
Rational Business Developer
Version 8 Release 0

EGL Server Guide for IBM i

SC31-6841-05

���

Rational Business Developer
Version 8 Release 0

EGL Server Guide for IBM i

SC31-6841-05

���

Note
Before using this document, read the general information under Chapter 7, “Notices,” on page 37.

Fifth edition (January 2011)

This edition applies to version 8.0 of IBM Rational Business Developer and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1989, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Installing and customizing
EGL Server for IBM i 1
Installation files for EGL Server for IBM i. 1
Objects created or replaced during installation . . . 1
Setting up the IBM i library and files 1
FDAPREP preparation script file for IBM i 2
Customizing EGL Server 3

Specifying a language 3
Changing the code page for EGL system libraries 4

Administering EGL Server for IBM i 4
Data description specifications generated by EGL 4
Runtime considerations: commitment control
cycles 5

Chapter 2. Reviewing and preparing the
generated output 7
Outputs of generation 7

Objects generated for programs 8
Objects generated for data tables 9
Objects generated for form groups 9

Preparation to run generated programs 9
Starting the IBM i remote build server 10
Verifying the IBM i remote build server 10
Launching the build plan manually 11
Preparing a DB2 program. 11
Customizing compiler process options using
VGNCBLOP 11

Chapter 3. Running a generated
program on an IBM i system 13

Setting up the environment to run the generated
programs 13
Establishing a library list for a job 14
Running EGL programs and passing arguments . . 15

Running EGL programs under IBM i 15
Passing arguments and declaring parameters . . 15

EGL run units 16
Using tables with run units 16
Using activation groups with run units 17

Chapter 4. Diagnosing problems during
run time 19
Diagnostic commands 19
IBM i First Failure Data Capture 19

Chapter 5. Exception codes. 21

Chapter 6. Messages. 23
Message format 23
Escape messages. 23
Diagnostic and informational messages 24

Chapter 7. Notices 37
Programming interface information 39
Trademarks and service marks 39

© Copyright IBM Corp. 1989, 2011 iii

iv EGL Server Guide for IBM i

Chapter 1. Installing and customizing EGL Server for IBM i

This chapter contains general information on the installation and customization of
EGL Server for IBM® i on the host and EGL on the workstation.

Installation files for EGL Server for IBM i
EGL Server for IBM i is in the Rational Business Developer directory, which is in
the product shared resources directory.

The QEGL.zip file contains the runtime code and is in the following plug-in folder,
where version is the current version of the product:
com.ibm.etools.egl.generators.cobol_version\iSeriesRuntime

The ReadMe.txt file is in the same folder and contains the instructions for installing
the EGL Server for IBM i.

For information about specifying the language for your environment, see
“Customizing EGL Server” on page 3.

Objects created or replaced during installation
Table 1 provides a general description of the objects that are created or replaced
during the installation process.

Table 1. Objects created or replaced during the installation process

Object and library name Type Description

QEGL QSYS *LIB The primary library for the system objects that
constitute EGL Server for IBM i.

Setting up the IBM i library and files
After the generate and preparation steps are complete for an EGL program, the
outputs move into files in the library that is specified with the destLibrary build
descriptor option. The default value for the destLibrary build descriptor option is
QGPL.

Before the preparation step can run, you must create a set of files in that library.
Table 2 contains a list and description of the files that must be created.

Table 2. Generation output files

File name Type Description

QVGNCBLS PF-SRC EGL generation COBOL source

QVGNCLS PF-SRC EGL generation CL source

QVGNDDSS PF-SRC EGL generation DDS source file

QVGNEVF PF-SRC EVF parts control file

QVGNMAPG PF-DTA EGL generation form group source

QVGNTAB PF-DTA EGL generation table data

QVGNWORK PF-SRC EGL generation work file

© Copyright IBM Corp. 1989, 2011 1

Create the generation output files by using the following commands:
CRTSRCPF FILE(QGPL/QVGNCBLS) RCDLEN(92) TEXT(’EGL GENERATION - COBOL SRC’)
CRTSRCPF FILE(QGPL/QVGNCLS) RCDLEN(92) TEXT(’EGL GENERATION - CL SRC’)
CRTSRCPF FILE(QGPL/QVGNDDSS) RCDLEN(92) TEXT(’EGL GENERATION - DDS SRC’)
CRTSRCPF FILE(QGPL/QVGNEVF) RCDLEN(92) TEXT(’EGL GENERATION - VARIABLES’)
CRTSRCPF FILE(QGPL/QVGNWORK) RCDLEN(150) TEXT(’EGL GENERATION - WORK FILE’)
CRTPF FILE(QGPL/QVGNMAPG) SRCFILE(QEGL/QVGNPDDS) SRCMBR(TBLMAP) MBR(*NONE)

TEXT(’EGL GENERATION- FORM GROUP FILE’)
MAXMBRS(*NOMAX) AUT(*CHANGE) OPTION(*NOSRC *NOLIST)

CRTPF FILE(QGPL/QVGNTAB) SRCFILE(QEGL/QVGNPDDS) SRCMBR(TBLMAP) MBR(*NONE)
TEXT(’EGL TABLE DATA’) MAXMBRS(*NOMAX) AUT(*CHANGE) +
OPTION(*NOSRC *NOLIST)

To avoid name collisions when multiple application developers are using the same
host IBM i system, each user must have a separate library by specifying a unique
value for the destLibrary build descriptor option.

After you create the library, put the files listed in Table 2 on page 1 in the library.
You can use one of the following REXX code to create the files:
v The EGLSETUP script in the QEGL.zip file.
v The EGLSETUP program in QEGL/QREXSRC.

For example,
STRREXPRC SRCMBR(EGLSETUP) SRCFILE(QEGL/QREXSRC) PARM(xxxxxx)

where xxxxxx is the name of the library.

If you are using client server support for EGL to call non-EGL-generated programs,
locate QVGNRNCL in the QVGNSAMP file of your QEGL library. Run CRTCLPGM on
the QVGNRNCL file and place the program in all libraries that contain a non-EGL
program that will be called from an EGL-generated client. If you do not complete
these steps, unresolved references to the QVGNRNCL file will exist.

FDAPREP preparation script file for IBM i
To begin preparation, the build server invokes a REXX script called FDAPREP on
IBM i. The script is in the QEGL/QREXSRC file, but can be copied to another location
and customized.

The build server invokes the script by using the STRREXPRC command:
STRREXPRC SRCMBR’(FDAPREP)’ SRCFILE’(*LIBL/QREXSRC)’ ... (other parms)

The file must be in the first occurrence in the library that has QREXSRC.

The preparation script is written in standard REXX, but you can customize it. At
generation time, the user defines the SYMPARM symbolic parameters in the build
descriptor. The parameters are available to the program as standard REXX
variables; you can use the parameters to influence the logic as needed. Some
standard variables are always defined, as in the following example:
EZEFUNCTION="PMN"
EZEDESTLIBRARY="DBANERJE"
EZEDESTUSERID="DBANERJE"
SYSTEM="ISERIESC"
EZESQL="N"
EZEENV="ISERIESC"
EZETRAN="MAIN400"

2 EGL Server Guide for IBM i

DEBUG="YES"
SYSTEM="ISERIESC"
HEAPSIZE="1000"
EZEMBR="MAIN400"
EZEGMBR="MAIN400"
EZEGDATE="08/16/06"
ZENLS="ENU"
ZEGTIME="15:39:13"

The following SYMPARMS are recognized by the REXX script.

retainTemporaryFiles=YES
Retains temporary files, such as the COBOL source file that is used in the
preparation step, in the library that the destLibrary build descriptor option
defines after the compile is complete. The default value is NO, which causes
the files to be deleted.

DEBUG=YES
Invokes the COBOL compiler with the debug option. If you specify YES, the
temporary files from the preparation step are retained, regardless of the value
of the retainTemporaryFiles option.

Listing=NO
Causes the COBOL compiler to be invoked and a compiler listing is not
generated. Invokes the COBOL compiler. A compiler listing does not generate.
This setting can be used to accelerate the preparation process, because the time
to download the listing file can be significant. The default value is YES, which
causes the compiler listing to generate.

The generation step creates the aliasname.evf file, where aliasname is the alias of
the part that is generated. The file contains the variables and is passed to the
preparation script.

Customizing EGL Server
After you install EGL Server for IBM i, you can customize it by specifying a
language and changing the code pages.

Specifying a language
Table 3 contains the list of supported languages and the associated language
module for each language. The language modules are included in the QEGL
Library. The EGL Server uses the messages in the QEGL/QVGNMSGF file. To specify the
language to be used, copy the file for the desired language to QVGNMSGF.

Table 3. Supported languages

Suffix Language Module

CHS Simplified Chinese QVGNMCHS

CHT Traditional Chinese QVGNMCHT

DEU German QVGNMDEU

ENU English QVGNMENU

ESP Spanish QVGNMESP

FRA French QVGNMFRA

ITA Italian QVGNMITA

JPN Japanese (Katakana) QVGNMJPN

KOR Korean QVGNMKOR

Chapter 1. Installing and customizing EGL Server for IBM i 3

Table 3. Supported languages (continued)

Suffix Language Module

PTB Brazilian Portuguese QVGNMPTB

Changing the code page for EGL system libraries
The EGL run time comes with 11 precompiled system library programs. These
programs are written in COBOL. When the programs are distributed, they are
precompiled; therefore, by default they use the English code page for any character
to/from Unicode transformations. You do not have to use the default; you can alter
the settings to use the code page that you need.

Each time a system library performs a transformation between character and
Unicode, the system library calls a runtime program called VGNUCDE. This
VGNUCDE program is written in COBOL and does transformations by using the
COBOL MOVE statements to and from character and national character values,
which causes the appropriate transformations. The source of VGNUCDE is
provided in your QEGL\QVGNSAMP data set.

To alter this program so that it uses your required code page:
1. Recompile the source code by specifying your code page in the COBOL

parameters or by default in your IBM i configuration.
2. Specify whether the resulting program is to replace the VGNUCDE program in

the QEGL data set, or is to be placed in any data set that precedes QEGL in the
LIBL concatenation order.

To compile the VGNUCDE program, use the following commands:
CRTCBLMOD MODULE(QEGL/VGNUCDE) SRCFILE(QEGL/QVGNSAMP) SRCMBR(VGNUCDE)
CRTPGM PGM(QEGL/VGNUCDE) MODULE(QEGL/VGNUCDE)

Administering EGL Server for IBM i
This section describes the general considerations for administering EGL Server for
IBM i.
v “Data description specifications generated by EGL”
v “Runtime considerations: commitment control cycles” on page 5

Data description specifications generated by EGL
If the genDDSFile build descriptor option is set to YES, the data description
specifications (DDS) generate. The information is generated from the EGL record
definitions that are used for file I/O operations.

The generated DDS information is useful to IBM i system administrators or
application developers. System administrators can use the DDS source members, or
modified versions of them, to create the files that do not already exist on the IBM i
system. Using the DDS source information to create the files qualifies the files for
IBM i data management functions, such as specifying key fields, unique keys, and
logical files.

You are not required to use the DDS source information to create files because EGL
does not require programs to access externally described files. EGL relies on the
record definition, which is built into the *PGM object, for the structure of a record.

4 EGL Server Guide for IBM i

However, using the DDS information guarantees an agreement between the
program view of the record structure and the record data stored on the IBM i
system.

DDS keyword modification
You might need to modify the DDS source members that correspond to records
that are defined for indexed and alternate index files. The minimum modification
is to add DDS keywords to the file and record level identifiers in the DDS source
member.Table 4 shows the DDS keywords and the conditions under which they are
required.

To optimize record retrieval and simplify program logic, you can add other DDS
keywords. For example, you can use logical files to select a subset of physical file
records. You can also build your own DDS source member, based on your
knowledge of the EGL record definitions in the program. If you build your own
DDS source member, individual field names and field lengths in the DDS source
do not need to differ from those of the EGL record definition. However, the record
length and key field length of the EGL record definition and the DDS source must
be equal.

Table 4. Conditions for using DDS keywords

DDS keyword Condition

PFILE(pfname) When using the DDS information to create a logical file.
pfname identifies the physical file on which the logical file is
based. PFILE is a record-level keyword.

UNIQUE When the program tests for the unique or duplicate record
I/O error conditions. UNIQUE is a file-level keyword.

Restrictions on logical files
EGL supports simple logical files that use only one record format. The DDS source
information specifies only one file on the PFILE keyword.

Changing DDS member types
EGL creates DDS source members without specifying a member type. To modify
the DDS source information, change the member type to one of the following:
v PF for a DDS source member describing a physical file
v LF for a DDS source member describing a logical file

When you change the member type to PF or LF, the Source Entry Utility (SEU)
prompting is enabled so that you can modify the DDS source member.

Runtime considerations: commitment control cycles
To use IBM i Commitment Control Services for single-system IBM i programs, you
must explicitly start and end a commitment control cycle by using the start
commitment control (STRCMTCTL) command and the end commitment control
(ENDCMTCTL) command.

EGL Server for IBM i does not implicitly start or end commitment control cycles
for single-system IBM i programs. However, DB2® implicitly starts commitment
control automatically for programs that use SQL I/O statements. After
commitment control starts for the job, both native database I/O and SQL I/O can
use the common commitment control that IBM i provides.

Chapter 1. Installing and customizing EGL Server for IBM i 5

For EGL client and server programs and web programs, the runtime control
language (CL) for the program starts the commitment control.

You can change the commitment control for an SQL program by modifying the
FDAPREP REXX program. You can further control the commitment control by
specifying a user-defined symbolic parameter during generation.

If no commitment control cycle is active and the program attempts to open a file
that requires commitment control, the program ends with an error condition. A
probable reason for the error is likely that the program attempted to explicitly
commit changes to a file. Programs can explicitly commit changes only within an
active commitment control cycle. For details about the error, see the messages in
the job log.

6 EGL Server Guide for IBM i

Chapter 2. Reviewing and preparing the generated output

Before EGL runs your programs, it prepares generation output files. The format
and content of the output files are in COBOL, control language (CL) source, and
structured binary streams.

Outputs of generation
After you generate a program, several objects must be transferred to the IBM i host
system as members in various IBM i physical files. On the IBM i host system, these
members must be prepared before the program can be run.

Table 5 provides information about the types of files produced by generation,
including the following information:
v Type of object produced
v Physical file name where the object is written as a member
v How the member name of the object is derived
v Whether production is controlled by a generation option
v Whether the object can be modified after generation is performed

For more information about controlling and modifying generation and preparation
of IBM i objects, see the EGL Generation Guide in the Rational Business Developer
information center.

Table 5. Objects transferred to an IBM i host by the EGL preparation utility

File type Physical file name
PF member name and
generated file name

EGL build descriptor
option Modifiable

Objects generated for programs

ILE COBOL
program

QVGNCBLS Program name aliasName.cbl None No

Runtime CL QVGNCLS Program name aliasName.clr None Yes

Objects generated for tables

Table Binary Image QVGNTAB Table name tablname.tab genDataTables No

Objects generated for form groups

Print services
program (See note
3)

QVGNCBLS Form group name
formgname.cbl

genFormGroup,
genHelpFormGroup

No

Form group
module (See note 4)

QVGNMAPG Form group name
formgnameFM.fmt

genFormGroup,
genHelpFormGroup

No

Objects generated for all member types (programs, tables, form groups)

Generation
variables file

QVGNEVF aliasName.evf None No

Build plan not applicable aliasName.BuildPlan.xml buildPlan No

Objects generated for message tables

Message file QVGNMSGS Member specified when
generation was requested
tablename.msg

genDataTables Yes

Objects generated for file creation

© Copyright IBM Corp. 1989, 2011 7

Table 5. Objects transferred to an IBM i host by the EGL preparation utility (continued)

File type Physical file name
PF member name and
generated file name

EGL build descriptor
option Modifiable

Data definition
specification (DDS)

QVGNDDSS File name as specified in EGL
record definitions
filename.dds

genDDSFile Yes

Notes:

1. The generator produces ILE COBOL for the IBM i environments.

2. Generated programs, libraries, services, tables, and form group objects are environment dependent. All objects are
generated for one environment and cannot be used in another environment.

3. This object is produced only if the form group contains print forms.

4. This object is produced only if the form group contains text forms.

5. aliasName is the alias property of the program. If an alias is not specified, it is the first seven characters of the
program name.

Objects generated for programs
For programs, the following objects are generated:
v ILE COBOL programs
v Runtime CL programs
v Data definition specifications

ILE COBOL program
The generated program is an ILE COBOL program that contains the following
data:
v Program control logic
v Logic for functions and I/O operations
v Data for both the program and program control logic

Runtime CL
This CL program is used only when the COBOL program is invoked remotely by
using EGL client/server interface

The runtime CL sets commitment control and adds libraries to the IBM i library list
when a program runs. The CL is generated from the fda24ebc.tpl and fda24eec.tpl
templates, which can be customized.

The name of the runtime CL is as follows:
aliasName.clr

aliasName
Name of the program.

Data definition specification (DDS)
The generator produces IBM i data definition specifications (DDS) to create
instances of IBM i physical and logical files that the application uses. The DDS that
is produced is the result of the indexed, relative and serial record types that are used
within the program being generated. The genDDSFile build descriptor option
produces the DDS output type. The build script uploads the DDS files to the host
system, but does not manage processing beyond that point.

8 EGL Server Guide for IBM i

Objects generated for data tables
For data tables, the following objects are generated:
v DataTable binary image files
v Message definitions

DataTable binary image file
The DataTable binary image file contains the contents of the runtime DataTable
member, as defined by EGL. The DataTable contents are already converted to the
code page of the target runtime environment. The DataTable contents are formatted
to a program-defined structure, which might contain various data types. The
contents are treated as binary data. You might not be able to view the contents
outside of the scope of EGL and utilities.

The genDataTables build descriptor option produces the table binary image files.

Message definitions
For message tables, the generator produces a file that contains the raw message
definitions. The preparation script file, FDAPREP, processes the message definitions
file to create an IBM i native message file object (*MSGF type).

The genDataTables build descriptor option produces the message file, which is the
IBM i implementation of the message table. When the build plan runs, it uploads
the message file and invokes the preparation script to generate the message object
on IBM i.

Objects generated for form groups
For form groups, the form group format module is generated.

Form group format module
The form group format module is a generated structure that describes the form
layout for text forms in the form group. The generator builds the structure as a
binary image file that is converted to the code page of the target system. This
object is produced when you specify the genFormGroup or genHelpFormGroup
build descriptor options and when the application has defined text forms in the
form group.

Print services program
The print services program is a COBOL program that performs print I/O, output
formatting, and set statements for a form group that contains print forms. This
object is produced when you specify the genFormGroup or genHelpFormGroup
build descriptor options.

Preparation to run generated programs
To prepare a for a generated program to run in the IBM i environment, use the
IBM i Remote Build Server. The IBM i Remote Build Server is a component of the
EGL run time. For details, see “Starting the IBM i remote build server” on page 10.

The build plan is an XML file that is created in the generation directory. The build
plan launcher, which is a Java program, launches the build plan to prepare a
program on IBM i.

When the program generates with the prep build descriptor option set to YES, the
build plan launches automatically at the end of the generation. Otherwise, the

Chapter 2. Reviewing and preparing the generated output 9

build plan can be launched manually by following the process described in
“Launching the build plan manually” on page 11.

The build plan launcher uses the build plan and communicates with the build
server to complete the preparation. The build plan contains all the information
necessary to transfer the applicable generated files to IBM i and to build (compile
and bind) the program.

A key component of the preparation is the preparation script. The preparation
script, FDAPREP, is a REXX script which is installed as part of the runtime code
and is described in “FDAPREP preparation script file for IBM i” on page 2.

Starting the IBM i remote build server
The remote build server is a program, named CCUBLDS, that runs as a job on the
IBM i. The CCUBLDS program uses a TCP/IP port. After CCUBLDS starts, it runs
continuously until the job is canceled. To invoke the build server, you must have
an administrator user ID that is authorized to access user profiles. Also, the QEGL
library must be in the library list when the build server starts.

The following example shows the command to start the build server job:
SBMJOB CMD(CALL PGM(*LIBL/CCUBLDS) PARM(’-p’ ’2600’)) JOB(CCUBLDS) JOBQ(QSYS/QSYSNOMAX)

In the example, the server port is 2600, but you can use any available port number.

Verifying the IBM i remote build server
After the build server starts, verify that it is running properly. At the Windows
workstation where the preparation step will be run, complete these steps:
1. In the com.ibm.etools.egl.distributedbuild plug-in, find the directory that contains

the ccubldc.exe program. Add this directory to the PATH environment
variable.

2. From the command line, issue the following command:
ccubldc -h host@port -au userid -ap password -b id -r 37 -k 1252

host
IP name or the IP address of the IBM i host machine

port
Port number of the build server

userid
User ID that the preparation client will use

password
Login password for the user ID on the IBM i host

The following example shows the expected response:
05/03/09 14:58:56 (c) Copyright, IBM Corp. 2001 Copyright (c) 2002 Rational Software Corporation
05/03/09 14:58:57 *** Success ***
05/03/09 14:58:57
Command: id
****************** Build Script Output Follows *****************
uid=926(USERID) gid=102(GROUPID) groups=102(GROUPID)
****************** End Of Build Script Output ******************
05/03/09 14:58:58 *--

10 EGL Server Guide for IBM i

Launching the build plan manually
You can create and save a build plan that you can invoke later. To launch a saved
build plan, complete these steps:
1. Make sure that eglbatchgen.jar is in your Java class path. The file is

automatically placed in your Java class path on the computer where you install
EGL. The JAR file is in the following directory:

shared_resources\plugins\com.ibm.etools.egl.batchgeneration_version\runtime

shared_resources
The shared resources directory for your product, such as C:\Program
Files\IBM\SDP70Shared. If you installed and kept a version of Rational®

Application Developer before you installed your current product, you
might need to specify the shared resources directory that was set up in the
earlier installation.

version
The installed version of the plug-in; for example, 7.0.0

2. Similarly, make sure that your PATH variable includes that directory.
wstools\eclipse\plugins\
com.ibm.etools.egl.distributedbuild_version\runtime

version
The installed version of the plug-in; for example, 7.0.0

3. From a command line, enter the following command:
java com.ibm.etools.egl.distributedbuild.BuildPlanLauncher bp

bp The fully qualified path of the build plan file.

Preparing a DB2 program
When you declare an SQL record, you can use the tableName property to specify
the name of the SQL table by using either the SQL naming convention of
collection.tablename or the IBM i SYSTEM naming convention of
collection/tablename. Tailor the OPTION parameter on the FDAPREP script to be
*SQL (collection.tablename) or *SYS (collection/tablename), depending on the
format you need. The default naming convention is *SQL.

When you tailor the FDAPREP script, make sure that the *APOSTSQL and
*QUOTE values are part of the OPTION parameter.

Customizing compiler process options using VGNCBLOP
VGNCBLOP is a COBOL copybook member that is shipped with the product. The
purpose of this member is to provide one place for you to set custom compiler
options for all your EGL-generated COBOL programs. As shipped, this member
contains only the following statement:
OPTIONS BLK NOMONOPRC

The EGL generator adds the following line to the COBOL source code so that the
OPTIONS statement is processed by the COBOL compiler:
PROCESS COPY VGNCBLOP

If you want to modify VGNCBLOP, take one of the following actions:
v Edit the file in the shipped QEGL runtime library.

Chapter 2. Reviewing and preparing the generated output 11

v Create a file named QCBLLESRC in a private library, include the modified
VGNCBLOP member in that file, and ensure that the private library precedes
QEGL in the library list.

12 EGL Server Guide for IBM i

Chapter 3. Running a generated program on an IBM i system

This chapter describes the information required to run EGL programs on an IBM i
system.

Setting up the environment to run the generated programs
EGL Server for IBM i and the generated COBOL programs use the runtime job
library list (*LIBL) to resolve all named object references. Before you start the
program, you must set up the library list. Table 6 on page 14 lists the names and
types of objects that EGL might use while running in the IBM i environment. EGL
searches for these objects when the program runs by scanning the libraries that are
in the library list. When you run EGL programs, add the installation library, QEGL,
to the library list of the end user.

EGL uses the first object it finds that matches the target name in the libraries in the
library list. EGL uses this first-found object in all cases of object resolution except
for objects of *FILE type. For objects of *FILE type, EGL uses the first member it
finds that matches the target name, after the first member is qualified with the
correct file name. Multiple files with the same name might exist in the libraries
named in the library list. EGL checks each library file until it finds the first
instance of the member name.

There are two exceptions to using the library list to resolve object references by
running programs:
v When EGL data tables and form groups are in the IBM i IFS file system for

improved runtime performance
v In either of the following situations. In either case, SQL object resolution is

independent of the library list.
– When the object (table or view) was explicitly qualified when an SQL record

was defined during development
– When the object was implicitly qualified when the program using the record

was compiled

© Copyright IBM Corp. 1989, 2011 13

Table 6. Names and types of objects used by EGL at run time

Object and
library name Type Description

QVGN* QEGL *PGM *SRVPGM EGL Server for IBM i program and service program
objects

QVGNMSGF
QEGL

*MSGF EGL Server for IBM i product message file

QVGNMAPG
userlib

*FILE Members of this file contain the 5250 form groups of
the generated program. Members are named for the
form group it contains.

QVGNTAB
userlib

*FILE Members of this file contain the data tables of the
generated program. Members are named for the data
table it contains.

QVGNPRNT
QEGL

*FILE This is the standard printer device file for program
use of the Printer file. Usually, all jobs on the system
share one of these objects.

QVGNMAP
QEGL

*FILE This standard display device file is used for
interactive programs when they display maps.
Usually, all jobs on the system share one of these
objects.

mmmmnls
userlib

*MSGF The message table of a specific program, where
mmmm is the message table prefix as defined to the
program, and nls is the value of the targetNLS build
descriptor option when the program was generated.

calltarg userlib *PGM Any target of the call or transfer statements coded
within a program

filetarg userlib *FILE Any file named on record definitions used by EGL
process options within a program

Note: The userlib library in Table 6 is the library that the application developer
specified in the destLibrary build descriptor option.

Establishing a library list for a job
You can establish a library list for a job in several ways, but each method involves
using an IBM i system command. You can also mix the methods. The initial IBM i
library list is contained in the job description that the user profile references. For
more information about the following IBM i system commands, enter the
command at a command line entry on IBM i and request command prompting.

ADDLIBLE
Adds a library list entry

CHGCURLIB
Changes the current library

CHGSYSLIBL
Changes the system library list

14 EGL Server Guide for IBM i

Running EGL programs and passing arguments

Running EGL programs under IBM i
To run an EGL program in the IBM i environment, call the *PGM program object
just as you would any other *PGM object on IBM i. You can run main and called
EGL programs from menus, commands, command lines, or interlanguage program
calls. The following examples show how to run an EGL program from an IBM i
command line:
v To call a program without the use of arguments, use the following format:

CALL aliasName

v To call a program that expects a parameter declared as CHAR(16), use the
following format:

CALL aliasName (’char arg literal’)

v To call program that expects two parameters declared as CHAR (16) and
DECIMAL (15,5), use the following format:

CALL aliasName (’char arg literal’ 1234)

Passing arguments and declaring parameters
Arguments are passed to EGL programs in the same way that other IBM i *PGM
objects pass and receive arguments. Both main and called EGL programs can
receive arguments. However, main programs have a more fixed argument format,
and called programs offer parameter definition diversity. Always use a reference to
pass an argument: pass a pointer to the argument.

Main programs
Main programs can receive the following arguments:
v A single record, as specified by the inputRecord property for the program
v A single form, as specified by the inputForm property for a textUI program
v A single VGUI record, as specified by the inputUIRecord property for a

VGWebTransaction program

You can pass a data area from a non-EGL program to a main EGL program. The
data area that you pass must have the following structure:
v A 2-byte length field that specifies the length of the entire data area being

passed. This length is considered to be part of the argument.
v The actual data. Match or map this data exactly to the EGL record specified by

the inputRecord property for the EGL program. If the data area does not match
or map to the EGL record, design the EGL program logic to handle record fields
that are not initialized.

The generated EGL program accesses only the portion of the record data that is
within the lesser of either of the following length bounds:
v The length passed with the record data
v The length of the record specified by the inputRecord property

The details of the inputRecord property are important if you are using a non-EGL
program to pass the argument, because the non-EGL program establishes the
argument storage layout. EGL programs account for all internal structures and data
typing when records with the same name are specified for the transfer or show
statement or the inputRecord property for the target EGL program specify records
with the same name.

Chapter 3. Running a generated program on an IBM i system 15

The structure of the form specified by inputForm property is an EGL-specific
format. You can only pass a form from one EGL textUI program to another EGL
textUI program by using the EGL show statement. The structure of the VGUI
record that the inputRecord property specifies is also an EGL-specific format. You
can use the EGL show statement only to pass a VGUI record from one EGL
VGWebTransaction program to another show statement.

Called programs
Called programs that are defined with parameters must receive matching
arguments when they are called. Otherwise, you might receive unpredictable
results. Do not reference an argument that either has not been received or has been
received with a data type that is different from its declared matching parameter. If
you attempt such a reference, a function check typically occurs.

For EGL-called programs, you can declare a maximum of 30 parameters. You can
declare parameters as EGL data items, records, or forms.

Unlike a record that is passed to a main program as specified by its inputRecord
property, the record arguments for called programs do not have the leading 2-byte
length field preceding the record data.

EGL-called programs that are called from an IBM i command line or CL can
receive literal numeral arguments if the corresponding EGL parameters are
declared as decimal, 15 digits, 5 decimals. For more information about the literal
data types, see the IBM i CL Programmer's Guide.

EGL run units
EGL programs operate in a run unit that is similar to that of ILE COBOL. You can
consider the EGL run unit to be a subset of the ILE COBOL run unit, because the
COBOL run unit can exist before and persist longer than the EGL run unit.

The first EGL program on the IBM i program call stack for a specific job binds the
EGL run unit. Run units are scoped in a single job. As long as an EGL program is
on the program call stack, an EGL run unit is active. Only one EGL run unit can be
active in a job at any time. This difference is the most obvious difference between
EGL run units and ILE COBOL run units.

Main or called EGL programs can initiate an EGL run unit. An EGL main program
can exist in an EGL run unit only if the main program is the initiating application.
Main programs cannot be called from a program that initiates an EGL run unit,
even if the program is called from a non-EGL program while an EGL run unit is
active.

Using tables with run units
The resource type of the data tables in an EGL run unit is specific to EGL and is
not a function. EGL data tables are static entities, which perform quick table search
programming tasks. EGL programs in the same EGL run unit can share the data
tables. Therefore, the data tables are loaded into storage from a database file.
Usually, data table in-storage scoping ends with the EGL run unit in which the
data tables are loaded. However, two factors that are associated with managing
EGL data tables warrant the in-storage scoping of data tables to extend beyond the
EGL run unit:
v The time necessary to acquire memory, to read a data table from a database file,

and to load the table into memory

16 EGL Server Guide for IBM i

v The need to retain modified data tables for use by another EGL run unit, thereby
serving as a quick program-to-program communication method

The in-storage scoping for EGL data tables extends beyond the EGL run unit in the
following situations:
v The resident property is set to YES
v The run unit is ended by the transfer to program statement without specifying

that the target program is a non-EGL program. Instead, the target program is
externally defined either on the transfer to program statement or in the linkage
options part.

Because the in-storage scoping extends beyond the run unit in those situations, the
program eventually enters the EGL run unit again. When the program reenters the
run unit, the resident tables of the previous EGL run unit need to remain available
in storage. When in-storage scoping for an EGL data table extends beyond the EGL
unit, a program can reenter the EGL run unit.

The transfer to program statement is the non-committal method of ending an EGL
run unit. All other methods close the resident data table, all other data tables, and
all other EGL resources.

Using activation groups with run units
EGL run units typically correlate on a one-to-one basis with ILE COBOL run units
and ILE activation groups. When an EGL program initiates or begins a run unit, a
named activation group is also initiated. When you use a named activation group,
you can make sure that all EGL programs that run in a job share the same
resources, in terms of ILE resource management.

If your application system consists of non-EGL and EGL programs, you can either
add your non-EGL programs to the named activation group or use a different
activation group. When you decide whether to add to a named activation group or
use a different activation group, consider two important aspects:
1. Sharing commitment control logical units of work
2. Sharing database file Open Data Paths

If you want to share both ILE resources, use the named activation group. If you
want to isolate the ILE resources in terms of their use by EGL and non-EGL
program, use different activation groups.

The ILE activation group name is established when EGL programs are in the
preparation phase of application development. The EGL build script, which creates
IBM i program objects, names the activation group in the IBM i command template
for the CRTPGM command. The keyword is ACTGRP, and the default is
ACTGRP(QEGL).

Chapter 3. Running a generated program on an IBM i system 17

18 EGL Server Guide for IBM i

Chapter 4. Diagnosing problems during run time

If you encounter problems while running your EGL programs, you can diagnose
problems by using diagnostic commands and capture error information by using
IBM i First Failure Data Capture.

Diagnostic commands
You can use IBM i standard diagnostic commands to diagnose problems with an
EGL program, such as the following commands:
v ADDTRC (Add Trace Statement)
v STRJOBTRC (Start Job Trace)
v ENDJOBTRC (End Job Trace)
v PRTJOBTRC (Print Job Trace Data)
v STRDBG (Start Debug)
v ENDDBG (End Debug)

For most problems, you need the following information when you contact the IBM
Support Center:
v The runtime job log, which records all messages, including second-level text.

To make sure that second-level text is included, change the job before you use
the CHGJOB LOG(4 00 *SECLVL) command to start the failed scenario. When the
job ends, the job log is spooled to the assigned output queue. Usually, the most
important information in the job log is the escape message that initiates the
abnormal condition, which caused the EGL program to end. The key pieces of
diagnostic information are sending the message, the program receiving the
message, and the instructions being sent to the program. The other messages are
also important. Be sure to inspect and report the entire job log of information.

v The ILE COBOL compiler listing, which includes the following information:
– EGL annotated statements (use the commentLevel build descriptor option)
– ILE COBOL source statements (use the OPTION(*SOURCE) compiler option)

v Any spooled files that might have been created as a result of the job ending
abnormally, such as dumps or display job snapshots. You can find all spooled
file output from a job by using the WRKJOB command to work with the job. Then
you can select the option from the job menu to display spooled output.

IBM i First Failure Data Capture
The IBM i First Failure Data Capture component runs unit data dumps to send to
the IBM Support Center. EGL programs link into the component when report
software error (QpdReportSoftwareError), an IBM i System Programming Interface
(SPI), runs a function check (abends).

EGL also uses the report software error SPI function when illogical conditions that
might lead to a function check (abend) are detected during run time. In these
cases, a unique signature that is associated with the error condition is provided to
the system service. The system service can use the unique signature to scan a
service database for the same signature and possible PTFs that can be applied. In
some cases, using a unique signature to scan the database can help to solve a
problem faster.

© Copyright IBM Corp. 1989, 2011 19

When job log messages indicate that the IBM i system problem log is updated, use
the IBM i command DSPPRB (Display Problem) to view a list of the most recent
problems captured on the system. Then, select the option to display the problem
that is associated with QVGNHS. QVGNHS is the service program that constitutes
the majority of EGL Server for IBM i. A procedure of this service program issues
the SPI function to record the problem. When the problem is displayed, you can
use the menu selections and function keys to display more information, such as
spooled files, problem history files, and APAR libraries. The spooled files contain
dump data and a copy of the job attributes at the time of the dump.

For more information about using the automated system problem log in an
automated manner, see product documentation for SystemView® System Manager.

20 EGL Server Guide for IBM i

Chapter 5. Exception codes

Rational COBOL Runtime issues the following exception codes:

9980 No library function with specified signature exists; you may need to
regenerate the library

9981 EGL runtime exception

9986 Segmented converse exception; internal EGL use only

9988 User thrown exception

9989 DL/1 exception

9990 File I/O exception

9991 MQ I/O exception

9992 SQL exception

9993 Service invocation exception

9994 Service binding exception

9996 Invocation exception

9997 Null value exception

9998 Index out of bounds exception

9999 Type cast exception

© Copyright IBM Corp. 1989, 2011 21

22 EGL Server Guide for IBM i

Chapter 6. Messages

This section describes the EGL Server messages.

You can view the server messages online on IBM i by using the Work with
Message Description command: WRKMSGD MSGF(QEGL/OVGNMSGF).

EGL programs use the standard IBM i message handling functions to call non-EGL
programs. The job log automatically logs diagnostic information during run time.

Message format
Each message consists of a message identifier (for example, ELA00023P) and
message text. The text is a short phrase or sentence that describes the error
condition.

The message identifier consists of two fields: prefix and message number. The
format of the message identifier is xxxnnnnn, where:

xxx Message prefix

nnnn Message number associated with the error condition that caused the
message to be displayed.

Escape messages
EGL programs send these messages as IBM i ESCAPE type messages to the
program queue of the calling non-EGL program. The calling program must
monitor these messages to avoid an IBM i function check.

GEN9001 EGL Server MAIN shell cannot invoke
the target program %1.

Explanation: The diagnostic messages that precede
this message in the job log explain the nature of the
error. In most cases, the application or system
programmer must adjust your application system to
correct the problem.

User response: Either print the job log or record the
messages along with the following:

v The from program name.

v The to program name.

v The instruction numbers.

You can view or print the job log with the DSPJOBLOG
command. If no diagnostic messages precede this
message, make sure that your job logged all messages
by checking the Message Logging or LOG value of
your job definition or job description, depending on
whether the job is interactive or batch. For interactive
jobs, the command DSPJOB OPTION(*DFNA) will
display the Message Logging value.

Contact your application or system programmer with
the information you gathered.

GEN9002 EGL Server encountered a program error
which caused the run unit to end.

Explanation: The diagnostic messages that precede
this message in the job log explain the nature of the
error. In most cases, the application or system
programmer must adjust your application system to
correct the problem.

User response: Either print the job log or record the
messages along with the following:

v The from program name.

v The to program name.

v The instruction numbers.

You can view or print the job log with the DSPJOBLOG
command. If no diagnostic messages precede this
message, make sure that your job logged all messages
by checking the Message Logging or LOG value of
your job definition or job description, depending on

© Copyright IBM Corp. 1989, 2011 23

whether the job is interactive or batch. For interactive
jobs, the command DSPJOB OPTION(*DFNA) displays
the Message Logging value.

Contact your application or system programmer with
the information you gathered.

Diagnostic and informational messages
The following messages are sent as DIAGNOSTIC or INFORMATIONAL type
messages to the program queue of the calling program. These messages are
automatically posted in the job log file. Non-EGL programs that call EGL programs
cannot monitor the activities of these messages. Use the WRKJOB (Work with JOB)
command to view the job log. The Message Logging job attribute might filter some
or all of these messages in some way. To make sure that all messages are posted in
the job log, use a message logging value of LOG(4 00 *SECLVL) in your IBM i jobs.
For more information, see the WRKJOB and CHGJOB (Change Job) IBM i commands.

GEN0002 A new level of EGL Server for IBM i is
required for program program_name

Explanation: The generated COBOL program that is
specified in the message that is attempting to run is not
compatible with the installed version of EGL Server for
IBM i.

User response: Contact the system administrator for
the EGL Server for IBM i that should be installed.

GEN0005 Date entered is not valid for defined
date format format_value

Explanation: The data entered into a form field that is
defined with a date format property does not meet the
requirements of the format specification, or the month
or day of the month is not valid.

It is not necessary to enter the separator characters
shown in the message, but if you omit them, enter
leading zeros. For example, if the dateFormat is
MM/DD/YY, you can enter 070494.

User response: Enter the date in the format displayed
in the message.

GEN0009 Overflow occurred because the target
item is too short

Explanation: The target of a move or arithmetic
assignment statement is not large enough to hold the
result without truncating significant digits. If the
program logic did not handle the overflow exception
that occurred, then the program ends.

User response: Change the program in one of the
following ways:

v Increase the number of significant digits in the target
data item.

v If the program sets the V60ExceptionCompatibility
property to YES, define the program logic to handle
the overflow condition by using
VGVar.handleOverflow and
sysVar.overflowIndicator.

v If the program sets (or defaults) the
V60ExceptionCompatibility property to NO, define

the program logic to include a try ... onException
block that can catch overflow exceptions.

GEN0014 A replace was attempted without a
preceding get for update on record_name.

Explanation: To perform a replace request, a get
forUpdate or open forUpdate statement must first read
the specified record. The read for update might have
been lost as the result of a commit or rollback.

This error also occurs if the replace request is
associated with a specific get or open statement that
was not used to select the record.

User response: make sure that the replace statement
and the corresponding get forUpdate or get forUpdate
use the same record variable or resultSetID. Also, verify
that the sequence of statements is appropriate. Use the
EGL debugger, to step through the program.

GEN0021 An error occurred in program
program_name on statement number
statement_number

Explanation: The actual error that identifies the
problem is explained in messages following this
message in the job log.

User response: Correct the program and then generate
the program again.

GEN0022 Form group format module form_group
could not be loaded

Explanation: The form group format member is a
generated binary file that contains attributes that
describe the format and constant fields for text based
forms in a form group. Form group format members
are stored as members and are typically found in the
job's library list.

Refer to the job log for error messages that precede this
message to obtain additional information about the
error.

User response: Contact your application or system
programmer. Report the sequence of messages

24 EGL Server Guide for IBM i

including and preceding this message.

GEN0023 Call to data-table program table_name
was not successful

Explanation: A data table is a generated binary file
that contains program data. Data tables are stored as
members and are typically found in the library list of
the job.

Refer to the error messages that precede this message
in the job log for more details about the error.

User response: Contact your application or system
programmer, and report the sequence of messages
including and preceding this message.

GEN0024 EGL conversion table table_name could
not be found.

Explanation: Either the name specified on the
sysLib.convert call was not a member of the
QEGL/QEGLSCTB file, or the member that was found
is not a conversion table.

User response: Verify that the correct conversion table
name was specified in the sysLib.convert call. If the
table name was not correct, change the EGL program
and generate it again. If the table name is correct,
verify that the correct conversion table was installed.
The conversion table is a member in the file
QEGLSCTB in QEGL library.

GEN0026 A calculation caused a maximum-value
overflow.

Explanation: During a calculation in an arithmetic
statement, an intermediate result exceeded the
maximum value (18 significant digits). The maximum
value is based on the definition of the target variable,
which can be up to either 18 or 31 significant digits
based on the value of the maxNumericDigits build
descriptor option. Maximum value overflow also occurs
when a value is divided by zero. This error can only
occur when you set the checkNumericOverflow build
descriptor option to YES. If the program logic does not
handle the overflow exception that occurred, the
program ends.

User response: Correct the program logic in one of the
following ways:

v Increase the number of significant digits in the target
data item.

v If the program sets the V60ExceptionCompatibility
property to YES, define the program logic to handle
the overflow condition by using
VGVar.handleOverflow and sysVar.overflowIndicator.

v If the program sets (or defaults) the
V60ExceptionCompatibility property to NO, define
the program logic to include a try ... onException
block that can catch overflow exceptions.

GEN0027 The data on character-to-numeric move
is not valid.

Explanation: The statement in error involves a move
from a character to a numeric data item. The character
data item contains nonnumeric data.

User response: Change the program to make sure that
the source operand contains valid numeric data.

GEN0031 Call to program_name was not successful

Explanation: The program specified could not be
found. The programs that are being called are expected
in library list for the job.

Refer to the error messages that precede this message
in the job log for additional information about the
error.

User response: Contact your application or system
programmer, and report the sequence of messages
including and preceding this message.

GEN0033 Invocation of function function_name
returned exception code error_code.

Explanation: An error occurred while calling the
specified function, because the arguments passed to the
function were not correct.

The run unit ends.

User response: Correct the program so that its
expected arguments are passed to the function.

GEN0034 Program program_name was declared as a
main program and cannot be called.

Explanation: The specified program was declared as
either a main textUI program or as a main basic
program. Another program cannot call it.

User response: If you can use the call statement to
invoke the specified program, modify the program so
that the specified program is declared as a called
program. If specified program is a main program,
change the program to use the transfer statement to
invoke the specified program.

GEN0035 Data type error in input - enter again

Explanation: The data in the first highlighted field is
not valid numeric data. The field was defined as
numeric.

User response: Enter only numeric data in this field,
or press a validation bypass key to bypass the
validation check. In either situation, the program
continues.

Chapter 6. Messages 25

GEN0036 Input minimum length error - enter
again

Explanation: The data in the first highlighted field
does not contain enough characters to meet the
required minimum length.

User response: Enter enough characters to meet the
required minimum length, or press a validation bypass
key to bypass the validation check. In either situation,
the program continues.

GEN0037 Input not within defined range - enter
again

Explanation: The data in the first highlighted field is
not within the range of valid data that is defined for
this item.

User response: Enter data that conforms to the
required range, or press a validation bypass key to
bypass the validation check. In either situation, the
program continues.

GEN0038 Table edit validity error - enter again

Explanation: The data in the first highlighted field
does not meet the validation data table requirement
that is defined for the variable field.

User response: Enter data that conforms to the table
edit requirement, or press a validation bypass key to
bypass the validation check. In either situation, the
program continues.

GEN0039 Modulus check error on input - enter
again

Explanation: The data in the first highlighted field
does not meet the modulus check that is defined for
the variable field.

User response: Enter data that conforms to the
modulus check requirements, or press a validation
bypass key to bypass the validation check. In either
situation, the program continues.

GEN0040 No input received for required field -
enter again

Explanation: No data was typed in the field that the
cursor designated. The field is required.

User response: Enter data in this field or press a
validation bypass key to bypass the validation check.
Blanks or nulls will not satisfy the data input
requirement for any type of field. In addition, zeros
will not satisfy the data input requirement for numeric
fields. The program continues.

GEN0041 Property msgTablePrefix was not
specified for a program: Message
user_message, NLS - code language_code.

Explanation: The program tried to display a message
from the message table by using the
converseLib.validationFailed system function. However,
the program did not specify a value for the
msgTablePrefix property.

User response: Take either of the following steps:

v Assign a valid value to the msgTablePrefix property
and generate the program again.

v Change the program to avoid using the
converseLib.validationFailed system function and
generate the program again.

GEN0045 Error reading message user_message, NLS
code language_code, status status_code.

Explanation: A user message was requested. Refer to
the previous message in the job log for additional
information about the error.

User response: Most problems occur because the
message file or the specific message cannot be found or
access to the message file is not authorized. If the
program can not find the message file and you know
the library name that contains the message file, you can
add the library to your library list (ADDLIBLE
command). For other problems, contact your system or
application programmer.

GEN0046 Call to print services program
program_name was not successful.

Explanation: The specified print services program
cannot be found in the library list of jobs.

Refer to the error messages that precede this message
in the job log for additional information about the
error.

User response: Contact your application or system
programmer and report the sequence of messages
including and preceding this message.

GEN0050 Significant digits for field exceeded -
enter again

Explanation: One of the following reasons caused this
error:

1. The data entered into a numeric field exceeded the
maximum size of the field.

2. The numeric field was defined with decimal places,
a sign, currency symbol, or numeric separator edits.

3. The number of significant digits that can be
displayed within the formatting criteria was
exceeded by the input data; the number entered is
too large.

26 EGL Server Guide for IBM i

4. The number of significant digits cannot exceed the
field length, minus the number of decimal places,
minus the places required for formatting characters.

User response: Enter a number with fewer significant
digits.

GEN0051 Form form was not found in form group
form_group.

Explanation: The specified form name is not in the
form group.

User response: Correct the program or form group
and then generate the form group and the program
again.

GEN0057 Delete attempted without preceding
update on record record_name.

Explanation: A delete statement ran for a record that
was not successfully read by a get forUpdate
statement. The read for update might have been lost as
the result of an commit or rollback.

User response: Verify the following:

v The delete statement and the corresponding get
forUpdate correctly use the same record variable
name or resultSetID.

v The sequence of statements is appropriate. Use the
EGL debugger to step through the program.

GEN0073 SQL error, command = command_name,
SQL code = sql_code.

Explanation: The SQL database manager returned an
error code for an SQL I/O statement. If the program
logic does not handle the SQL exception that occurred,
then the program ends.

This message is followed by message GEN0074, which
displays the substitution variables associated with the
SQLCODE.

User response: Determine the cause of the problem
from the SQL code and the SQL error information.
Refer to the appropriate database manager messages
and codes documentation for information on the SQL
code and error information. Correct either the database
definition or change the program to handle the SQL
exception.

GEN0074 SQL error message: error_code

Explanation: This message accompanies message
GEN0073 when an SQL error occurs. It displays the
relational database manager description of the error
and is repeated as many times as necessary to display
the complete description.

User response: Use the information from this message
and GEN0073 to correct the error.

GEN0076 Invalid data is used in a
character-to-hexadecimal assignment or
comparison.

Explanation: The current statement involves either a
move from a character data item to a hexadecimal data
item, or a comparison between a character data item
and a hexadecimal data item. The characters in the
character data item must occur in the following set for
the move or compare to complete:

a b c d e f A B C D E F 0 1 2 3 4 5 6 7 8 9

One or more of the characters in the character data
item is not in this set. This condition causes a program
error.

User response: Change the program to make sure that
the character data item contains valid data when the
character-to-hexadecimal move or compare operation
occurs. In text form fields, you can use the isHexDigit
validation property to make sure that user input
contains only valid characters.

GEN0080 Hexadecimal data is not valid

Explanation: The data that the cursor identifies in the
variable field must be in hexadecimal format. One or
more of the characters that you entered does not occur
in the following set:

a b c d e f A B C D E F 0 1 2 3 4 5 6 7 8 9

User response: Enter only hexadecimal characters in
the variable field. The characters are left-justified and
padded with the character zero. Embedded blanks are
not allowed.

GEN0086 statement - No active open or get
forUpdate is in effect.

Explanation: The error occurred because of one of the
following reasons:

v A get next statement cannot be run because a related
open did not run previously in the same program

v A replace or delete statement cannot run because a
related open forUpdate and get next or a related get
forUpdate did not run previously in the same
program.

All rows selected for retrieval or update are released
when a called program returns to the calling program.

User response: make sure that the second statement
(get next, replace, or delete) correctly uses the record
name or resultSetID to match the first statement (open
or get).

Also, make sure that the sequence of statements is
appropriate. Use the EGL debugger, to step through the
program.

Chapter 6. Messages 27

GEN0093 An error occurred in program
program_name, function function_name.

Explanation: An error occurred in the specified
function. Other information about the error is in the
messages that follow this message.

If the function name starts with EZE, it indicates that
the problem occurred in the generated control logic for
the program, not in a function in the EGL program
itself.

User response: Refer to the job log for error messages
following this message to obtain additional information
about the error.

GEN0096 A data operand of type MBCHAR is not
valid.

Explanation: An operand in a move statement
involving an item of type MBCHAR contains an invalid
mixture of double-byte and single-byte data.

User response: Verify that all operands in the move
statement contain valid data.

GEN0109 Input form must be form form_name
rather than form form_name, for program
program_name.

Explanation: The form that the program received is
not the value that is specified for the inputForm
program property. This error occurs when the program
starts.

User response: Verify that the transferring program
specifies the correct form name on the show statement
and that the receiving program specifies the correct
value for the inputForm property.

GEN0111 Length of input form form_name is not
valid.

Explanation: The length of the specified form that a
program receives is not the length that is defined for
the form in the program.

User response: Use the same form definition when
generating both the program that receives the input
form and the program that issues the show statement.

GEN0119 Programs program_name and
program_name are not compatible.

Explanation: A program that a transfer or call
statement started is not compatible with the initial
program in the transaction or job because the program
was generated for a different environment.

User response: Generate one or both programs again
so that the target environments for the programs are
the same.

GEN0127 A requested function is not supported
for map map_name, map group
group_name.

Explanation: A program requested a form function
that is not supported for the specified form and form
group. The form group was modified between the time
that the form group generated and the time that the
program generated. Some functions that were included
for the form or form group when the program
generated were not specified for the form group when
the form group generated. For example, a helpForm or
msgField might have been specified for the form at the
time that the program generated, but were not present
when the form group generated.

User response: Check the form properties and the
program, then generate the program again with the
genFormGroup build descriptor option set to YES.

GEN0184 Program program_name and form services
program form_program are not
compatible.

Explanation: The specified program and form services
program are generated for different systems.

User response: Generate the form services program
for the same environment as the program.

GEN0185 Length of size for record record_name is
not valid and conversion ended.

Explanation: A variable length record cannot be
converted between the workstation format and host
format because of one of the following conditions:

v The record is longer than the maximum length that
is defined for the record.

v The record data ends in the middle of a numeric
field.

v The record data ends in the middle of a DBCHAR
character.

v The record data ends in the middle of a SO/SI
string.

User response: Modify the program to set the record
length so that it ends on a valid field boundary.

GEN0186 An operand of type MBCHAR in a
conversion operation is not valid.

Explanation: An MBCHAR field cannot convert from
EBCDIC to ASCII or from ASCII to EBCDIC because
the double-byte data value is not valid.

User response: Modify the program to make sure that
fields of type MBCHAR are valid in the records to be
converted.

28 EGL Server Guide for IBM i

GEN0187 Conversion table %1 does not support
double-byte character conversion.

Explanation: An MBCHAR field cannot convert from
EBCDIC to ASCII or from ASCII to EBCDIC because
the specified conversion table does not include
conversion tables for double-byte characters.

User response: Modify the program to specify a
conversion table that contains the double-byte
conversion tables that are valid for the DBCHAR or
MBCHAR data being converted. Refer to the topic
"Data conversion" in EGL Generation Guide.

GEN0188 Conversion Error. Function:
function_name, Return Code: error_code,
Table: table_name

Explanation: A system function was called to perform
code page conversion for data used in a client/server
program. The function failed.

Possible causes for the failure:

v The code pages that are identified in the conversion
table are not supported by the conversion functions
on your system.

v For double-byte character conversion where the
source data is in ASCII format, the source data was
created under a different double-byte character code
page than the code page that is currently in effect on
the system.

User response: Modify the program to specify a
conversion table that contains the double-byte
conversion tables that are valid for the DBCHAR or
MBCHAR data being converted. Refer to the topic
"Data conversion" in EGL Generation Guide.

GEN0191 Program program_name, generation date
date, time time.

Explanation: An error occurred in the specified
program. Changes to individually generated
components of the program might have caused the
error. Refer to the error messages in the job log for
additional information.

User response: Verify that the generation date and
time of the program is the same as those of the other
generated components.

GEN0192 Print services program program_name,
generation date date, time time.

Explanation: An error occurred in the print services
program. Changes to individually generated
components of the program might have caused the
error. Refer to the error messages in the job log for
additional information about the error.

User response: Verify that the generation date and
time of the program is the same as those of the other
generated components.

GEN0195 Form group format module form_group,
generation date date, time time.

Explanation: An error occurred in the specified form
group. Changes to individually generated components
of the program might have caused the error. Refer to
the diagnostic messages in the job log for additional
information about the error.

User response: Verify that the generation date and
time of the program is the same as those of the other
generated components.

GEN0210 Service number number is not valid

Explanation: An attempt was made to start an EGL
runtime routine that does not exist or that is not valid.

User response: Generate and compile the program
again to make sure the generated COBOL code has not
been modified. Afterward, run the refreshed program.
If the problem persists, have the system administrator
do all of the following actions:

v Record the service number from this message.

v Print the job log.

v Record the scenario under which this message
occurs.

v Obtain the COBOL listing and source for the failing
program.

v Use your electronic link with IBM Service (for
example, IBMLINK) if one is available, or contact the
IBM Support Center.

GEN0232 Form form_name in form group
form_group is not declared or is not
supported.

Explanation: The specified form does not exist or is
not defined for the type of device being used.

User response: Specify the correct screenSizes
property for the form and then generate the form
group again.

GEN0233 error_code error on file file_name,
sysVar.errorCode=value.

Explanation: An I/O operation failed for the specified
file. This message specifies the COBOL verb performed
and the EGL file name associated with the operation.

sysVar.errorCode contains either the COBOL status key
value or EGL file return code.

User response: Use the appropriate COBOL
publication or the EGL reference guide to diagnose the
error, and take the recommended corrective action.

Chapter 6. Messages 29

GEN0260 number bytes of VGUI record do not fit
in buffer_size byte buffer.

Explanation: The program issued a converse or show
statement for a VGUI record. There was not enough
room in the communications buffer for the record. The
buffer needs space for the record plus any message
information written using the sysLib.setError system
function.

User response: Modify the program to reduce the size
of the VGUI record, or write fewer or smaller error
messages.

GEN0261 sysLib.setError message information and
inserts do not fit in buffer_size byte
buffer.

Explanation: The program invoked the sysLib.setError
system function one or more times to write messages
that are associated with a VGUI record. The
information that is associated with the last message
written does not fit into the buffer that the program
uses to communicate with the user.

User response: Modify the program to write fewer or
smaller error messages.

GEN0262 VGWebTransaction program and VGUI
record bean record are incompatible.

Explanation: A VGWebTransaction program was
started with information from a VGUI record bean that
is not known to the VGWebTransaction program, or
whose definition is not compatible with the VGUI
record definition with which the program was
generated.

User response: make sure that the specified VGUI
record is specified in the inputUIRecord property for
the program. Generate the program and the Java beans
using the same VGUI record definition.

GEN0263 Number of elements value
number_elements is out of range for
structured field array at offset
array_offset.

Explanation: A VGWebTransaction program could not
write a VGUI record because the value in the number
of elements item for a structured field array in the
record was less than 0 or greater than the maximum
size that is defined for the array.

User response: Correct the program logic so that it
sets the value of the number of elements item to a
value within the allowed range.

GEN0264 Input data entered by the user does not
fit in VGUI record.

Explanation: A VGWebTransaction program received
input data from the Web server that does not fit in the
VGUI record. The VGWebTransaction program and the
Java bean that are associated with the VGUI record
might have been generated at different times with
incompatible VGUI record declarations.

User response: Generate the program and the Java
beans using the same VGUI record definition. Contact
IBM support if this does not correct the problem.

GEN0265 Segmented converse is not supported
when local variables or function
parameters are in the run-time stack.

Explanation: The program issued a converse
statement with sysVar.segementedMode set to 1
(segmented converse), and at least one of the functions
in the current function stack uses parameters or local
items or records. The generated program cannot save
parameters or local storage data over a segmented
converse.

User response: Verify the following and make the
appropriate change:

v The functions on the run-time stack do not have
parameters or local variables.

v The converse is not segmented.

GEN0266 MQ function function_name, Completion
Code completion_code, Reason Code
reason_code.

Explanation: The MQ function did not complete
successfully, as indicated by the following completion
codes:

v MQCC_WARNING

v MQCC_FAILED

MQSeries® sets the reason for the completion code in
the reason code field. The following are some common
reason codes:

v 2009 (Connection broken)

v 2042 (Object already open with conflicting options)

v 2045 (Options not valid for object type)

v 2046 (Options not valid or not consistent)

v 2058 (Queue manager name not valid or not known)

v 2059 (Queue manager not available for connection)

v 2085 (Unknown object name)

v 2086 (Unknown object queue manager)

v 2087 (Unknown remote queue manager)

v 2152 (Object name not valid)

v 2153 (Object queue-manager name not valid)

v 2161 (Queue manager quiescing)

30 EGL Server Guide for IBM i

v 2162 (Queue manager shutting down)

v 2201 (Not authorized for access)

v 2203 (Connection shutting down)

User response: Refer to the MQSeries Application
Programming Reference for additional information about
MQSeries® completion and reason codes.

GEN0267 Queue Manager Name queue_name.

Explanation: This is the name of the queue manager
that is associated with the failing MQ function call that
is listed in message GEN0266.

If the failing MQ function was MQOPEN, MQCLOSE,
MQGET, or MQPUT, the name identifies the queue
manager that is specified with the object name when
the queue was opened. Otherwise, the name is the
name of the queue manager to which the program is
connected (or trying to connect).

If the queue manager name is blank, the queue
manager is the default queue manager for your system.

User response: Refer to the MQSeries Application
Programming Reference for additional information about
MQSeries completion and reason codes that are
associated with GEN0266.

GEN0268 Queue Name queue_name

Explanation: This is the name of the queue object that
is associated with the failing MQ function call that is
listed in message GEN0266.

User response: Refer to the MQSeries Application
Programming Reference for additional information about
MQSeries completion and reason codes that are
associated with GEN0266.

GEN2001 The table table_name is not valid for
program program_name.

Explanation: The error occurred because of one of the
following reasons:

v The DataTable version is not compatible with the
current level of IBM EGL Server and the running
application.

v The DataTable was generated for an ASCII-based
EGL runtime environment.

v The data is corrupted.

v The DataTable could not open.

User response: Replace the table with the correct
generated version.

If the reason code indicates that the table data is
corrupted, make sure that the table was transmitted to
the host system as a binary image file.

If the reason code indicates the table was generated for
an ASCII-based host system, make sure that the table

regenerates for the same target system as the program
that is attempting to use it.

If the reason code indicates the table could not be
opened, see previous messages in the job log.

GEN2002 EGL Server does not support DBCHAR
data type.

Explanation: The EGL Server does not support the
DBCHAR data type because COBOL does not support
DBCHAR.

User response: Change EGL DBCHAR primitive types
to MBCHAR data types and generate the program
again.

GEN2004 Character conversion from CCSID
from_characterset to to_characterset is not
supported

Explanation: The CCSID character conversion is not
supported between the two specified Coded Character
Set IDs (CCSID).

User response: Verify that the specified Coded
Character Sets IDs (CCSID) are valid and that
conversion between the two CCSIDS is supported. You
might have to generate the EGL program again.

GEN2005 Error error_code occurred when
converting record record.

Explanation: The sysLib.convert function encountered
an error during the call.

User response: Verify that the specified program
logics record contains data that matches its definition.
Generate the EGL program again.

GEN2006 The form group group_name is not valid
for program program_name.

Explanation: The error occurred because of one of the
following errors:

v The form group data is corrupted.

v The form group could not be opened.

User response: Replace the specified form group with
the correct generated version.

If the reason code indicates that the form group data is
corrupted, make sure that the form group was
transmitted to the host system as a binary image file.

If the reason code indicates the form group could not
be opened, see previous messages in the job log.

Chapter 6. Messages 31

GEN2007 Press Enter to continue.

Explanation: To continue processing, click Enter.

GEN7025 Error encountered allocating memory.

Explanation: An error was encountered while
allocating memory. The system has run out of memory.

User response: Make sure that you have enough
memory on your system, as specified in the software
and hardware requirements for the product. Stop
running the execution of some of the other programs
on your system.

1. Record the message number and the message text.
The error message includes the information on
where the error occurred and the type of internal
error.

2. Record the situation in which this message occurs.

3. Contact IBM support for additional assistance.

GEN7030 The format of the data descriptor is
incorrect. The hex value of the data
descriptor in error is value.

Explanation: The format of the data descriptor is
incorrect. A header descriptor is found within the data
descriptor.

User response: Do the following:

1. Record the message number and the message text.
The error message includes the information on
where the error occurred and the type of internal
error.

2. Record the situation in which this message occurs.

3. Contact IBM support for additional assistance.

GEN7035 The format of the data descriptor is
incorrect.

Explanation: The format of the data descriptor is
incorrect. An End Of Description descriptor is not
found.

User response:

1. Record the message number and the message text.
The error message includes the information on
where the error occurred and the type of internal
error.

2. Record the situation in which this message occurs.

3. Contact IBM support for additional assistance.

GEN7040 The format of the data descriptor is
incorrect. An unknown data code
data_code was found.

Explanation: The format of the data descriptor is
incorrect. An unknown data code was found in the
data description.

User response:

1. Record the message number and the message text.
The error message includes the information on
where the error occurred and the type of internal
error.

2. Record the situation in which this message occurs.

3. Contact IBM support for additional assistance.

GEN7055 The Conversion Descriptor structure is
not valid.

Explanation: The Conversion Descriptor structure
CMCVOD required by the conversion routine is not
correct.

User response:

1. Record the message number and the message text.
The error message includes the information on
where the error occurred and the type of internal
error.

2. Record the situation in which this message occurs.

3. Contact IBM support for additional assistance.

GEN7065 The data descriptor for parameter
parameter_name is not valid.

Explanation: The data descriptor for the parameter is
not valid.

User response:

1. Record the message number and the message text.
The error message includes the information on
where the error occurred and the type of internal
error.

2. Record the situation in which this message occurs.

3. Contact IBM support for additional assistance.

GEN9003 EGL Server encountered a critical
internal processing error.

Explanation: A critical internal processing error was
detected. This may include corrupted run unit control
blocks, an unexpected return code from an internal
function, or illogical code path entry.

Refer to the job log for error messages that precede this
message to obtain additional information about the
error. In most cases, the application or system
programmer must adjust your application system to
correct the problem.

User response: Either print the job log or record the
messages along with the following information:

v The from program name.

v The to program name.

v The instruction numbers.

You can view or print the job log with the DSPJOBLOG
command. If no diagnostic messages precede this

32 EGL Server Guide for IBM i

message, make sure that your job logged all messages
by checking the Message Logging or LOG value of
your job definition or job description, depending on
whether the job is interactive or batch. For interactive
jobs, command DSPJOB OPTION(*DFNA) will display
the Message Logging value.

Contact your application or system programmer with
the information you gathered.

GEN9004 EGL Server COBOL error handler was
invoked to end the run unit.

Explanation: A function check caused the run unit to
end. A database rollback has been issued and heap
storage has been released.

Refer to the job log for error messages that precede this
message to obtain additional information about the
error. In most cases, the application or system
programmer must adjust your application system to
correct the problem.

User response: Either print the job log or record the
messages along with the following information:

v The from program name.

v The to program name.

v The instruction numbers.

You can view or print the job log with the DSPJOBLOG
command. If no diagnostic messages precede this
message, make sure that your job logged all messages
by checking the Message Logging or LOG value of
your job definition or job description, depending on
whether the job is interactive or batch. For interactive
jobs, command DSPJOB OPTION(*DFNA) will display
the Message Logging value.

Contact your application or system programmer with
the information you gathered.

GEN9937 An error occurred when trying to invoke
a Web Service function.

Explanation:

User response:

GEN9938 An error occurred when trying to invoke
a service function.

Explanation:

User response:

GEN9940 Binding Key: key

Explanation:

User response:

GEN9941 An error occurred when trying to invoke
a Web Service function, JNI setup- error
error_value

Explanation:

User response:

GEN9942 Web Service Proxy: proxy

Explanation: This message provides the service
property name in which a problem occurred. Other
related messages provide the information about the
actual cause of the error.

User response: None required.

GEN9946 Binding key cannot be resolved in
binding program program_name.

Explanation:

User response:

GEN9948 Reference name reference_name

Explanation: This message provides the reference
name in a service in which a problem occurred. Other
related messages provide the information about the
actual cause of the error.

User response: User Response: None required.

GEN9949 Component name component_name

Explanation: This message provides the component
name in a service in which a problem occurred. Other
related messages provide the information about the
actual cause of the error

User response: User Response: None required.

GEN9950 Cannot find reference in component of
service module module_name

Explanation:

User response:

GEN9951 Service Target target_name

Explanation: This message provides the service target
name in a service in which a problem occurred. Other
related messages provide the information about the
actual cause of the error.

User response: None required.

GEN9952 Cannot find service target in service
module module_name

Explanation: The service target does not exist in the
service module Message ELA09951I provides the name
of the service target that was requested.

Chapter 6. Messages 33

User response:

GEN9953 An error occurred when parsing service
module file module_name

Explanation:

User response:

GEN9954 Type cast exception

Explanation: A type cast exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

GEN9955 Index out of bounds exception

Explanation: An index out of bounds exception
occurred in the program. This message provides the
exception text. Other related messages provide the
program name, the function name, the EGL line
number, and the exception code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

GEN9956 Invocation exception

Explanation: A invocation exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

GEN9957 LOB processing exception

Explanation: A LOB exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

GEN9958 Service binding exception

Explanation: A service binding exception occurred in
the program. This message provides the exception text.
Other related messages provide the program name, the

function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

GEN9959 Service invocation exception

Explanation: A service invocation exception occurred
in the program. This message provides the exception
text. Other related messages provide the program
name, the function name, the EGL line number, and the
exception code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

GEN9960 SQL exception

Explanation: An SQL exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

GEN9961 MQ I/O exception

Explanation: An MQ I/O exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

GEN9962 FILE I/O exception

Explanation: A file I/O exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

GEN9964 User thrown exception

Explanation: A user thrown exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

34 EGL Server Guide for IBM i

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

GEN9965 Runtime exception

Explanation: An error occurred in the EGL runtime
server.

User response: Review the other messages associated
with this message to determine the cause of the
problem.

GEN9966 No such library function with specified
signature exception.

Explanation: The library does not provide the function
or variable requested by the program. Possible causes
are as follows:

v The function signature does not exist in the library. A
function signature consists of the combination of the
function name, parameter types, and return value
types.

v The function signature exists in the library, but is
marked private so that it is not available for use
outside the library.

v A variable does not exist in the library, or was
marked private so that it is not available for use
outside the library.

User response: Change the library or program so that
they agree on the function signature or variable name.
If necessary remove the private modifier from the
function or variable so that it can be accessed from
outside the library.

GEN9967 Exceeded max size on array exception.

Explanation: A dynamic array exceeded the maximum
size specified for the array.

User response: If the program does not specify a
maximum size for the dynamic array, review the
program logic to determine why the array has grown
beyond the system maximum. If the program specifies
a maximum size for the dynamic array, either increase
the maximum size or review the program logic to
determine why the array has grown beyond the
specified maximum. Use the EGL debugger to step
through the program logic.

GEN9968 Append arrays of mismatched size
exception.

Explanation: The program attempted to append one
dynamic array to another, but the arrays differ in either
their type or size of their elements in the arrays.

User response: Change the program logic so that the
dynamic arrays are of the same type or have the same
element size.

GEN9969 Insufficient heap memory exception.

Explanation: The program ran out of memory.

User response: For any COBOL environment, set the
HEAPSIZE symbolic parameter to 16384 and generate
the first program in the run unit again. Note that
HEAPSIZE must be set for the first program in the run
unit, which is not necessarily the program which ran
out of memory.

v If increasing the HEAPSIZE does not resolve the
problem, review your program logic to determine
why the program requires so much memory. Use the
EGL debugger to step through the program logic.

v If increasing the HEAPSIZE resolves the problem,
contact IBM support to determine if you need to
apply maintenance for your EGL server product.

GEN9970 Attempting to access an uninitialized
dynamic array exception.

Explanation: The program attempted to access a
dynamic array that is not initialized.

User response: Change the program logic to make
sure that the dynamic array is initialized. You can
initialize the dynamic array by including the new
operator or a set value block when you declare the
dynamic array.

GEN9971 Invalid format used in format function
call exception.

Explanation: The program invoked one of the
formatting functions with an invalid format mask. This
error can occur for the following functions:
strLib.formatDate, strLib.formatTime,
strLib.formatTimeStamp, and strLib.formatNumber.
You can specify a mask in several ways, including:

v Specifying the mask as the format argument for the
system function.

v Specifying the mask in a system variable.

For example, for the strLib.formatDate, you can specify
the date format mask by including the optional second
argument for the system function or by setting the
strLib.defaultDataFormat system variable.

User response: Change the program logic to use a
valid format mask.

GEN9972 Null value exception.

Explanation: A null value exception occurred in the
program. This message provides the exception text.
Other related messages provide the program name, the
function name, the EGL line number, and the exception
code.

User response: Modify the program to prevent the
exception from occurring or to handle the exception.
Generate the program again.

Chapter 6. Messages 35

GEN9973 Condition code: code_value.

Explanation: An exception occurred in the program.
This message provides the exception code. Other
messages provide the program name, the function
name, the EGL line number, and the exception text.

User response: None required.

36 EGL Server Guide for IBM i

Chapter 7. Notices

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1989, 2011 37

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
Lab Director
3600 Steeles Avenue East
Markham, Ontario,
Canada L3R 9Z7

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,

38 EGL Server Guide for IBM i

modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information
Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program's tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at www.ibm.com/legal/
copytrade.html.

Microsoft, Windows, and Windows NT are trademarks or registered trademarks of
Microsoft Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Other company, product or service names, may be trademarks or service marks of
others

Chapter 7. Notices 39

40 EGL Server Guide for IBM i

����

Product Number: 5724-D46

Printed in USA

SC31-6841-05

	Contents
	Chapter 1. Installing and customizing EGL Server for IBM i
	Installation files for EGL Server for IBM i
	Objects created or replaced during installation
	Setting up the IBM i library and files
	FDAPREP preparation script file for IBM i
	Customizing EGL Server
	Specifying a language
	Changing the code page for EGL system libraries

	Administering EGL Server for IBM i
	Data description specifications generated by EGL
	DDS keyword modification
	Restrictions on logical files
	Changing DDS member types

	Runtime considerations: commitment control cycles

	Chapter 2. Reviewing and preparing the generated output
	Outputs of generation
	Objects generated for programs
	ILE COBOL program
	Runtime CL
	Data definition specification (DDS)

	Objects generated for data tables
	DataTable binary image file
	Message definitions

	Objects generated for form groups
	Form group format module
	Print services program

	Preparation to run generated programs
	Starting the IBM i remote build server
	Verifying the IBM i remote build server
	Launching the build plan manually
	Preparing a DB2 program
	Customizing compiler process options using VGNCBLOP

	Chapter 3. Running a generated program on an IBM i system
	Setting up the environment to run the generated programs
	Establishing a library list for a job
	Running EGL programs and passing arguments
	Running EGL programs under IBM i
	Passing arguments and declaring parameters
	Main programs
	Called programs

	EGL run units
	Using tables with run units
	Using activation groups with run units

	Chapter 4. Diagnosing problems during run time
	Diagnostic commands
	IBM i First Failure Data Capture

	Chapter 5. Exception codes
	Chapter 6. Messages
	Message format
	Escape messages
	Diagnostic and informational messages

	Chapter 7. Notices
	Programming interface information
	Trademarks and service marks

