
3.0

IBM Record Generator for Java V3.0.1

IBM

Note

Before using this information and the product it supports, read the information in Chapter 10, “Notices,”
on page 37.

IBM Record Generator for Java V3.0.1

This edition applies to the IBM® Record Generator for Java™ V3.0, (product number 5655-CI2) and to all subsequent
releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2017-2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this book... v

Chapter 1. What is IBM Record Generator for Java?.. 1

Chapter 2. What's new in V3.0.1.. 5

Chapter 3. Getting started with IBM Record Generator for Java.............................. 7

Chapter 4. Using IBM Record Generator for Java with COBOL..................................9
Example COBOL copybook.. 9
Creating ADATA files with the IBM Enterprise COBOL for z/OS compiler.. 9
Syntax of COBOL RecordClassGenerator.. 10
Running the COBOL RecordClassGenerator... 12
Using the generated Java helper class in an application..13
Support for COBOL data division...13

Support for COBOL data types... 13
Name mapping... 14
JavaNameGenerator.. 14
OCCURS clause...16
REDEFINES clause... 18
VALUE clause..18
Condition-name: level-88 statements...19

Chapter 5. Using IBM Record Generator for Java with assembler.......................... 21
Example DSECT ...21
Creating ADATA files with IBM High Level Assembler.. 21
Syntax of assembler RecordClassGenerator ..22
Running the assembler RecordClassGenerator..24
Using the generated Java helper class in an application..25
Support for assembler data types .. 25

Multi-operand statements .. 26

Chapter 6. Buffer offset feature..27

Chapter 7. XML support... 29
Syntax for RecordXMLGenerator... 31
Running the RecordXMLGenerator..32
Generating XML from an ADATA file .. 33
Generating Java source from an XML file..33

Chapter 8. Troubleshooting and support...35
Collecting troubleshooting data (MustGather) for IBM Support.. 35

Notices..43

 iii

iv

About this book

This PDF is the product documentation for IBM Record Generator for Java V3.0. This information is also
provided in IBM Knowledge Center, where you can also find the associated Javadoc.

Find the online version of this information in IBM Knowledge Center.

Last updated
This PDF was created in September 2020.

© Copyright IBM Corp. 2017-2020 v

https://www.ibm.com/support/knowledgecenter/SSMQ4D_3.0.0/welcome.html

vi IBM Record Generator for Java V3.0.1

Chapter 1. What is IBM Record Generator for Java?
IBM Record Generator for Java V3.0 is a stand-alone Java utility that generates Java helper classes to
describe language-specific record structures. These helper classes can then be used in a Java application
to marshal data to and from the byte-oriented record structures that are commonly used in z/OS
applications, such as CICS COMMAREAs or VSAM files.

IBM Record Generator for Java V3.0 supersedes the alphaWorks version of the JZOS Record Generator
V2.4.6, and provides new capabilities. For a summary of the new capabilities, see Chapter 2, “What's new
in V3.0.1,” on page 5.

There are two implementations of IBM Record Generator for Java:

• For COBOL copybooks, implemented by the RecordClassGenerator class in the supplied
com.ibm.recordgen.cobol Java package.

• For assembler-language DSECTs, implemented by the RecordClassGenerator class in the supplied
com.ibm.recordgen.asm Java package.

Figure 1 on page 2 shows the flow from COBOL and assembler input into ADATA files, which are used
by IBM Record Generator for Java, along with the API package from the IBM JZOS Toolkit, to generate the
Java helper classes.

© Copyright IBM Corp. 2017-2020 1

Figure 1. How IBM Record Generator works

2 IBM Record Generator for Java V3.0.1

The RecordClassGenerator class reads as input the ADATA output of the IBM Enterprise COBOL for
z/OS and IBM High Level Assembler compilers and generates Java source code to map a selected
language-specific record structure.

The source that is generated by the RecordClassGenerator uses the com.ibm.jzos.fields API
package from the IBM JZOS Toolkit, which contains data type converters for the elemental COBOL and
assembler data types. An additional class, RecordXMLGenerator, can generate an XML representation
of the imported language structures that can be modified in third-party tools, such as XSLT, then used as
input to the RecordClassGenerator to generate the Java helper classes.

After it is generated, the source code of the Java helper classes can be compiled with the
com.ibm.jzos.fields package to produce a Java class that has accessors for each individual field in
the record. Each field in the record can be written to using the appropriate setter method and also read
through a corresponding getter method. The entire byte array that represents the record can also be
referenced by using the supplied getByteBuffer() method. This greatly simplifies the development of
Java applications that need to interact with structured enterprise data.

Chapter 1. What is IBM Record Generator for Java? 3

4 IBM Record Generator for Java V3.0.1

Chapter 2. What's new in V3.0.1
IBM Record Generator for Java V3.0 supersedes the alphaWorks version of the JZOS Record Generator
V2.4.6, and provides new capabilities.

New in Version 3.0.1
New and changed functions Description

Support for COBOL group
conditions

Level 88 condition entries are now supported for group items as well as
for elementary items, where permitted by COBOL syntax.

Support for the COBOL ALL
figurative constant

The ALL figurative constant is now supported in the VALUE clause,
wherever the VALUE clause is itself supported.

New in Version 3.0.0
New and changed functions Description

New options for
RecordClassGenerator

The RecordClassGenerator class offers the following new options:

genprotectedfields can be set to false to cause static field
variables to be generated with public access, instead of protected
access. This is useful for dynamic modification of field behavior, or
testing.

ignoreoccurs1 can be used to ignore OCCURS 1 on COBOL single
element arrays so that fields are generated as an array of size 1.
preinitialize can be set to true to generate code in the
setInitalValues() method to initialize fields with a fixed location
and length that are not arrays to blanks or zero.
stringencoding can be set to an alternative single-byte EBCDIC
code page that is used for String fields.
stringtrim can be set to true to generate code that trims spaces
from the end of String fields as they are accessed.

New class:
JavaNameGenerator

The option for JavaNameGenerator is used to implement an alternative
form of Java name generation for variables and accessor methods. This
class is responsible for converting COBOL names into Java names of
different types. You can subclass this class and override the behavior to
affect the names that are used in Java accessors, static fields, instance
variables, and parameter variables. For more information, see
“JavaNameGenerator” on page 14

New function: reading
ADATA without a record
descriptor word (RDW)

The RecordClassGenerator class can now read ADATA without having
to prefix each record with a record descriptor word (RDW). This makes it
easier to transfer the ADATA files from z/OS for use on distributed
platforms.

New package names for IBM
Record Generator for Java
V3.0

The new package names for IBM Record Generator for Java V3.0 are
com.ibm.recordgen.cobol and com.ibm.recordgen.asm. These
replace the package names that were used previously, which were
com.ibm.jzos.recordgen.cobol and
com.ibm.jzos.recordgen.asm.

© Copyright IBM Corp. 2017-2020 5

6 IBM Record Generator for Java V3.0.1

Chapter 3. Getting started with IBM Record
Generator for Java

To get started with IBM Record Generator for Java, check that you have the prerequisite environment,
then download the product. After you extract the ibm-recgen.jar file from the download and transfer it
to the system where you want to run IBM Record Generator for Java, you can start to work with it.

Supported environments
To use IBM Record Generator for Java, you need:

• Java 7-compatible Java Runtime Environment (JRE), either 32-bit (31-bit on z/OS®) or 64-bit
• To work with COBOL copybooks, IBM Enterprise COBOL for z/OS V4.2 or later
• To work with assembler DSECTs, IBM High Level Assembler for MVS™ and VM and VSE 1.6 and future fix

packs
• IBM JZOS Toolkit API package com.ibm.jzos.fields at V2.4.8 or later, provided by IBM SDK for

z/OS Java Technology Edition.

Installing IBM Record Generator for Java
1. Download IBM Record Generator for Java from the IBM Record Generator for Java product page.
2. Extract the ibm-recgen.jar file from the downloaded zip file.
3. Transfer the ibm-recgen.jar file in binary format to the system where you want to run IBM Record

Generator for Java.
4. If you are running on a non-z/OS® platform, the IBM JZOS Toolkit API must be available on the non-

z/OS platform. Do this by transferring the ibmjzos.jar from the IBM SDK for z/OS Java Technology
Edition.

Using IBM Record Generator for Java
1. Create the ADATA file from the COBOL copybook or assembler DSECT by running the z/OS Enterprise

COBOL or High Level Assembler compiler with the ADATA option. For details, see, “Creating ADATA
files with the IBM Enterprise COBOL for z/OS compiler” on page 9, or “Creating ADATA files with
IBM High Level Assembler” on page 21.

2. Run either the COBOL or assembler version of the RecordClassGenerator class, supplying the
ADATA file as input. This produces Java source code that represents the record structure. If you are
running on a non-z/OS platform, make sure that the IBM JZOS Toolkit API is also available on the non-
z/OS platform. For details, see “Running the COBOL RecordClassGenerator” on page 12, or “Running
the assembler RecordClassGenerator” on page 24.

3. Transfer the generated Java class to your Java integrated development environment (IDE) and include
it with your Java application that needs to access the structured record data.

4. Within your Java application, use the accessor methods on the Java class to get and set the field
values for the record data.

5. Compile the Java application and deploy to the target system such as a CICS® JVM server, WebSphere®

Application Server for z/OS, or a Java batch environment.

Optionally, you can use the RecordXMLGenerator class to create an intermediary description of the
COBOL copybook or assembler DSECT. For details, see “Running the RecordXMLGenerator” on page 32.

© Copyright IBM Corp. 2017-2020 7

https://ibm.github.io/mainframe-downloads/IBM-Record-Generator-for-Java.html

8 IBM Record Generator for Java V3.0.1

Chapter 4. Using IBM Record Generator for Java with
COBOL

Use IBM Record Generator for Java to generate Java helper classes that can construct and parse byte
arrays, which are used to interact with COBOL programs. Before you run IBM Record Generator for Java,
you need an ADATA file that is produced by the IBM z/OS Enterprise COBOL compiler. This ADATA file
must be based on the language structure in the COBOL source code for which you want a generated Java
helper class. The ADATA file is used by IBM Record Generator for Java to generate the source code for the
Java helper classes.

Example COBOL copybook
Here is an example of a COBOL data structure. This example is referenced in this documentation to
explain how IBM Record Generator for Java processes COBOL data structures.

This data structure contains the same data as that used in the “Example DSECT ” on page 21.

01 MY-RECORD.
 05 CLAIM-NUMBER PIC X(19).
 05 ADMISSION-DATE PACKED-DECIMAL PIC S9(7).
 05 FROM-DATE PACKED-DECIMAL PIC S9(7).
 05 THRU-DATE PACKED-DECIMAL PIC S9(7).
 05 DISCHARGE-DATE PACKED-DECIMAL PIC S9(7).
 05 FULL-DAYS PACKED-DECIMAL PIC S9(5).
 05 COINSURANCE-DAYS BINARY PIC 9(4).
 05 LIFETIME-RES-DAYS BINARY PIC 9(6).
 05 INTERMEDIARY-NUM BINARY PIC 9(10).
 05 PROVIDER PIC X(13).
 05 INPATIENT-DED PACKED-DECIMAL PIC S9(4)V99.
 05 BLOOD-DED PACKED-DECIMAL PIC S9(4)V99.
 05 TOTAL-CHARGES PIC S9(7)V99 DISPLAY SIGN LEADING.
 05 PATIENT-STATUS PIC X(2).
 05 BLOOD-PINTS-FURNISHED BINARY PIC 9(5).
 05 BLOOD-PINTS-REPLACED BINARY PIC 9(4).
 05 SEQUENCE-COUNTER BINARY PIC 9(3).
 05 TRANSACTION-IND PIC 9.
 05 BILL-SOURCE PIC 9.
 05 BENEFITS-EXHAUST-IND PIC 9.
 05 BENEFITS-PAY-IND PIC 9.
 05 AUTO-ADJUSTMENT-IND PIC X.
 05 INTERMEDIARY-CTRL-NUM PIC X(23).

Creating ADATA files with the IBM Enterprise COBOL for z/OS
compiler

The ADATA file that is required as input to IBM Record Generator for Java is a binary file that contains
specific record information about the program that is collected during compilation. The file can be a
traditional MVS data set or a z/OS UNIX file.

To create the ADATA file that can be used as input to IBM Record Generator for Java, add the ADATA
option to the list of options in the PARM parameter on the EXEC statement of the COBOL compiler job. For
example:

//COBOL EXEC PGM=IGYCRCTL,REGION=200M,
// PARM=(NODYNAM,RENT,LIST,MAP,XREF,CICS,ADATA)

The compiler produces the ADATA file that contains additional program data.

You control the location of this file by using the SYSADATA DD statement on the COBOL compiler job. For
example:

© Copyright IBM Corp. 2017-2020 9

//SYSADATA DD DSNAME=dsname

If you want to use the ADATA file on your local workstation as input for IBM Record Generator for Java,
transfer it in binary mode to prevent data corruption.

For details, see COBOL SYSADATA file contents in the IBM Enterprise COBOL for z/OS documentation.

Syntax of COBOL RecordClassGenerator
When you have created the ADATA file, it is used as input to IBM Record Generator for Java. The COBOL
implementation of IBM Record Generator for Java is through the RecordClassGenerator class in the
com.ibm.recordgen.cobol package. This generates the source code for a Java class that maps a byte
array matching the description that is given by a COBOL copybook. You can set options to control the
processing.

Syntax
The RecordClassGenerator takes as input the following options, using either adatafile or xmlfile
as the only required option.

adatafile=adata.file

xmlfile=xml.file bufoffset=  true|false

class=  className

genaccessorjavadoc=  true|false

gencache=  true|false

genprotectedfields=  true|false

gensetters=  true|false

ignoreoccurs1=  true|false

namegenerator=  className

outputdir=  dirname

package=  packageName

preinitialize=  true|false

stringencoding=  encoding

stringtrim=  true|false

symbol=  dataName

10 IBM Record Generator for Java V3.0.1

https://www.ibm.com/support/knowledgecenter/SS6SG3_6.1.0/com.ibm.cobol61.ent.doc/PGandLR/ref/rpadt02.htm

Options
adatafile (default://DD:SYSADATA; mutually exclusive with xmlfile)

Used to specify the input ADATA file that is generated by the IBM Enterprise COBOL for z/OS compiler
from the COBOL copybook. You must specify either this option or xmlfile.

If the adatafile starts with //, it names a z/OS data set which might include MVS data set names (//
x.y.z), member names (//x.y.z(m)), ddnames (//DD:ddname), and DD member names (//
DD:ddname(member)).

Data set names that are not enclosed in single quotation marks are automatically prefixed with the
current user ID.

If the adatafile is a PDS name without a member or a directory name, all members of the PDS (or files
in the directory) are processed. For processing to work properly, you must specify the outputdir
option but not the class and symbol options. This allows the copybook top-level record name to be
used to generate unique classnames for each class. One invocation of the RecordClassGenerator
can generate Java classes for an entire PDS library of ADATA files.

If the adatafile is a path name that does not start with //, it is assumed to be the name of a file in the
z/OS UNIX (or workstation) file system that contains the ADATA records output from the compiler. The
file might have each record prefixed by an IBM record descriptor name (RDW), but this is not required.

bufoffset (default:false)
Set to true to generate code that allows the Java record to be mapped to a non-zero offset in a byte
array. For more information, see Chapter 6, “Buffer offset feature,” on page 27.

class (default:top level group name)
Used to specify the Java class name for the generated output source.

genaccessorjavadoc (default:false)
Set to true to cause Javadoc comments to be generated for field getter and setter methods.

gencache (default:true)
Set to false to prevent generation of instance variables and code to cache the value of fields.

genprotectedfields (default:true)
Set to false to cause static field variables to be generated with public access, rather than protected
access. This is useful for dynamic modification of field behavior or testing.

gensetters (default:true)
Set to false to prevent generation of Java setter methods.

ignoreoccurs1 (default:false)
Set to true to ignore OCCURS 1 clauses so that indexed accessors are not generated for these
degenerate cases.

namegenerator (default:com.ibm.recordgen.cobol.JavaNameGenerator)
Set to a fully- qualified Java class that is a subclass of
com.ibm.recordgen.cobol.JavaNameGenerator. This can be used to implement an alternative
form of name generation for variables and accessor methods.

outputdir (default: writes file to System.out)
Specifies the output z/OS UNIX (or workstation) directory path where the generated Java class is
created. The output file is created in the package-qualified subdirectory. For example, if
outputdir=/u/myid and package=com.ibm.cobrecs and class=MyRecord (or implicitly determined
from the copybook record MY-RECORD), then the output file that is created is: /u/myid/com/ibm/
cobrecs/MyRecord.java.

package (default: mypackage)
Used to specify the Java package name that is used in the generated output source.

preinitialize (default: false)
Set to true to generate code in the setInitalValues() method to initialize fields with a fixed
location and length that are not arrays to blanks or zero.

Chapter 4. Using IBM Record Generator for Java with COBOL 11

stringencoding (default: IBM-1047)
Set to an alternative single-byte EBCDIC code page that is used for String fields. The encoding that is
used for individual String fields is (in order of preference, the first non-null value):

1. The encoding set in the individual field StringField.setEncoding(String) .
2. The encoding set by this option, or by the setStringEncoding(String) method of this class.
3. IBM-1047.

stringtrim (default: false)
Set to true to generate code that trims spaces from the end of String fields as they are accessed.

symbol (default: first level O1 found)
Used to specify the name of the first COBOL level 01 that is selected for generation. If not specified,
the default is the first level 01 name found.

xmlfile (default: none; mutually exclusive with adatafile)
If the name of an xmlfile is given, it is either the //dataset.name or /path/name of the file that
contains XML that was generated by, or compatible with, the output of the RecordXMLGenerator
class. You must specify either this option or the adatafile.

Running the COBOL RecordClassGenerator
The COBOL RecordClassGenerator requires the adatafile option to specify the location of the
ADATA file. All of the other options use default values. When you run IBM Record Generator for Java,
make sure that your Java CLASSPATH points to the ibm-recgen.jar. If you run on a non-z/OS platform,
you must also include in the CLASSPATH the ibmjzos.jar file from the IBM SDK for z/OS Java
Technology Edition.

For descriptions of all the available options, see “Syntax of COBOL RecordClassGenerator” on page 10.

Examples
This example uses the language structure MY-RECORD within the USER.COBOL.ADATA(MYRECORD) PDS
member and generates the source for a Java helper class file that is called MyRecord.java within the
Java package cobol.records. This is written to the directory generatedClasses/cobol/records,
based on the concatenation of the values on the ouputdir and package options.

java com.ibm.recordgen.cobol.RecordClassGenerator \
 adataFile="//'USER.COBOL.ADATA(MYRECORD)'" \
 package=cobol.records \
 class=MyRecord \
 symbol=MY-RECORD \
 outputdir=generatedClasses

This example uses, by default, the first 01 level data structure that is found within the myRecord.adata
file, and generates the source for a Java helper class file that is called MyRecord.java within the Java
package cobol.records. This is written to the directory generatedClasses/cobol/records.

java com.ibm.recordgen.cobol.RecordClassGenerator \
 adatafile=myRecord.adata \
 package=cobol.records \
 class=MyRecord \
 outputdir=generatedClasses

12 IBM Record Generator for Java V3.0.1

Using the generated Java helper class in an application
The Java class created by the RecordClassGenerator can be used as part of an existing Java
application to construct or parse a byte array passed to or from a COBOL application.

Each generated Java helper class contains two constructors that can be used to create an instance of the
generated class. Also, individual public accessor methods are generated for each symbol in the COBOL
source code. These constructors and accessor methods enable you to either:

• Create a new instance of the generated class then use the accessor methods to set the fields in the
class and obtain a byte array that represents the fields you have set, ready to be used by the COBOL
program

• Create an instance of the generated class based on an existing byte array that was passed to the Java
program from the COBOL program. The accessor methods can then be used to obtain the values from
fields in the byte array.

For an example of using generated Java records to interact with a CICS COBOL application from a Java
application, see this article.

Constructing a new record
This example creates a new instance of the MyRecord class by using the zero argument constructor and
uses the setClaimNumber() method to set a value for the CLAIM_NUMBER field. Other accessor
methods might then be used to set the other fields in the record. When all the fields are set, then the
getByteBuffer() method is used to obtain a byte array that is in the correct format to be used as input
to the COBOL program.

MyRecord rec = new MyRecord();
String claimnum = "0000000000123456789";
rec.setClaimNumber(claimnum);
byte[] record = rec.getByteBuffer();

Creating a record from an existing byte array
If the Java program already has access to a byte array that contains data from the COBOL program, then it
can be used within the MyRecord class constructor to create an instance of the MyRecord class, which
represents the data within the array. The Java program can use the getClaimNumber() method to
obtain the value of the field within the byte array and manipulate it as necessary.

byte[] record;
MyRecord rec = new MyRecord(record);
String claimnum = rec.getClaimNumber();

Support for COBOL data division
The COBOL language uses the PICTURE clause to specify the characteristics of elementary data items.
This section describes how the RecordClassGenerator processes data items to generate Java helper
classes that correctly map to the individual fields. It describes the supported constructs by supplying the
smallest COBOL sample that shows the construct, and shows the Java code that would be used to
interact with the generated helper class.

Support for COBOL data types
Elemental COBOL data types are mapped to field converter classes in the com.ibm.jzos.fields
package. The IBM JZOS Toolkit provides field converter classes for mapping byte array fields into Java
data types.

• Alpha, alpha-numeric, and alpha-numeric edited items are mapped to StringField. The stringtrim
option to the RecordClassGenerator class determines trimming behavior.

Chapter 4. Using IBM Record Generator for Java with COBOL 13

https://github.com/cicsdev/cics-java-recgen/blob/master/blog.md

• Unscaled numeric items with DISPLAY usage are mapped to ExternalDecimalAsIntField or
ExternalDecimalAsLongField, depending on the length.

• Scaled numeric items with DISPLAY usage are mapped to ExternalDecimalAsBigDecimalField.
• Numeric items with implicit scaling ('P' picture codes) are mapped to
ExternalDecimalAsBigIntegerField with a negative scale amount.

• SIGN EXTERNAL, SIGN LEADING, and SIGN TRAILING clauses are supported as properties on
ExternalDecimalAs<>Field.

• Numeric items with USAGE BINARY or USAGE COMP-5 are mapped to BinaryAsIntField or
BinaryAsLongField, depending on length.

• COMP-1 items are mapped to IbmFloatField.
• COMP-2 items are mapped to IbmDoubleField.
• External Float (USAGE DISPLAY) items are mapped to ExternalFloatField.

Current limitations
• Numeric-edited items are currently mapped to an untrimmed StringField.
• DBCS (USAGE DISPLAY-1) items are currently only supported as ByteArrayFields.
• NATIONAL items are currently only supported as ByteArrayFields.
• Only selected CONSTANT values are supported (others are ignored).

– Literal strings
– Figurative literals : SPACE(S), ZERO(S), LOW-VALUE(S), HIGH-VALUE(S), ALL
– Numeric literals (integers and floating point).

• Constant values for array fields are ignored.
• RENAMES are not supported and are ignored.
• Top-level groups with OCCURS are not supported.

Name mapping
The RecordClassGenerator class maps COBOL variable names from the COBOL copybook to
equivalent field names in Java.

Each of the fields has an accessor method that can be used to access that field. Here is how that mapping
occurs.

For example, a field called CLAIM-NUMBER in COBOL becomes the field CLAIM_NUMBER in Java and the
accessors getClaimNumber() and setClaimNumber() are generated.

If a field is not uniquely named, it is generated as getItemName_In_GroupName(). In _GroupName,
suffixing continues until the name is unique.

JavaNameGenerator
The JavaNameGenerator class is responsible for converting COBOL field names into formatted Java
names.

This class can be subclassed by a user written class to provide an alternative naming convention to affect
the names that are used within the generated helper classes.

You can allow a user class to override the naming conventions for Java class names by using the following
methods:

• Java class names
• variable instance names
• static names

14 IBM Record Generator for Java V3.0.1

• accessor names
• level separators

Two utility methods are also provided which can be used to convert a COBOL symbol name into either a
camel case or "_" separated string, for example, the COBOL symbol TEST-RECORD can be converted into
either TestRecord or TEST_RECORD. All of the available methods are documented in the Javadoc.

For more information, see JavaNameGenerator.

For more information, see Javadoc for IBM Record Generator for Java in the IBM Knowledge Center.

Examples
This first example class prefixes the class name with the String "Generated" to denote this as a generated
class.

package com.mycompany.naming;
import com.ibm.recordgen.cobol.JavaNameGenerator;
public class ClassNamingVariation extends JavaNameGenerator {
 @Override
 public String getJavaClassName(String cobolSymbol) {
 return "Generated" + getCamelCasedName(cobolSymbol, true);
 }
}

Compiling and exporting this class to the file namingConventions.jar and using it when you are
running the RecordClassGenerator by using the command

java -cp ibm-recgen.jar:ibmjzos.jar:namingConventions.jar \
com.ibm.recordgen.cobol.RecordClassGenerator adatafile=myrecord.adata \
nameGenerator=com.mycompany.naming.ClassNamingVariation

against an ADATA file generated from the BasicRecord COBOL example, will generate a class that has the
following declaration:

public class GeneratedBasicRecord {

This naming convention can be overridden by the class parameter when running
RecordClassGenerator.

This next sample class overrides the default accessor method name generation

package com.mycompany.naming;
import com.ibm.recordgen.cobol.JavaNameGenerator;
public class AccessorNamingVariation extends JavaNameGenerator {
 @Override
 public String getJavaAccessorName(String cobolSymbol) {
 return getUppercasedUnderscoreDelimitedName(cobolSymbol);
 }
}

By default the Java accessor method for a COBOL field CLAIM-NUMBER would appear in the generated
class as:

public String getClaimNumber() {
 if (claimNumber == null) {
 claimNumber = CLAIM_NUMBER.getString(_byteBuffer);
 }
 return claimNumber;
}

Chapter 4. Using IBM Record Generator for Java with COBOL 15

https://www.ibm.com/support/knowledgecenter/SSMQ4D_3.0.0/recgen-javadoc/com/ibm/recordgen/cobol/JavaNameGenerator.html

However, by using the AccessorNamingVariation class when you are running the
RecordClassGenerator they appear as:

public String getCLAIM_NUMBER() {
 if (claimNumber == null) {
 claimNumber = CLAIM_NUMBER.getString(_byteBuffer);
 }
return claimNumber;
}

OCCURS clause
The OCCURS clause states that a data division element repeats multiple times, and can be applied to a
single element, a group of elements and define either a variable or static number of occurrences. An
elemental data item within an OCCURS clause is generated with indexed accessors.

OCCURS with a single element
At the most basic, the following COBOL code defines that the field FIRST-STRING repeats five times.

01 BASIC-TEST-RECORD.
 02 FIRST-STRING OCCURS 5 TIMES PIC X(10).

The generated Java helper class creates accessor methods that enable you to directly index the five
instances as shown in this example (note that the index starts at zero, not 1):

public static void main(String [] args){
 Occurs1 occurs1 = new Occurs1();
 occurs1.setFirstString(0, "ONE");
 occurs1.setFirstString(1, "TWO");
 occurs1.setFirstString(2, "THREE");
 occurs1.setFirstString(3, "FOUR");
 occurs1.setFirstString(4, "FIVE");

 String thirdString = occurs1.getFirstString(2);
 // thirdString has the value of THREE
}

OCCURS in a group
OCCURS can also appear in a group, for example, the following code snippet shows the declaration of
GROUPA that contains the fields FIRST-STRING and FIRST-NUMBER. The entire group occurs three times.

01 BASIC-TEST-RECORD.
 02 GROUPA OCCURS 3 TIMES.
 03 FIRST-STRING PIC X(10) VALUE SPACES.
 03 FIRST-NUMBER PIC S9(8).

In this case, two helper classes are generated within the same Java source file:

• One class represents the BASIC-TEST-RECORD
• Another class represents the repeating GROUPA structure.

Although two classes are generated they are within the same Java source file. The outer class again
maintains an array to hold the repeating elements.

The next snippet of code shows these objects that are being used:

public static void main(String [] args){
 //Create a new record and populate the fields
 Occurs2 groupOccurs = new Occurs2();

 Groupa firstGroup = groupOccurs.getGroupa(0);

16 IBM Record Generator for Java V3.0.1

 firstGroup.setFirstNumber(20);
 firstGroup.setFirstString("TWENTY");

 Groupa secondGroup = groupOccurs.getGroupa(1);
 secondGroup.setFirstNumber(30);
 secondGroup.setFirstString("THIRTY");

 //Byte buffer containing COBOL record data
 byte[] buffer;
 //This will have been initialised by our COBOL program.

 //create a new record based upon the generated data
 groupOccurs = new Occurs2(buffer);

 int firstNumberInGroup3 = groupOccurs.getGroupa(3).getFirstNumber();
}

Variable OCCURS
The OCCURS construct can also define elements that variably repeat depending on another element. For
example:

01 BASIC-TEST-RECORD.
 02 NUMBER-OF-REPEATS PIC 9(1).
 02 GROUPA OCCURS 1 TO 9 DEPENDING ON NUMBER-OF-REPEATS.
 03 FIRST-STRING PIC X(10) VALUE SPACES.
 03 FIRST-NUMBER PIC S9(8).

This time, GROUPA repeats at least once but up to nine times. However, it isn't known how many times it
repeats, so the generator is unable to create a zero argument constructor. Instead, you must calculate the
size of the array that is required and generate a blank array. This blank array must be passed to the
generated class within the constructor alongside a boolean value that describes if the byte array is blank
or not. When this is done, the generated class is ready to update the fields.

public static void main(String [] args){
 //define the size of the repeating structure
 //and the number of times it will repeat
 int sizeOfGroupA = 18;
 int numberOfOccurs = 3;

 //generate a new blank buffer of the correct size
 //use the buffer to construct the class
 byte[] buffer = new byte[sizeOfGroupA * numberOfOccurs];
 Occurs3 occursDependingOn = new Occurs3(buffer, false);
 //false as the array is blank

 //now we can fill in the fields values
 occursDependingOn.setNumberOfRepeats(numberOfOccurs);
 occursDependingOn.getGroupa(0).setFirstNumber(10);
 occursDependingOn.getGroupa(0).setFirstString("TEN");

}

If a single character element repeats multiple times, then instead of creating an array, the
RecordClassGenerator class can create a single accessor method to retrieve the elements as a single
string.

01 BASIC-TEST-RECORD.
 02 COUNTER PIC 9(3).
 02 VAR-STRING OCCURS 1 TO 256 TIMES DEPENDING ON COUNTER PIC X.

Again, a default zero argument constructor cannot be defined because the size of the record can vary.
However, instead of interacting with the VAR-STRING object as a 256 element array, it can be handled as
if it were just a string element:

public static void main(String [] args){
 //define the size of the repeating structure
 int sizeOfRecord = 35;

Chapter 4. Using IBM Record Generator for Java with COBOL 17

 byte[] buffer = new byte[sizeOfRecord];

 Occurs4 variableStringOccurs = new Occurs4(buffer,false);
 variableStringOccurs.setCounter(32);
 variableStringOccurs.setVarString("This is a variable length String");

}

REDEFINES clause
COBOL allows a section of data to be mapped by two separate structures. Usefully, it allows multiple
mutually exclusive records to share the same logical space.

This record contains two structures, FIRST-SECTION and SECOND-SECTION. However, instead of these
two structures taking up sequential areas of memory, the second structure simply remaps the first. In this
instance, it splits the 10-byte string in the first section into two smaller areas.

01 BASIC-TEST-RECORD.
 02 FIRST-SECTION.
 03 FIRST-STRING PIC X(10).
 03 FIRST-NUMBER PIC S9(8).
 02 SECOND-SECTION REDEFINES FIRST-SECTION.
 03 SECOND-STRING-A PIC X(5).
 03 SECOND-STRING-B PIC X(5).
 03 FIRST-NUMBER PIC S9(8).

IBM Record Generator for Java supports REDEFINES structures. However it is important that the Java
programmer understands the nature of the REDEFINES statement, as the generated code contains
accessor methods to all fields and allows them to be used in any order, as the following Java code
highlights:

public static void main(String [] args){
 Redefines redefinesRecord = new Redefines();

 redefinesRecord.setSecondStringA("Hello");
 redefinesRecord.setSecondStringB("World");

 System.out.println(redefinesRecord.getFirstString()); //prints “elloWorld”
 redefinesRecord.setFirstString("123456789");
 System.out.println(redefinesRecord.getSecondStringA()); //prints 12345
 System.out.println(redefinesRecord.getSecondStringB()); //prints 6789
}

VALUE clause
COBOL can assign variables default values as they are being declared.

In this example, the variable FIRST-STRING is set to be blank characters, FIRST-NUMBER is given the
value 5 and SECOND-STRING the value ‘HELLO’. It can be important that these values are preserved
because the target program might expect that these values are in place.

01 VALUES-TEST.
 02 FIRST-STRING PIC X(10) VALUE SPACES.
 02 FIRST-NUMBER PIC S9(8) VALUE 5.
 02 SECOND-STRING PIC X(10) VALUE 'HELLO'.

IBM Record Generator for Java supplies the method setInitialValues() that sets the default values.
This method is automatically called when the default zero arguments constructor is called.

public static void main(String [] args){
 ValuesTest values = new ValuesTest();

 int firstNumber = values.getFirstNumber(); //Will be set to the value 5
 String secondString = values.getSecondString(); //Will be set to HELLO

}

18 IBM Record Generator for Java V3.0.1

Condition-name: level-88 statements
COBOL can define a set of level-88 elements, which list potential values for the preceding element. The
level-88 statements can be used to test the value of the preceding element.

For example, if the element FLAG1 has a value of ‘Y’, then FLAG1-ON resolves to true when used to test
the value of FLAG1.

01 BASIC-TEST-RECORD.
 02 FLAG1 PIC X.
 88 FLAG1-ON VALUE 'Y'.
 88 FLAG1-OFF VALUE 'N'.

When a structure of this type is processed by IBM Record Generator for Java, static fields are generated
for each of the level-88 statements, which can be used to set the value of the preceding element. Also,
methods are generated to test if the preceding element contains a specific value. For example:

public static void main(String[] args) {
 BooleanExample boolExample = new BooleanExample();

 //Set Flag 1 to have the value of 'N' or FLAG1-OFF
 boolExample.setFlag1(boolExample.FLAG1_OFF);

 //Test the value of flag 1
 if(boolExample.isFlag1On()){
 System.out.println("Flag is on");
 }else{
 System.out.println("Flag is off"); //This will print as the flag is off
 }
}

Level-88 elements that list multiple potential values or ranges, as illustrated in the following example, are
not supported by the IBM Record Generator for Java.

02 FLAG2 PIC X(2).
 88 FLAG-ALPHA VALUES 'AA' 'AB' 'AC'.
 88 FLAG-NUMERIC VALUE 11 THRU 99.

If multiple potential values are listed as part of a COBOL level-88 element, the IBM Record Generator for
Java generates a Java method that only checks for the first value listed, and not the entire range.

Chapter 4. Using IBM Record Generator for Java with COBOL 19

20 IBM Record Generator for Java V3.0.1

Chapter 5. Using IBM Record Generator for Java with
assembler

Use IBM Record Generator for Java to generate Java helper classes that can construct and parse byte
arrays, which are used to interact with assembler-language programs. Before you run IBM Record
Generator for Java, you need an ADATA file that is produced by the IBM IBM High-Level Assembler. This
ADATA file must be based on the DSECT in the assembler source code for which you want a generated
Java helper class. The ADATA file is used by IBM Record Generator for Java to generate the source code
for the Java helper classes.

Example DSECT
Here is an example of an assembler DSECT. This example is referenced in this documentation to explain
how IBM Record Generator for Java processes assembler data structures.

This data structure contains the same data as that used in the “ Example COBOL copybook” on page 9.

MY_RECORD DSECT
CLAIM_NUMBER DS CL19
ADMISSION_DATE DS PL4
FROM_DATE DS PL4
THRU_DATE DS PL4
DISCHARGE_DATE DS PL4
FULL_DAYS DS PL3
COINSURANCE_DAYS DS HL2
LIFETIME_RES_DAYS DS FL4
INTERMEDIARY_NUM DS FDL8
PROVIDER DS CL13
INPATIENT_DED DS PL4
BLOOD_DED DS PL4
TOTAL_CHARGES DS ZL9
PATIENT_STATUS DS CL2
BLOOD_PINTS_FURNISHED DS FL4
BLOOD_PINTS_REPLACED DS HL2
SEQUENCE_COUNTER DS HL2
TRANSACTION_IND DS ZL1
BILL_SOURCE DS ZL1
BENEFITS_EXHAUST_IND DS ZL1
BENEFITS_PAY_IND DS ZL1
AUTO_ADJUSTMENT_IND DS CL1
INTERMEDIARY_CTRL_NUM DS CL23

Creating ADATA files with IBM High Level Assembler
The ADATA file that is required as input to IBM Record Generator for Java is a file that contains specific
record information about the program that is collected during assembly. The file can be a traditional MVS™

data set or a z/OS® UNIX file.

To create an ADATA file that can be used as input to IBM Record Generator for Java, add the ADATA option
to the list of options in the PARM parameter on the EXEC statement of the assembler job. For example:

//ASSEMBLE EXEC ASMAC,PARM='ADATA,LIST,NOTERM,NODECK,NOOBJECT'
//C.SYSLIB DD
// DD DSN=SYS1.MODGEN,DISP=SHR

The assembler produces the ADATA file that contains additional program data.

You control the location of this file by using the SYSADATA DD statement on the assembler job. For
example:

//SYSADATA DD DSNAME=DSNAME,DISP=(OLD,DELETE)

© Copyright IBM Corp. 2017-2020 21

If you want to use the ADATA file on your local workstation as input for the IIBM Record Generator for
Java, transfer it in binary mode to prevent data corruption.

For details, see Associated data file output in the HLASM documentation.

Syntax of assembler RecordClassGenerator
When you have created the ADATA file, it is used as input to IBM Record Generator for Java. The
assembler implementation of IBM Record Generator for Java is through the RecordClassGenerator
class in the com.ibm.recordgen.asm package. This generates the source code for a Java class that
maps a byte array matching the description that is given by an assembler DSECT. You can set options to
control the processing.

Syntax
The RecordClassGenerator takes as input the following options, using either adatafile or xmlfile
as the only required option.

adatafile=adata.file

xmlfile=xml.file bufoffset=  true|false

camelcaseaccessors=  true|false

class=  className

commentsprecededeclaration=  true|false

genaccessorjavadoc=  true|false

gencache=  true|false

genprotectedfields=  true|false

gensetters=  true|false

outputdir=  dirname

package=  packageName ?

section=  DSECTNAME

stringencoding=  encoding

stringtrim=  true|false

supportsfixedpointexplicitlength=  true|false

adatafile (default: //DD:SYSADATA; mutually exclusive with xmlfile)
Used to specify the input ADATA file that is generated by the IBM High Level Assembler from the
assembler DSECT. You must specify either this option or xmlfile.

22 IBM Record Generator for Java V3.0.1

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.asma100/appndxd.htm

If the adatafile starts with //, it names a z/OS data set which might include MVS data set names (//
x.y.z), member names (//x.y.z(m)), ddnames (//DD:ddname), and DD member names (//
DD:ddname(member)).

Data set names that are not enclosed in single quotation marks are automatically prefixed with the
current user ID.

If the adatafile is a PDS name without a member or a directory name, all members of the PDS (or files
in the directory) are processed. For processing to work properly, you must specify the outputdir
option but not the class and section options. This allows the first DSECT name in each ADATA file
to be used to generate unique classnames for each class. One invocation of the
RecordClassGenerator can generate Java classes for an entire PDS library of ADATA files.

If the adatafile is a path name that does not start with //, it is assumed to be the name of a file in the
z/OS UNIX (or workstation) file system that contains the ADATA records output from the compiler. The
file might have each record prefixed by an IBM record descriptor name (RDW), but this is not required.

bufoffset (default: false)
Set to true to generate code that allows the Java record to be mapped to a non-zero offset in a byte
array. For more information, see Chapter 6, “Buffer offset feature,” on page 27.

camelcaseaccessors (default: true)
Set to false to prevent getter and setter methods from being camel cased. The default is true, so each
"_"- separated segment of the assembler symbol name is converted to a Java name that starts with
an uppercase letter, followed by lowercase letters.

class (default: top-level group name)
Used to specify the Java class name for the generated output source. . The default is to use the name
of the ADATA section (mapped into a valid Java class name).

commentsprecededeclaration (default: false)
Configures how the Javadoc for a given declaration is generated when using multi-line comments. The
default is false. For example, by convention, many assembler language data declarations have
comment lines that follow the declaration. Other conventions ha ve the comments preceding the
declaration.

Consider the following example with comments preceding the declaration.

MY_RECORD DSECT COPYBOOK FOR JZOS RECORD SAMPLE
* CHARACTER STRING LENGTH 19 BYTES
CLAIM_NUMBER DS CL19 CLAIM NUMBER IS PRIMARY KEY

With commentsprecededeclaration=true, the field generated for CLAIM_NUMBER will appear as
follows:

/** <pre>
* CHARACTER STRING LENGTH 19 BYTES
CLAIM_NUMBER DS CL19 CLAIM NUMBER IS PRIMARY KEY </pre>
*/
protected static final StringField CLAIM_NUMBER = factory.getStringField(19);

genaccessorjavadoc (default: false)
Set to true to cause Javadoc comments to be generated for field getter and setter methods.

gencache (default: true)
Set to false to prevent generation of instance variables and code to cache the value of fields.

genprotectedfields (default: true)
Set to false to cause static field variables to be generated with public access, rather than protected
access. This is useful for dynamic modification of field behavior or testing.

gensetters (default: true)
Set to false to prevent generation of Java setter methods.

outputdir (default: writes file to System.out)
The output file is created in the package-qualified subdirectory with a file name Classname.java.

Chapter 5. Using IBM Record Generator for Java with assembler 23

package (default: mypackage)
Used to specify the Java package name that is used in the generated output source.

section (default: process the first CSECT or DSECT found)
Selects which CSECT or DSECT in the ADATA file is processed. The default is to select the first section
in the ADATA file.

stringencoding (default: IBM-1047)
Set to an alternative single-byte EBCDIC code page that is used for String fields. The encoding that is
used for individual String fields is (in order of preference, the first non-null value):

1. The encoding set in the individual field StringField.setEncoding(String) .
2. The encoding set by this option, or by the setStringEncoding(String) method of this class.
3. IBM-1047.

stringtrim (default: false)
Set to true to generate code that trims spaces from the end of String fields as they are accessed.

supportsfixedpointexplicitlength (default: true)
Set to false to revert to compatibility with older versions of assembler record generator. Previously, a
DC/DS type FLx would generate a byte array field. Now, the default is to generate a Binary field (int
or long) for lengths less than or equal to eight.

xmlfile (default: none; mutually exclusive with adatafile)
If the name of an xmlfile is given, it is either the //dataset.name or /path/name of the file that
contains XML that was generated by, or compatible with, the output of the RecordXMLGenerator
class. You must specify either this option or the adatafile.

Running the assembler RecordClassGenerator
The assembler RecordClassGenerator requires the adatafile option to specify the location of the
ADATA file. All of the other options use default values. When you run IBM Record Generator for Java,
make sure that your Java CLASSPATH points to the ibm-recgen.jar. If you run on a non-z/OS platform,
you must also include in the CLASSPATH the ibmjzos.jar file from the IBM SDK for z/OS Java
Technology Edition.

For descriptions of all the available options, see “Syntax of COBOL RecordClassGenerator” on page 10.

Examples
This example uses the DSECT MY_RECORD within the USER.ASSEM.ADATA(MYRECORD) PDS member
and generates the source for a Java helper class file that is called MyRecord.java within the Java
package assem.records. This is written to the directory generatedClasses/assem/records, based
on the concatenation of the values on the ouputdir and package options.

java com.ibm.recordgen.asm.RecordClassGenerator \
 adataFile="//'USER.ASSEM.ADATA(MYRECORD)'" \
 package=assem.records \
 class=MyRecord \
 section=MY_RECORD \
 outputdir=generatedClasses

This example uses, by default, the first DSECT that is found in the myRecord.adata file and generates
the source for a Java helper class file called MyRecord.java within the Java package assem.records.
This will be written to the directory generatedClasses/assem/records.

java com.ibm.recordgen.asm.RecordClassGenerator \
 adatafile=myRecord.adata \
 package=assem.records \
 class=MyRecord \
 outputdir=generatedClasses

24 IBM Record Generator for Java V3.0.1

Using the generated Java helper class in an application
The Java class created by the RecordClassGenerator class can be used as part of an existing Java
application to construct or parse a byte array passed to or from an assembler application.

Each generated Java helper class contains two constructors that can be used to create an instance of the
generated class. Also, individual public accessor methods are generated for each symbol in the assembler
source code. These constructors and accessor methods enable you to either:

• Create a new instance of the generated class then use the accessor methods to set the fields in the
class and obtain a byte array that represents the fields you have set, ready to be used by the assembler
program.

• Create an instance of the generated class based on an existing byte array that was passed to the Java
program from the assembler program. The accessor methods can then be used to obtain the values
from fields in the byte array.

Constructing a new record
This example creates a new instance of the MyRecord class by using the zero argument constructor and
uses the setClaimNumber() method to set a value for the CLAIM_NUMBER field. Other accessor
methods might then be used to set the other fields in the record. When all the fields are set, then the
getByteBuffer() method is used to obtain a byte array that is in the correct format to be used as input
to the assembler program.

MyRecord rec = new MyRecord();
String claimnum = "0000000000123456789";
rec.setClaimNumber(claimnum);
byte[] record = rec.getByteBuffer();

Creating a record from an existing byte array
If the Java program already has access to a byte array that contains data from the assembler program,
then it can be used within the MyRecord class constructor to create an instance of the MyRecord class,
which represents the data within the array. The Java program can use the getClaimNumber() method
to obtain the value of the field within the byte array and manipulate it as necessary.

byte[] record;
MyRecord rec = new MyRecord(record);
String claimnum = rec.getClaimNumber();

Support for assembler data types
Elemental assembler data types are mapped to field converter classes in the com.ibm.jzos.fields
package. The IBM JZOS Toolkitprovides field converter classes for mapping byte array fields into Java
data types.

• DS C items are mapped to StringField. The stringtrim argument to the
RecordClassGenerator class determines trimming behavior.

• DS A, DS F, DS H, DS R, DS S, DS V, DS Y, DS X items (length less than or equal to four
bytes) are mapped to BinaryAsIntField.

• DS B, DS X items (length greater than or equal to four bytes) are mapped to ByteArrayField.
• DS E, DS D, DS L items are mapped to IbmFloatField or IbmDoubleField, based on length.
• Binary floating point numbers (DS EB, DS DB, DS LB) are not supported and are mapped to
ByteArrayField.

• DS P items are mapped to PackedDecimalAsIntField or PackedDecimalAsLongField,
depending on length.

Chapter 5. Using IBM Record Generator for Java with assembler 25

• DS Z items are mapped to ExternalDecimalAsIntField or ExternalDecimalAsLongField,
depending on length.

Current limitations
Assembler labels can contain symbols that are not valid in Java names. The following conversions are
performed during code generation:

• @ is mapped to the string _at_
• # is mapped to the string _hash_

Multi-operand statements
The assembler RecordClassGenerator allows for multiple operands to be associated with a single
symbol.

In this case, the generated code gives the first operand the symbol name. Each additional operand is
given the symbol name with a numeric suffix so that they can be distinguished. For example, the DSECT
statement:

CLAIM_NUMBER DS H,CL19 CLAIM NUMBER IS PRIMARY KEY

Results in the following generated code:

/** <pre>
CLAIM_NUMBER DS H,CL19 CLAIM NUMBER IS PRIMARY KEY </pre>
*/
 protected static final BinaryAsIntField CLAIM_NUMBER = \
 factory.getBinaryAsIntField(2, true); \
 protected static final StringField CLAIM_NUMBER_1 = \
 factory.getStringField(19);

26 IBM Record Generator for Java V3.0.1

Chapter 6. Buffer offset feature
The buffer offset feature of the RecordClassGenerator class (specified by the bufoffset option)
results in a generated class that provides an additional constructor to access a record at a non-zero offset
in a byte array. The bufoffset option can be used by both the COBOL RecordClassGenerator and
the assembler RecordClassGenerator.

With large COBOL record structures, it can be easier to split the record into smaller subrecords and
generate Java helper classes for each subrecord. In this case, the buffer offset feature is useful because it
allows each helper class to parse their own section from a relative offset in the byte array. Take the
following example:

01 BASIC-TEST-RECORD.
 02 SECTION-A.
 03 FIRST-STRING PIC X(10) VALUE SPACES.
 02 SECTION-B.
 03 SECOND-STRING PIC X(10) VALUE SPACES.
 02 SECTION-C.
 03 THIRD-STRING PIC X(10) VALUE SPACES.

The BASIC-TEST-RECORD structure consists of three sections each containing a 10-byte string. This is a
simple example; in reality, each section might be much longer and contain varying variables. To generate
each section as an individual record, you need to break the copybook into three smaller sections and
individually generate Java helper classes for each 01 level section. Use the symbol option of
RecordClassGenerator to dictate the section for which you want to generate a helper class. You also
need to set the bufoffset option to true. This causes the additional constructor with the buffer offset to
be added to the generated class.

01 SECTION-A.
 03 FIRST-STRING PIC X(10) VALUE SPACES.
01 SECTION-B.
 03 SECOND-STRING PIC X(10) VALUE SPACES.
01 SECTION-C.
 03 THIRD-STRING PIC X(10) VALUE SPACES.

The example below shows the class for just one of the sections, SectionC. It would be repeated for each
of the other sections.

java com.ibm.recordgen.cobol.RecordClassGenerator \
 adatafile=buffer.adt \
 bufoffset=true \
 symbol=SECTION-C \
 outputdir=output \
 package=coboldata \
 class=SectionC

These three classes can then be used to build each segment of the structure or to parse a subsection of
the structure.

public static void main(String[] args) {

 SectionA sectionA = new SectionA();
 SectionB sectionB = new SectionB();
 SectionC sectionC = new SectionC();

 sectionA.setFirstString("Hello");
 sectionB.setSecondString("World");
 sectionC.setThirdString("Again!");

 //Create a record that contains all three sections
 //use the ByteBuffer class to concatenate each section
 ByteBuffer bb = ByteBuffer.allocate(30);
 bb.put(sectionA.getByteBuffer(), 0, 10);

© Copyright IBM Corp. 2017-2020 27

 bb.put(sectionB.getByteBuffer(), 0, 10);
 bb.put(sectionC.getByteBuffer(), 0, 10);
 byte[] record = bb.array();

 //reconstruct the three sections from the record
 //use the buffoffset option in the constructor
 //to define the offset
 sectionA = new SectionA(record, 0);
 sectionB = new SectionB(record, 10);
 sectionC = new SectionC(record, 20);

 //finally print out the data to prove that it has
 //all worked
 System.out.println(sectionA.getFirstString());
 System.out.println(sectionB.getSecondString());
 System.out.println(sectionC.getThirdString());
}

28 IBM Record Generator for Java V3.0.1

Chapter 7. XML support
IBM Record Generator for Java can also generate XML files that describe the fields within an assembler
DSECT or COBOL language structure. This XML file can then be processed by XML stylesheets or similar
technology, then used as input into the RecordClassGenerator class to generate the Java helper
classes.

Before you run IBM Record Generator for Java, you need an ADATA file that is produced by either the IBM
Enterprise COBOL for z/OS compiler or the IBM High Level Assembler. This ADATA file must be based on
the language structure in the COBOL or assembler source code for which you want to generate an XML
file.

A Java class that is called RecordXMLGenerator is provided for XML support. There are two
implementations of RecordXMLGenerator:

• Implements the XML support for COBOL and is in the com.ibm.recordgen.cobol package.
• Implements the XML support for assembler and is in the com.ibm.recordgen.asm package.

© Copyright IBM Corp. 2017-2020 29

Figure 2. How the XML generation works

30 IBM Record Generator for Java V3.0.1

This flow chart is an example of how using the ADATA file, RecordXMLGenerator can generate XML files
and then uses the RecordClassGenerator to generate Java helper classes.

Syntax for RecordXMLGenerator
The RecordXMLGenerator class is invoked in a similar way to the RecordClassGenerator class, but
it has fewer options to control processing.

For COBOL
The COBOL implementation of the RecordXMLGenerator class takes as input the following options,
where adatafile is the only required option.

adatafile=adata.file

outputfile=  filename

symbol=  symbol

adatafile
Used to specify the input ADATA file that is generated by the IBM Enterprise COBOL for z/OS compiler
from the COBOL copybook. You must specify this option.

If the adatafile starts with //, it names a z/OS data set by using the same syntax as the
com.ibm.jzos.ZFile() constructor, which includes MVS data set names (//x.y.z), member
names (//x.y.z(m)), ddnames (//DD:ddname), and DD member names (//
DD:ddname(member)). Data set names that are not enclosed in single quotation marks are
automatically prefixed with the current user ID.

If the adatafile is a path name that does not start with //, it is assumed to be the name of a file in the
z/OS UNIX (or workstation) file system that contains the ADATA records output from the compiler. The
file might have each record prefixed by an IBM record descriptor name (RDW), but this is not required.

outputfile (default: writes file to System.out)
If omitted, the XML is written to System.out. Otherwise, it should represent the file to which the
RecordXMLGenerator class should write the output.

symbol (default: first level 01 found)
Used to specify the name of the first COBOL level 01 that is selected for generation. If not specified,
the default is the first level 01 name found.

For assembler
The assembler implementation of the RecordXMLGenerator class takes as input the following options,
where adatafile is the only required option.

adatafile=adata.file

outputfile=  filename

section=  DSECTNAME

adatafile
Used to specify the input ADATA file that is generated by the IBM High Level Assembler from the
assembler DSECT. You must specify this parameter.

If the adatafile starts with //, it names a z/OS data set which might include MVS data set names (//
x.y.z), member names (//x.y.z(m)), ddnames (//DD:ddname), and DD member names (//
DD:ddname(member)).

Chapter 7. XML support 31

If the adatafile is a path name that does not start with //, it is assumed to be the name of a file in the
z/OS UNIX (or workstation) file system that contains the ADATA records output from the compiler. The
file might have each record prefixed by an IBM record descriptor name (RDW), but this is not required.

outputfile (default: writes file to System.out)
If omitted, the XML is written to System.out. Otherwise, it should represent the file to which the
RecordXMLGenerator class should write the output.

section (default: process the first CSECT or DSECT found)
Selects which CSECT or DSECT in the ADATA file is processed. The default is to select the first section
in the ADATA file.

Running the RecordXMLGenerator
Before the RecordXMLGenerator class can be used you must have generated an ADATA file from the
COBOL or assembler language structure that you wish to use. The RecordClassGenerator requires the
adatafile option to specify the location of the ADATA file. All of the other options use default values.
When you run IBM Record Generator for Java, make sure that your Java CLASSPATH points to the ibm-
recgen.jar. If you run on a non-z/OS platform, you must also include in the CLASSPATH the
ibmjzos.jar file from the IBM SDK for z/OS Java Technology Edition.

For descriptions of all the available options, see “Syntax for RecordXMLGenerator” on page 31.

COBOL examples
This example uses the language structure MY-RECORD within the USER.COBOL.ADATA(MYRECORD) PDS
member and generates an XML file called MyRecord.xml.

java com.ibm.recordgen.cobol.RecordXMLGenerator \
 adataFile="//'USER.COBOL.ADATA(MYRECORD)'" \
 symbol=MY-RECORD \
 outputfile=MyRecord.xml

This example uses the first 01 level data structure found within the myRecord.adata file and generates
the source for an XML file called MyRecord.xml.

java com.ibm.recordgen.cobol.RecordXMLGenerator \
 adatafile=myRecord.adata \
 outputfile=MyRecord.xml

Assembler examples
This example uses the DSECT MY_RECORD within the USER.ASSEM.ADATA(MYRECORD) PDS member
and generates an XML file called MyRecord.xml.

java com.ibm.recordgen.asm.RecordXMLGenerator \
 adataFile="//'USER.ASSEM.ADATA(MYRECORD)'" \
 section=MY_RECORD \
 outputfile=MyRecord.xml

This example uses the first DSECT found within the myRecord.adata file and generates an XML file
called MyRecord.xml.

java com.ibm.recordgen.asm.RecordXMLGenerator \
 adatafile=myRecord.adata \
 outputfile=MyRecord.xml

32 IBM Record Generator for Java V3.0.1

Generating XML from an ADATA file
The COBOL or assembler RecordXMLGenerator class can be used to generate an XML file from ADATA
files. The XML file represents the ADATA. Subsequently, this XML file can be used as input to the
RecordClassGenerator class, by specifying the xmlfile option.

You can generate the XML file by entering a command, similar to the example below. This example, using
the COBOL RecordXMLGenerator, looks for the 01 level symbol BASIC-TEST-RECORD in the
basic.adt file, generates an XML file that represents the content of the ADATA file and stores it in
basicTestRecord.xml.

java ibm-recgen.jar:ibmjzos.jar \
 com.ibm.recordgen.cobol.RecordXMLGenerator \
 adatafile=basic.adt \
 symbol=BASIC-TEST-RECORD \
 outputfile=basicTestRecord.xml

After the command completes, the basicTestRecord.xml file contains the following content:

<?xml version="1.0" ?>
<group symbol="BASIC-TEST-RECORD" level="1" symbolId="3149" size="18" sourceStmt="11" offset="0">
 01 BASIC-TEST-RECORD.
 <field symbol="FIRST-STRING" level="2" symbolId="3233" size="10" sourceStmt="12" offset="0"
value="SPACES" fieldType="String" length="10" trim="true" padLeft="false">
 02 FIRST-STRING PIC X(10) VALUE SPACES.
 </field>
 <field symbol="FIRST-NUMBER" level="2" symbolId="3317" size="8" sourceStmt="13" offset="10"
fieldType="ExternalDecimal" precision="8" scale="0" signed="true" signTrailing="true"
signExternal="false" blankWhenZero="false">
 02 FIRST-NUMBER PIC S9(8).
 </field>

Generating Java source from an XML file
XML that is generated from the RecordXMLGenerator Class can be used to generate a Java helper class
by using the xmlfile option of the RecordClassGeneratorclass.

The following example, for COBOL, takes the basicTestRecord.xml file that was created in previous
examples and generates the source file BasicTestRecord.java in the output directory output/xml/
test. The package option is used to create sub-directories in the output folder.

java com.ibm.recordgen.cobol.RecordClassGenerator \
 xmlfile=basicTestRecord.xml \
 outputfile=output \
 package=xml.test

Chapter 7. XML support 33

34 IBM Record Generator for Java V3.0.1

Chapter 8. Troubleshooting and support
To isolate and resolve IBM Record Generator for Java V3.0 problems, use the troubleshooting information
here.

You can also find information in the Q&A forum for IBM Record Generator for Java V3.0. If you require
additional support, contact IBM through the IBM Support Portal.

java.lang.IllegalStateException specTree root is not a StorageSpec
Check that the file specified on the RecordClassGenerator class with the adatafile option is a
valid ADATA file and not COBOL or assembler source code. If you are running on a distributed
platform, make sure that the ADATA file was downloaded in binary format.

java.lang.ClassDefNotFoundException
Check that the ibmjzos.jar (from the IBM SDK for z/OS Java Technology Edition) and ibm-
recgen.jar (from IBM Record Generator for Java V3.0) are specified on the Java CLASSPATH.

java.lang.UnsupportedClassVersionError JVMCFRE003 bad major version; class=com/ibm/jzos/
fields/Field, offset=6

The version of the ibmjzos.jar that is on your Java CLASSPATH is from a later version of Java than
the one you are using. For example, the ibmjzos.jar was taken from Version 8 of IBM SDK for z/OS
Java Technology Edition but on a distributed platform, you are using Java 7.

Error while processing an XML file
If you encounter the message javax.xml.stream.XMLStreamException: ParseError at
[row,col]:[2,98], with the explanation "Unexpected element "group" encountered parsing XML.
Input file is invalid and cannot be processed.", you are using an XML file as input to the assembler
version of RecordClassGenerator that was generated by using the COBOL version of the
RecordXMLGenerator.

java.lang.IllegalArgumentException
If you encounter a java.lang.IllegalArgumentException running the RecordClassGenerator, check
that you are using the correct language version of the RecordClassGenerator. For example, you
might be using an ADATA file from a COBOL copybook as input to the assembler version of the
RecordClassGenerator.

Collecting troubleshooting data (MustGather) for IBM Support
If you have to contact IBM Support about a problem in IBM Record Generator for Java, ensure that you
collect troubleshooting data, also known as MustGather.

Component-specific information
Gather the following information that is specific to IBM Record Generator for Java:

• The ADATA file that is used as input to the IBM Record Generator for Java, downloaded in binary format.
• Preferably, the original source code file that is used to produce that ADATA.
• Any console output from the IBM Record Generator for Java. This is any output to System.out or
System.err (sysout or syserr), or any files that are generated especially if the generated code has a
problem.

• Any options used on the command line that is used to invoke the IBM Record Generator for Java.
• The content of the CLASSPATH environment variable.

General information
Gather the following general information about the problem and your environment:

• A complete description of the problem that includes the following questions:

© Copyright IBM Corp. 2017-2020 35

https://developer.ibm.com/answers/topics/record-generator/
http://www.ibm.com/support/entry/portal/Overview/Software

– When did the problem first occur?
– Is the problem a one-time failure or recurring?
– Was software or hardware maintenance applied?
– Did the failure occur while you were doing a specific task?

• Product version, release, and maintenance level. (For IBM Record Generator for Java. this is written out
to the terminal.)

• Operating system version, release, and maintenance level
• The version and release levels of related products.

36 IBM Record Generator for Java V3.0.1

Chapter 10. Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

 IBM Director of Licensing
 IBM Corporation
 North Castle Drive, MD-NC119
 Armonk, NY 10504-1785
 United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

 IBM Director of Licensing
 IBM Corporation
 North Castle Drive, MD-NC119
 Armonk, NY 10504-1785
 United States of America

© Copyright IBM Corp. 2017-2020 37

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

38 IBM Record Generator for Java V3.0.1

http://www.ibm.com/legal/copytrade.shtml

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Chapter 10. Notices 39

40 IBM Record Generator for Java V3.0.1

Chapter 11. IBM Record Generator for Java V3.0
IBM Record Generator for Java V3.0 provides a stand-alone utility that generates Java helper classes
based on the associated-data (ADATA) files produced from compiling COBOL copybooks or assembler
DSECTs. These Java helper classes can then be used in a Java applications to marshal data to and from
the COBOL or assembler language-specific record structures.
Learn more
“What is IBM Record Generator for Java?” on page 1
IBM Record Generator for Java V3.0 is a stand-alone Java utility that generates Java helper classes to
describe language-specific record structures. These helper classes can then be used in a Java application
to marshal data to and from the byte-oriented record structures that are commonly used in z/OS
applications, such as CICS COMMAREAs or VSAM files.
Product Legal Notices
“What's new in V3.0.1” on page 5
IBM Record Generator for Java V3.0 supersedes the alphaWorks version of the JZOS Record Generator
V2.4.6, and provides new capabilities.
Articles from the experts
Announcement
Get this doc in PDF
Try it
Download
Get support
Ask a question
Request a feature
IBM Z on Twitter
IBM Support Portal

© Copyright IBM Corp. 2017-2020 41

https://github.com/cicsdev/cics-java-recgen/blob/master/blog.md
https://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=an&subtype=ca&supplier=897&letternum=ENUS217-295
https://ibm.github.io/mainframe-downloads/IBM-Record-Generator-for-Java.html
https://developer.ibm.com/answers/topics/record-generator/
https://www.ibm.com/developerworks/rfe/?PROD_ID=1716
https://twitter.com/ibmz
https://www.ibm.com/support/home/

42 IBM Record Generator for Java V3.0.1

Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

 IBM Director of Licensing
 IBM Corporation
 North Castle Drive, MD-NC119
 Armonk, NY 10504-1785
 United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

 IBM Director of Licensing
 IBM Corporation
 North Castle Drive, MD-NC119
 Armonk, NY 10504-1785
 United States of America

© Copyright IBM Corp. 2017-2020 43

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

44 Notices

http://www.ibm.com/legal/copytrade.shtml

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 45

46 IBM Record Generator for Java V3.0.1

IBM®

	Contents
	About this book
	Chapter 1. What is IBM Record Generator for Java?
	Chapter 2. What's new in V3.0.1
	Chapter 3. Getting started with IBM Record Generator for Java
	Chapter 4. Using IBM Record Generator for Java with COBOL
	Example COBOL copybook
	Creating ADATA files with the IBM Enterprise COBOL for z/OS compiler
	Syntax of COBOL RecordClassGenerator
	Running the COBOL RecordClassGenerator
	Using the generated Java helper class in an application
	Support for COBOL data division
	Support for COBOL data types
	Name mapping
	JavaNameGenerator
	OCCURS clause
	REDEFINES clause
	VALUE clause
	Condition-name: level-88 statements

	Chapter 5. Using IBM Record Generator for Java with assembler
	Example DSECT
	Creating ADATA files with IBM High Level Assembler
	Syntax of assembler RecordClassGenerator
	Running the assembler RecordClassGenerator
	Using the generated Java helper class in an application
	Support for assembler data types
	Multi-operand statements

	Chapter 6. Buffer offset feature
	Chapter 7. XML support
	Syntax for RecordXMLGenerator
	Running the RecordXMLGenerator
	Generating XML from an ADATA file
	Generating Java source from an XML file

	Chapter 8. Troubleshooting and support
	Collecting troubleshooting data (MustGather) for IBM Support

	Notices

