
IBM XL C/C++ for Linux, V13.1.6

Migration Guide
for Little Endian Distributions
Version 13.1.6

GC27-8036-00

IBM

IBM XL C/C++ for Linux, V13.1.6

Migration Guide
for Little Endian Distributions
Version 13.1.6

GC27-8036-00

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 19.

First edition

This edition applies to IBM XL C/C++ for Linux, V13.1.6 (Program 5765-J08; 5725-C73) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

© Copyright IBM Corporation 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Who should read this document v
How to use this document. v
Conventions v
Related information viii

Available help information ix
Standards and specifications x
Other IBM information. xi
Other information xi

Technical support xi
How to send your comments xi

Chapter 1. Migrating from AIX to Linux
for little endian distributions 1

Chapter 2. Migrating from Linux for big
endian distributions to Linux for little
endian distributions 3
Migrating program containing vector built-in
functions from big endian systems 4

Chapter 3. Migrating from earlier
versions to the latest version 5
Migrating applications that use transactional memory
built-in functions 6

Chapter 4. Compatibility with GNU . . . 9

Chapter 5. Mixing object files compiled
with different compilers 11

Chapter 6. Resolving the compatibility
issues of IPA object files 13

Chapter 7. Porting from 32-bit to 64-bit
mode 15
Assigning long values 15

Assigning constant values to long variables. . . 16
Bit-shifting long values 17

Assigning pointers 17
Aligning aggregate data 18
Calling Fortran code 18

Notices 19
Trademarks 21

Index 23

© Copyright IBM Corp. 2017 iii

iv XL C/C++: Migration Guide for Little Endian Distributions

About this document

This document contains migration considerations applicable to IBM® XL C/C++ for
Linux, V13.1.6.

Who should read this document
This document is intended for C and C++ developers who are to use IBM XL
C/C++ for Linux, V13.1.6 to compile programs that were previously compiled on
different platforms, by previous releases of XL C/C++, or by other compilers.

How to use this document

Unless indicated otherwise, all of the text in this reference pertains to both C and
C++ languages. Where there are differences between languages, these are indicated
through qualifying text and icons, as described in “Conventions.”

Throughout this document, the xlc and xlC compiler invocations are used to
describe the behavior of the compiler. You can, however, substitute other forms of
the compiler invocation command if your particular environment requires it, and
compiler option usage remains the same unless otherwise specified.

While this document covers migration considerations applicable to IBM XL C/C++
for Linux, V13.1.6, it does not include the following topics:
v Compiler installation: see the XL C/C++ Installation Guide.
v Compiler options: see the XL C/C++ Compiler Reference for detailed information

about the syntax and usage of compiler options.
v The C or C++ programming language: see the XL C/C++ Language Reference for

information about the syntax, semantics, and IBM implementation of the C or
C++ IBM extension features. See C/C++ standards for the details of standard
features.

v Programming topics: see the XL C/C++ Optimization and Programming Guide for
detailed information about developing applications with XL C/C++, with a
focus on program portability and optimization.

Conventions
Typographical conventions

The following table shows the typographical conventions used in the IBM XL
C/C++ for Linux, V13.1.6 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc and xlC
(xlc++), along with several other
compiler invocation commands to
support various C/C++ language
levels and compilation environments.

© Copyright IBM Corp. 2017 v

Table 1. Typographical conventions (continued)

Typeface Indicates Example

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

C only begins
C

C

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

C++ only begins
C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

C11 begins
C11

C11

C11 ends

The text describes a feature that is introduced into standard C
as part of C11.

C++11 begins
C++11

C++11

C++11 ends

The text describes a feature that is introduced into standard
C++ as part of C++11.

C++14 begins
C++14

C++14

C++14 ends

The text describes a feature that is introduced into standard
C++ as part of C++14.

vi XL C/C++: Migration Guide for Little Endian Distributions

Table 2. Qualifying elements (continued)

Qualifier/Icon Meaning

IBM extension begins
IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

GPU begins
GPU

GPU

GPU ends

The text describes the information that is relevant to offloading
computations to the NVIDIA GPUs.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
helps you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

If choosing one of the items is optional, the entire stack is shown below the
main path.

About this document vii

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a default installation; these need little or no modification.

Related information
The following sections provide related information for XL C/C++:

viii XL C/C++: Migration Guide for Little Endian Distributions

Available help information
IBM XL C/C++ information

XL C/C++ provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL C/C++ for Linux, V13.1.6. It is located by default in the XL C/C++ directory
and in the \quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory, and in the root directory and subdirectories of the
installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for Linux, V13.1.6 Installation
Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.6/
com.ibm.compilers.linux.doc/welcome.html.

v PDF documents
PDF documents are available on the web at https://www.ibm.com/support/
knowledgecenter/SSXVZZ_13.1.6/com.ibm.compilers.linux.doc/
download_pdf.html.
The following files comprise the full set of XL C/C++ product information.

Note: To ensure that you can access cross-reference links to other XL C/C++
PDF documents, download and unzip the .zip file that contains all the product
documentation files, or you can download each document into the same
directory on your local machine.

Table 3. XL C/C++ PDF files

Document title PDF file name Description

What's New for IBM XL
C/C++ for Linux,
V13.1.6, GC27-8035-00

whats_new.pdf Provides an executive overview of new
functions in the IBM XL C/C++ for
Linux, V13.1.6 compiler, with new
functions categorized according to user
benefits.

Getting Started with
IBM XL C/C++ for
Linux, V13.1.6,
GI13-2875-05

getstart.pdf Contains an introduction to XL C/C++,
with information about setting up and
configuring your environment,
compiling and linking programs, and
troubleshooting compilation errors.

IBM XL C/C++ for
Linux, V13.1.6
Installation Guide,
GC27-6540-05

install.pdf Contains information for installing XL
C/C++ and configuring your
environment for basic compilation and
program execution.

About this document ix

http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.6/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.6/com.ibm.compilers.linux.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.6/com.ibm.compilers.linux.doc/download_pdf.html
https://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.6/com.ibm.compilers.linux.doc/download_pdf.html
https://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.6/com.ibm.compilers.linux.doc/download_pdf.html

Table 3. XL C/C++ PDF files (continued)

Document title PDF file name Description

IBM XL C/C++ for
Linux, V13.1.6 Migration
Guide, GC27-8036-00

migrate.pdf Contains migration considerations for
using XL C/C++ to compile programs
that were previously compiled on
different platforms, by previous releases
of XL C/C++, or by other compilers.

IBM XL C/C++ for
Linux, V13.1.6 Compiler
Reference, SC27-6570-05

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in
functions.

IBM XL C/C++ for
Linux, V13.1.6 Language
Reference, SC27-6550-05

langref.pdf Contains information about language
extensions for portability and
conformance to nonproprietary
standards.

IBM XL C/C++ for
Linux, V13.1.6
Optimization and
Programming Guide,
SC27-6560-05

proguide.pdf Contains information about advanced
programming topics, such as
application porting, interlanguage calls
with Fortran code, library development,
application optimization, and the XL
C/C++ high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL C/C++, including IBM Redbooks® publications,
white papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27036675.

For more information about the compiler, see the XL compiler on Power®

community at http://ibm.biz/xl-power-compilers.

Other IBM information
v ESSL product documentation available at http://www.ibm.com/support/

knowledgecenter/SSFHY8/essl_welcome.html?lang=en

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Standards and specifications
XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards and specifications for precise definitions of some of the
features found in this information.
v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also

known as C89.
v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also

known as C99.
v Information Technology - Programming languages - C, ISO/IEC 9899:2011, also

known as C11.
v Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also

known as C++98.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also

known as C++03.

x XL C/C++: Migration Guide for Little Endian Distributions

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036675
http://www.ibm.com/support/docview.wss?uid=swg27036675
http://ibm.biz/xl-power-compilers
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html?lang=en
http://gcc.gnu.org/onlinedocs

v Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also
known as C++11.

v Information Technology - Programming languages - C++, ISO/IEC 14882:2014, also
known as C++14 (Partial support).

v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification
for vector data types, to support vector processing technology, is available at
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v OpenMP Application Program Interface Version 3.1 (full support), OpenMP

Application Program Interface Version 4.0 (partial support), and OpenMP Application
Program Interface Version 4.5 (partial support), available at http://
www.openmp.org

Other IBM information
v ESSL product documentation available at http://www.ibm.com/support/

knowledgecenter/SSFHY8/essl_welcome.html?lang=en

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support
Additional technical support is available from the XL C/C++ Support page at
https://www.ibm.com/support/home/product/Q833644Y89702U61/XL_C/
C++_for_Linux. This page provides a portal with search capabilities to a large
selection of Technotes and other support information.

If you cannot find what you need, you can send an email to
compinfo@cn.ibm.com.

For the latest information about XL C/C++, visit the product information site at
https://www.ibm.com/us-en/marketplace/xl-cpp-linux-compiler-power.

How to send your comments
Your feedback is important in helping us to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments to compinfo@cn.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL C/C++, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

About this document xi

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.openmp.org
http://www.openmp.org
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html?lang=en
http://gcc.gnu.org/onlinedocs
https://www.ibm.com/support/home/product/Q833644Y89702U61/XL_C/C++_for_Linux
https://www.ibm.com/support/home/product/Q833644Y89702U61/XL_C/C++_for_Linux
https://www.ibm.com/us-en/marketplace/xl-cpp-linux-compiler-power

xii XL C/C++: Migration Guide for Little Endian Distributions

Chapter 1. Migrating from AIX to Linux for little endian
distributions

You must consider some factors when migrating your applications from AIX
systems.

Porting from big endian systems

To help migrate programs from big endian systems, you can use the -qaltivec=be
or -qaltivec=le option to toggle the vector element sequence in registers to big
endian or little endian element order.

For more information, see “Migrating program containing vector built-in functions
from big endian systems” on page 4.

Changed compiler options

-qxlcompatmacros
Starting from IBM XL C/C++ for Linux, V13.1.6, -qnoxlcompatmacros is set
to default. To define these legacy macros: __xlC__, __xlC_ver__,

C++ __IBMCPP__ C++ , C __IBMC__, and __xlc__ C , you
must explicitly specify -qxlcompatmacros.

Changed built-in functions

Starting from IBM XL C/C++ for Linux, V13.1.6, you must include altivec.h to
use the following built-in functions.
v BCD add and subtract functions
v BCD comparison functions
v BCD load and store functions
v BCD test add and subtract for overflow functions
v Vector built-in functions

Related information in the XL C/C++ Compiler Reference

-qxlcompatmacros

BCD add and subtract functions

BCD comparison functions

BCD load and store functions

BCD test add and subtract for overflow functions

Vector built-in functions

© Copyright IBM Corp. 2017 1

2 XL C/C++: Migration Guide for Little Endian Distributions

Chapter 2. Migrating from Linux for big endian distributions to
Linux for little endian distributions

You must consider some factors when migrating your applications from big endian
systems.

Porting from big endian systems
v To help migrate programs from big endian systems, you can use the

-qaltivec=be or -qaltivec=le option to toggle the vector element sequence in
registers to big endian or little endian element order.
For more information, see “Migrating program containing vector built-in
functions from big endian systems” on page 4.

Changed compiler options

-qxlcompatmacros
Starting from IBM XL C/C++ for Linux, V13.1.6, -qnoxlcompatmacros is set
to default. To define these legacy macros: __xlC__, __xlC_ver__,

C++ __IBMCPP__ C++ , C __IBMC__, and __xlc__ C , you
must explicitly specify -qxlcompatmacros.

Changed built-in functions

Starting from IBM XL C/C++ for Linux, V13.1.6, you must include altivec.h to
use the following built-in functions.
v BCD add and subtract functions
v BCD comparison functions
v BCD load and store functions
v BCD test add and subtract for overflow functions
v Vector built-in functions

For more information, see XL C/C++ Compiler Reference.
Related information in the XL C/C++ Compiler Reference

-maltivec (-qaltivec)

-qxlcompatmacros

BCD add and subtract functions

BCD comparison functions

BCD load and store functions

BCD test add and subtract for overflow functions

Vector built-in functions

© Copyright IBM Corp. 2017 3

Migrating program containing vector built-in functions from big endian
systems

When migrating the programs that contain the Vector Multimedia Extension (VMX)
and Vector Scalar Extension (VSX) built-in functions from big endian systems, you
can use -qaltivec=be or -maltivec=be to minimize program changes, but you need
to pay attention in specific cases.

The following table shows what users need to pay attention when migrating code
from big endian systems by using -qaltivec=be or -maltivec=be.

Table 4. Attention when -qaltivec=be and -maltivec=be

Case Attention

If the existing program contains
only VMX load and store built-in
functions

Using -qaltivec=be or -maltivec=be may affect the
program performance; using -qaltivec=le or
-maltivec=le may affect the performance in different
ways.

If the existing program contains
only VSX load and store built-in
functions

In the existing programs, you can use the vec_xl and
vec_xst functions to replace the VSX load and store
built-in functions to maximally simplify the code
changes.

If the existing program contains
both VMX and VSX load and
store built-in functions

You need to pay attention to the differences of the
element order of vectors that are operated by the VMX
and VSX built-in functions in little endian systems.

If the existing program contains
the vector initialization by using
union with arrays

You need to use the vec_ld or vec_xl function to load
the vectors explicitly, instead of using the union with
arrays, or you can reverse the element order of the
array used for vector initialization.

Vector literals Based on the meaning and usage of vector literals, the
user must change the code properly.

Related information in the XL C/C++ Compiler Reference

-qaltivec

Supported GCC options

Vector built-in functions

4 XL C/C++: Migration Guide for Little Endian Distributions

Chapter 3. Migrating from earlier versions to the latest version

When you migrate applications from earlier versions to the latest version, consider
factors including changed compiler options, built-in functions, and environment
variables.

Changed compiler options

-qaltivec
Starting from IBM XL C/C++ for Linux, V13.1.6, the -qaltivec option
takes effect only when you include the altivec.h file and set or imply
-mcpu (-qarch) to be an architecture that supports vector instructions.
Otherwise, the compiler ignores -qaltivec and issues a warning message.

For more information, see -maltivec (-qaltivec) in the XL C/C++ Compiler
Reference.

-qxlcompatmacros
Starting from IBM XL C/C++ for Linux, V13.1.6, -qnoxlcompatmacros is set
to default. To define these legacy macros: __xlC__, __xlC_ver__,

C++ __IBMCPP__ C++ , C __IBMC__, and __xlc__ C , you
must explicitly specify -qxlcompatmacros.

For more information, see -qxlcompatmacros in the XL C/C++ Compiler
Reference.

Changed environment variables

XLSMPOPTS
Starting from IBM XL C/C++ for Linux, V13.1.6,
XLSMPOPTS=target=optional is renamed to XLSMPOPTS=target=default
with the identical functionality, and XLSMPOPTS=target=disable is
renamed to XLSMPOPTS=target=disabled with the identical functionality.

For more information, see XLSMPOPTS in the XL C/C++ Compiler Reference.

Changed built-in functions

Starting from IBM XL C/C++ for Linux, V13.1.6, you must include altivec.h to
use the following built-in functions. For more information, see XL C/C++ Compiler
Reference.
v BCD add and subtract functions
v BCD comparison functions
v BCD load and store functions
v BCD test add and subtract for overflow functions
v Vector built-in functions

vec_cntlz
Starting from IBM XL C/C++ for Linux, V13.1.5, the data types of the
returned value are changed: now the compiler returns the same type as the
argument, instead of always returning an unsigned type.

You can refer to the following table for the differences:

© Copyright IBM Corp. 2017 5

Table 5. Result and argument types of different releases

Argument

Result (release versions
before IBM XL C/C++ for
Linux, V13.1.5)

Result (release versions
starting from IBM XL C/C++
for Linux, V13.1.5)

vector signed char vector unsigned char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector signed short vector unsigned short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector signed int vector unsigned int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector signed long long vector unsigned long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

When you migrate programs from earlier versions to release versions
starting from IBM XL C/C++ for Linux, V13.1.5 for little endian
distributions, this change might cause incompatibility. It is recommended
that you change your code according to the new behavior.

For more information, see vec_cntlz in the XL C/C++ Compiler Reference.

Migrating applications that use transactional memory built-in functions
Starting from IBM XL C/C++ for Linux, V13.1.2, to use transactional memory
built-in functions, you must include a header file in the source code. In addition, if
you used numeric return values of the transaction begin and end built-in functions,
you must replace numeric return values with macro return values that are
provided by IBM XL C/C++ for Linux, V13.1.6.

New header file needed for transactional memory built-in
functions

You must include the htmxlintrin.h file in the source code if you use any of the
transactional memory built-in functions.

Changed return values of the transaction begin and end built-in
functions

The return values of the transaction begin and end built-in functions are no longer
numeric. You must update your program using the following return values:

__TM_begin
This function returns _HTM_TBEGIN_STARTED if successful; otherwise, it
returns a different value.

__TM_end
This function returns _HTM_TBEGIN_STARTED if the thread is in the
transactional state before the instruction starts; otherwise, it returns a
different value.

__TM_simple_begin
This function returns _HTM_TBEGIN_STARTED if successful; otherwise, it
returns a different value.

Related information in the XL C/C++ Compiler Reference

6 XL C/C++: Migration Guide for Little Endian Distributions

Transactional memory built-in functions

Chapter 3. Migrating from earlier versions to the latest version 7

8 XL C/C++: Migration Guide for Little Endian Distributions

Chapter 4. Compatibility with GNU

XL C/C++ supports a subset of the GNU compiler command options to facilitate
porting applications that are developed with the gcc and g++ compilers.

IBM XL C/C++ for Linux is built with Clang front end and IBM optimizing back
end components. It provides improved GNU Compiler Collection (GCC)
compatibility and language standards support for easier migration and enhanced
capability as well as the IBM optimization technology. IBM XL C/C++ for Linux,
V13.1.6 supports the use of gcc and g++ compiler options and therefore the gxlc
and gxlc++ invocation commands are not required or included.

XL C/C++ uses GNU C and GNU C++ header files together with the GNU C and
C++ runtime libraries to produce code that is binary-compatible with that
produced by GCC. Portions of an application can be built with XL C/C++ and
combined with portions built with GCC to produce an application that behaves as
if it had been built solely with GCC.

To achieve binary compatibility with GCC-compiled code, a program compiled
with XL C/C++ includes the same headers as those used by a GNU compiler
residing on the same system. To ensure that the proper versions of headers and
runtime libraries are present on the system, you must install the prerequisite GCC
compiler before you install XL C/C++.

IBM XL C/C++ for Linux, V13.1.6 has been fully tested with the following GNU
compilers:
v GNU C/C++ 5.3.1 on Ubuntu Server 16.04
v GNU C/C++ 4.8.5 on RHEL 7.3
v GNU C/C++ 4.8.5 on RHEL 7.4
v GNU C/C++ 4.8.5 on SLES 12 SP3
v GNU C/C++ 4.8.3 on SLES 12

.

Notes: Some additional noteworthy points about this relationship are as follows:
v IBM built-in functions coexist with GNU C built-ins.
v Compilation of C and C++ programs uses the GNU C and GNU C++ header

files.
v Compilation uses the GNU assembler for assembler input files.
v Compiled C code is linked to the GNU C runtime libraries.
v Compiled C++ code is linked to the GNU C and GNU C++ runtime libraries.
v Code compiled with XL C/C++ can be debugged with the GNU debugger, gdb.

Related reference in the XL C/C++ Compiler Reference

v Supported GCC options
v Supported GCC pragmas
v Supported GCC built-in functions

– GCC atomic memory access built-in functions
– GCC object size checking built-in functions

© Copyright IBM Corp. 2017 9

– Supported GCC vector built-in functions
– Supported GCC non-vector built-in functions

Related reference in the XL C/C++ Language Reference

v Supported GNU C/C++ features
– Supported features for C and C++
– Supported features for C only
– Supported features for C++ only

10 XL C/C++: Migration Guide for Little Endian Distributions

Chapter 5. Mixing object files compiled with different
compilers

Most object files that were compiled with different compilers can be linked
together. However, under some circumstances, object files are not compatible and
must be recompiled.

Note the following restrictions:
v There is no binary compatibility among AIX®, Linux for big endian distributions,

and Linux for little endian distributions.
v Do not mix object files that were compiled with the big endian compiler and

object files that were complied with the little endian compiler.
v Do not mix object and library files that were compiled with different versions of

a compiler if the -qipa option was used during the compilation. The -qipa
option instructs the compiler to perform an IPA link for these object and library
files. An IPA link might not be able to handle mismatched versions.
Related information in the XL C/C++ Compiler Reference

-qipa
Related information in the XL C/C++ Optimization and Programming Guide

Using interprocedural analysis

© Copyright IBM Corp. 2017 11

12 XL C/C++: Migration Guide for Little Endian Distributions

Chapter 6. Resolving the compatibility issues of IPA object
files

It is recommended that you use the latest version of the compiler to compile and
link the IPA object files to avoid compatibility issues. If any compatibility issues
occur, you can try these resolutions.

IPA object files that are compiled using earlier versions but are
linked by a newer version

When IPA object files that are compiled with earlier versions of compilers are
linked by a newer version, errors might occur if the IPA object is compiled by one
of the following compilers.
v XL Fortran, V15.1.2 or earlier
v XL C/C++, V13.1.2 or earlier

Try resolving the compatibility issue using one of the following methods:
v Recompile and link your object files with the latest XL compiler if you want to

use IPA.
v Do not enable the -qipa option.

IPA object files that are compiled using newer versions but are
linked by an earlier version

If IPA object files that are compiled with newer versions of compilers are linked by
an earlier version, errors occur during the link step. You might be able to resolve
the issue by recompiling and linking the IPA object files with the latest XL
compiler.

For more information, see Using interprocedural analysis in the XL C/C++
Optimization and Programming Guide.

© Copyright IBM Corp. 2017 13

14 XL C/C++: Migration Guide for Little Endian Distributions

Chapter 7. Porting from 32-bit to 64-bit mode

IBM XL C/C++ for Linux, V13.1.6 supports only 64-bit compilation mode, which
means you can use the XL C/C++ compiler to develop only 64-bit applications.

You might want to port existing 32-bit applications to the 64-bit IBM XL C/C++ for
Linux, V13.1.6. However, this can lead to a number of problems, mostly related to
the differences in C/C++ long and pointer data type sizes and alignment between
the two modes. The following table summarizes these differences.

Table 6. Size and alignment of data types in 32-bit and 64-bit modes

Data type 32-bit mode 64-bit mode

Size Alignment Size Alignment

long, signed long,
unsigned long

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

pointer 4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

size_t (defined in the
header file <cstddef>)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

ptrdiff_t (defined in
the header file
<cstddef>)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

The following sections discuss some of the common pitfalls implied by these
differences, as well as recommended programming practices to help you avoid
most of these issues:
v “Assigning long values”
v “Assigning pointers” on page 17
v “Aligning aggregate data” on page 18
v “Calling Fortran code” on page 18

For suggestions on improving performance in 64-bit mode, see "Optimize
operations in 64-bit mode" in the XL C/C++ Optimization and Programming Guide.

Related information in the XL C/C++ Compiler Reference

Compile-time and link-time environment variables

Assigning long values
The limits of long type integers defined in the limits.h standard library header
file are shown in the following table.

Table 7. Constant limits of long integers in 64-bit mode

Symbolic constant Value Hexadecimal Decimal

LONG_MIN
(smallest signed
long)

–263 0x8000000000000000L –9,223,372,036,854,775,808

LONG_MAX (largest
signed long)

263–1 0x7FFFFFFFFFFFFFFFL 9,223,372,036,854,775,807

© Copyright IBM Corp. 2017 15

Table 7. Constant limits of long integers in 64-bit mode (continued)

Symbolic constant Value Hexadecimal Decimal

ULONG_MAX
(largest unsigned
long)

264–1 0xFFFFFFFFFFFFFFFFUL 18,446,744,073,709,551,615

These differences have the following implications:
v Assigning a long value to a double variable can cause loss of accuracy.
v Assigning constant values to long variables can lead to unexpected results. This

issue is explored in more detail in “Assigning constant values to long variables.”
v Bit-shifting long values will produce different results, as described in

“Bit-shifting long values” on page 17.
v Using int and long types interchangeably in expressions will lead to implicit

conversion through promotions, demotions, assignments, and argument passing,
and it can result in truncation of significant digits, sign shifting, or unexpected
results, without warning. These operations can impact performance.

In situations where a long value can overflow when assigned to other variables or
passed to functions, you must observe the following guidelines:
v Avoid implicit type conversion by using explicit type casting to change types.
v Ensure that all functions that accept or return long types are properly

prototyped.
v Ensure that long type parameters can be accepted by the functions to which they

are being passed.

Assigning constant values to long variables
Although type identification of constants follows explicit rules in C and C++, many
programs use hexadecimal or unsuffixed constants as "typeless" variables and rely
on a twos complement representation to truncate values that exceed the limits
permitted on a 32-bit system. As these large values are likely to be extended into a
64-bit long type in 64-bit mode, unexpected results can occur, generally at the
following boundary areas:
v constant > UINT_MAX
v constant < INT_MIN
v constant > INT_MAX

Some examples of unexpected boundary side effects are listed in the following
table.

Table 8. Unexpected boundary results of constants assigned to long types

Constant assigned to long Equivalent value 32-bit mode 64-bit mode

–2,147,483,649 INT_MIN–1 +2,147,483,647 –2,147,483,649

+2,147,483,648 INT_MAX+1 –2,147,483,648 +2,147,483,648

+4,294,967,726 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFF UINT_MAX –1 +4,294,967,295

0x100000000 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFFFFFFFFFF ULONG_MAX –1 –1

16 XL C/C++: Migration Guide for Little Endian Distributions

Unsuffixed constants can lead to type ambiguities that can affect other parts of
your program, such as when the results of sizeof operations are assigned to
variables. For example, in 32-bit mode, the compiler types a number like
4294967295 (UINT_MAX) as an unsigned long and sizeof returns 4 bytes. In 64-bit
mode, this same number becomes a signed long and sizeof returns 8 bytes.
Similar problems occur when the compiler passes constants directly to functions.

You can avoid these problems by using the suffixes L (for long constants), UL (for
unsigned long constants), LL (for long long constants), or ULL (for unsigned long
long constants) to explicitly type all constants that have the potential of affecting
assignment or expression evaluation in other parts of your program. In the
example cited in the preceding paragraph, suffixing the number as 4294967295U
forces the compiler to always recognize the constant as an unsigned int in 32-bit
or 64-bit mode. These suffixes can also be applied to hexadecimal constants.

Bit-shifting long values
The examples in Table 9 show the effects of performing a bit-shift on long
constants using the following code segment:
long l=valueL<<1;

Table 9. Results of bit-shifting long values

Initial value Symbolic constant Value after bit shift by one bit

0x7FFFFFFFL INT_MAX 0x00000000FFFFFFFE

0x80000000L INT_MIN 0x0000000100000000

0xFFFFFFFFL UINT_MAX 0x00000001FFFFFFFE

In 32-bit mode, 0xFFFFFFFE is negative. In 64-bit mode, 0x00000000FFFFFFFE and
0x00000001FFFFFFFE are both positive.

Assigning pointers
In 64-bit mode, pointers and int types are no longer of the same size. The
implications of this are as follows:
v Exchanging pointers and int types causes segmentation faults.
v Passing pointers to a function expecting an int type results in truncation.
v Functions that return a pointer but are not explicitly prototyped as such, return

an int instead and truncate the resulting pointer, as illustrated in the following
example.
In C, the following code is valid in 32-bit mode without a prototype:
a=(char*) calloc(25);

Without a function prototype for calloc, when the same code is compiled in 64-bit
mode, the compiler assumes the function returns an int, so a is silently truncated
and then sign-extended. Type casting the result does not prevent the truncation, as
the address of the memory allocated by calloc was already truncated during the
return. In this example, the best solution is to include the header file, stdlib.h,
which contains the prototype for calloc. An alternative solution is to prototype the
function as it is in the header file.

To avoid these types of problems, you can take the following measures:
v Prototype any functions that return a pointer, where possible by using the

appropriate header file.

Chapter 7. Porting from 32-bit to 64-bit mode 17

v Ensure that the type of parameter you are passing in a function, pointer or int,
call matches the type expected by the function being called.

v For applications that treat pointers as an integer type, use type long or unsigned
long.

Aligning aggregate data
Normally, structures are aligned according to the most strictly aligned member in
both 32-bit and 64-bit modes. However, since long types and pointers change size
and alignment in 64-bit modes, the alignment of a structure's strictest member can
change, resulting in changes to the alignment of the structure itself.

Structures that contain pointers or long types cannot be shared between 32-bit and
64-bit applications. Unions that attempt to share long and int types or overlay
pointers onto int types can change the alignment. In general, you need to check all
but the simplest structures for alignment and size dependencies.

Any aggregate data written to a file in one mode cannot be correctly read in the
other mode. Data exchanged with other languages has the similar problems.

For detailed information about aligning data structures, including structures that
contain bit fields, see Aligning data in the XL C/C++ Optimization and Programming
Guide.

Calling Fortran code
A significant number of applications use C, C++, and Fortran together by calling
each other or sharing files. It is currently easier to modify data sizes and types on
the C and C++ sides than on the Fortran side of such applications. The following
table lists C and C++ types and the equivalent Fortran types in the different
modes.

Table 10. Equivalent C/C++ and Fortran data types

C/C++ type Fortran type

32-bit 64-bit

signed int INTEGER INTEGER

signed long INTEGER INTEGER*8

unsigned long LOGICAL LOGICAL*8

pointer INTEGER INTEGER*8

integer POINTER (8 bytes)

18 XL C/C++: Migration Guide for Little Endian Distributions

Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL C/C++ for Linux.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2017 19

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

20 XL C/C++: Migration Guide for Little Endian Distributions

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2017.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

NVIDIA is either registered trademark or trademark of NVIDIA Corporation in the
United States, other countries, or both.

Notices 21

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

22 XL C/C++: Migration Guide for Little Endian Distributions

Index

Numerics
64-bit mode

bit-shifting 17
data types 15
long constants 16
pointers 17

A
aggregate data

aligning 18
alignment

32-bit mode 18
64-bit mode 18

B
bit-shifting 17

C
compatibility

GNU 9
constants

long types 16
customization

GNU 9

D
data types

Fortran 18
long 15

F
Fortran

data types
C/C++ 18

L
long types

values 15

M
migration

code 4

P
pointers

64-bit mode 17

© Copyright IBM Corp. 2017 23

24 XL C/C++: Migration Guide for Little Endian Distributions

IBM®

Product Number: 5765-J08; 5725-C73

Printed in USA

GC27-8036-00

	Contents
	About this document
	Who should read this document
	How to use this document
	Conventions
	Related information
	Available help information
	Standards and specifications
	Other IBM information
	Other information

	Technical support
	How to send your comments

	Chapter 1. Migrating from AIX to Linux for little endian distributions
	Chapter 2. Migrating from Linux for big endian distributions to Linux for little endian distributions
	Migrating program containing vector built-in functions from big endian systems

	Chapter 3. Migrating from earlier versions to the latest version
	Migrating applications that use transactional memory built-in functions

	Chapter 4. Compatibility with GNU
	Chapter 5. Mixing object files compiled with different compilers
	Chapter 6. Resolving the compatibility issues of IPA object files
	Chapter 7. Porting from 32-bit to 64-bit mode
	Assigning long values
	Assigning constant values to long variables
	Bit-shifting long values

	Assigning pointers
	Aligning aggregate data
	Calling Fortran code

	Notices
	Trademarks

	Index
	Numerics
	A
	B
	C
	D
	F
	L
	M
	P

