
IBM Spectrum Scale
Version 4 Release 2.0

Data Management API Guide

GA76-0442-06

IBM

IBM Spectrum Scale
Version 4 Release 2.0

Data Management API Guide

GA76-0442-06

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 47.

This edition applies to version 4 release 2 of the following products, and to all subsequent releases and
modifications until otherwise indicated in new editions:
v IBM Spectrum Scale ordered through Passport Advantage® (product number 5725-Q01)
v IBM Spectrum Scale ordered through AAS/eConfig (product number 5641-GPF)
v IBM Spectrum Scale for Linux on z Systems (product number 5725-S28)

Significant changes or additions to the text and illustrations are indicated by a vertical line (|) to the left of the
change.

IBM welcomes your comments; see the topic “How to send your comments” on page xii. When you send
information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2014, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this information ix
Prerequisite and related information xi
Conventions used in this information xi
How to send your comments xii

Summary of changes xiii

Chapter 1. Overview of IBM Spectrum
Scale Data Management API for GPFS. . 1
GPFS-specific DMAPI events 1
DMAPI functions 2

Mandatory functions implemented in DMAPI for
GPFS 2
Optional functions implemented in DMAPI for
GPFS 4
Optional functions that are not implemented in
DMAPI for GPFS 5
GPFS-specific DMAPI functions 6

DMAPI configuration attributes 6
DMAPI restrictions for GPFS 7

Chapter 2. Concepts of IBM Spectrum
Scale Data Management API for GPFS. . 9
Sessions 9
Events 10

Reliable DMAPI destroy events 11
Mount and unmount 11
Tokens and access rights 12
Parallelism in Data Management applications . . . 13
Data Management attributes. 14
Support for NFS 14
Quota 14
Memory mapped files 15

Chapter 3. Administration of IBM
Spectrum Scale Data Management API
for GPFS 17
Required files for implementation of Data
Management applications. 17
GPFS configuration attributes for DMAPI 18
Enabling DMAPI for a file system 19

Initializing the Data Management application . . . 20

Chapter 4. Specifications of
enhancements for IBM Spectrum Scale
Data Management API for GPFS 21
Enhancements to data structures 21
Usage restrictions on DMAPI functions 22
Definitions for GPFS-specific DMAPI functions . . 24

dm_handle_to_snap 25
dm_make_xhandle 26
dm_remove_dmattr_nosync 28
dm_set_dmattr_nosync 30
dm_set_eventlist_nosync 32
dm_set_region_nosync. 34
dm_sync_dmattr_by_handle 36

Semantic changes to DMAPI functions 37
GPFS-specific DMAPI events 38
Additional error codes returned by DMAPI
functions 39

Chapter 5. Failure and recovery of IBM
Spectrum Scale Data Management API
for GPFS 41
Single-node failure 41
Session failure and recovery 42
Event recovery 43
Loss of access rights 43
DODeferred deletions 44
DM application failure. 44

Accessibility features for IBM
Spectrum Scale 45
Accessibility features 45
Keyboard navigation 45
IBM and accessibility 45

Notices 47
Trademarks 49
Terms and conditions for product documentation. . 49
IBM Online Privacy Statement 50

Glossary 51

Index 57

© Copyright IBM Corp. 2014, 2016 iii

iv IBM Spectrum Scale 4.2: Data Management API Guide

Figures

1. Flow of a typical synchronous event in a
multiple-node GPFS environment 11

© Copyright IBM Corp. 2014, 2016 v

vi IBM Spectrum Scale 4.2: Data Management API Guide

Tables

1. IBM Spectrum Scale library information units ix
2. Conventions xii
3. DMAPI configuration attributes 6

4. Specific DMAPI functions and associated error
codes. 40

© Copyright IBM Corp. 2014, 2016 vii

viii IBM Spectrum Scale 4.2: Data Management API Guide

About this information

This edition applies to IBM Spectrum Scale™ version 4.2 for AIX®, Linux, and Windows.

IBM Spectrum Scale is a file management infrastructure, based on IBM® General Parallel File System
(GPFS™) technology, that provides unmatched performance and reliability with scalable access to critical
file data.

To find out which version of IBM Spectrum Scale is running on a particular AIX node, enter:
lslpp -l gpfs*

To find out which version of IBM Spectrum Scale is running on a particular Linux node, enter:
rpm -qa | grep gpfs

To find out which version of IBM Spectrum Scale is running on a particular Windows node, open the
Programs and Features control panel. The IBM Spectrum Scale installed program name includes the
version number.

Which IBM Spectrum Scale information unit provides the information you need?

The IBM Spectrum Scale library consists of the information units listed in Table 1.

To use these information units effectively, you must be familiar with IBM Spectrum Scale and the AIX,
Linux, or Windows operating system, or all of them, depending on which operating systems are in use at
your installation. Where necessary, these information units provide some background information relating
to AIX, Linux, or Windows; however, more commonly they refer to the appropriate operating system
documentation.

Note: Throughout this documentation, the term “Linux” refers to all supported distributions of Linux,
unless otherwise specified.

Table 1. IBM Spectrum Scale library information units

Information unit Type of information Intended users

IBM Spectrum Scale:
Administration and Programming
Reference

This information unit explains how to
do the following:

v Use the commands, programming
interfaces, and user exits unique to
GPFS

v Manage clusters, file systems, disks,
and quotas

v Export a GPFS file system using the
Network File System (NFS) protocol

System administrators or programmers
of GPFS systems

© Copyright IBM Corp. 2014, 2016 ix

Table 1. IBM Spectrum Scale library information units (continued)

Information unit Type of information Intended users

IBM Spectrum Scale: Advanced
Administration Guide

This information unit explains how to
use the following advanced features of
GPFS:

v Accessing GPFS file systems from
other GPFS clusters

v Policy-based data management for
GPFS

v Creating and maintaining snapshots
of GPFS file systems

v Establishing disaster recovery for
your GPFS cluster

v Monitoring GPFS I/O performance
with the mmpmon command

v Miscellaneous advanced
administration topics

System administrators or programmers
seeking to understand and use the
advanced features of GPFS

IBM Spectrum Scale: Concepts,
Planning, and Installation Guide

This information unit provides
information about the following topics:

v Introducing GPFS

v GPFS architecture

v Planning concepts for GPFS

v Installing GPFS

v Migration, coexistence and
compatibility

v Applying maintenance

v Configuration and tuning

v Uninstalling GPFS

System administrators, analysts,
installers, planners, and programmers of
GPFS clusters who are very experienced
with the operating systems on which
each GPFS cluster is based

x IBM Spectrum Scale 4.2: Data Management API Guide

Table 1. IBM Spectrum Scale library information units (continued)

Information unit Type of information Intended users

IBM Spectrum Scale: Data
Management API Guide

This information unit describes the Data
Management Application Programming
Interface (DMAPI) for GPFS.

This implementation is based on The
Open Group's System Management:
Data Storage Management (XDSM) API
Common Applications Environment
(CAE) Specification C429, The Open
Group, ISBN 1-85912-190-X
specification. The implementation is
compliant with the standard. Some
optional features are not implemented.

The XDSM DMAPI model is intended
mainly for a single-node environment.
Some of the key concepts, such as
sessions, event delivery, and recovery,
required enhancements for a
multiple-node environment such as
GPFS.

Use this information if you intend to
write application programs to do the
following:

v Monitor events associated with a
GPFS file system or with an
individual file

v Manage and maintain GPFS file
system data

Application programmers who are
experienced with GPFS systems and
familiar with the terminology and
concepts in the XDSM standard

IBM Spectrum Scale: Problem
Determination Guide

This information unit contains
explanations of GPFS error messages
and explains how to handle problems
you may encounter with GPFS.

System administrators of GPFS systems
who are experienced with the
subsystems used to manage disks and
who are familiar with the concepts
presented in the IBM Spectrum Scale:
Concepts, Planning, and Installation Guide

Prerequisite and related information
For updates to this information, see IBM Spectrum Scale in IBM Knowledge Center (www.ibm.com/
support/knowledgecenter/STXKQY/ibmspectrumscale_welcome.html).

For the latest support information, see the IBM Spectrum Scale FAQ in IBM Knowledge Center
(www.ibm.com/support/knowledgecenter/STXKQY/gpfsclustersfaq.html).

Conventions used in this information
Table 2 on page xii describes the typographic conventions used in this information. UNIX file name
conventions are used throughout this information.

Note: Users of IBM Spectrum Scale for Windows must be aware that on Windows, UNIX-style file
names need to be converted appropriately. For example, the GPFS cluster configuration data is stored in
the /var/mmfs/gen/mmsdrfs file. On Windows, the UNIX namespace starts under the %SystemDrive%\
cygwin64 directory, so the GPFS cluster configuration data is stored in the C:\cygwin64\var\mmfs\gen\
mmsdrfs file.

About this information xi

http://www.ibm.com/support/knowledgecenter/STXKQY/ibmspectrumscale_welcome.html
http://www.ibm.com/support/knowledgecenter/STXKQY/ibmspectrumscale_welcome.html
http://www.ibm.com/support/knowledgecenter/STXKQY/gpfsclustersfaq.html
http://www.ibm.com/support/knowledgecenter/STXKQY/gpfsclustersfaq.html

Table 2. Conventions

Convention Usage

bold Bold words or characters represent system elements that you must use literally, such as
commands, flags, values, and selected menu options.

Depending on the context, bold typeface sometimes represents path names, directories, or file
names.

bold underlined bold underlined keywords are defaults. These take effect if you do not specify a different
keyword.

constant width Examples and information that the system displays appear in constant-width typeface.

Depending on the context, constant-width typeface sometimes represents path names,
directories, or file names.

italic Italic words or characters represent variable values that you must supply.

Italics are also used for information unit titles, for the first use of a glossary term, and for
general emphasis in text.

<key> Angle brackets (less-than and greater-than) enclose the name of a key on the keyboard. For
example, <Enter> refers to the key on your terminal or workstation that is labeled with the
word Enter.

\ In command examples, a backslash indicates that the command or coding example continues
on the next line. For example:

mkcondition -r IBM.FileSystem -e "PercentTotUsed > 90" \
-E "PercentTotUsed < 85" -m p "FileSystem space used"

{item} Braces enclose a list from which you must choose an item in format and syntax descriptions.

[item] Brackets enclose optional items in format and syntax descriptions.

<Ctrl-x> The notation <Ctrl-x> indicates a control character sequence. For example, <Ctrl-c> means
that you hold down the control key while pressing <c>.

item... Ellipses indicate that you can repeat the preceding item one or more times.

| In synopsis statements, vertical lines separate a list of choices. In other words, a vertical line
means Or.

In the left margin of the document, vertical lines indicate technical changes to the
information.

How to send your comments
Your feedback is important in helping us to produce accurate, high-quality information. If you have any
comments about this information or any other IBM Spectrum Scale documentation, send your comments
to the following e-mail address:

mhvrcfs@us.ibm.com

Include the publication title and order number, and, if applicable, the specific location of the information
about which you have comments (for example, a page number or a table number).

To contact the IBM Spectrum Scale development organization, send your comments to the following
e-mail address:

gpfs@us.ibm.com

xii IBM Spectrum Scale 4.2: Data Management API Guide

Summary of changes

This topic summarizes changes to the IBM Spectrum Scale licensed program and the IBM Spectrum Scale
library. Within each information unit in the library, a vertical line (|) to the left of text and illustrations
indicates technical changes or additions made to the previous edition of the information.

Summary of changes
for IBM Spectrum Scale version 4 release 2
as updated, November 2015

Changes to this release of the IBM Spectrum Scale licensed program and the IBM Spectrum Scale library
include the following:

Cluster Configuration Repository (CCR): Backup and restore
You can backup and restore a cluster that has Cluster Configuration Repository (CCR) enabled. In
the mmsdrbackup user exit, the type of backup that is created depends on the configuration of
the cluster. If the Cluster Configuration Repository (CCR) is enabled, then a CCR backup is
created. Otherwise, a mmsdrfs backup is created. In the mmsdrrestore command, if the
configuration file is a Cluster Configuration Repository (CCR) backup file, then you must specify
the -a option. All the nodes in the cluster are restored.

Changes in IBM Spectrum Scale for object storage

Object capabilities
Object capabilities describe the object protocol features that are configured in the IBM
Spectrum Scale cluster such as unified file and object access, multi-region object
deployment, and S3 API emulation. For more information, see the following topics:
v Object capabilities in IBM Spectrum Scale: Concepts, Planning, and Installation Guide

v Managing object capabilities in IBM Spectrum Scale: Administration and Programming
Reference

Storage policies for object storage
Storage policies enable segmenting of the object storage within a single cluster for various
use cases. Currently, OpenStack Swift supports storage polices that allow you to define
the replication settings and location of objects in a cluster. IBM Spectrum Scale enhances
storage policies to add compression and unified file and object access functions for object
storage. For more information, see the following topics:
v Storage policies for object storage in IBM Spectrum Scale: Concepts, Planning, and Installation

Guide

v Mapping of storage policies to filesets in IBM Spectrum Scale: Administration and
Programming Reference

v Administering storage policies for object storage in IBM Spectrum Scale: Administration and
Programming Reference

Multi-region object deployment
The main purpose of the object protocol is to enable the upload and download of object
data. When clients have a fast connection to the cluster, the network delay is minimal.
However, when client access to object data is over a WAN or a high-latency network, the
network can introduce an unacceptable delay and affect quality-of-service metrics. To
improve that response time, you can create a replica of the data in a cluster closer to the
clients using the active-active multi-region replication support in OpenStack Swift.
Multi-region can also be used to distribute the object load over several clusters to reduce
contention in the file system. For more information, see the following topics:

© Copyright IBM Corp. 2014, 2016 xiii

v Overview of multi-region object deployment in IBM Spectrum Scale: Concepts, Planning, and
Installation Guide

v Planning for multi-region object deployment in IBM Spectrum Scale: Concepts, Planning, and
Installation Guide

v Enabling multi-region object deployment initially in IBM Spectrum Scale: Concepts, Planning,
and Installation Guide

v Adding a region in a multi-region object deployment in IBM Spectrum Scale: Administration
and Programming Reference

v Administering a multi-region object deployment environment in IBM Spectrum Scale:
Administration and Programming Reference

Unified file and object access
Unified file and object access allows users to access the same data as an object and as a
file. Data can be stored and retrieved through IBM Spectrum Scale for object storage or as
files from POSIX, NFS, and SMB interfaces. For more information, see the following
topics:
v Unified file and object access overview in IBM Spectrum Scale: Concepts, Planning, and

Installation Guide

v Planning for unified file and object access in IBM Spectrum Scale: Concepts, Planning, and
Installation Guide

v Installing and using unified file and object access in IBM Spectrum Scale: Concepts, Planning,
and Installation Guide

v Unified file and object access in IBM Spectrum Scale in IBM Spectrum Scale: Administration
and Programming Reference

S3 access control lists (ACLs) support
IBM Spectrum Scale for object storage supports S3 access control lists (ACLs) on buckets
and objects. For more information, see Managing OpenStack access control lists using S3 API
emulation in IBM Spectrum Scale: Administration and Programming Reference.

Changes in IBM Spectrum Scale for Linux on z Systems™

v Compression support
v AFM-based Async Disaster Recovery (AFM DR) support
v IBM Spectrum Protect™ Backup-Archive and Space Management client support
v Support for all editions:

– Express®

– Standard
– Advanced (without encryption)

For more information about current requirements and limitations of IBM Spectrum Scale for
Linux on z Systems, see Q2.25 of IBM Spectrum Scale FAQ.

Change in AFM-based Async Disaster Recovery (AFM DR)

v Support for IBM Spectrum Scale for Linux on z Systems

File compression
With file compression, you can reclaim some of the storage space occupied by infrequently
accessed files. Run the mmchattr command or the mmapplypolicy command to identify and
compress a few files or many files. Run file compression synchronously or defer it. If you defer it,
you can run the mmrestripefile or mmrestripefs to complete the compression. You can
decompress files with the same commands used to compress files. When a compressed file is read
it is decompressed on the fly and remains compressed on disk. When a compressed file is
overwritten, the parts of the file that overlap with the changed data are decompressed on disk
synchronously in the granularity of ten data blocks. File compression in this release is designed to

xiv IBM Spectrum Scale 4.2: Data Management API Guide

be used only for compressing cold data or write-once objects and files. Compressing other types
of data can result in performance degradation. File compression uses the zlib data compression
library and favors saving space over speed.

GUI servers
The IBM Spectrum Scale system provides a GUI that can be used for managing and monitoring
the system. Any server that provides this GUI service is referred to as a GUI server. If you need
GUI service in the system, designate at least two nodes as GUI servers in the cluster. A maximum
of three nodes can be designated as GUI servers. For more information on installing IBM
Spectrum Scale using the GUI, see IBM Spectrum Scale: Concepts, Planning, and Installation Guide.

IBM Spectrum Scale management GUI
The management GUI helps to manage and monitor the IBM Spectrum Scale system. You can
perform the following tasks through management GUI:
v Monitoring the performance of the system based on various aspects
v Monitoring system health
v Managing file systems
v Creating filesets and snapshots
v Managing Objects and NFS and SMB data exports
v Creating administrative users and defining roles for the users
v Creating object users and defining roles for them
v Defining default, user, group, and fileset quotas
v Monitoring the capacity details at various levels such as file system, pools, filesets, users, and

user groups

Hadoop Support for IBM Spectrum Scale
IBM Spectrum Scale has been extended to work seamlessly in the Hadoop ecosystem and is
available through a feature called File Placement Optimizer (FPO). Storing your Hadoop data
using FPO allows you to gain advanced functions and the high I/O performance required for
many big data operations. FPO provides Hadoop compatibility extensions to replace HDFS in a
Hadoop ecosystem, with no changes required to Hadoop applications.

You can deploy a IBM Spectrum Scale using FPO as a file system platform for big data analytics.
The topics in this guide covers a variety of Hadoop deployment architectures, including IBM
BigInsights®, Platform Symphony®, or with a Hadoop distribution from another vendor to work
with IBM Spectrum Scale.

IBM Spectrum Scale offers two kinds of interfaces for Hadoop applications to access File System
data. One is IBM Spectrum Scale connector, which aligns with Hadoop Compatible File System
architecture and APIs. The other is HDFS protocol, which provides a HDFS compatible interfaces.

For more information, see the following sections in the IBM Spectrum Scale: Advanced
Administration Guide:
v Hadoop support for IBM Spectrum Scale

v Configuring FPO

v Hadoop connector

v HDFS protocol

IBM Spectrum Scale installation GUI
You can use the installation GUI to install the IBM Spectrum Scale system. For more information
on how to launch the GUI installer, see the Installing IBM Spectrum Scale using the graphical user
interface (GUI) section in IBM Spectrum Scale: Concepts, Planning, and Installation Guide.

Performance Monitoring Tool using the Installation Kit
The usage statement and optional arguments have changed during the installation of the toolkit.
The new usage statement with options is as follows:
spectrumscale config perfmon [-h] [-l] [-r {on,off}]

Summary of changes xv

For more information, see IBM Spectrum Scale: Concepts, Planning, and Installation Guide.

Protocols cluster disaster recovery (DR)
You can use the mmcesdr command to perform DR setup, failover, failback, backup, and restore
actions. Protocols cluster DR uses the capabilities of Active File Management based Async
Disaster Recovery (AFM DR) to provide a solution that allows an IBM Spectrum Scale cluster to
fail over to another cluster and fail back, and backup and restore the protocol configuration
information in cases where a secondary cluster is not available. For more information, see
Protocols cluster disaster recovery in IBM Spectrum Scale: Advanced Administration Guide.

Quality of Service for I/O operations (QoS)
You can use the QoS capability to prevent I/O-intensive, long-running GPFS commands, called
maintenance commands, from dominating file system performance and significantly delaying
normal tasks that also compete for I/O resources. Determine the maximum capacity of your file
system in I/O operations per second (IOPS) with the new mmlsqos command. With the new
mmchqos command, assign a smaller share of IOPS to the QoS maintenance class, which
includes all the maintenance commands. Maintenance command instances that are running at the
same time compete for the IOPS allocated to the maintenance class, and are not allowed to
exceed that limit.

Security mode for new clusters
Starting with IBM Spectrum Scale V4.2, the default security mode for new clusters is
AUTHONLY. The mmcrcluster command sets the security mode to AUTHONLY when it creates
the cluster and automatically generates a public/private key pair for authenticating the cluster. In
the AUTHONLY security mode, the sending and receiving nodes authenticate each other with a
TLS handshake and then close the TLS connection. Communication continues in the clear. The
nodes do not encrypt transmitted data and do not check data integrity.

In IBM Spectrum Scale V4.1 or earlier, the default security mode is EMPTY. If you update a
cluster from IBM Spectrum Scale V4.1 to V4.2 or later by running mmchconfig release=LATEST, the
command checks the security mode. If the mode is EMPTY, the command issues a warning
message but does not change the security mode of the cluster.

Snapshots
You can display information about a global snapshot without displaying information about fileset
snapshots with the same name. You can display information about a fileset snapshot without
displaying information about other snapshots that have the same name but are snapshots of other
filesets.

spectrumscale Options
The spectrumscale command options for installing GPFS and deploying protocols have changed
to remove config enable and to add config perf. For more information, see IBM Spectrum Scale:
Concepts, Planning, and Installation Guide.

New options have been added to spectrumscale setup and spectrumscale deploy to disable
prompting for the encryption/decryption secret. Note that if spectrumscale setup --storesecret is
used, passwords will not be secure. New properties have been added to spectrumscale cofig
object for setting password data instead of doing so through enable object. For more
information, see IBM Spectrum Scale: Administration and Programming Reference.

The spectrumscale options for managing share ACLs have been added. For more information, see
IBM Spectrum Scale: Administration and Programming Reference.

ssh and scp wrapper scripts
Starting with IBM Spectrum Scale V4.2, a cluster can be configured to use ssh and scp wrappers.
The wrappers allow GPFS to run on clusters where remote root login through ssh is disabled. For
more information, see the help topic "Running IBM Spectrum Scale without remote root login" in
the IBM Spectrum Scale: Administration and Programming Reference.

Documented commands, structures, and subroutines
The following lists the modifications to the documented commands, structures, and subroutines:

xvi IBM Spectrum Scale 4.2: Data Management API Guide

New commands
The following commands are new:
v mmcallhome

v mmcesdr

v mmchqos

v mmlsqos

New structures
There are no new structures.

New subroutines
There are no new subroutines.

Changed commands
The following commands were changed:
v mmadddisk

v mmaddnode

v mmapplypolicy

v mmauth

v mmbackup

v mmces

v mmchattr

v mmchcluster

v mmchconfig

v mmchdisk

v mmcheckquota

v mmchnode

v mmcrcluster

v mmdefragfs

v mmdeldisk

v mmdelfileset

v mmdelsnapshot

v mmdf

v mmfileid

v mmfsck

v mmlsattr

v mmlscluster

v mmlsconfig

v mmlssnapshot

v mmnfs

v mmobj

v mmperfmon

v mmprotocoltrace

v mmremotefs

v mmrestripefile

v mmrestripefs

v mmrpldisk

v mmsdrbackup

Summary of changes xvii

v mmsdrrestore

v mmsmb

v mmuserauth

v spectrumscale

Changed structures
There are no changed structures.

Changed subroutines
There are no changed subroutines.

Deleted commands
There are no deleted commands.

Deleted structures
There are no deleted structures.

Deleted subroutines
There are no deleted subroutines.

Messages
The following lists the new, changed, and deleted messages:

New messages
6027-2354, 6027-2355, 6027-2356, 6027-2357, 6027-2358, 6027-2359, 6027-2360, 6027-2361,
6027-2362, 6027-3913, 6027-3914, 6027-3107, 6027-4016, 6027-3317, 6027-3318, 6027-3319,
6027-3320, 6027-3405, 6027-3406, 6027-3582, 6027-3583, 6027-3584, 6027-3585, 6027-3586,
6027-3587, 6027-3588, 6027-3589, 6027-3590, 6027-3591, 6027-3592, 6027-3593

Changed messages
6027-2299, 6027-887, 6027-888

Deleted messages
None.

xviii IBM Spectrum Scale 4.2: Data Management API Guide

Chapter 1. Overview of IBM Spectrum Scale Data Management
API for GPFS

The Data Management Application Programming Interface (DMAPI) for GPFS allows you to monitor
events associated with a GPFS file system or with an individual file. You can also manage and maintain
file system data.

See the IBM Spectrum Scale FAQ in IBM Knowledge Center (www.ibm.com/support/knowledgecenter/
STXKQY/gpfsclustersfaq.html) for the current limitations of DMAPI-managed file systems.

Note: Tivoli® Storage Manager for Space Management client (Hierarchical Storage Management) for GPFS
file systems is not available for Windows.

DMAPI for GPFS is compliant with the Open Group's XDSM Standard and includes these features:
v “GPFS-specific DMAPI events”
v “DMAPI functions” on page 2
v “DMAPI configuration attributes” on page 6
v “DMAPI restrictions for GPFS” on page 7

GPFS-specific DMAPI events
There are three GPFS-specific DMAPI events: events implemented in DMAPI for GPFS, optional events
that are not implemented in DMAPI for GPFS, and GPFS-specific attribute events that are not part of the
DMAPI standard.

For more information, see:
v “Events implemented in DMAPI for GPFS”
v “Optional events that are not implemented in DMAPI for GPFS” on page 2
v “GPFS-specific attribute events that are not part of the DMAPI standard” on page 2

Events implemented in DMAPI for GPFS

These are the events, as defined in the System Management: Data Storage Management (XDSM) API
Common Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X,
implemented in DMAPI for GPFS:

File system administration events

v mount
v preunmount
v unmount
v nospace

Namespace events

v create, postcreate
v remove, postremove
v rename, postrename
v symlink, postsymlink
v link, postlink

Data events

© Copyright IBM Corporation © IBM 2014, 2016 1

http://www.ibm.com/support/knowledgecenter/STXKQY/gpfsclustersfaq.html
http://www.ibm.com/support/knowledgecenter/STXKQY/gpfsclustersfaq.html

v read
v write
v truncate

Metadata events

v attribute
v destroy
v close

Pseudo event

v user event

GPFS guarantees that asynchronous events are delivered, except when the GPFS daemon fails. Events are
enqueued to the session before the corresponding file operation completes. For further information on
failures, see Chapter 5, “Failure and recovery of IBM Spectrum Scale Data Management API for GPFS,”
on page 41.

Optional events that are not implemented in DMAPI for GPFS

The following optional events, as defined in the System Management: Data Storage Management (XDSM)
API Common Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X,
are not implemented in DMAPI for GPFS:

File system administration event

v debut

Metadata event

v cancel

GPFS-specific attribute events that are not part of the DMAPI standard

GPFS generates the following attribute events for DMAPI that are specific to GPFS and not part of the
DMAPI standard:
v Pre-permission change
v Post-permission change

For additional information, refer to “GPFS-specific DMAPI events” on page 38.

DMAPI functions
All mandatory DMAPI functions and most optional functions that are defined in the System Management:
Data Storage Management (XDSM) API Common Applications Environment (CAE) Specification C429, The
Open Group, ISBN 1-85912-190-X, are implemented in DMAPI for GPFS.

For C declarations of all the functions implemented in DMAPI for GPFS, refer to the dmapi.h file located
in the /usr/lpp/mmfs/include directory.

For changes and restrictions on functions in DMAPI for GPFS, see “Usage restrictions on DMAPI
functions” on page 22, and “Semantic changes to DMAPI functions” on page 37.

Mandatory functions implemented in DMAPI for GPFS
These mandatory functions, as defined in the System Management: Data Storage Management (XDSM) API
Common Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X, are
implemented in DMAPI for GPFS.

2 IBM Spectrum Scale 4.2: Data Management API Guide

For C declarations of all the mandatory functions implemented in DMAPI for GPFS, refer to the dmapi.h
file located in the /usr/lpp/mmfs/include directory. However, for a quick description of the mandatory
functions and their applications, refer to the following set of functions:

dm_create_session
Create a new session.

dm_create_userevent
Create a pseudo-event message for a user.

dm_destroy_session
Destroy an existing session.

dm_fd_to_handle
Create a file handle using a file descriptor.

dm_find_eventmsg
Return the message for an event.

dm_get_allocinfo
Get a file's current allocation information.

dm_get_bulkattr
Get bulk attributes of a file system.

dm_get_config
Get specific data on DMAPI implementation.

dm_get_config_events
List all events supported by the DMAPI implementation.

dm_get_dirattrs
Return a directory's bulk attributes.

dm_get_eventlist
Return a list of an object's enabled events.

dm_get_events
Return the next available event messages.

dm_get_fileattr
Get file attributes.

dm_get_mountinfo
Return details from a mount event.

dm_get_region
Get a file's managed regions.

dm_getall_disp
For a given session, return the disposition of all file system's events.

dm_getall_sessions
Return all extant sessions.

dm_getall_tokens
Return a session's outstanding tokens.

dm_handle_cmp
Compare file handles.

dm_handle_free
Free a handle's storage.

dm_handle_hash
Hash the contents of a handle.

Chapter 1. Overview of IBM Spectrum Scale Data Management API for GPFS 3

dm_handle_is_valid
Check a handle's validity.

dm_handle_to_fshandle
Return the file system handle associated with an object handle.

dm_handle_to_path
Return a path name from a file system handle.

dm_init_attrloc
Initialize a bulk attribute location offset.

dm_init_service
Initialization processing that is implementation-specific.

dm_move_event
Move an event from one session to another.

dm_path_to_fshandle
Create a file system handle using a path name.

dm_path_to_handle
Create a file handle using a path name.

dm_query_right
Determine an object's access rights.

dm_query_session
Query a session.

dm_read_invis
Read a file without using DMAPI events.

dm_release_right
Release an object's access rights.

dm_request_right
Request an object's access rights.

dm_respond_event
Issue a response to an event.

dm_send_msg
Send a message to a session.

dm_set_disp
For a given session, set the disposition of all file system's events.

dm_set_eventlist
For a given object, set the list of events to be enabled.

dm_set_fileattr
Set a file's time stamps, ownership and mode.

dm_set_region
Set a file's managed regions.

dm_write_invis
Write to a file without using DMAPI events.

Optional functions implemented in DMAPI for GPFS
These optional functions, as defined in the System Management: Data Storage Management (XDSM) API
Common Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X, are
implemented in DMAPI for GPFS.

4 IBM Spectrum Scale 4.2: Data Management API Guide

For C declarations of these optional functions implemented in DMAPI for GPFS, refer to the dmapi.h file
located in the /usr/lpp/mmfs/include directory. However, for a quick description of the optional functions
and their applications, refer to the following set of functions:

dm_downgrade_right
Change an exclusive access right to a shared access right.

dm_get_bulkall
Return a file system's bulk data management attributes.

dm_get_dmattr
Return a data management attribute.

dm_getall_dmattr
Return all data management attributes of a file.

dm_handle_to_fsid
Get a file system ID using its handle.

dm_handle_to_igen
Get inode generation count using a handle.

dm_handle_to_ino
Get inode from a handle.

dm_make_handle
Create a DMAPI object handle.

dm_make_fshandle
Create a DMAPI file system handle.

dm_punch_hole
Make a hole in a file.

dm_probe_hole
Calculate the rounded result of the area where it is assumed that a hole is to be punched.

dm_remove_dmattr
Delete a data management attribute.

dm_set_dmattr
Define or update a data management attribute.

dm_set_return_on_destroy
Indicate a DM attribute to return with destroy events.

dm_sync_by_handle
Synchronize the in-memory state of a file with the physical medium.

dm_upgrade_right
Change a currently held access right to be exclusive.

Optional functions that are not implemented in DMAPI for GPFS
There are optional functions that are not implemented in DMAPI for GPFS.

The following optional functions, as defined in the System Management: Data Storage Management (XDSM)
API Common Applications Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X,
are not implemented in DMAPI for GPFS:

dm_clear_inherit
Reset the inherit-on-create status of an attribute.

dm_create_by_handle
Define a file system object using a DM handle.

Chapter 1. Overview of IBM Spectrum Scale Data Management API for GPFS 5

dm_getall_inherit
Return a file system's inheritable attributes.

dm_mkdir_by_handle
Define a directory object using a handle.

dm_obj_ref_hold
Put a hold on a file system object.

dm_obj_ref_query
Determine if there is a hold on a file system object.

dm_obj_ref_rele
Release the hold on a file system object.

dm_pending
Notify FS of slow DM application processing.

dm_set_inherit
Indicate that an attribute is inheritable.

dm_symlink_by_handle
Define a symbolic link using a DM handle.

GPFS-specific DMAPI functions
There are several GPFS-specific DMAPI functions that are not part of the DMAPI open standard.

The GPFS-specific functions are listed and described in “Definitions for GPFS-specific DMAPI functions”
on page 24.

DMAPI configuration attributes
The System Management: Data Storage Management (XDSM) API Common Applications Environment (CAE)
Specification C429, The Open Group, ISBN 1-85912-190-X defines a set of configuration attributes to be
exported by each DMAPI implementation. These attributes specify which optional features are supported
and give bounds on various resources.

The Data Management (DM) application can query the attribute values using the function
dm_get_config. It can also query which events are supported, using the function dm_get_config_events.

The functions dm_get_config and dm_get_config_events receive a file handle from input arguments hanp
and hlen. In GPFS, both functions ignore the handle, as the configuration is not dependent on the specific
file or file system. This enables the DM application to query the configuration during initialization, when
file handles may not yet be available.

Note: To guarantee that the most current values are being used, the DM application should always query
the configuration at runtime by using dm_get_config.

Table 3 shows the attribute values that are used in DMAPI for GPFS:

Table 3. DMAPI configuration attributes

Name Value

DM_CONFIG_BULKALL 1

DM_CONFIG_CREATE_BY_HANDLE 0

DM_CONFIG_DTIME_OVERLOAD 1

DM_CONFIG_LEGACY 1

DM_CONFIG_LOCK_UPGRADE 1

6 IBM Spectrum Scale 4.2: Data Management API Guide

Table 3. DMAPI configuration attributes (continued)

Name Value

DM_CONFIG_MAX_ATTR_ON_DESTROY 1022

DM_CONFIG_MAX_ATTRIBUTE_SIZE 1022

DM_CONFIG_MAX_HANDLE_SIZE 32

DM_CONFIG_MAX_MANAGED_REGIONS 32

DM_CONFIG_MAX_MESSAGE_DATA 4096

DM_CONFIG_OBJ_REF 0

DM_CONFIG_PENDING 0

DM_CONFIG_PERS_ATTRIBUTE 1

DM_CONFIG_PERS_EVENTS 1

DM_CONFIG_PERS_INHERIT_ATTRIBS 0

DM_CONFIG_PERS_MANAGED_REGIONS 1

DM_CONFIG_PUNCH_HOLE 1

DM_CONFIG_TOTAL_ATTRIBUTE_SPACE 7168

DM_CONFIG_WILL_RETRY 0

Attribute value DM_CONFIG_TOTAL_ATTRIBUTE_SPACE is per file. The entire space is available for
opaque attributes. Non-opaque attributes (event list and managed regions) use separate space.

DMAPI restrictions for GPFS
All DMAPI APIs must be called from nodes that are in the cluster where the file system is created.
DMAPI APIs may not be invoked from a remote cluster.

In addition to the DMAPI API restrictions, GPFS places the following restrictions on the use of file system
snapshots when you have DMAPI enabled:
v Snapshots cannot coexist with file systems using GPFS 3.1 or earlier.
v GPFS 3.2 and later permits snapshots with DMAPI-enabled file systems. However, GPFS places the

following restrictions on DMAPI access to the snapshot files:
– The DM server may read files in a snapshot using dm_read_invis.
– The DM server is not allowed to modify or delete the file using dm_write_invis or dm_punch_hole.
– The DM server is not allowed to establish a managed region on the file.
– Snapshot creation or deletion does not generate DMAPI namespace events.
– Snapshots of a file are not managed regardless of the state of the original file and they do not inherit

the DMAPI attributes of the original file.

Chapter 1. Overview of IBM Spectrum Scale Data Management API for GPFS 7

8 IBM Spectrum Scale 4.2: Data Management API Guide

Chapter 2. Concepts of IBM Spectrum Scale Data
Management API for GPFS

The XDSM standard is intended mainly for a single-node environment. Some of the key concepts in the
standard such as sessions, event delivery, mount and unmount, and failure and recovery, are not well
defined for a multiple-node environment such as GPFS.

For a list of restrictions and coexistence considerations, see “Usage restrictions on DMAPI functions” on
page 22.

All DMAPI APIs must be called from nodes that are in the cluster where the file system is created.

Key concepts of DMAPI for GPFS include these areas:
v “Sessions”
v “Events” on page 10
v “Mount and unmount” on page 11
v “Tokens and access rights” on page 12
v “Parallelism in Data Management applications” on page 13
v “Data Management attributes” on page 14
v “Support for NFS” on page 14
v “Quota” on page 14
v “Memory mapped files” on page 15

Sessions
In GPFS, a session is associated only with the node on which the session was created. This node is
known as the session node.

Events are generated at any node where the file system is mounted. The node on which a given event is
generated is called the source node of that event. The event is delivered to a session queue on the session
node.

There are restrictions as to which DMAPI functions can and cannot be called from a node other than the
session node. In general, functions that change the state of a session or event can only be called on the
session node. For example, the maximum number of DMAPI sessions that can be created on a node is
4000. See “Usage restrictions on DMAPI functions” on page 22 for details.

Session ids are unique over time within a GPFS cluster. When an existing session is assumed, using
dm_create_session, the new session id returned is the same as the old session id.

A session fails when the GPFS daemon fails on the session node. Unless this is a total failure of GPFS on
all nodes, the session is recoverable. The DM application is expected to assume the old session, possibly
on another node. This will trigger the reconstruction of the session queue. All pending synchronous
events from surviving nodes are resubmitted to the recovered session queue. Such events will have the
same token id as before the failure, except mount events. Asynchronous events, on the other hand, are
lost when the session fails. See Chapter 5, “Failure and recovery of IBM Spectrum Scale Data
Management API for GPFS,” on page 41 for information on failure and recovery.

© Copyright IBM Corp. 2014, 2016 9

Events
Events arrive on a session queue from any of the nodes in the GPFS cluster.

The source node of the event is identified by the ev_nodeid field in the header of each event message in
the structure dm_eventmsg. The identification is the GPFS cluster data node number, which is attribute
node_number in the mmsdrfs2 file for a PSSP node or mmsdrfs file for any other type of node.

Data Management events are generated only if the following two conditions are true:
1. The event is enabled.
2. It has a disposition.

A file operation will fail with the EIO error if there is no disposition for an event that is enabled and
would otherwise be generated.

A list of enabled events can be associated individually with a file and globally with an entire file system.
The XDSM standard leaves undefined the situation where the individual and the global event lists are in
conflict. In GPFS, such conflicts are resolved by always using the individual event list, if it exists.

Note: The XDSM standard does not provide the means to remove the individual event list of a file. Thus,
there is no way to enable or disable an event for an entire file system without explicitly changing each
conflicting individual event list.

In GPFS, event lists are persistent.

Event dispositions are specified per file system and are not persistent. They must be set explicitly after
the session is created.

Event generation mechanisms have limited capacity. In case resources are exceeded, new file operations
will wait indefinitely for free resources.

File operations wait indefinitely for a response from synchronous events. The dmapiEventTimeout
configuration attribute on the mmchconfig command, can be used to set a timeout on events that
originate from NFS file operations. This is necessary because NFS servers have a limited number of
threads that cannot be blocked for long periods of time. Refer to “GPFS configuration attributes for
DMAPI” on page 18 and “Support for NFS” on page 14.

The XDSM standard permits asynchronous events to be discarded at any time. In GPFS, asynchronous
events are guaranteed when the system runs normally, but may be lost during abnormal conditions, such
as failure of GPFS on the session node. Asynchronous events are delivered in a timely manner. That is, an
asynchronous event is enqueued to the session before the corresponding file operation completes.

Figure 1 on page 11, shows the flow of a typical synchronous event in a multiple-node GPFS
environment. The numbered arrows in the figure correspond to the following steps:
1. The user application on the source node performs a file operation on a GPFS file. The file operation

thread generates a synchronous event and blocks, waiting for a response.
2. GPFS on the source node sends the event to GPFS on the session node, according to the disposition

for that event. The event is enqueued to the session queue on the session node.
3. The Data Management application on the session node receives the event (using dm_get_events) and

handles it.
4. The Data Management application on the session node responds to the event (using

dm_respond_event).
5. GPFS on the session node sends the response to GPFS on the source node.

10 IBM Spectrum Scale 4.2: Data Management API Guide

6. GPFS on the source node passes the response to the file operation thread and unblocks it. The file
operation continues.

Reliable DMAPI destroy events

A metadata destroy event is generated when the operating system has destroyed an object. This type of
event is different from a remove event, which is a namespace event and is not related to the destruction
of an object. A reliable destroy event supports synchronous destroy events in the same way that other
synchronous events do. When a synchronous event is generated, a user process is suspended in the
kernel; it will be suspended until a DM application issues an explicit response to the event. The DM
application at the session that supports the reliable destroy event must be capable of handling the
synchronous destroy event. In other words, it must respond to the DM_EVENT_DESTROY event with
DM_RESPOND_EVENT. Otherwise, the event will wait forever at the session node for a response. Based
on this, it is recommended that the cluster not be made up of nodes that are running back-level code and
new code, because the destroy event is not reliable in a mixed environment.

Mount and unmount
The XDSM standard implicitly assumes that there is a single mount, pre-unmount and unmount event
per file system. In GPFS, a separate mount event is generated by each mount operation on each node.
Similarly, if the pre-unmount and unmount events are enabled, they are generated by each unmount
operation on each node. Thus, there may be multiple such events for the same file system.

To provide additional information to the DM application, the mode field in the respective event message
structures (me_mode for mount, and ne_mode for pre-unmount and unmount) has a new flag,
DM_LOCAL_MOUNT, which is not defined in the standard. When the flag is set, the mount or
unmount operation is local to the session node. In addition, the new field ev_nodeid in the header of the
event message can be used to identify the source node where the mount or unmount operation was
invoked. The identification is the GPFS cluster data node number, which is attribute node_number in the
mmsdrfs2 file for a PSSP node or mmsdrfs file for any other type of node.

The mount event is sent to multiple sessions that have a disposition for it. If there is no disposition for
the mount event, the mount operation fails with an EIO error.

There is no practical way to designate the last unmount, since there is no serialization of all mount and
unmount operations of each file system. Receiving an unmount event with the value 0 in the ne_retcode
field is no indication that there will be no further events from the file system.

Session
Node

GPFS

Data Management
Application

Source
Node

GPFS

User
Application

Node

GPFS
3

5

4

6

1

2

Figure 1. Flow of a typical synchronous event in a multiple-node GPFS environment

Chapter 2. Concepts of IBM Spectrum Scale Data Management API for GPFS 11

An unmount initiated internally by the GPFS daemon, due to file system forced unmount or daemon
shutdown, will not generate any events. Consequently, there need not be a match between the number of
mount events and the number of pre-unmount or unmount events for a given file system.

The dmapiMountTimeout attribute on the mmchconfig command enables blocking the mount operation
for a limited time until some session has set the mount disposition. This helps GPFS and the DM
application synchronize during initialization. See “GPFS configuration attributes for DMAPI” on page 18
and “Initializing the Data Management application” on page 20.

Mount events are enqueued on the session queue ahead of any other events. This gives mount events a
higher priority, which improves the response time for mount events when the queue is very busy.

If the DM_UNMOUNT_FORCE flag is set in the pre-unmount event message, the response of the DM
application to the pre-unmount event is ignored, and the forced unmount proceeds. If the
DM_LOCAL_MOUNT flag is also set, the forced unmount will result in the loss of all access rights of
the given file system that are associated with any local session.

If the unmount is not forced (the DM_UNMOUNT_FORCE flag is not set), and the
DM_LOCAL_MOUNT flag is set, the DM application is expected to release all access rights on files of
the given file system associated with any local session. If any access rights remain held after the
DM_RESP_CONTINUE response is given, the unmount will fail with EBUSY. This is because access
rights render the file system busy, similar to other locks on files.

The function dm_get_mountinfo can be called from any node, even if the file system is not mounted on
that node. The dm_mount_event structure returned by the dm_get_mountinfo function provides the
following enhanced information. The me_mode field contains two new flags, DM_LOCAL_MOUNT and
DM_REMOTE_MOUNT. At least one of the two flags is always set. When both flags are set
simultaneously, it is an indication that the file system is mounted on the local node, as well as one or
more other (remote) nodes. When only DM_LOCAL_MOUNT is set, it is an indication that the file
system is mounted on the local node but not on any other node. When only DM_REMOTE_MOUNT is
set, it is an indication that the file system is mounted on some remote node, but not on the local node.

In the latter case (only DM_REMOTE_MOUNT is set), the fields me_roothandle and me_handle2 (the
mount point handle) in the dm_mount_event structure are set to DM_INVALID_HANDLE. Also in this
case, the me_name1 field (the mount point path) is taken from the stanza in the file /etc/filesystems on
one of the remote nodes (with the use of GPFS cluster data, the stanzas on all nodes are identical).

The enhanced information provided by the dm_get_mountinfo function can be useful during the
processing of mount and pre-unmount events. For example, before responding to a mount event from a
remote (non-session) node, dm_get_mountinfo could be invoked to find out whether the file system is
already mounted locally at the session node, and if not, initiate a local mount. On receiving a
pre-unmount event from the local session node, it is possible to find out whether the file system is still
mounted elsewhere, and if so, fail the local unmount or delay the response until after all remote nodes
have unmounted the file system.

Note: The DM_REMOTE_MOUNT flag is redundant in the dm_mount_event structure obtained from
the mount event (as opposed to the dm_get_mountinfo function).

Tokens and access rights
A DMAPI token is an identifier of an outstanding event (a synchronous event that the DM application
has received and is currently handling). The token is unique over time in the cluster. The token becomes
invalid when the event receives a response.

12 IBM Spectrum Scale 4.2: Data Management API Guide

The main purpose of tokens is to convey access rights in DMAPI functions. Access rights are associated
with a specific event token. A function requiring access rights to some file may present an event token
that has the proper access rights.

DMAPI functions can also be invoked using DM_NO_TOKEN, in which case sufficient access protection
is provided for the duration of the operation. This is semantically equivalent to holding an access right,
but no access right on the file is actually acquired.

In GPFS, when an event is received, its token has no associated access rights.

DM access rights are implemented in GPFS using an internal lock on the file. Access rights can be
acquired, changed, queried, and released only at the session node. This is an implementation restriction
caused by the GPFS locking mechanisms.

In GPFS, it is not possible to set an access right on an entire file system from the file system handle.
Thus, DMAPI function calls that reference a file system, using a file system handle, are not allowed to
present a token and must specify DM_NO_TOKEN. For the same reason, functions that acquire or
change access rights are not allowed to present a file system handle.

Holding access rights renders the corresponding file system busy at the session node, preventing normal
(non-forced) unmount. This behavior is similar to that of other locks on files. When receiving a
pre-unmount event, the DM application is expected to release all access rights before responding.
Otherwise, the unmount operation will fail with an EBUSY error.

All access rights associated with an event token are released when the response is given. There is no
transfer of access rights from DMAPI to the file operation thread. The file operation will acquire any
necessary locks after receiving the response of the event.

Parallelism in Data Management applications
Given the multiple-node environment of GPFS, it is desirable to exploit parallelism in the Data
Management application as well.

This can be accomplished in several ways:
v On a given session node, multiple DM application threads can access the same file in parallel, using

the same session. There is no limit on the number of threads that can invoke DMAPI functions
simultaneously on each node.

v Multiple sessions, each with event dispositions for a different file system, can be created on separate
nodes. Thus, files in different file systems can be accessed independently and simultaneously, from
different session nodes.

v Dispositions for events of the same file system can be partitioned among multiple sessions, each on a
different node. This distributes the management of one file system among several session nodes.

v Although GPFS routes all events to a single session node, data movement may occur on multiple
nodes. The function calls dm_read_invis, dm_write_invis, dm_probe_hole, and dm_punch_hole are
honored from a root process on another node, provided it presents a session ID for an established
session on the session node.
A DM application may create a worker process, which exists on any node within the GPFS cluster. This
worker process can move data to or from GPFS using the dm_read_invis and dm_write_invis
functions. The worker processes must adhere to these guidelines:
1. They must run as root.
2. They must present a valid session ID that was obtained on the session node.
3. All writes to the same file which are done in parallel must be done in multiples of the file system

block size, to allow correct management of disk blocks on the writes.

Chapter 2. Concepts of IBM Spectrum Scale Data Management API for GPFS 13

4. No DMAPI calls other than dm_read_invis, dm_write_invis, dm_probe_hole, and dm_punch_hole
may be issued on nodes other than the session node. This means that any rights required on a file
must be obtained within the session on the session node, prior to the data movement.

5. There is no persistent state on the nodes hosting the worker process. It is the responsibility of the
DM application to recover any failure which results from the failure of GPFS or the data movement
process.

Data Management attributes
Data Management attributes can be associated with any individual file. There are opaque and
non-opaque attributes.

An opaque attribute has a unique name, and a byte string value which is not interpreted by the DMAPI
implementation. Non-opaque attributes, such as managed regions and event lists, are used internally by
the DMAPI implementation.

DM attributes are persistent. They are kept in a hidden file in the file system.

GPFS provides two quick access single-bit opaque DM attributes for each file, stored directly in the inode.
These attributes are accessible through regular DMAPI functions, by specifying the reserved attribute
names _GPFSQA1 and _GPFSQA2 (where _GPF is a reserved prefix). The attribute data must be a single
byte with contents 0 or 1.

Support for NFS
A DM application could be slow in handling events. NFS servers have a limited number of threads which
must not all be blocked simultaneously for extended periods of time. GPFS provides a mechanism to
guarantee progress of NFS file operations that generate data events without blocking the server threads
indefinitely.

The mechanism uses a timeout on synchronous events. Initially the NFS server thread is blocked on the
event. When the timeout expires, the thread unblocks and the file operation fails with an ENOTREADY
error code. The event itself continues to exist and will eventually be handled. When a response for the
event arrives at the source node it is saved. NFS is expected to periodically retry the operation. The retry
will either find the response which has arrived between retries, or cause the operation to fail again with
ENOTREADY. After repeated retries, the operation is eventually expected to succeed.

The interval is configurable using the dmapiEventTimeout configuration attribute on the mmchconfig
command. See “GPFS configuration attributes for DMAPI” on page 18. The default is no timeout.

The timeout mechanism is activated only for data events (read, write, truncate), and only when the file
operation comes from NFS.

Quota
GPFS supports user quota. When dm_punch_hole is invoked, the file owner's quota is adjusted by the
disk space that is freed. The quota is also adjusted when dm_write_invis is invoked and additional disk
space is consumed.

Since dm_write_invis runs with root credentials, it will never fail due to insufficient quota. However, it is
possible that the quota of the file owner will be exceeded as a result of the invisible write. In that case the
owner will not be able to perform further file operations that consume quota.

14 IBM Spectrum Scale 4.2: Data Management API Guide

Memory mapped files
In GPFS, a read event or a write event will be generated (if enabled) at the time the memory mapping of
a file is established.

No events will be generated during actual mapped access, regardless of the setting of the event list or the
managed regions. Access to the file with regular file operations, while the file is memory mapped, will
generate events, if such events are enabled.

To protect the integrity of memory mapped access, the DM application is not permitted to punch a hole
in a file while the file is memory mapped. If the DM application calls dm_punch_hole while the file is
memory mapped, the error code EBUSY will be returned.

Chapter 2. Concepts of IBM Spectrum Scale Data Management API for GPFS 15

16 IBM Spectrum Scale 4.2: Data Management API Guide

Chapter 3. Administration of IBM Spectrum Scale Data
Management API for GPFS

To set up the DMAPI for GPFS, install the DMAPI files that are included in the GPFS installation
package, and then choose the configuration attributes for DMAPI with the mmchconfig command. For
each file system that you want DMAPI access, enable DMAPI with the -z flag of the mmcrfs or mmchfs
command.

All DMAPI APIs must be called from nodes that are in the cluster where the file system is created.
DMAPI APIs may not be invoked from a remote cluster. The GPFS daemon and each DMAPI application
must be synchronized to prevent failures.

Administration of DMAPI for GPFS includes:
v “Required files for implementation of Data Management applications”
v “GPFS configuration attributes for DMAPI” on page 18
v “Enabling DMAPI for a file system” on page 19
v “Initializing the Data Management application” on page 20

Required files for implementation of Data Management applications
The installation image for GPFS contains the required files for implementation of Data Management
applications.

For more information about installation, see the IBM Spectrum Scale: Concepts, Planning, and Installation
Guide.

The required files are:

dmapi.h
The header file that contains the C declarations of the DMAPI functions.

This header file must be included in the source files of the DM application.

The file is installed in directory: /usr/lpp/mmfs/include.

dmapi_types.h
The header file that contains the C declarations of the data types for the DMAPI functions and
event messages.

The header file dmapi.h includes this header file.

The file is installed in directory: /usr/lpp/mmfs/include.

libdmapi.a
The library that contains the DMAPI functions.

The library libdmapi.a consists of a single shared object, which is built with auto-import of the
system calls that are listed in the export file dmapi.exp.

The file is installed in directory: /usr/lpp/mmfs/lib.

dmapi.exp
The export file that contains the DMAPI system call names.

The file dmapi.exp needs to be explicitly used only if the DM application is to be explicitly built
with static binding, using the binder options -bnso -bI:dmapi.exp.

© Copyright IBM Corporation © IBM 2014, 2016 17

The file is installed in directory: /usr/lpp/mmfs/lib.

dmapicalls, dmapicalls64
Module loaded during processing of the DMAPI functions.

The module is installed in directory: /usr/lpp/mmfs/bin.

Notes:

v On Linux nodes running DMAPI, the required files libdmapi.a, dmapi.exp, dmapicalls, and
dmapicalls64 are replaced by libdmapi.so.

v If you are compiling with a non-IBM compiler on AIX nodes, you must compile DMAPI applications
with -D_AIX.

GPFS configuration attributes for DMAPI
GPFS uses several attributes for DMAPI that define various timeout intervals. These attributes can be
changed with the mmchconfig command.

The DMAPI configuration attributes are:

dmapiDataEventRetry
Controls how GPFS handles the data event when it is enabled again right after this event is
handled by the DMAPI application. Valid values are:

-1 Specifies that GPFS will always regenerate the event as long as it is enabled. This value
should only be used when the DMAPI application recalls and migrates the same file in
parallel by many processes at the same time.

0 Specifies to never regenerate the event. This value should not be used if a file could be
migrated and recalled at the same time.

Positive Number
Specifies how many times the data event should be retried. The default is 2, which
should be enough to cover most DMAPI applications. Unless a special situation occurs,
you can increase this to a larger number or even set this to -1 to always regenerate the
events. Unless you perform careful testing, IBM recommends that you never change the
default setting.

dmapiEventTimeout
Controls the blocking of file operation threads of NFS, while in the kernel waiting for the
handling of a DMAPI synchronous event. The parameter value is the maximum time, in
milliseconds, the thread will block. When this time expires, the file operation returns
ENOTREADY, and the event continues asynchronously. The NFS server is expected to repeatedly
retry the operation, which eventually will find the response of the original event and continue.
This mechanism applies only to read, write, and truncate events, and only when such events
come from NFS server threads.

The timeout value is given in milliseconds. The value 0 indicates immediate timeout (fully
asynchronous event). A value greater than or equal to 86400000 (which is 24 hours) is considered
'infinity' (no timeout, fully synchronous event). The default value is 86400000. See also “Support
for NFS” on page 14.

dmapiFileHandleSize
Controls the size of file handles generated by GPFS. For clusters created with GPFS 3.2 or later,
the default DMAPI file handle size is 32 bytes. For clusters created prior to GPFS 3.2, the default
DMAPI file handle size is 16 bytes. After all of the nodes in the cluster are upgraded to the latest
GPFS release and you have also run the mmchconfig release=LATEST command, then you can
change the file handle size to 32 bytes by issuing the command: mmchconfig
dmapiFileHandleSize=32.

18 IBM Spectrum Scale 4.2: Data Management API Guide

Note: To change the DMAPI file handle size, GPFS must be stopped on all nodes in the cluster.

dmapiMountEvent
Controls the generation of the mount, preunmount, and unmount events. Valid values are:

all Specifies that mount, preunmount, and unmount events are generated on each node.
This is the default behavior.

LocalNode
Specifies that mount, preunmount, and unmount events are generated only if the node is
a session node.

SessionNode
Specifies that mount, preunmount, and unmount events are generated on each node and
are delivered to the session node, but the session node will respond with
DM_RESP_CONTINUE to the event node without delivering the event to the DMAPI
application, unless the event is originated from the SessionNode itself.

dmapiMountTimeout
Controls the blocking of mount operations, waiting for a disposition for the mount event to be
set. This timeout is activated at most once on each node, by the first mount of a file system which
has DMAPI enabled, and only if there has never before been a mount disposition. Any mount
operation on this node that starts while the timeout period is active will wait for the mount
disposition. The parameter value is the maximum time, in seconds, that the mount operation will
wait for a disposition. When this time expires and there still is no disposition for the mount
event, the mount operation fails, returning the EIO error.

The timeout value is given in full seconds. The value 0 indicates immediate timeout (immediate
failure of the mount operation). A value greater than or equal to 86400 (which is 24 hours) is
considered 'infinity' (no timeout, indefinite blocking until there is a disposition). The default
value is 60. See also “Mount and unmount” on page 11 and “Initializing the Data Management
application” on page 20.

dmapiSessionFailureTimeout
Controls the blocking of file operation threads, while in the kernel, waiting for the handling of a
DMAPI synchronous event that is enqueued on a session that has suffered a failure. The
parameter value is the maximum time, in seconds, the thread will wait for the recovery of the
failed session. When this time expires and the session has not yet recovered, the event is aborted
and the file operation fails, returning the EIO error.

The timeout value is given in full seconds. The value 0 indicates immediate timeout (immediate
failure of the file operation). A value greater than or equal to 86400 (which is 24 hours) is
considered 'infinity' (no timeout, indefinite blocking until the session recovers). The default value
is 0. See also Chapter 5, “Failure and recovery of IBM Spectrum Scale Data Management API for
GPFS,” on page 41 for details on session failure and recovery.

For more information about the mmchconfig command, see the IBM Spectrum Scale: Administration and
Programming Reference.

Enabling DMAPI for a file system
DMAPI must be enabled individually for each file system.

DMAPI can be enabled for a file system when the file system is created, using the -z yes option on the
mmcrfs command. The default is -z no. The setting can be changed when the file system is not mounted
anywhere, using the -z yes | no option on the mmchfs command. The setting is persistent.

The current setting can be queried using the -z option on the mmlsfs command.

Chapter 3. Administration of IBM Spectrum Scale Data Management API for GPFS 19

While DMAPI is disabled for a given file system, no events are generated by file operations of that file
system. Any DMAPI function calls referencing that file system fail with an EPERM error.

When mmchfs -z no is used to disable DMAPI, existing event lists, extended attributes, and managed
regions in the given file system remain defined, but will be ignored until DMAPI is re-enabled. The
command mmchfs -z no should be used with caution, since punched holes, if any, are no longer
protected by managed regions.

If the file system was created with a release of GPFS earlier than GPFS 1.3, the file system descriptor
must be upgraded before attempting to enable DMAPI. The upgrade is done using the -V option on the
mmchfs command.

For more information about GPFS commands, see the IBM Spectrum Scale: Administration and Programming
Reference.

Initializing the Data Management application
All DMAPI APIs must be called from nodes that are in the cluster where the file system is created.
DMAPI APIs may not be invoked from a remote cluster.

During initialization of GPFS, it is necessary to synchronize the GPFS daemon and the DM application to
prevent mount operations from failing. There are two mechanisms to accomplish this:
1. The shell script gpfsready invoked by the GPFS daemon during initialization.
2. A timeout interval, allowing mount operations to wait for a disposition to be set for the mount event.

During GPFS initialization, the daemon invokes the shell script gpfsready, located in directory
/var/mmfs/etc. This occurs as the file systems are starting to be mounted. The shell script can be modified
to start or restart the DM application. Upon return from this script, a session should have been created
and a disposition set for the mount event. Otherwise, mount operations may fail due to a lack of
disposition.

In a multiple-node environment such as GPFS, usually only a small subset of the nodes are session
nodes, having DM applications running locally. On a node that is not a session node, the gpfsready script
can be modified to synchronize between the local GPFS daemon and a remote DM application. This will
prevent mount from failing on any node.

A sample shell script gpfsready.sample is installed in directory /usr/lpp/mmfs/samples.

If no mount disposition has ever been set in the cluster, the first external mount of a DMAPI-enabled file
system on each node will activate a timeout interval on that node. Any mount operation on that node
that starts during the timeout interval will wait for the mount disposition until the timeout expires. The
timeout interval is configurable using the dmapiMountTimeout configuration attribute on the
mmchconfig command (the interval can even be made infinite). A message is displayed at the beginning
of the wait. If there is still no disposition for the mount event when the timeout expires, the mount
operation will fail with an EIO error code. See “GPFS configuration attributes for DMAPI” on page 18 for
more information on dmapiMountTimeout.

20 IBM Spectrum Scale 4.2: Data Management API Guide

Chapter 4. Specifications of enhancements for IBM Spectrum
Scale Data Management API for GPFS

DMAPI for GPFS provides numerous enhancements in data structures and functions.

These enhancements are provided mainly by the multiple-node environment. Some data structures have
additional fields. Many functions have usage restrictions, changes in semantics, and additional error
codes. The enhancements are in these areas:
v “Enhancements to data structures”
v “Usage restrictions on DMAPI functions” on page 22
v “Definitions for GPFS-specific DMAPI functions” on page 24
v “Semantic changes to DMAPI functions” on page 37
v “GPFS-specific DMAPI events” on page 38
v “Additional error codes returned by DMAPI functions” on page 39

Enhancements to data structures
This is a description of GPFS enhancements to data structures defined in the XDSM standard.

For complete C declarations of all the data structures that are used in DMAPI for GPFS, refer to the
dmapi_types.h file located in the /usr/lpp/mmfs/include directory.
v All file offsets and sizes in DMAPI data structures are 64 bits long.
v Names or path names that are passed in event messages are character strings, terminated by a null

character. The length of the name buffer, as specified in the dm_vardata_t structure, includes the null
character.

v The dm_region_t structure has a new 4-byte field, rg_opaque. The DMAPI implementation does not
interpret rg_opaque. The DM application can use this field to store additional information within the
managed region.

v The dt_change field in the dm_stat structure is not implemented in the inode. The value will change
each time it is returned by the dm_get_fileattr function.

v The dt_dtime field in the dm_stat structure is overloaded on the dt_ctime field.
v The dm_eventmsg structure has a 4 byte field, ev_nodeid that uniquely identifies the node that

generated the event. The id is the GPFS cluster data node number, which is attribute node_number in
the mmsdrfs2 file for a PSSP node or mmsdrfs file for any other type of node.

v The ne_mode field in the dm_namesp_event structure has an additional flag, DM_LOCAL_MOUNT.
For the events preunmount and unmount when this flag is set, the unmount operation is local to the
session node. See “Mount and unmount” on page 11. The me_mode field in the dm_mount_event
structure has two additional flags; DM_LOCAL_MOUNT, and DM_REMOTE_MOUNT. See “Mount
and unmount” on page 11.

v There are two 'quick access' single-bit opaque DM attributes for each file, stored directly in the inode.
See “Data Management attributes” on page 14.

v The data type dm_eventset_t is implemented as a bit map, containing one bit for each event that is
defined in DMAPI. The bit is set if, and only if, the event is present.
Variables of type dm_eventset_t should be manipulated only using special macros. The XDSM
standard provides a basic set of such macros. GPFS provides a number of additional macros. The
names of all such macros begin with the prefix DMEV_.
This is the list of additional macros that are provided in DMAPI for GPFS:

© Copyright IBM Corporation © IBM 2014, 2016 21

DMEV_ALL(eset)
Add all events to eset

DMEV_ISZERO(eset)
Check if eset is empty

DMEV_ISALL(eset)
Check if eset contains all events

DMEV_ADD(eset1, eset2)
Add to eset2 all events in eset1

DMEV_REM(eset1, eset2)
Remove from eset2 all events in eset1

DMEV_RES(eset1, eset2)
Restrict eset2 by eset1

DMEV_ISEQ(eset1, eset2)
Check if eset1 and eset2 are equal

DMEV_ISDISJ(eset1, eset2)
Check if eset1 and eset2 are disjoint

DMEV_ISSUB(eset2)
Check if eset1 is a subset of eset2

DMEV_NORM(eset)
Normalize the internal format of eset, clearing all unused bits

v DMAPI for GPFS provides a set of macros for comparison of token ids (value of type dm_token_t).

DM_TOKEN_EQ (x,y)
Check if x and y are the same

DM_TOKEN_NE (x,y)
Check if x and y are different

DM_TOKEN_LT (x,y)
Check if x is less than y

DM_TOKEN_GT (x,y)
Check if x is greater than y

DM_TOKEN_LE (x,y)
Check if x is less than or equal to y

DM_TOKEN_GE (x,y)
Check if x is greater than or equal to y

Usage restrictions on DMAPI functions
There are usage restrictions on the DMAPI for GPFS functions.
v The maximum number of DMAPI sessions that can be created on a node is 4000.
v Root credentials are a prerequisite for invoking any DMAPI function, otherwise the function fails with

an EPERM error code.
v DMAPI functions are unable to run if the GPFS kernel extension is not loaded, or if the runtime

module dmapicalls is not installed. An ENOSYS error code is returned in this case.
v Invoking a DMAPI function that is not implemented in GPFS results in returning the ENOSYS error

code.
v DMAPI functions will fail, with the ENOTREADY error code, if the local GPFS daemon is not running.
v DMAPI functions will fail, with the EPERM error code, if DMAPI is disabled for the file system that is

referenced by the file handle argument.

22 IBM Spectrum Scale 4.2: Data Management API Guide

v DMAPI functions cannot access GPFS reserved files, such as quota files, inode allocation maps, and so
forth. The EBADF error code is returned in this case.

v GPFS does not support access rights on entire file systems (as opposed to individual files). Hence,
DMAPI function calls that reference a file system (with a file system handle) cannot present a token,
and must use DM_NO_TOKEN. Functions affected by this restriction are:
– dm_set_eventlist

– dm_get_eventlist

– dm_set_disp

– dm_get_mountinfo

– dm_set_return_on_destroy

– dm_get_bulkattr

– dm_get_bulkall

If a token is presented, these functions fail with the EINVAL error code.
v DMAPI functions that acquire, change, query, or release access rights, must not present a file system

handle. These functions are:
– dm_request_right

– dm_upgrade_right

– dm_downgrade_right

– dm_release_right

– dm_query_right

If a file system handle is presented, these functions fail with the EINVAL error code.
v The function dm_request_right, when invoked without wait (the flags argument has a value of 0), will

almost always fail with the EAGAIN error. A GPFS implementation constraint prevents this function
from completing successfully without wait, even if it is known that the requested access right is
available. The DM_RR_WAIT flag must always be used. If the access right is available, there will be
no noticeable delay.

v DMAPI function calls that reference a specific token, either as input or as output, can be made only on
the session node. Otherwise, the call fails with the EINVAL error code.

v DMAPI function calls that reference an individual file by handle must be made on the session node.
The corresponding file system must be mounted on the session node. The call fails with EINVAL if it
is not on the session node, and with EBADF if the file system is not mounted.

v DMAPI function calls that reference a file system by handle (as opposed to an individual file) can be
made on any node, not just the session node. The relevant functions are:
– dm_set_eventlist

– dm_get_eventlist

– dm_set_disp

– dm_get_mountinfo

– dm_set_return_on_destroy

– dm_get_bulkattr

– dm_get_bulkall

For dm_get_bulkattr and dm_get_bulkall, the system file must be mounted on the node that is
making the call. For the other functions, the file system must be mounted on some node, but not
necessarily on the node that is making the call. As specified previously, all such function calls must use
DM_NO_TOKEN. The function fails with the EBADF error code if the file system is not mounted as
required.

v The function dm_punch_hole will fail with the EBUSY error code if the file to be punched is currently
memory-mapped.

Chapter 4. Specifications of enhancements for IBM Spectrum Scale Data Management API for GPFS 23

v The function dm_move_event can only be used when the source session and the target session are on
the same node. The function must be called on the session node. Otherwise, the function fails with the
EINVAL error code.

v The function dm_create_session, when providing an existing session id in the argument oldsid, can
only be called on the session node, except after session node failure. Otherwise, the call will return the
EINVAL error code.

v The function dm_destroy_session can only be called on the session node, otherwise the call will fail
with the EINVAL error code.

v The function dm_set_fileattr cannot change the file size. If the dm_at_size bit in the attribute mask is
set, the call fails with the EINVAL error code.

v DMAPI functions that reference an event with a token fail with the ESRCH error code, if the event is
not in an outstanding state. This is related to session recovery. See Chapter 5, “Failure and recovery of
IBM Spectrum Scale Data Management API for GPFS,” on page 41 for details on session failure and
recovery.

For additional information about:
v Semantic changes to the DMAPI for GPFS functions, see “Semantic changes to DMAPI functions” on

page 37.
v C declarations of all functions in DMAPI for GPFS, refer to the dmapi.h file located in the

/usr/lpp/mmfs/include directory.

Definitions for GPFS-specific DMAPI functions
The GPFS-specific DMAPI functions are not part of the DMAPI open standard.

You can use the following GPFS-specific DMAPI functions to work with file system snapshots:
v “dm_handle_to_snap” on page 25
v “dm_make_xhandle” on page 26

You can use the following GPFS-specific DMAPI functions to make asynchronous updates to attributes,
managed regions, and event lists on files:
v “dm_remove_dmattr_nosync” on page 28
v “dm_set_dmattr_nosync” on page 30
v “dm_set_eventlist_nosync” on page 32
v “dm_set_region_nosync” on page 34

You can use the following GPFS-specific DMAPI function to make the previously listed asynchronous
updates persistent by flushing them to disk:
v “dm_sync_dmattr_by_handle” on page 36

24 IBM Spectrum Scale 4.2: Data Management API Guide

dm_handle_to_snap
Extracts a snapshot ID from a handle.

Synopsis
int dm_handle_to_snap(

void *hanp, /* IN */
size_t hlen, /* IN */
dm_snap_t *isnapp /* OUT */

);

Description

Use the dm_handle_to_snap function to extract a snapshot ID from a handle. dm_handle_to_snap() is a
GPFS-specific DMAPI function. It is not part of the open standard.

Parameters

void *hanp (IN)
A pointer to an opaque DM handle previously returned by DMAPI.

size_t hlen (IN)
The length of the handle in bytes.

dm_snap_t *isnapp (OUT)
A pointer to the snapshot ID.

Return values

Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the following
values:

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[ENOMEM]
DMAPI could not obtain the required resources to complete the call.

[ENOSYS]
Function is not supported by the DM implementation.

[EPERM]
The caller does not hold the appropriate privilege.

See also

“dm_make_xhandle” on page 26

Chapter 4. Specifications of enhancements for IBM Spectrum Scale Data Management API for GPFS 25

dm_make_xhandle
Converts a file system ID, inode number, inode generation count, and snapshot ID into a handle.

Synopsis
int dm_make_xhandle(

dm_fsid_t *fsidp, /* IN */
dm_ino_t *inop, /* IN */
dm_igen_t *igenp, /* IN */
dm_snap_t *isnapp, /* IN */
void **hanpp, /* OUT */
size_t *hlenp /* OUT */

);

Description

Use the dm_make_xhandle() function to convert a file system ID, inode number, inode generation count,
and snapshot ID into a handle. dm_make_xhandle() is a GPFS-specific DMAPI function. It is not part of
the open standard.

Parameters

dm_fsid_t *fsidp (IN)
The file system ID.

dm_ino_t *inop (IN)
The inode number.

dm_igen_t *igenp (IN)
The inode generation count.

dm_snap_t *isnapp (IN)
The snapshot ID.

void **hanpp (OUT)
A DMAPI initialized pointer that identifies a region of memory containing an opaque DM handle.
The caller is responsible for freeing the allocated memory.

size_t *hlenp (OUT)
The length of the handle in bytes.

Return values

Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the following
values:

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[ENOMEM]
DMAPI could not obtain the required resources to complete the call.

[ENOSYS]
Function is not supported by the DM implementation.

[EPERM]
The caller does not hold the appropriate privilege.

26 IBM Spectrum Scale 4.2: Data Management API Guide

See also

“dm_handle_to_snap” on page 25

Chapter 4. Specifications of enhancements for IBM Spectrum Scale Data Management API for GPFS 27

dm_remove_dmattr_nosync
Asynchronously removes the specified attribute.

Synopsis
int dm_remove_dmattr_nosync(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
int setdtime,
dm_attrname_t *attrnamep

);

Description

Use the dm_remove_dmattr_nosync function to asynchronously remove the attribute specified by
attrname.

dm_remove_dmattr_nosync is a GPFS-specific DMAPI function; it is not part of the open standard. It has
the same purpose, parameters, and return values as the standard DMAPI dm_remove_dmattr function,
except that the update that it performs is not persistent until some other activity on that file (or on other
files in the file system) happens to flush it to disk. To be certain that your update is made persistent, use
one of the following functions:
v Standard DMAPI dm_sync_by_handle function, which flushes the file data and attributes
v GPFS-specific dm_sync_dmattr_by_handle function, which flushes only the attributes.

Parameters

dm_sessid_t sid (IN)
The identifier for the session of interest.

void *hanp (IN)
The handle for the file for which the attributes should be removed.

size_t hlen (IN)
The length of the handle in bytes.

dm_token_t *token (IN)
The token referencing the access right for the handle. The access right must be DM_RIGHT_EXCL,
or the token DM_NO_TOKEN may be used and the interface acquires the appropriate rights.

int setdtime (IN)
If setdtime is non-zero, updates the file's attribute time stamp.

dm_attrname_t *attrnamep (IN)
The attribute to be removed.

Return values

Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the following
values:

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

28 IBM Spectrum Scale 4.2: Data Management API Guide

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[EIO] I/O error resulted in failure of operation.

[ENOSYS]
The DMAPI implementation does not support this optional function.

[EPERM]
The caller does not hold the appropriate privilege.

[EROFS]
The operation is not allowed on a read-only file system.

See also

“dm_set_dmattr_nosync” on page 30, “dm_sync_dmattr_by_handle” on page 36

Chapter 4. Specifications of enhancements for IBM Spectrum Scale Data Management API for GPFS 29

dm_set_dmattr_nosync
Asynchronously creates or replaces the value of the named attribute with the specified data.

Synopsis
int dm_set_dmattr_nosync(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
dm_attrname_t *attrnamep,
int setdtime,
size_t buflen,
void *bufp

);

Description

Use the dm_set_dmattr_nosync function to asynchronously create or replace the value of the named
attribute with the specified data.

dm_set_dmattr_nosync is a GPFS-specific DMAPI function; it is not part of the open standard. It has the
same purpose, parameters, and return values as the standard DMAPI dm_set_dmattr function, except
that the update that it performs is not persistent until some other activity on that file (or on other files in
the file system) happens to flush it to disk. To be certain that your update is made persistent, use one of
the following functions:
v Standard DMAPI dm_sync_by_handle function, which flushes the file data and attributes
v GPFS-specific dm_sync_dmattr_by_handle function, which flushes only the attributes.

Parameters

dm_sessid_t sid (IN)
The identifier for the session of interest.

void *hanp (IN)
The handle for the file for which the attributes should be created or replaced.

size_t hlen (IN)
The length of the handle in bytes.

dm_token_t *token (IN)
The token referencing the access right for the handle. The access right must be DM_RIGHT_EXCL,
or the token DM_NO_TOKEN may be used and the interface acquires the appropriate rights.

dm_attrname_t *attrnamep (IN)
The attribute to be created or replaced.

int setdtime (IN)
If setdtime is non-zero, updates the file's attribute time stamp.

size_t buflen (IN)
The size of the buffer in bytes.

void *bufp (IN)
The buffer containing the attribute data.

Return values

Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the following
values:

30 IBM Spectrum Scale 4.2: Data Management API Guide

[E2BIG]
The attribute value exceeds one of the implementation defined storage limits.

[E2BIG]
buflen is larger than the implementation defined limit. The limit can be determined by calling the
dm_get_config() function.

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EIO] An attempt to write the new or updated attribute resulted in an I/O error.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[ENOMEM]
The DMAPI could not acquire the required resources to complete the call.

[ENOSPC]
An attempt to write the new or updated attribute resulted in an error due to no free space being
available on the device.

[ENOSYS]
The DMAPI implementation does not support this optional function.

[EPERM]
The caller does not hold the appropriate privilege.

[EROFS]
The operation is not allowed on a read-only file system.

See also

“dm_remove_dmattr_nosync” on page 28, “dm_sync_dmattr_by_handle” on page 36

Chapter 4. Specifications of enhancements for IBM Spectrum Scale Data Management API for GPFS 31

dm_set_eventlist_nosync
Asynchronously sets the list of events to be enabled for an object.

Synopsis
int dm_set_eventlist_nosync(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
dm_eventset_t *eventsetp,
u_int maxevent

);

Description

Use the dm_set_eventlist_nosync function to asynchronously set the list of events to be enabled for an
object.

dm_set_eventlist_nosync is a GPFS-specific DMAPI function; it is not part of the open standard. It has
the same purpose, parameters, and return values as the standard DMAPI dm_set_eventlist function,
except that the update that it performs is not persistent until some other activity on that file (or on other
files in the file system) happens to flush it to disk. To be certain that your update is made persistent, use
one of the following functions:
v Standard DMAPI dm_sync_by_handle function, which flushes the file data and attributes
v GPFS-specific dm_sync_dmattr_by_handle function, which flushes only the attributes.

Parameters

dm_sessid_t sid (IN)
The identifier for the session of interest.

void *hanp (IN)
The handle for the object. The handle can be either the system handle or a file handle.

size_t hlen (IN)
The length of the handle in bytes.

dm_token_t *token (IN)
The token referencing the access right for the handle. The access right must be DM_RIGHT_EXCL,
or the token DM_NO_TOKEN may be used and the interface acquires the appropriate rights.

dm_eventset_t *eventsetp (IN)
The list of events to be enabled for the object.

u_int maxevent (IN)
The number of events to be checked for dispositions in the event set. The events from 0 to maxevent-1
are examined.

Return values

Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the following
values:

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

[EBADF]
The file handle does not refer to an existing or accessible object.

32 IBM Spectrum Scale 4.2: Data Management API Guide

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The session is not valid.

[EINVAL]
Tried to set event on a global handle.

[ENOMEM]
The DMAPI could not acquire the required resources to complete the call.

[ENXIO]
The implementation of the DMAPI does not support enabling event delivery on the specified
handle.

[EPERM]
The caller does not hold the appropriate privilege.

[EROFS]
The operation is not allowed on a read-only file system.

See also

“dm_sync_dmattr_by_handle” on page 36

Chapter 4. Specifications of enhancements for IBM Spectrum Scale Data Management API for GPFS 33

dm_set_region_nosync
Asynchronously replaces the set of managed regions for a file.

Synopsis
int dm_set_region_nosync(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token,
u_int nelem,
dm_region_t *regbufp,
dm_boolean_t *exactflagp

);

Description

Use the dm_set_region_nosync function to asynchronously replace the set of managed regions for a file.

dm_set_region_nosync is a GPFS-specific DMAPI function; it is not part of the open standard. It has the
same purpose, parameters, and return values as the standard DMAPI dm_set_region function, except that
the update that it performs is not persistent until some other activity on that file (or on other files in the
file system) happens to flush it to disk. To be certain that your update is made persistent, use one of the
following functions:
v Standard DMAPI dm_sync_by_handle function, which flushes the file data and attributes
v GPFS-specific dm_sync_dmattr_by_handle function, which flushes only the attributes.

Parameters

dm_sessid_t sid (IN)
The identifier for the session of interest.

void *hanp (IN)
The handle for the regular file to be affected.

size_t hlen (IN)
The length of the handle in bytes.

dm_token_t *token (IN)
The token referencing the access right for the handle. The access right must be DM_RIGHT_EXCL,
or the token DM_NO_TOKEN may be used and the interface acquires the appropriate rights.

u_int nelem (IN)
The number of input regions in regbufp. If nelem is 0, then all existing managed regions are cleared.

dm_region_t *regbufp (IN)
A pointer to the structure defining the regions to be set. May be NULL if nelem is zero.

dm_boolean_t *exactflagp (OUT)
If DM_TRUE, the file system did not alter the requested managed region set.

Valid values for the rg_flags field of the region structure are created by OR'ing together one or more
of the following values:

DM_REGION_READ
Enable synchronous event for read operations that overlap this managed region.

DM_REGION_WRITE
Enable synchronous event for write operations that overlap this managed region.

DM_REGION_TRUNCATE
Enable synchronous event for truncate operations that overlap this managed region.

34 IBM Spectrum Scale 4.2: Data Management API Guide

DM_REGION_NOEVENT
Do not generate any events for this managed region.

Return values

Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the following
values:

[E2BIG]
The number of regions specified by nelem exceeded the implementation capacity.

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[EINVAL]
The file handle does not refer to a regular file.

[EINVAL]
The regions passed in are not valid because they overlap or some other problem.

[EINVAL]
The session is not valid.

[EIO] An I/O error resulted in failure of operation.

[ENOMEM]
The DMAPI could not acquire the required resources to complete the call.

[EPERM]
The caller does not hold the appropriate privilege.

[EROFS]
The operation is not allowed on a read-only file system.

See also

“dm_sync_dmattr_by_handle” on page 36

Chapter 4. Specifications of enhancements for IBM Spectrum Scale Data Management API for GPFS 35

dm_sync_dmattr_by_handle
Synchronizes one or more files' in-memory attributes with those on the physical medium.

Synopsis
int m_sync_dmattr_by_handle(

dm_sessid_t sid,
void *hanp,
size_t hlen,
dm_token_t token

);

Description

Use the dm_sync_dmattr_by_handle function to synchronize one or more files' in-memory attributes
with those on the physical medium.

dm_sync_dmattr_by_handle is a GPFS-specific DMAPI function; it is not part of the open standard. It
has the same purpose, parameters, and return values as the standard DMAPI dm_sync_by_handle
function, except that it flushes only the attributes, not the file data.

Like dm_sync_by_handle, dm_sync_dmattr_by_handle commits all previously unsynchronized updates
for that node, not just the updates for one file. Therefore, if you update a list of files and call
dm_sync_dmattr_by_handle on the last file, the attribute updates to all of the files in the list are made
persistent.

Parameters

dm_sessid_t sid (IN)
The identifier for the session of interest.

void *hanp (IN)
The handle for the file whose attributes are to be synchronized.

size_t hlen (IN)
The length of the handle in bytes.

dm_token_t *token (IN)
The token referencing the access right for the handle. The access right must be DM_RIGHT_EXCL,
or the token DM_NO_TOKEN may be used and the interface acquires the appropriate rights.

Return values

Zero is returned on success. On error, -1 is returned, and the global errno is set to one of the following
values:

[EACCES]
The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

[EBADF]
The file handle does not refer to an existing or accessible object.

[EFAULT]
The system detected an invalid address in attempting to use an argument.

[EINVAL]
The argument token is not a valid token.

[ENOMEM]
The DMAPI could not acquire the required resources to complete the call.

36 IBM Spectrum Scale 4.2: Data Management API Guide

[ENOSYS]
The DMAPI implementation does not support this optional function.

[EPERM]
The caller does not hold the appropriate privilege.

See also

“dm_remove_dmattr_nosync” on page 28, “dm_set_dmattr_nosync” on page 30,
“dm_set_eventlist_nosync” on page 32, and “dm_set_region_nosync” on page 34

Semantic changes to DMAPI functions
There are semantic changes to functions in DMAPI for GPFS. These changes are entailed mostly by the
multiple-node environment.

For a list of additional error codes that are used in DMAPI for GPFS, see “Additional error codes
returned by DMAPI functions” on page 39. For C declarations of all the DMAPI for GPFS functions, refer
to the dmapi.h file located in the /usr/lpp/mmfs/include directory.
v The following DMAPI functions can be invoked on any node, not just the session node, as long as the

session exists on some node in the GPFS cluster.
– dm_getall_disp

– dm_query_session

– dm_send_msg

v DMAPI functions that reference a file system, as opposed to an individual file, can be made on any
node, not just the session node. Being able to call certain functions on any node has advantages. The
DM application can establish event monitoring when receiving a mount event from any node. Also, a
distributed DM application can change event lists and dispositions of any file system from any node.
– dm_set_eventlist

– dm_get_eventlist

– dm_set_disp

– dm_get_mount_info

– dm_set_return_on_destroy

– dm_get_bulkattr

– dm_get_bulkall

v The following functions, that construct a handle from its components, do not check if the resulting
handle references a valid file. Validity is checked when the handle is presented in function calls that
actually reference the file.
– dm_make_handle

– dm_make_fshandle

– dm_make_xhandle

v The following data movement functions may be invoked on any node within the GPFS cluster,
provided they are run as root and present a session ID for an established session on the session node.
For guidelines on how to perform data movement from multiple nodes, see “Parallelism in Data
Management applications” on page 13.
– dm_read_invis

– dm_write_invis

– dm_probe_hole

– dm_punch_hole

Chapter 4. Specifications of enhancements for IBM Spectrum Scale Data Management API for GPFS 37

v The following functions that extract components of the handle, do not check whether the specified
handle references a valid file. Validity is checked when the handle is presented in function calls that
actually reference the file.
– dm_handle_to_fsid

– dm_handle_to_igen

– dm_handle_to_ino

– dm_handle_to_snap

v dm_handle_to_fshandle converts a file handle to a file system handle without checking the validity of
either handle.

v dm_handle_is_valid does not check if the handle references a valid file. It verifies only that the
internal format of the handle is correct.

v dm_init_attrloc ignores all of its arguments, except the output argument locp. In DMAPI for GPFS, the
location pointer is initialized to a constant. Validation of the session, token, and handle arguments is
done by the bulk access functions.

v When dm_query_session is called on a node other than the session node, it returns only the first eight
bytes of the session information string.

v dm_create_session can be used to move an existing session to another node, if the current session node
has failed. The call must be made on the new session node. See Chapter 5, “Failure and recovery of
IBM Spectrum Scale Data Management API for GPFS,” on page 41 for details on session node failure
and recovery.

v Assuming an existing session, using dm_create_session does not change the session id. If the argument
sessinfop is NULL, the session information string is not changed.

v The argument maxevent in the functions dm_set_disp and dm_set_eventlist is ignored. In GPFS the set
of events is implemented as a bitmap, containing a bit for each possible event.

v The value pointed to by the argument nelemp, on return from the functions dm_get_eventlist and
dm_get_config_events, is always DM_EVENT_MAX-1. The argument nelem in these functions is
ignored.

v The dt_nevents field in the dm_stat_t structure, which is returned by the dm_get_fileattr and
dm_get_bulkall functions, has a value of DM_EVENT_MAX-1 when the file has a file-system–wide
event enabled by calling the dm_set_eventlist function. The value will always be 3 when there is no
file-system–wide event enabled. A value of 3 indicates that there could be a managed region enabled
for the specific file, which might have enabled a maximum of three events: READ, WRITE, and
TRUNCATE.

v The functions dm_get_config and dm_get_config_events ignore the arguments hanp and hlen. This is
because the configuration is not dependent on the specific file or file system.

v The function dm_set_disp, when called with the global handle, ignores any events in the event set
being presented, except the mount event. When dm_set_disp is called with a file system handle, it
ignores the mount event.

v The function dm_handle_hash, when called with an individual file handle, returns the inode number
of the file. When dm_handle_hash is called with a file system handle, it returns the value 0.

v The function dm_get_mountinfo returns two additional flags in the me_mode field in the
dm_mount_event structure. The flags are DM_MOUNT_LOCAL and DM_MOUNT_REMOTE. See
“Mount and unmount” on page 11 for details.

GPFS-specific DMAPI events
The GPFS-specific events are not part of the DMAPI open standard. You can use these GPFS events to
filter out events that are not critical to file management and to prevent system overloads from trivial
information.

The DMAPI standard specifies that the system must generate ATTRIBUTE events each time the "changed
time" (ctime) attribute for a file changes. For systems that write files in parallel, like GPFS, this generates

38 IBM Spectrum Scale 4.2: Data Management API Guide

ATTRIBUTE events from every node writing to the file. Consequently, it is easy for ATTRIBUTE events to
overwhelm a data management server. However, the only ctime changes that are critical to GPFS are
changes to either the permissions or ACLs of a file. In most cases, GPFS can ignore other ctime changes.

To distinguish file permission and ACL changes from other ctime updates, the following DMAPI
metadata attribute events allow GPFS to filter ctime updates. Using these events, DM servers are able to
track file permission changes without overwhelming the system with irrelevant ATTRIBUTE events.
However, these events are not part of the CAE Specification C429 open standard and they were
implemented specifically for GPFS 3.2 systems. Systems using GPFS 3.1 (or earlier versions) cannot
enable or generate these events.

Metadata Events

DM_EVENT_PREPERMCHANGE
Pre-permission change event. Event is triggered before file permission change.

DM_EVENT_POSTPERMCHANGE
Post-permission change event. Event is triggered after file permission change.

Notes:

1. All nodes on your system must be running GPFS 3.2 or later. Mixed clusters and clusters with
previous versions of GPFS will experience unexpected results if you enable these events.

2. If you only want to track permission and ACL changes, turn off the DM_EVENT_ATTRIBUTE and
turn on both the DM_EVENT_PREPERMCHANGE and DM_EVENT_POSTPERMCHANGE events.

Additional error codes returned by DMAPI functions
DMAPI for GPFS uses additional error codes, not specified in the XDSM standard, for most DMAPI
functions.

For C declarations of all the DMAPI for GPFS functions, refer to the dmapi.h file located in the
/usr/lpp/mmfs/include directory.

For all DMAPI functions, these error codes are used:

ENOSYS
The GPFS kernel extension is not loaded, or the runtime module dmapicalls is not installed.

ENOSYS
An attempt has been made to invoke a DMAPI function that is not implemented in GPFS.

ENOTREADY
The local GPFS daemon is not running or is initializing.

ENOMEM
DMAPI could not acquire the required resources to complete the call. ENOMEM is defined in the
XDSM standard for some DMAPI functions, but not for all.

ESTALE
An error has occurred which does not fit any other error code specified for this function.

For DMAPI functions that provide a file handle as an input argument, these error codes are used:

EINVAL
The format of the file handle is not valid.

This error is returned without attempting to locate any object that is referenced by the handle.
The EINVAL error code is to be distinguished from the EBADF error code, which, as specified in
the XDSM standard, indicates that the object does not exist or is inaccessible. Thus, GPFS
provides a refinement, distinguishing between format and access errors related to handles.

Chapter 4. Specifications of enhancements for IBM Spectrum Scale Data Management API for GPFS 39

EPERM
DMAPI is disabled for the file system that is referenced by the file handle.

For DMAPI functions that provide a token as an input argument, these error codes are used:

ESRCH
The event referenced by the token is not in outstanding state.

This is to be distinguished from the EINVAL error code, which is returned when the token itself
is not valid. ESRCH is defined in the XDSM standard for some DMAPI functions, but not for all
relevant functions. In GPFS, the ESRCH error code occurs mostly after recovery from session
failure. See “Event recovery” on page 43 for details.

For these specific DMAPI functions, the error code listed is used:

Table 4. Specific DMAPI functions and associated error codes.

Name of function Error codes and descriptions

dm_downgrade_right()
dm_upgrade_right()

EINVAL - The session or token is not valid.

dm_get_region() EPERM - The caller does not hold the appropriate privilege.

dm_init_service() EFAULT - The system detected an invalid address in attempting to use an argument.

dm_move_event()
dm_respond_event()

EINVAL - The token is not valid.

dm_punch_hole() EBUSY - The file is currently memory mapped.

dm_probe_hole()
dm_punch_hole()

EINVAL - The argument len is too large, and will overflow if cast into offset_t.

EINVAL - The argument off is negative.

dm_write_invis() EINVAL - The argument flags is not valid.

dm_read_invis()
dm_write_invis()

EINVAL - The argument len is too large, and will overflow if placed into the
uio_resid field in the structure uio.

EINVAL - The argument off is negative.

dm_sync_by_handle() EROFS - The operation is not allowed on a read-only file system.

dm_find_eventmsg()
dm_get_bulkall()
dm_get_bulkattr()
dm_get_dirattrs()
dm_get_events()
dm_get_mountinfo()
dm_getall_disp()
dm_getall_dmattr()
dm_handle_to_path()

EINVAL - The argument buflen is too large; it must be smaller than INT_MAX.

dm_get_alloc_info()
dm_getall_sessions()
dm_getall_tokens()

EINVAL - The argument nelem is too large; DMAPI cannot acquire sufficient
resources.

40 IBM Spectrum Scale 4.2: Data Management API Guide

Chapter 5. Failure and recovery of IBM Spectrum Scale Data
Management API for GPFS

Failure and recovery of DMAPI applications in the multiple-node GPFS environment is different than in a
single-node environment.

The failure model in XDSM is intended for a single-node environment. In this model, there are two types
of failures:

DM application failure
The DM application has failed, but the file system works normally. Recovery entails restarting the
DM application, which then continues handling events. Unless the DM application recovers,
events may remain pending indefinitely.

Total system failure
The file system has failed. All non-persistent DMAPI resources are lost. The DM application itself
may or may not have failed. Sessions are not persistent, so recovery of events is not necessary.
The file system cleans its state when it is restarted. There is no involvement of the DM
application in such cleanup.

The simplistic XDSM failure model is inadequate for GPFS. In a multiple-node environment, GPFS can
fail on one node, but survive on other nodes. This type of failure is called single-node failure (or partial
system failure). GPFS is built to survive and recover from single-node failures, without meaningfully
affecting file access on surviving nodes.

Designers of Data Management applications for GPFS must comply with the enhanced DMAPI failure
model, in order to support recoverability of GPFS. These areas are addressed:
v “Single-node failure”
v “Session failure and recovery” on page 42
v “Event recovery” on page 43
v “Loss of access rights” on page 43
v “DODeferred deletions” on page 44
v “DM application failure” on page 44

Single-node failure
In DMAPI for GPFS, single-node failure means that DMAPI resources are lost on the failing node, but not
on any other node.

The most common single-node failure is when the local GPFS daemon fails. This renders any GPFS file
system at that node inaccessible. Another possible single-node failure is file system forced unmount.
When just an individual file system is forced unmounted on some node, its resources are lost, but the
sessions on that node, if any, survive.

Single-node failure has a different effect when it occurs on a session node or on a source node:

session node failure
When the GPFS daemon fails, all session queues are lost, as well as all nonpersistent local file
system resources, particularly DM access rights. The DM application may or may not have failed.
The missing resources may in turn cause DMAPI function calls to fail with errors such as
ENOTREADY or ESRCH.

© Copyright IBM Corp. 2014, 2016 41

Events generated at other source nodes remain pending despite any failure at the session node.
Moreover, client threads remain blocked on such events.

source node failure
Events generated by that node are obsolete. If such events have already been enqueued at the
session node, the DM application will process them, even though this may be redundant since no
client is waiting for the response.

According to the XDSM standard, sessions are not persistent. This is inadequate for GPFS. Sessions must
be persistent to the extent of enabling recovery from single-node failures. This is in compliance with a
basic GPFS premise that single-node failures do not affect file access on surviving nodes. Consequently,
after session node failure, the session queue and the events on it must be reconstructed, possibly on
another node.

Session recovery is triggered by the actions of the DM application. The scenario depends on whether or
not the DM application itself has failed.

If the DM application has failed, it must be restarted, possibly on another node, and assume the old
session by id. This will trigger reconstruction of the session queue and the events on it, using backup
information replicated on surviving nodes. The DM application may then continue handling events. The
session id is never changed when a session is assumed.

If the DM application itself survives, it will notice that the session has failed by getting certain error
codes from DMAPI function calls (ENOTREADY, ESRCH). The application could then be moved to
another node and recover the session queue and events on it. Alternatively, the application could wait for
the GPFS daemon to recover. There is also a possibility that the daemon will recover before the DM
application even notices the failure. In these cases, session reconstruction is triggered when the DM
application invokes the first DMAPI function after daemon recovery.

Session failure and recovery
A session fails when the GPFS daemon of the session node fails.

Session failure results in the loss of all DM access rights associated with events on the queue, and all the
tokens become invalid. After the session has recovered, any previously outstanding synchronous events
return to the initial (non-outstanding) state, and must be received again.

Session failure may also result in partial loss of the session information string. In such case, GPFS will be
able to restore only the first eight characters of the session string. It is suggested to not have the DM
application be dependent on more than eight characters of the session string.

In extreme situations, failure may also result in the loss of event dispositions for some file system. This
happens only if the GPFS daemon fails simultaneously on all nodes where the file system was mounted.
When the file system is remounted, a mount event will be generated, at which point the dispositions
could be reestablished by the DM application.

During session failure, events originating from surviving nodes remain pending, and client threads
remain blocked on such events. It is therefore essential that the DM application assume the old session
and continue processing the pending events. To prevent indefinite blocking of clients, a mechanism has
been implemented whereby pending events will be aborted and corresponding file operations failed with
the EIO error if the failed session is not recovered within a specified time-out interval. The interval is
configurable using the dmapiSessionFailureTimeout attribute on the mmchconfig command. See “GPFS
configuration attributes for DMAPI” on page 18. The default is immediate timeout.

42 IBM Spectrum Scale 4.2: Data Management API Guide

GPFS keeps the state of a failed session for 24 hours, during which the session should be assumed. When
this time has elapsed, and the session has not been assumed, the session is discarded. An attempt to
assume a session after it has been discarded will fail.

Event recovery
Synchronous events are recoverable after session failure.

The state of synchronous events is maintained both at the source node and at the session node. When the
old session is assumed, pending synchronous events are resubmitted by surviving source nodes.

All the events originating from the session node itself are lost during session failure, including user
events generated by the DM application. All file operations on the session node fail with the ESTALE
error code.

When a session fails, all of its tokens become obsolete. After recovery, the dm_getall_tokens function
returns an empty list of tokens, and it is therefore impossible to identify events that were outstanding
when the failure occurred. All recovered events return to the initial non-received state, and must be
explicitly received again. The token id of a recovered event is the same as prior to the failure (except for
the mount event).

If the token of a recovered event is presented in any DMAPI function before the event is explicitly
received again, the call will fail with the ESRCH error code. The ESRCH error indicates that the event
exists, but is not in the outstanding state. This is to be distinguished from the EINVAL error code, which
indicates that the token id itself is not valid (there is no event).

The semantics of the ESRCH error code in GPFS are different from the XDSM standard. This is entailed
by the enhanced failure model. The DM application may not notice that the GPFS daemon has failed and
recovered, and may attempt to use a token it has received prior to the failure. For example, it may try to
respond to the event. The ESRCH error code tells the DM application that it must receive the event
again, before it can continue using the token. Any access rights associated with the token prior to the
failure are lost. See “Loss of access rights.”

When a mount event is resubmitted to a session during session recovery, it will have a different token id
than before the failure. This is an exception to the normal behavior, since all other recovered events have
the same token id as before. The DM application thus cannot distinguish between recovered and new
mount events. This should not be a problem, since the DM application must in any case be able to handle
multiple mount events for the same file system.

Unmount events will not be resubmitted after session recovery. All such events are lost. This should not
be a problem, since the event cannot affect the unmount operation, which has already been completed by
the time the event was generated. In other words, despite being synchronous, semantically the unmount
event resembles an asynchronous post event.

Loss of access rights
When the GPFS daemon fails on the session node, all file systems on the node are forced unmounted. As
a result, all DM access rights associated with any local session are lost.

After daemon recovery, when the old sessions are assumed and the events are resubmitted, there is no
way of identifying events that were already being handled prior to the failure (outstanding events), nor is
there a guarantee that objects have not been accessed or modified after the access rights were lost. The
DM application must be able to recover consistently without depending on persistent access rights. For
example, it could keep its own state of events in progress, or process events idempotently.

Chapter 5. Failure and recovery of IBM Spectrum Scale Data Management API for GPFS 43

Similarly, when a specific file system is forced unmounted at the session node, all DM access rights
associated with the file system are lost, although the events themselves prevail on the session queue.
After the file system is remounted, DMAPI calls using existing tokens may fail due to insufficient access
rights. Also, there is no guarantee that objects have not been accessed or modified after the access rights
were lost.

DODeferred deletions
The asynchronous recovery code supports deferred deletions if there are no external mounts at the time
of recovery.

Once a node successfully generates a mount event for an external mount, the sgmgr node will start
deferred deletions if it is needed. Any internal mounts would bypass deferred deletions if the file system
is DMAPI enabled.

DM application failure
If only the DM application fails, the session itself remains active, events remain pending, and client
threads remain blocked waiting for a response. New events will continue to arrive at the session queue.

Note: GPFS is unable to detect that the DM application has failed.

The failed DM application must be recovered on the same node, and continue handling the events. Since
no DMAPI resources are lost in this case, there is little purpose in moving the DM application to another
node. Assuming an existing session on another node is not permitted in GPFS, except after session node
failure.

If the DM application fails simultaneously with the session node, the gpfsready shell script can be used
to restart the DM application on the failed node. See “Initializing the Data Management application” on
page 20. In the case of simultaneous failures, the DM application can also be moved to another node and
assume the failed session there. See “Single-node failure” on page 41.

44 IBM Spectrum Scale 4.2: Data Management API Guide

Accessibility features for IBM Spectrum Scale

Accessibility features help users who have a disability, such as restricted mobility or limited vision, to use
information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Spectrum Scale:
v Keyboard-only operation
v Interfaces that are commonly used by screen readers
v Keys that are discernible by touch but do not activate just by touching them
v Industry-standard devices for ports and connectors
v The attachment of alternative input and output devices

IBM Knowledge Center, and its related publications, are accessibility-enabled. The accessibility features
are described in IBM Knowledge Center (www.ibm.com/support/knowledgecenter).

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

IBM and accessibility
See the IBM Human Ability and Accessibility Center (www.ibm.com/able) for more information about
the commitment that IBM has to accessibility.

© Copyright IBM Corporation © IBM 2014, 2016 45

http://www.ibm.com/support/knowledgecenter
http://www.ibm.com/able

46 IBM Spectrum Scale 4.2: Data Management API Guide

Notices

This information was developed for products and services that are offered in the USA.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright IBM Corporation © IBM 2014, 2016 47

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Dept. H6MA/Building 707
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

48 IBM Spectrum Scale 4.2: Data Management API Guide

Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Intel is a trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of the Open Group in the United States and other countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

Notices 49

http://www.ibm.com/legal/us/en/copytrade.shtml

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE
PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, See
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at
http://www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other
Technologies” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

50 IBM Spectrum Scale 4.2: Data Management API Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Glossary

This glossary provides terms and definitions for
IBM Spectrum Scale.

The following cross-references are used in this
glossary:
v See refers you from a nonpreferred term to the

preferred term or from an abbreviation to the
spelled-out form.

v See also refers you to a related or contrasting
term.

For other terms and definitions, see the IBM
Terminology website (www.ibm.com/software/
globalization/terminology) (opens in new
window).

B

block utilization
The measurement of the percentage of
used subblocks per allocated blocks.

C

cluster
A loosely-coupled collection of
independent systems (nodes) organized
into a network for the purpose of sharing
resources and communicating with each
other. See also GPFS cluster.

cluster configuration data
The configuration data that is stored on
the cluster configuration servers.

cluster manager
The node that monitors node status using
disk leases, detects failures, drives
recovery, and selects file system
managers. The cluster manager must be a
quorum node. The selection of the cluster
manager node favors the
quorum-manager node with the lowest
node number among the nodes that are
operating at that particular time.

Note: The cluster manager role is not
moved to another node when a node with
a lower node number becomes active.

control data structures
Data structures needed to manage file
data and metadata cached in memory.

Control data structures include hash
tables and link pointers for finding
cached data; lock states and tokens to
implement distributed locking; and
various flags and sequence numbers to
keep track of updates to the cached data.

D

Data Management Application Program
Interface (DMAPI)

The interface defined by the Open
Group's XDSM standard as described in
the publication System Management: Data
Storage Management (XDSM) API Common
Application Environment (CAE) Specification
C429, The Open Group ISBN
1-85912-190-X.

deadman switch timer
A kernel timer that works on a node that
has lost its disk lease and has outstanding
I/O requests. This timer ensures that the
node cannot complete the outstanding
I/O requests (which would risk causing
file system corruption), by causing a
panic in the kernel.

dependent fileset
A fileset that shares the inode space of an
existing independent fileset.

disk descriptor
A definition of the type of data that the
disk contains and the failure group to
which this disk belongs. See also failure
group.

disk leasing
A method for controlling access to storage
devices from multiple host systems. Any
host that wants to access a storage device
configured to use disk leasing registers
for a lease; in the event of a perceived
failure, a host system can deny access,
preventing I/O operations with the
storage device until the preempted system
has reregistered.

disposition
The session to which a data management
event is delivered. An individual
disposition is set for each type of event
from each file system.

© Copyright IBM Corporation © IBM 2014, 2016 51

http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology

domain
A logical grouping of resources in a
network for the purpose of common
management and administration.

E

ECKD™

See extended count key data (ECKD).

ECKD device
See extended count key data device (ECKD
device).

encryption key
A mathematical value that allows
components to verify that they are in
communication with the expected server.
Encryption keys are based on a public or
private key pair that is created during the
installation process. See also file encryption
key, master encryption key.

extended count key data (ECKD)
An extension of the count-key-data (CKD)
architecture. It includes additional
commands that can be used to improve
performance.

extended count key data device (ECKD device)
A disk storage device that has a data
transfer rate faster than some processors
can utilize and that is connected to the
processor through use of a speed
matching buffer. A specialized channel
program is needed to communicate with
such a device. See also fixed-block
architecture disk device.

F

failback
Cluster recovery from failover following
repair. See also failover.

failover
(1) The assumption of file system duties
by another node when a node fails. (2)
The process of transferring all control of
the ESS to a single cluster in the ESS
when the other clusters in the ESS fails.
See also cluster. (3) The routing of all
transactions to a second controller when
the first controller fails. See also cluster.

failure group
A collection of disks that share common
access paths or adapter connection, and
could all become unavailable through a
single hardware failure.

FEK See file encryption key.

fileset A hierarchical grouping of files managed
as a unit for balancing workload across a
cluster. See also dependent fileset,
independent fileset.

fileset snapshot
A snapshot of an independent fileset plus
all dependent filesets.

file clone
A writable snapshot of an individual file.

file encryption key (FEK)
A key used to encrypt sectors of an
individual file. See also encryption key.

file-management policy
A set of rules defined in a policy file that
GPFS uses to manage file migration and
file deletion. See also policy.

file-placement policy
A set of rules defined in a policy file that
GPFS uses to manage the initial
placement of a newly created file. See also
policy.

file system descriptor
A data structure containing key
information about a file system. This
information includes the disks assigned to
the file system (stripe group), the current
state of the file system, and pointers to
key files such as quota files and log files.

file system descriptor quorum
The number of disks needed in order to
write the file system descriptor correctly.

file system manager
The provider of services for all the nodes
using a single file system. A file system
manager processes changes to the state or
description of the file system, controls the
regions of disks that are allocated to each
node, and controls token management
and quota management.

fixed-block architecture disk device (FBA disk
device)

A disk device that stores data in blocks of
fixed size. These blocks are addressed by
block number relative to the beginning of
the file. See also extended count key data
device.

fragment
The space allocated for an amount of data

52 IBM Spectrum Scale 4.2: Data Management API Guide

too small to require a full block. A
fragment consists of one or more
subblocks.

G

global snapshot
A snapshot of an entire GPFS file system.

GPFS cluster
A cluster of nodes defined as being
available for use by GPFS file systems.

GPFS portability layer
The interface module that each
installation must build for its specific
hardware platform and Linux
distribution.

GPFS recovery log
A file that contains a record of metadata
activity, and exists for each node of a
cluster. In the event of a node failure, the
recovery log for the failed node is
replayed, restoring the file system to a
consistent state and allowing other nodes
to continue working.

I

ill-placed file
A file assigned to one storage pool, but
having some or all of its data in a
different storage pool.

ill-replicated file
A file with contents that are not correctly
replicated according to the desired setting
for that file. This situation occurs in the
interval between a change in the file's
replication settings or suspending one of
its disks, and the restripe of the file.

independent fileset
A fileset that has its own inode space.

indirect block
A block containing pointers to other
blocks.

inode The internal structure that describes the
individual files in the file system. There is
one inode for each file.

inode space
A collection of inode number ranges
reserved for an independent fileset, which
enables more efficient per-fileset
functions.

ISKLM
IBM Security Key Lifecycle Manager. For
GPFS encryption, the ISKLM is used as an
RKM server to store MEKs.

J

journaled file system (JFS)
A technology designed for
high-throughput server environments,
which are important for running intranet
and other high-performance e-business
file servers.

junction
A special directory entry that connects a
name in a directory of one fileset to the
root directory of another fileset.

K

kernel The part of an operating system that
contains programs for such tasks as
input/output, management and control of
hardware, and the scheduling of user
tasks.

M

master encryption key (MEK)
A key used to encrypt other keys. See also
encryption key.

MEK See master encryption key.

metadata
Data structures that contain information
that is needed to access file data.
Metadata includes inodes, indirect blocks,
and directories. Metadata is not accessible
to user applications.

metanode
The one node per open file that is
responsible for maintaining file metadata
integrity. In most cases, the node that has
had the file open for the longest period of
continuous time is the metanode.

mirroring
The process of writing the same data to
multiple disks at the same time. The
mirroring of data protects it against data
loss within the database or within the
recovery log.

multi-tailed
A disk connected to multiple nodes.

Glossary 53

N

namespace
Space reserved by a file system to contain
the names of its objects.

Network File System (NFS)
A protocol, developed by Sun
Microsystems, Incorporated, that allows
any host in a network to gain access to
another host or netgroup and their file
directories.

Network Shared Disk (NSD)
A component for cluster-wide disk
naming and access.

NSD volume ID
A unique 16 digit hex number that is
used to identify and access all NSDs.

node An individual operating-system image
within a cluster. Depending on the way in
which the computer system is partitioned,
it may contain one or more nodes.

node descriptor
A definition that indicates how GPFS uses
a node. Possible functions include:
manager node, client node, quorum node,
and nonquorum node.

node number
A number that is generated and
maintained by GPFS as the cluster is
created, and as nodes are added to or
deleted from the cluster.

node quorum
The minimum number of nodes that must
be running in order for the daemon to
start.

node quorum with tiebreaker disks
A form of quorum that allows GPFS to
run with as little as one quorum node
available, as long as there is access to a
majority of the quorum disks.

non-quorum node
A node in a cluster that is not counted for
the purposes of quorum determination.

P

policy A list of file-placement, service-class, and
encryption rules that define characteristics
and placement of files. Several policies
can be defined within the configuration,
but only one policy set is active at one
time.

policy rule
A programming statement within a policy
that defines a specific action to be
performed.

pool A group of resources with similar
characteristics and attributes.

portability
The ability of a programming language to
compile successfully on different
operating systems without requiring
changes to the source code.

primary GPFS cluster configuration server
In a GPFS cluster, the node chosen to
maintain the GPFS cluster configuration
data.

private IP address
A IP address used to communicate on a
private network.

public IP address
A IP address used to communicate on a
public network.

Q

quorum node
A node in the cluster that is counted to
determine whether a quorum exists.

quota The amount of disk space and number of
inodes assigned as upper limits for a
specified user, group of users, or fileset.

quota management
The allocation of disk blocks to the other
nodes writing to the file system, and
comparison of the allocated space to
quota limits at regular intervals.

R

Redundant Array of Independent Disks (RAID)
A collection of two or more disk physical
drives that present to the host an image
of one or more logical disk drives. In the
event of a single physical device failure,
the data can be read or regenerated from
the other disk drives in the array due to
data redundancy.

recovery
The process of restoring access to file
system data when a failure has occurred.
Recovery can involve reconstructing data
or providing alternative routing through a
different server.

54 IBM Spectrum Scale 4.2: Data Management API Guide

remote key management server (RKM server)
A server that is used to store master
encryption keys.

replication
The process of maintaining a defined set
of data in more than one location.
Replication involves copying designated
changes for one location (a source) to
another (a target), and synchronizing the
data in both locations.

RKM server
See remote key management server.

rule A list of conditions and actions that are
triggered when certain conditions are met.
Conditions include attributes about an
object (file name, type or extension, dates,
owner, and groups), the requesting client,
and the container name associated with
the object.

S

SAN-attached
Disks that are physically attached to all
nodes in the cluster using Serial Storage
Architecture (SSA) connections or using
Fibre Channel switches.

Scale Out Backup and Restore (SOBAR)
A specialized mechanism for data
protection against disaster only for GPFS
file systems that are managed by Tivoli
Storage Manager (TSM) Hierarchical
Storage Management (HSM).

secondary GPFS cluster configuration server
In a GPFS cluster, the node chosen to
maintain the GPFS cluster configuration
data in the event that the primary GPFS
cluster configuration server fails or
becomes unavailable.

Secure Hash Algorithm digest (SHA digest)
A character string used to identify a GPFS
security key.

session failure
The loss of all resources of a data
management session due to the failure of
the daemon on the session node.

session node
The node on which a data management
session was created.

Small Computer System Interface (SCSI)
An ANSI-standard electronic interface
that allows personal computers to

communicate with peripheral hardware,
such as disk drives, tape drives, CD-ROM
drives, printers, and scanners faster and
more flexibly than previous interfaces.

snapshot
An exact copy of changed data in the
active files and directories of a file system
or fileset at a single point in time. See also
fileset snapshot, global snapshot.

source node
The node on which a data management
event is generated.

stand-alone client
The node in a one-node cluster.

storage area network (SAN)
A dedicated storage network tailored to a
specific environment, combining servers,
storage products, networking products,
software, and services.

storage pool
A grouping of storage space consisting of
volumes, logical unit numbers (LUNs), or
addresses that share a common set of
administrative characteristics.

stripe group
The set of disks comprising the storage
assigned to a file system.

striping
A storage process in which information is
split into blocks (a fixed amount of data)
and the blocks are written to (or read
from) a series of disks in parallel.

subblock
The smallest unit of data accessible in an
I/O operation, equal to one thirty-second
of a data block.

system storage pool
A storage pool containing file system
control structures, reserved files,
directories, symbolic links, special devices,
as well as the metadata associated with
regular files, including indirect blocks and
extended attributes The system storage
pool can also contain user data.

T

token management
A system for controlling file access in
which each application performing a read
or write operation is granted some form
of access to a specific block of file data.

Glossary 55

Token management provides data
consistency and controls conflicts. Token
management has two components: the
token management server, and the token
management function.

token management function
A component of token management that
requests tokens from the token
management server. The token
management function is located on each
cluster node.

token management server
A component of token management that
controls tokens relating to the operation
of the file system. The token management
server is located at the file system
manager node.

twin-tailed
A disk connected to two nodes.

U

user storage pool
A storage pool containing the blocks of
data that make up user files.

V

VFS See virtual file system.

virtual file system (VFS)
A remote file system that has been
mounted so that it is accessible to the
local user.

virtual node (vnode)
The structure that contains information
about a file system object in a virtual file
system (VFS).

56 IBM Spectrum Scale 4.2: Data Management API Guide

Index

A
access rights

locking 13
loss of 43
restrictions 13

accessibility features for IBM Spectrum Scale 45
application failure 44
argument

buflen 40
flags 40
hanp 38
hlen 38
len 40
nelem 38, 40
nelemp 38
off 40
sessinfop 38

attribute bit
dm_at_size 24

attributes
configuration 6
description 14
extended 14
GPFS-specific 21
non-opaque 7, 14
opaque 7, 14

C
commands

mmchconfig 18
mmchfs 19
mmcrfs 19

configuration attributes
DMAPI 18
dmapiEnable 19
dmapiEventTimeout 14

NFS (Network File System) 18
dmapiMountTimeout 12, 19
dmapiSessionFailureTimeout 19, 42

D
Data Management API

failure 44
restarting 44

data structures
defined 21
specific to GPFS implementation 21

data type
dm_eventset_t 21

definitions
GPFS-specific DMAPI functions 24, 25, 26, 28, 30, 32, 34,

36
description

dmapiDataEventRetry 18
dmapiFileHandleSize 18
dmapiMountEvent 19

directory
/usr/lpp/mmfs/bin 18

directory (continued)
/usr/lpp/mmfs/include 17
/usr/lpp/mmfs/lib 17
/usr/lpp/mmfs/samples 20
/var/mmfs/etc 20

DM application threads 13
DM application, role in session failure 9
DM_EVENT_POSTPERMCHANGE 39
DM_EVENT_PREPERMCHANGE 39
dm_handle_to_snap

definitions 25
dm_make_xhandle

definitions 26
DM_NO_TOKEN 13
dm_remove_dmattr_nosync

definitions 28
dm_set_dmattr_nosync

definitions 30
dm_set_eventlist_nosync

definitions 32
dm_set_region_nosync

definitions 34
dm_sync_dmattr_by_handle

definitions 36
DMAPI

administration 17
applications 17
compiling on AIX nodes 18
configuration attributes 6, 18
failure 41, 44
features 1
files on Linux nodes 18
functions 2
initializing 20
overview 1
recovery 41
restarting 44
restrictions 7

DMAPI events
GPFS-specific 1
GPFS-specific attribute events that are not part of the

DMAPI standard 2
implemented in DMAPI for GPFS 1
optional events not implemented in DMAPI for GPFS 2

DMAPI events, GPFS-specific 38
DMAPI functions

error code
EIO 39
ENOMEM 39
ENOSYS 39
ENOTREADY 39
EPERM 39
ESTALE 39

DMAPI functions, GPFS-specific 6
definitions 24
dm_handle_to_snap 25
dm_make_xhandle 26
dm_remove_dmattr_nosync 28
dm_set_dmattr_nosync 30
dm_set_eventlist_nosync 32
dm_set_region_nosync 34

© Copyright IBM Corp. 2014, 2016 57

DMAPI functions, GPFS-specific (continued)
dm_sync_dmattr_by_handle 36

DMAPI token, description 13
dmapiDataEventRetry

description 18
dmapiFileHandleSize

description 18
dmapiMountEvent attribute

description 19
DODeferred deletions 44

E
enabling DMAPI

migrating a file system 19
mmchfs command 19
mmcrfs command 19

environment
multiple-node 9, 41
single-node 9, 41

error code
EAGAIN 23
EBADF 23, 39
EBUSY 12, 15
EINVAL 23, 24, 39, 40, 43
EIO 11, 20
ENOSYS 22
ENOTREADY 14, 22, 42
EPERM 22, 39
ESRCH 24, 40, 42, 43

error code, definitions 39
events

as defined in XDSM standard 1
asynchronous 2, 10
description 10
disposition 10
enabled 10
GPFS-specific attribute events that are not part of the

DMAPI standard 2
GPFS-specific DMAPI events 1, 38
implemented

data events 2
file system administration 1
metadata events 2
namespace events 1
pseudo events 2

implemented in DMAPI for GPFS 1
mount 11
not implemented

file system administration 2
metadata 2

optional events not implemented in DMAPI for GPFS 2
pre-unmount 11
preunmount 21
reliable DMAPI destroy 11
source node 41
synchronous 10, 11
unmount 11, 21

events, metadata
DM_EVENT_POSTPERMCHANGE 39
DM_EVENT_PREPERMCHANGE 39

F
failure

dm application 41

failure (continued)
GPFS daemon 2, 9
partial system 41
session 9, 10
session node 41
single-node 41
source node 41, 42
total system 41

field
dt_change 21
dt_ctime 21
dt_dtime 21
dt_nevents 38
ev_nodeid 21
me_handle2 12
me_mode 12, 21, 38
me_name1 12
me_roothandle 12
ne_mode 21
rg_opaque 21
uio_resid 40

file
/etc/filesystems 12
dmapi_types.h 17
dmapi.exp export 17
dmapi.h 17
dmapicalls 18, 22

file handle
error code 39

file system handle 13
usage of 37

files, memory mapped 15
files, required 17
flag

DM_LOCAL_MOUNT 11, 12, 21
DM_MOUNT_LOCAL 38
DM_MOUNT_REMOTE 38
DM_REMOTE_MOUNT 12, 21
DM_RR_WAIT 23
DM_UNMOUNT_FORCE 12

function
dm_create_session 38
dm_downgrade_right 23, 40
dm_find_eventmsg 40
dm_get_alloc_info 40
dm_get_bulkall 23, 37, 38, 40
dm_get_bulkattr 23, 37, 40
dm_get_config 6
dm_get_config_events 6, 38
dm_get_dirattrs 40
dm_get_eventlist 23, 37, 38
dm_get_events 40
dm_get_fileattr 21, 38
dm_get_mount_info 23
dm_get_mountinfo 12, 21, 23, 37, 38, 40
dm_get_region 40
dm_getall_disp 37, 40
dm_getall_dmattr 40
dm_getall_sessions 40
dm_getall_tokens 40, 43
dm_handle_hash 38
dm_handle_is_valid 38
dm_handle_to_fshandle 38
dm_handle_to_fsid 38
dm_handle_to_igen 38
dm_handle_to_ino 38
dm_handle_to_path 40

58 IBM Spectrum Scale 4.2: Data Management API Guide

function (continued)
dm_handle_to_snap 38
dm_init_attrloc 38
dm_init_service 40
dm_make_fshandle 37
dm_make_handle 37
dm_make_xhandle 37
dm_mount_event 12
dm_move_event 24, 40
dm_probe_hole 37, 40
dm_punch_hole 14, 15, 23, 37, 40
dm_query_right 23
dm_query_session 37, 38
dm_read_invis 37, 40
dm_release_right 23
dm_request_right 23
dm_respond_event 40
dm_send_msg 37
dm_set_disp 23, 37, 38
dm_set_eventlist 23, 37, 38
dm_set_file_attr 24
dm_set_return_on_destroy 23, 37
dm_sync_by_handle 40
dm_upgrade_right 23, 40
dm_write_invis 14, 37, 40

functions
implemented 3, 5
mandatory 3
not implemented 5
optional 5
restrictions 22

functions, GPFS-specific DMAPI 6
definitions 24
dm_handle_to_snap 25
dm_make_xhandle 26
dm_remove_dmattr_nosync 28
dm_set_dmattr_nosync 30
dm_set_eventlist_nosync 32
dm_set_region_nosync 34
dm_sync_dmattr_by_handle 36

G
GPFS

access rights
loss of 43

Data Management API 1
DM application failure 44
DMAPI 1

failure 41
recovery 41

enhancements 21
failure

single-node 41
file system 1
implementation 1, 21
session

failure 42
recovery 42

GPFS daemon failure 9
GPFS enhancements

implementation of 21
GPFS-specific DMAPI events 1, 38
GPFS-specific DMAPI functions 6

definitions 24
dm_handle_to_snap 25
dm_make_xhandle 26

GPFS-specific DMAPI functions (continued)
dm_remove_dmattr_nosync 28
dm_set_dmattr_nosync 30
dm_set_eventlist_nosync 32
dm_set_region_nosync 34
dm_sync_dmattr_by_handle 36

I
IBM Spectrum Scale 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18,

19, 20, 21, 22, 24, 25, 26, 28, 30, 32, 34, 36, 38, 39
access rights

loss of 43
Data Management API 1
DM application failure 44
DMAPI 1, 9

failure 41
recovery 41

DMAPI functions 37
DODeferred deletions 44
failure

single-node 41
recovery

synchronous event 43
session

failure 42
recovery 42

IBM Spectrum Scale information units ix
installation requirements 17

M
macro

DM_TOKEN_EQ (x,y) 22
DM_TOKEN_GE (x,y) 22
DM_TOKEN_GT (x,y) 22
DM_TOKEN_LE (x,y) 22
DM_TOKEN_LT (x,y) 22
DM_TOKEN_NE (x,y) 22
DMEV_ADD(eset1, eset2) 22
DMEV_ALL(eset) 22
DMEV_ISALL(eset) 22
DMEV_ISDISJ(eset1, eset2) 22
DMEV_ISEQ(eset1, eset2) 22
DMEV_ISSUB(eset2) 22
DMEV_ISZERO(eset) 22
DMEV_NORM(eset) 22
DMEV_REM(eset1, eset2) 22
DMEV_RES(eset1, eset2) 22

macros, GPFS 21
macros, XDSM standard 21
memory mapped files 15
metadata events

DM_EVENT_POSTPERMCHANGE 39
DM_EVENT_PREPERMCHANGE 39

multiple sessions 13
multiple-node environment 9, 41

model for DMAPI 41

N
NFS (Network File System) 14
node id 21

Index 59

P
parallel environment, DM applications 13
performance 10

Q
quota 14

R
recovery

DODeferred deletions 44
mount event 43
synchronous event 43
unmount event 43

reliable DMAPI destroy events 11
restrictions

functions 22
root credentials 22

S
semantic changes

for the GPFS implementation 37
session

failure 10, 38, 42
recovery 42

session node 9, 37, 41
session, assuming a 9, 38
sessions

description 9
failure 9
information string, changing 38
maximum per node 9, 22
state of 9

shell script
gpfsready 20

single-node 41
single-node environment 9, 41
snapshots

coexistence 7
source node 9, 41
structure

dm_eventmsg 21
dm_mount_event 12, 21, 38
dm_namesp_event 21
dm_region_t 21
dm_stat 21
dm_stat_t 38
dm_vardata_t 21
uio 40

T
token, usage 13
tokens

input arguments 40

U
usage restrictions 22

X
XDSM standard 6, 9, 41, 42

60 IBM Spectrum Scale 4.2: Data Management API Guide

IBM®

Product Number: 5725-Q01
5641-GPF
5725-S28

Printed in USA

GA76-0442-06

	Contents
	Figures
	Tables
	About this information
	Prerequisite and related information
	Conventions used in this information
	How to send your comments

	Summary of changes
	Chapter 1. Overview of IBM Spectrum Scale Data Management API for GPFS
	GPFS-specific DMAPI events
	DMAPI functions
	Mandatory functions implemented in DMAPI for GPFS
	Optional functions implemented in DMAPI for GPFS
	Optional functions that are not implemented in DMAPI for GPFS
	GPFS-specific DMAPI functions

	DMAPI configuration attributes
	DMAPI restrictions for GPFS

	Chapter 2. Concepts of IBM Spectrum Scale Data Management API for GPFS
	Sessions
	Events
	Reliable DMAPI destroy events

	Mount and unmount
	Tokens and access rights
	Parallelism in Data Management applications
	Data Management attributes
	Support for NFS
	Quota
	Memory mapped files

	Chapter 3. Administration of IBM Spectrum Scale Data Management API for GPFS
	Required files for implementation of Data Management applications
	GPFS configuration attributes for DMAPI
	Enabling DMAPI for a file system
	Initializing the Data Management application

	Chapter 4. Specifications of enhancements for IBM Spectrum Scale Data Management API for GPFS
	Enhancements to data structures
	Usage restrictions on DMAPI functions
	Definitions for GPFS-specific DMAPI functions
	dm_handle_to_snap
	dm_make_xhandle
	dm_remove_dmattr_nosync
	dm_set_dmattr_nosync
	dm_set_eventlist_nosync
	dm_set_region_nosync
	dm_sync_dmattr_by_handle

	Semantic changes to DMAPI functions
	GPFS-specific DMAPI events
	Additional error codes returned by DMAPI functions

	Chapter 5. Failure and recovery of IBM Spectrum Scale Data Management API for GPFS
	Single-node failure
	Session failure and recovery
	Event recovery
	Loss of access rights
	DODeferred deletions
	DM application failure

	Accessibility features for IBM Spectrum Scale
	Accessibility features
	Keyboard navigation
	IBM and accessibility

	Notices
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Glossary
	Index
	A
	C
	D
	E
	F
	G
	I
	M
	N
	P
	Q
	R
	S
	T
	U
	X

