associated with when it is called.

ALWNULL(*NO | *INPUTONLY |
*USRCTL)

The ALWNULL keyword specifies how you
will use records containing null-capable
fields from externally described database
files.

AUT(*LIBRCRTAUT | *ALL |
*CHANGE | *USE | *EXCLUDE |
'authorization-list-name")

The AUT keyword specifies the authority
given to users who do not have specific
authority to the object, who are not on the
authorization list, and whose user group has
no specific authority to the object.

BNDDIR('binding -directory-
name' {:'binding- directory-

The BNDDIR keyword specifies the list of
binding directories that are used in symbol

name'...}) resolution.

CVTOPT(*{NO}DATETIME The CVTOPT keyword is used to determine
*INO}GRAPHIC *{NO}VARCHAR how the ILE RPG compiler handles date,
*INO}VARGRAPHIC) time, timestamp, graphic data types, and

variable-length data types that are retrieved
from externally described database files.

DFTACTGRP(*YES | *NO)

The DFTACTGRP keyword specifies the
activation group in which the created
program will run when it is called.

ENBPFRCOL(*PEP | *ENTRYEXIT

The ENBPFRCOL keyword specifies whether

| *FULL) performance collection is enabled.

FIXNBR(*{NO}ZONED The FIXNBR keyword specifies whether

*INO}INPUTPACKED) decimal data that is not valid is fixed by the
compiler.

GENLVL(number) The GENLVL keyword controls the creation of

the object.

INDENT(*NONE | 'character-
value')

The INDENT keyword specifies whether
structured operations should be indented in
the source listing for enhanced readability.

LANGID(*JOBRUN | *JOB |
'language-identifier')

The LANGID keyword indicates which
language identifier is to be used when the
sort sequence is *LANGIDUNQ or
*LANGIDSHR.

OPTIMIZE(*NONE | *BASIC |
*FULL)

The OPTIMIZE keyword specifies the level of
optimization, if any, of the object.

OPTION(*{NO}XREF *{NO}GEN
*INO}SECLVL *{NO}SHOWCPY
*INO}EXPDDS *{NO}EXT
*INO}SHOWSKP)

The OPTION keyword specifies the options to
use when the source member is compiled.

PRFDTA(*NOCOL | *COL)

The PRFDTA keyword specifies whether the
collection of profiling data is enabled.

Chapter 2. What's New 49

What's New

Table 37. New Language Elements Since V3R7 (continued)

Language Unit

New

Description

SRTSEQ(*HEX | *JOB | *JOBRUN
| *LANGIDUNQ | *LANGIDSHR |
'sort-table-name")

The SRTSEQ keyword specifies the sort
sequence table that is to be used in the ILE
RPG source program.

TEXT(*SRCMBRTXT | *BLANK |
'description")

The TEXT keyword allows you to enter text
that briefly describes the object and its
function.

TRUNCNBR(*YES | *NO)

The TRUNCNBR keyword specifies if the
truncated value is moved to the result field or
if an error is generated when numeric
overflow occurs while running the object.

USRPRF(*USER | *OWNER)

The USRPRF keyword specifies the user
profile that will run the created program
object.

File Description
Specification

INDDS(data_structure_name)

The INDDS keyword lets you associate a data
structure name with the INDARA indicators

keywords for a workstation or printer file.

Definition VARYING Defines variable-length fields when specified
specification on character data or graphic data.

keywords

Built-in functions

%CHAR(graphic, date, time or
timestamp expression)

Returns the value in a character data type.

%EOF{file name}

Returns '1' if the most recent file input
operation or write to a subfile (for a particular
file, if specified) ended in an end-of-file or
beginning-of-file condition; otherwise, it
returns '0'".

%EQUAL{file name}

Returns '1'if the most recent SETLL (for a
particular file, if specified) or LOOKUP
operation found an exact match; otherwise, it
returns '0'.

%ERROR

Returns '1' if the most recent operation code
with extender 'E' specified resulted in an
error; otherwise, it returns '0'.

%FOUND({file name}

Returns '1' if the most recent relevant
operation (for a particular file, if specified)
found a record (CHAIN, DELETE, SETGT,
SETLL), an element (LOOKUP), or a match
(CHECK, CHECKR and SCAN); otherwise, it
returns '0'".

%OPEN(file name)

Returns '1' if the specified file is open and '0'
if the specified file is closed.

%REPLACE(replacement string:
source string {:start position
{:source length to replace}})

Returns the string produced by inserting a
replacement string into a source string,
starting at the start position and replacing
the specified number of characters.

50 IBMi: ILE RPG Reference

What's New

Table 37. New Language Elements Since V3R7 (continued)

Language Unit New Description

%STATUS{file name} If no program or file error occurred since the
most recent operation code with extender 'E'
specified, it returns 0. If an error occurred, it
returns the most recent value set for any
program or file status. If a file is specified,
the value returned is the most recent status

for that file.
Operation code E Allows for error handling using the %ERROR
Extender and %STATUS built-in functions on the

CALLP operation and all operations that
allow error indicators.

New century formats | *CMDY (cmm/dd/yy) To be used by the MOVE, MOVEL, and TEST
operations.
*CDMY (cdd/mm/yy) To be used by the MOVE, MOVEL, and TEST
operations.
New 4-digit year *LONGJUL (yyyy/ddd) To be used by the MOVE, MOVEL, and TEST
format operations.
Command PRFDTA The PRFDTA parameter specifies whether
parameters the collection of profiling data is enabled.
BNDDIR The BNDDIR parameter was previously only

allowed on the CRTBNDRPG command and
not on the CRTRPGMOD command, now it is
allowed on both commands.

What's New in V3R7?

The major enhancements to RPG IV since V3R6 are the new support for database null fields, and the
ability to better control the precision of intermediate results in expressions. Other enhancements include

t
t

he addition of a floating point data type and support for null-terminated strings. These further improve
he RPG product for integration with the operating system and ILE interlanguage communication. This

means greater flexibility for developing applications.

The following is a list of these enhancements including a number of new built-in functions and usability
enhancements:

Support for database null fields

This enhancement allows users to process database files which contain null-capable fields, by allowing
these fields to be tested for null and set to null.

Expression intermediate result precision

A new control specification keyword and new operation code extenders on free-form expression
specifications allow the user better control over the precision of intermediate results.

New floating point data type

The new floating point data type has a much larger range of values than other data types. The addition
of this data type will improve integration with the database and improve interlanguage communication
in an ILE environment, specifically with the C and C++ languages.

Support for null terminated strings

Chapter 2. What's New 51

What's New

The new support for null terminated strings improves interlanguage communication. It allows users full
control over null terminated data by allowing users to define and process null terminated strings, and to
conveniently pass character data as parameters to procedures which expect null terminated strings.

« Pointer addition and subtraction

Free-form expressions have been enhanced to allow adding an offset to a pointer, subtracting an offset
from a pointer, and determining the difference between two pointers.

 Support for long names

Names longer than 10 characters have been added to the RPG language. Anything defined on the
definition or procedure specifications can have a long name and these names can be used anywhere
where they fit within the bounds of an entry. In addition, names referenced on any free-form
specification may be continued over multiple lines.

* New built-in functions

A number of new built-in functions have been added to the language which improve the following
language facilities:
— editing (%EDITW, %EDITC, %EDITFLT)
— scanning strings (%SCAN)
— type conversions (%INT, %FLOAT, %DEC, %UNS)
— type conversions with half-adjust (%INTH, %DECH, %UNSH)
— precision of intermediate results for decimal expressions (%DEC)
— length and decimals of variables and expressions (%LEN, %DECPQOS)
— absolute value (%ABS)
— set and test null-capable fields (%NULLIND)
— handle null terminated strings (%STR)
« Conditional compilation
RPG IV has been extended to support conditional compilation. This support will include the following:
defining conditions (/DEFINE, /UNDEFINE),
testing conditions (/IF, /ELSEIF, /ELSE, /ENDIF)
stop reading current source file (/EOF)

a new command option (DEFINE) to define up to 32 conditions on the CRTBNDRPG and CRTRPGMOD
commands.

« Date enhancements

Several enhancements have been made to improve date handling operations. The TIME operation code
is extended to support Date, Time or Timestamp fields in the result field. Moving dates or times from
and to character fields no longer requires separator characters. Moving UDATE and *DATE fields no
longer requires a format code to be specified. Date fields can be initialized to the system (*SYS) or job
(*JOB) date on the definition specifications.

Character comparisons with alternate collating sequence

Specific character variables can be defined so that the alternate collating sequence is not used in
comparisons.

Nested /COPY members

You can now nest /COPY directives. That is, a /COPY member may contain one (or more) /COPY
directives which can contain further /COPY directives and so on.

« Storage management

You can now use the new storage management operation codes to allocate, reallocate and deallocate
storage dynamically.

Status codes for storage management and float underflow errors.

52 IBMi: ILE RPG Reference

What's New

Two status codes 425 and 426 have been added to indicate storage management errors. Status code
104 was added to indicate that an intermediate float result is too small.

The following tables summarize the changed and new language elements, based on the part of the

language affected.

Table 38. Changed Language Elements Since V3R6

Language Unit Element Description

Definition ALIGN ALIGN can now be used to align float

specification subfields along with the previously

keywords supported integer and unsigned alignment.
OPTIONS(*NOPASS *OMIT The *STRING option allows you to pass a
*VARSIZE *STRING) character value as a null-terminated string.

Record address type

F (Float format)

Added to the list of allowed record address
types on the file description specifications.
Signals float processing for a program
described file.

Internal data type

F (Float format)

Added to the list of allowed internal data
types on the definition specifications. Defines
a floating point standalone field, parameter,
or data structure subfield.

Data format

F (Float format)

Added to the list of allowed data formats on
the input and output specifications for
program described files.

Table 39. New Language Elements Since V3R6

Language Unit

New

Description

Control specification
keywords

COPYNEST('1-2048")

Specifies the maximum depth for nesting of /
COPY directives.

EXPROPTS(*MAXDIGITS |
*RESDECPOS)

Expression options for type of precision
(default or "Result Decimal Position"
precision rules)

FLTDIV{(*NO | *YES)}

Indicates that all divide operations in
expressions are computed in floating point.

Definition ALTSEQ(*NONE) Forces the normal collating sequence to be
specification used for character comparison even when an
keywords alternate collating sequence is specified.
Built-in functions %ABS Returns the absolute value of the numeric

expression specified as the parameter.

%DEC and %DECH

Converts the value of the numeric expression
to decimal (packed) format with the number
of digits and decimal positions specified as
parameters. %DECH is the same as %DEC,
but with a half adjust applied.

%DECPOS

Returns the number of decimal positions of
the numeric variable or expression. The value
returned is a constant, and may be used
where a constant is expected.

Chapter 2. What's New 53

What's New

Table 39. New Language Elements Since V3R6 (continued)

Language Unit New Description

%EDITC This function returns a character result
representing the numeric value edited
according to the edit code.

%EDITFLT Converts the value of the numeric expression
to the character external display
representation of float.

%EDITW This function returns a character result
representing the numeric value edited
according to the edit word.

%FLOAT Converts the value of the numeric expression

to float format.

%INT and %INTH

Converts the value of the numeric expression
to integer. Any decimal digits are truncated
with %INT and rounded with %INTH.

%LEN Returns the number of digits or characters of
the variable expression.

%NULLIND Used to query or set the null indicator for
null-capable fields.

%SCAN Returns the first position of the search
argument in the source string, or 0 if it was
not found.

%STR Used to create or use null-terminated strings,

which are very commonly used in C and C++
applications.

%UNS and %UNSH

Converts the value of the numeric expression
to unsigned format. Any decimal digits are
truncated with %UNS and rounded with
%UNSH.

Operation code N Sets pointer to *NULL after successful
Extenders DEALLOC
M Default precision rules
No intermediate value will have fewer
decimal positions than the result ("Result
Decimal Position" precision rules)
Operation codes ALLOC Used to allocate storage dynamically.
DEALLOC Used to deallocate storage dynamically.
REALLOC Used to reallocate storage dynamically.

What's New in V3R6/V3R2?

The major enhancement to RPG IV since V3R1 is the ability to code a module with more than one
procedure. What does this mean? In a nutshell, it means that you can code an module with one or more
prototyped procedures, where the procedures can have return values and run without the use of the RPG

cycle.

54 IBMi: ILE RPG Reference

What's New

Writing a module with multiple procedures enhances the kind of applications you can create. Any
application consists of a series of logical units that are conceived to accomplish a particular task. In order
to develop applications with the greatest flexibility, it is important that each logical unit be as
independent as possible. Independent units are:

- Easier to write from the point of view of doing a specific task.

- Less likely to change any data objects other than the ones it is designed to change.

- Easier to debug because the logic and data items are more localized.

- Maintained more readily since it is easier to isolate the part of the application that needs changing.

The main benefit of coding a module with multiple procedures is greater control and better efficiency in
coding a modular application. This benefit is realized in several ways. You can now:

« Call procedures and programs by using the same call operation and syntax.

- Define a prototype to provide a check at compile time of the call interface.

« Pass parameters by value or by reference.

« Define a procedure that will return a value and call the procedure within an expression.
- Limit access to data items by defining local definitions of variables.

« Code a module that does not make use of the cycle.

« Call a procedure recursively.

The run-time behavior of the main procedure in a module is the same as that of a V3R1 procedure. The
run-time behavior of any subsequent procedures differs somewhat from a V3R1 program, most notably in
the areas of procedure end and exception handling. These differences arise because there is no cycle
code that is generated for these procedures.

Other enhancements have been made to for this release as well. These include:
« Support for two new integer data types: signed integer (I), and unsigned integer (U)

The use of the integer data types provides you with a greater range of values than the binary data type.
Integer data types can also improve performance of integer computations.

« *CYMD support for the MOVE, MOVEL, and TEST operations

You can now use the *CYMD date format in certain operations to work with system values that are
already in this data format.

« Ability to copyright your programs and modules by using the COPYRIGHT keyword on the control
specification
The copyright information that is specified using this keyword becomes part of the DSPMOD, DSPPGM,
or DSPSRVPGM information.

 User control of record blocking using keyword BLOCK

You can request record blocking of DISK or SEQ files to be done even when SETLL, SETGT, or CHAIN
operations are used on the file. You can also request that blocking not be done. Use of blocking in these
cases may significantly improve runtime performance.

« Improved PREFIX capability

Changes to the PREFIX keyword for either file-description and definition specifications allow you to
replace characters in the existing field name with the prefix string.

- Status codes for trigger program errors
Two status codes 1223 and 1224 have been added to indicate trigger program errors.

The following tables summarize the changed and new language elements, based on the part of the
language affected.

Chapter 2. What's New 55

What's New

Table 40. Changed Language Elements Since V3R1

Language Unit

Element

Description

File description
specification

PREFIX(prefix_string
{:nbr_of_char_ replaced})

Allows prefixing of string to a field name or a
partial rename of the field name

keywords

Definition CONST{(constant)} Specifies the value of a named constant, or
specification indicates that a prototyped parameter that is
keywords passed by reference has a constant value

PREFIX(prefix_string
{:nbr_of_char_ replaced})

Allows prefixing of string to a field name or a
partial rename of the field name

Operation codes

RETURN

Returns control to the caller, and returns a
value, if specified

Table 41. New Language Elements Since V3R1

Language Unit

New

Description

Control specification
keywords

COPYRIGHT('copyright string')

Allows you to associate copyright
information with modules and programs

EXTBININT{(*NO | *YES)}

Specifies that binary fields in externally-
described files be assigned an integer format
during program processing

NOMAIN

Indicates that the module has only
subprocedures

File description
specification

BLOCK(*YES [*NO)

Allows you to control whether record
blocking occurs (assuming other conditions

keywords are met)
Definition ALIGN Specifies whether integer or unsigned fields
specification should be aligned
keywords
EXTPGM(name) Indicates the external name of the
prototyped program
EXTPROC(name) Indicates the external name of the
prototyped procedure
OPDESC Indicates whether operational descriptors
are to be passed for the prototyped bound
call
OPTIONS(*NOPASS *OMIT Specifies various options for prototyped
*VARSIZE) parameters
STATIC Specifies that the local variable is to use
static storage
VALUE Specifies that the prototyped parameter is to
be passed by value
Built-in functions %PARMS Returns the number of parameters passed on
acall
Operation codes CALLP Calls a prototyped program or procedure

56 IBMi: ILE RPG Reference

What's New

Table 41. New Language Elements Since V3R1 (continued)

Language Unit

New

Description

Specification type

Procedure specification

Signals the beginning and end of a
subprocedure definition

Definition type PR Signals the beginning of a prototype
definition
PI Signals the beginning of a procedure

interface definition

blank in positions 24-25

Defines a prototyped parameter

Chapter 2. What's New 57

What's New

58 IBMi: ILE RPG Reference

Symbolic Names

Chapter 3. RPG IV Concepts

General concepts for RPG IV

This section describes some of the basics of RPG IV:
« Symbolic names

« Compiler directives

« RPG IV program cycle

« Indicators

« Error Handling

« Subprocedures

 General file considerations

Symbolic Names and Reserved Words

The valid character set for the RPG IV language consists of:

e The letters ABCDEFGHIJKLMNOPQRSTUVWXYZ

« RPG IV accepts lowercase letters in symbolic names but translates them to uppercase during
compilation

e Thenumbers0123456789
« Thecharacters+-*,.'&/$#: @ _><=0)%
« The blank character

Note: The $, #, and @ may appear as different symbols on some codepages. For more information, see
the IBM i Information Center globalization topic.
Symbolic Names

A symbolic name is a name that uniquely identifies a specific entity in a program or procedure. In the RPG
IV language, symbolic names are used for the following:

« Arrays (see “Array Names” on page 60)

« Conditional compile names (see “Conditional Compile Names” on page 60)

« Data structures (see “Data Structure Names” on page 60)

« Exception output records (see “EXCEPT Names” on page 60)

« Fields (see “Field Names” on page 60)
« Key field lists (see “KLIST Names” on page 60)
« Labels (see “Labels” on page 60)

« Named constants (see “Named Constants” on page 187)

« Parameter lists (see “PLIST Names” on page 61)

« Prototype names (see “Prototype Names” on page 61)

« Record names (see “Record Names” on page 61)

 Subroutines (see “Subroutine Names” on page 61)

« Tables (see “Table Names” on page 61).

The following rules apply to all symbolic names except for deviations noted in the description of each
symbolic name:

« The first character of the name must be alphabetic. This includes the characters $, #, and @.

© Copyright IBM Corp. 1994, 2013 59

Symbolic Names

« The remaining characters must be alphabetic or numeric. This includes the underscore ().

- The name must be left-adjusted in the entry on the specification form except in fields which allow the
name to float (definition specification, keyword fields, and the extended factor 2 field).

A symbolic name cannot be an RPG IV reserved word.

« A symbolic name can be from 1 to 4096 characters. The practical limits are determined by the size of
the entry used for defining the name. A name that is up to 15 characters can be specified in the Name
entry of the definition or procedure specification. For names longer than 15 characters, use a
continuation specification. For more information, see “About Specifications” on page 283.

« A symbolic name must be unique within the procedure in which it is defined.

Array Names
The following additional rule applies to array names:

« An array name in a standalone field cannot begin with the letters TAB. Array names may begin with TAB
if they are either prototyped parameters or data structures defined with the DIM keyword.

Conditional Compile Names

The symbolic names used for conditional compilation have no relationship to other symbolic hames. For
example, if you define a file called MYFILE, you may later use /DEFINE to define condition name MYFILE,
and you may also use /UNDEFINE to remove condition name MYFILE. This has no effect on the file name
MYFILE.

Conditional compile names can be up to 50 characters long.

Data Structure Names

A data structure is an area in storage and is considered to be a character field.

EXCEPT Names

An EXCEPT name is a symbolic name assigned to an exception output record. The following additional
rule applies to EXCEPT names:

« The same EXCEPT name can be assigned to more than one output record.

Field Names
The following additional rules apply to field names:

« Afield name can be defined more than once if each definition using that name has the same data type,
the same length, and the same number of decimal positions. All definitions using the same name refer
to a single field (that is, the same area in storage). However, it can be defined only once on the definition
specification.

« Afield can be defined as a data structure subfield only once unless the data structure is qualified
(defined with QUALIFIED or LIKEDS). In this case, when the subfield is used, it must be qualified
(specified in the form dsname.subfieldname).

« A subfield name cannot be specified as the result field on an *ENTRY PLIST parameter.
KLIST Names

A KLIST name is a symbolic name assigned to a list of key fields.

Labels

A label is a symbolic name that identifies a specific location in a program (for example, the name assigned
to a TAG or ENDSR operation).

Named Constants

A named constant is a symbolic name assigned to a constant.

60 IBM i: ILE RPG Reference

RPG IV Words with Special Functions/Reserved Words

PLIST Names

A PLIST name is a symbolic name assigned to a list of parameters.

Prototype Names

A prototype name is a symbolic name assigned to a prototype definition. This name must be used when
calling a prototyped procedure or program. A prototype maybe explicitly specified, or it may be implicitly
generated by the compiler from the procedure interface when the procedure is defined in the same
module as the call.

Record Names

A record name is a symbolic name assigned to a record format in an externally described file. The
following additional rules apply to record names in an RPG IV program:

« If the file is qualified, due to the QUALIFIED or LIKEFILE keyword on the File specification, the record
name is specified as a qualified name in the form FILENAME.FMTNAME. The record hame must be
unigue within the other record names of the file.

« If the file is not qualified, the record name is specified without qualification in the form FMTNAME. If the
file is a global file, the record name must be unique within the other global names. If the file is a local
file in a subprocedure, the record name must be unique within the other local names.

Note: See “RENAME(Ext_format:Int_format)” on page 357 for information on how to handle the
situation where the record name conflicts with other names in your RPG program.

Subroutine Names

The name is defined in factor 1 of the BEGSR (begin subroutine) operation.

Table Names
The following additional rules apply to table names:

« Atable name can contain from 3 to 10 characters.
- Atable name must begin with the letters TAB.
« Atable cannot be defined in a subprocedure.

RPG IV Words with Special Functions/Reserved Words
The RPG IV reserved words listed below have special functions within a program.

« The following reserved words allow you to access the job date, or a portion of it, to be used in the
program:

UDATE
*DATE
UMONTH
*MONTH
UYEAR
*YEAR
UDAY
*DAY

« The following reserved words can be used for numbering the pages of a report, for record sequence
numbering, or to sequentially number output fields:

PAGE
PAGE1-PAGE7
- Figurative constants are implied literals that allow specifications without referring to length:

*BLANK/*BLANKS
*ZERO/*ZEROS

Chapter 3. RPG IV Concepts 61

RPG IV Words with Special Functions/Reserved Words

*HIVAL
*LOVAL
*NULL
*ON
*OFF
*ALLX'x1..'
*ALLG'oK1K2i'
*ALL'X..'
« The following reserved words are used for positioning database files. *START positions to beginning of
file and *END positions to end of file.

*END
*START

- The following reserved words allow RPG IV indicators to be referred to as data:

*IN
*TNXX

« The following are special words used with date and time:

*CDMY
*CMDY
*CYMD
*DMY
*EUR
*HMS
*ISO

*J1S
*JOB
*JOBRUN
*JUL
*LONGJUL
*MDY
*SYS
*USA
*YMD

« The following are special words used with translation:

*ALTSEQ
*EQUATE
*FILE

*FTRANS

« *PLACE allows repetitive placement of fields in an output record. (See “*PLACE” on page 473 for more
information.)

« *ALL allows all fields that are defined for an externally described file to be written on output. (See
“Rules for Figurative Constants” on page 188 for more information on *ALL)

- The following are special words used within expressions:
— AND
- NOT
- OR
Note: NOT can only be used within expressions. It cannot be used as a name anywhere in the source.
« The following are special words used with parameter passing:

62 IBMi: ILE RPG Reference

User Date Special Words

*NOPASS
*OMIT
*RIGHTADJ
*STRING
*TRIM
*VARSIZE

« The following special words aid in interpreting the event parameter in an event handling procedure for
the XML-SAX operation code:

XML_ATTR_UCS2_REF
XML_ATTR_NAME
XML_ATTR_PREDEF_REF
XML_ATTR_CHARS
XML_CHARS
XML_COMMENT
XML_UCS2_REF
XML_PREDEF_REF
XML_DOCTYPE_DECL
XML_ENCODING_DECL
XML_END_CDATA
XML_END_DOCUMENT
XML_END_ELEMENT
XML_END_PREFIX_MAPPING
XML_EXCEPTION
XML_PI_TARGET
XML_PI_DATA
XML_STANDALONE_DECL
XML_START_CDATA
XML_START_DOCUMENT
XML_START_ELEMENT
XML_START_PREFIX_MAPPING
XML_UNKNOWN_ATTR_REF
XML_UNKNOWN_REF
XML_VERSION_INFO
XML_END_ATTR

User Date Special Words

The user date special words (UDATE, *DATE, UMONTH, *MONTH, UDAY, *DAY, UYEAR, *YEAR) allow the
programmer to supply a date for the program at run time. The user date special words access the job date
that is specified in the job description. The user dates can be written out at output time; UDATE and
*DATE can be written out using the Y edit code in the format specified by the control specification.

(For a description of the job date, see theWork Management manual.)

Rules for User Date
Remember the following rules when using the user date:

« UDATE, when specified in positions 30 through 43 of the output specifications, prints a 6-character
numeric date field. *DATE, when similarly specified, prints an 8-character (4-digit year portion) numeric
date field. These special words can be used in three different date formats:

Month/day/year
Year/month/day
Day/month/year

Chapter 3. RPG IV Concepts 63

PAGE, PAGE1-PAGE?7

Use the DATEDIT keyword on the control specification to specify the date formats of UDATE and *DATE:

DATEDIT UDATE format *DATE format

*MDY *MDY *USA (mmddyyyy)
*DMY *DMY *EUR (ddmmyyyy)
*YMD *YMD *ISO (yyyymmdd)

Note that the DATEDIT keyword also controls the format of the Y edit code.

If this keyword is not specified, the default is *MDY.

« For an interactive job or batch program, the user date special words are set to the value of the job date
when the program starts running in the system. The value of the user date special words are not
updated during program processing, even if the program runs past midnight or if the job date is
changed. Use the TIME operation code to obtain the time and date while the program is running.

« UMONTH, *MONTH, UDAY, *DAY, and UYEAR when specified in positions 30 through 43 of the output
specifications, print a 2-position numeric date field. *YEAR can be used to print a 4-position numeric
date field. Use UMONTH or *MONTH to print the month only, UDAY or *DAY to print the day only, and
UYEAR or *YEAR to print the year only.

« UDATE and *DATE can be edited when they are written if the Y edit code is specified in position 44 of
the output specifications. The “DATEDIT(fmt{separator})” on page 307 keyword on the control
specification determines the format and the separator character to be inserted; for example, 12/31/88,
31.12.88.,12/31/1988.

« UMONTH, *MONTH, UDAY, *DAY, UYEAR and *YEAR cannot be edited by the Y edit code in position 44
of the output specifications.

« The user date fields cannot be modified. This means they cannot be used:

In the result field of calculations

As factor 1 of PARM operations
As the factor 2 index of LOOKUP operations
With blank after in output specifications

As input fields

« The user date special words can be used in factor 1 or factor 2 of the calculation specifications for
operation codes that use numeric fields.

« User date fields are not date data type fields but are numeric fields.

PAGE, PAGE1-PAGE?7

PAGE is used to number the pages of a report, to serially number the output records in a file, or to
sequentially number output fields. It does not cause a page eject.

The eight possible PAGE fields (PAGE, PAGE1, PAGE2, PAGE3, PAGE4, PAGE5, PAGE6, and PAGE7) may
be needed for numbering different types of output pages or for numbering pages for different printer files.

PAGE fields can be specified in positions 30 through 43 of the output specifications or in the input or
calculation specifications.

Rules for PAGE, PAGE1-PAGE?7

Remember the following rules when using the PAGE fields:

- When a PAGE field is specified in the output specifications, without being defined elsewhere, it is
assumed to be a four-digit, numeric field with zero decimal positions.

« Page numbering, unless otherwise specified, starts with 0001; and 1 is automatically added for each
new page.

64 IBM i: ILE RPG Reference

PAGE, PAGE1-PAGE7

- To start at a page number other than 1, set the value of the PAGE field to one less than the starting page
number. For example, if numbering starts with 24, enter a 23 in the PAGE field. The PAGE field can be of
any length but must have zero decimal positions (see Figure 1 on page 65).

« Page numbering can be restarted at any point in a job. The following methods can be used to reset the
PAGE field:

— Specify blank-after (position 45 of the output specifications).
— Specify the PAGE field as the result field of an operation in the calculation specifications.

— Specify an output indicator in the output field specifications (see Figure 2 on page 65). When the
output indicator is on, the PAGE field will be reset to 1. Output indicators cannot be used to control
the printing of a PAGE field, because a PAGE field is always written.

— Specify the PAGE field as an input field as shown in Figure 1 on page 65.

« Leading zeros are automatically suppressed (Z edit code is assumed) when a PAGE field is printed
unless an edit code, edit word, or data format (P/B/L/R in position 52) has been specified. Editing and
the data format override the suppression of leading zeros. When the PAGE field is defined in input and
calculation specifications, it is treated as a field name in the output specifications and zero suppression
is not automatic.

€0 0 0dbo 0 0 000 0 0 0830 0 0 00 0 0 080 0 0 00 0 0 04%0 0 0 60 0 0 080 0 0 0T0 0 0 6@0 0 0 00 000 H 000
IFilename++SgNORiP0osS1+NCCP0S2+NCCPOS3+NCC.ttt ittt it i et i e e e e et

T e Fmt+SPFrom+To+++DcField+++++++++L1MIFrP1MnZzx. . ..
IINPUT PG 50 1 CP
I 2 5 OPAGE

Figure 1. Page Record Description

E P I S TP BUDI SR SR DU - S < A DR A
OFilename++DF. .NOINO2NO3EXCnam++++B++A++Sb+Sa+. . . o oo i vt it i e i e e e e e
0 NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat
0x When indicator 15 is on, the PAGE field is set to zero and 1 is

0* added before the field is printed. When indicator 15 is off, 1

Ox 1is added to the contents of the PAGE field before it is printed.
OPRINT H L1 01

0 15 PAGE 1 75

Figure 2. Resetting the PAGE Fields to Zero

Compiler Directives

The compiler directive statements /TITLE, /EJECT, /SPACE, /COPY, and /INCLUDE allow you to specify
heading information for the compiler listing, to control the spacing of the compiler listing, and to insert
records from other file members during a compile. The conditional compilation directive statements /

DEFINE, /UNDEFINE, /IF, /ELSEIF, /ELSE, /ENDIF, and /EOF allow you to select or omit source records.

The compiler directive statements must precede any compile-time array or table records, translation
records, and alternate collating sequence records.

Note: The compiler directive statements /FREE and /END-FREE are no longer used. If you specify them,
they will be ignored. See “/FREE... /[END-FREE” on page 66.

Directives can begin in column 7 or later in column-limited source, or in column 1 or later for fully free-
form source.

All directives can be specified within a single fixed-form statement, and between any statements.

No directive can be specified within a single free-form calculation statement.

Chapter 3. RPG IV Concepts 65

/FREE... JEND-FREE

The /IF, /ELSEIF, /ELSE, and /ENDIF directives can be specified within a single free-form control, file,
definition, or procedure statement. No other directives can be specified within these statements.

Within a free-form statement, when a line begins with what appears to be a directive that is not allowed
within that statement, it is interpreted as a slash followed by a name. For example, in the following
statement, "/TITLE" is interpreted as division by a variable called "TITLE".

X =y
/title + 5;

The special directive **FREE can only appear in column 1 of the first line of the source. When **FREE is
specified, the entire source member must be free-form. See “Fully free-form statements” on page 286.

/FREE... /[END-FREE

In earlier releases, the /FREE compiler directive specified the beginning of a free-form calculation
specifications block. /END-FREE specified the end of the block.

If you code the /FREE or /END-FREE directive, it will be ignored, but the syntax of the directive will be
checked. The columns following the directive must be blank. See “Free-Form Statements” on page 285
for information on free-form statements.

/TITLE

Use the compiler directive /TITLE to specify heading information (such as security classification or titles)
that is to appear at the top of each page of the compiler listing.

See “Compiler Directives” on page 65 for information on the columns available for directives.

/TITLE must be followed by a blank. The data following the blank is printed at the top of each subsequent
page of the listing.

/TITLE cannot be coded within a free-form statement.

A program can contain more than one /TITLE statement. Each /TITLE statement provides heading
information for the compiler listing until another /TITLE statement is encountered. A /TITLE statement
must be the first RPG specification encountered to print information on the first page of the compiler
listing. The information specified by the /TITLE statement is printed in addition to compiler heading
information.

The /TITLE statement causes a skip to the next page before the title is printed. The /TITLE statement is
not printed on the compiler listing.

/EJECT

See “Compiler Directives” on page 65 for information on the columns available for directives.

/EJECT must be followed by at least two blanks. The remaining columns can contain comments.
/EJECT cannot be coded within a free-form statement.

Use /EJECT to indicate that subsequent specifications are to begin on a new page of the compiler listing.
If the spool file is already at the top of a new page, /EJECT will not advance to a new page. /EJECT is not
printed on the compiler listing.

/SPACE

Use the compiler directive /SPACE to control line spacing within the source section of the compiler listing.

See “Compiler Directives” on page 65 for information on the columns available for directives.

/SPACE must be followed by exactly one blank, and then followed by a positive integer value from 1
through 112 that defines the number of lines to space on the compiler listing, followed by at least two
blanks. The remaining columns can contain comments.

66 IBM i: ILE RPG Reference

/SET

/SPACE cannot be coded within a free-form statement.

If the number of lines is greater than 112, 112 will be used as the /SPACE value. If the number of lines is
greater than the number of lines remaining on the current page, subsequent specifications begin at the
top of the next page.

/SPACE is not printed on the compiler listing, but is replaced by the specified line spacing. The line
spacing caused by /SPACE is in addition to the two lines that are skipped between specification types.

/SET

Use the compiler directive /SET to temporarily set a new default values for definitions.
To reverse the effect of the /SET directive for one or more keywords, use the /RESTORE directive.
You can specify the following keywords with the /SET directive:

CCSID(*CHAR : ccsid)
Specifies the default CCSID for alphanumeric items that are defined without CCSID keyword or the
LIKE keyword, and for alphanumeric externally-described subfields for data structures defined
without keyword CCSID(*EXACT). See “CCSID(*CHAR : *JOBRUN | *JOBRUNMIX | *UTF8 | *HEX |
number)” on page 302

CCSID(*GRAPH : ccsid)
Specifies the default CCSID for graphic items that are specified without the CCSID keyword. See
“CCSID(*GRAPH : *JOBRUN | *SRC | *HEX | *IGNORE | number)” on page 302

CCSID(*UCS2: ccsid)
Specifies the default CCSID for UCS-2 items that are specified without the CCSID keyword. See
“CCSID(*UCS2 : *UTF16 | number)” on page 303

DATFMT(format)
Specifies the default format and separator for date items that are specified without the date format
(the DATE keyword is specified without a parameter in a free-form definition or the DATFMT keyword
is not specified in a fixed-form definition). See “DATFMT (fmt{separator})” on page 307

TIMFMT(format)
Specifies the default format and separator for time items that are specified without the time format
(the TIME keyword is specified without a parameter in a free-form definition or the TIMFMT keyword
is not specified in a fixed-form definition). See “TIMFMT (fmt{separator})” on page 320

Specify the SET directive in a copy file to ensure that all modules that include the copy file use the same
values for the time and date formats and the CCSIDs. Any values set by /SET directives within a copy file
are implicitly restored to their values prior to the /COPY or /INCLUDE directive.

If you cannot change the copy file, you can code the /SET directive prior to the /COPY or /INCLUDE
directive, and then code the /RESTORE directive after the /COPY or /INCLUDE directive to restore the
defaults to the values that were previously in effect before the /SET directive.

Rules for /SET and /RESTORE

« You can nest /SET directives.

« The keywords specified on a /RESTORE directive do not have to exactly match the keywords specified
on the previous /SET directive. A /[RESTORE directive can some or all of the values set by any
previous /SET directives.

Examples of /SET and /RESTORE

1. The default CCSID for alphanumeric and graphic items and the default date format for date items are
specified using Control specification keywords. CCSID(*UCS2) defaults to 13488, and TIMFMT
defaults to *ISO.

2. Field char1 is alphanumeric. The CCSID keyword is not specified, so the CCSID defaults to *UTF8.
3. Field graphl is graphic. The CCSID keyword is not specified, so the CCSID defaults to 835.

4. The /SET directive sets the default alphanumeric CCSID to 37 and it sets the default UCS-2 CCSID to
1200.

Chapter 3. RPG IV Concepts 67

/RESTORE

5. Field char2 is alphanumeric. The CCSID keyword is not specified, so the CCSID defaults to 37.

6. Field char3 is defined using the LIKE keyword. CCSID(*DFT) is specified, indicating that it will use the
default CCSID. It is defined like an alphanumeric field, so it uses the current default alphanumeric
CCSID which is 37.

7. The /RESTORE directive restores CCSID(*CHAR) to its previous value of *UTF8. CCSID(*UCS2) is not
specified for the /RESTORE directive, so the value 1200 set by the previous /SET directive is still in
effect.

8. Field ucs1 is UCS-2. The CCSID keyword is not specified, so the CCSID defaults to 1200, which is the
current default UCS-2 CCSID.

9. /COPY is used to include source member copyfile. At this point, the defaults are
CCSID(*CHAR:*UTF8), CCSID(*GRAPH:835), CCSID(*UCS2:1200), DATFMT(*YMD), TIMFMT(*IS0O).

10. The copy file begins with the /SET directive setting defaults for the data types used in the copy file.
After this point, the defaults are CCSID(*CHAR:*UTF8), CCSID(*GRAPH:835), CCSID(*UCS2:13488),
DATFMT(*ISO), TIMFMT(*HMS).

11. Field time1 is a time field. The TIMFMT keyword is not specified, so the time format defaults to *HMS,
which is the default set by the /SET directive in the copy file.

12. Field char4 is alphanumeric. The CCSID keyword is not specified, so the CCSID defaults to *UTF8.

13. At the end of the copy file, any values set by /SET directives within the copy file are implicitly
restored.

14. At this point, the defaults are the same as they were before the /COPY directive:
CCSID(*CHAR:*UTF8), CCSID(*GRAPH:835), CCSID(*UCS2:1200), DATFMT(*YMD), TIMFMT(*IS0).

CTL-OPT CCSID(*CHAR : %*UTF8) CCSID(*GRAPH : 835)
DATFMT (*YMD) ;

DCL-S charl char(10);

DCL-S graphl graph(10);

/SET CCSID(*CHAR : 37) CCSID(%UCS2:1200)

DCL-S char2 char(10);

DCL-S char3 LIKE(charl) CCSID(*DFT);

/RESTORE CCSID(*CHAR)

DCL-S ucsl UCS2(10); IEA

/COPY copyfile IER

Figure 3. Main source file

/SET CCSID(*UCS2 : 13488) DATFMT(*IS0) TIMFMT (*HMS)
DCL-S timel time;
DCL-S char4 char(10);

Figure 4. /COPY file copyfile

/RESTORE
Use the compiler directive /RESTORE to restore values previously set by /SET directives in the same
source member.

CCSID(*CHAR)
Undoes the effect of the previous /SET directive containing the CCSID(*CHAR) keyword.

CCSID(*GRAPH)
Undoes the effect of the previous /SET directive containing the CCSID(*GRAPH) keyword.

CCSID(*UCS2)
Undoes the effect of the previous /SET directive containing the CCSID(*UCS2) keyword.

68 IBM i: ILE RPG Reference

/COPY or /INCLUDE

DATFMT
Undoes the effect of the previous /SET directive containing the DATFMT keyword.

TIMFMT
Undoes the effect of the previous /SET directive containing the TIMFMT keyword.

Note: Any values set by /SET directives within a copy file are implicitly restored to their values prior to
the /COPY or /INCLUDE directive.

See “/SET” on page 67 for information about the rules for /SET and /RESTORE, and examples.

/COPY or /INCLUDE

The /COPY and /INCLUDE directives have the same purpose and the same syntax, but are handled
differently by the SQL precompiler. If your program does not have embedded SQL, you can freely choose
which directive to use. If your program has embedded SQL, see “Using /COPY, /INCLUDE in Source Files
with Embedded SQL” on page 71 for information about which directive to use.

The /COPY and /INCLUDE compiler directives cause records from other files to be inserted, at the point
where the directive occurs, with the file being compiled. The inserted files may contain any valid
specification including /COPY and /INCLUDE up to the maximum nesting depth specified by the
COPYNEST keyword (32 when not specified).

/COPY and /INCLUDE files can be either physical files or IFS files. To specify a physical file, code your /
COPY and /INCLUDE statement in the following way :

« /COPY or /INCLUDE followed by exactly one space followed by the file name or path
- when specifying a physical file, the library, file, and member name, can be in one of these formats:

libraryname/filename, membername
filename, membername
membername

A member name must be specified.

If a file name is not specified, QRPGLESRC is assumed.

If a library is not specified, the library list is searched for the file. All occurrences of the specified
source file in the library list are searched for the member until it is located or the search is complete.

If a library is specified, a file name must also be specified.

« When specifying an IFS (Integrated File System) file, the path can be either absolute (beginning with /)
or relative.

— The path can be enclosed in single or double quotes. If the path contains blanks, it must be enclosed
in quotes.

— If the path does not end with a suffix (for example ".txt"), the compiler will search for the file as
named, and also for files with suffixes of “.rpgle" or ".rpgleinc".

— See the Rational Development Studio for i: ILE RPG Programmer's Guide for information on using IFS /
COPY files.

« Optionally, at least one space and a comment.
Tip:

To facilitate application maintenance, you may want to place the prototypes of exported procedures in a
separate source member. If you do, be sure to place a/COPY or/INCLUDE directive for that member in
both the module containing the exported procedure and any modules that contain calls to the exported
procedure.

Figure 5 on page 70 shows some examples of the /COPY and /INCLUDE directive statements.

Chapter 3. RPG IV Concepts 69

/COPY or /INCLUDE

C/COPY MBR1

I/INCLUDE SRCFIL,MBR2

0/COPY SRCLIB/SRCFIL,MBR3

0/INCLUDE "SRCLIB!"/"SRC>3","MBR-3"
0/COPY /dirl/dir2/file.zxpg

0/COPY /dirl/dir2/file

0/COPY dirl/dir2/file.xpg

0/COPY "ifs file containing blanks" [IEN
0/COPY 'ifs file containing blanks' [ENR

Figure 5. Examples of the /COPY and /INCLUDE Compiler Directive Statements

Copies from member MBR1 in source file QRPGLESRC. The current library list is used to search for file
QRPGLESRC. If the file is not found in the library list, the search will proceed to the IFS, looking for file
MBR1, MBR1.rpgle or MBR1.rpgleinc in the include search path. See the Rational Development Studio
for i: ILE RPG Programmer's Guide for information on using IFS source files.

(2]
Copies from member MBR2 in file SRCFIL. The current library list is used to search for file SRCFIL.

Note that the comma is used to separate the file name from the member name. If the file is not found
in the library list, the search will proceed to the IFS, looking for file SRCFIL, MBR1 in the include
search path, possibly with the .rpgle or .rpgleinc suffixes.

Copies from member MBR3 in file SRCFIL in library SRCLIB or from the IFS file SRCFIL, MBR3 in
directory SRCLIB.

Copies from member "MBR-3" in file "SRC>3" in library "SRCLIB!"

Copies from the IFS file file.rpg in directory /dirl/dir2.

Copies from file, or file.rpgleinc or file.rpgle in directory /dirl/dir2

Copies from the IFS file file.rpg in directory dirl/dir2, searching for directory dirl/dir2 using the IFS
search path.

Copies from a file whose name contains blanks.

Results of the /COPY or /INCLUDE during Compile

During compilation, the specified file members are merged into the program at the point where the /COPY
or /INCLUDE statement occurs. All members will appear in the COPY member table.

Nested /COPY or /INCLUDE

Nesting of /COPY and /INCLUDE directives is allowed. A /COPY or /INCLUDE member may contain one or
more /COPY or /INCLUDE directives (which in turn may contain further /COPY or /INCLUDE directives and
so on). The maximum depth to which nesting can occur can be set using the COPYNEST control
specification keyword. The default maximum depth is 32.

Tip:

70 IBMi: ILE RPG Reference

Conditional Compilation Directives

You must ensure that your nested /COPY or /INCLUDE files do not include each other infinitely. Use
conditional compilation directives at the beginning of your /COPY or /INCLUDE files to prevent the source
lines from being used more than once.

For an example of how to prevent multiple inclusion, see Figure 6 on page 75.

Using /COPY, /INCLUDE in Source Files with Embedded SQL

The /COPY and /INCLUDE directives are identical except that they are handled differently by the SQL
precompiler.

The way the /COPY and /INCLUDE directives are handled by the SQL precompiler is different depending
on the RPG preprocessor options parameter (RPGPPOPT) specified on the CRTSQLRPGI command. Refer
to "Coding SQL statements in ILE RPG applications" in the Embedded SQL Programming topic or the
CRTSQLRPGI command in the CL topic for more information.

Conditional Compilation Directives

The conditional compilation directive statements allow you to conditionally include or exclude sections of
source code from the compile.

« Condition-names can be added or removed from a list of currently defined conditions using the defining
condition directives /DEFINE and /UNDEFINE.

« Condition expressions DEFINED(condition-name) and NOT DEFINED(condition-name) are used within
testing condition /IF groups.

- Testing condition directives, /IF, /ELSEIF, /[ELSE and /ENDIF, control which source lines are to be read
by the compiler.

- The /EOF directive tells the compiler to ignore the rest of the source lines in the current source member.

Defining Conditions

Condition-names can be added to or removed from a list of currently defined conditions using the defining
condition directives /DEFINE and /UNDEFINE.

/DEFINE

The /DEFINE compiler directive defines conditions for conditional compilation. The entries in the
condition-name area are free-format (do not have to be left justified).

/DEFINE must be followed by at least one space, and then the condition-name must be specified on the
same line. The remainder of the line must be blank.

See “Compiler Directives” on page 65 for information on the columns available for directives.

/DEFINE cannot be specified within a free-form statement.

The /DEFINE directive adds a condition-name to the list of currently defined conditions. A subsequent /IF
DEFINED(condition-name) would be true. A subsequent /IF NOT DEFINED(condition-name) would be
false.

Note: The command parameter DEFINE can be used to predefine up to 32 conditions on the CRTBNDRPG
and CRTRPGMOD commands.

/UNDEFINE
Use the /UNDEFINE directive to indicate that a condition is no longer defined.

/UNDEFINE must be followed by at least one space, and then the condition-name must be specified on
the same line. The remainder of the line must be blank.

See “Compiler Directives” on page 65 for information on the columns available for directives.

/UNDEFINE cannot be specified within a free-form statement.

Chapter 3. RPG IV Concepts 71

Conditional Compilation Directives

The /UNDEFINE directive removes a condition-name from the list of currently defined conditions. A
subsequent /IF DEFINED(condtion-name) would be false. A subsequent /IF NOT DEFINED(condition-
name) would be true.

Note: Any conditions specified on the DEFINE parameter will be considered to be defined when
processing /IF and /ELSEIF directives. These conditions can be removed using the /UNDEFINE directive.

Predefined Conditions

Several conditions are defined for you by the RPG compiler. These conditions cannot be used with /
DEFINE or /UNDEFINE. They can only be used with /IF and /ELSEIF.

Conditions Relating to the Environment

*ILERPG

This condition is defined if your program is being compiled by the ILE RPG IV compiler (the compiler
described in this document).

* This module is to be defined on different platforms. With
* the ILE RPG compiler, the BNDDIR keyword is used to

* indicate where procedures can be found. With a different
* compiler, the BNDDIR keyword might not be valid.

/IF DEFINED(*ILERPG)
H BNDDIR('QC2LE')

/ENDIF

To learn what conditions are available with another version of the RPG IV compiler, consult the
reference for the compiler.

Conditions Relating to the Command Being Used

*CRTBNDRPG

This condition is defined if your program is being compiled by the CRTBNDRPG command, which
creates a program.

/IF DEFINED(*CRTBNDRPG)
H DFTACTGRP (*NO)
/ENDIF

*CRTRPGMOD

This condition is defined if your program is being compiled by the CRTRPGMOD command, which
creates a module.

This code might appear in a generic Control specification
contained in a /COPY file. The module that contains the
main procedure would define condition THIS_IS_MAIN before
coding the /COPY directive.

* ok ok ok

*

If the CRTRPGMOD command is not being used, or if
* THIS_IS_MAIN is defined, the NOMAIN keyword will not
* be used in this Control specification.

/IF DEFINED(*CRTRPGMOD)

/IF NOT DEFINED(THIS_IS_MAIN)
H NOMAIN

/ENDIF

/ENDIF

*THREAD_CONCURRENT
This condition is defined if the THREAD(*CONCURRENT) keyword is specified on a control statement.

*THREAD_SERIALIZE
This condition is defined if the THREAD(*SERIALIZE) keyword is specified on a control statement.

Conditions Relating to the Target Release

*VxRxMx
This condition is defined if your program is being compiled for a version that is greater than or equal to
the release in the condition, starting with *V4R4MO0 (Version 4 Release 4 Modification 0).

72 IBMi: ILE RPG Reference

Conditional Compilation Directives

Use this condition if you will run the same program on different target releases, and want to take
advantage of features that are not available in every release. Support for this condition is available
starting with *V4R4MO systems with the appropriate PTF installed.

/IF DEFINED (*V5R1MO)
* Specify code that is valid in V5R1IMO and subsequent releases
I/INCLUDE SRCFIL,MBR2

/ELSE
* Specify code that is available in V4R4MO

I/COPY SRCFIL,MBR2
/ENDIF

Condition Expressions
A condition expression has one of the following forms:

« DEFINED(condition-name)
« NOT DEFINED(condition-name)

The condition expression is free-format but cannot be continued to the next line.

Testing Conditions

Conditions are tested using /IF groups, consisting of an /IF directive, followed by zero or more /ELSEIF
directives, followed optionally by an /ELSE directive, followed by an /ENDIF directive.

Any source lines except compile-time data, are valid between the directives of an /IF group. This includes
nested /IF groups.

Note: There is no practical limit to the nesting level of /IF groups.

/IF Condition-Expression
The /IF compiler directive is used to test a condition expression for conditional compilation.

/IF must be followed by at least one space, and then the condition expression must be specified on the
same line. Following the condition expression, the remainder of the line must be blank.

See “Compiler Directives” on page 65 for information on the columns available for directives.

/IF can be specified in any free-form statement other than a free-form calculation statement. See
“Conditional Directives Within a Free-Form Statement” on page 287.

If the condition expression is true, source lines following the /IF directive are selected to be read by the
compiler. Otherwse, lines are excluded until the next /ELSEIF, /ELSE or /ENDIF in the same /IF group.

/ELSEIF Condition-Expression
The /ELSEIF compiler directive is used to test a condition expression within an /IF or /[ELSEIF group.

/ELSEIF must be followed by at least one space, and then the condition expression must be specified on
the same line. Following the condition expression, the remainder of the line must be blank.

See “Compiler Directives” on page 65 for information on the columns available for directives.

/ELSEIF can be specified in any free-form statement other than a free-form calculation statement. See
“Conditional Directives Within a Free-Form Statement” on page 287.

If the previous /IF or /ELSEIF was not satisfied, and the condition expression is true, then source lines
following the /ELSEIF directive are selected to be read. Otherwise, lines are excluded until the next /
ELSEIF, /ELSE or /ENDIF in the same /IF group is encountered.

Chapter 3. RPG IV Concepts 73

Conditional Compilation Directives

/ELSE

The /ELSE compiler directive is used to unconditionally select source lines to be read following a failed /IF
or /[ELSEIF test.

See “Compiler Directives” on page 65 for information on the columns available for directives.

/ELSE can be specified within any free-form statement other than a free-form calculation statement. See
“Conditional Directives Within a Free-Form Statement” on page 287.

The remainder of the line containing /ELSE must be blank.
If the previous /IF or /[ELSEIF was not satisfied, source lines are selected until the next /ENDIF.

If the previous /IF or /[ELSEIF was satisfied, source lines are excluded until the next /ENDIF.

/ENDIF
The /ENDIF compiler directive is used to end the most recent /IF, /ELSEIF or /ELSE group.

/ENDIF can be specified within any free-form statement other than a free-form calculation statement.
See “Conditional Directives Within a Free-Form Statement” on page 287.

The remainder of the line containing /ENDIF must be blank.

Following the /ENDIF directive, if the matching /IF directive was a selected line, lines are unconditionally
selected. Otherwise, the entire /IF group was not selected, so lines continue to be not selected.

Rules for Testing Conditions

« /ELSEIF, and /ELSE are not valid outside an /IF group.

« An /IF group can contain at most one /ELSE directive. An /ELSEIF directive cannot follow an /ELSE
directive.

« /ENDIF is not valid outside an /IF, /ELSEIF or /ELSE group.
Every /IF must be matched by a subsequent /ENDIF.

All the directives associated with any one /IF group must be in the same source file. It is not valid to
have /IF in one file and the matching /ENDIF in another, even if the second file is in a nested /COPY.
However, a complete /IF group can be in a nested /COPY.

The /EOF Directive

The /EOF directive tells the compiler to ignore the rest of the source lines in the current source member.

/EOF

The /[EOF compiler directive is used to indicate that the compiler should consider that end-of-file has
been reached for the current source file.

See “Compiler Directives” on page 65 for information on the columns available for directives.

The remainder of the line containing /EOF must be blank.

/EOF will end any active /IF group that became active during the reading of the current source member. If
the /EOF was in a /COPY file, then any conditions that that were active when the /COPY directive was read
will still be active.

Note: If excluded lines are being printed on the listing, the source lines will continue to be read and listed
after /EOF, but the content of the lines will be completely ignored by the compiler. No diagnostic
messages will ever be issued after /EOF.

Tip:

Using the /EOF directive will enhance compile-time performance when an entire /COPY member is to be
used only once, but may be copied in multiple times. (This is not true if excluded lines are being printed).

74 IBM i: ILE RPG Reference

Conditional Compilation Directives

The following is an example of the /EOF directive.

/COPY XYZ

JIF DEFINED(READ_XYZ)
JENDIF (2

/IF DEFINED(XYZ_COPIED) [3 |
/EOF
/ELSE
/DEFINE XYZ_COPIED
) 50000
/ENDIF

Figure 6. /EOF Directive

The first time this /COPY member is read, XYZ_COPIED will not be defined, so the /EOF will not be
considered.

The second time this member is read, XYZ_COPIED is defined, so the /EOF is processed. The /IF
DEFINED(XYZ_COPIED) is considered ended, and the file is closed. However, the /IF
DEFINED(READ_XYZ) (F®) from the main source member is still active until its own /ENDIF () is
reached.

Handling of Directives by the RPG Preprocessor

The handling of compiler directives by the RPG preprocessor depends on the options specified on the
PPGENOPT parameter on the compile command. There are several actions the preprocessor can take on
a particular directive:

« The directive may be kept in the generated source file (indicated by "keep" in the table below)
« The directive may be removed from the generated source file (indicated by "remove" in the table below)

« The directive may be kept in the generated source file, but as a comment (indicated by "comment" in
the table below)

In general, with option *\RMVCOMMENT, only the directives neccessary for successful compilation are
output to the generated source file. With option NORMVCOMMENT, the directives not necessary for
successful compilation of the generated source file are converted into comments.

The following table summarizes how each directive is handled by the preprocessor for the various
PPGENOPT parameter values:

*RMVCOMMENT *NORMVCOMMENT
Directive *EXPINCLUDE *NOEXPINCLUDE *EXPINCLUDE *NOEXPINCLUDE
/COPY remove remove comment comment
/DEFINE remove keep comment keep
JEJECT remove remove keep keep
JELSE remove remove comment comment
JELSEIF remove remove comment comment
/END-EXEC keep keep keep keep
/END-FREE keep keep keep keep

Chapter 3. RPG IV Concepts 75

Conditional Compilation Directives

/ENDIF remove remove comment comment
/EOF remove remove comment comment
JEXEC keep keep keep keep
/FREE keep keep keep keep
JIF remove remove comment comment
/INCLUDE remove keep comment keep
/RESTORE keep keep keep keep
/SET keep keep keep keep
/SPACE remove remove keep keep
JTITLE remove remove keep keep
JUNDEFINE remove keep comment keep

Procedures and the Program Logic Cycle

A procedure is a collection of statements that can be called and run.

There are three kinds of procedures in RPG: regular subprocedures, linear-main procedures and cycle-
main procedures. RPG source programs can be compiled into one of three kinds of modules depending on
the types of procedures present, and as indicated by the presence of the NOMAIN or MAIN keyword on
the Control specification: Cycle, Nomain, or Linear-main modules.

The term "subprocedure" is used to denote both regular subprocedures and linear-main procedures.
An RPG source program can be divided into these sections which contain procedures:

« Main source section: The source lines from the first line in the source program up to the first Procedure
specification. In a cycle module, this section may contain calculation specifications (standard or free-
form) which make up a cycle-main procedure. A cycle-main procedure is implied even if there are no
calculation specifications in this section. This kind of procedure does not have Procedure-Begin and
Procedure-End specifications to identify it.

A cycle module may be designed without sub-procedures, and thus have no separate Procedure
section.

« Procedure section: Zero or one linear-main procedures, and one or more regular sub-procedures,
defined within the source program. Each procedure begins with a Procedure-Begin specification, and
ends with a Procedure-End specification.

The linear-main procedure is indicated by the use of the MAIN keyword on a Control specification,
making it a special kind of sub-procedure.

Subprocedure Definition

A subprocedure is a procedure defined after the main source section.

A subprocedure differs from a cycle-main procedure in several respects, the main difference being that a
subprocedure does not (and cannot) use the RPG cycle while running.

A subprocedure may have a corresponding prototype in the definition specifications of the main source
section. If specified, the prototype is used by the compiler to call the program or procedure correctly, and
to ensure that the caller passes the correct parameters. If not specified, the prototype is implicitly
generated from the procedure interface.

Tip:

76 IBM i: ILE RPG Reference

Conditional Compilation Directives

Although it is optional to specify a prototype within the module that defines the procedure, it should not
be considered optional when it is exported from the module, and the procedure will be called from other
RPG modules. In this case, a prototype should be specified in a copy file and copied into the module that
defines the subprocedure and into every module that calls the subprocedure.

The following examples show a subprocedure, highlighting the different parts of it. It is shown first using
free-form definitions, and second using fixed-form definitions.

The procedure performs a function on the 3 numeric values passed to it as value parameters. The
example illustrates how a procedure interface is specified for a procedure and how values are returned
from a procedure.

A subprocedure may optionally have an ON-EXIT section containing code that runs every time the
procedure ends. This code runs whether the procedure ends normally or abnormally. See “ON-EXIT (On
Exit)” on page 753 for more information.

// Prototype for procedure FUNCTION
DCL-PR Function INT(10);
TERM1 INT(5) VALUE;
TERM2 INT(5) VALUE;
TERM3 INT(5) VALUE;

END-PR;
DCL-PROC Function;
DCL-PI #N INT(10);

TERM1 INT(5) VALUE;
TERM2 INT(5) VALUE;
TERM3 INT(5) VALUE;

END-PI;
DCL-S Result INT(10);
Result = Terml *x 2 % 17
+ Term2 % 7
+ Term3;
return Result * 45 + 23;
END-PROC;

Figure 7. Example of a Free-Form Subprocedure

* Prototype for procedure FUNCTION

D FUNCTION PR 10I 0 (1]
D TERM1 5I 0 VALUE
D TERM2 5I O VALUE
D TERM3 5I 0 VALUE
P Function B [2 |
D Function PI 10I 0 Ex
D Texrml 5I 0 VALUE
D Texrm2 5I O VALUE
D Texrm3 5I 0 VALUE
D Result S 10I 0O | 4 |
Result = Texrml *»x 2 % 17
+ Texrm2 % 7 [5 |
+ Texrm3;
return Result * 45 + 23;
P E | 6 |

Figure 8. Example of a Fixed-Form Subprocedure

A Prototype which specifies the name, return value if any, and parameters if any. Since the procedure
is not exported from this module, it is optional to specify the prototype.

Chapter 3. RPG IV Concepts 77

Conditional Compilation Directives

A Begin-Procedure specification

A Procedure-Interface definition, which specifies the return value and parameters, if any. The
procedure interface must match the corresponding prototype. The procedure-interface definition is
optional if the subprocedure does not return a value and does not have any parameters that are
passed to it. If the prototype had not been specified, the procedure-interface definition would be used
by the compiler to implicitly define the prototype.

Other local definitions.

Any calculation specifications, standard or free-form, needed to perform the task of the procedure.
The calculations may refer to both local and global definitions. Any subroutines included within the
subprocedure are local. They cannot be used outside of the subprocedure. If the subprocedure
returns a value, then the subprocedure must contain a RETURN operation.

An End-Procedure specification

Except for the procedure-interface definition, which may be placed anywhere within the definition
specifications, a subprocedure must be coded in the order shown above.

No cycle code is generated for subprocedures. Consequently, you cannot code:

« Prerun-time and compile-time arrays and tables
« *DTAARA definitions
« Total calculations

The calculation specifications are processed only once and the procedure returns at the end of the
calculation specifications. See “Subprocedure Calculations” on page 98 for more information.

A subprocedure may be exported, meaning that procedures in other modules in the program can call it.
To indicate that it is to be exported, specify the keyword EXPORT on the Procedure-Begin specification. If
not specified, the subprocedure can only be called from within the module.

Procedure Interface Definition

If a prototyped procedure has call parameters or a return value, then it must have a procedure interface
definition.

For more information on procedure interface definitions, see “Procedure Interface” on page 207.

Return Values

A procedure that returns a value is essentially a user-defined function, similar to a built-in function. To
define a return value for a subprocedure, you must

1. Define the return value on both the prototype and procedure-interface definitions of the subprocedure.
2. Code a RETURN operation with an expression that contains the value to be returned.

You define the length and the type of the return value on the procedure-interface specification (the DCL-

PI statement, or the definition specification with PI in positions 24-25). The following keywords are also
allowed:

DATFMT(fmt)

The return value has the date format specified by the keyword.
DIM(N)

The return value is an array with N elements.

LIKE(name)
The return value is defined like the item specified by the keyword.

78 IBMi: ILE RPG Reference

Conditional Compilation Directives

LIKEDS(name)
The return value is a data structure defined like the data structure specified by the keyword.

LIKEREC(namef{,type})
The return value is a data structure defined like the record name specified by the keyword.

PROCPTR
The return value is a procedure pointer.

TIMFMT(fmt)
The return value has the time format specified by the keyword.

To return the value to the caller, you must code a RETURN operation with an expression containing the
return value. The operand of the RETURN operation is subject to the same rules as an expression with
EVAL. The actual returned value has the same role as the left-hand side of the EVAL expression, while the
operand of the RETURN operation has the same role as the right-hand side. You must ensure that a
RETURN operation is performed if the subprocedure has a return value defined; otherwise an exception is
issued to the caller of the subprocedure.

Scope of Definitions

Any items defined within a subprocedure are local to the subprocedure. If a local item is defined with the
same name as a global data item, then any references to that name inside the subprocedure use the local
definition.

However, keep in mind the following;:

 Subroutine names and tag names are known only to the procedure in which they are defined, even
those defined in the cycle-main procedure.

- All fields specified on input and output specifications are global. When a subprocedure uses input or
output specifications (for example, while processing a read operation), the global name is used even if
there is a local variable of the same name.

When using a global KLIST or PLIST in a subprocedure some of the fields may have the same names as
local fields. If this occurs, the global field is used. This may cause problems when setting up a KLIST or
PLIST prior to using it.

For example, consider the following source.

Chapter 3. RPG IV Concepts 79

Subprocedures and Subroutines

* Main procedure definitions

D Fldi S 1A
D Fld2 S 1A
* Define a global key field list with 2 fields, F1ldl and F1ld2
c global_kl KLIST
C KFLD Fldl
c KFLD Fld2
* Subprocedure Section
P Subproc B
D Fld2 S 1A
* local_kl has one global kfld (f1d1) and one local (f1d2)
C local_kl KLIST
C KFLD Fldl
c KFLD Fld2

* Even though F1d2 is defined locally in the subprocedure,
* the global F1d2 is used by the global_kl, since global KLISTs
* always use global fields. As a result, the assignment to the
* local F1d2 will NOT affect the CHAIN operation.

Cc EVAL Fldl = 'A'

c EVAL Fld2 = 'B'

c global_kl SETLL file

* Local KLISTs use global fields only when there is no local
* field of that name. 1local_kl uses the local Fld2 and so the
* assignment to the local F1d2 WILL affect the CHAIN operation.

EVAL Fldl = 'A’
EVAL Fld2 = 'B'
local_kl SETLL file

o, 00O

E

Figure 9. Scope of Key Fields Inside a Module

For more information on scope, see “Scope of Definitions” on page 180.

Subprocedures and Subroutines
A subprocedure is similar to a subroutine, except that a subprocedure offers the following improvements:
« You can pass parameters to a subprocedure, even passing by value.

This means that the parameters used to communicate with subprocedures do not have to be
modifiable. Parameters that are passed by reference, as they are with programs, must be modifiable,
and so may be less reliable.

« The parameters passed to a subprocedure and those received by it are checked at compile time for
consistency. This helps to reduce run-time errors, which can be more costly.

« You can use a subprocedure like a built-in function in an expression.

When used in this way, they return a value to the caller. This basically allows you to custom-define any
operators you might need in an expression.

« Names defined in a subprocedure are not visible outside the subprocedure.

This means that there is less chance of the procedure inadvertently changing a item that is shared by
other procedures. Furthermore, the caller of the procedure does not need to know as much about the
items used inside the subprocedure.

» You can call the subprocedure from outside the module, if it is exported.
« You can call subprocedures recursively.

» Procedures are defined on a different specification type, namely, procedure specifications. This
different type helps you to immediately recognize that you are dealing with a separate unit.

If you do not require the improvements offered by subprocedures, you may want to use a subroutine
because an EXSR operation is usually faster than a call to a subprocedure.

80 IBMi: ILE RPG Reference

Subprocedures and Subroutines

Program Flow in RPG Modules: Cycle Versus Linear

The ILE RPG compiler supplies part of the logic for an RPG module. Depending on the type of module you
choose, this supplied logic will control a large or small part of the control flow of your module. By default,
an RPG module will include the full RPG Cycle, which begins with the *INIT phase and ends with the
*TERM phase. The other two types of RPG modules do not include the full RPG Cycle; the only remnant of
the RPG cycle is the module initialization, which is similar to the *INIT phase. The ILE RPG compiler
supplies additional implicit logic that is separate from the RPG cycle; for example, the implicit opening
and closing of local files in subprocedures.

ALl ILE RPG modules can have one or more procedures.
The three types of RPG modules are distinguished by the nature of the main procedure in the module.

A program or a service program can consist of multiple modules, each of which can have an RPG main
procedure. If an RPG module is selected to be the program-entry module of a program, then you call the
main procedure using a program call. If an RPG module is not the program-entry module of a program, or
if it is a module in a service program, then you call its main procedure using a bound call. Calling a main
procedure through a bound call is only available for cycle-main procedures; if a module contains a linear-
main procedure and that module is not selected to be a program-entry module, than that procedure
cannot be called.

A module with a cycle-main procedure
The module contains a cycle-main procedure and zero or more subprocedures. The cycle-main
procedure includes the logic for the full RPG cycle. A cycle-main procedure can be called through a
bound call, or through a program call. See “Cycle Module” on page 82 and “Program Cycle” on page
85 for more information.

A module with a linear-main procedure
The module contains a linear-main procedure and zero or more ordinary subprocedures. The linear-
main procedure is identified by the MAIN keyword on the Control specification. The main procedure
itself is coded as a subprocedure (with Procedure specifications). The linear-main procedure can only
be called through a program call; it cannot be called using a bound call.

Note: Other than the way it is called, the linear-main procedure is considered to be a subprocedure.

The module does not include the logic for the RPG cycle. See “Linear Main Module” on page 84 for
more information.

A module with no main procedure
The NOMAIN keyword on the Control specification indicates that there is no main procedure in the
module. The module contains only subprocedures. The module does not include the logic for the RPG
cycle.

This type of module cannot be the program-entry module of a program, since it has no main
procedure.

See “NOMAIN Module” on page 84 for more information.

Table 42. Summary of RPG module types

Cycle Implicit closing of
Modul Feature Initialization of global variables, global files and
e Keywor |s opening of global files, and locking [unlocking of data
Type |d Allowed | Main Procedure of UDS data areas areas
Cycle- Yes Implicitly defined in | . when the first procedure in the When the main
main the main source module is called after the procedure ends
section activation group is created. WI;th LR OlT, or ends
» When the main procedure is called, abnormaty.
if the main procedure previously
ended with LR on, or ended
abnormally.

Chapter 3. RPG IV Concepts 81

Subprocedures and Subroutines

Table 42. Summary of RPG module types (continued)

Cycle Implicit closing of

Modul Feature Initialization of global variables, global files and
e Keywor | s opening of global files, and locking [unlocking of data
Type |d Allowed | Main Procedure of UDS data areas areas
Linear | MAIN No Explicitly defined When the main procedure is first Never
-main with the MAIN called after the activation group is

keyword and created, or if somehow a sub-

Procedure procedure is called first.

specifications
No NOMAI | No None, indicated by When the first procedure in the Never
main [N the presence of the | module is called after the activation

NOMAIN keyword group is created

Cycle Module

A cycle module has a cycle-main procedure which uses the RPG Program Cycle; the procedure is
implicitly specified in the main source section . (See “Program Cycle” on page 85.) You do not need to
code anything special to define the main procedure; it consists of everything before the first Procedure
specification. The parameters for the cycle-main procedure can be coded using a procedure interface and
an optional prototype in the global Definition specifications, or using a *ENTRY PLIST in the cycle-main
procedure's calculations.

The name of the cycle-main procedure must be the same as the name of the module being created. You
can either use this name for the prototype and procedure interface, or specify this name in the EXTPROC
keyword of the prototype, or of the procedure interface, if the prototype is not specified.

Any procedure interface found in the global definitions is assumed to be the procedure interface for the

cycle-main procedure. If a prototype is specified, the name is required for the procedure interface for the
cycle-main procedure, and the prototype with the matching name must precede the procedure interface
in the source.

In the following example, module CheckFile is created. Its cycle-main procedure has three parameters:

1. A file name (input)

2. A library name (input)

3. An indicator indicating whether the file was found (output)

In this example, the procedure is intended to be called from another module, so a prototype must be
specified in a /COPY file.

/COPY file CHECKFILEC with the prototype for the cycle-main procedure:

CheckFile

file

D
D
D 1library
D

found

Module CheckFile:

/COPY CHECKFILEC

D CheckFile
D file

D 1library
D found

c

PR
10a const
10a const
aN
PI
10a const
10a const
aN

. code using parameters file, library and found

Using a *ENTRY PLIST, you would define the parameters this way:

D file

D library

D found

c *ENTRY

PLIST

82 IBMi: ILE RPG Reference

S 10a const
S 10a const
S aN

Subprocedures and Subroutines

Cc PARM file

c PARM library
c PARM found

c . code using parameters file, library and found

You can also use a prototype and procedure interface to define your cycle-main procedure as a program.
In this case, you would specify the EXTPGM keyword for the prototype. In this example, the program is
intended to be called by other RPG programs, so a prototype must be specified in a /COPY file.

/COPY file CHECKFILEC with the prototype for the program:

D CheckFile PR extpgm('CHECKFILE')
D file 10a const

D 1library 10a const

D found AN

In the module source, the procedure interface would be defined the same way.

In the following example, the program is not intended to be called by any other RPG programs, so a
prototype is not necessary. In this case, the EXTPGM keyword is specified for the procedure interface.
Since a prototype is not specified, a name is not necessary for the procedure interface.

A procedure interface with the EXTPGM keyword:

F . file specifications

D PI extpgm('CUSTREPORT')
D custfile 10a const

D custlib 10a const

. code using the custfile and custlib parameters

Use Caution Exporting Subprocedures in Cycle Modules

If a module contains both a cycle-main procedure and exported subprocedures, take great care to ensure
that the RPG cycle in the cycle-main procedure does not adversely affect the global data, files, and data
areas that the subprocedures are using.

You must be aware of when files are opened and closed implicitly, when data areas are locked and
unlocked implicitly, and when global data is initialized or re-initialized.

Potential Problem Situations

A cycle module having exported subprocedures introduces potential scenarios where the cycle-main
procedure initialization is performed at an unexpected time, with the effect that has on files, data area
locks, and global data then leading to errors. An exported subprocedure can be called first in the module,
from a procedure outside the module, before the cycle-main procedure is called. If the cycle-main
procedure is then called, it will initialize at that time.

« If module initialization occurs because a subprocedure is the first procedure to be called, and cycle-
main procedure initialization occurs later, errors can occur if files are already open or data areas are
already locked.

« If a subprocedure calls the cycle-main procedure, global data may or may not be reinitialized during the
call, depending on the way the main procedure ended the last time it was called. If the subprocedure is
using any global data, this can cause unexpected results.

« If the cycle-main procedure was last called and ended and implicitly closed the files and unlocked the
data areas, and an exported subroutine is then called from outside the module, errors can occur if it
expects those files to be open or data areas to be locked.

Recommendations

Consider moving the cycle-main procedure logic into a subprocedure, and making the module a NOMAIN
module, or changing the cycle-main procedure to be a linear-main procedure.

If you mix cycle-main procedures with exported subprocedures, ensure that your cycle-main procedure is
called first, before any subprocedures.

Chapter 3. RPG IV Concepts 83

NOMAIN Module

Do not allow cycle-main-procedure initialization to happen more than once, since this would reinitialize
your global data. The best way to prevent reinitialization is to avoid using the LR indicator.

If you want to call your cycle-main procedure intermixed with your subprocedures, you should declare all
your files as USROPN and not use UDS data areas. Open files and lock data areas as you need them, and
close files and unlock data areas when you no longer need them. You might consider having a
subprocedure in the module that will close any open files and unlock any locked data areas.

Linear Module

A module which specifies the MAIN or NOMAIN keyword on the Control specification is compiled without
incorporating the program cycle.

When the program cycle is not included in the module, you are restricted in terms of what can be coded in
the main source section. Specifically, you cannot code specifications for:

« Primary and secondary files

« Heading, detail and total output

« Executable calculations, including the *INZSR Initialization subroutine
« *ENTRY PLIST

Instead you would code in the main source section:

Full-procedural files

Input specifications

Definition specifications
Declarative calculations such as DEFINE, KFLD, KLIST, PARM, and PLIST (but not *ENTRY PLIST)
« Exception output

Caution: There is no implicit closing of global files or unlocking of data areas in a linear module. These
objects will remain open or locked until they are explicitly closed or unlocked.

Linear Main Module

A module which has a program entry procedure but does not use the RPG Program Cycle can be
generated by specifying the MAIN keyword on the control specification.

This type of module has one or more procedures, one of which is identified as the main procedure. It does
not allow specifications which relate to the RPG Program Cycle.

See “MAIN(main_procedure_name)” on page 313 for more information.

NOMAIN Module

You can code one or more subprocedures in a module without coding a main procedure. Such a module is
called a NOMAIN module, since it requires the specification of the NOMAIN keyword on the control
specification. No cycle code is generated for the NOMAIN module.

Tip:

You may want to consider converting all your Cycle modules to NOMAIN modules except the ones that
actually contain the program entry procedure for a program, to reduce the individual size of those
modules by eliminating the unnecessary cycle code in each of those modules.

Note: A module with NOMAIN specified will not have a program entry procedure. Consequently you
cannot use the CRTBNDRPG command to compile the source.

See “NOMAIN” on page 314 for more information.

Module Initialization

Module initialization occurs when the first procedure (either the main procedure or a subprocedure) is
called.

84 IBMi: ILE RPG Reference

NOMAIN Module

A cycle module has an additional form of initialization which can occur repeatedly. Cycle-main procedure
initialization occurs when the cycle-main procedure is called the first time. It also occurs on subsequent
calls if the cycle-main procedure ended abnormally or with LR on.

Initialization of Global Data

Global data in the module is initialized during module initialization and during cycle-main procedure
initialization.

For special concerns regarding initialization in cycle-main procedures, see “Use Caution Exporting
Subprocedures in Cycle Modules” on page 83.

RPG Cycle and other implicit Logic
The ILE RPG compiler supplies part of the logic for an RPG program.

« For a cycle-main procedure, the compiler supplies the program cycle; the program cycle is also called
the logic cycle or the RPG cycle

« For a subprocedure or linear-main procedure, the compiler supplies the initialization and termination of
the subprocedure.

Program Cycle

The ILE RPG compiler supplies part of the logic for an RPG program. For a cycle-main procedure, the logic
the compiler supplies is called the program cycle or logic cycle. The program cycle is a series of ordered
steps that the main procedure goes through for each record read.

The information that you code on RPG IV specifications in your source program need not explicitly specify
when records should be read or written. The ILE RPG compiler can supply the logical order for these
operations when your source program is compiled. Depending on the specifications you code, your
program may or may not use each step in the cycle.

Primary (identified by a P in position 18 of the file description specifications) and secondary (identified by
an S in position 18 of the file description specifications) files indicate input is controlled by the program
cycle. A full procedural file (defined using a free-form DCL-F statement, or identified by an F in position 18
of the file description specifications) indicates that input is controlled by program-specified calculation
operations (for example, READ and CHAIN).

To control the cycle, you can have:

« One primary file and, optionally, one or more secondary files

Only full procedural files

« A combination of one primary file, optional secondary files, and one or more full procedural files in
which some of the input is controlled by the cycle, and other input is controlled by the program.

No files (for example, input can come from a parameter list or a data area data structure).

Note: No cycle code is generated for a module when MAIN or NOMAIN is specified on the control
specification. See “Linear Module” on page 84 for more information.

General RPG IV Program Cycle

Figure 10 on page 86 shows the specific steps in the general flow of the RPG IV program cycle. A
program cycle begins with step 1 and continues through step 7, then begins again with step 1.

The first and last time a program goes through the RPG IV cycle differ somewhat from the normal cycle.
Before the first record is read the first time through the cycle, the program resolves any parameters
passed to it, writes the records conditioned by the 1P (first page) indicator, does file and data
initialization, and processes any heading or detail output operations having no conditioning indicators or
all negative conditioning indicators. For example, heading lines printed before the first record is read
might consist of constant or page heading information or fields for reserved words, such as PAGE and
*DATE. In addition, the program bypasses total calculations and total output steps on the first cycle.

Chapter 3. RPG IV Concepts 85

Detailed RPG IV Program Cycle

During the last time a program goes through the cycle, when no more records are available, the LR (last
record) indicator and L1 through L9 (control level) indicators are set on, and file and data area cleanup is
done.

Write Get inout Perform
Start N heading and P total
I record .
detail lines calculations

4
. Perform E No E Write
detail < Move fields [« total
calculations output
End of
program
Figure 10. RPG IV Program Logic Cycle
All heading and detail lines (H or D in position 17 of the output specifications) are processed.
H
The next input record is read and the record identifying and control level indicators are set on.
H
Total calculations are processed. They are conditioned by an L1 through L9 or LR indicator, or an LO
entry.
4]
All total output lines are processed. (identified by a T in position 17 of the output specifications).
H
It is determined if the LR indicator is on. If it is on, the program is ended.
6]

The fields of the selected input records are moved from the record to a processing area. Field
indicators are set on.

All detail calculations are processed (those not conditioned by control level indicators in positions 7
and 8 of the calculation specifications) on the data from the record read at the beginning of the cycle.

Detailed RPG 1V Program Cycle

In “General RPG IV Program Cycle” on page 85, the basic RPG IV Logic Cycle was introduced. The
following figures provide a detailed explanation of the RPG IV Logic Cycle.

86 IBMi: ILE RPG Reference

Start

® SetofRTindcator
® Parameters resched

First
time program
called

Mewve resultfield
totactor 1 for
*EMTRY PLIST

*IMT
Perormprogramintialization:

Runprograminitialization

Perdormdatastructureand
subfied intialization

@ Retrigve externalindicators
{1 threugh Us)and user
cateficklz

& Openfiles

Loaddataareadata
structures, arrays, andtables

& Mowveresultfield to factor 1
for*ENTRY PLIST

& Runinitiaizaticn subreutine,
*INZS R, if zpecified

® Storedata structurezand
variablesfer RESET eperation

4 N3y

Perormheadingand detail
cutput

Pedormfeich overflow lines
® Setoff firstpage

® indicators (1P

“GETIMN

Any
H1 throughHS
indicators
ah

5 Al

S:;ﬁﬁ lzsue message
indioator terequester

Rezponsze
cancel

Cancel Ne

with dump

lzzuedump

e———

3%

8]

Detailed RPG IV Program Cycle

L1through L9 indicators

Setofrecord identifying and

P rimary file

Yes

15

10

Seton
L1 throughlLg

12|

M owve facter 2 to
rezultfield for
*ENTRY PLIST

13|

Returntecaller

& Onfirstoycle, retrieve first
record framprimary file and
and frem each secondary
file inprogram

@ Onothercycles, retrieve
inputrecord fromlastfile
processed, frequired

16

End offile

Yes

Deterrnine recerd
typeand zequence

T

Undefined
recond type or sequ-
ENCE EHFCF

M atzh fie ks
specified

Figure 11. Detailed RPG IV Object Program Cycle

RPG exceptiondertor
handling reutine

Initialize to process
theforcedfile 24
o
Yes I Matchfieds 3
I touting I 24
L —a ~
Note: aam-—= " _RPGroutine

{for detailedinformation
seethe descriptions that
follow this picture).

Chapter 3. RPG IV Concepts 87

Detailed RPG IV Program Cycle

m Seton LR indicator

ez | ardallcontrol level
indicators
(L1 throughL9)

Should
LR indicatsr
be zeton

Chwerflow
indicator

Setenrecord identifying

indicator for recard selected SetMRindicater

onoroff

41
43]
44|

Me

Control brealk

Make datz svzilzble
fromlzst record read

® Setfiedindicators
ahoroff

& Sctonappropriate
contrellevelindicators

iL1 through Lg) 45

® Saove controlfields

Look-ahead Look-ahead §
m fieldszpecified H reuting I
Should No [S ———
totalzbe ll
executed

DETZ
Perermdetailcalculations

*TOTC
Perfzrmictal calculations

*TOTL
Perormitstal cutput

Hal indicators

EQ -TERM

& Writelocked data
area structures

& Feset eternal
indicaters

ERQ [-conce

® Cloezefiles
Mo & Unleckother Data

areaz lochked by et
the program
Halt Tes

Indicators

Meowe facter
2o parme

m Setreturncode. If s
. . abnormal termination,
MOTE o me = AP G FoUtine (for detailed issUe escape Message

information, seathe descriptions
that follew this figure).

Return
tocaller

Figure 12. Continuation of detailed RPG IV Object Program Cycle

88 IBMi: ILE RPG Reference

Detailed RPG IV Program Cycle

Detailed RPG IV Object Program Cycle

Figure 11 on page 87 shows the specific steps in the detailed flow of the RPG IV program cycle. The item

numbers in the following description refer to the numbers in the figure. Routines are flowcharted in Figure
15 on page 96 and in Figure 13 on page 93.

H

The RT indicator is set off. If *ENTRY PLIST is specified the parameters are resolved.

RPG IV checks for the first invocation of the program. If it is the first invocation, program initialization
continues. If not, it moves the result field to factor 1 in the PARM statements in *ENTRY PLIST and
branches to step 5.

The program is initialized at *INIT in the cycle. This process includes: performing data structure and
subfield initialization, setting user date fields; opening global files; loading all data area data
structures, arrays and tables; moving the result field to factor 1 in the PARM statements in *ENTRY
PLIST; running the initialization subroutine *INZSR; and storing the structures and variables for the
RESET operation. Global files are opened in reverse order of their specification on the File Description
Specifications.

Heading and detail lines (identified by an H or D in position 17 of the output specifications) are written
before the first record is read. Heading and detail lines are always processed at the same time. If
conditioning indicators are specified, the proper indicator setting must be satisfied. If fetch overflow
logic is specified and the overflow indicator is on, the appropriate overflow lines are written. File
translation, if specified, is done for heading and detail lines and overflow output. This step is the
return point in the program if factor 2 of an ENDSR operation contains the value *DETL.

The halt indicators (H1 through H9) are tested. If all the halt indicators are off, the program branches
to step 8. Halt indicators can be set on anytime during the program. This step is the return point in the
program if factor 2 of an ENDSR operation contains the value *GETIN.

a.
If any halt indicators are on, a message is issued to the user.

If the response is to continue, the halt indicator is set off, and the program returns to step 5. If the
response is to cancel, the program goes to step 6.

If the response is to cancel with a dump, the program goes to step 7; otherwise, the program
branches to step 36.

The program issues a dump and branches to step 36 (abnormal ending).

All record identifying, 1P (first page), and control level (L1 through L9) indicators are set off. All
overflow indicators (OA through OG, OV) are set off unless they have been set on during preceding
detail calculations or detail output. Any other indicators that are on remain on.

If the LR (last record) indicator is on, the program continues with step 10. If it is not on, the program
branches to step 11.

The appropriate control level (L1 through L9) indicators are set on and the program branches to step
29.

If the RT indicator is on, the program continues with step 12; otherwise, the program branches to step
14.

Chapter 3. RPG IV Concepts 89

Detailed RPG IV Program Cycle

Factor 2 is moved to the result field for the parameters of the *ENTRY PLIST.

If the RT indicator is on (return code set to 0), the program returns to the caller.

If a primary file is present in the program, the program continues with step 15; otherwise, the
program branches to step 29.
During the first program cycle, the first record from the primary file and from each secondary file in
the program is read. File translation is done on the input records. In other program cycles, a record is
read from the last file processed. If this file is processed by a record address file, the data in the
record address file defines the record to be retrieved. If lookahead fields are specified in the last
record processed, the record may already be in storage; therefore, no read may be done at this time.

If end of file has occurred on the file just read, the program branches to step 20. Otherwise, the
program continues with step 17.

If a record has been read from the file, the record type and record sequence (positions 17 through 20
of the input specifications) are determined.

It is determined whether the record type is defined in the program, and if the record sequence is
correct. If the record type is undefined or the record sequence is incorrect, the program continues
with step 19; otherwise, the program branches to step 20.

The RPG IV exception/error handling routine receives control.

It is determined whether a FORCE operation was processed on the previous cycle. If a FORCE
operation was processed, the program selects that file for processing (step 21) and branches around
the processing for match fields (steps 22 and 23). The branch is processed because all records
processed with a FORCE operation are processed with the matching record (MR) indicator off.

If FORCE was issued on the previous cycle, the program selects the forced file for processing after
saving any match fields from the file just read. If the file forced is at end of file, normal primary/
secondary multifile logic selects the next record for processing and the program branches to step 24.

If match fields are specified, the program continues with step 23; otherwise, the program branches to
step 24.

The match fields routine receives control. (For detailed information on the match fields routine, see
“Match Fields Routine” on page 93.)

The LR (last record) indicator is set on when all records are processed from the files that have an E
specified in position 19 of the file description specifications and all matching secondary records have
been processed. If the LR indicator is not set on, processing continues with step 26.

The LR (last record) indicator is set on and all control level (L1 through L9) indicators, and processing
continues with step 29.

The record identifying indicator is set on for the record selected for processing.

It is determined whether the record selected for processing caused a control break. A control break
occurs when the value in the control fields of the record being processed differs from the value of the

90 IBMi: ILE RPG Reference

Detailed RPG IV Program Cycle

control fields of the last record processed. If a control break has not occurred, the program branches
to step 29.

When a control break occurs, the appropriate control level indicator (L1 through L9) is set on. All
lower level control indicators are set on. The program saves the contents of the control fields for the
next comparison.

It is determined whether the total-time calculations and total-time output should be done. Totals are
always processed when the LR indicator is on. If no control level is specified on the input
specifications, totals are bypassed on the first cycle and after the first cycle, totals are processed on
every cycle. If control levels are specified on the input specifications, totals are bypassed until after
the first record containing control fields has been processed.

All total calculations conditioned by a control level entry (positions 7 and 8 of the calculation
specifications). are processed. This step is the return point in the program if factor 2 of an ENDSR
operation contains the value *TOTC.

All total output is processed. If fetch overflow logic is specified and the overflow indicator (OA through
0OG, 0V) associated with the file is on, the overflow lines are written. File translation, if specified, is
done for all total output and overflow lines. This step is the return point in the program if factor 2 of an
ENDSR operation contains the value *TOTL.

If LR is on, the program continues with step 33; otherwise, the program branches to step 41.

The halt indicators (H1 through H9) are tested. If any halt indicators are on, the program branches to
step 36 (abnormal ending). If the halt indicators are off, the program continues with step 34. If the
RETURN operation code is used in calculations, the program branches to step 33 after processing of
that operation.

If LR is on, the program continues with step 35. If it is not on, the program branches to step 38.

RPG IV program writes all arrays or tables for which the TOFILE keyword has been specified on the
definition specification and writes all locked data area data structures. Output arrays and tables are
translated, if necessary.

All open global files are closed. The RPG IV program also unlocks all data areas that have been locked
but not unlocked by the program. If factor 2 of an ENDSR operation contains the value *CANCL, this
step is the return point.

The halt indicators (H1 through H9) are tested. If any halt indicators are on, the program branches to
step 39 (abnormal ending). If the halt indicators are off, the program continues with step 38.

EX
The factor 2 fields are moved to the result fields on the PARMs of the *ENTRY PLIST.
EX2

The return code is set. 1 = LR on, 2 = error, 3 = halt.

Control is returned to the caller.

Note: Steps 32 through 40 constitute the normal ending routine. For an abnormal ending, steps 34
through 35 are bypassed.

It is determined whether any overflow indicators (OA through OG OV) are on. If an overflow indicator
is on, the program continues with step 42; otherwise, the program branches to step 43.

Chapter 3. RPG IV Concepts 91

Detailed RPG IV Program Cycle

The overflow routine receives control. (For detailed information on the overflow routine, see
“Overflow Routine” on page 93.) This step is the return point in the program if factor 2 of an ENDSR
operation contains the value *OFL.

The MR indicator is set on and remains on for the complete cycle that processes the matching record
if this is a multifile program and if the record to be processed is a matching record. Otherwise, the MR
indicator is set off.

Data from the last record read is made available for processing. Field indicators are set on, if
specified.

If lookahead fields are specified, the program continues with step 46; otherwise, the program
branches to step 47.

The lookahead routine receives control. (For detailed information on the lookahead routine, see
“Lookahead Routine” on page 94.)

=Y
~

Detail calculations are processed. This step is the return point in the program if factor 2 of an ENDSR
operation contains the value *DETC. The program branches to step 4.

Initialization Subroutine

Refer to Figure 11 on page 87 to see a detailed explanation of the RPG IV initialization subroutine.

The initialization subroutine allows you to process calculation specifications before 1P output. A specific
subroutine that is to be run at program initialization time can be defined by specifying *INZSR in factor 1
of the subroutine's BEGSR operation. Only one subroutine can be defined as an initialization subroutine. It
is called at the end of the program initialization step of the program cycle (that is, after data structures
and subfields are initialized, external indicators and user data fields are retrieved, global files are opened,
data area data structures, arrays, and tables are loaded, and PARM result fields moved to factor 1 for
*ENTRY PLIST). *INZSR may not be specified as a file/program error/exception subroutine.

If a program ends with LR off, the initialization subroutine does not automatically run during the next
invocation of that program because the subroutine is part of the initialization step of the program.
However, if the initialization subroutine does not complete before an exit is made from the program with
LR off, the initialization subroutine will be re-run at the next invocation of that program.

The initialization subroutine is like any other subroutine in the program, other than being called at
program initialization time. It may be called using the EXSR or CASxx operations, and it may call other
subroutines or other programs. Any operation that is valid in a subroutine is valid in the initialization
subroutine, with the exception of the RESET operation. This is because the value used to reset a variable
is not defined until after the initialization subroutine is run.

Any changes made to a variable during the initialization subroutine affect the value that the variable is set
to on a subsequent RESET operation. Default values can be defined for fields in record formats by, for
example, setting them in the initialization subroutine and then using RESET against the record format
whenever the default values are to be used. The initialization subroutine can also retrieve information
such as the current time for 1P output.

There is no *INZSR associated with subprocedures. If a subprocedure is the first procedure called in a
module, the *INZSR of the main procedure will not be run, although other initialization of global data will
be done. The *INZSR of the main procedure will be run when the main procedure is called.

92 IBMi: ILE RPG Reference

Detailed RPG IV Program Cycle

niatch fizkls
routine

Ml ultifile: Creerflow Lowk-ahead
processing routine routine
3] Tas 0
Line .
Yes Rettive next
Determinethe nﬁ"'tc’""t n tecond for
fileto be procassad with prévious this file
fatzh
__________ | E
s RPGaxaption/ ! Perform Extractthe
1zt h fielhoks arror hanpcl'tling | onretflow leckrahead
3 URNCE STl Touting | sutput fislcks
|
5 o

J

__________ 1
Il cwe the match Return
fields to the

maich field heldara

Figure 13. Detail Flow of RPG IV Match Fields, Overflow, and Lookahead Routines

Match Fields Routine

Figure 13 on page 93 shows the specific steps in the RPG IV match fields routine. The item numbers in
the following descriptions refer to the numbers in the figure.

If multifile processing is being used, processing continues with step 2; otherwise, the program
branches to step 3.

The value of the match fields in the hold area is tested to determine which file is to be processed next.

The RPG IV program extracts the match fields from the match files and processes sequence checking.
If the match fields are in sequence, the program branches to step 5.

If the match fields are not in sequence, the RPG IV exception/error handling routine receives control.

The match fields are moved to the hold area for that file. A hold area is provided for each file that has
match fields. The next record is selected for processing based on the value in the match fields.

Overflow Routine

Figure 13 on page 93 shows the specific steps in the RPG IV overflow routine. The item numbers in the
following descriptions refer to the numbers in the figure.
The RPG IV program determines whether the overflow lines were written previously using the fetch
overflow logic (step 30 in Figure 11 on page 87). If the overflow lines were written previously, the
program branches to the specified return point; otherwise, processing continues with step 2.

All output lines conditioned with an overflow indicator are tested and written to the conditioned
overflow lines.

The fetch overflow routine allows you to alter the basic RPG IV overflow logic to prevent printing over the
perforation and to let you use as much of the page as possible. During the regular program cycle, the RPG

Chapter 3. RPG IV Concepts 93

Detailed RPG IV Program Cycle

IV program checks only once, immediately after total output, to see if the overflow indicator is on. When
the fetch overflow function is specified, the RPG IV program checks overflow on each line for which fetch
overflow is specified.

Specify fetch overflow with an F in position 18 of the output specifications on any detail, total, or
exception lines for a PRINTER file. The fetch overflow routine does not automatically cause forms to
advance to the next page.

During output, the conditioning indicators on an output line are tested to determine whether the line is to
be written. If the line is to be written and an F is specified in position 18, the RPG IV program tests to
determine whether the overflow indicator is on. If the overflow indicator is on, the overflow routine is
fetched and the following operations occur:

« Only the overflow lines for the file with the fetch specified are checked for output.

All total lines conditioned by the overflow indicator are written.

Forms advance to a new page when a skip to a line number less than the line number the printer is
currently on is specified in a line conditioned by an overflow indicator.

Heading, detail, and exception lines conditioned by the overflow indicator are written.
The line that fetched the overflow routine is written.

- Any detail and total lines left to be written for that program cycle are written.

Position 18 of each OR line must contain an F if the overflow routine is to be used for each record in the
OR relationship. Fetch overflow cannot be used if an overflow indicator is specified in positions 21
through 29 of the same specification line. If this occurs, the overflow routine is not fetched.

Use the fetch overflow routine when there is not enough space left on the page to print the remaining
detail, total, exception, and heading lines conditioned by the overflow indicator. To determine when to
fetch the overflow routine, study all possible overflow situations. By counting lines and spaces, you can
calculate what happens if overflow occurs on each detail, total, and exception line.

Lookahead Routine

Figure 13 on page 93 shows the specific steps in the RPG IV lookahead routine. The item numbers in the
following descriptions refer to the numbers in the figure.
The next record for the file being processed is read. However, if the file is a combined or update file
(identified by a C or U, respectively, in position 17 of the file description specifications), the lookahead
fields from the current record being processed is extracted.

The lookahead fields are extracted.

Ending a Program without a Primary File
If your program does not contain a primary file, you must specify a way for the program to end:

By setting the LR indicator on

« By setting the RT indicator on

« By setting an H1 through H9 indicator on
By specifying the RETURN operation code

The LR, RT, H1 through H9 indicators, and the RETURN operation code, can be used in conjunction with
each other.

Program Control of File Processing

Specify a full procedural file (F in position 18 of the fixed-form file description specifications, or any file
defined by a free-form file definition) to control all or partial input of a program. A full procedural file
indicates that input is controlled by program-specified calculation operations (for example, READ,
CHAIN). When both full procedural files and a primary file (P in position 18 of the file description
specifications) are specified in a program, some of the input is controlled by the program, and other input

94 IBMi: ILE RPG Reference

Detailed RPG IV Program Cycle

is controlled by the cycle. Even if the program cycle exists in your module, all the processing of a full-
procedural file is done in your calculations.

The file operation codes can be used for program control of input. These file operation codes are
discussed in “File Operations” on page 519.

START
L . ®

bt Parfarms heading .

_ operations. Perorms
& Periorms detail detail output operations.
calculations. Sets It overflow ling has been

resuting indicators. reached, sets on overflow
® indicator.

Mowis data from record selected at
beginning of ¢yele inte processing area.

Sets off control level
indicators, Sets off record
identifying indicators.

Owerflow indicator on? “es, performs
. ' Reads a record. L
owetflow operations.

End-offile? Yes, sets on
contral level and LR indicators
and skips to perform total

LR indicator on? es, end of caloulations.
program has been reached.

Sets on record identifying indicators
for the record just read. *

Performs total output operations.
. If owerflow line has been reached,
sets on overflaw indicator,

Change in control fields?
Yas, sets on control level []
indicators.

ol Performs total calculations.

Sets resulting indicators. Note: The boxed steps

are bypassed when no
primary file exists;

that is, when the
programimer controls
all the input operations.

Figure 14. Programmer Control of Input Operation within the Program-Cycle

Chapter 3. RPG IV Concepts 95

Detailed RPG IV Program Cycle

Mo Process next
sequentialinstructicn

ExceptionError?

n Setupfile information
or program status data
structure if coded

Yes Seton indicator and
process next
zequentialinstruction

Errorirdicator
coded onoperation?

E INFSRor*PSSE Yes [E Control passesto INFSR
subroutinew or'P 38R subroutine
Mo Return point specified?
Mex
Returnto zpecified point
Statuscode
ﬂ 1121-1126 Ves Resume currert
present? operation
E Fercolate exceptionto
£ fioni e callerof thiz procedure
E F :-o:tgp |gr|:|]ls k Seetextiormoere
uncliont-nec irferrmationon the next paint
inthiz procedure.

E lzzue meszage
to reciuester

MNe

Rezponzecancel? :
p Continue procedure

Cancelwith Durmp

lzzue Dump

E Clrse Files
Unkck Data Areas
m Setprocedure so

that tcan becalledagain

[E Setreturncode and

percalate Function Check

Figure 15. Detail Flow of RPG IV Exception/Error Handling Routine

96 IBMi: ILE RPG Reference

Detailed RPG IV Program Cycle

RPG IV Exception/Error Handling Routine

Figure 15 on page 96 shows the specific steps in the RPG IV exception/error handling routine. The item

numbers in the following description refer to the numbers in the figure.

H

3

10

11

12

13

14

Set up the file information or procedure status data structure, if specified, with status information.

If the exception/error occurred on an operation code that has an indicator specified in positions 73
and 74, the indicator is set on, and control returns to the next sequential instruction in the
calculations.

If the appropriate exception/error subroutine (INFSR or *PSSR) is present in the procedure, the
procedure branches to step 13; otherwise, the procedure continues with step 4.

If the Status code is 1121-1126 (see “File Status Codes” on page 139), control returns to the current
instruction in the calculations. If not, the procedure continues with step 5.

If the exception is a function check, the procedure continues with step 6. If not, it branches to step
15.

An inquiry message is issued to the requester. For an interactive job, the message goes to the
requester. For a batch job, the message goes to QSYSOPR. If QSYSOPR is not in break mode, a default
response is issued.

If the user's response is to cancel the procedure, the procedure continues with step 8. If not, the
procedure continues.

If the user's response is to cancel with a dump, the procedure continues with step 9. If not, the
procedure branches to step 10.

A dumpisissued.

All global files are closed and data areas are unlocked

The procedure is set so that it can be called again.

The return code is set and the function check is percolated.

Control passes to the exception/error subroutine (INFSR or *PSSR).

If a return point is specified in factor 2 of the ENDSR operation for the exception/error subroutine, the
procedure goes to the specified return point. If a return point is not specified, the procedure goes to
step 4. If a field name is specified in factor 2 of the ENDSR operation and the content is not one of the
RPG IV-defined return points (such as *GETIN or *DETC), the procedure goes to step 6. No error is
indicated, and the original error is handled as though the factor 2 entry were blank.

If no invocation handles the exception, then it is promoted to function check and the procedure
branches to step 5. Otherwise, depending on the action taken by the handler, control resumes in this
procedure either at step 10 or at the next machine instruction after the point at which the exception
occurred.

Chapter 3. RPG IV Concepts 97

Detailed RPG IV Program Cycle

Subprocedure Calculations

No cycle code is generated for a subprocedure, and so you must code it differently than you would code a
cycle-main procedure. The subprocedure ends when one of the following occurs:

« ARETURN operation is processed
« The last calculation in the body of the subprocedure is processed.

Figure 16 on page 98 shows the normal processing steps for a subprocedure. Figure 17 on page 99
shows the exception/error handling sequence.

+|nitizlize globalvanables
+ Retriawe axernal indicators
{11 threugh Ug)jand usardane fields
+Cpen files
+ Load dataarsadata
structunes, arrmys, and tables

precaduna ([main
orzubleslied inthe
mcdule since progrm
activation?

+Ifthena i no *INZSR, stoe
data structumsand vanablas
t>r RESET cperations E

Initialize
automatcvarables

Firsttime
subprecaduna
hesbeen called?

+|nitiel e static vadabks
+Stomvariablbsfor RESET
cpamtionz onloealvariables

Returncparmtcn

Parformeals ulations onoe Satraturnwalue for caller

(ifthe subprecadura
Eturns avalue)

If subprecaduE
refurns & value, wasa
RETURNopamtic
done?

Returntc caller

Signalexcapticn o
callkerizubprecedurs
ends])

Figure 16. Normal Processing Sequence for a Subprocedure

Taking the "No" branch means that another procedure has already been called since the program was
activated. You should ensure that you do not make any incorrect assumptions about the state of files,
data areas, etc., since another procedure may have closed files, or unlocked data areas.

If an entry parameter to the main procedure is RESET anywhere in the module, this will cause an
exception. If it is possible that a subprocedure will be called before the main procedure, it is not
advised to RESET any entry parameters for the cycle-main procedure.

98 IBMi: ILE RPG Reference

Detailed RPG IV Program Cycle

Exceptionduring
calculaticns

Pregmm errar Y .
and subprocedure i Execute"PSER
haz*PSSRY zubroutine

Percolate exception
{zubprecedure ends)

Fregramcontinues
normally after RETURM
orG0TO

PSS Rreached
EMNDSR?

Signal exception to
caller (zubprocedure
ends)

Figure 17. Exception/Error Handling Sequence for a Subprocedure

Here are some points to consider when coding subprocedures:

« There is no *INZSR associated with subprocedures. Data is initialized (with either INZ values or default
values) when the subprocedure is first called, but before the calculations begin.

Note also that if the subprocedure is the first procedure to be called in a module, the *INZSR of the
cycle-main procedure (if present) will not be run, although other initialization of global data will be
done. The *INZSR of the cycle-main procedure will be run when the cycle-main procedure is called.

« When a subprocedure returns normally, the return value, if specified on the prototype of the called
program or procedure, is passed to the caller. Nothing else occurs automatically. All files and data areas
must be closed manually. Files must be written out manually. You can set on the LR or RT indicators,
but it will have no immediate effect on the program termination. If the the subprocedure was called by a
cycle-main procedure, the setting of the LR or RT indicators would take effect when the RPG cycle
reached the point at which RPG checks those indicators.

« Exception handling within a subprocedure differs from a cycle-main procedure primarily because there
is no default exception handler for subprocedures and so situations where the default handler would be
called for a cycle-main procedure correspond to abnormal end of the subprocedure. For example,
Factor 2 of an ENDSR operation for a *PSSR subroutine within a subprocedure must be blank. A blank
Factor 2 of the ENDSR for the *PSSR subroutine in a cycle-main procedure would result in control being
passed to the default handler. In a subprocedure, if the ENDSR of the *PSSR subroutine is reached, then
the subprocedure will end abnormally and RNX9001 will be signalled to the caller of the subprocedure.

You can avoid abnormal termination either by coding a RETURN operation in the *PSSR, or by coding a
GOTO and label in the subprocedure to continue processing.

« The *PSSR error subroutine is local to the subprocedure.
« You cannot code an INFSR in a subprocedure, nor can you use a file for which an INFSR is coded.

- Indicators that control the cycle function solely as conditioning indicators when used in a linear module
(MAIN or NOMAIN on control specification); or in a subprocedure that is active, but where the cycle-
main procedure of the module is not. Indicators that control the cycle include: LR, RT, H1-H9, and
control level indicators.

Implicit Opening of Files and Locking of Data Areas

Global files that do not have the USROPN keyword and UDS data areas are opened or locked implicitly
during module initialization and during cycle-main-procedure initialization. Static files in subprocedures
that do not have the USROPN keyword are opened implicitly the first time the subprocedure is called.
Automatic files in subprocedures that do not have the USROPN keyword are opened every time the
procedure is called.

Chapter 3. RPG IV Concepts 99

Indicators Defined on RPG IV Specifications

Implicit Closing of Files and Unlocking of Data Areas

Global files that are open are closed implicitly, and data areas that are locked are unlocked implicitly
during cycle-main procedure termination, when the cycle-main procedure ends abnormally or with LR on.
Automatic files in subprocedures are closed implicitly when the subprocedure ends normally or
abnormally.

Caution: There is no implicit closing of static files in subprocedures. There is no closing of global files or
implicit unlocking of data areas in a linear module. These objects will remain open or locked unless they
are explicitly closed or unlocked.

RPG IV Indicators

An indicator is a one byte character field which contains either '1' (on) or '0' (off). It is generally used to
indicate the result of an operation or to condition (control) the processing of an operation.

The indicator format can be specified on the definition specifications to define indicator variables. For a
description of how to define character data in the indicator format, see “Character Format” on page 228
and “Position 40 (Internal Data Type)” on page 381. This chapter describes a special set of predefined
RPG IV indicators (*INxx).

RPG IV indicators are defined either by an entry on a specification or by the RPG IV program itself. The
positions on the specification in which you define the indicator determine how the indicator is used. An
indicator that has been defined can then be used to condition calculation and output operations.

The RPG IV program sets and resets certain indicators at specific times during the program cycle. In
addition, the state of most indicators can be changed by calculation operations. All indicators except MR,
1P, KA through KN, and KP through KY can be set on with the SETON operation code; all indicators except
MR and 1P can be set off with the SETOFF operation code.

This chapter is divided into the following topics:

« Indicators defined on the RPG 1V specifications

« Indicators not defined on the RPG 1V specifications

« Using indicators

« Indicators referred to as data.

Indicators Defined on RPG IV Specifications

You can specify the following indicators on the RPG IV specifications:

Overflow indicator (the OFLIND keyword on the file description specifications).

Record identifying indicator (positions 21 and 22 of the input specifications).

Control level indicator (positions 63 and 64 of the input specifications).

Field indicator (positions 69 through 74 of the input specifications).

Resulting indicator (positions 71 through 76 of the calculation specifications).

*IN array, *IN(xx) array element or *INxx field (See “Indicators Referred to As Data” on page 122 for a
description of how an indicator is defined when used with one of these reserved words.).

The defined indicator can then be used to condition operations in the program.

Overflow Indicators

An overflow indicator is defined by the OFLIND keyword on the file description specifications. It is set on
when the last line on a page has been printed or passed. Valid indicators are *INOA through *INOG,
*INOV, and *INO1 through *IN99. A defined overflow indicator can then be used to condition calculation
and output operations. A description of the overflow indicator and fetch overflow logic is given in
“Overflow Routine” on page 93.

100 IBMi: ILE RPG Reference

Indicators Defined on RPG IV Specifications

Record Identifying Indicators

A record identifying indicator is defined by an entry in positions 21 and 22 of the input specifications and
is set on when the corresponding record type is selected for processing. That indicator can then be used
to condition certain calculation and output operations. Record identifying indicators do not have to be
assigned in any particular order.

The valid record identifying indicators are:
- 01-99

« H1-H9

« L1-19

- LR

- U1-U8

« RT

For an externally described file, a record identifying indicator is optional, but, if you specify it, it follows
the same rules as for a program described file.

Generally, the indicators 01 through 99 are used as record identifying indicators. However, the control
level indicators (L1 through L9) and the last record indicator (LR) can be used. If L1 through L9 are
specified as record identifying indicators, lower level indicators are not set on.

When you select a record type for processing, the corresponding record identifying indicator is set on. All
other record identifying indicators are off except when a file operation code is used at detail and total
calculation time to retrieve records from a file (see below). The record identifying indicator is set on after
the record is selected, but before the input fields are moved to the input area. The record identifying
indicator for the new record is on during total time for the old record; therefore, calculations processed at
total time using the fields of the old record cannot be conditioned by the record identifying indicator of the
old record. You can set the indicators off at any time in the program cycle; they are set off before the next
primary or secondary record is selected.

If you use a file operation code on the calculation specifications to retrieve a record, the record identifying
indicator is set on as soon as the record is retrieved from the file. The record identifying indicator is not
set off until the appropriate point in the RPG IV cycle. (See Figure 14 on page 95.) Therefore, it is possible
to have several record identifying indicators for the same file, as well as record-not-found indicators, set
on concurrently if several operations are issued to the same file within the same RPG IV program cycle.

Rules for Assigning Record Identifying Indicators

When you assign record identifying indicators to records in a program described file, remember the
following:

« You can assign the same indicator to two or more different record types if the same operation is to be
processed on all record types. To do this, you specify the record identifying indicator in positions 21 and
22, and specify the record identification codes for the various record types in an OR relationship.

 You can associate a record identifying indicator with an AND relationship, but it must appear on the first
line of the group. Record identifying indicators cannot be specified on AND lines.

« An undefined record (a record in a program described file that was not described by a record
identification code in positions 23 through 46) causes the program to halt.

- Arecord identifying indicator can be specified as a record identifying indicator for another record type,
as a field indicator, or as a resulting indicator. No diagnostic message is issued, but this use of
indicators may cause erroneous results.

When you assign record identifying indicators to records in an externally described file, remember the
following:

« AND/OR relationships cannot be used with record format names; however, the same record identifying
indicator can be assigned to more than one record.

« The record format name, rather than the file name, must be specified in positions 7 through 16.

Chapter 3. RPG IV Concepts 101

Indicators Defined on RPG IV Specifications

For an example of record identifying indicators, see Figure 18 on page 102.

L P N . PUPE DA’ DU S - SUP SR c UM SR
IFilename++SQNORiP0OS1+NCCPOS2+NCCPOS3+NCC. . . o v vttt i ittt ettt e e e eeee e e
L. e Fmt+SPFrom+To+++DcField+++++++++LIMIFrP1MnZzx. . ..

IxRecord identifying indicator 01 is set on if the record read
Ixcontains an S in position 1 or an A in position 1.
IINPUT1 NS 01 1cCs
I OR 1 CA
I 1 25 FLD1
* Record identifying indicator 02 is set on if the record read
* contains XYZA in positions 1 through 4.
NS 02 1 CX 2 CcY 3 Ccz
AND 4 CA
1 15 FLDA
16 20 FLDB
* Record identifying indicator 95 is set on if any record read
* does not meet the requirements for record identifying indicators

e]

* 01 or 02.

I NS 95

L I R UTTrIr: DU S S - DU ST o JUPEPE PP AU
IRCANAmMe+++. .. cRI. i i i e ettt e

*

* For an externally described file, record identifying indicator 10
* is set on if the ITMREC record is read and record identifying

* indicator 20 is set on if the SLSREC or COMREC records are read.

IITMREC 10
ISLSREC 20
ICOMREC 20

Figure 18. Examples of Record Identifying Indicators

Control Level Indicators (L1-L9)

A control level indicator is defined by an entry in positions 63 and 64 of the input specifications,
designating an input field as a control field. It can then be used to condition calculation and output
operations. The valid control level indicator entries are L1 through L9.

A control level indicator designates an input field as a control field. When a control field is read, the data
in the control field is compared with the data in the same control field from the previous record. If the
data differs, a control break occurs, and the control level indicator assigned to the control field is set on.
You can then use control level indicators to condition operations that are to be processed only when all
records with the same information in the control field have been read. Because the indicators stay on for
both total time and the first detail time, they can also be used to condition total printing (last record of a
control group) or detail printing (first record in a control group). Control level indicators are set off before
the next record is read.

A control break can occur after the first record containing a control field is read. The control fields in this
record are compared to an area in storage that contains hexadecimal zeros. Because fields from two
different records are not being compared, total calculations and total output operations are bypassed for
this cycle.

Control level indicators are ranked in order of importance with L1 being the lowest and L9 the highest. All
lower level indicators are set on when a higher level indicator is set on as the result of a control break.
However, the lower level indicators can be used in the program only if they have been defined. For
example, if L8 is set on by a control break, L1 through L7 are also set on. The LR (last record) indicator is
set on when the input files are at end of file. LR is considered the highest level indicator and forces L1
through L9 to be set on.

You can also define control level indicators as record identifying or resulting indicators. When you use
them in this manner, the status of the lower level indicators is not changed when a higher level indicator
is set on. For example, if L3 is used as a resulting indicator, the status of L2 and L1 would not change if L3
is set on.

102 IBMi: ILE RPG Reference

Indicators Defined on RPG IV Specifications

The importance of a control field in relation to other fields determines how you assign control level
indicators. For example, data that demands a subtotal should have a lower control level indicator than
data that needs a final total. A control field containing department numbers should have a higher control
level indicator than a control field containing employee numbers if employees are to be grouped within
departments (see Figure 19 on page 104).

Rules for Control Level Indicators

When you assign control level indicators, remember the following:

You can specify control fields only for primary or secondary files.

You cannot specify control fields for full procedural files; numeric input fields of type binary, integer,
unsigned or float; or look-ahead fields.

You cannot use control level indicators when an array name is specified in positions 49 through 62 of
the input specifications; however, you can use control level indicators with an array element. Control
level indicators are not allowed for null-capable fields.

Control level compare operations are processed for records in the order in which they are found,
regardless of the file from which they come.

If you use the same control level indicator in different record types or in different files, the control fields
associated with that control level indicator must be the same length (see Figure 19 on page 104) except
for date, time, and timestamp fields which need only match in type (that is, they can be different
formats).

The control level indicator field length is the length of a control level indicator in a record. For example,
if L1 has a field length of 10 bytes in a record, the control level indicator field length for L1 is 10
positions.

The control level indicator field length for split control fields is the sum of the lengths of all fields
associated with a control level indicator in a record. If L2 has a split control field consisting of 3 fields of
length: 12 bytes, 2 bytes and 4 bytes; then the control level indicator field length for L2 is 18 positions.

If multiple records use the same control level indicator, then the control level indicator field length is
the length of only one record, not the sum of all the lengths of the records.

Within a program, the sum of the control level indicator field lengths of all control level indicators
cannot exceed 256 positions.

Record positions in control fields assigned different control level indicators can overlap in the same
record type (see Figure 20 on page 104). For record types that require control or match fields, the total
length of the control or match field must be less than or equal to 256. For example, in Figure 20 on page
104, 15 positions have been assigned to control levels.

Field names are ignored in control level operations. Therefore, fields from different record types that
have been assigned the same control level indicator can have the same name.

Control levels need not be written in any sequence. An L2 entry can appear before L1. All lower level
indicators need not be assigned.

If different record types in a file do not have the same number of control fields, unwanted control
breaks can occur.

Figure 21 on page 105 shows an example of how to avoid unwanted control breaks.

Chapter 3. RPG IV Concepts 103

Indicators Defined on RPG IV Specifications

L P O S: PUPE DA S S - ST R c DU SR S
Ax EMPLOYEE MASTER FILE -- EMPMSTL

A R EMPREC PFILE (EMPMSTL)
A EMPLNO 6

A DEPT 3

A DIVSON 1

Ax

Ax (ADDITIONAL FIELDS)

Ax

A R EMPTIM PFILE (EMPMSTP)
A EMPLNO 6

A DEPT 3

A DIVSON 1

Ax

Ax (ADDITIONAL FIELDS)

L R A T SRR R SRR RN S T < PR AR N
IFilename++SqNORiP0S1+NCCPOS2+NCCPOS3+NCC. . .« v vttt ittt e et i e e e eeee e e
T e Fmt+SPFrom+To+++DcField+++++++++LIMIFrP1MnZzx. . ..
*

* In this example, control level indicators are defined for three

* fields. The names of the control fields (DIVSON, DEPT, EMPLNO)

* give an indication of their relative importance.

* The division (DIVSON) is the most important group.

* It is given the highest control level indicator used (L3).

* The department (DEPT) ranks below the division;

* L2 is assigned to it. The employee field (EMPLNO) has

* the lowest control level indicator (L1) assigned to it.

*

E

IEMPREC 10

I EMPLNO L1
I DIVSON L3
I DEPT L2

*
* The same control level indicators can be used for different record
* types. However, the control fields having the same indicators must
* be the same length. For records in an externally described file,

* the field attributes are defined in the external description.

*

E

IEMPTIM 20

I EMPLNO L1
I DEPT L2
I DIVSON L3

Figure 19. Control Level Indicators (Two Record Types)

Ceontral Field 1

e ———
123456723 W N2 MHUIFHITIREEOANDADMITNRITHIDN

T— —
Centrel Field 2

Atotal of 16 pozitions has been
azzigned o theze control levels.

Figure 20. Overlapping Control Fields

104 IBMi: ILE RPG Reference

Indicators Defined on RPG IV Specifications

Start

® SetofRTindcater
® Parameters resched

First [
time program

called

Maowve resultfield
totactor 1 for
*ENTRY PLIST

*IMT
FPerform programintialization:

Runpregraminitialization

Perormdatastructureand
subfied inttialization

@ FRetrigve externalindicators
{1 threugh Us)and uzer
datefickz

& Openfiles

Loaddataareadata
structures, arrays, andtablez

& Moveresultfield to factor1
fer*ENTRY PLIST

& Runinitialization subreutine,
“INZS R, if epecified

® Storedata structurezand
variablesfer RESET eperation

Y oen

Pertermheadingand detail
& output
Perdormfeichoverflow lines
® Setoff firstpage
¥ indicators (1P

“GETIN

Any
H1 threughH2
indicators
@h

5 Al

Sﬁ;ﬁﬁ lzsue message
indioator terequester

Rezponse
cancel

Cancel
with dump

I lzsuedump

[l ———————

3%

8]

Setofrecornd identifying and
L1through L9indicators

Seton
L1throughL9

M ove facter 2 to
resultfield for

TENTRY PLIST

Returntecaller

& Onfirstoycle, retrieve first
record framprimary file and
and from each secendary
file inpregram

@ Onothercycles, retrieve
input record fromlastfile
processed, frequired

m) Mo Deterrnine recerd
Endotfile typeand sequence
Yes E]

Yes

Undefined
recond type or sequ-
ENCE EFFCr

M atzh fie ks
specified

Figure 21. How to Avoid Unwanted Control Breaks

RPG exceptiondertor
handling reutine

Initialize to process

theferced fils 24
Yes | woeh f;;"!l
I routing 24
i
MOIE! = =RPG routine

(for detailedinformation
seethe descriptions that
follow this picture).

Chapter 3. RPG IV Concepts 105

Indicators Defined on RPG IV Specifications

koo ool 20 kL 3l LBl b T
IFilename++SqNORiP0S1+NCCPOS2+NCCPOS3+NCC. . . o v vttt ittt e et i e e e e eeee e e

T Fmt+SPFrom+To+++DcField+++++++++LIMIFrP1MnZzx. . ..
ISALES 01

I 1 2 L2FLD L2

I 3 15 NAME

IITEM 02

I 1 2 L2FLD L2

I 3 5 LI1FLD L1

I 6 8 AMT

CLONO@1Factorl+++++++0pcode(E)+Factor2+++++++Result++++++++Len++D+HiloEq. .
* Indicator 11 is set on when the salesman record is read.

O0OO0OO0OO0OO0O0OO0OO

T LIN11

L1TOT
T L2

L2TOT
T LR

LRTOT

ZB

ZB

ZB

*
c o1 SETON 11

*

* Indicator 11 is set off when the item record is read.

* This allows the normal L1 control break to occur.

*
Cc 02 SETOFF 11
C O2AMT ADD LATOT LATOT 50
CL1 LATOT ADD L2TOT L2TOT 50
CL2 L2TOT ADD LRTOT LRTOT 50

*

*...1 + 2 + 3 + 4 + Bccootoooc® oTPo 7

OFilename++DF . . NOINO2NOIEXCNAM++++B++A++SD+SA+ot

O NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat
OPRINTER D 01 1 1
0 L2FLD 5
0 NAME 25
0 D 02 1
0 L1FLD 15
0 AMT 15
*
* When the next item record causes an L1 control break, no total
* output is printed if indicator 11 is on. Detail calculations
* are then processed for the item recoxd.
*

OFilename++DF..NOLINO2NO3EXcnam++++B++A++Sh+Sa+. .. cveeeeeeeceeceeccencnnee
NOINO2NO3Field+++++++++YB.End++PConstant/editwoxrd/DTfoxrmat

25
27 'x'

25
28 '*x'

25

106 IBMi: ILE RPG Reference

Indicators Defined on RPG IV Specifications

01 JOHM SMITH Unwanted 01 JOHM SMITH
contrel
brealk 100

100

100
100

101 101

w ok Bk
+

w bk Bk G
+

oz JAME DOE Unwanted 0z JARE DOE
contrel
break 100

100

100
100

101 101

= Do oan faom
*

= ol m
*

Cutput Shewing Unwanted Control Lewel Break Corrected Output

Different record types normally contain the same number of control fields. However, some applications
require a different number of control fields in some records.

The salesman records contain only the L2 control field. The item records contain both L1 and L2 control
fields. With normal RPG IV coding, an unwanted control break is created by the first item record following
the salesman record. This is recognized by an L1 control break immediately following the salesman
record and results in an asterisk being printed on the line below the salesman record.

« Numeric control fields are compared in zoned decimal format. Packed numeric input fields lengths can
be determined by the formula:

d=2n -1

Where d = number of digits in the field and n = length of the input field. The number of digits in a packed
numeric field is always odd; therefore, when a packed numeric field is compared with a zoned decimal
numeric field, the zoned field must have an odd length.

« When numeric control fields with decimal positions are compared to determine whether a control break
has occurred, they are always treated as if they had no decimal positions. For instance, 3.46 is
considered equal to 346.

« If you specify a field as numeric, only the positive numeric value determines whether a control break
has occurred; that is, a field is always considered to be positive. For example, -5 is considered equal to
+5.

« Date and time fields are converted to *ISO format before being compared
« Graphic data is compared by hexadecimal value

Split Control Field

A split control field is formed when you assign more than one field in an input record the same control
level indicator. For a program described file, the fields that have the same control level indicator are
combined by the program in the order specified in the input specifications and treated as a single control
field (see Figure 22 on page 108). The first field defined is placed in the high-order (leftmost) position of
the control field, and the last field defined is placed in the low-order (rightmost) position of the control
field.

Chapter 3. RPG IV Concepts 107

Indicators Defined on RPG IV Specifications

koo ool 20 kL 3l LBl b T
IFilename++SqNORiP0S1+NCCPOS2+NCCPOS3+NCC. . . o v vttt ittt e et i e e e e eeee e e

T Fmt+SPFrom+To+++DcField+++++++++LIMIFrP1MnZzx. . ..
IMASTER 01

I 28 31 CUSNO L4

I 15 20 ACCTNO L4

I 50 52 REGNO L4

Figure 22. Split Control Fields

For an externally described file, fields that have the same control level indicator are combined in the order
in which the fields are described in the data description specifications (DDS), not in the order in which the
fields are specified on the input specifications. For example, if these fields are specified in DDS in the
following order:

- EMPNO
« DPTNO
« REGNO

and if these fields are specified with the same control level indicator in the following order on the input
specifications:

« REGNO L3

« DPTNO L3

« EMPNO L3

the fields are combined in the following order to form a split control field: EMPNO DPTNO REGNO.
Some special rules for split control fields are:

« For one control level indicator, you can split a field in some record types and not in others if the field
names are different. However, the length of the field, whether split or not, must be the same in all
record types.

« You can vary the length of the portions of a split control field for different record types if the field names
are different. However, the total length of the portions must always be the same.

« A split control field can be made up of a combination of packed decimal fields and zoned decimal fields
so long as the field lengths (in digits or characters) are the same.

« You must assign all portions of a split control field in one record type the same field record relation
indicator and it must be defined on consecutive specification lines.

- When a split control field contains a date, time, or timestamp field than all fields in the split control field
must be of the same type.

Figure 23 on page 109 shows examples of the preceding rules.

108 IBMi: ILE RPG Reference

Indicators Defined on RPG IV Specifications

koo ool 20 kL 3l LBl b T
IFilename++SqNORiP0S1+NCCPOS2+NCCPOS3+NCC. . . o v vttt ittt e et i e e e e eeee e e

T Fmt+SPFrom+To+++DcField+++++++++LIMIFrP1MnZzx. . ..
IDISK BC 91 95 C1

I OR 92 95 C2

I OR 93 95 C3

I

* All portions of the split control field must be assigned the same
* control level indicator and all must have the same field record
* relation entry.

I 1 5 FLD1A L1
I 46 50 FLDi1B L1
I 11 13 FLDA L2
I 51 60 FLD2A L3
I 31 40 FLD2B L3
I 71 75 FLD3A L4 92
I 26 27 FLD3B L4 92
I 41 45 FLD3C L4 92
I 61 70 FLDB 92
I 21 25 FLDC 92
I 6 10 FLD3D L4 93
I 14 20 FLD3E L4 93

Figure 23. Split Control Fields—Special Rules

The record identified by a '1' in position 95 has two split control fields:

1. FLD1A and FLD1B
2. FLD2A and FLD2B

The record identified with a '2' in position 95 has three split control fields:

1. FLD1A and FLD1B
2. FLD2A and FLD2B
3. FLD3A, FLD3B, and FLD3C

The third record type, identified by the 3 in position 95, also has three split control fields:

1. FLD1A and FLD1B
2. FLD2A and FLD2B
3. FLD3D and FLD3E

Field Indicators

A field indicator is defined by an entry in positions 69 and 70, 71 and 72, or 73 and 74 of the input
specifications. The valid field indicators are:

- 01-99
« H1-H9
- U1-U8
« RT

You can use a field indicator to determine if the specified field or array element is greater than zero, less
than zero, zero, or blank. Positions 69 through 72 are valid for numeric fields only; positions 73 and 74 are
valid for numeric or character fields. An indicator specified in positions 69 and 70 is set on when the
numeric input field is greater than zero; an indicator specified in positions 71 and 72 is set on when the
numeric input field is less than zero; and an indicator specified in positions 73 and 74 is set on when the
numeric input field is zero or when the character input field is blank. You can then use the field indicator
to condition calculation or output operations.

A field indicator is set on when the data for the field or array element is extracted from the record and the
condition it represents is present in the input record. This field indicator remains on until another record
of the same type is read and the condition it represents is not present in the input record, or until the
indicator is set off as the result of a calculation.

Chapter 3. RPG IV Concepts 109

Indicators Defined on RPG IV Specifications

You can use halt indicators (H1 through H9) as field indicators to check for an error condition in the field
or array element as it is read into the program.

Rules for Assigning Field Indicators
When you assign field indicators, remember the following:

« Indicators for plus, minus, zero, or blank are set off at the beginning of the program. They are not set on
until the condition (plus, minus, zero, or blank) is satisfied by the field being tested on the record just
read.

« Field indicators cannot be used with entire arrays or with look-ahead fields. However, an entry can be
made for an array element. Field indicators are allowed for null-capable fields only if
ALWNULL(*USRCTL) is used.

< A numeric input field can be assigned two or three field indicators. However, only the indicator that
signals the result of the test on that field is set on; the others are set off.

- If the same field indicator is assigned to fields in different record types, its state (on or off) is always
based on the last record type selected.

« When different field indicators are assigned to fields in different record types, a field indicator remains
on until another record of that type is read. Similarly, a field indicator assigned to more than one field
within a single record type always reflects the status of the last field defined.

« The same field indicator can be specified as a field indicator on another input specification, as a
resulting indicator, as a record identifying indicator, or as a field record relation indicator. No diagnostic
message is issued, but this use of indicators could cause erroneous results, especially when match
fields or level control is involved.

- If the same indicator is specified in all three positions, the indicator is always set on when the record
containing this field is selected.

Resulting Indicators

Resulting indicators are used by calculation specifications in the traditional format (C specifications). They
are not used by free-form calculation specifications. For most operation codes, in either traditional format
or free-form, you can use built-in functions instead of resulting indicators. For more information, see
“Built-in Functions” on page 496.

A resulting indicator is defined by an entry in positions 71 through 76 of the calculation specifications.
The purpose of the resulting indicators depends on the operation code specified in positions 26 through
35. (See the individual operation code in “Operation Codes” on page 632 for a description of the purpose
of the resulting indicators.) For example, resulting indicators can be used to test the result field after an
arithmetic operation, to identify a record-not-found condition, to indicate an exception/error condition for
a file operation, or to indicate an end-of-file condition.

The valid resulting indicators are:

« 01-99

e H1-H9

- OA-0G, OV

« L1-L9

* LR

- U1-U8

« KA-KN, KP-KY (valid only with SETOFF)
« RT

You can specify resulting indicators in three places (positions 71-72, 73-74, and 75-76) of the calculation
specifications. The positions in which the resulting indicator is defined determine the condition to be
tested.

In most cases, when a calculation is processed, the resulting indicators are set off, and, if the condition
specified by a resulting indicator is satisfied, that indicator is set on. However, there some exceptions to

110 IBMi: ILE RPG Reference

Indicators Not Defined on the RPG 1V Specifications

this rule, notably “LOOKUP (Look Up a Table or Array Element)” on page 714, “SETOFF (Set Indicator
Off)” on page 790, and “SETON (Set Indicator On)” on page 791. A resulting indicator can be used as a
conditioning indicator on the same calculation line or in other calculations or output operations. When you
use it on the same line, the prior setting of the indicator determines whether or not the calculation is
processed. If it is processed, the result field is tested and the current setting of the indicator is
determined (see Figure 24 on page 111).

Rules for Assigning Resulting Indicators
When assigning resulting indicators, remember the following:

« Resulting indicators cannot be used when the result field refers to an entire array.

« If the same indicator is used to test the result of more than one operation, the last operation processed
determines the setting of the indicator.

« When L1 through L9 indicators are used as resulting indicators and are set on, lower level indicators are
not set on. For example, if L8 is set on, L1 through L7 are not set on.

« If H1 through H9 indicators are set on when used as resulting indicators, the program halts unless the
halt indicator is set off prior to being checked in the program cycle. (See “RPG Cycle and other implicit
Logic” on page 85).

- The same indicator can be used to test for more than one condition depending on the operation
specified.

€0 0 0dbo 0 0 0%0 0 0 0830 0 0 00 0 0 080 0.0 00 0 0 0440 0 0 0%0 0 0 00 0 0 0T0 0 0 06@0 0 0 00 000 H 00 0
CLONOLFactorl+++++++0pcode (E) +Factor2+++++++Result++++++++Len++D+HilLoEq. .
*

* Two resulting indicators are used to test for the different
* conditions in a subtraction operation. These indicators are
* used to condition the calculations that must be processed for
* a payroll job. Indicator 10 is set on if the hours worked (HRSWKD)
* are greater than 40 and is then used to condition all operations
* necessary to find overtime pay. If Indicator 20 is not on
* (the employee worked 40 or more hours), regular pay based on a
* 40-hour week is calculated.
*
c HRSWKD SUB 40 OVERTM 3 01020
*
C N20OPAYRAT MULT (H) 40 PAY 6 2
C 100VERTM MULT (H) OVRRAT OVRPAY 6 2
C 100VRPAY ADD PAY PAY

* If indicator 20 is on (employee worked less than 40 hours), pay
* based on less than a 40-hour week is calculated.
Cc 20PAYRAT MULT (H) HRSWKD PAY

Figure 24. Resulting Indicators Used to Condition Operations

Indicators Not Defined on the RPG IV Specifications

Not all indicators that can be used as conditioning indicators in an RPG IV program are defined on the
specification forms. External indicators (U1 through U8) are defined by a CL command or by a previous
RPG IV program. Internal indicators (1P, LR, MR, and RT) are defined by the RPG IV program cycle itself.

External Indicators

The external indicators are U1 through U8. These indicators can be set in a CL program orin an RPG IV
program. In a CL program, they can be set by the SWS (switch-setting) parameter on the CL commands
CHGJOB (Change Job) or CRTJOBD (Create Job Description). In an RPG IV program, they can be set as a
resulting indicator or field indicator.

The status of the external indicators can be changed in the program by specifying them as resulting
indicators on the calculation specifications or as field indicators on the input specifications. However,

Chapter 3. RPG IV Concepts 111

Indicators Not Defined on the RPG IV Specifications

changing the status of the IBM i job switches with a CL program during processing of an RPG IV program
has no effect on the copy of the external indicators used by the RPG IV program. Setting the external
indicators on or off in the program has no effect on file operations. File operations function according to
the status of the U1 through U8 indicators when the program is initialized. However, when a program
ends normally with LR on, the external indicators are copied back into storage, and their status reflects
their last status in the RPG IV program. The current status of the external indicators can then be used by
other programs.

Note: When using “RETURN (Return to Caller)” on page 778 with the LR indicator off, you are specifying a
return without an end and, as a result, no external indicators are updated.

Internal Indicators
Internal indicators include:
- First page indicator

- Last record indicator

« Matching record indicator
 Return Indicator.

First Page Indicator (1P)

The first page (1P) indicator is set on by the RPG IV program when the program starts running and is set
off by the RPG IV program after detail time output. The first record will be processed after detail time
output. The 1P indicator can be used to condition heading or detail records that are to be written at 1P
time. Do not use the 1P indicator in any of the following ways:

« To condition output fields that require data from input records; this is because the input data will not be
available.

« To condition total or exception output lines

In an AND relationship with control level indicators

As a resulting indicator

When MAIN or NOMAIN is specified on a control specification

Last Record Indicator (LR)

In a program that contains a primary file, the last record indicator (LR) is set on after the last record from
a primary/secondary file has been processed, or it can be set on by the programmer.

The LR indicator can be used to condition calculation and output operations that are to be done at the end
of the program. When the LR indicator is set on, all other control level indicators (L1 through L9) are also
set on. If any of the indicators L1 through L9 have not been defined as control level indicators, as record
identifying indicators, as resulting indicators, or by *INxx, the indicators are set on when LR is set on, but
they cannot be used in other specifications.

In a program that does not contain a primary file, you can set the LR indicator on as one method to end
the program. (For more information on how to end a program without a primary file, see “RPG Cycle and
other implicit Logic” on page 85.) To set the LR indicator on, you can specify the LR indicator as a record
identifying indicator or a resulting indicator. If LR is set on during detail calculations, all other control level
indicators are set on at the beginning of the next cycle. LR and the record identifying indicators are both
on throughout the remainder of the detail cycle, but the record identifying indicators are set off before LR
total time.

Matching Record Indicator (MR)

The matching record indicator (MR) is associated with the matching field entries M1 through M9. It can
only be used in a program when Match Fields are defined in the primary and at least one secondary file.

The MR indicator is set on when all the matching fields in a record of a secondary file match all the
matching fields of a record in the primary file. It remains on during the complete processing of primary

112 IBMi: ILE RPG Reference

Using Indicators

and secondary records. It is set off when all total calculations, total output, and overflow for the records
have been processed.

At detail time, MR always indicates the matching status of the record just selected for processing; at total
time, it reflects the matching status of the previous record. If all primary file records match all secondary
file records, the MR indicator is always on.

Use the MR indicator as a field record relation indicator, or as a conditioning indicator in the calculation
specifications or output specifications to indicate operations that are to be processed only when records
match. The MR indicator cannot be specified as a resulting indicator.

For more information on Match Fields and multi-file processing, see “General File Considerations” on
page 154.

Return Indicator (RT)

You can use the return indicator (RT) to indicate to the internal RPG IV logic that control should be
returned to the calling program. The test to determine if RT is on is made after the test for the status of LR
and before the next record is read. If RT is on, control returns to the calling program. RT is set off when
the program is called again.

Because the status of the RT indicator is checked after the halt indicators (H1 through H9) and LR
indicator are tested, the status of the halt indicators or the LR indicator takes precedence over the status
of the RT indicator. If both a halt indicator and the RT indicator are on, the halt indicator takes
precedence. If both the LR indicator and RT indicator are on, the program ends normally.

RT can be set on as a record identifying indicator, a resulting indicator, or a field indicator. It can then be
used as a conditioning indicator for calculation or output operations.

For a description of how RT can be used to return control to the calling program, see the chapter on
calling programs in the Rational Development Studio for i: ILE RPG Programmer's Guide.

Using Indicators

Indicators that you have defined as overflow indicators, control level indicators, record identifying
indicators, field indicators, resulting indicators, *IN, *IN(xx), *INxx, or those that are defined by the RPG
IV language can be used to condition files, calculation operations, or output operations. An indicator must
be defined before it can be used as a conditioning indicator. The status (on or off) of an indicator is not
affected when it is used as a conditioning indicator. The status can be changed only by defining the
indicator to represent a certain condition.

Note: Indicators that control the cycle function solely as conditioning indicators when used in a MAIN or
NOMAIN module; or in a subprocedure that is active, but where the cycle-main procedure of the module
is not. Indicators that control the cycle include: LR, RT, H1-H9, and control level indicators.

File Conditioning

The file conditioning indicators are specified by the EXTIND keyword on the file description specifications.
Only the external indicators U1 through U8 are valid for file conditioning. (The USROPN keyword can be
used to specify that no implicit OPEN should be done.)

If the external indicator specified is off when the program is called, the file is not opened and no data
transfer to or from the file will occur when the program is running. Primary and secondary input files are
processed as if they were at end-of-file. The end-of-file indicator is set on for all READ operations to that
file. Input, calculation, and output specifications for the file need not be conditioned by the external
indicator.

Rules for File Conditioning

When you condition files, remember the following:

- Afile conditioning entry can be made for input, output, update, or combined files.

« Afile conditioning entry cannot be made for table or array input.

Chapter 3. RPG IV Concepts 113

Using Indicators

« Output files for tables can be conditioned by U1 through U8. If the indicator is off, the table is not
written.

« Arecord address file can be conditioned by U1 through U8, but the file processed by the record address
file cannot be conditioned by U1 through U8.

- If the indicator conditioning a primary file with matching records is off, the MR indicator is not set on.

« Input does not occur for an input, an update, or a combined file if the indicator conditioning the file is

off. Any indicators defined on the associated Input specifications in positions 63-74 will be processed
as usual using the existing values in the input fields.

« Data transfer to the file does not occur for an output, an update, or a combined file if the indicator
conditioning the file is off. Any conditioning indicators, numeric editing, or blank after that are defined
on the output specifications for these files will be processed as usual.

« If the indicator conditioning an input, an update, or a combined file is off, the file is considered to be at
end of file. All defined resulting indicators are set off at the beginning of each specified I/O operation.
The end-of-file indicator is set on for READ, READC, READE, READPE, and READP operations. CHAIN,
EXFMT, SETGT, SETLL, and UNLOCK operations are ignored and all defined resulting indicators remain
set off.

Field Record Relation Indicators

Field record relation indicators are specified in positions 67 and 68 of the input specifications. The valid
field record relation indicators are:

- 01-99

« H1-H9

« MR

« RT

- L1-19

- U1-U8

Field record relation indicators cannot be specified for externally described files.

You use field record relation indicators to associate fields with a particular record type when that record
type is one of several in an OR relationship. The field described on the specification line is available for
input only if the indicator specified in the field record relation entry is on or if the entry is blank. If the
entry is blank, the field is common to all record types defined by the OR relationship.

Assigning Field Record Relation Indicators

You can use a record identifying indicator (01 through 99) in positions 67 and 68 to relate a field to a
particular record type. When several record types are specified in an OR relationship, all fields that do not
have a field record relation indicator in positions 67 and 68 are associated with all record types in the OR
relationship. To relate a field to just one record type, you enter the record identifying indicator assigned to
that record type in positions 67 and 68 (see Figure 25 on page 115).

An indicator (01 through 99) that is not a record identifying indicator can also be used in positions 67 and
68 to condition movement of the field from the input area to the input fields.

Control fields, which you define with an L1 through L9 indicator in positions 63 and 64 of the input
specifications, and match fields, which are specified by a match value (M1 through M9) in positions 65
and 66 of the input specifications, can also be related to a particular record type in an OR relationship if a
field record relation indicator is specified. Control fields or match fields in the OR relationship that do not
have a field record relation indicator are used with all record types in the OR relationship.

If two control fields have the same control level indicator or two match fields have the same matching
level value, a field record relation indicator can be assigned to just one of the match fields. In this case,
only the field with the field record relation indicator is used when that indicator is on. If none of the field
record relation indicators are on for that control field or match field, the field without a field record
relation indicator is used. Control fields and match fields can only have entries of 01 through 99 or H1
through H9 in positions 67 and 68.

114 IBMi: ILE RPG Reference

Using Indicators

You can use positions 67 and 68 to specify that the program accepts and uses data from a particular field
only when a certain condition occurs (for example, when records match, when a control break occurs, or
when an external indicator is on). You can indicate the conditions under which the program accepts data
from a field by specifying indicators L1 through L9, MR, or U1 through U8 in positions 67 and 68. Data
from the field named in positions 49 through 62 is accepted only when the field record relation indicator
is on.

External indicators are primarily used when file conditioning is specified with the “EXTIND(*INUx)” on
page 343 keyword on the file description specifications. However, they can be used even though file
conditioning is not specified.

A halt indicator (H1 through H9) in positions 67 and 68 relates a field to a record that is in an OR
relationship and also has a halt indicator specified in positions 21 and 22.

Remember the following points when you use field record relation indicators:

« Control level (positions 63 and 64) and matching fields (positions 65 and 66) with the same field record
relation indicator must be grouped together.

« Fields used for control level (positions 63 and 64) and matching field entries (positions 65 and 66)
without a field record relation indicator must appear before those used with a field record relation
indicator.

« Control level (positions 63 and 64) and matching fields (positions 65 and 66) with a field record relation
indicator (positions 67 and 68) take precedence, when the indicator is on, over control level and
matching fields of the same level without an indicator.

« Field record relations (positions 67 and 68) for matching and control level fields (positions 63 through
66) must be specified with record identifying indicators (01 through 99 or H1 through H9) from the main
specification line or an OR relation line to which the matching field refers. If multiple record types are
specified in an OR relationship, an indicator that specifies the field relation can be used to relate
matching and control level fields to the pertinent record type.

« Noncontrol level (positions 63 and 64) and matching field (positions 65 and 66) specifications can be
interspersed with groups of field record relation entries (positions 67 and 68).

- The MR indicator can be used as a field record relation indicator to reduce processing time when certain
fields of an input record are required only when a matching condition exists.

« The number of control levels (L1 through L9) specified for different record types in the OR relationship
can differ. There can be no control level for certain record types and a number of control levels for other
record types.

- If all matching fields (positions 65 and 66) are specified with field record relation indicators (positions
67 and 68), each field record relation indicator must have a complete set of matching fields associated
with it.

- If one matching field is specified without a field record relation indicator, a complete set of matching
fields must be specified for the fields without a field record relation indicator.

€0 0 0dbo 0 0 000 0 0 0830 0 0 00 0 0 080 0 0 00 0 0 04%0 0 0 60 0 0 080 0 0 0T0 0 0 6@0 0 0 00 000 H 000
IFilename++SgNORiP0oS1+NCCP0S2+NCCPOS3+NCC.ttt ittt it e it e i e e e e e et

T e Fmt+SPFrom+To+++DcField+++++++++L1MIFrP1MnZx. . ..
IREPORT AA 14 1 C5

I OR 16 1 Cé6

I 20 30 FLDB

I 2 10 FLDA 07

*

* Indicator 07 was specified elsewhere in the program.

*

I 40 50 FLDC 14
I 60 70 FLDD 16

Figure 25. Field Record Relation

Chapter 3. RPG IV Concepts 115

Using Indicators

The file contains two different types of records, one identified by a 5 in position 1 and the other by a 6 in
position 1. The FLDC field is related by record identifying indicator 14 to the record type identified by a 5
in position 1. The FLDD field is related to the record type having a 6 in position 1 by record identifying
indicator 16. This means that FLDC is found on only one type of record (that identified by a 5 in position 1)
and FLDD is found only on the other type. FLDA is conditioned by indicator 07, which was previously
defined elsewhere in the program. FLDB is found on both record types because it is not related to any one
type by a record identifying indicator.

Function Key Indicators

You can use function key indicators in a program that contains a WORKSTN device if the associated
function keys are specified in data description specifications (DDS). Function keys are specified in DDS
with the CFxx or CAxx keyword. For an example of using function key indicators with a WORKSTN file, see
the WORKSTN chapter in the Rational Development Studio for i: ILE RPG Programmer's Guide.

Corresponding Corresponding
Function Key Indicator | Function Key Function Key Indicator | Function Key
KA 1 KM 13
KB 2 KN 14
KC 3 KP 15
KD 4 KQ 16
KE 5 KR 17
KF 6 KS 18
KG 7 KT 19
KH 8 KU 20
KI 9 KV 21
K3 10 KW 22
KK 11 KX 23
KL 12 KY 24

The function key indicators correspond to function keys 1 through 24. Function key indicator KA
corresponds to function key 1, KB to function key 2 ... KY to function key 24.

Function key indicators that are set on can then be used to condition calculation or output operations.
Function key indicators can be set off by the SETOFF operation.

Halt Indicators (H1-H9)

You can use the halt indicators (H1 through H9) to indicate errors that occur during the running of a
program. The halt indicators can be set on as record identifying indicators, field indicators, or resulting
indicators.

The halt indicators are tested at the *GETIN step of the RPG IV cycle (see “RPG Cycle and other implicit
Logic” on page 85). If a halt indicator is on, a message is issued to the user. The following responses are
valid:

- Set off the halt indicator and continue the program.
 Issue a dump and end the program.
« End the program with no dump.

If a halt indicator is on when a RETURN operation inside a cycle-main procedure is processed, or when
the LR indicator is on, the called program ends abnormally. The calling program is informed that the
called program ended with a halt indicator on.

116 IBMi: ILE RPG Reference

Using Indicators

Note: If the keyword MAIN or NOMAIN is specified on a control specification, then any halt indicators are
ignored except as conditioning indicators.

For a detailed description of the steps that occur when a halt indicator is on, see the detailed flowchart of
the RPG IV cycle in “RPG Cycle and other implicit Logic” on page 85.

Indicators Conditioning Calculations

Calculation specifications in the traditional format (C specifications) can include conditioning indicators in
positions 7 and 8, and positions 9 through 11. Conditioning indicators are not used by free-form
calculation specifications.

Indicators that specify the conditions under which a calculation is performed are defined elsewhere in the
program.

Positions 7 and 8

You can specify control level indicators (L1 through L9 and LR) in positions 7 and 8 of the calculation
specifications.

If positions 7 and 8 are blank, the calculation is processed at detail time, is a statement within a
subroutine, or is a declarative statement. If indicators L1 through L9 are specified, the calculation is
processed at total time only when the specified indicator is on. If the LR indicator is specified, the
calculation is processed during the last total time.

Note: An LO entry can be used to indicate that the calculation is a total calculation that is to be processed
on every program cycle.

Positions 9-11

You can use positions 9 through 11 of the calculation specifications to specify indicators that control the
conditions under which an operation is processed. You can specify N is position 9 to indicate that the
indicator should be tested for the value of off ('0") The valid entries for positions 10 through 11 are:

+ 01-99

* H1-H9

* MR

« OA-0OG, OV

e L1-L9

* LR

« U1-U8

« KA-KN, KP-KY
 RT

Any indicator that you use in positions 9 through 11 must be previously defined as one of the following
types of indicators:

« Overflow indicators (file description specifications “OFLIND(indicator)” on page 352

« Record identifying indicators (input specifications, positions 21 and 22)
« Control level indicators (input specifications, positions 63 and 64)

« Field indicators (input specifications, positions 69 through 74)

« Resulting indicators (calculation specifications, positions 71 through 76)
« Externalindicators

- Indicators are set on, such as LR and MR

« *IN array, *IN(xx) array element, or *INxx field (see “Indicators Referred to As Data” on page 122 for a
description of how an indicator is defined when used with one of these reserved words).

Chapter 3. RPG IV Concepts 117

Using Indicators

If the indicator must be off to condition the operation, place an N in positions 9. The indicators in grouped
AND/OR lines, plus the control level indicators (if specified in positions 7 and 8), must all be exactly as
specified before the operation is done as in Figure 26 on page 118.

L R A T SRR N R N S T < AU PR N
CLONO@1Factorl+++++++0pcode(E)+Factor2+++++++Result++++++++Len++D+HiloEq. .
*

cC 25
CAN L1 SUB TOTAL TOTAL [A |
CL2 10
CANNL3TOTAL MULT 05 SLSTAX | B |

*

Figure 26. Conditioning Operations (Control Level Indicators)

Assume that indicator 25 represents a record type and that a control level 2 break occurred when record
type 25 was read. L1 and L2 are both on. All operations conditioned by the control level indicators in
positions 7 and 8 are done before operations conditioned by control level indicators in positions 9 through
11. Therefore, the operation in g occurs before the operation in J. The operation in [is done on the
first record of the new control group indicated by 25, whereas the operation in] is a total operation done
for all records of the previous control group.

The operation in] can be done when the L2 indicator is on provided the other conditions are met:
Indicator 10 must be on; the L3 indicator must not be on.

The operation conditioned by both L2 and NL3 is done only when a control level 2 break occurs. These
two indicators are used together because this operation is not to be done when a control level 3 break
occurs, even though L2 is also on.

Some special considerations you should know when using conditioning indicators in positions 9 through
11 are as follows:

- With externally described work station files, the conditioning indicators on the calculation specifications
must be either defined in the RPG program or be defined in the DDS source for the workstation file.

- With program described workstation files, the indicators used for the workstation file are unknown at
compile time of the RPG program. Thus indicators 01-99 are assumed to be declared and they can be
used to condition the calculation specifications without defining them.

« Halt indicators can be used to end the program or to prevent the operation from being processed when
a specified error condition is found in the input data or in another calculation. Using a halt indicator is
necessary because the record that causes the halt is completely processed before the program stops.
Therefore, if the operation is processed on an error condition, the results are in error. A halt indicator
can also be used to condition an operation that is to be done only when an error occurs.

- If LR is specified in positions 9 through 11, the calculation is done after the last record has been
processed or after LR is set on.

« If a control level indicator is used in positions 9 through 11 and positions 7 and 8 are not used (detail
time), the operation conditioned by the indicator is done only on the record that causes a control break
or any higher level control break.

- If a control level indicator is specified in positions 7 and 8 (total time) and MR is specified in positions 9
through 11, MR indicates the matching condition of the previous record and not the one just read that
caused the control break. After all operations conditioned by control level indicators in positions 7 and 8
are done, MR then indicates the matching condition of the record just read.

- If positions 7 and 8 and positions 9 through 11 are blank, the calculation specified on the line is done at
detail calculation time.

Figure 27 on page 119 and Figure 28 on page 119 show examples of conditioning indicators.

118 IBMi: ILE RPG Reference

Using Indicators

E S IR D2 N SRC SR Y B
IFllenameSqNOR1P0$1NCCPO$2NCCPO$3NCC

........................ Fmt+SPFrom+
Field indicators can be used to
program is to find weekly earnin
time field is checked to determi
If the employee has worked overt
indicator 10 is set on. In all
is calculated. However, overtim
indicator 10 is on.

—|>(->(->(->(->(->(->(->(->(-

I AB 01
1
8
15
21

ONO1Factorl+++++++0Opcode (E)+Extend

Ok -

Field indicator 10 was assigned
It is used here to condition cal

X % % % T

o

PAY
PAY

EVAL (H)
EVAL (H)

o

10

B S P - DU I A
PFromTo++DFleld+LlMlFrPanZr
To+++DcF1eld+++++++++LlMlFIPanZI....

condition operations. Assume the
gs including overtime. The over-
ne if overtime was entered.

ime, the field is positive and -
cases the weekly regular wage

e pay is added only if

7 EMPLNO
10 OOVERTM
20 2RATE
25 2RATEOT
ed-factor2+++++++++++++++++++++++++++

10

on the input specifications.
culation operations.

RATE * 40
PAY + (OVERTM * RATEOT)

Figure 27. Conditioning Operations (Field Indicators)

E O I PTG U S S
IF11ename++SqN0R1Posl+NCCPos2+NCCPos

........................ Fmt+SPFrom+
A record identifying indicator i
When a record is read with a T i
set on.
to SUM. When a record without T
indicator is set on. The subtra
then performed instead of the ad

Tk ok ok F ok X ok *

ILE AA 01

OR 02

1CT
ANCT

10
ONO@1Factorl+++++++0pcode(E)+Factor

OkHMHH

Record identifying indicators 01
specifications. They are used h

L
*
*
*
* operations.
*

L

If this indicator is on,

L
3+NCC.

To+++DcField+++++++++LIMIFTP1MnZx.

s used to condition an operation.
n position 1, the 01 indicator is
the field named SAVE is added

in position 1 is read, the 02
ct operation, conditioned by 02,
d operation.

15 2SAVE
2+++++++Result++++++++Len++D+HilLoEq. .

and 02 are assigned on the input
ere to condition calculation

CLONOIFactoxrl1+++++++0pcode (E) +Factoxr2+++++++Result++++++++Len++D+HiLoEq. .

c
(5

01
02

ADD
SuB

SAVE
SAVE

SUM
SUM

8 2
8 2

Figure 28. Conditioning Operations (Record Identifying Indicators)

Indicators Used in Expressions

Indicators can be used as booleans in expressions in the extended factor 2 field of the calculation

specification. They must be referred to as
demonstrate this.

data (that is, using *IN or *INxx). The following examples

Chapter 3. RPG IV Concepts 119

Using Indicators

CLONO1Factorl+++++++0pcode (E)+Extended-factor2+++++++++++++++++++++++++4
* In these examples, the IF structure is performed only if 01 is on.
* *INO1 is treated as a boolean with a value of on or off.

* In the first example, the value of the indicator ('0' or '1') is

* checked.

c IF *INO1
* In the second example, the logical expression B < A is evaluated.
* If true, 01 is set on. If false 01 is set off. This is analogous
* to using COMP with A and B and placing 01 in the appropriate
* resulting indicator position.

c EVAL *INO1 = B < A

Figure 29. Indicators Used in Expressions

See the expressions chapter and the operation codes chapter in this document for more examples and
further details.

Indicators Conditioning Output

Indicators that you use to specify the conditions under which an output record or an output field is written
must be previously defined in the program. Indicators to condition output are specified in positions 21
through 29. All indicators are valid for conditioning output.

The indicators you use to condition output must be previously defined as one of the following types of
indicators:

« Overflow indicators (file description specifications, “OFLIND(indicator)” on page 352)

« Record identifying indicators (input specifications, positions 21 and 22)
= Control level indicators (input specifications, positions 63 and 64)

« Field indicators (input specifications, positions 69 through 74)

« Resulting indicators (calculation specifications, positions 71 through 76)
« Indicators set by the RPG IV program such as 1P and LR

« External indicators set prior to or during program processing

« *IN array, *IN(xx) array element, or *INxx field (see “Indicators Referred to As Data” on page 122 for a
description of how an indicator is defined when used with one of these reserved words).

If an indicator is to condition an entire record, you enter the indicator on the line that specifies the record
type (see Figure 30 on page 121). If an indicator is to condition when a field is to be written, you enter the
indicator on the same line as the field name (see Figure 30 on page 121).

Conditioning indicators are not required on output lines. If conditioning indicators are not specified, the
line is output every time that type of record is checked for output. If you specify conditioning indicators,
one indicator can be entered in each of the three separate output indicator fields (positions 22 and 23, 25
and 26, and 28 and 29). If these indicators are on, the output operation is done. An N in the position
preceding each indicator (positions 21, 24, or 27) means that the output operation is done only if the
indicator is not on (a negative indicator). No output line should be conditioned by all negative indicators;
at least one of the indicators should be positive. If all negative indicators condition a heading or detail
operation, the operation is done at the beginning of the program cycle when the first page (1P) lines are
written.

You can specify output indicators in an AND/OR relationship by specifying AND/OR in positions 16
through 18. An unlimited number of AND/OR lines can be used. AND/OR lines can be used to condition
output records, but they cannot be used to condition fields. However, you can condition a field with more
than three indicators by using the EVAL operation in calculations. The following example illustrates this.

120 IBMi: ILE RPG Reference

Using Indicators

CLONO1Factorl+++++++0pcode (E)+Extended-factor2+++++++++++++++++++++++++4
* Indicator 20 is set on only if indicators 10, 12, 14,16, and 18
* are set on.

EVAL *IN20 = *IN1O0 AND *IN12 AND *IN14
c AND *IN16 AND *IN18
OFilename++DAddNOINO2NOBEXCNAM+F+ 44 . o vttt it e ettt eee et eneeeeenaaeaennnn
O eiii e NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat

* OUTFIELD is conditioned by indicator 20, which effectively
* means it is conditioned by all the indicators in the EVAL
* operation.

OPRINTER E

0 20 OUTFIELD

Other special considerations you should know about for output indicators are as follows:

« The first page indicator (1P) allows output on the first cycle before the primary file read, such as printing
on the first page. The line conditioned by the 1P indicator must contain constant information used as
headings or fields for reserved words such as PAGE and UDATE. The constant information is specified in
the output specifications in positions 53 through 80. If 1P is used in an OR relationship with an overflow
indicator, the information is printed on every page (see Figure 31 on page 122). Use the 1P indicator
only with heading or detail output lines. It cannot be used to condition total or exception output lines or
should not be used in an AND relationship with control level indicators.

- If certain error conditions occur, you might not want output operation processed. Use halt indicators to
prevent the data that caused the error from being used (see Figure 32 on page 122).

« To condition certain output records on external conditions, use external indicators to condition those
records.

See the Printer File section in the Rational Development Studio for i: ILE RPG Programmer's Guide for a
discussion of the considerations that apply to assigning overflow indicators on the output specifications.

L U 7 UPIPIPC AP S SR - DU R - IR PP A

OFilename++DF. .NOINO2NO3EXcnam++++B++A++Sb+Sa+. .. .o o i ittt it e e e nn

O NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat
One indicator is used to condition an entire line of printing.

*
*
* When 44 is on, the fields named INVOIC, AMOUNT, CUSTR, and SALSMN
* are all printed.
*
P

OPRINT D 44 1

0 INVOIC 10
0 AMOUNT 18
0 CUSTR 65
0 SALSMN 85

*
* A control level indicator is used to condition when a field should
* be printed. When indicator 44 is on, fields INVOIC, AMOUNT, and

* CUSTR are always printed. However, SALSMN is printed for the

* first record of a new control group only if 44 and L1 are on.

*
P

OPRINT D 44 1

0 INVOIC 10
0 AMOUNT 18
0 CUSTR 65
0 L1 SALSMN 85

Figure 30. Output Indicators

Chapter 3. RPG IV Concepts 121

Indicators Referred to As Data

L P O E: DUPE DA S S S R c DU SR S
OFilename++DF. .NOINO2NO3Excham++++B++A++Sh+Sa+.
0 NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat

*
* The 1P indicator is used when headings are to be printed
* on the first page only.
*
P

RINT H ipP 3
8 '"ACCOUNT'

*
* The 1P indicator and an overflow indicator can be used to print
* headings on every page.
*
P

OPRINT H ipP 3 1
0 OR OF
0 8 'ACCOUNT'

Figure 31. 1P Indicator

L R . S R S T - DU SRR o TR R AR
IFilename++SqNORiP0oS1+NCCPOS2+NCCPOS3+NCC. . . o v it ittt et ettt e e eeee e e
T Fmt+SPFrom+To+++DcField+++++++++LIMIFrP1MnZz. . ..

*
* When an error condition (zero in FIELDB) is found, the halt
* indicator is set on.
*
D

IDISK AA 01
I 1 3 FIELDA L1
I 4 8 OFIELDB H1
CLONO@1Factorl+++++++0pcode(E)+Factor2+++++++Result++++++++Len++D+HilLoEq. .
*
* When H1 is on, all calculations are bypassed.
*
Cc H1 GOTO END
Cc 8
C g Calculations
Cc g
C END TAG
OFilename++DF. .NOINO2NO3Excnam++++B++A++Sb+Sa+.ottt e
[0 NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat

*
* FIELDA and FIELDB are printed only if H1 is not on.

* Use this general format when you do not want information that
* 1s in error to be printed.
*
P

OPRINT H L1 0 201

0 50 'HEADING'
0 D O1NH1 1 0

0 FIELDA 5

0 FIELDB z 15

Figure 32. Preventing Fields from Printing

Indicators Referred to As Data

An alternative method of referring to and manipulating RPG IV indicators is provided by the RPG IV
reserved words *IN and *INxx.

*IN

The array *IN is a predefined array of 99 one-position, character elements representing the indicators 01
through 99. The elements of the array should contain only the character values '0' (zero) or '1' (one).

The specification of the *IN array or the *IN(xx) variable-index array element as a field in an input record,
as aresult field, or as factor 1 in a PARM operation defines indicators 01 through 99 for use in the
program.

122 IBMi: ILE RPG Reference

Indicators Referred to As Data

The operations or references valid for an array of single character elements are valid with the array *IN
except that the array *IN cannot be specified as a subfield in a data structure, or as a result field of a
PARM operation.

*INxx

The field *INxx is a predefined one-position character field where xx represents any one of the RPG IV
indicators except 1P or MR.

The specification of the *INxx field or the *IN(n) fixed-index array element (where n =1 - 99) as a field in
an input record, as a result field, or as factor 1 in a PARM operation defines the corresponding indicator
for use in the program.

You can specify the field *INxx wherever a one-position character field is valid except that *INxx cannot
be specified as a subfield in a data structure, as the result field of a PARM operation, or in a SORTA
operation.

Additional Rules

Remember the following rules when you are working with the array *IN, the array element *IN(xx) or the
field *INxx:

« Moving a character '0' (zero) or *OFF to any of these fields sets the corresponding indicator off.
« Moving a character '1' (one) or *ON to any of these fields sets the corresponding indicator on.

« Do not move any value, other than '0' (zero) or '1' (one), to *INxx. Any subsequent normal RPG IV
indicator tests may yield unpredictable results.

« If you take the address of *IN, *INO1 - *IN99, or *IN(index), indicators *INO1 to *IN99 will be defined.
If you take the address of any other indicator, such as *INLR or *INLZ, only that indicator will be
defined.

See Figure 33 on page 124 for some examples of indicators referred to as data.

Chapter 3. RPG IV Concepts 123

Summary of Indicators

0 00dbo 00 0% 000200006100 0086 000900004000 06TP0000Do000Fo060®0000Posoocooo
CLONO@1Factorl+++++++0pcode(E)+Factor2+++++++Result++++++++Len++D+HiloEq. .
*
* When this program is called, a single parameter is passed to
* control some logic in the program. The parameter sets the value
* of indicator 50. The parameter must be passed with a character
* value of 1 or 0.
*
Cc *ENTRY PLIST
c *IN50 PARM SWITCH 1
*
*
* Subroutine SUB1 uses indicators 61 through 68. Before the
* subroutine is processed, the status of these indicators used in
* the mainline program is saved. (Assume that the indicators are
* set off in the beginning of the subroutine.) After the subroutine
* 1s processed, the indicators are returned to their original state.
*
*
c MOVEA *IN(61) SAV8 8
Cc EXSR SUB1
c MOVEA SAV8 *IN(61)
*
* A code field (CODE) contains a numeric value of 1 to 5 and is
* used to set indicators 71 through 75. The five indicators are set
* off. Field X is calculated as 70 plus the CODE field. Field X is
* then used as the index into the array *IN. Different subroutines
* are then used based on the status of indicators 71 through 75.
*
C MOVEA '00000' *IN(71)
Cc 70 ADD CODE X 30
c MOVE *ON *IN(X)
C 71 EXSR CODE1
c 72 EXSR CODE2
c 73 EXSR CODE3
Cc 74 EXSR CODE4
c 175 EXSR CODE5
Figure 33. Examples of Indicators Referred to as Data

Summary of Indicators

Table 43 on page 125 and Table 44 on page 126 show summaries of where RPG IV indicators are defined,
what the valid entries are, where the indicators are used, and when the indicators are set on and off.
Table 44 on page 126 indicates the primary condition that causes each type of indicator to be set on and
set off by the RPG IV program. “Function Key Indicators” on page 116 lists the function key indicators and
the corresponding function keys.

124 IBMi: ILE RPG Reference

Summary of Indicators

Table 43. Indicator Entries and Uses

Where Defined/Used

01-99

1P

H1-H9

L1-L9

LR

MR

OA-0G
ov

Ui1-us

KA-KN
KP-KY

RT

User
Defined

Overflow indicator, file
description
specifications, OFLIND
keyword

Record identifying
indicator input
specifications, positions
21-22

Control level, input
specifications, positions
63-64

Field level, input
specifications, positions
69-74

Resulting indicator,
calculation specifications,
positions 71-76

Xl

X2

RPG
Defined

Internal Indicator

External Indicator

Used

File conditioning, file
description specifications

File record relation, input
specifications 67-683

Control level, calculation
specifications, positions
7-8

Conditioning indicators,
calculation specifications,
positions 9-11

Output indicators, output
specifications, positions
21-29

X4

Note:

1. The overflow indicator must be defined on the file description specification first.
2. KA through KN and KP through KY can be used as resulting indicators only with the SETOFF operation.
3. Only a record identifying indicator from a main or OR record can be used to condition a control or match

field. L1 or L9 cannot be used to condition a control or match field.

4. The 1P indicator is allowed only on heading and detail lines.

Chapter 3. RPG IV Concepts 125

Summary of Indicators

Table 44. When Indicators Are Set On and Off by the RPG IV Logic Cycle

Type of Indicator

Set On

Set Off

Overflow

When printing on or spacing or skipping
past the overflow line.

OA-OG, OV: After the following heading
and detail lines are completed,

or after the file is opened unless

the H-specification keyword
OPENOPT(*NOINZOFL) is used.

01-99: By the user.

Record identifying

When specified primary / secondary record
has been read and before total calculations
are processed; immediately after record is

read from a full procedural file.

Before the next primary/secondary record
is read during the next processing cycle.

Control level

When the value in a control field changes.
All lower level indicators are also set on.

At end of following detail cycle.

Field indicator

By blank or zero in specified fields, by plus
in specified field, or by minus in specified
field.

Before this field status is to be tested the
next time.

Resulting

When the calculation is processed and the
condition that the indicator represents is
met.

The next time a calculation is processed for
which the same indicator is specified as a
resulting indicator and the specified
condition is not met.

Function key

When the corresponding function key is
pressed for WORKSTN files and at
subsequent reads to associated subfiles.

By SETOFF or move fields logic for a
WORKSTN file.

External U1-U8

By CL command prior to beginning the
program, or when used as a resulting or a
field indicator.

Note: The value of the external indicators
is set from the job switches during
initialization. For a cycle module, it is done
during the *INIT phase of the cycle; for
other modules, it is done only once, when
the first procedure in the module is called.

By CL command prior to beginning the
program, or when used as a resulting or
when used as a resulting or a field
indicator.

H1-H9 As specified by programmer. When the continue option is selected as a
response to a message, or by the
programmer.

RT As specified by programmer. When the program is called again.

Internal Indicators
1P

At beginning of processing before any input
records are read.

Before the first record is read.

a secondary file correspond to the match
field contents of a record in the primary
file.

LR After processing the last primary/ At the beginning of processing, or by the
secondary record of the last file or by the programmer.
programmer.

MR If the match field contents of the record of | When all total calculations and output are

completed for the last record of the
matching group.

126 IBMi: ILE RPG Reference

File Exception/Errors

File and Program Exception/Errors

RPG categorizes exception/errors into two classes: program and file. Information on file and program
exception/errors is made available to an RPG IV program using file information data structures and
program status data structures, respectively. File and Program exception/error subroutines may be
specified to handle these types of exception/errors.

File Exception/Errors

Some examples of file exception/errors are: undefined record type, an error in trigger program, an I/O
operation to a closed file, a device error, and an array/table load sequence error. They can be handled in
one of the following ways:

- The operation code extender 'E' can be specified. When specified, before the operation begins, this
extender sets the %ERROR and %STATUS built-in functions to return zero. If an exception/error occurs
during the operation, then after the operation %ERROR returns '1' and %STATUS returns the file status.
The optional file information data structure is updated with the exception/error information. You can
determine the action to be taken by testing %ERROR and %STATUS.

« Anindicator can be specified in positions 73 and 74 of the calculation specifications for an operation
code. This indicator is set on if an exception/error occurs during the processing of the specified
operation. The optional file information data structure is updated with the exception/error information.
You can determine the action to be taken by testing the indicator.

« ON-ERROR groups can be used to handle errors for statements processed within a MONITOR block. If
an error occurs when a statement is processed, control passes to the appropriate ON-ERROR group.

« You can create a user-defined ILE exception handler that will take control when an exception occurs.
For more information, see Rational Development Studio for i: ILE RPG Programmer's Guide.

« A file exception/error subroutine can be specified for a global file in a cycle module. The subroutine is
defined by the INFSR keyword on a file description specification with the name of the subroutine that is
to receive the control. Information regarding the file exception/error is made available through a file
information data structure that is specified with the INFDS keyword on the file description specification.
You can also use the %STATUS built-in function, which returns the most recent value set for the
program or file status. If a file is specified, %STATUS returns the value contained in the INFDS *STATUS
field for the specified file.

- If the indicator, 'E' extender, MONITOR block, or file exception/error subroutine is not present, any file
exception/errors are handled by the RPG IV default error handler.

File Information Data Structure

A file information data structure (INFDS) can be defined for each file to make file exception/error and file
feedback information available to the program or procedure.

The file information data structure, which must be unique for each file, must be defined in the same scope
as the file. For global files, the INFDS must be defined in the main source section. For local files in a
subprocedure, the INFDS must be defined in the Definition specifications of the subprocedure.
Furthermore, the INFDS must be defined with the same storage type, automatic or static, as the file.

The INFDS for a file is used by all procedures using the file. If the file is passed as a parameter, the called
program or procedure uses the same INFDS.

The INFDS contains the following feedback information:
« File Feedback (length is 80)

« Open Feedback (length is 160)

Input/Output Feedback (length is 126)

Device Specific Feedback (length is variable)

Get Attributes Feedback (length is variable)

Chapter 3. RPG IV Concepts 127

File Exception/Errors

Note: The get attributes feedback uses the same positions in the INFDS as the input/output feedback and
device specific feedback. This means that if you have a get attributes feedback, you cannot have input/
output feedback or device feedback, and vice versa.

The length of the INFDS depends on what fields you have declared in your INFDS. The minimum length of
the INFDS is 80.

File Feedback Information

The file feedback information starts in position 1 and ends in position 80 in the file information data
structure. The file feedback information contains data about the file which is specific to RPG. This
includes information about the error/exception that identifies:

« The name of the file for which the exception/error occurred

« The record being processed when the exception/error occurred or the record that caused the
exception/error

« The last operation being processed when the exception/error occurred

 The status code

« The RPG IV routine in which the exception/error occurred.

The fields from position 1 to position 66 in the file feedback section of the INFDS are always provided and

updated even if INFDS is not specified in the program. The fields from position 67 to position 80 of the file
feedback section of the INFDS are only updated after a POST operation to a specific device.

If INFDS is not specified, the information in the file feedback section of the INFDS can be output using the
DUMP operation. For more information see “DUMP (Program Dump)” on page 686.

Overwriting the file feedback section of the INFDS may cause unexpected results in subsequent error
handling and is not recommended.

The location of some of the more commonly used subfields in the file feedback section of the INFDS is
defined by special keywords. The contents of the file feedback section of the INFDS along with the special
keywords and their descriptions can be found in the following tables:

Table 45. Contents of the File Feedback Information Available in the File Information Data Structure (INFDS)

From To
(Pos. | (Pos.
26-32) | 33-39) | Format Length | Keyword Information
1 8 Character 8 *FILE The first 8 characters of the file name.
9 9 Character 1 Open indication (1 = open).
10 10 Character 1 End of file (1 = end of file)
11 15 |Zoned decimal |5,0 *STATUS Status code. For a description of these codes, see
“File Status Codes” on page 139.

128 IBMi: ILE RPG Reference

File Exception/Errors

Table 45. Contents of the File Feedback Information Available in the File Information Data Structure (INFDS)

(continued)

From
(Pos.
26-32)

To
(Pos.
33-39)

Format

Length

Keyword

Information

16

21

Character

*OPCODE

Operation code The first five positions (left-
adjusted) specify the type of operation by using the
character representation of the calculation
operation codes. For example, if a READE was being
processed, READE is placed in the leftmost five
positions. If the operation was an implicit operation
(for example, a primary file read or update on the
output specifications), the equivalent operation
code is generated (such as READ or UPDAT) and
placed in location *OPCODE. Operation codes which
have 6 letter names will be shortened to 5 letters.

DELETE
DELET

EXCEPT
EXCPT

READPE
REDPE

UNLOCK
UNLCK

UPDATE
UPDAT

The remaining position contains one of the
following:

F
The last operation was specified for a file name.

R
The last operation was specified for a record.

The last operation was an implicit file operation.

22

29

Character

*ROUTINE

First 8 characters of the name of the routine
(including a subprocedure) in which the file
operation was done.

30

37

Character

If OPTION(*NOSRCSTMT) is specified, this is the
source listing line number of the file operation. If
OPTION(*SRCSTMT) is specified, this is the source
listing statement number of the file operation. The
full statement number is included when it applies to
the root source member. If the statement number is
greater than 6 digits, that is, it includes a source ID
other than zero, the first 2 positions of the 8-byte
feedback area will have a "+ " indicating that the
rest of the statement number is stored in positions
53-54.

38

42

Zoned decimal

5,0

User-specified reason for error on SPECIAL file.

Chapter 3. RPG IV Concepts 129

File Exception/Errors

Table 45. Contents of the File Feedback Information Available in the File Information Data Structure (INFDS)
(continued)

From To
(Pos. | (Pos.
26-32) | 33-39) | Format Length | Keyword Information
38 45 | Character 8 *RECORD [For a program described file the record identifying
indicator is placed left-adjusted in the field; the
remaining six positions are filled with blanks. For an
externally described file, the first 8 characters of
the name of the record being processed when the
exception/error occurred.
46 52 Character 7 Machine or system message number.
53 66 |Character 14 Unused.
77 78 Binary 2 Source Id matching the statement number from
positions 30-37.

Table 46. Contents of the File Feedback Information Available in the File-Information Data Structure (INFDS)
Valid after a POST

From To
(Pos. | (Pos.
26-32) | 33-39) | Format Length | Keyword Information
67 70 |Zoned decimal |4,0 *SIZE Screen size (product of the number of rows and the
number of columns on the device screen).
71 72 |Zoned decimal [2,0 *INP The display's keyboard type. Set to 00 if the

keyboard is alphanumeric or katakana. Set to 10 if
the keyboard is ideographic.

73 74 | Zoned decimal |2,0 *ouUT The display type. Set to 00 if the display is
alphanumeric or katakana. Set to 10 if the display is
ideographic. Set to 20 if the display is DBCS.

75 76 |Zoned decimal |2,0 *MODE Always set to 00.

INFDS File Feedback Example
To specify an INFDS which contains fields in the file feedback section, you can make the following entries:

« Specify the INFDS keyword on the file description specification with the name of the file information
data structure

« Specify the file information data structure and the subfields you wish to use on a definition
specification.

« Specify special keywords as the first keyword of a free-form subfield definition, or left-adjusted, in the
FROM field (positions 26-32) on the definition specification, or specify the positions of the fields in the
FROM field (position 26-32) and the TO field (position 33-39).

130 IBMi: ILE RPG Reference

File Exception/Errors

DCL-F MYFILE DISK(*EXT) INFDS(FILEFBK);
DCL-DS FILEFBK;

FILE *FILE; // File name
OPEN_IND IND POS(9) ; // File open?
EOF_IND IND POS (10: // File at eof?
STATUS *STATUS; // Status code
OPCODE *0PCODE; // Last opcode
ROUTINE *ROUTINE; // RPG Routine
LIST_NUM CHAR(8) POS(30); // Listing line
SPCL_STAT ZONED(5) POS(38); // SPECIAL status
RECORD *RECORD; // Record name
MSGID CHAR(7) POS (46) ; // Exrror MSGID
SCREEN *SIZE; // Screen size
NLS_IN *INP; // NLS Input?
NLS_OUT *0UT; // NLS Output?
NLS_MODE *MODE; // NLS Mode?
END-DS;

Figure 34. Example of Coding an INFDS with File Feedback Information in free form

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++tttttttttttt+Comments++++++++++
FMYFILE IF E DISK INFDS (FILEFBK)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++
DFILEFBK DS

D FILE *FILE * File name

D OPEN_IND 9 9N * File open?

D EOF_IND 10 10N * File at eof?
D STATUS *STATUS * Status code
D OPCODE *OPCODE * Last opcode
D ROUTINE *ROUTINE * RPG Routine
D LIST_NUM 30 37 * Listing line
D SPCL_STAT 38 42S 0 * SPECIAL status
D RECORD *RECORD * Recoxd name
D MSGID 46 52 * Exrroxr MSGID
D SCREEN *SIZE * Screen size
D NLS_IN *INP * NLS Input?

D NLS_OUuT *0UT * NLS Output?
D NLS_MODE *MODE * NLS Mode?

Figure 35. Example of Coding an INFDS with File Feedback Information in fixed form

Note: The keywords are not labels and cannot be used to access the subfields. Short entries are padded
on the right with blanks.

Open Feedback Information

Positions 81 through 240 in the file information data structure contain open feedback information. The
contents of the file open feedback area are copied by RPG to the open feedback section of the INFDS
whenever the file associated with the INFDS is opened. This includes members opened as a result of a
read operation on a multi-member processed file.

A description of the contents of the open feedback area, and what file types the fields are valid for, can be
found in the IBM i Information Center.
INFDS Open Feedback Example

To specify an INFDS which contains fields in the open feedback section, you can make the following
entries:

« Specify the INFDS keyword on the file description specification with the name of the file information
data structure

« Specify the file information data structure and the subfields you wish to use on a definition
specification.

Chapter 3. RPG IV Concepts 131

File Exception/Errors

« Use information in the IBM i Information Center database and file systems category to determine which
fields you wish to include in the INFDS. To calculate the starting position and length of the subfields of
the open feedback section of the INFDS, use the Offset, Data Type, and Length given in the Information
Center and do the following calculations:

Start = 81 + Offset
Character_Length = Length (in bytes)

For example, for overflow line number of a printer file, the Information Center gives:

Offset =107
Data Type is binary
Length = 2 bytes

Therefore,

Start =81 + 107 =188
RPG data type is integer
Length = 5 digits

See subfield OVERFLOW in the example below.

DCL-F MYFILE PRINTER(132) INFDS(OPNFBK);

DCL-DS OPNFBK;
ODP_TYPE CHAR(2) POS(81); // ODP Type
FILE_NAME CHAR(10) POS(83); // File name
LIBRARY CHAR(10) P0OS(93); // Library name
SPOOL_FILE CHAR(10) P0S(103); // Spool file name
SPOOL_LIB CHAR(10) P0OS(113); // Spool file 1lib
SPOOL_NUM_OLD INT(5) P0S(123); // Spool file num
RCD_LEN INT(5) P0OS(125); // Max record len
KEY_LEN INT(5) P0OS(127) ; // Max key len
MEMBER CHAR(10) P0S(129); // Member name
TYPE INT(5) POS (147); // File type
ROWS INT(5) POS(152) ; // Num PRT/DSP rows
COLUMNS INT(5) P0OS(154) ; // Num PRT/DSP cols
NUM_RCDS INT(10) POS (156) ; // Num of records
SPOOL_NUM INT(10) POS (160) ; // 6 digit Spool Nbr
ACC_TYPE CHAR(2) P0OS (160) ; // Access type
DUP_KEY CHAR(1) POS(162) ; // Duplicate key?
SRC_FILE CHAR(1) POS (163) ; // Source file?
VOL_OFF INT(5) P0S(184) ; // Vol label offset
BLK_RCDS INT(5) P0OS(186) ; // Max rcds in blk
OVERFLOW INT(5) P0OS(188) ; // Overflow line
BLK_INCR INT(5) P0S(190) ; // Blk increment
FLAGS1 CHAR(1) P0S(196) ; // Misc flags
REQUESTER CHAR(10) P0OS(197) ; // Requester name
OPEN_COUNT INT(5) P0S (207) ; // Open count
BASED_MBRS INT(5) P0OS(211); // Num based mbrs
FLAGS2 CHAR(1) P0S(213); // Misc flags
OPEN_ID CHAR(2) P0S(214); // Open identifier
RCDFMT_LEN INT(5) P0S (216) ; // Max rcd fmt len
CCSID INT(5) P0S(218) ; // Database CCSID
FLAGS3 CHAR(1) P0S(220) ; // Misc flags
NUM_DEVS INT(5) P0S(227) ; // Num devs defined

END-DS;

Figure 36. Example of Coding an INFDS with Open Feedback Information

132 IBMi: ILE RPG Reference

File Exception/Errors

Input/Output Feedback Information

Positions 241 through 366 in the file information data structure are used for input/output feedback
information. The contents of the file common input/output feedback area are copied by RPG to the input/
output feedback section of the INFDS:

« If the presence of a POST operation affects the file:

— only after a POST for the file.
« Otherwise:

— after each I/O operation, if blocking is not active for the file.
— after the I/O request to data management to get or put a block of data, if blocking is active for the file.

For more information see “POST (Post)” on page 762.

A description of the contents of the input/output feedback area can be found in the Information Center.

INFDS Input/Output Feedback Example

To specify an INFDS which contains fields in the inputoutput feedback section, you can make the
following entries:

« Specify the INFDS keyword on the file description specification with the name of the file information
data structure

« Specify the file information data structure and the subfields you wish to use on a definition
specification.

« Use information in the Information Center to determine which fields you wish to include in the INFDS.
To calculate the starting position and length of the subfields of the input/output feedback section of the
INFDS, use the Offset, Data Type, and Length given in the Information Center and do the following
calculations:

Start = 241 + Offset
Character_Length = Length (in bytes)

For example, for device class of a file, the Information Center gives:

Offset = 30
Data Type is character
Length =2

Therefore,

Start =241 +30=271
See subfield DEV_CLASS in the example below

Chapter 3. RPG IV Concepts 133

File Exception/Errors

DCL-F MYFILE WORKSTN INFDS(MYIOFBK);
DCL-DS MYIOFBK;

// 241-242 not used
WRITE_CNT INT(10) P0S(243) ; // Write count
READ_CNT INT(10) P0S (247) ; // Read count
WRTRD_CNT INT(10) POS(251) ; // Write/read count
OTHER_CNT INT(10) POS (255) ; // Other I/0 count
OPERATION CHAR(1) P0S (260) ; // Current operation
I0_RCD_FMT CHAR(10) P0OS(261) ; // Rcd format name
DEV_CLASS CHAR(2) POS(271) ; // Device class
I0_PGM_DEV CHAR(10) P0S(273); // Pgm device name
IO_RCD_LEN INT(10) P0S(283) ; // Rcd len of I/0

END-DS;

Figure 37. Example of Coding an INFDS with Input/Output Feedback Information

Device Specific Feedback Information

The device specific feedback information in the file information data structure starts at position 367 in the
INFDS, and contains input/output feedback information specific to a device.

The length of the INFDS when device specific feedback information is required, depends on two factors:
the device type of the file, and on whether DISK files are keyed or not. The minimum length is 528; but
some files require a longer INFDS.

- For WORKSTN files, the INFDS is long enough to hold the device-specific feedback information for any
type of display or ICF file starting at position 241. For example, if the longest device-specific feedback
information requires 390 bytes, the INFDS for WORKSTN files is 630 bytes long (240+390=630).

 For externally described DISK files, the INFDS is at least long enough to hold the longest key in the file
beginning at position 401.

More information on the contents and length of the device feedback for database file, printer files, ICF
and display files can be found in the IBM i Information Center database and file systems category.

The contents of the device specific input/output feedback area of the file are copied by RPG to the device
specific feedback section of the INFDS:

« If the presence of a POST operation affects the file:

— only after a POST for the file.
« Otherwise:

— after each I/O operation, if blocking is not active for the file.
— after the I/O request to data management to get or put a block of data, if blocking is active for the file.

Note:

1. After each keyed input operation, only the key fields will be updated.
2. After each non-keyed input operation, only the relative record number will be updated.

For more information see “POST (Post)” on page 762.

INFDS Device Specific Feedback Examples

To specify an INFDS which contains fields in the device-specific feedback section, you can make the
following entries:

« Specify the INFDS keyword on the file description specification with the name of the file information
data structure

« Specify the file information data structure and the subfields you wish to use on a definition
specification.

134 IBMi: ILE RPG Reference

File Exception/Errors

« Use information in the Information Center to determine which fields you wish to include in the INFDS.
To calculate the starting position and length of the subfields of the input/output feedback section of the
INFDS, use the Offset, Data Type, and Length given in the Information Center and do the following
calculations:

Start = 367 + Offset
Character_Length = Length (in bytes)

For example, for the relative record number of a data base file, the Information Center gives:

Offset = 30
Data Type is binary
Length=4

Therefore,

Start =367 + 30 =397
RPG data type is integer
Length = 10 digits

See subfield DB_RRN in DBFBK data structure in the example below.

DCL-F MYFILE PRINTER(132) INFDS(PRTFBK);

DCL-DS PRTFBK;
CUR_LINE INT(5) POS(367) ; // Current line num
CUR_PAGE INT(10) P0S(369) ; // Current page cnt
// If the first bit of PRT_FLAGS is on, the spooled file has been
// deleted. Use TESTB X'80' or TESTB 'O' to test this bit.

PRT_FLAGS CHAR(1) POS(373); // Print Flags

PRT_MAJOR CHAR(2) P0OS (401) ; // Major ret code

PRT_MINOR CHAR(2) POS (403) ; // Minor ret code
END-DS;

Figure 38. Example of Coding an INFDS with Printer Specific Feedback Information

DCL-F MYFILE DISK(*EXT) INFDS(DBFBK) ;
DCL-DS DBFBK;

FDBK_SIZE INT(10) P0OS(367) ; // Current line num
JOIN_BITS INT(10) POS(371) ; // JFILE bits
LOCK_RCDS INT(5) P0S(377) ; // Nbxr locked rcds
POS_BITS CHAR(1) P0OS(385) ; // File pos bits
DLT_BITS CHAR(1) P0S(384) ; // Rcd deleted bits
NUM_KEYS INT(5) P0S(387) ; // Num keys (bin)
KEY_LEN INT(5) P0S(393); // Key length
MBR_NUM INT(5) P0OS(395) ; // Member number
DB_RRN INT(10) P0S(397) ; // Relative-rcd-num
KEY CHAR(2000) P0S(401); // Key value (max size 2000)
END-DS;

Figure 39. Example of Coding an INFDS with Database Specific Feedback Information

Chapter 3. RPG IV Concepts 135

File Exception/Errors

DCL-F MYFILE WORKSTN(*EXT) INFDS(ICFFBK);
DCL-DS ICFFBK;

ICF_AID CHAR(1) P0OS (369) ; // AID byte
ICF_LEN INT(10) P0OS(372) ; // Actual data len
ICF_MAJOR CHAR(2) P0OS (401) ; // Major ret code
ICF_MINOR CHAR(2) POS (403) ; // Minor ret code
SNA_SENSE CHAR(8) POS (405) ; // SNA sense rc
SAFE_IND CHAR(1) P0OS (413); // Safe indicator
RQSWRT CHAR(1) P0OS (415) ; // Request write
RMT_FMT CHAR(10) P0OS (416) ; // Remote rcd fmt
ICF_MODE CHAR(8) P0S (430); // Mode name
END-DS;

Figure 40. Example of Coding an INFDS with ICF Specific Feedback Information

DCL-F MYFILE WORKSTN(*EXT) INFDS (DSPFBK) ;
DCL-DS DSPFBK;

DSP_FLAG1 CHAR(2) P0S(367) ; // Display flags
DSP_AID CHAR(1) P0OS(369) ; // AID byte
CURSOR CHAR(2) P0OS(370) ; // Cursor location
DATA_LEN INT(10) P0S(372); // Actual data len
SF_RRN INT(5) P0OS(376) ; // Subfile rrn
MIN_RRN INT(5) POS(378) ; // Subfile min rzrn
NUM_RCDS INT(5) P0S(380) ; // Subfile num rcds
ACT_CURS CHAR(2) P0S(382) ; // Active window cursor location
DSP_MAJOR CHAR(2) POS (401) ; // Major ret code
DSP_MINOR CHAR(2) P0OS (403) ; // Minor ret code
END-DS;

Figure 41. Example of Coding an INFDS with Display Specific Feedback Information

Get Attributes Feedback Information

The get attributes feedback information in the file information data structure starts at position 241 in the
INFDS, and contains information about a display device or ICF session (a device associated with a
WORKSTN file). The end position of the get attributes feedback information depends on the length of the
data returned by a get attributes data management operation. The get attributes data management
operation is performed when a POST with a program device specified for factor 1 is used.

More information about the contents and the length of the get attributes data can be found in the
Information Center.

INFDS Get Attributes Feedback Example

To specify an INFDS which contains fields in the get attributes feedback section, you can make the
following entries:

« Specify the INFDS keyword on the file description specification with the name of the file information
data structure

« Specify the file information data structure and the subfields you wish to use on a definition
specification.

« Use information in the Information Center to determine which fields you wish to include in the INFDS.
To calculate the starting position and length of the subfields of the get attributes feedback section of
the INFDS, use the Offset, Data Type, and Length given in the Information Center and do the following
calculations:

136 IBMi: ILE RPG Reference

File Exception/Errors

Start = 241 + Offset
Character_Length = Length (in bytes)

For example, for device type of a file, the Information Center gives:

Offset =31
Data Type is character
Length=6

Therefore,

Start =241 +31 =272
See subfield DEV_TYPE in the example below.

DCL-F MYFILE WORKSTN INFDS(DSPATRFBK) ;
DCL-DS DSPATRFBK;

PGM_DEV CHAR(10) P0S(241); // Program device
DEV_DSC CHAR(10) POS(251) ; // Dev description
USER_ID CHAR(10) POS(261) ; // User ID
DEV_CLASS CHAR(1) POS(271); // Device class
DEV_TYPE CHAR(6) P0S(272); // Device type
REQ_DEV CHAR(1) P0OS(278) ; // Requester?
ACQ_STAT CHAR(1) P0S(279) ; // Acquire status
INV_STAT CHAR(1) P0S (280) ; // Invite status
DATA_AVAIL CHAR(1) P0OS(281) ; // Data available
NUM_ROWS INT(5) P0S(282) ; // Number of rows
NUM_COLS INT(5) P0S(284) ; // Number of cols
BLINK CHAR(1) P0S (286) ; // Allow blink?
LINE_STAT CHAR(1) P0S(287) ; // Online/offline?
DSP_LOC CHAR(1) P0S(288) ; // Display location
DSP_TYPE CHAR(1) P0S(289); // Display type
KBD_TYPE CHAR(1) P0S(290) ; // Keyboard type
CTL_INFO CHAR(1) P0S(342); // Controller info
COLOR_DSP CHAR(1) P0OS(343); // Color capable?
GRID_DSP CHAR(1) P0S (344) ; // Grid line dsp?
// The following fields apply to ISDN.
ISDN_LEN INT(5) POS(385) ; // Rmt number len
ISDN_TYPE CHAR(2) P0S(387) ; // Rmt number type
ISDN_PLAN CHAR(2) P0OS(389) ; // Rmt number plan
ISDN_NUM CHAR (40) POS(391) ; // Rmt number
ISDN_SLEN INT(5) P0S (435); // Rmt sub-address length
ISDN_STYPE CHAR(2) P0OS (437); // Rmt sub-address type
ISDN_SNUM CHAR (40) P0OS(439) ; // Rmt sub-address
ISDN_CON CHAR(1) P0S (480) ; // Connection
ISDN_RLEN INT(5) P0OS(481); // Rmt address len
ISDN_RNUM CHAR(32) P0OS (483) ; // Rmt address
ISDN_ELEN INT(5) P0S(519) ; // Extension len
ISDN_ETYPE CHAR(1) POS(521) ; // Extension type
ISDN_ENUM CHAR (40) P0S(522) ; // Extension num
ISDN_XTYPE CHAR(1) POS (566) ; // X.25 call type
END-DS;

Figure 42. Example of Coding an INFDS with Display file Get Attributes Feedback Information

Chapter 3. RPG IV Concepts 137

File Exception/Errors

DCL-F MYFILE WORKSTN INFDS(ICFATRFBK);
DCL-DS ICFATRFBK;

PGM_DEV CHAR(10) P0S(241); // Program device
DEV_DSC CHAR(10) POS(251) ; // Dev description
USER_ID CHAR(10) P0OS(261) ; // User ID
DEV_CLASS CHAR(1) POS(271) ; // Device class
DEV_TYPE CHAR (1) P0S(272); // Device type
REQ_DEV CHAR(1) P0S(278) ; // Requester?
ACQ_STAT CHAR(1) P0S(279) ; // Acquire status
INV_STAT CHAR(1) P0S(280) ; // Invite status
DATA_AVAIL CHAR(1) P0S(281) ; // Data available
SES_STAT CHAR(1) P0OS(291) ; // Session status
SYNC_LVL CHAR(1) P0S(292) ; // Synch level
CONV_TYPE CHAR(1) P0S(293); // Conversation typ
RMT_LOC CHAR(10) P0S(294) ; // Remote location
LCL_LU CHAR(8) P0OS(302) ; // Local LU name
LCL_NETID CHAR(8) P0S(310) ; // Local net ID
RMT_LU CHAR(8) P0S(318); // Remote LU
RMT_NETID CHAR(8) P0OS(326) ; // Remote net ID
APPC_MODE CHAR(8) P0S(334); // APPC Mode
LU6_STATE CHAR(1) P0OS (345) ; // LU6 conv state
LU6_COR CHAR(8) POS (346) ; // LU6 conv correlator
// The following fields apply to ISDN.

ISDN_LEN INT(5) P0OS(385) ; // Rmt number len
ISDN_TYPE CHAR(2) P0S(387); // Rmt number type
ISDN_PLAN CHAR(2) P0S(389) ; // Rmt number plan
ISDN_NUM CHAR(40) P0OS(391); // Rmt number
ISDN_SLEN INT(5) POS (435) ; // sub-addr len
ISDN_STYPE CHAR(2) P0OS (437); // sub-addr type
ISDN_SNUM CHAR (40) P0OS(439); // Rmt sub-address
ISDN_CON CHAR(1) POS (480) ; // Connection
ISDN_RLEN INT(5) P0S (481) ; // Rmt address len
ISDN_RNUM CHAR(32) P0OS (483) ; // Rmt address
ISDN_ELEN CHAR(2) P0OS(519) ; // Extension len
ISDN_ETYPE CHAR(1) P0OS(521); // Extension type
ISDN_ENUM CHAR (40) P0S(522) ; // Extension num
ISDN_XTYPE CHAR(1) POS (566) ; // X.25 call type

// The following information is available only when program was started
// as result of a received program start request. (P_ stands for protected)

TRAN_PGM CHAR (64) POS(567) ; // Trans pgm name
P_LUWIDLN CHAR(1) P0OS(631) ; // LUWID fld len
P_LUNAMELN CHAR(1) P0OS(632); // LU-NAME len
P_LUNAME CHAR(17) P0OS(633); // LU-NAME
P_LUWIDIN CHAR(6) POS (650) ; // LUWID instance
P_LUWIDSEQ INT(5) POS (656) ; // LUWID seq num

// The following information is available only when a protected conversation
// is started on a remote system. (U_ stands for unprotected)

U_LUWIDLN CHAR(1) POS (658) ; // LUWID f1d len

U_LUNAMELN CHAR(1) POS (659) ; // LU-NAME 1len

U_LUNAME CHAR(17) P0OS (660) ; // LU-NAME

U_LUWIDIN CHAR(6) POS(677) ; // LUWID instance

U_LUWIDSEQ INT(5) P0OS(683) ; // LUWID seq num
END-DS;

Figure 43. Example of Coding an INFDS with ICF file Get Attributes Feedback Information

Blocking Considerations

The fields of the input/output specific feedback in the INFDS and in most cases the fields of the device
specific feedback information section of the INFDS, are not updated for each operation to the file in which
the records are blocked and unblocked. The feedback information is updated only when a block of
records is transferred between an RPG program and the operating system. However, if you are doing
blocked input on a data base file, the relative record number and the key value in the data base feedback
section of the INFDS are updated:

« On every input/output operation, if the file is not affected by the presence of a POST operation in the
program.

« Only after a POST for the file, if file is affected by a POST operation in the program.

138 IBMi: ILE RPG Reference

See “POST (Post)” on page 762.

File Exception/Errors

You can obtain valid updated feedback information by using the CL command OVRDBF (Override with
Database File) with SEQONLY(*NO) specified. If you use a file override command, the ILE RPG compiler
does not block or unblock the records in the file.

For more information on blocking and unblocking of records in RPG see Rational Development Studio for i:
ILE RPG Programmer's Guide.

File Status Codes

Any code placed in the subfield location *STATUS that is greater than 99 is considered to be an exception/
error condition. When the status code is greater than 99; the error indicator — if specified in positions 73
and 74 —is set on, or the %ERROR built-in function — if the 'E' extender is specified — is set to return '1';
otherwise, the file exception/error subroutine receives control. Location *STATUS is updated after every
file operation.

You can use the %STATUS built-in function to get information on exception/errors. It returns the most
recent value set for the program or file status. If a file is specified, %STATUS returns the value contained
in the INFDS *STATUS field for the specified file.

The codes in the following tables are placed in the subfield location *STATUS for the file information data

structure:

Table 47. Normal Codes

Code Devicel RC2 Condition

00000 No exception/error.

00002 W n/a Function key used to end display.

00011 W,D,SQ 11xx End of file on a read (input).

00012 W,D,SQ n/a No-record-found condition on a CHAIN, SETLL, and SETGT
operations.

00013 W n/a Subfile is full on WRITE operation.

Note: 1"Device" refers to the devices for which the condition applies. The following abbreviations are used: P =
PRINTER; D = DISK; W = WORKSTN; SP = SPECIAL; SQ = Sequential. The major/minor return codes under
column RC apply only to WORKSTN files. 2The formula mmnn is used to described major/minor return codes:

mm is the major and nn the minor.

Table 48. Exception/Error Codes

Code Devicel RC2 Condition

01011 W,D,S0Q n/a Undefined record type (input record does not match record
identifying indicator).

01021 W,D,S0Q n/a Tried to write a record that already exists (file being used has
unique keys and key is duplicate, or attempted to write
duplicate relative record number to a subfile).

01022 D n/a Referential constraint error detected on file member.

01023 D,SQ n/a Error in trigger program before file operation performed.

01024 D,SQ n/a Error in trigger program after file operation performed.

01031 W,D,SQ n/a Match field out of sequence.

01041 n/a n/a Array/table load sequence error.

Chapter 3. RPG IV Concepts 139

File Exception/Errors

Table 48. Exception/Error Codes (continued)

Code Devicel RC2 Condition

01042 n/a n/a Array/table load sequence error. Alternate collating sequence
used.

01051 n/a n/a Excess entries in array/table file.

01061 n/a n/a Error handling for an associated variable for a file parameter

01071 W,D,SQ n/a Numeric sequence error.

011214 w n/a No indicator on the DDS keyword for Print key.

011224 n/a No indicator on the DDS keyword for Roll Up key.

011234 W n/a No indicator on the DDS keyword for Roll Down key.

011244 W n/a No indicator on the DDS keyword for Clear key.

011254 W n/a No indicator on the DDS keyword for Help key.

011264 W n/a No indicator on the DDS keyword for Home key.

01201 W 34xx Record mismatch detected on input.

01211 all n/a I/0O operation to a closed file.

01215 all n/a OPEN issued to a file already opened.

012163 all yes Error on an implicit OPEN/CLOSE operation.

012173 all yes Error on an explicit OPEN/CLOSE operation.

01218 D,SQ n/a Record already locked.

01221 D,SQ n/a Update operation attempted without a prior read.

01222 D,SQ n/a Record cannot be allocated due to referential constraint error

01231 SP n/a Error on SPECIAL file.

01235 P n/a Error in PRTCTL space or skip entries.

01241 D,SO n/a Record number not found. (Record number specified in record
address file is not present in file being processed.)

01251 W 80xx 81xx Permanent I/0 error occurred.

01255 W 82xx 83xx Session or device error occurred. Recovery may be possible.

01261 W n/a Attempt to exceed maximum number of acquired devices.

01271 W n/a Attempt to acquire unavailable device

01281 W n/a Operation to unacquired device.

01282 W 0309 Job ending with controlled option.

01284 W n/a Unable to acquire second device for single device file

01285 W 0800 Attempt to acquire a device already acquired.

01286 W n/a Attempt to open shared file with SAVDS or IND options.

01287 W n/a Response indicators overlap IND indicators.

01299 W,D,SQ yes Other I/O error detected.

01331 W 0310 Wait time exceeded for READ from WORKSTN file.

140 IBMi: ILE RPG Reference

File Exception/Errors

Table 48. Exception/Error Codes (continued)
Code Devicel RC2 Condition
Note:

1. "Device" refers to the devices for which the condition applies. The following abbreviations are used: P =
PRINTER; D = DISK; W = WORKSTN; SP = SPECIAL; SQ = Sequential. The major/minor return codes under
column RC apply only to WORKSTN files.

2. The formula mmnn is used to described major/minor return codes: mm is the major and nn the minor.

3. Any errors that occur during an open or close operation will result in a *STATUS value of 1216 or 1217
regardless of the major/minor return code value.

4. See Figure 15 on page 96 for special handling.

The following table shows the major/minor return code to *STATUS value mapping for errors that occur to
programs using WORKSTN files only. See the Information Center for more information on major/minor
return codes.

Major Minor *STATUS
00,02 all 00000
03 all (except 09,10) 00000
03 09 01282
03 10 01331
04 all 01299
08 all 01285
11 all 00011
34 all 01201
80,81 all 01251
82,83 all 01255
Note:

1. The return code field will not be updated for a *STATUS value of 1285, 1261, or 1281 because these
conditions are detected before calling data management. To monitor for these errors, you must
check for the *STATUS value and not for the corresponding major/minor return code value.

File Exception/Error Subroutine (INFSR)

To identify the user-written RPG IV subroutine that may receive control following file exception/errors,
specify the INFSR keyword on the File Description specification with the name of the subroutine that
receives control when exception/errors occur on this file. The subroutine name can be *PSSR, which
indicates that the program exception/error subroutine is given control for the exception/errors on this file.

A file exception/error subroutine (INFSR) receives control when an exception/error occurs on an implicit
(primary or secondary) file operation or on an explicit file operation that does not have an indicator
specified in positions 73 and 74,does not have an (E) extender, and is not in the monitor block of a
MONITOR group that can handle the error.. The file exception/error subroutine can also be run by the
EXSR operation code. Any of the RPG IV operations can be used in the file exception/error subroutine.
Factor 1 of the BEGSR operation and factor 2 of the EXSR operation must contain the name of the
subroutine that receives control (same name as specified with the INFSR keyword on the file description
specifications).

Chapter 3. RPG IV Concepts 141

File Exception/Errors

Note: The INFSR keyword cannot be specified if the keyword MAIN or NOMAIN keyword is specified on
the Control specification, or if the file is to be accessed by a subprocedure. To handle errors for the file in
your procedure, you can use the (E) extender to handle errors for an individual I/O operation, or you can
use a MONITOR group to handle errors for several operations. The ON-ERROR section of your MONITOR
group could call a subprocedure to handle the details of the error handling.

The ENDSR operation must be the last specification for the file exception/error subroutine and should be
specified as follows:

Position
Entry

6
C
7-11
Blank
12-25
Can contain a label that is used in a GOTO specification within the subroutine.
26-35
ENDSR
36-49
Optional entry to designate where control is to be returned following processing of the subroutine.

The entry must be a 6-position character field, literal, or array element whose value specifies one of
the following return points.

Note: If the return points are specified as literals, they must be enclosed in apostrophes. If they are
specified as named constants, the constants must be character and must contain only the return
point with no leading blanks. If they are specified in fields or array elements, the value must be left-
adjusted in the field or array element.

*DETL
Continue at the beginning of detail lines.

*GETIN
Continue at the get input record routine.

*TOTC
Continue at the beginning of total calculations.

*TOTL
Continue at the beginning of total lines.

*OFL
Continue at the beginning of overflow lines.

*DETC

Continue at the beginning of detail calculations.
*CANCL

Cancel the processing of the program.

Blanks
Return control to the RPG IV default error handler. This applies when factor 2 is a value of blanks
and when factor 2 is not specified. If the subroutine was called by the EXSR operation and factor 2
is blank, control returns to the next sequential instruction. Blanks are only valid at runtime.

50-76
Blank.

Remember the following when specifying the file exception/error subroutine:

« The programmer can explicitly call the file exception/error subroutine by specifying the name of the
subroutine in factor 2 of the EXSR operation.

- After the ENDSR operation of the file exception/error subroutine is run, the RPG IV language resets the
field or array element specified in factor 2 to blanks. Thus, if the programmer does not place a value in

142 IBMi: ILE RPG Reference

Program Exception/Errors

this field during the processing of the subroutine, the RPG IV default error handler receives control
following processing of the subroutine unless the subroutine was called by the EXSR operation.
Because factor 2 is set to blanks, the programmer can specify the return point within the subroutine
that is best suited for the exception/error that occurred. If the subroutine was called by the EXSR
operation and factor 2 of the ENDSR operation is blank, control returns to the next sequential
instruction following the EXSR operation. A file exception/error subroutine can handle errors in more
than one file.

- If a file exception/error occurs during the start or end of a program, control passes to the RPG IV default
error handler, and not to the user-written file exception/error or subroutine (INFSR).

« Because the file exception/error subroutine may receive control whenever a file exception/error occurs,
an exception/error could occur while the subroutine is running if an I/O operation is processed on the
file in error. If an exception/error occurs on the file already in error while the subroutine is running, the
subroutine is called again; this will result in a program loop unless the programmer codes the
subroutine to avoid this problem. One way to avoid such a program loop is to set a first-time switch in
the subroutine. If it is not the first time through the subroutine, set on a halt indicator and issue the
RETURN operation as follows:

L R N TTTTI: U S D N DU ST o JUEPE PR AU
CLONO1Factorl+++++++0pcode(E)+Factor2+++++++Result++++++++Len++D+HiloEq. .

Cx If INFSR is already handling the error, exit.

c ERRRTN BEGSR

[sul IFEQ 19

c SETON H1
c RETURN

Cx Otherwise, flag the error handler.
ELSE
MOVE 1! Sl

c
(5
(4
[
(5
(¥

ENDIF

Cx End error processing.

c MOVE '’ SW
c ENDSR

Figure 44. Setting a First-time Switch

Note: It may not be possible to continue processing the file after an I/O error has occurred. To continue, it
may be necessary to issue a CLOSE operation and then an OPEN operation to the file.

Program Exception/Errors

Some examples of program exception/errors are: division by zero, SQRT of a negative number, invalid
array index, error on a CALL, error return from called program, and start position or length out of range for
a string operation. They can be handled in one of the following ways:

« The operation code extender 'E' can be specified for some operation codes. When specified, before the
operation begins, this extender sets the %ERROR and %STATUS built-in functions to return zero. If an
exception/error occurs during the operation, then after the operation %ERROR returns '1' and

Chapter 3. RPG IV Concepts 143

Program Exception/Errors

%STATUS returns the program status. The optional program status data structure is updated with the
exception/error information. You can determine the action to be taken by testing %ERROR and
%STATUS.

« Anindicator can be specified in positions 73 and 74 of the calculation specifications for some operation
codes. This indicator is set on if an exception/error occurs during the processing of the specified
operation. The optional program status data structure is updated with the exception/error information.
You can determine the action to be taken by testing the indicator.

« ON-ERROR groups can be used to handle errors for statements processed within a MONITOR block. If
an error occurs when a statement is processed, control passes to the appropriate ON-ERROR group.

» You can create a user-defined ILE exception handler that will take control when an exception occurs.
For more information, see Rational Development Studio for i: ILE RPG Programmer's Guide.

« A program exception/error subroutine can be specified. You enter *PSSR in factor 1 of a BEGSR
operation to specify this subroutine. Information regarding the program exception/error is made
available through a program status data structure that is specified with an S in position 23 of the data
structure statement on the definition specifications. You can also use the %STATUS built-in function,
which returns the most recent value set for the program or file status.

- Iftheindicator, 'E' extender, monitor block, or program exception/error subroutine is not present,
program exception/errors are handled by the RPG IV default error handler.

Program Status Data Structure

A program status data structure (PSDS) can be defined to make program exception/error information
available to an RPG IV program. The PSDS must be defined in the main source section; therefore, there is
only one PSDS per module.

A data structure is defined as a PSDS by an S in position 23 of the data structure statement. A PSDS
contains predefined subfields that provide you with information about the program exception/error that
occurred. The location of the subfields in the PSDS is defined by special keywords or by predefined From
and To positions. In order to access the subfields, you assign a name to each subfield. The keywords
must be specified, left-adjusted in positions 26 through 39.

Information from the PSDS is also provided in a formatted dump. However, a formatted dump might not
contain information for fields in the PSDS if the PSDS is not coded, or the length of the PSDS does not
include those fields. For example, if the PSDS is only 275 bytes long, the time and date or program
running will appear as *N/A*. in the dump, since this information starts at byte 276. For more information
see “DUMP (Program Dump)” on page 686.

Tip:

Call performance with LR on may be improved by having no PSDS, or a PSDS no longer than 80 bytes,
since some of the information to fill the PSDS after 80 bytes may be costly to obtain.

Table 49 on page 145 provides the layout of the subfields of the data structure and the predefined From
and To positions of its subfields that can be used to access information in this data structure.

144 1IBMi: ILE RPG Reference

Program Exception/Errors

Table 49. Contents of the Program Status Data Structure

From To
(Pos. | (Pos.
26-32) | 33-39) | Format Length | Keyword Information
1 10 Character 10 *PROC If the module was compiled with CRTRPGMOD, this
is the name of the module that was created; if the
program was created using CRTBNDRPG, this is the
name of the program that was created. For a cycle-
main module, this is the name of the main
procedure.
11 15 |[Zoned decimal |5,0 *STATUS Status code. For a description of these codes, see
“Program Status Codes” on page 149.
16 20 |Zoneddecimal |[5,0 Previous status code.
21 28 | Character 8 RPG IV source listing line number or statement

number. The source listing line number is replaced
by the source listing statement number if
OPTION(*SRCSTMT) is specified instead of
OPTION(*NOSRCSTMT). The full statement number
is included when it applies to the root source
member. If the statement number is greater than 6
digits (that is, it includes a source ID other than
zero), the first 2 positions of the 8-byte feedback
area will have a "+ " indicating that the rest of
statement number is stored in positions 354-355.

Chapter 3. RPG IV Concepts 145

Program Exception/Errors

Table 49. Contents of the Program Status Data Structure (continued)

From To
(Pos. | (Pos.
26-32) | 33-39) | Format Length | Keyword Information

29 36 Character 8 *ROUTINE | Name of the RPG IV routine in which the exception
or error occurred. This subfield is updated at the
beginning of an RPG IV routine or after a program
call only when the *STATUS subfield is updated
with a nonzero value. The following names identify
the routines:

*INIT
Program initialization
*DETL
Detail lines
*GETIN
Get input record
*TOTC
Total calculations
*TOTL
Total lines
*DETC
Detail calculations
*OFL
Overflow lines
*TERM
Program ending
*ROUTINE
Name of program or procedure called (first 8
characters).
Note: *ROUTINE is not valid unless you use the
normal RPG IV cycle. Logic that takes the program
out of the normal RPG IV cycle may cause
*ROUTINE to reflect an incorrect value.

37 39 |Zoneddecimal [3,0 *PARMS Number of parameters passed to this program from
a calling program. The value is the same as that
returned by %PARMS. If no information is available,
-1 is returned.

40 42 Character 3 Exception type (CPF for an operating system
exception or MCH for a machine exception).

43 46 Character 4 Exception number. For a CPF exception, this field
contains a CPF message number. For a machine
exception, it contains a machine exception number.

47 50 Character 4 Reserved

146 IBMi: ILE RPG Reference

Program Exception/Errors

Table 49. Contents of the Program Status Data Structure (continued)

From
(Pos.

26-32)

To
(Pos.

33-39)

Format

Length

Keyword

Information

51

80

Character

30

Work area for messages. This area is only meant for
internal use by the ILE RPG compiler. The
organization of information will not always be
consistent. It can be displayed by the user.

81

90

Character

10

Name of library in which the program is located.

91

170

Character

80

Retrieved exception data. CPF messages are placed
in this subfield when location *STATUS contains
09999.

171

174

Character

Identification of the exception that caused
RNX9001 exception to be signaled.

175

184

Character

10

Name of file on which the last file operation
occurred (updated only when an error occurs). This
information always contains the full file name.

185

190

Character

Unused.

191

198

Character

Date (*DATE format) the job entered the system. In
the case of batch jobs submitted for overnight
processing, those that run after midnight will carry
the next day's date. This value is derived from the
job date, with the year expanded to the full four
years. The date represented by this value is the
same date represented by positions 270 - 275.

199

200

Zoned decimal

2,0

First 2 digits of a 4-digit year. The same as the first
2 digits of *YEAR. This field applies to the century
part of the date in positions 270 to 275. For
example, for the date 1999-06-27, UDATE would
be 990627, and this century field would be 19. The
value in this field in conjunction with the value in
positions 270 - 275 has the combined information
of the value in positions 191 -198.

Note: This century field does not apply to the dates
in positions 276 to 281, or positions 288 to 293.

201

208

Character

Name of file on which the last file operation
occurred (updated only when an error occurs). This
file name will be truncated if a long file name is
used. See positions 175-184 for long file name
information.

Chapter 3. RPG IV Concepts 147

Program Exception/Errors

Table 49. Contents of the Program Status Data Structure (continued)

From To

(Pos. | (Pos.

26-32) | 33-39) | Format Length | Keyword Information

209 243 | Character 35 Status information on the last file used. This
information includes the status code, the RPG IV
opcode, the RPG IV routine name, the source listing
line number or statement number, and record
name. It is updated only when an error occurs.
Note: The opcode name is in the same form as
*OPCODE in the INFDS
The source listing line number is replaced by the
source listing statement number if
OPTION(*SRCSTMT) is specified instead of
OPTION(*NOSRCSTMT). The full statement number
is included when it applies to the root source
member. If the statement number is greater than 6
digits (that is, it includes a source ID other than
zero), the first 2 positions of the 8-byte feedback
area will have a "+ " indicating that the rest of
statement number is stored in positions 356-357.

244 253 [Character 10 Job name.

254 263 | Character 10 User name from the user profile.

264 269 |Zoneddecimal [6,0 Job number.

270 275 |Zoneddecimal |6,0 Date (in UDATE format) the program started running
in the system (UDATE is derived from this date). See
“User Date Special Words” on page 63 for a
description of UDATE. This is commonly known as
the 'job date'. The date represented by this value is
the same date represented by positions 191 - 198.

276 281 |[Zoned decimal |[6,0 Date of program running (the system date in UDATE
format). If the year part of this value is between 40
and 99, the date is between 1940 and 1999.
Otherwise the date is between 2000 and 2039. The
‘century' value in positions 199 - 200 does not
apply to this field.

282 287 |Zoned decimal |6,0 Time (in the format hhmmess) of the program
running.

288 293 [Character 6 Date (in UDATE format) the program was compiled.
If the year part of this value is between 40 and 99,
the date is between 1940 and 1999. Otherwise the
date is between 2000 and 2039. The 'century' value
in positions 199 - 200 does not apply to this field.

294 299 [Character 6 Time (in the format hhmmess) the program was
compiled.

300 303 |Character 4 Level of the compiler.

148 IBMi: ILE RPG Reference

Program Exception/Errors

Table 49. Contents of the Program Status Data Structure (continued)

From To
(Pos. | (Pos.
26-32) | 33-39) | Format Length | Keyword Information

304 313 | Character 10 Source file name.

314 323 | Character 10 Source library name.

324 333 [Character 10 Source file member name.

334 343 | Character 10 Program containing procedure.

344 353 |Character 10 Module containing procedure.

354 355 [Binary 2 Source Id matching the statement number from
positions 21-28.

356 357 [Binary 2 Source Id matching the statement number from
positions 228-235.

358 367 |Character 10 Current user profile name.

368 371 |Integer 10,0 External error code

372 379 |Integer 20,0 Elements set by XML-INTO or DATA-INTO

380 429 |Character 50 Unused.

Program Status Codes

Any code placed in the subfield location *STATUS that is greater than 99 is considered to be an exception/
error condition. When the status code is greater than 99; the error indicator — if specified in positions 73
and 74 —is set on, or the %ERROR built-in function — if the 'E' extender is specified — is set to return '1',
or control passes to the appropriate ON-ERROR group within a MONITOR block; otherwise, the program
exception/error subroutine receives control. Location *STATUS is updated when an exception/error
occurs.

The %STATUS built-in function returns the most recent value set for the program or file status.
The following codes are placed in the subfield location *STATUS for the program status data structure:
Normal Codes

Code
Condition
00000
No exception/error occurred

00001
Called program returned with the LR indicator on.

00050
Conversion resulted in substitution.
Exception/Error Codes

Code
Condition

00100
Value out of range for string operation

Chapter 3. RPG IV Concepts 149

Program Exception/Errors

00101

Negative square root
00102

Divide by zero
00103

An intermediate result is not large enough to contain the result.
00104

Float underflow. An intermediate value is too small to be contained in the intermediate result field.
00105

Invalid characters in character to numeric conversion functions.
00112

Invalid Date, Time or Timestamp value.
00113

Date overflow or underflow. (For example, when the result of a Date calculation results in a number
greater than *HIVAL or less than *LOVAL.)

00114
Date mapping errors, where a Date is mapped from a 4-character year to a 2-character year, and the
date range is not 1940-2039.

00115
Variable-length field has a current length that is not valid.
00120
Table or array out of sequence.
00121
Array index not valid
00122
OCCUR outside of range
00123
Reset attempted during initialization step of program
00202
Called program or procedure failed; halt indicator (H1 through H9) not on
00211
Error calling program or procedure
00222
Pointer or parameter error
00231
Called program or procedure returned with halt indicator on
00232
Halt indicator on in this program
00233
Halt indicator on when RETURN operation run
00299
RPG IV formatted dump failed
00301
Class or method not found for a method call, or error in method call.
00302
Error while converting a Java array to an RPG parameter on entry to a Java native method.
00303
Error converting RPG parameter to Java array on exit from an RPG native method.
00304

Error converting RPG parameter to Java array in preparation for a Java method call.

150 IBMi: ILE RPG Reference

Program Exception/Errors

00305

Error converting Java array to RPG parameter or return value after a Java method.
00306

Error converting RPG return value to Java array.
00333

Error on DSPLY operation
00351

Error parsing XML document
00352

Invalid option for %XML
00353

XML document does not match RPG variable
00354

Error preparing for XML parsing
00401

Data area specified on IN/OUT not found
00402

*PDA not valid for non-prestart job
00411

Data area type or length does not match
00412

Data area not locked for output
00413

Error on IN/OUT operation
00414

User not authorized to use data area
00415

User not authorized to change data area
00421

Error on UNLOCK operation
00425

Length requested for storage allocation is out of range
00426

Error encountered during storage management operation
00431

Data area previously locked by another program
00432

Data area locked by program in the same process
00450

Character field not entirely enclosed by shift-out and shift-in characters
00451

Conversion between two CCSIDs is not supported.
00452

Some characters could not be converted between two CCSIDs.
00501

Failure to retrieve sort sequence.
00502

Failure to convert sort sequence.
00802

Commitment control not active.

Chapter 3. RPG IV Concepts 151

Program Exception/Errors

00803
Rollback operation failed.

00804
Error occurred on COMMIT operation

00805
Error occurred on ROLBK operation

00907
Decimal data error (digit or sign not valid)

00970
The level number of the compiler used to generate the program does not agree with the level number
of the RPG IV run-time subroutines.

09998
Internal failure in ILE RPG compiler or in run-time subroutines

09999
Program exception in system routine.

PSDS Example

To specify a PSDS in your program, you code the program status data structure and the subfields you wish
to use on a definition specification.

152 IBMi: ILE RPG Reference

Program Exception/Errors

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++ttt++++++++Comments++++++++++
DMYPSDS SDS

D PROC_NAME *PROC * Procedure name
D PGM_STATUS *STATUS * Status code

D PRV_STATUS 16 20S 0 * Previous status
D LINE_NUM 21 28 * Src list line
num

D ROUTINE *ROUTINE * Routine name

D PARMS *PARMS * Num passed parms
D EXCP_TYPE 40 42 * Exception type
D EXCP_NUM 43 46 * Exception number
D PGM_LIB 81 20 * Program library
D EXCP_DATA 921 170 * Exception data
D EXCP_ID 171 174 * Exception Id

D DATE 191 198 * Date (*DATE fmt)
D YEAR 199 200S 0 * Year (*YEAR fmt)
D LAST_FILE 201 208 * Last file used
D FILE_INFO 209 243 * File error info
D JOB_NAME 244 253 * Job name

D USER 254 263 * User name

D JOB_NUM 264 269S 0 * Job number

D JOB_DATE 270 275S 0 * Date (UDATE fmt)
D RUN_DATE 276 281S 0 * Run date (UDATE)
D RUN_TIME 282 287S 0 * Run time (UDATE)
D CRT_DATE 288 293 * Create date

D CRT_TIME 294 299 * Create time

D CPL_LEVEL 300 303 * Compiler level
D SRC_FILE 304 313 * Source file

D SRC_LIB 314 323 * Source file lib
D SRC_MBR 324 333 * Source file mbr
D PROC_PGM 334 343 * Pgm Proc is in
D PROC_MOD 344 353 * Mod Proc is in

Figure 45. Example of Coding a PSDS

Note: The keywords are not labels and cannot be used to access the subfields. Short entries are padded
on the right with blanks.

Program Exception/Error Subroutine

To identify the user-written RPG IV subroutine that is to receive control when a program exception/error
occurs, specify *PSSR in factor 1 of the subroutine's BEGSR operation. If an indicator is not specified in
positions 73 and 74 for the operation code, or if the operation does not have an (E) extender, or if the
statement is not in a MONITOR block that can handle the error, or if an exception occurs that is not

Chapter 3. RPG IV Concepts 153

Program Exception/Errors

expected for the operation code (that is, an array indexing error during a SCAN operation), control is
transferred to this subroutine when a program exception/error occurs. In addition, the subroutine can
also be called by the EXSR operation. *PSSR can be specified on the INFSR keyword on the file
description specifications and receives control if a file exception/error occurs.

Any of the RPG IV operation codes can be used in the program exception/error subroutine. The ENDSR
operation must be the last specification for the subroutine, and the factor 2 entry on the ENDSR operation
specifies the return point following the running of the subroutine. For a discussion of the valid entries for
factor 2, see “File Exception/Error Subroutine (INFSR)” on page 141.

Remember the following when specifying a program exception/error subroutine:

You can explicitly call the *PSSR subroutine by specifying *PSSR in factor 2 of the EXSR operation.

After the ENDSR operation of the *PSSR subroutine is run, the RPG IV language resets the field,
subfield, or array element specified in factor 2 to blanks. This allows you to specify the return point
within the subroutine that is best suited for the exception/error that occurred. If factor 2 contains
blanks at the end of the subroutine, the RPG IV default error handler receives control; if the subroutine
was called by an EXSR or CASxx operation, control returns to the next sequential instruction following
the EXSR or ENDCS.

Because the program exception/error subroutine may receive control whenever a non-file exception/
error occurs, an exception/error could occur while the subroutine is running. If an exception/error
occurs while the subroutine is running, the subroutine is called again; this will result in a program loop
unless the programmer codes the subroutine to avoid this problem.

If you have used the OPTIMIZE(*FULL) option on either the CRTBNDRPG or the CRTRPGMOD command,
you have to declare all fields that you refer to during exception handling with the NOOPT keyword in the
definition specification for the field. This will ensure that when you run your program, the fields referred
to during exception handling will have current values.

A *PSSR can be defined in a subprocedure, and each subprocedure can have its own *PSSR. Note that
the *PSSR in a subprocedure is local to that subprocedure. If you want the subprocedures to share the
same exception routine then you should have each *PSSR call a shared procedure.

General File Considerations

This chapter contains a more detailed explanation of:

Global and Local files

File Parameters

Open Access Files

Variables Associated with Files
Multi-file Processing

Match fields

Alternate collating sequence
File translation.

Rules for File Names

At compile time:

If the file is program-described, the file does not need to exist.

If the file is externally-described, the file must exist but you can use an IBM i system override command
to associate the name to a file defined to the IBM i system, or you can use the EXTDESC keyword to
indicate the file defined to the system.

If the file name in the RPG program is longer than 10 characters, you must specify the EXTFILE
keyword. If the file is externally-described, you must specify the EXTDESC keyword.

154 IBMi: ILE RPG Reference

Program Exception/Errors

At run time:

« If you use the EXTFILE keyword, the EXTMBR keyword, or both, RPG will open the file named in these
keywords.

« Otherwise, RPG will open the file whose name is the same as the name of the file in the RPG program.
This file (or an overridden file) must exist when the file is opened.

- Ifan IBM i system override command has been used for the file that RPG opens, that override will take
effect and the actual file opened will depend on the override. See the “EXTFILE(filename | *EXTDESC) ”
on page 342 keyword for more information about how overrides interact with this keyword.

When files that are not defined by the USROPN keyword are opened at run time, they are opened in the
reverse order to that specified in the file description specifications. The RPG IV device name defines the
operations that can be processed on the associated file.

File devices

The device of a file is specified by the device-type keyword for a free-form file definition, and by the
Device entry for a fixed-form file definition.

The RPG IV device name defines the ILE RPG functions that can be done on the associated file. Certain
functions are valid only for a specific ILE RPG device name (such as the EXFMT operation for the
WORKSTN device).

Note: If no device-type keyword is specified for a free-form file, and the LIKEFILE keyword is not
specified, the device defaults to DISK(*EXT).

File device types

PRINTER
The file is a printer file, a file with control characters that can be sent to a printer.

DISK
The file is a disk file. This device supports sequential and random read/write functions. These files can
be accessed on a remote system by Distributed Data Management (DDM).

WORKSTN
The file is a workstation file. Input and output is through a display or ICF file.

SPECIAL
The file is a a special file. Input or output is on a device that is accessed by a user-supplied program.
The name of the program must be specified as the parameter for the PGMNAME keyword. A
parameter list is created for use with this program, including an option code parameter and a status
code parameter. The file must be a fixed unblocked format. See “PLIST(Plist_name)” on page 353
and “PGMNAME (program_name)” on page 352 for more information.

SEQ

The file is a sequentially organized file. The actual device is specified in a CL command or in the file
description, which is accessed by the file name.

Global and Local Files

In an RPG IV module, you can define global files which are available to every procedure in the module, or
local files which are only available to one procedure. Global files are defined in the main source section,
between the Control specifications and the Definition specifications. They can be primary, secondary,
table, or full-procedural files. Local files are defined within subprocedures, between the Procedure
specifications and the Definition specifications of the subprocedure. They can only be full-procedural
files. Input and Output specifications can be defined to handle the field data for global files.

Input and Output specifications are not supported for subprocedures, so all input and output operations
must be done using data structures for local files.

Chapter 3. RPG IV Concepts 155

Program Exception/Errors

Open Access Files

An Open Access file is a file which has all its operations handled by a user-written program or procedure,
rather than by the operating system. This program or procedure is called an "Open Access Handler" or
simply a "handler".

For example, the handler for an Open Access printer file will get control when the file is opened, when
data is written to the file, and when the file is closed. Then handler will determine when overflow occurs.

An Open Access file is defined by specifying the HANDLER keyword on the file definition. It can be a
program-described file or an externally-described file, although specific handlers may place their own
restrictions on the type of file they support.

The file is not required at runtime, unless the specific handler requires it.

Other than the HANDLER keyword, an Open Access file is used in the same way that it would be used if it
did not have the HANDLER keyword.

See “HANDLER(program-or-procedure { : communication-area)})” on page 344 for examples of the
HANDLER keyword.

See “Example of an Open Access Handler” on page 157 for an example of an Open Access handler.

See the Rational Open Access: RPG Edition topic for information on writing an Open Access handler.

Locating an Open Access Handler

The Open Access handler is located on the system when the file is opened. For all subsequent operations
until the file is closed, the same handler is called.

For example, a file is defined with keyword HANDLER(handlerName).

If variable handlerName has the value 'MYPGM' when the file is opened, and program MYPGM is found in
library MYLIB, then program MYLIB/MYPGM will be called to open the file.

If variable handlerName is changed to have the value 'MYSRVPGM(myProc)' before an input operation,
this will have no effect. Program MYLIB/MYPGM will be called to handle the input operation.

Open Access Handlers
An Open Access handler is responsible for handling all the operations for an Open Access file.

The handler is called when the file is opened, when it is closed, and for any input or output operation for
the file.

The parameter passed to the handler

The handler is passed a single parameter. Copy member QRNOPENACC in file QOAR/QRPGLESRC contains
the data-structure template QrnOpenAccess_T which can be used with the LIKEDS keyword to define the
parameter in the handler.

The handler parameter contains many pointer subfields that point to other structures. The copy file
contains additional data-structure templates that can be used to define these other structures. For
example, the prtctl subfield can be used as the basing pointer for a structure defined with keyword
LIKEDS(QrnPrtctl_T).

The copy file also contains several named constants that can be used within the handler. For example,
there are several named constants whose names begin with QrnOperation_, such as QrnOperation_OPEN,
that can be used with subfield rpgOperation of the handler parameter.

The subfields provide the handler with all the information it needs to perform the required operation. For
example, for an output operation, it receives the data to be written to the file.

The subfields also allow the handler to pass back all the information needed by RPG following the
operation. For example, for an input operation, the handler can pass back the input data, and it can pass
back information about whether the file reached end-of-file.

156 IBMi: ILE RPG Reference

Program Exception/Errors

If the handler needs to communicate directly with the RPG programmer, the handler provider can ask the
RPG programmer to specify the communication-area parameter of the HANDLER keyword. The RPG
program and the handler provider must ensure that the communication-area parameter is defined the
same in the handler and the RPG program. Normally, the handler provider would provide a template data
structure in a copy file that the RPG programmer can use to define the communication-area parameter.

Note: The communication area is also referred to as the user area. The userArea subfield in the handler
parameter is a pointer to the communication-area parameter specified on the HANDLER keyword in the
RPG program.

If the handler needs to maintain state information that is available across calls to the handler, it can use
the statelnfo pointer subfield in the handler parameter. If the handler places a pointer value in this
subfield during one call to the handler, the same pointer value will be avaiable for all subsequent calls to
the handler for that particular file. Normally, a handler will allocate storage for the state information while
it is handling the OPEN operation, and it will deallocate the storage when it is handling the CLOSE
operation.

Errors in the handler

If the handler fails with an unhandled exception, the RPG operation will fail with a status code relevant to
the operation. For example, if the operation is an OPEN or a CLOSE operation, the error status will be
either 1216 or 1217. For other operations, the status will be 1299.

If the handler detects an error, there are two mechanisms to communicate the failure to the RPG
program:

« Send an exception message that will cause the handler to end with an unhandled exception. This
message will appear in the joblog, and the subsequent RPG error message will refer to this error
message.

The advantage of this mechanism is that the handler ends as soon as the exception message is sent, so
the handler does not have to keep track of whether the operation has failed.

- Set the rpgStatus subfield of the handler parameter to the desired RPG status code. It may also be
helpful to send a diagnostic message to the joblog.

The advantage of this mechanism is that the handler can choose the exact status code. For example,
there are several status codes associated with WORKSTN operations.

See the Rational Open Access: RPG Edition topic for information on writing an Open Access handler.

Example of an Open Access Handler

Note: Detailed explanation is provided only for the aspects of the example that are related to Open
Access files. Some code, such as the code to open, write, and close an IFS file, or the code to signal an
exception, are provided without explanation.

In this example, a handler allows an RPG programmer to read a stream file in the Integrated File System.

The provider of the handler has also provided a copy file containing a template for a data structure to be
used as a communication area between the RPG program and the handler. The data structure defines the
path for the file and other options to control the way the handler creates the file. The copy file also
contains a named constant IFSHDLRS_read_handler with the name of the handler program.

Chapter 3. RPG IV Concepts 157

Program Exception/Errors

/IF DEFINED(IFSHDLRS_COPIED)
/EQOF

/ENDIF

/DEFINE IFSHDLRS_COPIED

DCL-DS ifshdlrs_info_t QUALIFIED TEMPLATE;
path VARCHAR (5000) ;
createCcsid INT(10);
append IND;

END-DS;

DCL-C ifshdlrs_write_handler 'IFSHDLRS/WRITEHDLR';

The following shows the RPG program that defines the Open Access file.
Note the following aspects of the program
1. The copy file provided for the handler.

2. The communication-area data structure used to communicate directly with the handler. The userArea
subfield in the parameter passed to the handler will point to this data structure.

3. The Open Access file. The handler in this example supports both program-described files and

externally-described files. This example program uses an externally-described file defined from the
following source file.

A R STREAMFMT
A LINE 32740A VARLEN

4. The HANDLER keyword

a. The first parameter for the HANDLER keyword is the named constant from the copy file that defines
the handler program or procedure.

b. The second parameter for the HANDLER keyword is the communication-area data structure data
structure.

5. The program sets up the communication area with the additional information needed by the handler
and then it opens the file.

6. It writes two records to the file.

CTL-OPT DFTACTGRP (*NO) ACTGRP (*NEW) ;

/copy IFSHDLRS/SRC,RPG
DCL-DS ifs_info LIKEDS(ifshdlrs_info_t);
DCL-F streamfile DISK(*EXT) USAGE (*QUTPUT)
EXTDESC ('MYLIB/MYSTMF')
HANDLER (ifshdlrs_write_handler
: ifs_info)
USROPN;

ifs_info.path = '/home/mydir/myfile.txt';
ifs_info.createCcsid = 0; // job CCSID
ifs_info.append = *ON;

OPEN streamfile;

line = 'Hello'; IR
WRITE streamFmt;

line = 'world!';
WRITE streamFmt;
*inlr = '1"';

The following examples show the handler.

« “Control statement, copy files and global definitions” on page 159

158 IBMi: ILE RPG Reference

Program Exception/Errors

« “Main handler procedure” on page 159

» “Procedure to open the file” on page 160

« “Procedure to close the file” on page 161

« “Procedure to write the file using the output buffer” on page 162

« “Procedure to write the file using the names-values information” on page 162

« “Procedure to write one line to the file” on page 163

« “Procedure to send an exception” on page 163

1n»

« “Procedure to send an exception related to "errno"” on page 164

1n»

« “Procedure to get the value of "errno"” on page 164

Control statement, copy files and global definitions

1. The state_t template data structure defines the information needed by the handler across calls to the
handler. In this example, the handler needs to keep track of the descriptor for the open file.

CTL-OPT DFTACTGRP (*NO) ACTGRP (*CALLER)
MAIN(writeHdlr);

/COPY IFSHDLRS/SRC,RPG
/COPY QOAR/QRPGLESRC, QRNOPENACC
/COPY QSYSINC/QRPGLESRC,IFS

DCL-S descriptor_t INT(10) TEMPLATE;
DCL-DS state_t QUALIFIED template;

descriptor LIKE(descriptor_t);
END-DS;

Main handler procedure

1. The procedure interface defines the parameter that is passed to every Open Access handler. The
QrnOpenAccess_T template is defined in copy file QRNOPENACC in source file QOAR/QRPGLESRC.

2. Several based data structures are defined. The basing pointers for these data structures will be set
from pointers in the handler parameter.

« Data structure state holds the information needed by the handler across calls to the handler. The
basing pointer pState will be set from the stateInfo subfield in the handler parameter.

« Data structure ifsInfo is the communication area parameter. By setting the basing pointer pIfsInfo
from the userArea subfield in the handler parameter, the ifsInfo data structure will refer to the same
storage as the ifs_info data structure that was specified as the second parameter for the HANDLER
keyword in the RPG program.

- Data structure namesValues describes the externally-described fields in the file. The basing pointer
is set from the namesValues subfield of the handler parameter.

3. The basing pointers are set for the state and ifsInfo.
4. For the OPEN operation, the handler does the following

- It allocates storage for the state data structure and assigns the pointer to the statelnfo subfield of
the handler parameter. When the handler is called for subsequent operations, the stateInfo subfield
will hold the same pointer value, allowing the handler to access the state information.

- It opens the file, saving the returned file-descriptor in the state information data structure.

- If thefile is externally-described in the RPG program, it sets on the useNamesValues indicator
subfield in the handler parameter.

Chapter 3. RPG IV Concepts 159

Program Exception/Errors

— When that subfield is on, the data for output operations will be provided in an array of information
about each field.

— When that subfield is off, the data for output operations will be provided as a data structure whose
layout is the same as a *OUTPUT externally-described data structure.

5. For the WRITE operation, the handler calls one of the procedures to write to the file, depending on the
useNamesValues subfield of the handler parameter.

6. For the CLOSE operation, the handler closes the file.

7. For any other operation, the handler signals an exception. The handler in this example only supports
the OPEN, WRITE, and CLOSE operations.

DCL-PROC writeHdlr;
DCL-PI %N EXTPGM;
parm LIKEDS(QrnOpenAccess_T);
END-PI;

DCL-S stackOffsetToRpg INT(10) INZ(2);
DCL-S errnoVal INT(10);

DCL-DS state LIKEDS(state_t) BASED(pState);
DCL-DS ifsInfo LIKEDS(ifshdlrs_info_t) BASED(pIfsInfo);
DCL-DS namesValues LIKEDS(QrnNamesValues_T)

BASED (parm.namesValues) ;

pState = parm.stateInfo;
pIfsInfo = parm.userArea;

SELECT;

WHEN parm.RpgOperation = QrnOperation_OPEN;
pState = %ALLOC(%SIZE(state_t));
parm.stateInfo = pState;

state.descriptor = openFile (ifsInfo
. stackOffsetToRpg + 1);

IF parm.externallyDescribed;
parm.useNamesValues = '1"';
ENDIF;
WHEN parm.RpgOperation = QrnOperation_WRITE;
IF parm.useNamesValues;
writeFileNv (state.handle
: namesValues
. stackOffsetToRpg + 1);
ELSE:
writeFileBuf (state.handle
: parm.outputBuffer
: parm.outputBufferlLen
: stackOffsetToRpg + 1);
ENDIF;
WHEN parm.RpgOperation = QrnOperation_CLOSE; KN
closeFile (state.handle
. stackOffsetToRpg + 1);
state.descriptor = -1;
DEALLOC(N) pState;
OTHER;
sendException ('Unexpected operation
+ %CHAR (parm.RpgOperation)
. stackOffsetToRpg + 1);
// Control will not return here
ENDSL ;

END-PROC writeHdlr;

Procedure to open the file

1. If the file could not be opened, the procedure sends an exception message. This causes the handler
program to fail, which will cause the OPEN operation to fail in the RPG program.

160 IBMi: ILE RPG Reference

Program Exception/Errors

DCL-PROC openFile;

DCL-PI *n LIKE(descriptor_t);
ifsInfo LIKEDS(ifshdlrs_info_t) CONST;
stackOffsetToRpg INT(10) VALUE;

END-PTI;

DCL-C JOB_CCSID O;

DCL-S openFlags INT(10);

DCL-S descriptor LIKE(descriptor_t);

openFlags = O_WRONLY
+ O_CREAT + O_TEXT_CREAT + O_TEXTDATA
+ 0_CCSID + O_INHERITMODE;
IF ifsInfo.append;
openFlags += O_APPEND;
ELSE:
openFlags += O_TRUNC;
ENDIF;

descriptor = open(ifsInfo.path
: openFlags
: 0

: ifsInfo.createCcsid
: JOB_CCSID);
IF descriptor < 0;
errnoException ('Could not open ' + ifsInfo.path +
. getErrno ()
: stackOffsetToRpg + 1);
// Control will not return here
ENDIF;

return descriptor;
END-PROC openFile;

Procedure to close the file

DCL-PROC closeFile;
DCL-PI *n;
descriptor LIKE(descriptor_t) VALUE;
stackOffsetToRpg INT(10) VALUE;
END-PI;
DCL-S rc INT(10);

rc = close (descriptor);
IF rc < O;
errnoException ('Error closing file.'
: getErrno ()
: stackOffsetToRpg + 1);
// Control will not return here
ENDIF;
END-PROC closeFile;

Chapter 3. RPG IV Concepts 161

Program Exception/Errors

Procedure to write the file using the output buffer

DCL-PROC writeFileBuf;
DCL-PI *n;
descriptor LIKE(descriptor_t) VALUE;
pBuf pointer VALUE;
bufLen INT(10) VALUE;
stackOffsetToRpg INT(10) VALUE;
END-PI;

writelLine (descriptor : pBuf : bufLen
. stackOffsetToRpg + 1);
END-PROC writeFileBuf;

Procedure to write the file using the names-values information

1. The names-values information contains an array of information about each field in the externally-
described format. The handler in this example has its own restrictions on the number and type of fields
that can be in the externally-described format.

a. The handler verifies that there is only one field.
b. Then the handler verifies that it is an alphanumeric field.

2. nv.field(1).value is a pointer to the data in the first field. If the field is a varying-length field, this pointer
points to the data portion of the field. nv.field(1).valueLenBytes holds the length of the data.

DCL-PROC writeFileNv;
DCL-PI *n;
descriptor LIKE(descriptor_t) VALUE;
nv LIKEDS(QrnNamesValues T);
stackOffsetToRpg INT(10) VALUE;
END-PI;

IF nv.num > 1;
sendException ('Only one field supported.'
. stackOffsetToRpg + 1);
// Control will not return here
ELSE:
IF nv.field(1).dataType <> QrnDatatype_Alpha
AND nv.field(1).dataType <> QrnDatatype_AlphaVarying;
sendException ('Field ' + nv.field(1).externalName
+ 'must be Alpha or AlphaVarying type.'
: stackOffsetToRpg + 1);
// Control will not return here
ENDIF;
ENDIF;

writelLine (descriptor : nv.field(1).value : nv.field(1).valuelenBytes
: stackOffsetToRpg + 1);
END-PROC writeFileNv;

162 IBMi: ILE RPG Reference

Procedure to write one line to the file

Program Exception/Errors

DCL-PROC writeline;
DCL-PI *n;
descriptor LIKE(descriptor_t) VALUE;
pBuf pointer VALUE;
bufLen INT(10) VALUE;
stackOffsetToRpg INT(10) VALUE;
END-PI;
DCL-S lineFeed CHAR(1) INZ(STREAM_LINE_FEED);
DCL-S bytesWritten INT(10);

bytesWritten = write (descriptor : pbuf : buflLen);
IF bytesWritten < 0;
errnoException ('Could not write data.'
. getErrno ()
: stackOffsetToRpg + 1);
// Control will not return here
ELSE:
bytesWritten = write (descriptor : %ADDR(lineFeed)
IF bytesWritten < 0;
errnoException ('Could not write line-feed.'
: getErrno ()
: stackOffsetToRpg + 1);
// Control will not return here
ENDIF;
ENDIF;
END-PROC writelLine;

g A)s

Procedure to send an exception

DCL-PROC sendException;
DCL-PI *n;
msg VARCHAR(2000) CONST;
stackOffsetToRpg INT(10) VALUE;
END-PI;
DCL-DS msgFile qualified;
*n CHAR(10) INZ('QCPFMSG');
*n CHAR(10) INZ('xLIBL');
END-DS;
DCL-DS erroxrCode;
bytesProvided INT(10) INZ(O);
bytesAvailable INT(10);
msgId CHAR(7);
*n CHAR(1);
END-DS;
DCL-S key CHAR(4);
DCL-PR QMHSNDPM EXTPGM;
msgId CHAR(7) CONST;
msgFile LIKEDS(msgFile) CONST;
msgData CHAR(1000) CONST;
datalLen INT(10) CONST;
msgType CHAR(10) CONST;
callStackEntry CHAR(10) CONST;
callStackOffset INT(10) CONST;
msgKey CHAR(4) CONST;
errorCode LIKEDS(errorCode);
END-PR;

QMHSNDPM ('CPF9898' : msgFile : msg : %LEN(msg)
: 'xESCAPE' : 'x' : stackOffsetToRpg
: key : errorCode);
END-PROC sendException;

Chapter 3. RPG IV Concepts 163

Program Exception/Errors

Procedure to send an exception related to "errno"

DCL-PROC errnoException;

DCL-PI *n;
msg VARCHAR(2000) CONST;
errnoVal INT(10) VALUE;
stackOffsetToRpg INT(10) VALUE;

END-PTI;

DCL-S errnoMsg VARCHAR(200);

DCL-S pErrnoMsg pointer;

DCL-PR strerror pointer extproc(xdclcase);
errnoVal INT(10) VALUE;

END-PR;

pErrnoMsg = strError (errnoVal);
IF pErrnoMsg <> xnull;

errnoMsg = ' ' + %STR(pErrnoMsg);
ENDIF;
errnoMsg +=

(errno = ' + %CHAR(errnoVal) + ')';

sendException (msg + errnoMsg
. stackOffsetToRpg + 1);
END-PROC errnoException;

Procedure to get the value of "errno"

DCL-PROC getErrno;
DCL-PI *n INT(10) END-PI;
DCL-PR getErrnoPtr pointer extproc('__errno') END-PR;
DCL-S pErrno pointer static INZ(*null);
DCL-S errno INT(10) BASED(pErrno);

IF pExrno = xnull;
pErrno = getErrnoPtr();
ENDIF;

return errno;
END-PROC getErrno;

See the Rational Open Access: RPG Edition topic for information on writing an Open Access handler.

File Parameters

You can pass files as parameters using prototyped calls to RPG programs and procedures. You can define
file parameters for prototypes and procedure interface definitions, using the LIKEFILE keyword. The
called program or procedure can perform any operation that is valid on the original file that was used to
define the file parameter.

Note: RPG file parameters are in a form that is not related to the forms used for file parameters in other
languages such as C and C++. The file parameters used by RPG are not interchangeable with the file
parameters used by other languages; you cannot pass a C file to an RPG procedure that is expecting an
RPG file parameter, and you cannot pass an RPG file to a C program.

For an example of a program that passes a file parameter, see “Example of passing a file and passing a
data structure with the associated variables. ” on page 165

Variables Associated with Files

Using File specification keywords, you can associate several variables with a file. For example, the INFDS
keyword associates a File Information Data Structure with the file; this data structure is updated by RPG
during file operations with information about the current state of the file. The SFILE keyword defines a
numeric variable that you set to the relative record number for a record that you are writing.

164 IBMi: ILE RPG Reference

Program Exception/Errors

When a file is passed as a parameter, the file parameter in the called procedure continues to be
associated with the same physical variables that it was associated with in the calling procedure. The
called procedure has access to the associated variables of the file parameter, although this access is only
available to the RPG compiler. This allows the RPG compiler to work with the associated variables when
the called procedure performs operations on the file parameter. If a file operation to a file parameter
requires the value of an associated variable, the current value of the associated variable will be used. If a
file operation to a file parameter changes the contents of an associated variable, the associated variable
will immediately be updated with the new value. Passing a file parameter does not give the called
procedure direct access to the associated variables. The called procedure can only access the associated
variables if they are global variables, or if they were passed as additional parameters to the procedure.

Tip: If you pass a file parameter to another procedure, and the procedure needs to be able to access the
associated variables, define a data structure with a subfield for each associated variable, and pass that
data structure as an additional parameter to the procedure. See Figure 46 on page 166. The following
table lists the keywords that you can use to associate variables with a file.

Table 50. File specification keywords for associated variables

Keyword Usage Description

COMMIT Input The RPG programmer sets it to indicate whether the file is opened for

commitment control.

DEVID Input/Feedback | The RPG programmer sets it to direct file operations to a particular device.

The RPG compiler sets it to indicate which device was used for the
previous file operation.

EXTFILE Input The RPG programmer sets it to indicate the external file that is to be
opened.

EXTIND Input The application developer sets it before the program is called to control
whether afile is to be used.

EXTMBR Input The RPG programmer sets it to indicate the external member that is to be
opened.

INDDS Input/Output The RPG programmer sets some output-capable indicators for use by file
operation. The system sets input-capable indicators during a operation

INFDS Input The RPG compiler sets it to indicate the current state of a file.

PRTCTL Input/Feedback | The RPG programmer sets the space and skip fields to control the printer
file.

RECNO Input/Feedback | The RPG compiler sets it to indicate the current line of the printer file.

SAVEDS Any The RPG programmer sets it to indicate which relative record number is to

be written to the subfile record.

SFILE Input/Feedback | The RPG compiler sets it to indicate the relative record number that was
retrieved by an input operation to the subfile record.
SLN Input The RPG programmer sets it to indicate the starting line for a display file

record format.

Example of passing a file and passing a data structure with the associated variables.

The following example shows you how to define a data structure to hold the associated variables for a file,
how to pass the file and the data structure as parameters to a procedure, and how to use the parameters
within the procedure.

Chapter 3. RPG IV Concepts 165

Program Exception/Errors

* The /COPY file has template definitions for the File and Associated Variables

/if defined (FILE_DEFINITIONS)
// Template for the "INFILE" file type

Finfile_ t if e disk template block(*yes)

F extdesc ('MYLIB/MYFILE')
/eof
/endif

/if defined (DATA_DEFINITIONS)
// Template for the associated variables for an INFILE file

D infileVars_t ds qualified template
D filename 21a
D mbxrname 10a
// Prototype for a procedure to open an INFILE file
D open_infile pr
D theFile likefile(infile_t)
D kwVars likeds (infileVars)
D options (*nullind)
/eof
/endif

Figure 46. /COPY file INFILE_DEFS

P myproc b // Copy in the template and prototype definitions
/define FILE_DEFINITIONS
/COPY INFILE_DEFS
/undefine FILE_DEFINITIONS

/define DATA_DEFINITIONS

/COPY INFILE_DEFS

/undefine DATA_DEFINITIONS

// Define the file using LIKEFILE, to enable it to be passed as
// a parameter to the "open_infile" procedure.

// Define all the associated variables as subfields of a data
// structure, so that all the associated variables can be
// passed to the procedure as a single parameter

Ffilel likefile(infile_t)
F extfile(filelVars.filename)
F extmbx (£filelVaxs.mbxname)
F usropn
D filelVars ds likeds (infileVars_t)
/free

open_infile (filel : filelVars);

Figure 47. The calling procedure that passes the file parameter

166 IBMi: ILE RPG Reference

Primary/Secondary Multi-file Processing

// Copy in the template and prototype definitions
/define FILE_DEFINITIONS

/COPY INFILE_DEFS

/undefine FILE_DEFINITIONS

/define DATA_DEFINITIONS
/COPY INFILE_DEFS
/undefine DATA_DEFINITIONS

P open_infile b
// The open_infile procedure has two parameters
// - a file
// - a data structure containing all the associated variables for the file
D open_infile pi
D theFile likefile(infile_t)
D kwVars likeds (infileVars)
/free

// The %0PEN(filename) built-in function reflects the
// current state of the file
if not %open(theFile);
// The called procedure modifies the calling procedure's "filelVars"
// variables directly, through the passed parameter
kwVars.extfile = 'LIB1/FILE1';
kwVars.extmbxr = 'MBR1';
// The OPEN operation uses the filelVars subfields in the
// calling procedure to open the file, opening file LIB1/FILE1(MBR1)
open theFile;
endif;

Figure 48. The called procedure that uses the file parameter

Full Procedural Files

An full procedural file is defined using a free-form DCL-F statement, or identified by an F in position 18 of
the file description specifications.

Allinput, update, and output operations for the file are controlled by calculation operations.

Primary/Secondary Multi-file Processing

In an RPG IV program, the processing of a primary input file and one or more secondary input files, with or
without match fields, is termed multi-file processing. Selection of records from more than one file based
on the contents of match fields is known as multi-file processing by matching records. Multi-file
processing can be used with externally described or program described input files that are designated as
primary/secondary files.

Multi-file Processing with No Match Fields

When no match fields are used in multi-file processing, records are selected from one file at a time. When
the records from one file are all processed, the records from the next file are selected. The files are
selected in this order:

1. Primary file, if specified
2. Secondary files in the order in which they are described on the file description specifications.

Multi-file Processing with Match Fields

When match fields are used in multi-file processing, the program selects the records for processing
according to the contents of the match fields. At the beginning of the first cycle, the program reads one
record from every primary/secondary input file and compares the match fields in the records. If the
records are in ascending order, the program selects the record with the lowest match field. If the records
are in descending order, the program selects the record with the highest match field.

When a record is selected from a file, the program reads the next record from that file. At the beginning of
the next program cycle, the new record is compared with the other records in the read area that are
waiting for selection, and one record is selected for processing.

Chapter 3. RPG IV Concepts 167

Primary/Secondary Multi-file Processing

Records without match fields can also be included in the files. Such records are selected for processing
before records with match fields. If two or more of the records being compared have no match fields,
selection of those records is determined by the priority of the files from which the records came. The
priority of the files is:

1. Primary file, if specified
2. Secondary files in the order in which they are described on the file description specifications.

When the primary file record matches one or more of the secondary records, the MR (matching record)
indicator is set on. The MR indicator is on for detail time processing of a matching record through the total
time that follows the record. This indicator can be used to condition calculation or output operations for
the record that is selected. When one of the matching records must be selected, the selection is
determined by the priority of the files from which the records came.

Figure 13 on page 93 shows the logic flow of multi-file processing.

A program can be written where only one input file is defined with match fields and no other input files
have match fields. The files without the match fields are then processed completely according to the
previously mentioned priority of files. The file with the match fields is processed last, and sequence
checking occurs for that file.

Assigning Match Field Values (M1-M9)

When assigning match field values (M1 through M9) to fields on the input specifications in positions 65
and 66, consider the following:

« Sequence checking is done for all record types with match field specifications. All match fields must be
in the same order, either all ascending or all descending. The contents of the fields to which M1 through
M9 are assigned are checked for correct sequence. An error in sequence causes the RPG IV exception/
error handling routine to receive control. When the program continues processing, the next record from
the same file is read.

 Not all files used in the program must have match fields. Not all record types within one file must have
match fields either. However, at least one record type from two files must have match fields if files are
ever to be matched.

« The same match field values must be specified for all record types that are used in matching. See Figure
49 on page 169.

« Date, time, and timestamp match fields with the same match field values (M1 through M9) must be the
same type (for example, all date) but can be different formats.

« All character, graphic, or numeric match fields with the same match field values (M1 through M9)
should be the same length and type. If the match field contains packed data, the zoned decimal length
(two times packed length - 1) is used as the length of the match field. It is valid to match a packed field
in one record against a zoned decimal field in another if the digit lengths are identical. The length must
always be odd because the length of a packed field is always odd.

« Record positions of different match fields can overlap, but the total length of all fields must not exceed
256 characters.

« If more than one match field is specified for a record type, all the fields are combined and treated as
one continuous field (see Figure 49 on page 169). The fields are combined according to descending
sequence (M9 to M1) of matching field values.

« Match fields values cannot be repeated in a record.

« All match fields given the same matching field value (M1 through M9) are considered numeric if any one
of the match fields is described as numeric.

« When numeric fields having decimal positions are matched, they are treated as if they had no decimal
position. For instance 3.46 is considered equal to 346.

« Only the digit portions of numeric match fields are compared. Even though a field is negative, it is
considered to be positive because the sign of the numeric field is ignored. Therefore, a -5 matches a +5.

« Date and time fields are converted to *ISO format for comparisons

168 IBMi: ILE RPG Reference

Primary/Secondary Multi-file Processing

« Graphic data is compared hexadecimally

« Whenever more than one matching field value is used, all match fields must match before the MR
indicator is set on. For example, if match field values M1, M2, and M3 are specified, all three fields from
a primary record must match all three match fields from a secondary record. A match on only the fields
specified by M1 and M2 fields will not set the MR indicator on (see Figure 49 on page 169).

« UCS-2 fields cannot be used for matching fields.

- Matching fields cannot be used for lookahead fields, and arrays.

« Field names are ignored in matching record operations. Therefore, fields from different record types
that are assigned the same match level can have the same name.

- If an alternate collating sequence or a file translation is defined for the program, character fields are
matched according to the alternate sequence specified.

 Null-capable fields, character fields defined with ALTSEQ(*NONE), and binary, float, integer and
unsigned fields (B, F, I, or U in position 36 of the input specifications) cannot be assigned a match field
value.

« Match fields that have no field record relation indicator must be described before those that do. When
the field record relation indicator is used with match fields, the field record relation indicator should be
the same as a record identifying indicator for this file, and the match fields must be grouped according
to the field record relation indicator.

« When any match value (M1 through M9) is specified for a field without a field record relation indicator,
all match values used must be specified once without a field record relation indicator. If all match fields
are not common to all records, a dummy match field should be used. Field record relation indicators are
invalid for externally described files. (see Figure 50 on page 170).

« Match fields are independent of control level indicators (L1 through L9).

« If multi-file processing is specified and the LR indicator is set on, the program bypasses the multi-file
processing routine.

Figure 49 on page 169 is an example of how match fields are specified.

L P R S UC DUPUE DR’ S SRS SRR R c DU SO SR
FFilename++IPEASFR1len+LKlen+AIDevice+.Keywords+++++++++++++tt+ttttttttttd
* The files in this example are externally described (E in position

* 22) and are to be processed by keys (K in position 34).

FMASTER IP E K DISK

FWEEKLY IS E K DISK

oo oo+ o 20 L 3k A 6L T
TRedname+++. .. RI . i i i i i i i it e e e et et et e e e
T Ext-field+.................. Field+++++++++L1M1. .P1IMnZzx. ...
* MASTER FILE

IEMPMAS 01

I EMPLNO M1

I DIVSON M3

I DEPT M2

IDEPTMS 02

I EMPLNO M1

I DEPT M2

I DIVSON M3

* WEEKLY FILE

IWEEKRC 03

I EMPLNO M1

I DIVSON M3

I DEPT M2

Figure 49. Match Fields in Which All Values Match

Three files are used in matching records. All the files have three match fields specified, and all use the
same values (M1, M2, M3) to indicate which fields must match. The MR indicator is set on only if all three
match fields in either of the files EMPMAS and DEPTMS are the same as all three fields from the WEEKRC
file.

Chapter 3. RPG IV Concepts 169

Primary/Secondary Multi-file Processing

The three match fields in each file are combined and treated as one match field organized in the following
descending sequence:

DIVSON
M3

DEPT
M2

EMPLNO
M1

The order in which the match fields are specified in the input specifications does not affect the
organization of the match fields.

L R . B R S TR - DA SRR o TR S R
IFilename++SqNORiP0S1+NCCP0OS2+NCCPOS3+NCC. . . o v vt i ittt ettt e e e eeee e e

T Fmt+SPFrom+To+++DcField+++++++++L1IMIFrP1MnZz. . ..
IDISK AB 01 1cC1

I OR 02 1 Cc2

I OR 03 1C3

I 1 10 OEMPNO M1

I 11 15 ODUMMY M2

I 11 15 ODEPT M202

I 16 20 ODEPT M203

M 1
EMPNO
|

\ \ Record Identifying Indicator 01
1234567 8 9101112 13 14 15 16 17 18 19 20 21 22

M M 2
E DEPT

\
\ | | | Record Identifying Indicator 02

1234567 8 91011 12 13 14 15 16 17 18 19 20 21 22

1
MPNO
|

M 1 M 2

EMPNO DEPT
\

‘ ‘ Record Identifying Indicator 03

1234567 8 91011 12 13 14 15 16 17 18 19 20 21 22

Figure 50. Match Fields with a Dummy M2 Field

Three different record types are found in the input file. All three contain a match field in positions 1
through 10. Two of them have a second match field. Because M1 is found on all record types, it can be
specified without a field record relation entry in positions 67 and 68. If one match value (M1 through M9)
is specified without field record relation entries, all match values must be specified once without field
record relation entries. Because the value M1 is specified without field record relationship, an M2 value
must also be specified once without field record relationship. The M2 field is not on all record types;
therefore a dummy M2 field must be specified next. The dummy field can be given any unique name, but
its specified length must be equal to the length of the true M2 field. The M2 field is then related to the
record types on which it is found by field record relation entries.

170 IBMi: ILE RPG Reference

Primary/Secondary Multi-file Processing

L R R T SR R SR R S T - RN RN AN
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++++
FPRIMARY IPEA F 64 DISK

FFIRSTSEC IS A F 64 DISK

FSECSEC ISAF 64 DISK

L R A T SR R SR R S T - PR AR AN
IFilename++SqNORiP0S1+NCCP0OS2+NCCPOS3+NCC. . . o v vttt ittt et e i e e e eeee e e

T Fmt+SPFrom+To+++DcField+++++++++LIMIFrP1MnZzx. . ..
IPRIMARY AA 01 1 CP 2NC

I 2 3 MATCH M1
*

I BB 02 1 CP 2C

I 2 3 NOM

*

IFIRSTSEC AB 03 1 CS 2NC

I 2 3 MATCH M1
*

I BC 04 1 CS 2C

I 2 3 NOM

*

ISECSEC AC 05 1CT 2NC

I 2 3 MATCH M1
*

I BD 06 1CT 2C

I 2 3 NOM

Figure 51. Match Field Specifications for Three Disk Files

Processing Matching Records
Matching records for two or more files are processed in the following manner:

« Whenever a record from the primary file matches a record from the secondary file, the primary file is
processed first. Then the matching secondary file is processed. The record identifying indicator that
identifies the record type just selected is on at the time the record is processed. This indicator is often
used to control the type of processing that takes place.

« Whenever records from ascending files do not match, the record having the lowest match field content
is processed first. Whenever records from descending files do not match, the record having the highest
match field content is processed first.

« Arecord type that has no match field specification is processed immediately after the record it follows.
The MR indicator is off. If this record type is first in the file, it is processed first even if it is not in the
primary file.

- The matching of records makes it possible to enter data from primary records into their matching
secondary records because the primary record is processed before the matching secondary record.
However, the transfer of data from secondary records to matching primary records can be done only
when look-ahead fields are specified.

Figure 52 on page 172 through Figure 53 on page 173 show how records from three files are selected for
processing.

Chapter 3. RPG IV Concepts 171

Primary/Secondary Multi-file Processing

PI/P|P|P|P|P|P|P|P
Primary File
20 | 20 | 40 | 50 60 | 80
1 2 5 6 11 12 13 17 22
No Match Field S sls/slslslslsls
First Secondary File
20 | 30 | 30 | 60 70 | 80 | 80
3 7 8 9 18 19 21 23 24
Match Field TTT T I T (T T 71T
Second Secondary File
10 | 30 | 50 | 50 60 | 80 | 80
4 10 14 15 16 20 25 26

The records from the three disk files above are selected in the order indicated by the dark numbers.

Figure 52. Normal Record Selection from Three Disk Files

Table 51. Normal Record Selection from Three Disk Files

Cycle File Processed Indicators On Reason for Setting Indicator

1 PRIMARY 02 No match field specified

2 PRIMARY 02 No match field specified

3 FIRSTSEC 04 No match field specified

4 SECSEC 05 Second secondary low; no primary match
5 PRIMARY 01, MR Primary matches first secondary

6 PRIMARY 01, MR Primary matches first secondary

7 FIRSTSEC 03, MR First secondary matches primary

8 FIRSTSEC 03 First secondary low; no primary match
9 FIRSTSEC 03 First secondary low; no primary match
10 SECSEC 05 Second secondary low; no primary match
11 PRIMARY 01 Primary low; no secondary match

12 PRIMARY 01, MR Primary matches second secondary
13 PRIMARY 02 No match field specified

14 SECSEC 05, MR Second secondary matches primary
15 SECSEC 05, MR Second secondary matches primary
16 SECSEC 06 No match field specified

17 PRIMARY 01, MR Primary matches both secondary files
18 FIRSTSEC 03, MR First secondary matches primary

19 FIRSTSEC 04 No match field specified

20 SECSEC 05, MR Second secondary matches primary
21 FIRSTSEC 03 First secondary low; no primary match
22 PRIMARY 01, MR Primary matches both secondary files

172 IBMi: ILE RPG Reference

Primary/Secondary Multi-file Processing

Table 51. Normal Record Selection from Three Disk Files (continued)

Cycle File Processed Indicators On Reason for Setting Indicator
23 FIRSTSEC 03, MR First secondary matches primary
24 FIRSTSEC 02, MR First secondary matches primary
25 SECSEC 05, MR Second secondary matches primary
26 SECSEC 05, MR Second secondary matches primary
STEP 1
L The first record from each file is read. The P and S
records have no match field, so they are processed
P S T 10 before the T record that has a match field. Because
the P record comes from the primary file, it is selected
for processing first.
STEP 2
L The next P record is read. It contains no match field
and comes from the primary file, so the new P record
P S T 10 is also selected for processing before the S record.
STEP 3
i The next P record has a match field. The S record
P 20 S T 10 has no match field, so it is selected for processing.
STEP 4
i The next S record is read. All three records have
match fields. Because the value in the match field
P 20 S 20 T 10 of the T record is lower than the value in the other
two, the T record is selected for processing.
STEP 5 . .
The next T record is read. The matching P and S
i records both have the low match field value, so
they are processed before the T record. Because
P 20 S 20 T 30

the matching P record comes from the primary file,
it is selected for processing first.

Figure 53. Normal Record Selection from Three Disk Files, Part 1

Chapter 3. RPG IV Concepts 173

File Translation

STEP 6
L The next P record is read. Because it contains the
same match field and comes from the primary file,
P 20 S 20 T 30 the new P record is selected instead of the S record.
STEP 7
i The next P record is read. The value of the match
field in the S record is the lowest of the three, so the
P 40 S 20 T 30 S record is selected for processing.
STEP 8
i The next S record is read. Because the Sand T
records have the lowest match field, they are
T selected before the P record. Because the S record
P 40 S 30 30 comes from the first secondary file, it is selected for
processing before the T record.
STEP 9
L The next S record is read. Because it also has
P 40 S 30 T 30 the same match field as the S record just selected,
it too is selected before the T record.
STEP 10
L The next S record is read. The T record contains
the lowest match field value, and is selected for
P 40 S 60 T 30 processing.

Figure 54. Normal Record Selection from Three Disk Files, Part 2

File Translation

The file translation function translates any of the 8-bit codes used for characters into another 8-bit code.
The use of file translation indicates one or both of the following:

« A character code used in the input data must be translated into the system code.

« The output data must be translated from the system code into a different code. The translation on input
data occurs before any field selection has taken place. The translation on output data occurs after any

editing taken place.

Remember the following when specifying file translation:

« File translation can be specified for data in array or table files (T in position 18 of the file description

specifications).

« File translation can be used with data in combined, input, or update files that are translated at input and
output time according to the file translation table provided. If file translation is used to translate data in
an update file, each record must be written before the next record is read.

« For any I/O operation that specifies a search argument in factor 1 (such as CHAIN, READE, READPE,
SETGT, or SETLL) for files accessed by keys, the search argument is translated before the file is
accessed.

- If file translation is specified for both a record address file and the file being processed (if the file being
processed is processed sequentially within limits), the records in the record address file are first

174 IBMi: ILE RPG Reference

File Translation

translated according to the file translation specified for that file, and then the records in the file being
processed are translated according to the file translation specified for that file.

« File translation applies only on a single byte basis.
« Every byte in the input and output record is translated.
« File translation is not supported for local files defined in subprocedures.

Specifying File Translation

To specify file translation, use the FTRANS keyword on the control specification. The translations must be
transcribed into the correct record format for entry into the system. These records, called the file
translation table records, must precede any alternate collating sequence records, or arrays and tables
loaded at compile time. They must be preceded by a record with **b (b = blank) in positions 1 through 3
or **FTRANS in positions 1 through 8. The remaining positions in this record can be used for comments.

Translating One File or All Files

File translation table records must be formatted as follows:

Record

Position Entry

1-8 (to Enter *FILESHD (b represents a blank) to indicate that all files are to be translated.
translate all Complete the file translation table record beginning with positions 11 and 12. If
files) *FILESDHbD is specified, no other file translation table can be specified in the program.
1-8 (to Enter the name of the file to be translated. Complete the file translation table record

translate a beginning with positions 11 and 12. The *FILESbb entry is not made in positions 1
specific file) through 8 when a specific file is to be translated.

9-10 Blank

11-12 Enter the hexadecimal value of the character to be translated from on input or to be
translated to on output.

13-14 Enter the hexadecimal equivalent of the internal character the RPG IV language works
with. It will replace the character in positions 11 and 12 on input and be replaced by the
character in positions 11 and 12 on output.

15-18 All groups of four beginning with position 15 are used in the same manner as positions
19-22 11 through 14. In the first two positions of a group, enter the hexadecimal value of the
23-26 character to be replaced. In the last two positions, enter the hexadecimal value of the

character that replaces it.
77-80

The first blank entry ends the record. There can be one or more records per file translation table. When
multiple records are required in order to define the table, the same file name must be entered on all
records. A change in file name is used to separate multiple translation tables. An *FILES record causes all
files, including tables and arrays specified by a T in position 18 of the file description specifications, to be
translated by the same table.

HKeywords++++++++++++++++++++++++++++++++++++++ttt+++tttt++++++++++
* In this example all the files are translated

H FTRANS
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++tttttttttt
FFILE1 IP F 10 DISK
FFILE2 IS F 10 DISK
FFILE3 IS F 10 DISK
FFILE4 IS F 10 DISK

**FTRANS

*FILES 81C182C283C384C4

Chapter 3. RPG IV Concepts 175

File Translatio

n

HKeywords
* In this example different translate tables are used and
* FILE3 is not translated.

H FTRANS

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++

FFILE1 IP F 10 DISK
FFILE2 IS F 10 DISK
FFILE3 IS F 10 DISK
FFILE4 IS F 10 DISK

*%FTRANS

FILE1 8182

FILE2 cac2

FILE4 81C182C€283C384C4

Translating More Than One File

If the same file translation table is needed for more than one file but not for all files, two types of records
must be specified. The first record type specifies the file using the tables, and the second record type

specifies

the table. More than one record for each of these record types can be specified. A change in file

names is used to separate multiple translation tables.
Specifying the Files
File translation table records must be formatted as follows:
Record Entry
Position
1-7 *EQUATE
8-10 Leave these positions blank.
11-80 Enter the name(s) of file(s) to be translated. If more than one file is to be translated,
the file names must be separated by commas.

Additional file names are associated with the table until a file name not followed by a comma is
encountered. A file name cannot be split between two records; a comma following a file name must be on

the same record as the file name. You can create only one file translation table by using *EQUATE.
Specifying the Table
File translation table records must be formatted as follows:
Record
Position Entry
1-7 *EQUATE
8-10 Leave these positions blank.
11-12 Enter the hexadecimal value of the character to be translated from on input or to be
translated to on output.
13-14 Enter the hexadecimal equivalent of the internal character the RPG IV language works
with. It will replace the character in positions 11 and 12 on input and be replaced by
the character in positions 11 and 12 on output.

176 IBMi: ILE RPG Reference

File Translation

Record

Position Entry

15-18 All groups of four beginning with position 15 are used the same way as positions 11

19-22 through 14. In the first two positions of a group, enter the hexadecimal value of the

23-26 character to be replaced. In the last two positions, enter the hexadecimal value of the
character that replaces it.

77-80

The first blank record position ends the record. If the number of entries exceeds 80 positions, duplicate
positions 1 through 10 on the next record and continue as before with the translation pairs in positions 11
through 80. All table records for one file must be kept together.

The records that describe the file translation tables must be preceded by a record with **b (b = blank) in
positions 1 through 3 or with **FTRANS. The remaining positions in this record can be used for
comments.

HKeywoTds++++++++++++++ttt
* In this example several files are translated with the
* same translation table. FILE2 is not translated.

H FTRANS
FFilename++IPEASFR1en+LKlen+AIDevice+.Keywords++++++++++++++++++++++
FFILEL1 IP F 10 DISK
FFILE2 IS F 10 DISK
FFILE3 IS F 10 DISK
FFILE4 IS F 10 DISK

*%FTRANS

*EQUATE FILE1,FILE3,FILE4
*EQUATE 81C182(C283C384C485C586C687C788C889C98ACA8BBCB8CCC8DCDSECESF
*EQUATE 91D192D2

Chapter 3. RPG IV Concepts 177

File Translation

178 IBMi: ILE RPG Reference

General Considerations

Chapter 4. Definitions

Defining variables, constants, prototypes, and procedure interfaces

This section provides information on the different types of definitions that can be coded in your source. It
describes:

« How to define
— Standalone fields, arrays, and tables
— Named constants
— Data structures and their subfields
— Prototypes
— Prototyped parameters
— Procedure interface
« Scope and storage of definitions as well as how to define each definition type.
 Data types and Data formats
- Editing numeric fields

For information on how to define files, see “File Description Specifications” on page 322 and also the
chapter on defining files in the IBM Rational Development Studio for i: ILE RPG Programmer's Guide.

Defining Data and Prototypes

ILE RPG allows you to define the following items:

« Data items such as data structures, data-structure subfields, standalone fields, and named constants.
Arrays and tables can be defined as either a data-structure subfield or a standalone field.

« Prototypes, procedure interfaces, and prototyped parameters
This chapter presents information on the following topics:

- General considerations, including definition types, scope, and storage
« Standalone fields

» Constants
« Data Structures

Prototypes, parameters, and procedure interfaces

General Considerations

You define items by using definition specifications. Definitions can appear in two places within a module
or program: within the cycle-main source section and within a subprocedure. (The main source section
consists of the first set of H, F, D, I, C, and O specifications in a module; it corresponds to the
specifications found in a standalone program or a cycle-main procedure.) Depending on where the
definition occurs, there are differences both in what can be defined and also the scope of the definition.
Specify the type of definition in positions 24 through 25, as follows:

Entry
Definition Type
Blank
A data structure subfield or parameter definition

(o4
Named constant

© Copyright IBM Corp. 1994, 2013 179

General Considerations

DS
Data structure

PI
Procedure interface

PR
Prototype

S
Standalone field

Definitions of data structures, prototypes, and procedure interfaces end with the first definition
specification with non-blanks in positions 24-25, or with the first specification that is not a definition
specification.

K= == === e *
* Global Definitions
R e I *
D String S 6A INZ('ABCDEF')
D Spcptr S *
D SpcSiz C 8
D DS1 DS OCCURS(3)
D Flda 5A INZ('ABCDE')
D Fldla 1A DIM(5) OVERLAY(F1ld1)
D Fld2 5B 2 INZ(123.45)
D Switch PR
D Paxrm 1A
e e R T *
* Local Definitions
T *
P Switch B
D Switch PI
D Paxrm 1A
* Define a local variable.
D Local S 5A INZ('aaaaa')
P E
Figure 55. Sample Definitions

Scope of Definitions

Depending on where a definition occurs, it will have different scope. Scope refers to the range of source
lines where a name is known. There are two types of scope: global and local, as shown in Figure 56 on
page 180.

—*MODULE

Main —Min Prececiur P
Sourcea ’ N
Saction >
Global
Scope
—Subprecedure 1
-+ Local
- Scope
—Subprecedure 2
Lacal
Scope
Pregram Data - part of main source section I

Figure 56. Scope of Definitions

11

180 IBMi: ILE RPG Reference

Standalone Fields

In general, all items that are defined in the main source section are global, and therefore, known
throughout the module. Global definitions are definitions that can be used by both the cycle-main
procedure and any subprocedures within the module. They can also be exported.

Items in a subprocedure, on the other hand, are local. Local definitions are definitions that are known
only inside that subprocedure. If an item is defined with the same name as a global item, then any
references to that name inside the subprocedure will use the local definition.

However, note the following exceptions:

« Subroutine names and tag names are known only to the procedure in which they are defined. This
includes subroutine or tag names that are defined in the cycle-main procedure.

« All fields specified on input and output specifications are global. For example, if a subprocedure does an
operation using a record format, say a WRITE operation, the global fields will be used even if there are
local definitions with the same names as the record format fields.

Sometimes you may have a mix of global and local definitions. For example, KLISTs and PLISTs can be
global or local. The fields associated with global KLISTs and PLISTs contain only global fields. The fields
associated with local KLISTs and PLISTs can contain both global and local fields. For more information on
the behavior of KLISTs and KFLDs inside subprocedures, see “Scope of Definitions” on page 79.

Storage of Definitions

Local definitions use automatic storage. Automatic storage is storage that exists only for the duration of
the call to the procedure. Variables in automatic storage do not save their values across calls.

Global definitions, on the other hand, use static storage. Static storage is storage that has a constant
location in memory for all calls of a program or procedure. It keeps its value across calls.

Specify the STATIC keyword to indicate that a local field definition use static storage, in which case it will
keep its value on each call to the procedure. If the keyword STATIC is specified, the item will be initialized
at module initialization time.

In a cycle module, static storage for global definitions is subject to the RPG cycle, and so the value
changes on the next call to the cycle-main procedure if LR was on at the end of the last call. However,
local static variables will not get reinitialized because of LR in the cycle-main procedure.

Tip:

Using automatic storage reduces the amount of storage that is required at run time by the program. The
storage is reduced largely because automatic storage is only allocated while the procedure is running. On
the other hand, all static storage associated with the program is allocated when the program starts, even
if no procedure using the static storage is ever called.

Standalone Fields

Standalone fields allow you to define individual work fields. A standalone field has the following
characteristics:

« It has a specifiable internal data type

« It may be defined as an array, table, or field

« Itis defined in terms of data length, not in terms of absolute byte positions.
For more information on standalone fields, see:

« “Using Arrays and Tables” on page 208

« “Data Types and Data Formats” on page 225

« “Definition-Specification Keywords” on page 382

Variable Initialization

You can initialize data with the “INZ{(initial value)}’ on page 405 keyword on the definition specification.
Specify an initial value as a parameter on the INZ keyword, or specify the keyword without a parameter

Chapter 4. Definitions 181

Constants

and use the default initial values. If the initialization is too complicated to express using the INZ keyword,
you can further initialize data in the initialization subroutine.

Default initial values for the various data types are described in “Data Types and Data Formats” on page
225. See “Using Arrays and Tables” on page 208 for information on initializing arrays.

To reinitialize data while the program is running, use the CLEAR and RESET operations.

The CLEAR operation code sets a record format or variable (field, subfield, indicator, data structure, array,
or table) to its default value. All fields in a record format, data structure, or array are cleared in the order
in which they are declared.

The RESET operation code restores a variable to its reset value. The reset value for a global variable is the
value it had at the end of the initialization step in the RPG IV cycle, after the initialization subroutine has
been invoked.

You can use the initialization subroutine to assign initial values to a global variable and then later use
RESET to set the variable back to this value. This applies only to the initialization subroutine when it is run
automatically as a part of the initialization step.

For local variables the reset value is the value of the variable when the subprocedure was first called, but
before the calculations begin.
Constants

Literals and named constants are types of constants. They can be specified in any of the following places:

- Infactorl

« Infactor 2

« In an extended factor 2 on the calculation specifications

« As parameters to keywords on the control specification

« As parameters to built-in functions

« In the Field Name, Constant, or Edit Word fields in the output specifications.
« As array indexes

« As the format name in a WORKSTN output specification

- With keywords on the definition specification.

Literals

A literal is a self-defining constant that can be referred to in a program. A literal can belong to any of the
RPG IV data types.

Character Literals
The following are the rules for specifying a character literal:

« Any combination of characters can be used in a character literal. This includes DBCS characters. DBCS
characters must be enclosed by shift-out and shift-in characters and must be an even humber of bytes.
Embedded blanks are valid.

« A character literal with no characters between the apostrophes is allowed. See Figure 58 on page 187
for examples.

« Character literals must be enclosed in apostrophes ().

« An apostrophe required as part of a literal is represented by two apostrophes. For example, the literal
O’CLOCK is coded as ‘O”’CLOCK’.

« Character literals are compatible only with character data.
« Indicator literals are one byte character literals which contain either '1' (on) or '0' (off).

Hexadecimal Literals

The following are the rules for specifying a hexadecimal literal:

182 IBMi: ILE RPG Reference

Constants

Hexadecimal literals take the form:

X'x1x2...xn'

where X' x1x2...xn"' can only contain the characters A-F, a-f, and 0-9.
The literal coded between the apostrophes must be of even length.
Each pair of characters defines a single byte.

Hexadecimal literals are allowed anywhere that character literals are supported except as factor 2 of
ENDSR and as edit words.

Except when used in the bit operations BITON, BITOFF, and TESTB, a hexadecimal literal has the same
meaning as the corresponding character literal. For the bit operations, factor 2 may contain a
hexadecimal literal representing 1 byte. The rules and meaning are the same for hexadecimal literals as
for character fields.

If the hexadecimal literal contains the hexadecimal value for a single quote, it does not have to be
specified twice, unlike character literals. For example, the literal A'B is specifiedas 'A' 'B' but the
hexadecimal version is X' C17DC2"' not X' C17D7DC2".

Normally, hexadecimal literals are compatible only with character data. However, a hexadecimal literal
that contains 16 or fewer hexadecimal digits can be treated as an unsigned numeric value when it is
used in a numeric expression or when a numeric variable is initialized using the INZ keyword.

Numeric Literals

The following are the rules for specifying a numeric literal:

A numeric literal consists of any combination of the digits O through 9. A decimal point or a sign can be
included.

The sign (+ or -), if present, must be the leftmost character. An unsigned literal is treated as a positive
number.

Blanks cannot appear in a numeric literal.
Numeric literals are not enclosed in apostrophes ().

Numeric literals are used in the same way as a numeric field, except that values cannot be assigned to
numeric literals.

The decimal separator may be either a comma or a period

Numeric literals of the float format are specified differently. Float literals take the form:

<mantissa>E<exponent>

Where

<mantissa> is a literal as described above with 1 to 16 digits
<exponent> is a literal with no decimal places, with a value
between -308 and +308

Float literals do not have to be normalized. That is, the mantissa does not have to be written with
exactly one digit to the left of the decimal point. (The decimal point does not even have to be specified.)

Lower case e may be used instead of E.
Either a period ('.") or acomma (',') may be used as the decimal point.

Float literals are allowed anywhere that numeric constants are allowed except in operations that do not
allow float data type. For example, float literals are not allowed in places where a numeric literal with
zero decimal positions is expected, such as an array index.

Float literals follow the same continuation rules as for regular numeric literals. The literal may be split at
any point within the literal.

The following lists some examples of valid float literals:

1E1 = 10
1.2e-1 = .12
-1234.9E0 = -1234.9

Chapter 4. Definitions 183

Constants

12e12
+67,89E+0003

12000000000000
67890 (the comma is the decimal point)

The following lists some examples of invalid float literals:

1.234E <--- no exponent

1.2e- <--- no exponent
-1234.9E+309 <--- exponent too big
12E-2345 <--- exponent too small
1.797693134862316e308 <--- value too big
179.7693134862316E306 <--- value too big
0.0000000001E-308 <--- value too small

Date Literals
Date literals take the form D'xx-xx-xx' where:

« D indicates that the literal is of type date
« XX-Xx-xX is a valid date in the format specified on the control specification (separator included)
« XX-xX-xX is enclosed by apostrophes

Time Literals

Time literals take the form T'xx:xx:xx' where:

« Tindicates that the literal is of type time

« xx:xx:xx is a valid time in the format specified on the control specification (separator included)
« XX:XX:XX is enclosed by apostrophes

Timestamp Literals

Timestamp literals have the form Z'yyyy-mm-dd-hh.mm.ss', optionally followed by a period followed by
zero to twelve fractional seconds, Z'yyyy-mm-dd-hh.mm.ss.frac', where:

Z indicates that the literal is of type timestamp

yyyy-mm-dd is a valid date (year-month-day)
« hh.mm.ss is a valid time (hours.minutes.seconds)

frac is between zero and twelve digits representing fractional seconds

Fractional seconds are optional and if fewer than 6 fractional seconds are specified, the timestamp
literal will be padded with additional zeros so that it has 6 fractional seconds.

For example, 2'2014-12-03-11.41.52" has 6 fractional seconds, equivalent to
Z'2014-12-03-11.41.52.000000', Z'2014-12-03-11.41.52.123" has three fractional seconds, equivalent
t0Z2'2014-12-03-11.41.52.123000', Z'2014-12-03-11.41.52.1234567' has seven fractional seconds,
and Z2'2014-12-03-11.41.52.123456789012' has twelve fractional seconds.

Graphic Literals

Graphic literals take the form G'oK1K2i' where:

« Gindicates that the literal is of type graphic

 0is a shift-out character

« K1K2 is an even number of bytes (possibly zero) and does not contain a shift-out or shift-in character
« iis ashift-in character

« 0K1K2iis enclosed by apostrophes

UCS-2 Literals

UCS-2 literals take the form U'Xxxx...Yyyy' where:

« U indicates that the literal is of type UCS-2.

184 IBMi: ILE RPG Reference

Constants

« Each UCS-2 literal requires four bytes per UCS-2 character in the literal. Each four bytes of the literal
represents one double-byte UCS-2 character.

« UCS-2 literals are compatible only with UCS-2 data.
UCS-2 literals are assumed to be in the default UCS-2 CCSID of the module.

CCSID of literals and compile-time data

If CCSID(*EXACT) is specified on a Control statement

 Character literals have the CCSID of the compilation.

« Graphic literals have the DBCS CCSID related to the CCSID of the compilation.

The CCSID of the compilation is the CCSID used to read the source files. It is specified by the TGTCCSID
parameter of the command. The TGTCCSID parameter defaults to TGTCCSID(*SRC), which is the EBCDIC
CCSID related to the CCSID of the primary source file. For more information about the TGTCCSID
parameter, see the description of the CRTBNDRPG command in Rational Development Studio for i: ILE
RPG Programmer's Guide.

If CCSID(*EXACT) is not specified

« Character literals have the mixed-byte CCSID related to the job CCSID at runtime. When a character
literal contains X'OE', the compiler will always treat it as a shift-out character, independent of the
CCSID(*CHAR) keyword.

« Graphic literals have the CCSID specfified by the CCSID(*GRAPH) Control-statement keyword. If the
CCSID(*GRAPH) keyword is not specified, graphic literals do not have a CCSID.

UCS-2 literals have the CCSID specified by the CCSID(*UCS2) Control-statement keyword. If this keyword
is not specified, UCS-2 literals have CCSID 13488.

Hexadecimal literals have CCSID 65535 or *HEX.
The CCSID of compile-time data is the same as the CCSID of literals.

Example of Defining Literals

Chapter 4. Definitions 185

Constants

L R . T S R - R T - B R A S
H DATFMT (*IS0)

* Examples of literals used to initialize fields
DName+++++++++++ETDSFrom+++To/L+++IDC.Keywords++++++++++++++t+ttttttttt++4
Dt Keywords+++++++++++++++++++++++++++++
D DateField D INZ(D'1988-09-03")

D NumField 5P 1 INZ(5.2)
D CharField 10A INZ('abcdefghij')
D UCS2Field 2C INZ(U'00610062')

* Even though the date field is defined with a 2-digit year, the

* initialization value must be defined with a 4-digit year, since

* all literals must be specified in date format specified

* on the control specification.

nununn

D YmdDate S D INZ(D'2001-01-13')

D DATFMT (*YMD)
* Examples of literals used to define named constants

D DateConst c CONST(D'1988-09-03")
D NumConst c CONST(5.2)

D CharConst c CONST('abcdefghij')
* Note that the CONST keyword is not required.

D Upper Cc ' ABCDEFGHIJKLMNOPQRSTUVIWXYZ'
* Note that the literal may be continued on the next line
D Lower c 'abcdefghijklmn-

D opqrstuvwxyz'
* Examples of literals used in operations

c EVAL CharxField = 'abc'

c IF NumField > 12

Cc EVAL DateField = D'1995-12-25"'

c ENDIF

Figure 57. Defining named constants

Example of Using Literals with Zero Length

186 IBMi: ILE RPG Reference

Constants

L R T T T - T S R T A R -
DName+++++++++++ETDSFrom+++To/L+++IDC.Keywords+++++++++++++++ttttttttttttttt

Dt e Keywords++++++++++++++++ttttttttt++++
* The following two definitions are equivalent:

D varfldl S 5 INZ VARYING

D varfld2 S 5 INZ('') VARYING

* Various fields used by the examples below:

D blanks S 10 INZ

D vblanks S 10 INZ(! ') VARYING

D fixfldl S 5 INZ('abcde')

* VGRAPHIC and VUCS2 are initialized with zero-length literals.
D vgraphic S 106 INZ(G'oi') VARYING

D vucs2 10C INZ(U'') VARYING

CLONO@1Factorl+++++++0pcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq++++
* The following statements do the same thing:

C eval varfldl = ''

c clear varfldil
* Moving '' to a variable-length field using MOVE(P) or MOVEL(P)
* sets the field to blanks up to the fields current length.

c move (p) ' varfldl

c movel(p) '' varfldl

* Moving '' to a fixed-length field has no effect in the following
* examples: (The rightmost or leftmost @ characters are changed.)
c move ' fixflda
c movel ' fixflda

* The following comparisons demonstrate how the shorter operand
* is padded with blanks:

c eval *in0@1 = (blanks = '')
* *xin@1 is '1'

(s eval *in02 = (vblanks = '')
* *in02 is '1'

(s eval *in03 = (varfld2 = blanks)
* *in03 is '1'

(s eval *in04 = (varfld2 = vblanks)
* *xin04 is '1'

c eval *in05 = (%len(vgraphic)=0)
* *in05 is '1'
C eval *in06 = (%len(vucs2)=0)
* *in06 is '1'

Figure 58. Character, Graphic, and UCS-2 Literals with Zero Length

Named Constants

You can give a name to a constant. This name represents a specific value which cannot be changed when
the program is running. Numeric named constants have no predefined precision. Their actual precision is
defined by the context that is specified.

See Figure 57 on page 186 for examples of defining named constants. The value of the named constant is
specified in the keyword section of the definition specification. The presence of the keyword CONST is
optional, however. For example, to assign a value of 'ab' to a constant, you could specify either
CONST('ab') or 'ab' in the keyword section.

Figurative Constants

The figurative constants *BLANK/*BLANKS, *ZERO/*ZEROS, *HIVAL, *LOVAL, *NULL, *ALL'x..",
*ALLG'0K1K2i', *ALLU'XxxxYyyy', *ALLX'x1..", and *ON/*OFF are implied literals that can be specified
without a length, because the implied length and decimal positions of a figurative constant are the same
as those of the associated field. (For exceptions, see the following section, “Rules for Figurative
Constants” on page 188.)

Figurative constants can be specified in factor 1 and factor 2 of the calculation specifications. The
following shows the reserved words and implied values for figurative constants:

Chapter 4. Definitions 187

Constants

Reserved Words
Implied Values

*BLANK/*BLANKS
All blanks. Valid only for character, graphic, or UCS-2 fields. The value for characteris ' ' (blank) or
X'40', for graphic is X'4040', and for UCS-2 is X'0020'.

*ZERO/*ZEROS
Character/numeric fields: All zeros. The value is '0' or X'FO'. For numeric float fields: The value is 'O
EO".

*HIVAL
Character, graphic, or UCS-2 fields: The highest collating character for the system (hexadecimal FFs).
Numeric fields: The maximum value allowed for the corresponding field (with a positive sign if
applicable). For Float fields: *HIVAL for 4-byte float = 3.402 823 5E38 (/x'7F7FFFFF'/) *HIVAL for 8-
byte float = 1.797 693 134 862 315 E308 (/x'7FEFFFFFFFFFFFFF'/) Date, time and timestamp
fields: See “Date Data Type” on page 250, “Time Data Type” on page 252 and “Timestamp Data
Type” on page 254 for *HIVAL values for date, time, and timestamp data.

*LOVAL
Character, graphic, or UCS-2 fields: The lowest collating character for the system (hexadecimal
zeros). Numeric fields: The minimum value allowed (with a negative sign if applicable). For Float
fields: *LOVAL for 4-byte float = -3.402 823 5E38 (/x'FF7FFFFF'/) *LOVAL for 8-byte float = -1.797
693 134 862 315 E308 (/x'FFEFFFFFFFFFFFFF'/) Date, time and timestamp fields: See “Date Data
Type” on page 250, “Time Data Type” on page 252 and “Timestamp Data Type” on page 254 for
*LOVAL values for date, time, and timestamp data.

*ALL'x..'
Character/numeric fields: Character string x . . is cyclically repeated to a length equal to the
associated field. If the field is a numeric field, all characters within the string must be numeric (0
through 9). No sign or decimal point can be specified when *ALL'x.." is used as a numeric constant.

Note: You cannot use *ALL'x..' with numeric fields of float format.

Note: For numeric integer or unsigned fields, the value is never greater than the maximum value
allowed for the corresponding field. For example, *ALL'95' represents the value 9595 if the
corresponding field is a 5-digit integer field, since 95959 is greater than the maximum value allowed
for a 5-digit signed integer.

*ALLG'oK1K2i'
Graphic fields: The graphic string K1K2 is cyclically repeated to a length equal to the associated field.

*ALLU'XxxxYyyy"
UCS-2 fields: A figurative constant of the form *ALLU'XxxxYyyy' indicates a literal of the form
XxxxYyyyXxxxYyyy..." with a length determined by the length of the field associated with the
*ALLU'XxxxYyyy' constant. Each double-byte character in the constant is represented by four
hexadecimal digits. For example, *ALLU'0041' represents a string of repeated UCS-2 'A's.

*ALLX'x1..'
Character fields: The hexadecimal literal X'x1.." is cyclically repeated to a length equal to the
associated field.

*NULL
A null value valid for basing pointers, procedure pointers, or objects.

*ON/*OFF

*ON is all ones ('1' or X'F1'). *OFF is all zeros ('0' or X'FQ"). Both are only valid for character fields.
Rules for Figurative Constants
Remember the following rules when using figurative constants:

« MOVE and MOVEL operations allow you to move a character figurative constant to a numeric field. The
figurative constant is first expanded as a zoned numeric with the size of the numeric field, then
converted to packed or binary numeric if needed, and then stored in the target numeric field. The digit
portion of each character in the constant must be valid. If not, a decimal data error will occur.

188 IBMi: ILE RPG Reference

Data Structures

- Figurative constants are considered elementary items. Except for MOVEA, figurative constants act like a
field if used in conjunction with an array. For example: MOVE *ALL'XYZ' ARR.

If ARR has 4-byte character elements, then each element will contain 'XYZX'.

« MOVEA is considered to be a special case. The constant is generated with a length equal to the portion
of the array specified. For example:

— MOVEA *BLANK ARR(X)
Beginning with element X, the remainder of ARR will contain blanks.
— MOVEA *ALL'XYZ' ARR(X)

ARR has 4-byte character elements. Element boundaries are ignored, as is always the case with
character MOVEA operations. Beginning with element X, the remainder of the array will contain
'XYZXYZXYZ...".

Note that the results of MOVEA are different from those of the MOVE example above.

- After figurative constants are set/reset to their appropriate length, their normal collating sequence can
be altered if an alternate collating sequence is specified.

« The move operations MOVE and MOVEL produce the same result when moving the figurative constants
*ALL'x..", *ALLG'0K1K2i', and *ALLX'x1..". The string is cyclically repeated character by character
(starting on the left) until the length of the associated field is the same as the length of the string.

« Figurative constants can be used in compare operations as long as one of the factors is not a figurative
constant.

- The figurative constants, *BLANK/*BLANKS, are moved as zeros to a numeric field in a MOVE operation.

Data Structures

The ILE RPG compiler allows you to define an area in storage and the layout of the fields, called subfields,
within the area. This area in storage is called a data structure.

You define a data structure in free form by specifying the DCL-DS operation code followed by the data
structure name and keywords. You define a data structure in fixed form by specifying DS in positions 24
through 25 on a definition specification.

You can use a data structure to:

« Define the same internal area multiple times using different data formats

« Define a data structure and its subfields in the same way a record is defined.
« Define multiple occurrences of a set of data.

« Group non-contiguous data into contiguous internal storage locations.

« Operate on all the subfields as a group using the name of the data structure.

« Operate on an individual subfield using its name.

In addition, there are four special data structures, each with a specific purpose:

« A data area data structure (identified by the *AUTO parameter of the DTAARA keyword for a free-form
definition or a U in position 23 of a fixed-form definition)

- Afile information data structure (identified by the keyword INFDS on a file description specification)

« A program-status data structure (identified by the PSDS keyword for a free-form definition, or by an S in
position 23 of a fixed-form definition)

« Anindicator data structure (identified by the keyword INDDS on a file description specification).

Data structures can be either program-described or externally described, except for indicator data
structures, which are program-described only.

One data structure can be defined like another using the LIKEDS keyword.

Chapter 4. Definitions 189

Data Structures

A program-described data structure is identified by the absence of the EXT or EXTNAME keywords for a
free-form definition, or by a blank in position 22 of a fixed-form definition. The subfield definitions for a
program-described data structure must immediately follow the data structure definition.

An externally described data structure, identified by the EXT keyword or the EXTNAME keyword for a
free-form definition, or by an E in position 22 of a fixed-form definition, has subfield descriptions
contained in an externally described file. At compile time, the ILE RPG compiler uses the external name to
locate and extract the external description of the data structure subfields. If the EXTNAME keyword is not
specified, the name of the data structure is used for the external file name.

Note: The data formats specified for the subfields in the external description are used as the internal
formats of the subfields by the compiler. This differs from the way in which externally described files are
treated.

An external subfield name can be renamed in the program using the keyword EXTFLD. The keyword
PREFIX can be used to add a prefix to the external subfield names that have not been renamed with
EXTFLD. Note that the data structure subfields are not affected by the PREFIX keyword specified on a file-
description specification even if the file name is the same as the parameter specified in the EXTNAME
keyword when defining the data structure using an external file name. Additional subfields can be added
to an externally described data structure by specifying program-described subfields immediately after
the list of external subfields.

You can also define an externally-described data structure using the LIKEREC keyword

You can control the CCSID of alphanumeric subfields of externally-described data structures by
specifying the CCSID(*EXACT) or CCSID(*NOEXACT) keyword on the data structure. If you specify
CCSID(*EXACT), the alphanumeric subfields will have the same CCSID as the fields in the file. If you
specify CCSID(*NOEXACT), or you do not specify the CCSID keyword for the data structure, the
alphanumeric subfields will have the default CCSID for alphanumeric definitions. See “CCSID(*EXACT |
*NOEXACT)” on page 388 and “CCSID(*CHAR : *JOBRUN | *JOBRUNMIX | *UTF8 | *HEX | number)” on
page 302 for more information about alphanumeric CCSIDs.

Qualifying Data Structure Names

The keyword QUALIFIED indicates that subfields of the data structure are referenced using qualified
notation. This permits access by specifying the data structure name followed by a period and the subfield
name, for example DS1.FLD1. If the QUALIFIED keyword is not used, the subfield name remains
unqualified, for example FLD1. If QUALIFIED is used the subfield name can be specified by one of the
following:

« A"Simply Qualified Name" is a name of the form "A.B". Simply qualified names are allowed as
arguments to keywords on File and Definition Specifications; in the Field-Name entries on Input and
Output Specifications; and in the Factor 1, Factor 2, and Result-Field entries on fixed-form calculation
specifications, i.e.dsname. subf. While spaces are permitted between elements of a fully-qualified
name, they are not permitted in simply qualified names.

« A"Fully Qualified Name" is a name with qualification and indexing to an arbitrary number of
levels, for example, "A(X) .B.C(Z+17)". Fully qualified names are allowed in most free-form
calculation specifications, or in any Extended-Factor-2 entry. This includes operation codes CLEAR and
DSPLY coded in free-form calculations.

In addition, arbitrary levels of indexing and qualification are allowed. For example, a programmer could
code:ds (x) .subfl.s2.s3(y+1) .s4 as an operand within an expression. Please see “QUALIFIED” on
page 428 for further information on the use of the QUALIFIED keyword.

Fully qualified names may be specified as the Result-Field operand for operation codes CLEAR and DSPLY
when coded in free-form calc specs. Expressions are allowed as Factor 1 and Factor 2 operands for
operation code DSPLY (coded in free-form calculation specifications), however, if the operand is more
complex than a fully qualified name, the expression must be enclosed in parentheses.

The QUALIFIED keyword is not used for a nested data structure definition. Nested data structures are
automatically qualified. See “Nested data structure subfield” on page 371.

190 IBMi: ILE RPG Reference

Data Structures

Array Data Structures

An "Array Data Structure" isadata structure defined with keyword DIM. An array data structure is
like a multiple-occurrence data structure, except that the index is explicitly specified, as with arrays.

A "Keyed Array Data Structure' isan array data structure with one subfield identified as the
search or sort key. The array data structure is indexed by (*) and followed by the specification of the key
subfield. For example, consider array data structure FAMILIES with one scalar subfield NAME, and
another array subfield CHILDREN. To use the FAMILIES data structure as an array data structure keyed by
NAME, specify FAMILIES(*).NAME. To use the first CHILDREN element as the key, specify
FAMILIES(*).CHILDREN(1).

Note:

1. Keyword DIM is allowed for data structures defined as QUALIFIED.

2. When keyword DIM is coded for a data structure or LIKEDS subfield, array keywords CTDATA,
FROMFILE, and TOFILE are not allowed. In addition, the following data structure keywords are not
allowed for an array data structure:

- DTAARA
- OCCURS.

3. For a data structure X defined with LIKEDS(Y), if data structure Y is defined with keyword DIM, data
structure X is not defined as an array data structure.

4. If X is a subfield in array data structure DS, then an array index must be specified when referring to X in
a qualified name. In addition, the array index may not be * except in the context of a keyed array data
structure. Within a fully qualified name expression, an array index may only be omitted (or * specified)
for the right-most name.

5. An array data structure can be sorted using the “SORTA (Sort an Array)” on page 792 operation code.
The array is sorted using one of the subfields as a key.

6. An array data structure can be searched using the %LOOKUP built-in function. The array is searched
using one of the subfields as a key.

7. Here are some examples of statements using keyed array data structure expressions that are not

valid. Assume that TEAMS is an array data structure with scalar subfield MANAGER and data structure
subfield EMPS.

a. These statements are not valid because TEAMS is an array data structure. A non-array key subfield
must be specified.

SORTA TEAMS;
SORTA TEAMS (%) ;

b. These statements are not valid because TEAMS(1).EMPS is an array data structure. A non-array key
subfield must be specified.

SORTA TEAMS(1) .EMPS;
SORTA TEAMS (1) .EMPS () ;

c. This statement is not valid because TEAMS(*).EMPS(*) specifies two different arrays to be sorted.
Only one (*) may be specified.

SORTA TEAMS (*) .EMPS () .NAME;

d. These statements are not valid because all arrays in the qualified name must be indexed. Both the
TEAMS and the EMPS subfields must be indexed; one must be indexed with (*).

SORTA TEAMS (*) .EMPS.NAME;
SORTA TEAMS.EMPS (%) .NAME;

e. This statement is not valid because at least one array must be indexed by (*).
TEAMS(1).EMPS(1).NAME is a scalar value.

Chapter 4. Definitions 191

Data Structures

SORTA TEAMS(1) .EMPS(1) .NAME;

Defining Data Structure Parameters in a Prototype or Procedure Interface

To define a prototyped parameter as a data structure, you must first define the layout of the parameter by
defining an ordinary data structure. Then, you can define a prototyped parameter as a data structure by
using the LIKEDS keyword. To use the subfields of the parameter, specify the subfields qualified with
parameter name: dsparm.subfield. For example

* PartInfo is a data structure describing a part.

D PartInfo DS QUALIFIED
D Manufactr 4
D Drug 6
D Strength 3
D Count 3 0
* Procedure "Proc" has a parameter "Part" that is a data
* structure whose subfields are the same as the subfields
* in "PartInfo". When calling this procedure, it is best
* to pass a parameter that is also defined LIKEDS(PartInfo)
* (or pass "PartInfo" itself), but the compiler will allow
* you to pass any character field that has the correct
* length.
D Proc PR
D Part LIKEDS (PartInfo)
P Proc B

* The procedure interface also defines the parameter Part
* with keyword LIKEDS(PartInfo).
* This means the parameter is a data structure, and the subfields

* can be used by specifying them qualified with "Part.", for
* example "Part.Strength"
D Proc PI
D Part LIKEDS (PaxrtInfo)
c IF Part.Strength > getMaxStrength (Part.Drug)
c CALLP PartError (Part : DRUG_STRENGTH_ERROR)
c ELSE
Cc EVAL Part.Count = Part.Count + 1
Cc ENDIF
P Proc E

Defining Data Structure Subfields

You define a subfield in free form by specifying the name of the subfield followed by keywords, or by
specifying DCL-SUBF followed by the subfield name and keywords, or by specifying DCL-DS to define a
nested data structure subfield.

You define a subfield in fixed form by specifying blanks in the Definition-Type entry (positions 24 through
25) of a definition specification. The subfield definition(s) must immediately follow the data structure
definition. In free-form, the subfield definitions end with the END-DS statement. In fixed form, the
subfield definitions end when a definition specification with a non-blank Definition-Type entry is
encountered, or when a different specification type is encountered.

In fixed form, the name of the subfield is entered in positions 7 through 21. To improve readability of your
source, you may want to indent the subfield names to show visually that they are subfields.

If the data structure is defined with the QUALIFIED keyword, the subfield names can be the same as
other names within your program. The subfield names will be qualified by the owning data structure when
they are used.

You can also define a subfield like an existing item using the LIKE keyword. When defined in this way, the
subfield receives the length and data type of the item on which it is based. Similarly, you can use the
LIKEDS keyword or LIKEREC keyword to define a subfield as a data structure. See “Examples of defining
data using the LIKE keyword” on page 408 for an example using the LIKE keyword.

The keyword LIKEDS is allowed on any subfield definition. When specified, the subfield is defined to be a
data structure, with its own set of subfields. If data structure DS has subfield S1 which is defined like a
data structure with a subfield S2, a programmer must refer to S2 using the expression DS.S1.S2.

192 IBMi: ILE RPG Reference

Data Structures

Note:

1. Keywords LIKEDS and LIKEREC are allowed for subfields only within QUALIFIED data structures.

2. Nested data structures are allowed only within QUALIFIED data structures. See “Nested data
structure subfield” on page 371.

3. The DIM keyword can be used with the LIKEDS and LIKEREC keywords.

You can overlay the storage of a previously defined subfield with that of another subfield using the
OVERLAY keyword. The keyword is specified on the later subfield definition. See Figure 63 on page 198
for an example using the OVERLAY keyword.

Specifying Subfield Length

The length of a subfield may be specified using absolute (positional) or length notation, or its length may
be implied.

Free-form
The length is specified as a parameter to the data-type keyword.

Absolute notation in fixed form
Specify a value in both the From-Position (positions 26 through 32) and the To-Position/Length
(positions 33 through 39) entries on the definition specification.

Length notation in fixed form
Specify a value in the To-Position/Length (positions 33 through 39) entry. The From-Position entry is
blank.

Implied Length
If a subfield appears in the first parameter of one or more OVERLAY keywords, the subfield can be
defined without specifying any type or length information. In this case, the type is character and the
length is determined by the overlaid subfields.

In addition, some data types, such as Pointers, Dates, Times and Timestamps have a fixed length. For
these types, the length is implied, although it can be specified in fixed form.

When the POS keyword is not specified in a free-form definition, or the From-Position is not specified in a
fixed-form definition, the subfield is positioned such that its starting position is greater than the maximum
ending position of all previously defined subfields. For examples of each notation, see “Data Structure
Examples” on page 195.

Aligning Data Structure Subfields

Alignment of subfields may be necessary. In some cases it is done automatically; in others, it must be
done manually.

For example, when defining subfields of type basing pointer or procedure pointer using the length
notation, the compiler will automatically perform padding if necessary to ensure that the subfield is
aligned properly.

When defining float, integer or unsigned subfields, alignment may be desired to improve run-time
performance. If the subfields are defined using length notation, you can automatically align float, integer
or unsigned subfields by specifying the keyword ALIGN on the data structure definition. However, note
the following exceptions:

« The ALIGN keyword is not allowed for a file information data structure or a program status data
structure.

« Subfields defined using the keyword OVERLAY are not aligned automatically, even if the keyword ALIGN
is specified for the data structure. In this case, you must align the subfields manually.

Automatic alignment will align the fields on the following boundaries.

2 bytes for 5-digit integer or unsigned subfields
« 4 bytes for 10-digit integer or unsigned subfields or 4-byte float subfields
« 8 bytes for 20-digit integer or unsigned subfields

Chapter 4. Definitions 193

Data Structures

» 8 bytes for 8-byte float subfields
« 16 bytes for pointer subfields
If you are aligning fields manually, make sure that they are aligned on the same boundaries. A start-

position is on an n-byte boundary if ((position - 1) mod n) = 0. (Thevalue of "x mod y" is the
remainder after dividing x by y in integer arithmetic. It is the same as the MVR value after X DIV Y.)

Figure 59 on page 194 shows a sequence of bytes and identifies the different boundaries used for
alignment.

‘# % !

Figure 59. Boundaries for Data Alignment

Note the following about the above byte sequence:

« Position 1 is on a 16-byte boundary, since ((1-1) mod 16) = 0.
« Position 13 is on a 4-byte boundary, since ((13-1) mod 4) = 0.
« Position 7 is not on a 4-byte boundary, since ((7-1) mod 4) = 2.

Initialization of Nested Data Structures

The keyword INZ(*LIKEDS) is allowed on a LIKEDS subfield. The LIKEDS subfield is initialized exactly the
same as the corresponding data structure.

Keyword INZ is allowed on a LIKEDS subfield. All nested subfields of the LIKEDS subfield are initialized to
their default values. This also applies to more deeply nested LIKEDS subfields, with the exception of
nested LIKEDS subfields with INZ(*LIKEDS) specified.

If keyword INZ is coded on a main data structure definition, keyword INZ is implied on all subfields of the
data structure without explicit initialization. This includes LIKEDS subfields.

Special Data Structures
Special data structures include:

« Data area data structures

« File information data structures (INFDS)

« Program-status data structures

« Indicator data structures.

Note that data area data structures and program-status data structures cannot be defined in
subprocedures.

Data Area Data Structure

A data area data structure is identified in a free-form definition by the *AUTO parameter for the DTAARA
keyword, or identified in a fixed-form definition by a U in position 23.

This indicates to the compiler that it should read in and lock the data area of the same name at program
initialization and should write out and unlock the same data area at the end of the program. Locking does
not apply to the local data area (see “Local Data Area (LDA)” on page 195). Data area data structures, as
in all other data structures, have the type character. A data area read into a data area data structure must
also be character. The data area and data area data structure must have the same name unless you
rename the data area within the ILE RPG program by using the *DTAARA DEFINE operation code or the
DTAARA keyword.

194 IBMi: ILE RPG Reference

Data Structures

You can specify the data area operations (IN, OUT, and UNLOCK) for a data area that is implicitly read in
and written out. Before you use a data area data structure with these operations, you must specify that

data area data structure name in the result field of the *DTAARA DEFINE operation or with the DTAARA
keyword.

A data area data structure cannot be specified in the result field of a PARM operation in the *ENTRY
PLIST.

Local Data Area (*LDA)
The compiler uses the local data area in the following situations:

« A free-form definition has the DTAARA keyword without a parameter for an unnamed data structure.

« A fixed-form definition has blanks for the name of the data area data structure (positions 7 through 21
of the definition specification that contains a U in position 23).

To provide a name for the local data area, use the *DTAARA DEFINE operation, with *LDA in factor 2 and
the name in the result field or DTAARA(*LDA) on the definition specification.

File Information Data Structure

You can specify a file information data structure (defined by the keyword INFDS on a file description
specifications) for each file in the program. This provides you with status information on the file
exception/error that occurred. A file information data structure can be used for only one file. A file
information data structure contains predefined subfields that provide information on the file exception/
error that occurred. For a discussion of file information data structures and their subfields, see “File
Information Data Structure” on page 127.

Program-Status Data Structure

A program-status data structure, identified by the PSDS keyword for a free-form definition, or by a blank
in position 22 of a fixed-form definition, provides program exception/error information to the program. For
a discussion of program-status data structures and their predefined subfields, see “Program Status Data
Structure” on page 144.

Indicator Data Structure

An indicator data structure is identified by the keyword INDDS on the file description specifications. It is
used to store conditioning and response indicators passed to and from data management for a file. By
default, the indicator data structure is initialized to all zeros ('0's).

The rules for defining the data structure are:

« It must not be externally described.

« It can only have indicator or fixed-length character subfields.
« It can be defined as a multiple occurrence data structure.

« %SIZE for the data structure will return 99. For a multiple occurrence data structure, %SIZE(ds:*ALL)
will return a multiple of 99. If a length is specified, it must be 99.

- Subfields may contain arrays of indicators as long as the total length does not exceed 99.

Data Structure Examples

The following examples show various uses for data structures and how to define them.

Example Description

Figure 60 on page 196 Using a data structure to subdivide a field

Figure 61 on page 197 Using a data structure to group fields

Figure 62 on page 197 Using keywords QUALIFIED, LIKEDS, and DIM with data structures,
and how to code fully-qualified subfields

Chapter 4. Definitions 195

Data Structures

Example Description

Figure 63 on page 198 Data structure with absolute and length notation

Figure 64 on page 198 Rename and initialize an externally described data structure
Figure 65 on page 199 Using PREFIX to rename all fields in an external data structure
Figure 66 on page 199 Defining a multiple occurrence data structure

Figure 67 on page 200 Aligning data structure subfields

Figure 68 on page 201 Defining a *LDA data area data structure

Figure 69 on page 201 Using data area data structures (1)

Figure 70 on page 202 Using data area data structures (2)

Figure 71 on page 202 Using an indicator data structure

Figure 72 on page 203 Using a multiple-occurrence indicator data structure

oo A cooTooo & vooTooo 3 vooTooo & vooTooo ® vooTooo @ vooTPooo # cootPooo &
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++tttttttttt+++++
)660000000000000000000000000000000000G Keywords++++++++++++++++ttttttttttt++

*
* Use length notation to define the data structure subfields.

* You can refer to the entire data structure by using Partno, or by
* using the individual subfields Manufactr, Drug, Strength or Count.
*

D Partno DS
D Manufactr

D Drug

D Strength

D Count
D
*
I
I

wwo b

0

J T S I T S S - T O o TR S A T -
Filename++SgNORiP0S1+NCCP0S2+NCCPOS3+NCC. . . vttt ittt ittt ettt e e e e e e eeas
........................ Fmt+SPFrom+To+++DcField+++++++++LIMIFTP1MnZx.

*
* Records in program described file FILEIN contain a field, Partno,
* which needs to be subdivided for processing in this program.

* To achieve this, the field Partno is described as a data structure
* using the above Definition specification

*

F

IFILEIN NS 01 1 CA 2 CB

I 3 18 Partno
I 19 29 Name

I 30 40 Patno

Figure 60. Using a Data structure to subdivide a field

196 IBMi: ILE RPG Reference

Data Structures

*

1oL+ 2 + 3 ..+ 4 Lo+ B L4l 6 Lo+l T Lo 4+... 8

DName+++++++++++ETDSFrom+++To/L+++IDC.Keywords+++++++++++++++ttttttttttttttt

D e Keywords++++++++++++++ttttttttttt++++
*

* When you use a data structure to group fields, fields from

* non-adjacent locations on the input record can be made to occupy

* adjacent internal locations. The area can then be referred to by

* the data structure name or individual subfield name.

*

D Partkey DS

D Location 4

D Partno 8

D Type 4

D

* 1 + 2 .40 3 Lo+ 4 +... 5 LL+L0 6 Lo+l 7 Lo+ 8

I#ilenéﬁé+;édNORiPosl+NCCPos2+NCéPosé;NCé

L. e Fmt+SPFrom+To+++DcField+++++++++LIMIFTPIMNZx.
*
* Fields from program described file TRANSACTN need to be
* compared to the field retrieved from an Item_Master file
*
ITRANSACTN NS 01 1cC1 2 C2
I 3 10 Partno
I 11 16 OQuantity
I 17 20 Type
I 21 21 Code
I 22 25 Location
I
L R T R e TR - I AR o B SO A T <
CLONOL1Factorl+++++++0pcode (E) +Factor2+++++++Result++++++++Len++D+HilLoEq. . ..
*
* Use the data structure name Partkey, to compare to the field
* Item_Nbr
*
Cc 8
C Partkey IFEQ Item_Nbr 29
C 8
Cx

Figure 61. Using a data structure to group fields

D CustomerInfo DS QUALIFIED BASED(Q@)

D Name 20A

D Address 50A

D ProductInfo DS QUALIFIED BASED(@)

D Numbex 5A

D Description 20A

D Cost 9P 2

D SalesTransaction...

D DS QUALIFIED

D Buyer LIKEDS (CustomexInfo)
D Seller LIKEDS (CustomexrInfo)
D NumProducts 10I O

D Products LIKEDS (PxoductInfo)
D DIM(10)

/free
TotalCost = 0;

for i = 1 to SalesTransation. Numproducts;
TotalCost = TotalCost + SalesTransaction.Products (i).Cost;
dsply SalesTransaction.Products (i).Cost;
endfor;
dsply ('Total cost is ' + %char(TotalCost));
/end-free

Figure 62. Using Keywords QUALIFIED, LIKEDS and DIM with data structures

Chapter 4. Definitions 197

Data Structures

L R T T T - T S R T A R -
DName+++++++++++ETDSFrom+++To/L+++IDC.Keywords+++++++++++++++ttttttttttttttt

D e Keywords++++++++++++++ttttttttttt++++
*

* Define a program described data structure called FRED

* The data structure is composed of 5 fields:

* 1. An array with element length 10 and dimension 70(Fieldl)
* 2. A field of length 30 (Field2)

* 3/4. Divide Field2 in 2 equal length fields (Field3 and Field4)
* 5 Define a binary field over the 3rd field

* Note the indentation to improve readability

*

*

* Absolute notation:

*

* The compiler will determine the array element length (Fieldl)
* by dividing the total length (700) by the dimension (70)

*

D FRED DS

D Fieldl 1 700 DIM(70)

D Field2 701 730

D Field3 701 715

D Field5 701 704B 2

D Field4 716 730

*

* Length notation:

*

* The OVERLAY keyword is used to subdivide Field2

*

D FRED DS

D Fieldl 10 DIM(70)

D Field2 30

D Field3 15 OVERLAY (Field2)

D Field5 4B 2 OVERLAY(Field3)

D Field4 15 OVERLAY (Field2:16)

Figure 63. Data structure with absolute and length notation

oo A oooTooo B vooTooo I vooTooo & vooTooo ® vooTooo @ vooTPooo # cootPooo &
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++ttttttttttt++4+
)6600000000000000000000000000000000C0CGG Keywords++++++++++++++++tttttttttth++

Define an externally described data structure with internal name
FRED and external name EXTDS and rename field CUST to CUSTNAME
Initialize CUSTNAME to 'GEORGE' and PRICE to 1234.89.

Assign to subfield ITMARR the DIM keywozxd.

The ITMARR subfield is defined in the external description as a
100 byte character field. This divides the 100 byte character
field into 10 array elements, each 10 bytes long.

Using the DIM keyword on an externally described numeric subfield
should be done with caution, because it will divide the field into
array elements (similar to the way it does when absolute notation
is used for program described subfields).

Ok K ok % ok Ok ok X ok * F

D Fred E DS
D CUSTNAME E
D PRICE E
D ITMARR E

EXTNAME (EXTDS)

EXTFLD (CUST) INZ('GEORGE')
INZ(1234.89)

DIM(10)

Figure 64. Rename and initialize an externally described data structure

198 IBMi: ILE RPG Reference

Data Structures

L R T T T - T S R T A R -
DName+++++++++++ETDSFrom+++To/L+++IDC.Keywords+++++++++++++++ttttttttttttttt

D e Keywords++++++++++++++ttttttttttt++++
D

D extdsl E DS EXTNAME (CUSTDATA)

D PREFIX (CU_)

D Name E INZ ('Joe's Garage')
D Custnum E EXTFLD (NUMBER)

D

*

* The previous data structure will expand as follows:

* -- All externally described fields are included in the data
* structure

* -- Renamed subfields keep their new names

* -- Subfields that are not renamed are prefixed with the
* prefix string

*

* Expanded data structure:

*

D EXTDS1 E DS

D CU_NAME E 20A EXTFLD (NAME)

D INZ ('Joe's Garage')
D CU_ADDR E 50A EXTFLD (ADDR)

D CUSTNUM E 9SO EXTFLD (NUMBER)

D CU_SALESMN E 7PO EXTFLD (SALESMN)

Figure 65. Using PREFIX to rename all fields in an external data structure

Woo A ooo0Tooo & cooTooo I cooTooo & cooTooo ® vooTooo @ cootooo # ocootooo O
DName+++++++++++ETDSFrom+++To/L+++IDC.Keywords++++++++++++++++++++++tt+++++

Dt e e Keywords+++++++++++++++++++++++++++++
*

* Define a Multiple Occurrence data structure of 20 elements with:
* -- 3 fields of character 20

* -- A 4th field of character 10 which overlaps the 2nd

* field starting at the second position.

*

* Named constant 'Max_Occur' is used to define the number of
* occurrences.

*

* Absolute notation (using begin/end positions)

*

D Max_Occur C CONST (20)

D

DDataStruct DS OCCURS (Max_Occur)

D fieldl 1 20

D field2 21 40

D field21 22 31

D field3 41 60

*

* Mixture of absolute and length notation

*

D DataStruct DS OCCURS (twenty)

D fieldl 20

D field2 20

D field21 22 31

D field3 41 60

Figure 66. Defining a multiple occurrence data structure

Chapter 4. Definitions 199

Data Structures

L R T T T - T S R T A R -
DName+++++++++++ETDSFrom+++To/L+++IDC.Keywords+++++++++++++++ttttttttttttttt
* Data structure with alignment:

D MyDS DS ALIGN

* Properly aligned subfields

* Integer subfields using absolute notation.

D Subf1 33 341 0

D Subf2 37 40I 0

* Integer subfields using length notation.

* Note that Subf3 will go directly after Subf2

* since positions 41-42 are on a 2-byte boundary.

* However, Subf4 must be placed in positions 45-48

* which is the next 4-byte boundary after 42.

D Sub£3 5I 0

D Subf4 10I 0O

* Integer subfields using OVERLAY.

D Group 101 120A

D Subfé6 5I 0 OVERLAY (Group: 3)

D Sub£7 10I O OVERLAY (Group: 5)

D Subf8 5U 0 OVERLAY (Group: 9)

* Subfields that are not properly aligned:

* Integer subfields using absolute notation:

D Sub£X1 10 11I 0

D Sub£fX2 15 18I 0O

* Integer subfields using OVERLAY:

D BadGroup 101 120A

D Sub£X3 5I 0 OVERLAY (BadGroup: 2)

D Sub£fX4 10I O OVERLAY (BadGroup: 6)

D Sub£X5 10U O OVERLAY (BadGroup: 11)
* Integer subfields using OVERLAY:

D WorseGroup 200 299A

D Sub£fX6 5I 0 OVERLAY (WorseGroup)

D SubfX7 10I O OVERLAY (WorseGroup: 3)
*

* The subfields receive warning messages for the following reasons:
* SubfX1l - end position (11) is not a multiple of 2 for a 2 byte field.
* SubfX2 - end position (18) is not a multiple of 4 for a 4 byte field.
* SubfX3 - end position (103) is not a multiple of 2.

* SubfX4 - end position (109) is not a multiple of 4.

* SubfX5 - end position (2114) is not a multiple of 4.

* SubfX6 - end position (201) is not a multiple of 2.

* SubfX7 - end position (205) is not a multiple of 4.

Figure 67. Aligning Data Structure Subfields

200 IBMi: ILE RPG Reference

Data Structures

L R T T T - T S R T A R -
DName+++++++++++ETDSFrom+++To/L+++IDC.Keywords+++++++++++++++ttttttttttttttt

D e Keywords++++++++++++++ttttttttttt++++
*

* Define a data area data structure based on the xLDA.

*

* Example 1:

* A data area data structure with no name is based on the *xLDA.

* In this case, the DTAARA keyword does not have to be used.

*

D ubns

D SUBFLD 1 600A

L R T T T - T S Y T A P -
DName+++++++++++ETDSFrom+++To/L+++IDC.Keywords+++++++++++++++ttttttttttttttt
* Example 2:

* This data structure is explicitly based on the xLDA using
* the DTAARA keyword. Since it is not a data area data
* structure, it must be handled using IN and OUT operations.
*

D LDA_DS DS DTAARA (*LDA)

D SUBFLD 1 600A

c N LDA_DS

c ouT LDA_DS

L R T T T - T O Y T A R -
DName+++++++++++ETDSFrom+++To/L+++IDC.Keywords++++++++++++++ttttttttttttttt
* Example 3:

* This data structure is explicitly based on the xLDA using
* the DTAARA keyword. Since it is a data area data
* structure, it is read in during initialization and written
* out during termination. It can also be handled using IN
* and OUT operations, since the DTAARA keyword was used.
*

D LDA_DS ubs DTAARA (*LDA)

D SUBFLD 1 600A

c IN LDA_DS

c ouT LDA_DS

Figure 68. Defining a *LDA data area data structure

.. 1 ..+ 2 Lo+..0 3 Lo+ 4 Lo+l B L+l 6 Lo+l T Lo+ 8
HKeywords+++++++++++++++ttttttttttttttttttttttttttt bttt
H DFTNAME (Programl)

H

*

FFilename++IPEASF..... L..... A.Device+.Keywords+++++++++++++++++++++++++++
FSALESDTA IF E DISK

*
DName+++++++++++ETDSFrom+++To/L+++IDCc.Keywords+++++++++++++tttttttttttttttt
Dt e e Keywords+++++++++++++++++++++++++++++

*

* This program uses a data area data structure to accumulate

* a series of totals. The data area subfields are then added

* to fields from the file SALESDTA.

D Totals ubs

D Tot_amount 8 2

D Tot_gross 10 2

D Tot_net 10 2

.. 1 ..+ 2 Lo+l 3 Lo+ 4 o+ B L+l 6 Lo+l T Lo+ 8
CLONO1Factorl+++++++0pcode (E) +Factor2+++++++++++++++++++t+ttttt+tt+t++++++++
*
C
Cc
Cc
C

EVAL Tot_amount = Tot_amount + amount
EVAL Tot_gross = Tot_gross + gross

EVAL Tot_net Tot_net + net

Figure 69. Using data area data structures (program 1)

Chapter 4. Definitions 201

Data Structures

L R . T T - T O Y T A P -
HKeywords+++++++++++++++++++++++++++++++++++++++ -+t bbb+
H DFTNAME (Program?2)

oo A 6o0to00 2 0oo¥ooo & voo%ooo A coofooo B coofooo ® cootooo ¥ ocootFooo
DName+++++++++++ETDSFrom+++To/L+++IDC.Keywords+++++++++++++++ttttttttttttttt

D e Keywords++++++++++++++ttttttttttt++++
*

* This program processes the totals accumulated in Programil.

* Program2 then uses the total in the subfields to do calculations.

*
D Totals ubs
D Tot_amount 8 2

D Tot_gross 10 2

D Tot_net 10 2

L R N T C AU A S TR - P DR o SR S A T <
CLONO1Factorl+++++++0pcode (E)+Factor2+++++++Result++++++++Len++D+HilLoEq. . ..
*
Cc 8
Cc EVAL *IN91 = (Amount2 <> Tot_amount)
c EVAL *IN92 = (Gross2 <> Tot_gross)
Cc EVAL *IN93 = (Net2 <> Tot_net)
c 8

Figure 70. Using data area data structures (program 2)
* AL 6ooTooo 2 cooTooo I vooTooo 8 cooTooo ® vooTooo @ cooTooo # ocootooo O

FFilename++IPEASFRLen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++

* Indicator data structure "DispInds" is associated to file "Disp".

FDisp CF E WORKSTN INDDS (DispInds)
DName+++++++++++ETDSFrom+++To/L+++IDC.Keywords+++++++++++++++++++++++++++++

Dt e Keywords+++++++++++++++++++t+++++++++
*

* This is the indicator data structure:

*
D DispInds DS

* Conditioning indicators for format "Query"
D ShowName 21 21N

* Response indicators for format "Query"

D Exit 3 3N

D Return 12 12N

D BlankNum 31 31N

* Conditioning indicators for format "DispSf1Ctl"

D SFLDSPCTL 41 41N

D SFLDSP 42 42N

D SFLEND 43 43N

D SFLCLR a4 44N
CLONO1Factorl+++++++0pcode (E) +Factor2+++++++Result++++++++Len++D+HilLoEq. . ..
*

* Set indicators to display the subfile:
Cc EVAL SFLDSP = *ON
C EVAL SFLEND = *OFF
Cc EVAL SFLCLR = *OFF

Cc EXFMT DispSFLCTL

*

* Using indicator variables, we can write more readable programs:
Cc EXFMT Query

c IF Exit or Return

Cc RETURN

Cc ENDIF

Figure 71. Using an indicator data structure

202 IBMi: ILE RPG Reference

Prototypes and Parameters

L R T R e S U - B RN e B S A T -
FFilename++IPEASFRLen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++
* Indicator data structure "ErrorInds" is associated to file "Disp".

FDisp CF E WORKSTN INDDS (ERRORINDS)
DName+++++++++++ETDsFrom+++To/L+++IDc,Keywords+++++++++++++++++++++++++++++
Dt e Keywords++++++++++++++ttttttttttt++++
D @NameOk c 0

D @NameNotFound C 1

D @NameNotValid C 2

D @NumExroxs Cc 2

*
* Indicator data structure for ERRMSG:

*
D ERRORINDS DS OCCURS (@NumExxoxs)
* Indicators for ERRMSG:
D NotFound 1 AN
D NotValid 2 2N
*
* Indicators for QUERY:
D Exit 3 3N
D Refresh 5 5N
D Retuzxn 12 12N
*
* Prototype for GetName procedure (code not shown)
D GetName PR 101 O
D Name 50A CONST
CLONOL1Factorl+++++++0pcode (E)+Factor2+++++++Result++++++++Len++D+HilLoEq. . ..
*
c DOU Exit or Return
C EXFMT QUERY
* Check the response indicators
c SELECT
C WHEN Exit or Retuxn
Cc RETURN
C WHEN Refresh
C RESET QUERY
Cc ITER
c ENDSL
*
* Check the name
c EVAL RC = GetName(Name)
*
* If it is not valid, display an error message
c IF RC <> @NameOk
C RC OCCURS ExrroxInds
Cc EXFMT ERRMSG
c ENDIF
C ENDDO
c *INZSR BEGSR
*
* Initialize the occurrences of the ErrorInds data structure
C @NameNotFound OCCUR ExrroxInds
C EVAL NotFound = '1'
c @NameNotValid OCCUR ExrorInds
c EVAL NotVvalid = '1'
C ENDSR

Figure 72. Using a multiple-occurrence indicator data structure

Prototypes and Parameters

The recommended way to call programs and procedures is to use prototyped calls, since prototyped calls
allow the compiler to check the call interface at compile time. If you are coding a subprocedure, you will
need to code a procedure-interface definition to allow the compiler to match the call interface to the
subprocedure.

This section describes how to define each of these concepts:

« “Prototypes” on page 204

« “Prototyped Parameters” on page 205

« “Procedure Interface” on page 207.

Chapter 4. Definitions 203

Prototypes and Parameters

Prototypes
A prototype is a definition of the call interface. It includes the following information:

« Whether the call is bound (procedure) or dynamic (program)

How to find the program or procedure (the external name)
« The number and nature of the parameters
« Which parameters must be passed, and which are optionally passed

Whether operational descriptors should be passed

The data type of the return value, if any (for a procedure)

A prototype may be explicitly or implicitly defined. If the procedure is called from a different RPG module,
the prototype must be explicitly specified in both the calling module and the module that defines the
procedure. If the procedure is only called within the same module, the prototype may be explicitly
defined, or it may be omitted. If the prototype is omitted, the compiler will implicitly define it from the
procedure interface.

For modules that call a procedure that is defined in a different module, a prototype must be included in
the definition specifications of the program or procedure that makes the call. The prototype is used by the
compiler to call the program or procedure correctly, and to ensure that the caller passes the correct
parameters.

The following rules apply to prototype definitions.

A prototype must have a name. If the keyword EXTPGM or EXTPROC is specified on the prototype
definition, then any calls to the program or procedure use the external name specified for that keyword.
If neither keyword is specified, then the external name is the prototype name in uppercase.

« In free form, specify the DCL-PR operation code followed by the prototype name and keywords; in fixed
form, specify PR in the Definition-Type entry (positions 24-25). Any parameter definitions must
immediately follow the PR specification. In free-form, the prototype definition ends with the END-PR
statement; in fixed form, the prototype definition ends with the first definition specification with non-
blanks in positions 24-25 or by a non-definition specification.

« Specify any of the following keywords as they pertain to the call interface:

EXTPROC(name)
The call will be a bound procedure call that uses the external name specified by the keyword.

EXTPGM(name)
The call will be an external program call that uses the external name specified by the keyword.

OPDESC
Operational descriptors are to be passed with the parameters that are described in the prototype.

RTNPARM
The return value is to be handled as a parameter. This may improve performance when calling the
procedure, especially for large return values.

« Areturn value (if any) is specified on the PR definition. Specify the length and data type of the return
value. In addition, you may specify the following keywords for the return value:
DATFMT(fmt)
The return value has the date format specified by the keyword.
DIM(N)
The return value is an array or data structure with N elements.

LIKEDS(data_structure_name)
The returned value is a data structure. (You cannot refer to the subfields of the return value when
you call the procedure.)

LIKEREC(namef{,type})
The returned value is a data structure defined like the specified record format name.

Note: You cannot refer to the subfields of the return value when you call the procedure.

204 IBMi: ILE RPG Reference

Prototypes and Parameters

LIKE(name)
The return value is defined like the item specified by the keyword.

PROCPTR
The return value is a procedure pointer.

TIMFMT(fmt)
The return value has the time format specified by the keyword.

VARYING{(2]4)}
A character, graphic, or UCS-2 return value has a variable-length format.

For information on these keywords, see “Definition-Specification Keywords” on page 382. Figure 73 on
page 205 shows a prototype for a subprocedure CVTCHR that takes a numeric input parameter and
returns a character string. Note that there is no name associated with the return value. For this reason,
you cannot display its contents when debugging the program.

* The returned value is the character representation of
* the input parameter NUM, left-justified and padded on
* the right with blanks.

D CVTCHR PR 31A

D NUM 31P 0 VALUE

* The following expression shows a call to CVTCHR. If
* variable rrn has the value 431, then after this EVAL,
* variable msg would have the value

* 'Record 431 was not found.'

c EVAL msg = 'Record '

[+ %TRIMR(CVTCHR(RRN))
C + ' was not found '

Figure 73. Prototype for CVTCHR

If you are writing a prototype for an exported subprocedure or for a main procedure, put the prototype in
a /COPY file and copy the prototype into the source file for both the callers and the module that defines
the procedure. This coding technique provides maximum parameter-checking benefits for both the
callers and the procedure itself, since they all use the same prototype.

Prototyped Parameters

If the prototyped call interface involves the passing of parameters then you must define the parameter
immediately following the PR or PI specification. The following keywords, which apply to defining the
type, are allowed on the parameter definition specifications:

ASCEND

The array is in ascending sequence.
DATFMT(fmt)

The date parameter has the format fmt.
DESCEND

The array is in descending sequence.
DIM(N)

The parameter is an array or data structure with N elements.
LIKE(name)

The parameter is defined like the item specified by the keyword.
LIKEREC(namef{,type})

The parameter is a data structure whose subfields are the same as the fields in the specified record
format name.

LIKEDS(data_structure_name)
The parameter is a data structure whose subfields are the same as the subfields identified in the
LIKEDS keyword.

Chapter 4. Definitions 205

Prototypes and Parameters

LIKEFILE(filename)
The parameter is a file, either filename or a file related through the LIKEFILE keyword to filename.

PROCPTR

The parameter is a procedure pointer.
TIMFMT(fmt)

The time parameter has the format fmt.

VARYING{(2]4)}
A character, graphic, or UCS-2 parameter has a variable-length format.

For information on these keywords, see “Definition-Specification Keywords” on page 382.

The following keywords, which specify how the parameter should be passed, are also allowed on the
parameter definition specifications:

CONST
The parameter is passed by read-only reference. A parameter defined with CONST must not be
modified by the called program or procedure. This parameter-passing method allows you to pass
literals and expressions.

NOOPT
The parameter will not be optimized in the called program or procedure.

OPTIONS(optl{:opt2{:opt3{:optd{:opt5}}}}

Where optl ... opt5 can be *NOPASS, *OMIT, *VARSIZE, *STRING, *TRIM, or *RIGHTADJ. For
example, OPTIONS(*VARSIZE : *NOPASS).

Specifies the following parameter passing options:

*NOPASS
The parameter does not have to be passed. If a parameter has OPTIONS(*NOPASS) specified,
then all parameters following it must also have OPTIONS(*NOPASS) specified.

*OMIT
The special value *OMIT may be passed for this reference parameter.

*VARSIZE
The parameter may contain less data than is indicated on the definition. This keyword is valid only
for character parameters, graphic parameters, UCS-2 parameters, or arrays passed by reference.
The called program or procedure must have some way of determining the length of the passed
parameter.

Note: When this keyword is omitted for fixed-length fields, the parameter may only contain more
or the same amount of data as indicated on the definition; for variable-length fields, the parameter
must have the same declared maximum length as indicated on the definition.

*STRING
Pass a character value as a null-terminated string. This keyword is valid only for basing pointer
parameters passed by value or by read-only reference.

*TRIM
The parameter is trimmed before it is passed. This option is valid for character, UCS-2 or graphic
parameters passed by value or by read-only reference. It is also valid for pointer parameters that
have OPTIONS(*STRING) coded.

Note: When a pointer parameter has OPTIONS(*STRING : *TRIM) specified, the value will be
trimmed even if a pointer is passed directly. The null-terminated string that the pointer is pointing
to will be copied into a temporary, trimmed of blanks, with a new null-terminator added at the
end, and the address of that temporary will be passed.

*RIGHTADJ
For a CONST or VALUE parameter, *RIGHTADJ indicates that the graphic, UCS-2, or character
parameter value is to be right adjusted.

Tip: For the parameter passing options *NOPASS, *OMIT, and *VARSIZE, it is up to the programmer of
the procedure to ensure that these options are handled. For example, if OPTIONS(*NOPASS) is coded

206 IBMi: ILE RPG Reference

Prototypes and Parameters

and you choose not to pass the parameter, the procedure must check that the parameter was passed
before it accesses it. The compiler will not do any checking for this.

VALUE
The parameter is passed by value.

For information on the keywords listed above, see “Definition-Specification Keywords” on page 382. For
more information on using prototyped parameters, see the chapter on calling programs and procedures in
the Rational Development Studio for i: ILE RPG Programmer's Guide.

Procedure Interface

If a prototyped program or procedure has call parameters or a return value, then a procedure interface
definition must be defined, either in the main source section (for a cycle-main procedure) or in the
subprocedure section. If a prototype was specified, the procedure interface definition repeats the
prototype information within the definition of a procedure. Otherwise, the procedure interface provides
the information that allows the compiler to implicitly define the prototype. The procedure interface is
used to declare the entry parameters for the procedure and to ensure that the internal definition of the
procedure is consistent with the external definition (the prototype).

The following rules apply to procedure interface definitions.

- The name of the procedure interface is optional. If specified, it must match the name of the
corresponding prototype definition.

« In afree-form definition, specify DCL-PI to begin a procedure interface definition. In a fixed-form
definition, specify PI in the Definition-Type entry (positions 24-25). The procedure-interface definition
can be specified anywhere in the definition specifications. In the cycle-main procedure, the procedure
interface must be preceded by the prototype that it refers to, if the prototoype is specified. A procedure
interface is if the procedure returns a value, or if it has any parameters; otherwise, it is optional.

« Any parameter definitions must immediately follow the procedure-interface specification.

- A free-form procedure interface must end with END-PI, either at the end of the DCL-PI statement, or as
a separate statement following the parameters.

« It is not necessary to specify a name for the procedure interface. In a free-form definition, you use *N to
indicate that you are not specifying a name.

« If you specify a name for the procedure interface, it must be the same as the name of the procedure. If
it is a procedure interface for a cycle-main procedure, and you specify a name, it must be the same as
the name of a prototype that was previously specified.

« Parameter names must be specified, although they do not have to match the names specified on the
prototype.

« All attributes of the parameters, including data type, length, and dimension, must match exactly those
on the corresponding prototype definition.

« To indicate that a parameter is a data structure, use the LIKEDS keyword to define the parameter with
the same subfields as another data structure.

- The keywords specified on the PI specification and the parameter specifications must match those
specified on the prototype, if the prototype is explicitly specified.

« If a prototype is not specified, the EXTPGM or EXTPROC keyword may be specified for the procedure
interface.

Tip:

If a module contains calls to a prototyped program or procedure that is defined in a different module,
then there must be a prototype definition for each program and procedure that you want to call. One way
of minimizing the required coding is to store shared prototypes in /COPY files.

If you provide prototyped programs or procedures to other users, be sure to provide them with the
prototypes (in /COPY files) as well.

Chapter 4. Definitions 207

Arrays

Using Arrays and Tables

Arrays and tables are both collections of data fields (elements) of the same:

- Field length
- Data type

— Character
— Numeric
— Data Structure
— Date
- Time
— Timestamp
— Graphic
— Basing Pointer
— Procedure Pointer
- UCS-2
« Format
« Number of decimal positions (if numeric)

Arrays and tables differ in that:

» You can refer to a specific array element by its position
« You cannot refer to specific table elements by their position
- An array name by itself refers to all elements in the array

« Atable name always refers to the element found in the last “LOOKUP (Look Up a Table or Array
Element)” on page 714 operation

Note: You can define only run-time arrays in a subprocedure. Tables, prerun-time arrays, and compile-
time arrays are not supported. If you want to use a pre-run array or compile-time array in a subprocedure,
you must define it in the main source section.

The next section describes how to code an array, how to specify the initial values of the array elements,
how to change the values of an array, and the special considerations for using an array. The section after
next describes the same information for tables.

Arrays
There are three types of arrays:

« The run-time array is loaded by your program while it is running.

« The compile-time array is loaded when your program is created. The initial data becomes a permanent
part of your program.

« The prerun-time array is loaded from an array file when your program begins running, before any input,
calculation, or output operations are processed.

The essentials of defining and loading an array are described for a run-time array. For defining and loading
compile-time and prerun-time arrays you use these essentials and some additional specifications.

Array Name and Index

You refer to an entire array using the array name alone. You refer to the individual elements of an array
usi