GLM Post Hoc Comparisons

Post hoc multiple comparison tests. Once you have determined that differences exist among the means, post hoc range tests and pairwise multiple comparisons can determine which means differ. Comparisons are made on unadjusted values. These tests are used for fixed between-subjects factors only. In GLM Repeated Measures, these tests are not available if there are no between-subjects factors, and the post hoc multiple comparison tests are performed for the average across the levels of the within-subjects factors. For GLM Multivariate, the post hoc tests are performed for each dependent variable separately. GLM Multivariate and GLM Repeated Measures are available only if you have the Advanced Statistics option installed.

The Bonferroni and Tukey's honestly significant difference tests are commonly used multiple comparison tests. The Bonferroni test, based on Student's t statistic, adjusts the observed significance level for the fact that multiple comparisons are made. Sidak's t test also adjusts the significance level and provides tighter bounds than the Bonferroni test. Tukey's honestly significant difference test uses the Studentized range statistic to make all pairwise comparisons between groups and sets the experimentwise error rate to the error rate for the collection for all pairwise comparisons. When testing a large number of pairs of means, Tukey's honestly significant difference test is more powerful than the Bonferroni test. For a small number of pairs, Bonferroni is more powerful.

Hochberg's GT2 is similar to Tukey's honestly significant difference test, but the Studentized maximum modulus is used. Usually, Tukey's test is more powerful. Gabriel's pairwise comparisons test also uses the Studentized maximum modulus and is generally more powerful than Hochberg's GT2 when the cell sizes are unequal. Gabriel's test may become liberal when the cell sizes vary greatly.

Dunnett's pairwise multiple comparison t test compares a set of treatments against a single control mean. The last category is the default control category. Alternatively, you can choose the first category. You can also choose a two-sided or one-sided test. To test that the mean at any level (except the control category) of the factor is not equal to that of the control category, use a two-sided test. To test whether the mean at any level of the factor is smaller than that of the control category, select < Control. Likewise, to test whether the mean at any level of the factor is larger than that of the control category, select > Control.

Ryan, Einot, Gabriel, and Welsch (R-E-G-W) developed two multiple step-down range tests. Multiple step-down procedures first test whether all means are equal. If all means are not equal, subsets of means are tested for equality. R-E-G-W F is based on an F test and R-E-G-W Q is based on the Studentized range. These tests are more powerful than Duncan's multiple range test and Student-Newman-Keuls (which are also multiple step-down procedures), but they are not recommended for unequal cell sizes.

When the variances are unequal, use Tamhane's T2 (conservative pairwise comparisons test based on a t test), Dunnett's T3 (pairwise comparison test based on the Studentized maximum modulus), Games-Howell pairwise comparison test (sometimes liberal), or Dunnett's C (pairwise comparison test based on the Studentized range). Note that these tests are not valid and will not be produced if there are multiple factors in the model.

Duncan's multiple range test, Student-Newman-Keuls (S-N-K), and Tukey's b are range tests that rank group means and compute a range value. These tests are not used as frequently as the tests previously discussed.

The Waller-Duncan t test uses a Bayesian approach. This range test uses the harmonic mean of the sample size when the sample sizes are unequal.

The significance level of the Scheffé test is designed to allow all possible linear combinations of group means to be tested, not just pairwise comparisons available in this feature. The result is that the Scheffé test is often more conservative than other tests, which means that a larger difference between means is required for significance.

The least significant difference (LSD) pairwise multiple comparison test is equivalent to multiple individual t tests between all pairs of groups. The disadvantage of this test is that no attempt is made to adjust the observed significance level for multiple comparisons.

Tests displayed. Pairwise comparisons are provided for LSD, Sidak, Bonferroni, Games-Howell, Tamhane's T2 and T3, Dunnett's C, and Dunnett's T3. Homogeneous subsets for range tests are provided for S-N-K, Tukey's b, Duncan, R-E-G-W F, R-E-G-W Q, and Waller. Tukey's honestly significant difference test, Hochberg's GT2, Gabriel's test, and Scheffé's test are both multiple comparison tests and range tests.

Obtaining Post Hoc Tests for GLM

  1. From the menus choose:

    Analyze > General Linear Model

  2. Choose Univariate, Multivariate, or Repeated Measures.
  3. In the dialog box, click Post Hoc.
  4. Select the factors to analyze and move them to the Post Hoc Tests For list.
  5. Select the tests you want.

Post hoc tests are not available when covariates have been specified in the model.

GLM Multivariate and GLM Repeated Measures are available only if you have the Advanced Statistics option installed.