
z/OS

DFSMSdfp Advanced Services
Version 2 Release 1

SC23-6861-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 499.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1979, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About This Document xi
Required product knowledge xi
Referenced documents xi
z/OS information xiii
How to Read Syntax Diagrams xiii
Address and Register Conventions xv

How to send your comments to IBM xvii
If you have a technical problem xvii

Summary of changes for z/OS Version
2 Release 1 (V2R1) as updated March
2014 xix
z/OS Version 2 Release 1 summary of changes . . xix

Chapter 1. Using the Volume Table of
Contents 1
VTOC Components 1

Data Set Control Block (DSCB) Types 2
Allocating and Releasing DASD Space 16

The VTOC Index 17
VTOC Index Records 18

Accessing the VTOC with DADSM Macros 19
Requesting DASD Volume Information Using
LSPACE 20
Reading DSCBs from the VTOC Using OBTAIN 36
Releasing Unused Space from a DASD Data Set
Using PARTREL 42
Creating (Allocating) a DASD Data Set Using
REALLOC 48

Accessing the VTOC with CVAF Macros. 56
Serializing and Updating 56
Identifying the Volume 57
Generating a CVPL (CVAF Parameter List) . . . 58
Using Buffer Lists 60
Using Macro ICVEDT02 to Map the Extents Area 62
Accessing the DSCB Directly 63
Accessing DSNs or DSCBs in Sequential Order 65
Reading Sets of DSCBs with CVAF Filter . . . 67

Coding CVAF VTOC Access Macros 73
CVAFDIR Macro Overview and Specification . . 74
CVAFDSM Macro Overview and Specification . . 94
CVAFFILT Macro Overview and Specification 100
CVAFSEQ Macro Overview and Specification 120
CVAFTST Macro Overview and Specification 138
VTOC Index Error Message and Associated
Codes 139

VTOC Error Responses 140
Recovering from System or User Errors . . . 140
GTF Trace 141

VTOC and VTOC Index Listings 141

Chapter 2. Managing the Volume Table
of Contents 143
Creating the VTOC and VTOC Index 143
Protecting the VTOC and VTOC Index 143

RACF 143
APF 143
Password Protection 144

Copying/Restoring/Initializing the VTOC. . . . 144
Volumes Containing a Nonindexed VTOC. . . 144
Volumes Containing an Indexed VTOC. . . . 144

Deleting a Data Set from the VTOC 145
Specifying the Volumes Affected 145
Erasing Sensitive Data 145
System-Managed-Storage Considerations . . . 146
General Considerations and Restrictions . . . 146

SCRATCH and CAMLST Macro Specification . . 147
Example 147
SCRATCH Parameter List 148
Return Codes from SCRATCH. 149
Status Codes from SCRATCH 150

Renaming a Data Set in the VTOC 150
Specifying the Volumes Affected 151
System-Managed-Storage Considerations . . . 151
General Considerations and Restrictions . . . 151

RENAME and CAMLST Macro Specification . . . 153
Example 153
RENAME Parameter List 154
Return Codes from RENAME 154
Status Codes from RENAME 155

Chapter 3. Using Catalog Management
Macros 157
Application Program Considerations 157
Catalog Search Order. 157
Retrieving Information from a Catalog 157

Retrieving Information by Data Set Name
(LOCATE and CAMLST NAME) 158
Retrieving Information by Generation Data Set
Name (LOCATE and CAMLST NAME) . . . 159
Retrieving Information by Alias (LOCATE and
CAMLST NAME) 161
Reading a Block by Relative Block Address
(LOCATE and CAMLST BLOCK). 162
Return Codes from LOCATE 162

Using Non-VSAM Data Set Catalog Entries . . . 163
Cataloging a Non-VSAM Data Set (CATALOG
and CAMLST CAT) 163
Uncataloging a Non-VSAM Data Set
(CATALOG and CAMLST UNCAT) 164
Recataloging a Non-VSAM Data Set (CATALOG
and CAMLST RECAT) 166
Return Codes from CATALOG 167

© Copyright IBM Corp. 1979, 2014 iii

Chapter 4. Executing Your Own
Channel Programs 169
Comparing EXCP and EXCPVR 169
Using EXCP and EXCPVR 170
Allocating the Data Set or Device. 171
Opening the Data Set. 172

Direct Data Set Considerations 172
VSAM Data Set Considerations 172

Creating the Channel Program 173
CCW Channel Program 173
zHPF Channel Program 175
Comparing CCW and zHPF channel programs 176
EXCP 64-bit Storage Considerations 177
IDAW Requirements for EXCP Requests . . . 177
IDAW Requirements for EXCPVR Requests . . 178
MIDAW Requirements 180
TIDAW requirements for EXCP requests . . . 181
Determining Whether zHPF is Supported for a
Device. 182
Modifying a Channel Program During
Execution. 183
VIO Considerations 183

Creating the EXCP-Related Control Blocks. . . . 184
Input/Output Block (IOB) 184
Input/Output Block Common Extension (IOBE) 184
Event Control Block (ECB) 184
Input/Output Error Data Block (IEDB) 184
Data Control Block (DCB) 184
Data Control Block Extension (DCBE) 185
Data Extent Block (DEB). 185

Executing the Channel Program 185
Using the EXCP macro instruction 185
Using the EXCPVR macro instruction 186
Initiating the Channel Program 187
Translating the Channel Program 187
DASD Channel Program Prefix CCW
Commands 187
DASD Rotational Positioning Sensing 188
Command Retry Considerations 188
Magnetic Tape Considerations 189
Lost Data Condition on IBM 3800 189

Processing the I/O Completion Status 189
Interruption Handling and Error Recovery
Procedures 190

Handling End of Volume and End-Of-Data-Set
Conditions 194
Closing the Data Set 195
Control Block Fields 196

Data Control Block (DCB) Fields 196
Data Control Block Extension (DCBE) Fields . . 207
Input/Output Error Data Block (IEDB) Fields 209
Input/Output Block (IOB) Fields 211
Input/Output Block Common Extension (IOBE)
Fields 216
Event Control Block (ECB) Fields 220
Data Extent Block (DEB) Fields 222

EXCP and EXCPVR Appendages 222
Making Appendages Available to the System 224
The Authorized Appendage List (IEAAPP00) 224
Start-I/O Appendage 225
Page Fix and EXCPVR Start I/O Appendage 226

Program-Controlled Interruption Appendage 227
End-of-Extent Appendage 228
Abnormal-End Appendage 229
Channel-End Appendage 231

Converting a Relative Track Address to an Actual
Track Address 232

Return Codes from the Relative to Actual
Conversion Routine 234

Converting an Actual Track Address to a Relative
Track Address 234

Return Codes from the Conversion Routine . . 235
Using the IECTRKAD Callable Service or the
TRKADDR Macro 236
Obtaining the Sector Number of a Block on an RPS
Device. 236

Chapter 5. Using XDAP to Read and
Write to Direct Access Devices. . . . 239
Using XDAP 239
Macro Instructions Used with XDAP 240

Defining a Data Control Block (DCB) 240
Initializing a Data Control Block (OPEN) . . . 240
End of Volume (EOV) 241
Restoring a Data Control Block (CLOSE) . . . 241

Executing Direct Access Programs 241
Control Blocks Used with XDAP 244

Input/Output Block 244
Event Control Block 244
Direct Access Channel Program 244
RPS Device Sector Numbers 244

Chapter 6. Using Password Protected
Data Sets 247
Providing Data Set Security 248

PASSWORD Data Set Characteristics 249
Creating Protected Data Sets 250
Protection Feature Operating Characteristics . . 250

Maintaining the PASSWORD Data Set Using
PROTECT 252

Record Format 252
Protection-Mode Indicator 252
PROTECT Macro Specification. 253

Chapter 7. Using System Macro
Instructions 259
Ensuring Data Security by Validating the Data
Extent Block (DEBCHK macro) 259

DEBCHK Macro Specification 260
Obtaining I/O Device Characteristics (DEVTYPE
macro). 263

DEVTYPE Macro Specification. 264
IHADVA Mapping macro 281

Reading and Modifying a Job File Control Block
(RDJFCB Macro) 284

RDJFCB Macro Specification 287
DEQ at Demount Facility for Tape Volumes . . 299
High-Speed Cartridge Tape Positioning. . . . 301
OPEN - Initialize Data Control Block for
Processing the JFCB 302

iv z/OS V2R1.0 DFSMSdfp Advanced Services

||

Purging and Restoring I/O Requests (PURGE and
RESTORE macros) 304

PURGE Macro Specification 304
RESTORE Macro Specification 307

Performing Track Calculations (TRKCALC macro) 307
Using TRKCALC 308
Restrictions 309
TRKCALC Macro Specification 309

Perform calculations and conversions with 28-bit
cylinder addresses (TRKADDR macro) 317

Calculate the relative track number on the
volume (TRKADDR ABSTOREL) 317
Compare two track addresses (TRKADDR
COMPARE) 318
Extract 28-bit cylinder number (TRKADDR
EXTRACTCYL). 318
Extract 4-bit track number (TRKADDR
EXTRACTTRK). 319
Increment track address (TRKADDR
NEXTTRACK) 319
Normalize cylinder number (TRKADDR
NORMALIZE) 319
Convert a relative track number to a 28-bit
cylinder address (TRKADDR RELTOABS) . . . 320
Set cylinder number from register (TRKADDR
SETCYL) 320
Convert normalized track address into an
absolute 28-bit track address (TRKADDR
NORMTOABS) 321

Determining Level and Name of DFSMS 321
Determining Version, Release, and Modification
Level of DFSMS 322
Determining Name of DFSMS 323
Determining DFARELS During Assembler
Macro Phase. 323

Chapter 8. Displaying Messages on
Cartridge Magnetic Tape Subsystems
(MSGDISP macro) 325
MSGDISP—Displaying a Mount Message 326
MSGDISP—Displaying a Verify Message 328
MSGDISP—Displaying a Ready Message 330
MSGDISP—Displaying a Demount Message . . . 331
MSGDISP—Resetting the Message Display . . . 334
MSGDISP—Providing the Full Range of Display
Options 336
Return Codes from MSGDISP 338

Chapter 9. Using DFSMSdfp Callable
Services 341
Call for DFSMS Level Determination 342

Format 342
Parameters 343
Return Codes 344
Example 344

Call for Data Set Attribute Retrieval 345
Format 346
Parameters 346
Return Codes 347
Example 347

Call for Data Set Backup-While-Open Support . . 347
Format 347
Parameters 347
Return Codes 349
Example 349
Using the Backup-While-Open Facility 350

Call for DFSMSdfp Share Attributes 353
Format 353
Parameters 353
Return Codes 354
IGWASYS, IGWASMS, IGWABWO, IGWLSHR
Return and Reason Codes 354

Call for Record-Level Sharing Query (IGWARLS) 355
Format 355
Parameters 356
Return Codes 357
Example 358

Call for converting and comparing 28-bit cylinder
addresses (IECTRKAD) 359

Format 359
Parameters 359

Character Data Representation Architecture
(CDRA) APIs 362

Chapter 10. Using the DESERV Exit 363
Task Level Exit 364
Global Exit 365
Interactions Between the Task Level and Global
Exits 365
Establishing Multiple Task level or Multiple Global
Exits 366
Issuing DESERV FUNC=EXIT (invocation
environment) 366

Invocation Syntax 367
Installing or Replacing the DESERV Exit 369
Deleting the DESERV Exit 370
Determining If a DESERV Exit Is Active 371
Writing the DESERV Exit 371

Parameters Related to the GET Function . . . 372
Parameters Related to the PUT Function . . . 384
PUT Return and Reason Codes 386
Parameters Related to the DELETE Function 389
Parameters Related to the RENAME Function 390
Parameters Related to the UPDATE Function 392
Entry Environment for Exit Routine 394
Exit Environment for Exit routine 394
Registers on Entry to the DESERV Exit 395
Registers on Return from the DESERV Exit . . 395
DESERV Exit Return and Reason Codes . . . 395
DESERV FUNC=EXIT Return and Reason Codes 395

Example of the DESERV Exit 398

Chapter 11. Managing Hierarchical File
System Data Sets 405
Creating Hierarchical File System Data Sets . . . 405

Defining the Root File System 406
Creating and Mounting the Root File System 406
Creating Additional File Systems and
Directories 406

Contents v

Adding and Mounting File Systems to the Root
File System 407

Managing File System Size 407
Managing File System Activity 408
Accessing HFS Data Set Attributes 408
Transporting a File System 408
Removing (Deleting) a File System 409
Migrating a File System 409
Backing Up File Systems 409
Recovering a Backed-Up File System 410
HFS Deferred File System Synchronization . . . 410

How to specify a SYNC value 411
Using pfsctl (BPX1PCT) Physical File System
Control for HFS 411

DisplayBufferLimits Command 412
ChangeBufferLimits Command 413
DisplayGlobalStats Command 413
DisplayFSStats Command 414
ExtendFS Command 414
BPX1PCT Return and Reason Codes. 415

Chapter 12. User Access to
Subsystem Statistics, Status, and
Counts Information 421
Register 1 Parameter List 421
Passed Argument List -- SSGARGL 421

Appendix A. Control Blocks 443
Data Extent Block (DEB) Fields 443
Data Facilities Area (DFA) Fields 449

Appendix B. Maintaining the System
Image Library 455
UCS Images in SYS1.IMAGELIB 457

Examples of UCS Image Coding 458
UCS Image Alias Names 462
UCS Image Tables in SYS1.IMAGELIB 462
Alias Names in UCS Image Tables 462
Adding or Modifying a UCS Image Table Entry 466
Verifying the UCS Image 470

FCB Images in SYS1.IMAGELIB 471
Adding an FCB Image to the Image Library . . 473

Modifying an FCB Image 475
JES Support for the 3211 Indexing Feature 476

Appendix C. Using the extended
address volume (EAV) migration
assistance tracker 479
Information conventions for the EAV migration
assistance tracker 480

Tracking information 480
Tracking value 481

DFSMS instances tracked by the EAV migration
assistance tracker 481

LSPACE (SVC 78) 481
DEVTYPE (SVC 24) 482
IDCAMS LISTDATA PINNED 483
IEHLIST LISTVTOC 484
IDCAMS DCOLLECT 485
IDCAMS LISTCAT 485
OBTAIN (SVC 27) 486
CVAFDIR 487
CVAFSEQ 488
CVAFDSM 489
CVAFFILT 490
CVAFVSM 491
DCB Open of a VTOC 492
DCB Open of EAS eligible data set 492
Other Sample exclusion list. 493
Recommend exclustion list 493
Summary of DFSMS instances 494

Appendix D. Accessibility 495
Accessibility features 495
Using assistive technologies 495
Keyboard navigation of the user interface 495
Dotted decimal syntax diagrams 495

Notices 499
Policy for unsupported hardware. 500
Minimum supported hardware 501
Trademarks 501

Index 503

vi z/OS V2R1.0 DFSMSdfp Advanced Services

Figures

1. Locating the volume table of contents 1
2. Contents of VTOC - DSCBs Describing Data

Sets on Volume That Has No VTOC Index . . 3
3. Contents of VTOC on an extended address

volume - DSCBs Describing Data Sets on
Volume That Has No VTOC Index 4

4. Example of the Relationship of a VTOC to Its
Index 18

5. DADSM LSPACE Free Space Information
MF=(D,MSG) 32

6. DADSM LSPACE Free Space Information
Format, MF=(D,EXPMSG). 34

7. Control Blocks Required for CVAF Filter
Services 68

8. Example of CVAFDIR Macro with VTOC Part
1 of 2 82

9. Example of CVAFDIR Macro with VTOC Part
2 of 2 83

10. zHPF channel program 175
11. How EXCP translates an EXCP request with a

single 16K storage area 181
12. How EXCP translates an EXCP request with a

storage areas crossing page boundaries . . . 182
13. Using IOSPHPF to determine if zHPF is

supported by a processor and device . . . 183
14. Data Control Block Format for EXCP (After

OPEN) 198
15. Device-dependent portion of the DCB with

DEVD=DA and DSORG=PS (or DSORG=PO) . 204
16. Device-dependent portion of the DCB with

DEVD=DA and DSORG=DA 205
17. Device-dependent portion of the DCB with

DEVD=TA and DSORG=PS 205
18. Device-dependent portion of the DCB with

DEVD=PR and DSORG=PS 205
19. Device-dependent portion of the DCB with

DEVD=PC or RD and DSORG=PS 206
20. Format of an IEDB, Mapped by the

IOSDIEDB Macro 210
21. Input/Output Block (IOB) Format 212
22. IOBFLAG3 and IOBCSW fields for format 0

channel program 215
23. IOBFLAG3 and IOBCSW fields for format 1

channel program 215
24. IOBFLAG3 and IOBCSW fields for zHPF

channel program 215
25. Format of an IOBE, mapped by the

IOSDIOBE macro 217
26. Event Control Block after Posting of

Completion Code 220

27. Parameter List for ADD Function 254
28. Parameter List for REPLACE Function 255
29. Parameter List for DELETE Function 256
30. Parameter List for LIST Function 257
31. Examples of Standard Form of the RDJFCB

macro 288
32. Example Code Using RDJFCB Macro 289
33. Processing a Multivolume Data Set with

EXCP 293
34. Sample Code Retrieving Allocation

Information Part 1 of 2 298
35. Sample Code Retrieving Allocation

Information Part 2 of 2 299
36. Examples of Standard Form of the OPEN

TYPE=J Macro 303
37. The IOB Chain 307
38. Sample &IHADFARELS Program 324
39. Example of Determining Symbol Definition 324
40. Example of an IGWASYS Call Statement 345
41. Example of an IGWASMS Call LINK

Statement 347
42. Example of IGWABWO Using LOAD and

CALL Statements 350
43. Example of the IGWARLS Query Call Using

LOAD and CALL Statements 358
44. Exit Routine Call Sequence 366
45. PUT Return and Reason Codes 387
46. Establishing and Deleting a Task Level

DESERV Exit Part 1 of 2 399
47. Establishing and Deleting a Task Level

DESERV Exit Part 2 of 2 400
48. Sample DESERV Exit Routine Part 1 of 3 401
49. Sample DESERV Exit Routine Part 2 of 3 402
50. Sample DESERV Exit Routine Part 3 of 3 403
51. Code to Add a 1403 UCS Image to

SYS1.IMAGELIB 459
52. Code to Add a 3203 UCS Image to

SYS1.IMAGELIB 460
53. Sample Code to Add a 3211 UCS Image to

SYS1.IMAGELIB 461
54. UCS Image Table Entry Format 463
55. Adding a New Band ID to the 4245 UCS

Image Table (UCS5) 469
56. Adding a New Default Entry to the 4248 UCS

Image Table (UCS6). 470
57. Format of the Standard STD1 FCB Image 472
58. Format of the Standard STD2 FCB Image 473
59. Sample Code to Assemble and Add an FCB

Load Module to SYS1.IMAGELIB 475

© Copyright IBM Corp. 1979, 2014 vii

|
||
|
||

|
||

viii z/OS V2R1.0 DFSMSdfp Advanced Services

Tables

1. Referenced Publications xi
2. DSCB Format-1 or Format-8 6
3. DSCB Format-3 11
4. DSCB Format-4 12
5. DSCB Format-5 14
6. Format-9 DSCB 15
7. Format of the LSPACE Parameter List (MF=D) 30
8. DADSM LSPACE Message Return Area

Contents 33
9. LSPACE Data Return Area Format 34

10. DADSM OBTAIN Return Codes 38
11. DADSM OBTAIN Return Codes 41
12. DADSM PARTREL Return Codes 47
13. REALLOC Parameter List 53
14. DADSM CREATE Return Codes 55
15. CVAF Parameter List - ICVAFPL 58
16. CVFCTN Field of CVPL—Contents and

Definitions 60
17. Format of a Buffer List Header 61
18. Format of a Buffer List Entry. 62
19. Format of ICVEDT02 Mapping Macro. . . . 62
20. Format of a Filter Criteria List Header . . . 69
21. Format of a Filter Criteria List Entry 70
22. SCRATCH Parameter List 148
23. SCRATCH Return Codes. 149
24. SCRATCH Status Codes 150
25. Secondary Status Codes 150
26. RENAME Parameter List generated by

CAMLST 154
27. DADSM RENAME Return Codes 155
28. RENAME Status Codes 155
29. LOCATE Return Codes 162
30. CATALOG Return Codes 167
31. Summary of the differences between EXCP,

EXCPVR, and EXCP V=R 170
32. Storage area locations for CCW channel

program components 174
33. Storage area locations for zHPF channel

program components 176
34. Comparing CCW and zHPF channel

programs 176
35. Maximum Number of IDAWs for CCW

byte-counts 180
36. DCBOFLGS Usage 194
37. Bits that EXCP uses in DCBIFLGS after the

DCB is OPEN 199
38. DCB bits to signify presence of DCBE 203
39. DCB DEVD options 203
40. IEDB Structure Mapping 210
41. IOBE Structure Mapping 217
42. EXCP Appendages 222
43. Entry Points, Returns, and Available Work

Registers for Appendages 223
44. Registers and Their Use for Converting

Relative to Actual 233

45. Relative to Actual Conversion Routine Return
Codes 234

46. Registers and Their Use for Converting
Actual to Relative 235

47. Actual to Relative Conversion Routine Return
Codes 235

48. Registers and Their Use for A Sector Convert
Routine 237

49. 242
50. Channel Program Command Words Used by

XDAP 244
51. PROTECT Return Codes 257
52. Minimum size of area. 265
53. INFO=AMCAP 32–byte return data 271
54. Optimum and Maximum Block Size

Supported When Using EXCP or the Access
Method Large Block Interface 271

55. Simulated Device Characteristics Information 273
56. Simulated Device Characteristics Information 274
57. Output from DEVTYPE Macro 276
58. Output from DEVTYPE Macro — DASD

Devices 277
59. Return Codes from the RDJFCB Macro 289
60. 290
61. Format of the Type 13 JFCB Exit List Entry 293
62. Format of the Allocation Retrieval List

(mapped by the IHAARL macro) 294
63. Format of the Allocation Retrieval Area

(mapped by the IHAARA macro) 295
64. Backup-While-Open Indicators 353
65. IGWASYS, IGWASMS, IGWABWO,

IGWLSHR Return and Reason Codes . . . 354
66. IGWARLS Return and Reason Codes 357
67. Installing or Replacing the DESERV Exit 369
68. DESERV Screen Table Structure 370
69. Deleting the DESERV Exit 370
70. Determining If a DESERV Exit Is Active 371
71. DESX Structure Mapping DESERV Exit

Parameter List 371
72. Structure of DESP for DESERV GET

Invocations 373
73. DESL Structure 375
74. DESN Parameter List 375
75. DESB Parameter List 376
76. SMDE Format 376
77. Directory Entry Name Section 378
78. Directory Entry Notelist Section (PDS Only) 378
79. Directory Entry Token Section 378
80. Directory Entry Primary Name Section 378
81. Directory Entry Name Section 379
82. LSLoader Attributes Unique to Program

Objects. 381
83. Attributes Unique to Load Modules (PDS

only) 383
84. Alias in Unformatted Form 383
85. DESERV PUT DESP Fields 384

© Copyright IBM Corp. 1979, 2014 ix

|
||

86. DESD Parameter List 388
87. DESERV DELETE DESP Fields 389
88. DESERV RENAME DESP Fields 390
89. DESERV UPDATE DESP Fields 392
90. Return and Reason Codes for the Exit

DESERV Function 396
91. BPX1PCT - Return Codes and Reason Codes 415
92. Structure for the DisplayBufferLimits and

ChangeBufferLimits Commands
(GFUMPCTL) 416

93. Structure for the DisplayGlobalStats
Command (GFUMPCTL). 417

94. Structure for the DisplayFSStats Command
(GFUMPCTL) 418

95. Structure for the ExtendFS Command
(GFUMPCTL) 419

96. Constants for Extend Units Supported 419
97. Partial Listing of DEB Fields 443
98. DFA Fields 449
99. DFA Element Name 452

100. SYS1.IMAGELIB Contents 456
101. UCS5 Image Table Contents. 463
102. UCS6 Image Table Contents. 464
103. 3262 Model 5 Print Bands 465

x z/OS V2R1.0 DFSMSdfp Advanced Services

About This Document

This document is intended to help system programmers modify and extend the
data management capabilities of the operating system and for programmers to
write advanced application programs.

For information about the accessibility features of z/OS®, for users who have a
physical disability, see Appendix D, “Accessibility,” on page 495.

Required product knowledge
To use this document effectively, you should be familiar with:
v Assembler language
v Standard program linkage conventions
v The utility programs IEHLIST and IEHPROGM
v Data management access methods and macro instructions
v The storage management functions provided by DFSMSdss™ and DFSMShsm™.

DFSMSdss moves data from one device to another, backs up and recovers data
sets, and reduces free-space fragmentation on DASD volumes. DFSMShsm
manages storage by migrating and recalling data sets through a hierarchy of
storage devices.
To learn about physical storage administration, see z/OS DFSMSdfp Storage
Administration, SC23-6860.

Referenced documents
The following publications are referenced in this document:

Table 1. Referenced Publications

Publication Title Order Number

IBM High Level Assembler/MVS & VM & VSE Programmer's Guide SC26-4941

IBM High Level Assembler/MVS & VM & VSE Language Reference SC26-4940

z/OS MVS Programming: Assembler Services Guide SA23-1368

z/OS MVS Programming: Assembler Services Reference ABE-HSP SA23-1369

z/OS MVS Programming: Authorized Assembler Services Guide SA23-1371

z/OS MVS Programming: Authorized Assembler Services Reference
ALE-DYN

SA23-1372

z/OS MVS Programming: Authorized Assembler Services Reference
EDT-IXG

SA23-1373

z/OS MVS Programming: Authorized Assembler Services Reference
LLA-SDU

SA23-1374

z/OS MVS Programming: Authorized Assembler Services Reference
SET-WTO

SA23-1375

z/OS MVS Planning: Global Resource Serialization SA23-1389

z/OS MVS Program Management: User's Guide and Reference SA23-1393

z/OS MVS Program Management: Advanced Facilities SA23-1392

z/Architecture Principles of Operation SA22-7832

© Copyright IBM Corp. 1979, 2014 xi

Table 1. Referenced Publications (continued)

Publication Title Order Number

IBM 2821 Control Unit Component Description GA24-3312

IBM 3203 Printer Component Description and Operator's Guide GA33-1515

IBM 3211 Printer, 3216 Interchangeable Train Cartridge, and 3811 Printer
Control Unit Component Description and Operator's Guide

GA24-3543

IBM 3262 Model 5 Printer Product Description GA24-3936

IBM 3800 Printing Subsystem Programmer's Guide GC26-3846

IBM 3800 Printing Subsystem Model 3 Programmer's Guide:
Compatibility

SH35-0051

IBM 3800 Printing Subsystem Models 3 and 8 Programmer's Guide SH35-0061

3900 Advanced Function Printer Product Description GA32-0135

IBM 4245 Printer Model 1 Component Description and Operator's Guide GA33-1541

IBM 4248 Printer Model 1 Description GA24-3927

IBM 6262 Printer Model 014 Product Description GA24-4134

IBM 6262 Printer Model 014 User's Guide GA24-4132

IBM 6262 Printer Print Band Manual GA24-4131

Device Support Facilities (ICKDSF) User's Guide and Reference GC35-0033

z/OS MVS JCL Reference SA23-1385

z/OS MVS JCL User's Guide SA23-1386

z/OS JES2 Initialization and Tuning Guide SA32-0991

z/OS JES3 Initialization and Tuning Guide SA32-1003

z/OS DFSMS Access Method Services Commands SC26-7326

z/OS DFSMSdfp Diagnosis SC23-6863

z/OS DFSMS Installation Exits SC23-6850

z/OS DFSMS Macro Instructions for Data Sets SC23-6852

z/OS DFSMS Using Data Sets SC23-6855

z/OS DFSMS Using Magnetic Tapes SC23-6858

z/OS DFSMSdfp Utilities SC23-6864

MVS/ESA SML: Managing Data SC26-3124

z/OS DFSMS Implementing System-Managed Storage SC23-6849

z/OS MVS Initialization and Tuning Guide SA23-1379

z/OS HCD Planning GA32-0907

z/OS Security Server RACF Security Administrator's Guide SA23-2289

z/OS MVS System Messages, Vol 1 (ABA-AOM) SA38-0668

z/OS MVS System Messages, Vol 2 (ARC-ASA) SA38-0669

z/OS MVS System Messages, Vol 3 (ASB-BPX) SA38-0670

z/OS MVS System Messages, Vol 4 (CBD-DMO) SA38-0671

z/OS MVS System Messages, Vol 5 (EDG-GFS) SA38-0672

z/OS MVS System Messages, Vol 6 (GOS-IEA) SA38-0673

z/OS MVS System Messages, Vol 7 (IEB-IEE) SA38-0674

z/OS MVS System Messages, Vol 8 (IEF-IGD) SA38-0675

xii z/OS V2R1.0 DFSMSdfp Advanced Services

Table 1. Referenced Publications (continued)

Publication Title Order Number

z/OS MVS System Messages, Vol 9 (IGF-IWM) SA38-0676

z/OS MVS System Messages, Vol 10 (IXC-IZP) SA38-0677

z/OS TSO/E Command Reference SA32-0975

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, go to
the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

How to Read Syntax Diagrams
Throughout this library, diagrams are used to illustrate the programming syntax.
Keyword parameters are parameters that follow the positional parameters. Unless
otherwise stated, keyword parameters can be coded in any order. The following
list tells you how to interpret the syntax diagrams:
v Read the diagrams from left-to-right, top-to-bottom, following the main path

line. Each diagram begins on the left with double arrowheads and ends on the
right with two arrowheads facing each other.

�� Syntax Diagram ��

v If a diagram is longer than one line, each line to be continued ends with a single
arrowhead and the next line begins with a single arrowhead.

�� First Line ��

�� Second Line ��

�� Last Line ��

v Required keywords and values appear on the main path line. You must code
required keywords and values.

�� REQUIRED_KEYWORD ��

If several mutually exclusive required keywords or values exist, they are stacked
vertically in alphanumeric order.

About This Document xiii

http://www.ibm.com/systems/z/os/zos/bkserv/

�� REQUIRED_KEYWORD_OR_VALUE_1
REQUIRED_KEYWORD_OR_VALUE_2

��

v Optional keywords and values appear below the main path line. You can choose
not to code optional keywords and values.

��
KEYWORD

��

If several mutually exclusive optional keywords or values exist, they are stacked
vertically in alphanumeric order below the main path line.

��
KEYWORD_OR_VALUE_1
KEYWORD_OR_VALUE_2

��

v An arrow returning to the left above a keyword or value on the main path line
means that the keyword or value can be repeated. The comma means that each
keyword or value must be separated from the next by a comma.

�� �

,

REPEATABLE_KEYWORD ��

v An arrow returning to the left above a group of keywords or values means more
than one can be selected, or a single one can be repeated.

��

�

,

REPEATABLE_KEYWORD_OR_VALUE_1
REPEATABLE_KEYWORD_OR_VALUE_2

��

v A word in all uppercase is a keyword or value you must spell exactly as shown.
In this example, you must code KEYWORD.

�� KEYWORD ��

If a keyword or value can be abbreviated, the abbreviation is discussed in the
text associated with the syntax diagram.

v If a diagram shows a character that is not alphanumeric (such as parentheses,
periods, commas, and equal signs), you must code the character as part of the
syntax. In this example, you must code KEYWORD=(001,0.001).

�� KEYWORD=(001,0.001) ��

v If a diagram shows a blank space, you must code the blank space as part of the
syntax. In this example, you must code KEYWORD=(001 FIXED).

�� KEYWORD=(001 FIXED) ��

v Default keywords and values appear above the main path line. If you omit the
keyword or value entirely, the default is used.

xiv z/OS V2R1.0 DFSMSdfp Advanced Services

��
DEFAULT

KEYWORD
��

v A word in all lowercase italics is a variable. Where you see a variable in the
syntax, you must replace it with one of its allowable names or values, as defined
in the text.

�� variable ��

v References to syntax notes appear as numbers enclosed in parentheses above the
line. Do not code the parentheses or the number.

��
(1)

KEYWORD ��

Notes:

1 An example of a syntax note.
v Some diagrams contain syntax fragments, which serve to break up diagrams that

are too long, too complex, or too repetitious. Syntax fragment names are in
mixed case and are shown in the diagram and in the heading of the fragment.
The fragment is placed below the main diagram.

�� Reference to Syntax Fragment ��

Syntax Fragment:

1ST_KEYWORD,2ND_KEYWORD,3RD_KEYWORD

Address and Register Conventions
The notation used to code an operand appears in the following format:

symbol
The operand can be any valid assembler-language symbol.

(0)
General register 0 can be used as an operand. When used as an operand in a
macro instruction, the register must be specified as the decimal number 0
enclosed in parentheses as shown.

(1)
General register 1 can be used as an operand. When used as an operand in a
macro instruction, the register must be specified as the decimal number 1
enclosed in parentheses as shown. When you use register 1, the instruction that
loads it is not included in the macro expansion.

(2-12)
The operand specified can be any of the general registers 2 through 12. All
registers as operands must be coded in parentheses; for example, if register 3 is
coded, it is coded as (3). A register from 2 through 12 can be coded as a
decimal number, symbol (equated to a decimal number), or an expression that
results in a value of 2 through 12.

About This Document xv

RX-Type Address
The operand can be specified as any valid assembler-language RX-type address
as shown in the following examples:

Name Operation Operand
ALPHA1 L 1,39(4,10)
ALPHA2 L REG1,39(4,TEN)
BETA1 L 2,ZETA(4)
BETA2 L REG2,ZETA(REG4)
GAMMA1 L 2,ZETA
GAMMA2 L REG2,ZETA
GAMMA3 L 2,=F'1000'
LAMBDA1 L 3,20(,5)

Both ALPHA instructions specify explicit addresses; REG1 and TEN have been
defined as absolute symbols. Both BETA instructions specify implied addresses,
and both use index registers. ZETA is a relocatable symbol. Indexing is omitted
from the GAMMA instructions. GAMMA1 and GAMMA2 specify implied
addresses. The second operand of GAMMA3 is a literal. LAMBDA1 specifies
an explicit address with no indexing.

A-Type Address
The operand can be specified as any address that can be written as a valid
assembler-language A-type address constant. An A-type address constant can
be written as an absolute value, a relocatable symbol, or relocatable expression.
Operands requiring an A-type address are inserted into an A-type address
constant during the macro expansion process. For more details about A-type
address constants, see High Level Assembler/MVS & VM & VSE Language
Reference.

absexp
The operand can be an absolute value or expression. An absolute expression
can be an absolute term or an arithmetic combination of absolute terms. An
absolute term can be a nonrelocatable symbol, a self-defining term, or the
length attribute reference. For more details about absolute expressions, see
High Level Assembler/MVS & VM & VSE Language Reference.

relexp
The operand can be a relocatable symbol or expression. If the program
containing a relocatable symbol or expression is relocated n bytes away from
its originally assigned area of storage, the value of a relocatable symbol or
expression changes by n. For more details about relocatable symbols and
expressions, see High Level Assembler/MVS & VM & VSE Language Reference.

xvi z/OS V2R1.0 DFSMSdfp Advanced Services

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 DFSMSdfp Advanced Services
SC23-6861-01

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1979, 2014 xvii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xviii z/OS V2R1.0 DFSMSdfp Advanced Services

Summary of changes for z/OS Version 2 Release 1 (V2R1) as
updated March 2014

The following changes are made for z/OS Version 2 Release 1 (V2R1) as updated
March 2014. In this revision, all technical changes for z/OS V2R1 are indicated by
a vertical line to the left of the change.

New

New fields to indicate zEDC compression are added to “Data Facilities Area (DFA)
Fields” on page 449.

Note: For more information on the zEDC compression enhancements, see z/OS
DFSMS Using the New Functions.

z/OS Version 2 Release 1 summary of changes
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1979, 2014 xix

xx z/OS V2R1.0 DFSMSdfp Advanced Services

Chapter 1. Using the Volume Table of Contents

This information is intended to help you to use system macros to access and
modify the volume table of contents (VTOC) and VTOC index. The direct access
device storage management (DADSM) routines control space allocation on direct
access volumes through the VTOC for a volume and through the VTOC index if
one exists. A storage administrator uses the ICKDSF utility to build these
structures. See “Creating the VTOC and VTOC Index” on page 143.

VTOC Components
The VTOC is a data set that describes the contents of the direct access volume on
which it resides. It is a contiguous data set; that is, it resides in a single extent on
the volume and starts after cylinder 0, track 0 and before track 65,535. A VTOC's
address is located in the VOLVTOC field of the standard volume label (see
Figure 1). The volume label is described in z/OS DFSMS Using Data Sets. A VTOC
consists of complete tracks. Some other System z® operating systems support
VTOCs that are compatible with z/OS. Some of them allow the VTOC to begin in
the middle of a track. Normal z/OS operations do not support such a VTOC.
However if you do not create or extend data sets from z/OS in such a VTOC, you
may be able to read data sets on z/OS that were created on the other operating
system.

Standard Volume Label

Record
1 Record

2
Record

3

Record
1 Record

2
Record

3

11(B) VOLVTOC (5 bytes)
CCHHRof first record in VTOC

Cylinder 0
Track 0

VTOC Data Set
(Can be located
after cylinder 0,

track 0.)

Figure 1. Locating the volume table of contents

© Copyright IBM Corp. 1979, 2014 1

|
|
|
|
|
|

The VTOC is composed of 140-byte1 data set control blocks (DSCBs) that
correspond either to a data set currently residing on the volume, or to contiguous,
unassigned tracks on the volume.

A special type of data is in a hierarchical file system (HFS) data set. Each one
contains a UNIX type of file system that is compliant with the IEEE POSIX
standard and OSF XPG/4.2 standard. Certain linear data sets contain z/OS file
system (zFS) file systems. They also meet these standards. Each data set containing
an HFS or zFS file system can contain UNIX files and directories belonging to
multiple users. You can access the files through z/OS UNIX System Services,
BSAM, QSAM, and VSAM. See z/OS DFSMS Using Data Sets. DSCBs for data sets
describe their characteristics and location. DSCBs for contiguous, unassigned tracks
indicate their location.

Data Set Control Block (DSCB) Types
The VTOC contains several kinds of DSCBs. This section describes what the DSCBs
are used for, how many exist on a volume, and how to locate them. The DSCB
layouts are shown in Table 2 on page 6 through Table 5 on page 14.

The first record in every VTOC is the VTOC DSCB (format-4). The record describes
the device the volume resides on, the volume attributes, and the size and contents
of the VTOC data set. The next DSCB in the VTOC data set is a free-space DSCB
(format-5) even if the free space is described by format-7 DSCBs. The third and
subsequent DSCBs in the VTOC can occur in any order.

One or more DSCBs in the VTOC define a data set on each volume on which the
data set resides. The number of DSCBs needed to define a data set is determined
by the number of extents that the data set occupies and by whether it has a format
9 DSCB. One or more format-3 DSCBs are required for data sets with more than
three extents.

Figure 2 on page 3 shows a VTOC and the DSCBs needed to define four data sets.
Data set A (in Figure 2 on page 3) has 29 extents, so it cannot be a basic format,
direct or partitioned (PDS) data set. Because it has so many extents, it requires a
format-1 DSCB and two format-3 DSCBs. Data set B has 16 extents and therefore
requires both a format-1 and a format-3 DSCB. Data sets C and D have three or
fewer extents and need only a format-1 DSCB. Data sets B, C, and D could be any
type of data set.

1. The 140 bytes are divided into a 44-byte key portion followed by a 96-byte data portion. You can refer to the logical 140-byte
DSCB or to either of its parts.

Using the VTOC

2 z/OS V2R1.0 DFSMSdfp Advanced Services

Figure 3 on page 4 shows a VTOC and the DSCBs needed to define four data sets
on an extended address volume. Data set W (in Figure 3 on page 4) has 29 extents,
so it cannot be a basic format, direct or partitioned (PDS) data set. Because it has
so many extents, it requires a format-1 DSCB and two format-3 DSCBs. Data set X
has 16 extents and since it is an EAS eligible data set it requires a format-8 and a
format 9-DSCB, plus an additional format-3 DSCB. Data sets Y and Z have three or
fewer extents and need only a format-1 DSCB. Data sets X, Y, and Z could be any
type of data set.

2(2) 3(3)

4(4)

8(8)

16(10)

24(18)

IOBSENS0 IOBSENS1

IOBECBCC

IOBFLAG3 and IOBCSW - format depends on channel program.

IOBSIOCC

IOBFLAG4

IOBRESTR IOBRESTR+1

IOBERRCT

Direct Access, Teleprocessing, and Graphic Devices

Direct
Access
Storage
Devices
(DASD)

All
Devices

IOBFLAG1

0(0) 1(1)

IOBFLAG2

IOBECBPB

IOBSTRTB

20(14)

IOBINCAM

28(1C)

32(20)

IOBSEEK
(first byte, M)

33(21)

IOBSEEK
(second through eight bytes,

BBCCHHR)

39(27)

IOBDCBPT

See related figures below.

Figure 2. Contents of VTOC - DSCBs Describing Data Sets on Volume That Has No VTOC Index

Using the VTOC

Chapter 1. Using the Volume Table of Contents 3

The mapping macro for the format-1, format-2, format-3, format-4, format-5,
format-8, and format-9 DSCBs is IECSDSL1. Code positional parameters to specify
which formats of DSCB to map. For example, the following maps format-1 and
format-3:

IECSDSL1 1,3

The macro does not generate a DSECT statement. This makes it easier to embed it
in your own DSECT or CSECT. You can use a technique such as the following to
get separate DSECT statements:
F1AREA DSECT

IECSDSL1 1
F3AREA DSECT

IECSDSL1 3

The first symbol generated for each format is of the form IECSDSLn, where n is
the number of the format.

Format-0 DSCB

Name: Free VTOC Record

Function: Describes an unused record in the VTOC (contains 140 bytes of binary
zeros). To delete a DSCB from the VTOC, a format-0 DSCB is written over it.

11(B)
VOLVTOC
field

Data Set W Data Set X

Data SetY

Data Set Z

Note:

Description of
device, volume,
and the VTOC
extent

Dummy
Format-5
DSCB

Format-4 DSCB Format-5 DSCB

Empty boxes in the VTOC data set represent free VTOC Records (Format-0 DSCBs)

Standard Volume Label

VTOC Data Set

Format-8 DSCB

Format-1 DSCB

Format-9 DSCB

Format-1 DSCB

Format-3 DSCB

Format-3 DSCB Format-1 DSCB

Description of
data set W
and its first
3 extents

Description of
data set X and
its first 3
extents

Description of
data setYand
its first 3 extents

Pointer to
Format-3 DSCB
for data set X

Description of
the 4th - 16th
extents of
data set W

Description of the
17th - 29th extents
of data set W. It may
have less than 29
extents.

Description of
data set Z
and its first
3 extents

Format-7 DSCB

Description
of up to 16
available
extents

Format-3 DSCB

Description of
the 4th - 16th
extents of
data set X

Figure 3. Contents of VTOC on an extended address volume - DSCBs Describing Data Sets on Volume That Has No
VTOC Index

Using the VTOC

4 z/OS V2R1.0 DFSMSdfp Advanced Services

How Many: One for every unused 140-byte record on the VTOC. The DS4DSREC
field of the format-4 DSCB is a count of the number of format-0 DSCBs on the
VTOC. This field is not maintained for an indexed VTOC.

How Found: Search on key equal to X'00'.

Format-1 and Format-8 DSCBs

Note: The fields in the format 1 DSCB and the format 8 DSCB are almost identical.
The small differences are noted in the field descriptions.

Name: Identifier

Function: Describes the first three extents and other information about a data set.

How Many: One for each data set on the volume, except the VTOC.

How Found: Use the OBTAIN macro or a CVAF macro.

Determining the Type of Data Set: To learn the type of a data set, test the
DS1DSORG field. Except for the DS1DSGU bit, only one bit should be on. If no bit
is on, the data set is not standard and the system generally treats it like
DSORG=PS. The explanation for all DS1DSORG bits being off might be:
v The user did not specify the DSORG option and no program has written data in

the data set.
v The data set was created by a program that used EXCP or EXCPVR.
v The data set was created on another operating system.

All of the above conditions are normal. Normally after a program writes data, the
DS1DSORG field will have a bit on. z/OS currently supports the following types
of data set:
v Physical sequential (DSORG=PS). There are three types:

– Large format if the DS1LARGE bit is on.
– Extended format if the DS1STRP bit is on. An indicator in the catalog entry

specifies whether it is striped.
– Basic format if neither of the above two bits is on.

v Direct (DSORG=DA).
v Partitioned (DSORG=PO). This can signify one of three types of data set:

– PDS (partitioned data set) if the DS1PDSE and DS1PDSEX bits are off.
– PDSE (partitioned data set extended) if the DS1PDSE bit is on and DS1PDSEX

bit is off.
– HFS (hierarchical file system) if the DS1PDSE and DS1PDSEX bits are on.

Other combinations of these three bits are invalid.
v VSAM (AMORG). You can use CSI, catalog search interface, to determine the

type of VSAM data set. If it is a linear data set, it might contain a DB2®

tablespace or a z/OS file system (zFS) or something else.

Table 2 on page 6 shows the contents of a format-1 or format-8 DSCB.

The DS1REFD field:

1. For a VSAM data set, if the date in the FMT-1 DSCB's DS1REFD field is earlier
than the current date, OPEN updates the field with the current date.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 5

|
|
|
|

|
|

|

|

|
|
|

|

|

|
|

|

|

|

|

|
|

|

|

|
|
|

2. For a multivolume VSAM data set, OPEN updates the DS1REFD field only for
the first volume of the data component of the base cluster.

3. For a non-VSAM multivolume data set that is not SMS managed, OPEN
updates the DS1REFD field on the first volume OPEN selected to use.

4. For a non-VSAM multivolume SMS-managed data set that is not extended
format, OPEN updates the DS1REFD field on the first volume OPEN selected
to use, as well as the first volume of the data set.

5. For an extended format single-striped non-VSAM data set, OPEN updates the
DS1REFD field on the first volume OPEN selected to use, as well as the first
volume of the data set.

6. For an extended format multi-striped non-VSAM data set, OPEN updates the
DS1REFD fields on all volumes of the data set.

Table 2. DSCB Format-1 or Format-8. DSCB Format-1 or Format-8

Offset Dec
(Hex)

Type or Bit
Mask Length Name Description

0(X'0') Character 44 DS1DSNAM Data set name.
44(X'2C') Character 1 DS1FMTID Format Identifier.

DS1IDC X'F1'. This is a format-1 DSCB.
DS8IDC X'F8'. This is a format-8 DSCB.

45(X'2D') Character 6 DS1DSSN Data set serial number (identifies the first or only
volume containing the data set/space).

51(X'33') Unsigned 2 DS1VOLSQ Volume sequence number.
53(X'35') Character 3 DS1CREDT Creation date ('YDD'), discontinuous binary. Add

1900 and the value in the Y byte to determine the
year. For VSAM data sets that are not
SMS-managed, the expiration date is in the catalog.

56(X'38') Character 3 DS1EXPDT Expiration date ('YDD'), discontinuous binary. Add
1900 and the value in the Y byte to determine the
year.

59(X'3B') Unsigned 1 DS1NOEPV Number of extents on volume.
60(X'3C') Unsigned 1 DS1NOBDB Number of bytes used in last directory block.
61(X'3D') Bitstring 1 DS1FLAG1 Flags byte

1 DS1COMPR Compressible format data set (DS1STRP is also 1).
. 1 DS1CPOIT Checkpointed data set.
. . 1 DS1EXPBY VSE expiration date specified by retention period

(not currently used in z/OS)
. . . 1 DS1RECAL Data set recalled.
. . . . 1 . . . DS1LARGE Large format data set.
.11 DS1EATTR Extended attribute setting as specified on the

allocation request.(EATTR=)

v If 0, EATTR has not been specified. For VSAM
data sets, the default behavior is equivalent to
EATTR=OPT. For non-VSAM data sets, the
default behavior is equivalent to EATTR=NO.

v If 1, EATTR=NO has been specified. The data set
cannot have extended attributes (format 8 and 9
DSCBs) or optionally reside in EAS.

v If 2, EATTR=OPT has been specified. The data
set can have extended attributes and optionally
reside in EAS. This is the default behavior for
VSAM data sets.

v If 3, Not Used, EATTR treated as not specified.
62(X'3E') Character 13 DS1SYSCD System code.

Using the VTOC

6 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 2. DSCB Format-1 or Format-8 (continued). DSCB Format-1 or Format-8

Offset Dec
(Hex)

Type or Bit
Mask Length Name Description

75(X'4B') Character 3 DS1REFD Date last referenced ('YDD' or zero, if not
maintained). Add 1900 and the value in the Y byte
to determine the year.

78(X'4E') Bitstring 1 DS1SMSFG System managed storage indicators.
1 DS1SMSDS System managed data set. IEHLIST displays this bit

as the letter “S”.
. 1 DS1SMSUC Uncataloged system managed data set (the VTOC

index is an uncataloged system managed data set
as are all temporary data sets on system managed
volumes). IEHLIST displays this bit as the letter
“U”.

. . 1 DS1REBLK System determined the block size and data set can
be reblocked (you or the system can reblock the
data set). IEHLIST displays this bit as the letter
“R”.

. . . 1 DS1CRSDB DADSM created original block size and data set
has not been opened for output. IEHLIST displays
this bit as the letter “B”.

. . . . 1 . . . DS1PDSE Data set is a PDSE or HFS data set (DS1PDSEX is
also 1 for HFS). IEHLIST displays this bit as the
letter “I” for a PDSE. IEHLIST displays a “?” when
it finds an invalid combination of bits.

. 1 . . DS1STRP Sequential extended-format data set. IEHLIST
displays this bit as the letter “E”. IEHLIST displays
a “?” when it finds an invalid combination of bits.

. 1 . DS1PDSEX HFS data set (DS1PDSE must also be 1) IEHLIST
displays this bit as the letter “H”.

. 1 DS1DSAE Extended attributes exist in the catalog entry.
79(X'4F') Character 3 DS1SCEXT Secondary space extension. Valid only when

DS1EXT is on (see offset 94(X'5E')).
79(X'4F') Bitstring 1 DS1SCXTF Secondary space extension flag byte–only one of

the first 4 bits is on.
1 DS1SCAVB If 1, DS1SCXTV is the original block length. If 0,

DS1SCXTV is the average record length.
. 1 DS1SCMB If 1, DS1SCXTV is in megabytes.
. . 1 DS1SCKB If 1, DS1SCXTV is in kilobytes.
. . . 1 DS1SCUB If 1, DS1SCXTV is in bytes.
. . . . 1 . . . DS1SCCP1 If 1, DS1SCXTV has been compacted by a factor of

256.
. 1 . . DS1SCCP2 If 1, DS1SCXTV has been compacted by a factor of

65,536.
80(X'50') Unsigned 2 DS1SCXTV Secondary space extension value for average record

length or average block length.
82(X'52') Bitstring 2 DS1DSORG Data set organization.

First byte of
DS1DSORG

1000 000x DS1DSGIS Indexed sequential organization.
0100 000x DS1DSGPS Physical sequential organization.
0010 000x DS1DSGDA Direct organization.
0001 000x DS1DSGCX BTAM or QTAM line group.
. . . . xx . . Reserved.
0000 001x DS1DSGPO Partitioned organization.
. 1 DS1DSGU Unmovable; the data contains location dependent

information.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 7

Table 2. DSCB Format-1 or Format-8 (continued). DSCB Format-1 or Format-8

Offset Dec
(Hex)

Type or Bit
Mask Length Name Description

Second byte of
DS1DSORG

100x 00xx DS1DSGGS Graphics organization.
010x 00xx DS1DSGTX TCAM line group (not supported)
001x 00xx DS1DSGTQ TCAM message queue (not supported).
000x 10xx DS1ACBM VSAM data set/space.
000x 10xx DS1ORGAM VSAM data set/space.
000x 01xx DS1DSGTR TCAM 3705 (not supported).
. . . x . . xx Reserved.

84(X'54') Character 1 DS1RECFM Record format.
10 DS1RECFF Fixed length.
01 DS1RECFV Variable length.
11 DS1RECFU Undefined length.
. . 1 DS1RECFT Track overflow. No longer supported by current

hardware.
. . . 1 DS1RECFB Blocked; cannot occur with undefined.
. . . . 1 . . . DS1RECFS Fixed length: standard blocks; no truncated blocks

or unfilled tracks except possible the last block and
track. Variable length: spanned records.

. 00 . No control character.

. 10 . DS1RECFA ISO/ANSI control character.

. 01 . DS1RECMC Machine control character.

. 11 . Reserved.

. x Reserved.
85(X'55') Character 1 DS1OPTCD Option Code.

BDAM OPTCD field assignments (applies only if DS1DSGDA is on):
1 Write validity check.
. 1 Track overflow.
. . 1 Extended search.
. . . 1 Feedback.
. . . . 1 . . . Actual addressing.
. 1 . . Dynamic buffering.
. 1 . Read exclusive.
. 1 Relative block addressing.

ISAM OPTCD field assignments (applies only if DS1DSGIS is on):
1 Write validity check.
. 1 Accumulate track index entry.
. . 1 Master indices.
. . . 1 Independent overflow area.
. . . . 1 . . . Cylinder overflow area.
. 1 . . Reserved.
. 1 . Delete option.
. 1 Reorganization criteria.

BPAM, BSAM, QSAM OPTCD field assignments (applies only if DS1DSGPO or DS1DSGPS is on):
1 Write validity check.
. 1 Allow data check (if on printer).
. . 1 Chained scheduling.
. . . 1 VSE/MVS interchange feature on tape.
. . . . 1 . . . Treat EOF as EOV (tape).

Using the VTOC

8 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 2. DSCB Format-1 or Format-8 (continued). DSCB Format-1 or Format-8

Offset Dec
(Hex)

Type or Bit
Mask Length Name Description

. 1 . . Search direct.

. 1 . User label totaling.

. 1 Each record contains a table reference character.
85(X'55') Bitstring 1 DS1OPTAM VSAM OPTCD settings.

VSAM OPTCD field assignments (applies only if DS1ORGAM is on):
1 Reserved.
. 1 DS1OPTBC Data set is an integrated catalog facility catalog.
. . xx xxxx Reserved.

86(X'56') Binary 2 DS1BLKL Block length (Type F unblocked records), or
maximum block size (F blocked, U or V records).

88(X'58') Binary 2 DS1LRECL Logical record length: Fixed length-record length,
Undefined length-zero, Variable
unspanned-maximum record length, Variable
spanned and < 32757 bytes-maximum record
length, Variable spanned and > 32756 bytes-X'8000'.

90(X'5A') Binary 1 DS1KEYL Key length (0 to 255).
91(X'5B') Binary 2 DS1RKP Relative key position.
93(X'5D') Character 1 DS1DSIND Data set indicators.

1 DS1IND80 Last volume containing data in this data set.
. 1 DS1IND40 Data set is RACF™, a component of the Security

Server for z/OS, defined with a discrete profile.
. . 1 DS1IND20 Block length is a multiple of 8 bytes.
. . . 1 DS1IND10 Password is required to read or write, or both; see

DS1IND04.
. . . . 1 . . . DS1IND08 Data set has been modified since last recall.
. 1 . . DS1IND04 If DS1IND10 is 1 and DS1IND04 is 1, password

required to write, but not to read. If DS1IND10 is 1
and DS1IND04 is 0, password required both to
write and to read.

. 1 . DS1IND02 Data set opened for other than input since last
backup copy made.

DS1DSCHA Same as DS1IND02.
. 1 DS1IND01 Secure checkpoint data set.

DS1CHKPT Same as DS1IND01.
94(X'5E') Binary 4 DS1SCALO Secondary allocation space parameters.
94(X'5E') Character 1 DS1SCAL1 Flag byte.

xxxx xxxx DS1DSPAC Space request bits, defined as follows:
00 . 0 DS1DSABS Absolute track request.
00 . 1 DS1EXT Extension to secondary space exists (see DS1SCEXT

at offset 79 (X'4F')).
11 DS1CYL Cylinder request.
10 DS1TRK Track request.
01 x DS1AVR Average block length request.
01 1 DS1AVRND Average block and round request.
. . 1 DS1MSGP Mass storage vol group (MSVGP - no longer

supported).
. . . . 1 . . . DS1CONTG Contiguous request.
. 1 . . DS1MXIG MXIG request.
. 1 . DS1ALX ALX request.
. 1 - Round request.

95(X'5F') Binary 3 DS1SCAL3 Secondary allocation quantity.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 9

Table 2. DSCB Format-1 or Format-8 (continued). DSCB Format-1 or Format-8

Offset Dec
(Hex)

Type or Bit
Mask Length Name Description

98(X'62') Binary 3 DS1LSTAR Last used track and block on track (TTR). Not
defined for VSAM, PDSE, HFS and direct (BDAM).
See bit DS1LARGE at +61 and byte DS1TTTHI at
+104.

101(X'65') Binary 2 DS1TRBAL If not extended format, this is the value from
TRKCALC indicating space remaining on last track
used. For extended format data sets this is the high
order two bytes (TT) of the four-byte last used
track number. See DS1LSTAR. Zero for VSAM,
PDSE, and HFS.

103(X'67') Character 1 Reserved.
104(X'68') Character 1 DS1TTTHI High order byte of track number in DS1LSTAR.

Valid if DS1Large is on.
105(X'69') Character 30 DS1EXNTS Three extent fields.
105(X'69') Character 10 DS1EXT1 First extent description.

Character 1 Extent type indicator.
X'81' Extent on cylinder boundaries.
X'80' Extent described is sharing cylinder (no longer

supported).
X'40' First extent describes the user labels and is not

counted in DS1NOEPV.
X'04' Index area extent (ISAM).
X'02' Overflow area extent (ISAM).
X'01' User's data block extent, or a prime area extent

(ISAM).
X'00' This is not an extent.

1 Extent sequence number.
4 Lower limit (CCHH). These are the bit definitions:

0–15 Low order 16 bits of the 28-bit cylinder
number.

16-27 High order 12 bits of the 28-bit cylinder
number. In a format-1 DSCB, these bits
always are zero.

28-31 Track number from 0 to 14. Use the
TRKADDR macro or IECTRKAD routine
when performing track address
calculations.

4 Upper limit (CCHH). Same format as the lower
limit.

115(X'73') Character 10 DS1EXT2 Second extent description.
125(X'7D') Character 10 DS1EXT3 Third extent description.
135(X'87') Character 5 DS1PTRDS In a format-1 DSCB this can be a pointer (CCHHR)

to a format-2 or format-3 DSCB or be zero. In a
format-8 DSCB this always is the CCHHR of a
format-9 DSCB.

140(X'8C') Character DS1END -

Format-2 DSCB
This format applied only to ISAM data sets, which can no longer be created or
opened.

Using the VTOC

10 z/OS V2R1.0 DFSMSdfp Advanced Services

Format-3 DSCB

Name: Extension

Function: Describes extents after the third extent of a non-VSAM data set or a
VSAM data space.

How Many: One for each data set or VSAM data space on the volume that has
more than three extents. There can be as many as 10 for a PDSE, HFS, extended
format data set, or a VSAM data set cataloged in an integrated catalog facility
catalog. PDSEs, HFS, and extended format data sets can have up to 123 extents.
Each component of a VSAM data set cataloged in an integrated catalog facility
catalog can have up to 123 extents per volume. All other data sets are restricted to
16 extents per volume.

How Found: Chained from a format 1, format 2 or format 9 DSCB that represents
the data set. In the case of a PDSE, HFS data set, sequential extended-format data
set, or VSAM data set, the chain also can be from a preceding format-3 DSCB.

Table 3 shows the contents of a format-3 DSCB.

Table 3. DSCB Format-3

Offset Dec
(Hex) Type Length Name Description

0(X'00') Bitstring 4 - Key identifier (X'03030303').
4(X'04') Bitstring 40 DS3EXTNT Four extent descriptions.

1 Extent type indicator. (See DS1EXT1 in Table 2 on
page 6.)

1 Extent sequence number.
4 Lower limit (CCHH).
4 Upper limit (CCHH).

44(X'2C') Character 1 DS3FMTID Format identifier (X'F3').
DS3IDC Constant value of X'F3' in DS3FMTID.

45(X'2D') Bitstring 90 DS3ADEXT Nine additional extent descriptions.
135(X'87') Bitstring 5 DS3PTRDS Pointer (CCHHR) to next format-3 DSCB, or zero.
140(X'8C') DS3END -

Format-4 DSCB

Name: VTOC

Function: Describes the extent and contents of the VTOC and provides volume
and device characteristics. This DSCB contains a flag indicating whether the
volume is SMS managed.

How Many: One on each volume.

How Found: The VOLVTOC field of the standard volume label contains the
format-4 address. The format-4 DSCB is always the first record in the VTOC.

Table 4 on page 12 shows the contents of a format-4 DSCB.

Exception: The format-4 DSCB has a 44-byte key of X'04' bytes not shown in
Table 4 on page 12.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 11

Table 4. DSCB Format-4

Offset Dec
(Hex) Type Length Name Description

0(X'00') Character 1 DS4IDFMT Format identifier (X'F4').
DS4IDC Constant value of X'F4' in DS4FMT.

1(X'01') Character 5 DS4HPCHR Highest address (CCHHR) of a format-1 DSCB.
6(X'06') Unsigned 2 DS4DSREC Number of available DSCBs.
8(X'08') Character 4 DS4HCCHH CCHH of next available alternate track.
12(X'0C') Unsigned 2 DS4NOATK Number of remaining alternate tracks.
14(X'0E') Bitstring 1 DS4VTOCI VTOC indicators.

1 DS4DOSBT VSE bit. Either invalid format 5 DSCBs or indexed
VTOC. Previously DOS(VSE) bit. See DS4IVTOC.

. 1 DS4DVTOC Index was disabled.

. . 1 DS4EFVLD Extended free-space management flag. When
DS4EFVLD is on, the volume is in OSVTOC format
with valid free space information in the format-7
DSCBs. See also DS4EFLVL and DS4EFPTR.

. . . 1 DS4DSTKP VSE stacked pack.

. . . . 1 . . . DS4DOCVT VSE converted VTOC.

. 1 . . DS4DIRF DIRF bit. A VTOC change is incomplete.

. 1 . DS4DICVT DIRF reclaimed.

. 1 DS4IVTOC Volume uses an indexed VTOC.
15(X'0F') Unsigned 1 DS4NOEXT Number of extents in the VTOC(X'01').
16(X'10') Bitstring 1 DS4SMSFG System managed storage indicators.

00 DS4NTSMS Non-system managed volume.
01 DS4SMSCV System managed volume in initial status.
10 Reserved.
11 DS4SMS System managed volume.
11 DS4SMSTS System managed volume.
. . xx xxxx Reserved.

17(X'11') Binary 1 DS4DEVAC Number of alternate cylinders when the volume
was formatted. Subtract from first 2 bytes of
DS4DEVSZ to get number of useable cylinders (can
be 0). Valid only if DS4DEVAV is on.

18(X'12') Character 14 DS4DEVCT Device constants. For currently supported devices,
these fields do not provide enough information to
calculate the amount of space used on a track. Use
TRKCALC (see “Performing Track Calculations
(TRKCALC macro)” on page 307).

18(X'12') Character 4 DS4DEVSZ Device size.
18(X'12') Binary 2 DS4DSCYL Number of logical cylinders including alternates, if

any exist. Unsigned number. Set to X'FFFE' for
devices with more than 65,520 cylinders, indicating
that cylinder-managed space exists (DS4CYLMG is
set on) and extended attribute DSCBs, formats 8
and 9, are allowed.

20(X'14') Binary 2 DS4DSTRK Number of tracks in a logical cylinder.
22(X'16') Unsigned 2 DS4DEVTK Device track length.
24(X'18') Binary 2 DS4DEVOV Keyed record overhead.
24(X'18') Binary 1 DS4DEVI Non-last-keyed record overhead.
25(X'19') Binary 1 DS4DEVL Last keyed record overhead.
26(X'1A') Binary 1 DS4DEVK Non-keyed record overhead differential.
27(X'1B') Bitstring 1 DS4DEVFG Flag byte 1.

. . . 1 DS4DEVAV Value in DS4DEVAC, number of alternate cylinders
is valid. Otherwise, the number is not available in
this DSCB.

Using the VTOC

12 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 4. DSCB Format-4 (continued)

Offset Dec
(Hex) Type Length Name Description

. . . . 1 . . . Keyed record overhead field (DS4DEVOV) is used
as a 2-byte field to specify the overhead required
for a keyed record.

. 1 . . The CCHH of an absolute address is used as a
continuous binary value. Not implemented in the
current IBM® product line.

. 1 . The CCHH of an absolute address is used as four
separate binary values. Not implemented in the
current IBM product line.

. 1 A tolerance factor must be applied to all but the
last block of the track. Not implemented in the
current IBM product line.

xxx. Reserved.
28(X'1C') Binary 2 DS4DEVTL Device tolerance.
30(X'1E') Binary 1 DS4DEVDT Number of DSCBs per track.
31(X'1F') Binary 1 DS4DEVDB Number of PDS directory blocks per track.
32(X'20') Binary 8 DS4AMTIM VSAM time stamp.
40(X'28') Character 3 DS4AMCAT VSAM catalog indicator.
40(X'28') Bitstring 1 DS4VSIND VSAM indicators.

1 DS4VSREF A VSAM catalog references this volume.
. 1 DS4VSBAD The VSAM data sets on this volume are unusable

because an MSS CONVERTV command has not
completed successfully for the volume. (No longer
set.)

. .1 DS4VVDSA Bit on indicate VVDS does exist

. .1 DS4VVDSR If on, VVDS data set name was scanned. It is
turned on once per volume when the VVDS was
scanned on the volume.

. . .x xxxx Reserved.
41(X'29') Unsigned 2 DS4VSCRA Relative track location of the CRA.
43(X'2B') Binary 8 DS4R2TIM VSAM volume/catalog match time stamp.
51(X'33') Character 5 Reserved.
56(X'38') Character 5 DS4F6PTR Pointer (CCHHR) to first format-6 DSCB, or zero.

(No longer supported as non-zero).
61(X'3D') Character 10 DS4VTOCE VTOC extent description.
71(X'47') Character 10 Reserved. VTOC extent description.
81(X'51') Character 1 DS4EFLVL Extended free-space management level. X'00'

indicates extended free-space management is not
used for this volume. X'07' indicates extended
free-space management is in use for this volume
(see also DS4EFVLD).

82(X'52') Character 5 DS4EFPTR Pointer to extended free-space information. If
DS4EFLVL=X'00' this is zero. If DS4EFLVL=X'07'
this is the CCHHR of the first FMT-7 DSCB and no
format-5 DSCBs contain free space information.

87(X'57') Character 1 DS4MCU Minimum allocation size in cylinders for
cylinder-managed space. Each extent in this space
must be a multiple of this value.

88(X'58') Character 4 DS4DCYL Number of logical cylinders. Valid when
DS4DSCYL= X'FFFE'.

92(X'5C') Character 2 DS4LCYL First cylinder address/4095 where space is
managed in multicylinder units. Cylinder-managed
space begins at this address. Valid when
DS4CYLMG is set.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 13

Table 4. DSCB Format-4 (continued)

Offset Dec
(Hex) Type Length Name Description

94(X'5E') Character 1 DS4DEVF2 Device Flags Byte 2
1... DS4CYLMG Cylinder-managed space exists on this volume and

begins at DS4LCYL in multicylinder units of
DS4MCU. DS4EADSCB is also set when this flag is
on.

.1.. DS4EADSCB Extended attribute DSCBs, Format 8 and 9 DSCBs,
are allowed on this volume.

..xx
xxxx

Reserved

95(X'5F') 1 Reserved
96(X'60') DS4END -

Format-5 DSCB

Name: Free Space

Function: On a nonindexed VTOC, describes the space on a volume that has not
been allocated to a data set (available space). For an indexed VTOC, a single empty
format-5 DSCB resides in the VTOC; free space is described in the index and
DS4IVTOC is normally on.

How Many: One for every 26 noncontiguous extents of available space on the
volume for a nonindexed VTOC; for an indexed VTOC, there is only one.

How Found: The first format-5 DSCB on the volume is always the second DSCB
of the VTOC. If there is more than one format-5 DSCB, it is chained from the
previous format-5 DSCB using the DS5PTRDS field.

Table 5 shows the contents of a format-5 DSCB.

Table 5. DSCB Format-5

Offset Dec
(Hex) Type Length Name Description

0(X'00') Bitstring 4 DS5KEYID Key identifier (X'05050505').
4(X'04') Bitstring 5 DS5AVEXT Available extent.

2 Relative track address of the first track in the
extent. Relative to the beginning of the volume.

2 Number of unused cylinders in the extent.
1 Number of additional unused tracks.

9(X'09') Bitstring 35 DS5EXTAV Seven available extents.
44(X'2C') Character 1 DS5FMTID Format identifier (X'F5').
45(X'2D') Bitstring 90 DS5MAVET Eighteen available extents.
135(X'87') Bitstring 5 DS5PTRDS Pointer (CCHHR) to next format-5 DSCB, or zero.
140(X'8C') DS5END -

Format-7 DSCB

Name: Free space for certain devices

Using the VTOC

14 z/OS V2R1.0 DFSMSdfp Advanced Services

Only one field in the format-7 DSCB is an intended interface. This field indicates
whether the DSCB is a format-7 DSCB. You can reference that field as DS1FMTID
or DS5FMTID. A character 7 indicates that the DSCB is a format-7 DSCB, and your
program should not modify it.

If you are diagnosing a problem, see z/OS DFSMSdfp Diagnosis for the layout of the
Format-7 DSCB.

Format-9 DSCB

Name: Metadata and DSCB pointers.

Function: Contains metadata about the data set and pointers to all format 3
DSCBs for the data set.

How Many: One for each format 8 DSCB.

How Found: Chained from a format-8 DSCB that represents the data set. Data
sets that have a format 1 DSCB do not have a format 9 DSCB.

Table 6 shows the contents of a format-9 DSCB.

Table 6. Format-9 DSCB

Offset Dec
(Hex)

Type Length Name Description

0 (X'00') Character 1 DS9KEYID Key identifier.
DS9KEY Constant value of X'09' in DS9KEYID

1 (X'01') Binary 1 DS9SUBTY Subtype number for format 9.
DS9SUBT1 Constant value of binary 1 to represent subtype 1.

If your program uses the content of a format 9
DSCB, then it should test the subtype field to learn
the format of the DSCB. Currently only one
subtype is defined

Beginning of the fields that are unique to the format 9 subtype 1 DSCB.
2 (X'02') Binary 1 DS9NUMF9 Number of format 9 DSCB's for this data set. Valid

only in the first format 9 DSCB.
3 (X'03') Character 1 DS9FLAG1 Format 9 DSCB flag byte 1.

1 DS9CREAT Format 9 DSCB built by create.
4 (X'04') Character 8 DS9JOBNAME Job name used to create the data set described by

its format 8 DSCB. Valid only when DS9CREAT is
on (see offset 3 (X'03'))

12 (X'0C') Character 8 DS9STEPNAME Step name used to create the data set described by
its format 8 DSCB. Valid only when DS9CREAT is
on (see offset 3 (X'03'))

20 (X'12') Character 6 DS9TIME Number of microseconds since midnight, local
time, that the data set described its format 8 DSCB
was created. See creation date field, DS1CREDT
(offset 53(X'35')), for the date. Valid only when
DS9CREAT is on (see offset 3 (X'03'))

26 (X'20') Character 18 * Reserved.
44 (X'2C') Character 1 DS9FMTID Format identifier.

DS9IDC Constant value of X'F9' in DS9FMTID.
45 (X'2D') Binary 1 DS9NUMF3 Number of format 3 pointers that follow
46 (X'2E') Binary 50 DS9F3 Pointers to first to tenth format-3 DSCBs
The following five bytes occur ten times.
46 (X'2E') Binary 5 DS9F3P First pointer to a format-3 DSCB

Using the VTOC

Chapter 1. Using the Volume Table of Contents 15

Table 6. Format-9 DSCB (continued)

Offset Dec
(Hex)

Type Length Name Description

46 (X'2E') Binary 2 DS9F3CC Cylinder number in pointer to format-3
48 (X'30') Binary 2 DS9F3HH Track number in pointer to format-3
50 (X'32') Binary 1 DS9F3R Record number in pointer to format-3
96 (X'60') Character 20 DS9ATRV1 Attribute bytes available for vendor use. See

Vendor fields in DS9ATRV!.
116 (X'74') Character 19 DS9ATRI2 Attribute fields, for future IBM definition
End of the fields that are unique to the format 9 subtype 1 DSCB.
135 (X'87') Bitstring 5 DS9PTRDS Pointer (CCHHR) to next format-9 DSCB, the first

format-3 DSCB or zero.
135 (X'87') Binary 2 DS9CCPTR Cylinder number in DSCB pointer
138 (X'89') Binary 2 DS9HHPTR Track number in DSCB pointer
140 (X'8B') Binary 1 DS9RPTR Record number in DSCB pointer
140 (X'8C') DS9END
Vendor fields in DS9ATRV1 in the format 9 DSCB

z/OS does not enforce any rules on the content of the DS9ATRV1 field. It is available for vendor products to set. IBM
provides the following recommendations:

Each vendor should store subfields in the following format beginning at the leftmost byte:
0 (X'0') Character 1

xxxx Reserved
.... xxxx Number of bytes that follow this two-byte header.

Minimum value is 0000.
1 (X'1') Character 1 One-byte field containing a vendor identification

issued by IBM.
2 (X'2') Character Beginning of variable-length field up to 15 bytes.

Allocating and Releasing DASD Space
DADSM allocate and extend routines assign tracks and cylinders on direct access
volumes for data sets. The DADSM extend routine gets additional space for a data
set that has exceeded its primary allocation. The DADSM scratch and partial
release routines release space that is no longer needed on a direct access volume.

The DADSM routines allocate and release space by adding, deleting, and
modifying the DSCBs and updating the VTOC index. When space is released, the
scratch routines free the DSCBs of the deleted data set or data space.

Every data set occupies an integral number of tracks. Unused space on a track
cannot be used for another data set unless the whole track is released. The
minimum amount of space allocated to a data set is zero tracks but a PDS with no
tracks can never contain a member.

After a certain place on the volume, the system rounds up each primary or
secondary space request so it is a multiple of 21 cylinders. Currently that place is
after the first 65520 cylinders. The space within the first 65520 cylinders is called
the track-managed space, even if data sets are allocated in units of cylinders. The
space after the first 65520 cylinders is called the cylinder-managed space. If the
volume capacity is 65520 cylinders or less, then all of the space is track-managed.

Using the VTOC

16 z/OS V2R1.0 DFSMSdfp Advanced Services

Note: When a user program needs to determine the characteristics of a given
volume, it must separately check each of the following characteristics and not
assume that the value obtained for one characteristic implies the values for the
other three:
v Whether space beyond a certain place on the volume is managed in

multicylinder units.
v The location on the volume where the multicylinder units begin.
v The number of cylinders in a multicylinder unit.
v Whether the VTOC contains format 8 and 9 DSCBs.

The VTOC Index
The VTOC index enhances the performance of VTOC access. The VTOC index is a
physical-sequential data set on the same volume as the related VTOC. It consists of
an index of data set names in format-1 DSCBs contained in the VTOC and volume
free space information.

An SMS-managed volume requires an indexed VTOC; otherwise, the VTOC index is
highly recommended. For additional information about SMS-managed volumes,
see z/OS DFSMS Implementing System-Managed Storage.

Note: You can use the ICKDSF REFORMAT REFVTOC command to rebuild a
VTOC index to reclaim any no longer needed index space and to possibly improve
access times.

z/OS does support sharing a non-SMS-managed volume that contains a VTOC
index with a non-z/OS system. If the other system updates the VTOC and turns
on the DS4DOSBT, then later when z/OS is used to modify the VTOC, DADSM
can detect that the index is no longer valid. The z/VSE® operating system sets this
bit on.

Device Support Facilities (ICKDSF) initializes a VTOC index into 2048-byte
physical blocks, or 8192-byte physical blocks on an extended address volume,
named VTOC index records (VIRs). The DEVTYPE INFO=DASD macro can be
used to return the actual block size or it can be determined from examining the
format-1 DSCB of the index data set. VIRs are used in several ways. A VTOC index
contains the following kinds of VIRs:

VTOC index entry record (VIER) identifies the location of format-1 and
format-8 DSCBs and the format-4 DSCB.
VTOC pack space map (VPSM) identifies the free and allocated space on a
volume.
VTOC index map (VIXM) identifies the VIRs that have been allocated in the
VTOC index.
VTOC map of DSCBs (VMDS) identifies the DSCBs that have been allocated
in the VTOC.

A format-1 DSCB in the VTOC contains the name and extent information of the
VTOC index. The name of the index must be 'SYS1.VTOCIX.volser', where 'volser' is
the serial number of the volume containing the VTOC and its index. The name
must be unique within the system to avoid ENQ contention and must conform to
standard data set naming conventions.

Note:

Using the VTOC

Chapter 1. Using the Volume Table of Contents 17

1. If first character of volser is numeric, you must either precede or replace the
first character with the letter "V" (for example, if volser is 12345, then you
should use either V12345 or V2345).

2. RMF™ statistics on the VTOC index will always show the data set name as
SYS1.VTOCIX.Vvolser regardless of what the actual name is on the volume.

You can only create (allocate) one data set whose name begins with
'SYS1.VTOCIX.' on a volume. To rename a VTOC index data set when the VTOC
index is active, use a name beginning with 'SYS1.VTOCIX.'. If a 'SYS1.VTOCIX.'
data set already exists on a volume, you cannot rename another data set on the
volume to a name with those qualifiers. If the VTOC index is active, you cannot
scratch the VTOC index data set.

The relationship of a VTOC to its index is shown in Figure 4.

VTOC Index Records
VTOC index records consist of the following types:

VTOC Index Entry Record
The first level-one VIER is created with the VTOC index. Subsequent VIERs are
created whenever a VIER is too full to allow a data set name to be added to the
VTOC index. VIERs have the following characteristics:
v A VIER uses one VIR and contains variable-length index entries. The number of

VIERs in an index depends upon the number of data sets on the volume.
v All index entries within a VIER are at the same index level. VIERs in a VTOC

index can be on several levels and have a hierarchic relationship. Index entries
in higher-level VIERs point to lower-level VIERs. Index entries in level-one
VIERs (those at the lowest level) point to format-1 or format-8 DSCBs for data
sets on the volume.

v Whenever a fourth VIER is created on the same level, a VIER at a higher level is
created. Once a higher-level VIER is filled with pointers to lower-level VIERs,
another VIER at the same level is created.

VTOC VTOC Index
┌────────────────────────────┐ ┌────→┌─────────────────────────┐
³ Format─4 DSCB ³ ³ ³ VIXM ³
├────────────────────────────┤ ³ ├─────────────────────────┤
³ Format─5 DSCB ³ ³ ³ VPSM ³
├────────────────────────────┤ ³ ├─────────────────────────┤
³ ³ ³ ³ VMDS ³
³ Other DSCBs ³ ³ ├─────────────────────────┤
³ ³ ³ ³ VIER ³
³ ³ ³ ├─────────────────────────┤
├────────────────────────────┤ ³ ³ VIER ³
³ Format─1 DSCB for the VTOC ├─────┘ ├─────────────────────────┤
³ Index: SYS1.VTOCIX.nnn ³ ³ VIER ³
├────────────────────────────┤ ├─────────────────────────┤
³ ³ ³ . ³
³ Other DSCBs ³ ³ . ³
³ ³ ³ . ³
└────────────────────────────┘ └─────────────────────────┘

Figure 4. Example of the Relationship of a VTOC to Its Index

Using the VTOC

18 z/OS V2R1.0 DFSMSdfp Advanced Services

VTOC Pack Space Map
The VPSM shows the allocated space on a volume and the space that remains free.
The space within the first 65,520 cylinders is called the track-managed space. The
VPSMs for this area contains bit maps of the cylinders and tracks on the volume. A
value of one indicates that the cylinder or track has been allocated; zero, that it is
unallocated. The space after the first 65,520 cylinders is called the
cylinder-managed space. The VPSMs for this area contains bit maps of only
multicylinder units. Individual cylinders and tracks are not mapped in this type of
VPSM. A value of one indicates that the multicylinder unit is allocated; zero, that it
is unallocated.

VTOC Index Map
The VIXM contains a bit map in which each bit represents one VTOC index record.
The status of the bit indicates whether the VIR is allocated (1), or unallocated (0).
On an extended address volume, the VIXM record header is enlarged to
accommodate the volume size, free space statistics for the VTOC and index, free
space statistics for the entire volume and from track-managed space. Fields in this
expanded header define the RBA of the first VPSM record that maps multicylinder
units, along with the minimum allocation unit in cylinders for the VPSMs that map
cylinder-managed space.

An area of the VIXM is reserved for VTOC recording facility (VRF) data. (This
facility allows detection of and recovery from some errors in an indexed VTOC.)

VTOC map of DSCBs
The VMDS shows the DSCBs that have been allocated in the VTOC. The map
contains a bit map of DSCBs corresponding the relative DSCB record in the VTOC.
A value of one indicates that the DSCB has been has been allocated; zero indicates
that it is unallocated.

Structure of an Indexed VTOC
Indexed and nonindexed VTOCs have similar structures with the following
differences for an indexed VTOC:
v Only a single, empty format-5 DSCB exists.
v Some format-4 DSCB data (the number of format-0 DSCBs and the CCHHR of

the highest format-1 DSCB) is not maintained by DADSM. The VSE bit (bit 0 in
field DS4VTOCI), set to 1 in the format-4 DSCB, indicates that the contents of
these fields (and the format-5 DSCB) are not valid. The index bit (bit 7 in field
DS4VTOCI) is set in the format-4 DSCB; it indicates that a VTOC index exists.

Accessing the VTOC with DADSM Macros
You can use either DADSM or common VTOC access facility (CVAF) macros to
access a VTOC and its index. (CVAF access is described in “Accessing the VTOC
with CVAF Macros” on page 56.) The DADSM macros and tasks covered here
include:
v LSPACE provides information on volume size, free space on the volume, free

space on the VTOC and INDEX, volume fragmentation, and VTOC status. Also
provided is information on the size of the track-managed space and its free
space statistics.

v OBTAIN reads one or more DSCBs from the VTOC.
v PARTREL releases unused space from a sequential or partitioned data set or a

PDSE.
v REALLOC allocates DASD space.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 19

To read one or more DSCBs into virtual storage, use the OBTAIN and CAMLST
macro instructions. Identify the DSCB to be read using the name of the data set
associated with the DSCB, or the absolute track address of the DSCB. Provide a
140-byte data area in virtual storage to contain the DSCB. On a request to read
multiple DSCBs specify the NUMBERDSCB= parameter on the OBTAIN or
CAMLST macro and provide consecutive 140-byte return areas in virtual storage to
contain this number of DSCBs. When you specify the name of the data set, an
identifier (format-1, format-4, or format-8) DSCB is read into virtual storage. To
read a DSCB other than a format-1, format-4, or format-8 DSCB, specify an
absolute track address (see the example on page “Example” on page 41). Code the
EADSCB=OK on the OBTAIN or CAMLST macro when your program supports
DSCBs that describe data sets with format-8 and format-9 DSCBs. The extent
descriptors in DSCBs for a data set described with these formats may have 28-bit
cylinder track addresses. Use the TRKADDR macro or IECTRKAD service to
manipulate 16-bit or 28-bit cylinder track addresses.

Restriction: You cannot use the OBTAIN macro instruction with either a SYSIN or
SYSOUT data set.

To release unused space from a sequential, partitioned, or key sequenced data set
or a PDSE, use the PARTREL macro instruction. Your program must be APF
authorized.

Another way is to code the RLSE option on the SPACE keyword on the DD
statement or the dynamic allocation equivalent. This technique does not require
APF authorization. It requires that your program open the data set with the
OUTPUT, EXTEND, OUTIN, OUTINX or INOUT option and the last operation
before closing the data set not be a read or POINT macro."

The following macro instruction descriptions include coding examples,
programming notes, and exception return code descriptions.

Requesting DASD Volume Information Using LSPACE
LSPACE provides information on volume size, free space on the volume, free space
on the VTOC and INDEX, volume fragmentation, and VTOC status. Also provided
is information on the size of the track-managed space and its free space statistics.
The LSPACE macro returns status information (such as LSPACE subfunction,
return code, and reason code) in the parameter list. The LSPACE macro also
returns the return code in register 15. For volumes that are configured with more
than 9999 cylinders, you can use the EXPMSG option to create an expanded
message return area that the LSPACE macro needs. For volumes that are
configured with cylinder-managed space, you can use the XEXPMSG option to
create an extended expanded message return area that the LSPACE macro needs.
The use of XEXPMSG is recommended for all requests to return message data. The
expanded data return area (EXPDATA) will return binary data of free space and
total volume space information for volumes. For volumes with cylinder-managed
space, this will be returned as free space for the entire volume and free space for
the track-managed space. The two sets of free space data will be the same for a
volume that does not have cylinder-managed space. The use of EXPDATA is
recommended for all requests to return binary data. You can have LSPACE return
additional information such as the format 4 DSCB, the total number of free extents
on the volume or the fragmentation index. This information can be returned in the:
v Message return area
v Expanded message return area
v Extended expanded message return area

Using the VTOC

20 z/OS V2R1.0 DFSMSdfp Advanced Services

v Data return area
v Expanded data return area
v Format-4 DSCB return area

The calling program must ensure that the volume to be processed remains
mounted during LSPACE processing. The volume need not be allocated.

If the device is not ready when you issue LSPACE and remains not ready, LSPACE
eventually gives return code 4 with a timeout message. (See Table 8 on page 33.) In
the current level of the system, LSPACE defaults to waiting as long as 240 seconds.
You can change this amount of time by setting the byte at offset 7 in the parameter
list. (See Table 7 on page 30.) You must use the list and execute forms of the macro
because the macro has no parameter for this.

For more information about the LSPACE return code, subfunction code, and the
subfunction return and reason codes, see Table 8 on page 33 and z/OS DFSMSdfp
Diagnosis.

LSPACE—Standard Form
The format of the standard form of the LSPACE macro is:

�� LSPACE
label MF = I

UCB= addr
(reg)

,MSG= addr
(reg)
0

,EXPMSG= addr
(reg)
0

,DATA= addr
(reg)
0

,XEXPMSG= addr
(reg)
0

,EXPDATA= addr
(reg)
0

�

�
,SMF= TEST

YES
NONE

,F4DSCB= addr
(reg)
0

ALL
,DATATYPE= FRAGINDEX

INDEX
VOLUME
VTOC

�

�
IMPLIED_VERSION

,PLISTVER= plistver
MAX

��

The keywords are the same as described in the execute form of the LSPACE macro.
See the execute form of the LSPACE macro for the descriptions.

MF=I
Specifies the standard form of the LSPACE macro.

I Specifies the standard form of the macro. This generates a standard

Using the VTOC

Chapter 1. Using the Volume Table of Contents 21

parameter list containing the required variables, loads the address of the
parameter list in register 1, and issues a supervisor call. The standard form
is the default.

Requirement: UCB must be specified when MF=I is used.

PLISTVER=plistver | IMPLIED_VERSION | MAX
This keyword defines the version of the LSPACE parameter list that should be
generated for the MF=I form of the LSPACE macro.

PLISTVER=plistver specifies the version of the LSPACE parameter list that
should be generated, where plistver is either 1 or 2. This PLISTVER= keyword
is required for any macro keys associated with version 2 or larger to be
specified. The macro keys associated with each supported version of the macro
are listed below:

PLISTVER=1
PLISTVER=1 is associated with the following macro keys:

DATA
EXPMSG
F4DSCB
MSG
SMF

PLISTVER=2
PLISTVER=2 is associated with the following macro keys:

XEXPMSG
EXPDATA
DATATYPE

When PLISTVER= IMPLIED_VERSION is specified the generated parameter
list is the lowest version that allows all of the parameters on the invocation to
be processed. When PLISTVER is omitted, the default is the lowest version of
the parameter list, which is version 1.

When PLISTVER= MAX is specified, the generated parameter list is the largest
size currently supported. This size may grow from release to release thus
possibly affecting the amount of storage needed by your program. If your
program can tolerate this, IBM recommends that you always specify MAX
when creating the list form parameter list as that will ensure that the list form
parameter list is always long enough to hold whatever parameters might be
specified on the execute form.

LSPACE-Execute Form
The format of the execute form of the LSPACE macro is:

Using the VTOC

22 z/OS V2R1.0 DFSMSdfp Advanced Services

�� LSPACE
label

MF= (E,addr)
(E,(reg)) ,UCB= addr

(reg)

�

�
,MSG= addr

(reg)
0

,EXPMSG= addr
(reg)
0

,DATA= addr
(reg)
0

,XEXPMSG= addr
(reg)
0

,EXPDATA= addr
(reg)
0

,SMF= TEST
YES
NONE

,F4DSCB= addr
(reg)
0

�

�
ALL

,DATATYPE= FRAGINDEX
INDEX
VOLUME
VTOC

��

MF=(E,addr) or (E,(reg))
Specifies the execute form of the LSPACE macro.

The MF=L form is usually issued before the execute form to create the
parameter list.

(E,addr)
Loads the address of the parameter list specified by addr into register 1 and
then issues a supervisor call.

(E,(reg))
Loads the address of the parameter list specified by (reg) into register 1
and then issues a supervisor call.

UCB=addr or (reg)
Specifies the address of the UCB for the volume whose free space information
you are requesting. The address can be for a captured UCB, or for an actual
UCB above or below the 16MB line. For 31-bit callers, the high-order byte is
part of the UCB address and must be cleared to zeros if a 24-bit UCB address
is being passed.

addr—RX-type address
Specifies the address of a fullword containing the UCB address.

(reg)—(2-12)
Specifies a register containing the UCB address for the device. Note that
this differs from the addr form of the parameter.

When using the standard (MF=I) form of the macro, you must provide a UCB
address.

Restrictions:

Using the VTOC

Chapter 1. Using the Volume Table of Contents 23

1. The LSPACE macro will accept the address of a UCB or UCB copy.
Unauthorized programs can get a copy of the UCB by using the UCBSCAN
macro and specifying the COPY and UCBAREA keywords. The UCB copy
can be above or below the 16MB line and on a word boundary. Refer to
z/OS HCD Planning for details.

2. LSPACE does not support VIO UCBs.

MSG=addr or (reg)or 0 or EXPMSG=addr or (reg) or 0 or DATA= addr or (reg)
or 0

Specifies the way LSPACE is to return free space information. (optional)

Restriction: The MSG, EXPMSG, and DATA parameters are mutually
exclusive.

MSG=addr or (2-12) or 0
Specifies the address of a caller-provided 30-byte message return area into
which LSPACE returns either a free space message or, for unsuccessful
requests, status information. For a description of this area, see “Message
Return Area” on page 32.

addr–RX-type address
Specifies the address of the message return area.

(reg)–(2-12)
Specifies a register containing the address of the message return area.

0 Specifies that you do not want the free space message. This is the default
for all forms of the macro except execute.

EXPMSG=addr or (reg) or 0
Specifies the address of a caller-provided 40-byte expanded message return
area into which LSPACE returns either a free space message or, for
unsuccessful requests, status information. For a description of this area, see
“Expanded Message Return Area” on page 34.

addr–RX-type address
Specifies the address of the message return area.

(reg)–(2-12)
Specifies a register containing the address of the message return area.

0 Specifies that you do not want the free space message. This is the default
for all forms of the macro except execute.

DATA=addr or (reg) or 0
Specifies the address of a caller-provided data return area into which LSPACE
returns free space and volume information. For a description of this area, see
“Data Return Area” on page 34.

addr–RX-type address
Specifies the address of the data return area.

(reg)–(2-12)
Specifies a register containing the address of the data return area.

0 Specifies that you do not want the free space and volume information.

SMF=TEST or YES or NONE
Specifies the type of SMF processing.

TEST
Specifies that LSPACE is to test for an active SMF system and whether
SMF volume information is desired. If these conditions are met, an SMF

Using the VTOC

24 z/OS V2R1.0 DFSMSdfp Advanced Services

record is written.Only programs executing in supervisor state, protect key 0-7,
or APF authorized can specify this operand.

YES
Specifies that you want an SMF record containing volume information to
be written. Only programs executing in supervisor state, protect key 0-7, or APF
authorized can specify this operand.

NONE
Specifies that you do not want an SMF record containing volume
information to be written. This is the default for all forms of the macro
except execute.

F4DSCB=addr or (reg) or 0
Specifies the address of a 96-byte DSCB return area provided by the calling
program, into which LSPACE returns the volume's format-4 DSCB. For a
description of the format-4 DSCB fields, see Table 4 on page 12.

addr– RX-type address
Specifies the address of the format-4 DSCB return area.

(reg)– (2-12)
Specifies a register containing the address of the format-4 DSCB return
area.

0 Specifies that you do not want the data portion of the format-4 DSCB for
the volume. This is the default for all forms of the macro except execute.

XEXPMSG=addr or (reg) or 0
Specifies the address of a caller-provided 95-byte extended expanded message
return area into which LSPACE returns either a free space message or, for
unsuccessful requests, status information. Specify this keyword if you wish to
obtain free space information in the message return area for volumes that are
configured with cylinder-managed space. The returned free space will include
space for the total volume and space from the track-managed space on a
volume. The two sets of free space message data will be the same for a volume
that does not have cylinder-managed space. The use of XEXPMSG is
recommended for all requests to return message data. See “LSPACE
Information Return Areas” on page 31 for a description of the message return
area.

addr– RX-type address
Specifies the address of the message return area.

(reg)– (2-12)
Specifies a register containing the address of the message return area.

0 Specifies that you do not want the free space message. This is the default
for all forms of the macro except execute.

EXPDATA=addr or (reg) or 0
Specifies the address of a caller-provided EXPANDED data return area into
which LSPACE returns expanded free space and volume information. Specify
this keyword if you wish to obtain free space information and total volume
space in the LSPACE data return area for volumes. The returned free space will
include space for the total volume and space from the track managed space on
a volume. For volumes with cylinder-managed space this data will be returned
as free space for the entire volume and free space for the track-managed space.
The two sets of free space data will be the same for a volume that does not

Using the VTOC

Chapter 1. Using the Volume Table of Contents 25

have cylinder-managed space. The use of EXPDATA is recommended for all
requests to return binary data. See Table 9 on page 34 for a description of the
expanded data return area.

addr– RX-type address
Specifies the address of the expanded data return area.

(reg)– (2-12)
Specifies a register containing the address of the expanded data return
area.

0 Specifies that you do not want the expanded free space and volume
information.

DATATYPE= ALL or FRAGINDEX or INDEX orVOLUME orVTOC
This keyword is allowed only when the DATA or EXPDATA keyword is
specified. Only the information specified will be returned to the caller.
DATATYPE is valid for both non-EAV and EAV. This keyword will eliminate
unnecessary I/O required to retrieve free space information that is not be
required by the caller. DATATYPE=ALL is the default.

ALL Provide all available LSPACE statistics. This is the default

FRAGINDEX
Provide the fragmentation index

INDEX
Provide free space information related to the VTOC INDEX

VOLUME
Provide free space information for the VOLUME

VTOC Provide free space information related to the VTOC

PLISTVER
This keyword, if specified on the MF=E form of the LSPACE macro, will
generate an MNOTE.

LSPACE—List Form
The format of the list form of the LSPACE macro is:

Using the VTOC

26 z/OS V2R1.0 DFSMSdfp Advanced Services

�� LSPACE
label

MF= L
(L,MSG)
(L,EXPMSG)
(L,XEXPMSG)
(L,DATA)
(L,EXPDATA)

,MSG= addr
0

,EXPMSG= addr
0

,XEXPMSG= addr
0

,EXPDATA= addr
0

,DATA= addr
0

�

�
,SMF= TEST

YES
NONE

,F4DSCB= addr
0

ALL
,DATATYPE= FRAGINDEX

INDEX
VOLUME
VTOC

�

�
IMPLIED_VERSION

,PLISTVER= plistver
MAX

��

MF=L or (L,MSG) or (L,EXPMSG) or (L,EXPMSG) or (L,DATA) or (L,EXPDATA)
Specifies the list form of the LSPACE macro.

L Generates the required constants in the calling program. You can then issue
the execute form of the macro, which uses these constants.

(L,MSG)
Generates the required message return area constants in the calling
program. No other parameters are allowed.

(L,EXPMSG)
Generates the required expanded message return area constants in the
calling program. No other parameters are allowed.

(L,XEXPMSG)
Generates the required extended expanded message return area constants
(95-bytes) in the calling program. No other parameters are allowed. Use
this keyword to obtain the message data area for all volume sizes
including ones with cylinder-managed space.

(L,DATA)
Generates the required data return area constants in the calling program.
No other parameters are allowed.

(L,EXPDATA)
Generates the required expanded data return area constants in the calling
program. No other parameters are allowed. Use the keyword to obtain the
data area for all volume sizes including ones with cylinder-managed space.

DATATYPE=ALL or FRAGINDEX or INDEX orVOLUME orVTOC
This keyword is allowed only when the DATA or EXPDATA keyword is
specified. Only the information specified will be returned to the caller.
DATATYPE is valid for both non-EAV and EAV. This keyword will eliminate
unnecessary I/O required to retrieve free space information that is not be
required by the caller. DATATYPE=ALL is the default.

ALL Provide all available LSPACE statistics. This is the default

Using the VTOC

Chapter 1. Using the Volume Table of Contents 27

FRAGINDEX
Provide the fragmentation index

INDEX
Provide free space information related to the VTOC INDEX

VOLUME
Provide free space information for the VOLUME

VTOC Provide free space information related to the VTOC

PLISTVER=plistver | IMPLIED_VERSION | MAX
This keyword defines the version of the LSPACE parameter list that should be
generated for the MF=I form of the LSPACE macro.

PLISTVER=plistver specifies the version of the LSPACE parameter list that
should be generated, where plistver is either 1 or 2. This PLISTVER= keyword
is required for any macro keys associated with version 2 or larger to be
specified, The macro keys associated with each supported version of the macro
are listed below:

PLISTVER=1
PLISTVER=1 is associated with the following macro keys:

DATA
EXPMSG
F4DSCB
MSG
SMF

PLISTVER=2
PLISTVER=2 is associated with the following macro keys:

XEXPMSG
EXPDATA
DATATYPE

When PLISTVER= IMPLIED_VERSION is specified the generated parameter
list is the lowest version that allows all of the parameters on the invocation to
be processed. When PLISTVER is omitted, the default is the lowest version of
the parameter list, which is version 1.

When PLISTVER= MAX is specified, the generated parameter list is the largest
size currently supported. This size may grow from release to release thus
possibly affecting the amount of storage needed by your program. If your
program can tolerate this, IBM recommends that you always specify MAX
when creating the list form parameter list as that will ensure that the list form
parameter list is always long enough to hold whatever parameters might be
specified on the execute form.

LSPACE–DSECT Form
The format of the DSECT form of the LSPACE macro is:

�� LSPACE
label

MF= D
(D,MSG)
(D,EXPMSG)
(D,XEXPMSG)
(D,DATA)
(D,EXPDATA)

,PLISTVER= plistver
MAX

��

Using the VTOC

28 z/OS V2R1.0 DFSMSdfp Advanced Services

MF=D or (D,MSG) or (D,EXPMSG) or (D,XEXPMSG) or (D,DATA) or (D,EXPDATA)
Specifies the DSECT form of the LSPACE macro.

D Generates a DSECT that maps the LSPACE parameter list. No other
parameters are allowed. See Table 7 on page 30 for the format of the
LSPACE parameter list.

(D,MSG)
Generates a DSECT that maps the message return area. No other
parameters are allowed. For the format of the area, see “Message Return
Area” on page 32.

(D,EXPMSG)
Generates a DSECT that maps the expanded message return area. No other
parameters are allowed. For the format of the area, see “Expanded
Message Return Area” on page 34.

(D,XEXPMSG)
Generates a DSECT that maps the extended expanded message return area
(95-bytes). No other parameters are allowed. Use this keyword to obtain
the message data area for all volume sizes including ones with
cylinder-managed space. For the format of the area, see “Expanded
Message Return Area” on page 34.

(D,DATA)
Generates a DSECT that maps the data return area. No other parameters
are allowed. For the format of the area, see “Data Return Area” on page 34.

(D,EXPDATA)
Generates a DSECT that maps the base and expanded data return area. No
other parameters are allowed. Use the keyword to obtain the data area for
all volume sizes including ones with cylinder-managed space. For the
format of the area, see “Data Return Area” on page 34.

PLISTVER=plistver | MAX
This keyword defines the version of the LSPACE parameter list that should
be generated for the MF=D form of the LSPACE macro.

PLISTVER=plistver specifies the version of the LSPACE parameter list that
should be generated, where plistver is either 1 or 2.This PLISTVER=
keyword is required for any macro keys associated with version 2 or larger
to be specified, The macro keys associated with each supported version of
the macro are listed below:

PLISTVER=1
PLISTVER=1 is associated with the following macro keys:

DATA
EXPMSG
F4DSCB
MSG
SMF

PLISTVER=2
PLISTVER=2 is associated with the following macro keys:

XEXPMSG
EXPDATA
DATATYPE

When PLISTVER= MAX is specified, the generated parameter list is the
largest size currently supported. This size may grow from release to release
thus possibly affecting the amount of storage needed by your program. If

Using the VTOC

Chapter 1. Using the Volume Table of Contents 29

your program can tolerate this, IBM recommends that you always specify
MAX when creating the list form parameter list as that will ensure that the
list form parameter list is always long enough to hold whatever
parameters might be specified on the execute form.

When PLISTVER is omitted, the default is the lowest version of the
parameter list mapping.

Table 7. Format of the LSPACE Parameter List (MF=D)

Name Offset Bytes Description

LSPAPL
LSPAPLID 0(X'00') 4 EBCDIC 'LSPA'.
LSPANGTH 4(X'04') 2 Length of parameter list.
LSPAFLAG 6(X'06') 1 Parameter flag byte.
LSPASMFY 10 SMF=YES.
LSPASMFT 01 SMF=TEST.
LSPADATA . . 1 0 0 . . . Free space data request.
LSPAMSG . . 0 1 0 . . . Message data returned.
LSPAEMSG . . 0 0 1 . . . Expanded message data requested.
LSPAEPLP . . 0 0 0 1 . . Expanded LSPACE parameter input list provided
LSPAXINF . . 0 0 0 0 1 . Set on when expanded data (EXPDATA) or

extended expanded message (XEXPMSG)
information is returned by LSPACE processing.
Systems prior to z/OS V1R10 do not set this flag.
A program assembled (on a z/OS V1R10 or later
system) with the LSPACE macro using the
extended EXPMSG information respectively when
the program is run on a system prior to z/OS
V1R10.

LSPAFRES x Reserved.
LSPAXTIM 7(X'07') 1 Input/output (I/O) timeout value in seconds for

first LSPACE channel program (default: 240
seconds)

LSPAERCD 8(X'08') 1 LSPACE return code. See Figure 5 on page 32.
LSPASFID 9(X'09') 1 LSPACE subfunction code to further describe the

LSPACE result.
LSPASFPC X'00' Processing complete.
LSPASFVP X'01' Validate parameters.
LSPASFUS X'02' Check UCB status.
LSPASFNQ X'03' ENQ on SYSZDMNT.
LSPASF45 X'04' Read F4 and first F5 DSCB (EXCP).
LSPASFN5 X'05' Read next F5 DSCB (EXCP).
LSPASFRV X'06' Read volume label (EXCP).
LSPASF07 X'07' Read volume label with Timeout.
LSPASF4X X'80' Read F4 and maps (CVAFDIR).
LSPASFEX X'81' Get free extents (CVAFDSM).
LSPASFF0 X'82' Get F0 count (CVAFDSM).
LSPASFVR X'83' Get VIR count (CVAFDSM).
LSPASFVD X'84' Check for VRF (CVAFVRF).
LSPASF85 X'85' ESTAE routine entered. Processing error in

LSPACE.
LSPASF86 X'86' LSPACE STIMERM timeout
LSPASFRT 10(X'0A') 1 Subfunction return code.
LSPASFRS 11(X'0B') 1 Subfunction reason code.
LSPARS01 X'01' Invalid parameter list storage key.
LSPARS02 X'02' Invalid parameter list ID.

Using the VTOC

30 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 7. Format of the LSPACE Parameter List (MF=D) (continued)

Name Offset Bytes Description

LSPARS03 X'03' Invalid LSPACE flag.
LSPARS04 X'04' Invalid authorization for System Management

Facility (SMF) flag.
LSPARS05 X'05' Invalid message or data return area storage key.
LSPARS06 X'06' Invalid format-4 DSCB return area storage key.
LSPARS07 X'07' Invalid UCB address.
LSPARS08 X'08' Invalid virtual UCB address.
LSPARS09 X'09' Invalid VTOC pointer (UCBVTOC). Either

UCBVTOC is zero, or it does not match the volume
label.

LSPARS0B X'0B' ESTAE return code nonzero
LSPAUCB 12(X'0C') 4 UCB address.
LSPAFRSP 16(X'10') 4 Address of message or data return area.
LSPAFMT4 20(X'14') 4 Address of format-4 DSCB.
LSPAEXPL 24 (X'18') 24 Expanded parm list area
LSPAFLAG2 1 Parameter flag byte 2
LSPAXMSG 1... Extended expanded message area requested

(XEXPMSG)
LSPAEDAT .1.. Expanded output data area requested (EXPDATA)
* ..x. Unused
The next five flags pertain to the DATATYPE keyword values.:
LSPAFRSI ...1 Volume is specified. the return of volume free

space information is requested
LSPAFRVT 1... Vtoc is specified. the return of vtoc free space

information is requested
LSPAFRVX1.. Index is specified. the return of index free space

information is requested
LSPAFRFI1. Fragindex is specified. the return of the

fragmentation index is requested
LSPAFALL1 All is specified or defaulted. the return of all free

space information is requested, including the frag
index

LSPARES2 25 (X'19') 3 Reserved
LSPARES3 26 (X'1A') 20 Reserved

Return Codes from LSPACE
Control returns to the instruction following the instructions generated by the
LSPACE macro.

See Table 8 on page 33 for a description of the LSPACE return codes.

LSPACE returns four bytes of diagnostic information in register 0. See the
“DADSM/CVAF Diagnostic Aids” section of z/OS DFSMSdfp Diagnosis for a
description of this information.

LSPACE Information Return Areas
The LSPACE macro returns status information to the parameter list and, optionally,
returns volume information to any of the four following caller requested return
areas.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 31

Requests for the MSG, EXPMSG, XEXPMSG, DATA, and EXPDATA areas are
mutually exclusive. LSPACE checks to ensure that the storage key of each
information return area is equal to the caller's key or that the caller is authorized
prior to its use.

Message Return Area: LSPACE returns information to a 30-byte message return
area (Figure 5). If you provide a message return area with the MSG option,
LSPACE returns EBCDIC text, qualified by return codes as shown in Table 8 on
page 33.

LSPMSG DSECT Message Area
LSPMTEXT DS CL30 Message Text

Figure 5. DADSM LSPACE Free Space Information MF=(D,MSG)

Using the VTOC

32 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 8. DADSM LSPACE Message Return Area Contents

Return Code Description

0(X'00')
For MSG keyword (30 byte area):

Text: SPACE=aaaa,bbbb, cccc/dddd,eeee where:

Free space statistics from the entire volume:
aaaa = Total number of free cylinders
bbbb = Total number of additional free tracks
cccc = Total number of free extents
dddd = Number of cylinders in largest free extent
eeee = Number of additional tracks in largest free extent

For aaaa, bbbb, and cccc, the maximum value indicated is 9999 even if the
actual value is greater. Use EXPMSG to avoid use of the maximum 9999.

For EXPMSG keyword (40 byte area):

Text: SPACE=aaaaaa,bbbbbb, cccccc/dddddd,eeeeee where:

Free space statistics from the entire volume:
aaaaaa = Total number of free cylinders
bbbbbb = Total number of additional free tracks
cccccc = Total number of free extents
dddddd = Number of cylinders in largest free extent
eeeeee = Number of additional tracks in largest free extent

For aaaaaa, bbbbbb, cccccc, and dddddd, the maximum value indicated is 999999
even if the actual value is greater. Use XEXPMSG to avoid use of the
maximum 999999.

For XEXPMSG keyword (95 byte area):

Text: SPACE=aaaaaaaaa,bbbbbbbbb, ccccccccc/ddddddddd,ee,
fffffffff,gggggggggg,hhhhhhhhhh/iiiiiiiii,jj where:

Free space statistics from the entire volume:
aaaaaaaaa

= Total number of free cylinders
bbbbbbbbbb

= Total number of additional free tracks
cccccccccc

= Total number of free extents
ddddddddd

= Number of cylinders in largest free extent
ee = Number of additional tracks in largest free extent

Free space statistics from the track-managed space of the volume. For a
volume without cylinder-managed space, these statistics will be equivalent to
the total volume statistics above:
fffffffff = Total number of free cylinders
gggggggggg

= Total number of additional free tracks
hhhhhhhhh

= Total number of free extents
iiiiiiiii = Number of cylinders in largest free extent
jj = Number of additional tracks in largest free extent

Leading zeroes for each value will be set to ‘blanks’ in the returned message
area.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 33

Table 8. DADSM LSPACE Message Return Area Contents (continued)

Return Code Description

4(X'04') Text: LSPACE—PERMANENT I/O ERROR
4(X'04') Text: LSPACE—I/O TIMEOUT ERROR
8(X'08') Text: LSPACE—NON-STANDARD OS VOLUME. The volume does not have

a VTOC index and free space information is not available. Either an operating
system other than z/OS has allocated or freed space on the volume or the
volume does not have a format 5 or 7 DSCB chain.

12(X'0C') Text: LSPACE—UCB NOT READY
Text: LSPACE—UCBVTOC IS ZERO
Text: LSPACE—INVALID PARAMETER
Text: LSPACE—NOT A DIRECT ACCESS VOL

16(X'10') No text returned (invalid parameter list or SMF indicator) This return code
indicates a parameter list error, which can be a bad parameter list storage key,
parameter list ID is invalid (not set to ‘LSPA’), or the parameter list size is not
sufficient.

20 (X'14') No text returned (processing error in LSPACE)

Expanded Message Return Area: LSPACE returns information to a 40-byte
expanded message return area (Figure 6). By providing an expanded message
return area with the EXPMSG option, LSPACE returns EBCDIC text, qualified by
return codes as shown in Table 8 on page 33.

Even though the expanded message return area displays the same return code
information as the standard message return area, the space information provided
for return code zero consists of six-digit values (aaaaaa instead of aaaa).

Data Return Area: If you provide a data return area with the DATA or EXPDATA
keywords, LSPACE returns the information shown below. The expanded data
return area is provided only when EXPDATA is specified. EXPDATA is the
recommended keyword for returning binary data from LSPACE.

Table 9. LSPACE Data Return Area Format

Name Offset Bytes Description

LSPDRETN 0(X'00') 1 Return area status byte
LSPDSPAC 1 Returned space information
LSPDF0CN . 1 Returned F0 DSCB count
LSPDVRCN . . 1 Returned free VIR count
LSPDFRGI . . . 1 Returned fragmentation index
LSPDCYLM 1 . . . Returned data is for a volume with cyl-managed

space
LSPDRRES x x x Reserved
LSPDSTAT 1(X'01') 1 Volume status byte
LSPDIXDS 1 Index exists for VTOC
LSPDIXAC . 1 Index VTOC active
LSPDSRES . . x x x x x x Reserved
LSPDRSV1 2(X'02') 2 Reserved

LSPMSG DSECT Expanded Message Area
LSPETEXT DS CL40 Expanded Message Text

Figure 6. DADSM LSPACE Free Space Information Format, MF=(D,EXPMSG)

Using the VTOC

34 z/OS V2R1.0 DFSMSdfp Advanced Services

|
|
|
|

Table 9. LSPACE Data Return Area Format (continued)

Name Offset Bytes Description

Beginning of the base data return area: For DATA and EXPDATA requests, the following 32 bytes if requested or
defaulted by the DATATYPE keyword will be returned. They represent statistics that describe the entire volume.
LSPDFOS and LSPDVIRS are not applicable to volume statistics.
LSPDEVFS: Free space statistics from the entire volume. For volumes with cylinder-managed space (LSPDCYLM =
'1') these statistics represent space from both the track and cylinder- managed space on the volume. See LSPDTMFS
for statistics from the track-managed space on the volume.

LSPDEVFS 4(X'04') 20 Total volume free space
LSPDNEXT 4(X'04') 4 Number of free extents
LSPDTCYL 8(X'08') 4 Total free cylinders
LSPDTTRK 12(X'0C') 4 Total addition free tracks
LSPDLCYL 16(X'10') 4 Number of cylinders in largest free extent
LSPDLTRK 20(X'14)' 4 Number of additional tracks in largest free extent
LSPDF0S 24(X'18') 4 Format 0 count
LSPDVIRS 28(X'1C') 4 Free VIR count
LSPDFRAG 32(X'20') 4 Fragmentation count

End of the base data return area.

Beginning of the expanded data return area: For EXPDATA requests, the following 32 bytes of statistics if requested
or defaulted by the DATATYPE keyword will be returned.
LSPDTMFS: Free space statistics from track-managed space on a volume for a volume with cylinder-managed space
(LSPDCYLM ='1'). For volumes with no cylinder-managed space (LSPDCYLM ='0') than these statistics are equivalent
to the total volume statistics described above.

LSPDTMFS 36(X'24') 24 Track-managed free space
LSPDVNXT 36(X'24') 4 Number of free extents
LSPDVTCL 40(X'28') 4 Total free cylinders
LSPDVTTK 44(X'2C' 4 Total additional free cylinders
LSPDVLCL 48(X'30') 4 Number of cylinders in the largest free extent
LSPDVLTK 52(X'34') 4 Number of additional free tracks in the largest free

extent
LSPDVFRG 56(X'38') 4 Fragmentation index

Volume size information

LSPDVOLI 60(X'3C') 8 Volume size information
LSPDTRKS 60(X'3C') 4 Total number of tracks on volume
LSPDTRKM 64(X'40' 4 Total number of tracks in track-managed space

when LSPDCYLM='1'. Set to the value of
LSPDTRKS otherwise.

When LSPDCYLM='1', this value is also the first
track address where cylinder managed space
begins.

LSPDRSV8 68(X'44') 60 Reserved

Format-4 DSCB Return Area: If you provide a format-4 DSCB return area with
the F4DSCB option, LSPACE returns information to it as described in Table 4 on
page 12.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 35

LSPACE Examples
The following example returns free space information in the message return area.
LSPAMFIM LSPACE MSG=MYMSG,UCB=(R10),MF=I

The following example returns free space information in the data return area.
LSPAMFID LSPACE DATA=MYDATA,UCB=(R10),MF=I

The following example uses the list form of the macro to define the parameter list,
and the execute form to refer to the same parameter list.
LSPALIST LSPACE MSG=MYDATA,MF=L

.

.

.
LSPAEX LSPACE MF=(E,LSPALIST),UCB=(R10)

Reading DSCBs from the VTOC Using OBTAIN
The following section discusses using the OBTAIN routine to read a DSCB. You
can specify either the data set name or the absolute device address.

OBTAIN does not support z/OS UNIX files. You will receive unpredictable results
if you issue OBTAIN for an z/OS UNIX file.

Reading a DSCB by Data Set Name
If you specify a data set name using OBTAIN and the CAMLST SEARCH option,
the OBTAIN routine reads the 96-byte data portion of the format-1 DSCB and the
absolute track address of the DSCB into virtual storage. The absolute track address
is a 5-byte field in the form CCHHR that contains zeros for VIO data sets.

The format of the OBTAIN and CAMLST macros is:

�� OBTAIN listname_addrx
label NUMBERDSCB=number_dscbs

�

�
NOTOK

EADSCB= OK

��

�� listname CAMLST SEARCH ,dsname_relexp ,vol_relexp ,wkarea_relexp �

�
NUMBERDSCB=number_dscbs NOTOK

EADSCB= OK

��

listname_addrx
Points to the parameter list (labeled listname) set up by the CAMLST macro
instruction.

SEARCH
Code this operand as shown.

Using the VTOC

36 z/OS V2R1.0 DFSMSdfp Advanced Services

dsname_relexp
Specifies the virtual storage location of a fully-qualified data set name. The
area that contains the name must be 44 bytes long.

Tip: A DSNAME of 44 bytes of X'04' (X'040404...04') can be used to read a
format-4 DSCB.

vol_relexp
Specifies the virtual storage location of the 6-byte volume serial number on
which the DSCB is located.

wkarea_relexp
Specifies the virtual storage location of a 140-byte work area that you must
define.

NUMBERDSCB
Specifies a value between 0 and 255 that designates the number of consecutive
140-byte return areas that are provided in wkarea_relexp. The system treats a
value of 0 as a 1. Currently the system does not support a chain of more than
12 DSCBs for one data set, but it is valid for you to provide an area that is
longer than currently needed. The system verifies that the provided area is
valid. When you provide an area that is long enough to contain more than one
DSCB, obtain processing will return DSCBs for the requested data set name in
logical VTOC order until all the 140-byte return areas are used. The logical
VTOC order is a format-1 DSCB, followed by zero or more format-3 DSCBs or
a format-8 DSCB, followed by one or more format-9 DSCBs, followed by zero
or more format-3 DSCBs. No absolute maximum number of DSCBs for a data
set should be assumed. The actual number of DSCBs are returned in a field
located in the first 140-byte return area.

On the OBTAIN macro you can code a register number or symbol for a register
number in parentheses. It means that the specified register contains the
number of DSCBs that can fit in the return area. If you code the
NUMBERDSCB parameter on OBTAIN, the macro execution stores the value in
the CAMLST area. You cannot code a register on the CAMLST macro.

Note that for programs run on a pre-z/OS R10 system that do not support this
keyword, the NUMBERDSCB value will be treated as if it were 1.

EADSCB
Specifies whether this program supports data sets with format-8 and format-9
DSCBs. Such data sets can appear on extended address volumes.

EADSCB=OK
Code EADSCB=NOTOK when your program does not support data sets
that have format-8 and format-9 DSCBs. The extent descriptors in DSCBs
for a data set described with these formats may have track addresses that
contain cylinder addresses 65,520 or larger. EADSCB=OK is accepted for
data sets described by all DSCB types, including format-1 DSCBs,
regardless of the volume size where the data set resides. Your program can
also run on an older level of the system that does not support this
keyword. In these cases, EADSCB=OK is ignored. EADSCB=OK sets byte
2 bit 4 in the OBTAIN parameter list to on.

EADSCB=NOTOK
Code EADSCB=NOTOK when your program does not support DSCBs
that describe data sets with format-8 and format-9 DSCBs.
EADSCB=NOTOK is the default when the EADSCB keyword is not
specified.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 37

When EADSCB=NOTOK is coded or assumed by default, OBTAIN will
set return code 24 if the target of the OBTAIN request has a format-8
DSCB.

EADSCB=NOTOK sets byte 2 bit 4 in the OBTAIN parameter list to zero.

Example: In the following example, the format-1 DSCB for data set A.B.C is read
into virtual storage using the SEARCH option. The serial number of the volume
containing the DSCB is 770655.

OBTAIN DSCBABC READ DSCB FOR DATA
* SET A.B.C INTO DATA
* AREA NAMED WORKAREA

DSCBABC CAMLST SEARCH,DSABC,VOLNUM,WORKAREA
DSABC DC CL44’A.B.C’ DATA SET NAME
VOLNUM DC CL6’770655’ VOLUME SERIAL NUMBER
WORKAREA DS 140C 140-BYTE WORK AREA

Recommendation: Check the return codes.

The OBTAIN macro instruction points to the CAMLST parameter list. SEARCH,
the first operand of CAMLST, specifies that a DSCB be read into virtual storage
using the data set name at the address indicated in the second operand. DSABC
specifies the virtual storage location of a 44-byte area containing the fully-qualified
name of the data set whose format-1 DSCB is to be read. VOLNUM specifies the
virtual storage location of a 6-byte area in which you have placed the serial
number of the volume containing the required DSCB. WORKAREA specifies the
virtual storage location of a 140-byte work area into which the DSCB is to be
returned.

Control is returned to your program at the next executable instruction following
the OBTAIN macro instruction. If the DSCB has been successfully read into your
work area, register 15 contains zeros. Otherwise, register 15 contains one of the
return codes shown in Table 10.

Return Codes from OBTAIN (Reading by Data Set Name)
Table 10. DADSM OBTAIN Return Codes

Return Code Description

0(X'00') Successful completion of OBTAIN routine.
4(X'04') The required volume was not mounted.
8(X'08') The format-1 DSCB was not found in the VTOC of the specified

volume.
12(X'0C') A permanent I/O error was encountered, or an invalid format-1 DSCB

was found when processing the specified volume, or an unexpected
error return code was received from CVAF (common VTOC access
facility).

16(X'10') Invalid work area pointer.
24(X'18') Data set has a format-8 DSCB and EADSCB=NOTOK is in effect
24(X'1C') Internal error with EADSCB=NOTOK in effect.

On return from SEARCH requests, the first 103 bytes of the first 140 byte return
area will contain:
v The 96 byte data portion of the format-1, format-4, or format-8 DSCB

Using the VTOC

38 z/OS V2R1.0 DFSMSdfp Advanced Services

v Followed by 5 bytes that contain the absolute track address (CCHHR) of this
DSCB. For VSAM object names that appear in the catalog, but not in the VTOC
or VIO data sets, these 5 bytes contain zeros.

v Followed by a 2 byte count of the total number of DSCBs associated with the
data set DSCB, even if there are insufficient return areas into which to read them
all. This count includes all DSCB types that could describe a data set. Set to zero
for DSCBs constructed from catalog when DSCBs are not present in the VTOC.

v If the request specified multiple DSCBs, only the format-1 or format-8 pseudo
DSCB will be returned when the DSCB was not found in the VTOC and had to
be constructed from Catalog. No forward chain pointer to the next DSCB will be
present in this returned DSCB. The remaining 140 byte return areas will contain
the entire 140 byte key and data portions of the associated DSCB.
If the request did not specify multiple DSCBs, a format-1 or format-8 pseudo
DSCB will be returned when the DSCB was not found in the VTOC and had to
be constructed from Catalog. No forward chain pointer to the next DSCB will be
present in this returned DSCB. After executing these macro instructions, the first
96 bytes of the work area contain the data portion of the format-1 or format-4
DSCB; the next 5 bytes contain the absolute track address (CCHHR) of the
DSCB. For VSAM or VIO data sets, these 5 bytes contain zeros.

Reading a DSCB by Absolute Device Address
You can read a DSCB from a VTOC using OBTAIN and the CAMLST SEEK option.
Specify the SEEK option by coding SEEK as the first operand of the CAMLST
macro and by providing the absolute device address of the DSCB you want to
read, unless the DSCB is for a VIO data set. Only the SEARCH option can be used
to read the DSCB of a VIO data set.

The format of the OBTAIN and CAMLST macros is:

�� OBTAIN listname_addrx
label NUMBERDSCB=number_dscbs

�

�
NOTOK

EADSCB= OK

��

�� listname CAMLST SEEK ,dsname_relexp ,cchhr_relexp ,vol_relexp �

� ,wkarea_relexp
NUMBERDSCB=number_dscbs NOTOK

EADSCB= OK

��

listname
Label of the CAMLST macro instruction. .

SEARCH
Code this operand as shown when calling obtain to read by the passed data set
name.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 39

SEEK
Code this operand as shown when calling obtain to read by the passed
CCHHR device address

dsname_relexp
For SEARCH requests, specifies the virtual storage location of a fully-qualified
data set name. The area that contains the name must be 44-bytes long.

cchhr_relexp
For SEEK requests, specifies the virtual storage location of the 5-byte absolute
device address (CCHHR) of a DSCB.

vol_relexp
Specifies the virtual storage location of the 6-byte volume serial number on
which the DSCB is located.

wkarea_relexp
For all requests, specifies the virtual storage location of a 140-byte work area,
or larger, that must be defined.

NUMBERDSCB
Specifies a value between 0 and 255 that designates the number of consecutive
140-byte return areas that are provided in wkarea_relexp. The system treats a
value of 0 as a 1. Currently the system does not support a chain of more than
12 DSCBs for one data set, but it is valid for you to provide an area that is
longer than currently needed. The system verifies that the provided area is
valid. When you provide an area that is long enough to contain more than one
DSCB, OBTAIN processing will return DSCBs for the requested data set name
in logical VTOC order until all the 140-byte return areas are used. The logical
VTOC order is a format-1 DSCB, followed by zero or more format-3 DSCBs or
a format-8 DSCB, followed by one or more format-9 DSCBs, followed by zero
or more format-3 DSCBs. No absolute maximum number of DSCBs for a data
set should be assumed. When the target of the seek operation is not a format-1
or format-8 DSCB, the NUMBERDSCB value is treated as if it were 1 and only
that single DSCB will be returned.

On the OBTAIN macro, you can code a register number or symbol for a
register number in parentheses. This means that the specified register contains
the number of DSCBs that can fit in the return area. If you code the
NUMBERDSCB parameter on OBTAIN, the macro execution stores the value in
the CAMLST area. You cannot code a register on the CAMLST macro.

Note that for programs run on a pre-z/OS R10 system that do not support this
keyword, the NUMBERDSCB value will be treated as if it were 1.

EADSCB
Specifies whether this program supports data sets with format-8 and format-9
DSCBs. Such data sets can appear on extended address volumes.

EADSCB=OK
Code EADSCB=NOTOK when your program does not support data sets
that have format-8 and format-9 DSCBs. The extent descriptors in DSCBs
for a data set described with these formats may have track addresses that
contain 28-bit cylinder numbers. EADSCB=OK is accepted for data sets
described by all DSCB types, including format-1 DSCBs, regardless of the
volume size where the data set resides. Your program can also run on an
older level of the system that does not support this keyword. In these
cases, EADSCB=OK is ignored. EADSCB=OK sets byte 2 bit 4 in the
OBTAIN parameter list to on.

Using the VTOC

40 z/OS V2R1.0 DFSMSdfp Advanced Services

EADSCB=NOTOK
Code EADSCB=NOTOK when your program does not support DSCBs
that describe data sets with format-8 and format-9 DSCBs.
EADSCB=NOTOK is the default when the EADSCB keyword is not
specified.

When EADSCB=NOTOK is coded or assumed by default, OBTAIN will
set return code 24 if the target of the OBTAIN request has a format-8 or
format-9 DSCB. OBTAIN will not check format-3 DSCB extent ranges for
track addresses that contain 28-bit cylinder numbers.

EADSCB=NOTOK sets byte 2 bit 4 in the OBTAIN parameter list to zero.

Example: In the following example, the DSCB at actual-device address
X'00 00 00 01 07' is returned in the virtual storage location READAREA, using the
SEEK option. The DSCB resides on the volume with the volume serial number
108745.

OBTAIN ACTADDR READ DSCB FROM
* LOCATION SHOWN IN CCHHR
* INTO STORAGE AT LOCATION
* NAMED READAREA

ACTADDR CAMLST SEEK,CCHHR,VOLSER,READAREA
CCHHR DC XL5’0000000107’ ABSOLUTE TRACK ADDRESS
VOLSER DC CL6’108745’ VOLUME SERIAL NUMBER
READAREA DS 140C 140-BYTE WORK AREA

Recommendation: Check the return codes.

The OBTAIN macro points to the CAMLST parameter list. SEEK, the first operand
of CAMLST, specifies that a DSCB be read into virtual storage. CCHHR specifies
the storage location containing the 5-byte actual-device address of the DSCB.
VOLSER specifies the storage location containing the serial number of the volume
where the DSCB resides. READAREA specifies the storage location to which the
140-byte DSCB is to be returned.

Control is returned to your program at the next executable instruction following
the OBTAIN macro instruction. If the DSCB has been read into your work area,
register 15 contains zeros. Otherwise, register 15 contains one of the return codes
shown in Table 11.

Return Codes from OBTAIN (Reading by Absolute Device
Address)
Table 11. DADSM OBTAIN Return Codes

Return Code Description

0(X'00') Successful completion of OBTAIN routine.
4(X'04') The required volume was not mounted.
8(X'08') The format-1 DSCB was not found in the VTOC of the specified

volume or an "alien" (non-VSAM) request was returned from Catalog.
12(X'0C') A permanent I/O error was encountered or an unexpected error

return code was received from CVAF.
16(X'10') Invalid work area pointer.
20(X'14') The SEEK option was specified and the absolute track address

(CCHHR) is not within the boundaries of the VTOC.
24(X'18') Data set has a format-8 or format-9 DSCB and EADSCB=NOTOK is

in effect
28(X'1C') Internal error with EADSCB=NOTOK in effect.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 41

On return from SEEK requests with multiple DSCBs requested, the entire 140 bytes
of the first return area will contain the 140 byte key and data portions of the
DSCBs read from the volume. The remaining 140 byte return areas will contain the
entire 140 byte key and data portions of the DSCBs chained from this first DSCB
until the chain of DSCBs has ended or until the 140 byte return areas are
exhausted.

On return from SEEK requests without multiple DSCBs specified, the first return
area will contain the entire 140 byte key and data portions of the DSCB read from
the user’s passed device address.

Releasing Unused Space from a DASD Data Set Using
PARTREL

DADSM supports the release of unused space that is allocated to sequential or
partitioned data sets, PDSEs, sequential extended-format data sets, and VSAM
extended format data sets.The partial release function is called when:
v The data set is closed (if the RLSE subparameter of SPACE was specified on its

DD statement or the storage administrator specified an appropriate value for the
partial release option in the management class definition).

v A restart is processing from a checkpoint taken before the data set was extended.
v DFSMShsm performs a space management cycle and an appropriate value is

specified in the management class definition.
v A PARTREL macro is issued.

For an extended address volume, partial release processing will release space on
multicylinder unit boundaries when the last used track is in an extent in
cylinder-managed space. For VSAM striped data sets where at least one stripe is
on an extended address volume, partial release processing will ensure the stripes
remain the same size. For these reasons, it is possible that the high allocated track
after the release may be larger than the last used track or that no space could be
released.

The PARTREL Macro
The PARTREL macro supports sequential and partitioned data sets on volumes
with or without indexed VTOCs. It supports PDSEs and extended format data sets
on SMS-managed volumes for which indexed VTOCs are required. PARTREL does
not support z/OS UNIX files. You will receive unpredictable results if you issue
PARTREL for z/OS UNIX files.

PARTREL can be coded in the execute, DSECT, and list forms, but not the standard
form. The calling program:
v Must be APF authorized.
v Must have allocated the volume to this task and must ensure it stays mounted

during the PARTREL function.
v Must ensure that the data set is not open.
v Must not hold any locks or an ENQ on the VTOC.
v Must provide the address of an available standard register save area in general

register 13.
v Can provide the associated parameter list and parameters in storage either above

or below 16MB virtual.
v Can be in any storage key.

Using the VTOC

42 z/OS V2R1.0 DFSMSdfp Advanced Services

v Can run in either supervisor or problem program state.
v Can be in either 24 or 31-bit addressing mode.
v Requires the address of a UCB, not a UCB copy.

PARTREL–Execute Form
The format of the execute form of the PARTREL macro is:

�� PARTREL
label

MF= (E,address)
(E,(reg)) ,DSN= addr

(reg)

�

�
TEST

,ERASE= YES
NO

PGM
,MODE= SUP

ENQ
,TIOT= NOENQ

,UCB= (reg)
�

�
,VSAMTYPE= KSDS

RRDS
LDS
VRRDS

,VSAMFMT= EXTD
STD

,VSAMCLLR= VSAMCLSE
NOTVSAM

�

�
,VSAMSEC= BYPASS

NOBYPASS
,VSAMTRKS= addr

(reg)

��

Except for MODE, all parameters default to the current contents of the parameter
list. The MODE parameter defaults to PGM.

Descriptions of these parameters include information about DADSM processing.
The descriptions use the term value to designate the parameter value passed to
DADSM. The value can be:
v Specified as a parameter on the PARTREL macro
v Provided as the parameter's associated value in the parameter list
v Defined by DADSM from the information provided in the request.

MF=(E,addr) or (E,(reg))
Specifies the execute form of the macro and the address of an existing
PARTREL parameter list.

addr—RX-type address, (reg)—(0-12)
Specifies the PARTREL parameter list address.

DSN=addr or (reg)
Specifies the address of a 44-byte area that contains the data set name. The
name must be left-justified, with any unused bytes defined as blanks. For a
VSAM file, you must specify the component name, not the cluster name.

addr—RX-type address, (reg)—(0), (2-12)
You must provide a value for DSN.

ERASE=YES or NO or TEST
Specifies a residual data erase attribute (see “Deleting a Data Set from the
VTOC” on page 145 for a description of erase attributes). ERASE=YES and
ERASE=NO are mutually exclusive. The default is ERASE=TEST. If you specify
VSAMTYPE, ERASE is ignored.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 43

ERASE=YES
Specifies that the area being released should be erased (overwritten with
zeros) before it is made available for new allocations.

ERASE=NO
Specifies that the area should not be erased. This specification overrides
the RACF® erase attribute.

ERASE=TEST
Specifies that the associated RACF erase attribute is to be used.

MODE=PGM or SUP
Specifies that PARTREL is requested by a caller in problem program state
(MODE=PGM) or in supervisor state (MODE=SUP). MODE=PGM is the
default.

If the calling program is in supervisor state (and wants control returned in
supervisor state), the value of MODE must be SUP. If the calling program is in
problem program state, the value of MODE must be PGM.

TIOT=ENQ or NOENQ
Specifies the desired SYSZTIOT and SYSDSN ENQ processing within partial
release. The default is ENQ. If you specify VSAMTYPE, TIOT is ignored.

TIOT=ENQ
Specifies that partial release is to do its normal, exclusive ENQ on
SYSZTIOT and SYSDSN. If either of these ENQ requests fails, PARTREL
terminates the request with a return code of X'08'.

TIOT=NOENQ
Specifies that the caller has provided the necessary serialization. If partial
release finds that the caller does not have exclusive use of SYSDSN,
PARTREL terminates the request with a return code of X'24'.

When TIOT=NOENQ is specified and flag PRLTIOTX is set on, the ENQ
TEST is not executed. This is a dangerous option and can cause data
corruption. IBM recommends that you not set PRLTIOTX.

UCB=(reg)
Specifies the address of the UCB for the volume on which the subject data set
resides. The UCB address can be for a captured UCB, or for an actual UCB
above or below the 16MB line. For 31-bit callers, the high-order byte is part of
the UCB address and must be cleared to zeros if a 24-bit UCB address is being
passed. The volume must be mounted, and you must ensure that it remains
mounted. Use the address of a UCB, not a UCB copy.

(reg)–(0), (2-12)
specifies a register containing the UCB address for the device.

VSAMTYPE=KSDS or ESDS or RRDS or LDS or VRRDS
Specifies the type of VSAM data set.

Currently, only extended format VSAM data sets are supported.

If you specify VSAMTYPE, you must also specify VSAMFMT, VSAMCLLR,
VSAMSEC, and VSAMTRKS.

If you specify VSAMTYPE, the ERASE= parameter is ignored.

VSAMTYPE=KSDS
Specifies a VSAM key-sequenced data set.

VSAMTYPE=ESDS
Specifies a VSAM entry-sequenced data set.

Using the VTOC

44 z/OS V2R1.0 DFSMSdfp Advanced Services

VSAMTYPE=RRDS
Specifies a VSAM fixed-length relative record data set.

VSAMTYPE=LDS
Specifies a VSAM linear data set.

VSAMTYPE=VRRDS
Specifies a VSAM variable-length relative record data set.

VSAMFMT=EXTD or STD
Specifies the format of the data set.

VSAMFMT=EXTD
Specifies that this is an extended format data set.

VSAMFMT=STD
Specifies that this is not an extended format data set. If you specify STD
catalog services returns an error to partial release.

VSAMCLLR=VSAMCLSE or NOTVSAM
Specifies the caller.

VSAMCLLR=VSAMCLSE
Specifies that the caller is VSAM CLOSE.

VSAMCLLR=NOTVSAM
Specifies that the caller is other than VSAM CLOSE.

VSAMSEC=BYPASS or NOBYPASS
Specifies if security checking is to be performed

VSAMSEC=BYPASS
Specifies that security checking is not to be performed.

VSAMSEC=NOBYPASS
Specifies that security checking is to be performed.

VSAMTRKS=addr or (reg)
Specifies the address of a 4-byte area that is used to contain the number of
tracks released for this data set.

You must provide an address for VSAMTRKS only if you code VSAMTYPE.

addr—RX-type address, (reg)—(0), (2-12)
For a VSAM extended format data set, PARTREL returns a value which is
the sum of all the space released for all the parts of the data set.

PARTREL—List Form
The format of the list form of the PARTREL macro is:

Using the VTOC

Chapter 1. Using the Volume Table of Contents 45

�� PARTREL
label

MF=L
,DSN=addr TEST

,ERASE= YES
NO

PGM
,MODE= SUP

�

�
ENQ

,TIOT= NOENQ
,VSAMTYPE= KSDS

RRDS
LDS
VRRDS

,VSAMFMT= EXTD
STD

�

�
,VSAMCLLR= VSAMCLSE

NOTVSAM
,VSAMSEC= BYPASS

NOBYPASS
,VSAMTRKS=addr

��

Restrictions:

1. The execute form of the UCB parameter cannot be specified on the list form.
2. The list form MODE parameter is for documentation only. The value of MODE

is as specified or defaulted on the execute form.

For an explanation of the parameters, see the execute form.

PARTREL–DSECT Form
The format of the DSECT form of the PARTREL macro is:

�� PARTREL
label

MF=D ��

Description: The following example provides a description of the parameter list:
++PRLPLID DS CL4 EBCDIC ’PREL’ FOR PARTREL
+PRLNGTH DS AL2 LENGTH OF PARAMETER LIST
+PRERRCDE DS H ERROR CODE RETURNED FROM
+* PARTIAL RELEASE
+PRLFLAG DS XL1 PARAMETER FLAG BYTE
+PRLPGM EQU X’00’ MODE=PGM (PROBLEM PROGRAM)
+PRLSUP EQU X’80’ MODE=SUP (SUPERVISOR STATE)
+PRLTIOT EQU X’40’ TIOT=NOENQ
+PRLNERAS EQU X’20’ ERASE=NO
+PRLERASE EQU X’10’ ERASE=YES
+PRLVCLOS EQU X’08’ VSAMCLLR=VSAMCLSE
+PRLVCNV EQU X’04’ VSAMCLLR=NOTVSAM
+PRLBYPS EQU X’02’ VSAMSEC=BYPASS
+PRLNBYPS EQU X’01’ VSAMSEC=NOBYPASS
+PRLFLAG2 DS XL1
+PRLVKSDS EQU X’80’ VSAMTYPE=KSDS
+PRLVESDS EQU X’40’ VSAMTYPE=ESDS
+PRLVRRDS EQU X’20’ VSAMTYPE=RRDS
+PRLVVRRD EQU X’10’ VSAMTYPE=VRRDS
+PRLVLDS EQU X’08’ VSAMTYPE=LDS
+PRLEXTD EQU X’04’ VSAMFMT=EXTD
+PRLSTD EQU X’02’ VSAMFMT=STD
+PRLTIOTX EQU X’01’ No ENQ TEST when TIOT=NOENQ is specified
+PRLRSVD DS XL2 RESERVED
+PRLDSN DS A DATA SET NAME POINTER
+PRLUCB DS A UCB POINTER
+PRLTRKS DS A ADDRESS OF NUMBER OF TRACKS RETURNED

Using the VTOC

46 z/OS V2R1.0 DFSMSdfp Advanced Services

(ONLY VALID FOR VSAM REQUESTS)
+PRLCTGR DS F CATALOG REASON CODE
+PRLEND EQU * END OF PARAMETER LIST
+PRLENGTH EQU PRLEND-PRELPL LENGTH OF PARAMETER LIST

Return Codes From PARTREL
Control returns to the instruction following the last instruction generated by the
PARTREL macro. Register 15 contains the applicable PARTREL return code.

If an error occurs, PARTREL issues message IEC614I, consisting of failure-related
status information.
v If an error results from a CVAF function, the subfunction return code field

contains the CVAF return code, and the subfunction reason code field contains
the CVAF status code (CVSTAT).

v If an error results from the execution of an EXCP channel program, the
subfunction return code and reason code fields contain either:
– The ECB completion code and the CSW channel status, if the ECB completion

code is not X'41' and the channel status is not zero.
– The sense bytes (two) from the IOB, if the ECB completion code is X'41' and

there is no channel status.
v If an error results from an RACF invocation, the subfunction return code and

reason code fields contain the RACF return code and reason code.

Table 12 describes the conditions indicated by the PARTREL return code.

Exception: This is a cumulative list of DADSM partial release return codes. Some
of these codes might not apply to the PARTREL macro.

Table 12. DADSM PARTREL Return Codes

Return Code Description

0(X'00') Sucessful
2(X'02') Unable to find extent in format-1 or format-8 DSCB.
3(X'03') Exceeded maximum number of format-3 pointers in format-9 DSCB.
4(X'04') Unable to find extent in format-3 DSCB.
8(X'08') Either the required SYSZTIOT or SYSDSN ENQ failed, or an unrelated

DEB indicates that another DCB is open to the data set.
12(X'0C') Invalid parameter list.
16(X'10') One of the following conditions occurred:

v A permanent I/O error occurred.

v CVAF provided an unexpected return code.

v An installation exit rejected the request.

v An I/O error occurred while the tracks to be released were being
erased (for ERASE-on-SCRATCH).

20(X'14') DSN, or DSN pointer is invalid.
24(X'18') Invalid UCB pointer.
28(X'1C') Specified DSORG is not supported.
32(X'20') No room in the VTOC.
36(X'24') Invalid TIOT=NOENQ request; caller does not have exclusive use of

SYSDSN.
40(X'28') An error occurred while SMS was processing the request.
44(X'2C') CLOSE is the caller, user rejected the partial release using the

PREEXIT routine.
48(X'30') An error occurred during conversion from CCHH to relative track

address.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 47

Table 12. DADSM PARTREL Return Codes (continued)

Return Code Description

52(X'34') An error occurred during conversion from relative track address to
CCHH.

56(X'38') An error occurred during conversion from new extent descriptor table
to old extent descriptor table.

60(X'3C') An error occurred during sort conversion of the extent descriptor
table.

64(X'40') An error occurred during conversion from format-7 to extent
descriptor table.

68(X'44') An error occurred during conversion from format-5 to extent
descriptor table.

72(X'48') Input DSCB is not a format-5 or a format-7 DSCB.
76(X'4C') An error occurred during conversion from extent descriptor table to

format-7.
80(X'50') An error occurred during conversion from extent descriptor table to

format-5.
84(X'54') VSAM standard format data set incorrectly specified. If the data set is

VSAM, it must be extended format.
88(X'58') VSAMTRKS address parameter must be specified when VSAMTYPE is

specified.
92(X'5C') The name of the specified VSAM data set is not a VSAM cluster data

component.
96(X'60') Catalog call to partial release failed.
100(X'64') Request was directed to a VSAM data set defined with guaranteed

space.
104(X'68') Unexpected reason code received back from a call to catalog services.
108X'6C') Unable to find enough F0s to complete the PARTREL request.
112(X'70') DAPCCHH passed is in cylinder-managed space, but is not on a

multi-cylinder unit boundary.

Creating (Allocating) a DASD Data Set Using REALLOC
The REALLOC macro builds a parameter list to allocate a new data set. You can
code the macro in the execute, DSECT, and list forms, but not in the standard
form. The calling program includes the following requirements and options:
v Must be APF authorized
v Must allocate the volume to this address space and must ensure it stays

mounted during the REALLOC function
v Must not hold any locks
v Can provide the associated parameter list and parameters in storage either above

or below 16MB
v Can use any storage key
v Can run in either supervisor or problem program state
v Can be in either 24 or 31-bit addressing mode
v Must note that REALLOC does not call RACF or catalog management
v Must note that REALLOC cannot create data sets on SMS-managed volumes

(SMS-managed data sets can be created through JCL or dynamic allocation)
v Must note that REALLOC cannot create PDSEs, HFS data sets, or extended

format data sets
v Requires the address of a UCB, not a UCB copy.

Using the VTOC

48 z/OS V2R1.0 DFSMSdfp Advanced Services

In addition, the calling program must provide the REALLOC macro with one or
more model DSCBs. You can use the OBTAIN macro to get the DSCBs from other
data sets and modify them for the request. DADSM uses these model DSCBs to
validate the allocation request, and to construct the DSCBs written to the VTOC for
the requested allocation.

The ALLOC parameter for the REALLOC macro defines the allocation request as
either absolute (ABS) or movable (MOV).

The requested data set's allocation is not sensitive to its placement on the volume.
This is not a reference to the format-1 DSCB bit DS1DSGU (unmovable bit), that
can be either on or off in an ALLOC=MOV request's partial DSCB. That is, the data
set can subsequently contain location-dependent information.

An absolute request is limited to a single volume with indexed VTOC support. An
absolute request provides a set of allocation parameters, a full format-1 or format-8
DSCB, and an optional format-3 DSCB, that describe the space and attributes of the
desired data set. An optional format-9 DSCBs can also be provided to pass
additional attributes:
v Support is provided for, but not limited to, data sets with a user label extent.
v The number of extents to be allocated, and their absolute placement on the

volume, are defined by the format-1 or format-8 DSCB and one (optional)
format-3 DSCB.

For an absolute request, the following checks are performed prior to writing the
passed DSCBs. The type of checks depend on the volume for which the REALLOC
macro is issued.
v For any volume, a passed DSCB format must not describe a format that is not

supported. The supported formats in REALLOC processing are 1, 3, 8, or 9.
v For an extended address volume, a passed format-1 DSCB must not describe

extents that contain cylinder addresses larger than 65,519.
v A passed format-1, format-3, or format-8 DSCB must not describe extents that

contain cylinder addresses larger than the highest cylinder address of the
volume.

v For an extended address volume, a passed format-8 DSCB must not describe a
data set organization that is not EAS eligible.

v For an extended address volume, a passed format-3 or format-8 DSCB must not
describe an extent that begins on cylinder address 65519 or lower and that ends
on cylinder address 65520 or higher.

v For a volume that is not an extended address volume, a passed format-8 or
format-9 DSCB is not allowed.

The partial DSCB (mapped by the IECPDSCB macro) consists of the first 106 bytes
of a format-1 DSCB followed by 10 bytes in which the primary space request and
number of directory blocks are specified.

A movable request is limited to a single volume with or without indexed VTOC
support. A movable request provides a set of allocation parameters and a partial
DSCB that describe the attributes of the desired data set:
v Absolute track allocated data sets are not supported.
v The maximum number of extents that can be allocated is determined by the data

set organization (PD1DSORG) and the system managed storage indicators

Using the VTOC

Chapter 1. Using the Volume Table of Contents 49

(PD1SMSFG) bytes in the partial DSCB.If PD1DSORG indicates a VSAM data set
organization, the maximum number of extents is 7257 across multiple volumes,
123 on a single volume.

REALLOC–Execute Form
The format of the execute form of the REALLOC macro is:

�� REALLOC
label

MF= (E,addr)
(E,(reg)) MOV

,ALLOC= ABS
NON

�

�
,DSSIZE= addr

(reg)
,F3DSCB= addr

(reg)
,F9DSCB= addr

(reg)

�

�
,MINAU= addr

(reg)
,NUMF9= number_dscbs

(reg)
,PDSCB= addr

(reg)

�

�
,PDSDIR= addr

(reg)
,UCB= (reg)

��

All parameters except ALLOC default to the current contents of the referenced
parameter list. The ALLOC parameter defaults to MOV.

MF=(E,addr) or (E,(reg))
Specifies the execute form of the macro and the address of a REALLOC
parameter list.

addr–RX-type address, (reg)—(0-12)
Specifies the address of the REALLOC parameter list.

ALLOC=ABS or MOV or NON
Specifies one of the following:

ALLOC=ABS
Specifies that the REALLOC request is for absolute extents.

ALLOC=MOV
Specifies that the REALLOC request is for a movable allocation.
ALLOC=MOV is the default.

ALLOC=NON
Specifies that the REALLOC request is to rebuild the free space chain on
an unindexed VTOC without allocating a data set. Expect a DADSM create
return code X'3D'.

DSSIZE=addr or (reg)
Specifies the size of the data set to be allocated in tracks. The DSSIZE
parameter is invalid for an ALLOC=ABS request.

addr–RX-type address
Specifies the address of a word that contains the data set size.

(reg)–(0), (2-12)
Specifies a register that contains the size of the data set.

Using the VTOC

50 z/OS V2R1.0 DFSMSdfp Advanced Services

Provide a value for DSSIZE for an ALLOC=MOV request.The PDPRIQTY field
of the partial DSCB is ignored.

REALLOC assumes that you have provided the value of DSSIZE in tracks even
if the PD1SCALO flag byte of the partial DSCB indicates a cylinder request
(X'C0'), or an average block request, (X'40').

If the PD1SCALO flag byte of the partial DSCB indicates a cylinder request
(X'C0'), or an average block with round request (X'41'), the value of DSSIZE is
rounded up to the next full cylinder.

F2DSCB
This parameter still is supported for assembly purposes, but the system no
longer supports it when your program executes. This because you can no
longer create indexed sequential data sets

F3DSCB=addr or (reg)
Specifies the in-storage address of a format-3 DSCB. This DSCB is used as a
model to construct the allocated data set's format-3 DSCB.

The F3DSCB parameter is invalid for an ALLOC=MOV request.

addr–RX-type address, (reg)–(0), (2-12)

Provide a value for F3DSCB in an ALLOC=ABS request when the DS1NOEPV
byte of the format-1 DSCB indicates more than three extents (or when the
DS1NOEPV byte indicates more than two extents and the DS1EXT1 extent type
indicator is X'40', a user label extent).

The REALLOC request is limited to a maximum of 16 extents when the
F3DSCB keyword is specified. No more than one format-3 DSCB can be
specified.

Enter a value of zero for the F3DSCB in an ALLOC=ABS request when the
DS1NOEPV byte of the format-1 DSCB indicates that there are less than four
extents (or when the DS1NOEPV byte indicates that there are less than three
extents and the DS1EXT1 extent type indicator is X'40', a user label extent).

F9DSCB=addr or (reg) or 0
Specifies the address of a caller-provided contiguous partial format-9 DSCB
data area where attribute information from it is to be used when creating a
format-9 DSCB. Specify this keyword if you wish to pass format-9 DSCB
attribute information to REALLOC processing. Only attribute information in
the format-9 DSCB will be processed. Format-9 DSCBs with a subtype field
with a value other than 1 will be ignored. See mapping macro, IECSDSL1. The
number of contiguous partial format-9 DSCBs defined in this data area is
defined in the NUMF9=number_dscb keyword or is defaulted to one.
addr-RX-type address

Specifies the address of the partial format-9 DSCB data area.
(reg)-(2-12)

Specifies a register containing the address of the partial format-9 DSCB
data area.

0 Specifies that you do not want to pass a partial format-9 DSCB data area.

MINAU=addr or (reg)
Specifies the size of the minimum allocation unit in tracks. All primary extents
for this data set are in multiples of this minimum allocation unit. This
minimum does not apply to subsequent extensions of the data set.

The MINAU parameter is invalid on an ALLOC=ABS request.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 51

addr–RX-type address
Specifies the address of a word containing the minimum allocation unit.

(reg)–(0), (2-12)
Specifies a register containing the minimum allocation unit.

The MINAU parameter has no effect on the requested allocation if:
v You provide a value of zero.
v The PD1SCALO flag byte of the partial DSCB indicates either a cylinder

request (X'C0') or an average block with round request (X'41').

Otherwise, the value of DSSIZE must be a multiple of the value of MINAU.

NUMF9=number_dscbs or (reg)
For REALLOC with F9DSCB requests, number_dscbs is an absolute expression
or (register) with a value between 0 and 255 that designates the number of
consecutive 140-byte partial format-9 DSCB areas that are provided in the
F9DSCB=addr. The system treats a value of 0 as a 1 when F9DSCB=addr is
specified. Format-9 DSCBs with a subtype field with a value other than 1 are
ignored.

PDSCB=addr or (reg)
Specifies the address of a partial DSCB (for ALLOC=MOV) or the in-storage
address of a full format-1 or format-8 DSCB (for ALLOC=ABS). This DSCB is
used as a model to construct the allocated data set's format-1 or format-8
DSCB.

addr–RX-type address, (reg)–(0), (2-12)

Provide a value for the PDSCB parameter and initialize the PD1FMTID field to
X'F1' for a format-1 DSCB or to X'F8' for a format-8 DSCB. However, the
PDSCB attribute information determines EAS eligibility and whether the actual
allocated DSCB allocated is a format-1 or format-8 DSCB.

PDSDIR=addr or (reg)
Specifies the number of 256-byte directory blocks for a partitioned data set
(PDS).

addr–RX-type address
Specifies an in-storage address of a full word containing the number of
256-byte PDS directory blocks.

(reg)–(0), (2-12)
Specifies a register containing the number of 256-byte PDS directory
blocks.

Provide a value for PDSDIR when partitioned organization is indicated:
v The DS1DSORG flag byte of the format-1 DSCB is X'02' (ALLOC=ABS).
v The PD1DSORG flag byte of the partial DSCB is X'02' (ALLOC=MOV).

For an ALLOC=MOV request, you can specify the value of PDSDIR in the
PDDIRQTY field of the partial DSCB. The PDDIRQTY field is used only if the
REALLOC parameter list value of PDSDIR is zero.

Do not specify a value for PDSDIR if a PDS is not indicated.

UCB=(reg)
Specifies the address of the UCB for the volume on which the data set is to be
allocated. The UCB address can be for a captured UCB, or for an actual UCB
above or below the 16MB line. For 31-bit callers, the high-order byte is part of

Using the VTOC

52 z/OS V2R1.0 DFSMSdfp Advanced Services

the UCB address and must be cleared to zeros if a 24-bit UCB address is being
passed. The volume must be mounted, and remain mounted. Use the address
of a UCB, not a UCB copy.

(reg)–(0), (2-12)
Specifies a register containing the UCB address for the device.

REALLOC–List Form
The format of the list form of the REALLOC macro follows. See the execute form
for an explanation of the parameters.

�� REALLOC
label

MF=L
MOV

,ALLOC= ABS
,F3DSCB=addr

�

�
,F9DSCB= addr

(reg)
,NUMF9= number_dscbs

(reg)
,PDSCB=addr

��

Restrictions:

1. The execute form parameters DSSIZE, MINAU, PDSDIR, and UCB cannot be
specified on the list form.

2. The list form's ALLOC parameter affects the tests made by the REALLOC
macro during assembly, and the contents of the parameter list.

3. The value of ALLOC is as specified or defaulted on the execute form.

REALLOC–DSECT Form
The format of the DSECT form of the REALLOC macro is:

�� REALLOC
label

MF=D ��

REALLOC Parameter List
The parameter list for the DSECT form expansion is:

Table 13. REALLOC Parameter List

Offset Length or
Bit Pattern

Field Name Description

0(X'00') REALPL DSECT name.

0(X'00') 4 RALPLID EBCDIC "REAL" for "REALLOC"

4(X'04') 2 RALNGTH Length of parameter list

6(X'06') 2 RAERRCDE Error code from DADSM create

8(X'08') 1 RALFLAG Flag byte

1... RALABS 0 means ALLOC=MOV. 1 means ALLOC=ABS.

.1.. RALVTOCE VTOCENQD=YES

9(X'09') 1 RALPFLGS Processing flag byte.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 53

Table 13. REALLOC Parameter List (continued)

Offset Length or
Bit Pattern

Field Name Description

1... RALDUMMY Dummy REALLOC parameter list is passed. Only
the processing flag byte (byte 9), minimum
allocation unit (bytes 16-19), and UCB address
(bytes 24-27) are used. Ignore all other bytes and
use the values in the JFCB or Partial DSCB
interface as passed in register 0.

.1.. RALTRKAL Space must be allocated from track-managed
space.

..1. RALEXREQ The exact amount of space must be allocated.
Applicable to EAV. The request is to be allocated
using a combination of the track-managed and/or
the cylinder-managed spaces. If the exact space is
not available, then the request is failed.

...1 11.. * Reserved.

.... ..11 RALEATTR The extended attribute (EATTR=) value to be
used. Valid when RALDUMMY is set and when
the JFCB is passed in register 0.

v If 0, EATTR has not been specified. For VSAM
data sets, the default behavior is equivalent to
EATTR=OPT. For non-VSAM data sets the
default behavior is equivalent to EATTR=NO.

v If 1, EATTR=NO has been specified. The data
set cannot have extended attributes (format 8
and 9 DSCBs) or optionally reside in EAS.

v If 2, EATTR=OPT has been specified. The data
set can have extended attributes and optionally
reside in EAS. This is the default behavior for
VSAM data sets.

v If 3, Not Used, EATTR treated as not specified.

10(X'0A') 1 RALNUMF9 Number of contiguous partial format 9 DSCBs
that are located at the address in bytes 32-35. The
default is one.

11(X'0B') 1 Reserved

12(X'0C') 4 RALDSSZ Data set size

16(X'10') 4 RALMAU Minimum allocation unit

20(X'14') 4 RALPDSCB Address of partial DSCB

24(X'18') 4 RALUCB Address of UCB

28(X'1C') 4 RALDQTY PDS directory quantity

32(X'20') 4 RAL2DSCB Address of format 2 DSCB. Mutually exclusive
with RAL9DSCB.

32(X'20') 4 RAL9DSCB Contiguous partial format 9 DSCBs pointer.
RALNUMF9 defines the number of partial format
9 DSCBs. Format 9 DSCBs with a subtype field
with a value other than 1 are ignored. Only
format 9 DSCB attribute data in this model will
be used. Mutually exclusive with RAL2DSCB.

36(X'24') 4 RAL3DSCB Address of format 3 DSCB

40(X'28') 0 RALEND Byte after end of list

40 RALENGTH Symbolic length of parameter list

Return Codes from REALLOC
Control returns to the instruction following the instructions generated by the
REALLOC macro. Register 15 contains the applicable REALLOC return code as
shown in Table 14 on page 55.

Using the VTOC

54 z/OS V2R1.0 DFSMSdfp Advanced Services

REALLOC returns 4 bytes of diagnostic information in register 0. See z/OS
DFSMSdfp Diagnosis.

If an error occurs, REALLOC issues message IEC614I, consisting of failure-related
status information. See Table 14 for descriptions of the conditions indicated by the
REALLOC return code.

Exception: This is a cumulative list of DADSM create return codes. Some of these
codes might not apply to the REALLOC macro.

Table 14. DADSM CREATE Return Codes

Return Code Description

00(X'00') If the 4 bytes of diagnostic information returned in register 0 are all
zeros, this indicates successful data set creation. If they are nonzero,
see the DADSM/CVAF Diagnostic Aids section of z/OS DFSMSdfp
Diagnosis to determine the failure-related conditions.

04(X'04') Duplicate data set name.
08(X'08') No room in VTOC or VTOC index.
12(X'0C') Permanent I/O error or CVAF error.
16(X'10') Requested absolute track not available.
20(X'14') Requested quantity not available.
24(X'18') Average record length exceeds 65,535 bytes.
28(X'1C') ISAM is no longer supported and the request has been failed.
32(X'20') SMS configuration parmlib field USESLV was set to NO. The request

to allocate on a volume with more than 65,520 cylinders is not
allowed.

40(X'28') The create request specified DACEXREQ, but the exact amount of
space could not be returned. Because the exact amount was required,
no space is returned.

48(X'30') Invalid DADSM REALLOC parameter list.
52(X'34') Invalid JFCB, partial DSCB pointer, or ineligible DSORG specified with

F8 ID in the DSCB for an EAS request on EAV.
56(X'38') Not enough space on volume for directory.
60(X'3C') REALLOC ALLOC=ABS is not supported on unindexed VTOCs.
61(X'3D') REALLOC ALLOC=NON requested the free space chain to be rebuilt.

The data set was not created.
64(X'40') Invalid user label request.
68(X'44') Invalid UCB pointer. Requires the address of a UCB, not a UCB copy.
72(X'48') VSE VTOC cannot be converted to an unindexed VTOC.
76(X'4C') No space parameter given for a new data set or zero space requested

at absolute track zero.
104(X'68') Invalid space subparameter.
108(X'6C') ABSTR request.
116(X'74') User labels not supported.
120(X'78') Invalid combination of DSSIZE and MINAU in REALLOC parameter.
124(X'7C') DSSIZE not a multiple of MINAU.
128(X'80') Directory space requested is larger than primary space.
136(X'88') Invalid FMT3 DSCB pointer.
144(X'90') EAV extent above 65520 cylinders is not an even integral of the

multicylinder unit.
148(X'94') Overlapping extents in the VTOC.
156(X'9C') DADSM CREATE terminated because of possible VTOC errors.
164(X'A4') Allocation terminated because of VSE stacked pack format.
168(X'A8') RACDEF failed, data set already defined.
172(X'AC') User not authorized to define data set.
176(X'B0') Installation exit rejected this request with return code 8.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 55

Table 14. DADSM CREATE Return Codes (continued)

Return Code Description

180(X'B4') Installation exit rejected the request with return code 4.
184(X'B8') RACF define with modeling specified and model not found.
188(X'BC') Invalid FMT2 DSCB pointer.
192(X'C0') Requested data set creation was not allowed by SMS.
196(X'C4') Requested data set creation was not possible. Register 0 contains

additional diagnostic information.
200(X'C8') The PDSE directory could not be built.
204(X'CC') VTOC ENQ related failure.
208(X'D0') I/O error occurred during the allocation of a data set. The data set

will be deleted.
212(X'D4') Request failed due to a presence of split cylinder data sets on the

volumes.
216(X'D8') For this type of data set, the primary quantity requested cannot exceed

65,535 tracks.
217(X'D9') Data set could not be created DSNTYPE=LARGE not valid for this

data set.
220(X'DC') VTOC conversion failed because the VTOC was full.

Accessing the VTOC with CVAF Macros
The common VTOC access facility (CVAF) macros and tasks discussed in this
section consist of the following:
v CVAFDIR directly accesses one or more DSCBs.
v CVAFDSM obtains volume free space information.
v CVAFFILT reads sets of DSCBs for one or more DASD data sets.
v CVAFSEQ retrieves the following:

– Data set names from an active VTOC index
– DSCBs in physical-sequential order
– DSCBs in data set name order (index required).

v CVAFTST determines if a DASD volume has an active VTOC index.

“Coding CVAF VTOC Access Macros” on page 73, contains descriptions of these
macros and examples of their use.

When calling CVAF, your program can be in either 24-bit or 31-bit addressing
mode. If it is in 31-bit mode, the control blocks shown in Figure 7 on page 68
might reside above the 16 MB line. All these areas must be accessible in your
program's storage key.

Note: You must supply a UCB address that matches the caller's AMODE. That is,
AMODE=24 requires a 24 bit UCB address, while AMODE=31 requires a 31 bit
UCB address.

Serializing and Updating
CVAF requires that you provide all necessary system resource serialization for your
request. You can ensure the integrity of multiple data elements (sets of DSCBs or
VIRs) returned by CVAF only if you adequately serialize system resources and
avoid multiple CVAFFILT requests for a set of DSCBs or VIRs. Weigh possible
system performance loss because of serialization against the potential loss of data
integrity.

Using the VTOC

56 z/OS V2R1.0 DFSMSdfp Advanced Services

Updating without adequate serialization might compromise the integrity of the
volume's VTOC, the VTOC index, or any associated data set.

CVAF only complies with requests to modify the volume's VTOC or index from
authorized programs.

CVAF assumes that an authorized program holds an exclusive RESERVE (or ENQ)
on the qname (major name) of SYSVTOC, and the rname (minor name) of the
volume's serial number, with the scope of SYSTEMS. This RESERVE can be made
more efficient if Global Resource Serialization or a functional equivalent is active.

The SYSVTOC qname does not serialize access to the format-1 or the format-8
DSCB for a data set. You can provide serialization by allocating the data set with
disposition OLD, MOD, or NEW (not SHR). This causes the proper ENQ, ensuring
that no other job can update that data set's format-1 or format-8 DSCB.

If your program holds the enqueue for the SYSVTOC resource, then no other
program can later start and complete a DADSM request. This includes extending
or creating a data set on that volume in your own address space. If you try to
extend a data set under the same task that holds SYSVTOC, it will be abnormally
terminated. If a different task requests SYSVTOC, that task will wait. If your
program then requests a resource that is held by that task, the two tasks will be in
a deadlock. To prevent deadlocks between tasks in the same address space when
either of the tasks has previously enqueued on SYSVTOC, the secondary caller of
CVAF must ensure the enqueue bit is on (CV3ENQD) in the CVPL. Other options
to get around this limitation are either:
v Allocating a data set so that it does not require secondary extents.
v Requesting that the output data set be on a volume other than the one where

the application holds enqueue for the SYSVTOC resource.

Identifying the Volume
If authorized, you can identify the volume to the CVAFDIR, CVAFDSM,
CVAFFILT, and CVAFSEQ macros by specifying the address of the UCB. These
macros do not accept the address of a UCB copy. If your program is not
authorized, specify the address of a SAM or EXCP DEB opened to the volume's
VTOC.

The data extent block (DEB) can be obtained by opening a DCB for INPUT, using
the RDJFCB and OPEN TYPE=J macros. (After issuing an OPEN TYPE=J macro,
the DCB's DCBDEBA field contains the DEB's address.) The DCB's DDNAME must
identify a DD statement allocated to the unit whose VTOC is to be accessed. Once
your program issues the RDJFCB macro, it must initialize the JFCBDSNM field
with the data set name of the format-4 DSCB: 44 bytes of X'04'. The RDJFCB macro
is described under “RDJFCB Macro Specification” on page 287; the OPEN macro is
described under “OPEN - Initialize Data Control Block for Processing the JFCB” on
page 302. For an extended address volume the DCB macro must point to a DCBE
where the EADSCB=OK keyword is specified. If you do not code this option, the
OPEN function will issue ABEND 113-48 and message IEC142I.

If a CVAF macro call specifies IOAREA=KEEP, a subsequent CVAF call using a
different CVAF parameter list (CVPL) might omit the UCB and DEB keywords and
supply the IOAREA address from the other CVPL by using the IOAREA keyword.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 57

Generating a CVPL (CVAF Parameter List)
The CVAFDIR, CVAFDSM, CVAFFILT, and CVAFSEQ macros use the CVPL to
pass parameters to CVAF. The CVAFTST macro expands to provide its only
parameter (UCB address) in register 1, and calls the applicable CVAF module.
CVAF returns information related to the CVAF request in the CVPL. The CVAFTST
macro will accept the address of a UCB or UCB copy. Unauthorized programs can
get a copy of the UCB by using the UCBSCAN macro and specifying the COPY,
UCBAREA, CMXTAREA, and DCEAREA keywords. The UCB copy, including the
extension, must be below the 16MB line and on a word boundary. Data accessed
with the DCEAREA can be above the 16MB line. Refer to z/OS HCD Planning for
details.

Specifying the CVAFDIR, CVAFDSM, CVAFFILT, or CVAFSEQ macro with MF=L
or MF=I (the default) as a subparameter generates a CVPL. Upon return the
CV1IVT bit in the CVPL indicates whether the accessed VTOC was indexed or
nonindexed. If an error occurs, the CVSTAT field contains feedback data. The
CVAF I/O area address is returned in the CVIOAR field and the CVAF filter save
area address is returned in the CVFSA field. To use the generated CVPL to execute
a different function than was originally specified, use the MF=E keyword.

To specify a CVAF filter request, use a CVPL generated by the CVAFFILT macro.
The CVAFFILT macro generates a CVPL 4 bytes longer (total length = X'44') than
that generated by the other CVAF macros (total length = X'40'). CVAFFILT request
need a longer parm list to accommodate one extra file.
v To get the longer parameter list (X'44' bytes), specify CVPLFSA=YES on the

inclusion of the ICVAFPL mapping macro.
v To get the shorter parameter list (X'40' bytes), specify the CVPLX=YES on the

inclusion of the ICVAFPL mapping macro.

The ICVAFPL macro maps the CVPL. The format of the CVPL is shown in
Table 15.

Note: The area starting at CVCTAR5 is generated only when the CVPLX=YES
macro variable is specified on the invocation of ICVAFPL.

Table 15. CVAF Parameter List - ICVAFPL

Offset Type Length Name Description

0(X'00') STRUCTURE 100 CVPL CVAF parameter list

0(X'00') CHARACTER 4 CVLBL EBCDIC 'CVPL'

4(X'04') SIGNED 2 CVLTH Length of CVPL

6(X'06') BIT(8) 1 CVFCTN Function byte (see values below)

7(X'07') UNSIGNED 1 CVSTAT Status information (see values below)

8(X'08') BIT(8) 1 CVFL1 First flag byte

1... CV1IVT Indexed VTOC accessed

.1.. CV1IOAR IOAREA=KEEP

..1. CV1PGM BRANCH=(YES,PGM)

...1 CV1MRCDS MAPRCDS=YES

.... 1... CV1IRCDS IXRCDS=KEEP

.... .111 CV1MAP Map bits (see next three bits)

.... .1.. CV1MAPIX MAP=INDEX

Using the VTOC

58 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 15. CVAF Parameter List - ICVAFPL (continued)

Offset Type Length Name Description

.... ..1. CV1MAPVT MAP=VTOC

.... ...1 CV1MAPVL MAP=VOLUME

9(X'09') BIT(8) 1 CVFL2 Second flag byte

1... CV2HIVIE HIVIER=YES

.1.. CV2VRF VRF data exists

..1. CV2CNT COUNT=YES

...1 CV2RCVR RECOVER=YES

.... 1... CV2SRCH SEARCH=YES

.... .1.. CV2DSNLY DSNONLY=YES

.... ..1. CV2VER VERIFY=YES

.... ...1 CV2NLEVL Output - new highest level VIER created

10(X'0A') BIT(8) 1 CVFL3 Third flag byte

1... CV3FILT FLTAREA=KEEP

.1.. CV3IXERR Index error found

..1. CV3PTR31 Address words in CVPL are valid in AMODE
31

...1 CV3AVT Support bypass write inhibit error.

.... 1... CV3ENQD CVAF caller has serialized with another task
that has reserved the VTOC

.... .1.. CV3NOPIN Caller requested no UCBPIN

.... ..1. CV3HLIXP Higher level IX pruning done

.... ...1 CV3RTA4B CVAFDSM RTA4BYTE=YES

11(X'0B') BIT(8) 1 CVFL4 Fourth flag byte

1... CV4UCBCA UCB has been captured

.1.. CV4OBTRQ Request came from OBTAIN

..1. CV4NMHID Data set name hiding for authorized caller.

...1 CV4EADOK EADSCB=OK specified

.... 1... CV4MULTD Processing of multiple DSCBs on CVAFDIR is
requested (MULTIPLEDSCBS=YES)

.... .xxx CV4RSVD Reserved

12(X'0C') ADDRESS 4 CVUCB UCB address

16(X'10') ADDRESS 4 CVDSN Data set name address

16(X'10') ADDRESS 4 CVFCL Filter criteria list address

20(X'14') ADDRESS 4 CVBUFL Buffer list address

24(X'18') ADDRESS 4 CVIRCDS Index VIR's buffer list pointer

28(X'1C') ADDRESS 4 CVMRCDS MAP VIR's buffer list pointer

32(X'20') ADDRESS 4 CVIOAR I/O area address

36(X'24') ADDRESS 4 CVDEB DEB address

40(X'28') ADDRESS 4 CVARG Argument address

44(X'2C') ADDRESS 4 CVSPACE Space parameter list address

Using the VTOC

Chapter 1. Using the Volume Table of Contents 59

Table 15. CVAF Parameter List - ICVAFPL (continued)

Offset Type Length Name Description

48(X'30') ADDRESS 4 CVEXTS Extent table address

52(X'34') ADDRESS 4 CVBUFL2 New VRF VIXM Buffer list pointer

56(X'38') ADDRESS 4 CVVRFDA VRF data address

60(X'3C') ADDRESS 4 CVCTAR Count area address

64(X'40') ADDRESS 4 CVFSA Filter save area address

68(X'44') ADDRESS 4 CVCTAR5 CCHHR AREA RETURN ADDRESS

72(X'48') UNSIGNED 1 CVNMDSCB NUM OF DSCBs

73(X'49') CHARACTER 3 * Reserved

76(X'4C') CHARACTER 24 * Reserved

The possible contents of the CVFCTN field in the CVPL and their meanings are as
follows:

Table 16. CVFCTN Field of CVPL—Contents and Definitions

Value Name Description

X'01' CVDIRD CVAFDIR ACCESS=READ
X'02' CVDIWR CVAFDIR ACCESS=WRITE
X'03' CVDIRLS CVAFDIR ACCESS=RLSE
X'04' CVSEQGT CVAFSEQ ACCESS=GT
X'05' CVSEQGTE CVAFSEQ ACCESS=GTEQ
X'06' CVDMIXA CVAFDSM ACCESS=IXADD
X'07' CVDMIXD CVAFDSM ACCESS=IXDLT
X'08' CVDMALC CVAFDSM ACCESS=ALLOC
X'09' CVDMRLS CVAFDSM ACCESS=RLSE
X'0A' CVDMMAP CVAFDSM ACCESS=MAPDATA
X'0E' CVFIRD CVAFFILT ACCESS=READ
X'0F' CVFIRES CVAFFILT ACCESS=RESUME
X'10' CVFIRLS CVAFFILT ACCESS=RLSE
X'AA' CVDMMAPX CVAFDSM ACCESS=MAPDATA RTA4BYTE=YES

Using Buffer Lists
A buffer list consists of one or more chained control blocks, each with a header
and buffer list entries, obtained and initialized by your program before calling
CVAF. The header indicates whether the buffer list is for DSCBs. The entries point
to and describe the buffers. You can create buffer lists in two ways:
v Directly, when you fill in the arguments and buffer addresses of DSCBs to be

read or written
v Indirectly (by CVAF), when you code the IXRCDS=KEEP and/or

MAPRCDS=YES keywords.

The ICVAFBFL macro maps CVAF buffer lists. Table 17 on page 61 shows the
format of a buffer list header. Table 18 on page 62 shows the format of a buffer list
entry.

Buffer List Header
The buffer list header indicates whether the buffer list describes buffers for DSCBs.
The DSCB bit must be set to 1 and the VIR bit to zero for CVAF to process a

Using the VTOC

60 z/OS V2R1.0 DFSMSdfp Advanced Services

request to read or write a DSCB. Provide buffer lists and buffers in your program's
protect key. CVAF uses the protect key and subpool fields in the buffer list header
only if you code ACCESS=RLSE.

Each buffer list header contains a count of the number of entries in the buffer list
that directly follows the header.

The forward chain address chains buffer lists together. The format of the buffer list
header is shown in Table 17.

Table 17. Format of a Buffer List Header

Offset
Length or Bit
Pattern Name Description

0 (X'00') 8 BFLHDR Buffer list header.
0 (X'00') 1 BFLHNOE Number of entries.
1 (X'01') 1 BFLHFL Key and flag byte.

xxxx BFLHKEY Protect key of buffer list and buffers.
. . . . 1 . . . BFLHVIR Reserved.
. 1 . . BFLHDSCB Buffer list entries describe DSCBs.
. 1 . BFLHWREV Write multiple DSCBs in reverse

order.
.x Reserved.

2 (X'02') 1 BFLHNOEN Number of entries needed to read all
DSCBs describing the DSN. Set by
CVAFDIR READ when processing a
READ of a format-1 or format-8
DSCB. Applicable to all volume types
and set regardless of the value
provided in BFLHNOE.

3 (X'03') 1 BFLHSP Identifies the subpool of buffer list
and buffers.

4 (X'04') 4 BFLHFCHN Forward chain address of next buffer
list.

Buffer List Entry
A buffer list contains one or more entries in contiguous storage. Each entry
provides the buffer address, the length of the DSCB buffer, the argument, and
indicates whether the argument is an RBA, a TTR, or a CCHHR. The fields and bit
uses are listed below.
v For a DSCB buffer, the RBA bit must be 0, and either the TTR or CCHHR bits

must be set to 1 (they must not both be 1).
v The BFLESKIP bit causes an entry to be ignored.
v The BFLEIOER bit is an output indicator from CVAF that indicates an I/O error

occurred during reading or writing of the DSCB.
v The BFLELTH field is the length of the buffer; for a DSCB buffer, the length

must be 96 or 140.
v The BFLEARG field is the argument (address) of the DSCB. Specify the format of

the 5-byte field by setting the BFLECHR, BFLETTR, or BFLERBA bit to 1. The
respective BFLEARG values and formats are as follows:

Value Format
CCHHR 5-byte CCHHR
TTR 0TTR0
RBA 1 byte of 0 followed by a 4-byte relative byte address.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 61

The values for BFLEARG depend on the variables associated with a given request.
These are described in the following request-oriented topics.

The format of the buffer list entry is shown in Table 18.

Table 18. Format of a Buffer List Entry

Offset
Length or Bit
Pattern Name Description

0 (X'00') 12 BFLE Buffer list entry.
0 (X'00') 1 BFLEFL Flag byte.

100 BFLERBA Argument is RBA.
010 BFLECHR Argument is CCHHR.
001 BFLETTR Argument is TTR.
. . . 1 BFLEAUPD CVAF updated argument field.
. . . . 1 . . . BFLEMOD Data in buffer has been modified.
. 1 . . BFLESKIP Skip this entry.
. 1 . BFLEIOER I/O error.
. 1 BFLENOVR If using CVAFDIR to write a 96-byte

DSCB, bypass comparing the DSCB
key to the data set name.

1 (X'01') 1 BFLEFLG2 Flag byte 2.
1 BFLENVER When using CVAFDIR to write

multiple DSCBs and this flag is set,
CVAF will not verify that the existing
DSCB is format 0 prior to writing this
DSCB. This overrides VERIFY=YES on
CVAFDIR (CV2VER) for this buffer list
entry.

. x x x x x x x Reserved.
2 (X'02') 1 BFLELTH Length of DSCB buffer.
3 (X'03') 5 BFLEARG Argument of DSCB.
4 (X'04') 3 BFLEATTR TTR of DSCB.
4 (X'04') 4 BFLEARBA Reserved.
8 (X'08') 4 BFLEBUF Buffer address.

Using Macro ICVEDT02 to Map the Extents Area
The ICVEDT02 mapping macro is used to map the extent area when you use the
CVAFDSM macro and specify RTA4BYTE=YES for indexed VTOCs or nonindexed
VTOCs.

The format of the ICVEDT02 mapping macro follows.

Table 19. Format of ICVEDT02 Mapping Macro

Offset Bytes Name Description

0 (X'00') 8 DT2X7EYE Identifier=“ICVEDT02”
8 (X'08') 4 DT2X7LEN Length of ICVEDT02.
12 (X'0C') 1 DT2X7LEV Level number.
13 (X'0D') 1 DT2X7FLG Flag byte.
14 (X'0E') 2 DT2X7NF0 Number of format-0 DSCBs created.
16 (X'10') 5 DT2X7CSR CCHHR cursor field. Used by the system.

Initialized to zero by caller—then do NOT modify.
21 (X'15') 3 DT2X7RES Reserved.

Using the VTOC

62 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 19. Format of ICVEDT02 Mapping Macro (continued)

Offset Bytes Name Description

24 (X'18') 4 DT2X7RTA Relative Track Address (RTA) cursor field. Used by
the system. Initialized to zero by caller—then do
NOT modify.

28 (X'1C') 4 DT2X7RE2 Reserved.
32 (X'20') 4 DT2X7ENT Number of extent descriptor entries.
- - - Extent descriptor array.
36 (X'24') 8 DT2ENTRY One entry for each extent.
- 4 DT2RTAST RTA of start of extent
- 4 DT2RTAED RTA+1 of end of extent

Accessing the DSCB Directly
The CVAFDIR macro can be used to read or write one or more DSCBs and is
described in “CVAFDIR Macro Overview and Specification” on page 74. After a
CVAFDIR call, you can test the CV1IVT bit in the CVPL to determine whether the
VTOC is indexed or nonindexed.

If the first buffer is 96 bytes, CVAF issues a channel program to verify that the key
in the DSCB matches the 44-byte data set name you entered, unless the operation
is a write and the BFLENOVR bit is on.

If the first buffer is for a 96-byte write and the BFLENOVR bit in the BFLEFL is set
to 1, CVAF skips the key verification, improving performance. If you are not
certain that the data set name you provide is correct, set the BFLENOVR bit to 0. If
the BFLENOVR bit is set to 0, CVAF does not execute the write unless the keys
match.

If CVAF is performing key verification, and the DSCB key does not match the data
set name you supply, CVAF ignores any specified BFLEARG and writes the first
DSCB using the rules described in the following section, “Specifying a Data Set
Name to Read or Write a DSCB.”

Specifying a Data Set Name to Read or Write a DSCB
To read or write one or more DSCBs by specifying only the data set name (that is,
BFLEARG is zero), specify either ACCESS=READ or ACCESS=WRITE.

Specify the address of the data set name in the DSN keyword. Specify the address
of the buffer list in the BUFLIST keyword. Each of these areas and the associated
buffers must be in your program's protect key.

The buffer list must contain at least one buffer list entry with the skip bit off and a
pointer to a 96-byte first buffer. Do not use a 140-byte buffer as the first buffer. You
can chain buffer list headers together, but at this time, CVAF only uses the first
buffer list.

For an indexed VTOC, CVAF searches the index for the data set name. If the data
set name is found, the DSCB argument is put into the buffer list entry and used to
read or write the DSCB. If the data set name cannot be found in the index, CVAF
performs a key search of the VTOC.

For a nonindexed VTOC, CVAF uses a channel program to perform a key search of
the VTOC to locate the data set name and read or write the DSCBs. If the data set
name is found, CVAF puts the DSCB argument into the buffer list entry.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 63

The DSCB argument returned in the buffer list entry is in the format determined
by the BFLECHR or BFLETTR bits in the buffer list entry.

If CVAF does not find the data set name in the VTOC, a return code of 4 is
indicated in register 15, and an error code of 1 in the CVSTAT field.

For CVAF calls that pass a data set name, a CVAFDIR request will fail if the
EADSCB=OK indicator is not set and the DSCB associated with this data set name
is a format-8 DSCB. CVAF return code of 4 with a CVAF status code (CVSTAT) of
STAT082 will be set.

If you use CVAFDIR MULTIPLEDSCBS=YES ACCESS=READ, all DSCBs associated
with this data set name are read and returned in the buffer list buffer (BFLEBUF)
for entries without the skip bit on in logical VTOC order. The associated address of
each DSCB is put in the corresponding BFLEARG field. The total number of
DSCBs associated with this data set name is also returned in the BFLHNOEN field
of the buffer list header. If there are not enough buffers to house all the DSCBs
associated with this data set name, only those DSCBs that have BFLEs are
processed. The buffer list header field BFLHNOEN will then have a number
greater than the BFLHNOE field.

If you use CVAFDIR MULTIPLEDSCBS=YES ACCESS=WRITE, all BFLEs without
the skip bit are used to write all DSCBs with one call. BFLARG must be correct for
all entries (except the first 96-byte DSCB) and BFLEBUF must point to the correct
corresponding DSCB to be written.

Specifying the DSCB Location
To read or write one or more DSCBs by specifying the DSCB's location (that is,
BFLEARG), specify either ACCESS=READ or ACCESS=WRITE.

Specify the address of the data set name in the DSN keyword and the address of
the buffer list in the BUFLIST keyword. Each of these areas and the associated
buffers must be in your program's protect key.

The buffer list must have at least one buffer list entry with the skip bit off and a
pointer to a 96-byte or 140-byte buffer. You can chain buffer lists together, but at
this time CVAF uses only the first buffer list.

If the first buffer is for a 140-byte read or write, CVAF issues a channel program to
read or write the DSCB at the location specified in the buffer list entry. CVAF
ignores the specified data set name. If you specify VERIFY=YES, CVAF verifies
that the designated DSCB is a format-0 DSCB before issuing the write channel
program.

For CVAF calls that specify the DSCB location, a CVAFDIR request will fail if the
EADSCB=OK indicator is not set and the DSCB associated with this location is a
format-8 DSCB. CVAF return code of 4 with a CVAF status code (CVSTAT) of
STAT082 will be set.

If you use CVAFDIR MULTIPLEDSCBS=YES ACCESS=READ, all DSCBs associated
with the data set whose format-1 or format-8 DSCB is pointed to by the BFLEARG
of the first BFLE entry are read and returned in the buffer list buffer (BFLEBUF)
for entries without the skip bit on in logical VTOC order. The associated address of
each DSCB is put in the corresponding BFLEARG field. The total number of
DSCBs associated with this data set is also returned in the BFLHNOEN field of the
buffer list header. If there are not enough buffers to house all the DSCBs associated

Using the VTOC

64 z/OS V2R1.0 DFSMSdfp Advanced Services

with this data set name, only those DSCBs that have BFLEs are processed. The
buffer list header field BFLHNOEN will then have a number greater than the
BFLHNOE field.

If you use CVAFDIR MULTIPLEDSCBS=YES ACCESS=WRITE, all BFLEs without
the skip bit are used to write all DSCBs with one call. BFLARG must be correct for
all entries and BFLEBUF must point to the correct corresponding DSCB to be
written.

Releasing Buffers and Buffer Lists Obtained by CVAF
You can release buffers and buffer lists acquired by CVAF in the following ways:
v Issue a CVAF call with ACCESS=RLSE, and specify a buffer list address with the

BUFLIST keyword.
v Free a MAP records buffer list by coding MAPRCDS=NO or

MAPRCDS=(NO,addr) and specifying any ACCESS.
v Free an index records buffer list by coding IXRCDS=NOKEEP or

IXRCDS=(NOKEEP,addr) and specifying any ACCESS.

CVAF frees all eligible buffers and any buffer lists that become empty. Eligible
buffers are those pointed to by buffer list entries with the skip bit off. CVAF frees a
buffer list if none of its buffer list entries have the skip bit on. If buffer lists are
chained together, CVAF checks and frees all appropriate buffer lists. Do not request
CVAF to release the same buffer list twice by specifying its address in more than
one place.

Accessing DSNs or DSCBs in Sequential Order
You can use the CVAFSEQ macro to request the return of information about the
data sets:
v DSCBs in indexed (data set name) order (either format-1 and format-8 DSCBs or

a format-4 DSCB)
v One or more DSCBs in physical-sequential order. (If you are unauthorized, you

can request only one DSCB.)
v The next data set name in the index.

CVAF reads the DSCBs into buffers identified by the BUFLIST keyword. See
“CVAFSEQ Macro Overview and Specification” on page 120 for additional
information about the macro.

Use the buffer list to specify the argument of each DSCB to be read. For indexed
access, request 96-byte DSCBs in the buffer list. For physical-sequential access,
request 140-byte DSCBs.

If you select indexed order, CVAF returns each format-1, format-4, or format-8
DSCB pointed to by the index. To return only the data set names in the index (not
the DSCBs), specify DSNONLY=YES. CVAF updates the DSN area specified in the
CVAFSEQ macro with the data set name of each DSCB read, every time you issue
CVAFSEQ. CVAF also returns the CCHHR of the DSCB in the argument area
supplied with the ARG keyword.

Note: The returned DSCB from CVAFSEQ always includes the key portion of the
DSCB when the supplied length is 140 bytes for the buffer (field BFLELTH). The
mapping for structure IECSDSF4 in macro IECSDSL1, however, does not include
the key portion of the DSCB. Therefore, if you use the format-4 DSCB fields

Using the VTOC

Chapter 1. Using the Volume Table of Contents 65

defined in this structure (all fields starting with DS4), you must adjust the starting
point of the first field in the IECSDSF4 structure to correspond to 44 bytes into the
returned buffer.

For indexed access, a CVAFSEQ request will fail if the EADSCB=OK indicator is
not set and the DSCB attempted to be read is a format-8 DSCB. CVAF return code
of 4 with a CVAF status code (CVSTAT) of STAT082 will be set.

Initiating Indexed Access (DSN Order)
To initiate indexed access (DSN order), either supply 44 bytes of binary zeros in
the DSN area (to indicate the first data set name in the index) or specify the data
set name that is the starting point for the index search.

The name returned in the DSN area is equal to or greater than the DSN supplied,
depending on the ACCESS keyword selection.

If you specify DSNONLY=NO, CVAF returns the DSCB and argument using the
buffer list provided with the BUFLIST keyword. CVAF uses the first entry in the
buffer list with the skip bit set to 0 and a nonzero buffer address. You can specify
the argument format by setting either the TTR or CCHHR bit in the buffer list
entry to 1. If neither bit is set, CVAF returns a CCHHR argument. For indexed
access, the DSCB size in the buffer list entry must be 96 bytes.

If you specify DSNONLY=YES, specify the CCHHR argument in the ARG area.

The data set name of the format-4 DSCB is in the index and CVAF might return its
name (44 bytes of X'04'). The format-4 DSCB's name is likely to be the first data set
name in the VTOC index.

Initiating Physical-Sequential Access
To initiate physical-sequential access, either specify DSN=0, or do not specify the
DSN parameter at all. To begin the read, initialize the argument field in the first
buffer list entry to zero or to the argument of the DSCB. If the argument is zero,
CVAF uses the argument of the start of the VTOC.

The ACCESS keyword determines whether CVAF reads the DSCB whose argument
is supplied or the DSCB following it. For example, to read the first DSCB (the
format-4 DSCB) in the VTOC, you can set the BFLEARG in the first buffer list
entry to zero and specify ACCESS=GTEQ in the CVAFSEQ macro. If you
subsequently specify ACCESS=GT, CVAF reads the second DSCB (the first format-5
DSCB). Set the DSCB size to 140 in buffer list entries.

If your program is authorized, CVAF reads as many DSCBs as there are entries in
the buffer list for a single CVAF call; if it is not authorized, CVAF reads only one
DSCB.

CVAF uses one buffer list and does not inspect a second buffer list chained from
the first. If your program is authorized, CVAF uses all entries in the buffer list; if it
is not authorized, CVAF uses only the first entry. CVAF does not inspect the skip
bit. Each entry must contain a buffer address and have the length field set to 140.
CVAF updates the argument field of each buffer list entry with the argument of the
DSCB. You can specify the argument format by setting either the TTR or CCHHR
bit in the buffer list entry to 1. If neither bit is set, CVAF returns a CCHHR
argument.

Using the VTOC

66 z/OS V2R1.0 DFSMSdfp Advanced Services

CVAF uses only the argument in the first entry to begin the search and does not
inspect arguments in subsequent entries. If you specify a nonzero argument value
in the first entry, there must be a DSCB with that argument.

CVAF indicates an end-of-data condition by providing return code 4 in register 15,
and a value of X'20' in the CVSTAT field. CVAF sets the argument fields of all
buffer list entries following the last DSCB read, to zero (the first entry is zero if
CVAF does not read any DSCBs).

CVAF reads all DSCBs, including format-0 DSCBs. You cannot be certain that you
have read all DSCBs until CVAF has read the entire VTOC. For a nonindexed
VTOC, the DS4HPCHR field of the format-4 DSCB contains the CCHHR of the last
format-1 DSCB. DSCBs other than format-1 can reside beyond that location. For an
indexed VTOC, the VMDS contains information about which DSCBs are format-0
DSCBs.

For physical-sequential access, a CVAFSEQ request to an extended address volume
will fail if the EADSCB=OK indicator is not set. CVAF return code of 4 with a
CVAF status code (CVSTAT) of STAT082 will be set.

Reading Sets of DSCBs with CVAF Filter
You can use the CVAFFILT macro to retrieve sets of DSCBs into buffers provided
by the calling program. CVAF filter service supports both indexed and nonindexed
VTOCs. “CVAFFILT Macro Overview and Specification” on page 100 describes the
macro's format and parameters. The following section summarizes this service and
its requirements.
v Request DSCBs by specifying either one or more fully-qualified data set names,

or one partially-qualified name. See “Filter Criteria List (FCL)” on page 69 and
“Partially-Qualified Names for CVAFFILT” on page 106 for further information.

v Identify a single DASD volume in the CVPL.
v For each data set that has a format-1 DSCB, the VTOC order returned by

CVAFFILT is the format-1 DSCB, followed by any format 3 DSCBs.
For each data set that has a format-8 DSCB, the VTOC order returned by
CVAFFILT is the format-8 DSCB, one or more format-9 DSCBs, followed by any
format-3 DSCBs. Currently, the minimum buffer list entry size needed to read all
DSCBs associated with a data set is 12. This is one format-8 DSCB, one format-9
DSCB, and 10 format-3 DSCBs to reach the 123-extent limit.

v CVAF filter service returns DSCB information for one or more qualifying data
sets into caller-provided buffers. See “Example of CVAFFILT Macro Sequences”
on page 72 and “Example of Using the CVAFFILT Macro” on page 106 for
further information. CVAF filter service does not return a partial DSCB chain in
the following cases:
– If you do not provide enough buffers to hold the requested DSCBs, CVAF

filter service returns one or more complete DSCB chains and/or a status code
(CVSTAT in the CVPL). The status code indicates if a RESUME CVAF call can
be used to retrieve the rest (or more) of the DSCBs. See “RESUME Capability”
on page 68 for specific information.

– If the total number of buffers is insufficient to contain a data set's complete
DSCB chain, CVAF filter service sets the FCLDSNST byte in the FCL, ignores
the data set, and processes the next qualifying data set. To avoid this
situation, provide a minimum of eleven DSCB buffers (enough for a data set
at the 123 extent limit).

Using the VTOC

Chapter 1. Using the Volume Table of Contents 67

v For fully qualified data set names in the Filter Criteria List, a CVAFFILT request
issued to an extended address volume will fail if the EADSCB=OK indicator is
not set and the DSCB associated with the fully qualified data set name is
described by a format-8 DSCB. For partially qualified data set names in the
Filter Criteria List, a CVAFFILT request issued to an extended address volume
will fail if the EADSCB=OK indicator is not set and a DSCB associated with a
data set that matches the Filter Criteria List is described by a format- 8 DSCB. In
both these cases, the data set name status in the FCL (FCLDSNST) will be set to
a status value of (x'06'). This status code indicates that a data set name is
described by a format-8 DSCB and the caller did not specify support for it with
the EADSCB=OK keyword. It will be set only when other data set name status
codes are not applicable. CVAF status code (CVSTAT) of STAT086 (x'56') will be
set with these errors. This status code indicates all of the user FCL entries were
processed, a resume is not required, one or more errors were found.

RESUME Capability
If CVAF filter service terminates because you failed to provide sufficient buffers,
the information necessary for a RESUME function is saved in the filter save area.
(Specifying FLTAREA=KEEP on the initial CVAFFILT allocates the filter save area.)

To allow RESUME processing to execute correctly, you must maintain the
relationship between the requested volume (identified by CVDEB, CVUCB, or a
kept IOAREA), your FCL, and CVAF's FSA. If you observe this requirement, you
can initiate and resume multiple CVAF filter service operations asynchronously on
one or more DASD volumes. You can ensure this relationship by providing a
unique CVPL and FCL for the duration of the READ/RESUME/RELEASE
sequence associated with each logical request.

Issuing an ACCESS=RESUME without having previously specified
FLTAREA=KEEP causes CVAF filter service to produce return code 4 in register 15
and 66 (decimal) in the CVSTAT field.

If you specify FLTAREA=KEEP, issue a subsequent CVAFFILT call with the
ACCESS=RLSE keyword to release filter save area storage.

Reg 1 ───→ CVPL──────┐
³ CVFCL ─┼──────────────────────────→ FCL───────┐
³ ³ ³ FLCH ³
³ CVBUFL─┼──→ BFL───────┐ ³ ³
³ ³ ³ BFLH ³ ³ FCLDSN──┴┐
³ ³ ³ ³ ³ ³ ³
└─────────┘ ³ BFLE────┴┐ ³ ³FCLDSNA─┼─→ DSN

³ ³ ³ ³ └───────┬┘
³ ³BFLEBUF─┼─→ DSCB ³ FCLDSN──┴┐
³ └───────┬┘ Buffer ³ ³ ³
³ BFLE────┴┐ ³ ³FCLDSNA─┼─→ DSN
³ ³ ³ ³ └───────┬┘
³ ³BFLEBUF─┼─→ DSCB ³ ³
³ └───────┬┘ Buffer ³ ... ³
³ ³ ³ ³
³ ... ³ ³ FCLDSN──┴┐
³ ³ ³ ³ ³
³ BFLE────┴┐ ³ ³FCLDSNA─┼─→ DSN
³ ³ ³ ³ └───────┬┘
³ ³BFLEBUF─┼─→ DSCB └─────────┘
³ └───────┬┘ Buffer
└─────────┘

Figure 7. Control Blocks Required for CVAF Filter Services

Using the VTOC

68 z/OS V2R1.0 DFSMSdfp Advanced Services

Filter Criteria List (FCL)
The filter criteria list (FCL) consists of a list header and a variable number of list
entries. The list entries follow the header, and each entry represents a data set
name to be processed by CVAF filter. The header and entries, shown in Table 20
and Table 21 on page 70, are mapped by the ICVFCL macro. The format of the FCL
header is shown in Table 20.

Table 20. Format of a Filter Criteria List Header

Offset Bytes Name Description

0 (X'00') 4 FCLID EBCDIC 'FCLbb' (bb here represents a blank.)
4 (X'04') 2 FCLCOUNT Number of data set name entries provided in

the list.
6 (X'06') 2 FCLDSCBR Number of DSCBs returned.
8 (X'08') 1 FCL1FLAG Request flag byte.

1 FCL1LIST List contains fully-qualified data set names.
. 1 FCL1ORDR FCL data set name order requested.
. . 1 FCL1EQF1 Return only format-1 or format-8 DSCBs.
. . . 1 FCL1EQF9 Return only format-1 or format-8 and format-9

DSCBs.
. . . . xxxx Reserved.

9 (X'09') 1 FCL2FLAG Status flag byte.
1 FCL2SEQ CVAFFILT executed sequential VTOC access.
. 1 FCL2SDIR CVAFFILT executed sequential VTOC access,

but did at least one direct DSCB read.
. . xx xxxx Reserved.

10 (X'0A') 6 FCLDRSV Reserved.

FCLID
Must be a 4-character EBCDIC constant of 'FCLbb'. (bb here represents a blank.)

FCLCOUNT
Specifies the number of data set name entries (FCLDSN) supplied in the list.
Do not change this parameter between the initial CVAFFILT call and any
subsequent RESUME operations.
v If you specify a partially-qualified data set name, specify FCLCOUNT = 1.

See “Partially-Qualified Names for CVAFFILT” on page 106 for the format of
partially-qualified data set names.

v If you specify a list of fully-qualified names, CVAFFILT processes only the
number of names specified in FCLCOUNT.

FCLDSCBR
Indicates the total number of DSCB entries (including format-1, format-2, and
format-3) returned to the caller's buffers by a single CVAFFILT call.

If CVAF encounters an error after successfully processing a data set, you can:
1. Initialize FCLDSCBR to 0 before each READ and RESUME call.
2. Upon return from CVAF filter service, process the number of DSCBs

indicated by FCLDSCBR.
3. Then, interpret the CVAF return code and CVSTAT.

FCL1FLAG
Define your request for ACCESS=READ with this flag byte. Any subsequent
RESUME requests refer to a copy of these bits in the filter save area (FSA).

Using the VTOC

Chapter 1. Using the Volume Table of Contents 69

FCL1LIST
If you specify a list of fully-qualified data set names, set this bit to 1. If
you specify a single partially-qualified data set name, set this bit to 0.

FCL1ORDR
If you specify that CVAF is to return DSCB chains in the data set name
sequence implied by the placement of the FCLDSN elements, set this bit to
1.

Note:

1. It can improve performance to allow CVAF to determine the sequence
of return for format-1 DSCBs.

2. CVAF returns DSCBs for a given data set in format-1, format-3 order.
For an extended address volume, the data set order for EAS eligible
data sets is a format-1, one or more format-9, and any format-3 DSCBs.

3. If you specify a single partially-qualified data set name, this field is not
used.

FCL1EQF1
To have CVAF return only the format-1 or format-8 DSCBs for the data set
names, set this bit to 1.

FCL1EQF9
To have CVAF return only the format-1 or format-8 and format-9 DSCBs
for the data set names, set this bit to 1.

FCL2FLAG
CVAF filter indicates the following status conditions in this byte.

FCL2SEQ
This bit is set to 1 if a sequential VTOC access path is most efficient. If
CVAF filter selects the direct VTOC access path, it sets this field to 0.

FCL2SDIR
This bit is set to 1 if storage limitations within the sequential VTOC access
path require direct DSCB reads. CVAF initializes this bit to 0 on each
ACCESS=READ and ACCESS=RESUME request. Testing this bit when
CVAF filter returns control can indicate if you need to change the storage
limitation.

The format of the FCL entry is shown in Table 21.

Table 21. Format of a Filter Criteria List Entry

Offset Bytes Name Description

8 FCLDSN Data set name information entry.
0 (X'00') 1 FCLDSNST Data set name status.

X'00' Data set name not yet processed.
X'01' DSCBs returned successfully.
X'02' Data set name not found.
X'03' Error in DSCB chain. RESUME function

recommended.
X'04' Error in CVAFFILT processing.

RESUME not recommended.
X'05' Insufficient user buffer list elements.

RESUME function recommended.

Using the VTOC

70 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 21. Format of a Filter Criteria List Entry (continued)

Offset Bytes Name Description

X'06' Request issued to an EAV without
EADSCB=OK specified and a format-8
DSCB was found.

X'07' Request issued to any volume without
EADSCB=OK specified where an EAS
eligible data set was found.

1 (X'01') 1 FCLDSNLG Data set name length.
2 (X'02') 1 FCL3FLAG Flag byte.

1 FCL3UPDT This data set name processed during
this invocation.

. xxx xxxx Reserved.
3 (X'03') 1 FCLDSNRV Reserved.
4 (X'04') 4 FCLDSNA Data set name address.

FCLDSN
Contains data set name information. This and the following fields are repeated
in the FCL as a set as many times as indicated by the value in FCLCOUNT.

FCLDSNST
Indicates DSCB retrieval status.
v CVAF filter initializes this byte to 0 for ACCESS=READ requests.
v After processing the data set name for either ACCESS=READ or

ACCESS=RESUME, CVAF filter updates this byte.
v ACCESS=RESUME requests do not process data set names whose

FCLDSNST field is nonzero; therefore, results can be unpredictable if
you alter this field.

v For partially-qualified data set name requests, CVAF filter does not post
the FCLDSNST field until it has returned all DSCB chains for all
qualifying data sets. CVAF filter posts the highest numeric value that
applied during its processing.

v For fully-qualified data set name requests, CVAF filter returns a
FCLDSNST byte for each data set name. If the value is greater than 1,
CVAF filter has not returned any DSCBs for the associated data set
name.

See Table 21 on page 70 for an explanation of the values in this field.

FCLDSNLG
Indicates the length of the data set name. This value is required.

FCL3FLAG
The status flag byte associated with the data set name pointed to by
FCLDSNA.

FCL3UPDT
This bit indicates that CVAF filter processed the associated data set
name during the current invocation of CVAFFILT.
v When initializing for either a READ or RESUME request, CVAF filter

sets this bit to 0.
v When CVAF filter has completed processing for the associated data

set name, it sets this bit to 1.

FCL3DSNRV
Reserved, unused.

Using the VTOC

Chapter 1. Using the Volume Table of Contents 71

FCLDSNA
Specifies the address of a fully-qualified data set name, or, if this is the
only data set name and FCL1LIST is 0, a partially-qualified data set name.
You must provide both this address and the storage area to which it
points.

Example of CVAFFILT Macro Sequences
The example below demonstrates the order that you might issue CVAFFILT macro
calls to complete the following tasks:
v Request the DSCBs for a list of data sets.
v Resume CVAFFILT processing interrupted because of insufficient user buffers.
v Release the kept filter save area.

The example assumes the following conditions:
v You are an authorized caller (that is, you are specifying a UCB address and

IOAREA=KEEP).
v You have initialized a CVAF buffer list with the following characteristics:

– Four buffers
– The buffer list address in your program has the label BUFADDR
– The same buffer list is used for ACCESS=READ and ACCESS=RESUME

processing.
v You have initialized a filter criteria list as follows:

– FCLCOUNT = 6 (You are requesting DSCB chains for six data set names.)
– FCL1LIST = '1'B (The data set names are fully qualified.)
– FCL1ORDR = '1'B (You want the DSCB chains returned in the order implied

by data set name elements in the FCL.)
– The six data set name elements are initialized so that they form a list

requesting SYS1.A, SYS2.B, SYS3.C, SYS4.D, SYS5.E, and SYS6.F.
v The first five data sets have DSCB chain lengths or 1, 5, 2, 3, and 1, respectively,

on the volume.
v The sixth data set (SYS6.F) is not defined on the volume.

To obtain an initialized CVPL, you could issue the following CVAFFILT macro (list
form—does not call CVAF). This example requests the branch entry to CVAF and
specifies that the caller is in supervisor state.
CVPLIST CVAFFILT BRANCH=(YES,SUP),MF=L

To obtain the first set of DSCB chains, you could issue the following CVAFFILT
macro (execute form—calls CVAF). This example specifies that the filter save area
is to be kept to allow for ACCESS=RESUME calls. The IOAREA is to be kept for
improved efficiency.
CVAFFILT ACCESS=READ,BUFLIST=bufaddr,FCL=fcladdr,

UCB=ucbaddr,FLTAREA=KEEP,IOAREA=KEEP,
MF=(E,CVPLIST)

This CVAFFILT call returns the following DSCBs:
Buffer Contents of Buffer

1 Format-1 DSCB, SYS1.A
2 Format-1 DSCB, SYS3.C
3 Format-3 DSCB, SYS3.C
4 Undefined (unused)

Using the VTOC

72 z/OS V2R1.0 DFSMSdfp Advanced Services

CVAF filter produces return code = 4, CVSTAT = X'40' (RESUME recommended),
and FCLDSCBR = 3. (CVAF returns a total of three DSCBs for the two data sets.)
CVAF would not return DSCBs for data set SYS2.B because its chain contains more
DSCBs than the total number of buffers provided. To retrieve the DSCBs for
SYS2.B, you need to specify at least five buffers and execute another
ACCESS=READ. (Even though CVAF allows you to specify a different buffer list
for each READ or RESUME, or to modify the existing list between READ and
RESUME calls, modifying the FCL would cause unpredictable results.) Buffer entry
4 does not have any DSCBs returned, because SYS4.D's DSCB chain size is larger
than the number of remaining buffers. The FCL status information would be as
follows:
DSN FCLDSNST FCL3UPDT Comments
SYS1.A 1 1 DSCBs returned from this call
SYS2.B 5 1 DSCB chain exceeds total buffers
SYS3.C 1 1 DSCBs returned from this call
SYS4.D 0 0 DSCBs can be returned by RESUME
SYS5.E 0 0 DSCBs can be returned by RESUME
SYS6.F 0 0 DSCBs can be returned by RESUME

Because this CVAFFILT invocation recommends RESUME, and you specified
FLTAREA=KEEP, you could use the following execute form of CVAFFILT to obtain
more DSCB chains:
CVAFFILT ACCESS=RESUME,MF=(E,CVPLIST)

This CVAFFILT call returns DSCBs as follows:
Buffer Contents of Buffer

1 Format-1 DSCB, SYS4.D
2 Format-2 DSCB, SYS4.D
3 Format-3 DSCB, SYS4.D
4 Format-1 DSCB, SYS5.E

CVAF filter produces return code = 0, CVSTAT = 0 (request completed), and
updates the FCL status as follows:
DSN FCLDSNST FCL3UPDT Comments
SYS1.A 1 0 DSCBs returned from prior call
SYS2.B 5 0 DSCB chain exceeds total buffers
SYS3.C 1 0 DSCBs returned from prior call
SYS4.D 1 1 DSCBs returned from this call
SYS5.E 1 1 DSCBs returned from this call
SYS6.F 2 1 Data set name not found

FCLDSCBR would contain 4. (This CVAFFILT call returns a total of four DSCBs.)
CVAF filter does not return any DSCBs for SYS6.F, because its format-1 DSCB
cannot be found on the volume (FCLDSNST = '2').

Because this status indicates that CVAF filter has returned all requested DSCBs,
and you requested FLTAREA=KEEP and IOAREA=KEEP on the previous call,
request the RLSE function as follows:
CVAFFILT ACCESS=RLSE,FLTAREA=NOKEEP,IOAREA=NOKEEP,

MF=(E,CVPLIST)

Coding CVAF VTOC Access Macros
This section includes VTOC index information that depends on internal system
logic. It is intended to help you to use CVAF macro instructions to modify the
VTOC
v “CVAFDIR Macro Overview and Specification” on page 74

Using the VTOC

Chapter 1. Using the Volume Table of Contents 73

v “CVAFDSM Macro Overview and Specification” on page 94
v “CVAFFILT Macro Overview and Specification” on page 100
v “CVAFSEQ Macro Overview and Specification” on page 120
v “CVAFTST Macro Overview and Specification” on page 138
v “VTOC Index Error Message and Associated Codes” on page 139

CVAFDIR Macro Overview and Specification
For an indexed or nonindexed VTOC, you can use the CVAFDIR macro to perform
the following functions:
v Read or write one or more DSCBs by specifying the name of the data set they

represent.
v Read or write one or more DSCBs by specifying their addresses.

In addition, for an indexed VTOC, you can use the CVAFDIR macro to perform the
following functions:
v Read or write VTOC index records. (This allows calling programs to modify the

VTOC index.)
v Read and retain in virtual storage the first high-level VIER, and VIERs used

during an index search.
v Read and retain in virtual storage the space map VIRs.
v Free VIRs retained in virtual storage.

See “Accessing the DSCB Directly” on page 63 for additional information.

The format of the CVAFDIR macro is:

CVAF Macros

74 z/OS V2R1.0 DFSMSdfp Advanced Services

�� CVAFDIR
label

ACCESS= READ
WRITE
RLSE

,DSN=addr ,BUFLIST=addr
�

�
NO

,VERIFY= YES
,UCB= (ucbaddr)
,DEB=addr

NOKEEP
,IOAREA= KEEP

(KEEP,addr)
(NOKEEP,addr)

�

�
NO

,MAPRCDS= YES
(YES,addr)
(NO,addr)

NOKEEP
,IXRCDS= KEEP

(KEEP,addr)
(NOKEEP,addr)

�

�
NO

(1)
,BRANCH= YES

(YES,SUP)
(YES,PGM)

NOTOK
,EADSCB= OK

NO
,MULTIPLEDSCBS= YES

�

�
I

,MF= L
(E,addr)

��

Notes:

1 If YES is coded, the default is SUP.

ACCESS: Read or Write a DSCB or VIRs, or Release Buffer Lists
When ACCESS is READ or WRITE, a single DSCB is accessed for an indexed or
nonindexed VTOC, or one or more VIRs are accessed for an indexed VTOC.

ACCESS=READ
Specifies that a single DSCB or one or more VIRs are to be read into a buffer
whose address is in a buffer list.

If the buffer list is for a DSCB, only one entry is used in the buffer list. The
first entry with the skip bit set to zero and a nonzero buffer address is used.

All VIRs whose buffer list entry has the skip bit off are read into a buffer.

DSN and BUFLIST are required if ACCESS=READ for a DSCB buffer list.

ACCESS=WRITE
Specifies that a single DSCB or one or more VIRs are to be written from buffers
whose address is in a buffer list.

ACCESS=WRITE is permitted with BRANCH=NO only if the caller is
authorized by APF.

DSN and BUFLIST are required if ACCESS=WRITE for a DSCB buffer list.

If any buffer list entry has its modified bit set, only those entries with the
modified bit set are written. If no modify bits are on, all VIRs are written.

ACCESS=RLSE
Applies only to VIR buffer lists. It requests the release of one or more buffers
in the VIR buffer list chain identified in the BUFLIST keyword, and the release
of each buffer list for which all buffers are released.

CVAF Macros

Chapter 1. Using the Volume Table of Contents 75

DSN and BUFLIST are not required if ACCESS=RLSE.

Only buffers in the buffer list with the skip bit set to zero and with a nonzero
buffer address are released. The buffer list is not released if any entry has the
skip bit set to one.

For an indexed VTOC, if ACCESS=RLSE is coded, buffer lists and buffers
pointed to by the BUFLIST keyword are released, along with buffer lists
supplied in the CVAF parameter list CVMRCDS and CVIRCDS fields. If the
CVMRCDS or the CVIRCDS buffers are supplied in the BUFLIST field, either
directly or indirectly through chaining, the keyword MAPRCDS=YES,
IXRCDS=KEEP, or MAPRCDS=(NO,0), IXRCDS=(NOKEEP,0) must be coded to
prevent CVAF from freeing the buffers more than once. If buffers are released,
the CVAF parameter list field pointing to the buffer list is updated.

DSN: Specify the Name of the DSCB
DSN=addr

Supplies the address of a 44-byte data set name of the DSCB to be accessed.

DSN is required if ACCESS=READ or WRITE and the request is to read or
write a DSCB. If a 140-byte DSCB is specified:
v CVAF validity checks the storage location, but ignores the contents of the

location.
v Specify an argument that points to an extent within the VTOC.

BUFLIST: Specify One or More Buffer Lists
BUFLIST=addr

Supplies the address of a buffer list used to read or write a DSCB or VIRs.

VERIFY: Verify that a DSCB is a Format-0 DSCB
VERIFY=YES

CVAF verifies that the DSCB is a format-0 DSCB before writing the DSCB. The
first four bytes of the key are compared with binary zeros. If the key does not
start with 4 bytes of zeros, the DSCB is not written and an error code is
returned.

VERIFY=NO
CVAF does not test the key of the DSCB. This is the default.

Restriction: VERIFY applies only when writing a 140-byte DSCB. VERIFY is
ignored when a VIR is written.

UCB or DEB: Specify the VTOC to Be Accessed
UCB= rs-type or (2-12) standard form UCB= rx-type or (2-12) execute form

Specifies the address of the UCB for the VTOC to be accessed. The UCB
address can be for a captured UCB, or for an actual UCB above or below the
16MB line. Use the address of a UCB, not a UCB copy. An unauthorized caller
must not use this parameter. If your program is in 31-bit mode, this address
must be in 31-bit address; the high order byte is part of the address. You
should not code the UCB parameter with MF=L.

Recommendation: Code the address of the UCB parameter as register (2-12).
Coding an RX-Type address gives unpredictable results.

CVAF Macros

76 z/OS V2R1.0 DFSMSdfp Advanced Services

Note: You must supply a UCB address that matches the caller's AMODE. That
is, AMODE=24 requires a 24 bit UCB address, while AMODE=31 requires a 31
bit UCB address.

DEB=addr
Supplies the address of a DEB opened to the volume table of contents (VTOC)
you want to access. CVAF does not allow output requests to the VTOC or
VTOC index if you specify the DEB subparameter. If you are not authorized
(neither APF nor in a system key), you cannot perform any asynchronous
activity (such as EXCP, CLOSE, EOV) against the data set represented by the
DEB because CVAF removes the DEB from the DEB table for the duration of
the CVAF call. If you are not authorized, (neither APF authorized nor in a
system key), specify a DEB address, not a UCB, to CVAFDIR. See “Identifying
the Volume” on page 57 for further details.

If you supply a previously obtained I/O area through the IOAREA keyword,
neither UCB nor DEB need be supplied. Otherwise, supply either a UCB or DEB. If
you supply a UCB address, it is overlaid in the CVPL by the UCB address in the
I/O area. If you supply both the DEB and UCB addresses in the CVPL, the DEB
address is used and the UCB address in the CVPL is overlaid by the UCB address
in the DEB.

IOAREA: Keep or Free the I/O Work Area
IOAREA=KEEP

Specifies that, upon completion of the CVAF request, the program should keep
the CVAF I/O area associated with the CVAF parameter list. You can code
IOAREA=KEEP with BRANCH=NO only if the caller is authorized (APF or
system key).

If IOAREA=KEEP is coded, the caller must call CVAF with IOAREA=NOKEEP
specified at some future time, whether or not any further VTOC access is
required. An example of such a caller is the recovery routine of the routine that
calls CVAF.

When you code IOAREA=KEEP, it allows subsequent CVAF requests to be
more efficient, because the program can bypass certain initialization functions.
You do not need to specify either DEB or UCB when a previously obtained
CVAF I/O area is supplied; you also cannot change those values.

When IOAREA=KEEP is first issued, CVAF returns the CVAF I/O area in the
CVAF parameter list (CVIOAR). Subsequent calls of CVAF can use that same
parameter list, and CVAF obtains its I/O area from the CVIOAR.

When processing on the current volume is finished, release all areas that were
kept.

IOAREA=(KEEP,addr)
Supplies the address of a previously obtained I/O area. If a different CVAF
parameter list is used, the previously obtained I/O area can be passed to
CVAF by coding its address as the second parameter of the IOAREA keyword.

IOAREA=NOKEEP
Causes the work area to be freed upon completion of the CVAF request.

IOAREA=(NOKEEP,addr)
Causes a previously obtained work area to be freed upon completion of the
CVAF request.

CVAF Macros

Chapter 1. Using the Volume Table of Contents 77

MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers
This keyword applies to an indexed VTOC only and specifies the disposition of the
MAPRCDS buffer list and buffers.

MAPRCDS=YES
Specifies that the buffer list and buffers are to be retained at the end of
processing.

If no buffer list address is in the CVAF parameter list, CVAF reads the MAP
VIRs into buffers it obtains. The buffer list that contains the address and RBAs
of the VIRs can be accessed after processing from the CVAF parameter list
field, CVMRCDS. The buffer list and VIR buffers are in your protect key:
subpool 0 if you are not authorized; subpool 229 if you are.

When processing on the current volume is finished, release all areas that were
kept.

MAPRCDS=(YES,addr)
If MAPRCDS=YES is coded and the buffer list address (CVMRCDS in CVAF
parameter list) is supplied, VIRs are not read.

The CVMRCDS buffer list used in CVAFDIR macro can be passed to another
CVAF macro call through the MAPRCDS keyword.

If MAPRCDS=YES is coded for a nonindexed VTOC, the function is
performed, but an error code is returned.

MAPRCDS=NO
If MAPRCDS=NO is coded, all the buffers without the skip bit on in the buffer
list whose address is in the CVMRCDS field of the CVPL are freed. If all the
buffers are freed, the buffer list is also freed.

MAPRCDS=(NO,addr)
Frees buffer lists and buffers previously obtained by CVAF.

You must free buffer lists and buffers obtained by CVAF. This can be done in one
of three ways:
v By coding MAPRCDS=NO on the CVAFDIR macro that obtained the buffers
v By coding MAPRCDS=NO on a subsequent CVAF macro
v By coding CVAFDIR ACCESS=RLSE and providing the address of the buffer list

in the BUFLIST keyword.

Requirement: You must enqueue the VTOC and reserve the unit to maintain the
integrity of MAP records read.

IXRCDS: Retain VIERS in Virtual Storage
This keyword applies to indexed VTOCs only.

IXRCDS=KEEP
Specifies that VIERs read into storage are to be kept in virtual storage. The
VIERs are retained even if processing cannot complete successfully. The CVAF
parameter list in field CVIRCDS contains the address of a buffer list with the
VIR buffer addresses and RBAs of the VIERs read.

The index search function dynamically updates the buffer list and, when
necessary, obtains additional buffer lists and chains them together.

If IXRCDS=KEEP is specified and no buffer list is supplied to CVAF in the
CVPL, CVAF obtains a buffer list and buffers and reads the first high-level
VIER. The address of the buffer list is placed in the CVMICDS field of the
CVPL.

CVAF Macros

78 z/OS V2R1.0 DFSMSdfp Advanced Services

The buffer list and VIR buffers are in your protect key. The subpool is 0 if you
are not authorized; it is subpool 229 if you are.

If IXRCDS=KEEP is coded for a nonindexed VTOC, a request to read or write
a DSCB is performed, but an error code is returned.

When processing on the current volume is finished, release all areas that were
kept.

IXRCDS=(KEEP,addr)
The index records buffer list address from one CVAF request is being passed to
this CVAF parameter list by specifying its address as the second parameter in
the IXRCDS keyword.

IXRCDS=NOKEEP
If IXRCDS=NOKEEP is coded, the VIERs that are accessed (if any) are not
retained. Furthermore, the buffer list supplied in the CVIRCDS field in the
CVAF parameter list is released, as are all buffers found in the buffer list. If the
skip bit is set in any entry in the buffer list, the buffer and buffer list are not
freed. This is the default.

IXRCDS=(NOKEEP,addr)
Specifies that previously accessed VIERs are not to be retained.

You must free buffer lists and buffers obtained by CVAF. This can be done in one
of three ways:
v By coding IXRCDS=NOKEEP on the CVAFDIR macro that obtained the buffers
v By coding IXRCDS=NOKEEP on a subsequent CVAF macro
v By coding CVAFDIR ACCESS=RLSE and providing the address of the buffer list

in the BUFLIST keyword.

Requirement: You must enqueue the VTOC and reserve the unit to maintain the
integrity of the VIERs read.

BRANCH: Specify the Entry to the Macro
BRANCH=(YES,SUP)

Requests the branch entry. Your program be in supervisor state. Protect key
checking is bypassed.

If BRANCH=YES is coded, an 18-word save area must be supplied. No lock
can be held on entry to CVAF. SRB mode is not allowed.

BRANCH=YES
Equivalent to BRANCH=(YES,SUP), because SUP is the default when YES is
coded. Protect key checking is bypassed.

BRANCH=(YES,PGM)
Requests the branch entry. Your program be authorized by APF and be in
problem state. Protect key checking is bypassed.

BRANCH=NO
Requests the SVC entry. If any output operations are requested, your program
must be authorized by APF. Protect key checking is performed. This is the
default.

EADSCB: Specify the support level for extended attribute DSCBs
EADSCB=OK

This specification indicates that the calling program supports extended
attribute DSCBs. An extended address volume may have these DSCBs

CVAF Macros

Chapter 1. Using the Volume Table of Contents 79

allocated to it. The returned DSCBs (format-3, format-8) may contain extent
descriptors described by 28-bit cylinder addresses or DSCBs (format-9) that
contain additional attribute information.

For search calls where the data set name is passed (CVAFDIR
ACCESS=READ,BFLEARG=0), a CVAFDIR request will fail if the EADSCB=OK
indicator is not set and the DSCB associated with this data set name is a
format-8 DSCB.

For seek calls where the record address is passed (CVAFDIR
ACCESS=READ,BFLEARG=cchhr), a CVAFDIR request issued to an EAV
volume will be failed if the EADSCB=OK indicator is not set and the DSCB
associated with this address is a format-8 or format-9 DSCB.

For seek calls where the record address is passed (CVAFDIR
ACCESS=READ,BFLEARG=cchhr), and MULTIPLEDSCBS=NO is specified or
defaulted to NO, a CVAFDIR request will faileif the EADSCB=OK indicator is
not set and the DSCB associated with this address is a format-3 DSCB that
contain track addresses above 65,520 cylinders.

The failing error code for these cases will be reflected as follows:
v CVAF status code (CVSTAT) set to STAT082.
v Return code 4.

EADSCB=OK will set the CV4EADOK indicator in the CVPL.

For all other calls, the EADSCB=OK keyword is ignored.

EADSCB=NOTOK
Indicates a calling program does not support extended attribute DSCBs. The
specification of this will resolve to the CV4EADOK indicator in the CVPL to be
set off. This is the default.

MULTIPLEDSCBS: Specify whether multiple DSCBs should be
processed
MULTIPLEDSCBS=NO

This specification indicates that the calling program requests that only one
DSCB should be processed. This is the default for MF=L and MF=I forms of
the CVAFDIR macro. When the MULTIPLEDSCBS keyword is not specified on
the MF=E form, the existing setting of CV4MULTD is left unchanged. When
MULTIPLEDSCBS=NO is specified or defaulted, only the first available buffer
list entry is processed.

MULTIPLEDSCBS=YES
This specification indicates that the calling program requests to read/write
multiple DSCBs to/from a buffer list that contains more than one buffer list
entry. This parameter causes an indicator in the CVPL, CV4MULTD, to be set
on. Multiple DSCB processing for reads and writes is requested by specifying
the MULTIPLEDSCBS=YES keyword and providing a buffer list that contains
more than one buffer list entry (BFLHNOE>1).

MF: Specify the Form of the Macro
This keyword specifies whether the list, execute, or normal form of the macro is
requested.

MF=I
If I is coded or if neither L nor E is coded, the CVAF parameter list is
generated and CVAF is called. This is the normal form of the macro.

CVAF Macros

80 z/OS V2R1.0 DFSMSdfp Advanced Services

MF=L
Indicates the list form of the macro. A parameter list is generated, but CVAF is
not called.

MF=(E,addr)
Indicates the execute form of the macro. The CVAF parameter list whose
address is in addr can be modified by this form of the macro.

Return Codes from CVAFDIR
On return from CVAF, register 1 contains the address of the CVPL (CVAF
parameter list), and register 15 contains one of the following return codes:

Return Code Meaning

0 (X'00') The request was successful. However, if the CVAFDIR request is to
read or write a DSCB and a VTOC index structure error is
encountered, the CVSTAT field indicates the structure error that
was encountered. (CVSTAT code descriptions are in z/OS
DFSMSdfp Diagnosis.)

4 (X'04') An error occurred. The CVSTAT field in the CVPL contains an
indication of the cause of the error. (CVSTAT code descriptions are
in z/OS DFSMSdfp Diagnosis.)

8 (X'08') Invalid VTOC index structure while processing a request to read
or write a VTOC index record. The CVSTAT field in the CVPL
contains an indication of the cause of the error. (CVSTAT code
descriptions are in z/OS DFSMSdfp Diagnosis.)

12 (X'0C') The CVAF parameter list is not in your protect key or is not valid
(the ID is not valid, or the length field is incorrect, or the CVFCTN
(function code) field is not valid or is not supported in this
release). The CVPL has not been modified.

16 (X'10') An I/O error was encountered.

Example of Using the CVAFDIR Macro with a VTOC
This example uses the CVAFDIR macro to read a DSCB of a given data set name
and determines whether the DSCB is for a partitioned data set. The address of the
44-byte data set name is supplied to the program in register 5 (labeled RDSN in
the example). The address of a DEB open to the VTOC is supplied to the program
in register 4 (labeled RDEB in the example).

The buffer list is in the program and is generated by the ICVAFBFL macro. The
DSCB buffer is in the program and is generated by the IECSDSL1 macro.

CVAF Macros

Chapter 1. Using the Volume Table of Contents 81

DIRXMP1 CSECT
STM 14,12,12(RSAVE)
BALR 12,0
USING *,12
ST RSAVE,SAVEAREA+4
LA RWORK,SAVEAREA
ST RWORK,8(,RSAVE)
LR RSAVE,RWORK

**
*
* REGISTERS
*
**
REG1 EQU 1 REGISTER 1
RWORK EQU 3 WORK REGISTER
RDEB EQU 4 DEB ADDRESS
RDSN EQU 5 ADDRESS OF DATA SET NAME
RSAVE EQU 13 SAVE AREA ADDRESS
REG15 EQU 15 RETURN CODE REGISTER 15
**
*
* RETURN CODES
*
**
PDSRTN EQU 0 DATA SET A PDS RETURN CODE
NOTFND EQU 4 DATA SET NOT FOUND RETURN CODE
NOTPDS EQU 8 DATA SET NOT A PDS RETURN CODE
UNEXPECD EQU 12 UNEXPECTED ERROR RETURN CODE
**
*
* READ DSCB INTO DS1FMTID.
* DATA SET NAME ADDRESS SUPPLIED IN RDSN.
* ADDRESS OF DEB OPEN TO VTOC SUPPLIED IN RDEB.
* DETERMINE IF DATA SET IS A PARTITIONED DATA SET.
* THIS PROGRAM IS NEITHER REENTRANT NOR REUSABLE.
*
**

XC BUFLIST(BFLHLN+BFLELN),BUFLIST ZERO BUFFER LIST
OI BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST
MVI BFLHNOE,1 ONE BUFFER LIST ENTRY
LA RWORK,DS1FMTID ADDRESS OF DSCB BUFFER
ST RWORK,BFLEBUF PLACE IN BUFFER LIST
OI BFLEFL,BFLECHR CCHHR OF DSCB RETURNED BY CVAF
MVI BFLELTH,DSCBLTH DATA PORTION OF DSCB READ - DSN *

SUPPLIED IN CVPL
MVC DS1DSNAM,0(RDSN) MOVE IN DATA SET NAME TO WORKAREA
CVAFDIR ACCESS=READ,DSN=DS1DSNAM,BUFLIST=BUFLIST,DEB=(RDEB)
USING CVPL,REG1 ADDRESSABILITY TO CVPL
LTR REG15,REG15 ANY ERROR
BZ NOERROR BRANCH IF NOT

Figure 8. Example of CVAFDIR Macro with VTOC Part 1 of 2

CVAF Macros

82 z/OS V2R1.0 DFSMSdfp Advanced Services

Example of Using the CVAFDIR Macro with an Indexed VTOC
This example uses the CVAFDIR macro to read one or more DSCBs from a VTOC.
The UCB is supplied to the program in register 4 (labeled RUCB). The TTR of each
DSCB read is to be returned to the caller as well as the return code received back
from CVAFDIR. This program must be APF authorized.

The address of a parameter list is supplied to the program in register 5 (labeled
RLIST). The parameter list contains one or more 4-word entries. The format of each
4-word entry is mapped by the LISTMAP DSECT. The first word contains the
address of the data set name of the DSCB to be read. The second word contains
the address of the 96-byte buffer into which the DSCB is to be read. The third
word contains the address of the 3-byte TTR of the DSCB read. The fourth word
contains the return code received back from CVAFDIR for the DSCB read.

**
*
* DETERMINE WHAT ERROR IS
*
**

C REG15,ERROR4 IS RETURN CODE 4
BNE OTHERERR BRANCH IF NOT 4
CLI CVSTAT,STAT001 IS IT DATA SET NAME NOT FOUND?
BNE OTHERERR BRANCH IF NOT
DROP REG1 ADDRESSABILITY TO CVPL NOT NEEDED

**
*
* DATA SET NAME NOT FOUND
*
**

L RSAVE,4(,RSAVE)
RETURN (14,12),RC=NOTFND SET UP DATA SET NOT FOUND ERROR

NOERROR EQU * DSCB READ
MVC F1CCHHR,BFLEARG MOVE CCHHR OF FORMAT 1/4 DSCB TO *

WORKAREA
CLI DS1FMTID,C’4’ IS DSCB A FORMAT 4 DSCB
BE NOTF1 BRANCH IF YES. NOT A FORMAT 1
TM DS1DSORG,DS1DSGPO IS FORMAT 1 DSCB FOR PARTITIONED *

DATA SET
BO PDS BRANCH IF PDS

NOTF1 EQU * DSCB IS NOT A PDS
L RSAVE,4(,RSAVE)
RETURN (14,12),RC=NOTPDS SET UP NOT PDS RETURN CODE

PDS EQU * DATA SET IS PARTITIONED
L RSAVE,4(,RSAVE)
RETURN (14,12),RC=PDSRTN SET UP PDS RETURN CODE

OTHERERR EQU * UNEXPECTED ERROR
L RSAVE,4(,RSAVE)
RETURN (14,12),RC=UNEXPECD

ERROR4 DC F’4’ ERROR RETURN CODE 4
BUFLIST ICVAFBFL DSECT=NO BUFFER LIST

IECSDSL1 (1) FORMAT 1 DSCB DATA SET NAME AND *
BUFFER

DSCBLTH EQU *-IECSDSL1-L’DS1DSNAM LENGTH OF DATA PORTION OF DSCB
F1CCHHR DS XL5 CCHHR OF DSCB
SAVEAREA DS 18F SAVE AREA
CVPL ICVAFPL , CVPL MAPPING MACRO

END

Figure 9. Example of CVAFDIR Macro with VTOC Part 2 of 2

CVAF Macros

Chapter 1. Using the Volume Table of Contents 83

The CVPL is generated by a list form of the CVAFDIR macro at label CVPL. The
BUFLIST, IXRCDS, IOAREA, and BRANCH keywords are coded on the list form of
the macro. IXRCDS=KEEP and IOAREA=KEEP are coded to avoid overhead if two
or more DSCBs are to be read. BRANCH=(YES,PGM) is coded in the list form of
the CVAFDIR macro to cause the CVPL to have the CV1PGM bit set to one; this
indicates to CVAF that the caller is authorized by APF and not in supervisor state.
The execute forms of the CVAFDIR macro then specify BRANCH=YES, and not
BRANCH=(YES,PGM), because the CV1PGM bit is set in the list form of the
macro.

The CVAFDIR macro with ACCESS=RLSE is coded before the program exits to
release the CVAF I/O area and the index records buffer list. BUFLIST=0 is coded
because no user-supplied buffer list is to be released; BUFLIST was coded on the
list form of the CVAFDIR macro and, therefore, is in the CVBUFL field of the
CVPL. This field must be set to zero for the release function.
DIRXMP2 CSECT

STM 14,12,12(13)
BALR 12,0
USING *,12
ST 13,SAVEAREA+4
LA RWORK,SAVEAREA
ST RWORK,8(,13)
LR 13,RWORK

*
**
*
* REGISTERS
*
**
*
RWORK EQU 3 WORK REGISTER
RUCB EQU 4 UCB ADDRESS SUPPLIED BY CALLER
RLIST EQU 5 ADDRESS OF PARAMETER LIST (SUPPLIED)
RDSN EQU 6 ADDRESS OF DATA SET NAME
RTTR EQU 7 ADDRESS OF TTR
REG15 EQU 15 RETURN CODE REGISTER 15
*
**
*
* UCB ADDRESS SUPPLIED IN RUCB.
* READ DSCB OF DATA SET NAME SUPPLIED.
* RETURN TTR OF DSCB.
* RETURN RETURN CODE FOR CVAFDIR REQUEST FOR DSCB.
* ADDRESS OF PARAMETER LIST IN RLIST.
* WORD 1 OF PARAMETER LIST = ADDRESS OF DATA SET NAME
* WORD 2 OF PARAMETER LIST = ADDRESS OF DSCB TO BE RETURNED
* WORD 3 OF PARAMETER LIST = ADDRESS OF TTR TO BE RETURNED
* WORD 4 OF PARAMETER LIST = RETURN CODE RETURNED FROM CVAFDIR FOR DSCB
* WORDS 1-4 CAN BE DUPLICATED FOR MULTIPLE REQUESTS
* THE HIGH ORDER BIT OF WORD 3 SET TO X’80’ FOR THE LAST ENTRY ONLY.
*
**
*

USING LISTMAP,RLIST ADDRESSABILITY TO PARMLIST
TOPLOOP EQU * LOOP FOR EACH DSCB

XC BUFLIST(BFLHLN+BFLELN),BUFLIST ZERO BUFFER LIST
OI BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST
MVI BFLHNOE,1 ONE BUFFER LIST ENTRY
L RWORK,LISTDSCB ADDRESS OF DSCB BUFFER
ST RWORK,BFLEBUF PLACE IN BUFFER LIST
OI BFLEFL,BFLETTR TTR OF DSCB RETURNED BY CVAF
MVI BFLELTH,DSCBLTH DATA PORTION OF DSCB READ - DSN *

SUPPLIED IN CVPL
L RDSN,LISTDSN ADDRESS OF DATA SET NAME

CVAF Macros

84 z/OS V2R1.0 DFSMSdfp Advanced Services

CVAFDIR DSN=(RDSN),UCB=(RUCB),MF=(E,CVPL),BRANCH=YES
LA RTTR,LISTARG ADDRESS OF TTR TO BE RETURNED
USING TTRMAP,RTTR MAP OF TTR
LTR REG15,REG15 ANY ERROR
BZ NOERROR BRANCH IF NOT
XC TTR,TTR ZERO TTR INDICATING NO DSCB
ST REG15,LISTRC STORE RC FROM CVAFDIR INTO LISTRC
B RELOOP GET NEXT ENTRY

NOERROR EQU * DSCB READ
MVC TTR(3),BFLEATTR RETURN TTR OF DSCB
ST REG15,LISTRC STORE RC FROM CVAFDIR INTO LISTRC

RELOOP EQU * GET NEXT ENTRY
TM LASTLIST,LASTBIT IS IT LAST ENTRY IN LIST?
LA RLIST,NEXTLIST GET NEXT ENTRY
BZ TOPLOOP PROCESS NEXT LIST
CVAFDIR ACCESS=RLSE, RELEASE CVAF OBTAINED AREAS *

IOAREA=NOKEEP, RELEASE IOAREA *
IXRCDS=NOKEEP, RELEASE VIER BUFFER LIST *
BUFLIST=0, NO USER BUFFER LIST SUPPLIED TO RLSE *
BRANCH=YES, BRANCH ENTER CVAF *
MF=(E,CVPL)

L 13,SAVEAREA+4
RETURN (14,12)

BUFLIST ICVAFBFL DSECT=NO BUFFER LIST

SAVEAREA DS 18F REGISTER SAVE AREA
LISTMAP DSECT
LISTDSN DS F ADDRESS OF DATA SET NAME
LISTDSCB DS F ADDRESS OF BUFFER FOR DSCB TO BE
* RETURNED
LISTARG DS 0F ADDRESS OF FLAG AND TTR
* RETURNED
LASTLIST DS X FIRST BYTE
LASTBIT EQU X’80’ LAST ENTRY IN LIST
LISTTTR DS XL3 REMAINDER OF TTR ADDRESS
LISTRC DS F RETURN CODE FROM CVAFDIR FOR THIS DSN
NEXTLIST EQU * NEXT LIST
DSCB DSECT

IECSDSL1 (1)
DSCBLTH EQU *-DSCB-L’DS1DSNAM LENGTH OF DATA PORTION OF DSCB
TTRMAP DSECT
TTRFLG DS XL1 FLAG VALUE
TTR DS XL3 TTR VALUE
DIRXMP2 CSECT
CVPL CVAFDIR ACCESS=READ,BUFLIST=BUFLIST,MF=L, *

IOAREA=KEEP, KEEP IOAREA TO AVOID OVERHEAD *
IXRCDS=KEEP, KEEP VIERS FOR 2ND / SUBSEQUENT CALLS*
BRANCH=(YES,PGM) CALLED IN PROGRAM STATE BUT APF *

AUTHORIZED SO UCB IS SUPPLIED
ORG CVPL OVERLAY CVPL WITH EXPANSION OF MAP

CVPLMAP ICVAFPL DSECT=NO

END

Example of Using the CVAFDIR macro to read multiple DSCBs
This example uses the CVAFDIR macro to read multiple DSCBs for a VSAM data
set that has 123 extents using the MULTIPLEDSCBS=YES parameter. Refer to the
documentation within the sample source for program logic and expected output.

The following is the sample JCL used to execute the sample source module below.
//*
//**********************************
//* JCL TO EXECUTE CVDIR027 MODULE *
//**********************************

CVAF Macros

Chapter 1. Using the Volume Table of Contents 85

//*
//STEP001 EXEC PGM=CVDIR027
//STEPLIB DD DISP=SHR,DSN=YOUR.TEST.LOAD
//SYSPRINT DD SYSOUT=*
//CVAFDD DD DISP=SHR,UNIT=3390,VOL=SER=1P9503 /* VSAM01 VOLSER */
//OUTDD DD SYSOUT=* /* OUTPUT DATASET */
//*

The following is the CVAFDIR sample source to read multiple DSCBs.
CVDIR027 CSECT
CVDIR027 AMODE 31
CVDIR027 RMODE 24
*

* *
* CVDIR027 - MODULE THAT ISSUES THE CVAFDIR MACRO WHICH RETURNS *
* THE DSCBS FOR A GIVEN DATASET USING THE KEYWORDS *
* MULTIPLEDSCBS=YES AND EADSCB=OK. *
* *
* THIS MODULE USES A PASSED DSN (SEARCH) AND ISSUES THE *
* CVAFDIR MACRO TO PERFORM A READ OF ALL DSCBS FOR THE *
* DATASET. THE DATASET PROCESSED IS VSAM AND HAS 123 *
* EXTENTS. THE DSN IS CVAFDIR1.VSAM01.DATA. *
* *
* THE CVAFDIR MACRO CALL WILL USE THE FOLLOWING: *
* EADSCB=OK CODED *
* MULTIPLEDSCBS=YES CODED *
* *
* *
* THIS MODULE HAS BEEN WRITTEN TO RUN AT THE Z/OS 1.10 *
* LEVEL AND WILL CREATE A SLIGHTLY DIFFERENT OUTPUT *
* REPORT DEPENDENT UPON DEVICE TYPE (EAV OR NON EAV). *
* THE NUMBER OF BUFFER LIST ENTRIES NEEDED WILL BE 11 *
* FOR A NON EAV DEVICE AND THE NUMBER OF BUFFER LIST *
* ENTRIES NEEDED WILL BE 12 FOR AN EAV DEVICE TO *
* ACCOUNT FOR THE FORMAT 9 DSCB. *
* *
* *
* THIS MODULE WILL CREATE AN OUTPUT REPORT DIRECTED TO *
* THE OUTDD DD THAT SHOULD LOOK LIKE THE FOLLOWING: *
* *

* *
* NON EAV VOLUME *
* -------------- *
* *
* CVDIR027 START OF OUTPUT MESSAGES *
* *
* PROCESSING DSN: CVAFDIR1.VSAM01.DATA *
* CVAFDIR CALL: EADSCB=OK AND MULTIPLEDSCBS=YES CODED *
* CV4EADOK BIT SET / EADSCB=OK *
* CV4MULTD BIT SET / MULTIPLEDSCBS=YES *
* RC00 VERIFIED - THE REQUEST WAS SUCCESSFUL *
* X"00" DEC"000" 00 - CVSTAT CODE VERIFIED *
* BUFFER LIST ENTRIES PROVIDED: 12 *
* BUFFER LIST ENTRIES NEEDED : 11 *
* *
* CVDIR027 END OF OUTPUT MESSAGES *
* *
* *
* *
* EAV VOLUME *
* ---------- *
* *
* CVDIR027 START OF OUTPUT MESSAGES *
* *

CVAF Macros

86 z/OS V2R1.0 DFSMSdfp Advanced Services

* PROCESSING DSN: CVAFDIR1.VSAM01.DATA *
* CVAFDIR CALL: EADSCB=OK AND MULTIPLEDSCBS=YES CODED *
* CV4EADOK BIT SET / EADSCB=OK *
* CV4MULTD BIT SET / MULTIPLEDSCBS=YES *
* RC00 VERIFIED - THE REQUEST WAS SUCCESSFUL *
* X"00" DEC"000" 00 - CVSTAT CODE VERIFIED *
* BUFFER LIST ENTRIES PROVIDED: 12 *
* BUFFER LIST ENTRIES NEEDED : 12 *
* *
* CVDIR027 END OF OUTPUT MESSAGES *
* *
* *
* *

* *
* CVDIR027 - LOGIC NOTES *
* *
* THIS MODULE WILL PERFORM THE FOLLOWING: *
* *
* INITIALIZATION *
* - OBTAIN THE NECESSARY INFORMATION FROM THE DASD VOLUME *
* - OPEN AN OUTPUT FILE AND WRITE THE NECESSARY OUTPUT MESSAGES *
* *
* MAINLINE *
* - INVOKE SETU1RTN TO SETUP BUFFER LIST FOR 12 ENTRIES *
* - INVOKE VSAM1RTN TO PROCESS VSAM01 DSN *
* - INVOKE READRTN - EADSCB=OK AND MULTIPLEDSCBS=YES CODED *
* - CHECK CV4FL BIT SETTINGS AFTER CVAFDIR CALL *
* - CHECK RC AND CVSTAT CODES RETURNED *
* - CHECK BUFFERS PROVIDED AND BUFFERS NEEDED FROM BUFFER LIST *
* - WRITE OUTPUT RECS *
* - ISSUE CVAFDIR TO RELEASE WORK AREAS *
* - WRITE OUTPUT RECS *
* *
* *
* FINALIZATION *
* - CLOSE THE OUTPUT FILE *
* - EXIT *
* *
* *
* CVDIR027 - JOB INFORMATION *
* *
* NORMAL END OF JOB: *
* - RC=00 AND OUTDD OUTPUT AS DETAILED ABOVE *
* *
* *
* ABNORMAL END OF JOB: *
* - ABEND 100 - ERROR OPENING VTOC ON THE DASD VOLUME THAT IS *
* ASSOCIATED WITH THE CVAFDD DD STATEMENT *
* - ABEND 101 - ERROR OPENING THE OUTDD DATASET *
* - ABEND 102 - ERROR CLOSING THE OUTDD DATASET *
* *
* *
* *
* *

*

* *
* HOUSEKEEPING *
* - SAVE CALLER’S REGISTERS AND ESTABLISH A NEW REGISTER SAVE AREA *
* *

*

STM R14,R12,12(R13) STANDARD LINKAGE CONVENTION
BALR R11,0 DCL R11 AS IMPLIED BASE REG
USING BASE,R11,R12 R12 IS ALSO BASE REG

CVAF Macros

Chapter 1. Using the Volume Table of Contents 87

BASE L R12,BASEADDR SET UP ADDRESSING FOR R12
B CV000000 BRANCH AROUND DECLARES

BASEADDR DC A(BASE+4096) ADDRESSING FOR R12
CV000000 DS 0H CONTINUE...

ST R13,SAVE+4 SAVE PTR TO CALLER’S SAVE AREA
LA R14,SAVE GET ADDRESS OF THE NEW SAVE AREA
ST R14,8(,R13) CHAIN CALLER’S AREA TO OURS
LR R13,R14 ESTABLISH THE NEW SAVE AREA

*

* *
* INITIALIZATION *
* *

*
INITIAL DS 0H INITIALIZATION SECTION

BAL R14,IDVOLRTN INVOKE RTN TO IDENTIFY THE VOLUME
OPEN (OUTFILE,(OUTPUT)) OPEN THE OUTDD OUTPUT FILE
TM OUTFILE+48,X’10’ TEST IF FILE IS OPEN (OUTFILE)
BO INIT0010 IF OPEN OK - BRANCH AROUND ABEND
ABEND 101 ELSE ISSUE USER ABEND 101

INIT0010 DS 0H FILE IS OPEN WRITE START MESSAGE
PUT OUTFILE,STRTMSG WRITE A RECORD TO THE OUTPUT FILE
PUT OUTFILE,BLNKLINE WRITE A RECORD TO THE OUTPUT FILE

*

* *
* MAINLINE *
* *

*
MAINLINE DS 0H MAINLINE SECTION
*
MAIN0010 DS 0H PROCESS CVAFDIR1.VSAM01.DATA DATASET
*

BAL R14,SETU1RTN SETUP FOR CVAFDIR - 12 ENTRIES
BAL R14,VSAM1RTN PROCESS VSAM01 DATASET ROUTINE
PUT OUTFILE,BLNKLINE WRITE A RECORD TO THE OUTPUT FILE

*
*

* *
* FINALIZATION *
* *

*
FINAL DS 0H FINALIZATION SECTION

PUT OUTFILE,ENDMSG WRITE A RECORD TO THE OUTPUT FILE
CLOSE (OUTFILE) CLOSE OUTPUT FILE
C R15,RCODE00 IF FILE CLOSE IS OK
BE FINL0010 BRANCH AROUND ABEND
ABEND 102 ELSE ISSUE USER ABEND 102

FINL0010 DS 0H EXIT MODULE
L R13,4(R13) RESTORE REGISTER
LM R14,R12,12(R13) RESTORE CALLERS REGISTERS
LA R15,0 SET RC TO 0
BR R14 RETURN TO CALLER

*

* IDVOLRTN *
* - OBTAIN THE NECESSARY INFORMATION FROM THE DASD VOLUME *

*
IDVOLRTN DS 0H IDENTIFY VOLUME ROUTINE

ST R14,IDVLSAVE STORE C(R14) INTO SAVE AREA
RDJFCB (VTOCDCB,(INPUT)) READ JFCB / OPEN VTOC
MVI JFCB1,X’04’ PUT IN ID FOR FORMAT 4

CVAF Macros

88 z/OS V2R1.0 DFSMSdfp Advanced Services

MVC JFCB1+1(43),JFCB1 SETUP FOR VTOC OPEN
OPEN (VTOCDCB,(INPUT)),TYPE=J OPEN VTOC (OPEN TYPE=J)
TM VTOCDCB+48,X’10’ IF OPEN OF VTOC IS OK
BO IDVL0010 BRANCH AROUND ABEND
ABEND 100 ELSE ISSUE USER ABEND 100

IDVL0010 DS 0H
SLR R4,R4 INIT REG4 FOR DEB PTR
SLR R5,R5 INIT REG5 FOR UCB PTR
ICM R4,B’0111’,VTOCDCB+45 GET DEB ADDRESS
ST R4,DEBADD STORE C(R4) INTO DEBADD
ICM R5,B’0111’,33(R4) GET UCB ADDRESS
ST R5,UCBADD STORE UCB ADDRESS

IDVLEXIT DS 0H EXIT FROM IDVOLRTN
L R14,IDVLSAVE LOAD C(IDVLSAVE) INTO R14
BR R14 EXIT

*

* SETU1RTN *
* - SETUP FOR CVAFDIR - BFLHNOE = 12 *
* - WILL SETUP 12 ENTRIES FOR CVAFDIR CALL *
* - CVAFDIR READ CALL (SEARCH) PASSED DSN *
* - 96 BYTE BUFFER - 1ST BUFFER *
* - 140 BYTE BUFFERS - REMAINING BUFFERS *
* - DSNAME=DSN WILL BE USED FOR SEARCH *
* - CCHHR = ZERO *

*
SETU1RTN DS 0H SETUP FOR CVAFDIR CALL

ST R14,SET1SAVE STORE C(R14) INTO SAVE AREA
LA R4,BUFLHDR GET ADDR OF BUF LIST HEADER
L R5,NBRENT LOAD R5 WITH NBR OF ENTRIES (12)
USING BFLHDR,R4 GET ADDRESSABILITY TO HEADER
MVI BFLHNOE,TWELVE INDICATE 12 ENTRIES
MVI BFLHKEY,BFLHDSCB INDICATE READ DSCB
LA R6,DSCBBUF LOAD R6 WITH ADDR OF 1ST DSCB BUFFER
LA R7,BUFLIST1 LOAD R7 WITH ADDR OF BUFLIST1
USING BFLE,R7 GET ADDRESSABILITY TO ENTRY

*
* INITIALIZE 1ST ENTRY
*

OI BFLEFL,BFLECHR INDICATE CCHHR TO BE READ
MVC BFLEARG(5),CCHHR0 SET ZEROES FOR ARGUMENT
MVI BFLELTH,DSCBL96 GET LENGTH OF BUFFER
ST R6,BFLEBUF PUT DSCB BUF ADDR IN ENTRY
LA R7,ENTLENG(,R7) INCREMENT ADDR TO NEXT ENTRY
LA R6,DSCBL96(,R6) INCREMENT ADDR TO NEXT DSCB BUFFER
S R5,ONE C(R5) = C(R5) - 1

*
* INITIALIZE REMAINING ENTRIES
*
SETU0010 DS 0H INIT REMAINING 140 BYTE BUFFERS

OI BFLEFL,BFLECHR INDICATE CCHHR TO BE READ
MVI BFLELTH,DSCBL140 GET LENGTH OF BUFFER
ST R6,BFLEBUF PUT DSCB BUF ADDR IN ENTRY
LA R7,ENTLENG(,R7) INCREMENT ADDR TO NEXT ENTRY
LA R6,DSCBL140(,R6) INCREMENT ADDR TO NEXT DSCB BUFFER
BCT R5,SETU0010 BRANCH TO SETU0010 IF MORE ENTRIES

SET1EXIT DS 0H EXIT FROM SETU1RTN
L R14,SET1SAVE LOAD C(SAVE AREA) INTO R14
BR R14 EXIT

*

* VSAM1RTN *
* - PROCESS VSAM01 DATASET ROUTINE *
* - CVAFDIR READ: EADSCB=OK AND MULTIPLEDSCBS=YES CODED *
* - CHECK RC / CVSTAT CODES *
* - ISSUE CVAFDIR RELEASE *

CVAF Macros

Chapter 1. Using the Volume Table of Contents 89

*
VSAM1RTN DS 0H PROCESS VSAM01 DATASET ROUTINE

ST R14,VSAMSAVE STORE C(R14) INTO SAVE AREA
MVC DSNAME(44),VSAM01 DSNAME=CVAFDIR1.VSAM01.DATA
PUT OUTFILE,VSAM1MSG WRITE A RECORD TO THE OUTPUT FILE
PUT OUTFILE,CALLMR11 WRITE A RECORD TO THE OUTPUT FILE
BAL R14,READRTN READRTN - EADSCB=OK/MULTIPLEDSCBS=YES
L R15,RETCODE LOAD R15 WITH SAVED RETURN CODE
C R15,RCODE00 IF RC FROM READ IS EQUAL TO ZERO
BE VSAM0010 BRANCH TO VSAM0010
PUT OUTFILE,UNEXPMS2 ELSE WRITE RC ERROR MESSAGE
B VSAM0020 BRANCH TO VSAM0020

VSAM0010 DS 0H
PUT OUTFILE,RC00MSG WRITE RC00 MESSAGE

VSAM0020 DS 0H
LA R9,CVAFDIR GET ADDRESS OF CVAF PARM LIST
USING CVPL,R9 GET ADDRESSABILITY TO CVPL
CLI CVSTAT,STAT000 IF CVSTAT FROM READ IS EQUAL TO ZERO
BE VSAM0030 BRANCH TO VSAM0030
PUT OUTFILE,UNEXPMS3 ELSE WRITE CVSTAT ERROR MESSAGE
B VSAM0040 BRANCH TO VSAM0040

VSAM0030 DS 0H
PUT OUTFILE,CV00MSG WRITE CV00 MESSAGE

VSAM0040 DS 0H
CLI BFLHNOE,X’0C’ IF NUMBER OF BUFFERS PROVIDED = 12
BE VSAM0050 BRANCH TO VSAM0050
PUT OUTFILE,UNEXPMS4 ELSE WRITE BUFFER ERROR MESSAGE
B VSAM0060 BRANCH TO VSAM0060

VSAM0050 DS 0H
PUT OUTFILE,BUFSMSG1 WRITE BUFFER MESSAGE

VSAM0060 DS 0H
CLI BFLHNOEN,X’0B’ IF NUMBER OF BUFFERS NEEDED = 11
BE VSAM0070 BRANCH TO VSAM0070
CLI BFLHNOEN,X’0C’ IF NUMBER OF BUFFERS NEEDED = 12
BE VSAM0080 BRANCH TO VSAM0080
PUT OUTFILE,UNEXPMS5 ELSE WRITE BUFFER ERROR MESSAGE
B VSAM0090 BRANCH TO VSAM0090

VSAM0070 DS 0H
PUT OUTFILE,BUFNMSG1 WRITE BUFFER MESSAGE
B VSAM0090 BRANCH TO VSAM0090

VSAM0080 DS 0H
PUT OUTFILE,BUFNMSG2 WRITE BUFFER MESSAGE

VSAM0090 DS 0H
*

CVAFDIR ACCESS=RLSE,IXRCDS=NOKEEP,BUFLIST=0, X
MF=(E,CVAFDIR)

*
C R15,RCODE00 IF RC FROM RLSE IS EQUAL TO ZERO
BE VSAMEXIT BRANCH TO VSAMEXIT
PUT OUTFILE,UNEXPMS6 ELSE WRITE RLSE ERROR MESSAGE

*
VSAMEXIT DS 0H EXIT FROM ROUTINE

DROP R9 DROP R9
L R14,VSAMSAVE LOAD C(SAVE AREA) INTO R14
BR R14 EXIT

*

* READRTN *
* - CVAFDIR READ ROUTINE *
* MULTIPLEDSCBS=YES IS CODED *
* EADSCB=OK IS CODED *
* - CHECK CV4FL BIT SETTINGS AFTER READ *
* - REPORT ON CV4FL BIT SETTINGS FOR CV4EADOK AND CVMULTD *

*
READRTN DS 0H CVAFDIR READ ROUTINE

CVAF Macros

90 z/OS V2R1.0 DFSMSdfp Advanced Services

ST R14,READSAVE STORE C(R14) INTO SAVE AREA
L R2,DEBADD LOAD R2 WITH DEB ADDRESS

*
CVAFDIR ACCESS=READ,DEB=(R2),BUFLIST=BUFLHDR,MAPRCDS=YES, X

DSN=DSNAME,MULTIPLEDSCBS=YES,EADSCB=OK, X
MF=(E,CVAFDIR)

*
ST R15,RETCODE STORE RC INTO RETCODE

*
LA R9,CVAFDIR GET ADDRESS OF CVAF PARM LIST
USING CVPL,R9 GET ADDRESSABILITY TO CVPL
CLI CVFL4,CV4EADOK IF CVFL4 = X’10’ CV4EADOK ONLY
BE READ0010 BRANCH TO READ0010
CLI CVFL4,CV4MULTD IF CVFL4 = X’08’ CV4MULTD ONLY
BE READ0020 BRANCH TO READ0020
CLI CVFL4,BOTH IF CVFL4 = X’18’ CV4MULTD/CV4EADOK
BE READ0030 BRANCH TO READ0030
PUT OUTFILE,UNEXPMS1 ELSE WRITE ERROR RECORD PL
B READEXIT BRANCH TO EXIT ROUTINE

READ0010 DS 0H WRITE MESSAGES X’10’
PUT OUTFILE,OKMSG WRITE OK MSG RECORD
PUT OUTFILE,NOMULTMS WRITE NO MULTI MSG RECORD
B READEXIT BRANCH TO EXIT ROUTINE

READ0020 DS 0H WRITE MESSAGES X’08’
PUT OUTFILE,NOTOKMSG WRITE NOTOK MSG RECORD
PUT OUTFILE,MULTMSG WRITE MULTI MSG RECORD
B READEXIT BRANCH TO EXIT ROUTINE

READ0030 DS 0H WRITE MESSAGES X’18’
PUT OUTFILE,OKMSG WRITE OK MSG RECORD
PUT OUTFILE,MULTMSG WRITE MULTI MSG RECORD

READEXIT DS 0H EXIT FROM READRTN
DROP R9 DROP R9
L R14,READSAVE LOAD C(SAVE AREA) INTO R14
BR R14 EXIT

*

* WORKING STORAGE *

*

DS 0D
DC CL36’CVDIR027-WORKING STORAGE BEGINS HERE’

*

* EQUATES *

*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
BOTH EQU X’18’
TWELVE EQU X’0C’
*

* SAVE AREAS *

CVAF Macros

Chapter 1. Using the Volume Table of Contents 91

*
SAVE DC 18F’0’ MAIN PROGRAM SAVE AREA
IDVLSAVE DC F’0’ IDENTIFY VOLUME ROUTINE SAVE AREA
READSAVE DC F’0’ CVAFDIR READ ROUTINE SAVE AREA
SET1SAVE DC F’0’ SETUP ROUTINE SAVE AREA
VSAMSAVE DC F’0’ VSAM01 ROUTINE SAVE AREA
*

* CONSTANTS *

*
CCHHR0 DS XL5’00’ CCHHR ARGUMENT - ZERO
NBRENT DC F’12’ CONSTANT-12 NUMBER OF BUFFER ENTRIES
RCODE00 DC F’0’ RETURN CODE 0
ONE DC F’1’ CONSTANT - ONE
VSAM01 DC CL44’CVAFDIR1.VSAM01.DATA’
*

* PROGRAM BUFFERS *

*
BUFLIST DS 0F BUFFER LIST DECLARATIONS
BUFLHDR DC 2F’0’ BUFFER LIST HEADER
BUFLIST1 DC 3F’0’ BUFFER LIST ENTRY 1
ENTLENG EQU *-BUFLIST1 ENTRY LENGTH - 12
BUFLIST2 DC 3F’0’ BUFFER LIST ENTRY 2
BUFLIST3 DC 3F’0’ BUFFER LIST ENTRY 3
BUFLIST4 DC 3F’0’ BUFFER LIST ENTRY 4
BUFLIST5 DC 3F’0’ BUFFER LIST ENTRY 5
BUFLIST6 DC 3F’0’ BUFFER LIST ENTRY 6
BUFLIST7 DC 3F’0’ BUFFER LIST ENTRY 7
BUFLIST8 DC 3F’0’ BUFFER LIST ENTRY 8
BUFLIST9 DC 3F’0’ BUFFER LIST ENTRY 9
BUFLISTA DC 3F’0’ BUFFER LIST ENTRY 10
BUFLISTB DC 3F’0’ BUFFER LIST ENTRY 11
BUFLISTC DC 3F’0’ BUFFER LIST ENTRY 12
*
DSCBBUF DS XL96 DSCB BUFFER DECLARATION 1 - 96 BYTE
DSCBL96 EQU *-DSCBBUF LENGTH - 96
DSCBBUF2 DS XL140 DSCB BUFFER DECLARATION 2 - 140 BYTE
DSCBL140 EQU *-DSCBBUF2 LENGTH - 140
DSCBBUF3 DS XL140 DSCB BUFFER DECLARATION 3 - 140 BYTE
DSCBBUF4 DS XL140 DSCB BUFFER DECLARATION 4 - 140 BYTE
DSCBBUF5 DS XL140 DSCB BUFFER DECLARATION 5 - 140 BYTE
DSCBBUF6 DS XL140 DSCB BUFFER DECLARATION 6 - 140 BYTE
DSCBBUF7 DS XL140 DSCB BUFFER DECLARATION 7 - 140 BYTE
DSCBBUF8 DS XL140 DSCB BUFFER DECLARATION 8 - 140 BYTE
DSCBBUF9 DS XL140 DSCB BUFFER DECLARATION 9 - 140 BYTE
DSCBBUFA DS XL140 DSCB BUFFER DECLARATION 10- 140 BYTE
DSCBBUFB DS XL140 DSCB BUFFER DECLARATION 11- 140 BYTE
DSCBBUFC DS XL140 DSCB BUFFER DECLARATION 12- 140 BYTE
*

* PROGRAM MESSAGES *

*
BLNKLINE DC CL80’ ’
STRTMSG DC CL80’CVDIR027 START OF OUTPUT MESSAGES ’
ENDMSG DC CL80’CVDIR027 END OF OUTPUT MESSAGES ’
VSAM1MSG DC CL80’ PROCESSING DSN: CVAFDIR1.VSAM01.DATA ’
CALLMR11 DC CL80’ CVAFDIR CALL: EADSCB=OK AND MULTIPLEDSCBS=YES CODED’
OKMSG DC CL80’ CV4EADOK BIT SET / EADSCB=OK ’
NOTOKMSG DC CL80’ CV4EADOK BIT NOT SET / EADSCB=NOTOK ’
MULTMSG DC CL80’ CV4MULTD BIT SET / MULTIPLEDSCBS=YES ’
NOMULTMS DC CL80’ CV4MULTD BIT NOT SET / MULTIPLEDSCBS=NO ’
RC00MSG DC CL80’ RC00 VERIFIED - THE REQUEST WAS SUCCESSFUL ’

CVAF Macros

92 z/OS V2R1.0 DFSMSdfp Advanced Services

CV00MSG DC CL80’ X"00" DEC"000" 00 - CVSTAT CODE VERIFIED ’
BUFSMSG1 DC CL80’ BUFFER LIST ENTRIES PROVIDED: 12 ’
BUFNMSG1 DC CL80’ BUFFER LIST ENTRIES NEEDED : 11 ’
BUFNMSG2 DC CL80’ BUFFER LIST ENTRIES NEEDED : 12 ’
UNEXPMS1 DC CL80’ ERROR: UNEXPECTED BIT SETTING FOR CVFL4 ’
UNEXPMS2 DC CL80’ ERROR: UNEXPECTED RETURN CODE FROM CVAFDIR READ ’
UNEXPMS3 DC CL80’ ERROR: UNEXPECTED CVSTAT CODE FROM CVAFDIR READ ’
UNEXPMS4 DC CL80’ ERROR: UNEXPECTED NUMBER OF BUFFERS PROVIDED ’
UNEXPMS5 DC CL80’ ERROR: UNEXPECTED NUMBER OF BUFFERS NEEDED ’
UNEXPMS6 DC CL80’ ERROR: UNEXPECTED RETURN CODE FROM CVAFDIR RLSE ’
*

* WORK AREAS *

*
DEBADD DC F’0’ DEB ADDRESS SAVE AREA
UCBADD DC F’0’ UCB ADDRESS SAVE AREA
RETCODE DC F’999’ RETURN CODE SAVE AREA
DSNAME DS CL44 DSNAME
*

* DCB - OUTPUT FILE (OUTFILE) *

*
OUTFILE DCB DDNAME=OUTDD, X

DSORG=PS, X
RECFM=FB, X
LRECL=80, X
MACRF=PM

*

* VTOC DCB AREA *

*
VTOCDCB DCB DDNAME=CVAFDD,MACRF=E,EXLST=XLST1,DSORG=PS,DCBE=VTOCDCBE
XLST1 DC X’87’

DC AL3(JFCB1)
JFCB1 DS 0CL176
TESTNAME DS CL44

DS CL8
DS BL1
DS CL123

*
VTOCDCBE DCBE EADSCB=OK
*

* CVAF DECLARATIONS *

*
CVAFDIR CVAFDIR MF=L
*

* MAPPING MACROS *

*

ICVAFPL
ICVAFBFL
DSECT
IECSDSL1 (1,3,8,9)

*
*

END CVDIR027 END OF CVDIR027
/*

CVAF Macros

Chapter 1. Using the Volume Table of Contents 93

CVAFDSM Macro Overview and Specification
The CVAFDSM macro is used to obtain volume information for an indexed or
nonindexed VTOC.

The CVAFDSM macro can be used for an indexed VTOC to obtain:
v One or more extents that describe unallocated space on the volume
v A count of free DSCBs on the VTOC
v A count of free VTOC index records in the VTOC index.
v A value that represents the highest allocated DSCB as determined by the VTOC

INDEX.

The CVAFDSM macro can be used for an nonindexed VTOC to obtain:
v One or more extents that describe unallocated space on the volume

The format of the CVAFDSM macro is:

�� CVAFDSM
label

ACCESS=MAPDATA ,MAP= INDEX
VOLUME
VTOC

,EXTENTS=addr
�

�
NO

,RTA4BYTE= YES
(1)

,MAPRCDS= YES
(YES,addr)

(2)
NO
(NO,addr)

,UCB= (ucbaddr)
,DEB=addr

�

�
NO

,COUNT= YES
,CTAREA=addr ,HADSCB=addr

�

�
NOKEEP

,IOAREA= KEEP
(KEEP,addr)
(NOKEEP,addr)

NO
(3)

,BRANCH, YES
(YES,SUP)
(YES,PGM)

NOTOK
,EADSCB= OK

�

�
I

,MF= L
(E,addr)

��

Notes:

1 Default if MF=I.

2 Default if MF=L or MF=(E, addr).

3 If YES is coded, the default is SUP.

ACCESS: Request Information from Index Space Maps or the
VTOC
ACCESS=MAPDATA

Obtains data from index space maps or free space DSCBs.

The following data is available from the index space maps:

CVAF Macros

94 z/OS V2R1.0 DFSMSdfp Advanced Services

v The number of format-0 DSCBs (the data is obtained from the VTOC map of
DSCBs)

v The number of unallocated VIRs in the index (the data is obtained from the
VTOC index map)

v The number (and location) of extents of unallocated pack space (the data is
obtained from the VTOC pack space map).

The following data is available from nonindexed VTOCs:
v The number (and location) of extents of unallocated pack space.

MAP: Identify the Map to Be Accessed
MAP=INDEX

Specifies that the VTOC index map (VIXM) is to be accessed and a count of
unallocated VIRs returned. COUNT=YES must also be coded.

MAP=VOLUME
For indexed VTOCs, specifies that the VTOC pack space map (VPSM) is to be
accessed and information on unallocated extents of pack space returned.

For nonindexed VTOCs, specifies that the information from the free space
DSCBs on unallocated extents is to be returned.

For indexed and nonindexed VTOCs, EXTENTS=addr and COUNT=NO must
also be coded.

MAP=VTOC
Specifies that the VTOC map of DSCBs (VMDS) is to be accessed and a count
of format-0 DSCBs returned. COUNT=YES must also be coded.

EXTENTS: Storage Area Where Extents Are Returned
EXTENTS=addr

Specifies the address where extent information is to be returned. You specify
this parameter only when you also specify MAP=VOLUME to request that
unallocated space information from the volume is to be returned.

When RTA4BYTE=YES is specified the following occurs:
v Information about free extents uses mapping macro ICVEDT02 (see “Using

Macro ICVEDT02 to Map the Extents Area” on page 62 for ICVEDT02
format).

v EXTENTS= specifies the address of a control block (ICVEDT02) used to pass
4 byte relative track addresses of the unallocated space. You provide this
storage, and you must use this mapping macro to initialize it.
Prior to calling CVAF, initialize the ICVEDT02 control block as follows:
– Place “ICVEDT02” in the first 8 bytes (DT2X7EYE).
– Place the total area length, in bytes, in DT2X7LEN. This value is 36 + (8 *

the value in DT2X7ENT).
– Set the control block level number to “1” (DT2X7LEV). (Note that this

value can be different in a possible future release, if IBM makes changes
that effect the control block.)

– Set the remaining fields in the control block static area DT2X7FLG
through DT2X7RE2 to zero prior to calling CVAF for the first time. Leave
these fields unchanged from the way the previous call returned them,
when calling for additional extents.

– Set DT2X7ENT to the total number of extent descriptor entries that will fit
in the storage you provide.

CVAF Macros

Chapter 1. Using the Volume Table of Contents 95

– Place the relative track address (RTA) at which CVAF should start the
search into the first four bytes of the first extent area DT2RTAST(1).
CVAF updates the first extent entry with information about the next free
extent found that has a higher starting RTA than that provided. Each
subsequent extent entry is filled in with information about additional free
space extents (in ascending RTA order).
For all calls, if all the unallocated extents from the volume are returned
before the provided storage area is filled, the remaining entries are set to
zero. CVAF will now set return code 4 in register 15, and will set the
CVSTAT field to X'20' to indicate end of data.
If End Of Data is reached before the provided storage area is filled with
unallocated extents, CVAF will set return code 4 in register 15. If return
code 0 is set in register 15, you can call CVAF again to get the remaining
unallocated space information if there is any. Do NOT modify ANY
header information in ICVEDT02, as CVAF can have saved internal use
restart information there. Instead, copy the last ending RTA+1
(DT2RTAED) returned from the previous CVAF search into DT2RTAST.

When RTA4BYTE=NO is specified or defaulted the following occurs:
v Information about free extents has the format of XXYYZ (see “RTA4BYTE:

Specify the Type of Extent Area Used” for XXYYZ format).
v EXTENTS= is the address of a 1-byte count field containing the number of

5-byte entries that follow. You provide this storage area. The length of the
area, in bytes, is 1 + (count * 5), where count is the value of the first byte of
the area. The first two bytes (“XX”) of the first 5-byte extent area entry, is the
relative track address (RTA) at which CVAF will start the search. CVAF
updates the first entry with information about the next free extent found
that has a higher starting RTA than that supplied. Each subsequent entry is
filled in with information about additional free extents (in ascending track
address order).

v CVAF can be called multiple times, as needed, to retrieve more extents than
the area can hold in a single call. The first extent returned is the first free
extent after the relative track address (“XX”) recorded in the first extent
(XXYYZ) in the area.

v To retrieve the first free extent on the volume, set “XX” in the first entry to
zero. When calling additional times, set “XX” in the first entry to the LAST
relative track address returned by the previous call.

Recommendation: If you use larger volumes, specify RTA4BYTE=YES when
you request extent information. If an extent is beyond the 64x1024 tracks
boundary when the program specifies RTA4BYTE=NO or allows the default,
the CVAF request fails with a CVSTAT of STAT075.

RTA4BYTE: Specify the Type of Extent Area Used
RTA4BYTE=YES

Specifies that the extents area contains pairs of addresses in the format RTA
RTA+1, where RTA is the four byte relative address of the first track of the
extent, and RTA+1 is the four byte relative address of the last track of the
extent plus 1.

You must use the macro ICVEDT02 to map the extent area if you specify
RTA4BYTE=YES. See Table 19 on page 62 for a description.

RTA4BYTE=YES is a required parameter for an nonindexed VTOC, and
optional for an indexed VTOC.

CVAF Macros

96 z/OS V2R1.0 DFSMSdfp Advanced Services

RTA4BYTE=NO
Specifies that the extents area is in the format XXYYZ where:

XX The relative track address of the first track of the extent
YY The number of whole cylinders in the extent
Z The number of additional tracks in the extent.

If you do not specify the RTA4BYTE parameter, the default is RTA4BYTE=NO.

MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers
MAPRCDS=YES

Specifies that the buffer list and buffers are to be retained at the end of the
function.

If MAPRCDS=YES is specified and no buffer list is supplied through the CVAF
parameter list, CVAF reads the VIRs into buffers obtained by CVAF. The buffer
list that contains the address and RBAs of the VIRs can be accessed after the
CVAF call from the CVAF parameter list field, CVMRCDS. The buffer list and
VIR buffers are in the caller's protect key: subpool 0 if the caller is not
authorized; subpool 229 if the caller is authorized.

MAPRCDS=YES is the default if MF=I is specified or defaulted.

When processing on the current volume is finished, release all areas that were
kept.

MAPRCDS=(YES,addr)
If MAPRCDS=YES is coded, but the buffer list address (CVMRCDS in CVAF
parameter list) is supplied, the VIRs are not read.

The CVMRCDS buffer list from one CVAF call can be passed to another CVAF
macro call through the MAPRCDS keyword.

MAPRCDS=NO
Specifies that the MAP records buffers and buffer list are freed upon
completion of the CVAFDSM function.

NO is the default if MF=L is specified.

MAPRCDS=(NO,addr)
Frees buffer lists and buffers previously obtained by CVAF.

Buffer lists and buffers obtained by CVAF must be freed by the caller. This can be
done in one of the following ways:
v By coding MAPRCDS=NO on the call that obtained the buffers
v By coding MAPRCDS=NO on a subsequent CVAF call
v By coding CVAFDIR ACCESS=RLSE and providing the buffer list in the

BUFLIST keyword.
If MF=(E,addr) is coded and MAPRCDS is not coded, the parameter list value of
MAPRCDS is not changed.

Requirement: You must enqueue the VTOC and reserve the unit to maintain the
integrity of the MAP records read.

UCB or DEB: Specify the VTOC to Be Accessed
UCB= rs-type or (2-12) standard form UCB= rx-type or (2-12) execute form

Specifies the address of the UCB for the VTOC to be accessed. The UCB
address can be for a captured UCB, or for an actual UCB above or below the

CVAF Macros

Chapter 1. Using the Volume Table of Contents 97

16MB line. Use the address of a UCB, not a UCB copy. An unauthorized caller
can not use this parameter. If your program is in 31-bit mode, this address
must be in 31-bit address; the high order byte is part of the address. You
should not code the UCB parameter with MF=L.

DEB=addr
Supplies the address of a DEB opened to the VTOC you want to access. CVAF
does not allow output requests to the VTOC or VTOC index if you specify the
DEB subparameter. Without authorization, you cannot perform any
asynchronous activity (such as EXCP, CLOSE, EOV) against the data set
represented by the DEB because CVAF removes the DEB from the DEB table
for the duration of the CVAF call. If you are not authorized (neither APF
authorized nor in a system key), specify a DEB address, not a UCB, to
CVAFDSM. See “Identifying the Volume” on page 57 for further details.

If you supply a previously obtained I/O area through the IOAREA keyword,
neither UCB nor DEB need be supplied. Otherwise, supply either a UCB or DEB. If
you supply a UCB address, it is overlaid in the CVPL by the UCB address in the
I/O area. If you supply both the UCB and the DEB addresses in the CVPL, the
DEB address is used and the UCB address in the CVPL is overlaid by the UCB
address in the DEB.

COUNT: Obtain a Count of Unallocated DSCBs or VIRs
COUNT=YES

Indicates that a count of unallocated DSCBs or VIRs in the designated space
map is requested. MAP=VTOC or MAP=INDEX must be specified if
COUNT=YES is coded.

COUNT=NO
Indicates that a count of unallocated DSCBs or VIRs is not desired but, rather,
information on free space on the pack is desired. MAP=VOLUME must be
coded if COUNT=NO is coded or the default.

CTAREA: Supply a Field to Contain the Number of Format-0
DSCBs
CTAREA=addr

Supplies the address of a 4-byte field to contain the number of format-0 DSCBs
when COUNT=YES, MAP=VTOC is specified; or the number of unallocated
VIRs in the VTOC index when COUNT=YES, MAP=INDEX is specified.

HADSCB: Supply a Field to Contain the CCHHR of the Highest
Allocated DSCB
HADSCB=addr

Supplies the address of a 5–byte field to contain the CCHHR of the highest
allocated DSCB in the VTOC when COUNT=YES and MAP=VTOC are
specified.

IOAREA: Keep or Free the I/O Work Area
IOAREA=KEEP

Specifies that the CVAF I/O area associated with the CVAF parameter list is to
be kept upon completion of the CVAF request. IOAREA=KEEP can be coded
with BRANCH=NO only if the caller is authorized (APF or system key).

CVAF Macros

98 z/OS V2R1.0 DFSMSdfp Advanced Services

If IOAREA=KEEP is coded, the caller must call CVAF with IOAREA=NOKEEP
specified at some future time, whether or not any further VTOC access is
required. An example of such a caller is the recovery routine of the caller of
CVAF.

Coding IOAREA=KEEP allows subsequent CVAF requests to be more efficient,
as certain initialization functions can be bypassed. Neither DEB nor UCB need
be specified when a previously obtained CVAF I/O area is supplied; neither
can they be changed.

When IOAREA=KEEP is first issued, CVAF returns the CVAF I/O area in the
CVAF parameter list (CVIOAR). Subsequent calls of CVAF can use that same
parameter list, and CVAF obtains its I/O area from the CVIOAR.

When processing on the current volume is finished, release all areas that were
kept.

IOAREA=(KEEP,addr)
Supplies the address of a previously obtained I/O area. If a different CVAF
parameter list is used, the previously obtained CVAF I/O area can be passed
to CVAF by coding its address as the second parameter of the IOAREA
keyword.

IOAREA=NOKEEP
Causes the work area to be freed upon completion of the CVAF request. This is
the default.

IOAREA=(NOKEEP,addr)
Causes a previously obtained work area to be freed upon completion of the
CVAF request.

BRANCH: Specify the Entry to the Macro
BRANCH=(YES,SUP)

Requests the branch entry. The caller must be in supervisor state. Protect key
checking is bypassed.

If BRANCH=YES is coded, an 18-word save area must be supplied. No lock
can be held on entry to CVAF. SRB mode is not allowed.

BRANCH=YES
Equivalent to BRANCH=(YES,SUP), because SUP is the default when YES is
coded. Protect key checking is bypassed.

BRANCH=(YES,PGM)
Requests the branch entry. The caller must be APF authorized and in problem
state. Protect key checking is bypassed.

BRANCH=NO
Requests the SVC entry. The caller must be APF authorized if any output
operations are requested. Protect key checking is performed. This is the
default.

EADSCB: Specify the support level for extended attribute DSCBs
EADSCB=OK

This specification indicates that the calling program supports RTAs that could
contain tracks an extended address volume.

For calls that request unallocated space (ACCESS=MAPDATA,
MAP=VOLUME, RTA4BYTE=YES and EXTENTS=address), a CVAFDSM
request issued to an EAV volume will be failed if the EADSCB=OK indicator is
not set.

CVAF Macros

Chapter 1. Using the Volume Table of Contents 99

The failing error code for these cases will be reflected as follows:
v CVAF status code (CVSTAT) set to STAT082.
v Return code 4.

EADSCB=OK will set the CV4EADOK indicator in the CVPL. All other calls to
CVAFDSM are allowed and EADSCB=OK will be ignored.

EADSCB=NOTOK
Indicates a calling program does not support extended attribute DSCBs.
EADSCB=NOTOK will set the CV4EADOK indicator in the CVPL to off. This
is the default.

MF: Specify the Form of the Macro
This keyword specifies whether the list, execute, or normal form of the macro is
requested.

MF=I
If I is coded or if neither L nor E is coded, the CVAF parameter list is
generated, as is code, to call CVAF. This is the default.

MF=L
Indicates the list form of the macro. A parameter list is generated, but code to
call CVAF is not generated.

MF=(E,addr)
Indicates the execute form of the macro. The remote CVAF parameter list
supplied as addr is used in, and can be modified by, the execute form of the
macro.

Return Codes from CVAFDSM
On return from CVAF, register 1 contains the address of the CVPL (CVAF
parameter list), and register 15 contains one of the following return codes:

Return Code Meaning

0 (X'00') The request was successful.
4 (X'04') End of data (CVSTAT is set to decimal 32), or an error was

encountered. The CVSTAT field in the CVPL contains an
indication of the cause of the error. (CVSTAT code descriptions
are in z/OS DFSMSdfp Diagnosis.)

8 (X'08') Invalid VTOC index structure. CVSTAT contains an indication of
the cause of the error. (CVSTAT code descriptions are in z/OS
DFSMSdfp Diagnosis.)

12 (X'0C') One of the following
v The CVAF parameter list is not in your protect key.
v The CVAF parameter list protect key is invalid.
v The CVAF parameter list ID is invalid.
v The CVAF parameter list length is incorrect.
v The CVAF parameter list has not been modified.
v The function code (CVFCTN) field is not valid.
v The function code (CVFCTN) field is not supported by this

release.
16 (X'10') An I/O error was encountered.

CVAFFILT Macro Overview and Specification
You can use the CVAFFILT macro to invoke the CVAF filter service. You can also
use it to map or initialize the CVAF parameter list (CVPL). CVAF filter retrieves
data set DSCB chains from an indexed or nonindexed VTOC and places them in

CVAF Macros

100 z/OS V2R1.0 DFSMSdfp Advanced Services

buffers you provide. You can request the DSCBs for a single partially-qualified
data set name or for a list of fully-qualified data set names.

Identify a specific DASD device and provide both a filter criteria list (FCL)
defining the request, and a CVAF buffer list (with buffers) for DSCB return. The
format of the two elements of the FCL is shown in Table 20 on page 69 and
Table 21 on page 70. The format of the buffer list is shown in “Using Buffer Lists”
on page 60. CVAFFILT returns a complete set of DSCBs in the order that they are
chained in the VTOC (format-1, format-2, then format-3).

Keywords coded on the list form of the macro need not be coded on the execute
form. Keywords coded on one CVAFFILT call remain in effect for subsequent calls
unless overridden, if you use the same CVAFFILT parameter list.

See “Reading Sets of DSCBs with CVAF Filter” on page 67 for additional
information.

The format of the CVAFFILT macro is:

�� CVAFFILT
label READ

,ACCESS= RESUME
RLSE

,BUFLIST= addr
(reg)

�

�
,UCB= (ucbaddr)
,DEB=addr

,FCL= addr
(reg)

NOKEEP
,FLTAREA= KEEP

(KEEP, addr)
(reg)

(NOKEEP, addr)
(reg)

�

�
NOKEEP

,IOAREA= KEEP
(KEEP, addr)

(reg)
(NOKEEP, addr)

(reg)

NO
,BRANCH= YES

(YES, SUP)
PGM

�

�
NOTOK

,EADSCB= OK
I

,MF= D
L
(E, addr)

(reg)

��

Restriction: For the first operand following CVAFFILT, do not code the leading
comma.

Control Block Address Resolution: Keyword=addr or (reg)
You, as the caller, either define or reference the control blocks needed by CVAF
filter. Caller-defined control blocks are: BUFLIST, CVPL, and FCL. Caller-referenced
control blocks are: DEB, FLTAREA, IOAREA, and UCB. The CVAFFILT macro
generates different instructions for keyword=addr and keyword=(reg) depending
upon whether you are specifying a defined or referenced control block.

CVAF Macros

Chapter 1. Using the Volume Table of Contents 101

v When you specify any control block's address as (reg), the CVAFFILT macro
assumes that the register specified contains that address.

v When you specify a “defined” control block's address as addr, the CVAFFILT
macro assumes that the specified location is that of the control block itself. The
macro generates a load address instruction (LA) to obtain the control block's
address.

v When you specify a “referenced” control block's address as addr, the CVAFFILT
macro assumes that the specified location is that of a word containing the
address of the control block. The macro generates a load instruction (L) to obtain
the control block's address.

ACCESS: Retrieve a DSCB, or Release FLTAREA and/or IOAREA
ACCESS=READ

Retrieves all DSCBs associated with the data set names specified in the filter
criteria list (FCL), placing them in your buffers. You can select (filter) the
retrieved DSCBs by providing either a list of one or more fully-qualified
names, or a single partially-qualified name, using single or double asterisk
notation. (See the example of partially-qualified names in “Partially-Qualified
Names for CVAFFILT” on page 106.)

If the number of buffers is not large enough to hold all the requested DSCBs,
CVAFFILT indicates this in the CVSTAT status byte of the CVAF parameter list
(CVPL). You can resume the READ function by issuing a call with
ACCESS=RESUME. See “Codes Put in the CVSTAT Field” on page 140.

When selecting DSCBs by partially-qualified name, CVAFFILT uses only the
first data set name in the FCL list. Set the FCLCOUNT count field in the FCL
to 1 or CVAFFILT returns error code 63 in the CVSTAT status byte of the
CVPL. The DSCBs returned by CVAFFILT might not be in sequence by data set
name; however, the DSCBs for each data set are always in order (format-1,
format-2, format-3).

When selecting DSCBs by fully-qualified names, you can request that CVAF
filter return the DSCBs for the selected data set names in the data set name
order implied by the FCL. See the FCL1ORDR flag in Table 20 on page 69.

Always test the status byte of each data set name in the FCL list to ensure
successful completion. (Some error conditions result in failure to return a data
set's DSCBs.) See the FCLDSNST byte in Table 21 on page 70.

ACCESS=RESUME
Resumes a previously initiated READ or RESUME function that was
terminated because you did not provide enough buffers to contain all the
requested DSCBs. For the RESUME function to execute correctly, the keyword
FLTAREA=KEEP must be coded in each of the previous READ and RESUME
function calls.

ACCESS=RLSE
Releases the previously kept filter save area (FLTAREA) and/or CVAF I/O
work area (IOAREA).

BUFLIST: Specify a Buffer List
BUFLIST=addr or (reg)

Supplies the address of a buffer list used to read DSCBs. When you specify
ACCESS=RLSE, the BUFLIST keyword is required for the standard form of the
macro. See the format of the buffer list header and buffer list entry in Table 17
on page 61 and Table 18 on page 62, respectively.

CVAF Macros

102 z/OS V2R1.0 DFSMSdfp Advanced Services

UCB or DEB: Specify the VTOC to Be Accessed
UCB= rs-type or (2-12) standard form UCB= rx-type or (2-12) execute form

Specifies the address of the UCB for the VTOC to be accessed. The UCB
address might be for a captured UCB, or for an actual UCB above or below the
16 MB line. Use the address of a UCB, not a UCB copy. An unauthorized caller
must not use this parameter. If your program is in 31-bit mode, this address
must be in 31-bit address; the high order byte is part of the address. You
should not code the UCB parameter with MF=L.

DEB=addr or (reg)
Supplies the address of a DEB opened to the VTOC you want to access. If you
are not authorized, specify a DEB address, not a UCB, to CVAFFILT; also,
without authorization, you cannot perform any asynchronous activity against
the data set represented by the DEB (such as EXCP, CLOSE, EOV), because
CVAF removes the DEB from the DEB table for the duration of the CVAF call.
See “Identifying the Volume” on page 57 for further details.

If you supply a previously obtained I/O area through the IOAREA keyword,
neither UCB nor DEB is needed. Otherwise, supply either a UCB or DEB. If you
supply a UCB address, it is overlaid in the CVPL by the UCB address in the I/O
area. If you supply both the UCB and the DEB addresses in the CVPL, the DEB
address is used and the UCB address in the CVPL is overlaid by the UCB address
in the DEB.

FCL: Specify a Filter Criteria List
FCL=addr or (reg)

Supplies the address of a filter criteria list. It is required when ACCESS=READ
is specified on the standard form of the macro. The format of the two elements
of the filter criteria list is shown in Table 20 on page 69 and Table 21 on page
70.

FLTAREA: Keep or Free the Filter Save Area
FLTAREA=KEEP

Specifies keeping the filter save area. Code this operand if the RESUME
function might be called later (to resume processing prematurely terminated
because the number of caller-supplied buffers is not enough to contain all the
returned DSCBs).

CVAFFILT returns the address of the kept filter save area in the CVAFFILT
parameter list (CVFSA field). If you specify the same parameter list in
subsequent RESUME calls, CVAFFILT reuses the same filter save area.

Tip: If you code this operand, you must subsequently issue CVAFFILT with
ACCESS=RLSE to release the filter save area.

FLTAREA=(KEEP,addr or (reg))
Supplies the address of a previously obtained filter save area. See the
description of FLTAREA=KEEP operand for additional concerns.

FLTAREA=NOKEEP
Frees the filter save area upon completion of the CVAF request.

FLTAREA=(NOKEEP,addr or (reg))
Frees a previously obtained filter save area upon completion of the CVAF
request.

CVAF Macros

Chapter 1. Using the Volume Table of Contents 103

IOAREA: Keep or Free the I/O Work Area
IOAREA=KEEP

Specifies keeping the CVAF I/O work area. For authorized callers, CVAFFILT
returns the address of the kept I/O work area in the CVAFFILT parameter list
(CVIOAR). If you specify the same parameter list in subsequent calls,
CVAFFILT reuses the same I/O work area.

Tip: If you code this operand, you must subsequently issue CVAFFILT with
ACCESS=RLSE to release the I/O work area.

IOAREA=(KEEP,addr or (reg))
Supplies the address of a previously obtained filter save area. See the
description of IOAREA=KEEP operand for additional concerns.

IOAREA=NOKEEP
Frees the filter save area upon completion of the CVAF request.

IOAREA=(NOKEEP,addr or (reg))
Frees a previously obtained CVAF I/O work area upon completion of the
CVAF request.

BRANCH: Specify the Entry to the Macro
BRANCH=NO

Requests the SVC (default) entry. Protect key checking is performed.

BRANCH=YES
Equivalent to BRANCH=(YES,SUP), because SUP is the default when you code
YES. You must be in supervisor state. Protect key checking is bypassed.

BRANCH=(YES,SUP)
Requests the branch entry. You must be in supervisor state. Protect key
checking is bypassed. If you specify BRANCH=YES, supply an 18-word save
area. You cannot hold a lock at entry to CVAF. You cannot be in SRB mode.

BRANCH=(YES,PGM)
Requests the branch entry. You must be APF authorized and be in problem
state. Protect key checking is bypassed.

EADSCB=value: Specify the support level for extended attribute
DSCBs.
EADSCB=OK

This specification indicates that the calling program supports extended
attribute DSCBs. An extended address volume may have these DSCBs
allocated to it. The returned DSCBs (format-3, format-8) may contain extent
descriptors described by 28-bit cylinder addresses or DSCBs (format-9) that
contain additional attribute information.

For fully qualified data set names in the Filter Criteria List, a CVAFFILT
request fails if the EADSCB=OK, indicator is not set and the DSCB associated
with the fully qualified data set name is a format-8 DSCB.

For partially qualified data set names in the Filter Criteria List, a CVAFFILT
request fails if the EADSCB=OK, indicator is not set and a DSCB associated
with a data set that matches the Filter Criteria List is a format-8 DSCB.

The failing error code for these cases will be reflected as follows:

CVAF Macros

104 z/OS V2R1.0 DFSMSdfp Advanced Services

v Data set name status in the FCL (FCLDSNST) is set to a status value of
(X'06'). This status code indicates that a data set name is described by a
format-8 DSCB and the caller did not specify support for an EAV with the
EADSCB=OK keyword.

v Set the no resume CVAF status code (CVSTAT) of STAT072
v Return code 4.

EADSCB=OK will set the CV4EADOK indicator in the CVPL.

EADSCB=NOTOK
Indicates a calling program does not support extended attribute DSCBs.
EADSCB=NOTOK will set the CV4EADOK indicator in the CVPL to off. This
is the default.

MF: Specify the Form of the Macro
Specifies whether the DSECT, list, execute, or normal form of the macro is
requested. You can be in either 24-bit or 31-bit addressing mode. If you are not
authorized, you must pass the address of a DEB built by OPEN. If you are
authorized, you can pass either the DEB address or the UCB address. You must
ensure that the volume is allocated and will remain mounted (for example, by
dynamic allocation).

MF=I
Specifies the standard form of the macro. The CVAF parameter list is generated
and CVAF is called. The default is MF=I.

MF=D
Specifies the DSECT form of the macro. The macro generates a request for the
ICVAFPL macro to map the unique CVAF filter CVPL (4-bytes longer than
standard CVPL).

MF=L
Specifies the list form of the macro. The CVAF parameter list is generated, but
CVAF is not called.

MF=(E,addr or (reg))
Specifies the execute form of the macro. The CVAF parameter list whose
address is in addr or reg is used. You can modify the parameter list with this
form of the macro.

Return Codes from CVAFFILT
CVAF filter service does not issue any messages. Upon return from CVAF, register
1 contains the address of the CVAF parameter list and register 15 contains one of
the following return codes:

Return Code Meaning

0 (X'00') The request was successful.
4 (X'04') Logical error; status information in CVSTAT.
8 (X'08') Invalid VTOC structure.
12 (X'0C') CVAFFILT parameter list in wrong key, or not valid.
16 (X'10') I/O error.

CVSTAT in the CVAF parameter list contains the status code. See “Codes Put in
the CVSTAT Field” on page 140 for a list of the status codes.

CVAF Macros

Chapter 1. Using the Volume Table of Contents 105

Partially-Qualified Names for CVAFFILT
CVAFFILT supports partially-qualified data set names using single or double
asterisk notation and the percent sign as shown in the following text:
v You can use a single asterisk to represent a single qualifier. For example,

SYS1.*.LOAD designates any data set with three qualifiers, the first being SYS1,
the second being any qualifier, and the third being LOAD.

v You can also use a single asterisk to represent zero or more unspecified
characters. For example, LOAD.*LIB designates any data set having only two
qualifiers, with LOAD being the first, and the second qualifier ending with the
character string LIB (for example, LINKLIB). The asterisk can appear anywhere
within the qualifier. You can use two single asterisks in the following way:
LOAD.A*B*.LIB. CVAFFILT does not support the use of two or more single
asterisks with any other character within a single qualifier (for example,
LOAD.B**.LIB is not valid).

v A double asterisk represents a place holder for zero or more qualifiers. For
example, SYS1.** designates any data set having SYS1 as its first or only
qualifier.

v You can specify a percent sign (%) as part of a partially-qualified name. The
percent sign designates any data set whose name matches the partially-qualified
name, except for the single character in the position indicated by the percent
sign. For example, SYS%.*.LOAD% designates any data set with three qualifiers,
the first being any 4-character qualifier beginning with SYS, the second being
any qualifier, and the third being any five character qualifier beginning with
LOAD.

Example of Using the CVAFFILT Macro
This example uses the CVAFFILT macro to read all format-1 and format-3 DSCBs
for specific data sets within a given VTOC as well as for all data sets within a
given VTOC. It will also calculate the number of DSCBs and print the totals and
appropriate messages to an output file. Refer to the documentation within the
sample source in “CVAFFILT Macro Overview and Specification” on page 100 for
setup requirements, program logic, and expected output.

The CVAF parameter list, buffer list, and filter criteria list are defined in the
sample source. The ICVAFPL macro generates the CVAF parameter list, the
ICVAFBFL macro generates the buffer list, and the ICVFCL macro generates the
filter criteria list.

Sample JCL for the CVAFFILT macro: The following is the sample JCL used to
Assemble, Link, and Execute the example source. Changes will have to be made to
this JCL as appropriate for each customer environment.
//CVAFFEXP JOB ,MSGCLASS=X,TIME=(,10),
// NOTIFY=&SYSUID
//*
//STEP01 EXEC PROC=ASMACLG
//SYSIN DD *

(INCLUDE EXAMPLE SOURCE HERE)
/*
//*
//L.SYSLMOD DD DSN=YOUR.AUTH.LINKLIB(CVAFFEXP),DISP=SHR
//L.SYSIN DD *

SETCODE AC(1)
ENTRY CVAFFEXP

/*
//*
//G.SYSABEND DD SYSOUT=*
//SYSPRINT DD SYSOUT=*

CVAF Macros

106 z/OS V2R1.0 DFSMSdfp Advanced Services

//*
//G.CVAFDD DD DISP=SHR,UNIT=3390,VOL=SER=339L62
//G.OUTDD DD DSN=CVAFFLT1.OUTPUT,
// DISP=(NEW,CATLG),
// UNIT=3390,VOL=SER=339L61,
// SPACE=(TRK,(2,2)),
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//*
//

Code example of the CVAFFILT Macro:
CVAFFEXP TITLE ’CVAF CVAFFILT EXAMPLE’
CVAFFEXP CSECT
CVAFFEXP AMODE 24
CVAFFEXP RMODE 24
*

* *
* CVAFFEXP - CVAFFILT EXAMPLE *
* *
* *
* CVAFFILT EXAMPLE TO BE USED IN DFSMS ADVANCED SERVICES MANUAL *
* *
* CVAFFILT MACRO RUN IN AMODE24/RMODE24 *
* *
* CVAFFILT TEST DSN’S / PROCESSING USED: *
* *
* 1) 2 SEQUENTIAL DATASETS WITH 5 EXTENTS. (1 FMT1/1 FMT3 EACH) *
* DSCBS RETURNED WILL BE COMBINED TO TOTAL 2 FMT1 / 2 FMT3’S *
* DSN: CVAFFLT1.DATA01 *
* DSN: CVAFFLT1.DATA02 *
* CREATE ON THE VOLUME ASSOCIATED WITH THE CVAFDD DD *
* *
* 2) PDSE DATASET WITH 122 EXTENTS. (1 FMT1/10 FMT3’S) *
* DSN: CVAFFLT1.PDSE01 *
* CREATE ON THE VOLUME ASSOCIATED WITH THE CVAFDD DD *
* *
* 3) 1 SEQUENTIAL DATASET WITH 5 EXTENTS (1 FMT1/1 FMT3) *
* DSN: CVAFFLT1.DATA01 *
* CREATE ON THE VOLUME ASSOCIATED WITH THE CVAFDD DD *
* *
* 4) RETURN DSCB COUNT FOR ENTIRE VOLUME USING CVAFFILT RESUME *
* PROCESING. *
* DSN’S ON THE VOLUME: (IN SEQUENCE ORDER) *
* SYS1.VTOCIX.V39L62 (VTOC INDEX - 1 FMT1) *
* CVAFFLT1.DATA01 (5 EXTENTS - 1 FMT1/1 FMT3) *
* CVAFFLT1.DATA02 (5 EXTENTS - 1 FMT1/1 FMT3) *
* CVAFFLT1.PDSE01 (122 EXTENTS - 1 FMT1/10 FMT3’S) *
* DSN’S CREATED ON THE VOLUME ASSOCIATED WITH THE CVAFDD DD *
* *
* *
* OUTPUT IN OUTDD DATASET SHOULD BE THE FOLLOWING: *

* *
* *
* CVAFFEXP START OF OUTPUT MESSAGES *
* *
* RC00 VERIFIED - THE REQUEST WAS SUCCESSFUL *
* CVAFFILT RETURNED THE FOLLOWING DSCBS FOR DSN: CVAFFLT1.DATA01 *
* AND FOR DSN: CVAFFLT1.DATA02 *
* NUMBER OF FORMAT 1 DSCBS - 0000002 *
* NUMBER OF FORMAT 3 DSCBS - 0000002 *
* *
* RC00 VERIFIED - THE REQUEST WAS SUCCESSFUL *
* CVAFFILT RETURNED THE FOLLOWING DSCBS FOR DSN: CVAFFLT1.PDSE01 *
* NUMBER OF FORMAT 1 DSCBS - 0000001 *

CVAF Macros

Chapter 1. Using the Volume Table of Contents 107

* NUMBER OF FORMAT 3 DSCBS - 0000010 *
* *
* RC00 VERIFIED - THE REQUEST WAS SUCCESSFUL *
* CVAFFILT RETURNED THE FOLLOWING DSCBS FOR DSN: CVAFFLT1.DATA01 *
* NUMBER OF FORMAT 1 DSCBS - 0000001 *
* NUMBER OF FORMAT 3 DSCBS - 0000001 *
* *
* RC04 VERIFIED - CVSTAT 064 RESUME IS NECESSARY *
* CVAFFILT (INITIAL) RETURNED THE FOLLOWING DSCBS FOR THE VOLUME: *
* NUMBER OF FORMAT 1 DSCBS - 0000003 *
* NUMBER OF FORMAT 3 DSCBS - 0000002 *
* CVAFFILT (RESUME) RETURNED THE FOLLOWING DSCBS FOR THE VOLUME: *
* NUMBER OF FORMAT 1 DSCBS - 0000001 *
* NUMBER OF FORMAT 3 DSCBS - 0000010 *
* CVAFFILT RESUME OPERATION COMPLETE - ALL DSCBS RETURNED *
* *
* CVAFFEXP END OF OUTPUT MESSAGES *
* *
* *

* *
* NOTE: THE NUMBER OF DSCBS RETURNED WILL VARY IF THE DATASET DOES *
* NOT EXIST ON THE VOLUME OF IF THE DATASET EXTENT IS NOT AS *
* LISTED ABOVE OR IF THERE IS NO VTOC INDEX ON THE VOLUME. *
* *
* NOTE: WHEN CREATING A PDSE ON A SMS MANAGED VOLUME A VVDS *
* WILL ALSO BE CREATED AND THE FMT1 COUNT WILL BE *
* INCREASED BY ONE. *
* *
* *

*

* *
* CVAFFEXP - LOGIC NOTES *
* *
* THIS EXAMPLE WILL PERFORM THE FOLLOWING: *
* *
* INITIALIZATION *
* - OBTAIN THE NECESSARY INFORMATION FROM THE DASD VOLUME *
* - OPEN AN OUTPUT FILE AND WRITE THE NECESSARY OUTPUT MESSAGES *
* - INITIALIZE THE NECESSARY BUFFER LIST FOR CVAFFILT *
* *
* MAINLINE *
* - INITIALIZE A FCL TO READ FOR TWO SPECIFIC SEQ DATASETS *
* - ISSUE CVAFFILT READ TO READ THE DSCBS FOR THE TWO DATASETS *
* - CHECK THE RETURN CODE AND CVSTAT CODE FROM CVAFFILT *
* - COUNT THE NUMBER OF FMT1 AND FMT3 DSCBS FOR THE REQUEST *
* - FORMAT THE DSCB COUNTS AND WRITE TO THE OUTPUT DATASET *
* - ISSUE CVAFFILT RLSE TO RELEASE THE WORK AREAS USED *
* *
* - INITIALIZE A FCL TO READ FOR ONE SPECIFIC PDSE DATASET *
* - ISSUE CVAFFILT READ TO READ THE DSCBS FOR THE PDSE DATASET *
* - CHECK THE RETURN CODE AND CVSTAT CODE FROM CVAFFILT *
* - COUNT THE NUMBER OF FMT1 AND FMT3 DSCBS FOR THE REQUEST *
* - FORMAT THE DSCB COUNTS AND WRITE TO THE OUTPUT DATASET *
* - ISSUE CVAFFILT RLSE TO RELEASE THE WORK AREAS USED *
* *
* - INITIALIZE A FCL TO READ FOR ONE SPECIFIC SEQ DATASET *
* - ISSUE CVAFFILT READ TO READ THE DSCBS FOR THE ONE DATASET *
* - CHECK THE RETURN CODE AND CVSTAT CODE FROM CVAFFILT *
* - COUNT THE NUMBER OF FMT1 AND FMT3 DSCBS FOR THE REQUEST *
* - FORMAT THE DSCB COUNTS AND WRITE TO THE OUTPUT DATASET *
* - ISSUE CVAFFILT RLSE TO RELEASE THE WORK AREAS USED *
* *
* - INITIALIZE A FCL TO READ THE DSCBS ON THE ENTIRE VOLUME *
* - ISSUE CVAFFILT READ TO READ THE DSCBS FOR THE VOLUME *

CVAF Macros

108 z/OS V2R1.0 DFSMSdfp Advanced Services

* - CHECK THE RETURN CODE AND CVSTAT CODE FROM CVAFFILT *
* - PROCESS ALL DSCBS USING CVAFFILT RESUME AS NECESSARY *
* - COUNT THE NUMBER OF FMT1 AND FMT3 DSCBS FOR THE REQUEST *
* - FORMAT THE DSCB COUNTS AND WRITE TO THE OUTPUT DATASET *
* - ISSUE CVAFFILT RLSE TO RELEASE THE WORK AREAS USED *
* *
* FINALIZATION *
* - CLOSE THE OUTPUT FILE *
* - EXIT *
* *
* *
* CVAFFEXP - JOB INFORMATION *
* *
* NORMAL END OF JOB: *
* - RC=00 AND OUTDD OUTPUT AS DETAILED ABOVE *
* *
* *
* ABNORMAL END OF JOB: *
* - ABEND 100 - ERROR OPENING VTOC ON THE DASD VOLUME THAT IS *
* ASSOCIATED WITH THE CVAFDD DD STATEMENT *
* - ABEND 101 - ERROR OPENING THE OUTDD DATASET *
* - ABEND 102 - ERROR CLOSING THE OUTDD DATASET *
* *
* *
* DASD VOLUMES USED IN THIS EXAMPLE: *
* - 339L61 - 3390 WHERE OUTDD DATASET IS DEFINED *
* - 339L62 - 3390 WHERE TEST DATASETS DETAILED ABOVE ARE DEFINED *
* *
* *

*

* *
* HOUSEKEEPING *
* - SAVE CALLER’S REGISTERS AND ESTABLISH A NEW REGISTER SAVE AREA *
* *

*

STM R14,R12,12(R13) STANDARD LINKAGE CONVENTION
BALR R11,0 DCL R11 AS IMPLIED BASE REG
USING BASE,R11,R12 R12 IS ALSO BASE REG

BASE L R12,BASEADDR SET UP ADDRESSING FOR R12
B CVAFFL00 BRANCH AROUND DECLARES

BASEADDR DC A(BASE+4096) ADDRESSING FOR R12
CVAFFL00 DS 0H CONTINUE...

ST R13,SAVE+4 SAVE PTR TO CALLER’S SAVE AREA
LA R14,SAVE GET ADDRESS OF THE NEW SAVE AREA
ST R14,8(,R13) CHAIN CALLER’S AREA TO OURS
LR R13,R14 ESTABLISH THE NEW SAVE AREA

*

* *
* INITIALIZATION *
* *

*
INITIAL DS 0H INITIALIZATION SECTION

BAL R14,IDVOLRTN INVOKE RTN TO IDENTIFY THE VOLUME(S)
BAL R14,OPENRTN INVOKE OPEN OUTPUT DATASET RTN
MVC PDETLINE(133),STRTMSG MOVE START MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
MVC PDETLINE(133),BLNKLNE MOVE BLANK LINE TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
BAL R14,BUFLRTN INVOKE RTN TO INIT BUFFER LIST (H/E)

*

* *

CVAF Macros

Chapter 1. Using the Volume Table of Contents 109

* MAINLINE *
* *

*
MAINLINE DS 0H MAINLINE SECTION

MVI DSNNBR,X’02’ SET DSNNBR FLAG TO TWO
BAL R14,FCL1RTN INVOKE RTN TO INIT FCL (DS01/DS02)
BAL R14,CVAFRD2 INVOKE CVAFFILT READ RTN 2
BAL R14,TSTRCRTN INVOKE TEST RC RTN
L R15,RETCODE LOAD R15 WITH RETURN CODE
CH R15,RCODE00 IS RC = 0
BNE MAIN0010 NO - DO NOT FORMAT/PRINT LINES
MVC DS(44),DS01 ELSE MOVE DSN FOR DS01 TO MSG LINE
MVC PDETLINE(133),DSCBMSGA MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
MVC DS2(44),DS02 MOVE DSN FOR DS02 TO MSG LINE
MVC PDETLINE(133),DSCBMSGB MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
BAL R14,FMTOPRTN INVOKE FORMAT OUTPUT MSG RTN
B MAIN0020 BRANCH TO MAIN0020

MAIN0010 DS 0H CVAFFILT - CVSTAT LOGICAL ERROR
MVC DS3(44),DS01 MOVE DSN FOR DS01 TO MSG LINE
MVC PDETLINE(133),DSCBMSGC MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
MVC DS3(44),DS02 MOVE DSN FOR DS02 TO MSG LINE
MVC PDETLINE(133),DSCBMSGC MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE

MAIN0020 DS 0H
MVC PDETLINE(133),BLNKLNE MOVE BLANK LINE TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
BAL R14,CVAFRL INVOKE CVAFFILT RELEASE RTN
MVI DSNNBR,X’01’ SET DSNNBR FLAG TO ONE
BAL R14,FCL2RTN INVOKE RTN TO INIT FCL (DS03)
BAL R14,CVAFRD1 INVOKE CVAFFILT READ RTN 1
BAL R14,TSTRCRTN INVOKE TEST RC RTN
L R15,RETCODE LOAD R15 WITH RETURN CODE
CH R15,RCODE00 IS RC = 0
BNE MAIN0030 NO - DO NOT FORMAT/PRINT LINES
MVC DS(44),DS03 ELSE MOVE DSN FOR DS03 TO MSG LINE
MVC PDETLINE(133),DSCBMSGA MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
BAL R14,FMTOPRTN INVOKE FORMAT OUTPUT MSG RTN
B MAIN0040 BRANCH TO MAIN0040

MAIN0030 DS 0H CVAFFILT - CVSTAT LOGICAL ERROR
MVC DS3(44),DS03 MOVE DSN FOR DS03 TO MSG LINE
MVC PDETLINE(133),DSCBMSGC MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE

MAIN0040 DS 0H
MVC PDETLINE(133),BLNKLNE MOVE BLANK LINE TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
BAL R14,CVAFRL INVOKE CVAFFILT RELEASE RTN
BAL R14,FCL3RTN INVOKE RTN TO INIT FCL (DS01)
BAL R14,CVAFRD1 INVOKE CVAFFILT READ RTN
BAL R14,TSTRCRTN INVOKE TEST RC RTN
L R15,RETCODE LOAD R15 WITH RETURN CODE
CH R15,RCODE00 IS RC = 0
BNE MAIN0050 NO - DO NOT FORMAT/PRINT LINES
MVC DS(44),DS01 ELSE MOVE DSN FOR DS01 TO MSG LINE
MVC PDETLINE(133),DSCBMSGA MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
BAL R14,FMTOPRTN INVOKE FORMAT OUTPUT MSG RTN
B MAIN0060 BRANCH TO MAIN0060

MAIN0050 DS 0H CVAFFILT - CVSTAT LOGICAL ERROR
MVC DS3(44),DS01 MOVE DSN FOR DS01 TO MSG LINE
MVC PDETLINE(133),DSCBMSGC MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE

MAIN0060 DS 0H

CVAF Macros

110 z/OS V2R1.0 DFSMSdfp Advanced Services

MVC PDETLINE(133),BLNKLNE MOVE BLANK LINE TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
BAL R14,CVAFRL INVOKE CVAFFILT RELEASE RTN
BAL R14,FCL4RTN INVOKE RTN TO INIT FCL (ENTIRE VOL)
BAL R14,CVAFRDA INVOKE CVAFFILT READ RTN (FOR RESUME)
LA R9,CVPLDEFA ESTABLISH ADDRESSABILITY
USING CVPLMAP,R9 TO THE CVPL (FOR CVSTAT)
BAL R14,TSTRCRTN INVOKE TEST RC RTN

*

* *
* FINALIZATION *
* *

*
FINAL DS 0H FINALIZATION SECTION

MVC PDETLINE(133),BLNKLNE MOVE BLANK LINE TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
MVC PDETLINE(133),ENDMSG MOVE END MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
BAL R14,CLOSERTN INVOKE CLOSE OUTPUT DATASET RTN
L R13,4(R13) RESTORE REGISTER
LM R14,R12,12(R13) RESTORE CALLERS REGISTERS
LA R15,0 SET RC TO 0
BR R14 RETURN TO CALLER

*

* OPENRTN *
* - ROUTINE TO OPEN OUTPUT FILE USED BY THIS MODULE *

*
OPENRTN DS 0H OPEN FILES ROUTINE

ST R14,OPENSAVE STORE C(R14) INTO SAVE AREA
OPEN (OUTFILE,(OUTPUT)) OPEN THE OUTDD OUTPUT FILE FOR MSGS
TM OUTFILE+(DCBOFLGS-IHADCB),DCBOFOPN IS FILE OPEN?
BO OPENEXIT FILE OPEN OK - EXIT OPEN RTN
LA R1,EABN101 OUTPUT FILE NOT OPEN-USER ABEND 101
BAL R14,ABENDRTN INVOKE ABEND ROUTINE

OPENEXIT DS 0H EXIT FROM OPEN ROUTINE
L R14,OPENSAVE LOAD C(OPENSAVE) INTO R14
BR R14 EXIT

*

* CLOSERTN *
* - ROUTINE TO CLOSE OUTPUT FILE USED BY THIS MODULE *

*
CLOSERTN DS 0H CLOSE FILES ROUTINE

ST R14,CLOSSAVE STORE C(R14) INTO SAVE AREA
CLOSE (OUTFILE) CLOSE OUTPUT FILE
LTR R15,R15 CHECK IF CLOSED OK
BZ CLOSEXIT IF OK BRANCH TO CLOSEXIT
LA R1,EABN102 ELSE SETUP FOR USER ABEND 102
BAL R14,ABENDRTN INVOKE ABEND ROUTINE

CLOSEXIT DS 0H EXIT FROM CLOSE ROUTINE
L R14,CLOSSAVE LOAD C(CLOSSAVE) INTO R14
BR R14 EXIT

*

* ABENDRTN *
* - FORCE AN ABEND ROUTINE *

*
ABENDRTN DS 0H ABEND ROUTINE

ST R14,ABENSAVE STORE C(R14) INTO SAVE AREA
ABEND (R1),DUMP ISSUE USER ABEND WITH DUMP

ABENEXIT DS 0H EXIT FROM ABEND ROUTINE

CVAF Macros

Chapter 1. Using the Volume Table of Contents 111

L R14,ABENSAVE LOAD C(ABENSAVE) INTO R14
BR R14 EXIT

*

* IDVOLRTN *
* - OBTAIN THE NECESSARY INFORMATION FROM THE DASD VOLUME *

*
IDVOLRTN DS 0H IDENTIFY VOLUME ROUTINE

ST R14,IDVLSAVE STORE C(R14) INTO SAVE AREA
RDJFCB (VTOCDCB,(INPUT)) READ JFCB / OPEN VTOC
MVI JFCB1,X’04’ PUT IN ID FOR FORMAT 4
MVC JFCB1+1(43),JFCB1 SETUP FOR VTOC OPEN
OPEN (VTOCDCB,(INPUT)),TYPE=J OPEN VTOC (OPEN TYPE=J)
TM VTOCDCB+(DCBOFLGS-IHADCB),DCBOFOPN
BO IDVOL010 BRANCH TO IDVOL010 - GOOD OPEN
LA R1,EABN100 ELSE SETUP FOR USER ABEND 100
BAL R14,ABENDRTN INVOKE ABEND ROUTINE

IDVOL010 DS 0H GOOD OPEN - OBTAIN VOLUME INFORMATION
SLR RDEB,RDEB INIT REG1 FOR DEB PTR
SLR RUCB,RUCB INIT REG2 FOR UCB PTR
ICM RDEB,B’0111’,VTOCDCB+(DCBDEBA-IHADCB) GET DEB ADDRESS
ST RDEB,DEBADD SAVE DEB ADDRESS INTO R1
ICM RUCB,B’0111’,(DEBBASND-DEBBASIC)+(DEBUCBA-DEBDASD)(RDEB)
ST RUCB,UCBADD SAVE UCB ADDRESS INTO R2

IDVLEXIT DS 0H EXIT FROM IDVOLRTN
L R14,IDVLSAVE LOAD C(IDVLSAVE) INTO R14
BR R14 EXIT

*

* TSTRCRTN *
* - TEST RETURN CODE FROM CVAFFILT *
* - FORMAT AND PRINT MESSAGES AS NEEDED *

*
TSTRCRTN DS 0H CHECK RETURN CODE ROUTINE

ST R14,TSTRSAVE STORE C(R14) INTO SAVE AREA
L R15,RETCODE LOAD R15 WITH RC SAVED FROM LAST CALL
CH R15,RCODE00 IF RETURN CODE = 00
BE TSTRC00 BRANCH TO PROCESS RC00
CH R15,RCODE04 IF RETURN CODE = 04
BE TSTRC04 BRANCH TO PROCESS RC04

TSTRCER DS 0H ELSE PRINT GENERAL ERROR MESSAGE
MVC PDETLINE(133),RCERMSG MOVE ERROR MSG TO PRINT LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
B TSTREXIT BRANCH TO EXIT RTN

TSTRC00 DS 0H PROCESS RETURN CODE = 00
MVC PDETLINE(133),RC00MSG MOVE RC00 MSG TO PRINT LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
BAL R14,FMTCTRTN BRANCH TO FMT COUNT RTN
BAL R14,FMTOPRTN INVOKE FORMAT OUTPUT MSG ROUTINE
B TSTREXIT BRANCH TO EXIT RTN

TSTRC04 DS 0H PROCESS RETURN CODE = 04
CLI CVSTAT,STAT064 DO WE NEED RESUME?
BNE TSTR0010 NO - PRINT LOGICAL ERROR MSG
BAL R14,CVAFRS INVOKE CVAFRS RESUME ROUTINE
B TSTREXIT BRANCH TO EXIT RTN

TSTR0010 DS 0H PRINT RC04-OTHER LOGICAL ERROR/CVSTAT
MVC PDETLINE(133),RC04MSG MOVE RC04 MSG TO PRINT LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE

TSTREXIT DS 0H EXIT FROM TSTRCRTN
L R14,TSTRSAVE LOAD C(TSTRSAVE) INTO R14
BR R14 EXIT

*

* FMTCTRTN *
* - COUNT THE NUMBER OF FMT1 AND FMT3 DSCBS FOR THE REQUEST *

CVAF Macros

112 z/OS V2R1.0 DFSMSdfp Advanced Services

*
FMTCTRTN DS 0H COUNT DSCBS RETURNED ROUTINE

ST R14,FMTCSAVE STORE C(R14) INTO SAVE AREA
SLR R6,R6 ZERO OUT R6
SLR R7,R7 ZERO OUT R7
CLI DSNNBR,X’01’ IF DSNNBR FLAG = 1
BE FMTC0010 BRANCH TO LOAD ADDR OF FCL
LA R4,FCLDEF2 ELSE LOAD R4 WITH ADDR OF FCL2
B FMTC0020 BRANCH TO SET USING

FMTC0010 DS 0H
LA R4,FCLDEF LOAD R4 WITH ADDR OF FCL

FMTC0020 DS 0H CONTINUE - SET USING
USING FCLMAP,R4 ESTABLISH ADDRESSABILITY TO FCL
SLR R5,R5 ZERO OUT R5
ICM R5,B’0011’,FCLDSCBR DETERMINE IF ANY DSCBS RETURNED
BZ FMTC0060 NO - GO AND PRINT APPROPRIATE MSG
LA R4,DSCBDEF LOAD R4 WITH ADDR OF DSCB MAP
USING DSCBMAP,R4 ESTABLISH ADDRESSABILITY TO DSCB

FMTC0030 DS 0H COUNT DSCBS BY TYPE RETURNED
CLI DS1FMTID,X’F1’ IF FORMAT1
BE FMTC0040 BRANCH TO FMTC0040
CLI DS1FMTID,X’F3’ ELSE IF NOT FORMAT3
BNE FMTC0050 BRANCH TO FMTC0050
LA R7,1(R7) ADD 1 TO FORMAT3 COUNT
B FMTC0050 BRANCH TO FMTC0050

FMTC0040 DS 0H FMTC0040 - FORMAT1 INCREMENT
LA R6,1(R6) ADD 1 TO FORMAT1 COUNT

FMTC0050 DS 0H FMTC0050 - PROCESS THROUGH DSCBS
LA R4,DSCBSIZ(R4) ADD DSCBSIZ TO R4
BCT R5,FMTC0030 SUBTRACT 1 FROM DSCB COUNT AND CONT
ST R6,RETF1 STORE #FMT1’S INTO RETF1
ST R7,RETF3 STORE #FMT3’S INTO RETF3
DROP R4 DROP R4 USING
B FMTCEXIT BRANCH AROUND FMTC0060

FMTC0060 DS 0H PRINT MSG - NO DSCB’S RETURNED
MVC PDETLINE(133),NODSCBM MOVE MSG TO PRINT LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
SLR R6,R6 ZERO OUT R6
ST R6,RETF1 STORE ZERO INTO RETF1
SLR R7,R7 ZERO OUT R7
ST R7,RETF3 STORE ZERO INTO RETF3

FMTCEXIT DS 0H EXIT FROM FMTCTRTN
L R14,FMTCSAVE LOAD C(FMTCSAVE) INTO R14
BR R14 EXIT

*

* FMTOPRTN *
* - FORMAT THE DSCB COUNTS AND WRITE TO THE OUTPUT DATASET *

*
FMTOPRTN DS 0H FORMAT OUTPUT ROUTINE

ST R14,FMTOSAVE STORE C(R14) INTO SAVE AREA
MVC MSG(29),DSCBMSG1 MOVE MSG TO FORMAT LINE
L R6,RETF1 LOAD R6 WITH NBR OF FMT1’S RETURNED
CVD R6,WF1 CONVERT TO DEC FOR PRINTING
UNPK WFMTREC+29(7),WF1 UNPACK TO FORMAT LINE
OI WFMTREC+35,X’F0’ SET APPROPRIATE BITS
MVC PDETLINE(133),WFMTREC MOVE RECORD TO OUTPUT LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
MVC MSG(29),DSCBMSG2 MOVE MSG TO FORMAT LINE
L R7,RETF3 LOAD R7 WITH NBR OF FMT3’S RETURNED
CVD R7,WF3 CONVERT TO DEC FOR PRINTING
UNPK WFMTREC+29(7),WF3 UNPACK TO FORMAT LINE
OI WFMTREC+35,X’F0’ SET APPROPRIATE BITS
MVC PDETLINE(133),WFMTREC MOVE RECORD TO OUTPUT LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE

CVAF Macros

Chapter 1. Using the Volume Table of Contents 113

FMTOEXIT DS 0H EXIT FROM FMTOPRTN
L R14,FMTOSAVE LOAD C(FMTOSAVE) INTO R14
BR R14 EXIT

*

* BUFLRTN *
* - INITIALIZE BUFFER LIST HEADER (BFLH) *
* - INITIALIZE BUFFER LIST ELEMENTS (BFLE) *

*
BUFLRTN DS 0H BUFFER LIST INITIALIZATION ROUTINE

ST R14,BUFLSAVE STORE C(R14) INTO SAVE AREA
XC BFLHDEF(BFLSIZE),BFLHDEF CLEAR BUFR LIST AREA
LA R1,BFLHDEF R1 - BUFFER LIST HEADER
USING BFLMAP,R1 ESTABLISH ADDRESSABILITY
MVI BFLHNOE,BUFNBR SET NUMBER OF BUFFER ELEMENTS
OI BFLHFL,BFLHDSCB IDENTIFY AS DSCB BUFR ELEMENT LIST
LA R2,BFLHDEF+BFLHLN R2 - FIRST BUFFER LIST ELEMENT
USING BFLE,R2 ESTABLISH ADDRESSABILITY
LA R3,DSCBDEF R3 - FIRST DSCB BUFFER
LA R4,BUFNBR R4 = NUMBER OF ELEMENTS AND BUFRS

BFL0010 OI BFLEFL,BFLECHR REQUEST CCHHR ON RETURN
MVI BFLELTH,DSCBSIZ SET BUFR LNGTH TO FULL DSCB SIZE
ST R3,BFLEBUF SET ADDR(DSCB BUFFER)
LA R2,BFLELN(R2) R2 - NEXT BUFFER LIST ELEMENT
LA R3,DSCBSIZ(R3) R3 - NEXT DSCB BUFFER
BCT R4,BFL0010 LOOP THROUGH ALL ELEMENTS
DROP R1,R2 DROP TEMP USINGS

BUFLEXIT DS 0H EXIT FROM BUFLRTN
L R14,BUFLSAVE LOAD C(BUFLSAVE) INTO R14
BR R14 EXIT

*

* FCL1RTN *
* - INITIALIZE FILTER CRITERIA LIST (FCL) HEADER AND ELEMENT *
* - INITIALIZE A FCL TO READ FOR TWO SPECIFIC SEQ DATASETS *

*
FCL1RTN DS 0H FCL INITIALIZATION ROUTINE

ST R14,FCL1SAVE STORE C(R14) INTO SAVE AREA
XC FCLDEF2(FCLSIZE2),FCLDEF2 CLEAR FCL AREA
LA R1,FCLDEF2 R1 - FCL HEADER
USING FCLMAP,R1 ESTABLISH ADDRESSABILITY
LA R2,FCLHDEND R2 - FIRST FCL ELEMENT
USING FCLDSN,R2 ESTABLISH ADDRESSABILITY
MVC FCLID,CFCLID SET THE EYECATCHER ’FCL ’
MVC FCLCOUNT,=H’2’ SET NUMBER OF FCL ELEMENTS
MVI FCL1FLAG,X’80’ SET FLAG FOR FULLY QUAL DSN
MVI FCLDSNLG,X’0F’ SET LENGTH FOR DSN1 (15)
LA R3,DS01 DSN=CVAFFLT1.DATA01

* SEQ DS - 5 EXTENTS
* 1 FORMAT1 AND 1 FORMAT3

ST R3,FCLDSNA SET ADDR OF DSN
LA R2,FCLDSNEL(R2) LOAD R2 WITH ADDR OF 2ND FCL ELEMENT
MVI FCLDSNLG,X’0F’ SET LENGTH FOR DSN2 (15)
LA R3,DS02 DSN=CVAFFLT1.DATA02

* SEQ DS - 5 EXTENTS
* 1 FORMAT1 AND 1 FORMAT3

ST R3,FCLDSNA SET ADDR OF DSN
DROP R1,R2 DROP TEMP USING

FC1EXIT DS 0H EXIT FROM FCLRTN
L R14,FCL1SAVE LOAD C(FCL1SAVE) INTO R14
BR R14 EXIT

*

* FCL2RTN *
* - INITIALIZE FILTER CRITERIA LIST (FCL) HEADER AND ELEMENT *

CVAF Macros

114 z/OS V2R1.0 DFSMSdfp Advanced Services

* - INITIALIZE A FCL TO READ FOR ONE SPECIFIC PDSE DATASET *

*
FCL2RTN DS 0H FCL INITIALIZATION ROUTINE

ST R14,FCL2SAVE STORE C(R14) INTO SAVE AREA
XC FCLDEF(FCLSIZE),FCLDEF CLEAR FCL AREA
LA R1,FCLDEF R1 - FCL HEADER
USING FCLMAP,R1 ESTABLISH ADDRESSABILITY
LA R2,FCLHDEND R2 - FIRST (ONLY) FCL ELEMENT
USING FCLDSN,R2 ESTABLISH ADDRESSABILITY
MVC FCLID,CFCLID SET THE EYECATCHER ’FCL ’
MVC FCLCOUNT,=H’1’ SET NUMBER OF FCL ELEMENTS
MVI FCL1FLAG,X’80’ SET FLAG FOR FULLY QUAL DSN
MVI FCLDSNLG,X’0F’ SET LENGTH FOR DSN (15)
LA R3,DS03 DSN=CVAFFLT1.PDSE01

* PDSE DS - 122 EXTENTS
* 1 FORMAT1 AND 10 FORMAT3’S

ST R3,FCLDSNA SET ADDR OF DSN
DROP R1,R2 DROP TEMP USING

FC2EXIT DS 0H EXIT FROM FCLRTN
L R14,FCL2SAVE LOAD C(FCL2SAVE) INTO R14
BR R14 EXIT

*

* FCL3RTN *
* - INITIALIZE FILTER CRITERIA LIST (FCL) HEADER AND ELEMENT *
* - INITIALIZE A FCL TO READ FOR ONE SPECIFIC SEQ DATASET *

*
FCL3RTN DS 0H FCL INITIALIZATION ROUTINE

ST R14,FCL3SAVE STORE C(R14) INTO SAVE AREA
XC FCLDEF(FCLSIZE),FCLDEF CLEAR FCL AREA
LA R1,FCLDEF R1 - FCL HEADER
USING FCLMAP,R1 ESTABLISH ADDRESSABILITY
LA R2,FCLHDEND R2 - FIRST (ONLY) FCL ELEMENT
USING FCLDSN,R2 ESTABLISH ADDRESSABILITY
MVC FCLID,CFCLID SET THE EYECATCHER ’FCL ’
MVC FCLCOUNT,=H’1’ SET NUMBER OF FCL ELEMENTS
MVI FCL1FLAG,X’80’ SET FLAG FOR FULLY QUAL DSN
MVI FCLDSNLG,X’0F’ SET LENGTH FOR DSN (15)
LA R3,DS01 DSN=CVAFFLT1.DATA01

* SEQ DS - 5 EXTENTS
* 1 FORMAT1 AND 1 FORMAT3

ST R3,FCLDSNA SET ADDR OF DSN
DROP R1,R2 DROP TEMP USING

FC3EXIT DS 0H EXIT FROM FCLRTN
L R14,FCL3SAVE LOAD C(FCL3SAVE) INTO R14
BR R14 EXIT

*

* FCL4RTN *
* - INITIALIZE FILTER CRITERIA LIST (FCL) HEADER AND ELEMENT *
* - INITIALIZE A FCL TO READ THE DSCBS ON THE ENTIRE VOLUME *

*
FCL4RTN DS 0H FCL INITIALIZATION ROUTINE

ST R14,FCL4SAVE STORE C(R14) INTO SAVE AREA
XC FCLDEF(FCLSIZE),FCLDEF CLEAR FCL AREA
LA R1,FCLDEF R1 - FCL HEADER
USING FCLMAP,R1 ESTABLISH ADDRESSABILITY
LA R2,FCLHDEND R2 - FIRST (ONLY) FCL ELEMENT
USING FCLDSN,R2 ESTABLISH ADDRESSABILITY
MVC FCLID,CFCLID SET THE EYECATCHER ’FCL ’
MVC FCLCOUNT,=H’1’ SET NUMBER OF FCL ELEMENTS
MVI FCL1FLAG,X’00’ SET FLAG FOR GENERIC DSN
MVI FCLDSNLG,X’02’ SET LENGTH FOR DSN - ** (02)
LA R3,=C’**’ ALL DATASETS ON THE VOLUME

CVAF Macros

Chapter 1. Using the Volume Table of Contents 115

ST R3,FCLDSNA SET ADDR OF DSN
DROP R1,R2 DROP TEMP USING

FC4EXIT DS 0H EXIT FROM FCLRTN
L R14,FCL4SAVE LOAD C(FCL4SAVE) INTO R14
BR R14 EXIT

*

* CVAFRD1 *
* - INVOKE THE CFAFFILT MACRO AND READ THE DSCBS (1 DSN) *

*
CVAFRD1 DS 0H CVAFFILT - READ ROUTINE (2 DSN)

ST R14,CVR1SAVE STORE C(R14) INTO SAVE AREA
SLR R2,R2 ZERO OUT R2
LA R2,CVPLDEF LOAD R2 WITH ADDR OF CVPL
L R3,UCBADD LOAD R3 WITH UCB ADDRESS
CVAFFILT ACCESS=READ,UCB=(R3),FCL=FCLDEF,BUFLIST=BFLHDEF, X

MF=(E,(R2))
ST R15,RETCODE STORE RC FOR LATER INTERROGATION

CVR1EXIT DS 0H EXIT FROM CVAFRD1
L R14,CVR1SAVE LOAD C(CVR1SAVE) INTO R14
BR R14 EXIT

*

* CVAFRD2 *
* - INVOKE THE CFAFFILT MACRO AND READ THE DSCBS (2 DSN’S) *

*
CVAFRD2 DS 0H CVAFFILT - READ ROUTINE (2 DSN’S)

ST R14,CVR2SAVE STORE C(R14) INTO SAVE AREA
SLR R2,R2 ZERO OUT R2
LA R2,CVPLDEF LOAD R2 WITH ADDR OF CVPL
L R3,UCBADD LOAD R3 WITH UCB ADDRESS
LA R4,FCLDEF2 LOAD R4 WITH ADDR OF FCLDEF2
LA R5,BFLHDEF LOAD R5 WITH ADDR OF FCLDEF2
CVAFFILT ACCESS=READ,UCB=(R3),FCL=(R4),BUFLIST=(R5), X

MF=(E,(R2))
ST R15,RETCODE STORE RC FOR LATER INTERROGATION

CVR2EXIT DS 0H EXIT FROM CVAFRD2
L R14,CVR2SAVE LOAD C(CVR2SAVE) INTO R14
BR R14 EXIT

*

* CVAFRDA *
* - INVOKE THE CFAFFILT MACRO AND READ ALL THE DSCBS *

*
CVAFRDA DS 0H CVAFFILT - READ ALL DSCBS ROUTINE

ST R14,CVRASAVE STORE C(R14) INTO SAVE AREA
CVAFFILT ACCESS=READ,UCB=UCBADD,FCL=FCLDEF,BUFLIST=BFLHDEF, X

FLTAREA=KEEP,IOAREA=KEEP, X
MF=(E,CVPLDEFA)

ST R15,RETCODE STORE RC FOR LATER INTERROGATION
CVRAEXIT DS 0H EXIT FROM CVAFRDA

L R14,CVRASAVE LOAD C(CVRASAVE) INTO R14
BR R14 EXIT

*

* CVAFRS *
* - INVOKE THE CFAFFILT MACRO USING RESUME *

*
CVAFRS DS 0H CVAFFILT - RESUME ROUTINE

ST R14,CVRSSAVE STORE C(R14) INTO SAVE AREA
CVRS0000 DS 0H NOW CHECK RC AND STAT CODES

CH R15,RCODE00 IS THE RC FROM RESUME 0?
BE CVRS0050 YES BRANCH TO CVRS0050

CVAF Macros

116 z/OS V2R1.0 DFSMSdfp Advanced Services

CH R15,RCODE04 IS THE RC FROM RESUME 4?
BE CVRS0020 YES BRANCH TO CVRS0020

CVRS0010 DS 0H ELSE PRINT MSG (RC IS 8,12,OR 16)
MVC PDETLINE(133),RCERMSG MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
B CVRSEXIT BRANCH TO EXIT ROUTINE

CVRS0020 DS 0H PROCESS FOR RC04 - CHECK FOR STAT064
CLI CVSTAT,STAT064 IS THE CVSTAT CODE 064(RESUME NEEDED)
BNE CVRS0060 NO - BRANCH TO CVRS0060
CLI RESFLG,X’01’ IS RESUME FLAG ON
BE CVRS0030 YES - BRANCH TO CVRS0030
MVC PDETLINE(133),ST64MSG1 MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
MVC PDETLINE(133),ST64MSG2 MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
BAL R14,FMTCTRTN INVOKE FORMAT COUNT ROUTINE
BAL R14,FMTOPRTN INVOKE FORMAT OUTPUT MSG ROUTINE
MVI RESFLG,X’01’ RESUME NEEDED - SET FLAG ON
B CVRS0040 BRANCH TO CVRS0040

CVRS0030 DS 0H RESUME PROCESSING
MVC PDETLINE(133),ST64MSG3 MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
BAL R14,FMTCTRTN INVOKE FORMAT COUNT ROUTINE
BAL R14,FMTOPRTN INVOKE FORMAT OUTPUT MSG ROUTINE

CVRS0040 DS 0H RESUME PROCESSING
CVAFFILT ACCESS=RESUME,MF=(E,CVPLDEFA)
B CVRS0000 BRANCH TO CHECK RETURN CODE AGAIN

CVRS0050 DS 0H RC IS 0 NO LONGER NEED RESUME
MVC PDETLINE(133),ST64MSG3 MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
BAL R14,FMTCTRTN INVOKE FORMAT COUNT ROUTINE
BAL R14,FMTOPRTN INVOKE FORMAT OUTPUT MSG ROUTINE
MVC PDETLINE(133),ST64MSG4 MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE

*
* RELEASE WORK AREAS
*

CVAFFILT ACCESS=RLSE,FLTAREA=NOKEEP,IOAREA=NOKEEP, X
MF=(E,CVPLDEFA)

B CVRSEXIT BRANCH TO EXIT ROUTINE
CVRS0060 DS 0H RC IS 4 BUT CVSTAT IS NOT 064

MVC PDETLINE(133),RC04MSG MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE

CVRSEXIT DS 0H EXIT FROM CVAFRS
L R14,CVRSSAVE LOAD C(CVRSSAVE) INTO R14
BR R14 EXIT

*

* CVAFRL *
* - INVOKE THE CFAFFILT MACRO AND RELEASE WORK AREAS *

*
CVAFRL DS 0H CVAFFILT - RLSE ROUTINE

ST R14,CVRLSAVE STORE C(R14) INTO SAVE AREA
CVAFFILT ACCESS=RLSE,FCL=0,BUFLIST=0,FLTAREA=NOKEEP, X

MF=(E,CVPLDEF)
CH R15,RCODE00 IF RC = 0 THEN
BE CVRLEXIT BRANCH TO EXIT
MVC PDETLINE(133),RLSEMSG ELSE MOVE MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE

CVRLEXIT DS 0H EXIT FROM CVAFRL
L R14,CVRLSAVE LOAD C(CVRLSAVE) INTO R14
BR R14 EXIT

*

* WORKING STORAGE *

CVAF Macros

Chapter 1. Using the Volume Table of Contents 117

*
DS 0D
DC CL36’CVAFFEXP-WORKING STORAGE BEGINS HERE’

*

* EQUATES *

*
EABN100 EQU 100 USER ABEND CODE 100 - VTOC OPEN ERROR
EABN101 EQU 101 USER ABEND CODE 101 - OUTDD OPEN ERROR
EABN102 EQU 102 USER ABEND CODE 102 - OUTDD CLOSE ERROR
BUFNBR EQU 11 11 BUFFERS TO BE USED
R0 EQU 0
R1 EQU 1
RDEB EQU 1 REG1 FOR DEB ADDRESS
R2 EQU 2
RUCB EQU 2 REG2 FOR UCB ADDRESS
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*

* SAVE AREAS *

*
SAVE DC 18F’0’ MAIN PROGRAM SAVE AREA
OPENSAVE DC F’0’ OPEN FILES ROUTINE SAVE AREA
CLOSSAVE DC F’0’ CLOSE FILES ROUTINE SAVE AREA
ABENSAVE DC F’0’ ABEND ROUTINE SAVE AREA
IDVLSAVE DC F’0’ IDNETIFY VOLUME ROUTINE SAVE AREA
BUFLSAVE DC F’0’ INITIALIZE BUFFER ROUTINE SAVE AREA
FCL1SAVE DC F’0’ INITIALIZE FCL1 ROUTINE SAVE AREA
FCL2SAVE DC F’0’ INITIALIZE FCL2 ROUTINE SAVE AREA
FCL3SAVE DC F’0’ INITIALIZE FCL3 ROUTINE SAVE AREA
FCL4SAVE DC F’0’ INITIALIZE FCL4 ROUTINE SAVE AREA
TSTRSAVE DC F’0’ TEST RETURN CODE ROUTINE SAVE AREA
CVR1SAVE DC F’0’ CVAFFILT READ 1 DSN ROUTINE SAVE AREA
CVR2SAVE DC F’0’ CVAFFILT READ 2 DSN ROUTINE SAVE AREA
CVRASAVE DC F’0’ CVAFFILT READ ALL ROUTINE SAVE AREA
CVRLSAVE DC F’0’ CVAFFILT RLSE ROUTINE SAVE AREA
CVRSSAVE DC F’0’ CVAFFILT RESUME ROUTINE SAVE AREA
FMTCSAVE DC F’0’ FORMAT DSCB COUNT ROUTINE SAVE AREA
FMTOSAVE DC F’0’ FORMAT OUTPUT ROUTINE SAVE AREA
*

* CONSTANTS *

*
RETCODE DC F’999’
RCODE00 DC H’0’ RETURN CODE 0 - HALFWORD
RCODE04 DC H’4’ RETURN CODE 4 - HALFWORD
DSNNBR DC X’FF’ INDICATE NBR OF DSNS TO PROCESS
RESFLG DC X’00’ RESUME FLAG - OFF
BLNKLNE DC CL133’ ’
STRTMSG DC CL133’ CVAFFEXP START OF OUTPUT MESSAGES ’
ENDMSG DC CL133’ CVAFFEXP END OF OUTPUT MESSAGES ’
ST64MSG1 DC CL133’ RC04 VERIFIED - CVSTAT 064 RESUME IS NECESSARY ’
ST64MSG2 DS 0CL133

CVAF Macros

118 z/OS V2R1.0 DFSMSdfp Advanced Services

DC CL49’ CVAFFILT (INITIAL) RETURNED THE FOLLOWING DSCBS ’
DC CL84’FOR THE VOLUME: ’

ST64MSG3 DS 0CL133
DC CL49’ CVAFFILT (RESUME) RETURNED THE FOLLOWING DSCBS ’
DC CL84’FOR THE VOLUME: ’

ST64MSG4 DS 0CL133
DC CL48’ CVAFFILT RESUME OPERATION COMPLETE - ALL DSCBS ’
DC CL85’RETURNED’

DSCBMSGA DS 0CL133
DC CL48’ CVAFFILT RETURNED THE FOLLOWING DSCBS FOR DSN:’

DS DC CL44’ ’
DC CL41’ ’

DSCBMSGB DS 0CL133
DC CL48’ AND FOR DSN:’

DS2 DC CL44’ ’
DC CL41’ ’

DSCBMSGC DS 0CL133
DC CL48’ CVAFFILT LOGICAL ERROR STATUS RETURNED - DSN:’

DS3 DC CL44’ ’
DC CL41’ ’

NODSCBM DC CL133’ NO DSCBS RETURNED FROM CVAFFILT ’
RC00MSG DC CL133’ RC00 VERIFIED - THE REQUEST WAS SUCCESSFUL ’
RC04MSG DC CL133’ RC04 VERIFIED - LOGICAL ERROR STATUS IN CVSTAT ’
RCERMSG DC CL133’ RC08, RC12, OR RC16 RETURNED FROM CVAFFILT ’
RLSEMSG DC CL133’ NON ZERO RETURN CODE BACK FROM RLSE ’
DSCBMSG1 DC CL29’ NUMBER OF FORMAT 1 DSCBS - ’
DSCBMSG2 DC CL29’ NUMBER OF FORMAT 3 DSCBS - ’
DS01 DC CL44’CVAFFLT1.DATA01’
DS02 DC CL44’CVAFFLT1.DATA02’
DS03 DC CL44’CVAFFLT1.PDSE01’
CFCLID DC CL4’FCL ’

* WORK AREAS *

*
WF1 DS D DOUBLE WORD - FORMAT 1 WORK AREA
WF3 DS D DOUBLE WORD - FORMAT 3 WORK AREA
DEBADD DC F’0’ DEB ADDRESS SAVE AREA
UCBADD DC F’0’ UCB ADDRESS SAVE AREA
RETF1 DC F’0’ COUNT OF FMT 1 DSCBS RET BY CVAFFILT
RETF3 DC F’0’ COUNT OF FMT 3 DSCBS RET BY CVAFFILT
WFMTREC DS 0CL133 WORK FORMAT RECORD FOR OUTPUT
MSG DC CL29’ ’ GENERAL MESSAGE
FMTCNT DC CL08’ ’ FORMAT COUNT
TOEOL DC CL96’ ’ SPACES TO END OF LINE
*

* PRINT LINES *

*

DS 0D TAKE CARE OF SLACK BYTES
PDETLINE DS 0CL133 DETAIL LINE

DC CL133’ ’
EPDETLEN EQU *-PDETLINE LENGTH OF DETAIL LINE
*

* DCB - OUTPUT FILE (OUTFILE) *

*
OUTFILE DCB DDNAME=OUTDD, X

DSORG=PS, X
RECFM=FBA, X
LRECL=133, X
MACRF=PM

*

* VTOC DCB AREA *

CVAF Macros

Chapter 1. Using the Volume Table of Contents 119

*
VTOCDCB DCB DDNAME=CVAFDD,MACRF=E,EXLST=XLST1,DSORG=PS
XLST1 DC X’87’

DC AL3(JFCB1)
JFCB1 DS 0CL176
TESTNAME DS CL44

DS CL8
DS BL1
DS CL123

*

* MAPPPING MACROS *

*
CVPLMAP ICVAFPL CVPLFSA=YES CVAF PARMLIST
FCLMAP ICVFCL FILTER CRITERIA LIST
BFLMAP ICVAFBFL BUFFER LIST

PUSH PRINT
PRINT NOGEN

DSCBMAP DSECT DSCB DSECT
IECSDSL1 (1) USE FMT 1 DSCB MAPPING TO GET BUFFER

DSCBSIZ EQU *-IECSDSL1 LENGTH OF FULL DSCB
DCBD DSORG=XE,DEVD=DA MAP OF DCB
IEZDEB MAP OF DEB
POP PRINT

*
*
CVAFFEXP CSECT , CONT OF CSECT AFTER MAPPING MACROS
*
*

* CVAF PARAMETER LISTS *

*
CVPLDEF CVAFFILT MF=L,BRANCH=NO,FLTAREA=KEEP
CVPLDEFA CVAFFILT BRANCH=(YES,SUP),MF=L
*

* SPACE ALLOCATION FOR CVPL, FCL, BFL, AND DSCB BUFFERS *

*
FCLDEF DS (FCLHDLEN+FCLDSNEL)X FCL HEADER AND ONE FCL ELEMENT
FCLSIZE EQU *-FCLDEF
* DEFINE A CVAF BUFFER LIST WITH
FCLDEF2 DS (FCLHDLEN+2*FCLDSNEL)X FCL HEADER AND TWO FCL ELEMENTS
FCLSIZE2 EQU *-FCLDEF2
* DEFINE A CVAF BUFFER LIST WITH
* N BUFFER LIST ELEMENTS
BFLHDEF DS (BFLHLN)X BUFFER LIST HEADER
BFLEDEF DS (BUFNBR*BFLELN)X N BUFFER LIST ELEMENTS
BFLSIZE EQU *-BFLHDEF
* DEFINE N FULL DSCB BUFFERS
DSCBDEF DS (BUFNBR*DSCBSIZ)X
*

END CVAFFEXP END OF CVAFFEXP

CVAFSEQ Macro Overview and Specification
The CVAFSEQ macro can be used to:
v Read an indexed VTOC sequentially in data-set-name (DSN) order
v Read an indexed VTOC or a nonindexed VTOC in physical-sequential order.

See “Accessing DSNs or DSCBs in Sequential Order” on page 65 for additional
information.

CVAF Macros

120 z/OS V2R1.0 DFSMSdfp Advanced Services

The format of the CVAFSEQ macro is:

�� CVAFSEQ
label

ACCESS= GT
GTEQ ,BUFLIST=addr ,DSN=addr

�

�
,UCB= (ucbaddr)
,DEB=addr

NO
,DSNONLY= YES

,ARG=addr
�

�
NOKEEP

,IOAREA= KEEP
(KEEP,addr)
(NOKEEP,addr)

NOKEEP
,IXRCDS= KEEP

(KEEP,addr)
(NOKEEP,addr)

�

�
(1)

NO
,BRANCH= YES

(YES,SUP)
(YES,PGM)

NOTOK
,EADSCB= OK

I
,MF= L

(E,addr)

��

Notes:

1 If YES is coded, the default is SUP.

ACCESS: Specify Relationship between Supplied and Returned
DSN
ACCESS=GT

Specifies that the DSN or argument value is to be used to return a DSCB
whose DSN or argument is greater than that supplied.

ACCESS=GTEQ
Specifies that the DSN or argument value is to be used to return a DSCB
whose DSN or argument is greater than or equal to that supplied.

Recommendation: A CVAF call specifying ACCESS=GTEQ should be followed
by an ACCESS=GT request, or the same DSCB or name is returned.

BUFLIST: Specify One or More Buffer Lists
BUFLIST=addr

Supplies the address of a buffer list used to read or write DSCBs and VIRs.

DSN: Specify Access by DSN Order or by Physical-Sequential
Order
DSN=addr

Supplies the address of a 44-byte area containing either zeros or a data set
name. Specifying the DSN keyword causes access of an indexed VTOC by DSN
order. BUFLIST is required if DSNONLY=NO is coded or the default.

DSN omitted
If you omit the DSN keyword, access of an indexed or nonindexed VTOC is by
physical-sequential order. BUFLIST is required.

If the order is physical-sequential, initialize the argument field in the first buffer
list entry to zero or to the argument of the DSCB. If the argument is zero

CVAF Macros

Chapter 1. Using the Volume Table of Contents 121

(BFLEARG=00), the read begins at the start of the VTOC. You must be authorized
(APF or system key) to read multiple DSCBs with a single invocation of the
CVAFSEQ macro. See “Initiating Physical-Sequential Access” on page 66 for more
information.

UCB or DEB: Specify the VTOC to Be Accessed
UCB= rs-type or (2-12) standard form UCB= rx-type or (2-12) execute form

Specifies the address of the UCB for the VTOC to be accessed. The UCB
address can be for a captured UCB, or for an actual UCB above or below the
16MB line. Use the address of a UCB, not a UCB copy. An unauthorized caller
must not use this parameter. If your program is in 31-bit mode, this address
must be in 31-bit address; the high order byte is part of the address. You
should not code the UCB parameter with MF=L.

Recommendations::

v Code the address of the UCB parameter only as register (2-12). Coding an
RX-type address gives you unpredictable results.

v Do not use the UCB address passed back in the CVPL from a previous
CVAFSEQ request, particularly in AMODE=24, as it may be invalid (because
it is a captured and then uncaptured address). The recommendation is to use
IOAREA=KEEP.

DEB=addr
Supplies the address of a DEB opened to the VTOC you want to access. CVAF
does not allow output requests to the VTOC or VTOC index if you specify the
DEB subparameter. If you are not authorized, you cannot perform any
asynchronous activity (such as EXCP, CLOSE, EOV), against the data set
represented by the DEB because CVAF removes the DEB from the DEB table
for the duration of the CVAF call. If you are not authorized (neither APF
authorized nor in a system key), specify a DEB address, not a UCB, to
CVAFSEQ. See “Identifying the Volume” on page 57 for further details.

If you supply a previously obtained I/O area through the IOAREA keyword,
neither UCB nor DEB need be supplied. Otherwise, supply either a UCB or DEB. If
you supply a UCB address, it is overlaid in the CVPL by the UCB address in the
I/O area. If you supply both the UCB and the DEB addresses in the CVPL, the
DEB address is used and the UCB address in the CVPL is overlaid by the UCB
address in the DEB.

DSNONLY: Specify That Only the Data Set Name Is Read
This keyword is applicable only to accessing an indexed VTOC in DSN order.

DSNONLY=NO
Requests that the data set name be obtained from the VTOC index and the
DSCB be read into a buffer supplied through the BUFLIST keyword. BUFLIST
is required.

DSNONLY=YES
Requests that only the data set name be obtained from the VTOC index. If the
ARG keyword is coded, the argument of the DSCB is returned.

ARG: Specify Where the Argument of the DSCB Is to Be
Returned
This keyword is applicable only to accessing an indexed VTOC in DSN order with
DSNONLY=YES coded.

CVAF Macros

122 z/OS V2R1.0 DFSMSdfp Advanced Services

ARG=addr
Supplies the address of the 5-byte area where the CCHHR of each data set
name in the VTOC index is returned when DSNONLY=YES is coded.

IOAREA: Keep or Free the I/O Work Area
IOAREA=KEEP

Specifies that the CVAF I/O area associated with the CVAF parameter list is to
be kept upon completion of the CVAF request. IOAREA=KEEP can be coded
with BRANCH=NO only if the caller is authorized (APF, or system key).

If IOAREA=KEEP is coded, the caller must call CVAF with IOAREA=NOKEEP
specified at some future time, whether or not any further VTOC access is
required: for example, the recovery routine of the caller of CVAF.

Coding IOAREA=KEEP allows subsequent CVAF requests to be more efficient,
because certain initialization functions can be bypassed. Neither DEB nor UCB
need be specified when a previously obtained CVAF I/O area is supplied; nor
can they be changed.

When IOAREA=KEEP is first issued, CVAF returns the CVAF I/O area in the
CVAF parameter list (CVIOAR). Subsequent calls of CVAF can use that same
parameter list, and CVAF obtains its I/O area from the CVIOAR.

When processing on the current volume is finished, release all areas that were
kept.

Note: Do not switch back and forth between AMODE=24 and AMODE=31
during a succession of CVAFSEQ requests while IOAREA=KEEP is active. This
can cause problems such as ABENDS in CVAF.

IOAREA=(KEEP,addr)
Supplies the address of a previously obtained I/O area. If a different CVAF
parameter list is used, the previously obtained CVAF I/O area can be passed
to CVAF by coding its address as the second parameter of the IOAREA
keyword.

IOAREA=NOKEEP
Causes the work area to be freed upon completion of the CVAF request.

IOAREA=(NOKEEP,addr)
Causes a previously obtained work area to be freed upon completion of the
CVAF request.

IXRCDS: Retain VIERs in Virtual Storage
This keyword applies to an indexed VTOC only.

IXRCDS=KEEP
Specifies that the VIERs read into storage during the CVAF function are to be
kept in virtual storage. The VIERs are retained even if the index function is
unsuccessful. The VIERs are accessed from the CVAF parameter list
(CVIRCDS). CVIRCDS is the address of a buffer list containing the VIR buffer
addresses and RBAs of the VIERs read.

Index search function dynamically updates the buffer list and, when necessary,
obtains additional buffer lists and chains them together.

If IXRCDS=KEEP is specified and no buffer list is supplied to CVAF in the
CVPL, CVAF obtains a buffer list and buffers and reads the first high-level
VIER. The address of the buffer list is placed in the CVIRCDS field of the
CVPL.

CVAF Macros

Chapter 1. Using the Volume Table of Contents 123

The buffer list and VIR buffers are in the caller's protect key. The subpool is 0
if the caller is not authorized; subpool 229 if the caller is authorized.

If IXRCDS=KEEP for an nonindexed VTOC, a request to read a DSCB can be
performed, but an error code is returned.

When processing on the current volume is finished, release all areas that were
kept.

IXRCDS=(KEEP,addr)
The CVIRCDS from one CVAF call can be passed to another CVAF parameter
list by specifying the address as the second parameter in the IXRCDS keyword.

IXRCDS=NOKEEP
If IXRCDS=NOKEEP is coded, the VIERs that are accessed (if any) are not
retained. Furthermore, the buffer list supplied in the CVIRCDS field in the
CVAF parameter list is released, as are all buffers found in the buffer list. If the
skip bit is set in any entry in the buffer list, the buffer and buffer list are not
freed.

IXRCDS=(NOKEEP,addr)
specifies that previously accessed VIERs are not to be retained.

You must free buffer lists and buffers obtained by CVAF. This can be done in one
of three ways:
v By coding IXRCDS=NOKEEP on the CVAFSEQ macro that obtained the buffers
v By coding IXRCDS=NOKEEP on a subsequent CVAF macro
v By coding CVAFDIR ACCESS=RLSE and providing the address of the buffer list

in the BUFLIST keyword.

Requirement: You must enqueue the VTOC and reserve the unit to maintain the
integrity of the VIERs read.

BRANCH: Specify the Entry to the Macro
BRANCH=(YES,SUP)

Requests the branch entry. The caller must be in supervisor state. Protect key
checking is bypassed.

If BRANCH=YES is coded, an 18-word save area must be supplied. No lock
can be held on entry to CVAF. SRB mode is not allowed.

BRANCH=YES
Equivalent to BRANCH=(YES,SUP), because SUP is the default when YES is
coded. Protect key checking is bypassed.

BRANCH=(YES,PGM)
Requests the branch entry. The caller must be APF authorized and in problem
state. Protect key checking is bypassed.

BRANCH=NO
requests the SVC entry. The caller must be APF authorized if any output
operations are requested. Protect key checking is performed. This is the
default.

EADSCB=value: Specify the support level for extended attribute
DSCBs.
EADSCB=OK

This specification indicates that the calling program supports extended
attribute DSCBs. An extended address volume may have these DSCBs

CVAF Macros

124 z/OS V2R1.0 DFSMSdfp Advanced Services

allocated to it. The returned DSCBs (format-3, format-8) may contain extent
descriptors described by 28-bit cylinder addresses or DSCBs (format-9) that
contain additional attribute information.

For calls that initiate physical sequential access (DSN=0 or omitted), a
CVAFSEQ request issued to an EAV volume will be failed if this new,
EADSCB=OK, indicator is not set.

For calls that initiate index order (DSN=address) where the BUFLIST=address
keyword is specified, a CVAFSEQ request issued to an EAV volume will be
failed if the EADSCB=OK indicator is not set and the DSCB associated with
this address is a format-8 DSCB.

The failing error code for these cases will be reflected as follows:
v CVAF status code (CVSTAT) set to STAT082.
v Return code 4

EADSCB=OK will set the CV4EADOK indicator in the CVPL. All other calls to
CVAFSEQ are allowed and EADSCB=OK will be ignored. That is CVAFSEQ
calls with DSNONLY=YES and ARG=address specified.

EADSCB=NOTOK
Indicates a calling program does not support extended attribute DSCBs.
EADSCB=NOTOK will turn off the CV4EADOK indicator in the CVPL. This is
the default.

MF: Specify the Form of the Macro
This keyword specifies whether the list, execute, or normal form of the macro is
requested.

MF=I
If I is coded, or neither L nor E is coded, the CVAF parameter list is generated,
as is code, to call CVAF. This is the normal form of the macro.

MF=L
Indicates the list form of the macro. A parameter list is generated, but code to
call CVAF is not generated.

MF=(E,addr)
Indicates the execute form of the macro. The remote CVAF parameter list
supplied as addr is used in and can be modified by the execute form of the
macro.

Return Codes from CVAFSEQ
On return from CVAF, register 1 contains the address of the CVPL (CVAF
parameter list), and register 15 contains one of the following return codes:

Return Code Meaning

0 (X'00') The request was successful.
4 (X'04') End of data (CVSTAT is set to decimal 32), or an error was

encountered. The CVSTAT field in the CVPL contains an
indication of the cause of the error. Error descriptions are in
“VTOC Index Error Message and Associated Codes” on
page 139.

8 (X'08') Invalid VTOC index structure. CVSTAT contains an
indication of the cause of the error. Error descriptions are in
“VTOC Index Error Message and Associated Codes” on
page 139.

CVAF Macros

Chapter 1. Using the Volume Table of Contents 125

Return Code Meaning

12 (X'0C') The CVPL (CVAF parameter list) is not in your protect key,
or is not valid (the ID is not valid, or the length field is
incorrect, or the CVFCTN field is not valid). The CVPL has
not been modified.

16 (X'10') An I/O error was encountered.

Example of using the CVAFSEQ macro with an indexed VTOC
This example uses the CVAFSEQ macro to count the number of VSAM data sets
whose data set names are within the range defined by two supplied data set
names. The addresses of the two data set names are supplied to the program in
registers 6 and 7, labeled RDSN1 and RDSN2, respectively. The address of a DEB
open to the VTOC is supplied in register 4, labeled RDEB.

The CVAF parameter list is expanded by a list form of the CVAFSEQ macro.
ACCESS=GTEQ is specified on the list form of macro and is, therefore, not coded
in the first execution of the CVPL. Subsequent executions of the CVPL (at label
RELOOP) specify ACCESS=GT.

End of data is tested by comparing the CVSTAT field to the value of STAT032,
which is an equate in the ICVAFPL mapping macro.

The count of VSAM DSCBs matching the data set name criterion is returned in
register 15, unless an error is encountered, in which case a negative 1 is returned in
register 15.
SEQXMP1 CSECT

STM 14,12,12(13)
BALR 12,0
USING *,12
ST 13,SAVEAREA+4
LA RWORK,SAVEAREA
ST RWORK,8(,13)
LR 13,RWORK

**
*
* REGISTERS
*
**
REG1 EQU 1 REGISTER 1
RWORK EQU 3 WORK REGISTER
RDEB EQU 4 DEB ADDRESS
RDSN1 EQU 6 ADDRESS OF DATA SET NAME 1
RDSN2 EQU 7 ADDRESS OF DATA SET NAME 2
REG15 EQU 15 RETURN CODE REGISTER 15
**
*
* COUNT THE NUMBER OF VSAM DATA SETS WHOSE DATA SET NAMES ARE
* BETWEEN DSN1 AND DSN2 INCLUSIVELY.
* RDSN1 CONTAINS ADDRESS OF DSN1.
* RDSN2 CONTAINS ADDRESS OF DSN2.
* ADDRESS OF DEB OPEN TO VTOC SUPPLIED IN RDEB.
*
**

XC BUFLIST(BFLHLN+BFLELN),BUFLIST ZERO BUFFER LIST
OI BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST
MVI BFLHNOE,1 ONE BUFFER LIST ENTRY
LA RWORK,DS1FMTID ADDRESS OF DSCB BUFFER
ST RWORK,BFLEBUF PLACE IN BUFFER LIST
MVI BFLELTH,DSCBLTH DATA PORTION OF DSCB READ - DSN *

SUPPLIED IN CVPL

CVAF Macros

126 z/OS V2R1.0 DFSMSdfp Advanced Services

MVC DS1DSNAM,0(RDSN1) MOVE IN STARTING DATA SET NAME TO *
WORKAREA

XR RWORK,RWORK ZERO COUNT
CVAFSEQ DEB=(RDEB), FIND FIRST DATA SET WHOSE DATA SET*

BUFLIST=BUFLIST, NAME IS GREATER THAN OR EQUAL TO *
EADSCB=OK, THAT OF DSN1 *
MF=(E,CVPL)

LOOP EQU * LOOP UNTIL END OF DATA OR DATA SET *
NAME GREATER THAN DSN2

LTR REG15,REG15 ANY ERROR
BZ TESTDSN BRANCH IF NOT-CHECK DSN LIMIT

**
*
* DETERMINE WHAT ERROR IS
*
**

C REG15,ERROR4 IS RETURN CODE 4
BNE OTHERERR BRANCH IF NOT 4
CLI CVSTAT,STAT032 IS IT END OF DATA?
BNE OTHERERR BRANCH IF NOT

**
*
* END OF DATA
*
**

B RELEASE RELEASE CVAF RESOURCES AND RETURN
TESTDSN EQU * IS DATA SET NAME GREATER THAN DSN2

CLI DS1FMTID,DS1IDC IS THIS A FORMAT 1 DSCB?
BE CKVSAM BRANCH IF FORMAT 1
CLI DS1FMTID,DS8IDC IS THIS A FORMAT 8 DSCB?
BNE CKLAST BRANCH IF NO. CAN NOT BE VSAM.

CKVSAM EQU * CHECK VSAM
CLC DS1DSNAM,0(RDSN2) HAS LIMIT BEEN REACHED?
BH RELEASE BRANCH IF HIGH TO RELEASE RESOURCES
TM DS1DSORG+1,DS1ORGAM IS DATA SET VSAM
BZ CKLAST BRANCH IF NO-DO NOT COUNT IT
LA RWORK,1(,RWORK) INCREMENT COUNT BY ONE

CKLAST EQU * CHECK IF LAST DATA SET NAME (DSN2)
CLC DS1DSNAM,0(RDSN2) HAS LIMIT BEEN REACHED?
BNH RELOOP BRANCH IF NO-READ NEXT ONE
B RELEASE RELEASE CVAF RESOURCES AND RETURN

RELOOP EQU * READ NEXT DSCB
CVAFSEQ ACCESS=GT, GET DSCB WITH DATA SET NAME *

EADSCB=OK, GREATER THAN THE ONE LAST READ *
MF=(E,CVPL)

B LOOP CHECK RESULTS OF CVAFSEQ
OTHERERR EQU * UNEXPECTED ERROR
**
*
* UNEXPECTED ERROR PROCESSING
*
**

LA RWORK,1(0,0) ONE IN RWORK
LNR RWORK,RWORK SET NEGATIVE COUNT INDICATING ERROR

RELEASE CVAFDIR ACCESS=RLSE, RELEASE CVAF BUFFERS/IOAREA *
BUFLIST=0, DO NOT RELEASE USER BUFFER LIST *
IXRCDS=NOKEEP, RELEASE CVAF VIER BUFFERS *
MF=(E,CVPL) RELEASE CVAF I/O AREA

LR REG15,RWORK CURRENT COUNT IS RETURN CODE
L 13,SAVEAREA+4
RETURN (14,12),RC=(15) RETURN CURRENT COUNT

ERROR4 DC F’4’ ERROR RETURN CODE 4
BUFLIST ICVAFBFL DSECT=NO BUFFER LIST

IECSDSL1 (1) FORMAT 1 DSCB DATASET NAME AND *
BUFFER

DSCBLTH EQU *-IECSDSL1-L’DS1DSNAM LENGTH OF DATA PORTION OF DSCB
SAVEAREA DS 18F SAVE AREA

CVAF Macros

Chapter 1. Using the Volume Table of Contents 127

CVPL CVAFSEQ ACCESS=GTEQ, READ DSCB WITH DSN GTEQ SUPPLIED DSN *
IXRCDS=KEEP, KEEP VIERS IN STORAGE DURING CALLS *
DSN=DS1DSNAM, SUPPLIED DATA SET NAME *
BUFLIST=BUFLIST, *
EADSCB=OK, *
MF=L

ORG CVPL EXPAND MAP OVER LIST
CVPLMAP ICVAFPL DSECT=NO CVPL MAP

END

Example of using the CVAFSEQ macro to process a volume in
physical sequential order
This example will use the CVAFSEQ macro to read through the DSCBs in physical
sequential order. Although CVAFSEQ can be used to process both an indexed and
non indexed volume in physical sequential order this example uses a non indexed
volume. The CVAFSEQ call will return DSCBs where BFLEARG is set to a starting
CCHHR. This value is initially set to zero and the CVAFSEQ call uses
ACCESS=GT. A buffer list with five buffer list entries is contained within the
program and is used to read up to five DSCBs at a time.

Output from this program will be to OUTDD. It will be a list of all the datasets on
the volume and their corresponding CCHHRs. The output from this program is
based on the volume and dataset information detailed within the source code
example. If the output received is different it can be verified using the IEHLIST
utility.

This program must be APF authorized because it uses the UCB= and
BRANCH=(YES,PGM) parameters. It is bad programming practice to give a
program APF authorization unnecessarily. In this case these two options just give a
slight performance improvement. To remove APF authorization from this example,
perform these steps:
v Remove the SETCODE and ENTRY statements for the binder.
v Replace the UCB parameter with DEB=(reg). Precede the CVAFSEQ macro with

an instruction to load the specified register from DEBADD.
v Remove the BRANCH parameter on CVAFSEQ.

Sample JCL for CVAFSEQ macro to process a volume in sequential order: The
following is the sample JCL used to Assemble, Link, and Execute the example
source. Changes will have to be made to this JCL, as appropriate, for each
customer environment.
//SEQXMP2 JOB ,MSGCLASS=X,TIME=(,10),
// NOTIFY=&SYSUID
//*
//STEP01 EXEC PROC=ASMACLG
//SYSIN DD *

(INCLUDE EXAMPLE SOURCE HERE)
/*
//*
//L.SYSLMOD DD DSN=YOUR.AUTH.LINKLIB(SEQXMP2),DISP=SHR
//L.SYSIN DD *

SETCODE AC(1)
ENTRY SEQXMP2

/*
//*
//G.SYSABEND DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//*
//G.CVAFDD DD DISP=SHR,UNIT=3390,VOL=SER=339003
//G.OUTDD DD DSN=CVAFSEQ1.OUTPUT,

CVAF Macros

128 z/OS V2R1.0 DFSMSdfp Advanced Services

// DISP=(NEW,CATLG),
// UNIT=3390,VOL=SER=339001,
// SPACE=(TRK,(2,2)),
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//*
//

Code example of the CVAFSEQ macro to process a volume in sequential order:
SEQXMP2 TITLE ’CVAF CVAFSEQ - SEQXMP2 EXAMPLE’
SEQXMP2 CSECT
SEQXMP2 AMODE 24
SEQXMP2 RMODE 24
*

* *
* SEQXMP2 - THIS MODULE WILL READ THROUGH THE DSCBS ON A *
* NONINDEXED VOLUME. IT WILL USE THE CVAFSEQ MACRO *
* TO READ UP TO 5 DSCBS AT A TIME IN PHYSICAL *
* SEQUENTIAL ORDER. *
* OUTPUT FROM THIS MODULE WILL BE TO OUTDD. IT WILL *
* LIST ALL OF THE DATASETS ON THE VOLUME AND THEIR *
* CORRESPONDING CCHHR’S. THE FMT4, FMT5, AND FMT7 DSCBS *
* AND THEIR CORRESPONDING CCHHRS WILL NOT BE LISTED. *
* *
* THE FOLLOWING DATASETS WERE ALLOCATED IN THE FOLLOWING *
* ORDER ON A NONINDEXED VOLUME. *
* 10 SEQUENTIAL DATASETS: CVAFSEQ1.SEQ01-CVAFSEQ1.SEQ10 *
* 5 PDS DATASETS: CVAFSEQ1.PDS01-CVAFSEQ1.PDS05 *
* 5 PDSE DATASETS: CVAFSEQ1.PDSE01-CVAFSEQ1.PDSE05 *
* 2 VSAM DATASETS: CVAFSEQ1.VSAM01-CVAFSEQ1.VSAM02 *
* *
* NOTE: THE OUTPUT FROM THIS EXAMPLE IS BASED ON USING A NON SMS *
* MANAGED NON INDEXED VOLUME FOR ALLOCATING THE TEST *
* DATASETS (CVAFDD DD). *
* IF A SMS MANAGED NON INDEXED VOLUME IS USED THE POSITION *
* OF THE VVDS DATASET WILL BE THE SECOND ENTRY IN THE LIST. *
* *
* DASD VOLUMES USED IN THIS EXAMPLE: *
* - 1 3390-3 WHERE THE OUTDD DATASET IS DEFINED *
* - 1 3390-3 WHERE THE TEST DATASETS DETAILED ABOVE ARE DEFINED *
* THIS VOLUME INITIALIZED USING: VTOC(3326,0,195) NOINDEX *
* *
* *
* *
* OUTPUT IN OUTDD DATASET SHOULD BE THE FOLLOWING: *

* *
* *
* SEQXMP2 START OF OUTPUT MESSAGES *
* *
* DSN: CVAFSEQ1.SEQ01 CCHHR: 0CFE000003 *
* DSN: CVAFSEQ1.SEQ02 CCHHR: 0CFE000004 *
* DSN: CVAFSEQ1.SEQ03 CCHHR: 0CFE000005 *
* DSN: CVAFSEQ1.SEQ04 CCHHR: 0CFE000006 *
* DSN: CVAFSEQ1.SEQ05 CCHHR: 0CFE000007 *
* DSN: CVAFSEQ1.SEQ06 CCHHR: 0CFE000008 *
* DSN: CVAFSEQ1.SEQ07 CCHHR: 0CFE000009 *
* DSN: CVAFSEQ1.SEQ08 CCHHR: 0CFE00000A *
* DSN: CVAFSEQ1.SEQ09 CCHHR: 0CFE00000B *
* DSN: CVAFSEQ1.SEQ10 CCHHR: 0CFE00000C *
* DSN: CVAFSEQ1.PDS01 CCHHR: 0CFE00000D *
* DSN: CVAFSEQ1.PDS02 CCHHR: 0CFE00000E *
* DSN: CVAFSEQ1.PDS03 CCHHR: 0CFE00000F *
* DSN: CVAFSEQ1.PSD04 CCHHR: 0CFE000010 *
* DSN: CVAFSEQ1.PDS05 CCHHR: 0CFE000011 *
* DSN: CVAFSEQ1.PDSE01 CCHHR: 0CFE000012 *

CVAF Macros

Chapter 1. Using the Volume Table of Contents 129

* DSN: CVAFSEQ1.PDSE02 CCHHR: 0CFE000013 *
* DSN: CVAFSEQ1.PDSE03 CCHHR: 0CFE000014 *
* DSN: CVAFSEQ1.PDSE04 CCHHR: 0CFE000015 *
* DSN: CVAFSEQ1.PDSE05 CCHHR: 0CFE000016 *
* DSN: CVAFSEQ1.VSAM01.DATA CCHHR: 0CFE000017 *
* DSN: SYS1.VVDS.V339003 CCHHR: 0CFE000018 *
* DSN: CVAFSEQ1.VSAM02.DATA CCHHR: 0CFE000019 *
* *
* END OF DATA REACHED - ALL DATA SETS PROCESSED *
* *
* SEQXMP2 END OF OUTPUT MESSAGES *
* *
* *

* *

* *
* SEQXMP2 - LOGIC NOTES *
* *
* THIS MODULE WILL PERFORM THE FOLLOWING: *
* *
* INITIALIZATION *
* - INITIALIZE STARTING CCHHR VALUE TO 0 (GT ZERO USED IN CVAFSEQ) *
* - OBTAIN THE NECESSARY INFORMATION FROM THE DASD VOLUME *
* - OPEN AN OUTPUT FILE *
* - WRITE NECESSARY MESSAGES TO THE OUTPUT FILE *
* *
* MAINLINE *
* DO WHILE MORE DATASETS ON VOLUME TO PROCESS *
* - LOAD 5 ENTRY TABLE WITH DSCB ADDRESS *
* - INIT BUFFER LIST HDR TO READ DSCBS AND STARTING CCHHR *
* - INIT BUFFER LIST ENTRY WITH DSCB ADDRESS AND LENGTH *
* - ISSUE CVAFSEQ MACRO TO READ 5 ENTRIES *
* - LOAD CCHHR RETURNED FROM CVAFSEQ INTO TABLE *
* - PROCESS TABLE ENTRIES AND PRODUCE OUTPUT: DSN/CCHHR LIST *
* *
* FINALIZATION *
* - WRITE NECESSARY MESSAGES TO THE OUTPUT FILE *
* - CLOSE THE OUTPUT FILE *
* - EXIT *
* *
* *
* SEQXMP2 - JOB INFORMATION *
* *
* NORMAL END OF JOB: *
* - RC=00 AND OUTDD OUTPUT AS DETAILED ABOVE *
* *
* *
* ABNORMAL END OF JOB: *
* - ABEND 100 - ERROR OPENING VTOC ON THE DASD VOLUME THAT IS *
* ASSOCIATED WITH THE CVAFDD DD STATEMENT *
* - ABEND 101 - ERROR OPENING THE OUTDD DATASET *
* - ABEND 102 - ERROR CLOSING THE OUTDD DATASET *
* *
* *
* *

*

* *
* HOUSEKEEPING *
* - SAVE CALLER’S REGISTERS AND ESTABLISH A NEW REGISTER SAVE AREA *
* *

*

STM R14,R12,12(R13) STANDARD LINKAGE CONVENTION
BALR R11,0 DCL R11 AS IMPLIED BASE REG

CVAF Macros

130 z/OS V2R1.0 DFSMSdfp Advanced Services

USING BASE,R11,R12 R12 IS ALSO BASE REG
BASE L R12,BASEADDR SET UP ADDRESSING FOR R12

B CVAFSQ00 BRANCH AROUND DECLARES
BASEADDR DC A(BASE+4096) ADDRESSING FOR R12
CVAFSQ00 DS 0H CONTINUE...

ST R13,SAVE+4 SAVE PTR TO CALLER’S SAVE AREA
LA R14,SAVE GET ADDRESS OF THE NEW SAVE AREA
ST R14,8(,R13) CHAIN CALLER’S AREA TO OURS
LR R13,R14 ESTABLISH THE NEW SAVE AREA

*

* *
* INITIALIZATION *
* *

*
INITIAL DS 0H INITIALIZATION SECTION

MVC CCHHRS,CCHHR0 INIT CCHHR START TO ZERO
BAL R14,IDVOLRTN INVOKE RTN TO IDENTIFY THE VOLUME(S)
BAL R14,OPENRTN INVOKE OPEN OUTPUT DATASET RTN
MVC PDETLINE(133),STRTMSG MOVE START MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
MVC PDETLINE(133),BLNKLNE MOVE BLANK LINE TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE

*

* *
* MAINLINE *
* *

*
MAINLINE DS 0H MAINLINE SECTION

MVI SWEOD,NOEOD SET SWITCH TO NO EOD INITIALLY
BAL R14,LDTABRTN INVOKE LDTABRTN TO LOAD TABLE
BAL R14,INITBRTN INVOKE INITBRTN TO INIT BUFFER LIST
BAL R14,CVAFSRTN INVOKE CVAFSRTN TO ISSUE CVAFSEQ CALL
BAL R14,LODCRTN INVOKE LODCRTN TO LOAD CCHHR IN TBL
BAL R14,PRTBRTN INVOKE PRTBRTN TO PROCESS TBL ENTRIES
CLI SWEOD,EOD DID WE REACH THE END OF DATA?
BNE MAINLINE NO, PROCESS MORE DATA
L R15,RETCODE LOAD R15 WITH RETURN CODE
CH R15,RCODE00 IF RC WAS 00?
BNE FINAL NO - DO NOT PRINT EOD MESSAGE
MVC PDETLINE(133),BLNKLNE YES- MOVE BLANK LINE TO LINE
PUT OUTFILE,PDETLINE WRITE THE REC TO OUTPUT FILE
MVC PDETLINE(133),EODMSG MOVE EOD MSG TO LINE
PUT OUTFILE,PDETLINE WRITE THE REC TO OUTPUT FILE

*

* *
* FINALIZATION *
* *

*
FINAL DS 0H FINALIZATION SECTION

MVC PDETLINE(133),BLNKLNE MOVE BLANK LINE TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
MVC PDETLINE(133),ENDMSG MOVE END MSG TO LINE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
BAL R14,CLOSERTN INVOKE CLOSE OUTPUT DATASET RTN
L R13,4(R13) RESTORE REGISTER
LM R14,R12,12(R13) RESTORE CALLERS REGISTERS
LA R15,0 SET RC TO 0
BR R14 RETURN TO CALLER

*

* OPENRTN *

CVAF Macros

Chapter 1. Using the Volume Table of Contents 131

* - ROUTINE TO OPEN OUTPUT FILE USED BY THIS MODULE *

*
OPENRTN DS 0H OPEN FILES ROUTINE

ST R14,OPENSAVE STORE C(R14) INTO SAVE AREA
OPEN (OUTFILE,(OUTPUT)) OPEN THE OUTDD OUTPUT FILE FOR MSGS
TM OUTFILE+(DCBOFLGS-IHADCB),DCBOFOPN IS FILE OPEN
BO OPENEXIT FILE OPEN OK - EXIT OPEN RTN
LA R1,EABN101 OUTPUT FILE NOT OPEN-USER ABEND 101
BAL R14,ABENDRTN INVOKE ABEND ROUTINE

OPENEXIT DS 0H EXIT FROM OPEN ROUTINE
L R14,OPENSAVE LOAD C(OPENSAVE) INTO R14
BR R14 EXIT

*

* CLOSERTN *
* - ROUTINE TO CLOSE OUTPUT FILE USED BY THIS MODULE *

*
CLOSERTN DS 0H CLOSE FILES ROUTINE

ST R14,CLOSSAVE STORE C(R14) INTO SAVE AREA
CLOSE (OUTFILE) CLOSE OUTPUT FILE
LTR R15,R15 CHECK IF CLOSED OK
BZ CLOSEXIT IF OK BRANCH TO CLOSEXIT
LA R1,EABN102 ELSE SETUP FOR USER ABEND 102
BAL R14,ABENDRTN INVOKE ABEND ROUTINE

CLOSEXIT DS 0H EXIT FROM CLOSE ROUTINE
L R14,CLOSSAVE LOAD C(CLOSSAVE) INTO R14
BR R14 EXIT

*

* ABENDRTN *
* - FORCE AN ABEND ROUTINE *

*
ABENDRTN DS 0H ABEND ROUTINE

ST R14,ABENSAVE STORE C(R14) INTO SAVE AREA
ABEND (R1),DUMP ISSUE USER ABEND WITH DUMP

ABENEXIT DS 0H EXIT FROM ABEND ROUTINE
L R14,ABENSAVE LOAD C(ABENSAVE) INTO R14
BR R14 EXIT

*

* IDVOLRTN *
* - OBTAIN THE NECESSARY INFORMATION FROM THE DASD VOLUME *

*
IDVOLRTN DS 0H IDENTIFY VOLUME ROUTINE

ST R14,IDVLSAVE STORE C(R14) INTO SAVE AREA
RDJFCB (VTOCDCB,(INPUT)) READ JFCB / OPEN VTOC
MVI JFCB1,X’04’ PUT IN ID FOR FORMAT 4
MVC JFCB1+1(43),JFCB1 SETUP FOR VTOC OPEN
OPEN (VTOCDCB,(INPUT)),TYPE=J OPEN VTOC (OPEN TYPE=J)
TM VTOCDCB+(DCBOFLGS-IHADCB),DCBOFOPN TEST FOR GOOD OPEN
BO IDVOL010 BRANCH TO IDVOL010 - GOOD OPEN
LA R1,EABN100 ELSE SETUP FOR USER ABEND 100
BAL R14,ABENDRTN INVOKE ABEND ROUTINE

IDVOL010 DS 0H GOOD OPEN - OBTAIN VOLUME INFORMATION
SLR RDEB,RDEB INIT REG1 FOR DEB PTR
SLR RUCB,RUCB INIT REG4 FOR UCB PTR
ICM RDEB,B’0111’,VTOCDCB+(DCBDEBA-IHADCB) GET DEB ADDRESS
ST RDEB,DEBADD SAVE DEB ADDRESS INTO R1
ICM RUCB,B’0111’,(DEBBASND-DEBBASIC)+(DEBUCBA-DEBDASD)(RDEB)
ST RUCB,UCBADD SAVE UCB ADDRESS INTO R4

IDVLEXIT DS 0H EXIT FROM IDVOLRTN
L R14,IDVLSAVE LOAD C(IDVLSAVE) INTO R14
BR R14 EXIT

CVAF Macros

132 z/OS V2R1.0 DFSMSdfp Advanced Services

*

* LDTABRTN *
* - LOAD 5 ENTRY TABLE WITH DSCB ADDRESS TO USE *

*
LDTABRTN DS 0H LOAD TABLE ROUTINE

ST R14,LDTBSAVE STORE C(R14) INTO SAVE AREA
LA R6,DSCB01 LOAD R6 WITH ADDRESS OF DSCB01
ST R6,TDSCB01 STORE ADDRESS OF DSCB01 INTO TABLE
LA R6,DSCB02 LOAD R6 WITH ADDRESS OF DSCB02
ST R6,TDSCB02 STORE ADDRESS OF DSCB02 INTO TABLE
LA R6,DSCB03 LOAD R6 WITH ADDRESS OF DSCB03
ST R6,TDSCB03 STORE ADDRESS OF DSCB03 INTO TABLE
LA R6,DSCB04 LOAD R6 WITH ADDRESS OF DSCB04
ST R6,TDSCB04 STORE ADDRESS OF DSCB04 INTO TABLE
LA R6,DSCB05 LOAD R6 WITH ADDRESS OF DSCB05
ST R6,TDSCB05 STORE ADDRESS OF DSCB05 INTO TABLE

LDTBEXIT DS 0H EXIT FROM LDTABRTN
L R14,LDTBSAVE LOAD C(LDTBSAVE) INTO R14
BR R14 EXIT

*

* INITBRTN *
* - INITIALIZE THE BUFFER LIST *

*
INITBRTN DS 0H INITIALIZE BUFFER LIST ROUTINE

ST R14,INITSAVE STORE C(R14) INTO SAVE AREA
LA R7,BUFLISTE LOAD R7 WITH ADDRESS OF BUFLIST ENTRY
USING BFLE,R7 ESTABLISH ADDRESSABILITY TO BFLE
LA R8,BUFLISTH LOAD R8 WITH ADDRESS OF BUFLIST HDR
USING BFLHDR,R8 ESTABLISH ADDRESSABILITY TO BFLHDR
LA R2,TABLE LOAD R2 WITH ADDRESS OF TABLE
USING TBLMAP,R2 ESTABLISH ADDRESSABILITY USING TBLMAP
XC BFLHDR(BFLHLN+TBLNBR*BFLELN),BFLHDR CLEAR BUFLIST
OI BFLHFL,BFLHDSCB DSCBS TO BE READ WITH BUFFER LIST
MVC BFLEARG,CCHHRS MOVE STARTING CCHHR TO ARG
MVI BFLHNOE,TBLNBR MOVE NBR OF TBL ENTRIES TO BUFE NBR
SLR R10,R10 INIT R10 WITH ZERO
IC R10,BFLHNOE NBR OF BUFFER ENTRIES IN R10
ST R10,COUNT NBR OF BUFFER ENTRIES IN COUNT

*
INIT0010 DS 0H INIT BUFFER LIST WITH DSCB ADDR/LENG

L R6,DSCBA LOAD R6 WITH DSCB ADDRESS FROM TABLE
ST R6,BFLEBUF-BFLE(,R7) PLACE IN BUFFER LIST
MVI BFLELTH-BFLE(R7),DSCBLTH FULL DSCB READ
OI BFLEFL,BFLECHR CCHHR TO BE RETURNED
LA R2,TBLLNG(,R2) POINT TO NEXT TABLE ENTRY
LA R7,BFLELN(,R7) POINT TO NEXT BUFFER LIST ENTRY
BCT R10,INIT0010 BRANCH TO INIT0010 IF C(R10) GT ZERO
DROP R2 DROP R2

INITEXIT DS 0H EXIT FROM INITBRTN
L R14,INITSAVE LOAD C(INITSAVE) INTO R14
BR R14 EXIT

*

* CVAFSRTN *
* - CVAFSEQ REQUEST TO READ UP TO 5 ENTRIES AND PLACE DATA FOR EACH *
* ENTRY STARTING AT THE CORRESPONDING DSCB ADDRESS IN THE BUFFER *
* LIST ENTRY. *

*
CVAFSRTN DS 0H CVAFSEQ REQUEST ROUTINE

ST R14,CVAFSAVE STORE C(R14) INTO SAVE AREA
L RUCB,UCBADD LOAD R4 WITH UCB ADDRESS
CVAFSEQ UCB=(RUCB), CVAFSEQ MACRO INVOCATION X

CVAF Macros

Chapter 1. Using the Volume Table of Contents 133

EADSCB=OK, X
BRANCH=(YES,PGM), X
MF=(E,CVPL)

ST R15,RETCODE STORE RC INTO RETCODE
LTR R15,R15 TEST RC RETURNED FROM CVAFSEQ
CH R15,RCODE00 IS IT A RC00?
BZ CVAFEXIT YES - BRANCH TO EXIT ROUTINE
CH R15,RCODE04 IS IT A RC04?
BE CVAFSR04 YES - BRANCH TO PROCESS RC04
CH R15,RCODE08 IS IT A RC08?
BE CVAFSR08 YES - BRANCH TO PROCESS RC08
CH R15,RCODE12 IS IT A RC12?
BE CVAFSR12 YES - BRANCH TO PROCESS RC12
CH R15,RCODE16 IS IT A RC16?
BE CVAFSR16 YES - BRANCH TO PROCESS RC16
MVC PDETLINE(133),RCERMSG ELSE FORMAT UNEXPECTED RC
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
B CVAFEXIT EXIT ROUTINE

CVAFSR04 DS 0H RETURN CODE 04
MVC PDETLINE(133),RC04MSG FORMAT RC04 MESSAGE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
CLI CVSTAT,STAT032 IS CVSTAT CODE STAT032?
BE CVAFSS32 YES - BRANCH TO PROCESS STAT032
MVC PDETLINE(133),STAT2MSG NO - FORMAT STAT2MSG
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
B CVAFEXIT BRANCH TO EXIT ROUTINE

CVAFSS32 DS 0H CVSTAT CODE = STAT032
MVC PDETLINE(133),STAT1MSG FORMAT STAT1MSG
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
B CVAFEXIT BRANCH TO EXIT ROUTINE

CVAFSR08 DS 0H RETURN CODE 08
MVC PDETLINE(133),RC08MSG FORMAT RC08 MESSAGE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
B CVAFEXIT BRANCH TO EXIT ROUTINE

CVAFSR12 DS 0H RETURN CODE 12
MVC PDETLINE(133),RC12MSG FORMAT RC12 MESSAGE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE
B CVAFEXIT BRANCH TO EXIT ROUTINE

CVAFSR16 DS 0H RETURN CODE 16
MVC PDETLINE(133),RC16MSG FORMAT RC16 MESSAGE
PUT OUTFILE,PDETLINE WRITE A RECORD TO THE OUTPUT FILE

CVAFEXIT DS 0H EXIT FROM CVAFSRTN
L R14,CVAFSAVE LOAD C(CVAFSAVE) INTO R14
BR R14 EXIT

*

* LODCRTN *
* - LOAD CCHHR FROM BUFFER LIST ENTRY INTO PROCESSING TABLE. THIS *
* VALUE RETURNED FROM CVAFSEQ CALL. *

*
LODCRTN DS 0H LOAD CCHHR INTO PROCESSING TABLE

ST R14,LODCSAVE STORE C(R14) INTO SAVE AREA
DROP R7,R8 DROP R7 AND R8
LA R7,BUFLISTE LOAD R7 WITH ADDRESS OF BUFLIST ENTRY
USING BFLE,R7 ESTABLISH ADDRESSABILITY TO BFLE
LA R2,TABLE LOAD R2 WITH ADDRESS OF TABLE
USING TBLMAP,R2 ESTABLISH ADDRESSABILITY USING TBLMAP
L R10,COUNT LOAD R10 WITH TABLE ENTRY COUNT

*
LODC0010 DS 0H PROCESS CCHHR VALUE RETURNED

LA R8,BFLEARG LOAD R8 WITH ADDRESS OF BFLEARG
ST R8,CCHHRA STORE CCHHR VALUE INTO TABLE
LA R2,TBLLNG(,R2) POINT TO NEXT TABLE ENTRY
LA R7,BFLELN(,R7) POINT TO NEXT BUFFER LIST ENTRY
BCT R10,LODC0010 BRANCH TO LODC0010 IF C(R10) GT ZERO
DROP R2,R7 DROP R2 AND R7

CVAF Macros

134 z/OS V2R1.0 DFSMSdfp Advanced Services

LODCEXIT DS 0H EXIT FROM LODCRTN
L R14,LODCSAVE LOAD C(LODCSAVE) INTO R14
BR R14 EXIT

*

* PRTBRTN *
* - PROCESS TABLE WHICH CONTAINS ADDRESS OF DSCB AND ADDRESS OF *
* CCHHR FOR EACH ENTRY RETURNED FROM CVAFSEQ CALL. TABLE IS *
* CURRENTLY 5 ENTRIES. *

*
PRTBRTN DS 0H PROCESS TABLE ENTRIES (DSCBA/CCHHRA)

ST R14,PRTBSAVE STORE C(R14) INTO SAVE AREA
L R10,COUNT LOAD COUNT IN R10
LA R2,TABLE LOAD ADDRESS OF TABLE INTO R2
USING TBLMAP,R2 ESTABLISH ADDRESSABILITY TO TABLE

PRTB0000 DS 0H PROCESS ENTRIES
L R3,DSCBA ADDRESSABILITY TO DSCBA
L R4,CCHHRA ADDRESSABILITY TO CCHHRA
CLC 0(1,R3),FMT4 IS IT A FMT4?
BE PRTB0020 YES, BRANCH TO POINT TO NEXT ENTRY
CLC 0(1,R3),FMT5 IS IT A FMT5?
BE PRTB0020 YES, BRANCH TO POINT TO NEXT ENTRY
CLC 0(1,R3),FMT7 IS IT A FMT7?
BE PRTB0020 YES, BRANCH TO POINT TO NEXT ENTRY
CLC 0(1,R3),FMT9 IS IT A FMT9?
BE PRTB0020 YES, BRANCH TO POINT TO NEXT ENTRY

* DETERMINE IF END OF DATA WAS REACHED
CLC 0(1,R3),NODSN IS THERE ’00’ IN FIRST BYTE
BNE PRTB0010 NO, THEN CONTINUE TO PROCESS DSN
MVI SWEOD,EOD YES, SET SWITCH TO END OF DATA
B PRTBEXIT EXIT OUT OF ROUTINE

PRTB0010 DS 0H PROCESS DSN - FORMAT
MVC DSNMSG(44),0(R3) MOVE DSN TO PRINT LINE

* PROCESS / FORMAT CCHHR
MVC CCHHRS(5),0(R4) MOVE CCHHR TO CCHHRS START VARIABLE
UNPK CCHHRM(L’CCHHRM+1),CCHHRS(6) UNPACK CCHHR
TR CCHHRM,TCHAR1 CONVERT TO PRINTABLE HEX
PUT OUTFILE,MSG1 PRINT THE DSN LINE

PRTB0020 DS 0H INCREMENT COUNTER FILEEDIT
LA R2,TBLLNG(R2) POINT TO NEXT TABLE ENTRY
BCT R10,PRTB0000 BRANCH TO PRTB0000 IF C(R10) GT ZERO

PRTBEXIT DS 0H EXIT FROM PRTBRTN
L R14,PRTBSAVE LOAD C(PRTBSAVE) INTO R14
BR R14 EXIT

*

* WORKING STORAGE *

*

DS 0D
DC CL36’SEQXMP2-WORKING STORAGE BEGINS HERE’

*

* EQUATES *

*
EABN100 EQU 100 USER ABEND CODE 100-VTOC OPEN ERROR
EABN101 EQU 101 USER ABEND CODE 101-OUTDD OPEN ERROR
EABN102 EQU 102 USER ABEND CODE 102-OUTDD CLOSE ERROR
R0 EQU 0
R1 EQU 1
RDEB EQU 1 REG1 FOR DEB ADDRESS
R2 EQU 2
R3 EQU 3
R4 EQU 4
RUCB EQU 4 REG4 FOR UCB ADDRESS

CVAF Macros

Chapter 1. Using the Volume Table of Contents 135

R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*

* SAVE AREAS *

*
SAVE DC 18F’0’ MAIN PROGRAM SAVE AREA
OPENSAVE DC F’0’ OPEN FILES ROUTINE SAVE AREA
CLOSSAVE DC F’0’ CLOSE FILES ROUTINE SAVE AREA
ABENSAVE DC F’0’ ABEND ROUTINE SAVE AREA
IDVLSAVE DC F’0’ IDENTIFY VOLUME ROUTINE SAVE AREA
LDTBSAVE DC F’0’ LOAD TABLE ROUTINE SAVE AREA
INITSAVE DC F’0’ INIT BUFFER ROUTINE SAVE AREA
PRTBSAVE DC F’0’ PROCESS TABLE ROUTINE SAVE AREA
CVAFSAVE DC F’0’ CVAFSEQ REQUEST ROUTINE SAVE AREA
LODCSAVE DC F’0’ LOAD CCHHR ROUTINE SAVE AREA
*

* CONSTANTS *

*
RETCODE DC F’0’ RETURN CODE SAVE FIELD
RCODE00 DC H’0’ RETURN CODE 0 - HALFWORD
RCODE04 DC H’4’ RETURN CODE 4 - HALFWORD
RCODE08 DC H’8’ RETURN CODE 8 - HALFWORD
RCODE12 DC H’12’ RETURN CODE 12 - HALFWORD
RCODE16 DC H’16’ RETURN CODE 16 - HALFWORD
CCHHR0 DC XL5’0000000000’ INIT WITH ZERO
FMT4 DC XL1’04’ FMT4?
FMT5 DC XL1’05’ FMT5?
FMT7 DC XL1’07’ FMT7? (ONLY CERTAIN DEVICE TYPES)
FMT9 DC XL1’09’ FMT9? (ONLY CERTAIN DEVICE TYPES)
NODSN DC XL1’00’ END OF DATA?
BLNKLNE DC CL133’ ’
STRTMSG DC CL133’ SEQXMP2 START OF OUTPUT MESSAGES ’
ENDMSG DC CL133’ SEQXMP2 END OF OUTPUT MESSAGES ’
RC00MSG DC CL133’ RC00 RETURNED FROM SEQXMP2 ’
RC04MSG DC CL133’ RC04 RETURNED FROM SEQXMP2 ’
RC08MSG DC CL133’ RC08 RETURNED FROM SEQXMP2 ’
RC12MSG DC CL133’ RC12 RETURNED FROM SEQXMP2 ’
RC16MSG DC CL133’ RC16 RETURNED FROM SEQXMP2 ’
RCERMSG DC CL133’ UNEXPECTED RC (??) RETURNED FROM SEQXMP2 ’
STAT1MSG DC CL133’ CVSTAT CODE STAT032 ENCOUNTERED ’
STAT2MSG DC CL133’ UNEXPECTED CVSTAT CODE RETURNED FROM SEQXMP2 ’
EODMSG DC CL133’ END OF DATA REACHED - ALL DATA SETS PROCESSED ’
MSG1 DS 0CL133

DC CL6’ DSN: ’
DSNMSG DS CL44’ ’

DC CL7’CCHHR: ’
CCHHRM DS CL10’ ’

DC CL66’ ’

* WORK AREAS *

*
BUFLST DS 0F BUFFER LIST WORK AREA
BUFLISTH DC 2F’0’ BUFFER LIST HEADER

CVAF Macros

136 z/OS V2R1.0 DFSMSdfp Advanced Services

BUFLISTE DC 15F’0’ 5 BUFFER LIST ENTRIES
*
UCBADD DC F’0’ UCB ADDRESS SAVE AREA
DEBADD DC F’0’ DEB ADDRESS SAVE AREA
COUNT DC F’0’ TABLE COUNTER

DS D
DSCB01 DS XL140 DSCB01 BUFFER AREA
DSCB02 DS XL140 DSCB02 BUFFER AREA
DSCB03 DS XL140 DSCB03 BUFFER AREA
DSCB04 DS XL140 DSCB04 BUFFER AREA
DSCB05 DS XL140 DSCB05 BUFFER AREA
*
CCHHRS DC XL5’0000000000’ STARTING CCHHR
*

* PRINT LINES *

*

DS 0D
PDETLINE DS 0CL133 DETAIL LINE

DC CL133’ ’
EPDETLEN EQU *-PDETLINE LENGTH OF DETAIL LINE
*

* DCB - OUTPUT FILE (OUTFILE) *

*
OUTFILE DCB DDNAME=OUTDD, X

DSORG=PS, X
RECFM=FBA, X
LRECL=133, X
MACRF=PM

*

* VTOC DCB AREA *

*
VTOCDCB DCB DDNAME=CVAFDD,MACRF=E,EXLST=XLST1,DSORG=PS,DCBE=VTOCDCBE
XLST1 DC X’87’

DC AL3(JFCB1)
JFCB1 DS 0CL176
TESTNAME DS CL44

DS CL8
DS BL1
DS CL123

VTOCDCBE DCBE EADSCB=OK
*

* TABLES *

*
TABLE DC 0H START OF TABLE DSCB ADDR / CCHHR ADDR
*
TDSCB01 DS F’0’ DSCB01 ADDRESS (140 BYTE DSCB)
TCHR01 DS F’0’ CCHHR ADDRESS FOR DSCB01 - RETURNED
*
TBLLNG EQU *-TABLE LENGTH OF TABLE ENTRY
*
TDSCB02 DS F’0’ DSCB02 ADDRESS (140 BYTE DSCB)
TCHR02 DS F’0’ CCHHR ADDRESS FOR DSCB02 - RETURNED
*
TDSCB03 DS F’0’ DSCB03 ADDRESS (140 BYTE DSCB)
TCHR03 DS F’0’ CCHHR ADDRESS FOR DSCB03 - RETURNED
*
TDSCB04 DS F’0’ DSCB04 ADDRESS (140 BYTE DSCB)
TCHR04 DS F’0’ CCHHR ADDRESS FOR DSCB04 - RETURNED
*

CVAF Macros

Chapter 1. Using the Volume Table of Contents 137

TDSCB05 DS F’0’ DSCB05 ADDRESS (140 BYTE DSCB)
TCHR05 DS F’0’ CCHHR ADDRESS FOR DSCB05 - RETURNED
*
TBLNBR EQU (*-TABLE)/TBLLNG NBR OF TABLE ENTRIES
*
**
* TABLES (CONT) *
**
*
TCHAR1 EQU *-C’0’ TABLE TO TRANSLATE TO PRINTABLE HEX

DC C’0123456789ABCDEF’
*
**
* SWITCHES *
**
SWEOD DC XL1’00’ SWITCH - END OF DATA ?
EOD EQU X’FF’ END OF DATA DETECTED
NOEOD EQU X’00’ END OF DATA NOT DETECTED
*
**
* DSECTS *
**
TBLMAP DSECT DUMMY CONTROL SECTION FOR TABLE MAP
DSCBA DS F DSCB ADDRESS ENTRY
CCHHRA DS F CCHHR ADDRESS ENTRY
*
**
* MACROS / INCLUDES *
**

DCBD DSORG=XE,DEVD=DA MAP OF DCB
IEZDEB MAP OF DEB
ICVAFBFL BUFFER LIST WITH ONE ENTRY

DSCB DSECT
IECSDSL1 (1) FORMAT 1 DSCB

DSCBLTH EQU *-IECSDSL1 LENGTH OF DSCB
*
**
* CVAF PARAMETER LISTS *
**
*
SEQXMP2 CSECT
CVPL CVAFSEQ ACCESS=GT, CVAFSEQ MACRO REQUEST X

BUFLIST=BUFLISTH, ADDRESS OF BUFFER LIST X
MF=L

ORG CVPL
CVPLMAP ICVAFPL DSECT=NO CVAF PARM LIST MAP
*
*

END SEQXMP2 END OF SEQXMP2

CVAFTST Macro Overview and Specification
The CVAFTST macro determines whether the system supports an indexed VTOC,
and, if it does, whether the VTOC on the unit whose UCB is supplied is indexed
or nonindexed.

When you issue CVAFTST, register 13 must contain the address of a standard 18
word save area.

You will get a return code of 12 if CVAFTST cannot determine whether an indexed
or nonindexed VTOC is on the unit's volume. You should not receive a return code
of 12 from CVAFTST if you have opened a data set (including the VTOC) on the
volume.

You need no authorization to issue the CVAFTST macro.

CVAF Macros

138 z/OS V2R1.0 DFSMSdfp Advanced Services

See “CVAFDSM Macro Overview and Specification” on page 94 for an example of
using the CVAFTST macro with the CVAFDSM macro.

The format of the CVAFTST macro is:

�� CVAFTST
label

UCB=(reg) ��

UCB: Specify the VTOC to Be Tested
UCB=(reg)

Supplies the address of the UCB for the volume whose VTOC is to be tested.
The UCB address can be for a captured UCB, or for an actual UCB above or
below the 16 MB line. If your program is in 31-bit mode, this address must be
in 31-bit address; the high order byte is part of the address.

Recommendation: Code the address of the UCB parameter as register (2-12).
Coding an RX-type address gives unpredictable results.

The CVAFTST macro accepts the address of a UCB or UCB copy. Unauthorized
programs can get a copy of the UCB by using the UCBSCAN macro and
specifying the COPY, UCBAREA, CMXTAREA, and DCEAREA keywords. The
UCB copy and common extension copy must be below the 16 MB line and on
a word boundary. Data accessed with DCEAREA can be above the 16 MB line.
Refer to z/OS HCD Planning for details.

Return Codes from CVAFTST
On return from CVAF, register 15 contains one of the following return codes:

Return Code Meaning

0 (X'00') The system does not support an indexed VTOC. The volume
should be considered to have a nonindexed VTOC. The UCB
was not inspected to determine its validity or status.

4 (X'04') The system supports an indexed VTOC, but the volume has
a nonindexed VTOC.

8 (X'08') The system supports an indexed VTOC and the volume has
an indexed VTOC.

12 (X'0C') The system supports an indexed VTOC, but the volume is
not mounted or the VIB is not initialized for it; thus, the
status (indexed or nonindexed) of the VTOC cannot be
determined.

16 (X'10') The system supports an indexed VTOC, but the unit is not a
DASD or has a VIO UCB, or the UCB address is not valid.
The address of a UCB copy is not valid without a
CMXTAREA and a DCEAREA.

VTOC Index Error Message and Associated Codes

Error Message
When CVAF finds an error in a VTOC index, it issues the following message:

IEC606I VTOC INDEX DISABLED ON dev,volser,code,[rba[,secno,offset]]

CVAF Macros

Chapter 1. Using the Volume Table of Contents 139

In addition, CVAF puts a return code in the CVSTAT field of the CVPL.

Explanation: The Common VTOC Access Facility (CVAF) detected a VTOC index
error on the device dev with volume serial number volser. A number that represents
the kind of VTOC index error is provided in the code field. The RBA of the VIR in
the VTOC index that contains the structure error indicated by code is provided in
the rba field. If the VIR is a VIER, the section number in the VIER containing the
VTOC index entry is supplied in the secno field, and the offset into the section of
that VTOC index entry is supplied in the offset field.

System Action: The VTOC index is disabled. The VTOC will be converted to
nonindexed format when DADSM next allocates space on the volume. A system
dump is written to the SYS1.DUMP data set, and an entry is made in the
SYS1.LOGREC data set. The message IEC604I (which indicates that the VTOC
convert routines have been used) will be issued later.

Programmer Response: Examine the system dump and a print of the VTOC
index, and use the information in message IEC606I to determine the cause of the
VTOC index structure error.

Routing and Descriptor Codes: The routing codes are 4 (direct access pool) and
10 (system/error maintenance), and the descriptor code is 4 (system status).

Codes Put in the CVSTAT Field
If you are diagnosing an error and require a description of the CVSTAT field codes,
see z/OS DFSMSdfp Diagnosis.

VTOC Error Responses
The following actions are taken if an error occurs in the VTOC:
v If an index structure error is detected and if the address space is enqueued on

the VTOC, then DADSM or CVAF disables the VTOC index. The indexed VTOC
bit is zeroed in the format-4 DSCB, a software error record is written to
SYS1.LOGREC, and a system dump is taken at the next call to DADSM create or
extend. The VTOC is converted to a nonindexed format at the next DADSM
create or extend call.

v If a program check, machine check, or other error occurs while using a VTOC
access macro, a SYS1.LOGREC record is written, and a system dump is taken.

v An error code is put in the CVSTAT field of the CVPL. The values and
explanations of these error codes are listed in “VTOC Index Error Message and
Associated Codes” on page 139.

Recovering from System or User Errors
Because an unauthorized user cannot modify a VTOC, neither the VTOC nor the
VTOC index need be recovered from an error caused by an unauthorized user.

A system error can affect a VTOC and VTOC index by interrupting DADSM while
it is updating, leaving the VTOC or the VTOC index (or both) in a
partially-updated state. Both the VTOC and the VTOC index allow DADSM to
recover from such an interruption.

For a nonindexed VTOC (or a VTOC with an index that has been disabled), a
subsequent call to DADSM create or extend, causes VTOC convert routines to
reestablish the free space DSCB chain.

CVAF Macros

140 z/OS V2R1.0 DFSMSdfp Advanced Services

For an indexed VTOC, a subsequent call to any DADSM function causes the
recovery of the previous interrupt (either by backing out or completing the
interrupted function).

GTF Trace
A trace function exists to trace all CVAF calls for VTOC index output I/O, all
VTOC output I/O, and all VTOC index and space map modifications. For
information on this function, see z/OS DFSMSdfp Diagnosis.

VTOC and VTOC Index Listings
You can obtain dump, formatted, or abridged listings of the VTOC and the VTOC
index by using the LISTVTOC command of the IEHLIST utility program. The
DFSMSdss print command also provides VTOC and index listing options. The
ISMF data set application displays information about the data sets represented in a
VTOC.

CVAF Macros

Chapter 1. Using the Volume Table of Contents 141

142 z/OS V2R1.0 DFSMSdfp Advanced Services

Chapter 2. Managing the Volume Table of Contents

This information covers the programs and procedures used to create and manage a
volume table of contents (VTOC).

Creating the VTOC and VTOC Index
To prepare a volume for activity by initializing it, use the Device Support Facilities
(ICKDSF) utility to build the VTOC. You can create a VTOC index when
initializing a volume by using the ICKDSF INIT command and specifying the
INDEX keyword.

To convert a non-indexed VTOC to an indexed VTOC, use the BUILDIX command
with the IXVTOC keyword. The reverse operation can be performed by using the
BUILDIX command and specifying the OSVTOC keyword.

To refresh a volume VTOC and INDEX in its current format, use the ICKDSF
command REFORMAT with the RVTOC keyword. To optionally extend the VTOC
and INDEX, use the ICKDSF command REFORMAT with the EXTVTOC and
EXTINDEX keywords.

See Device Support Facilities (ICKDSF) User's Guide and Reference for details.

Protecting the VTOC and VTOC Index
Use the following methods in order to protect the VTOC and VTOC index:

RACF®

You can protect the VTOC and VTOC index using the Resource Access Control
Facility (RACF), a component of the Security Server for z/OS, by defining the
volume serial entity under the RACF DASDVOL class. For you to modify a
protected VTOC and VTOC index, programs must be authorized at the following
levels:
v UPDATE level to open for output processing a VTOC or any data set with a

name beginning with SYS1.VTOCIX.
v ALTER level to allocate, rename, or scratch any data set with a name beginning

with SYS1.VTOCIX or to rename a data set to a name beginning with
SYS1.VTOCIX.

Neither the VTOC nor the VTOC index is protected from being opened for input
processing by the DASDVOL/volume serial entity. Neither the VTOC nor the
VTOC index can be protected through the RACF DATASET class. For additional
information on using RACF, see z/OS Security Server RACF Security Administrator's
Guide.

APF
The authorized program facility (APF) must authorize a program in order for you
to:
v Open a VTOC for output processing
v Open for output processing, allocate, rename, or scratch any data set whose

name begins with SYS1.VTOCIX

© Copyright IBM Corp. 1979, 2014 143

v Rename a data set to a name that begins with SYS1.VTOCIX.

For additional information on using APF, see z/OS MVS Programming: Authorized
Assembler Services Guide.

Password Protection
The VTOC index data set can be password protected. Protection is the same as for
a password-protected data set. Password checking is bypassed if the volume
containing the VTOC index is protected by RACF with the DASDVOL class. For
additional information, see Chapter 6, “Using Password Protected Data Sets,” on
page 247.

Copying/Restoring/Initializing the VTOC
The following topics discuss VTOC considerations when updating volumes:
v “Volumes Containing a Nonindexed VTOC”
v “Volumes Containing an Indexed VTOC”

Volumes Containing a Nonindexed VTOC
When updating volumes containing a non-indexed VTOC keep the following
considerations in mind:
v Restoring a Volume from a Dump Tape: There are no operational requirements if

you change the volume serial number or do a partial restore that does not
modify the VTOC. If you do a restore and change the VTOC size without
changing the volume serial number, the system can automatically update the
UCB with the new VTOC location and new volume serial number following a
Restore or Copy Volume operation if you have the REFUCB function enabled. To
enable this function, do one of the following:
– Specifiy ENABLE(REFUCB) in the DEVSUPxx parmlib member
– Issue the MODIFY command as follows:

F DEVMAN,ENABLE(REFUCB)

If you do not enable REFUCB, you cannot restore on a volume with an indexed
VTOC. In that case, you must vary the volume offline after it is restored.

v Copying a Volume: There are no operational requirements if you change the
volume serial number or do not modify the VTOC of the receiving volume. If
you do a copy and change the VTOC size without changing the volume serial
number, you must vary the volume offline after it is copied. Do not attempt to
copy from a volume with an indexed VTOC.

v Shared DASD Considerations:In shared DASD environments, if the VTOC index is
relocated or the volume is changed from indexed VTOC to nonindexed VTOC or
from nonindexed VTOC to indexed VTOC, it generally is advisable to vary the
device offline to the sharing system or systems before beginning the operation.
However it is not necessary to vary the volume offline on other systems in the
same sysplex z/OS Version 1 Release 5 or higher using ICKDSF release 17.

Volumes Containing an Indexed VTOC
Use Device Support Facilities (ICKDSF) to convert a VTOC to a non-indexed
format to update the volume. If you do not, keep the following considerations in
mind:

Initializing a Volume: If you do not change the volume serial number, you must
vary the volume offline before starting the job.

Managing the VTOC

144 z/OS V2R1.0 DFSMSdfp Advanced Services

|
|
|
|
|
|
|

|

|

|

|
|

|
|
|
|
|
|

Restoring a Volume from a Dump Tape: There are no operational requirements if
you change the volume serial number or do a partial restore that does not
modify the VTOC or VTOC index. If you do a restore, and modify the VTOC or
VTOC index without changing the volume serial number, you must vary the
volume offline after it is restored.
Copying a Volume: There are no operational requirements if you change the
volume serial number of the receiving volume or do a partial dump without
modifying the VTOC or VTOC index. If you modify the VTOC or VTOC index
without changing the volume serial number, you must vary the receiving
volume offline after it is copied.

Deleting a Data Set from the VTOC
You can use the SCRATCH and CAMLST macro to delete a non-VSAM data set or
a temporary VSAM data set. SCRATCH processing makes the space occupied by
the data set available for reallocation. This process does not automatically erase
data from the disk. See “Erasing Sensitive Data” for further information.

Specifying the Volumes Affected
When deleting a data set, build a volume list in virtual storage. The volume list
consists of an entry for each volume on which the data set resides. If you are
deleting an SMS-managed data set, specify at least one SMS-managed volume in
the list. The first two bytes of the list indicate the number of entries in the list.
Each 12-byte entry consists of a 4-byte device code (the UCBTYP field from the
volume's UCB), a 6-byte volume serial number, and 2 bytes of scratch status
information consisting of a secondary status code and a status code, both of which
must be initialized to zero.

Volumes are processed according to their order in the volume list. If a volume is
not mounted, a message is issued to the operator requesting that the volume be
mounted. This only occurs when you indicate the direct access device on which
unmounted volumes are to be mounted by loading register 0 with the address of
the UCB of the device. (The device must be allocated to your job.) If you do not
load register 0 with a UCB address, its contents must be zero, and at least one of
the volumes in the volume list must be mounted before the SCRATCH macro
instruction is issued. Use the address of a UCB, not a UCB copy, in register 0 with
this macro. 31-bit programs must pass a clean UCB addr on RENAME, when
applicable.

If the requested volume cannot be mounted, the operator replies by indicating that
the request cannot be fulfilled. A status code is then set in the last byte of the
volume list entry (the second byte of the scratch status code) for the unavailable
volume, and the next volume in the volume list is processed.

Erasing Sensitive Data
You should erase data sets that contain sensitive data by overwriting them with
zeros before their space is made available. This can either be done before issuing
the SCRATCH macro, or be requested in scratch processing by performing one of
the following:
v Providing an associated RACF profile ERASE attribute
v Activating bit 21 (X'00 00 04 00') of the SCRATCH parameter list. See Table 22 on

page 148.

Authorized callers of SCRATCH can prevent erasure of the data by setting bit 22 to
1, which overrides the RACF profile ERASE attribute.

Managing the VTOC

Chapter 2. Managing the Volume Table of Contents 145

System-Managed-Storage Considerations
SMS screens all data set SCRATCH requests. If the volumes in your volume list are
SMS managed, SMS does a catalog LOCATE to determine the actual volume serial
numbers, and deletes the data set from all volumes on which it resides. SMS
coordinates the required changes to the VTOC, the VTOC index, and the catalog.

If DADSM encounters a processing error when SMS is active and all the volumes
in your list are SMS managed, SMS determines the volume on which the failure
occurred. The first entry in your list will be overlaid with the entry for the volume
on which the request failed.

You might find that a volume indicated as being in error was not specified in the
volume list your program provided. This occurs if the volumes in your list are
different from the volumes in the data set's catalog entry.

If SMS is not active, you cannot delete SMS-managed data sets.

You can delete SMS-managed VSAM data sets using the access method services
DELETE command. See z/OS DFSMS Access Method Services Commands for further
information.

General Considerations and Restrictions
A data set cannot be deleted if the expiration date in the format-1 DSCB has not
passed unless you override the expiration date. You can request SCRATCH to
ignore the expiration date by specifying the OVRD option in the CAMLST macro
instruction. SCRATCH processing supports three never-scratch dates. To prevent a
data set from being scratched, specify one of the following expiration dates:

1999.365
1999.366
1999.999

To delete a virtual input/output (VIO) data set, the data set must be allocated for
use by your job step.

You cannot use the SCRATCH macro with either a SYSIN or SYSOUT data set or
an z/OS UNIX file. You will receive unpredictable results if you use SCRATCH for
z/OS UNIX files.

If you attempt to delete a password-protected data set that is not also RACF
protected, the operating system issues message IEC301A to the operator at the
console, or the terminal operator of a TSO console, to enter the password. The data
set will be scratched if the password supplied is associated with a WRITE
protection mode indicator. The protection mode indicator is described in Chapter 6,
“Using Password Protected Data Sets,” on page 247.

If a data set is RACF-defined (indicated in its format-1 DSCB or described by a
RACF profile) or the volume upon which it resides is RACF-defined, you can
scratch the data set only if you have ALTER access authority to either the data
set/volume serial in the DATASET class or to the volume serial in the DASDVOL
class.

Requirement: For an SMS-managed non-VSAM data set, you need RACF
authority to the data set or to the catalog to delete it.

Managing the VTOC

146 z/OS V2R1.0 DFSMSdfp Advanced Services

For a non-VSAM data set that is not SMS-managed, DADSM invokes RACF to
verify authorization. If you have ALTER access authority to the data set/volume
serial in the DATASET class, DADSM deletes the data set from the volume. If you
have ALTER authority to the data set/volume serial in the DATASET class, or
UPDATE access authority to the catalog/volume serial in the DATASET class, you
can delete the catalog entry.

Use the STOW macro to delete or rename a member of a PDS or PDSE. STOW is
described in z/OS DFSMS Macro Instructions for Data Sets and z/OS DFSMS Using
Data Sets. You can also use the IEHPROGM utility to delete a member (see z/OS
DFSMSdfp Utilities).

SCRATCH and CAMLST Macro Specification
The format of the SCRATCH and CAMLST macros is:

�� SCRATCH listname_addrx
label

��

�� listname CAMLST SCRATCH ,dsname_relexp ,,vol_list_relexp �

�
,,OVRD

��

listname_addrx
Points to the parameter list (labeled listname) set up by the CAMLST macro
instruction.

SCRATCH
Code this operand as shown.

dsname_relexp
Specifies the virtual storage location of a fully-qualified data set name. The
area that contains the name must be 44 bytes long.

vol list_relexp
Specifies the virtual storage location of an area that contains a volume list. The
area must begin on a halfword boundary.

OVRD
When coded as shown, specifies that the expiration date in the DSCB should
be ignored.

Example
In the following example, data set A.B.C is deleted from two volumes. The
expiration date in the identifier (format-1) DSCB is ignored.

SR 0,0 SHOW NO UCB IS SUPPLIED
SCRATCH DELABC DELETE DATA SET A.B.C

* FROM TWO VOLUMES,
* IGNORING EXPIRATION
* DATE IN THE DSCB

Managing the VTOC

Chapter 2. Managing the Volume Table of Contents 147

DELABC CAMLST SCRATCH,DSABC,,VOLIST,,OVRD
DSABC DC CL44’A.B.C’ DATA SET NAME
VOLIST DC H’2’ NUMBER OF VOLUMES

DC X’3030200E’ 3380 DISK DEVICE CODE
DC CL6’000017’ VOLUME SERIAL NO.
DC H’0’ SCRATCH STATUS CODE
DC X’3030200E’ 3380 DISK DEVICE CODE
DC CL6’000018’ VOLUME SERIAL NO.
DC H’0’ SCRATCH STATUS CODE

Recommendation: Check the return codes and SCRATCH status codes.

The SCRATCH macro instruction points to the CAMLST macro instruction. The
SCRATCH operand specifies that a data set be deleted. DSABC specifies the virtual
storage location of a 44-byte area containing the fully-qualified name of the data
set to be deleted. VOLIST specifies the virtual storage location of the volume list
you have built. OVRD specifies that the expiration date in the DSCB of the data set
to be deleted should be ignored.

SCRATCH Parameter List
The CAMLST macro generates the SCRATCH parameter list, but your code can set
several options that CAMLST does not support. See Table 22.

Table 22. SCRATCH Parameter List

Offset Length or Bit Pattern Description

0(0) 1 Flags. Always X'41'.

1(1) 1 Flags.

.1.. Do not delete the Resource Access
Control Facility (RACF) profile. Has an
effect only if JSCBPASS is on.
JSCBPASS is on if the program
properties table gives authority to
bypass security. See the NOPASS
option on the primary POI task (PPT)
statement in the SCHEDxx member of
SYS1.PARMLIB as described in z/OS
MVS Initialization and Tuning Reference.

x.xx xxxx Reserved.

2(2) 1 Flags.

1... SYSZTIOT already is enqueued.
SCRATCH bypasses enqueueing on
SYSZTIOT if this bit is on and the
caller is APF-authorized or is running
in a system key or supervisor state. If
SYSZTIOT is not already enqueued,
system damage might result.

.10. ...0 Always set for SCRATCH.

...1 OVRD coded on CAMLST.

.... 1... Bypass RACF profile checking.
SCRATCH bypasses RACF profile
checking if this bit is on and the caller
is APF-authorized or is running in a
system key or supervisor state.

Managing the VTOC

148 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 22. SCRATCH Parameter List (continued)

Offset Length or Bit Pattern Description

.... .1.. Erase all allocated space for the data
set.

.... ..1. Do not erase allocated space.
SCRATCH bypasses space erasure if
this bit is on and the caller is
APF-authorized or is running in a
system key or supervisor state.

3(3) 1 Reserved.

4(4) 4 Address of 44-byte data set name.

8(8) 4 Reserved.

12(C) 4 Address of volume list.

Return Codes from SCRATCH
Control returns to the instruction following the instructions generated by the
SCRATCH macro. Register 15 contains the SCRATCH return code as shown in
Table 23.

SCRATCH returns 4 bytes of diagnostic information in register 0. If an error
occurs, DADSM issues message IEC614I, consisting of failure-related information
including the return code and the 4 bytes of diagnostic information. See z/OS
DFSMSdfp Diagnosis for a description of this information.

The last two bytes of a volume list entry contain the secondary status code and the
scratch status code. The secondary status codes are shown in Table 25 on page 150
and the scratch status codes are shown in Table 24 on page 150. To determine if the
data set has been deleted from each volume, check the scratch status code. (Even if
the scratch status code is zero, the secondary status code might be nonzero for the
first entry in the volume list.)

Table 23 describes the conditions indicated by the SCRATCH return code.

Table 23. SCRATCH Return Codes

Return Code Description

000 (X'00') If the 4 bytes of diagnostic information returned in register 0 are all
zeros, the data set was successfully deleted. If they are nonzero, use
the SCRATCH diagnostic information tables in z/OS DFSMSdfp
Diagnosis to determine the failure-related conditions.

004 (X'04') No volume containing any part of the data set was mounted. The
data set might be a VIO data set that was not allocated to your
jobstep.

008 (X'08') An unusual condition was encountered on one or more volumes.
012 (X'0C') One of the following conditions occurred:

v The SCRATCH parameter list is not valid.

v The volume list is not valid.

v At entry to SCRATCH, register 0 was not zero and did not point
to a valid UCB. The address must be that of a UCB, not a UCB
copy.

The SCRATCH status code will not have been set.

Managing the VTOC

Chapter 2. Managing the Volume Table of Contents 149

Status Codes from SCRATCH
After the SCRATCH macro instruction is executed (for SCRATCH return codes 0, 4,
and 8 only), the last byte of each 12-byte entry in the volume list indicates one of
the following conditions:

Table 24. SCRATCH Status Codes

Status Code Meaning

0 (X'00') The data set has been deleted from this volume.
1 (X'01') The VTOC of this volume does not contain the format-1 or format-8

DSCB to be deleted.
2 (X'02') One of the following conditions occurred:

v The data set could not be scratched because the correct password
was not specified in the two attempts allowed.

v The user tried to scratch a VSAM data space or an integrated
catalog facility VSAM data set.

v The user tried to scratch the VTOC index data set.
v An SMS-validation failure occurred.
v The verify of the last referenced date failed.

3 (X'03') The data set was not deleted because either the OVRD option was
not specified or the retention cycle had not expired.

4 (X'04') One of the following conditions occurred:
v An invalid format-1 or format-8 DSCB was encountered when

processing this volume.
v An unexpected CVAF error return code was encountered.
v An installation exit rejected the request.
v An I/O error occurred while the DASD tracks occupied by the

data set were being erased. Either the ERASE option was
specified in the scratch parameter list or the ERASE attribute was
specified for an RACF-defined data set.

5 (X'05') It could not be verified that this volume was mounted, nor was
there a unit available for mounting the volume.

6 (X'06') The operator was unable to mount this volume.
7 (X'07') The data set was not deleted because it was open.
8 (X'08') The format-1 or format-8 DSCB indicates the data set is defined to

RACF, but either you are not authorized to the data set or volume,
or the data set is a VSAM data space.

After the SCRATCH macro instruction is executed, the next to last byte of the first
entry in the volume list indicates one of the following conditions:

Table 25. Secondary Status Codes

Status Code Meaning

0 (X'00') No secondary status for this volume.
128 (X'80') The data set was RACF protected and the calling program was

authorized by the RACF DATASET class to scratch the data set.
This means that at least one volume entry was protected.

Renaming a Data Set in the VTOC
You can use the RENAME and CAMLST macro to rename a non-VSAM data set.
Rename processing causes the data set name in all format-1 or format-8 DSCBs to
be replaced with the new name you supply. The new data set name must conform
to standard data set naming conventions.

Managing the VTOC

150 z/OS V2R1.0 DFSMSdfp Advanced Services

Specifying the Volumes Affected
When renaming a data set, build a volume list in virtual storage. The volume list
consists of an entry for each volume on which the data set resides. If you are
renaming an SMS-managed data set, specify at least one SMS-managed volume in
the list. The first two bytes of the list indicate the number of entries in the list.
Each 12-byte entry consists of a 4-byte device code (the UCBTYP field from the
volume's UCB), a 6-byte volume serial number, and a 2-byte rename status code
that should be initialized to zero.

Volumes are processed according to their order in the volume list. If a volume is
not mounted, a message is issued to the operator requesting that the volume be
mounted. This only occurs when you indicate the direct access device on which
unmounted volumes are to be mounted by loading register 0 with the address of
the UCB of the device. (The device must be allocated to your job.) If you do not
load register 0 with a UCB address, its contents must be zero, and at least one of
the volumes in the volume list must be mounted before the RENAME macro
instruction is issued. Use the address of a UCB, not a UCB copy, in register 0 with
this macro. 31-bit programs must pass a clean UCB addr on RENAME, when
applicable.

If the requested volume cannot be mounted, the operator replies by indicating that
the request cannot be fulfilled. A status code is then set in the last byte of the
volume list entry (the second byte of the rename status code) for the unavailable
volume, and the next volume indicated in the volume list is processed.

System-Managed-Storage Considerations
SMS screens all data set RENAME requests. If the volumes specified in your
volume list are SMS managed, SMS does a catalog LOCATE to determine the
actual volume serial numbers, and coordinates the required changes to the VTOC,
the VTOC index, and the catalog.

If DADSM encounters a processing error while SMS is active and all the volumes
in your list are SMS managed, SMS determines the volume on which the failure
occurred. The first entry in your list will be overlaid with the entry for the volume
on which the request failed.

You might find that a volume indicated as being in error was not specified in the
volume list your program provided. This occurs if the volumes in your list are
different from the volumes in the data set's catalog entry.

If SMS is not active, you cannot rename SMS-managed data sets.

General Considerations and Restrictions

Multivolume Considerations
To rename a data set that is stored on more than one volume, all volumes must be
mounted.

Unrenamable Data Sets and UNIX Files
You cannot use the RENAME macro with either a SYSIN or SYSOUT data set or
UNIX file (such as an z/OS UNIX file). You will receive unpredictable results if
you use RENAME for UNIX files.

You cannot rename VIO data sets.

Managing the VTOC

Chapter 2. Managing the Volume Table of Contents 151

Data Set Security
You can rename a RACF-defined data set only if you have ALTER access authority
to the data set in the DATASET class.

If you attempt to rename a password-protected data set, the operating system
issues message IEC301A asking the operator or TSO operator to verify the
password. The data set will be renamed if the password supplied is associated
with a WRITE protection mode indicator. The protection mode indicator is
described in Chapter 6, “Using Password Protected Data Sets,” on page 247.

Renaming a Data Set That Might be in Use
You can rename a data set that is allocated to the current address space but it
cannot be open.

In general, you cannot rename a data set whose name is the same as any data set
that is allocated to another address space in the same system or in the scope of the
SYSDSN enqueue. The system bypasses this restriction if all of the following are
true:
v Your program sets on a certain bit in the CAMLST macro expansion. You can

code this instruction: OI listname+2,X'10'.
v You have at least read authority to the RACF facility class named

STGADMIN.DPDSRN.olddsname, where olddsname is up to 23 characters of the
existing data set name. You can use a generic class name such as
STGADMIN.DPDSRN.SYS2.*. IBM recommends that no one have authority to
STGADMIN.DPDSRN.* because it is too broad.

v The data set is not SMS-managed.

Alternatively, you can use the data set rename option of PDF. If you attempt to
rename a non-SMS-managed, non-VSAM data set, the data set name is in use and
you have the appropriate RACF facility class authority, then PDF asks whether you
wish to proceed because you know that the data set is not actually open. Let the
rename proceed only if you know the data set being renamed is not open on any
system.

Attention: This option should be used with extreme caution. Very few people
should have RACF authority to STGADMIN.DPDSRN.olddsname. Do not use this
option unless you know the data set is not open on any system. After the data set
is renamed, someone could delete it in a different address space. If someone has it
open by the old name, new data sets will appear at those places on the disk. This
would be a security violation that the system does not detect.

The data set rename function writes a type 18 SMF record to provide information
to storage administrators, system programmers, and auditors. The record contains
an indicator of whether it was successful due to the use of this duplicate name
override function. If you request the option in the CAMLST macro expansion but
the data set name is not in use, then the SMF indicator will not be on.

Managing the VTOC

152 z/OS V2R1.0 DFSMSdfp Advanced Services

RENAME and CAMLST Macro Specification
The format of the RENAME and CAMLST macros is:

�� RENAME listname_addrx
label

��

�� listname CAMLST RENAME ,dsname_relexp ,new name_relexp �

� ,vol list_relexp ��

listname_addrx
Points to the parameter list (labeled listname) set up by the CAMLST macro
instruction.

RENAME
Code this operand as shown.

dsname_relexp
Specifies the virtual storage location of a fully-qualified data set name to be
replaced. The area containing the name must be 44 bytes long.

new name_relexp
Specifies the virtual storage location of a fully-qualified data set name that is to
be used as the new name. The area containing the name must be 44 bytes long.

vol list_relexp
Specifies the virtual storage location of an area that contains a volume list. The
area must begin on a halfword boundary.

Example
In the following example, data set A.B.C is renamed D.E.F. The data set resides on
two volumes.

SR 0,0 SET REG 0 TO ZERO
RENAME DSABC CHANGE DATA SET

NAME A.B.C TO D.E.F

DSABC CAMLST RENAME,OLDNAME,NEWNAME,VOLIST
OLDNAME DC CL44’A.B.C’ OLD DATA SET NAME
NEWNAME DC CL44’D.E.F’ NEW DATA SET NAME
VOLIST DC H’2’ TWO VOLUMES

DC X’3030200E’ 3380 DISK DEVICE CODE
DC CL6’000017’ VOLUME SERIAL NO.
DC H’0’ RENAME STATUS CODE
DC X’3030200E’ 3380 DISK DEVICE CODE
DC CL6’000018’ VOLUME SERIAL NO.
DC H’0’ RENAME STATUS CODE

Recommendation: Check the return codes and RENAME status codes.

The RENAME macro instruction points to the CAMLST macro instruction. The
RENAME operand specifies that a data set be renamed. OLDNAME specifies the

Managing the VTOC

Chapter 2. Managing the Volume Table of Contents 153

virtual storage location of a 44-byte area where you have placed the fully-qualified
name of the data set to be renamed. NEWNAME specifies the virtual storage
location of a 44-byte area where you have placed the new name of the data set.
VOLIST specifies the virtual storage location of the volume list you have built.

RENAME Parameter List
The CAMLST macro generates the RENAME parameter list but your code can set
several options that CAMLST does not support. See Table 26.

Table 26. RENAME Parameter List generated by CAMLST

Offset Length or Bit Pattern Description

0(0) 1 Flags. Always X'C1'

1(1) 1 Flags.

.1.. Do not define RACF profile.

..1. Do not update the changed bit
(DS1DSCHA) in the format 1 DSCB.

x..x xxxx Reserved.

2(2) 1 Flags.

..1. Always set for RENAME.

...1 See “Renaming a Data Set That Might be in
Use” on page 152.

xx.. xxxx Reserved.

3(3) 1 Reserved.

4(4) 4 Address of 44-byte existing data set name.

8(8) 4 Address of 44-byte new data set name.

12(C) 4 Address of volume list.

Return Codes from RENAME
Control returns to the instruction following the instructions generated by the
RENAME macro. Register 15 contains the DADSM return code as shown in
Table 27 on page 155.

DADSM RENAME returns 4 bytes of diagnostic information in register 0. If an
error occurs, DADSM issues message IEC614I, consisting of failure-related
information including the return code and the 4 bytes of diagnostic information.
See z/OS DFSMSdfp Diagnosis for a description of this information.

Each volume's volume list entry contains the rename status code as shown in
Table 28 on page 155. To determine whether the data set has been successfully
renamed on each volume, check the rename status code, contained in the last byte
of each entry in the volume list.

Table 27 on page 155 describes the conditions indicated by the DADSM return
code.

Managing the VTOC

154 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 27. DADSM RENAME Return Codes

Return Code Description

000 (X'00') If the 4 bytes of diagnostic information returned in register 0 are all
zeros, the data set has been successfully renamed. If they are
nonzero, use the DADSM RENAME diagnostic information tables in
z/OS DFSMSdfp Diagnosis to determine the failure-related
conditions.

004 (X'04') No volume containing any part of the data set was mounted. The
data set can be a VIO data set but cannot be renamed.

008 (X'08') An unusual condition was encountered on one or more volumes.
The diagnostic information is in register 0. Use the DADSM
RENAME diagnostic information tables in z/OS DFSMSdfp Diagnosis
to determine the failure-related conditions.

012 (X'0C') One of the following conditions occurred:

v The DADSM RENAME parameter list is not valid.

v The volume list is not valid.

v At entry to RENAME, register 0 was not zero and did not point
to a valid UCB. The address must be that of a UCB, not a UCB
copy.

The RENAME status code will not have been set.

Status Codes from RENAME
After the RENAME macro instruction is executed (for RENAME return codes 0, 4,
and 8 only), the last byte of each 12-byte entry in the volume list indicates one of
the following conditions described in Table 28.

Table 28. RENAME Status Codes

Status Code Meaning

0 (X'00') The format-1 DSCB for the data set has been renamed in the VTOC
on this volume.

1 (X'01') The VTOC of this volume does not contain the format-1 or format-8
DSCB of the data set to be renamed.

2 (X'02') One of the following conditions occurred:

v The data set could not be renamed because the data set was
password protected and the password was not supplied in the
two attempts allowed.

v An attempt was made to rename a VSAM data space or an
integrated catalog facility VSAM data set.

v An attempt was made to rename a VTOC index data set.

v An SMS-validation failure occurred.
3 (X'03') A format-1 or format-8 DSCB containing the new data set name

already exists in the VTOC of this volume, or an attempt was made
to rename a data set to a name starting with SYS1.VTOCIX.

4 (X'04') One of the following conditions occurred:

v A permanent I/O error occurred while trying to rename the data
set on this volume.

v An invalid format-1 or format-8 DSCB was encountered while
processing this volume.

v No space is available in the index VIER for the new name, and
no additional VIERs are available.

5 (X'05') It could not be verified that this volume was mounted nor was a
unit available for mounting the volume.

Managing the VTOC

Chapter 2. Managing the Volume Table of Contents 155

Table 28. RENAME Status Codes (continued)

Status Code Meaning

6 (X'06') The operator was unable to mount this volume.
7 (X'07') The data set was not renamed, because it was currently open for

processing.
8 (X'08') The data set is defined to RACF, but either you are not authorized

to the data set or the data set is defined to RACF on multiple
volumes.

Managing the VTOC

156 z/OS V2R1.0 DFSMSdfp Advanced Services

Chapter 3. Using Catalog Management Macros

This information covers catalog management macro instructions for compatibility
purposes only. Catalog management macro instructions can be used to perform the
following functions:
v Retrieve information from an integrated catalog facility catalog.
v Catalog, uncatalog, or re-catalog in an integrated catalog facility catalog the

following types of data sets:
– DASD data sets that are not VSAM or SMS-managed
– Tape data sets.

Application Program Considerations
A catalog management request can be satisfied in an integrated catalog facility
catalog. Consider the following restrictions and limitations in relation to your
application programs:
v A catalog management request is expressed in a parameter list pointed to by

register 1. Generate the parameter list with a CAMLST macro. The CAMLST and
its associated fields must not be located in read-only storage.

v Register 15 contains the return code. These return codes are explained in the
sections below.

Catalog Search Order
Catalogs are searched for entries using the following methods:
1. If a catalog is specified in a macro, only that catalog is searched.
2. If the entry is identified with a qualified entry name and its first qualifier is the

same as the name or alias of a user catalog, the user catalog is searched. When
the entry is found, no other catalog is searched.

3. The master catalog is searched.

See z/OS DFSMS Access Method Services Commands for more detailed information.

Retrieving Information from a Catalog
To read an entry from a catalog, use the LOCATE and CAMLST macro
instructions. You can specify the entry to be read into your output area using the
following information:
v The fully- or partially-qualified name of a data set
v The relative block address of the block containing the entry.

If you specify a fully-qualified data set name, a list of volumes on which the data
set resides is read into your output area. This volume list always begins with a
2-byte entry indicating the number of volumes in the list.

Restriction: When CAMLST is used to locate a data set that is over 20 volumes in
length, only information from the first 20 volumes is returned. If you need to
retrieve data from more than 20 volumes, use IGGCSI (Catalog Search Interface).
See (link to pertinent section in Man Cat).

© Copyright IBM Corp. 1979, 2014 157

For the Catalog interface, a fully-qualified name is one which represents a single
data set. A partially-qualified name is one which may contain multiple qualifiers,
but does not specify a full data set name.

For example, if LEVEL1.LEVEL2.LEVEL3.LEVEL4 is a data set, then
LEVEL1.LEVEL2.LEVEL3.LEVEL4 is a fully-qualified name. The following data set
would be considered partially-qualified names:

LEVEL1.LEVEL2.LEVEL3
LEVEL1.LEVEL2
LEVEL1

Restriction: For the catalog interface, you cannot specify an asterisk (*) or an
ampersand (&) to specify a partially-qualified data set name.

See z/OS DFSMSdfp Diagnosis for descriptions of the contents of the volume control
block and the other catalog data areas.

See “Return Codes from LOCATE” on page 162 for a description of the LOCATE
return codes.

Retrieving Information by Data Set Name (LOCATE and
CAMLST NAME)

Specifying a data set name returns a volume list in your output area. A volume list
consists of an entry for each volume on which part of the data set resides. For each
volume, the list contains the volume serial number, device type, and file sequence
number. Volumes are divided by whether they fall within the minimum unit count,
or outside of it. Volumes within and without are in descending binary order by
device type, except for reusable KSDS. For a reusable KSDS, the volume serial
numbers are returned in the order: first index, first data, remaining index,
remaining data.

A volume list begins with a 2-byte field containing the number of volumes in the
list. The count field is followed by a variable number of 12-byte entries. Each
12-byte entry consists of a 4-byte device code, a 6-byte volume serial number, and
a 2-byte volume sequence number. As many as 20 of these 12-byte entries can be
built in your output area. LOCATE can return bytes 252 - 254 of your area
containing the relative track address of the DSCB on the first or only volume for
that data set. Otherwise, these bytes are zero. Bytes 242 to 251 are reserved, byte
255 contains zeros, and bytes 256 to 264 are also reserved and not intended as a
programming interface.

A CAMLST LOCATE on a VSAM cluster returns the volumes for all components.
The format of this volume list is as described previously. The output is translated
into the format described in the preceding two paragraphs before returning to the
caller. The original VSAM or integrated catalog facility return code is saved in
register 0.

The macro format for the LOCATE and CAMLST NAME is:

�� LOCATE listname_addrx
label

��

CATALOG Macros

158 z/OS V2R1.0 DFSMSdfp Advanced Services

listname_addrx
Points to the parameter list (labeled listname) set up by the CAMLST macro
instruction.

NAME
To retrieve information from a catalog by name, code this operand as shown.

dsname_relexp
Specifies the virtual storage location of a fully-qualified data set name. The
area that contains the name must be 44 bytes long. The name can be defined
by a C-type define constant (DC) instruction.

area_relexp
Specifies the virtual storage location of your 265-byte output area, that you
must define. The output area must begin on a doubleword boundary.

Example
In the following example, the catalog entry containing a list of the volumes on
which data set A.B resides, is read into virtual storage.

The LOCATE macro instruction points to the CAMLST macro instruction. NAME,
the first operand of CAMLST, specifies that the system is to search for a catalog
entry using the name of a data set. AB, the second operand, specifies the virtual
storage location of the fully-qualified data set name LOCAREA, the fourth
operand, specifies a 265-byte area you have reserved in virtual storage.

After these macro instructions execute, the 265-byte area contains a volume list or a
volume control block for the data set A.B. If the entry has been located and read
successfully, register 15 contains zeros. Otherwise, register 15 contains a return
code (see “Return Codes from LOCATE” on page 162).

Retrieving Information by Generation Data Set Name (LOCATE
and CAMLST NAME)

Specify the name of a generation data set using the fully-qualified generation index
name and the relative generation number of the data set. The value of a relative
generation number reflects the position of a data set in a generation data group.
The following values can be used to identify a data set in a generation data group:
v Zero—specifies the latest data set (highest generation number) cataloged in a

generation data group.
v Negative number—specifies a data set cataloged before the latest data set.

�� listname CAMLST NAME ,dsname_relexp ,area_relexp ��

LOCATE INDAB READ CATALOG ENTRY FOR DATA SET A.B
* INTO VIRTUAL STORAGE AREA NAMED LOCAREA.
* LOCAREA MAY ALSO CONTAIN A 3-BYTE
* TTR OR A 6-BYTE SERIAL NUMBER

Check Return Codes

INDAB CAMLST NAME,AB,,LOCAREA
AB DC CL44’A.B’
LOCAREA DS 0D

DS 265C

CATALOG Macros

Chapter 3. Using Catalog Management Macros 159

Rule: If DISP (disposition) is DELETE to make room for other data sets and no
generation data group exists, the job will complete indicating a deleted
generation name (G0000V00). If a generation data group exists but is not in the
range specified for deletion, the step will fail.

v Positive number—specifies a data set not yet cataloged in the generation data
group.

Using zero or a negative number as the relative generation number places a
volume list (or a volume control block) in your output area and replaces the
relative generation number with the absolute generation name.

Using a positive number as the relative generation number creates an absolute
generation name and replaces the relative generation number. Because there are no
entries in the catalog, zeros are read into the first 256 bytes of your output area.

The format for the LOCATE and CAMLST NAME macros is:

list_addrx
Points to the parameter list (labeled listname) set up by the CAMLST macro
instruction.

NAME
To read a block from the catalog by generation data set name, code this
operand as shown.

dsname_relexp
Specifies the virtual storage location of the name of the generation index and
the relative generation number. The area that contains these must be 44 bytes
long.

area_relexp
Specifies the virtual storage location of your 265-byte output area, which you
must define. The output area must begin on a doubleword boundary. The
output area will contain a volume list that is built from the catalog. If the data
set resides on one volume, bytes 252 - 254 can contain the relative track
address of the DSCB. This address is relative to the beginning of the volume.

Example
In the following example, the list of volumes containing generation data set
A.PAY(-3) is read into virtual storage.

�� LOCATE list_addrx
label

��

�� listname CAMLST NAME ,dsname_relexp ,area_relexp ��

CATALOG Macros

160 z/OS V2R1.0 DFSMSdfp Advanced Services

The LOCATE macro instruction points to the CAMLST macro instruction. NAME,
the first operand of CAMLST, initiates a search for a catalog entry using the name
of a data set. APAY, the second operand, specifies the virtual storage location of the
name of the generation index and the relative generation number of a data set in
the generation data group. LOCAREA, the fourth operand, specifies a 265-byte
area you have reserved to receive the catalog information.

After executing this macro instruction, the system replaces the relative generation
number that you specified with the data set's absolute generation name. Control is
returned to your program at the next executable instruction following the LOCATE
macro instruction. If the entry has been located and read successfully, register 15
contains zeros. Otherwise, register 15 contains a return code (see “Return Codes
from LOCATE” on page 162). See “Retrieving Information by Data Set Name
(LOCATE and CAMLST NAME)” on page 158 for a description of the contents of
the output area.

Retrieving Information by Alias (LOCATE and CAMLST NAME)
For each of the preceding functions, you can specify an alias as the name of a data
set. Functions proceed as previously described with one exception: the true name
replaces the specified alias name.

The format for the LOCATE and CAMLST NAME macros is:

list_addrx
Points to the parameter list (labeled listname) set up by the CAMLST macro
instruction.

NAME
To retrieve information from a catalog, code this operand as shown.

dsname_relexp
Specifies the virtual storage location of a fully-qualified data set name, the first
or only name of which is the alias. The area containing the name must be 44
bytes long. The name can be defined by a C-type DC instruction.

area_relexp
Specifies the virtual storage location of your 265-byte output area, that you

LOCATE INDGX READ CATALOG ENTRY
* FOR DATA SET A.PAY(-3)
* INTO YOUR STORAGE
* AREA NAMED LOCAREA

Check Return Codes

INDGX CAMLST NAME,APAY,,LOCAREA
APAY DC CL44’A.PAY(-3)’
LOCAREA DS 0D

DS 265C

�� LOCATE list_addrx
label

��

�� listname CAMLST NAME ,dsname_relexp ,area_relexp ��

CATALOG Macros

Chapter 3. Using Catalog Management Macros 161

must define. The output area must begin on a doubleword boundary. The first
256 bytes of the output area will contain a volume list that is read from a
catalog. If the data set resides on one volume, bytes 252 - 254 can contain the
relative track address of the DSCB. This address is relative to the beginning of
the volume.

Example
In the following example, the catalog entry containing a list of the volumes on
which data set A.B.C resides is read into virtual storage (data set A.B.C, however,
is addressed by an alias name, X.B.C).

The LOCATE macro instruction points to the CAMLST macro instruction. NAME,
the first operand of CAMLST, initiates a search of the catalog for an entry using
the name of a data set. ABC, the second operand, specifies the virtual storage
location of the fully-qualified name of a data set (in this case, data set A.B.C is
addressed by its alias X.B.C). LOCAREA, the fourth operand, specifies a 265-byte
area you have reserved in virtual storage.

See “Return Codes from LOCATE” for a description of the LOCATE return codes.

Reading a Block by Relative Block Address (LOCATE and
CAMLST BLOCK)

This format is no longer supported and will result in an error.

Return Codes from LOCATE
Control is returned to your program at the next executable instruction following
the LOCATE macro instruction. Register 15 contains one of the following return
codes. If register 15 is non-zero, then register 0 contains an ICF catalog return code,
described under message IDC3009I in z/OS MVS System Messages, Vol 6 (GOS-IEA).

Table 29. LOCATE Return Codes

Code Meaning

0 (X'00') Operation successful.
4 (X'04') Either the required catalog does not exist or it cannot be opened.
8 (X'08') The user is not authorized to perform this operation. Register 0

contains hexadecimal 38.
12 (X'0C') An invalid low-level GDG name was found.
16 (X'10') A data set exists at other than the lowest index level specified.

Register 0 contains the number of the index level where the data set
was encountered.

20 (X'14') An invalid name has been provided

LOCATE INDAB READ CATALOG ENTRY
* FOR DATA SET X.B.C
* INTO VIRTUAL STORAGE
* AREA NAMED LOCAREA.

Check Return Codes

INDAB CAMLST NAME,ABC,,LOCAREA
ABC DC CL44’X.B.C’
LOCAREA DS 0D

DS 265C

CATALOG Macros

162 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 29. LOCATE Return Codes (continued)

Code Meaning

24 (X'18') One of the following happened:
v A permanent I/O or unrecoverable error was encountered.
v An error was found in a parameter list. R1 is set to X'08000000'.
v There was a nonzero return code from ESTAE or GETMAIN. R1

is set to X'08000000'.
38 (X'26') DFSMShsm LOCATE preprocessor has experienced an error.
Note: See z/OS MVS System Messages, Vol 7 (IEB-IEE) and z/OS MVS System Messages, Vol 8
(IEF-IGD), message IDC3009I, for documentation of integrated catalog facility catalog and
VSAM catalog return codes.

Using Non-VSAM Data Set Catalog Entries
You can catalog, uncatalog, and recatalog non-VSAM data sets using the
CATALOG and CAMLST macro instructions. CATALOG macro instructions are
used to point to CAMLST macro instructions and to specify cataloging options.

For a description of the search algorithms used for cataloging, uncataloging, and
recataloging non-VSAM data sets, see the DEFINE and the DELETE commands in
z/OS DFSMS Access Method Services Commands .

Cataloging a Non-VSAM Data Set (CATALOG and CAMLST
CAT)

The format of the CATALOG and CAMLST macros is:

list_addrx
Points to the parameter list (labeled listname) set up by the CAMLST macro
instruction.

CAT or CATBX
Code this operand as shown. Either CAT or CATBX can be coded.

name_relexp
Specifies the virtual storage location of the fully-qualified name of a data set.
The name cannot exceed 44 characters. If the name is less than 44 characters, it
must be followed by at least one blank. In a DFSMShsm environment, if the
data set name is less than 44 characters, it must be padded with blanks until
the 44-character length is reached.

�� CATALOG list_addrx
label

��

�� listname CAMLST CAT

CATBX

,name_relexp ,vol_list_relexp �

�
,DSCBTTR=dscb_ttr_relexp

��

CATALOG Macros

Chapter 3. Using Catalog Management Macros 163

vol list_relexp
Specifies the virtual storage location of an area that contains a volume list. The
list must begin on a halfword boundary and consist of an entry for each
volume on which the data set is stored. The first two bytes of the list indicate
the number of entries in the volume list; the number cannot be zero. Each
12-byte volume list entry consists of a 4-byte device code, a 6-byte volume
serial number, and a 2-byte data set sequence number. The sequence number is
always zero for direct access volumes.

DSCBTTR=dscb ttr_relexp
Specifies the virtual storage location of the 3-byte relative track address (TTR)
of the data set control block (DSCB). This DSCB is on the first or only volume
of the data set. The address is relative to the beginning of the volume.

Programming Considerations for Multiple-Step Jobs
When executing multiple-step jobs, it is preferable to catalog or uncatalog data sets
using JCL, instead of using IDCAMS, IEHPROGM, or a user program. Because
step allocation and unallocation monitors data sets during job execution and is
unaware of functions performed by user programs, conflicting functions can be
performed or GDG orientation can be lost.

Unallocation can recatalog existing cataloged data sets at job termination. This
action occurs when the data set is opened during the job and the DSCB TTR could
not be found in the catalog entry. If you are using the CAMLST macro to uncatalog
and then catalog data sets with new volume information, be sure to include the
DSCB TTR.

Example
In the following example, the non-VSAM data set named A.B.C is cataloged. The
data set is stored on two volumes.

The CATALOG macro instruction points to the CAMLST macro instruction. CAT,
the first operand of CAMLST, specifies that a data set is to be cataloged. DSNAME,
the second operand, specifies the virtual storage location of the data set name
A.B.C. VOLUMES, the fourth operand, specifies the virtual storage location of the
volume list.

Control is returned to your program at the instruction following the CATALOG
macro instruction. Register 15 contains one of the return codes described under
“Return Codes from CATALOG” on page 167.

Uncataloging a Non-VSAM Data Set (CATALOG and CAMLST
UNCAT)

Use this macro to remove a data set reference and unneeded indexes.

CATALOG ADDABC CATALOG DATA SET A.B.C.

Check Return Codes

ADDABC CAMLST CAT,DSNAME,,VOLUMES
DSNAME DC CL6’A.B.C’ ONE BLANK FOR DELIMITER
VOLUMES DC H’2’ DATA SET ON TWO VOLUMES

DC X’3010200E’ 3380 DISK DEVICE CODE
DC CL6’000014’ VOLUME SERIAL NUMBER
DC H’0’ DATA SET SEQUENCE NUMBER
DC X’3010200E’ 3380 DISK DEVICE CODE
DC CL6’000015’ VOLUME SERIAL NUMBER
DC H’0’ SEQUENCE NUMBER

CATALOG Macros

164 z/OS V2R1.0 DFSMSdfp Advanced Services

The format of the CATALOG and CAMLST macros is:

list_addrx
Points to the parameter list (labeled listname) set up by the CAMLST macro
instruction.

UNCAT or UCATDX
Code this operand as shown. Either UNCAT or UCATDX can be coded but, in
either case, unneeded indexes, with the exception of the highest-level index,
are removed along with the data set reference.

name_relexp
Specifies the virtual storage location of the fully-qualified name of a data set or
index level. The name cannot exceed 44 characters. If the name is less than 44
characters, it must be followed by at least one blank. In a DFSMShsm
environment, if the data set name is less than 44 characters, it must be padded
with blanks until the 44-character length is reached.

Example
In the following example, the catalog entry for data set A.B.C is removed from a
catalog.

The CATALOG macro instruction points to the CAMLST macro instruction.
UNCAT, the first operand of CAMLST, specifies that references to a data set are to
be removed from the catalog. DSNAME, the second operand, specifies the virtual
storage location of the fully-qualified name of the data set whose references are to
be removed.

Control is returned to your program at the instruction following the CATALOG
macro instruction. Register 15 contains one of the return codes described under
“Return Codes from CATALOG” on page 167.

Restriction: The CAMLST UNCAT or UCATDX function is not supported for
system-managed data sets. These are ignored. The function is not performed and
the return code is 0.

�� CATALOG list_addrx
label

��

�� listname CAMLST UNCAT
UCATDX

,name_relexp ��

CATALOG REMOVE REMOVE REFERENCES TO DATA SET A.B.C
* FROM CATALOG

Check Return Codes

REMOVE CAMLST UNCAT,DSNAME
DSNAME DC CL6’A.B.C’ ONE BLANK FOR DELIMITER

CATALOG Macros

Chapter 3. Using Catalog Management Macros 165

Recataloging a Non-VSAM Data Set (CATALOG and CAMLST
RECAT)

You can recatalog a non-VSAM data set using the CATALOG and CAMLST macro
instructions. Recataloging is usually necessary if a data set is extended to a new
volume.

Build a complete volume list in virtual storage consisting of an entry for each
volume on which the data set resides. The first 2 bytes of the list indicate the
number of entries in the list; the number must not be zero. Each 12-byte volume
pointer consists of a 4-byte device code, a 6-byte volume serial number, and a
2-byte data set sequence number. The sequence number is always zero for direct
access volumes.

The format of the CATALOG and CAMLST macros is:

list_addrx
Points to the parameter list (labeled listname) set up by the CAMLST macro
instruction.

RECAT
Code this operand as shown.

name_relexp
Specifies the virtual storage location of the fully-qualified name of a data set.
The name cannot exceed 44 characters. If the name is less then 44 characters, it
must be followed by at least one blank. In a DFSMShsm environment, if the
data set name is less than 44 characters, it must be padded with blanks until
the 44-character length is reached. A C-type DC instruction can define the
name.

vol list_relexp
Specifies the virtual storage location of an area that contains a volume list. The
area must begin on a halfword boundary.

DSCBTTR=dscb ttr_relexp
Specifies the virtual storage location of the 3-byte relative track address (TTR)
of the identifier DSCB. This DSCB is on the first or only volume of the data
set. The address is relative to the beginning of the volume.

Example
In the following example, the two-volume data set named A.B.C is recataloged to
add a third volume. An entry is added to the volume list, that previously
contained only two entries.

�� CATALOG list_addrx
label

��

�� listname CAMLST RECAT ,name_relexp ,vol_list_relexp �

�
,DSCBTTR=dscb_ttr_relexp

��

CATALOG Macros

166 z/OS V2R1.0 DFSMSdfp Advanced Services

The CATALOG macro instruction points to the CAMLST macro instruction.
RECAT, the first operand of CAMLST, specifies that a data set is to be recataloged.
DSNAME, the second operand, specifies the virtual storage location of the
fully-qualified name of the data set to be recataloged. VOLUMES, the fourth
operand, specifies the virtual storage location of the volume list you have built.

Control is returned to your program at the instruction following the CATALOG
macro instruction. If the data set has been successfully recataloged, register 15
contains zeros. Otherwise, register 15 contains one of the return codes described
under “Return Codes from CATALOG.”

Return Codes from CATALOG
Control is returned at the instruction following the CATALOG macro instruction.
Register 15 might contain one of the following return codes. Register 15 contains
one of the following return codes. If register 15 is non-zero, then register 0 contains
an ICF catalog return code, described under message IDC3009I in z/OS MVS
System Messages, Vol 6 (GOS-IEA)

Table 30. CATALOG Return Codes

Code Meaning

0 (X'00') Operation successful.
4 (X'04') Either the required catalog does not exist or it is not open.
8 (X'08') One of the following happened:

v The existing catalog structure is inconsistent with the operation
requested.

v The user is not authorized to perform the operation.
20 (X'14') There is insufficient space in the catalog data set. If R1 =

X'08000000', then an invalid name has been provided
28 (X'1C') One of the following happened:

v A permanent I/O or unrecoverable error was encountered.
v An error was found in a parameter list. R1 is set to X'08000000'.
v There was a nonzero return code from ESTAE or GETMAIN. R1

is set to X'08000000'.

CATALOG RECATLG RECATALOG DATA SET
* A.B.C ADDING A NEW
* VOLUME

Check Return Codes

RECATLG CAMLST RECAT,DSNAME,,VOLUMES
DSNAME DC CL6’A.B.C ’ FOR DELIMITER ONE BLANK
VOLUMES DC H’3’ THREE VOLUMES

DC X’3010200E’ 3380 DISK DEVICE CODE
DC CL6’000014’ VOLUME SERIAL NUMBER
DC H’0’ SEQUENCE NUMBER
DC X’3010200E’ 3380 DISK DEVICE CODE
DC CL6’000015’ VOLUME SERIAL NUMBER
DC H’0’ SEQUENCE NUMBER
DC X’3010200E’ 3380 DISK DEVICE CODE
DC CL6’000016’ VOLUME SERIAL NUMBER
DC H’0’ SEQUENCE NUMBER

CATALOG Macros

Chapter 3. Using Catalog Management Macros 167

CATALOG Macros

168 z/OS V2R1.0 DFSMSdfp Advanced Services

Chapter 4. Executing Your Own Channel Programs

This information describes the execute-channel-program (EXCP) and
execute-channel-program-virtual-real (EXCPVR) macro instructions and is provided
for compatibility with other IBM operating systems. References to EXCP apply
equally to EXCPVR unless otherwise stated. IBM recommends using an access
method such as VSAM in place of EXCP or EXCPVR.

The EXCP and EXCPVR macro instructions allow you to control the data
organization based on device characteristics. The exceptions to this capability are
partitioned data sets extended (PDSEs), extended format data sets, spooled and
dummy data sets, TSO terminals, and z/OS UNIX files and file systems. They are
not supported for user-written applications using EXCP. This information covers
EXCP macro instruction application and function and includes descriptions of
specific control blocks and macro instructions. Factors that affect the operation of
EXCP, such as device variations and program modification, are also discussed.

Before reading this information, you should be familiar with the operational
characteristics of the I/O devices required by your channel programs. Operational
characteristics are described in IBM publications for each I/O device. You also
need to understand the information in the following publications:
v HLASM Programmer's Guide contains information about coding programs in the

assembler language.
v z/Architecture Principles of Operation, SA22-7832, describes channel command

words (CCWs) and channel programs.
v z/OS DFSMS Using Data Sets contains the standard procedures for I/O

processing under the operating system.
v z/OS DFSMS Macro Instructions for Data Sets describes the system macro

instructions that can be used in programs coded in the assembler language.

EXCP is primarily for I/O programming situations that cannot be dealt with using
standard access methods. When writing your own access method, include EXCP
for I/O operations. You must also use EXCP for processing nonstandard magnetic
tape labels, including reading and writing labels and positioning volumes.

To issue EXCP, provide a channel program and control blocks in your program
area. The I/O process then schedules I/O requests for the specified device,
executes commands, handles interruptions, directs error recovery procedures, and
posts the results of I/O requests.

Comparing EXCP and EXCPVR
EXCP and EXCPVR are two macros you can use to initiate channel program I/O
operations, or as it is often put, execute a channel program. Both provide the same
function - a device dependent way to perform I/O operations. However, there are
a number of differences:
v In order to issue an EXCPVR request, your program must run in a protection

key between zero and seven, run in supervisor state, or be APF authorized. An
EXCP request, on the other hand, can be issued by programs running in any key,
including user key (key 8) or problem state.

© Copyright IBM Corp. 1979, 2014 169

v If you issue an EXCPVR request, your program is responsible for translating its
own virtual channel program into a real channel program. This includes page
fixing your channel program and I/O buffers either before issuing the EXCPVR
request, or by using the page fix appendage and updating your channel
program with real addresses, building indirect address lists when needed, and
updating the address fields within your channel program with real addresses.
This allows your program to improve the efficiency of I/O operations in a
paging environment, but does add some complexity to your program.
If you issue an EXCP request, you supply a virtual channel program. In other
words, the channel program contains the virtual addresses of storage areas that
may be in pageable storage, and the system is responsible for translating your
virtual channel program into a real channel program.
Note that EXCP requests issued in an APF-authorized program in a V=R address
space (EXCP V=R requests, in other words) are not translated. A V=R address
space is one defined with ADDRSPC=REAL in the JCL EXEC statement. Because
the address space is V=R, any CCWs created by the user already have correct
real data addresses. (Translation would only re-create the user's channel
program, so the CCWs are used directly.)

For information on using APF, see z/OS MVS Programming: Authorized Assembler
Services Guide.

Table 31. Summary of the differences between EXCP, EXCPVR, and EXCP V=R

Function
EXCP
Characteristics

EXCPVR
Characteristics

EXCP V=R
Characteristics

Program state and key Any protection key,
supervisor or
problem state.

Protection keys 0-7,
supervisor state, or
APF authorized.

Protection keys 0-7,
supervisor state, or
APF authorized.

User responsible for translating their channel
program

No Yes No translation
required.

CCW formats supported 0 and 1 0 and 1 0 and 1

Virtual IDAW supported Yes No No

MIDAWs supported No Yes No

High Performance FICON® for System z
(zHPF) channel programs supported

Yes Yes No

User can modify channel program during
execution

No Yes, non-zHPF only Yes

Self modifying channel programs supported No Yes, non-zHPF only Yes

Using EXCP and EXCPVR
This information briefly explains the procedures required when issuing the EXCP
and EXCPVR macro instruction. To issue the EXCP or EXCPVR macro instruction
directly, perform the following tasks.
1. Allocate the data set or device to be used for the EXCP request. See “Allocating

the Data Set or Device” on page 171.
2. Construct and open a data control block (DCB) with the DCB and OPEN macro

instructions. Optionally create a data control block extension (DCBE) before
issuing the OPEN macro. See “Initializing a Data Control Block (OPEN)” on
page 240and “Opening the Data Set” on page 172.

170 z/OS V2R1.0 DFSMSdfp Advanced Services

|

3. Create a channel program containing the commands necessary to perform the
I/O operations on the appropriate device. See “Creating the Channel Program”
on page 173.

4. Create the control blocks needed to initiate the EXCP request. This includes the
input/output block (IOB) and event control block (ECB), and optionally the
input/output block extension (IOBE), and input/output error data block
(IEDB). See “Creating the EXCP-Related Control Blocks” on page 184.
For more information on specific control blocks, see “Control Block Fields” on
page 196.

5. Issue an EXCP or EXCPVR macro instruction to pass the address of the IOB,
and optionally the IOBE, to the routines that initiate and supervise I/O
operations.
After issuing EXCP or EXCPVR, issue a WAIT or EVENTS macro instruction
specifying the address of the ECB, to wait for the channel program to complete.
See “Executing the Channel Program” on page 185.

6. Once the I/O request has completed, examine the completion status of your
EXCP or EXCPVR request and process any error conditions that may have
occurred. See “Processing the I/O Completion Status” on page 189.

7. If volume switching is necessary (because of a unit exception or end of DASD
extent), issue the EOV macro. See “Handling End of Volume and
End-Of-Data-Set Conditions” on page 194.

8. When data set processing is complete, close the data set to restore the DCB. See
“Closing the Data Set” on page 195.

9. If your program called dynamic allocation, it can optionally call dynamic
unallocation.

Allocating the Data Set or Device
You allocate the data set or device in one of the following ways:
v Using job step allocation, see z/OS MVS JCL Reference

v Using dynamic allocation, see one of the following:
– z/OS MVS Programming: Authorized Assembler Services Guide
– z/OS TSO/E Command Reference

When your program calls dynamic allocation using SYC 99 or the DYNALLOC
macro, you can use the XTIOT option, which is bit S99TIOEX. It causes creation of
an XTIOT entry instead of an entry in the TIOT. The XTIOT resides above the 16
MB line. This option requires your program to be APF authorized, in supervisor
state, or in a system key (0–7).

With dynamic allocation, you can use the NOCAPTURE option, which is bit
S99ACUCB. If the actual UCB address is above the 16 MB line and you do not
code LOC=ANY option on the DCBE macro, then, OPEN and EOV will capture it
and EOV and CLOSE will uncapture it. (Capturing means to create a 24–bit address
for a UCB that has an actual address above the 16 MB line. This NOCAPTURE
option also causes creation of an XTIOT instead of a TIOT entry, but it does not
require your program to have authorization). If you code the LOC=ANY option on
the DCBE, then OPEN will not capture the UCB and its address will be in a
four-byte field in the DEB.

With dynamic allocation, you can use the S99DSABA bit, which allows the DSAB
control block to reside above the 16 MB line. If you turn S99DSABA on, then you
must also turn on S99TIOEX and your program must be authorized.

Chapter 4. Executing Your Own Channel Programs 171

The purpose of these three dynamic allocation options (XTIOT, NOCAPTURE, and
LOC=ANY) is to reduce use of storage below 16MB. BSAM, BPAM, and QSAM
also support these three options.

To learn whether the allocation has any of these three options, issue the DEVTYPE
macro with the INFO=AMCAP option. On a system before z/OS V1R11, bits
S99DSABA and S99TIOEX will be off. On a release V1R12 or later system, these
options should only be used when NON_VSAM_XTIOT=YES is specified in the
DEVSUPxx parmlib member. This is represented by the DFAXTBAM bit in the
DFA as mapped by IHADFA.

Opening the Data Set
You must supply a DCB for each data set or device to open. The OPEN macro
instruction finishes initializing one or more DCBs so that their associated data sets
can be processed. Issue OPEN for all DCBs used by your channel programs. (A
dummy data set cannot be opened for EXCP.) Some of the procedures performed
by OPEN are:
v Checking data set access authorization
v Constructing the data extent block (DEB)
v Completing the fields in the DCB and DCBE
v Verifying or creating standard labels
v Positioning tape
v Loading your appendage routines.
v Capturing the UCB if the DCBE option "LOC" was set or defaulted to "BELOW",

that is LOC=BELOW or not coded, or the "NON_VSAM_XTIOT" option of the
DEVSUPxx member of PARMLIB was set or defaulted to "NO", that is
NON_VSAM_XTIOT=NO or not coded. In other words, OPEN does not capture
the UCB if LOC and NON_VSAM_XTIOT were specified as follows: LOC=ANY
and NON_VSAM_XTIOT=YES.

The parameters and different forms of the OPEN macro instruction are described
in “OPEN - Initialize Data Control Block for Processing the JFCB” on page 302 and
z/OS DFSMS Macro Instructions for Data Sets.

Direct Data Set Considerations
To process a multivolume direct data set (BDAM) with EXCP, use the open
routines to build a data extent block for each volume. Your program can do this by
reading in the JFCB with a RDJFCB macro instruction and opening each volume of
the data set with a separate DCB. See “Using BSAM or EXCP for Random I/O to a
Multivolume Data Set” on page 292 for an example of how to code a routine to do
this, and “Reading and Modifying a Job File Control Block (RDJFCB Macro)” on
page 284 for further uses of the RDJFCB macro.

VSAM Data Set Considerations
With a DCB used to open a component of a VSAM data set you can perform the
following tasks:
v Verify that an application has master password or RACF alter authority for the

data set.
v Read from or write to a data set to repair data set or catalog damage if normal

VSAM processing cannot. Because of the potential for damaging a valid data set
or catalog, exercise extreme caution when writing an application using this
interface.

172 z/OS V2R1.0 DFSMSdfp Advanced Services

You can specify a DCB when opening a component (data or index) of a VSAM
data set if the following conditions are met:
v The application has master password or RACF alter authority for the data set.
v The component must not reside on multiple volumes.
v The component must not be a member of a concatenation.
v The DCB must specify the EXCP access method.
v The data set disposition must be either (OLD,KEEP,KEEP) or (SHR,KEEP,KEEP)
v The DCB must specify either the INPUT or UPDAT option.
v Your program must be either APF authorized or in supervisor state.

When opening a VSAM component on a volume that supports extended attribute
DSCBs, the specified DCB must point to a DCBE with the EADSCB=OK keyword.
When EADSCB=OK is specified, your program must support extended attribute
DSCBs. These are format-8 and format-9 DSCBs, where the extent descriptors may
contain 28-bit cylinder numbers.

Creating the Channel Program
The channel program contains the instructions used by the channel subsystem and
the device to execute an I/O operation. This section describes what you need to
consider when you create a channel program for an EXCP request.

There are two types of channel programs, which are described in the following
sections:
v “CCW Channel Program”
v “zHPF Channel Program” on page 175

CCW Channel Program
The CCW channel program you supply is composed of CCWs on doubleword
boundaries. Each channel command word specifies a command to be executed
and, for data transfer commands, the source or destination area. CCW operation
codes are described in the IBM publications for each I/O device.

You can specify both data chaining and command chaining by setting applicable
chaining bits in the channel command word and indicating the type of chaining in
the IOB. If an I/O error occurs while your channel program executes, the
corresponding chaining bits in the IOB need to be set. Otherwise, error recovery
could be impossible. The integrity of your data could be compromised. (See
“Input/Output Block (IOB) Fields” on page 211 for additional information.) If you
specify both data and command chaining in the same channel command word,
data chaining takes precedence.

The location of the CCWs, IDALs, MIDALs and I/O buffers in virtual and central
storage depend on whether you are using EXCP or EXCPVR, whether you are
using format 0 or 1 CCWs, and whether the device supports 64-bit IDALs or
MIDALs. In particular:
v When you use format-0 CCWs, the CCWs and the storage areas pointed to by

the CCWs (IDALs, MIDALs, or I/O buffers) must be in 24-bit storage.
Otherwise, you can use 31-bit storage.

v When the CCW points to an indirect address list (IDAL), each indirect address
list word (IDAW) in the list points to a 31-bit or 64-bit I/O buffer, depending on
whether 31-bit or 64-bit IDAWs are used and whether the device supports 64-bit
IDAWs. 64-bit IDAWs are only supported for disk and tape devices.

Chapter 4. Executing Your Own Channel Programs 173

v When the CCW points to a modified indirect address list (MIDAL), each
modified indirect address word (MIDAW) in the list points to a 64-bit I/O
buffer. MIDAWs are only supported for EXCPVR requests for disk devices and
only when running on an IBM System z9® or higher processor.

v For EXCP requests, the system translates your virtual channel program into a
real channel program. During the translation process, the CCWs are copied to
fixed storage, IDALs are created, and the I/O buffers are page fixed. Therefore,
the storage restrictions mentioned above apply only to the virtual storage
locations of the CCWs and IDALs; the CCWs and IDALs may reside anywhere
in central storage. However, if the I/O buffer resides in 64-bit central storage,
the device must support 64-bit IDAWs or else the system fails the EXCP request.

v Because the system does translate your channel program for an EXCPVR
request, the storage restrictions mentioned above apply to both virtual and
central storage. For example, if format-0 CCWs are used, the CCWs and the
storage areas pointed to by the CCWs (IDALs, MIDALs, or I/O buffers) must be
in 24-bit virtual and central storage. However, the IDALS and MIDALS can still
point above the 16MB line.

The following table summarizes the channel program storage requirements for
different types of CCW channel programs:

Table 32. Storage area locations for CCW channel program components

Request and format
Channel Program
Component Virtual storage location Central storage location

EXCP format 0 CCW 24-bit Any

IDAL 24-bit Any

I/O Buffer v 24-bit if pointed to by
CCW

v 31 or 64-bit if pointed to
by an IDAW

Any

EXCP format 1 CCW 31-bit Any

IDAL 31-bit Any

I/O Buffer v 31-bit if pointed to by
CCW

v 31 or 64-bit if pointed to
by an IDAW or MIDAW

Any

EXCPVR format 0 CCW 24-bit 24-bit

IDAL 24-bit 24-bit

MIDAL 24-bit 24-bit

I/O Buffer v 24-bit if pointed to by
CCW

v 31 or 64-bit if pointed to
by an IDAW or MIDAW

v 24-bit if pointed to by
CCW

v 31 or 64-bit if pointed to
by an IDAW or MIDAW

EXCPVR format 1 CCW 31-bit 31-bit

IDAL 31-bit 31-bit

MIDAL 31-bit 31-bit

I/O Buffer v 31-bit if pointed to by
CCW

v 31 or 64-bit if pointed to
by an IDAW or MIDAW

v 31-bit if pointed to by
CCW

v 31 or 64-bit if pointed to
by an IDAW or MIDAW

174 z/OS V2R1.0 DFSMSdfp Advanced Services

zHPF Channel Program
zHPF channel programs are supported for EXCP and EXCPVR requests for DASD
devices. The following diagram shows the different parts of a zHPF channel
program.

The parts of a zHPF channel program include:
v A transport control word (TCW) that contains pointers to all of the other areas

of the channel program and the number of bytes to be read or written. The
channel uses the TCW to transport the commands and data to the device and
locate the status block used to store ending status information; it is not sent to
the device. You can use the IOSDTCW macro to map the TCW.
For an EXCPVR request, the TCW must reside in 24 or 31-bit central and virtual
storage
For EXCP, the TCW must be in 24 or 31-bit virtual storage or anywhere in
central storage.
For both EXCP or EXCPVR, the TCW must start on a 64-byte boundary. If the
TCW does not start on a 64-byte boundary, EXCP fails the request with abend
code 800, reason code X'OA'.

v A transport status block (TSB) that contains I/O completion information, sense
data and measurement statistics. The TSB is assigned by z/OS, not the EXCP
user. If you provide a TCW with a non-zero TSB address, EXCP fails the request
with abend code 800. The system copies all relevant status information from the
TSB into the IOBE.

v A transport command control block (TCCB) containing the commands and
control data parameters to be passed to the device. The TCCB should start on a
double word boundary, must reside within a 4 KB page, and may reside in
64-bit virtual and central storage. You can use the IOSDTCCB macro to map the
TCCB, including device command words (DCWs). The TCCB consists of three
parts:
– Transport control area header (TCAH) containing information about the

transport control area (TCA) and the commands contained within.
– Transport control area (TCA) containing the commands and control

parameters. Each command is represented by a DCW that consists of a

TCW

TSB

TIDAL

I/O completion info,
sense data, measurement
statistics

TCCB

TCA header

TCA (DCWs and control data)

TCA trailer

Commands and control data/parameters

Data

Read and write
data buffersIndirect address list

Figure 10. zHPF channel program

Chapter 4. Executing Your Own Channel Programs 175

|
|

|
|

|
|
|

command code, flags to indicate chaining and other toptions, a control data
count, and a data byte count, if the command is used to transfer data. If the
command transfers control data (command parameters) to the device, the
control data follows the DCW in the TCA.
Unlike CCWs, DCWs do not point to their corresponding I/O buffers. The
I/O buffers for all DCWs are pointed to by the TCW, and the I/O buffers
associated with a particular DCW are based on the amount of data
transferred by the previous DCWs.
The maximum size of the TCA is 240 bytes.

– Transport control area trailer (TCAT) containing the number of bytes
transferred.

The System z I/O architecture allows the TCCB to be pointed to either directly
by the TCW or indirectly via a transport indirect address list (TIDAL). However,
TCCB TIDALs are not supported for EXCP or EXCPVR requests. If a TCCB
TIDAL is specified, EXCP fails the request with abend code 800.

v One or more I/O buffers. The TCW may point to a single read and/or write
buffer.
For EXCPVR requests, the I/O buffesr can be up to 4 KB in size. If more than 4
KB of data needs to be transferred or the data is non-contiguous or spans a
page, a data TIDAL must be created. The I/O buffers and the TIDAWs may
reside in 64-bit virtual and central storage. A TIDAL can also be chained to
another TIDAL by setting the TIDAL transfer-in-channel (TTIC) bit in the last
TIDAW in the list. In this case, the TIDAW address field does not point to an
I/O buffer, but instead points to another TIDAL.
For EXCP requests, the I/O buffers can be greater than 4KB - see “TIDAW
requirements for EXCP requests” on page 181.

The following table summarizes the channel program storage requirements for
zHPF channel programs:

Table 33. Storage area locations for zHPF channel program components

Request and format
Channel Program
Component Virtual storage location Central storage location

EXCP TCW 31-bit Any

TCCB Any Any

TIDAL Any Any

I/O Buffer Any Any

EXCPVR TCW 31-bit 31-bit

TCCB Any Any

TIDAL Any Any

I/O Buffer Any Any

Comparing CCW and zHPF channel programs
Table 34. Comparing CCW and zHPF channel programs

Function CCW channel programs zHPF channel programs

Devices supported All DASD only

176 z/OS V2R1.0 DFSMSdfp Advanced Services

|
|
|
|
|
|
|

|
|

|
|

||

|
|
|||

||||

|||

|||

|||

||||

|||

|||

|||
|

|

Table 34. Comparing CCW and zHPF channel programs (continued)

Function CCW channel programs zHPF channel programs

Processors supported All EXCP and EXCPVR are only
supported on a zEnterprise®

196 (z196) zEnterprise 114
(z114) or higher processor

Command set All commands for all
currently supported devices

Subset of DASD commands

Maximum channel program
size

No limit 240 bytes because of the TCA
size limit

Maximum data transferred
per CCW or TCW

64 KB-1 64 KB, 2 MB, or 4 GB,
depending on the processor

Read and write commands in
the same channel program

Yes No

Skip on read CCW or MIDAW skip bit TIDAW skip bit

Indirect addressing IDAL, MIDAL TIDAL

Data Chaining Yes No, but TIDAL is equivalent
to data chaining.

Status modifier/search
commands

Yes No

Program controlled interrupt
(PCI)

Yes No

Append to running channel
program

Yes No

Self-modifying channel
programs

Yes No

VIO data sets Yes No

EXCP 64-bit Storage Considerations
For EXCP virtual requests, the system page fixes the I/O buffers associated with
your channel program. These I/O buffers may reside in 31-bit or 64-bit virtual
storage.

If the I/O buffers reside in 64-bit virtual storage (referred to as a memory object),
you must follow the requirements below:
v You must specify the CONTROL=AUTH parameter on the IARV64 macro

request that creates the memory object. If you specify or default to
CONTROL=UNAUTH on the IARV64 macro, EXCP fails when it attempts to
page fix the storage.

v The I/O buffers must not reside within a memory object backed by 1 MB fixed
real page frames. For example, you cannot specify PAGEFRAMESIZE=1MEG or
PAGEFRAMESIZE=MAX on the IARV64 GETSTOR request that creates the
memory object. If you do, EXCP fails when it attempts to page fix the storage.

IDAW Requirements for EXCP Requests
For EXCP requests, the virtual channel program provided by the caller can have
one or more CCWs with the indirect address (IDA) flag set and the address
portion of these CCWs pointing to a single 31-bit or 64-bit IDAW. This EXCP
function is referred to as virtual IDAWs.

Chapter 4. Executing Your Own Channel Programs 177

The 31-bit IDAW can contain a valid virtual address up to the maximum 31-bit
address. Virtual IDAWs are supported on all virtual CCWs except:
v Transfer in channel (TIC) commands
v Read, read backward, and sense commands, with the skip flag set.
v All nondata-transfer type commands: for example, recalibrate, rewind, forward

space, fold, block data check, no operation, control commands

A virtual IDAW points to a single, contiguous 31-bit or 64-bit virtual storage area.
The virtual storage area can be backed by central storage above or below 2 GB.
Either type of virtual IDAW can point to storage that is backed above 2 GB. When
EXCP translates the channel program, the virtual IDAW is translated into one or
more real IDAWs in 31-bit central storage.

Note: 64-bit IDAWs are supported only for direct access storage devices (DASD)
and on all IBM-supplied cartridge tape devices. You should examine bit
UCBEIDAW in the UCB to determine whether 64-bit IDAWs are supported by the
device.

IDAW Requirements for EXCPVR Requests
For EXCPVR requests, the caller is responsible for creating IDAWs when the data
areas associated with the CCWs in your channel program cross certain boundaries.
This can be done before issuing the EXCPVR macro or by the SIO appendage after
the EXCPVR macro is issued. See “SIO Appendage” on page 227 for more
information.

For format-0 channel programs, the CCWs and IDAWs must be below 16 MB in
central storage. For format-1 channel programs, the CCWs and IDAWs must be
below 2 GB in central storage. Regardless of the channel program format, you can
use 31-bit or 64-bit IDAWs to point to storage areas above or below 2 GB in central
storage.

Note: 64-bit IDAWs are supported only for direct access storage devices (DASD)
and on all IBM-supplied cartridge tape devices. You should examine bit
UCBEIDAW in the UCB to determine whether 64-bit IDAWs are supported by the
device. If you use 64-bit IDAWs, an IOBE must be specified for the EXCPVR
request and flag IOBEEIDA in the IOBE must be set.

If data areas do cross boundaries, provide an additional IDAW in the IDAL for
each crossed boundary.
v If you use 31-bit IDAWs , you must use 2 KB boundaries.
v If you use 64-bit IDAWs, you must use 4 KB boundaries.

The channel subsystem uses the IDAL to identify the address where it will
continue reading or writing when a boundary is crossed during a read or write
operation. The IDAL must contain central storage addresses when it is processed
by the channel subsystem.

Before you convert the virtual addresses in the channel program to real addresses,
you must first page fix the data areas in central storage. This can be done before
issuing the EXCPVR macro or by the page fix appendage after the EXCPVR macro
is issued. After the data areas have been page fixed, you can use the LRA
instruction to convert the virtual addresses in the channel program to central
storage addresses, as long as the central storage addresses are below 2 GB. The
LRA instruction returns a 31-bit central storage address regardless of whether you
are in 24-bit or 31-bit addressing mode, but fails in those addressing modes if the

178 z/OS V2R1.0 DFSMSdfp Advanced Services

central storage address is above 2 GB. If the central storage address is above 2 GB,
you must either use the LRAG or STRAG instruction to convert the virtual address
to a real address or else use the LRA instruction after first switching to 64-bit
addressing mode.

If all of the central storage addresses associated with the data buffers are below 2
GB, then you can use 2 KB (31-bit) IDAWs to address the data. Otherwise, you
must use 4 KB (64-bit) IDAWs to address the data. For the most efficient use of
system resources, code LOC=(ANY,64) or LOC=(BELOW,64) when you obtain
storage with the GETMAIN or STORAGE macro. See z/OS MVS Programming:
Assembler Services Reference ABE-HSP.

The following illustration shows the relationship between the CCW and the
IDAWs.

Note the following information about the IDAL:
v If you are using 31-bit IDAWs, then after the first entry, put one entry in the

IDAL for each 2 KB page boundary that your data area crosses.
v If you are using 64-bit IDAWs, put one entry in the IDAL for each 4 KB page

boundary that your data area crosses and set flag IOBEEIDA in the IOBE..
v If the format 0 CCW has an IDAL address rather than a data address, you must

set the indirect address flag (bit 37) on to signal this to the channel. The
equivalent format 1 CCW bit is bit 13.

v You can determine the maximum number of entries needed in the IDAL from
the count in the CCW as follows:
Number of IDAWSs = (CCW-byte-count + P + P - 2) / P

Format 0 CCW

Command
Code Address of the IDAL X4 Byte Count

0 7 31 638 32 48

IDAL

First indirect data
address word

Second indirect data
address word

Subsequent indirect
data address word

0

4

8

47

Format 1 CCW

Command
Code Address of the IDALByte Count

0 7 31 638 32

IDAL

First indirect data
address word

Second indirect data
address word

Subsequent indirect
data address word

0

4

8

X4

15 16

4039

Chapter 4. Executing Your Own Channel Programs 179

– Substitute 2048 for P in this formula for 31-bit IDAWs.
– Substitute 4096 for P in this formula for 64-bit IDAWs.

For example, the following shows the maximum number of IDAWs for a
particular CCW byte-count and a page boundary of 4 KB:

Table 35. Maximum Number of IDAWs for CCW byte-counts

CCW byte-count Maximum number of IDAWs

1 1

2 2

4095 2

4096 2

4097 2

4098 3

The number of 31-bit IDAWs that are required depends on the number of 2 KB
boundaries that are crossed by the data. For example, if your data is 800 bytes long
and does not cross a 2 KB boundary, no IDAWs are required. If your data crosses a
4 KB boundary, then two IDAWs are required. If your data is 5000 KB long, at least
two IDAWs are required. If your data crosses two 4 KB boundaries, four IDAWs
are required.

The first indirect address is the central storage address of the first byte of the data
area. The second and subsequent indirect addresses are the central storage
addresses of the second and subsequent 2 KB or 4 KB boundaries of the data area.
For example, if the data area central storage address is X'707FF' and the byte count
is X'1802', the 4-byte IDAL contains the following central storage addresses
(assuming the central storage addresses are contiguous):
707FF
70800
71000

If the data area central storage address is X'707FF' and the byte count is X'800', the
IDAL contains the following addresses:
707FF
70800

MIDAW Requirements
For EXCPVR requests, the channel program provided by the caller can have one or
more CCWs with the modified indirect address (MIDA) flag set. When this flag is
set, the CCW points to a list of one or more modified indirect address words
(MIDAWs). MIDAWs are similar to IDAWs except that the boundary and length
requirements are relaxed. For example, each IDAW in a list, except the first, must
point to a storage area on either a 2 KB or 4 KB boundary depending on the type
of IDAW, and the length includes storage up to the next 2 KB or 4 KB boundary or
until the CCW count is exhausted. On the other hand, MIDAWs can point
anywhere on a page and contain any length as long as a page boundary is not
crossed. MIDAWs can reduce the number of CCWs in your channel program by
eliminating the need for data chaining, thereby improving the performance of your
channel program.

180 z/OS V2R1.0 DFSMSdfp Advanced Services

MIDAWs are supported only for direct access storage devices (DASD) and only
when running on an IBM System z9 or higher processor. Examine bit UCBMIDAW
in the UCB to determine whether MIDAWs are supported by the device

If you use MIDAWs, you must specify an IOBE for the EXCPVR request and set
flag IOBEMIDA in the IOBE.

TIDAW requirements for EXCP requests
The input and output data pointers in the TCW may point to a single, contiguous
area of storage, or may point to a virtual TIDAL that consists of one or more
virtual TIDAWs, each of which may points to a contiguous area of storage. Unlike
the zHPF channel programs created by EXCPVR, these storage areas may be larger
than 4K and may span page boundaries.

During channel program translation EXCP creates a real TIDAL when any of the
following is true:
v The TCW input or output data pointer points to a virtual storage area that

spans pages. For example, the TCW input address points to a 16K byte virtual
storage area or points to a 2K byte area that crosses a page boundary.

v The TCW points to a virtual TIDAL. Unlike CCW channel programs, the TIDAL
may consist of multiple TIDAWs, each of which can point to a virtual storage
area that spans pages. Supporting multiple TIDAWs is necessary for zHPF
because there is only a single input and output area pointer (rather than one per
CCW), so the storage areas are more likely to be scattered throughout virtual
storage.

An EXCP Request with a Single 16K Storage Area
In Figure 11, the TCW points to a single 16K area of storage. When EXCP translates
the channel program, it creates four TIDAWs, one for each page.

Note that if the TCW points to an area that is less than or equal to 4K but spanned
pages, EXCP will create two TIDAWs.

An EXCP Request with a virtual TIDAL
In Figure 12 on page 182, the TCW points to the virtual address of a TIDAL. The
TIDAWs within the TIDAL point either to storage areas that larger than 4K or to
storage areas that cross page boundaries. The TIDAL itself also crosses a page
boundary. Note that for EXCPVR requests, this would not be allowed because it
violates I/O architecture rules. However, for EXCP requests, the virtual TIDAL
may have any alignment and may cross page boundaries - EXCP will translate the

TCW

User channel program Translated channel program

1000x

2000x

3000x

4000x

1000x

2000x

3000x

4000x

TCW

TIDAW (4K)

TIDAW (4K)

TIDAW (4K)

TIDAW (4K)

Figure 11. How EXCP translates an EXCP request with a single 16K storage area

Chapter 4. Executing Your Own Channel Programs 181

|

|
|
|

|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

virtual TIDAL to a real TIDAL and ensure proper alignment and ensure that page
boundaries are not crossed.

Determining Whether zHPF is Supported for a Device
Before you create and use a zHPF channel program, you must make sure that
zHPF and the zHPF incorrect length facility are supported for both the device and
the processor involved. An EXCP or EXCPVR request is only supported on z196 or
z114 processors that support the zHPF incorrect length facility. To determine
whether the processor supports zHPF, the zHPF incorrect length facility and
EXCP/EXCPVR, issue the IOSZHPF macro with the DEVINFO=YES parameter.
DEVINFO returns 8 bytes of information about zHPF functions supported for the
device, including:
v Processor and z/OS capabilities

– Functions supported by the channel subsystem and online channels for a
device

– Maximum data transfer size
– EXCPVR/EXCP virtual supported
– Incorrect length support

v Device capabilities - You must specify DEVINFO(YES) to get device related
information. Refer to the device specific architecture to interpret the device
related DEVINFO=YES information.

v For those capabilities that have both a processor and device component, you
must check both bits IOSDZHPF and IECDZHPF to determine if the capability is
supported.

User channel program Translated channel program

1000x

2000x

3000x

F800x

7400x

8400x

1000x

2000x

3000x

7400x

8000x

9000x

F800x

10000x

input count=24K input count=24K

TIDAL@=nnnnnnn4x TIDAL@=nnnnnnn4x

TCW
TCW

TIDAW (4K)TIDAW (12K)

TIDAW (4K)TIDAW (8K)

TIDAW (4K)TIDAW (4K)

TIDAW (4K)

TIDAW (4K)

TIDAW (4K)

TIDAW (4K)

TIDAW (4K)

Figure 12. How EXCP translates an EXCP request with a storage areas crossing page
boundaries

182 z/OS V2R1.0 DFSMSdfp Advanced Services

|
|
|

|

|

|
|

|

|

|

|
|
|

|
|
|

As Figure 13 shows, you must check the following in order to check to see whether
the processor and device supports zHPF:
v If the processor supports zHPF
v If the processor supports incorrect length
v If the device supports incorrect length

Modifying a Channel Program During Execution
For EXCP requests that run in a V=V address space, the system builds a translated
copy of your channel program in real storage. Channel program changes made by
your page-fix or start-I/O appendage, which run before the channel program is
translated, will affect the real channel program. Later changes to your copy of your
channel program with processor instructions or with data read in by an I/O
operation will not affect the real translated channel program. Thus, in a V=V
address space any attempt to modify an active channel program affects only the
virtual image of the channel program, not the real channel program being executed
by the channel subsystem. If you wish your changed channel program to be
executed, your program can issue another EXCP macro or your channel-end
appendage can return at offset 8.

Modifying a channel program during execution is supported for EXCPVR and
EXCP requests that run in a V=R address space, since the system does not build a
translated copy of your channel program. Modifying a channel program during
execution is only supported for CCW channel programs, not zHPF channel
programs.

VIO Considerations
VIO data sets are supported for EXCP and EXCPVR requests. When an EXCP or
EXCPVR request is issued for a VIO data set, the system simulates all of the
common channel commands. Both format-0 and format-1 CCW channel programs
are supported for VIO data sets, but note that 64-bit IDAWs, MIDAWs, and zHPF
channel programs are not supported for a VIO data set.

IOSZHPF UCBPTR=(),
INFOAREA=MyInfoArea,
DEVINFO=YES

.

.

.
MyInfoArea DS XL()

Rx

ZHPF_Info_Len

Version

Other processor & z/OS flags
Max transfer size

EXCPVR supported
Incorrect length supported

Device capabilities

IOSDZHPF

Capability bit 0
Capability bit 1
Capability bit 2
Capability bit 3
Capability bit 4
Capability bit 5

Capability bit 64

.

.

.

IECDZHPF

Figure 13. Using IOSPHPF to determine if zHPF is supported by a processor and device

Chapter 4. Executing Your Own Channel Programs 183

For EXCPVR requests, the addresses in the CCWs and IDAWs must be virtual
addresses - they must not be converted to real addresses.

Creating the EXCP-Related Control Blocks
Using EXCP requires familiarity with the function and structure of the IOB, ECB,
DCB, DEB, and optionally IOBE, DCBE,UCB and IEDB. DCB, IOB, IOBE, IEDB,
and ECB fields are illustrated in the “Control Block Fields” on page 196 section.
The DEB fields used for EXCP and EXCPVR are illustrated in Appendix A,
“Control Blocks,” on page 443 (all the DEB fields are illustrated in z/OS DFSMSdfp
Diagnosis).

The IOB, ECB, DCB, and DEB must be in 24-bit virtual storage. The IOBE, IEDB,
and DCBE may reside in 31-bit virtual storage, even if your program runs in 24-bit
mode.

All EXCP control blocks that you provide must be located in storage that your
program's protection key allows the program to modify. Descriptions of these
control blocks follow.

Input/Output Block (IOB)
The input/output block (IOB) is used for communication between the problem
program and the system. It provides the addresses of other control blocks, and
maintains information about the channel program, such as the type of chaining
and the progress of I/O operations. You must define the IOB and specify its
address as the only parameter of the EXCP or EXCPVR macro instruction. See
“Input/Output Block (IOB) Fields” on page 211.

Input/Output Block Common Extension (IOBE)
The input/output block common extension (IOBE) specifies the type of channel
program and its format, options that control the execution of the channel program
and the level of ERP processing, and provides the anchor to the IEDB. The IOBE is
an extension to the IOB and, like the IOB, provides for communication between the
user of EXCP and the system. This control block is required for format-1 CCW
channel programs and zHPF channel programs, but is optional for format-0 CCW
channel programs. See “Input/Output Block Common Extension (IOBE) Fields” on
page 216.

Event Control Block (ECB)
The event control block (ECB) provides you with a completion code that describes
whether the channel program was completed with or without error. A WAIT or
EVENTS macro instruction, which can be used to synchronize I/O operations with
the problem program, must identify the ECB. You must define the ECB and specify
its address in the IOB. See “Event Control Block (ECB) Fields” on page 220.

Input/Output Error Data Block (IEDB)
The system uses the input/output error data block IEDB to provide extended error
information. This control block is optional. See “Input/Output Error Data Block
(IEDB) Fields” on page 209.

Data Control Block (DCB)
The data control block (DCB) provides the system with information about the
characteristics and processing requirements of a data set to be read or written by

184 z/OS V2R1.0 DFSMSdfp Advanced Services

the channel program. A DCB must be generated by a DCB macro instruction that
includes parameters for EXCP. If you are not using appendages, a short DCB is
constructed. Such a DCB does not support reduced error recovery. You specify the
address of the DCB in the IOB. See “Data Control Block (DCB) Fields” on page
196.

Data Control Block Extension (DCBE)
The data control block extension (DCBE) provides further processing options. The
DCBE options currently supported by EXCP are the following:
v BLKSIZE
v BLOCKTOKENSIZE
v CAPACITYMODE
v EADSCB
v EODAD
v LOC
v SYNC

See “Data Control Block Extension (DCBE) Fields” on page 207.

Data Extent Block (DEB)
The data extent block (DEB) contains one or more extent entries for the associated
data set and other control information. An extent defines all or part of the physical
boundaries on an I/O device occupied by, or reserved for, a particular data set.
Each extent entry contains the address of a unit control block (UCB) that provides
information about the type and location of an I/O device. More than one extent
entry can contain the same UCB address. For all I/O devices supported by the
operating system, the DEB is produced during execution of the OPEN macro
instruction for the DCB. The system places the address of the DEB into the DCB.
See “Data Extent Block (DEB) Fields” on page 222.

Executing the Channel Program
This information explains how to pass the channel program to the system for
execution and how the system uses your channel program and control blocks after
you issue EXCP or EXCPVR request.

Using the EXCP macro instruction
The EXCP macro instruction initiates channel program I/O operations. Whenever
you want to execute one of your channel programs, issue EXCP.

The format of the EXCP macro is:

iob_addr—RX-type address, (2-12), or (1)
The address of the IOB of the channel program to be executed.

If your program is also supplying an IOBE, then set register 0 to the address of
the IOBE, and set flag IOBCEF on in the IOB to indicate that the IOB extension
is present. An IOBE is required for format-1 CCW channel programs.

�� EXCP iob_addr
label

��

Chapter 4. Executing Your Own Channel Programs 185

Using the EXCPVR macro instruction
The EXCPVR macro instruction provides you with the same functions as the EXCP
macro instruction and allows your program to improve the efficiency of the I/O
operations in a paging environment by translating its own virtual channel
programs to real channel programs. In order to issue EXCPVR, your program must
be executing in protection key eight, executing in supervisor state, or be APF
authorized.

The program issuing the EXCPVR must remain in authorized state until
completion of the channel programs. For a description of how to authorize a
program, see z/OS MVS Programming: Authorized Assembler Services Guide.

The format of the EXCPVR macro is:

iob_addr—RX-type address, (2-12), or (1)
the address of the input/output block of the channel program to be executed.

If your program is also supplying an IOBE, then set register 0 to the address of
the IOBE, and set flag IOBCEF on in the IOB to indicate that the IOB extension
is present. An IOBE is required for format-1 CCW and zHPF channel
programs.

To use EXCPVR, follow the procedures needed to execute an EXCP request and
also follow the procedures listed below. If you have already page fixed your
channel program and data areas prior to issuing the EXCPVR macro, or you are in
a V=R address space, steps 1 and 2 are not necessary.
1. Code PGFX=YES in the DCB associated with the EXCPVR requests and provide

a page-fix (PGFX) appendage by specifying SIOA=symbol in the DCB.
2. Fix the data area containing your channel program, the data areas referred to

by your channel program, the PCI appendage (if your program can generate
program-controlled interrupts), and any area referred to by the PCI appendage
including the DEB, IOB, etc. To fix these areas, build a list in your PGFX
appendage containing the addresses of these virtual areas. Any area that you
know already is in fixed storage for the duration of the I/O can be omitted
from the page fix list.

3. If you have not already built indirect address lists or if your channel program
still contains virtual addresses prior to issuing the EXCPVR macro, you must
do the following two items in your start I/O (SIO) appendage. The SIO
appendage is described in “Start-I/O Appendage” on page 225.
v Determine whether the data areas in virtual storage specified in the address

fields of your channel program cross page boundaries. If they do, build an
indirect data address list and update your channel program with the address
of the indirect address list. For CCW channel programs, build an IDAL or
MIDAL.
If you build an IDAL, put the address of the IDAL in the affected CCW and
turn on the IDA bit in the CCW.
If you build a MIDAL, put the address of the MIDAL in the affected CCW
and turn on the MIDA bit in the CCW. For zHPF channel programs, build a

�� EXCPVR iob_addr
label

��

186 z/OS V2R1.0 DFSMSdfp Advanced Services

TIDAL, put the address of the TIDAL in the input or output address field in
the TCW, and turn on the input or output TIDAL bit in the TCW.

v Translate the addresses in your channel programs from virtual to central
storage addresses.

Initiating the Channel Program
Issuing EXCP or EXCPVR macro requests execution of the channel program
specified in the IOB. The system validates the request by checking fields of the
control blocks associated with this request. If the system detects invalid
information in a control block, it initiates abnormal termination procedures. The
system gets the address of the:
v DCB from the IOB
v DEB from the DCB
v UCB from the DEB.

If this is an EXCPVR request and you have provided a page-fix appendage, the
system passes control to it to allow you to either page fix your channel program
and data areas, or to provide EXCP with a page fix list so that EXCP will do the
page fixing. For a description of the page-fix appendage and its linkage to the
system, see “Page Fix and EXCPVR Start I/O Appendage” on page 226.

If you have provided a start I/O (SIO) appendage, the system passes control to it.
The system does not examine the channel program until the return from the SIO
appendage.The return address from the SIO appendage determines whether the
system executes or skips the I/O operation. For a description of the SIO
appendage and its linkage to the system, see “Start-I/O Appendage” on page 225.

Translating the Channel Program
For EXCP requests that do not run in a V=R address space, the system performs
the following tasks:
v Copies your virtual channel program and translates the copy into one that uses

only central storage addresses
v Fixes in real storage the pages used as I/O areas for the data transfer operations

specified in your channel program.

DASD Channel Program Prefix CCW Commands
For direct access devices, specify the seek address in the IOB. The system
constructs a CCW chain for a CKD device, The CCW chain issues the seek and the
set file mask specified in the DEB, and passes control to the real version of your
channel program. You cannot issue the initial seeks or set the file mask CCWs. For
an ECKD™ device, the system constructs a Define Extent or Prefix command
instead of the seek and set file mask command. The system uses the contents of
DEBXDEF, as described in Appendix A, “Control Blocks,” on page 443, when
building the Define Extent or Prefix command. You can issue a define extent
command at the beginning of the channel program. The system copies the data
area and replaces the beginning and ending extent addresses and the file mask
byte. Your program can issue the DEVTYPE macro to learn whether the device
supports ECKD. Use the minimum type of call or the INFOLIST type with
INFO=DASD.

For both CKD and ECKD, the file mask is set to prohibit seek-cylinder CCWs, or, if
space is not allocated in full cylinders, seek-head commands. If the data set is open
for INPUT, write CCWs are also prohibited. For an ECKD device, your channel
program can contain Locate-Record CCWs.

Chapter 4. Executing Your Own Channel Programs 187

The DEVTYPE macro with the INFO=DASD parameter will also tell your program
whether the device supports the locate record extended command and it has
controller cache. See “DEVTYPE—Info Form” on page 270.

DASD Rotational Positioning Sensing
On newer storage subsystems, such as IBM D58000, the sector value has no effect.
On other subsystems, your channel program can be more efficient for device and
channel usage if it supplies sector numbers. Your program can read sector numbers
with the read sector command or calculate them with the sector conversion
routine. That routine is described in “Obtaining the Sector Number of a Block on
an RPS Device” on page 236.

Command Retry Considerations
Command retry is a function of many IBM 3990 and newer storage controllers.
When the channel subsystem receives a retry request, it repeats the execution of
the CCW, without requiring any additional input/output interrupts. For example, a
storage control might initiate a retry procedure to recover from a transient error.

A command retry during the execution of a channel program can cause the
following conditions to be detected by the initiating program:
v Modifying CCWs: For EXCPVR and EXCP V=R requests, a CCW used in a

channel program must not be modified before the CCW operation has been
successfully completed. Without the command retry function, a command is
fetched only once from storage by a channel. This allowed a program to
determine through condition codes or program controlled interruptions (PCI)
that a CCW had been fetched and accepted by the channel. The CCW could be
modified before execution. With the command retry function, this procedure
cannot be repeated because the channel fetches the CCW from storage again on
a command retry sequence. In the case of data chaining, the channel retries
commands starting with the first CCW in the data chain.

v Program Controlled Interrupts (PCI): A CCW containing a PCI flag can cause
multiple program-controlled interrupts. This will happen if the PCI-flagged
CCW was retried during a command retry procedure and a PCI could be
generated each time the CCW is executed.

v Residual Count: If a channel program is prematurely terminated during the retry
of a command, the residual count in the channel status word (CSW) will not
necessarily indicate how much storage was used. For example, if the storage
control detects a wrong-length record error condition, an erroneous residual
count is stored in the CSW until the command retry is successful. When the
retry is successful, the residual in the CSW reflects the correct length of the data
transfer.

v Command Address: When data chaining with command retry, the CSW might
not indicate how many CCWs have been executed at the time of a PCI. For
example:

CCW# Channel Program
1 Read, data chain
2 Read, data chain
3 Read, data chain, PCI
4 Read, command chain

In this example, assume that the storage control signals command retry on Read
#3 and the processor accepts the PCI after the channel resets the command

188 z/OS V2R1.0 DFSMSdfp Advanced Services

address to Read #1 because of command retry. The CSW stored for the PCI will
contain the command address of Read #1 when the channel has actually
progressed to Read #3.

v Testing Buffer Contents on Data Read: Any program that tests a buffer to
determine when a CCW has been executed and continues to execute based on
this data can get incorrect results if an error is detected and the CCW is retried.

Magnetic Tape Considerations
For a magnetic tape device, the system constructs a CCW chain to set the mode
specified in the DEB and pass control to the real version of your channel program.
(You cannot set the mode yourself.) For cartridge tape devices, the mode byte also
prohibits supervisor channel command words such as the mode set command. If
your program opens a tape for input or read backwards and you do not have
RACF authority to write on the volume, the system normally prevents writes. With
a reel tape the system does this by requiring the operator to remove the write ring.
With a cartridge tape, the system does this using the Mode Set command. See z/OS
DFSMS Using Magnetic Tapes for more information on tape handling.

Lost Data Condition on IBM 3800
With the IBM 3800 Printing Subsystem, a cancel key or a system-restart-required
paper jam causes both a lost data indicator to be set in DCBIFLGS and a lost page
count and channel page identifier to be stored in the UCB extension. Reset the lost
data indicator bit (DCBIFLDT) and the first two bits in the DCBIFLGS field to zero
before reissuing requests to the printer. For additional information see IBM 3800
Printing Subsystem Programmer's Guide and IBM 3800 Printing Subsystem Models 3
and 8 Programmer's Guide.

Processing the I/O Completion Status
For direct access and tape devices, the system considers the channel program
completed when it has received both a channel-end and device-end. The
channel-end and device end can be presented by the device separately or
simultaneously. But for other devices, the system considers the channel program
completed when it receives a channel-end condition in the subchannel status word
(SCSW). Unless a channel-end (CHE) or abnormal-end (ABE) appendage directs
otherwise, the system places a completion code in the IOB and IEDB and then in
the ECB (after appendages have been called). The completion code refers to errors
associated with channel end. If device and channel end occur simultaneously,
errors associated with device end (that is, unit exception or unit check) are also
accounted for.

If device end follows channel end and an error is associated with device end, the
completion code in the ECB will not indicate the error. However, the status of the
device and channel is saved by the system for the device. The next I/O request
directed to the I/O device from any address space is marked as intercepted. The
error is assumed to be permanent, and the completion code in the ECB for the
intercepted request indicates interception. The DCBIFLGS field of the DCB will
also indicate a permanent error. Note that, if a write-tape-mark or erase-long-gap
CCWis the last or only CCW in your channel program, the I/O process does not
attempt recovery procedures for device end errors. In these circumstances,
command chaining a NOP CCW to your write-tape-mark or erase-long-gap CCW
ensures initiation of device-end error recovery procedures.

To be prepared for device-end errors, you should be familiar with device
characteristics that can cause such errors. After one of your channel programs has

Chapter 4. Executing Your Own Channel Programs 189

terminated, do not release buffer space until determining that your next request for
the device has not been intercepted. You can reissue an intercepted request.

Interruption Handling and Error Recovery Procedures
An I/O interruption allows the processor to respond to signals from an I/O device
that indicate either termination of a phase of I/O operations or external action on
the device. A complete explanation of I/O interruptions is contained in the
publication z/Architecture Principles of Operation. For descriptions of interruption by
specific devices, see the IBM publications for each device.

If error conditions are associated with an interruption, the system schedules the
appropriate device-dependent error routine. The operating system might then start
another request that is not related to the channel program in error. If the error
recovery procedures (ERPs) fail to correct the error, the system places an error code
in the IOB, IEDB, and then in the ECB, after appendages have been called.

A channel program might depend upon the successful completion of a previous
channel program (as when one channel program retrieves data to be used in
building another). The previous channel program is called a related request and
must be identified to the system. For a description of this procedure, see
IOBFLAGS in “Input/Output Block (IOB) Fields” on page 211 and “Purging and
Restoring I/O Requests (PURGE and RESTORE macros)” on page 304.

If a permanent error occurs in the channel program of a related request, the system
removes the request queue elements for all dependent channel programs and
returns them to the caller without executing the request. For all requests dependent
on the channel program in error, the system places completion codes in the ECBs.
The system also places ones in the first two bit positions of the DCBIFLGS field of
the DCB. Any new requests for a DCB with error flags are posted complete
without execution. To reissue requests that depend on the channel program in
error, reset the first two bits of the DCBIFLGS field of the DCB to zero. Then
reissue EXCP for each desired channel program.

Reexecuting Channel Programs by Error Recovery Procedures
Under some circumstances the ERP might reexecute a channel program from the
beginning. For example, DASD channel programs are almost always retried from
the beginning. You will want to build channel programs that the ERP can restart
after any CCW or DCW has failed.

For CCW channel programs, if a CCW modifies a data area used by an earlier
CCW, the channel program might not reexecute properly.

The following are some situations where a channel program might not give correct
results when reexecuted by the ERP (see “Modifying a Channel Program During
Execution” on page 183):
v The channel program modifies itself.
v The application program or the PCI appendage modifies the channel program or

a data area before receiving notification that the channel program has completed.
Generally you can attempt to add CCWs to the end of the channel program.

Example
The following is an example of a DASD channel program that will not always
execute correctly. Using this channel program is inadvisable.

190 z/OS V2R1.0 DFSMSdfp Advanced Services

CCW X’47’,LRArea,X’60’,L’LRArea Locate Record
CCW X’86’,Data,X’60’,L’Data Read Data
CCW X’92’,Search,X’60’,L’Search Read Count
CCW X’22’,Sector,X’20’,1 Read Sector for this count

LRArea DC 0XL16 Area for Locate Record command
DC X’06010002’ Operation, auxiliary, block count (2)

Seek DC X’xxxxxxxx’ CCHH for seek
Search DC X’xxxxxxxxxx’ Search argument
Sector DC X’FF0000’ Sector and transfer length factor
Data DC ----

The application program would have to store appropriate values at labels "Seek"
and "Search" before issuing EXCP. (On an IBM 3990 storage subsystem, it will
execute more efficiently if an appropriate value is stored at "Sector" also. On newer
storage subsystems, such as the IBM 2107, the sector value has no effect.)

If all or part of the third CCW executes (Read Count), then reexecution of the
channel program by the ERP will give different results.

Requesting Extended Error Information
You can request that EXCP and EXCPVR processing return extended error
information. This extended error information consists of sense information, a
completion code, and other information you can use to help more accurately
diagnose I/O errors later encountered. Extended error information is available for
all devices.

To request extended error information, you must perform the following steps:
v Follow the EXCP/EXCPVR initialization procedures described in “Input/Output

Block (IOB) Fields” on page 211, including building and initializing the DCB,
IOB and ECB.

v Define an input/output block common extension (IOBE) and an input/output
error data block (IEDB) using the IOSDIOBE and IOSDIEDB mapping macros,
respectively. Each must be defined on word boundaries. You must supply both
an IOBE and an IEDB to receive extended error information. Initialize the fields
as described in “Input/Output Block Common Extension (IOBE) Fields” on page
216 and “Input/Output Error Data Block (IEDB) Fields” on page 209.

v Set register 0 to the address of the IOBE.
v Set register 1 to the address of the IOB.
v Set flag IOBCEF on in the IOB to indicate that the IOB extension is present.
v Issue the EXCP or EXCPVR macro (see “Using the EXCP macro instruction” on

page 185 and “Using the EXCPVR macro instruction” on page 186 respectively).

There are two versions of the IEDB. The version number within the IEDB defines
how long the IEDB is - the version 1 IEDB is 48 bytes long, and the version 2 IEDB
is 96 bytes long.
v The version 1 IEDB contains the following information:

– The completion code from I/O processing that gives the status. The
completion codes and their meanings are shown in Figure 26 on page 220.
The completion code is contained in the IEDBCOD, which is updated with
the results of the I/O requests. The system sets the IEDBCOD field prior to
calling the abnormal-end, normal-end, PCI, and end-of-extent appendages.
The system also sets this field when the ECB is posted, whether or not you
have set any appendages. The system can set the IEDBCOD multiple times as
events occur.

Chapter 4. Executing Your Own Channel Programs 191

– The sense information, set only after a unit check. Once set, the sense
information remains until overlaid by the next unit check. Since the system
never clears this area, you might want to clear it before issuing EXCP. See the
appropriate device publication for an explanation of the sense information.

v The version 2 IEDB is recommended for zHPF channel programs, and contains
all of the information in the version 1 IEDB plus the failing storage address
when a channel control check or channel data check occurs as a result as a
storage or storage key error error, or if a program check or protection check
occurs for a zHPF channel program due to a bad storage address.

Requesting Different Levels of ERP Processing
You can request the system to limit error recovery procedure (ERP) processing to
selected functions, typically when EXCP or EXCPVR processing has encountered
an I/O error. The processing selections available depend upon the device type.

For all devices, except magnetic tape subsystems that use cartridges, the following
processing levels are available:
v No ERP processing. ERP processing does not attempt error recovery or issue

messages. However, ERP processing can perform recovery for non-error unit
checks for logging, forced logging mode and buffered log overflow. To request
no ERP processing, set at least one of the DCBIFIOE bits on in the DCBIFLGS
field in the DCB.

v Full ERP processing. ERP processing performs such functions as logging the
errors, logging data collected by a control unit for a device, retrying errors,
issuing error messages and processing requests from the device. You do not have
to request full ERP processing; it is the system default.

For magnetic tape subsystems that use cartridges, such as the 3490 or 3590-1, the
following processing levels are available:
v Basic ERP processing. ERP processing logs the errors, logs data collected by a

control unit for a device and processes requests from a device. In this case, the
system does not issue messages or retry errors. To request basic ERP processing,
set one of the DCBIFIOE bits on in the DCBIFLGS field in the DCB.

v Intermediate ERP processing. ERP processing performs the functions provided
by basic processing and also issues any permanent error messages. To request
intermediate ERP processing, define an IOBE and set IOBEPMSG on in
IOBEERPM. In addition, set at least one of the DCBIFIOE bits on in the
DCBIFLGS field in the DCB.

v Full ERP processing. ERP processing performs such functions as logging the
errors, logging data collected by a control unit for a device, retrying errors,
issuing error messages and processing requests from the device. You do not have
to request full ERP processing; it is the system default. Bits in DCBIFIOE must
be 0. The DCB macro assembles them as zeros.

VIO considerations
When you issue EXCP or EXCPVR against a VIO data set, the system simulates all
the common channel commands. When working with VIO data sets, if you supply
an IEDB the system verifies its validity, but will not set any fields in it in the
current level of the operating system. VIO is not supported for zHPF channel
programs.

Invalid ending status
Normally when a channel program ends, the ending CCW or TCW address is
stored in field IOBCMD31 or IOBCMDA depending on the type of channel
program. However, for certain types of errors, the ending status of the channel

192 z/OS V2R1.0 DFSMSdfp Advanced Services

program is unpredictable and the ending address will be set to zero. Therefore,
your program should never assume that a valid ending address is always provided
in the IOB.

For CCW channel programs, the ending CCW address will be set to zero when any
of the following conditions occur:
v An interface control check, channel control check, or channel data check has

occurred and the ending address in the subchannel status word (SCSW) is not
valid

v A program check, protection check, or chaining check has occurred
v The ending CCW address was in a part of the channel program that was

modified by device dependent system code. If device dependent system code
needs to modify your channel program, it does so in system related storage that
is not available to your program.

For zHPF channel programs:
v The ending TCW address will be set to zero when an interface control check,

channel control check, or channel data check has occurred and the ending
address in the SCSW is not valid.

v The ending DCW offset in the IOBE is more useful for determining where the
channel program ended than the TCW, since the DCW is analogous to the CCW
in zHPF channel programs. The ending DCW offset will not be stored if the
device did not send ending status containing a valid DCW offset or the channel
was unable to store the ending status. In this case, the flag indicating that the
DCW offset is valid will be off.

Device No Longer Supports zHPF or Required zHPF functions
As mentioned in “Determining Whether zHPF is Supported for a Device” on page
182, you must make sure that a device supports zHPF as well as all the zHPF
functions your channel program requires before issuing an EXCP or EXCPVR
request for a zHPF channel program. In addition, even if the processor and device
support zHPF and all the zHPF functions required, these might be disabled when
you actually submit your channel programs:
v zHPF itself might be disabled on a processor and device that supports it when

you submit your channel program for any of the following reasons:
– The operator issued a command to disable zHPF for the system
– The zHPF feature is no longer enabled for the control unit associated with the

device
– Internal errors have occurred that caused zHPF to be disabled for the device
– The device used in the EXCP or EXCPVR request has been swapped to a

device that does not support zHPF.

When the device no longer supports zHPF, the IOB completion code
(IOBECBCC) is set to X'41' and the reason code (IOBERCOD) is set to X'0E'. You
can retry the EXCP or EXCPVR request by creating a CCW channel program and
either reissuing the EXCP or EXCPVR request, or returning at offset +8 in your
abnormal end appendage to execute a new channel program.

v Some required zHPF functions might be disabled on a supporting processor and
device if you swap to a device that does not support all required zHPF
functions. In that case, you must evaluate the zHPF functions that are supported
on that device to determine whether you still can use a zHPF channel program
or whether you must substitute a CCW channel program instead.

Chapter 4. Executing Your Own Channel Programs 193

|

|

|
|

Handling End of Volume and End-Of-Data-Set Conditions
The EOV macro instruction identifies end-of-volume and end-of-data-set
conditions. For an end-of-volume condition, EOV causes switching volumes and
verifying or creating standard labels. For an end-of-data-set condition (except when
another data set is concatenated), EOV causes your end-of-data set routine to be
entered. Before processing trailer labels on a tape input data set, decrement the
DCBBLKCT field. Your program issues EOV for any of the following reasons:
v Switching magnetic tape or direct access volumes is necessary
v Performing a secondary allocation on the same or another volume for a direct

access data set opened for output
v Switching to the next concatenated data set is necessary.

To determine how the system disposes of a tape volume when a program issues an
EOV macro, see the description of the DISP parameter of the OPEN macro in z/OS
DFSMS Macro Instructions for Data Sets.

For magnetic tape, issue EOV when either a tapemark is read or a write command
received a unit exception condition. You can also issue EOV to go to the next
volume or data set even though neither a tapemark was read nor end-of-tape
reached. Bit settings in the 1-byte DCBOFLGS field ofthe DCB determine the action
taken when EOV is executed. Before issuing EOV for magnetic tape or DASD
make sure that appropriate bits are set in DCBOFLGS. Bit positions 2, 3, 6, and 7 of
DCBOFLGS are used only by the system; you are concerned with bit positions 0, 1,
4, and 5. The use of these DCBOFLGS bit positions is as follows:

Table 36. DCBOFLGS Usage

Position Bit name Meaning

0 DCBOFLWR set to 1 indicates that a write command was executed
and that a tapemark or DASD file mark is to be
written. OPEN sets this bit to 1 if the OPEN option is
OUTPUT, OUTIN, OUTINX, or EXTEND. OPEN sets
it to 0 for any other OPEN option. For DASD, a 1
also indicates that ECBFDAD and DCBTRBAL
contain valid information. See “Device-Dependent
Parameters” on page 203 for more information.

1 DCBOFLRB indicates that a backward read was the last I/O
operation

4 DCBOFPPC indicates that concatenated data sets are to be treated
as unlike. For further information, refer to z/OS
DFSMS Using Data Sets.

5 DCBOFTM indicates that a tapemark has been read (tape only).

If bits 0 and 5 of DCBOFLGS are both off when EOV is executed, EOV spaces the
tape past a tapemark, and standard labels, if present, are verified on both the old
and new volumes. The direction of spacing depends on bit 1. If bit 1 is off, the
tape is spaced forward; if bit 1 is on, the tape is backspaced.

For tape, if bit 0 is on, but bit 5 is off, EOV writes a tapemark at the current
position, which is assumed to be following the last data record of the data set on
the current volume. EOV also writes labels on both the old and new tapes if they
are labeled. See z/OS DFSMS Using Magnetic Tapes for information on label

194 z/OS V2R1.0 DFSMSdfp Advanced Services

processing. For DASD, if bit 0 is on, EOV attempts to write a file mark. See the
DCBFDAD description in “Device-Dependent Parameters” on page 203 for more
information.

When you issue EOV, the system might rebuild the DEB at another location. After
each EOV, obtain the rebuilt DEB address from the DCB. If the data set was
allocated without the nocapture option of dynamic allocation, then EOV might
have uncaptured the UCB for the previous volume. If so, that captured UCB
address might become invalid. Note that the 24-bit address of the new UCB might
be the same as the previous UCB.

After issuing EOV for sequentially organized output data sets on direct access
volumes, you can determine whether additional space was obtained on the same
or a different volume. Do this by examining the DEB and the UCB. If the volume
serial number in the UCB has not changed, additional space was obtained on the
same volume. Otherwise, space was obtained on a different volume.

The format of the EOV macro is:

dcb_addr—RX-type address, (2-12), or (1)
The address of the DCB that is opened for the data set. If this parameter is
specified as (1), register 1 must contain this address.

MODE=24 or 31
Indicates how the registers are set. With either value, your program can be in
24-bit or 31-bit mode. The modes are:

24 If you do not specify the MODE operand, this mode is assumed. The
expansion of the EOV macro stores the DCB address into register 1. The
high-order byte of register 1 is ignored during EOV processing. The DCB
must be below 16MB, but the calling program can be above the line.

31 The EOV macro expansion code puts the DCB address into register 15 and
sets register 1 to zeros. The DCB address must be below 16 MB, because
providing a DCB above 16 MB causes an ABEND50D. The high-order byte
of the address specified in the EOV macro must be zero.

Closing the Data Set
The CLOSE macro instruction restores one or more DCBs so that processing of
their associated data sets can be terminated. Issue CLOSE for all DCBs that were
used by your channel programs. Some of the procedures performed when CLOSE
is executed are:
v Releasing data extent block
v Removing information transferred to DCB fields when OPEN was executed
v Verifying or creating standard labels
v Volume disposition
v Releasing programmer-written appendage routines

�� EOV dcb_addr
label 24

,MODE= 31

��

Chapter 4. Executing Your Own Channel Programs 195

v Uncapture UCB if the actual UCB is above the line and the allocation was done
without the nocapture option and LOC=ANY in the DCBE macro was not
specified.

When CLOSE is issued for a data set on a magnetic tape volume, the system
processes labels according to bit settings in the DCBOFLGS field of the DCB.
Before issuing CLOSE for magnetic tape, set the appropriate bits in DCBOFLGS.
The significant DCBOFLGS bit positions are listed in the EOV macro instruction
description.

When CLOSE is issued for a data set open for output on a direct access device, the
system will try to write a file mark if fields are as described in “Device-Dependent
Parameters” on page 203.

The parameters and different forms of the CLOSE macro instruction are described
in z/OS DFSMS Macro Instructions for Data Sets.

Control Block Fields
Control block field information covered here includes fields of the DCB, DCBE,
input/output block, IOBE, IEDB, event control block, and data extent block.

To use the DCBD macro to map the DCB, see “Mapping the DCB” on page 207.

Data Control Block (DCB) Fields
The EXCP form of the DCB macro instruction produces a DCB that can be used
with the EXCP macro instruction. Code a DCB macro instruction for each data set
to be processed by your channel programs. (Notation conventions and format
illustrations of the DCB macro instruction are given in z/OS DFSMS Macro
Instructions for Data Sets.) DCB parameters that apply to EXCP depend on the
following elements of the DCB that are generated:
v Foundation block: This portion is required and is always 12 bytes in length. If

the DCBMACRF field indicates that a DCB portion before this is missing or
short, the system ignores values in those fields.

v EXCP interface: This portion is optional. If you specify any parameter in this
category, 20 bytes are generated.

v Foundation block extension and common interface: This portion is optional and
is always 20 bytes in length. If this portion is generated, the device-dependent
portion is also generated.

v Device dependent: This portion is optional and is generated only if the
foundation block extension and common interface portion is generated. Its size
ranges from 4 to 20 bytes, depending on specifications in the DEVD parameter.
If you do not specify the DEVD parameter and the foundation extension and
common interface portions are generated, 16 bytes for this portion are generated.

Some of the procedures performed by the system when the DCB is opened and
closed (such as writing file marks for output data sets on direct access volumes)
require information from optional DCB fields. Make sure that the DCB is large
enough to provide information for the procedures you want the system to handle.

Figure 14 on page 198 shows the relative position of each portion of an opened
DCB. The fields, corresponding to the DCB macro instruction parameters, are also
identified, except for DDNAME. (DDNAME is not included in a DCB that has

196 z/OS V2R1.0 DFSMSdfp Advanced Services

|
|
|
|
|

been opened.) The fields in parentheses represent system information that is not
associated with parameters of the DCB macro instruction.

Sources of information for DCB fields other than the DCB macro instruction are
data definition (DD) statements or dynamic allocation parameters, data set labels,
and DCB modification routines. You can use any of these sources to specify DCB
parameters. However, if a particular portion of the DCB is not generated by the
DCB macro instruction, the system will not accept information intended for that
portion from any alternative source.

You can provide symbolic names for the fields in one or more EXCP DCBs by
coding a DCBD macro to generate a dummy control section (DSECT). For further
information, see “Mapping the DCB” on page 207.

The EXCP DCB does not have a field to contain the current or maximum block size
but the DCBE does have such a field.

Chapter 4. Executing Your Own Channel Programs 197

The fields in parentheses represent system information that is not associated with
parameters of the DCB macro instruction.

20

24

Device
Dependant

28

36

40

44

48

52

56

60

64

68

32
BFTEK,
BFALN

Common
Interface

Foundation
Block
Extension

Foundation
Block

EXCP
Interface

The device-dependent portion of the data
control block varies in length and format
according to specifications in the DSORG
and DEVD parameters. Illustrations of this
portion for each device type are included in the
description of the DEVD parameter.

BUFNO

BUFL

RECFM

OPTCD

PCIA

CENDA

EOEA

XENDA

SIOA

(TIOT)

(OFLGS)

(IFLGS)

EXLST

MACRF

(DEB Address)

Reserved

Reserved

Reserved

Reserved

IOBAD

DSORG

EODAD

BUFCB

Figure 14. Data Control Block Format for EXCP (After OPEN)

198 z/OS V2R1.0 DFSMSdfp Advanced Services

DCB Fields that do not have Macro Parameters

DCBOFLGS: See “Handling End of Volume and End-Of-Data-Set Conditions” on
page 194.

DCBIFLGS: See “Processing the I/O Completion Status” on page 189 and
“Interruption Handling and Error Recovery Procedures” on page 190.

These are the bits that EXCP uses in DCBIFLGS after the DCB is OPEN:

Table 37. Bits that EXCP uses in DCBIFLGS after the DCB is OPEN

Bits that EXCP uses in DCBIFLGS after the DCB is OPEN

11.. DCBIFPEC An IOB without the unrelated bit on got a permanent I/O
error. EXCP posts subsequent related requests with X'48' in the
ECB until the user clears DCBIFPEC. Corresponds to DCBIBEC
in DCBIFLG before OPEN.

..11 DCBIFPCT Channel 9 or 12 code detected on printer. Corresponds to
DCBIFC9 and DCBIFC12 in DCBMACR before OPEN.

.... 11.. DCBIFIOE Request less than full system ERP (error recovery procedure)
processing. Your program can set these bits directly, or you can
code the IMSK parameter (see “EXCP Interface Parameters” on
page 200). See “Requesting Different Levels of ERP Processing”
on page 192.

DCBTIOT: If the data set allocation was dynamic and had the XTIOT (S99TIOEX)
or nocapture (S99ACUCB) option, then this field contains zeroes. You can use
DEBXTNP, DEBXDSAB and DSABTIOT to get the TIOT or XTIOT entry address. If
the allocation was not dynamic or did not have the XTIOT or nocapture option,
this field is unsigned (16-bit) offset in the TIOT to the entry.

An entry in the TIOT or XTIOT is mapped by the IEFTIOT1 macro.

Foundation Block Parameters
DDNAME=symbol

The name of the data definition (DD) statement that describes the data set to
be processed. This parameter is required and must be supplied before your
program issues the OPEN macro. You can code a dummy value and change it
before issuing OPEN.

MACRF=E
The EXCP or EXCPVR macro instruction is to be used in processing the data
set. This operand must be coded and must be supplied before your program
issues the OPEN macro.

REPOS=Y or N
Magnetic tape volumes: This parameter indicates to the system whether the
user is keeping an accurate block count. (Maintain the block count in the
DCBBLKCT field.) The system ignores this parameter when the program is
executing and the device is not magnetic tape.

The EOV and CLOSE functions can record the block count in the IBM standard
or ISO/ANSI standard trailer labels.

On input, the EOV and CLOSE functions can compare the DCB block count
with the block count in the standard trailer labels to detect missing or
duplicate blocks. This is supported on reel and cartridge tapes.

Chapter 4. Executing Your Own Channel Programs 199

On input or output, the EOV and CLOSE functions can compare the DCB
block count with the block count calculated from tape cartridge subsystems to
detect missing or duplicate blocks. The system does this for any label type and
for unlabeled tapes. Refer to z/OS DFSMS Using Magnetic Tapes.

For magnetic tape devices with reels (not cartridges), coding REPOS=Y allows
the dynamic device reconfiguration (DDR) function to move the volume to
another tape drive if the drive has a failure. With a cartridge, DDR can do this
without your program maintaining block count.

For magnetic tape devices with reels (not cartridges), restart requires the block
count in order to restore the tape to its position at the time of the checkpoint.
With a cartridge, restart can do this without requiring that you maintain a
block count.

The system performs the following tasks:
v Y-The count is accurate.
v N-The block count is inaccurate.

If the operand is omitted, N is assumed.

EXCP Interface Parameters
If you do not code any of the parameters described here, the DCB macro does not
create this portion of the block and OPEN will ignore any value that your program
sets. You can code values to affect the macro expansion and change any of these
fields before the end of the DCB OPEN exit routine. For more information on
EXCP appendages, see “Making Appendages Available to the System” on page 224.

EOEA=symbol
Last two characters of an EOE appendage name that you have entered into
SYS1.LPALIB or SYS1.SVCLIB.

PCIA=symbol
Last two characters of a PCI appendage name that you have entered into
SYS1.LPALIB or SYS1.SVCLIB.

SIOA=symbol
Last two characters of a SIO appendage name that you have entered into
SYS1.LPALIB or SYS1.SVCLIB.

PGFIX=YES
The SIO appendage includes a page-fix entry point. Refer to “Using the
EXCPVR macro instruction” on page 186 and “Page Fix and EXCPVR Start I/O
Appendage” on page 226.

CENDA=symbol
Last two characters of a CHE appendage name that you have entered into
SYS1.LPALIB or SYS1.SVCLIB.

XENDA=symbol
Last two characters of an ABE appendage name that you have entered into
SYS1.LPALIB or SYS1.SVCLIB.

OPTCD=Z
Indicates that, for devices that have a magnetic tape reel (input only), a
reduced error recovery procedure (four reads only) will occur when a data
check is encountered. Only specify this operand when the tape is known to
contain errors and the application does not require that all records be
processed. Its proper use would include error frequency analysis in the
SYNAD routine. Specification of this parameter will also cause generation of a

200 z/OS V2R1.0 DFSMSdfp Advanced Services

foundation block extension. This parameter does not apply to magnetic tape
subsystems that use cartridges. Your program can change this parameter value
at any time.

IMSK=value
The IMSK parameter lets you specify whether or not you want to ignore
system error routines:
v Code X'FFFFFFFF' to specify that you want the system to use the error

routines.
v If you code any value other than X'FFFFFFFF', the system will not use the

system's error routines. This causes one of the DCBIFOIOE bits to be set on.
See “DCBIFLGS” on page 199.

Foundation Block Extension and Common Interface Parameters
EXLST=address

The address of an exit list that you have written for exception conditions. The
format and purpose of the exit list are provided in z/OS DFSMS Using Data
Sets .

EODAD=address
The address of your end-of-data-set routine for input data sets. If this routine
is not available when it is required, the task is abnormally terminated.

It is required when you issue an EOV macro for the last volume containing
data and bit 0 of DCBOFLGS indicates that the last operation was a read. (See
“Handling End of Volume and End-Of-Data-Set Conditions” on page 194 for
more information concerning EOV.) An exception to this is when another data
set is concatenated after the current data set.

The EODAD address used here is a 24-bit address in the DCB. If you use the
DCB extension (DCBE), and its 31-bit EODAD field is non-zero, the system
uses that address instead.

DSORG=PS or PO or DA
The data set organization (one of the following codes). Each code indicates that
the format of the device-dependent portion of the DCB is to be similar to that
generated for a particular access method:

Code DCB Format:

PS QSAM or BSAM
PO BPAM
DA BDAM

When writing in a partitioned or sequential DASD data set, you can cause
EOV or CLOSE to write a file mark. Refer to “Device-Dependent Parameters”
on page 203 for further information.

Do not issue the STOW macro against an EXCP DCB; it can corrupt the
directory contents.

IOBAD=address
The address of an input/output block. You can use this field for any purpose.

RECFM=code
The record format of the data set. (Record format codes are given in z/OS
DFSMS Macro Instructions for Data Sets.) When writing a data set to be read
later, RECFM, LRECL, and BLKSIZE should be specified to identify the data

Chapter 4. Executing Your Own Channel Programs 201

set attributes. LRECL and BLKSIZE can only be specified in a DD statement, in
an SVC 99 call, or in the JFCB, because these fields do not exist in a DCB used
by EXCP.

IBM recommends that when you are creating a data set you issue a RDJFCB
macro and set JFCLRECL and JFCBLKSI before issuing OPEN TYPE=J. This
will allow LRECL and BLKSIZE to be in the data set label. An alternate way to
set or learn the block size is to use the BLKSIZE field in the DCBE.

The RECFM parameter is not used by the EXCP routines. It provides
information stored for subsequent use by access methods that read or update
the data set.

The following parameters are optional. The system does not manage the buffers
described.

BFALN=F or D
The word boundary alignment of each buffer, either word or doubleword.

BUFL=length
The length in bytes of each buffer; the maximum length is 32760.

BUFCB=address
The address of a buffer pool control block, that is, the 8-byte field preceding
the buffers in a buffer pool. If the low order bit is on, the address is invalid
and if you issue the FREEPOOL macro, it has no effect. The FREEPOOL macro
sets the low order bit on. The DCB macro sets the low order bit on if the
common interface portion is valid.

BUFNO=number
The number of buffers assigned to the associated data set; the maximum
number is 255. For an EXCP DCB, OPEN ignores this parameter and the
BFALN, BUFL, and BUFCB parameters. They have an effect only if your
program uses those fields or if your program issues a GETPOOL or GETBUF
macro.

Buffer number and block size affect the data transfer rate and the operating
system overhead per block. Using more buffers reduces (per block transferred)
the system overhead. If you allocate more buffers than your program can
process effectively, the virtual pages containing those buffers might be paged
out, adding to the system overhead for the job. A large number of buffers also
causes a large amount of real storage to be allocated to the job while the data
is being transferred.

A job in a low-performance group can get swapped out more frequently than a
higher-priority job. The number of buffers allocated for the job effect the
number of pages that have to be swapped out.

Programs that access data sets with a small block size (for example, 80) can
easily make effective use of 30 buffers, which fit in, at most, two 4096-byte
pages. The use of 30 buffers in this case is more efficient than 5, resulting in
only 1 channel program rather than 6 channel programs to transfer 30 blocks.

Using data sets with large blocking factors such as half-track blocking on
DASD can be effective if only three or four buffers are specified, rather than
five or more. The slightly lower DASD performance and small increase in
system instruction costs should be more than offset by a reduction in paging or
swapping in a constrained environment.

202 z/OS V2R1.0 DFSMSdfp Advanced Services

The DCB OPEN installation exit can use installation criteria for a default buffer
number for EXCP DCBs (for a description of the OPEN installation exit, see
z/OS DFSMS Installation Exits). Your program can use the BUFNO value that
the OPEN installation exit might set.

Device-Dependent Parameters
DCBE=

the DCBE= parameter is a device independent parameter but is included here
because if DCBE= is specified the entire device-dependent section of the DCB
is generated. You specify DCBE= when the DCB extension (DCBE) is required.
The first word of the DCB (at offset +0) points to the DCBE when 2 bits at
offset 32 (X'20') are on as follows:

Table 38. DCB bits to signify presence of DCBE
Name Bit
DCBH1 X'80'
DCBH0 X'04'

Coding DCBE= in the DCB macro sets these 2 bits on. For further DCBE
information see “Data Control Block Extension (DCBE) Fields” on page 207.
See z/OS DFSMS Macro Instructions for Data Sets for more information on the
DCBE= parameter of the DCB macro.

DEVD=code
The device in which the data set might reside. The codes are listed in order of
descending space requirements for the DCB:

Table 39. DCB DEVD options
Code Device
DA Direct access
TA Magnetic tape
PR Printer
PC Card punch
RD Card reader

If you do not want to select a specific device until job setup time, specify the
device type requiring the largest area; that is, DEVD=DA.

The following diagrams illustrate the device-dependent portion of the DCB for
each combination of device type specified in the DEVD parameter and data set
organization specified in the DSORG parameter. Fields that correspond to
device-dependent parameters in addition to DEVD are indicated by the parameter
name.

When processing concatenated data sets, the system changes the value in
DCBDEVT as appropriate as it reaches each new data set. These values are
described in z/OS DFSMS Macro Instructions for Data Sets.

Chapter 4. Executing Your Own Channel Programs 203

The fields in parentheses represent information not associated with parameters of
the DCB macro instruction. EOV sets all of these fields. OPEN sets DCBDVTBA
and DCBDEVT, but not DCBFDAD. Your program can modify DCBFDAD,
DCBKEYLE, or DCBTRBAL as described in the text.

When writing on DASD, maintain certain fields of the device-dependent portion of
the DCB. The system uses the information in the following instances:
v To write a file mark for output data sets
v When releasing unused space at the end of the allocated area

You can request partial space release using the management class, RLSE on the
DD SPACE parameter, TSO/E ALLOCATE command RELEASE parameter or
PARTREL macro.

v When adding to the data set with DISP=MOD or the EXTEND or OUTINX
options of OPEN

v When DFSMSdss copies the data set.

Maintain the following fields of the device dependent portion of the DCB when
writing on DASD:
v The track balance (DCBTRBAL) field that contains a 2-byte unsigned binary

number that indicates the remaining number of bytes on the current track. It is
recommended that your program not directly calculate this number but use the
TRKCALC macro (see “Performing Track Calculations (TRKCALC macro)” on
page 307). Both the calculation values and the algorithm differ among device
types.

v The full disk address (DCBFDAD) field that indicates the location of the current
record. The address is in the form MBBCCHHR. For the actual form of
MBBCCHHR, see Table 44 on page 233.

If space is available for output data sets, the system uses the contents of the full
disk address (DCBFDAD) field, plus one block, to write a file mark when the DCB
is closed or EOV is issued. If the track balance field (DCBTRBAL) is less than
eight, the file mark is written on the next sequential track.

Note that the track containing your last data block, as identified by DCBFDAD,
might not be the best place for a file mark. Consider the following:

┌───┐
³ 0 ³
³ DCBDCBE ³
├────────────┬──────────────────────────────────────┤
³ 4 ³ 5 ³
³ Reserved ³ (DCBFDAD) ³
├────────────┘ ³
³ 8 ³
³ ³
³ ┌──────────────────────────────────────┤
³ ³ 13 ³
³ ³ (DCBDVTBA) ³
├────────────┼────────────┬─────────────────────────┤
³ 16 ³ 17 ³ 18 ³
³ DCBKEYLE ³ (DCBDEVT)³ (DCBTRBAL) ³
└────────────┴────────────┴─────────────────────────┘

Figure 15. Device-dependent portion of the DCB with DEVD=DA and DSORG=PS (or
DSORG=PO)

204 z/OS V2R1.0 DFSMSdfp Advanced Services

v If the file mark is near the end of the track and a future user extends the data
set using DISP=MOD on the DD statement or using the OPEN EXTEND or
OUTINX option, then the first new block might be on the next track. This leaves
a file mark inside the data.

v For compatibility with BSAM and QSAM when you are writing fixed-standard
records, you should cause the file mark to be written wherever the next block
would have been written, as if all blocks were full size. The file mark should not
be “squeezed” on to the current track.

If the system is to write a file mark, you must maintain the contents of these two
fields and set on bit 0 of DCBOFLGS. For further information on DCBOFLGS, see
“Handling End of Volume and End-Of-Data-Set Conditions” on page 194. Use the
OPEN macro instruction to initialize DCBDVTBA and DCBDEVT. You can use
DCBDVTBA or DCBDVTBL with the DEVTAB parameter of the TRKCALC macro
(see “Performing Track Calculations (TRKCALC macro)” on page 307 for the
TRKCALC description).

The system uses the contents of the block count (DCBBLKCT) field to write the
block count in trailer labels when the DCB is closed or when the EOV macro
instruction is issued. For tape cartridges, the system also compares this count with
a count calculated from hardware information. OPEN and EOV set this DCB field
to zero except when reading standard labeled tape backward. In that case OPEN or
EOV set DCBBLKCT to the block count in the trailer label.

The I/O process increments this field by the contents of the IOBINCAM field of
the IOB upon completion of each I/O request.

To indicate to the system that your program is maintaining DCBBLKCT, code
foundation block parameter REPOS=Y. See “Foundation Block Parameters” on page
199.

┌────────────┬─────────────────────────────────────┐
³ 16 ³ 17 ³
³ DCBKEYLE ³ Reserved ³
└────────────┴─────────────────────────────────────┘

Figure 16. Device-dependent portion of the DCB with DEVD=DA and DSORG=DA

┌───┐
³ 12 ³
³ (DCBBLKCT) ³
├────────────┬────────────┬────────────┬────────────┤
³ 16 ³ 17 ³ 18 ³ 19 ³
³ DCBTRTCH ³ (DCBDEVT) ³ DCBDEN ³ Reserved ³
└────────────┴────────────┴────────────┴────────────┘

The fields in parentheses represent information not associated with parameters of the DCB
macro instruction. They are set by OPEN and EOV. Your program can modify DCBBLKCT
as described for the REPOS parameter above.
Figure 17. Device-dependent portion of the DCB with DEVD=TA and DSORG=PS

┌────────────┬────────────────────────────────────┐
³ 16 ³ 17 ³
³ DCBPRTSP ³ Reserved ³
└────────────┴────────────────────────────────────┘

Figure 18. Device-dependent portion of the DCB with DEVD=PR and DSORG=PS

Chapter 4. Executing Your Own Channel Programs 205

The following DCB operands pertain to specific devices and can be specified only
when the DEVD parameter is specified.

KEYLEN=length
For direct access devices, the length in bytes of the key of a physical record,
with a maximum value of 255. When a block is read or written, the number of
bytes transmitted is the key length plus the record length. This parameter does
not directly affect EXCP processing, but is stored in the data set label.

DEN=value
For magnetic tape reels, the tape recording density in bits per inch is shown in
the following table:

Value Density

2 800 (NRZI)
3 1600 (PE)
4 6250 (GCR)

NRZI—Non return-to-zero change to ones recording PE—phase encoded
recording GCR—group coded recording

If this parameter is omitted, the highest density available on the device is
assumed. Refer to z/OS DFSMS Macro Instructions for Data Sets for further
information on DEN.

TRTCH=value
For magnetic tape subsystems with Improved Data Recording Capability, the
tape recording techniques consist of the following values:

Value Tape recording technique

COMP Record data in compacted format.

NOCOMP Record data in standard uncompacted format.

For 7-track magnetic tape, the tape recording technique:

Value Tape recording technique

COMP Record data in compacted format.

C Data conversion feature is available.

E Even parity is used. (If omitted, odd parity is
assumed.)

T BCDIC to EBCDIC translation is required.

MODE=value
For a card reader or punch, the mode of operation. Either C (column binary
mode) or E (EBCDIC code) can be specified. This field and parameter do not
directly affect EXCP processing but your program can use the field. This is
useful to allow you to specify the value on the DD statement.

STACK=value
For a card punch or card reader, the stacker bin to receive cards, either 1 or 2.

┌────────────┬──────────────────────────────────────┐
³ 16 ³ 17 ³
³ DCBMODE ³ Reserved ³
³ DCBSTACK ³ ³
└────────────┴──────────────────────────────────────┘

Figure 19. Device-dependent portion of the DCB with DEVD=PC or RD and DSORG=PS

206 z/OS V2R1.0 DFSMSdfp Advanced Services

This field and parameter do not directly affect EXCP processing but your
program can use the field. This is useful to allow you to specify the value on
the DD statement.

PRTSP=value
For a printer, the line spacing is 0 — 3. This field and parameter do not
directly affect EXCP processing but your program can use the field. This is
useful to allow you to specify the value on the DD statement.

Mapping the DCB
In addition to the operands described in z/OS DFSMS Macro Instructions for Data
Sets for the DSORG parameter of the DCBD macro, you can specify the following
operand:

DSORG=XA or XE
Specify the section of the DCB to be mapped.

XA Specifies a DCB with the foundation block and EXCP interface.

XE Specifies a DCB with the common interface, foundation block extension,
and foundation block.

Code DSORG=(XA,XE) to map all four sections of the DCB.

Data Control Block Extension (DCBE) Fields
The data control block extension (DCBE) provides further processing options.
EXCP supports these options:
v The BLKSIZE parameter when you issue the OPEN and EOV macros.
v The BLOCKTOKENSIZE parameter to signify that your program is able to

handle a DASD data set that has the large format attribute. The data set is not
necessarily large. If you code BLOCKTOKENSIZE=LARGE, then it means that
your program can handle a data set that exceeds 65535 tracks or might grow
above that size. Look for these differences:
– If the data set is a large format data set, the DSCB the DS1LARGE bit will be

on and the two bytes in DS1LSTAR that contain a relative track number are
logically extended with the DS1TTTHI byte. See the format 1 DSCB
description in “Format-1 and Format-8 DSCBs” on page 5.

– The two bytes in each DEBNMTRK field are logically extended by the
DEBNMTRKHI byte. See Appendix A, “Control Blocks,” on page 443.

– If your program calls either of the track conversion routines that CVTPRLTV
or CVTPCNVT point to, then your program should use the +12 entry points
instead of the +0 entry points.

If you do not code BLOCKTOKENSIZE=LARGE on the DCBE macro, then:
– If the OPEN macro option is not INPUT and the data set is large format, then

OPEN will issue a 213-14 ABEND.
– If the OPEN macro option is INPUT and the data set has more than 65535

tracks on the volume, then OPEN will issue a 213-16 ABEND.
v The CAPACITYMODE parameter to write more data on an IBM 3590 Magnetic

Tape Subsystem that emulates an IBM 3490 when you issue the OPEN macro.
v The EADSCB=OK parameter to specify that your application program supports

one of the following, as appropriate:
– VTOC that describes a volume supporting extended attribute DSCBs.

(“Reading and Modifying a Job File Control Block (RDJFCB Macro)” on page
284 describes how to open a VTOC.) An extended address volume may have
extended attribute DSCBs. They are format-8 and format-9 DSCBs. If you do

Chapter 4. Executing Your Own Channel Programs 207

not code this option, the OPEN function will issue ABEND 113-48 and
message IEC142I. Code this option when your application program supports
format-8 and format-9 DSCBs.

– A data set that has extended attribute DSCBs, Track addresses in DSCBs
pointed to by a format-8 DSCB may contain cylinder addresses above 65,520.
If you do not code this option, then OPEN issues a 113-44 ABEND and
message IEC142I. Code this option when your application program supports
MACRF=E (EXCP) and the data set has format 8 and 9 DSCBs.

v The EODAD parameter when you issue an EOV macro. If the DCBEEODAD
field has a non-zero value when the system needs to use it, this value takes
precendence over an EODAD specification in the DCB. See “Foundation Block
Extension and Common Interface Parameters” on page 201.

v The LOC parameter when you issue an OPEN macro. To successfully open a
data set that has been allocated with the XTIOT, UCB NOCAPTURE, or DSAB
above the line dynamic allocation options, you must specify both:
– DCBE option LOC=ANY. The LOC=ANY option is represented by the

DCBELOCANY bit in the DCBE.
– DEVSUPxx parmlib parameter NON_VSAM_XTIOT=YES. The DEVSUPxx

parameter NON_VSAM_XTIOT is represented by DFAXTBAM bit in the DFA
as mapped by IHADFA.

v The SYNC parameter to control buffered tape marks on an IBM 3590 when you
issue the OPEN, EOV, or CLOSE macros.

Note that the DCBE can be above the 16 MB line even though your user program
is running in 24-bit mode. See z/OS DFSMS Macro Instructions for Data Sets for
more information concerning the DCBE.

Set and Retrieve Data Set Block Size
The DCBE has a field to contain the current or maximum block size for the data
set.

In order to use this field, your program must code a value for the BLKSIZE
keyword on the DCBE macro or turn on the DCBEULBI bit. The keyword value
can be numeric or a non-relocatable symbolic expression. The value can be 0.

If you code a zero value or turn on DCBEULBI, then OPEN stores into
DCBEBLKSI the block size value from the data set label if opening for input or
output with DISP=MOD, which can be disk or tape. If your program issues the
OPEN macro with the OUTPUT or OUTIN option, then OPEN tries to calculate an
optimal value for BLKSIZE as it does for BSAM and QSAM. The
system-determined block size function is described in z/OS DFSMS Using Data Sets.
The basic principle is that your program supplies the LRECL value and RECFM
value (not U) and OPEN calculates an optimal BLKSIZE value for the device and
stores it into DCBEBLKSI.

Attention: OPEN might calculate a BLKSIZE value in the DCBE that exceeds the
maximum that is supported by the regular access methods or other programs that
read your program's data sets. For example, on magnetic tape the value probably
will exceed 32760. If this is a problem, you can do the following:

Supply a DCB OPEN exit routine as described in z/OS DFSMS Using Data Sets. If
your exit routine finds that the DCBEBLKSI field is still 0, it means that the data
set label and the DD statement do not have a value for BLKSIZE. If your program
is opening for output, it can leave the DCBE alone and let OPEN calculate an
optimal BLKSIZE value or it can calculate one. This is your program's last chance
to set it before the system stores the BLKSIZE value in various system control

208 z/OS V2R1.0 DFSMSdfp Advanced Services

blocks and the data set label. Your DCB OPEN exit routine can issue the DEVTYPE
macro with the INFO=AMCAP parameter to learn the optimal and maximum
BLKSIZE values for the device. If it is too large, your program can calculate a
smaller valid value. Store a value into DCBEBLKSI before OPEN can set it. The
INFO=AMCAP parameter of DEVTYPE is described on “DEVTYPE—Info Form”
on page 270.

OPEN builds the DEB after calling the DCB OPEN exit routine. If your program
calculates a maximum block size, it can take into consideration a value for
BLKSZLIM coded on the DD statement. To find this value, issue the RDJFCB
macro with an X'13 ' code. See “Reading and Modifying a Job File Control Block
(RDJFCB Macro)” on page 284.

Why should your program do this?
v To decrease your program's dependence on the device type
v The system stores this value in the data set label for use by z/OS and on other

systems
v The system stores this value in various SMF records to improve monitoring of

system resources
v DFSMSrmm™ retains this information for its tape reports.

Unlike the regular access methods, EXCP processing does not do complete
checking of the BLKSIZE value in an EXCP DCBE.

Input/Output Error Data Block (IEDB) Fields
The system uses the IEDB to provide extended error information, and for zHPF the
failing storage address. The IEDB has two versions:
v The version 1 IEDB is 48 bytes.
v The version 2 IEDB is 96 bytes. This is the recommended version for zHPF

channel programs.

You provide an IEDB by setting its address in an IOBE. Set reserved fields to X'00'.
The system moves the sense bytes to IEDBSNS. If fewer than 32 sense bytes are
available, there might be residual data. Refer to “Requesting Extended Error
Information” on page 191 for more information on using the IEDB.

Chapter 4. Executing Your Own Channel Programs 209

Table 40. IEDB Structure Mapping

Offset
Length or
Bit Pattern Name Description

0 (X'0') 4 IEDBID Eye catcher. Must be "IEDB"

4 (X'4') 1 IEDBVERS Version.

v The version 1 IEDB is 48 bytes.

v The version 2 IEDB is 96 bytes. This is the
recommended version for zHPF channel programs.

For version 1, the macro defines IEDBVRSC as the version
constant. For version 2, the macro defines IEDBVRS2 as
the version constant.

5 (X'5') 1 IEDBFLG1 Flags field.

1... IEDBBDSN The sense data is invalid and begins with X'10FE'.

.1.. IEDBFSAV The failing storage address (IEDBFSA) is valid.

..xx xxxx Reserved.

0

8-39

40-43

IEDBID

IEDBVERS

4

44-47

48-55

48-55

5 6 7

IEDBFLG1 IEDBCOD

IEDB2CSW

IEDBFSA

Reserved

RESERVED

RESERVED

IEDBSNS

Figure 20. Format of an IEDB, Mapped by the IOSDIEDB Macro

210 z/OS V2R1.0 DFSMSdfp Advanced Services

|

|
|
|

Table 40. IEDB Structure Mapping (continued)

Offset
Length or
Bit Pattern Name Description

6 (X'6') 1 IEDBCOD Original I/O completion code prior to EXCP or EXCPVR
changing it. This is the same format as the ECB
completion code byte.

7 (X'7') 1 Reserved.

8 (X'8') 32 IEDBSNS Sense bytes.

1 IEDBSNS00 Sense byte 0.

9 (X'9') 1 IEDBSNS01 Sense byte 1.

(Fields IEDBSNS02 to IEDBSNS31 define sense bytes 2 to 31.)

40(X'28') 4 Reserved.

44(X'2C') 4 IEDB2CSW Virtual CCW address pointing after the last CCW
executed by the control unit. The system sets this only if
all of the following are true: (1) EXCP or the user set
IOBEP on to allow prefetching of CCWs and data, (2) the
user set IOB2CSWS on (two channel status words), (3) the
control unit was executing ahead of the channel, (4) the
control unit detected an error and (5) the control unit
reported the failing CCW. The system never clears this
field.

48(X'30') 8 IEDBFSA The failing storage address for channel control checks and
channel data checks. For zHPF channel programs, a
failing storage address may also be provided for program
checks and protection checks. This field is valid only if
IEDBFSAV is on.

56(X'38') 40 Reserved.

Input/Output Block (IOB) Fields
The input/output block (IOB) is not automatically constructed by a macro
instruction; it must be defined as a series of constants and be on a word boundary.
For unit-record and tape devices, the IOB is 32 bytes long. For direct access,
teleprocessing, and graphic devices, 8 additional bytes must be provided. Use the
system mapping macro IEZIOB, which expands into a DSECT, to help in
constructing an IOB. IEZIOB fields that are not described here are not part of the
programming interface.

In Figure 21 on page 212 the shaded areas indicate fields in which you must
specify information. The other fields are used by the system and must be defined
as all zeros. You cannot place information into these fields, but you can examine
them.

You do not have to set the following IOB fields to any particular value before
issuing EXCP because the system itself sets them:
v IOBSENS0
v IOBSENS1
v IOBECBCC
v IOBCSW
v IOBSIOCC
v IOBCMD31

Chapter 4. Executing Your Own Channel Programs 211

IOBFLAG1 (1 byte)
Set bit positions 0, 1, 6, and 7. One-bits in positions 0 and 1 (IOBDATCH and
IOBCMDCH) indicate data chaining and command chaining, respectively. (If
you specify both data chaining and command chaining, the system does not
use error recovery routines except for the direct access and tape devices.) If an
I/O error occurs while your channel program executes, a failure to set the
chaining bits in the IOB that correspond to those in the CCW might make
successful error recovery impossible. The integrity of your data could be
compromised.

A one-bit in position 6 (IOBUNREL) indicates that the channel program is not
a related request; that is, the channel program is not related to any other
channel program. See bits 2 and 3 of IOBFLAG2 below.

If you intend to issue an EXCP or XDAP macro with a BSAM, QSAM, or
BPAM DCB, you should turn on bit 7 (IOBSPSVC) to prevent access-method
appendages from processing the I/O request.

2(2) 3(3)

4(4)

8(8)

16(10)

24(18)

IOBSENS0 IOBSENS1

IOBECBCC

IOBFLAG3 and IOBCSW - format depends on channel program.

IOBSIOCC

IOBFLAG4

IOBRESTR IOBRESTR+1

IOBERRCT

Direct Access, Teleprocessing, and Graphic Devices

Direct
Access
Storage
Devices
(DASD)

All
Devices

IOBFLAG1

0(0) 1(1)

IOBFLAG2

IOBECBPB

IOBSTRTB

20(14)

IOBINCAM

28(1C)

32(20)

IOBSEEK
(first byte, M)

33(21)

IOBSEEK
(second through eight bytes,

BBCCHHR)

39(27)

IOBDCBPT

See related figures below.

Figure 21. Input/Output Block (IOB) Format

212 z/OS V2R1.0 DFSMSdfp Advanced Services

IOBFLAG2 (1 byte)
If you set bit 6 in the IOBFLAG1 field to zero, bits 2 and 3 (IOBRRT3 and
IOBRRT2) in this field must then be set to one of the following:
v 00, if any channel program or appendage associated with a related request

might modify this IOB or channel program.
v 01, if the conditions requiring a 00 setting do not apply, but the CHE or ABE

appendage might retry this channel program if it completes normally or
with the unit-exception or wrong-length-record bits on in the CSW.

v 10 in all other cases.

The combinations of bits 2 and 3 represent related requests,known as type 1
(00), type 2 (01), and type 3 (10). The type you use determines how much the
system can overlap the processing of related requests. Type 3 allows the
greatest overlap, normally making it possible to quickly reuse a device after a
channel-end interruption. (Related requests that were executed on a pre-MVS
system are executed as type-1 requests if not modified.)

IOBSENS0 and IOBSENS1 (2 bytes)
are set by the system when a unit check occurs. These are the first two sense
bytes. Occasionally, the system is unable to obtain any sense bytes because of
unit checks when sense commands are issued. In this case, the system
simulates sense bytes by moving X'10FE' to IOBSENS0 and IOBSENS1.

The first six of these 16 bits have these device-independent meanings:
1... Command reject
.1.. Intervention required
..1. Bus out check
...1 Equipment check
.... 1... Data check
.... .1.. Overrun

The last ten of these 16 bits have device-dependent meanings. See appropriate
hardware documentation.

If you wish to retrieve more than two sense bytes, supply an IOBE and IEDB
as described in “Interruption Handling and Error Recovery Procedures” on
page 190.

IOBECBCC (1 byte)
The first byte of the completion code for the channel program. The system
places this code in the high-order byte of the event control block when the
channel program is posted complete. The completion codes and their meanings
are listed under “Event Control Block (ECB) Fields” on page 220.

IOBECBPT (3 bytes)
The address of the 4-byte event control block (ECB) you have provided.

IOBFLAG3 (1 byte) and IOBCSW (7 bytes)
The system stores status information in these eight bytes. See “IOBFLAG3 and
IOBCSW Format for Different Channel Program Types” on page 214.

IOBSIOCC (1 byte)
If the channel program uses format 0 CCWs, bits 2 and 3 contain the start
subchannel (SSCH) condition code for the instruction the system issues to start
the channel program.

If this is a format 1 CCW channel program or is a zHPF channel program, then
field IOBSIOCC is redefined as field IOBSTART, which contains the four byte
starting address of the channel program to be executed. (The IOBE field
IOBESIOC is used instead of IOBSIOCC.)

Chapter 4. Executing Your Own Channel Programs 213

IOBSTRTB (3 bytes)
If the channel program uses format 0 CCWs, the three byte starting address of
the channel program to be executed.

IOBFLAG4 (1 byte)
Set bit 3 (IOBCEF) to indicate whether you are supplying an IOB common
extension (IOBE). If this bit is 1, then register 0 contains the IOBE address
when you issue EXCP or EXCPVR. Refer to “Requesting Extended Error
Information” on page 191 and “Requesting Different Levels of ERP Processing”
on page 192.

You must set IOBCEF on if you want to use format 1 CCWs, 64 bit IDAWS,
MIDAWS, or a zHPF channel program.

IOBDCBPT (3 bytes)
The address of the DCB of the data set to be read or written by the channel
program.

Reserved (1 byte)
Used by the system.

IOBRESTR+1 (3 bytes)
If a related channel program is permanently in error, this field is used to chain
together IOBs that represent dependent channel programs. To learn more about
the conditions under which the chain is built, see “Purging and Restoring I/O
Requests (PURGE and RESTORE macros)” on page 304.

IOBINCAM (2 bytes)
For magnetic tape, the amount by which the system increments the block count
(DCBBLKCT) field in the device-dependent portion of the DCB. You can alter
these bytes at any time. For forward operations, these bytes should contain a
binary positive integer (usually +1); for backward operations, they should
contain a binary negative integer. When these bytes are not used, all zeros
must be specified. See Figure 17 on page 205.

IOBERRCT (2 bytes)
Used by the system.

IOBSEEK (first byte, M)
For direct access devices, the extent entry in the data extent block that is
associated with the channel program (0 indicates the first entry; 1 indicates the
second, and so forth). For teleprocessing and graphic devices, it contains the
UCB index.

IOBSEEK (last 7 bytes, BBCCHHR)
For direct access devices, the seek address for your channel program.

IOBFLAG3 and IOBCSW Format for Different Channel Program
Types
The fields IOBFLAG3 and IOBCSW have different meanings depending on the
type of channel program and its format.

For format 0 CCW channel programs, these fields have the following format:

214 z/OS V2R1.0 DFSMSdfp Advanced Services

For format 1 CCW channel programs, these fields have the following format:

For zHPF channel programs, these fields have the following format:

IOBFLAG3
This field is used by the system for format-0 CCW channel programs only.

IOBCMDA
The 24-bit ending CCW virtual address or zero for format-0 CCW channel
programs. The ending CCW address points after the last executed CCW in
your channel program. The ending address may be zero if either the system
determined that the address was invalid or the last executed CCW was a CCW
that was added by the system.

IOBCMD31
The 31-bit ending virtual address or zero for format-1 CCW channel programs
and zHPF channel programs. For format-1 channel programs, the ending
address points after the last executed CCW in your channel program. For

8(8)

12(C)

IOBFLAG3 IOBCMDA

IOBUSTAT IOBCSTAT IOBRESCT

Figure 22. IOBFLAG3 and IOBCSW fields for format 0 channel program

8(8)

12(C)

IOBCMD31

IOBUSTAT IOBCSTAT IOBRESCT

Figure 23. IOBFLAG3 and IOBCSW fields for format 1 channel program

8(8)

12(C)

IOBCMD31

IOBUSTAT IOBCSTAT IOBSESTAIOBFCXST

Figure 24. IOBFLAG3 and IOBCSW fields for zHPF channel program

Chapter 4. Executing Your Own Channel Programs 215

zHPF channel programs, the ending address points to the TCW. The ending
address may be zero if either the system determined that the address was
invalid, or for CCW channel programs, the last executed CCW was a CCW
that was added by the system.

IOBUSTAT
The device status (previously called unit status).

IOBCSTAT
The subchannel status (previously called channel status). If the ending address
is zero or the subchannel status byte in the IOB (IOBCSTAT) shows any of the
following errors: program check, protection check, channel data check, channel
control check, interface control check, or chaining check, and your appendage
determines that the ERP has not yet run, then let the ERP try to recover and do
not modify IOBSTART. If the ERP has completed and one or more of these six
bits is on or the address is zero, then the status of the channel program is not
known.

IOBRESCT
The residual count for format-0 and format-1 CCW channel programs, which is
the number of bytes not transferred in the last CCW. For zHPF channel
programs, the residual count is four bytes and contained in the IOBE.

IOBFCXST
Used by the system.

IOBSESTA
The subchannel extended status for zHPF channel programs. The subchannel
extended status further qualifies subchannel related errors defined in
IOBCSTAT. Macro IHASESQ defines the different subchannel extended status
values.

Input/Output Block Common Extension (IOBE) Fields
You can construct an IOB common extension (IOBE) block to receive extended
error information or to control the level of error recovery procedure (ERP)
processing. To provide an IOBE, set IOBCEF in IOBFLAG4 on and set the IOBE
address in register 0 when you issue EXCP or EXCPVR. (The IOBE is mapped by
the IOSDIOBE macro).

Set reserved bytes to X'00'. The IOBE can reside above or below 16MB virtual.

The constant IOBELNTH is set to the length of the IOBE and should be used when
obtaining and clearing storage. In addition, the constant IOBEEND represents the
end of the IOBE.

216 z/OS V2R1.0 DFSMSdfp Advanced Services

|
|
|

Table 41. IOBE Structure Mapping

Offset
Length or
Bit Pattern Name Description

0 (X'0') 4 IOBEID Eye catcher ("IOBE")

4 (X'4') 1 IOBEVERS Version number (X'01')

5 (X'5') 1 IOBEFLG1 Reserved.

0

8-11

12-15

17-47

IOBEID

IOBEIEDB

IEDBVERS

4

16

5 6 7

IOBEFLG1 IOBEFLG2

IOBEFLG3 RESERVED

IOBEERPM

IOBEUSER,IOBEUPTR

Figure 25. Format of an IOBE, mapped by the IOSDIOBE macro

Chapter 4. Executing Your Own Channel Programs 217

Table 41. IOBE Structure Mapping (continued)

Offset
Length or
Bit Pattern Name Description

6 (X'6') 1 IOBEFLG2 Flag field 2. Set by issuer of EXCP or EXCPVR.

1... IOBEMIDA The channel program might have one or more CCWs that has the MIDA
(modified indirect data addressing) bit on and point to a MIDAL (modified
indirect addressing list). Supported only for EXCPVR requests.

This bit must set to zero if you are using a zHPF channel program.

.1.. IOBEP The user allows unlimited prefetching of CCWs. (Unlimited prefetching of
the IDAWs, MIDAWs, and data associated with the currrent or prefetched
CCW is always allowed.) If zero, no prefetching is allowed, except in the case
of data chaining on output, where prefetching of one CCW describing a data
area is allowed. Prefetching of CCWs applies only for FICON channels. It has
no effect on Enterprise Systems Connection (ESCON®) or parallel channels.
This bit applies to EXCPVR; EXCP always uses unlimited prefetching.

This bit must set to zero if you are using a zHPF channel program.

..1. IOBECPNM The user guarantees that the channel program will not be modified during
execution other than to add CCWs at the end. This bit is supported only for
EXCPVR requests. EXCP requests that do not run in an authorized V=R
address space cannot be modified during execution.

This bit must set to zero if you are using a zHPF channel program.

...1 IOBEEIDA Any IDAWs are eight bytes each and point to 4096-byte boundaries with the
possible exception of the first IDAW in each list. Currently supported only on
direct access storage device (DASD) and on IBM-supplied cartridge tape
devices. Bit UCBEIDAW in the UCB tells you whether the device supports
64-bit IDAWs. Supported for EXCP and EXCPVR and for format-0 and
format-1 channel programs. Not currently supported in VIO.

This bit must set to zero if you are using a zHPF channel program.

.... 1... IOBEPCIS PCI synchronization. Channel must synchronize after the next CCW
following a PCI (at CCW+8). Supported for EXCPVR only if IOBEP is on.
Not supported in VIO. EXCP requests never require PCI synchronization.

This bit must set to zero if you are using a zHPF channel program.

.... .1.. IOBNORWS No read/write synchronization. The channel should not synchronize on
read/write transitions. User guarantees that the reads and writes are from
different areas. Always supported for EXCP. Supported for EXCPVR only if
IOBEP is on.

This bit must set to zero if you are using a zHPF channel program.

.... ..1. IOB2CSWS Two channel status words. If an error occurs where the control unit is
executing ahead of the channel, the system returns two ending CCW
addresses. The second ending CCW address is in the IEDB. Always allowed
for EXCP. Supported for EXCPVR only if IOBEP is on. If this bit is off when
the control unit has an error when executing ahead of the channel, the
system simulates an invalid ending CCW address.

This bit must set to zero if you are using a zHPF channel program.

.... ...1 IOBEFMT1 Channel program is format-1 CCWs and IOBSTART contains a 31-bit address.
This bit also causes the system to use IOBESIOC instead of IOBSIOCC and
for the ending CCW address to be in IOBCMD31 instead of the three bytes in
IOBCMDA. Supported for both EXCP and EXCPVR requests.

This bit must set to zero if you are using a zHPF channel program.

7 (X'7') 1 IOBEERPM Mask indicating the functions the ERP is allowed to perform.

1....... IOBEPMSG User allows basic error recovery procedures (ERP) recovery and permanent
error messages that do not require interaction with the system or an operator.
See "Requesting Different Levels of ERP Processing" on page 87.

.xxx xxxx Reserved.

218 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 41. IOBE Structure Mapping (continued)

Offset
Length or
Bit Pattern Name Description

8 (X'8') 4 IOBEUSER Address field for user use.

4 IOBEUPTR Character field for user use.

12 (X'C') 4 IOBEIEDB Zero or address of IEDB if you want extended error information. For more
information see, “Requesting Extended Error Information” on page 191.

16 (X'10') 1 IOBEFLG3 Flag byte 3.

1... IOBENSER Set by user to allow the device to bypass the channel program extent
collision checking. Extent range enforcement remains active. Meaningful only
if the DASD supports it; has no effect otherwise. Can improve performance
on IBM 2105 Enterprise Storage Server™ and newer DASD control units when
using multisystem access or multiple parallel access volumes (PAV).

.1.. IOBENVAL Set by user to allow the device to bypass the validation checking of the
parameters on define extent and locate record commands. Extent enforcement
remains active; meaningful only if the DASD device supports it, has no effect
otherwise. Can improve performance on IBM 2105 Enterprise Storage Server®

and newer DASD control unitswhen using multisystem access or multiple
parallel access volumes (PAV).

..1. IOBEDSMC Set by user to disable streaming mode control. This bit must set to zero if
you are using a zHPF channel program.

...1 IOBEIOT If the user sets this to 0, IOBETIME applies to the request only while the
request is active. If this is 1, IOBETIME applies while the request is queued
or active.

.... 1... IOBEDCWOffsetValid For zHPF channel programs, the DCW offset in IOBEDCWOffset is valid.

.... .1.. IOBEResCountValid For zHPF channel programs, the residual count in IOBEResCount is valid.

.... ..xx Reserved.

17 (X'11') 1 IOBESIOC Same format as IOBSIOCC. Valid only if IOBEFMT1 is on.

18 (X'12') 1 IOBETIME Time limit. If this value is non-zero, it is the number of seconds the user
allows the request to take. Has an effect if the DEBACCS field shows the
DCB is open for input. There will be no message or error recording due to
reaching the limit. Bit IOBEIOT specifies what time is measured.

19(X'13') 1 IOBEFLG4 Flag byte 4.

1... IOBEZHPF This is a zHPF channel program.

This bet must be set to zero for CCW channel programs.

.xxx xxxx Reserved.

20(X'14') 4 IOBEResCount For zHPF channel programs, this field contains the residual count. This field
is valid only if IOBEResCountValid is on.

24(X'18') 2 IOBEDCWOffset For zHPF channel programs, this field contains the offset within the TCA of
the DCW that was partially or completely executed. If the channel program
could not be completed, this offset identifies the DCW for which processing
could not be completed. This field is valid only if IOBEDCWOffsetValid is
on.

26(X'1A') 1 IOBEDDPC_RC For zHPF channel programs, this field contains the device detected program
check reason code. This field is valid only when the subchannel status
indicates a program check and the subchannel extended status indicates a
device dependent program check. The reason codes are documented in
z/Architecture® Principles of Operation.

27(X'1B') 1 IOBEDDPC_RCQ For zHPF channel programs, this field contains the first byte of the device
detected program check reason code qualifier. This field is valid only when
the subchannel status indicates a program check and the subchannel
extended status indicates a device dependent program check. The reason
code qualifiers are documented in z/Architecture Principles of Operation.

Chapter 4. Executing Your Own Channel Programs 219

Table 41. IOBE Structure Mapping (continued)

Offset
Length or
Bit Pattern Name Description

28(X'1C') 1 IOBERCOD The I/O completion reason code. This is the second byte of the completion
code for the channel program. The system also places this code in the second
byte of the event control block when the channel program is posted
complete. The reason codes applicable to EXCP or EXCPVR and their
meanings are listed in “Event Control Block (ECB) Fields.”

29(X'1D') 19 Reserved.

Event Control Block (ECB) Fields
Define an event control block (ECB) as a 4-byte area on a word boundary. When
the channel program has been completed, the system places a completion code
containing status information into the ECB (Figure 26). Before examining this
information, test for the setting of the complete bit. If the complete bit is not on,
and your problem program cannot perform other useful operations, issue a WAIT
or EVENTS macro instruction that specifies the ECB. Do not construct a program
loop to test for the complete bit.

The ECB is mapped by the IHAECB macro.

You do not have to set any particular values in the ECB before issuing EXCP or
EXCPVR because the system clears it.

Wait bit
One in this position indicates that the WAIT or EVENTS macro instruction has
been issued, but the channel program has not been completed.

Complete bit
A one in this position indicates that the channel program has been completed.
If it has not been completed, a zero bit is in this position.

Completion code
This code, which includes the wait and complete bits, might be one of the
following hexadecimal expressions. If an appendage posts the ECB, it might
use other 4-byte codes in which the first two bits are 01. Refer to “Start-I/O
Appendage” on page 225 and “Channel-End Appendage” on page 231.

The system sets these codes in IOBECBCC and IEDBCOD before posting the
ECB.

Code Meaning

41 Permanent I/O error

42 Extent error (DASD only). Either IOBSEEK lies outside the extents
described by the DEB or the channel program attempted execution
outside the current extent.

Complete

Reason code

Byte 0 Byte 1 Bytes 2 and 3

Bit 0 Bit 1

Rest of completion code bits

Wait

Undefined

Completion code byte

Figure 26. Event Control Block after Posting of Completion Code

220 z/OS V2R1.0 DFSMSdfp Advanced Services

|

44 An error occurred after the previous I/O request to the device was
posted complete. The appendages and (if allowed to execute) the ERP
have determined that this is a permanent error. The I/O request is
terminated with the permanent error. The CSW contents and sense
data in the IOB do not apply to the attempted operation. They apply to
the previous operation attempted for any data set on the device. You
can reissue the EXCP macro instruction to restart the channel program.

45 A program check or machine check occurred in IOS while processing
the I/O request.

48 The channel program was purged.

4B An error occurred during tape repositioning that was requested by the
tape ERP.

4F Error recovery routines were entered following a direct access error but
are unable to read the home address or record 0.

51 Simulated error status. The appendages and, if allowed to execute, the
ERP have determined that this is a permanent error. The I/O request is
terminated with the permanent error. This code indicates that the
device is in a permanent error state, boxed, or not connected. The code
can indicate also that a missing interrupt was detected and that the
I/O operation was terminated as a result of recovery operations by the
missing interrupt handler.

This completion code appears only in the IEDB, if one was provided. It
is translated to a 41 completion code prior to updating the ECB and
IOBECBCC.

74 Simulated error status. This code is set as a result of attempting to start
an I/O operation to a device that is in a permanent error state, boxed,
or not connected. This code is also set if a missing interrupt was
detected and the I/O operation was terminated as a result of recovery
operations by the missing interrupt handler. The system has set this
code temporarily in IOBECBCC and IEDB to invoke the ERP, if
allowed to execute, and the appendages to determine if the error is
permanent or correctable. If the error is determined to be permanent
the system will change the value to 51. The system does not set the 74
code in the ECB.

7F Normal I/O completion, but does not appear in the ECB.

Reason code byte
Reason code for the completion code.

Code Meaning

0E A zHPF channel program was specified but the device does not
support zHPF. This reason code appears with completion code 41.

10 A zHPF channel program was specified, but the I/O request was
terminated because a capability needed by the I/O request is not
supported by the processor, device, or software. This reason code is
presented if an EXCPVR request is issued when the processor and
device do not support the zHPF incorrect length facility. This reason
code appears with completion code 41.

Chapter 4. Executing Your Own Channel Programs 221

Data Extent Block (DEB) Fields
The data extent block is constructed by the system when an OPEN macro
instruction is issued for the DCB. You cannot modify the fields of the DEB, but you
can examine them. The DEB is mapped by the IEZDEB macro. The DEB fields
used for EXCP and EXCPVR are illustrated in Appendix A, “Control Blocks,” on
page 443. You can find a complete view of DEB fields “Data Extent Block (DEB)
Fields” on page 443.

EXCP and EXCPVR Appendages
An appendage is a routine that provides additional control over I/O operations.
Using appendages, you can examine the status of I/O operations and determine
the actions to be taken for various conditions. An appendage can receive control as
shown in Table 42.

Table 42. EXCP Appendages

Appendage Description When Called

ABE Abnormal-end Abnormal conditions
CHE Channel-end Channel-end, unit exception, wrong-length record
EOE End-of-extent DASD track address in I/O block outside allocated extent limits
PCI Program-controlled

interruption
When one or more PCI bits are on in a channel program

PGFX Page-fix Prior to SIO for EXCPVR requests
SIO Start-I/O Just prior to translating channel program

Appendages get control in supervisor state, protection key 0, receiving the pointers
from the system described in the following table. The appendages receive control
in 24-bit addressing mode and must return in the same mode.

This information is not part of the intended interface.

Register
Content

0 Points to the user's IOBE if one was provided as input to EXCP or
EXCPVR. Otherwise 0 is passed to the appendage routine.

1 Points to the request queue element.

2 Points to the input/output block.

3 Points to the data extent block.

4 Points to the data control block.

6 Points to the seek address (MBBCCHHR) if control is given to an
end-of-extent appendage.

The track address of the block reference (CCHH) may contain 28-bit
cylinder numbers for devices with more than 65,520 cylinders. Showing
nibbles it is in the form of CCCCcccH, where ccc represent bits 0-11 of the
28-bit cylinder number and CCCC represents bits 12-27 the 28-bit cylinder
number. Use the TRKADDR macro to manipulate 16-bit and 28-bit cylinder
numbers correctly.

7 Points to the unit control block (UCB) and always contains a clean 31–bit
UCB address. If the DEB flag "DEB31UCB" is off, then the UCB address is
captured below the 16 MB line. Whereas if DEB31UCB is on, then the
address might point above the 16 MB line even though the appendages

222 z/OS V2R1.0 DFSMSdfp Advanced Services

always are entered in 24–bit mode. The UCB address is captured by OPEN
or EOV until EOV or CLOSE uncaptures it. If the DCBE option "LOC" was
not set or defaulted to "BELOW", that is LOC=BELOW or not coded, or the
"NON_VSAM_XTIOT" option of the DEVSUPxx member of PARMLIB was
set or defaulted to "NO", that is NON_VSAM_XTIOT=NO or not coded. In
other words, OPEN does not capture the UCB if LOC and
NON_VSAM_XTIOT were specified as follows: LOC=ANY and
NON_VSAM_XTIOT=YES.

13 Points to a 16-word area you can use to save input registers or data.

14 Points to the location in the system where control is to be returned
following execution of an appendage. When returning control to the
system, you can use displacements from the return address in register 14.
Allowable displacements are summarized and described later for each
appendage in Table 43.

15 Points to the entry point of the appendage. When the PGFX appendage is
entered, points to the SIO entry point.

The processing done by appendages is subject to the following requirements and
restrictions:
v Register 9, if used, must be set to binary zeros before control is returned to the

system. All other registers, except those indicated in the descriptions of the
appendage, must be saved and restored if you use them. Table 43 summarizes
register conventions. Note that the need to save and restore registers applies to
all eight byes in each register.

v No SVC instructions or instructions that change the status of the system (for
example, WTO, LPSW, or similar privileged instructions) can be issued.

v Loops testing for the completion of I/O operations cannot be used.

The information here describes appendage types, with explanations of when they
are entered, how they return control to the system, and which registers they can
use without saving and restoring their contents. If you do not supply a particular
appendage, or supply no appendage, the system acts as though that appendage
had returned at offset 0 from register 14.

Table 43. Entry Points, Returns, and Available Work Registers for Appendages

Appendage Entry Point Returns Available Work Registers

EOE Reg 15
v Reg 14 + 0 - Call ABE

v Reg 14 + 4 - Skip

v Reg 14 + 8 - Try again

Reg. 10, 11, 12, and 13

SIO Reg 15
v Reg 14 + 0 - Normal

v Reg 14 + 4 - Skip

Reg. 10, 11, and 13

PCI Reg 15
v Reg 14 + 0 - Normal Reg. 10, 11, 12, and 13

PGFIX Reg 15+4
v Reg 14 + 0 - Normal Reg. 10, 11, and 13

CHE Reg 15
v Reg 14 + 0 - Normal

v Reg 14 + 4 - Skip

v Reg 14 + 8 - Re-EXCP

v Reg 14 + 12 - By pass

Reg. 10, 11, 12, and 13

Chapter 4. Executing Your Own Channel Programs 223

Table 43. Entry Points, Returns, and Available Work Registers for Appendages (continued)

Appendage Entry Point Returns Available Work Registers

ABE Reg 15
v Reg 14 + 0 - Normal

v Reg 14 + 4 - Skip

v Reg 14 + 8 - Re-EXCP

v Reg 14 + 12 - By pass

Reg. 10, 11, 12, and 13

Note: The register conventions for passing parameters from appendages to the system are described in
the individual appendage descriptions.

Making Appendages Available to the System
Prior to execution, appendages must be members of either the SYS1.LPALIB or
SYS1.SVCLIB data set. To put appendages into SYS1.LPALIB or SYS1.SVCLIB,
link-edit them into these data sets after the system has been built. Each appendage
must have an 8-character member name, the first six characters being IGG019 and
the last two being anything in the range from WA to Z9. If your program runs in a
V=R address space and uses a PCI appendage, the appendage and any routine that
the PCI appendage refers to must be placed in either SYS1.SVCLIB or the fixed
link pack area (LPA). For information on providing a list of programs to be fixed
in storage, see z/OS MVS Initialization and Tuning Guide.

The Authorized Appendage List (IEAAPP00)
If an unauthorized program opens a DCB to be used with an EXCP macro
instruction, the names of any appendages associated with the DCB must be listed
in the IEAAPP00 member of SYS1.PARMLIB. (An unauthorized program is one
that runs in a protection key greater than 7 and has not been marked as authorized
by the Authorized Program Facility.) Once you have added your appendages to
SYS1.LPALIB or SYS1.SVCLIB after the system was built, you can add IEAAPP00
to SYS1.PARMLIB and put the names of the appendages in it with the IEBUPDTE
utility or with another program that updates partitioned data sets. See the
description of the IEAAPP00 parmlib member in z/OS MVS Initialization and Tuning
Reference.

The following example shows JCL statements and IEBUPDTE input that add
IEAAPP00 to SYS1.PARMLIB and put the names of one EOE appendage, two SIO
appendages, two CHE appendages, and one ABE appendage in IEAAPP00:
// JOB ...
// EXEC PGM=IEBUPDTE,PARM=’NEW’
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSN=SYS1.PARMLIB,DISP=SHR
//SYSIN DD *
./ ADD NAME=IEAAPP00
EOEAPP WA,
SIOAPP X1,X2,
CHEAPP Z3,Z4,
ABEAPP Z2
./ ENDUP
/*

Note the following about the IEBUPDTE input:
v The type of appendage is identified by six characters that begin in column 1.

EOEAPP identifies an EOE appendage, SIOAPP an SIO appendage, CHEAPP a

224 z/OS V2R1.0 DFSMSdfp Advanced Services

CHE appendage, and ABEAPP an ABE appendage. (The PCI appendage
identifier, PCIAPP, is not shown, because the example does not add a PCI
appendage name to IEAAPP00.)

v Only the last two characters in an appendage's name are specified, beginning in
column 8.

v Each statement that identifies one or more appendage names ends in a comma,
except the last statement.

You can also use IEBUPDTE to add appendage names later or to delete appendage
names. The following example shows JCL statements and IEBUPDTE input that
adds the names of a PCI and an ABE appendage to the IEAAPP00 appendage list
created in the preceding example, and deletes the name of an SIO appendage from
that list:
// JOB. . .
// EXEC PGM=IEBUPDTE,PARM=’NEW’
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSN=SYS1.PARMLIB,DISP=SHR
//SYSIN DD *
./ ADD NAME=IEAPP00
PCIAPP Y1,
EOEAPP WA,
SIOAPP X1,
CHEAPP Z3,Z4,
ABEAPP Z2,Z4
./ ENDUP
/*

Note the following about the IEBUPDTE input:
v The command to IEBUPDTE is ADD but a replace occurs because PARM='NEW'

is specified.
v All the appendage names that are to remain in IEAAPP00 are repeated.
v IGG019Z4 is both a CHE and an ABE appendage.

Start-I/O Appendage
Unless an ERP is in control, the system passes control to the SIO appendage just
before the system translates and starts your channel program. It is called even if
the channel program is not later translated. Your SIO appendages can build the
channel program. The system does not test IOBSTART until after the SIO
appendage returns. IOBSTART contains the virtual address of the start of the
channel program.

The start I/O appendage may build a zHPF channel program or a CCW channel
program. The caller does not have to set the IOBEZHPF bit prior to issuing the
EXCPVR request. If the start I/O appendage builds a zHPF channel program, it
should set the IOBEZHPF bit if it is not already set, and reset the IOBEFMT1 bit.
Otherwise, it should reset the IOBEZHPF bit.

If the device is not enabled for zHPF or does not have the necessary capabilities,
the start I/O appendage should either build a CCW channel program, or post the
request in error and return to EXCP indicating that the I/O operation should be
skipped (return +4).

Optional return vectors give the I/O requester the following choices:
v Reg. 14 + 0 — Normal return. The system should translate the channel program,

if required, and initiate the I/O.

Chapter 4. Executing Your Own Channel Programs 225

v Reg. 14 + 4 — Skip the I/O operation. The channel program is not initiated. The
channel program is not posted complete. You can post the channel program
complete by using the POST macro, as follows.
– Set the completion code in register 10. This register is used to post the ECB.
– Set register 11 to the ECB address in the IOB.
– Issue the POST macro as shown in the example below:

POST (11),(10),LINKAGE=BRANCH

For more information on the POST macro, see z/OS MVS Programming:
Authorized Assembler Services Guide and z/OS MVS Programming: Authorized
Assembler Services Reference LLA-SDU

Page Fix and EXCPVR Start I/O Appendage
This appendage is a combination of two independent appendages. The complete
appendage is a reenterable subroutine with two entry points, one for the SIO
appendage and one for the PGFX appendage.

The SIO entry point is located at offset +0 in the SIO subroutine; from this entry
point you might have an instruction to branch to any other location in the
appendage. The entry point of the PGFX appendage is at offset +4 in the SIO
subroutine. The address of offset +0, the SIO appendage entry address, is set in
register 15 as the entry point of the PGFX appendage, allowing you to use the
same entry linkage code for both entry points.

Note that you cannot fix pages that were allocated with CONTROL=UNAUTH on
the IARV64 macro. Unauthorized programs cannot override this setting, but they
can allocate 64-bit storage with the IARST64 macro.

PGFX Appendage
This appendage creates a list of the addresses of the areas that must be fixed to
prevent paging exceptions during the execution of the current input/output (I/O)
request. While this appendage can be entered more than once for one I/O request,
each time it is entered it must create the same list of areas to be fixed. The
appendage can use the 16-word save area pointed to by register 13. Registers 10,
11, and 13 can be used as work registers.

Each page-fix entry placed in the list by the appendage must have the following
doubleword format:

On return from the PGFX appendage to the system (via the return address
provided in register 14), register 10 must point to the first page-fix entry and
register 11 must contain the number of page-fix entries in the work area. The
system then fixes the pages corresponding to the areas listed by the PGFX
appendage. The pages remain fixed until the associated EXCPVR request
terminates.

If either the channel end appendage or the abnormal end appendage returns via
the return address in register 14 plus 8, the PGFX appendage is not normally

³0³1 31³32³33 63³
³─³──────────────────────────────³──³───────────────────────────────³
³0³ Starting virtual ³ 0³ Ending virtual ³
³ ³ address of area ³ ³ address of area ³
³ ³ to be fixed ³ ³ to be fixed + 1 ³
³─³──────────────────────────────³──³───────────────────────────────³
³ ³ ³ ³ ³

226 z/OS V2R1.0 DFSMSdfp Advanced Services

reentered. Instead, the SIO appendage is entered, and the page-fix list built by the
PGFX appendage is still active. When a PURGE macro has been issued (for
instance, when a storage swap has occurred), the PGFX appendage is entered after
either the channel end appendage or the abnormal end appendage returns via the
return address in register 14 plus 8. When I/O is restored, the PGFX appendage is
entered. The page-fix list must be in page-fixed storage.

SIO Appendage
If you are using EXCPVR to execute a channel program and your channel program
does not already contain real addresses, translate the virtual addresses in the
operands of your channel program to central storage addresses. This should be
done in the SIO appendage. If indirect data addressing is required, use the SIO
appendage to build the indirect address lists (IDALs, MIDALs, or TIDALs) and
turn on the appropriate indirect address list flag for the channel program.

You can use EXCPVR for VIO data sets with the following considerations for the
SIO appendage:
v The use of IDAWs and an IDAL is not required.
v MIDALs and zHPF channel programs are not supported for VIO.
v Addresses in the CSWs and IDAWs must be virtual. They must not be converted

to central storage addresses.

The UCBVRDEB bit in the UCBJBNR byte can be checked to determine if the data
set is being processed with VIO.

When building an IDAL for CCW channel programs consider the following:
v Bit IOBEEIDA, described in “Input/Output Block Common Extension (IOBE)

Fields” on page 216, specifies whether you are using 31-bit or 64-bit IDAWs.
With 31-bit IDAWs, use 2 KB boundaries when determining whether a storage
boundary is crossed for a CCW. With 64-bit IDAWs, use 4 KB boundaries.

v The LRA instruction returns a 31-bit central storage address regardless of
whether you are in 24-bit or 31-bit addressing mode, but fails in those
addressing modes if the central storage address is above 2 GB. If the central
storage address is above 2 GB, you must either use the LRAG or STRAG
instruction to convert the virtual address to a real address or use the LRA
instruction (after first switching to 64-bit addressing mode). If your program
switches to 64-bit addressing mode, you must ensure that you save and restore
the high 32 bits of any register that you modify. If you fail to do this,
unpredictable results can occur for other 64-bit programs in your address space.

See “IDAW Requirements for EXCP Requests” on page 177 for more information
on creating IDAWs for EXCPVR requests.

Program-Controlled Interruption Appendage
This appendage is entered if the channel finds one or more program-controlled-
interruption (PCI) bits on in a channel program. It can be entered as many times as
the channel finds PCI bits on, or more often. Before the appendage is entered, the
contents of the subchannel status word are placed in the channel status word field
of the input/output block.

Note that PCI and PCI appendages are not supported for zHPF channel programs.

A PCI appendage is reentered if an ERP is retrying a channel program in which a
PCI bit is on. The IOB error flag is set when the ERP is in control (IOBFLAG1 =

Chapter 4. Executing Your Own Channel Programs 227

X'20'). (For special PCI conditions encountered with command retry, see
“Command Retry Considerations” on page 188.)

To post the channel program from a PCI appendage to an EXCP request (EXCP
V=V), use the procedure described in “SIO Appendage” on page 227.

If the step is running ADDRSPC=REAL (V=R) and an authorized program issued
the EXCP request or if an EXCPVR request was issued, the PCI appendage uses
central storage addresses. Use the following procedure to post the channel
program from the PCI appendage. For more information on the POST macro, see
z/OS MVS Programming: Authorized Assembler Services Guide and z/OS MVS
Programming: Authorized Assembler Services Reference LLA-SDU.

The POST macro is coded as follows:
POST ecbaddr,compcode,ASCB=addr,ERRET=addr,ECBKEY=key,

LINKAGE=BRANCH,MEMREL=NO

The ERRET routine address must point to a BR 14 instruction. This instruction
must be in storage addressable from any address space (for example, CVTBRET)
and addressable by 24 bits.

Note: If you specify the ASCB parameter with MEMREL=NO, only registers 9 and
14 are restored when returning from the POST macro.

The following procedure posts the channel program from the PCI appendage.
1. Save necessary registers, because only registers 9 and 14 are restored on the

return from the POST macro.
2. Set the ECB key in register 0.
3. Set the 4-byte completion code in register 10.
4. Set the ECB address in register 11.
5. Set the error routine address in register 12, by setting it to address of CVTBRET

and turn on the high-order bit (X'80') of the high-order byte.
6. Set the ASCB address in register 13. If you do not have the ASCB address, you

can use the following procedure to obtain the ASCB address:
a. Issue the EPAR instruction to obtain the ASID. For information on the EPAR

instruction, see z/Architecture Principles of Operation.

b. Issue the LOCASCB macro to obtain the ASCB address. The LOCASCB
macro is documented in z/OS MVS Programming: Authorized Assembler
Services Reference LLA-SDU.

7. Issue the POST macro, as shown in the following example:
POST (11),(10),ASCB=(13),ERRET=(12),ECBKEY=(0),LINKAGE=BRANCH

8. On return, reestablish necessary registers.

To return control to the system for normal operation, use the return address in
register 14.

End-of-Extent Appendage
If an end-of-cylinder or file-protect condition occurs, the system updates the seek
address to the next higher cylinder or track address and retries the request. If the
new seek address is within the current extent for the data set, the request is
executed; if the new seek address is not within the current extent for the data set,
the EOE appendage is entered. To try the request in the next extent, move the new
seek address to the location pointed to by register 6.

228 z/OS V2R1.0 DFSMSdfp Advanced Services

If a file protect is caused by a full seek (command code=07) embedded within a
channel program, the request is flagged as a permanent error, and the ABE
appendage is entered.

The end-of-extent (EOE) appendage is entered when the seek address specified in
the input/output block is outside the allocated extent limits indicated in the data
extent block.

The simplest way to compare two track or block addresses to see their relative
positions on the volume is to use the CLC instruction; however that technique
works only if both addresses (CCHH or CCHHR) contain cylinder numbers of less
than 65536. To handle any addresses that are more or less than cylinder 65536, use
the TRKADDR macro with the COMPARE option. See “Compare two track
addresses (TRKADDR COMPARE)” on page 318.

You can use the following optional return addresses:
v Contents of register 14 to return control to the system, causes the ABE

appendage to be entered. The system places an end-of-extent error code (X'42')
in the ECB code field of the input/output block for subsequent posting in the
ECB.

v Contents of register 14 plus 4: The channel program is posted complete with
X'42'. The ABE appendage is not reentered for this request.

v Contents of register 14 plus 8: The request is tried again.

Registers 10 through 13 in an EOE appendage can be used without saving and
restoring their contents.

Abnormal-End Appendage
To determine the method the system uses to handle an abnormal condition use the
abnormal-end (ABE) appendage. The following information explains how to use
the ABE appendage.

This appendage can be entered on abnormal conditions, such as unit exception,
wrong-length indication, out-of-extent error, intercept condition (that is, device end
error), unit check, program check, protection check, channel data check, channel
control check, interface control check, and chaining check. It can also be entered
when an EXCP is issued for a DCB that has already been purged. The following
apply:
v If IOBECBCC is set to X'41', this appendage was entered because of a unit

exception or wrong-length record indication or both. The system previously
called the channel-end appendage, if present. For further information on these
conditions, see “Channel-End Appendage” on page 231.

v If the IOBECBCC is set to X'42', this appendage was entered because of an
out-of-extent error. The system previously called the end-of-extent appendage, if
present.

v If this appendage is entered with IOBECBCC set to X'4B', the tape error recovery
procedure (ERP) either encountered an unexpected load point, or found zeros in
the command address field of the CSW.

v If the IOBECBCC is set to X'7E', the appendage was first entered because of an
intercept condition. If it is then determined that the error condition is
permanent, the appendage will be reentered with the IOBECBCC set to X'44'.
The intercept condition signals that an error was detected at device end after
channel end on the previous request.

Chapter 4. Executing Your Own Channel Programs 229

v If the IOBECBCC was set to X'48', the appendage was entered because of an
EXCP being issued to an already purged DCB. This applies only to related
requests.

v If the appendage is entered with IOBECBCC set to X'7F', it might be because of
a unit check, program check, protection check, channel data check, channel
control check, interface control check, or chaining check. If the IOBECBCC is
X'7F', it is the first detection of an error in the associated channel program. If the
IOBIOERR flag (bit 5 of the IOBFLAG1) is on, the IOBECBCC field will contain
X'41', X'42', X'48', X'4B', or X'4F', indicating a permanent I/O error.

v If the ending address is zero or the subchannel status byte in the IOB
(IOBCSTAT) shows any of the following errors: program check, protection check,
channel data check, channel control check, interface control check, or chaining
check, and your abnormal end appendage determines that the ERP has not yet
run, then do not modify IOBSTART. This lets the ERP try to recover. If the ERP
has completed and one or more of these six bits is on or the address is zero,
then the status of the channel program is not known.

To determine if an error is permanent, check the IOBECBCC field of the IOB for a
X'4x' completion code.

To determine the type of error, check the subchannel status word field and the
sense information in the IOB. However, when the IOBECBCC is X'42', X'48', or
X'4F', these fields are not applicable. For X'44', the CSW is applicable, but the sense
is valid only if the unit check bit is set.

By using the return address in register 14 to return control to the system, the
channel program is posted complete, and its request element is made available.
You can use the following optional return addresses:
v Contents of register 14 plus 4: The channel program is not posted complete, but

its request element is made available. You can post the channel program by
using the calling sequence described under the SIO appendage.

v Contents of register 14 plus 8: The channel program is not posted complete, and
its request element is placed back on the request queue to be retried. Reinitialize
the IOBFLAG1, IOBFLAG2, and IOBFLAG3 fields of the input/output block and
set the IOBERRCT field to zero. As an added precaution, clear the IOBSENS0,
IOBSENS1, and IOBCSW fields.
The appendage can request that a different type of channel program be started.
For example:
– The original request was for a zHPF channel program but the device is no

longer enabled for zHPF or does not support the zHPF capabilities required
by the new channel program.

– The original request was for a non-zHPF channel program but the new I/O
request allows a zHPF channel program to be used.

The channel program type may be changed from non-zHPF to zHPF only if the
caller passed an IOBE to EXCP. If the channel program type is changed, the
appendage must set or reset the IOBEFMT1 and IOBEZHPF bits correctly to
reflect the type of channel program. For example, if the original channel
program was a format-1 CCW channel program and the new channel program is
a zHPF channel program, then the IOBEFMT1 bit must be reset and the
IOBEZHPF bit must be set.The system will call appendages, beginning with the
SIO appendage, as if this were a new EXCP or EXCPVR request. Note that the
EXCPVR page fix appendage will not be called again.

230 z/OS V2R1.0 DFSMSdfp Advanced Services

v Contents of register 14 plus 12: The channel program is not posted complete,
and its request element is not made available. (Use this return only if the
appendage has passed the request queue element to the exit effector for use in
scheduling an asynchronous routine.)

Registers 10 through 13 in an ABE appendage can be used without saving and
restoring their contents.

Channel-End Appendage
This appendage is entered when a channel end (CHE), unit exception (UE) with or
without channel end or when channel end with wrong-length record (WLR) occurs
without any other abnormal-end conditions.

By using the return address in register 14 to return control to the system, the
channel program is posted complete, and its request element is made available. In
the case of unit exception or wrong-length record, the ERP is performed before the
channel program is posted complete, and the IOBIOERR flag (X'04') in IOBFLAG1
is set on. The CSW status can be obtained from the IOBCSW field.

If the appendage takes care of the wrong-length record or unit exception or both, it
can turn off the IOBIOERR (X'04') flag in IOBFLAG1 and return normally. The
event will then be posted complete (completion code X'7F' under normal
conditions, taken from the high-order byte of the IOBECBCC field). If the
appendage returns normally without resetting the IOBIOERR flag to zero, the
request will be routed to the associated device ERP. If the ERP could not correct
the error, the ABE appendage will be entered with the completion code in
IOBECBCC set to X'41'. (See the first bullet in “Abnormal-End Appendage” on
page 229.)

You can use the following optional return addresses:
v Contents of register 14 plus 4: The channel program is not posted complete, but

its request element is made available. You can post the channel program by
using the calling sequence described under the SIO appendage. This is especially
useful to post an ECB other than the ECB in the input/output block.

v Contents of register 14 plus 8: The channel program is not posted complete, and
its request element is placed back on the request queue so that a channel
program at the same or different address can be executed. For correct execution
of the channel program, reinitialize the IOBFLAG1, IOBFLAG2, and IOBFLAG3
fields of the input/output block and set the error counts field to zero. As an
added precaution, clear the IOBSENS0, IOBSENS1, and IOBCSW fields. You can
change IOBSTART before returning. If the device is DASD, you can change the
IOBSEEK field but the first byte must refer to an extent with the same UCB
address. The system will call appendages, beginning with the SIO appendage, as
if this were a new EXCP or EXCPVR request. Note that the EXCPVR page fix
appendage will not be called again.
The appendage can request that a different type of channel program be started.
For example:
– The original request was for a zHPF channel program but the device is no

longer enabled for zHPF or does not support the zHPF capabilities required
by the new channel program.

– The original request was for a non-zHPF channel program but the new I/O
request allows a zHPF channel program to be used.

The channel program type may be changed from non-zHPF to zHPF only if the
caller passed an IOBE to EXCP. If the channel program type is changed, the

Chapter 4. Executing Your Own Channel Programs 231

appendage must set or reset the IOBEFMT1 and IOBEZHPF bits correctly to
reflect the type of channel program. For example, if the original channel
program was a format-1 CCW channel program and the new channel program is
a zHPF channel program, then the IOBEFMT1 bit must be reset and the
IOBEZHPF bit must be set.

v Contents of register 14 plus 12: The channel program is not posted complete,
and its request element is not made available. (Use this return only if the
appendage has passed the request queue element to the exit effector for use in
scheduling an asynchronous routine. For information on asynchronous exit
routines, see z/OS MVS Programming: Authorized Assembler Services Guide.)

Registers 10 through 13 in a CHE appendage can be used without saving and
restoring their contents.

Converting a Relative Track Address to an Actual Track Address
Convert a relative track address to the actual address by using a resident system
conversion routine that can be called in 24 or 31 bit mode.

The conversion routine has two entry points. One, at the address in the
CVTPCNVT field of the communication vector table (CVT), is intended for data
sets with up to 65535 tracks. The other, at offset +12 from the address in
CVTPCNVT, is intended for any data set. Call the conversion routine with one of
the following instructions:

BALR 14,15 Call +0 entry point for track conversion
BASR 14,15 Call +0 entry point for track conversion
BAL 14,12(,15) Call +12 entry point for track conversion
BAS 14,12(,15) Call +12 entry point for track conversion

IBM does not provide a macro for this conversion routine's invocations.

The address of the CVT is in storage location 16 (field FLCCVT of the PSA data
area, mapped by macro IHAPSA).

The conversion routine does all its work in general registers. Load registers 0, 1, 2,
14, and 15 with input to the routine. Register usage is as follows:

232 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 44. Registers and Their Use for Converting Relative to Actual

Register Use

0 Must be loaded with a 4-byte value of the relative track number.

If entered at CVTPCNVT+0, this value must be in the form TTRn,
where:

TT The track number relative to the beginning of the data set

R The block identification on that track

n If the DEB is for a partitioned concatenation, (the DSORG
field in the DCB indicates PO), then supply the
concatenation number for the data set. A value of 0
indicates the first data set, 1 indicates the second data set
and so forth. If your partitioned concatenation includes
PDSEs or z/OS UNIX directories, each of them is
represented by a dummy extent in the DEB. EXCP and
EXCPVR are not valid for those extents. If the data set is
not concatenated or the concatenation is not partitioned, set
to 0.

If entered at CVTPCNVT+12, this value must be in the form TTTR,
where:

TTT The track number relative to the beginning of the data set

R The block identification on that track
This entry point is intended for any type of data set.

1 Must be loaded with the address of the data extent block (DEB) of
the data set. Each DEB resides below 16 MB. When you call the +0
entry point, the called routine clears the high order byte of this
register. When you call the +12 entry point, this byte must contain
X'00'. Note that if the DEB31UCB bit is zero, the UCB address field
is three bytes in DEBUCBA. If the DEB31UCB bit is one, the UCB
address field is four bytes in DEBUCBAD.

2 Must be loaded with the address of an 8-byte area that is to receive
the actual address of the block to be processed. The converted
address is of the form MBBCCHHR, where:

M Indicates which extent entry in the data extent block is
associated with the direct access program. (0 indicates the
first extent, 1 indicates the second, and so forth)

BB Two bytes of zeros

CC Low order 16 bits of the cylinder number. The cylinder
number is 28 bits on all currently supported DASD.

HH The actual track number in the low order four bits and the
high order twelve bits of the cylinder number in the high
order twelve bits.

R The block number.
3–8 Not used by the conversion routine.
9–12 Used by the conversion routine and not restored.

Chapter 4. Executing Your Own Channel Programs 233

Table 44. Registers and Their Use for Converting Relative to Actual (continued)

Register Use

13 Used by the conversion routine and not restored. If you call the +12
entry point, the high order three bytes must contain zero and the
low order byte must be as set as follows:

v If the DEB is for a partitioned concatenation, (the DSORG field in
the DCB indicates PO), then supply the concatenation number for
the data set. A value of 0 indicates the first data set, 1 indicates
the second data set and so forth.

v If the data set is not concatenated or the concatenation is not
partitioned, set to 0.

14 Must be loaded with the address to which control is to be returned
after execution of the conversion routine.

15 Used by the conversion routine as a base register and must be
loaded with the address where the conversion routine is to receive
control (from field CVTPCNVT of the CVT).

Return Codes from the Relative to Actual Conversion Routine
When control is returned to your program, register 15 contains one of the
following return codes:

Table 45. Relative to Actual Conversion Routine Return Codes

Return Code Description

0 (X'00') Successful conversion.
4 (X'04') The relative track address converts to an actual track address

outside the extents defined in the DEB.
8 (X'08') Internal access method control blocks are invalid. Call IBM service if

the control blocks should be valid.
12(X'0C') Internal access method control blocks are invalid. Call IBM service if

the control blocks should be valid.
16 (X'10') Passed concatenation number is too big for the data set.
20 (X'14') The combination of the DEBNMTRK and DEBNMTRKHI fields in

the last extent shows that the input track number points into this
extent, but the calculated CCHH does not lie within this extent.

Converting an Actual Track Address to a Relative Track Address
Convert an actual track address to a relative track address by using a resident
system conversion routine that can be called in 24 or 31 bit mode.

The conversion routine has two entry points. One, at the address in the
CVTPRLTV field of the communication vector table (CVT), is intended for data sets
with up to 65535 tracks. The other, at offset +12 from the address in CVTPRLTV, is
intended for any data set. Call the conversion routine with one of the following
instructions:

BALR 14,15 Call +0 entry point for track conversion
BASR 14,15 Call +0 entry point for track conversion
BAL 14,12(,15) Call +12 entry point for track conversion
BAS 14,12(,15) Call +12 entry point for track conversion

IBM does not provide a macro for this conversion routine's invocations.

234 z/OS V2R1.0 DFSMSdfp Advanced Services

The conversion routine will return either TTR0 (if entered at CVTPRLTV+0) or
TTTR (if entered at CVTPRLTV+12), where TTR0 and TTTR are as described in
Table 44 on page 233.

The address of the CVT is in storage location 16 (field FLCCVT of the PSA data
area, mapped by macro IHAPSA).

The conversion routine does all its work in general registers. Load registers 1, 2,
14, and 15 with input to the routine. Register usage is as follows:

Table 46. Registers and Their Use for Converting Actual to Relative

Register Use

0 Loaded with the resulting TTR0 or TTTR to be passed back to the
caller. These two formats are as described for register 0 in Table 44
on page 233.

1 Must be loaded with the address of the data extent block of the
data set. Each DEB resides below 16 MB. When you call the +0
entry point, the called routine clears the high order byte of this
register. When you call the +12 entry point, this byte must contain
X'00'.

2 Must be loaded with the address of an 8-byte area containing the
actual address to be converted to a TTR0 or TTTR. The actual
address is of the form MBBCCHHR.

3–8 Not used by the conversion routine.
9–13 Used by the conversion routine and not restored.
14 Must be loaded with the address to which control is to be returned

after execution of the conversion routine.
15 Used by the conversion routine as a base register and must be

loaded with the content of field CVTPRLTV of the CVT.

Return Codes from the Conversion Routine
When control is returned to your program, register 15 contains one of the
following return codes:

Table 47. Actual to Relative Conversion Routine Return Codes

Return Code Description

0 (X'00') Successful conversion.
4 (X'04') CCHH is outside of extent M. Returned relative track number is

invalid. If you called the +12 entry point, then it has set the output
R byte to X'FE'.

8 (X'08') Internal access method control blocks are invalid. Call IBM service if
the control blocks should be valid.

12(X'0C') Internal access method control blocks are invalid. Call IBM service if
the control blocks should be valid.

16 (X'10') Passed extent number M is too big for the data set. If you called the
+12 entry point, then it has set the output R byte to X'FE'.

20 (X'14') The calculated relative track number is too large to be returned. If
you called the +0 entry, then the track number exceeds X'FFFF', so
the routine returned X'FFFFFE00'. If you called the +12 entry point,
then the track number exceeds X'FFFFFF', so the routine returned
X'FFFFFFFE'. The likely causes of this are that the DEB is not valid
or (for entry +0) the data set is a large format data set, but the track
location is more than X'FFFF' tracks into the data set.

Chapter 4. Executing Your Own Channel Programs 235

Note: For return codes 4, 16 and 20 with the +12 entry point, this routine returns a
different value for the R byte (X'FE') than was passed to it.

Using the IECTRKAD Callable Service or the TRKADDR Macro
The IECTRKAD callable service or the TRKADDR macro can be used to perform
the following operations on both 16-bit and 28-bit cylinder addresses:
v Calculate the relative track number on the volume
v Compare two track addresses
v Extract the 28-bit cylinder number
v Extract the 4-bit track number
v Increment the track address by one track and increment the cylinder number if

necessary.
v Normalize cylinder number to permit comparing one cchh against another
v Convert a relative track number to a 28-bit cylinder address
v Set the cylinder number in a 28-bit track address
v Convert a normalized track address into an absolute 28-bit track address.

See “Call for converting and comparing 28-bit cylinder addresses (IECTRKAD)” on
page 359 and “Perform calculations and conversions with 28-bit cylinder addresses
(TRKADDR macro)” on page 317 for more information.

Obtaining the Sector Number of a Block on an RPS Device
For programs that can be used with both RPS and non-RPS devices, test the
UCBRPS bit (bit 3 at offset 17 of the UCB) to determine whether the device has
rotational position sensing. If the UCBRPS bit is off, do not issue a channel
program with a Set Sector command to the device. The address of the sector
conversion routine's entry point is in the CVT0SCR1 field of the CVT.The IBM
DS8000® and newer storage subsystems accept the Set Sector command, but the
command has no effect.

Your program can call the conversion routine by issuing a BASR 14,15 or BAS
14,16(,15) instruction. If you are passing the track balance to the routine, invoke the
routine using a BAS 14,8(15) or BAS 14,20(,15). If you are computing the sector
value on modulo devices with variable length records, pass the track balance to the
sector convert routine.

The sector convert routine can be called in 24-bit or 31-bit mode at any of its entry
points. When calling in 24-bit mode all addresses must point below the 16MB line.

Note:

1. The sector convert routine does not support PDSEs or extended format data
sets. Using the sector convert routine against a PDSE or extended format data
set returns results that are inconsistent with the physical record format.

2. The sector convert routine does not support data sets that are not DASD or do
not have a UCB. Examples include tape, dummy data sets (DD DUMMY),
spooled data sets (*, DATA or SYSOUT), TSO terminals and z/OS UNIX files
such as zFS and HFS files. You will receive unpredictable results if you use the
conversion routine with a data set or file that is not on DASD or does not have
a UCB.

For RPS devices, the conversion routine does all its work in general registers. Load
registers 0, 2, 14, and 15 with input to the routine. Register usage is as follows:

236 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 48. Registers and Their Use for A Sector Convert Routine

Register Use

0 For fixed, standard blocks or fixed, unblocked records not in a
partitioned data set: Register 0 must contain a 4-byte value in the
form XXKR, where:

XX A 2-byte field containing the physical block size

K A 1-byte field containing the key length

R A 1-byte field containing the number of the record for
which a sector value is desired.

To indicate fixed-length records, turn off (set to 0) the high-order bit
of register 0.

Passing the track balance: Register 0 must contain a 4-byte value of
the track balance of the record preceding the required record.

For all other cases: Register 0 must contain a 4-byte value in the
form BBIR, where:

BB The total number of key and data bytes on the track up to,
but not including, the target record. To indicate
variable-length records, turn on (set to 1) the high-order bit
of register 0.

I A 1-byte key indicator (1 for keyed records, 0 for records
without keys)

R A 1-byte field containing the number of the record for
which a sector value is desired.

1 Not used by the sector-convert routine.
2 When called at offset 0 or 8, must contain a 4-byte field where:

The first byte is the UCB device type code for the device
(obtainable from UCB+19)

The remaining 3 bytes are the address of a 1-byte area that
is to receive the sector value.

If called at offset 16 or 20, must contain the address of a 1-byte area
that is to receive the sector value.

3-8 Not used.
9-10 Used by the convert routine and not saved or restored.
11 If called at offset 0 or 8, not used.

If called at offset 16 or 20, contains 1-byte UCBTBYT4 code in the
low-order byte. The remaining three bytes must contain zero.

12,13 Not used.
14 Must be loaded with the address in which control is to be returned

after execution of the sector conversion routine.
15 Used by the conversion routine as a base register and must be

loaded with the address of the entry point to the conversion routine
(from field CVT0SCR1 of the CVT).

Chapter 4. Executing Your Own Channel Programs 237

238 z/OS V2R1.0 DFSMSdfp Advanced Services

Chapter 5. Using XDAP to Read and Write to Direct Access
Devices

The execute direct access program (XDAP) is a macro instruction used to read,
verify, or update a block on a direct access volume. This information covers the
XDAP macro instruction, including information for compatibility with other IBM
operating systems, what the XDAP macro does, and how to use it. It also discusses
the macro instructions used with XDAP and the control blocks that are generated.
However, IBM suggests using an access method such as VSAM in place of XDAP.

Because most of the specifications for XDAP are similar to those for the execute
channel program (EXCP) macro instruction, you should be familiar with the
information in “IDAW Requirements for EXCP Requests” on page 177 of this
publication. You should also be familiar with the information in z/OS DFSMS
Using Data Sets that provides how-to information for using the access method
routines of the system control program.

If you are not using the standard IBM data access methods, by issuing XDAP you
can generate the control information and channel program necessary for reading or
updating the records of a data set.

Restriction: XDAP does not support partitioned data set extended (PDSEs) ,
extended-format data sets, UNIX files, UNIX system services data sets, or SYSIN
and SYSOUT data sets.

While XDAP cannot be used to add blocks to a data set, it can be used to change
the keys of existing blocks. Any block configuration and any data set organization
can be read or updated.

XDAP requires less storage than do the standard access methods. However, XDAP
does not provide many of the control program services that are included in the
access methods. For example, when XDAP is issued, the system does not block or
unblock records and does not verify block length.

All virtual addresses that you use with XDAP except the OPEN and CLOSE
parameter lists, DCBE, and IOBE must be 24–bit.

Using XDAP
To issue XDAP, provide the actual track address of the track containing the block
to be processed. Also provide either the block identification or the key of the block,
and specify which you should use to locate the block. If a block is located by
identification, both the key and data portions of the block can be read or updated.
If a block is located by key, only the data portion can be processed.

For additional control over I/O operations, you can write appendages that must be
entered into the LPA library. Descriptions of these routines and their coding
specifications are included under “IDAW Requirements for EXCP Requests” on
page 177.

When using the XDAP macro instruction, code a DCB macro instruction in your
program to generate a data control block (DCB) for the data set to be read or

© Copyright IBM Corp. 1979, 2014 239

updated. Also code an OPEN macro instruction that initializes the data control
block and produces a data extent block (DEB). The OPEN macro instruction must
be executed before any XDAP macro instructions are executed.

When the XDAP macro instruction is assembled, a control block and the following
executable code are generated. This control block can be logically divided into
three sections:
v An event control block (ECB) that is supplied with a completion code each time

the direct access channel program is terminated.
v An input/output block (IOB) that contains information about the direct access

channel program.
v A direct access channel program consisting of three or four channel command

words (CCWs). The type of channel program generated depends on the
parameters of the XDAP macro instruction. When executed, it locates a block by
either its actual address or its key and reads, updates, or verifies the block.

When the channel program has terminated, a completion code is placed into the
event control block. After issuing XDAP and the direct access program has
terminated, regain control by using a WAIT macro instruction to specify the
address of the event control block. If volume switching is necessary, issue an EOV
macro instruction. Once processing of the data set is completed, issue a CLOSE
macro instruction to restore the data control block.

The parameters of the XDAP macro instruction are described in “Executing Direct
Access Programs” on page 241.

Macro Instructions Used with XDAP
When using the XDAP macro instruction, you must also code DCB, OPEN, CLOSE
and, in some cases, the EOV macro instructions. Special requirements or options
for the other required macro instructions are explained in the following:
v “Defining a Data Control Block (DCB)”
v “Initializing a Data Control Block (OPEN)”
v “End of Volume (EOV)” on page 241
v “Restoring a Data Control Block (CLOSE)” on page 241

See “Data Control Block (DCB) Fields” on page 196 for listings of the parameters
for DCB, OPEN, CLOSE and EOV.

Defining a Data Control Block (DCB)
Issue a DCB macro instruction for each data set to be read, updated, or verified by
the direct access channel program. To learn which macro instruction parameters to
code, see “Data Control Block (DCB) Fields” on page 196.

Initializing a Data Control Block (OPEN)
The OPEN macro instruction initializes one or more data control blocks so that
their associated data sets can be processed. Issue OPEN for all data control blocks
used by the direct access program. Some of the procedures performed when OPEN
is executed include the following actions:
v Constructing a data extent block
v Transferring information from DD statements and data set labels to the DCB
v Verifying or creating standard labels
v Loading programmer-written appendage routines.

Using XDAP

240 z/OS V2R1.0 DFSMSdfp Advanced Services

The two parameters of the OPEN macro instruction are the address or addresses of
the data control blocks to be initialized and the method of I/O processing of the
data set. The processing method can be specified as INPUT, OUTPUT, UPDAT, or
EXTEND; however, if nothing is specified, INPUT is assumed. The parameters and
different forms of the OPEN macro instruction are described in z/OS DFSMS Macro
Instructions for Data Sets.

End of Volume (EOV)
The EOV macro instruction identifies end-of-volume (EOV) and end-of-data-set
conditions. For an end-of-volume condition, EOV causes switching of volumes and
verification or creation of standard labels. For an end-of-data-set condition (except
when another data set is concatenated), EOV causes your end-of-data-set routine to
be entered. When using XDAP, issue EOV if switching of direct access volumes is
necessary or if secondary allocation is to be performed for a direct access data set
opened for output. For details about the parameters of the EOV macro instruction,
see “Handling End of Volume and End-Of-Data-Set Conditions” on page 194.

Note: Should EOV call DADSM EXTEND to extend on the same volume or a new
volume (which implies DASD output), EXTEND will issue an enqueue on
SYSVTOC. If the EOV request is issued for a data set on a volume where the
application already holds the SYSVTOC enqueue, this will cause abnormal
termination. For this case, a circumvention would be to allocate the output data set
large enough to not require a secondary extent or request the output data set be on
a volume that is different than the one for which it holds the SYSVTOC enqueue.

Restoring a Data Control Block (CLOSE)
The CLOSE macro instruction restores one or more data control blocks so that
processing of their associated data sets can be terminated. Issue CLOSE for all data
sets used by the direct access channel program. When CLOSE is executed, some of
the following procedures are performed:
v Releasing the data extent block
v Removing information that was transferred to data-control block fields when

OPEN was executed
v Verifying or creating standard labels
v Releasing programmer-written appendage routines.

The CLOSE macro instruction must identify the address of at least one data control
block to be restored, and can specify other parameters. The parameters and
different forms of the CLOSE macro instruction are described in z/OS DFSMS
Macro Instructions for Data Sets.

Executing Direct Access Programs
The XDAP macro instruction produces the XDAP control block (that is, the ECB,
IOB, and channel program) and executes the direct access channel program.

The format of the XDAP macro instruction is:

Using XDAP

Chapter 5. Using XDAP to Read and Write to Direct Access Devices 241

ecb_symbol—symbol or (2-12)
The symbolic name to be assigned to the XDAP event control block. Registers
can be used only with MF=E.

type— RI or RK or WI or WK or VI or VK
The type of I/O operation intended for the data set and the method by which
blocks of the data set are to be located. One of the combinations shown must
be coded in this field. The codes and their meanings are:

Table 49.

Code Meaning

R Read a block.

W Update a block.

V Verify that the device is able to read the contents of a block, but do not
transfer data.

I Locate a block by identification. (The key portion, if present, and the data
portion of the block are read, updated, or verified.)

K Locate a block by key. (Only the data portion of the block is read,
updated, or verified.) If you code this value, code the
key_addr,keylength-value operands.

dcb_addr—A-type address or (2-12)
The address of the data control block for the data set.

area_addr—A-type address or (2-12)
The address of an input or output area for a block of the data set.

length_value—absexp or (2-12)
The number of bytes to be transferred to or from the input or output area. If
blocks are to be located by identification and the data set contains keys, the
value must include the length of the key. The maximum number of bytes
transferred is 32 767.

key_addr—RX-type address or (2-12)
When blocks are to be located by key, the address of a virtual storage field that
contains the key of the block to be read, updated, or verified.

keylength_value—absexp or (2-12)
When blocks are to be located by key, the length of the key. The maximum
length is 255 bytes.

blkref_addr—RX-type address or (2-12)
The address of a field in virtual storage that contains the actual track address
of the track containing the block to be located. The actual address of a block is
in the form MBBCCHHR, where:

�� XDAP ecb_symbol
label

,type ,dcb_addr ,area_addr �

� ,length_value ,
(key_addr,keylength_value)

,blkref_addr �

�
,sector_addr ,MF= E

L

��

Using XDAP

242 z/OS V2R1.0 DFSMSdfp Advanced Services

M Indicates which extent entry in the data extent block is associated with the
direct access program

BB Must be zero
CC The cylinder address
HH The actual track address
R The block identification. R is not used if blocks are to be located by key.

The track address of the block reference (CCHH) may contain 28-bit cylinder
numbers for devices with more than 65,520 cylinders. Showing nibbles it is in
the form of CCCCcccH, where ccc represent bits 0-11 of the 28-bit cylinder
number and CCCC represents bits 12-27 the 28-bit cylinder number. Use the
TRKADDR macro to manipulate 16-bit and 28-bit cylinder numbers correctly.

(For more detailed information, see “Converting a Relative Track Address to an
Actual Track Address” on page 232.)

sector_addr—RX-type address or (2-12)
The address of a 1-byte field containing a sector value. The sector_addr
parameter is used for rotational position sensing (RPS) devices. The parameter
is optional, but its use will improve channel performance. When the parameter
is coded, a set-sector CCW (using the sector value indicated by the data
address field) precedes the search-ID-equal command in the channel program.
The sector_addr parameter is ignored if the type parameter is coded as RK, WK,
or VK. If a sector address is specified in the execute form of the macro, then a
sector address, not necessarily the same, must be specified in the list form. The
sector address in the executable form will be used.

Exception: No validity check is made on either the address or the sector value
when the XDAP macro is issued. However, a unit check/command reject
interruption will occur during channel-program execution if the sector value is
not valid for the device or if the sector_addr operand is used when accessing a
device without RPS.

MF=
You can use the L-form of the XDAP macro instruction for a macro expansion
consisting of a parameter list, or the E-form for a macro expansion consisting
of executable instructions.

MF=E
The first operand (ecb_symbol) is required and can be coded as a symbol or
supplied in registers 2 through 12. The type, dcb_addr, area_addr, and
length_value operands can be supplied in either the L- or E-form. The
blkref_addr operand can be supplied in the E-form or moved into the IOBSEEK
field of the IOB by your program. The sector_addr is optional; it can be coded
either in both the L- and E-form or in neither.

MF=L
The first two operands (ecb_symbol and type) are required and must be coded
as symbols. If you choose to code length_value or keylength_value, they must be
absolute expressions. Other operands, if coded, must be A-type addresses.
(blkref_addr is ignored if coded.)

The XDAP macro builds a channel program containing A-type addresses. These
addresses refer to storage within the L-form of the macro. If you copy the L-form
of the macro to a work area so that the program can be reentrant, the E-form of the
XDAP macro does not update the A-type addresses. This results in an invalid
channel program.

Using XDAP

Chapter 5. Using XDAP to Read and Write to Direct Access Devices 243

The dcb_addr, area_addr, blkref_addr, and sector_value operands can be coded as
RX-type addresses or supplied in registers 2 through 12. The length_value and
keylength_value operands can be specified as absolute expressions or decimal
integers or supplied in registers 2 through 12.

Control Blocks Used with XDAP
The control blocks generated during execution of the XDAP macro instruction
consist of the following:

Input/Output Block
The input/output block is 40 bytes in length and immediately follows the event
control block. “Control Block Fields” on page 196 contains a diagram of the IOB
(Figure 21 on page 212). You might want to examine the IOBSENS0, IOBSENS1,
and IOBCSW fields if the ECB is posted with X'41'.

Event Control Block
Refer to “Event Control Block (ECB) Fields” on page 220 for information on event
control block fields.

Direct Access Channel Program
The direct access channel program is 24 bytes in length (except when set sector is
used for RPS devices) and immediately follows the input/output block. Depending
on the type of I/O operation that is specified in the XDAP macro instruction, one
of four channel programs can be generated. The three channel command words for
each of the four possible channel programs are shown in Table 50.

Table 50. Channel Program Command Words Used by XDAP

Type of I/O Operation CCW Command Code

Read by identification 1 Search ID Equal
2 Transfer in Channel

Verify by identification 3 Read Key and Data
Read by key 1 Search Key Equal

2 Transfer in Channel
Verify by key 3 Read Data
Write by identification 1 Search ID Equal

2 Transfer in Channel
3 Write Key and Data

Write by key 1 Search Key Equal
2 Transfer in Channel
3 Write Data

Note: For verifying operations, the third CCW is flagged to suppress the transfer of
information to virtual storage.

When a sector address is specified with an RI, VI, or WI operation, the channel
program is 32 bytes in length. Each of the channel programs in Table 50 would be
preceded by a set sector command.

RPS Device Sector Numbers
To obtain the performance improvement given by rotational position sensing,
specify the sector_addr parameter in the XDAP macro. For programs that can be
used with both RPS and non-RPS devices, test the UCBRPS bit to determine

Using XDAP

244 z/OS V2R1.0 DFSMSdfp Advanced Services

whether the device has rotational position sensing. If the UCBRPS bit is off, do not
issue a channel program with a set sector command to the device.

The sector_addr parameter on the XDAP macro specifies the address of a 1-byte
field in virtual storage. Store the sector number of the block to be located in this
field. You can obtain the sector number of the block by using a resident system
conversion routine. See “Obtaining the Sector Number of a Block on an RPS
Device” on page 236

Using XDAP

Chapter 5. Using XDAP to Read and Write to Direct Access Devices 245

246 z/OS V2R1.0 DFSMSdfp Advanced Services

Chapter 6. Using Password Protected Data Sets

This information covers password protection for data sets. The use of password
protection is not recommended, but is provided for compatibility with other IBM
operating systems. You should use RACF protection (using SAF) instead.

The password protection described does not apply to data sets and catalogs
managed by the Storage Management Subsystem (SMS) or to VSAM data sets.
SMS ignores passwords. In addition, the PROTECT macro and SVC does not
support a volume on a unit defined as dynamic.

If a SAF (system authorization facility)-compliant security product is active and
provides protection for the data set, then the system bypasses password protection
for that data set. Additionally, the system always bypasses password protection for
VSAM and for SMS-managed data sets. The system provides SMS-managed data
set and catalog protection through the SAF interface. For more SAF information,
see “System Authorization Facility” in z/OS MVS Programming: Assembler Services
Guide, and z/OS MVS Programming: Assembler Services Reference ABE-HSP.

For information about VSAM data set protection, see z/OS DFSMS Using Data Sets
and z/OS DFSMS Access Method Services Commands.

The following are some reasons to use SAF instead of password protection:
v If you give a password to someone, you have no control over to whom they

choose to give it.
v Data sets tend to have various passwords, making you write them down. This is

less secure than if you can memorize one SAF password.
v Batch job access or interactive non-TSO access requires that a system operator

supply a password. Your communication to the operator is likely to be insecure.
That operator might not be present when your job runs. The operator might
have to give each data set's password to other operators.

v The program is halted while each password is supplied. This is contrary to the
increased automation of modern systems.

v There is no way to know who has used a particular password.
v It is human nature not to change passwords, especially if there are many. As

time passes, there is a greater danger of them being exposed.
v If more than a small number of data sets have passwords, then the time for the

system to find the PASSWORD data set entry increases greatly. With RACF, the
increase is much less. With a RACF generic profile there is no increase in search
time when a new data set uses the same profile.

v With DASD shared between systems, the password definitions on each system
are independent. They can get out of synchronization.

v The PASSWORD data set entry contains the data set name but not the volume
serial number. If you create a data set before defining a password, you could
find that someone has already defined a password for that data set name. Your
data set will require the existing password just to scratch or rename it.

v Password protection is not supported on system-managed volumes or on
dynamic devices.

© Copyright IBM Corp. 1979, 2014 247

To use the data set protection feature of the operating system, create and maintain
a PASSWORD data set consisting of records that associate the names of the
protected data sets with the passwords assigned to each data set. The ways to
maintain the PASSWORD data set consist of:
v Writing your own routines
v Using the PROTECT macro instruction
v Using the utility control statements of the IEHPROGM utility program
v If you have TSO, using the TSO PROTECT command.

This information discusses only the first two methods. The last two methods are
discussed in the publications shown in the following list.

Before using this information, you should be familiar with the contents of the
following publications:
v z/OS DFSMS Using Data Sets describes the data set protection feature.
v The following publications describe the operator messages and replies associated

with the data set protection feature:
– z/OS MVS System Messages, Vol 1 (ABA-AOM)

– z/OS MVS System Messages, Vol 2 (ARC-ASA)

– z/OS MVS System Messages, Vol 3 (ASB-BPX)

– z/OS MVS System Messages, Vol 4 (CBD-DMO)

– z/OS MVS System Messages, Vol 5 (EDG-GFS)

– z/OS MVS System Messages, Vol 6 (GOS-IEA)

– z/OS MVS System Messages, Vol 7 (IEB-IEE)

– z/OS MVS System Messages, Vol 8 (IEF-IGD)

– z/OS MVS System Messages, Vol 9 (IGF-IWM)

– z/OS MVS System Messages, Vol 10 (IXC-IZP)

v z/OS MVS JCL Reference describes the data definition (DD) statement parameter
used to indicate that a data set is to be password protected. It is a subparameter
of the LABEL parameter.

v z/OS DFSMSdfp Utilities describes how to maintain the PASSWORD data set
using the utility control statements of the IEHPROGM utility program.

v z/OS TSO/E Command Reference describes how to use the TSO PROTECT
command.

Providing Data Set Security
In addition to the usual label protection that prevents the opening of a data set
without the correct data set name, the operating system provides data set security
options that prevent unauthorized access to confidential data. Password protection
prevents access to data sets until a correct password is entered by the system
operator, or, for TSO, by a remote terminal operator.

The following types of access are allowed to password-protected data sets:
v PWREAD/PWWRITE—A password is required for read or write access.
v PWREAD/NOWRITE—A password is required for read access. Writing is not

allowed.
v NOPWREAD/PWWRITE—Reading is allowed without a password. A password

is required to write.

Password Protection

248 z/OS V2R1.0 DFSMSdfp Advanced Services

To prepare for use of the data set protection feature, place a sequential data set
named PASSWORD on the system residence volume. This data set must contain at
least one record for each data set placed under protection. Each record consists of a
data set name, a password for that data set, a counter field, a protection-mode
indicator, and a field for recording any information you wish to log. On the system
residence volume, these records are formatted as a key area (data set name and
password) and a data area (counter field, protection-mode indicator, and logging
field). The data set is searched on the key area.
v The area allocated to the data set should not have been previously used for a

PASSWORD data set, as this might cause unpredictable results when adding
records to the data set.

v If the system residence volume does not contain a PASSWORD data set, the
system allows no access to password protected data sets. Do not rely on this for
protection because anyone who creates a data set named PASSWORD on the
system residence volume can define a password for any data set.

v Data sets on magnetic tape are protected only when standard labels are used.

You can write routines to create and maintain the PASSWORD data set. For
information on using the PROTECT macro instruction to maintain the PASSWORD
data set, see “Maintaining the PASSWORD Data Set Using PROTECT” on page
252. Using the IEHPROGM utility program to maintain the PASSWORD data set is
described in z/OS DFSMSdfp Utilities. These routines can be placed in your own
library or in the system's library (SYS1.LINKLIB). You can use a data management
access method to read from and write to the PASSWORD data set.

Password-protected data sets can only be accessed by programs supplying the
correct password. Upon receiving a request to open a protected data set, the
operating system checks whether the data set has already been opened for this job
step and if the access mode is compatible with the previously used protection
mode. If neither condition is satisfied, a message requesting the password is sent to
the operator console. If the program attempting to open the data is running under
TSO in the foreground, the message is sent to the TSO terminal operator.

PASSWORD Data Set Characteristics
The PASSWORD data set and your operating system must reside on the same
volume. That volume is the IPL volume. It is called the system residence volume.
The space allocated to the PASSWORD data set must be contiguous. The amount
of space allocated depends on the number of data sets you want to protect. Each
entry in the PASSWORD data set requires 132 bytes of space. The organization of
the PASSWORD data set is physical-sequential; the record format is unblocked,
fixed-length records (RECFM=F). Each record that forms the data area is 80 bytes
long (LRECL=80,BLKSIZE=80) and is preceded by a 52-byte key (KEYLEN=52).
The key area contains the fully-qualified data set name (up to 44 bytes long) and a
password, one to eight alphanumeric characters in length, left justified with blanks
added to fill the areas.

Restriction: The PASSWORD data set cannot be large format or extended format.
Attention: Data sets on magnetic tape complying with the specifications of the
International Organization for Standardization (ISO) 1001-1979 or the American
National Standards Institute (ANSI) X3.27-1978 do not include generation and
version numbers as part of generation data set names. If included in the
PASSWORD data set, generation and version numbers for these data sets are
ignored.

Password Protection

Chapter 6. Using Password Protected Data Sets 249

You should protect the PASSWORD data set by creating a password record for it
when your program initially builds the data set or you should use RACF to control
access. Thereafter, the PASSWORD data set cannot be opened (except by the
operating system routines that scan the data set) without entering the password. If
a problem occurs on a password-protected system data set, maintenance personnel
require the password to access the data set and resolve the problem.

Creating Protected Data Sets
The data definition (DD) statement parameter LABEL= can be used to indicate that
a data set is to be password protected. For data sets on DASD, an alternative
method for a previously allocated data set is to use the PROTECT macro
instruction, the IEHPROGM utility, or the TSO PROTECT command. You can
create a data set and set the protection indicator in its label without entering a
password record for it in the PASSWORD data set. In this case the system allows
no access to the data set.

Operating procedures at your installation must ensure that password records for
all data sets currently password-protected are entered in the PASSWORD data set.
For installations where independent computing systems share common DASD
resources, PASSWORD data sets on all systems must contain the appropriate
password records for any protected data set on shared DASD.

Under certain circumstances, the order in which data sets are allocated and
deallocated from multiple systems on shared DASD could result in loss of
protection or corruption of data. For example, if a set is allocated and opened by a
user on system A and then scratched by a different user on system B, the first user
has a window to the unallocated (free) area. If any data set, protected or
unprotected, is allocated in that space by a user on either system while the
window is open, the new data set has no protection from the user with the
window. The most common solution to this problem is to use GRS (see z/OS MVS
Planning: Global Resource Serialization).

While the allocation disposition is still NEW, a password-protected data set can be
used without supplying a password. Once the data set is deallocated, a subsequent
attempt to open it results in termination of the program unless the password
record is available and the correct password is supplied. If the protection mode is
NOPWREAD and the request is to open the data set for input or read backward,
no password is required.

Tape Volumes Containing Multiple Password-protected Data Sets
To password protect a data set on a tape volume containing other data sets,
password protect all the data sets on the volume. (Standard labels—SL, SUL, AL,
or AUL—are required. For definitions of these label types and the protection-mode
indicators that can be used, see z/OS DFSMS Using Magnetic Tapes.)

If you issue an OPEN macro instruction to create a data set following an existing
password-protected data set, the password of the existing data set will be verified
during open processing for the new data set. The password supplied must be
associated with a PWWRITE protection-mode indicator.

Protection Feature Operating Characteristics
The topics that follow discuss the protection feature operating characteristics:
v “Terminating the Protection Feature Process” on page 251
v “Password Protection When Switching Volumes” on page 251

Password Protection

250 z/OS V2R1.0 DFSMSdfp Advanced Services

v “Password Protection When Concatenating Data Sets”
v “Maintaining the Counter for Password Protection”

Terminating the Protection Feature Process
Processing is terminated if:
v The operator cannot supply the correct password for the protected data set

within two attempts.
v A password record does not exist in the PASSWORD data set for the protected

data set being opened.
v The protection-mode indicator in the password record and the method of I/O

processing specified in the open routine do not agree; for example, OUTPUT
specified against a read-only protection-mode indicator.

v There is a mismatch in data set names for a data set involved in a volume
switching operation. This is discussed in the next paragraph.

Password Protection When Switching Volumes
Password protection is retained when volumes of a multivolume data set are
switched. If the following conditions are met, the system accepts a newly-mounted
tape volume to be used for input or a newly-mounted direct access volume:
v The data set names are the same in the password record for the data set and the

job file control block (JFCB). (This ensures that the problem program has not
changed the data set name in the JFCB since the data set was opened.)

v The protection-mode indicator in the password record is compatible with the
processing mode, and a valid password has been supplied.

The system accepts a newly-mounted tape volume for output under any of the
following conditions:
v The security indicator in the HDR1 label indicates password protection; the data

set name in the password record is the same as the data set name in the JFCB;
and the protection-mode indicator is compatible with the processing mode. (If
the data set name in the JFCB has been changed, a new password is requested
from the operator.)

v The security indicator in the HDR1 label does not indicate password protection.
(A new label is written with the security indicator indicating password
protection.)

v Only a volume label exists. (An HDR1 label is written with the security indicator
indicating password protection.)

Password Protection When Concatenating Data Sets
A password is requested for every protected data set that is involved in a
concatenation of data sets.

Password Protection SCRATCH and RENAME Functions
To delete or rename a protected data set, the job step making the request must be
able to supply the password. The system checks to see if the job step is currently
authorized to write to the data set. If the job step is not, a password must be
provided that is associated with a WRITE protection-mode indicator.

Maintaining the Counter for Password Protection
The operating system increments the counter in the password record on each
usage, but no overflow indication will be given (overflow after 65535 openings).
Provide a counter maintenance routine to check and, if necessary, reset this
counter.

Password Protection

Chapter 6. Using Password Protected Data Sets 251

Maintaining the PASSWORD Data Set Using PROTECT
To use the PROTECT macro instruction, your PASSWORD data set must be on the
system residence volume. The PROTECT macro can be used to:
v Add an entry to the PASSWORD data set
v Replace an entry in the PASSWORD data set
v Delete an entry from the PASSWORD data set
v Obtain a list of information about an entry in the PASSWORD data set; this list

contains the security counter, access type, and the 77 bytes of security
information in the data area of the entry.

The PROTECT macro also updates the DSCB of a protected direct access data set
to reflect its protection status; this feature eliminates the need for job control
language when you protect a data set.

PROTECT does not support data sets on dynamic devices.

Record Format
When using the PROTECT macro, the PASSWORD data set must contain at least
one record for each protected data set. The password (the last eight bytes of the
key area), that you assign when you protect the data set for the first time, is called
the control password.

You can create as many secondary records for the same protected data set as
needed. Passwords assigned to these additional records are called secondary
passwords. This feature allows several users to access the same protected data set
while you control the way it is used. For example, one user could be given
read/write authorization while another user is assigned a password that allows
only read access.

Protection-Mode Indicator
You can set the protection-mode indicator (third data byte) in the password record
to one of the following values:
v X'00' to indicate that the password is a secondary password and the protected

data set is to be read only (PWREAD).
v X'80' to indicate that the password is the control password and the protected

data set is to be read only (PWREAD).
v X'01' to indicate that the password is a secondary password and the protected

data set is to be read and written (PWREAD/PWWRITE).
v X'81' to indicate that the password is the control password and the protected

data set is to be read and written (PWREAD/PWWRITE).

The checking sequence for the protection status of a data set produces the
following defaults:

If control password is: Secondary password must be:

1. PWREAD/PWWRITE or PWREAD/PWWRITE or
PWREAD/NOWRITE PWREAD/NOWRITE

2. NOPWREAD/PWWRITE NOPWREAD/PWWRITE

Password Protection

252 z/OS V2R1.0 DFSMSdfp Advanced Services

If the control password is set to either of the settings in item 1 and you try to set
the secondary password to NOPWREAD/PWWRITE, the secondary password
reverts to PWREAD/PWWRITE.

If the control password is changed from either of the settings in item 1 to the
setting in item 2, the secondary password is reset to NOPWREAD/PWWRITE.

If the control password is changed from the setting in item 2 to a setting in item 1,
the secondary password is set to PWREAD/PWWRITE.

Because the DSCB of the protected data set is updated only when the control
password is changed, protection attributes for secondary passwords might conflict
with the protection attributes of the control password.

PROTECT Macro Specification
The format of the PROTECT macro is:

parameter list address—A-type address, (2-12), or (1)
Indicates the location of the parameter list. The parameter list must be created
before the PROTECT macro is issued. The address of the parameter list can be
passed in register 1, in any of registers 2 through 12, or as an A-type address.
The first byte of the parameter list must be used to identify the function (add,
replace, delete, or list). See Figure 27 on page 254 through Figure 30 on page
257 for the parameter lists and codes used to identify the functions.

Requirement: The parameter lists and the areas addressed by the list must reside
below 16 MB virtual. PROTECT will fail the request if the actual UCB of the
system residence volume is above 16 MB or if PROTECT tries to update the data
set's DSCB and one of its UCBs is above the 16 MB line.

�� PROTECT parameter_list_address
label

��

Password Protection

Chapter 6. Using Password Protected Data Sets 253

PROTECT Macro Parameter Lists

ADD Function:

0 X'01'
Entry code indicating ADD function.

4 Data set name length.

5 Data set name pointer.

13 Control password pointer.
The control password is assigned when the data set is placed under protection
for the first time. The pointer can be 3 bytes of binary zeros if the new
password is the control password.

16 Number of volumes.
If the data set is not cataloged, to have it flagged as protected, specify the
number of volumes in this field. A zero requests that the catalog information
be used.

17 Volume list pointer.
If the data set is not cataloged, to have it flagged as protected, provide the
address of a list of volume serial numbers in this field. Zeros request that the
catalog information be used.

20 Protection code.
A 1-byte number indicating the type of protection: X'00' indicates default
protection (for the ADD function; the default protection is the type of
protection specified in the control password record of the data set); X'01'
indicates that the data set is to be read and written; X'02' indicates that the
data set is read only; and X'03' indicates that the data set can be read without a
password, but a password is needed for write access. The PROTECT macro
uses the protection code value, specified in the parameter list, to set the
protection-mode indicator in the password record.

21 New password pointer.
If the data set is being placed under protection for the first time, the new
password becomes the control password. If you are adding a secondary entry,
the new password is different from the control password.

┌─────────────────────────────┬──¿
³ 0 X’01’ ³ 13 Control password pointer ³
├─────────────────────────────┼──u
³ 1 00 00 00 ³ 16 Number of volumes ³
├─────────────────────────────┼──u
³ 4 Data set name length ³ 17 Volume list pointer ³
├─────────────────────────────┼──u
³ 5 Data set name pointer ³ 20 Protection code ³
├─────────────────────────────┼──u
³ 8 00 ³ 21 New password pointer ³
├─────────────────────────────┼──u
³ 9 00 00 00 ³ 24 String length ³
├─────────────────────────────┼──u
³ 10 00 ³ 25 String pointer ³
└─────────────────────────────┴──Ù

Figure 27. Parameter List for ADD Function

Password Protection

254 z/OS V2R1.0 DFSMSdfp Advanced Services

24 String length.
The length of the character string (maximum 77 bytes) to be placed in the
optional information field of the password record. If you do not want to add
information, set this field to zero.

25 String pointer.
The address of the character string placed in the optional information field. If
you do not want to add information, set this field to zero.

REPLACE Function:

0 X'02'.
Entry code indicating REPLACE function.

4 Data set name length.

5 Data set name pointer.

9 Pointer to current password.
The address of the password that is going to be replaced.

13 Control password pointer.
The address of the password assigned to the data set when it was first placed
under protection. The pointer can be set to 3 bytes of binary zeros if the
current password is the control password.

16 Number of volumes.
If the data set is not cataloged, to have it flagged as protected, specify the
number of volumes in this field. A zero requests that the catalog information
be used.

17 Volume list pointer.
If the data set is not cataloged, to have it flagged as protected, provide the
address of a list of volume serial numbers in this field. If this field is zero, the
catalog information is used.

20 Protection code.
A 1-byte number indicating the type of protection: X'00' indicates default
protection (for the REPLACE function the default is the type of protection
specified in the control password record of the data set); X'01' indicates that the

┌─────────────────────────────┬──¿
³ 0 X’02’ ³ 13 Control password pointer ³
├─────────────────────────────┼──u
³ 1 00 00 00 ³ 16 Number of volumes ³
├─────────────────────────────┼──u
³ 4 Data set name length ³ 17 Volume list pointer ³
├─────────────────────────────┼──u
³ 5 Data set name pointer ³ 20 Protection code ³
├─────────────────────────────┼──u
³ 8 00 ³ 21 New password pointer ³
├─────────────────────────────┼──u
³ 9 Current password pointer³ 24 String length ³
├─────────────────────────────┼──u
³ 12 00 ³ 25 String pointer ³
└─────────────────────────────┴──Ù

Figure 28. Parameter List for REPLACE Function

Password Protection

Chapter 6. Using Password Protected Data Sets 255

data set is to be read and written; X'02' indicates that the data set is to be read
only; and X'03' indicates that the data set can be read without a password, but
a password is needed for write access.

21 New password pointer.
The address of the password to be used to replace the current password.

24 String length.
The length of the character string (maximum 77 bytes) to be placed in the
optional information field of the password record. If you do not want to add
information, set this field to zero.

25 String pointer.
The address of the character string to be placed in the optional information
field. If you do not want to add information, set this field to zero.

DELETE Function:

0 X'03'.
Entry code indicating DELETE function.

4 Data set name length.

5 Data set name pointer.

9 Current password pointer.
The address of the password to be deleted. You can delete either a control or
secondary entry.

13 Control password pointer.
The address of the password assigned to the data set when it was placed
under protection for the first time. The pointer can be 2 bytes of binary zeros if
the current password is also the control password.

16 Number of volumes.
If the data set is not cataloged, to have it flagged as protected, specify the
number of volumes in this field. A zero requests that the catalog information
be used.

17 Volume list pointer.
If the data set is not cataloged, to have it flagged as protected, provide the
address of a list of volume serial numbers in this field. Zeros request that the
catalog information will be used.

┌─────────────────────────────┬──¿
³ 0 X’03’ ³ 9 Current password pointer ³
├─────────────────────────────┼──u
³ 1 00 00 00 ³ 12 00 ³
├─────────────────────────────┼──u
³ 4 Data set name length ³ 13 Control password pointer ³
├─────────────────────────────┼──u
³ 5 Data set name pointer ³ 16 Number of volumes ³
├─────────────────────────────┼──u
³ 8 00 ³ 17 Volume list pointer ³
└─────────────────────────────┴──Ù

Figure 29. Parameter List for DELETE Function

Password Protection

256 z/OS V2R1.0 DFSMSdfp Advanced Services

LIST Function:

0 X'04'.
Entry code indicating LIST function.

1 80-byte buffer pointer.
The address of a buffer to receive the information returned to your program by
the macro instruction.

4 Data set name length.

5 Data set name pointer.

9 Current password pointer.
The address of the password of the record to be listed.

Return Codes from the PROTECT Macro
When the PROTECT macro finishes processing, register 15 contains one of the
following return codes:

Table 51. PROTECT Return Codes

Return Code Description

0 (X'00') Updating of the PASSWORD data set completed successfully.
4 (X'04') The password of the data set name was already in the PASSWORD

data set.
8 (X'08') The password of the data set name was not in the PASSWORD data

set.
12 (X'0C') A control password is required or the one supplied is incorrect.
16 (X'10') The supplied parameter list was incomplete or incorrect.
20 (X'14') There was an I/O error in the PASSWORD data set or the system

residence volume (which contains the PASSWORD data set), has an
actual UCB that resides above the 16 MB line.

24 (X'18') 1 The PASSWORD data set was full.
28 (X'1C') The validity check of the buffer address failed.
32 (X'20') 2 The LOCATE macro failed. LOCATE's return code is in register 1,

and the number of indexes searched is in register 0.
36 (X'24') 2 The OBTAIN macro for the user data set failed. OBTAIN's return

code is in register 1. The user data set resides on a volume that has
an actual UCB that resides above the 16 MB line. Register 1 contains
a 4, which simulates an OBTAIN return code.

40 (X'28') 2 The DSCB could not be updated.
44 (X'2C') The PASSWORD data set does not exist.
48 (X'30') 2 Tape data set cannot be protected.
52 (X'32') 2 Data set in use.
56 (X'38') 2 The data set uses the virtual storage access method (VSAM).

┌─────────────────────────────┬──¿
³ 0 X’04’ ³ 5 Data set name pointer ³
├─────────────────────────────┼──u
³ 1 80─byte buffer pointer ³ 8 00 ³
├─────────────────────────────┼──u
³ 4 Data set name length ³ 9 Current password pointer ³
└─────────────────────────────┴──Ù

Figure 30. Parameter List for LIST Function

Password Protection

Chapter 6. Using Password Protected Data Sets 257

Table 51. PROTECT Return Codes (continued)

Return Code Description

60 (X'3C') The data set is cataloged as being on more than 20 volumes. The
DSCBs on the first 20 volumes have been updated. PROTECT does
not support updating the rest.

Note:

1. A message is written to the console indicating that the PASSWORD data set is
full.

2. The PASSWORD data set has been updated, but the DSCB has not been flagged
to indicate the protected status of the data set.

Password Protection

258 z/OS V2R1.0 DFSMSdfp Advanced Services

Chapter 7. Using System Macro Instructions

This information covers system macro instructions. The macros are grouped
functionally where appropriate and perform the stated functions.
v Ensure data security (DEBCHK macro)
v Obtain device characteristics from control blocks and system tables (DEVTYPE

macro)
v Modify the JFCB (RDJFCB and OPEN TYPE=J macros)
v Manipulate I/O activity queues (PURGE and RESTORE macros)
v Perform track capacity calculations (TRKCALC macro).
v Perform calculations and conversions with 28-bit cylinder addresses (TRKADDR

macro).

Some functions of these macros tend to depend on the internal logic of the system.

Before reading this information, you should be familiar with the publications High
Level Assembler/MVS & VM & VSE Language Reference They contain the information
necessary to code programs in the assembler language.

Ensuring Data Security by Validating the Data Extent Block (DEBCHK
macro)

Protecting one user's data from inadvertent or malicious access by an unauthorized
user depends on protection of the data extent block (DEB). The DEB is a critical
control block because it contains information about the device a data set is
mounted on, and describes the location of data sets on direct access device storage
volumes.

To ensure that only a valid system-provided DEB (normally built by open) is
passed to data management functions, the DEBCHK verify function is used. OPEN
places the address of DEBs it creates to a DEB table, which is used by the verify
function. If you code a routine that builds a DEB, add the address of the DEB you
built to the DEB table. If you code a routine that depends on the validity of a DEB
that is passed to your routine, verify that the DEB passed to your routine has a
valid entry in the DEB table and points to your DCB or access method control
block (ACB). Use the TYPE=ADD and the TYPE=VERIFY operands of the macro,
respectively.

To prevent an asynchronous routine from changing or deleting, or assigning a new
DEB to a DCB, hold the local lock. In this case, use the branch entry to the
DEBCHK verify routine and use the DEB address returned in register 1, not the
DEB address in the DCB. The DCB will remain valid as long as your program
holds the local lock or prevents untrustworthy programs from running.

Your program must be executing in 24-bit or 31-bit addressing mode when you call
the DEBCHK macro.

The DEB fields used for EXCP and EXCPVR are illustrated in Appendix A,
“Control Blocks,” on page 443 (all the DEB fields are illustrated in z/OS DFSMSdfp
Diagnosis).

© Copyright IBM Corp. 1979, 2014 259

DEBCHK Macro Specification
The format of the DEBCHK macro is:

�� DEBCHK cbaddr
label VERIFY

,TYPE= ADD
DELETE
PURGE
PURGE,PURGE=FORCE

�

�
,AM= amtype

(amaddr)
((amreg))

NO
,BRANCH= YES

,TCBADDR=address
�

�
,KEYADDR=address
,KEYREG=reg

,SAVREG=reg ,MF=L
��

cbaddr
Control block address.

for BRANCH=NO
RX-type address, (2-12), or (1)

A control block address passed to the DEBCHK routine. This operand is
ignored if MF=L is coded. For verify, add, and delete requests, cbaddr is the
address of a DCB or ACB that points to the DEB whose address is either
verified to be in the DEB table, added to the DEB table, or deleted from the
DEB table. For the purge function, cbaddr is the address of the DEB whose
pointer is to be purged from the table: No reference is made to the DCB or
ACB.

Recommendation: A spooled DCB's DEB does not point back to the DCB, but
to the spooled ACB; in this case, the DEBCHK should be issued against the
ACB.

for BRANCH=YES
The A-type address of a 4-byte field, or a register (3-9) or (12), that points
to the DCB or ACB containing the DEB to be verified.

TYPE=VERIFY or ADD or DELETE or PURGE or PURGE,PURGE=FORCE
Indicates the function to be performed. If MF=L is coded, TYPE is ignored. The
functions are:

VERIFY
This function is assumed if the TYPE operand is not coded. The control
program checks the DEB table to determine whether the DEB pointer is in
the table at the location indicated by the DEBTBLOF field of the DEB. The
DEB is also checked to verify that DEBDCBAD points to the DCB (or ACB)
passed to DEBCHK. The DEBAMTYP field in the DEB is compared to the
AM operand value, if given. The two must be equal. TYPE=VERIFY can be
issued in either supervisor or problem state.

ADD
The DEB and the DCB (or ACB) must point to each other before the DEB
address can be added to the DEB table. Before the DEB pointer can be

System Macros

260 z/OS V2R1.0 DFSMSdfp Advanced Services

added to the table, the DEB itself must be queued on the current TCB DEB
chain (the TCBDEB field contains the address of the first DEB in the chain).
DEBCHK adds the DEB address to the DEB table at some offset into the
table. DEBCHK places a value in the DEBTBLOF field of the DEB and
inserts the access method type into the DEBAMTYP field of the DEB.
DEBCHK places a zero in the DEBAMTYP field if the AM operand is not
coded. TYPE=ADD can be issued only in supervisor state.

DELETE
The DEB and the DCB (or ACB) must point to each other before the DEB
address can be deleted from the DEB table. TYPE=DELETE can be issued
only in supervisor state.

PURGE
DEBCHK removes the DEB pointer from the DEB table without checking
the DCB (or ACB). TYPE=PURGE can be issued only in supervisor state.

PURGE,PURGE=FORCE
DEBCHK removes the DEB pointer from the DEB table without checking
the DCB (or ACB). The caller must be in system key, supervisor state, hold
the local lock, and the passed DEB pointer must exist in the DEB table but
not represent a valid DEB.

AM Specifies an access method value. Each value corresponds to a particular access
method type (note that BPAM and SAM have the same values):

Value Type
(X'00') NONE
(X'01') VSAM
(X'02') EXCP
(X'04') Not supported
(X'08') GAM
(X'10') TAM
(X'20') BPAM
(X'20') SAM
(X'40') BDAM
(X'81') SUBSYS
(X'84') Not supported

The operand can be coded in one of the following three ways, only the first of
which is valid for the list form (MF=L) of the instruction.

amtype
Refers to the access method: BDAM, SAM, BPAM, TAM (which refers to
BTAM only), GAM, EXCP, or VSAM. SUBSYS identifies a subsystem of the
operating system, such as a job entry subsystem. NONE indicates that no
access method or subsystem is specified.

(amaddr)
The RS-type address of the access method value. This format cannot be
coded when MF=L is used.

((amreg))
One of the general registers 1 through 14 that contains the access method
value in its low-order byte (bit positions 24 through 31). The high-order
bytes are not inspected. This form cannot be used when MF=L is coded.

System Macros

Chapter 7. Using System Macro Instructions 261

The use of amaddr and amreg should be restricted to those cases where the
access method value has been generated previously by the MF=L form of
DEBCHK. If MF=L is not coded, the significance of the AM operand depends
upon the TYPE.

If TYPE is ADD and AM is specified, the access method value is inserted in the
DEBAMTYP field of the DEB, and all subsequent DEBCHK macros referring to
this DEB must either specify the same AM or omit the operand. When the AM
operand is omitted for TYPE=ADD, a null value (0) is placed in the DEB and
all subsequent DEBCHK macros must omit the AM operand.

If AM is specified when the TYPE is PURGE, DELETE, or VERIFY, the access
method value is compared to the value in the DEBAMTYP field of the DEB. If
AM is omitted, no comparison is made.

BRANCH=NO or YES
Specifies whether you want to use the branch entry to the DEBCHK verify
routines.

NO
SAVREG
TCBADDR
KEYADDR
KEYREG

Specifies branch entry is not to be used. The program ignores operands
SAVREG, TCBADDR, KEYADDR, and KEYREG. Your program must be
running in TCB mode.

YES
Specifies the branch entry is to be used. TYPE=VERIFY must be implicitly
or explicitly specified. The operands TCBADDR and KEYADDR/KEYREG
are required. AM and MF are ignored. Notes for BRANCH=YES:
v Your program can run in TCB or SRB mode.
v Registers 1, 2, 10, 11, 14, and 15 must not be used for SAVREG=.
v Registers 1, 2, 10, 11, 14, 15, and the register specified for SAVREG=

must not be used for cbaddr, TCBADDR=, or KEYADDR=/KEYREG=.
v The contents of registers 10, 11, and 14 are unpredictable on completion.

Also, if you do not specify SAVREG=, the contents of register 2 are
unpredictable.

v At completion, register 1 contains the address of the DEB, and register
15 contains either 0, 4, or 16 (see “Return Codes from DEBCHK” on
page 263 for codes and their meanings).

v Can be specified when operating in 24-bit or 31-bit addressing mode.

TCBADDR=address—RX-type address, (3-9), or (12)
Specifies the word or register containing the address of the TCB to be used by
the DEBCHK verify routine. Use this operand only with BRANCH=YES.

KEYADDR=address—RX-type address
Specifies the location, or a register that points to the location, of a byte
containing the key to be used when accessing the DCB (or ACB). The
protection key is in bits 0 to 3. Use this operand only with BRANCH=YES.

KEYREG=reg
Specifies the register containing the key value in bit positions 24-27 to be used
when accessing the DCB(or ACB). Use this operand only with BRANCH=YES.

System Macros

262 z/OS V2R1.0 DFSMSdfp Advanced Services

SAVREG=reg
Specifies the register in which register 2 is to be saved. Use this operand only
with BRANCH=YES.

MF=L
Indicates the list form of the DEBCHK macro instruction. When MF=L is
coded, a parameter list is built, consisting of the access method value that
corresponds to the AM keyword. This value can be referred to by name in
another DEBCHK macro by coding AM=(amaddr), or it can be inserted into the
low-order byte of a register before issuing another DEBCHK macro by coding
AM=((amreg)).

Return Codes from DEBCHK
Register 15 contains one of the following codes:

Return Code Meaning

0 (X'00') The requested function completed successfully and register 1
contains the address of the DEB.

4 (X'04') Either (a) the DEB table associated with the job step does not
exist; or (b) the DEB field that is an index into the DEB table
contains an invalid value; or (c) the control block address is not
the same as the content of the DEB table entry.

8 (X'08') An invalid TYPE was specified. (The DEBCHK routine was
entered by a branch, not by the macro.)

12 (X'0C') Your program was not authorized and TYPE was not VERIFY.
16 (X'10') DEBDCBAD did not contain the address of the DCB (or ACB) that

was passed to the DEBCHK routine.
20 (X'14') The AM value does not equal the value in the DEBAMTYP field.
24 (X'18') The DEB is not on the DEB chain and TYPE=ADD was specified.
28 (X'1C') TYPE=ADD was specified for a DEB that was already entered in

the DEB table.
32 (X'20') The DEB table exceeded the maximum size and TYPE=ADD.
36 (X'24') TYPE=PURGE,PURGE=FORCE was specified but one or more of

the required conditions was not satisfied. The caller must be in
system key, supervisor state, hold the local lock, and the passed
DEB pointer must exist in the DEB table but not represent a valid
DEB.

Obtaining I/O Device Characteristics (DEVTYPE macro)
Use the DEVTYPE macro instruction to request information relating to the
characteristics of an I/O device and to cause this information to be placed into a
specified area. (The results of a DEVTYPE macro instruction executed before a
checkpoint is taken should not be considered valid after a checkpoint/restart
occurs.) The IHADVA macro maps the data returned by the DEVTYPE macro - see
“IHADVA Mapping macro” on page 281.

The topics that follow discuss the DEVTYPE macro, device characteristics, and the
output for specific devices.

Your program can issue the DEVTYPE macro while executing in 24- or 31-bit
mode. If your program is executing in 31-bit mode, the parameter list, information
list, and the UCB address list can reside above the 16 MB line.

Table 58 on page 277 shows the output for each device type that results from
issuing the DEVTYPE macro without the INFOLIST parameter.

System Macros

Chapter 7. Using System Macro Instructions 263

For all currently supported devices, DEVTYPE does not return enough information
to perform space calculations. TRKCALC should be used to perform space
calculations. For information on using the TRKCALC macro, see “Performing Track
Calculations (TRKCALC macro)” on page 307.

DEVTYPE Macro Specification
There are four forms of DEVTYPE macro invocation covered here. They are the
standard form, execute form, list form, and INFO form.

Restrictions:

v If you do not code the BELOW or ANY value for the UCBLIST parameter, then
you can assemble and run DEVTYPE as described in this document on any
release of DFSMS.

v If you code the BELOW or ANY value for the UCBLIST parameter, then the
program cannot be assembled on MVS/DFP™ Version 3 but the system will
ignore the BELOW or ANY value if you assemble it on DFSMS.

v If you code the INFOLIST or INFO parameter, then the macro cannot be
assembled or run on MVS/DFP Version 3.

v If you omit INFOLIST, INFO, BELOW and ANY and the PLISTVER parameter,
then you can assemble the program on DFSMS but it will not run on MVS/DFP
Version 3. If you code PLISTVER=0, then you can assemble the program on
DFSMS but not on MVS/DFP and you can run the program on either level of
the system. During assembly your program can choose which parameters to
code by using the technique described in “Determining DFARELS During
Assembler Macro Phase” on page 323.

There are two types of call to the standard form of the DEVTYPE macro.
v The minimum type call refers to the DD statement for the device. It has no list

or execute forms.
v The UCBLIST/INFOLIST type call requires you to specify either the UCBLIST or

INFOLIST parameter or both.

The format of the different types of call to the standard form of DEVTYPE macro
follow. The parameter descriptions follow the formats.

Minimum Type Call
The minimum type of call refers to the DD statement for the device. For this type
call, as the parameters are passed in general registers no list or execute form exists.
It returns the device information to the area you specify.

The format of the minimum type call of the DEVTYPE macro is:

�� DEVTYPE
label

ddloc ,area_addrx
,DEVTAB

,RPS

��

UCBLIST or INFOLIST Type of Call
The UCBLIST or INFOLIST type call requires you to specify either the UCBLIST or
INFOLIST parameter or both.

System Macros

264 z/OS V2R1.0 DFSMSdfp Advanced Services

The format of the UCBLIST or INFOLIST type call is:

�� DEVTYPE
label

ddloc
,BELOW

UCBLIST=(ucbl_addr,ucbl_num)
,ANY

�

� ,(area_addr,area_size)
INFOLIST=codel_addr MAX

,PLISTVER= 0
1

��

ddloc—A-type address or (1-12)
The name of an 8-byte field that contains the symbolic name of the DD
statement to which the device is assigned. The name must be left justified in
the 8-byte field, and must be followed by blanks if the name is fewer than
eight characters. Each DEVTYPE macro executable invocation must have either
ddloc to identify an allocated data set or UCBLIST= to identify one or more
devices.

You can specify ddloc as (1) only if you omit all keywords.

area_addrx—Rx-type address or (0, 2-12)
area_addr—A-type address or (2-12)

The name of an area into which the device information is to be placed. If your
program does not specify the UCBLIST or INFOLIST function, the area is two,
five, or six words long, depending on whether you specify the DEVTAB and
RPS operands. If your program specifies the UCBLIST parameter without
INFOLIST the area must be 6 words long for each UCB. The area must be on a
word boundary.

If your program specifies the INFOLIST parameter, then the length of the area
depends on what you coded for INFO on the referenced DEVTYPE macro. The
INFO description states how many bytes are returned for each value you
specify in the INFO list. To calculate the area size needed, multiply the sum of
those values by ucbl_num in UCBLIST. If you omit UCBLIST (and specify
ddloc), do not multiply.

Note that if you specify UCBLIST (and not ddloc) then (area_addr,area_size) must
still be the second positional parameter. If you code (area_addr,area_size) before
all the keywords, then code it after one comma. If you code (area_addr,area_size)
after a keyword, then code (area_addr,area_size) after two commas.

area_size—absolute expression or (2-12)
The size (in bytes) of the area into which the device information is to be
placed. See Table 52.

Table 52. Minimum size of area

ddloc specified UCBLIST specified INFOLIST specified Minimum size of
area

Yes No Omitted or 0 8, 20, or 24 bytes
depending on
whether DEVTAB
and RPS are coded.

System Macros

Chapter 7. Using System Macro Instructions 265

Table 52. Minimum size of area (continued)

ddloc specified UCBLIST specified INFOLIST specified Minimum size of
area

Yes No Yes Sum of the number of
bytes returned for
each code specified
with INFO. See also
the INFO keyword.

No Yes Omitted or 0 24 bytes per UCB

No Yes Yes The product of the
number of UCBs
specified with
UCBLIST and the
sum of the number of
bytes returned for
each code specified
with INFO. See also
the INFO keyword.

DEVTAB[,RPS]
DEVTAB is only meaningful for direct access devices. If DEVTAB is specified,
the following number of words of information is placed in your area:
v For direct access devices: 5 words
v For non-direct access devices: 2 words.

If you do not specify DEVTAB, INFOLIST, or UCBLIST, one word of
information is placed in your area if the reference is to a graphics or
teleprocessing device; for any other type of device, two words of information
are placed in your area.

RPS
If RPS is specified, DEVTAB must also be specified. The RPS parameter
causes one additional word of rotational position sensing information to be
included with the DEVTAB information.

UCBLIST=(ucbl_addr,ucbl_num [,BELOW or ANY])
UCBLIST provides a list service in which the caller passes a list of 4-byte UCB
addresses and specifies the number of UCB address entries that are in the list.
You must specify the UCBLIST parameter or ddloc. The BELOW or ANY are
optional keywords that indicate whether the address passed by the UCB
parameter contains a 3-byte or 4-byte UCB address. This keyword only applies
to callers running in AMODE 31. If the caller is running in AMODE 24, the
keyword ANY is ignored and the high-order byte is treated as X'00'.

If you do not specify INFOLIST, then the information returned is always
returned in 6-word entries (one entry per UCB address) regardless of the
device type. The words that would contain information not applicable to the
device for that entry are not altered.

The DEVTYPE macro will accept a captured UCB or an actual UCB address
above or below the 16 MB line, via the UCBLIST = parameter. It will also
accept 24- or 31-bit addresses of UCB copies. The UCB copy must be on a
word boundary, but can be above or below the 16 MB line. Unauthorized
programs can get a copy of the UCB by using the UCBSCAN macro and
specifying the COPY and UCBAREA keywords. Refer to z/OS HCD Planning
for details.

System Macros

266 z/OS V2R1.0 DFSMSdfp Advanced Services

ucbl_addr—A-type address or (2-12)
Name of an area containing a list of 4-byte UCB addresses.

ucbl_num—absolute expression or (2-12)
Number of 4-byte UCB address entries in the list.

BELOW
The UCB parameter contains addresses of UCBs that reside in storage
below 16 MB, or a captured UCB. This is the default. If BELOW is
specified, the high-order byte of the UCB address is treated as X'00'.

ANY
The UCB parameter contains a 4-byte UCB address. If ANY is specified
when invoking in 31-bit mode, DEVTYPE treats each word in the UCB
address list as a 31-bit address.

INFOLIST=codel_addr
The name of an area that specifies the types of information DEVTYPE is to
return. Coding INFOLIST=0 has the same effect as omitting it. If you specify
INFOLIST, then you must also specify ddloc or UCBLIST and you must specify
(area_addr,area_size). The format of the returned words is described under
DEVTYPE, DASD, and SUFFIX (see page “DEVTYPE” on page 272).

codel_addr—A-type address or (2-12)
Specifies an area which contains an instance of the DEVTYPE macro where
you coded only the INFO keyword.

PLISTVER=0 or 1 or MAX
Specifies the version of the parameter list for the macro to generate.

0 The program cannot be assembled on a level of the system earlier than
DFSMS/MVS Release 3, which was released in 1996. It can run on any
system level that supports the coded parameters. You cannot code this
with the INFOLIST or INFO parameter. The parameter list will be 20 bytes
long.

1 The program can be assembled and run only on DFSMS/MVS Release 3 or
later. The parameter list will not be acceptable for systems prior to
DFSMS/MVS. This specification generates a 24-byte parameter list.

MAX
In the current release, this has the same effect as coding 1. In a future
release, this value might allow a parameter list that is incompatible with an
earlier release. This is the default and generates a 24-byte parameter list.

DEVTYPE—Execute Form
The execute form of the DEVTYPE macro is:

System Macros

Chapter 7. Using System Macro Instructions 267

�� DEVTYPE
label ddloc

,BELOW
UCBLIST=(ucbl_addr,ucbl_num)

,ANY

�

�
,(area_addrx,area_size) INFOLIST=codel_addrx MAX

,PLISTVER= 0
1

�

� MF=(E,name) ��

ddloc—RX-type address or (1-12)
Has the same meaning as the standard form of the macro (see also the
UCBLIST parameter below for execute form requirements of the ddloc
parameter).

area_addrx—RX-type address or (2-12)
Has the same meaning as the standard form of the macro. This parameter must
be coded on the list and/or the execute form.

This must be coded on the execute form.

area_size—RX-type address or (2-12)
This form has the same meaning as the standard form of the macro. This
parameter must be coded on the list and/or on the execute form.

This must be coded on the execute form.

UCBLIST=(ucbl_addrx,ucbl_num ,BELOW or ANY)
This format has the same meaning as the standard form of the macro. You
must specify either the UCBLIST or the ddloc parameter on either the execute
or list form. You can code them on both forms. Either parameter on the execute
form overrides the same parameter on the list form.

ucbl_addrx—RX-type address or (2-12)
This format has the same meaning as the standard form of the macro.

ucbl_num—absolute expression or (2-12)
This format has the same meaning as the standard form of the macro
except that in the execute form, the maximum value of an absolute
expression is 4095. You can supply a larger value in a register.

BELOW
This format has the same meaning as the standard form of the macro. If
you write two or three values for UCBLIST on the execute form, it replaces
and overrides all three values in the list form. If you omit UCBLIST on the
execute form, DEVTYPE will use the values in the list form. This is the
default.

ANY
This format has the same meaning as the standard form of the macro. If
you write two or three values for UCBLIST on the execute form, it replaces
and overrides all three values in the list form. If you omit UCBLIST on the
execute form, DEVTYPE will use the values in the list form.

INFOLIST=codel_addrx
This format has the same meaning as the standard form of the macro. You can
code INFOLIST=0 to remove a previous INFOLIST value that is in the list
form.

System Macros

268 z/OS V2R1.0 DFSMSdfp Advanced Services

codel_addrx—RX-type address or (2-12)
This format has the same meaning as the standard form of the macro.

PLISTVER=0 or 1 or MAX
This format has the same meaning as on the standard form of the macro. If
you code a non-default value for PLISTVER on the list form, then code the
same value on the execute form.

MF=(E,name)
Specifies the execute form of DEVTYPE. The execute form of the DEVTYPE
macro is valid only with the UCBLIST or INFOLIST function.

E Specifies the execute form of the macro. Use the execute form to modify a
parameter list and call the DEVTYPE function.

name—RX-type address or (1-12)
Label of the parameter list constructed by the corresponding MF=L form.

DEVTYPE—List Form
The list form of the DEVTYPE macro follows:

�� DEVTYPE
label ddloc

UCBLIST= YES
,BELOW

(ucbl_addr,ucbl_num)
,ANY

�

�
,(area_addr,area_size) INFOLIST=codel_addr MAX

,PLISTVER= 0
1

MF=L ��

label
Label of the parameter list to be used. When you specify label with MF=L, label
must be the same as name on MF=(E,name).

ddloc—A-type address
This format has the same meaning as the standard form of the macro.

UCBLIST=YES or (ucbl_addr,ucbl_num,BELOW or ANY)
This format has the same meaning as the standard form of the macro. This is
the default.

YES
DEVTYPE allows UCBLIST=YES as a place holder when MF=L is coded. It
has no effect on the macro expansion.

ucbl_addr—A-type address
This format has the same meaning as the standard form of the macro.

ucbl_num—absolute expression.
This format has the same meaning as the standard form of the macro.

BELOW
This format has the same meaning as the standard form of the macro. This
is the default.

ANY
This format has the same meaning as the standard form of the macro.

System Macros

Chapter 7. Using System Macro Instructions 269

Coding UCBLIST=YES has no effect on the macro expansion. Do not code
UCBLIST=YES with a DD name parameter on the same macro.

area_addr—A-type address
This format has the same meaning as the standard form of the macro. This
parameter must be coded on the list and/or the execute form.

area_size—absolute expression
This format has the same meaning as the standard form of the macro. This
parameter must be coded on the list and/or the execute form.

INFOLIST=codel_addr
This format has the same meaning as the standard form of the macro.

codel_addr—A-type address or (2-12)
This format has the same meaning as the standard form of the macro.

PLISTVER=0 or 1 or MAX
This format has the same meaning as on the standard form of the macro. If
you code a non-default value for PLISTVER on the list form, then code the
same value on the execute form.

MF=L
Specifies the list form of DEVTYPE. The list form of the DEVTYPE macro is
valid only with the UCBLIST or INFOLIST function. By specifying MF=L you
construct a parameter list, and you can subsequently supply the values by
specifying the execute form of the macro.

DEVTYPE—Info Form
The INFO form of the DEVTYPE macro is used to generate a code list for the
INFOLIST parameter. The INFO form is not executable. It has no list or execute
form. When you specify the INFOLIST parameter of DEVTYPE, it refers to an
expansion of DEVTYPE with only the INFO parameter.

The INFO form of the DEVTYPE macro is:

�� DEVTYPE
label

�

,

INFO=()
AMCAP

DEVTYPE

DASD

SUFFIX

��

INFO=(AMCAP or DEVTYPE or DASD or SUFFIX)
Specifies the types of information that you wish to retrieve. Specify any
combination of the indicated values in any order. You can specify the same
value more than once in the list. The parentheses around the INFO value can
be omitted if there is only one value.

Specifying the INFO keyword causes the macro expansion to be a list, and it
will not be executable. If you specify the INFO keyword, then omit the MF
keyword or specify MF=L. Note that the E-form does not provide for updating
any of these values. This means that you can specify INFOLIST to refer to a
DEVTYPE expansion that is assembled in a reentrant CSECT.

System Macros

270 z/OS V2R1.0 DFSMSdfp Advanced Services

DEVTYPE will return information in the area that you supply in the area_addrx
parameter. Each type of information that you request is of a fixed length, as
stated below. At execution time, the DEVTYPE macro will check whether the
area is long enough. The information will be returned in the order in which
you specify the values with the INFO= keyword. If the requested information
has no meaning for the device or data set, then DEVTYPE clears the
appropriate storage. This means that each piece of information will be returned
at a predictable offset in your area.

IBM can add support to DEVTYPE for new INFO= codes in a future level of
the system. DEVTYPE in the current level is expected to tolerate object code
assembled on such a future level. DEVTYPE in the current level is expected to
return the appropriate number of bytes. They should be binary zeroes or
partial information padded on the right with binary zeroes. In either case
DEVTYPE will also set a return code=0 with a reason code=4 to indicate this
condition. If the information returned by the future code cannot validly be
zero, then you can test for zeroes to determine which field or fields are not
supported. You can also test the DFA to determine the level of the system.

DEVTYPE is not designed to support downward compatibility of source code;
that is, you will not be able to assemble source code containing future INFO
values on the current level.

AMCAP
Returns 32 bytes for the access method capacity as follows:

Table 53. INFO=AMCAP 32–byte return data

Offset Bytes Description

0(0) 1 Flags.
0(0) 1... BSAM, QSAM, and (if DASD) BPAM support the large block interface

and the block size limit is in the next doubleword.
1(1) 7 Reserved, currently set to zeros.
8(8) 8 Maximum block size supported. If you specify a DD name to DEVTYPE

for a data set concatenation, this value is the largest for any of the DDs.
This value might exceed 32760 for a magnetic tape or dummy data set
and therefore require EXCP or the access method large block interface.
On output, OPEN does not allow a block size that exceeds this value
except with EXCP. On certain cartridge tape drives, exceeding this limit
can cause bypassing of hardware buffering. In the future, IBM might
support values that exceed 32760 for other device types.

16(10) 8 Recommended maximum block size. This is less than or equal to the
maximum block size supported. Above this length the device might be
less efficient or less reliable. If you specify a DD name to DEVTYPE for
a data set concatenation, this value is the largest for any of the DDs
(refer to Table 54). Consult hardware documentation for further
information.

24(18) 8 Maximum unspanned logical record length supported by BSAM,
QSAM, or BPAM. Various types of data sets on the device might have
various maximum record lengths. Therefore, if UCBLIST was coded on
DEVTYPE and not a DD name, this value is the smallest for the
possible data set types for BSAM, QSAM, and BPAM.

Table 54. Optimum and Maximum Block Size Supported When Using EXCP or the Access Method Large Block
Interface

Device Type Optimum Maximum

DASD Half track 32 760

System Macros

Chapter 7. Using System Macro Instructions 271

Table 54. Optimum and Maximum Block Size Supported When Using EXCP or the Access Method Large Block
Interface (continued)

Device Type Optimum Maximum

Reel tape 32 760 32 760

3480, 3490 65 535 65 535

3490 Emulation (VTS) 262 144 (256 KB) 262 144 (256 KB)

3590 262 144 (256 KB) except on some older
models on which it is 229 376 (224
KB)

262 144 (256 KB)

DUMMY 16 5 000 000

DEVTYPE
Returns a copy of the four-byte UCBTYP field of the UCB. See the description
of word 0 in “Device Characteristics Information” on page 273.

DASD
Returns 16 bytes as follows:

Bytes 0-3
Number of cylinders on the device, excluding alternates. For a VIO
data set, this number is the number of simulated cylinders needed to
contain the data set.

Bytes 4-7
Number of tracks per cylinder.

Bytes 8-9
Flags (two bytes)

1... ECKD supported. This means that the following commands are
supported:
v Define Extent (X'63') at the beginning of the channel

program, except with VIO.
v Locate Record (X'47')
v Read Multiple Count, Key and Data (X'5E')
v Write Count, Key and Data Next Track (X'9D')

For VIO data sets, this bit is on because these commands are
always supported. For a non-VIO DASD, this bit also means
that the device supports the Define Extent command, but
EXCP allows it only at the beginning of your channel program.
See “DASD Channel Program Prefix CCW Commands” on
page 187.

.1.. Locate Record Extended CCW is supported. For VIO data sets,
this bit is on because those commands are always supported.

..1. Controller cache supported.

...1 Flag DVAIXVLD. Flags DVACYLMG (byte 8 bit 4) and
DVAEADSCB (byte 8 bit 5), along with field DVAVIRSZ (bytes
14-15) valid and possibly zero.

.... 1... Flag DVACYLMG. Cylinder-managed space exists on this
volume and begins at DVALCYL (bytes 10-11) in multicylinder
units of DVAMCU (byte 9). DVAEADSCB (byte 8 bit 5) is also
set with this flag on. Valid when DVAIXVLD (byte 8 bit 3) is
set.

System Macros

272 z/OS V2R1.0 DFSMSdfp Advanced Services

|||

.... .1.. Flag DVAEADSCB. Extended attribute DSCBs, Format 8 and 9
DSCBs, are allowed on this volume. Valid when DVAIXVLD
(byte 8 bit 3) is set.

.... ..1. Flag DVASSDEV. The device is solid state.

.... ...1 Flag DVACRYPT. Data encrypted device.

Byte 9 Field DVAMCU. Minimum allocation size in cylinders for
cylinder-managed space. Each extent in this space must be a multiple
of this value. Also referred to as the multicylinder unit (MCU). This is
the smallest unit of disk space in cylinders that can be allocated in
cylinder managed space. Valid when DVACYLMG (byte 8 bit 4) is set.
This field is zero on releases before z/OS 1.10 or if the status is not yet
known. In these two cases DVAIXVLD (byte 8 bit 3) is not set.

Bytes 10-11
Field DVALCYL. First cylinder address divided by 4095 where space is
managed in multicylinder units. Valid when DVACYLMG (byte 8 bit 4)
is set. When valid and zero the volume has no cylinder-managed
space. This field is zero on releases before z/OS 1.10 or if the status is
not yet known. In these two cases DVAIXVLD (byte 8 bit 3) is not set.

Byte 12
Track set size. Zero if device does not support read-any or write-any.
See 3990 Reference for more information.

Bytes 13
Reserved. DEVTYPE currently returns zeroes but could return
something different in a future release.

Bytes 14-15
Block size of the index data set. Valid when byte 8 bit 3 is on. When
valid and zero the volume has no working VTOC index. This field is
zero on releases before z/OS 1.10 or if the status is not yet known. In
these cases byte 8 bit 3 is not set.

SUFFIX
Returns in two bytes the length of the suffix that the system adds to each block
in an extended format data set that can be stored on the device. Use this
information for space calculations such as with the TRKCALC macro and for
determining optimal block size. For device types that support extended format
data sets, DEVTYPE returns 32. A non-zero value does not mean that the data
set actually is extended format or that the device supports extended format
data sets. Not all storage controllers can support extended format data sets. In
a future release this value might change.

Device Characteristics Information
The following information is placed into your area as a result of issuing a
DEVTYPE macro if you do not code the INFOLIST parameter.

Word 0: Describes the device as defined in the UCBTYP field of the UCB. The
IHADVA macro maps these four bytes this way:

Table 55. Simulated Device Characteristics Information

Offset Length Symbol Description

0 2 DVAOPTS Model and option bits that depend on the device

System Macros

Chapter 7. Using System Macro Instructions 273

Table 55. Simulated Device Characteristics Information (continued)

Offset Length Symbol Description

2 1 DVACLASS Device class. Exactly one bit is on except that X'41' means a channel-to-channel adapter.

X'80'=magnetic tape, X'40'=unit record, X'20'=DASD, X'10'=display and X'08'=character reader.

A value of X'01' indicates a simulated device that does not have a UCB. These meanings are
described in Table 56.

3 1 DVAUNIT Device type. Depends on the device class.

Simulated Device Characteristics:

Any reference to one of the following types in Table 56 causes the information
shown to be placed in word 0 and word 1 of the output area.

Table 56. Simulated Device Characteristics Information

Data Set Type Word 0 in
Hexadecimal

Word 1 in
Hexadecimal

DUMMY application process queue 0000 0000 0000 0000

TSO terminal 0000 0101 0000 7FF8

SYSIN, SYSOUT, or subsystem (SUBSYS=) 0000 0102 0000 7FF8

UNIX system services (possibly HFS) file 0000 0103 0000 7FF8

The system also uses a copy of the UCBTYP word in these places:
v In catalog entries for DASD and tape data sets. Some of the model and option

bits are zero. See output of the IDCAMS LISTCAT command.
v As the device code returned by the LOCATE macro in the volume list. See

“Retrieving Information from a Catalog” on page 157. Some of the model and
option bits are zero.

v Input to the SCRATCH macro. See “Deleting a Data Set from the VTOC” on
page 145 and “SCRATCH and CAMLST Macro Specification” on page 147.

v Input to the RENAME macro. See “Renaming a Data Set in the VTOC” on page
150 and “RENAME and CAMLST Macro Specification” on page 153.

Word 1

Maximum block size without using the large block interface of the access
method. The maximum value is 32760 bytes. For direct access devices, this
value is the smaller of either the maximum size of a nonkeyed block or the
maximum block size allowed by the operating system; for magnetic tape
devices, this value is the maximum block size allowed by the access
methods. For these and other device types, see Table 57 on page 276.

If your program specifies either DEVTAB or UCBLIST without INFOLIST,
the next three words contain the following information about direct access
devices:

Word 2

Bytes 0-1
The number of physical cylinders on the device, including
alternates. Treat this as an unassigned 16-bit number.

Recommendation: Before you use bytes 0 and 1, read the
description of word 4, byte 1, bit 0. For a VIO data set, that bit is

System Macros

274 z/OS V2R1.0 DFSMSdfp Advanced Services

zero, and the number of cylinders is as many as are needed to
contain the simulated data set. This can differ from the number for
the real device being simulated.

Bytes 2-3
The number of tracks per cylinder.

Word 3

Bytes 0-1
Maximum track length. Note that this value is not equal to the
value in word 1 (maximum block size).

Byte 2 Block overhead, keyed block—the number of bytes required for
gaps and check bits for each keyed block other than the last block
on a track.

Recommendation: Before using bytes 2 and 3, read the description
of word 4.

Byte 3 Block overhead—the number of bytes required for gaps and check
bits for a keyed block that is the last block on a track.

Bytes 2-3
Block overhead—the number of bytes required for gaps and check
bits for any keyed block on a track including the last block. Use of
this form is indicated by a 1 in bit 4, byte 1 of word 4.

Basic overhead—the number of bytes required for the count field.
Use of this form is indicated by a 1 in bit 3, byte 1 of word 4.

Word 4

Byte 0 Block overhead, block without key—the number of bytes to be
subtracted from word 3, bytes 2 or 3 or bytes 2 and 3, if a block is
not keyed.

If bit 3, byte 1 of word 4 is 1, this byte contains the modulo factor
for a modulo device.

Byte 1

Bit 0 If on, the number of cylinders, as indicated in word 2,
bytes 0 and 1 is not valid. If the number of cylinders on
the volume exceeds 65520, then this bit is on. To retrieve
the number of cylinders for any DASD, you can use the
INFO=DASD operand of the DEVTYPE macro.

Bit 1 If on, ECKD supported. This means that the following
commands are supported:
v Define Extent (X'63') at the beginning of the channel

program, except with VIO.
v Locate Record (X'47')
v Read Multiple Count, Key and Data (X'5E')
v Write Count, Key and Data Next Track (X'9D')

For VIO data sets, this bit is on because these commands
are always supported. For a non-VIO DASD, this bit also
means that the device supports the Define Extent
command, but EXCP allows it only at the beginning of
your channel program. See “DASD Channel Program
Prefix CCW Commands” on page 187.

System Macros

Chapter 7. Using System Macro Instructions 275

Bits 2-3
If both on, indicates the drive is attached to a cache storage
control.

Bit 3 If on, indicates a modulo device (such as 3380, 3390).

Bit 4 If on, bytes 2 and 3 of word 3 contain a halfword giving
the block overhead for any block on a track, including the
last block.

Bit 5 If on, the device supports paging CCWs.

Bit 6 If on, the device has no alternate cylinders.

Bit 7 If on, a tolerance factor must be applied to all blocks
except the last block on the track.

Bytes 2-3
Tolerance factor—this factor is used to calculate the effective length
of a block. The calculation should be performed in the following
order:

Step 1 Add the block's key length to the block's data length.

Step 2 Test bit 7 of byte 1 of word 4. If bit 7 is 0, perform step 3.
If bit 7 is 1, multiply the sum computed in step 1 by the
tolerance factor. Shift the result of the multiplication 9 bits
to the right.

Step 3 Add the appropriate block overhead to the value obtained
above.

If bit 3, byte 1 of word 4 is 1, bytes 2 and 3 contain the
overhead for the data or key field.

If your program specifies DEVTAB and RPS, or specifies UCBLIST
without INFOLIST, the next word contains the following
information:

Word 5

Bytes 0-1
R0 overhead for sector calculations

Byte 2 Number of sectors for each track

Byte 3 Number of data sectors for each track

Table 57 and Table 58 on page 277 show the output for each device type that
results from issuing the DEVTYPE macro.

If your program specifies UCBLIST and not INFOLIST, the output consists of one
6-word entry for every UCB address contained in the UCB list.

Table 57. Output from DEVTYPE Macro

IBM Device1
Maximum Access Method Record Size
When Not Using Large Block Interface

2540 Reader 80
2540 Punch 80
2501 Reader 80
3890 Document Processor 80
3505 Reader 80

System Macros

276 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 57. Output from DEVTYPE Macro (continued)

IBM Device1
Maximum Access Method Record Size
When Not Using Large Block Interface

3525 Punch 80
1403 Printer 120 1

3203 Model 5 Printer 132
3211 Printer 132 1

3262 Model 5 Printer 132
4245 Printer 132
4248 Printer 132 2

3800 or 3900 Printing Subsystem 136 3

3410, 3420, 3422, 3424 4 3430, 3480, 3490, 3590
Tape Units

32760

Note:

1. Although certain models can have a larger line size, the minimum line size is assumed.

2. The IBM 4248 Printer returns 132 characters even if the 168 Print Position Feature is
installed on the device.

3. The IBM 3800 Printing Subsystem can print 136 characters per line at 10-pitch, 163
characters per line at 12-pitch, and 204 characters per line at 15-pitch. The machine
default is 136 characters per line at 10-pitch.

4. The 3424 Magnetic Tape Unit is available only in Brazil, S.A.

Table 58. Output from DEVTYPE Macro — DASD Devices

IBM Device Maximum
Record Size
(Word 1,
Decimal)

DEVTAB (Words 2, 3, and 4, in Hexadecimal) RPS (Word 5,
in
Hexadecimal)

3380 Models AD4, AJ4, BD4, BJ4, and CJ2 Disk
Storage

32 760 0376 000F BB60 0100 2010 010B 04E0 DED6

3380 Models AD4, AJ4, BD4, BJ4, Disk Storage
(attached to a cache storage control)

32 760 0376 000F BB60 0100 2030 010B 04E0 DED6

3380 Models AE4 and BE4 Disk Storage 32 760 06EB 000F BB60 0100 2010 010B 04E0 DED6

3380 Models AE4 and BE4 Disk Storage
(attached to a cache storage control)

32 760 06EB 000F BB60 0100 2030 010B 04E0 DED6

3380 Models AK4 and BK4 Disk Storage 32 760 0A60 000F BB60 0100 2010 010B 04E0 DED6

3380 Models AK4 and BK4 Disk Storage
(attached to a cache storage control)

32 760 0A60 000F BB60 0100 2030 010B 04E0 DED6

3390 Model 1 (attached to a 3990 Model 2) 32 760 0459 000F E5A2 0000 0052 0000 0594 E000

3390 Model 1 (attached to a 3990 Model 3) 32 760 0459 000F E5A2 0000 0072 0000 0594 E000

3390 Model 2 (attached to a 3990 Model 2) 32 760 08B2 000F E5A2 0000 0052 0000 0594 E000

3390 Model 2 (attached to 3990 Model 3) 32 760 08B2 000F E5A2 0000 0072 0000 0594 E000

3390 Model 3 (attached to a 3990 Model 2) 32 760 0D0B 000F E5A2 0000 0052 0000 0594 E000

3390 Model 3 (attached to a 3990 Model 3) 32 760 0D0B 000F E5A2 0000 0072 0000 0594 E000

3390 Model 3 (attached to a 3990 Model 6) 32 760 0D0B 000F E5A2 0000 0072 0000 0594 E000

3390 Model 9 (attached to a 3990 Model 2) 32 760 2721 000F E5A2 0000 0052 0000 0594 E000

3390 Model 9 (attached to a 3990 Model 3) 32 760 2721 000F E5A2 0000 0052 0000 0594 E000

3390 Model 9 (attached to a 3990 Model 6) 32 760 2721 000F E5A2 0000 0052 0000 0594 E000

9345 Model 1 32 760 05A0 000F BC98 0000 0052 0000 04A0 D500

Recommendation: For all currently supported devices, DEVTYPE does not return
enough information to perform space calculations. Use the TRKCALC macro and

System Macros

Chapter 7. Using System Macro Instructions 277

the sector conversion routine to perform space calculations. For information on
using the TRKCALC macro, see “Performing Track Calculations (TRKCALC
macro)” on page 307. For information on the sector conversion routine, see
“Obtaining the Sector Number of a Block on an RPS Device” on page 236.

DEVTYPE—Return Codes and Reason Codes
Control is returned to your program at the next executable instruction following
the DEVTYPE macro instruction. Register 15 contains a return code from the
DEVTYPE macro, and register 0 contains the reason code. Registers 2 to 14
contents are unchanged. Register 1 contents are unpredictable. The return codes
and their meanings are as follows:

Return Code Meaning

0 (X'00') Information has been successfully stored in your work area.

Reason Code
Meaning

0 (X'00')
All the information is available.

4 (X'04')
DEVTYPE did not recognize one or more INFO parameter
codes. DEVTYPE cleared the appropriate amount of the
return area and processed the rest of the INFO codes.

4 (X'04') Invocation error.

Reason Code
Meaning

4 (X'04')
DD name not defined.

8 (X'08')
Parameter list not valid. The error might be version code,
length, zero field, or return area is not large enough.
DEVTYPE does not do a complete UCB check in the
current release. The UCB address might not be valid
because the correct value was not coded for the third value
of the UCBLIST parameter.

8 (X'08') Unsupported device class.

Reason Code
Meaning

12 (X'0C')
DEVTYPE does not support the device class. It must be
DASD, tape, subsystem (including spooled), unit record,
TSO terminal, dummy, communications, graphics or
channel-to-channel adapter. If UCBLIST was coded, then
DEVTYPE has ignored the rest of the list.

DEVTYPE—Example 1—Referring to a DD Statement

DEVTYPE MYDD,DEVINFO,DEVTAB
•
•
•

MYDD DC CL8’DATATAB’
DEVINFO DC 5F’0’

System Macros

278 z/OS V2R1.0 DFSMSdfp Advanced Services

Example 1 of DEVTYPE returns 20 bytes of device information if DATATAB is a
DASD data set or 8 bytes otherwise.

DEVTYPE—Example 2—Includes Building a Parameter List

MVC DTLIST,KDTLIST BUILD PARAMETER LIST IN DYNAMIC STORAGE

* RETRIEVE FOUR BYTE UCBTYP FOR SYSUT1 DEVICE

DEVTYPE MF=(E,DTLIST),,(AREA,L’AREA)
•
•
•

* RETRIEVE 20 BYTES (DASD INFO AND UCBTYP) FOR THE UNIT DESCRIBED BY THE
* UCB THAT UCBAD POINTS TO. THE AREA ADDRESS AND LENGTH ARE STILL
* IN THE PARAMETER LIST FROM THE DEVTYPE EXECUTION PERFORMED ABOVE

DEVTYPE UCBLIST=(UCBAD,1),INFOLIST=ILIST2,MF=(E,DTLIST)
•
•
•

KDTLIST DEVTYPE FIRSTDD,MF=L,INFOLIST=ILIST1 NON-MODIFIABLE PARAMETER
* LIST
LDTLIST EQU *-KDTLIST
FIRSTDD DC CL8’SYSUT1’
ILIST1 DEVTYPE INFO=DEVTYPE
ILIST2 DEVTYPE INFO=(DASD,DEVTYPE) REQUEST DATA AT AREA
DYNAMIC DSECT
UCBAD DS A ADDRESS OF UCB
DTLIST DS CL(LDTLIST) DEVTYPE PARAMETER LIST(MODIFIABLE)

DS 0F ALIGNMENT FOR TRKCYL
AREA DS 0CL20 INFORMATION FROM
* DEVTYPE INFO=(DASD,DEVTYPE)
TYP1 DS 0CL4 INFORMATION FROM
* DEVTYPE INFO=DEVTYPE (UCBTYP)
* FOR FIRSTDD
NUMCYL DS F NUMBER OF CYLINDERS ON VOLUME
TRKCYL DS F NUMBER OF TRACKS PER CYLINDER

DS CL8 MISCELLANEOUS
TYP2 DS CL4 UCBTYP FROM UCB POINTED TO
* FROM UCBAD

Example 2 of DEVTYPE builds a parameter list in dynamically-acquired storage so
the program can be reentrant. It then supplies additional parameters in the first
execute form and overrides some of them in the second execute form. In effect, the
first specification of DEVTYPE is:
DEVTYPE FIRSTDD,(AREA,L’AREA),INFOLIST=ILIST1

ILIST1 describes four bytes to be returned. They are at the beginning of a 20-byte
area - DEVTYPE clears the extra 16 bytes. The list form at KDTLIST specifies
parameters that will not be overridden by the first execute form. The execute form
specifies parameters that are determined during execution. In effect, the second
specification of DEVTYPE is:
DEVTYPE ,(AREA,L’AREA),INFOLIST=ILIST2,UCBLIST=(UCBAD,1)

The INFOLIST describes 20 bytes to be returned.

The first execute form illustrates an unusual technique of coding a keyword
parameter (MF) before two positional parameters. The first positional value is null,
and the second position is (AREA,L'AREA). This generally is not a good technique
because it is confusing. It is used here only to show the flexibility that Assembler
H and High Level Assembler allow.

System Macros

Chapter 7. Using System Macro Instructions 279

For another example of DEVTYPE, see Figure 38 on page 324.

DEVTYPE—Example 3—Building a Parameter List and Using
IHADVA
This example is the same as the previous one, but it uses the IHADVA macro to
map the DEVTYPE output and several unusual techniques to demonstration the
possibilities.

MVC DTLIST,KDTLIST Build parameter list in dynamic storage

* Retrieve four-byte UCBTYP for SYSUT1 device in 20-byte area.

DEVTYPE ,(DVAIDASD,L’DVAIDASD+LenDEVTYPE),MF=(E,DTLIST)
DTUsing USING DVAUCBTY,DVAIDASD Map DSECT on CSECT

*
*

* Retrieve 20 bytes (DASD INFO and UCBTYP) for the unit described by
* the UCB that UCBAD points to. The area address and length are still
* in the parameter list from the DEVTYPE execution performed above.

DEVTYPE UCBLIST=(UCBAD,1),INFOLIST=ILIST2,MF=(E,DTLIST)
DTUsing USING DVAUCBTY,DVAIDASD+L’DVAIDASD Map DSECT on CSECT

*
*

KDTLIST DEVTYPE FIRSTDD,MF=L,INFOLIST=ILIST1 Read-only parameter list
LDTLIST EQU *-KDTLIST Length of parameter list
FIRSTDD DC CL8’SYSUT1’ DD name
ILIST1 DEVTYPE INFO=DEVTYPE DEVTYPE INFO list
ILIST2 DEVTYPE INFO=(DASD,DEVTYPE) Another INFO list
* End of CSECT.
DYNAMIC DSECT **** Dynamic storage for reentrancy
UCBAD DS A Address of UCB
DTLIST DS CL(LDTLIST) DEVTYPE parameter list (modifiable)

DS 0F Alignment for efficiency
* Output from INFO=(DASD,DEVTYPE) begins here.
* Next line defines symbols for DVAIDASD, which is 16 bytes.

IHADVA DSECT=NO,INFO=DASD Info from DEVTYPE INFO=DASD
DS CL(LenDEVTYPE) Info from DEVTYPE INFO=DEVTYPE

* Next line defines the DVAUCBTY DSECT, which is 4 bytes.
IHADVA DSECT=YES,INFO=DEVTYPE Info from DEVTYPE INFO=DEVTYPE

LenDEVTYPE EQU *-DVAUCBTY Length of DSECT (4 b

Example 3 of DEVTYPE builds a parameter list in dynamically-acquired storage so
the program can be reentrant. It then supplies additional parameters in the first
execute form and overrides some of them in the second execute form. In effect, the
first specification of DEVTYPE is:
DEVTYPE FIRSTDD,(DVAIDASD,L’DVAIDASD+LenDEVTYPE),INFOLIST=ILIST1

ILIST1 describes four bytes to be returned at the beginning of a 20-byte area. The
length attribute of the INFO=DASD area is L'DVAIDASD, which is 16. The
constant LenDEVTYPE is the length of the INFO=DEVTYPE area, which is four
bytes. DEVTYPE clears the extra 16 bytes. The list form at KDTLIST specifies
parameters that will not be overridden by the first execute form. The execute form
specifies parameters that are determined during execution.

The DTUsing USING DVAUCBTY,DVAIDASD line is a labeled dependent USING
statement. It applies the 4-byte DVAUCBTY DSECT on top of the storage at
DVAIDASD. One purpose of the symbol DTUsing could be to allow a later DROP
statement to end the addressability but that is not the purpose of the label here.
The purpose here is to avoid an assembler warning message ASMA303W. Multiple
address resolutions may result from this USING and the USING on statement
number nn". It would be on the second labeled USING if it did not have the same
label.

System Macros

280 z/OS V2R1.0 DFSMSdfp Advanced Services

In effect, the second specification of DEVTYPE is:
DEVTYPE ,(L’DVAIDASD+LenDEVTYPE),INFOLIST=ILIST2,UCBLIST=(UCBAD,1)

The INFOLIST describes 20 bytes to be returned. The second USING with the label
DTUsing defines addressability to the last four of the 20 bytes. The first 16 bytes
have no USING because they are a part of the DYNAMIC DSECT and already
have addressability that is not shown. This technique of using one DSECT (defined
by IHADVA DSECT=YES,INFO=DEVTYPE) apply to two places in different areas of the
program is allowed by named USINGs without loading another base register.

The IHADVA DSECT=NO,INFO=DASD line defines 16 bytes of variables that DEVTYPE
sets. The first symbol is DVAIDASD and its length attribute is 16.

The DS CL(LenDEVTYPE) line defines variables that are described by the DSECT
generated by the IHADVA DSECT=YES,INFO=DEVTYPE line.

IHADVA Mapping macro
The IHADVA macro supports two parameters:

DSECT={YES|NO}
If you code DSECT=YES, you get a single area with a DSECT. This is the
default. Its name depends on whether you code INFO= and what you code for
it. The DSECT name depends on the first value that you code for INFO=.

The following applies if you code DSECT=NO:
v If you omit INFO= or you code INFO=NONE, then the area begins with the

symbol DVAREA and it is not a DSECT.
v If you code any combination of INFO values other than NONE, then

DVAREA is not defined and there is no DSECT.

INFO={NONE|DEVTYPE|DASD|SUFFIX|AMCAP}
If you omit the INFO keyword, then the mapping is for all of the following at
the same origin:
v - the minimum type of call
v UCBLIST= without INFO=
v INFO=DASD
v INFO=DEVTYPE
v INFO=SUFFIX

INFO=NONE.
This generates the mapping for the minimum type of call or when you
code UCBLIST= without INFO=. You cannot code NONE in combination
with any other value.

INFO=DASD
Generate the mapping for the area returned by coding INFO=DASD. The
DSECT name or first symbol is DVAIDASD.

INFO=DEVTYPE
Generate the mapping for the area returned by coding INFO=DEVTYPE.
The DSECT name or first symbol is DVAUCBTY.

INFO=SUFFIX
Generate the mapping for the area returned by coding INFO=SUFFIX. The
DSECT name or first symbol is DVASUFFX.

System Macros

Chapter 7. Using System Macro Instructions 281

INFO=AMCAP
Generate the mapping for the area returned by coding INFO=AMCAP. The
DSECT name or first symbol is DVAAMCAP.

===
DEVTYPE return area (mapping macro IHADVA)

THIS MACRO MAPS THE AREA RETURNED TO THE CALLER BY THE DEVTYPE SVC
===

OFFSET
DEC(HEX) TYPE LEN NAME DESCRIPTION
======== ======== ===== ========= ===========================
0 (0) STRUCTURE 24 DVAREA
0 (0) CHARACTER 8 DVAPREFX Area if no INFOLIST=, DEVTAB

or RPS

Following four bytes are also returned for INFO=DEVTYPE
0 (0) CHARACTER 4 DVAUCBTY UCB TYPE FIELD
0 (0) BITSTRING 2 DVAOPTS UCB OPTIONS
2 (2) BITSTRING 1 DVACLASS DEVICE CLASS
3 (3) BITSTRING 1 DVAUNIT UNIT TYPE
4 (4) SIGNED 4 DVAMAXRC MAXIMUM RECORD SIZE
8 (8) CHARACTER 12 DVATAB SECTION INCLUDED BY DEVTAB
8 (8) UNSIGNED 2 DVACYL PHYS NUMBER CYL PER VOLUME
10 (A) SIGNED 2 DVATRK NR OF TRACKS PER CYL
12 (C) SIGNED 2 DVATRKLN TRACK LENGTH (BYTES)
14 (E) SIGNED 2 DVAOVHD BLOCK OVERHEAD IF DVA2BOV IS

ON

IF DVA2BOV IS OFF USE INSTEAD THE FOLLOWING TWO VALUES
14 (E) ADDRESS 1 DVAOVNLB OVERHEAD NOT LAST BLOCK
15 (F) ADDRESS 1 DVAOVLB OVERHEAD LAST BLOCK
16 (10) ADDRESS 1 DVAOVNK OVERHEAD DECR IF NOT KEYED
17 (11) BITSTRING 1 DVAFLAGS FLAG BYTE

1... DVABDCYL IF 1, DVACYL IS INVALID
YL02130

.1.. DVADEFLR DEFINE EXTENT/LOCATE RECORD
AND RELATED TRANSFER COMMANDS
ARE IMPLEMENTED

..1. DVADEFEX DEFINE EXTENT IMPLEMENTED

...1 DVAMODL IF ON, USE MODULO TRACK
ALGORTIHM

.... 1... DVA2BOV IF ON, USE DVAOVHD ELSE USE
DVAOVNLB & DVAOVLB

.... .1.. DVAPAGES IF ON DEVICE SUPPORTS PAGING
CCWS

.... ..1. DVANOALT NO ALT TRKS AVAILABLE

.... ...1 DVAFTOL IF ON, APPLY TOLERANCE FACTOR
18 (12) SIGNED 2 DVATOL TOLERANCE FACTOR

(BLKSI+KEYLE) DVATOL/DVADVSR GIVES THE ADJUSTED BLOCK SIZE
TO WHICH APPROPRIATE OVERHEADS ARE THEN ADDED.

20 (14) CHARACTER 4 DVARPS RPS SECTION
20 (14) SIGNED 2 DVAOVR0 OVERHEAD BYTES FOR RECORD 0
22 (16) ADDRESS 1 DVASECT NUMBER OF SECTORS IN FULL

TRACK
23 (17) ADDRESS 1 DVASECTD NUMBER OF DATA SECTORS

==
THE FOLLOWING SECTION IS RETURNED BY DEVTYPE FOR INFO=DASD.
==

0 (0) STRUCTURE 16 DVAIDASD
0 (0) UNSIGNED 4 DVAICYL NUMBER OF CYLINDERS
4 (4) UNSIGNED 4 DVAITRK TRACKS PER CYLINDER
8 (8) UNSIGNED 1 DVAIFLAG FLAGS

System Macros

282 z/OS V2R1.0 DFSMSdfp Advanced Services

1... DVAECKD1 ECKD SUPPORTED, ALSO ON FOR
VIO DATA SETS

.1.. DVALRE1 LOCATE RECORD EXTENDED
SUPPORTED

..1. DVACACHE1 DEVICE IS CACHED

...1 DVAIXVLD DVACYLMG, DVAEADSCB, DVAVIRSZ
valid.

.... 1... DVACYLMG Cylinder-managed space exists
on this volume and begins at
DVALCYL in multicylinder units
of DVAMCU. DVAEADSCB is also
set with this flag on. Valid
when DVAIXVLD is set.

.... .1.. DVAEADSCB Extended attribute DSCBs,
Format 8 and 9 DSCBs, are
allowed on this volume. Valid
when DVAIXVLD is set.

.... ..1. DVASSDEV The device is solid state

.... ...1 DVACRYPT Data encrypted device.
9 (9) UNSIGNED 1 DVAMCU Minimum allocation size in

cylinders for cylinder-managed
space. Each extent in this
space must be a multiple of
this value. space. Also
referred to as the
multicylinder unit (MCU). This
is the smallest unit of disk
space in cylinders that can be
allocated in cylinder-managed
space. Valid when DVACYLMG is
set. This field is zero on
releases before z/OS 1.10 or
if the status is not yet
known. In these two cases
DVAIXVLD is not set.

10 (A) UNSIGNED 2 DVALCYL First cylinder address divided
by 4095 where space is managed
in multicylinder units.
Cyl-managed space begins at
this address. Valid when
DVACYLMG is set. This field is
zero on releases before z/OS
1.10 or if the status is not
yet known. In these two cases
DVAIXVLD is not set.

12 (C) UNSIGNED 1 DVAITSET TRACK SET SIZE
13 (D) UNSIGNED 1 * Reserved. DEVTYPE currently

returns zeroes but could
return something different in
a future release.

14 (E) UNSIGNED 2 DVAVIRSZ Block size of the index data
set. Valid when DAVIXVLD is
set on. When valid and zero
the volume has no working VTOC
index. This field is zero on
releases before z/OS 1.10 or
if the status is not yet
known. In these cases DVAIXVLD
is not set.

==
THE FOLLOWING SECTION IS RETURNED BY DEVTYPE FOR INFO=AMCAP.
==

0 (0) STRUCTURE 32 DVAAMCAP ACCMETH
CAPABILITY

0 (0) BITSTRING 1 DVAAMFLG FLAGS
1... DVAAMLBI BSAM, QSAM AND (IF DASD) BPAM

System Macros

Chapter 7. Using System Macro Instructions 283

SUPPORT THE LARGE BLOCK
INTERFACE & THE LIMIT IS IN
THE NEXT DOUBLEWORD.

.1.. DVAAM_XTIOT This data set allocation has an
XTIOT. Either all or none of the
entries for a concatenation are
XTIOT.

..1. DVAAM_XTIOTAM BSAM, QSAM and BPAM (if DASD)
support XTIOT for this device,
and the NON_VSAM_XTIOT option in
PARMLIB allows it. DEVTYPE will
turn this on if the UCB is DASD
or tape or the DD is dummy and
the PARMLIB option allows it.

...1 DVAAM_31UCB One or more UCB addresses for
this data set allocation (or
concatenation) point above the 16
MB and have not been captured for
the allocation. If this bit is
off, the data set still might be
extended to another volume and
gain a 31-bit address UCB.

.... 1... DVAAM_31UCBAM BSAM, QSAM and BPAM (if DASD)
support 31-bit UCB addresses in
the DEB and the NON_VSAM_XTIOT
option in PARMLIB allows it.

.... .1.. DVAAM_DSAB DSAB is above the line.

.... ..1. DVAAM_DSABAM BSAM, QSAM and BPAM (if DASD)
support DSAB above the line and
the NON_VSAM_XTIOT option in
PARMLIB allows it.

1 (1) CHARACTER 7 * RESERVED
8 (8) BITSTRING 8 DVAMAXBLK MAXIMUM BLOCK SIZE SUPPORTED

WITH
SAM LBI

16 (10) BITSTRING 8 DVAOPTBLK RECOMMENDED MAXIMUM BLOCK SIZE
LONGER BLOCKS MIGHT BE LESS
EFFICIENT OR LESS RELIABLE.
LESS THAN OR EQUAL TO PREVIOUS
FIELD.

24 (18) BITSTRING 8 DVAMAXLR MAXIMUM UNSPANNED LOGICAL
RECORD
LENGTH SUPPORTED BY BSAM, QSAM
AND BPAM

==
THE FOLLOWING SECTION IS RETURNED BY DEVTYPE FOR INFO=SUFFIX.
==

0 (0) SIGNED 2 DVASUFFX SUFFIX LENGTH

Reading and Modifying a Job File Control Block (RDJFCB Macro)
To accomplish the functions that are performed as a result of an OPEN macro
instruction, the open routine requires access to information that you have supplied
in a data definition (DD) statement. This information is stored by the system in a
job file control block (JFCB). Some information is placed into the JFCB when the
data set is allocated, while other information is placed there only when the data set
is opened. Which fields are updated and when they are updated will vary
depending upon factors such as what is specified in the JCL DD statement, what
the application does, whether the data set is SMS managed or not, and so on.
Fields that have not been updated yet will contain binary zeroes.

In certain applications, you might find it necessary to modify the contents of a
JFCB (previously specified in the allocation parameters) before issuing an OPEN

System Macros

284 z/OS V2R1.0 DFSMSdfp Advanced Services

macro instruction against a data set. For example, lets suppose that you are adding
records to the end of a sequential data set. You might want to add a secondary
allocation quantity to allow the existing data set to be extended when the space
currently allocated is exhausted. To assist you, the system provides the RDJFCB
macro instruction. This macro instruction causes a JFCB to be moved to an area
specified in an exit list. Use of the RDJFCB macro instruction with an exit list is
shown under “Example” on page 288. When you subsequently issue the OPEN
macro instruction, you can specify the TYPE=J operand to open the data set using
the JFCB in the area you specified.

You can use RDJFCB and a DCB to learn the data set name, AMP parameters and
volume serials of a VSAM data set. You can use any valid combination of MACRF
and DSORG in the DCB. The simplest would be DSORG=PS,MACRF=R. You
cannot use the JFCB with OPEN TYPE=J to open a VSAM data set.

If you specify the XTIOT, UCB NOCAPTURE or DSAB-above-the-line options of
dynamic allocation, then the system creates an XTIOT. With these options, if the
access method is not EXCP and the data set is not VSAM, then RDJFCB requires
that you code the LOC=ANY option on the DCBE macro, and the
NON_VSAM_XTIOT=YES option in the DEVSUPxx member of SYS1.PARMLIB is
in effect.

The RDJFCB macro also allows you to retrieve allocation information for the data
sets in a concatenation. You can either select data sets or, by default, retrieve the
information for all data sets in the concatenation.

You can retrieve the following items:
v All JFCBs
v All volume serial numbers
v Block size limit
v The path name (PATH=) associated with any DD. In these cases the data set

name in the JFCB is a dummy value.

“Type 07 JFCB Exit List Entry” on page 290 describes how you can use RDJFCB to
retrieve this information.

Tip: If you set the bit JFCNWRIT in the JFCBTSDM field to 1 before you issue the
OPEN macro instruction, the JFCB is not written back at the conclusion of open
processing. OPEN TYPE=J normally moves your program's modified copy of the
JFCB, to replace the system copy. To ensure that this move is done, your program
must set bit zero of the JFCBMASK+4 field to 1. IBM recommends not setting on
JFCNWRIT. If the user JFCB (which the system used to open the data set) is not
written back, errors can occur during termination processing for EOV, CLOSE, or
the job/step because OPEN might have updated information in the user JFCB
which will not be reflected in the system copy of the JFCB. For example, when a
nonspecific tape data set is opened, OPEN will update the user supplied JFCB with
the volume serial number of the tape selected. However, the system copy of the
JFCB will not reflect this volume serial number. This could cause errors during
termination processing for EOV, CLOSE, or the job/step (for example, the data set
might not be cataloged even though the job requested it).

Your program can also use the SWAREQ macro to access JFCBs and JFCBXs. It
requires your program to access the DSAB or DSABs and the TIOT or XTIOTs. You
can use the GETDSAB macro for this and you will need several mapping macros.
SWAREQ and GETDSAB are documented in z/OS MVS Programming: Authorized

System Macros

Chapter 7. Using System Macro Instructions 285

|
|
|
|

Assembler Services Guide. The RDJFCB macro is designed to be simpler to use and
does not require examining system control blocks.

Some of the modifications that can be made to the JFCB include:
v Moving the creation and expiration date fields of the DSCB into the JFCB
v Modifying the number-of-volumes field in the JFCB

The number-of-volumes field can be modified only to be a value not greater
than the total number of volume serial numbers available in the JFCB and any
JFCBXs (extensions). The JFCB can have five volume serial numbers. Each JFCBX
can have 15 volume serial numbers. Whether or not a JFCBX is required and
how many JFCBXs are required is determined during data set allocation. A
JFCBX cannot be dynamically created after allocation. Therefore, the maximum
value of the number-of- volumes field is based on the JFCB and how many
JFCBXs exist. Setting the number-of-volumes field to a value greater than that
maximum will not cause a JFCBX to be dynamically created.

v Moving the DCB fields from the DSCB into the JFCB
v Adding volume serial numbers to the JFCB (see “RDJFCB Security” on page 290)

Volume serial numbers in excess of five are written to the JFCBX (extension).
The JFCBX cannot be modified by user programs.

v Modifying the sequence number field of the volume in the JFCB. For
DISP=NEW the modified volume sequence will be honored during OPEN
TYPE=J only for tape and only when the file sequence number in the JFCB is
also modified.

v Modifying the sequence number field of the data set in the JFCB. This specifies
the file for a subsequent OPEN TYPE=J to process. You can use this technique to
write many data sets on a tape volume or set of volumes. Use RDJFCB and
increase the sequence number of the data set by 1 before each OPEN TYPE=J. If
the device supports buffered tape marks, you can obtain significantly better
performance by requesting the SYNC=NONE option on the DCBE macro. It
allows the device to enter "streaming mode" and to write tape marks much
faster. A side effect is that any I/O error can be reflected at an unpredictable
time. This can result in an ABEND in OPEN or CLOSE for a user data block. It
also means that if a device malfunction occurs, it might result in the loss of more
than one data set that the application had closed previously. To position rapidly
to a tape data set other than the next data set, you can use the technique
described in “High-Speed Cartridge Tape Positioning” on page 301.

v Changing the data set name field or member field in the JFCB. See “RDJFCB
Security” on page 290 and “RDJFCB Use by Authorized Programs” on page 291.
You can open a VTOC by reading the JFCB, changing the data set name to 44
bytes of X'04' and then issuing the OPEN macro with TYPE=J. Use BSAM or
EXCP. If you use BSAM, also code RECFM=F, KEYLEN=44 and BLKSIZE=96 on
the DCB macro. For an extended address volume the DCB macro must point to
a DCBE where the EADSCB=OK keyword is specified. You'll find examples of
opening an EXCP DCB for a VTOC in “Example of Using the CVAFFILT Macro”
on page 106 and “Example of using the CVAFSEQ macro to process a volume in
physical sequential order” on page 128.

v Setting bit JFCDQDSP in field JFCBFLG3 to invoke the tape volume DEQ at
demount facility (see “DEQ at Demount Facility for Tape Volumes” on page 299)

v Modifying the JFCRBIDO field in the JFCB to cause high-speed positioning to a
specific data block on a tape volume on a device that supports cartridge tapes
(see “High-Speed Cartridge Tape Positioning” on page 301)

v Setting bit JFCNDSCB to prevent OPEN from merging fields from the data set
label to the JFCB. This means that you must supply the information from other

System Macros

286 z/OS V2R1.0 DFSMSdfp Advanced Services

|
|

sources, such as the JFCB or the DCB. A data set label is a DSCB or standard
tape label. This bit does not control all fields. For example it does not control the
creation and expiration dates. Note that if you set this bit on, it can cause
incorrect positioning in the data set after an automatic step restart when using
DISP=MOD or the OPEN macro with the EXTEND option. Setting this bit on
can interfere with the system correcting JFCBDSCB (TTR of DSCB on first
volume). Setting this bit on is not a good programming practice because it
depends on internal system logic.

v Setting bit JFCNDCB to prevent OPEN from merging fields from the DCB to the
JFCB. This interferes with correct information being set in the data set label and
it interferes with OPEN doing certain checks. Setting this bit on is not a good
programming practice because it depends on internal system logic.

v Setting bit JFCBLKSZ to indicate that the JFCB block size field has been set to
zero by the application and that OPEN needs to set the block size value in the
SIOT extension, if applicable, to zero as well. OPEN will also reset JFCBLKSZ
off.

The secondary allocation quantity will be moved from the DSCB into the JFCB
unless prevented by the setting of JFCNWRIT or JFCNDSCB.

RDJFCB Macro Specification
The RDJFCB macro instruction moves a job file control block (JFCB) into an area of
your choice as identified by the EXLST parameter of the DCB macro for each data
control block specified.

The format of the RDJFCB macro is:

�� RDJFCB
label

�

(dcb_addr)
,

(dcb_addr ,)
, option1
,(option1)
,(option2)
,(, option2)

��

option1:

INPUT
EXTEND
OUTPUT
INOUT
OUTIN
OUTINX
RDBACK
UPDAT

option2:

,DISP
,LEAVE
,REREAD
,REWIND

System Macros

Chapter 7. Using System Macro Instructions 287

|
|
|
|

Tip: If you wish to have multiple DCBs with or without options, code each DCB
(and options) as shown in the diagram and precede each additional DCB with a
comma. Examples of the standard form of the RDJFCB macro are:

dcb_address, or (options)
(Same as the dcb_address, option1, and option2 operands of the OPEN macro
instruction, as shown in z/OS DFSMS Macro Instructions for Data Sets), except
for the MODE operand, which is not valid with the RDJFCB macro.

The option operands do not affect RDJFCB processing. You can, however,
specify them in the list form of the RDJFCB macro instruction and refer to the
generated parameter list with the execute form of the macro.

v You can also use the MF parameter on an RDJFCB macro. Its syntax, use, and
effect are the same as is documented for the OPEN macro in z/OS DFSMS Macro
Instructions for Data Sets. In addition, you can code an execute-form RDJFCB
macro that refers to a list-form OPEN macro that does not have MODE=31.

v The RDJFCB parameter list, the DCB, and the JFCB area specified in the exit list
as well as the exit list itself must reside below 16 MB, although the calling
program can be above 16M.

Example
In Figure 32 on page 289, the macro instruction at EX1 creates a parameter list for
two data control blocks: INVEN and MASTER. In creating the list, both data
control blocks are assumed to be opened for input; option2 for both blocks is
assumed to be DISP. The macro instruction at EX2 moves the system-created JFCBs
for INVEN and MASTER into the area you specified, thus making the JFCBs
available to your problem program for modification. The macro instruction at EX3
modifies the parameter list entry for the data control block named INVEN and
indicates, through the TYPE=J operand, that the problem program is supplying the
JFCBs for system use.

RDJFCB (DCB1)
RDJFCB (DCB1,INPUT)
RDJFCB (DCB1,(INPUT))
RDJFCB (DCB1,(INPUT,REREAD))
RDJFCB (DCB1,,DCB2)
RDJFCB (DCB1,,DCB2,(INPUT,REREAD),DCB3,INPUT)

Figure 31. Examples of Standard Form of the RDJFCB macro

System Macros

288 z/OS V2R1.0 DFSMSdfp Advanced Services

Multiple data control block addresses and associated options can be specified in
the RDJFCB macro instruction. This facility makes it possible to read several job
file control blocks in parallel.

An exit list address must be provided in each DCB specified by an RDJFCB macro
instruction. Each exit list must contain an active entry of either or both types
supported by RDJFCB.

RDJFCB processes the first of each of the two types of its entries in the exit list. For
example, in a three-entry list containing types 07, 07 and 13, RDJFCB will process
the first and third entries and ignore the second entry. An ignored entry has no
effect on the RDJFCB return code.

Each of the entries is briefly explained in the following text. A full discussion of
the exit list and its use is contained in z/OS DFSMS Using Data Sets.

After RDJFCB is performed, register 15 contains one of the following codes:

Table 59. Return Codes from the RDJFCB Macro

Return Code Meaning

0 (X'00') RDJFCB function completed successfully.

EX1 RDJFCB (INVEN,,MASTER),MF=L
.
.
.

EX2 RDJFCB MF=(E,EX1)
.
.
.

EX3 OPEN (,(RDBACK,LEAVE)),TYPE=J,MF=(E,EX1)
.
.
.

INVEN DCB EXLST=LSTA,...
MASTER DCB EXLST=LSTB,...
LSTA DS 0F

DC AL1(EXLLASTE+EXLRJFCB)
DC AL3(JFCBAREA)
.
.
.

JFCBAREA DS 0F,176C
.
.
.

LSTB DS 0F
.
.
.
IHAEXLST , DCB exit list mapping

Figure 32. Example Code Using RDJFCB Macro

System Macros

Chapter 7. Using System Macro Instructions 289

Table 59. Return Codes from the RDJFCB Macro (continued)

Return Code Meaning

4 (X'04') One or more DCBs encountered one of the following
conditions and were skipped. DCBs that were not skipped
were processed successfully.

v The DCB was being processed by Open/Close/EOV or a
similar function.

v No data set with the DDNAME that is in the DCB is
allocated.

v The DCB is not open and its DDNAME is blank.
8 (X'08') One or more DCBs had an ARL that could not be processed.

Each ARL contains a reason code describing its status.

One or more DCBs might have encountered a condition
described under return code 4. This type of ARL does not
contain a reason code.

Type 07 JFCB Exit List Entry
The type 07 JFCB exit list entry allows you to perform a variety of tasks, as
described in the following text.

The format of the type 07 JFCB exit list entry is:

Table 60.

Hexadecimal Code (High-Order Byte)
Contents of Exit List Entry (Three
Low-Order Bytes)

07 Address of a 176-byte area required if the
RDJFCB or OPEN (TYPE=J) macro
instruction is used.

The virtual storage area into which the JFCB is read must be:
v Located within the user's region
v On a word boundary
v At least 176 bytes long.

Requirement: Users running in 31-bit addressing mode must ensure that this area
is located below 16 MB virtual. Each exit list entry must be 4 bytes long. The
system recognizes only the first occurrence of an exit list entry code. Indicate the
end of the exit list by setting the high-order bit in the entry code byte to 1.

The DCB can be either open or closed when this macro instruction is executed. If
accessing concatenated sequential data sets and the DCB is open, the RDJFCB
routine reads the JFCB for the current data set. In all other cases, the RDJFCB
routine reads the JFCB for the first or only data set.

If the RDJFCB routine fails while processing a DCB associated with your RDJFCB
request, or you do not provide a virtual storage address in the three low-order
bytes of the exit list entry, your task is abnormally terminated. None of the options
available through the DCB ABEND exit, as described in z/OS DFSMS Using Data
Sets, are available when a RDJFCB macro instruction is issued.

RDJFCB Security: OPEN TYPE=J compares the volume serial numbers specified
in the user-supplied JFCB with the volume serial numbers in the system's copy of

System Macros

290 z/OS V2R1.0 DFSMSdfp Advanced Services

the JFCB. Each different volume serial number will be enqueued exclusively. The
volumes stay enqueued until the job step terminates, because the CLOSE routines
will not dequeue the volumes. If the job step already has the volume open, OPEN
TYPE=J continues. If the volume is enqueued by another job step, an ABEND 413
occurs with a return code of X'04'.

Some JFCB modifications can compromise the security of existing
password-protected or RACF-protected data sets. The following modifications are
specifically not allowed, unless the program making the modifications is
authorized (an authorized program is one that is either in supervisor state,
executing in one of the system protection keys (keys 0 through 7), or authorized
under the authorized program facility) or can supply the password:
v Changing the disposition of a password-protected data set from OLD or MOD to

NEW.
v Changing the data set name or one or more of the volume serial numbers when

the disposition is NEW.
v Changing the label processing specifications to bypass label processing.

Changing the data set name in the JFCB has no effect on the name of the data set.
You are just referring to a different data set. If the DISP setting is NEW, it does not
cause the changed data set name to be created. If OPEN allocates the changed data
set name, it is as if the DD had DISP=OLD. To create a data set on DASD, your
program should call dynamic allocation by issuing SVC 99 (Requesting Dynamic
Allocation Functions in z/OS MVS Programming: Authorized Assembler Services
Guide). Alternately your program might be able to use the REALLOC macro, but
note that it requires authorization and carries restrictions. See “Creating
(Allocating) a DASD Data Set Using REALLOC” on page 48.

RDJFCB Use by Authorized Programs: Except when opening a VTOC, if you
change the data set name in the JFCB and your job step is APF-authorized, you
should do a system enqueue on the major name of “SYSDSN” for the substituted
data set name. Issuing an ENQ macro for a major name of SYSDSN requires
authorization.

If your program changes the data set name or the volume serial number and is not
authorized, OPEN TYPE=J calls dynamic allocation for the new name. CLOSE will
automatically unallocate the data set.

To use the correct interface with other system functions (for example, partial
release), the ENQ macro should include the TCB of the initiator and the length of
the data set name (with no trailing blanks). When you complete processing of the
data set, you should use the DEQ macro to release the resources. If your program
is not authorized and issues an OPEN TYPE=J macro, and the substituted data set
name is already enqueued by another job step, an ABEND 913 occurs with a return
code of X'1C'.

To open a VTOC data set to change its contents (that is, open it for OUTPUT,
OUTIN, INOUT, UPDAT, OUTINX, or EXTEND), your program must be
authorized under the Authorized Program Facility (APF). APF provides security
and integrity for your data sets and programs. Details on how to authorize your
program are provided in z/OS MVS Programming: Assembler Services Guide, z/OS
MVS Programming: Authorized Assembler Services Guide, and z/OS MVS Programming:
Assembler Services Reference ABE-HSP.

You cannot extend a VTOC by this means.

System Macros

Chapter 7. Using System Macro Instructions 291

Restriction: Do not change the data set name to NULLFILE (signifying a dummy
data set). Changing the name to NULLFILE can prevent the device allocated for
the data set specified on the DD statement from being deallocated at job/step
termination.

Using BSAM or EXCP for Random I/O to a Multivolume Data Set: If you open
a BDAM DCB for a multivolume data set, OPEN links your program to all
volumes simultaneously so that your program can ignore volume boundaries and
treat all volumes of the data set as one entity. If you open a BSAM or EXCP DCB
for a multivolume data set, OPEN gives your program access to only one volume
at a time. This is true for both disk and tape. To switch to another volume, your
program issues a CHECK or FEOV macro for BSAM or EOV macro for EXCP. To
return to a previous volume, you must close and reopen the data set, which would
be slow.

Your program can use RDJFCB and OPEN TYPE=J with one DCB per volume to
process all the volumes in parallel. Your program must keep track of which DCB is
for each volume. Your program uses the RDJFCB macro to read in the JFCB, and
uses OPEN with TYPE=J to open each volume of the data set. The coding example
in Figure 33 on page 293 illustrates the procedure with EXCP DCBs.

This technique does not work for a JFCB disposition of NEW because OPEN
TYPE=J honors modifications to the JFCB volume sequence number JFCBVLSQ
only for tape and only if the JFCB file sequence is also modified.

This technique does not work with a striped data set because OPEN always opens
all volumes of a striped data set in parallel as for BDAM.

If you are using BSAM to read non-striped volumes in parallel, you should avoid
using the CHECK macro because it can automatically move to the next volume
when you reach the end of the current volume. Use WAIT or EVENTS instead of
CHECK. Refer to z/OS DFSMS Using Data Sets and z/OS DFSMS Macro Instructions
for Data Sets for information about WAIT or EVENTS. If you optimize I/O with the
MULTACC parameter of the DCBE macro, you also must issue TRUNC macros.

With tape, you cannot open more than one DCB per allocated drive. You can
calculate the number of allocated drives from the TIOT entry length or by issuing
the IEFDDSRV macro. IEFDDSRV returns the number of devices in
DVAR_NUM_DVENT. Refer to z/OS MVS Programming: Assembler Services Reference
IAR-XCT.

If your program does any of the following it will damage the data set:
v If you use BSAM and the OPEN option is not UPDAT and you issue WRITE

macros, you might cause the data set to be extended to new tracks or to the next
volume. In the latter case you have two DCBs open to one volume and they can
interfere with each other.

v If you use BSAM and the OPEN option is not UPDAT and the last operation
before CLOSE is WRITE (and CHECK, WAIT or EVENTS), then CLOSE marks
that volume as being the last volume of the data set. The result might be every
volume marked as being the last one. This is true also if you use EXCP and
CLOSE finds that bit 0 of DCBOFLGS is on. For EXCP, see Table 36 on page 194
and “Device-Dependent Parameters” on page 203. If a program later tries to
read the volumes of the data set sequentially, such as a program backing it up,
that program will not read past the end of this volume. In addition, a later
program trying to add records to the end of a volume by opening with the

System Macros

292 z/OS V2R1.0 DFSMSdfp Advanced Services

EXTEND or OUTINX option or with the OUTPUT or OUTIN option with
DISP=MOD, can add them to the wrong volume.

If the data set is newly allocated on DASD, space has been allocated only on the
first volume unless you used the guaranteed space option of SMS. For both DASD
and tape, if the data set has not yet been written on the volume, the OPEN fails.

Type 13 JFCB Exit List Entry
The type 13 JFCB exit list entry allows you to retrieve selected allocation
information, as described in the following text. The system will accept both a type
X'07' and a X'13' exit list entry. RDJFCB uses the first of each of them.

The format of the type 13 JFCB exit list entry is:

Table 61. Format of the Type 13 JFCB Exit List Entry

Hexadecimal Code (High-Order Byte)
Contents of Exit List Entry (Three
Low-Order Bytes)

13 Address of an allocation retrieval list.

ALLVOLS RMODE 24 Because of DCB exit list & JFCB
RDJFCB DCB1 Read in the JFCB
LTR R15,R15 Branch if the DD name
BNZ NODD is not defined

* Calculate amount of storage for one DCB per volume and get storage.
SR R0,R0 Prepare for IC
IC R0,JFCBNVOL Get number of volumes
LR R3,R0 Save number of volumes
MH R0,=Y(DCBLNGXE) Mult by EXCP DCB length without append.
STORAGE OBTAIN,LENGTH=(0),LOC=(BELOW,ANY),ADDR=DCBAddrL
LR R4,R1 Point to area for first DCB
LA R5,1 Set first volume sequence number

OpenLoop STH R5,JFCBVLSQ Tell OPEN which volume to open
MVC 0(DCBLNGXE,R4),DCB1 Build a DCB
OPEN ((R4),UPDAT),TYPE=J Use TYPE=J for one volume
LTR R15,R15 Branch in the unlikely event
BNZ OpenFail that OPEN failed
LA R4,DCBLNGXE(,R4) Point to place for next DCB
LA R5,1(R5) Increment the volume counter
BCT R3,OpenLoop Loop until all volumes are open
.
.
.

DCB1 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=ExitL,DSORG=PS
* The following is a DCB exit list.
ExitL DC 0F’0’,AL1(EXLLASTE+EXLRJFCB) Last entry, for JFCB

DC AL3(JFCB) Address of JFCB area
DCBAddrL DS A Address of DCB list
JFCB DS CL176 JFCB READ IN HERE

ORG JFCB+70 Go back to remap
JFCBVLSQ DS H Volume sequence number

ORG JFCB+117
JFCBNVOL DS FL1 Number of volumes allocated

ORG ,
* Mapping macro IEFJFCBN might be used instead.

DCBD DSORG=XE,DEVD=(DA,TA) Map an EXCP DCB
IHAEXLST , DCB exit list mapping

Figure 33. Processing a Multivolume Data Set with EXCP

System Macros

Chapter 7. Using System Macro Instructions 293

Using RDJFCB to Retrieve Allocation Information: RDJFCB uses DCB exit list
entry type 13 to retrieve allocation information (JFCBs and volume serial numbers)
for data sets that might be concatenated. The exit list entry code is X'13', and is
defined as “retrieve allocation information.” The second through fourth bytes of
this entry must point to an allocation retrieval list (ARL), as described in Table 62.
If you issue RDJFCB, this DCB exit list entry retrieves all JFCBs for the specified
concatenated data sets, and lists of all volume serial numbers for these data sets.
The block size, as specified on the DD statement of each data set, is put into the
extended information segment following the volume serial numbers. If this block
size field is 0, the block size of the data set is in the JFCB. You can either select
JFCBs in the concatenation or, by default, retrieve all of them. RDJFCB uses the
parameter list to receive and return information about the request. See Figure 34 on
page 298 for an example of usage.

OPEN TYPE=J does not recognize this exit list entry.

You can use the IHAARL macro (shown here) to generate and map the ARL. Your
program might issue a GETMAIN or STORAGE macro for the ARL, or, if you
specify DSECT=NO, the ARL is generated within your program's storage. The ARL
must be below 16 MB. The allocation retrieval area (ARA), acquired by RDJFCB
through a GETMAIN macro, can be above or below 16 MB.

The format of the IHAARL macro is:

�� IHAARL
label YES

DSECT= NO
,PREFIX=prefix NO

,DESCR= YES

��

DSECT=YES or NO
Specifies whether the symbol at the beginning of the generated area appears
on a DSECT instruction or a DC instruction. For DSECT=NO, the symbol
appears on a DC instruction. The default is DSECT=YES.

PREFIX=prefix
Allows you to invoke the macro more than once per assembly. Specifies a
character string with which all generated symbols are to be prefixed. Do not
specify delimiters, such as quotation marks. If you omit this operand or specify
a null value, the prefix defaults to the characters ARL.

DESCR=YES or NO
Specifies whether the macro expansion includes the macro description (prolog).
The default is DESCR=NO.

Table 62 and Table 63 on page 295 describe the formats of the allocation retrieval
list and allocation retrieval area, respectively.

Table 62. Format of the Allocation Retrieval List (mapped by the IHAARL macro)

Offset Bytes Name Description

The following fields are set by the caller of RDJFCB.

0 (X'00') 2 ARLLEN Length of this area. Value should be 36.
2 (X'02') 2 ARLIDENT EBCDIC 'AR'

System Macros

294 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 62. Format of the Allocation Retrieval List (mapped by the IHAARL macro) (continued)

Offset Bytes Name Description

4 (X'04') 1 ARLOPT1 Option byte.
0 ARLLANY ARA must be below 16 MB.
1... ARA can be above 16 MB.
.1.. ARLUSS Request ARA have a path name for each

entry for which PATH was coded.
. .xx xxxx Reserved. Must be zero.

5 (X'05') 7 ARLRSVD1 Reserved. Must be zero.
12 (X'0C') 2 ARLRETRV Number of data sets for which to retrieve

information. If 0, retrieve all in the
concatenation.

14 (X'0E') 2 ARLFIRST Number of first data set in concatenation
for which to retrieve information. 0 or 1
specifies retrieval of information
beginning with first data set in the
concatenation.

The following fields are set by RDJFCB

16 (X'10') 4 ARLAREA Address of ARA. See Table 63.
20 (X'14') 1 ARLPOOL Storage subpool containing ARA.
21 (X'15') 3 ARLRLEN Length of ARA.
24 (X'18') 2 ARLRTRVD Number of concatenated data sets for

which JFCBs were retrieved.
26 (X'1A') 2 ARLCONC Number of concatenated data sets. If no

concatenation, this value is 1.
28 (X'1C') 1 ARLRCODE Reason Code:

0 = Requested information was read.

The following reason codes are related to
return code 8:

4 = ARLFIRST is greater than
ARLCONC.
8 = Insufficient storage to read
information. ARLPOOL and ARLRLEN
describe what RDJFCB needs.

29 (X'1D') 7 ARLRSVD2 Reserved. Used by RDJFCB.

Table 63. Format of the Allocation Retrieval Area (mapped by the IHAARA macro)

Offset Bytes Name Description

0 (X'00') 2 ARALEN Length of the information for this data set
(including this field). The starting address of
the ARA plus the value in the length field
designates the address of the ARA for the next
data set in the concatenation, if requested. Do
not use the length field to calculate the
number of volumes.

2 (X'02') 1 ARAFLG Flags.
1... ARAXINF Extended information segment is present.
.xxx xxxx Reserved. Must be zero.

3 (X'03') 1 ARAXINOF Offset in doublewords from the beginning of
the allocation retrieval area for the current data
set to the extended information segment.

System Macros

Chapter 7. Using System Macro Instructions 295

Table 63. Format of the Allocation Retrieval Area (mapped by the IHAARA macro) (continued)

Offset Bytes Name Description

4 (X'04') 176(Dec) ARAJFCB JFCB
180 (X'B4') variable * Sixth and subsequent volume serial numbers.

Determined by the value in JFCBNVOL. If the
number of volume serial numbers is fewer
than the specified volume count, entries at the
end of the list might contain all blanks. If the
first byte of an entry is X'FF', the JCL-specified
VOL=REF and the volume could not be
determined.

Extended Information Segment. The DSECT name is ARAXINFO.

0 (X'00') 2 ARAXINLN Length of the extended information segment
(including this field).

2 (X'02') 2 ARAPATHO If other than zero, ARAPATHO is the offset
from beginning of extended information
segment to the path name (ARAPATHNAME);
in this case, the data set name in the JFCB is
meaningless. If zero, then this entry does not
contain a path name.

4 (X'04') 4 Reserved. Must be 0.
8 (X'08') 8 ARAXLBKS Block size for this data set or 0. If 0 then block

size can be found in the JFCB in ARAJFCB. If
JFCBLKSZ is set, this field will be returned
with a value of 0.

16 (X'10') 8 ARABKSLM The maximum allowed value for system
determined block size (BLKSZLIM or
DFABLKSZ value in DFA). This integer value
is meaningful only if block size (BLKSIZE) is
omitted from all sources and the application
program opens for output. It is the first value
available from these sources:

1. BLKSZLIM keyword on the DD statement
or dynamic allocation.

2. Block size limit in data class. Set by storage
administrator. Available even if the data set
is not SMS-managed.

3. System default set in TAPEBLKSZLIM
keyword in DEVSUPxx member in
SYS1.PARMLIB by system programmer.
Also available in DFA.

4. 32760

The minimum value in the current level of the
operating system is 32760.

24 (X'16') 16 * Reserved.
The following fields are present only if ARAPATHO is non-zero:

ARAPATHNAME DSECT
x 2 ARAPATHLEN Length of path name, excluding any trailing

blanks. Calculate the value of x by adding the
value in the two bytes in ARAPATHO to the
address of ARAXINLN.

x+2 255 ARAPATHNAM Path name.
257 ARAPNAMLEN Symbolic length of maximum path name

section.

System Macros

296 z/OS V2R1.0 DFSMSdfp Advanced Services

|
|
|

When you have finished using information from the retrieval areas, you should
issue FREEMAIN or STORAGE macro to free any areas that were acquired through
GETMAIN (including the ARA, acquired by RDJFCB). When coding the
FREEMAIN or STORAGE macro, specify the length, subpool, and address values
from the ARLRLEN, ARLPOOL, and ARLAREA fields, respectively. The DSECT
name is ARAXINFO.

Code the FREEMAIN macro as shown:
FREEMAIN RU,LV=length,SP=subpool,A=address

If RDJFCB successfully fills in the ARL field, register 15 is set to zero. Otherwise
see Table 59 on page 289.

Example: In Figure 34 on page 298, the macro instruction at ALLOCINF creates a
parameter list for one DCB (INDCB), assumed to be open for input. The JFCBs and
volume serial numbers are retrieved for all data sets allocated to DDNAME
SYSLIB.

System Macros

Chapter 7. Using System Macro Instructions 297

***JCL FOR FOLLOWING INVOCATION OF RDJFCB:
//SYSLIB DD DISP=SHR,DSN=DEPT61.MACLIB
// DD DISP=SHR,DSN=CORPORAT.MACLIB
// DD PATH=’/projects/sasp/maclib’,PATHOPTS=ORDONLY
// DD DISP=SHR,DSN=SYS1.MACLIB

***EXAMPLE CODE TO INVOKE RDJFCB ALLOCATION INFORMATION RETRIEVAL:
* GET A COPY OF THE JFCB FOR THE FIRST OR ONLY DATA SET ALLOCATED
* TO SYSLIB AND TRY TO READ THE JFCBS VOLUME SERIAL NUMBERS
* AND PATH NAMES FOR ALL DATA SETS ALLOCATED TO SYSLIB.
*
ALLOCINF RDJFCB (INDCB)

LTR R15,R15 TEST RDJFCB RETURN CODE
BNZ NOJFCB BRANCH IF INFORMATION NOT AVAILABLE
ICM R1,X’F’,SLBAREA GET AND TEST ADDRESS OF ARL
BZ OLDSYSTM GO IF SYSTEM DOES NOT SUPPORT ARL
CLI SLBRCODE,0 TEST RDJFCB REASON CODE
BNE NOJFCB BRANCH IF INFORMATION NOT AVAILABLE

*
* LOOP THROUGH THE JFCBS IN THE AREA TO WHICH SLBAREA POINTS.
* CODE CAN BE INSERTED HERE TO PRINT THE DATA SET NAMES, VOLUME SERIAL NUMBERS
* AND PATH NAMES.

L R9,SLBRTRVD GET NUMBER OF JFCB’S RETRIEVED
L R2,SLBAREA POINT TO ARA
USING ARA,R2

LOOPARA TM ARAFLG,ARAXINF BRANCH IF NO EXTENDED
BZ USEJFCB INFORMATION SEGMENT
SR R3,3 PREPARE FOR IC
IC R3,ARAXINOF GET DOUBLEWORD OFFSET
SLL R3,3 GET BYTE OFFSET
AR R3,R2 POINT TO EXTENDED INFO SEGMENT
USING ARAXINLN,R3 EXTENDED INFORMATION SEGMENT
SR R4,R4 PREPARE FOR ICM
ICM R4,B’0011’,ARAPATHO BRANCH IF NO PATH
BZ USEJFCB NAME
USING ARAPATHNAME,R4

* PRINT PATH NAME
.
.
B NEXTARA

* PRINT DATA SET NAME IN JFCB.
USEJFCB ...

.

.
NEXTARA AH R2,ARALEN POINT TO NEXT ARA ENTRY

BCT R9,LOOPARA DECREMENT JFCB COUNTER, LOOP IF MORE
.
.
SR R2,R2
IC R2,SLBPOOL
SR R0,R0
ICM R0,B’0111’,SLBRLEN
FREEMAIN RU,LV=(0),SP=(R2),A=SLBAREA
.
.

Figure 34. Sample Code Retrieving Allocation Information Part 1 of 2

System Macros

298 z/OS V2R1.0 DFSMSdfp Advanced Services

DEQ at Demount Facility for Tape Volumes
This facility is intended to be used by long-running programs that create an
indefinitely long tape data set (such as a log tape). Use of this facility by such a
program permits the processed volumes to be allocated to another job for
processing (such as data reduction). This processing is otherwise prohibited unless
the indefinitely long data set is closed and dynamically deallocated.

You can invoke this facility only through the RDJFCB/OPEN TYPE=J interface by
setting bit JFCDQDSP (bit 0) in field JFCBFLG3 at offset 163 (X'A3') to 1. The
volume serial of the tape is dequeued when the volume is demounted by OPEN or
EOV with message IEC502E when all the following conditions are present:
v The tape volume is verified (where a tape is considered verified after file protect,

label type, and density conflicts have been resolved) for use by OPEN or EOV
(see page “DEQ at Demount Facility for Tape Volumes” for more information
concerning verified).

v JFCDQDSP is set to 1.
v The program is APF authorized (protect key and supervisor/problem state are

not relevant).
v The tape volume is to be immediately processed for output. That is, either

OPEN verifies the volume and the OPEN option is OUTPUT, OUTIN, or

OLDSYSTM DS 0H ROUTINE TO HANDLE JUST LIBJFCB
.
.

*
NOJFCB DS 0H ROUTINE TO HANDLE INABILITY TO GET THE
* JFCB. THE DATA SET MAY NOT BE ALLOCATED.

.

.
*

SLBOPNX DS 0H DCB OPEN EXIT ROUTINE FOR SYSLIB.
* HANDLES RECFM, LRECL, AND BLKSIZE.

.

.
INDCB DCB DSORG=PO,DDNAME=SYSLIB,MACRF=R,SYNAD=INERROR, X

EXLST=INEXLST
INEXLST DC 0F’0’,AL1(EXLDCBEX) ENTRY CODE FOR OPEN EXIT ROUTINE

DC AL3(SLBOPNX) ADDR OF DCB OPEN EXIT ROUTINE
DC AL1(EXLARL) ENTRY CODE TO RETRIEVE

* ALLOCATION INFORMATION
DC AL3(SLBSTRT) ADDR OF ALLOCATION RETRIEVAL LIST
DC AL1(EXLLASTE+EXLRJFCB) ENTRY CODE TO RETRIEVE FIRST JFCB

* AND INDICATE LAST ENTRY IN LIST
DC AL3(LIBJFCB) ADDR OF JFCB FOR FIRST DATA SET

*
* AN ALLOCATION RETRIEVAL LIST FOLLOWS, POINTED TO BY DCB EXIT LIST.
*
SLBSTRT IHAARL DSECT=NO,PREFIX=SLB

DC 0F’0’
LIBJFCB DC CL176’ ’ FIRST JFCB

. IHAARA ,
IHAEXLST , DCB exit list mapping

Figure 35. Sample Code Retrieving Allocation Information Part 2 of 2

System Macros

Chapter 7. Using System Macro Instructions 299

OUTINX; or EOV verifies the volume and the DCB is opened for OUTPUT,
OUTIN, INOUT, or EXTEND, and the last operation against the data set was an
output operation (DCBOFLWR is set to 1).

For EOV to find JFCDQDSP set to 1, the program must not inhibit the rewrite of
the JFCB by setting bit 4 of JFCBTSDM to 1.

The tape volume is considered verified after file protect, label type, and density
conflicts have been resolved. The volume is dequeued when demounted after this
verification, even if further into OPEN or EOV processing the volume is rejected
because of expiration date, security protection, checkpoint data set protection, or
an I/O error.

When the volume serial is dequeued, the volume becomes available for allocation
to another job. However, because the volume DEQ is performed without
deallocating the volume, care must be exercised both by the authorized program
and the installation to prevent misuse of the DEQ at demount facility. A discussion
of such misuse follows:
v The authorized program must not close and reopen the data set using the tape

volume DEQ at demount facility, if it does, one of the following can occur:
– The dequeued volume can be mounted and in use by another job. When the

volume is requested for mounting, for the authorized program, the operator is
unable to satisfy the mount. Therefore, the operator must either cancel the
requesting job, cancel the job using the volume, wait for the requesting job to
time out, or wait for the job using the volume to terminate.

– The dequeued volume can be allocated to another job, but not yet in use. The
operator mounts the volume to satisfy the mount request of the authorized
job. When the volume is requested for mounting by the other job, the
operator is unable to satisfy the mount request, and is faced with the same
choices as in the previous item.

– The dequeued volume can not yet be allocated to another job and the volume
is mounted to satisfy the mount request of the authorized job. Another job
can allocate the volume and, when the volume is requested for mounting, the
situation is the same as in the previous item.

It is the responsibility of the installation that permits a program to run with APF
authorization to ensure that it does not close and reopen a data set using the
DEQ at demount facility.

v Care should be exercised when an authorized program uses the DEQ at
demount facility (data set 1), but processes another tape data set (data set 2).
Assume the same volume serial numbers have been coded in the DD statements
for data set 1 and data set 2. As the volumes of data set 1 are demounted, they
are dequeued even though those volumes still might be requested for data set 2.
All the problems explained in the preceding list can occur as data set 2 and
another job contend for a dequeued volume.
This problem should not occur, given the intended use of the DEQ at demount
facility; that is, a long-running application creating an indefinitely long tape data
set. This type of application is not normally invoked through batch execution
with user-written DD statements.

v After a volume has been demounted and dequeued because of the DEQ at
demount facility, the volume is not automatically rejected by the control
program when mounted in response to a specific or nonspecific mount request.
Without the use of the facility, the control program can recognize (by the ENQ)
that the volume is in use, and reject the volume. Therefore, operations
procedures, in effect to prevent incorrect volumes from being mounted, should

System Macros

300 z/OS V2R1.0 DFSMSdfp Advanced Services

be reviewed in the light of reduced control program protection from such errors
when the DEQ at demount facility is used. Specifically, if a volume is remounted
for an authorized program and the volume had been used previously by that
authorized program, duplicate volume serial numbers will exist in the JFCB, and
the control program will be unable to release the volume during EOV
processing.

v Checkpoint/restart considerations are discussed in z/OS DFSMSdfp
Checkpoint/Restart .

High-Speed Cartridge Tape Positioning
High-speed positioning for cartridge tape is available when opening a tape data set
on an IBM standard-labeled tape for either EXTEND (OUTINX, EXTEND, or
DISP=MOD). High-speed positioning is also available when opening to the
beginning of such a data set. To invoke high-speed positioning, your program
must modify certain fields in the JFCB and use OPEN TYPE=J to open the data set.
When you write or read on an IBM 3590 Model A60 at the right hardware level it
is not important to use the procedure described here. The magnetic tape subsystem
gives these performance benefits automatically. This procedure will not degrade
performance.

Tip: On an IBM 3480, IBM 3490, or older models of IBM 3590, this technique offers
significantly better performance than the technique for setting the data set
sequence number. In addition, systems with DFSMSrmm use this faster technique
automatically for all cartridge tapes. For the IBM 3590 Model A60, both techniques
give high performance.

Use the following procedure to modify the JFCB:
1. Issue the RDJFCB macro to have the system move the JFCB into your work

area.
2. Set the JFCPOSID flag in the JFCBFLG3 flag byte to indicate that you are

providing a block ID for a high-speed search.
3. Move the block ID into the JFCRBIDO field of the JFCB. If you are opening to

the beginning of a data set, use the block ID of the first header label record of
that data set. If you are opening to the end of a data set (for example, to extend
it), use the block ID of the tape mark immediately following the last block of
user data in that data set.

4. Issue the OPEN TYPE=J macro to have the system use your modified JFCB.

After the tape is positioned, OPEN processes the trailer labels for the data set
being extended.

If you set the JFCPOSID flag off, OPEN positions the volume normally, as though
the high-speed positioning feature were not active.

If you set the JFCPOSID flag on, but do not provide a block ID in the JFCRBIDO
field, OPEN positions the volume normally and does one of the following:
v If you are opening to the beginning of a data set, OPEN inserts the block ID of

the first header label record of that data set into the JFCRBIDO field.
v If you are opening to the end of the data set, OPEN inserts the block ID of the

tape mark immediately following the last block of user data for that data set into
the JFCRBIDO field.

OPEN does not update your copy of the JFCB. To retrieve the new value in the
system's copy of the JFCB, issue RDJFCB after OPEN.

System Macros

Chapter 7. Using System Macro Instructions 301

If the JFCPOSID flag is on during CLOSE processing, (because you set it on before
OPEN), CLOSE inserts the block ID for the first header label record of the next
data set (which might not exist) into the JFCRBIDC field. Therefore, if you
unallocate the cartridge tape device and want to use the current block ID for
subsequent processing, save the block ID before you close the data set.

OPEN resets the JFCPOSID flag if any one of the following conditions exists:
v Your program issues an OPEN which is not TYPE=J
v The requested tape volume is not an IBM standard-labeled volume
v The requested unit is not a buffered tape device.

Exceptions:

1. If you specify dynamic deallocation (with SVC99, FREE=CLOSE on the DD
statement, or the FREE option on the CLOSE macro), the block ID for the next
data set will not be available to your program.

2. When using high-speed positioning, specify the data set sequence number
normally, either explicitly by LABEL=(seqno,SL) on the DD statement, or by
default.

After the system routines have used the JFCRBIDO field for high-speed
positioning, they clear JFCRBIDO in the system's copy of the JFCB to prevent
misinterpretation during a subsequent OPEN.

OPEN - Initialize Data Control Block for Processing the JFCB
The OPEN macro instruction initializes one or more data control blocks (DCBs) so
that their associated data sets can be processed.

A full explanation of the operands of the OPEN macro instruction is contained in
the publication z/OS DFSMS Macro Instructions for Data Sets. The TYPE=J option,
because it is used in conjunction with modifying a JFCB, should be used only by
the system programmer or under the system programmer's supervision.

The format of the OPEN TYPE=J macro is:

System Macros

302 z/OS V2R1.0 DFSMSdfp Advanced Services

�� OPEN
label

�

(dcb_addr)
,

(dcb_addr ,)
, option1
,(option1)
,(, option2)

,TYPE=J

��

option1:

INPUT
EXTEND
OUTPUT
INOUT
OUTIN
OUTINX
RDBACK
UPDAT

option2:

DISP
LEAVE
REREAD
REWIND

Tip: If you wish to have multiple DCBs with or without options, code each DCB
(and options) as shown in the diagram and precede each additional DCB with a
comma.

TYPE=J
Specifies that, for each DCB referred to, you have supplied a job file control
block (JFCB) to be used during initialization. A JFCB is an internal
representation of information in a DD statement.

During initialization of a data control block, its associated JFCB can be
modified with information from the DCB or an existing data set label or with
system control information.

When the TYPE=J operand is specified, also supply a DD statement. However,
the amount of information that is given in the DD statement is at your
discretion, because you can modify many fields of the system-created JFCB. If
you specify DUMMY on your DD statement, the open routine ignores the JFCB
DSNAME and opens the data set as dummy. (See Figure 32 on page 289 for an
example of coding that modifies a system-created JFCB.) The DD statement

OPEN (DCB1),TYPE=J
OPEN (DCB1,INPUT),TYPE=J
OPEN (DCB1,(INPUT)),TYPE=J
OPEN (DCB1,(INPUT,REREAD)),TYPE=J
OPEN (DCB1,,DCB2),TYPE=J
OPEN (DCB1,,DCB2,(INPUT,REREAD),DCB3,INPUT),TYPE=J

Figure 36. Examples of Standard Form of the OPEN TYPE=J Macro

System Macros

Chapter 7. Using System Macro Instructions 303

must specify at least the device allocation (see z/OS MVS JCL User's Guide for
methods of preventing share status) and a ddname corresponding to the
associated DCB DCBDDNAM field.

The MODE operand is not shown here because it is not allowed with the TYPE=J
operand of the OPEN macro instruction.

Since OPEN with TYPE=J does not accept a JFCBX from the caller, you cannot
change volume serials after the first five volumes.

OPEN TYPE=J will not change the volume attributes (PRIVATE, PUBLIC, or
STORAGE) which are assigned to the volume during allocation. For example, if a
volume status of PRIVATE is needed but allocation is going to assign a status of
PUBLIC, then VOL=PRIVATE should be specified on the DD statement.

Purging and Restoring I/O Requests (PURGE and RESTORE macros)
The system's purge routines perform either a halt or a quiesce operation. In a halt
operation, the purge routines stop the processing of specified I/O requests initiated
with an EXCP or EXCPVR macro instruction. In a quiesce operation, the purge
routines includes the following procedures:
v Allow the completion of I/O requests (initiated with an EXCP or EXCPVR

macro instruction) that were passed to the system for execution and are
executing

v Stop the processing of requests that have not yet been initiated or passed to the
system, but save the IOBs of the requests so they can be reprocessed (restored)
later.

The system's restore routines make it possible to reprocess I/O requests that are
quiesced.

Restriction: Purge and restore processing performed for I/O requests that are not
initiated by an EXCP or EXCPVR macro is not covered here. User applications that
use the PURGE and RESTORE macros with the sequential access method (SAM)
against partitioned data sets (PDSs) (for example, to synchronize the I/O) cannot
do so against PDSEs, sequential extended format data sets, or z/OS UNIX files,
because SAM does not use EXCP or EXCPVR to access these types of data.

To pass control to the purge and restore routines, build a parameter list and place
its address in register 1, then issue the macro instruction.

24-bit or 31-bit addressing mode can be used for the PURGE or RESTORE macro
(and the parameter list).

PURGE Macro Specification
The PURGE macro is used to halt or finish I/O requests.

Refer to “General-Use Mapping Macros” in z/OS MVS Programming: Authorized
Assembler Services Reference ALE-DYN for information about using the 31-bit
interface provided by the PURGE function.

The format of the PURGE macro is:

System Macros

304 z/OS V2R1.0 DFSMSdfp Advanced Services

�� PURGE parameter_list_address
label

��

parameter_list_address—RX-type address, (2-12) or (1)
Address of a parameter list, 12 or 16 bytes long, that you have built on a word
boundary in storage. The parameter list address can be specified as an RX-type
address or in registers 2 through 12, or 1. The name of the mapping macro is
IECDPPL.

The format and contents of the parameter list are as follows:

Byte Contents

0 A byte that specifies the actions of the purge routines. The bit settings and
their meanings are:
1... Purge I/O requests to a single data set. The setting of this bit only

takes effect if bit 2 of byte 12 is 0 and bit 6 of byte 0 is 0.
0... Either purge I/O requests associated with a TCB or address space,

or purge I/O requests to more than one data set. If bit 2 of byte 12
is 1, then the request is to purge I/O associated with an address
space. If bit 2 of byte 12 is 0 and bit 6 of byte 0 is 1, then the
request is to purge I/O associated with a TCB. If bit 2 of byte 12 is
0 and bit 6 of byte 0 is 0, then the request is to purge I/O to more
than one data set.

.1.. Post ECBs associated with purged I/O requests.

..1. Halt I/O-request processing. (Quiesce I/O-request processing, if 0.)

...1 Purge related requests. (Only valid if a data-set purge is
requested.)

.... 0... Reserved—must be zero.

.... .1.. Do not purge the TCB request-block chain of asynchronously
scheduled processing.

.... ..1. Purge I/O requests associated with a TCB. The setting of this bit
will only take affect if bit 2 of byte 12 is 0.

.... ...1 This is a 16-byte parameter list. Additional purge options are
specified in bytes 12 to 15. (If this bit is off, the list is 12 bytes long,
and the purge routines do not put a return code in byte 4 of this
list or in register 15.)

1,2,3 The address of a DEB when purging I/O requests to a single data set. The
address of the first DEB in a chain of DEBs when purging I/O requests to
more than one data set. (The next-to-the-last word of each DEB must point
to the next DEB in the chain; the second word of the last DEB must
contain zeros.)

4 A byte of zeros. (If bit 7 of byte 0 is on, the purge routines will put a code
in byte: X'7F' when the purge operation is successful; X'40' when it is not
successful. If bit 7 of byte 0 is off, then X'7F' appears in this byte.)

5,6,7 If you turned on bit 6 of byte 0, the address of the TCB associated with the
I/O requests you want purged. Will be zeros if the TCB is the one you are
running under.

8 Value of X'00' or X'02' means that EXCP is the owner.

9,10,11 The address of a word in storage or the address of the DEBUSPRG field
(that is X'11' bytes more than the DEB address in this parameter list). At
the address you specify, the purge routines store a pointer to the purged

System Macros

Chapter 7. Using System Macro Instructions 305

I/O restore list, that in turn contains a pointer to the first IOB in the chain
of IOBs. The location of the pointer and format of the chain are shown in
Figure 37 on page 307.

Note: This field is only relevant for quiesce options.

12 A byte that allows you to specify additional purge options. The bit settings
and their meanings are:

Note: The following applies only if bit 7 of byte 0 is set to 1.
..1. Purge I/O requests associated with an address space. (Your

program must be in supervisor state.) The setting of this bit will
take affect regardless of the setting of bit 6 of byte 0 and bit 0 of
byte 0.

...1 If this is a data-set purge, check the validity of all the DEBs
associated with the purge operation. Validate this parameter list,
whatever the type of purge operation, by ensuring that there are
no inconsistencies in the selection of purge options. (If your
program is in problem state, these actions are taken regardless of
the bit setting.)

.... 1... Ensure that I/O requests will be reprocessed (restored) under their
original TCB. (If zero, and bit 7 of byte 0 is on, the I/O requests
are reprocessed under the TCB of the program making the restore
request.)

.... .0.. Must be zero.

13 A byte of zeros.

14,15 If bit 2 of byte 12 is on, the 2-byte ID of the address space associated with
the I/O requests you want purged.

Control is returned to your program at the instruction following the PURGE macro
instruction.

Return Codes from PURGE
If the purge operation was successful, register 15 contains zeros. Otherwise,
register 15 contains one of the following return codes:

Return Code Meaning

4 (X'04') Your request to purge I/O requests associated with a given
TCB was not honored because that TCB did not point to the
job step TCB, while the requester is in problem state.

8 (X'08') Either you requested an address-space purge operation, but
were not in supervisor state, or you requested a data set
purge operation, but failed to supply a DEB address in bytes
1, 2, and 3 of the purge parameter list.

20 (X'14') Another purge request has preempted your request. You
might want to reissue your purge request in a
time-controlled loop.

Exception: If you set bit 7 in byte 0 of the parameter list to zero, register 15 will
contain zeros, regardless of the outcome of the purge operation.

Modifying the IOB Chain
This procedure is not recommended. However, to change the order in which
purged I/O requests are restored or prevent a purged request from being restored,
you can change the sequence of IOBs in the IOB chain or remove an IOB from the

System Macros

306 z/OS V2R1.0 DFSMSdfp Advanced Services

chain. The address of the IOB chain can be obtained from the purge I/O restore list
(see Figure 37).(The address of the purge I/O restore list is shown at bytes 9
through 11 of the purge parameter list.) Note that some IOBs could be in a
different protection key.

RESTORE Macro Specification
The RESTORE macro is used to reprocess I/O requests.

The format of the RESTORE macro is:

�� RESTORE restore_address
label

��

restore_address—RX-type address, (2-12) or (1)
Address that you specified at byte 9 of the purge parameter list. See “PURGE
Macro Specification” on page 304 for information about byte 9.

Performing Track Calculations (TRKCALC macro)
The TRKCALC macro performs DASD track capacity calculations. This macro is
intended for EXCP applications and other advanced applications. You can use
TRKCALC to determine:
v The number of equal-length records that can be written on a track

Purge I/O Restore List
┌──┐
³ ³
³ 20(X’14’) ³
³ ┌───────────────────────────────────┐ ³

┌────┼─────┤ Pointer to the first IOB. If 1s, ³ ³
³ ³ ³ no I/O request was quiesced. ³ ³
³ ³ └───────────────────────────────────┘ ³
³ ³ ³
³ └──┘
³
└───→IOB(1) (where 1 is first IOB in chain)

┌──┐
³ ³
³ IOBRESTR 25(19) ³
³ ┌───────────────────────────────────┐ ³

┌────┼─────┤ Pointer to the next IOB in the ³ ³
³ ³ ³ chain. ³ ³
┴ ³ └───────────────────────────────────┘ ³
┬ ³ ³
³ └──┘
³
└───→IOB(n) (where n is last IOB in chain)

┌──┐
³ ³
³ IOBRESTR 25(19) ³
³ ┌───────────────────────────────────┐ ³
³ ³ Contains binary 1s. ³ ³
³ ³ ³ ³
³ └───────────────────────────────────┘ ³
³ ³
└──┘

Figure 37. The IOB Chain

System Macros

Chapter 7. Using System Macro Instructions 307

v The total track capacity
v Whether a record can be written in the space remaining on a track and return

the new track balance
v What the track balance would be if the last record were removed from a track
v The length of the longest possible record that can be written to a track.

The TRKCALC routine issues no SVC instructions or I/O. TRKCALC can be called
in an SRB routine or in TCB mode. It can be called in 24-bit or 31-bit addressing
mode and in supervisor or problem state.

TRKCALC works equally well for any track. It does not use the address of the
track.

Using TRKCALC
This information provides an overview of how to use TRKCALC to accomplish
various tasks. See “TRKCALC Macro Specification” on page 309 for details on how
to code the TRKCALC parameters and on how output is returned.

Determining the number of equal-length records that can be
written on a track
To determine the number of equal-length records that can be written on a track,
code TRKCALC with FUNCTN=TRKCAP. You must specify the number of existing
records on the track and the key and data length of the new records (using either
the R, K, and DD keywords or the R, K, and DD bytes in the RKDD parameter).

If you wish to regard the track as being empty, specify an R value of 1. Otherwise,
specify an R value that is one greater than the number of existing records on the
track.

If the length of any existing record differs from the length of the new records (as
specified in the DD value), then code the BALANCE parameter. Otherwise, omit
the BALANCE parameter.

Determining the total track capacity
To determine the total track capacity, code
FUNCTN=TRKBAL,REMOVE=YES

and either R=1 or the R byte in RKDD set to 1.

Note: This value is useful only as input for the BALANCE parameter on later calls
to TRKCALC to represent an empty track. You cannot write a record of this size.

Determine whether a record can be written in the space
remaining on a track and return the new track balance
To determine whether a record can be written in the space remaining on the track
and return the new track balance, code
FUNCTN=TRKBAL,REMOVE=NO

and the BALANCE parameter. You can supply this new track balance with the
BALANCE parameter on a later call to TRKCALC.

System Macros

308 z/OS V2R1.0 DFSMSdfp Advanced Services

Determine the track balance if the last record were removed from
a track
To determine what the track balance would be if the last record were removed
from the track, code FUNCTN=TRKBAL and REMOVE=YES. Use the R, K and DD
parameters or the RKDD parameter to identify the record to be removed. It must
be the last record on the track.

Determine the length of the longest possible record that can be
written on a track
To determine the length of the longest possible record that can be written on a
track, code FUNCTN=TRKBAL, REMOVE=NO, MAXSIZE=YES. You must specify
the number of existing records on the track (using either the R keyword or the
RKDD parameter) and a data length of X'FFFF' (using either the DD keyword or
the RKDD parameter). The DD value of X'FFFF' is greater than is supported on
any disk. Expect a return code 8, which means that the record does not fit and
TRKCALC returned the size of the largest possible record.

If you wish to regard the track as being empty, specify an R value of 1.

If the track is not empty, specify an R value that is one greater than the number of
existing records on the track and code the BALANCE parameter. In this case,
TRKCALC will give return code 8 and the length of the longest possible record
that will fit on the rest of the track.

Note: The value returned might be larger than what is supported by any access
method other than EXCP.

Restrictions
Non-EXCP user applications cannot expect consistent information from TRKCALC
for PDSEs, because of the unique structure and format of PDSEs. However,
processing will complete without error indications.

TRKCALC does not support z/OS UNIX files. You will receive unpredictable
results if you use TRKCALC for z/OS UNIX files.

TRKCALC Macro Specification
The standard, list, execute, and DSECT forms of the macro are described. Examples
of the TRKCALC macro follow the macro descriptions.

TRKCALC—Standard Form
The format of the TRKCALC macro is:

System Macros

Chapter 7. Using System Macro Instructions 309

�� listname TRKCALC FUNCTN= TRKBAL
TRKCAP

,DEVTAB=addr
,UCB=addr
,TYPE=addr

�

�
,BALANCE=addr BELOW

,LOC= ANY
NO

,REMOVE= YES

�

�
NO

,MAXSIZE= YES

,RKDD=addr
,R=addr ,K=addr ,DD=addr

�

�
NO

,REGSAVE= YES
I

,MF=

��

FUNCTN=TRKBAL or TRKCAP
Specifies the function to be performed. Specify one of the three keywords,
DEVTAB, UCB, or TYPE, to provide the information source for the macro.

TRKBAL
If REMOVE=NO is specified, TRKBAL calculates whether an additional
record fits on the track and what the new track balance would be if the
record were added. If REMOVE=YES is specified, TRKBAL calculates what
the track balance would be if a record were removed from the track. The
record to be added or removed from the track is defined by the RKDD
parameter, or by the R, K, and DD parameters.

If R is equal to 1 (or the R value in the RKDD parameter is 1) and
REMOVE=NO is specified, TRKCALC will treat record 1 as if it were being
added to an empty track; if R is equal to 1 and REMOVE=YES is specified,
TRKCAL will treat record 1 as if it were being deleted from the track,
leaving an empty track.

If R is not equal to 1, the specified record is added to or removed from the
track. If the input track balance is not supplied through the BALANCE
parameter, it is assumed that the track contains equal-sized records as
specified in the RKDD parameter (or in the R, K, and DD parameters).

When REMOVE=NO is specified, one of the following occurs:
v If the record fits on the track, register 0 contains the new track balance.
v If the record does not fit on the track and MAXSIZE=NO is specified, a

record does not fit return code is placed in register 15.
v If the record does not fit and MAXSIZE=YES is specified, one of the

following happens:
– The data length of the largest record that fits in the remaining space

is returned in register 0.
– A code is returned that indicates no record fits in the remaining

space.

When REMOVE=YES is specified, one of the following occurs:
v If R is equal to 1, register 0 contains the track capacity.
v If R is not equal to 1, registers 0 contains the input track balance

(supplied through the BALANCE parameter) incremented by the track

System Macros

310 z/OS V2R1.0 DFSMSdfp Advanced Services

balance used by the input record. If the input balance is not supplied,
register 0 contains the track capacity left after R–1 records are written on
the track.

TRKCAP
Calculates, and returns in register 0, the number of fixed-length records
that can be written on a whole track (R is equal to 1) or on a
partially-filled track (R is not equal to 1). The records are defined by the K
and DD values of the RKDD parameter, or by the K and DD parameters.

Depending on the value for R, one of the following occurs:
v If R is equal to 1, TRKCALC ignores the BALANCE parameter and

makes the calculation as if the track were empty.
v If R is not equal to 1 and the BALANCE parameter is omitted, the

calculation is made for a track that already contains R–1 records of the
length defined by the K and DD values.

v If R is not equal to 1 and the BALANCE parameter is supplied, the
calculation is made for a track whose remaining track balance is the
value of the BALANCE parameter.

DEVTAB=addr—RX-type address, (2-12), (0), (14)
addr specifies a word that contains the address of the device characteristics
table entry (DCTE). If you specify a register, it contains the actual address of
the DCTE. The address of the DCTE can be found in the word beginning at the
DCBDVTBL field of an opened DCB.

UCB=addr—RX-type address, (2-12), (0), (14)
addr specifies the address of a word that contains the address of the UCB. If
you specify a register, it contains the actual address of the UCB.

The TRKCALC macro accepts the address of a UCB or UCB copy.
Unauthorized programs can get a copy of the UCB by using the UCBSCAN
macro and specifying the COPY and UCBAREA keywords. See z/OS HCD
Planning for more information.

TYPE=addr—RX-type address, (2-12), (0), (14)
You can specify the address of the UCB device type (UCBTBYT4), or you can
specify the 1-byte UCB device type in the low-order byte of a register.

LOC=BELOW or ANY
Optional parameter indicating whether the value passed by the UCB parameter
is a 4-byte or a 3-byte address. This parameter only applies to callers running
in AMODE 31. If the caller is running in AMODE 24, this parameter is ignored
and the high-order byte is treated as X'00'.

BELOW
The UCB parameter contains a UCB address for a UCB which resides in
storage below 16 megabytes, or a captured UCB. This is the default.

If LOC=BELOW is specified, the high-order byte of the UCB address will
be treated as X'00'.

ANY
The address passed in the UCB parameter contains a 3-byte or 4-byte UCB
address.

If LOC=ANY is specified when invoking in 31-bit mode, TRKCALC will
treat the UCB address as a 31-bit address.

BALANCE=addr—RX-type address, (2-12), (0), (14)
You can specify either the address of a halfword containing the current track

System Macros

Chapter 7. Using System Macro Instructions 311

balance, or you can specify the balance in the low-order two bytes of a register.
The value supplied could be the value returned when you last issued
TRKCALC. If R is equal to 1, the balance is reset to track capacity by
TRKCALC, and your supplied value is ignored. This is an input value and is
not modified by the TRKCALC macro. The resulting track balance is returned
in register 0 and in the TRKCALC parameter list field STARBAL. The value
you supply for this parameter must be a valid value for the device type in use.

REMOVE=YES or NO
Indicates if a record is to be deleted from the track.

YES
Specifies that the record identified by the record number (specified in the R
keyword) is being deleted from the track. The track balance is incremented
instead of decremented.

YES is valid only on a FUNCTN=TRKBAL call.

NO Specifies that a record is not to be deleted from the track. NO is the
default.

MAXSIZE=YES or NO

YES
If the specified record does not fit, the largest length of a record with the
specified key length that fits is returned (register 0).

YES is valid only on a FUNCTN=TRKBAL call.

NO Maximum size is not returned. NO is the default.

RKDD=addr—RX-type address, (2-12), (0), (14)
addr specifies a word containing a record number (1 byte), key length (1 byte),
and data length (2 bytes) (bytes 0, 1, and 2 and 3, respectively) or a register
containing the record number, key length, and data length. R, K, and DD can
be specified by this keyword, or you can use the following three keywords
instead.

R=addr—RX-type address, (2-12), (0), (14), or n
You can specify either the address of the record number, or you can specify
the record number using the low-order byte of a register or immediate
data (n). Specify a decimal digit for n (immediate data).

K=addr—RX-type address, (2-12), (0), (14), or n
You can specify either the address of a field containing the hexadecimal
value of the record's key length, or you can specify the record's key length
using the low-order byte of a register or immediate data (n). Specify a
decimal digit for n (immediate data).

DD=addr—RX-type address, (2-12), (0), (14), or n
You can specify either the address of a field containing the hexadecimal
value of the record's data length, or you can specify the record's data
length using the low-order two bytes of a register or immediate data (n).
Specify a decimal digit for n (immediate data).

REGSAVE=YES or NO
Specifies whether registers are to be saved.

YES
Specifies registers 1 through 14 are saved and restored in the
caller-provided save area (pointed to by register 13) across the TRKCALC
call. Otherwise, registers 1, 9, 10, 11, and 14 are modified. Registers 0 and
15 are always modified by a TRKCALC call.

System Macros

312 z/OS V2R1.0 DFSMSdfp Advanced Services

NO Specifies registers are not saved across a TRKCALC call. NO is the default.

MF=I
Specifies storage definition for the TRKCALC parameter list and parameter list
initialization, using the given keywords, then calling the TRKCALC function.
MF=I is the default.

TRKCALC—Execute Form
A remote parameter list is referred to and can be modified by the execute form of
the TRKCALC macro. The TRKCALC routine is called. The function of the
operands is the same as for the standard form.

The format of the execute form of the TRKCALC macro is:

�� TRKCALC
label FUNCTN= TRKBAL

TRKCAP
,DEVTAB= addr

*
,UCB= addr

*
,TYPE= addr

*

�

�
BELOW

,LOC= ANY
,BALANCE= addr

*
NO

,REMOVE= YES

�

�
NO

,MAXSIZE= YES
,RKDD=addr
,R=addr ,K=addr ,DD=addr

�

�
NO

,REGSAVE= YES

,MF= (E,addr) ��

FUNCTN=TRKBAL or TRKCAP
Is coded as shown in the standard form. If this keyword is omitted, any
specification of REMOVE, MAXSIZE, LAST, and the RX form of BALANCE is
ignored. In addition, DEVTAB is assumed if UCB is coded and a failure occurs,
or if TYPE is specified. When you use FUNCTN, one of the keywords
(DEVTAB, UCB, or TYPE) must be specified to provide an information source.

DEVTAB=addr or *—RX-type address, (2-12), (0), (14)
Is coded as shown in the standard form except for the * subparameter. Specify
an * when you have inserted the address of the device characteristics table
entry (DCTE) in the parameter list.

UCB=addr or *.—RX-type address, (2-12), (0), (14)
Is coded as shown in the standard form except for the * subparameter. Specify
an * when you have inserted the address of the UCB in the parameter list.

The TRKCALC macro accepts the address of a UCB or UCB copy.
Unauthorized programs can get a copy of the UCB by using the UCBSCAN
macro and specifying the COPY and UCBAREA keywords. See z/OS HCD
Planning for more information.

System Macros

Chapter 7. Using System Macro Instructions 313

TYPE=addr or *—RX-type address, (2-12), (0), (14)
Is coded as shown in the standard form except for the * subparameter. Specify
an * when you have inserted the address of the UCB type (UCBTYP) in the
parameter list.

LOC=BELOW or ANY
Is coded as shown in the standard form.

BALANCE=addr or *—RX-type address, (2-12), (0), (14)
Is coded as shown in the standard form except for the * subparameter. Specify
an * when you have inserted the balance in the parameter list.

REMOVE=YES or NO
Is coded as shown in the standard form.

MAXSIZE=YES or NO
Is coded as shown in the standard form.

RKDD=addr—RX-type address, (2-12), (0), (14)
Is coded as shown in the standard form.

R=addr—RX-type address, (2-12), (0), (14) or n
Is coded as shown in the standard form.

K=addr—RX-type address, (2-12), (0), (14), or n
Is coded as shown in the standard form.

DD=addr—RX-type address, (2-12), (0), (14), or n
Is coded as shown in the standard form.

REGSAVE=YES or NO
Is coded as shown in the standard form.

MF=(E,addr)
This operand specifies that the execute form of the TRKCALC macro
instruction and an existing data management parameter list are used.

E Coded as shown.

addr—RX-type address, (0), (1), (2-12), or (14)
Specifies the address of the parameter list.

TRKCALC—List Form
The list form of the TRKCALC macro constructs an empty, in-line parameter list.
By coding only MF=L, you construct a parameter list, and the actual values can be
supplied by the execute form of the TRKCALC macro. Any parameters other than
MF=L are ignored.

The format of the list form of the TRKCALC macro is:

�� TRKCALC MF=L
label

��

TRKCALC—DSECT Only
This call gives a symbolic expansion of the parameter list for the TRKCALC macro.
No DSECT statement is generated. If a name is specified on the macro call, it
applies, after any necessary boundary alignment, to the beginning of the list. The
macro-generated symbols all begin with the characters STAR.

System Macros

314 z/OS V2R1.0 DFSMSdfp Advanced Services

The format of the DSECT form of the TRKCALC macro is:

�� TRKCALC MF=D
label

��

Input Register Usage for All Forms of MF
Register

Use

0, 2-12, 14
Available to provide input for keywords.

1 Only to provide the address of the parameter list for an MF=E call.

13 Input for keywords if REGSAVE=YES is not specified.

15 Work register to build the TRKCALC parameter list for the MF=E call; it is
not available as an input register.

Output from TRKCALC
FUNCTN=TRKBAL:

Output
Meaning

R15=X'00'
The record fits on the track. Register 0 and STARBAL contain the new
track balance.

R15=X'04'
Record does not fit on the track. If MAXSIZE=YES is specified, a partial
record does not fit either. Register 0 and STARBAL are set to zero.

R15=X'08'
Record does not fit on the track. MAXSIZE=YES is specified, and a partial
record does fit. Register 0 and STARBAL are set to the maximum number
of data bytes that fit on the remainder of the track with the specified key
length.

The key length is excluded from the count of maximum data bytes.

R15=X'0C'
The user supplied a device type, but the device characteristics table
indicated that no device of that type was generated on the system. Register
0 is set to zero.

STARBAL
This is the track balance field of the TRKCALC parameter list. This field is
first set to the track capacity if R is equal to 1, or to the supplied
BALANCE value if R is not equal to 1, or to the calculated balance if R is
not equal to 1 and BALANCE are omitted. STARBAL is updated to the
new track balance if the record fits; otherwise, STARBAL is left with the
input track balance value.

FUNCTN=TRKCAP :

Output
Meaning

System Macros

Chapter 7. Using System Macro Instructions 315

R15=X'00'
Register 0 contains the number of records that fit on the track if R is equal
to 1, or the number of records that fit on the remainder of the track if R is
not equal to 1.

R15=X'04'
No records of the length specified fit on a full track (R is equal to 1) or a
partial track (R is not equal to 1). Register 0 is set to zero.

R15=X'0C'
The user supplied a device type, but the device characteristics table
indicated that no device of that type was generated on the system. Register
0 is set to zero.

STARBAL
This is the track balance field of the TRKCALC parameter list. This field is
first set to the track capacity if R is equal to 1, or to the supplied
BALANCE value if R is not equal to 1, or to the calculated balance if R is
not equal to 1 and BALANCE is omitted. STARBAL is updated to the new
track balance if the record fits; otherwise, STARBAL is left with the input
track balance value when the request specified MAXSIZE=NO or was
defaulted to MAXSIZE=NO. If the record does not fit on the track with
MAXSIZE=YES specified, STARBAL is set to the maximum number of data
bytes of a partial record that can fit on the remainder of the track with the
specified key length (Register 15 set to 8) or STARBAL is set to zero when
a partial record could not fit on the remainder of the track (Register 15 set
to 4).

Return Codes from TRKCALC
The TRKCALC macro passes a return code in register 15. The return codes and
their meanings are as follows:

Return Code Meaning

0 (X'00') Indicates that register 0 contains the new track balance.
4 (X'04') Indicates that the record did not fit (register 0 = 0).
8 (X'08') Indicates that the record did not fit. (Register 0 contains the

maximum data length that does fit.)
12 (X'0C') The system could not find an entry in the device

characteristics table whose attributes match those of the
user-specified device type. Register 0 is set to zero.

TRKCALC Macro Examples
In this example, TRKCALC is coded to determine how many records of a given
size with 10-byte keys fit on an IBM 3380 track. After issuing the macro, the
number of records is saved in NUMREC:

TRKCALC FUNCTN=TRKCAP,TYPE=UTYPE,R=1,K=10,DD=DL, X
MF=(E,(1))

.

.
ST 0,NUMREC SAVE NUMBER OF RECORDS
.
.

DL DC H’xxxx’ DATA LENGTH
UTYPE DC X’0E’
NUMREC DS F MAX # OF RECORDS

In this example, TRKCALC is coded to determine whether another record can fit
on a track of a 3380, given a track balance.

System Macros

316 z/OS V2R1.0 DFSMSdfp Advanced Services

TRKCALC FUNCTN=TRKBAL,TYPE=UTYPE,R=REC,K=KL,DD=DD, X
BALANCE=BAL,MAXSIZE=YES,MF=(E,(1))

.

.
UTYPE DC X’0E’
REC DC X’xx’
KL DC X’xx’
DD DC H’xxxx’
BAL DC H’xxxx’

Perform calculations and conversions with 28-bit cylinder addresses
(TRKADDR macro)

TRKADDR is an assembler macro that performs conversion and compare
operations on DASD track addresses in the form CCCCcccH, where CCCC is the 16
low order bits of the cylinder number and ccc is the 12 high order bits of the
cylinder number. This is referred to as a 28-bit cylinder address. TRKADDR works
equally well with track addresses that contain a cylinder number less than or
greater than 16 bits. It works with all DASD types that are supported by z/OS. Its
functions include:
v Calculate the relative track number on the volume
v Compare two track addresses
v Extract the 28-bit cylinder number
v Extract the 4-bit track number
v Increment the track address by one track and increments the cylinder number if

necessary.
v Normalize cylinder number to permit comparing one cchh against another
v Convert a relative track number to a 28-bit cylinder address
v Set the cylinder number in a 28-bit track address
v Convert a normalized track address into an absolute 28-bit track address.

Unless otherwise stated, you can specify any registers from 0 to 15 except that
register 0 cannot be used to address storage. TRKADDR does not use any other
registers, even register 13. You can invoke TRKADDR in 24-bit, 31-bit or 64-bit
mode. If you use the SYSSTATE macro with AMODE64=YES in an earlier source
code statement, then TRKADDR might generate more efficient code.

Calculate the relative track number on the volume (TRKADDR
ABSTOREL)

The format of the execute form of the TRKADDR ABSTOREL macro is:

�� TRKADDR ABSTOREL
label

,cchh
,(reg)

,REG=(rega,regb) ��

Converts absolute track address (CCCCcccH) to a relative track number. Calculates
the relative track number on the volume and stores the result in the first register.
The second register is used as a work register.

Parameters
cchh

Input: Track address in absolute format

System Macros

Chapter 7. Using System Macro Instructions 317

(reg)
This is a register from 1 to 15 containing the address of the cchh.

rega
Output: Relative track number

regb
Work register

Compare two track addresses (TRKADDR COMPARE)
The format of the execute form of the TRKADDR COMPARE macro is:

�� TRKADDR COMPARE
label

,cchh1
,(reg1)

,cchh2
,(reg2)

,REG=(rega,regb) ��

Compares two track addresses in storage using the two registers as work registers.
Sets condition code as for CLC machine instruction. Normalizes the two input
values (CCCCcccH to cccCCCCH) and then compares the two normalized values.
The input values are returned unchanged.

Parameters
cchh1 and cchh2

Input: Track addresses in absolute format to be compared. These value are
returned unchanged.

(reg1) and (reg2)
This is a register from 1 to 15 containing the address of the cchh.

rega, regb
Work registers

Extract 28-bit cylinder number (TRKADDR EXTRACTCYL)
The format of the execute form of the TRKADDR EXTRACTCYL macro is:

�� TRKADDR EXTRACTCYL
label

,cchh
,(reg)

,REG=(rega) ��

Extracts the 28-bit cylinder number to a register (CCCCcccH to 0cccCCCC). The
input field is returned unchanged.

Parameters
cchh

Input: Track address in absolute format

(reg)
This is a register from 1 to 15 containing the address of the cchh.

rega
Output: Cylinder number from the input track address

System Macros

318 z/OS V2R1.0 DFSMSdfp Advanced Services

Extract 4-bit track number (TRKADDR EXTRACTTRK)
The format of the execute form of the TRKADDR EXTRACTTRK macro is:

�� TRKADDR EXTRACTTRK
label

,cchh
,(reg)

,REG=(rega) ��

Extracts the 4-bit track number to a register (CCCCcccH to 0000000H). The input
field is returned unchanged.

Parameters
cchh

Input: Track address in absolute format

(reg)
This is a register from 1 to 15 containing the address of the cchh.

rega
Output: Track number from the input track address

Increment track address (TRKADDR NEXTTRACK)
The format of the execute form of the TRKADDR NEXTTRACK macro is:

�� TRKADDR NEXTTRACK
label

,cchh
,(reg)

,REG=(rega) ��

Increments the track address by one track and increments the cylinder number if
necessary. The modified value is returned in the input cchh field. The register is
used as a work register.

Parameters
cchh

Input/Output: Track address in absolute format (CCCCcccH). Upon completion
of the operation, this parameter contains the incremented track address in
absolute format.

(reg)
This is a register from 1 to 15 containing the address of the cchh.

rega
Work register

Normalize cylinder number (TRKADDR NORMALIZE)
The format of the execute form of the TRKADDR NORMALIZE macro is:

System Macros

Chapter 7. Using System Macro Instructions 319

�� TRKADDR NORMALIZE
label

,cchh
,(reg)

,REG=(rega) ��

Reverses the 16-bit and 12-bit portions of the cylinder number and stores the result
in the 32-bit register with the H digit so you can use a simple unsigned
comparison. The CCCCcccH becomes cccCCCCH. Use this when comparing one
cchh against another. Normalize each and do an unsigned comparison.

Parameters
cchh

Input: Track address in absolute format.

(reg)
This is a register from 1 to 15 containing the address of the cchh.

rega
Output: Normalized track address

Convert a relative track number to a 28-bit cylinder address
(TRKADDR RELTOABS)

The format of the execute form of the TRKADDR RELTOABS macro is:

�� TRKADDR RELTOABS
label

,cchh
,(reg)

,REG=(reg_pair) ��

Converts relative track number to absolute format (CCCCcccH). RELTOABS
converts a relative track number to a 28-bit cylinder address form in the passed
cchh field. The register must be the first in an even/odd pair. The odd register
must contain the relative track number on the volume. The macro modifies both
registers. In 24-bit and 31-bit addressing modes these are four-byte registers. In
64-bit mode, they are eight-byte registers.

Parameters
cchh

Output: Converted track address in absolute format.

(reg)
This is a register from 1 to 15 containing the address of the cchh.

reg_pair
Input: The first register of an even/odd pair where the odd register contains
the track address to be converted.

Set cylinder number from register (TRKADDR SETCYL)
The format of the execute form of the TRKADDR SETCYL macro is:

System Macros

320 z/OS V2R1.0 DFSMSdfp Advanced Services

�� TRKADDR SETCYL
label

,cchh
,(reg)

,REG=(rega) ��

Stores the cylinder number from the register to the 28-bits in the cchh and sets H to
0 (0cccCCCC to CCCCccc0). Destroys the register.

Parameters
cchh

Output: Contains the cylinder number

(reg)
This is a register from 1 to 15 containing the address of the cchh.

rega
Input: Contains the cylinder number to be converted

Convert normalized track address into an absolute 28-bit track
address (TRKADDR NORMTOABS)

The format of the execute form of the TRKADDR NORMTOABS macro is:

�� TRKADDR NORMTOABS
label

,cchh
,(reg)

,REG=(rega,regb) ��

Reverses the 12-bit and 16-bit portions of the cylinder number and stores the result
in the 32-bit register with the H digit. The cccCCCCH becomes CCCCcccH. Use this
to convert a normalized track address to an absolute 28-bit track address.

Parameters
cchh

Input: Cylinder address to be converted

(reg)
This is a register from 1 to 15 containing the address of the cchh.

rega
Output: Contains the converted value

regb
Work register

Determining Level and Name of DFSMS
You can use the IHADFA mapping macro to determine the level and name of
DFSMS. It maps the data facilities area. Use the CVT mapping macro to define
symbol CVTDFA, which points to the DFA. The DFARELS field in the DFA is four
bytes that designate the product level.

System Macros

Chapter 7. Using System Macro Instructions 321

Determining Version, Release, and Modification Level of
DFSMS

The first byte of DFARELS contains a binary value that indicates the level of
DFSMS on which your program is running:

Value Meaning

0 Your program is not executing on DFSMS; it is executing on MVS/XA DFP
Version 2 or MVS/DFP Version 3 and the following three bytes also
contain zeroes. On those two products you can determine the release level
by examining the two-byte field DFAREL. DFAREL is described in the
comments in IHADFA.

1 Your program is running on DFSMS/MVS and the following three bytes
designate the version, release and modification level of DFSMS/MVS. A
value of X'01010200' in DFARELS designates DFSMS/MVS Version 1,
Release 2, Modification level 0.

2 Your program is running on the level of DFSMS that is exclusive to
OS/390® or one of the first two releases of z/OS. A value of X'02020A00' in
DFARELS designates DFSMS for OS/390 Version 2 Release 10,
Modification level 0. DFSMS was not modified in the first two releases of
z/OS, so these releases also have a value of X'02020A00'.

>3 Your program is running on a level of DFSMS that is part of a hypothetical
replacement product after all versions and releases of z/OS. The system
never returns this value. This represents IBM's intent in case there is such a
product. The following three bytes designate the version, release, and
modification level of that product. The value in the other three bytes is
X'010100' or higher. It may differ from the level of installed z/OS.

3 Your program is running on a level of DFSMS that is exclusive to z/OS
Version 1 Release 3 or higher. The following three bytes designate the
version, release, and modification level of z/OS for which that DFSMS was
designed. The value in the other three bytes is X'010300' or higher. It may
differ from the level of installed z/OS.

IBM intends that for any future level of the DFA, the 4-byte DFARELS will not
contain a value smaller than any previous value. If your purpose in testing
DFARELS is to determine whether a particular feature of DFSMS is available, then
we suggest that your program test all four bytes of DFARELS. IBM intends that if
one of the low-order three bytes of DFARELS contains a value that is smaller than
the corresponding byte in the prior release, then a higher order byte will contain a
larger value.

For compatibility with programs that were designed to run on MVS/XA DFP
Version 2 or MVS/DFP Version 3, DFSMS sets DFAREL to the value X'3321', which
designates MVS/DFP Version 3, Release 3, modification level 2. The last digit
indicates that the system actually is at a higher level than DFP 3.3.2.

See also “Call for DFSMS Level Determination” on page 342 for an alternative
method of determining the level of DFSMS.

See “Data Facilities Area (DFA) Fields” on page 449 for a layout of the fields of the
Data Facilities Area (DFA) control block.

System Macros

322 z/OS V2R1.0 DFSMSdfp Advanced Services

Determining Name of DFSMS
If the value of DFARELS is '03010300' or greater, it means the system is z/OS
Version 1 Release 3.0 or later. This means that field DFAELNMP points to a
structure that contains the name of DFSMS. See DFAELNM in “Data Facilities Area
(DFA) Fields” on page 449.

Determining DFARELS During Assembler Macro Phase
Your program can test the DFARELS field during execution as described earlier.
This does not allow you to assemble a program that optionally uses a new macro
parameter that is available only on a certain level of the system. Your program
receives syntax error messages if assembled on an older level of the system.

A solution is to test a macro variable symbol set by the IHADFA macro. The name
of the symbol is &IHADFARELS and it is a character type of global variable
symbol. Your program's test of its value must follow the IHADFA invocation.

The other system facilities determine whether your program can run on a different
release than the one on which it was assembled. For some new functions the older
release will ignore the new function. Other new functions will fail on an older
release.

The IHADFA macro sets the variable symbol &IHADFARELS to an eight-character
value. Each pair of characters in the value represents the decimal value of one byte
in DFARELS. They are not hexadecimal digits because the EBCDIC values of “A”
to “F” are not in proper collating sequence with the numeric digits. For example
the value for z/OS Version 1 Release 10 is ' 03011000', '03' represent the name
z/OS, ' 01' represents Version 1, ' 10' represents release 10, ' 00' represents
modification level 0.

This is an example of a program using &IHADFARELS:

System Macros

Chapter 7. Using System Macro Instructions 323

The IHADFA macro as shipped prior to DFSMS/MVS V1R3 did not set
&IHADFARELS. You can use the technique in the example even if IHADFA does
not set &IHADFARELS.

This technique of using IHADFA to decide on another macro invocation assumes
that IHADFA resides in a complete macro library for the same release as the other
macro. It might not work properly with a macro from a different release or
product.

Following is an example of determining whether a mapping macro has defined a
symbol that is needed during the assembly. During execution, the program tests
DFARELS to determine how to execute.

xxxx CSECT
.
.
.

GBLC &IHADFARELS Set by IHADFA macro to be system level
IHADFA , Set &IHADFARELS and define DFARELS

xxxx CSECT Reset CSECT
.
.
.

* Expand one of two macro invocations. Either works on any DFSMS
* release. If in 31-bit mode on 1.3 or later, then ANY means a UCB
* may be above the line. Neither works on DFP Version 3 when assembled
* on DFSMS.

AIF (’&IHADFARELS’ LT ’01010300’).OLD
* If executing in 31-bit mode on 1.3 or later, this requires that each
* UCB address be 31-bit. They may point below the line. On an older
* level of DFSMS, the ANY has no effect. DFP 3.x will reject it.

DEVTYPE UCBLIST=(MYLIST,1,ANY),MF=(E,DEVTLIST)
AGO .CONT

.OLD DEVTYPE UCBLIST=(MYLIST,1),MF=(E,DEVTLIST)

.CONT ANOP
.

MYLIST DC A(0)
DEVTLIST DEVTYPE ,(DEVINFO,24),MF=L

Figure 38. Sample &IHADFARELS Program

GBLC &IHADFARELS Set by IHADFA macro to be system level
IHADFA , Learn release of assembly & execution

TRKLIST DSECT
TRKCALC MF=D DSECT for TRKCALC parameter list
SPACE 2

* If global symbol &IHADFARELS has a null value or is less than
* 01010300, then TRKCALC did not define a certain symbol. Since
* other parts of this program use it, it must be defined.

AIF (’&IHADFARELS’ GE ’01010300’).GOTBIT Go if newer
STARLOC EQU X’01’ LOC=ANY. DEVTAB or UCB may be above line
.GOTBIT ANOP

Figure 39. Example of Determining Symbol Definition

System Macros

324 z/OS V2R1.0 DFSMSdfp Advanced Services

Chapter 8. Displaying Messages on Cartridge Magnetic Tape
Subsystems (MSGDISP macro)

This information covers using the MSGDISP macro to display messages on
magnetic tape devices that have displays. With MSGDISP, you can specify the
message to be displayed and how to display it (for example, steady or flashing).
The standard, executes, and list forms of the macro are described here. The six
main parameters of the macro and their functions are:

Value Meaning

MOUNT Displays an 'M' in position 1 of the display area during a mount request
until a volume is loaded and made ready. The 'M' is followed by the
volume serial number and label type.

VERIFY Shows that a volume has been accepted by displaying its serial number
and label type in positions 2 through 8.

RDY Displays text in positions 2 through 7 while a data set is open.
DEMOUNT Places a volume disposition indicator in position 1 of the display until a

volume is demounted.
RESET Clears the display area.
GEN Provides the full range of display options, including the option to

alternate two messages.

All except the RDY parameter require that the caller be in supervisor state, have a
storage protect key of 0 through 7, or be authorized by the authorized program
facility.

You can issue the MSGDISP macro in 24- or 31-bit addressing mode. When you
use 31-bit addressing mode, all addresses must be valid 31-bit addresses.

The MSGDISP macro generates a parameter list as input to the message display
service routine. You can code an installation exit routine named IGXMSGEX,which
gains control when MSGDISP is processing MOUNT, DEMOUNT, VERIFY, or GEN
requests. The exit can change the message text displayed (two 8-byte strings) and 1
bit of the format control byte. See the publication z/OS DFSMS Installation Exits for
details.

© Copyright IBM Corp. 1979, 2014 325

MSGDISP—Displaying a Mount Message
The format of the MSGDISP macro with the MOUNT parameter is:

�� MSGDISP MOUNT
label

,UCB=(reg)
'S'

,LABEL= 'A'
'N'
'X'
addr

�

�
,MF= L

(E,addr)
,SER= 'volser'

addr
,MEDIATYPE=n

�

�
YES

,INDEX= NO
NO

,TEST= YES
YES

,WAIT= NO

��

MOUNT
Displays an 'M' in position 1 of the display area during a mount request. The
'M' is followed by a volume serial number and label type. The display flashes
on and off until a volume is loaded and ready. If the device is ready at the
time a mount request is issued, the 'M' is not displayed.

UCB=(reg)—(2-12)
Specifies a register containing the UCB address for the device. Use the address
of a UCB, not a UCB copy.

LABEL='A' or 'N' or 'S' or 'X' or addr
Displays the label type of the mounted volume in position 8. If you specify an
unknown label type other than a blank, a “?” is displayed.

'A'
Specifies ISO/ANSI (AL) or ISO/ANSI with user labels (AUL).
Apostrophes are required.

'N'
Specifies no labels (NL), LTM (VSE), or bypass label processing (BLP)
Apostrophes are required.

'S'
Specifies IBM Standard (SL) or IBM Standard with user labels (SUL).
Apostrophes are required.

'X'
Specifies nonstandard labels (NSL). Apostrophes are required.

addr—RX-type address, A-type address, or (2-12)
Specifies the address of an area containing an “A”, “N”, “S”, or “X”. (See
the following explanations of these characters.) For MF=L, you can only
specify an A-type address.

MF=L or (E,addr)
Specifies either the execute or the list form of MSGDISP. If you do not specify
this parameter, the standard form of the macro is used.

Cartridge Messages

326 z/OS V2R1.0 DFSMSdfp Advanced Services

L Specifies the list form of MSGDISP. This generates a parameter list that can
be used as input to the execute form. The execute form can modify the
parameter list.

(E,addr)
Specifies that the execute form of the macro and an existing parameter list
are used.

addr—RX-type address, (1), or (2-12)
Specifies the address of the parameter list.

SER='volser' or addr
Specifies the serial number of the volume to be mounted. The serial number is
displayed in positions 2 through 7. If you do not specify SER, the system
supplies the volume serial number. If the serial number is not available, a
scratch volume is used, unless the volume use attribute indicates a default of
“PRIVAT”.

'volser'
Specifies the volume serial number as a literal. Specify in apostrophes.

addr—RX-type address, A-type address, or (2-12)
Specifies the address of the volume serial number. For MF=L, you can only
specify an A-type address.

MEDIATYPE=n
Specifies what media type to mount for SCRTCH or PRIVAT mounts. The
MEDIATYPE keyword applies only when volumes are to be mounted on
devices that reside in a Manual Tape Library (MTL). If MEDIATYPE is
specified for devices outside of a Manual Tape Library, it is ignored. The value
n can be specified as a literal, the address of a 1 byte field containing the
value, or the name of the addressable field containing the value. Valid values
for MEDIATYPE are the numbers 1 through 8.

TEST=NO or YES
Specifies whether the macro expansion is to include code that tests the UCB to
determine whether message display is supported. If the result of the test is that
the message display is not supported, an SVC is not invoked.

NO Specifies that the macro expansion is not to include code that tests the
UCB to determine whether the device supports message display.

YES
Specifies testing the UCB by the MSGDISP macro before attempting to
invoke the message display service routine.

Requirement: TEST=YES requires you to include the UCB mapping macro
(IEFUCBOB) in the source code.

Restriction: There is a restriction when using TEST=YES. Programs
running in AMODE 24 and invoking the MSGDISP macro with the
TEST=YES parameter cannot pass the actual address of a UCB that resides
above the 16 MB line. These programs must pass the captured UCB
address or, if an actual address is passed, the UCB must reside below the
16 MB line.

INDEX=NO or YES
Specifies whether the automatic cartridge loader (ACL) should be indexed to
satisfy a scratch mount request.

Cartridge Messages

Chapter 8. Displaying Messages on Cartridge Magnetic Tape Subsystems (MSGDISP macro) 327

NO Specifies that indexing should not be done regardless of the state of the
ACL.

YES
Specifies that indexing should be done if:
v The ACL is present and loaded, and
v The request is for SCRTCH or PRIVAT.

WAIT=NO or YES
Specifies when control is returned to you.

NO Specifies that the MSGDISP function is not to wait for completion of I/O
initiated on the caller's behalf. When MSGDISP returns, the I/O request
might still be running. I/O return codes are not returned, and I/O errors
are recorded in the same manner as any permanent error by the error
recovery procedure.

YES
Specifies that control is to be returned after I/O is complete.

MSGDISP—Displaying a Verify Message
The format of the MSGDISP macro with the VERIFY parameter is:

�� MSGDISP VERIFY
label

,UCB= (reg)
,LABEL=

'S'
'A'
'N'
'X'
addr

�

�
,MF= L

(E,addr)
,SER= 'volser'

addr
NO

,TEST= YES

�

�
YES

,WAIT= NO

��

VERIFY
Displays the serial number and label type of a volume that has been accepted
for processing. The serial number is displayed on the pod in positions 2
through 7, and the 1 character label type in position 8. Position 1 remains
blank. The display lasts until the next display request is executed.

UCB=(reg)—(2-12)
Specifies a register containing the UCB address for the device. Use the address
of a UCB, not a UCB copy.

LABEL='A' or 'N' or 'S' or 'X' or addr
Specifies label type of the mounted volume in position 8 of the display. If an
unknown label type other than a blank is specified, a “?” is displayed.

'A'
Specifies ISO/ANSI (AL) or ISO/ANSI with user (AUL) labels.
Apostrophes are required.

Cartridge Messages

328 z/OS V2R1.0 DFSMSdfp Advanced Services

'N'
Specifies no labels (NL), LTM (VSE), or bypass label processing (BLP).
Apostrophes are required.

'S'
Specifies IBM Standard (SL) or IBM Standard with user (SUL) labels.
Apostrophes are required.

'X'
Specifies nonstandard (NSL) labels. Apostrophes are required.

addr—RX-type address, A-type address, or (2-12)
Specifies the address of an area containing an “A”, “N”, “S”, or “X” (see
explanations below for these characters). For MF=L, you can only specify
an A-type address.

MF=L or (E,addr)
Specifies either the execute or list form of MSGDISP. If you do not specify this
parameter, the standard form of the macro is used.

L Specifies the list form of MSGDISP. This generates a parameter list that can
be used as input to the execute form. The execute form can modify the
parameter list.

(E,addr)
Specifies that the execute form of the macro and an existing parameter list
is to be used.

addr—RX-type address, (1), or (2-12)
Specifies the address of the parameter list.

SER='volser' or addr
Specifies the serial number of the volume that has been verified. The serial
number displays in positions 2 through 7. If you do not specify SER, the
system supplies the volume serial number. If the serial number is not available,
a scratch volume is used, unless the volume use attribute indicates a default of
“PRIVAT”.

'volser'
Specifies the volume serial number as a literal. Express® in apostrophes.

addr—RX-type address, A-type address, or (2-12)
Specifies the address of the volume serial number. For MF=L, you can only
specify an A-type address.

TEST=NO or YES
Specifies whether the macro expansion is to include code that will test the UCB
to determine whether message display is supported. If the result of the test is
that the message display is not supported, an SVC is not invoked.

NO Specifies that the macro expansion is not to include code that tests the
UCB to determine whether the device supports message display.

YES
Specifies testing the UCB by the MSGDISP macro before attempting to
invoke the message display service routine.

Requirement: TEST=YES requires you to include the UCB mapping macro
(IEFUCBOB) in the source code. If this provision is not followed, a
program check in expansion code might result. Programs running in
AMODE 24 and invoking the MSGDISP macro with the TEST=YES
parameter cannot pass the actual address of a UCB that resides above the

Cartridge Messages

Chapter 8. Displaying Messages on Cartridge Magnetic Tape Subsystems (MSGDISP macro) 329

16 MB line. These programs must pass the captured UCB address or, if an
actual address is passed, the UCB must reside below the 16 MB line.

WAIT=NO or YES
Specifies when control is to be returned to you and that the MSGDISP function
is not to wait for completion of I/O initiated on the caller's behalf. When
MSGDISP returns, the I/O request might still be running.

NO Specifies that the MSGDISP function is not to wait for completion of I/O
that is initiated on the caller's behalf. When MSGDISP returns, the I/O
request might still be running. I/O return codes are not returned, and I/O
errors are recorded in the same manner as any permanent error by the
error recovery procedure.

YES
Specifies that control is to be returned after I/O is complete.

MSGDISP—Displaying a Ready Message
The format of the MSGDISP macro with the RDY parameter is:

�� MSGDISP RDY
label

,DCB=addr
,MF= L

(E,addr)

�

�
,TXT= 'msgtxt'

addr

��

RDY
Displays the text supplied in the TXT parameter in positions 2 through 7 while
the data set is open. The display is steady (not flashing) and is enclosed in
parentheses. The display is also written to the tape pool console (routing code
3, descriptor code 7).

DCB=addr
Specifies the address of a DCB opened to a data set on the mounted volume. If
multiple devices are allocated, the message display is directed to the one
containing the volume currently in use.

Tip: If multiple devices or multiple volumes are allocated, you can update a
message display after an end-of-volume condition by using the EOV user exit
specified in a DCB exit list. In the case of a concatenated data set with unlike
characteristics, the DCB OPEN exit can also be used to update the display.

addr—RX-type address, A-type address, or (2-12)
Specifies the address of the opened DCB. For MF=L, you can only specify
an A-type address.

MF=L or (E,addr)
Specifies either the execute or list form of MSGDISP. If this parameter is not
specified, the standard form of the macro is used.

L Specifies the list form of MSGDISP. This generates a parameter list that can
be used as input to the execute form. The execute form can modify the
parameter list.

Cartridge Messages

330 z/OS V2R1.0 DFSMSdfp Advanced Services

(E,addr)
Specifies that the execute form of the macro and an existing parameter list
is to be used.

addr—RX-type address, (1), or (2-12)
Specifies the address of the parameter list.

TXT='msgtxt' or addr
Specifies up to six characters to display in positions 2 through 7 of the display.
If you do not specify TXT, blanks are displayed.

'msgtxt'
Specifies the text as a literal. Express in apostrophes.

addr—RX-type address, A-type address, or (2-12)
Specifies the address of an area containing the text to be displayed. For
MF=L, you can only specify an A-type address.

MSGDISP—Displaying a Demount Message
The format of the MSGDISP macro with the DEMOUNT parameter is:

�� MSGDISP DEMOUNT
label

,UCB= (reg)
'D'

,DISP= 'K'
'R'
addr

�

�
,MF= L

(E,addr)
'S'

,MLABEL= 'A'
'N'
'X'
addr

�

�
,MSER= 'volser_to_mount'

addr
,SER= 'volser'

addr

�

�
,MEDIATYPE=n YES

,INDEX= NO
NO

,TEST= YES

�

�
YES

,WAIT= NO

��

DEMOUNT
Displays a volume disposition indicator in position 1 until the volume is
demounted. Optionally, you can display the serial number of the volume to be
demounted at the same time. The display flashes on and off. If a volume is not
mounted on the device when the display request is executed, blanks are
displayed.

The demount message can be displayed alternately (flashing) with a mount
message for the next volume by specifying the MSER parameter.

Cartridge Messages

Chapter 8. Displaying Messages on Cartridge Magnetic Tape Subsystems (MSGDISP macro) 331

UCB=(reg)—(2-12)
Specifies a register containing the UCB address for the device. Use the address
of a UCB, not a UCB copy.

DISP='D' or 'K' or 'R' or addr
Specifies the character to display in position 1 of the pod, representing the
volume disposition.

'D'
Specifies demount a public volume. Apostrophes are required. “D” also
displays when you specify an invalid character or when the volume use
attribute is unknown (as in an automatic volume recognition (AVR) error
when reading a label).

'K'
Specifies keep a private volume and return it to the library. Apostrophes
are required.

'R'
Specifies retain a private volume near the device for further use.
Apostrophes are required.

addr—RX-type address, A-type address, or (2-12)
Specifies the address of an area containing a “D”, “K”, or “R”. For MF=L,
you can only specify an A-type address.

MF=L or (E,addr)
Specifies either the execute or list form of MSGDISP. If you do not specify this
parameter, the standard form of the macro is used.

L Specifies the list form of MSGDISP. This generates a parameter list that can
be used as input to the execute form. The execute form can modify the
parameter list.

(E,addr)
Specifies that the execute form of the macro and an existing parameter list
is to be used.

addr—RX-type address, (1), or (2-12)
Specifies the address of the parameter list.

MLABEL='A' or 'N' or 'S' or 'X' or addr
Displays the label type of the volume to be loaded and made ready following
a demount, in position 8. If you specify an unknown label type other than a
blank, a “?” is displayed. You can only specify this parameter if you also
specify the MSER parameter.

'A'
Specifies ISO/ANSI (AL) or ISO/ANSI with user (AUL) labels.
Apostrophes are required.

'N'
Specifies no labels (NL), LTM (leading tape mark, created by VSE), or
bypass label processing (BLP). Apostrophes are required.

'S'
Specifies IBM Standard (SL) or IBM Standard with user (SUL) labels.
Apostrophes are required.

'X'
Specifies nonstandard (NSL) labels. Apostrophes are required.

Cartridge Messages

332 z/OS V2R1.0 DFSMSdfp Advanced Services

addr—RX-type address, A-type address, or (2-12)
Specifies the address of an area containing an “A”, “N”, “S”, or “X” (see
the following explanations of these characters). For MF=L, you can only
specify an A-type address.

MSER='volser-to-mount' or addr
Displays the mount message for the next volume alternately (flashing) with the
demount message. The display continues until you demount the current
volume. At that time, the mount message will display (flashing) until you load
the volume and make the device ready. If no volume is mounted at the time
the demount and mount messages are executed, only the mount message will
display (flashing) until the volume is loaded and ready.

'volser-to-mount'
Specifies the volume serial number of the volume to be mounted, as a
literal. Apostrophes are required.

addr—RX-type address, A-type address, or (2-12)
Specifies the address of the volume serial number of the volume to be
mounted. For MF=L, you can only specify an A-type address.

SER='volser' or addr
Specifies the serial number of the volume to be demounted. The serial number
is displayed in positions 2 through 7. If you do not specify SER, the system
supplies the volume serial number. If the serial number is not available, a
scratch volume is used, unless the volume use attribute indicates a default of
“PRIVAT”.

'volser'
Specifies the volume serial number as a literal. Specify with apostrophes.

addr—RX-type address, A-type address, or (2-12)
Specifies the address of the volume serial number. This parameter is not
valid for the MF=L form. For MF=L, you can only specify an A-type
address.

MEDIATYPE=n
Specifies what media type to demount for SCRTCH or PRIVAT demounts. The
MEDIATYPE keyword applies only when volumes are to be demounted on
devices that reside in a Manual Tape Library (MTL). If MEDIATYPE is
specified for devices outside of a Manual Tape Library, it is ignored. The value
n can be specified as a literal, the address of a 1 byte field containing the
value, or the name of the addressable field containing the value. Valid values
for MEDIATYPE are the numbers 1 through 8.

INDEX=NO or YES
Specifies whether the ACL should be indexed to satisfy a scratch mount
request.

NO Specifies that indexing should not be done regardless of the state of the
ACL.

YES
Specifies that indexing should be done if:
v The ACL is present and loaded, and
v The request is for SCRTCH or PRIVAT.

TEST=NO or YES
Specifies whether the macro expansion is to include code that tests the UCB to
determine whether message display is supported. If the result of the test is that
the message display is not supported, an SVC is not invoked.

Cartridge Messages

Chapter 8. Displaying Messages on Cartridge Magnetic Tape Subsystems (MSGDISP macro) 333

NO Specifies that the macro expansion is not to include code that tests the
UCB to determine whether the device supports message display.

YES
Specifies testing the UCB by the MSGDISP macro before attempting to
invoke the message display service routine.

Requirement: TEST=YES requires you to include the UCB mapping macro
(IEFUCBOB) in the source code. If this provision is not followed, a
program check in expansion code might result. Programs running in
AMODE 24 and invoking the MSGDISP macro with the TEST=YES
parameter cannot pass the actual address of a UCB that resides above the
16 MB line. These programs must pass the captured UCB address or, if an
actual address is passed, the UCB must reside below the 16 MB line.

WAIT=NO or YES
Specifies when control is to be returned to you.

NO Specifies that the MSGDISP function is not to wait for completion of I/O
initiated on the caller's behalf. When MSGDISP returns, the I/O request
might still be running. I/O return codes are not returned, and I/O errors
are recorded in the same manner as any permanent error by the error
recovery procedure.

YES
Specifies that control is to be returned after I/O is complete.

MSGDISP—Resetting the Message Display
The format of the MSGDISP macro with the RESET parameter is:

�� MSGDISP RESET
label

,UCB= (reg)
,UCBL=addr ,MF= L

(E,addr)

�

�
NO

,TEST= YES
YES

,WAIT= NO

��

RESET
Clears all existing data on the display. If you specify WAIT=NO and the last
service requested was a demount, the display is not cleared.

After being cleared, the display shows the internal status of the device (for
example, a message indicating that the device is ready).

UCB=(reg)—(2-12)
Specifies a register containing the UCB address for the device. Use the address
of a UCB, not a UCB copy.

UCBL=addr—RX-type address, A-type address, (0), or (2-12)
Specifies the address of a list containing a maximum of 64 words. Each word
in the list contains the address of a UCB representing a device whose display
is to be reset. The end of the list is indicated by a '1' in the high-order bit of
the last address in the list. If an error is encountered while processing the list,
register 1 points to the associated UCB when you regain control.

Cartridge Messages

334 z/OS V2R1.0 DFSMSdfp Advanced Services

You cannot specify UCBL with TEST=YES and WAIT=NO.

MF=L or (E,addr)
Specifies either the execute or the list form of MSGDISP. If you do not specify
this parameter, the standard form of the macro is used.

L Specifies the list form of MSGDISP. This generates a parameter list that can
be used as input to the execute form. The execute form can modify the
parameter list.

(E,addr)
Specifies that the execute form of the macro and an existing parameter list
is to be used.

addr—RX-type address, (1), or (2-12)
Specifies the address of the parameter list.

TEST=NO or YES
Specifies whether the macro expansion is to include code that tests the UCB to
determine whether message display is supported. If the result of the test is that
the message display is not supported, an SVC is not invoked.

NO Specifies that the macro expansion is not to include code that tests the
UCB to determine whether the device supports message display. NO is the
default?

YES
Specifies testing the UCB by the MSGDISP macro before attempting to
invoke the message display service routine. You cannot specify TEST=YES
if you also specify the UCBL parameter.

Requirement: TEST=YES requires you to include the UCB mapping macro
(IEFUCBOB) in the source code. If this provision is not followed, a
program check in expansion code might result. Programs running in
AMODE 24 and invoking the MSGDISP macro with the TEST=YES
parameter cannot pass the actual address of a UCB that resides above the
16 MB line. These programs must pass the captured UCB address or, if an
actual address is passed, the UCB must reside below the 16 MB line.

WAIT=NO or YES
Specifies when control is to be returned to you.

NO Specifies that the MSGDISP function is not to wait for completion of I/O
initiated on the caller's behalf. When MSGDISP returns, the I/O request
might still be running. I/O return codes are not returned, and I/O errors
are recorded in the same manner as any permanent error by the error
recovery procedure.

You cannot specify WAIT=NO if you also specify the UCBL parameter.

YES
Specifies that control is to be returned after I/O is complete.

Demount messages can be reset only if WAIT=YES is specified.

Cartridge Messages

Chapter 8. Displaying Messages on Cartridge Magnetic Tape Subsystems (MSGDISP macro) 335

MSGDISP—Providing the Full Range of Display Options
The format of the MSGDISP macro with the GEN parameter is:

�� MSGDISP GEN
label

,UCB= (reg)
BLINK

,FLASH= STEADY
STEADY2
BLINK2
ALT

�

�
,MF= L

E,addr
YES

,INDEX= NO
NO

,TEST= YES

�

�
,TXT= 'msgtxt'

addr
,TXT2= 'altmsgtxt'

addr
STATIC

,VOL= REMOVE
INSERT
SWAP

�

�
YES

,WAIT= NO

��

GEN
Specifies the full range of display options.

UCB=(reg)—(2-12)
Specifies a register containing the UCB address for the device. Use the address
of a UCB, not a UCB copy.

FLASH=STEADY or STEADY2 or BLINK or BLINK2 or ALT
Specifies message display mode.

Hint: If you specify VOL=SWAP, messages will always be displayed as if you
had specified FLASH=ALT.

STEADY
Specifies that the primary message (TXT) is to be displayed without
flashing.

STEADY2
Specifies that the alternate message (TXT2) is to be displayed without
flashing.

BLINK
Specifies that the primary message (TXT) flash on and off at a rate of
approximately two seconds on and one-half second off.

BLINK2
Specifies that the alternate message (TXT2) flash on and off at a rate of
approximately two seconds on and one-half second off.

ALT
Specifies that the primary and alternate messages (TXT and TXT2) flash on
and off alternately, at a rate of approximately two seconds on and one-half
second off.

Cartridge Messages

336 z/OS V2R1.0 DFSMSdfp Advanced Services

MF=L or (E,addr)
Specifies either the execute or the list form of MSGDISP. If you do not specify
this parameter, the standard form of the macro is used.

L Specifies the list form of MSGDISP. This generates a parameter list that can
be used as input to the execute form. The execute form can modify the
parameter list.

(E,addr)
Specifies that the execute form of the macro and an existing parameter list
is to be used.

addr
Specifies the address of the parameter list. Specify either an RX-type
address or a register in the range of 2 through 12.

INDEX=NO or YES
Specifies whether the ACL should be indexed to satisfy a scratch mount
request.

NO Specifies that indexing should not be done regardless of the state of the
ACL.

YES
Specifies that indexing should be done if:
v The ACL is present and loaded, and
v The request is for SCRTCH or PRIVAT.

TEST=NO or YES
Specifies whether to test the UCB to determine if the device is capable of
displaying messages.

NO Specifies that the macro expansion is not to include code that tests the
UCB to determine whether the device supports message display.

YES
Specifies testing the UCB by the MSGDISP macro before attempting to
invoke the message display service routine.

Requirement: TEST=YES requires you to include the UCB mapping macro
(IEFUCBOB) in the source code. If this provision is not followed, a
program check in expansion code might result. Programs running in
AMODE 24 and invoking the MSGDISP macro with the TEST=YES
parameter cannot pass the actual address of a UCB that resides above the
16 MB line. These programs must pass the captured UCB address or, if an
actual address is passed, the UCB must reside below the 16 MB line.

TXT='msgtxt' or addr
Specifies 8 characters to be shown in positions 1 through 8 of the display. If
you do not specify TXT, blanks are displayed.

'msgtxt'
Specifies the 8 characters as literals. Apostrophes are required.

addr—RX-type address, A-type address, or (2-12)
Specifies the address of an area containing the 8 characters. For MF=L, you
can only specify an A-type address.

TXT2='altmsgtxt' or addr
Specifies 8 alternate characters to display in positions 1 through 8 of the
display. If you do not specify TXT2, blanks are displayed.

Cartridge Messages

Chapter 8. Displaying Messages on Cartridge Magnetic Tape Subsystems (MSGDISP macro) 337

'altmsgtxt'
Specifies the 8 characters as literals. Apostrophes are required.

addr—RX-type address, A-type address, or (2-12)
Specifies the address of an area containing the 8 characters. For MF=L, you
can only specify an A-type address.

VOL=STATIC or REMOVE or INSERT or SWAP
Specifies message display mode, based on volume status.

STATIC
Specifies that messages display without regard to volume status until the
next message request is executed, or until the next command initiates
volume movement.

REMOVE
Specifies that messages display until the current volume is demounted.
This parameter is ignored if a volume is not mounted when the request is
executed.

INSERT
Specifies that messages display until a volume is present, the tape is
threaded, and the active/inactive switch is in the active position. This
parameter is ignored if a volume is loaded and ready when the request is
executed.

SWAP
Specifies that messages always display as if FLASH=ALT were specified.
The data from TXT and TXT2 displays alternately (flashing) until the
current volume has been demounted. Then only TXT2 displays (flashing)
until a new volume is loaded and ready. If no volume is mounted when
this parameter is specified, only TXT2 data displays (flashing) until a new
volume is loaded and ready.

WAIT=NO or YES
Specifies when control is to be returned to you.

NO Specifies that the MSGDISP function is not to wait for completion of I/O
initiated on the caller's behalf. When MSGDISP returns, the I/O request
might still be running. I/O return codes are not returned, and I/O errors
are recorded in the same manner as any permanent error by the error
recovery procedure.

YES
Specifies that control is to be returned after I/O is complete. This is the
default.

Return Codes from MSGDISP
When the system returns control to the problem program, the low-order byte of
register 15 contains a return code. The low-order byte of register 0 can contain a
reason code. These codes are described in the following table:

Return Code Reason Code Meaning

0 (X'00') Successful completion.
4 (X'04') Device does not support MSGDISP.
8 (X'08') 1 (X'01') Invalid input parameter.

2 (X'02') Invalid DCB or DEBCHK error.
3 (X'03' Environmental error.

Cartridge Messages

338 z/OS V2R1.0 DFSMSdfp Advanced Services

Return Code Reason Code Meaning

4 (X'04') Authorization (TESTAUTH) violation.
5 (X'05') Invalid UCB. Requires the address of a UCB, not a

UCB copy.
6 (X'06') Invalid request.
11 (X'0B') Unsuccessful ESTAE macro call.
12 (X'0C') Unsuccessful GETMAIN request.

12 (X'0C') I/O error (The system posted the request for an
error).

An I/O error occurs for load display if the drive display has a hardware failure.

If you get return code X'04' or X'0C' on a RESET UCBL operation, when you regain
control, register 1 points to the UCB associated with the error.

Cartridge Messages

Chapter 8. Displaying Messages on Cartridge Magnetic Tape Subsystems (MSGDISP macro) 339

340 z/OS V2R1.0 DFSMSdfp Advanced Services

Chapter 9. Using DFSMSdfp Callable Services

This information describes the DFSMSdfp-related callable services. Callable
services reside in SYS1.CSSLIB, the callable system service library. They are
invoked from a user program by issuing a CALL statement, accompanied by a
parameter identifying the desired service and a list of service-specific arguments
and storage areas. The intent is that if you link edit any of the routines described
here with your program, the routine continues to execute correctly on future levels
of the operating system.

The DFSMSdfp callable services provide 15 callable system services. They can be
invoked by the high-level languages supported by z/OS Language Environment®

and by assembler language callers.

Note: Nine of these callable services are related to using the character data
representation architecture (CDRA) identifiers.They are application program
interfaces (APIs) that are needed to consistently and correctly process graphic
character data. We have listed them here (see “Character Data Representation
Architecture (CDRA) APIs” on page 362), but for detailed information on their use,
refer to Character Data Representation Architecture Reference and Registry.

These services enable programs written in assembler language or high-level
languages to use:
v IECTRKAD to perform conversions and compares of DASD track addresses that

contain 16-bit or 28-bit cylinder numbers.
v IGWARLS to query the information in the catalog for record-level sharing (RLS),

including the values of the LOG, BWO, and LOGSTREAMID parameters, the
VSAM_QUIESCED indicator, the RLS_RECOVERY_TIMESTAMP fields, and
whether the sphere requires forward recovery.

v IGWABWO to communicate with DFSMSdfp to retrieve or set various data
set–related indicators. Through the use of these indicators, your program can
determine if a data set is eligible for backup while it is open for update and, if
eligible, what action can or should be taken. See Table 64 on page 353 for an
explanation of the indicators.

v IGWASMS to return certain data set attributes for SMS managed data sets. These
data set attributes are:
– SMSDATA—SMS class names, that is, storage class, management class, and

data class.
– DSTYPE—Currently indicates whether the data set is a PDSE-type data set,

HFS, or neither.

Note: If IGWASMS is called for a non-SMS managed data set, zeros are
returned for the DSTYPE attribute.

v IGWASYS to determine the version, release, and modification level of DFSMSdfp
on your system, and the status of the SMS subsystem.

v IGWLSHR to determine the DFSMSdfp share attributes in use on the current
system.

This information describes calling the service from a nonreentrant program written
in assembler language. See z/OS MVS Programming: Assembler Services Reference

© Copyright IBM Corp. 1979, 2014 341

ABE-HSP for information on using CALL in a reentrant program. For information
on using CALL in programs written in high-level languages, see the applicable
language documentation.

Your program can call the DFSMSdfp callable services in either 24- or 31-bit
AMODE. The program can be executed in any protection key and in either
supervisor or problem state. When you invoke any of the callable services, your
program must provide the address of a standard 18 word save area in register 13.
The syntax diagrams here show a CALL statement in assembler language. These
callable services can be invoked in the following two ways:
v A CALL statement is coded in the invoking application. The callable services

IGWASYS, IGWASMS, IGWABWO, IGWLSHR or IGWARLS, among others, are
in SYS1.CSSLIB. When link-editing the invoking application, specify
SYS1.CSSLIB in the library concatenation.

v The invoking application can issue a LINK or LOAD/CALL to the desired
service, IGWASYS, IGWASMS, IGWABWO, IGWLSHR, or IGWARLS. For an
example of using a LINK macro, see “Example” on page 347. For an example of
using CALL and LOAD/CALL macros, see “Example” on page 344 and
“Example” on page 349.
To invoke the callable services write a set of arguments in a specific order on the
invocation. The number of arguments associated with each callable service is
fixed, and the types of arguments are restricted to 32-bit binary integers
(hereafter referred to as integers) and fixed-length EBCDIC character strings. The
CALL statement format is described in the following information:
– “Call for DFSMS Level Determination”
– “Call for Data Set Attribute Retrieval” on page 345
– “Call for Data Set Backup-While-Open Support” on page 347
– “Call for DFSMSdfp Share Attributes” on page 353
– “Call for Record-Level Sharing Query (IGWARLS)” on page 355
– “Call for converting and comparing 28-bit cylinder addresses (IECTRKAD)”

on page 359

Call for DFSMS Level Determination
The DFSMS level determination call (IGWASYS) returns the version, release and
modification levels of DFSMS. It also returns a code number to represent the name
of the product that contains DFSMS. These four numbers represent the
environment that DFSMS was designed to run in. That level might be earlier than
the release for the rest of the operating system.

An alternative technique to determine the level of the system is described in
“Determining Level and Name of DFSMS” on page 321.

Format
The format of the system attribute IGWASYS call statement is:

Callable Services

342 z/OS V2R1.0 DFSMSdfp Advanced Services

�� CALL IGWASYS ,
label

return_code , (reason_code , �

� level_indicator , system_level , system_attr) ��

Parameters
return_code

Return code from IGWASYS. The return code is also returned in register 15.
For an explanation, see “IGWASYS, IGWASMS, IGWABWO, IGWLSHR Return
and Reason Codes” on page 354. This is an output argument that must be
defined as an integer.

reason_code
Reason code from the IGWASYS service. The reason code is also returned in
register 0. For an explanation, see “IGWASYS, IGWASMS, IGWABWO,
IGWLSHR Return and Reason Codes” on page 354. This is an output argument
that must be defined as an integer.

level_indicator
The product whose level information is requested. This is an input argument.
Define level_indicator as an integer. Code a value of 1 to request the level of
MVS/XA DFP Version 2 or MVS/DFP Version 3 or code a 2 to request the
level of DFSMS/MVS or later. This value affects what the system returns in
system_level, which is described below.

system_level
The product level that is installed on the system invoking the service. This is
an output argument and is a four-element array of integers. The array elements
consist of the following integers:
v Version number
v Release number
v Modification level
v Special indicator

If you pass a value of 1 for level_indicator, DFSMS returns the system_level
values as 3, 3, 2 and 1. The first three values reflect the fact that DFSMS
contains the functions of MVS/DFP Version 3 Release 3 modification level 2.
The system sets the fourth value to 1 to indicate that the system is actually at a
level higher than 3.3.2. If your program were executing on MVS/DFP 3.3.2,
then these four values would have been returned as 3, 3, 2 and 0.

If you pass a value of 2 for level_indicator, IGWASYS sets the fourth system_level
word to a code that represents the product name that IGWASYS is part of. On
no level of the system will this word contain a value that is smaller than on a
prior release. One of the following values is returned:
1 “DFSMS/MVS”. With MVS/ESA SP Version 5, it constituted an

MVS/ESA system. With OS/390 MVS™, it was part of OS/390 Version
1 or Version 2. The first three system_level words represent
DFSMS/MVS.

2 DFSMS is part of OS/390 and not a separate product. The first three
system_level words show OS/390 Version 2, Release 10, Modification
Level 0, or later. Those words represent the OS/390 level that DFSMS

Callable Services

Chapter 9. Using DFSMSdfp Callable Services 343

was designed to support. You will see these values also on z/OS
DFSMS Version 1 Release 1 and 2 because DFSMS was not changed
from OS/390 2.10.

3 DFSMS is part of z/OS and not a separate product. The first three
system-level words show z/OS Version 1, Release 3, Modification Level
0, or later. Those words represent the z/OS level that the DFSMS was
designed to support.

>3 DFSMS is part of hypothetical replacement product after all versions
and releases of z/OS. The system never returns this value. It represents
IBM's intent in case there is such a product. The other words represent
the operating system level that the DFSMS was designed to support.

If the next release of the system does not contain a new level of DFSMS,
IGWASYS will continue to return the original DFSMS release. This is to help
with diagnosis of configuration problems and service.

The intent is that in any future level of the system, your program can
determine whether it is running on a particular level or it is running on some
later level. If that is what you wish your program to do, then it is suggested
that your program test all four words of system level. First test the fourth
word to ensure that it has a value of 1 or greater. Then test the other three
words to see whether they designate the appropriate version, release and
modification level. It is IBM's intent that if one of the values in the first column
of the figure below is smaller than was returned for the corresponding value in
the prior release, then one of the values in the second column contains a larger
value than was returned in the prior release:
Third word (modification level) Fourth, first or second word
Second word (release) Fourth or first word
First word (version) Fourth word

system_attr
System attributes are returned in the system_attr array. This is an output
argument. The array elements are defined as follows:

1 Status of the Storage Management Subsystem. A value of 0 indicates
inactive; 1 indicates active.

2–4 Reserved elements; 0 is returned.

Define as a four-element array of integers.

Return Codes
See Table 65 on page 354 for the IGWASYS return and reason codes.

Example
The following example shows a system attribute call using a CALL statement.

Callable Services

344 z/OS V2R1.0 DFSMSdfp Advanced Services

Call for Data Set Attribute Retrieval
The data set attribute retrieval call (IGWASMS), returns the names of the data set's
related SMS classes and whether it is a PDSE, or an HFS data set, or neither.

.

.
CALL IGWASYS,(RC1,RS1,CODE1,LEVEL,ATTR) Test pre-DFSMS/MVS
LTR R15,R15 Test return code
BNZ BADSYS
CLC LEVEL,=F’2’ Test for MVS/XA DFP Version 2
BE OLDSYS
MVC SYSNAME,UNKNAME Assume name is unknown
BL BADSYS Branch if unknown system
MVC SYSNAME,=CL12’MVS/DFP’ Show we are on MVS/DFP
CLC LEVEL+12(4),=F’1’ See if after MVS/DFP
BL SHOWSYS Branch if before DFSMS/MVS
CALL IGWASYS,(RC1,RS1,CODE2,LEVEL,ATTR)
LTR R15,R15 Branch if environment or
BNZ BADSYS system error
MVC SYSNAME,UNKNAME Assume unknown product name
CLC LEVEL+12(4),=F’1’ Test for DFSMS/MVS code
BL OLDSYS Branch if unexpected code
MVC SYSNAME,=CL12’DFSMS/MVS’ Show product name
BE SHOWSYS Branch if DFSMS/MVS
MVC SysName,=CL12’OS/390 DFSMS’ Set assumed new name
CLC LEVEL+12(4),=F’3’ Branch if
BL SHOWSYS OS/390
BH COPYSYS Branch if after z/OS name
MVC SysName,=CL12’z/OS DFSMS’ Assume early z/OS

* On z/OS. Test for early releases.
CLC Level(8),=F’1,3’ Branch if
BL ShowSys before z/OS 1.3

* On z/OS 1.3 or later. Use the name provided by the system.
CopySys L R14,16 Point to CVT

L R15,CVTDFA-CVT(,R14) Point to DFA
L R14,DFAELNMP-DFA(,R15) Point to element name
USING DFAELNM,R14
MVI SysName,C’ ’ Blank out name
MVC SysName+1(L’SysName-1),SysName
LH R15,DFAELNML Get name length
CH R15,MaxLen Skip one instruction if
BNH *+8 name not too long
LH R15,MaxLen Truncate to our field length
BCTR R15,0 Decrement for EX instruction
EX R15,MVCName Copy name from DFA
DROP R14

ShowSys EQU * Handle version, release and modification level
.
.

RC1 DC F’0’ Return code
RS1 DC F’0’ Reason code
CODE1 DC F’1’ Ask for pre-DFSMS DFP level
CODE2 DC F’2’ Ask for level of DFSMS, or later
LEVEL DC 4F’0’ Version, release, Modification Level and code
ATTR DC 4F’0’ SMS attributes
SYSNAME DC CL12’MVS/XA DFP’ Name of product
UNKNAME DC (L’SYSNAME)C’?’ Constant for unknown name
MaxLen DC Y(L’SysName) Our maximum allowed length of name
MVCName MVC SysName(0),DFAELTXT-DFAELNM(R14)

Figure 40. Example of an IGWASYS Call Statement

Callable Services

Chapter 9. Using DFSMSdfp Callable Services 345

Format
The format of the data set attribute IGWASMS call statement is:

�� CALL IGWASMS ,
label

(return_code , reason_code , �

� prob_det , dsname_length , dsname , sms_data , ds_type) ��

Parameters
return_code

Return code from IGWASMS. The return code is also returned in register 15.
Return codes are explained in “IGWASYS, IGWASMS, IGWABWO, IGWLSHR
Return and Reason Codes” on page 354. This is an output argument that must
be defined as an integer.

reason_code
Reason code from IGWASMS. The reason code is also returned in register 0.
Reason codes are explained in “IGWASYS, IGWASMS, IGWABWO, IGWLSHR
Return and Reason Codes” on page 354. This is an output argument that must
be defined as an integer.

prob_det
Problem determination data. See “IGWASYS, IGWASMS, IGWABWO,
IGWLSHR Return and Reason Codes” on page 354 for more information about
problem determination data. This is an output argument that must be defined
as a two-element array of integers.

dsname_length
Length, in bytes, of the data set name provided by the caller in dsname. The
value can be a number from 1 to 44. This is a required input argument that
must be defined as an integer.

dsname
Name of the data set on which the IGWASMS service. For VSAM data sets, the
cluster name must be specified. This is a required input argument that must be
defined as EBCDIC character data of length dsname_length.

sms_data
The SMS class names associated with the specified data set returned,
left-justified with blanks padded on the right. The array elements are returned
in the following circumstances:
v Storage class name, or blanks if the data set is not an SMS data set.
v Management class name, or blanks if the data set has no associated

management class.
v Data class name, or blanks if the data set has no associated data class.

This is an output argument that must be defined as a three-element array,
where each entry is a 30 (byte) character EBCDIC string.

ds_type
The type of data set, dsname, is returned. A value of 1 indicates the data set is a
PDSE-type data set. A value of 2 indicates the data set is an HFS-type data set.
An HFS data set defines a file system and is not a file within the file system.A

Callable Services

346 z/OS V2R1.0 DFSMSdfp Advanced Services

value of 0 indicates that it is neither. No other values are currently defined.
This is an output argument that must be defined as an integer.

Return Codes
See Table 65 on page 354 for the IGWASMS return and reason codes.

Example
The following example shows sample coding for a data set attribute call using a
LINK statement.

Call for Data Set Backup-While-Open Support
The data set backup-while-open support call (IGWABWO) communicates with
DFSMSdfp to retrieve or set indicators related to taking data set backups while
they are open for update.

Format
The format of the IGWABWO callable service is:

�� CALL IGWABWO ,
label

(return_code , reason_code , �

� prob_det , read_write , dsname_length , dsname , select , �

� bwo_flags , bwo_recov , bwo_resrv ,) ��

Parameters
return_code

Return code from IGWABWO. The return code is also returned in register 15.

.

.

LINK EP=IGWASMS,MF=(E,ASMSLIST)
.
.

RC2 DC F’0’
RS2 DC F’0’
PROB1 DC 2F’0’
DSNLEN1 DC A(L’DSN1)
DSN1 DC CL12’THIS.DATASET’
SMSDATA DC 3CL30’ ’
DSTYPE DC F’0’
ASMSLIST DC A(RC2)

DC A(RS2)
DC A(PROB1)
DC A(DSNLEN1)
DC A(DSN1)
DC A(SMSDATA)
DC A(DSTYPE)

Figure 41. Example of an IGWASMS Call LINK Statement

Callable Services

Chapter 9. Using DFSMSdfp Callable Services 347

Return codes are explained in “IGWASYS, IGWASMS, IGWABWO, IGWLSHR
Return and Reason Codes” on page 354. This is an output argument that must
be defined as an integer.

reason_code
Reason code from IGWABWO. The reason code is also returned in register 0.
Reason codes are explained in “IGWASYS, IGWASMS, IGWABWO, IGWLSHR
Return and Reason Codes” on page 354. This is an output argument that must
be defined as an integer.

prob_det
Problem determination data. See “IGWASYS, IGWASMS, IGWABWO,
IGWLSHR Return and Reason Codes” on page 354 for more information about
problem determination data. This is an output argument that must be defined
as a two-element array of integers.

read_write
Function indicator for this service. A caller-supplied value of 0 indicates that
this is a READ-type request for the backup-while-open (BWO) data of the
specified data set. A value of 1 indicates a WRITE-type request, that is, an
initialization or update of the specified data set's BWO data with the supplied
arguments bwo_flags, bwo_recov, and bwo_resrv. The select argument indicates
which arguments are to be processed. This is a required input argument that
must be defined as an integer.

dsname_length
Length, in bytes, of the data set name provided by the caller in dsname. The
value can be a number from 1 to 44. This is a required input argument that
must be defined as an integer.

dsname
Name of the data set that the IGWABWO service operates on. Only
system-managed VSAM-type data sets are eligible to be backed up while they
are open for update. The dsname specified must be the base cluster name of a
VSAM data set. This is a required input argument that must be defined as
EBCDIC character data of length dsname_length.

select
Indicates which of the following arguments will be processed. Arguments are
specified by selecting the appropriate value. This is a required input argument.

1 to process bwo_flags
2 to process bwo_recov
3 to process bwo_flags and bwo_recov

Regardless of how many arguments are to be processed, all three fields
(bwo_flags, bwo_recov, and the reserved bwo_resrv field) must be defined in your
program and included in the invocation. Those not selected will receive no
value in a READ-type request. The values of those not selected will be ignored
in a WRITE-type request.

bwo_flags
This argument is a three-element array, whose elements correspond to the three
BWO flags associated with an SMS data set. bwo_flags is an output argument
for read_write=0 type requests, and a required input argument for read_write=1
type requests.
1. The first element is associated with flag, BWO1. 1 is on, 0 is off.
2. This element corresponds to flag, BWO2. 1 is on, 0 is off.
3. This element corresponds to flag, BWO3. 1 is on, 0 is off.

Define as a three-element array of integers.

Callable Services

348 z/OS V2R1.0 DFSMSdfp Advanced Services

bwo_recov
This argument is an 8-byte storage area containing the recovery timestamp
associated with a data set that is eligible for BWO. bwo_recov is an output
argument for read_write=0 type requests, and a required input argument for
read_write=1 type requests. The format of the timestamp for CICS® VSAM
data sets is as follows:
v The first word contains the date in packed decimal format, 0CYYDDDF,

where:
0C is the century - 00 represents 19YY, 01 represents 20YY
YY is the last two digits of the year
DDD is the day of the year (Julian date)
F is the sign (F for positive number)

v The second word contains the time in packed decimal format, HHMMSSTF,
where:
HH Hours, based on a 24-hour clock
MM Minutes
SS Seconds
T Tenths of a second
F is the sign (F for positive number)

bwo_resrv
This argument is reserved for future use. While the bwo_resrv argument cannot
be written or read, it must be defined in your program and included in the
invocation. Define as EBCDIC character data of length 16 bytes.

Return Codes
See Table 65 on page 354 for the IGWABWO return and reason codes.

Example
The following example shows sample coding for WRITE and READ-type
backup-while-open calls using LOAD and CALL statements.

Callable Services

Chapter 9. Using DFSMSdfp Callable Services 349

Using the Backup-While-Open Facility
The following information describes the usage of the backup-while-open (BWO)
facility. BWO flags and the BWO recovery field can be retrieved or updated using
the IGWABWO service described in “Call for Data Set Backup-While-Open
Support” on page 347. The BWO indicators are described in Table 64 on page 353.

For environments that require high-availability, it might not be possible or
desirable to stop or quiesce an application to produce consistent backup copies of
the application's data sets.

For these environments DFSMSdfp provides support to allow SMS-managed
VSAM data sets that are open for output to be backed up. The support is only
useful for applications (such as database systems) that can recover a restored
database to a point of consistency. This is typically done from a log (forward
recovery log) maintained by the application that contains record images of all
changed (added, deleted, or updated) records. These images can then be reapplied
to a backup copy of the database, logically recreating the status of the database at
a particular point in time.

.

.

LOAD EP=IGWABWO
LR R2,R0
CALL (R2),(RC1,RS1,PROB1,RW1,DSNLEN1,DSN1,SEL1,BWOF1,BWOR1,BWRE)
CALL (R2),(RC2,RS2,PROB2,RW2,DSNLEN2,DSN2,SEL2,BWOF2,BWOR2,BWRE)

.

.

* ARGUMENTS FOR WRITING
RC1 DC F’0’
RS1 DC F’0’
PROB1 DC 2F’0’
RW1 DC F’1’ WRITE
DSNLEN1 DC F’11’
DSN1 DC CL44’THAT.VSAM01’
SEL1 DC F’3’ WRITE BWO_FLAGS AND BWO_RECOV
BWOF1 DC F’0’

DC F’1’
DC F’0’

BWOR1 DS 0F
DC X’0096137F’ INPUT DATE IN 0CYYDDDF FORMAT
DC X’1045301F’ INPUT TIME IN HHMMSSTF FORMAT

BWRE1 DC CL16’ ’
* ARGUMENTS FOR READING
RC2 DC F’0’
RS2 DC F’0’
PROB2 DC 2F’0’
RW2 DC F’0’ READ
DSNLEN2 DC F’11’
DSN2 DC CL44’THAT.VSAM01’
SEL2 DC F’3’ READ BWO_FLAGS AND BWO_RECOV
BWOF2 DC 3F’0’
BWOR2 DC CL8’ ’
BWRE2 DC CL16’ ’
*

Figure 42. Example of IGWABWO Using LOAD and CALL Statements

Callable Services

350 z/OS V2R1.0 DFSMSdfp Advanced Services

The support provided by BWO might not be necessary for online applications that
can quiesce the database data sets to ensure no output or update activity against
the data set while the backup is in progress. Quiescing a data set in this context
means the data set is closed and unallocated.

The following discussion of the operation of this support uses these terms:
v Database manager-the application that controls access to the data sets to be

processed. In order for BWO support to be effective, the database manager must
have some logging facility to allow point-in-time reconstruction of a database.

v Backup manager-the applications or products that perform the backup and
restore functions, such as DFSMShsm and DFSMSdss.

v Recovery manager-the component that manages the inventory of recovery logs
and applies the changes from the appropriate log(s) to the restored data set.

The following paragraphs describe the relationships between the BWO support
and a user of BWO. Refer to Table 64 on page 353 for the various states of the
BWO flags in the following discussion. The BWO indicators are retained in the
catalog. The BWO flag states are set or reset using the DFSMSdfp callable system
service IGWABWO.
v At initial allocation (IDCAMS DEFINE, IDCAMS or TSO ALLOCATE, JCL and

dynamic allocation), the data set is not enabled for BWO (default, BWO flag
state is 000).

v The database manager should check the BWO flags prior to opening the data set
to ensure it is not downlevel (BWO flag state is 101 or 001). If the data set is
downlevel, the recovery manager must be used to apply log changes to the data
set.

v The database manager must set flag BWO1 (BWO flag state 100) on for each
data set that is allowed to be backed up while open for output. This authorizes
the backup manager to initiate backups without serializing the data set, whether
or not it is being accessed by the application.

v The backup manager must retrieve the BWO flags prior to the start of the
backup. If BWO1 is on, then a backup can be taken without any serialization;
otherwise, normal data set serialization must be performed by the backup
manager.
When the backup completes, the backup manager must retrieve the BWO flags
again. If the BWO flag state has changed, then at some point during the backup
an action occurred that prevented creation of a valid backup. The backup
manager should discard the backup just created.

v When the data set needs to be recovered, it is first restored using the backup
manager. Data sets are serialized during restore to prevent applications from
accessing them. The backup manager must set the BWO flags at the completion
of the restore to indicate whether the restore was done using a backup copy that
was created with or without serialization.
– If the backup was taken without serialization, the BWO flags must be set to

101.
– If the backup was taken with serialization, the BWO flags must be set to 000.
In either case, the application administrator should decide whether or not to
apply recovery logs.
The database manager should not allow access to the data set until the recovery
manager has completed processing.

v The recovery manager should change the BWO flags to 001 before opening the
data set, apply the logs, and then set the flags to 000 to indicate that the data set

Callable Services

Chapter 9. Using DFSMSdfp Callable Services 351

has been processed and is consistent. The database manager can then reestablish
normal access to the data set (thus opening the data set for use).

v For a data set that is enabled for BWO, in certain instances the system prevents
starting a backup copy without serialization (for example, during a CI/CA split)
by setting the BWO flags to 010. This indicates a backup should not be started
without serialization (BWO1 off), and that a backup that is currently in process
should be considered invalid. When the condition that prevented the starting of
a backup is ended, the system resets the BWO flags to 110. This indicates that a
backup can now be started without serialization, and that any backup in
progress should be discarded.

v If the database data sets are accessed by batch programs (when the database
manager is not accessing the data sets) that do not create forward recovery logs,
the database manager should clear the BWO1 flag and set the BWO3 flag at
close (that is, OX1). The setting of the BWO2 flag should not be changed. If the
backup manager discovers this BWO state at the end of backup without
serialization, the backup is not valid and should be discarded. The backup
manager can start a backup with serialization if the BWO flag state is 011, but
the flags should be reset to 000.

Note:

1. Since backups can result in heavy I/O activity, you might want to take backups
during the time of least activity against the data set to avoid affecting the
application response time.

2. The BWO flags are not locked between reading and setting them with
IGWABWO. The application is responsible for providing serialization when the
settings of the flags are changed.

3. KSDS data sets require special consideration. Inserts and updates can result in
control interval (CI) and control area (CA) splits. Backups taken without
serialization during CI and CA splits are discarded by the IBM products to
prevent missing or duplicate records in the backup copies.
The frequency of CI and CA splits depends on the insert activity, the update
activity that increases the lengths of records, and the amount of free space in CI
and CA. For KSDS data sets that are BWO enabled, run backups during
periods of low inserts and updates or ensure adequate free space in control
intervals and control areas.

4. Backups without serialization can be taken (on data sets defined with share
option 1 or 2) when:
v The database contains alternate indices in the upgrade set.
v The database is accessed by pathnames, or with ddname or dsname sharing.

5. Data sets can be opened regardless of the setting of the BWO flags. It is the
database manager's responsibility to determine whether the contents of the data
set are consistent.

6. The database manager can use the BWO recovery field to store information
(such as the log RBA or log timestamp) for the recovery manager to use in
locating the appropriate recovery logs.

7. BWO concept only applies to logical data set backup/restore. It does not apply
to physical data set backup/restore or full volume dump/restore.

Table 64 on page 353 describes the meaning of each of the BWO (BWO1, BWO2,
and BWO3) indicators.

Callable Services

352 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 64. Backup-While-Open Indicators

BWO Setting Description

000 Data set does not support backup without serialization.
001 Forward recovery in progress. Reset to 000 after recovery.
010 A CI/CA split for a BWO data set is in progress. Do not start backup. If

backup in progress, discard at end. This state can exist at open if the
database manager abended during split. Database action depends on
database manager. The data set might need restore and forward recovery
or backout of changes if AIXs are present.

011 The database manager closed a BWO data set and a CI/CA split had
occurred when it was previously open. Backup manager should reset it
to 000 and serialize to back up, not a BWO candidate. The database
manager should change this state to 110 at open.

100 A BWO data set has been opened by the database manager. Back up
without serialization.

101 Data set has been restored and requires forward recovery before it can
be used. Reset it to 001 before forward recovery.

110 A CI/CA split has occurred and completed on a BWO data set. This
state can exist at open if the database manager abended. Back up
without serialization. Reset it to 100 before backup.

111 An invalid state.

Call for DFSMSdfp Share Attributes
The DFSMSdfp share attributes call (IGWLSHR) returns the DFSMSdfp share
attributes currently in use.

Format
The format of the IGWLSHR callable service is:

�� CALL IGWLSHR ,
label

(return_code , reason_code , �

� prob_det , share_attr_selector , share_attr_array_length , �

� share_attr_array) ��

Parameters
return_code

Return code from IGWLSHR. The return code is also returned in register 15.
Return codes are explained in “IGWASYS, IGWASMS, IGWABWO, IGWLSHR
Return and Reason Codes” on page 354. This is an output argument that must
be defined as an integer.

reason_code
Reason code from IGWLSHR. The reason code is also returned in register 0.
Reason codes are explained in “IGWASYS, IGWASMS, IGWABWO, IGWLSHR
Return and Reason Codes” on page 354. This is an output argument that must
be defined as an integer.

Callable Services

Chapter 9. Using DFSMSdfp Callable Services 353

prob_det
Problem determination data. See “IGWASYS, IGWASMS, IGWABWO,
IGWLSHR Return and Reason Codes” for more information about problem
determination data. This is an output argument that must be defined as a
two-element array of integers.

share_attr_selector
Use to specify which DFSMSdfp share attributes are requested. Code a value of
1 to request the PDSE sharing protocol attributes. This is a required input
argument that must be defined as an integer.

share_attr_array_length
Use to specify the size of the share attributes array. This length represents the
number of array elements in the share_attr_array. Code the value required for
the chosen share_attr_selector value. The share_attr_array_length must minimally
be 1 when the share_attr_selector is 1. This is a required input argument that
must be defined as an integer.

share_attr_array
Returns DFSMSdfp share attributes. This is an output argument. Define as an
array of integers of length share_attr_array_length, where share_attr_array_length
is the length required for the chosen share_attr_selector value. The array
elements for the share_attr_selector value are returned as follows:

1 Status of PDSE sharing protocol. A value of 0 indicates PDSE support is
unavailable; that is, the system supports the call, but SMS PDSE support is
not active. If the system does not support this call (as with a previous
release), then a return code of 36 is returned.

A value of 1 indicates normal PDSE sharing protocol in use. A value of 2
indicates extended PDSE sharing protocol in use.

2–4 Reserved elements; 0 is returned.

Return Codes
See Table 65 for the IGWLSHR return and reason codes.

IGWASYS, IGWASMS, IGWABWO, IGWLSHR Return and
Reason Codes

When IGWASYS, IGWASMS, IGWABWO, or IGWLSHR returns control to the
calling program, it provides both a return code and a reason code. IGWASMS and
IGWABWO can return additional data useful for problem determination in the
prob_det array. IGWLSHR can return additional data regarding share_attr_selector
and share_attr_array_length arguments. The following table identifies return code
and reason code combinations, tells what each means, explains what and when
additional problem determination data is returned, and recommends what action
should be taken.

Table 65. IGWASYS, IGWASMS, IGWABWO, IGWLSHR Return and Reason Codes

Return Code Dec
(Hex)

Reason Code
Dec (Hex) Description

0 (0) 0 (0) The operation was successful.
4 (4) 4 (4) The operation was successful, but the bwo_recov argument has no valid

value for the data set specified in dsname. This is because it was created
under DFP 3.1.0, and no bwo_recov has been added to the data set. Add
bwo_recov to the data set as appropriate.

Callable Services

354 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 65. IGWASYS, IGWASMS, IGWABWO, IGWLSHR Return and Reason Codes (continued)

Return Code Dec
(Hex)

Reason Code
Dec (Hex) Description

8 (8) 4 (4) An invalid dsname_length or share_attr_selector was specified. Correct the
argument and retry the request.

8 (8) 8 (8) An invalid dsname of blanks or invalid share_attr_array_length was specified.
Correct the argument and retry the request.

8 (8) 12 (C) An invalid read_write was specified. A value of 0 or 1 must be supplied.
Correct the read_write argument and retry the request.

8 (8) 16 (10) The values supplied for bwo_flags are not valid. BWO1, BWO2, and BWO3
must have a value of either 0 or 1. Correct the bwo_flags argument and retry
the request.

8 (8) 20 (14) BWO is only supported for VSAM-type data sets. The name specified was
not a VSAM cluster name. Specify the name of a VSAM cluster in the
dsname argument and retry the request.

8 (8) 24 (18) An invalid level_indicator was specified. Correct the level_indicator argument
and retry the request.

8 (8) 28 (1C) An invalid select argument was specified. A value between 1 and 3 must be
specified. Correct the select argument and retry the request.

8 (8) 32 (20) The data set specified in dsname is not an SMS-managed data set. Correct
the dsname argument and retry the request.

12 (C) 8 (8) There is insufficient virtual storage to process the request. Free some virtual
storage and retry the request. If the condition persists, contact IBM for
programming assistance.

12 (C) 12 (C) The data set specified in dsname could not be found. Verify that the data set
exists and has been correctly specified in dsname.

12 (C) 16 (10) The data set specified in dsname is currently in MIGRATE status.
16 (10) 4 (4) An error occurred on a call to catalog management. The catalog return code

is in the first element of prob_det and the catalog reason code is in the
second element of prob_det. See message IDC3009I for an explanation of the
catalog return code and reason code. A catalog management return code of
8 indicates that the specified data set was not found. If you get this return
code, correct dsname and retry the request.

20 (14) 4 (4) A system error occurred during IGWASYS/SMS/BWO or IGWLSHR
processing. The elements of prob_det contain additional diagnostic data.
Contact IBM for programming assistance and provide them with the
IGWASYS/SMS/BWO return_code, reason_code, and prob_det values.

36 (24) 4 (4) Linkage cannot be established to the IGWLSHR service module or to
IGWASYS/SMS/BWO service modules, IGWAMCS1 and IGWAMCS2.
Either the wrong level of the operating system is being used, or the callable
system service library, SYS1.CSSLIB, is missing the required services.
Contact your installation system programmer for assistance.

Call for Record-Level Sharing Query (IGWARLS)
IGWARLS is used to query the information in the catalog for record-level sharing.

Format
The format of the IGWARLS call statement is:

Callable Services

Chapter 9. Using DFSMSdfp Callable Services 355

�� CALL IGWARLS ,
label

(return_code , reason_code , �

� prob_det , dsname_length , dsname , recovery_status , log_type , �

� logstreamid_length , logstreamid , rls_recovery_timestamp_utc , �

� rls_recovery_timestamp_local , vsam_quiesced , bwo) ��

Parameters
return_code

Return code from IGWARLS. The return code is also returned in register 15.
Return codes are explained in “Return Codes” on page 357. This is an output
argument. Define return_code as an integer.

reason_code
Reason code from IGWARLS. The reason code is also returned in register 0.
Reason codes are explained in “Return Codes” on page 357. This is an output
argument. Define reason_code as an integer.

prob_det
Problem determination data. See “Return Codes” on page 357 for more
information about problem determination data. This is an output argument.
Define prob_det as a two element array of integers.

dsname_length
Length, in bytes, of the data set name provided by the caller in dsname. The
value can be a number from 1 to 44. This is a required input argument. Define
dsname_length as an integer.

dsname
Name of the base cluster that the IGWARLS service will operate on. This is a
required input argument. Define dsname as EBCDIC character data of length
dsname_length.

recovery_status
Returns an indication as to whether the sphere is marked as requiring forward
recovery.
v 0 - RLS recovery required is not pending for the VSAM sphere.
v 1 - RLS recovery required is pending.

recovery_status is an output argument that is defined as an integer.

log_type
The specification of the LOG= parameter on DEFINE CLUSTER is returned.
v 1 - LOG parameter undefined
v 2 - LOG=NONE
v 3 - LOG=UNDO
v 4 - LOG=ALL

log_type is an output argument that is defined as an integer.

logstreamid_length
Length, in bytes, of the LOGSTREAMID field. This is a required input
parameter. Define logstreamid_length as an integer. The value of
logstreamid_length should be at least 26 bytes.

Callable Services

356 z/OS V2R1.0 DFSMSdfp Advanced Services

logstreamid
The specification of the LOGSTREAMID on DEFINE CLUSTER is returned. If
the parameter is undefined, blanks are returned. The caller can determine the
size of the returned LOGSTREAMID field by scanning from right to left
looking for a non blank character or until the entire field has been scanned.
logstreamid is an output argument that is defined as an EBCDIC character data
field of length logstreamid_length.

rls_recovery_timestamp_utc
An output argument which represents the UTC time (formally known as GMT)
of the dump/copy in STCK format. The field is defined as an eight-byte
unsigned integer. Your program might regard this field as either an integer or a
character string.

rls_recovery_timestamp_local
An output argument which represents the local time of the dump/copy in
STCK format. The field is defined as an eight-byte unsigned integer. Your
program might regard this field as either an integer or a character string.

vsam_quiesced
An output argument which indicates whether the sphere is marked as
VSAM_QUIESCED.
v 0 - The sphere is not marked VSAM_QUIESCED.
v 1 - The sphere is marked VSAM_QUIESCED.

vsam_quiesced is an output argument, defined as an integer.

bwo
An output argument which indicates whether the value of the BWO parameter
on define cluster.
v 1 - BWO parameter is undefined.
v 2 - BWO = TYPECICS processing allowed.
v 3 - BWO = NO. BWO processing is not allowed.
v 4 - BWO = TYPEIMS processing allowed.
v 5 - BWO = TYPEOTHER processing allowed.

Return Codes
When IGWARLS returns control to the calling program, it provides both a return
code and a reason code. IGWARLS can return additional data useful for problem
determination in the prob_det array. Table 66 identifies return code and reason code
combinations, tells what each means, explains what and when additional problem
determination data is returned, and recommends what action should be taken.

Table 66. IGWARLS Return and Reason Codes

Return Code Dec
(Hex)

Reason Code Dec
(Hex) Description

0 (0) 0 (0) The operation was successful.
8 (8) 4 (4) An invalid dsname_length was specified. Correct the dsname_length argument

and retry the request.
8 (8) 8 (8) An invalid dsname of blanks was specified. Correct the dsname argument and

retry the request.
8 (8) 20 (14) IGWARLS is only supported for VSAM data sets. The name specified was

not the name of the base cluster. Specify the name of the base cluster in the
dsname argument and retry the request.

8 (8) 32 (20) The data set specified in dsname is not an SMS managed data set. Correct
the dsname argument and retry the request.

Callable Services

Chapter 9. Using DFSMSdfp Callable Services 357

Table 66. IGWARLS Return and Reason Codes (continued)

Return Code Dec
(Hex)

Reason Code Dec
(Hex) Description

8 (8) 40 (28) For IGWARLS, the logstreamid_length specified was invalid (<=0) or was
not large enough to return the requested logstreamid. Correct the
logstreamid_length argument and retry the request.

12 (C) 8 (8) There is insufficient virtual storage to process the request. Retry the request.
If the condition persists, contact IBM for programming assistance.

12 (C) 12 (C) The data set specified in dsname could not be found. Verify that the data set
exists and has been correctly specified in dsname.

12 (C) 14 (E) The data set specified in dsname was found in the catalog but its attributes
were not available. Verify that the data set has been correctly specified in
dsname.

12 (C) 16 (10) Cannot access the data set that is specified in dsname. The data set has been
HSM migrated. HRECALL the data set and retry the request.

16 (10) 4 (4) An error occurred on a call to catalog management. The catalog return code
is in the first element of prob_det and the catalog reason code is in the
second element of prob_det. See message IDC3009I for an explanation of the
catalog return code and reason code. A catalog management return code of
8 indicates that the specified data set was not found. If you get this return
code, correct dsname and retry the request.

20 (14) 4 (4) A system error occurred during IGWARLS processing. The elements of
prob_det contain additional diagnostic data. Contact IBM for programming
assistance and provide them with the IGWARLS return_code, reason_code,
and prob_det values.

36 (24) 4 (4) Linkage cannot be established to the IGWRLS service module, IGWAMCS4.
Either the wrong level of the operating system is being used, or the callable
system service library, SYS1.CSSLIB, is missing the required services.
Contact your installation system programmer for assistance.

Example
The following example shows the RLS query call using LOAD and CALL
statements:

.

.

LOAD EP=IGWARLS
LR R9,R0
CALL (R9),(RC1,RS1,PROB1,DSNLEN1,DSN1,RECSTAT,LOGTYPE, X

LOGSTRML,LOGSTRM,RCVTMG,RCVTML,VSAMQUIS,BWO)

RC1 DC F’0’
RS1 DC F’0’
PROB1 DC 2F’0’
DSNLEN1 DC A(L’DSN1)
DSN1 DC CL12’BASE.CLUSTER’
RECSTAT DC F’0’
LOGTYPE DC F’0’
LOGSTRML DC A(L’LOGSTRM)
LOGSTRM DC CL26’ ’
RCVTMG DC XL8’00’
RCVTML DC XL8’00’
VSAMQUIS DC F’0’
BWO DC F’0’

Figure 43. Example of the IGWARLS Query Call Using LOAD and CALL Statements

Callable Services

358 z/OS V2R1.0 DFSMSdfp Advanced Services

Call for converting and comparing 28-bit cylinder addresses
(IECTRKAD)

IECTRKAD is a callable service to perform conversions and compares of 28-bit
cylinder addresses. The track addresses are in the form CCCCcccH, where CCCC is
the 16 low order bits of the cylinder number and ccc is the 12 high order bits of it.

Cobol, PL/I, and C programs can call IECTRKAD without having to write
assembler routines to invoke TRKADDR.

The caller requirements of IECTRKAD are:
v Register 1 contains an address to a parameter list. Register 0 is not used.

Register 13 points to a standard register 18-word save area and registers 14 and
15 have their standard usage.

v Calling program can be in either 24-or 32-bit addressing mode
v Calling program can be executing in any protection key and in either supervisor

or problem state

The called routine, IECTRKAD, has the following characteristics:
v No executable macro other than CALL and LINK is provided to call IECTRKAD.
v The called routine resides in SYS1.CSSLIB and is shipped in distribution library

ACSSLIB.
v User program can link edit with the called routine to invoke IECTRKAD.
v User program can use the LINK macro or the LOAD and CALL macros to

invoke IECTRKAD.
v IECTRKAD processing will use the equivalent TRKADDR function and pass the

result back accordingly.
v IECTRKAD is release independent; if you link or bind IECTRKAD with your

program, it will run on earlier or later releases of z/OS. This includes releases
before the first availability of IECTRKAD.

Format
You can adapt the assembler language syntax shown here to your computer
language such as C, COBOL or PL/I:

��
label

CALL IECTRKAD , (operation , cchh1
, cchh2

�

�
, number

, returncode , reasoncode) ��

Parameters
Where the parameters are:

operation
Specifies the operation to perform. This parameter is the name of a field that
contains character data of length 10. The allowable values are:

Callable Services

Chapter 9. Using DFSMSdfp Callable Services 359

ABSTOREL
calculates the relative track number on the volume from the passed cchh1
track address.

COMPARE
compares the two track addresses passed in cchh1 and cchh2.

EXTRACTCYL
extracts the 28-bit cylinder number from the passed cchh1 track address.

EXTRACTTRK
extracts the 4-bit track number from the passed cchh1 track address.

NEXTTRACK
increments the track address by one track and increments the cylinder
number if necessary from the passed cchh1 track address.

NORMALIZE
reverses the 16-bit and 12-bit portions of the cylinder number from the
passed cchh1 track address. The CCCCcccH becomes cccCCCCH. This could
be used to subsequently perform unsigned comparisons of track addresses.

NORMTOABS
reverses the 12-bit and 16-bit portions of the cylinder from the track
address passed in number. The cccCCCCH becomes CCCCcccH. Use this to
convert a normalized track address to an absolute 28-bit cylinder address.

RELTOABS
converts a relative track number, passed in number, to a 28-bit cylinder
address.

SETCYL
converts a relative cylinder number, passed in number, to a 28-bit cylinder
address and sets the head portion to zero.

If you request an operation that is less than 10 characters, it must be padded
on the right with blanks.

cchh1
Required parameter, cchh1, is a four-byte area containing a track address that
nominally is in the form of CCHH. For all functions except RELTOABS and
SETCYL this is input to the called routine. For RELTOABS, SETCYL, and
NORMTOABS this is output from the called routine.

cchh2
Optional positional parameter, cchh2, is a four-byte area whose meaning
depends on the operation specified by the first parameter. For all functions
except COMPARE and NEXTTRACK this parameter is ignored.

For COMPARE processing, cchh2 contains the track address that is to be
compared to the first cchh1 parameter.

For NEXTTRACK processing, cchh2, is the four-byte output area to contain the
track address (CCHH) of the next logical track on the volume. If the input
track number is 0 to 13, the output cylinder number will be the same and the
output track number will be one greater than the input track number. If the
input track number is 14, the output cylinder will be one higher than the
cylinder number in cchh1 and the output track number will be 0. The called
routine does not check for numeric overflow.

Callable Services

360 z/OS V2R1.0 DFSMSdfp Advanced Services

number
Optional positional parameter, number, is a four-byte integer whose meaning
depends on the operation specified by the first parameter.

For ABSTOREL processing, number is the output area that will contain the
relative track number on the volume.

For COMPARE processing, number is the output area that will contain the
result of the comparison. Zero means the inputs are equal. Negative one means
the first one is lower. Positive one means the first one is higher.

For EXTRACTCYL processing, number is the output area that will contain the
28-bit cylinder number with the four high order bits set to zero.

For EXTRACTTRK processing, number is the output area that will contain the
four-bit track number with the 28 high order bits set to zero.

For NEXTTRACK processing, number is an ignored parameter. It can be 0 or
any valid virtual address. Not checked by the called routine.

For NORMALIZE processing, number is the output area that will contain the
normalized version of the input CCHH. The CCCCcccH becomes cccCCCCH.
The high order 28-bits are the cylinder number and the low order four bits are
the track number. This allows your code to do a more efficient comparison of
one track address with many track addresses. Normalize each and do unsigned
comparisons.

For NORMTOABS processing, number is the input area that contains the
normalized track address to be converted. The cccCCCCH becomes CCCCcccH.
Use this to convert a normalized track address to an absolute 28-bit cylinder
address.

For RELTOABS processing, number is the input area that contains the relative
track number on the volume. For example the first two tracks on the second
cylinder (cylinder 1) have relative track numbers of 15 and 16. The called
routine converts the relative track number to a 28-bit nonlinear cylinder
address with a 4-bit head value in the low order four bits in the cchh1 output
area.

For SETCYL processing, number is the input area that contains the cylinder
number on the volume in the low order 28-bits with the four high order bits
set to zero. The called routine splits the 28-bits into the high order 12-bits and
low order 16-bits, reverses them in the output field, cchh1, with the cylinder
address in the high order 28-bits and the low order four bits to zero

returncode
returncode is a 4-byte integer that contains the return code from IECTRKAD
processing. returncode is also returned in register 15. The return codes that
could be set include the following:

0 Successful.

4 Successful, but with exceptions

8 Request was unsuccessful because of invalid or incorrect input. Refer
to thereasoncode for more detailed information

reasoncode
reasoncode is a 4-byte integer associated with a specific return code. reasoncode is
returned in Register 0.

No reason codes are supplied for return code 4:

The following reason codes are supplied for return code 8:

Callable Services

Chapter 9. Using DFSMSdfp Callable Services 361

4 The H portion of a track address is not valid on a NEXTTRACK
operation

8 The caller specified an invalid operation (the first parameter is not one
of the supported operations)

12 The address of a required parameter is zero.

Character Data Representation Architecture (CDRA) APIs
The following CDRA APIs are included in the DFSMS product library. For more
detailed description of both the APIs and their use, see Character Data
Representation Architecture Reference and Registry (SC09-2190).

API Description
CDRGESP

Get Encoding Scheme, Character Set, and Code Page Elements
CDRSCSP

Get Short Form (CCSID) from Specified ES (CS, CP)
CDRGESE

Get Encoding Scheme Element and its Subelements
CDRGCTL

Get Control Function Definition
CDRSMXC

Get Short Form (CCSID) with maximal CS for Specified ES, CP
CDRMSCI

Multiple-Step Convert Initialize
CDRMSCP

Multiple-Step Convert Perform
CDRMSCC

Multiple-Step Convert Clean Up
CDRXSRF

Extract Status and Reason Codes from Feedback Code

Callable Services

362 z/OS V2R1.0 DFSMSdfp Advanced Services

Chapter 10. Using the DESERV Exit

The DESERV exit was designed to support those programs which, before the
binder, used SVC screening or replacement of the SVC table to trap SVC 21
(STOW) in order to monitor STOWs. DESERV provides an equivalent function to
that obtained by SVC Screening or replacing the SVC table entry for SVC 21 (or
SVC 12, BLDL). The DESERV exit can be used along with the SVC screening and
SVCUPDTE facilities to monitor accesses and updates to PDS and PDSE
directories.

The system calls the DESERV GET function when the following occurs:
v The binder is used to bind a program object or a load module and it is searching

for member names to be included. (Note the linkage editor does not use
DESERV).

v The system is searching for modules to load into storage while processing the
ATTACH, LINK, LOAD or XCTL functions.

In these situations the system uses DESERV GET rather than issuing BLDL.
However, in some situations DESERV GET issues BLDL to perform the directory
search (the BLDL function does not issue DESERV calls). The system calls the
DESERV PUT function when the following occurs:
v The binder is creating a program object in a PDSE (note the linkage editor does

not use DESERV, nor does the binder use DESERV PUT when creating a load
module in a PDS).

v An IEBCOPY job is loading a program object from an IEBCOPY unloaded data
set.

v An IEBCOPY job is copying a member to a PDSE where one of the member‘s
names is greater than 63 bytes long.

In these situations the system uses DESERV PUT rather than issuing STOW. The
DESERV PUT and STOW code do not interact. STOW does not issue DESERV PUT
nor does DESERV PUT issue STOW.

Currently the system does not use the RENAME or UPDATE functions. SMP/E is
the only known user of the DELETE function. The rename, update and delete
functions and the STOW code do not interact.

With SVC screening, an SVC screen table is associated with a task control block
(TCB). The table marks specific SVC numbers as not valid. The table also defines
the address of a routine that gets control when an SVC that is not valid is issued.
Then it's possible for the screen routine to inhibit the function, perform the
function itself, or temporarily disable the SVC screening and re-issue the SVC. This
technique provides a front and back end mechanism for SVC routines.

With SVCUPDTE, an application can dynamically replace or delete SVC table
entries for the system or obtain the SVC number of a routine at a specified entry
point. One specific use of the replace function of SVCUPDTE would use a scenario
like the following to replace an IBM supplied SVC routine.
1. Extract the SVC entry for SVC 18 (BLDL) from the SVC table.
2. Issue SVCUPDTE to install the vendor's version of the BLDL function.
3. When an SVC 18 is issued, the vendor's BLDL module gets control.

© Copyright IBM Corp. 1979, 2014 363

4. The vendor's BLDL either performs the function and returns to the caller, or
branch enters the IBM supplied BLDL code whose address was obtained earlier
from the SVC table.

For more detail and explanation of the DESERV functions, see z/OS DFSMS Using
Data Sets; for their macros, see z/OS DFSMS Macro Instructions for Data Sets.

DESERV provides a task level exit for an interface that is similar to SVC screening
for the SVC routines BLDL and STOW. DESERV also provides a global exit for an
interface that is similar to the SVCUPDTE replace option. For more information on
using SVC Screening and SVCUPDTE, refer to z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO and z/OS MVS Programming: Authorized
Assembler Services Guide.

Task Level Exit
The task level DESERV exit can be established for any TCB following the LPA's
initialization. Once established for a task, the DESERV exit is given control for the
DESERV functions that are issued under the TCB. The exit entry point is given
control twice for each GET, PUT, RENAME, DELETE, or UPDATE invocation; once
before DESERV executes and once immediately before the return from the DESERV
function. The parameters passed to the exit indicate whether this call happens
before or after the DESERV function executes.

If a DESERV FUNC=GET call is made for which there are no PDSEs in the
concatenation, the DESERV code issues BLDL to search for the requested names.
The task level exit is called in this case. However, if SVC screening is also active,
the exit might perform one of the following tasks:
v Not process this DESERV call (that is, lets the SVC screen routine process the

BLDL request) or
v Process this DESERV call with the pre- and post-processing exits, but also

disable the SVC screening for BLDL in the pre-processing exit and enable the
BLDL screening in the post-processing exit. A parameter passed to the exit
indicates whether a BLDL will be or has been issued.

Just as with the SVC screening facility, the DESERV task level exit function enables
the user to indicate that the exit should be propagated to subsequently attached
tasks.

The first DESERV call for a task searches the TCB chain for a DESERV task level
exit routine with propagate specified. DESERV searches the TCB chain following
the originating TCB pointer (TCBOTC). If none exists, the task is marked to
indicate that no DESERV task level exit exists. Therefore, for the propagate option
to work, the exit routine must be established before issuing the ATTACH macro.
This is roughly consistent with implementing SVC screening. The difference is that
the SVC screening table is propagated at the time of the ATTACH, while the
DESERV exit might not be propagated at ATTACH (for example, if the attached
program is found in the job pack queue, no directory search (that is, DESERV GET)
is done to find the module).

DESERV Exit

364 z/OS V2R1.0 DFSMSdfp Advanced Services

Global Exit
The global DESERV exit can be established for the system following the
initialization of LPA. When establishing a global exit, obtain the DST (DESERV
Screen Table) storage in common storage. The DST is used to identify a DESERV
exit. Once established, the DESERV exit gets control anytime DESERV GET, PUT,
RENAME, DELETE, or UPDATE functions are called. The exit entry point is given
control twice for each invocation, once before DESERV is executed, and once
immediately after the return from the DESERV function. The call to the exit
indicates whether this call is before or after DESERV executes. The global exit
routine must reside in commonly addressable storage.

If a DESERV FUNC=GET call is made for which there are no PDSEs in the
concatenation, the DESERV code issues BLDL to search for the requested names.
The global exit is called in this case. If both the SVCUPDTE facility and the
DESERV global exit are used, before implementing the global DESERV exit
consider the interactions of the DESERV global exit and the routine that is given
control when the SVC is issued.

Interactions Between the Task Level and Global Exits
If both task level and global DESERV exits have been defined, there is a prescribed
calling sequence. The task level exit is called first. If the task level exit indicates
that the DESERV function should be terminated (via a return code 4 from the exit),
DESERV returns immediately to its caller. However, the global exit is given control
when the task level exit returned with return code 0. The global exit can indicate
(via return code 4) that control should pass back immediately to the DESERV
caller. In this case before returning to the DESERV caller, the task level exit is given
control indicating that the DESERV function is complete. After returning from the
task level exit, DESERV returns to the caller.

If the global exit returns with return code 0, the DESERV function executes,
making the post-processing exit calls. The post processing exit calls are made first
to the global exit and second to the task level processing exit. This sequence (the
reverse of the pre-processing exit sequence) is chosen to simulate the return
sequence that would have been seen if both SVC screen routine and updated SVC
routine were in place. The following diagram illustrates the exit routine call
sequence:

DESERV Exit

Chapter 10. Using the DESERV Exit 365

Establishing Multiple Task level or Multiple Global Exits
The system identifies a DESERV exit by a DST (DESERV Screen Table). The system
maintains at most one task level DST for each task, and at most one DST for the
system (which represents the global exit). However, multiple DESERV exits can be
established. To support multiple exits of a given type (task or global), when a
DESERV FUNC=EXIT is issued with EXIT_OPTION=REPLACE, DESERV returns
the address of the DST that was replaced (or zero if no DST was replaced). Then it
is the responsibility of the newly defined exit to pass control to the previously
defined exit.

Issuing DESERV FUNC=EXIT (invocation environment)
INTERRUPTS:

Enabled

STATE and KEY:
Supervisor state, or system key (0-7)

ASC Mode:
P=H=S

AMODE, RMODE:
No restrictions

LOCKS:
None held

REGISTERS:

v All register contents except registers 15 and 0 are restored on return.
v Register 15 contains the return code and register 0 contains the reason

code.
v No save area is required.

SERIALIZATION REQUIREMENTS:
None. DESERV maintains serialization. Therefore the caller does not need
to provide any ENQ-like serialization.

DESERV GET, PUT, RENAME, DELETE or UPDATE is issued
enter DESERV GET, PUT, RENAME, DELETE, or UPDATE

call task exit for pre-processing
if return_code = 0 then

call global exit for preprocessing
if return_code = 0 then

process GET, PUT, RENAME, DELETE, or UPDATE
GOTO post_process_global

else if return_code = 4 then
GOTO post_process_task

else if return_code = 4 then
return to DESERV caller

Post_process_global:
call global exit for post-processing

Post_process_task:
call task exit for post-processing
return to DESERV caller

Figure 44. Exit Routine Call Sequence

DESERV Exit

366 z/OS V2R1.0 DFSMSdfp Advanced Services

Invocation Syntax
The following figure illustrates the syntax for the DESERV EXIT function:

FUNC=EXIT
Requests the DESERV function which operates on a DESERV exit. This
keyword is always required except when MF=E is coded with "NOCHECK"
and no other keywords are coded or MF=L is coded with no other keywords.
For the MF=E case, the FUNC keyword and other keywords specified on the
MF=L DESERV macro invocation are assumed to have been coded completely.

EXIT_SCOPE=GLOBAL or TASK
Specifies whether the exit specified will be of a TASK level or of a GLOBAL
level.

EXIT_OPTION=REPLACE or NOREPLACE or DELETE or QUERY
If EXIT_OPTION=REPLACE or NOREPLACE is coded, this specifies whether
this invocation of the DESERV FUNC=EXIT should replace an existing
DESERV EXIT (TASK or GLOBAL as specified by the EXIT_SCOPE parameter).
EXIT_PREV_DST will return the existing exit or be set to zero if one does not
exist.

If EXIT_OPTION=DELETE is coded, this indicates that the current exit is to be
deleted (EXIT_OPTION=DELETE). In this case the EXIT_DST parameter
specifies the address of the DST which is to be deleted. This address will be
used as the compare value in a compare and swap operation, and only the
currently active exit can be deleted. The DST address specified with the
EXIT_PREV_DSTPTR parameter will be used as the swap value.

If EXIT_OPTION=QUERY is coded, this indicates that the current exit DST
address is to be returned via the EXIT_PREV_DSTPTR parameter.

EXIT_DST=deserv_exit_screen_table RX-Type Address or (2-12)
Specifies the address of the DESERV Screen Table (DST). The screen table is
mapped by DST DSECT of the IGWDES mapping macro. For an

�� DESERV FUNC=EXIT
label TASK

,EXIT_SCOPE= GLOBAL

�

�
NOREPLACE

,EXIT_OPTION= REPLACE
DELETE
QUERY

,EXIT_DST= dst_address
(2-12)

�

� ,EXIT_PREV_DSTPTR= dstPTR_address
(2-12)

�

�
S

,MF= L
,COMPLETE

(E, (1-12) ,NOCHECK)
label

,RETCODE=retcode
�

�
,RSNCODE=rsncode

��

DESERV Exit

Chapter 10. Using the DESERV Exit 367

EXIT_OPTION of either NOREPLACE or REPLACE, this parameter defines the
DST and defines the exit routine address which becomes the currently active
exit if the operation is successful. For an EXIT_OPTION of DELETE, this
parameter defines the DST whose address is used as a compare value in a
compare and swap operation when deleting the current DST (the address of
the input DST is used as the compare value). If the compare fails, DESERV
returns an error return and reason code. If EXIT_OPTION=QUERY is coded,
this parameter is not required.

EXIT_PREV_DSTPTR=addr_of_deserv_exit_screen_table RX-Type Address or
(2-12)

The EXIT_PREV_DSTPTR is an output parameter when an EXIT_OPTION of
NOREPLACE, REPLACE or QUERY is specified, and an input parameter if an
EXIT_OPTION of DELETE is specified.

For EXIT_OPTION=NOREPLACE or QUERY this parameter specifies a four
byte field into which DESERV will return the address of the current DST (or
zero if no DST exists).

For EXIT_OPTION=REPLACE, this parameter specifies a four byte field into
which DESERV will return the address of the DST which was successfully
replaced (or zero if no previous DST existed).

For EXIT_OPTION=DELETE, this parameter specifies a four byte field that
points to the DST that DESERV restore as the current DST. This address is the
swap value for the compare and swap operation.

MF=S or L or {(E,{(1-12) or label}{,COMPLETE or NOCHECK})} RX-Type Address
or (1-12) - for MF=E second argument Default=S - if the MF keyword is not
specified Default=COMPLETE - if MF=E is specified without the third
argument (COMPLETE or NOCHECK).

Specifies the format of the macro expansion.

The Standard form, S, checks all required keywords and keywords that are not
valid. This form generates a complete inline expansion of the parameter list
and code to call the Directory Entry Services routine. The standard form is for
programs that are not reenterable, or for programs that do not change values
in the parameter list.

L specifies the List form of the macro. This form generates a remote parameter
list. Only keywords of argument type KEY or SYM can be coded. Registers are
not valid because code generation does not occur, adcons are generated.
Invalid keyword checking is done.

Keywords with defaults that are set by MF=L invocation are not reset to their
default during MF=E invocation.

E specifies the Execute form of the macro. This form updates the remote
parameter list (MF=L) and transfers control to the DESERV routine.

The second parameter for MF=E format is the address of the parameter list
created by the MF=L DESERV invocation. This parameter must be specified as
either an RX type of address (possibly the label from MF=L macro invocation)
or a register enclosed in parentheses.

The third parameter, COMPLETE or NOCHECK, is optional. Default is
COMPLETE. This argument specifies whether required keyword checking will
be done. If MF=E is coded with the NOCHECK argument then no, some, or all
allowed keywords can be specified, assuming that any missing keywords were
coded on the MF=L macro invocation. If MF=E is coded with the COMPLETE
argument or allowed to default, the parameter list will be zeroed out (except

DESERV Exit

368 z/OS V2R1.0 DFSMSdfp Advanced Services

for the parameter list header) This sets all defaults because the defaults for the
DESERV macro are 0. All required keywords must be specified.

RETCODE=retcode RX-Type Address or (2-12)
Specifies the address where the return code returned by DESERV will be
stored. Can not be specified on MF=L macro format. The default is not to store
the return code in virtual storage. The return code is always returned in
register 15 without regard to whether RETCODE is coded.

RSNCODE=rsncode RX-Type Address or (2-12)
Specifies the address where the reason code returned by DESERV will be
stored. Can not be specified on MF=L macro format. The default is not to store
the return code in virtual storage. The return code is always returned in
register 0 without regard to whether RETCODE is coded.

DESERV code is available and used by the system starting with DFSMSdfp Version
1.1. However, invoking the EXIT function requires that the appropriate PTF be
applied to the system to enable the support. Your program can test to determine if
the appropriate level of DFSMS™ or PTF is installed.

If the DESERV FUNC=EXIT interface is called on DFSMS without the support code
being available, DESERV returns an error return and reason code.

Installing or Replacing the DESERV Exit
Your program, while operating in task mode, can establish DESERV exits by
issuing the DESERV macro with FUNC=EXIT and appropriate parameters.

Table 67. Installing or Replacing the DESERV Exit

If EXIT_OPTION = then: and these parameters...

REPLACE The new exit definition
replaces the most recently
defined exit. The DST
(DESERV Screen Table)
address of the previously
defined exit's DST is returned
to the caller.

EXIT_DST and
EXIT_PREV_DSTPTR must
be specified.

NOREPLACE (with no exit
currently existing)

The exit definition is
activated. A value of zero is
returned as the previous DST
address.

See REPLACE.

NOREPLACE (with an exit
currently existing)

The currently defined exit
remains the active exit. The
address of the currently
defined DST is returned as
the previous DST address.

See REPLACE.

Note: If EXIT_OPTION=REPLACE is specified the caller must expect that a previous DST
address is returned. It is the responsibility of the caller to replace the old DST address when
eventually disabling the new exit. Also the exit routine might need to be aware that there
was a previous exit defined, and might choose to invoke the previously defined exit.

EXIT_DST defines the DST address. The DESERV FUNC=EXIT caller owns and
manages storage for the DST. The DST can be encapsulated inside other
application managed control blocks. This can help the exit routine determine the
context of the application in which it was called. When the DST is used with a task
level exit, the DST_FLAGS_PROP bit can be set on to indicate that this DST should

DESERV Exit

Chapter 10. Using the DESERV Exit 369

be propagated to tasks that are attached by this task. The propagate function is not
supported for the global exit. The format of the DST is shown in Table 68.

Table 68. DESERV Screen Table Structure

Offset
Length or Bit
Pattern Name Description

0 (X'0') 20 DST (structure)

0 (X'0') 16 DST_HEADER (character)

0 (X'0') 8 DST_ID Eyecatcher 'IGWDST' (character)

08 (X'08') 4 DST_LEN Length of DST

X'14' DST_LEN_IV Constant to be used with
DST_LEN

12 (X'0C') 1 DST_LEV Control block level (unsigned)

X'01' DST_LEV_IV Constant to be used with
DST_LEV

13 (X'0D') 1 DST_FLAGS DST flags (unsigned)

xxxx xxx. - Reserved

.... ...1 DST_FLAGS_PROP Propagate this DST to lower level
tasks

14 (X'0E') 2 DST_RES Reserved

16 (X'10') 4 DST_EXIT Address of exit routine screen
table (address)

EXIT_PREV_DSTPTR returns the address of the DST that was defined prior to this
DESERV FUNC=EXIT call.

Deleting the DESERV Exit
An application that has established a DESERV exit can delete the currently active
exit by issuing the DESERV macro with FUNC=EXIT. You can specify the
following:

Table 69. Deleting the DESERV Exit

For this parameter specify this:

EXIT_SCOPE (application dependent)

EXIT_OPTION DELETE

EXIT_DST Currently active DST to be deleted

EXIT_PREV_DSTPTR The DST to become active

Note: The address of the DST must match that of the currently defined DST. If the
addresses do not match, DESERV returns error return and reason codes to indicate the
DELETE operation has failed and the active DST remains unaffected.

For a task related exit, the DESERV exit is implicitly deleted when the task ends. A
global exit can only be explicitly deleted by issuing a DESERV FUNC=EXIT call.

DESERV Exit

370 z/OS V2R1.0 DFSMSdfp Advanced Services

Determining If a DESERV Exit Is Active
To determine if a DESERV exit is active issue the DESERV macro with FUNC=EXIT
and choose the following options:

Table 70. Determining If a DESERV Exit Is Active

For this parameter choose this:

EXIT_OPTION QUERY

EXIT_SCOPE (application dependant)

EXIT_PREV_DSTPTR The address of a 4 byte area into which the
currently active DST address is returned (or
zero if there is no currently defined DST
address.)

Writing the DESERV Exit
A DESERV exit gets control once prior to any DESERV GET, PUT, RENAME,
UPDATE or DELETE function processing, and once immediately prior to DESERV's
return to the caller. A DESERV exit receives control in key 0 and supervisor state.
Register 13 points to an 18-word key 0 register save area.

The DESX DSECT maps the input to the exit routines and is defined in the
IGWDES macro. Register 1 points to the DESX on entry to the exit routine. The
DESX structure is shown in Table 71.

Table 71. DESX Structure Mapping DESERV Exit Parameter List

Offset
Length or Bit
Pattern Name Description

0 (X'0') 36 DESX (structure)

0 (X'0') 16 DESX_HEADER (character)

0 (X'0') 8 DESX_ID Eyecatcher - IGWDESX (character)

08 (X'08') 4 DESX_LEN Length of DESX (signed)

X'24' DESX_LEN_IV Constant to be used with DESX_LEN

12 (X'0C') 1 DESX_LEV Control block level (character)

X'01' DESX_LEV_IV Constant to be used with DESX_LEV

13 (X'0D') 3 - Reserved

16 (X'10') 4 DESX_DESP_PTR Address of caller's DESP (address)

20 (X'14') 4 DESX_DST Address of DESERV screen table (address)

24 (X'18') 1 DESX_CALLER_KEY Key of DESERV caller in bits 0-3 (unsigned)

25 (X'19') 1 DESX_FLAGS (bitstring)

1... DESX_BLDL_BIT DESERV issues BLDL to process this GET request

.1.. DESX_PREV_BIT EXIT called before DESERV PUT or GET function

..1. DESX_POST_BIT EXIT called after DESERV PUT or GET function

26 (X'1A') 2 - Reserved

28 (X'1C') 4 DESX_RETURN_CODE Return code to be returned to DESERV caller (unsigned)

32 (X'20') 4 DESX_REASON_CODE Reason code to be returned to DESERV caller (unsigned)

DESERV Exit

Chapter 10. Using the DESERV Exit 371

Note that the DESERV return and reason codes, with the exception of the PUT
codes, can be found in z/OS DFSMS Using Data Sets. See Figure 45 on page 387 for
the PUT return and reason codes.

Parameters Related to the GET Function
If the DESERV exit gets control for a DESERV GET function invocation,
DESX_DESP_PTR points to the DESERV parameter list. If the DESP field
DESP_FUNC=X'01' (DESP_FUNC_GET), this indicates a GET function parameter
list. See Table 72 on page 373 for the DESP structure for fields pertaining to a
DESERV GET invocation.

DESERV GET will return information on selected members. This information is
returned in a DESB structure. The DESB is mapped by the DESB DSECT in the
IGWDES macro. If the storage for the DESB is provided by the DESERV GET, the
DESP_AREA_PTR field contains the address of this storage. Alternatively the caller
may request that DESERV GET not obtain the storage for the DESB. In this case
the DESP_AREAPTR_PTR field contains the address of a 4 byte area into which
DESERV GET will return the address of a DESB. The DESB will be obtained in the
subpool identified by DESP_SUBPOOL (or default to subpool zero). The flag
DESP_SUBPOOL_FLG indicates whether the subpool was specified explicitly by
the DESERV GET caller.

A DESERV GET invocation identifies the members to be searched for by a name
list, a PDS format directory entry, or an SMDE. The DESP field DESP_GETTYPE
defines the get type. If the get type is a PDSDE (the member to be searched for is
defined by a PDS format directory entry), the DESP_PDSDE_PTR points to a
directory entry as returned by the BLDL macro. The PDS2 DSECT in the IHAPDS
macro maps this structure. The function of DESERV GET for a PDSDE get type
depends on the type of library identified by the concatenation number in the PDS
style directory entry. If the concatenation number identifies a PDS, the GET
function is simply to convert the PDS style directory entry into a SMDE. If the
concatenation number identifies a PDSE, the GET function is to connect to the
member identified by the PDS2TTRP field, and to return the appropriate SMDE. In
either case the SMDE is retuned (if in the PDSE case the member actually exists) in
the data portion of the output buffer (DESB, mapped below).

If the get type is name list, the DESL area points to the names to be searched for.
The DESP_NAME_LIST_PTR points to the DESL and the DESL DSECT in the
IGWDES macro maps it. A DESL is an array consisting of the number of entries
the DESP field DESP_NAME_LIST2 defines. The DESL parameter list is shown in
Table 73 on page 375.

If the get type is SMDE, the DESP_SMDE_PTR points to a system-managed
directory entry (SMDE) as returned by DESERV GET. DESERV GET will cause a
connection to the member identified by the SMDE. DESERV GET will return a
copy of the SMDE in the output DESB. The SMDE returned will of course have
updated connect token and connect id fields.

There are two input flags which control DESERV GET's view of the PDS or PDSE
to be searched. If the DESP_C370LIB flag is on, a PDS may be viewed as a
C370LIB. This means that if the PDS has a special member named @@DC370$, this
member is treated as the "real" directory for the PDS. If the DESP_SYSTEM_DCB is
on, this indicates that the caller (who must be authorized) has indicated that this
DCB is "owned by the system" and is not on any DEB chain, therefore DEBCHK
should not be done.

DESERV Exit

372 z/OS V2R1.0 DFSMSdfp Advanced Services

Hint: The name of the special member @@DC370$ might not display correctly on
your screen or printer. The first two characters are X'7C' and the last character is
X'5B'.

Table 72. Structure of DESP for DESERV GET Invocations

Offset
Length or Bit
Pattern Name Description

00 (X'00') 104 DESP DE Services parameter list (structure)

00 (X'00') 16 DESP_HEADER (character) 'IGWDESP'

00 (X'00') 8 DESP_ID Eyecatcher IGWDESP (character)

08 (X'08') 24 DESP_LEN Length of DESP (signed)

X'04' DESP_LEN_IV Constant to be used with DESP_LEN

12 (X'0C') 1 DESP_LEV Control block level (character)

X'01' DESP_LEV_IV Constant to be used with DESP_LEV

13 (X'0D') 3 - Reserved

16 (X'10') 1 DESP_FUNC Function type (unsigned)

X'07' DESP_FUNC_DELETE Function is DELETE

X'08' DESP_FUNC_RENAME Function is RENAME

X'09' DESP_FUNC_UPDATE Function is UPDATE

X'04' DESP_FUNC_PUT Function is PUT

X'01' DESP_FUNC_GET Function is GET

X'00' DESP_FUNC_OMITTED Function is omitted

17 (X'11') 3 - Reserved

20 (X'14') 4 - Reserved

24 (X'18') 12 DESP_DATA Function data (character)

24 (X'18') 2 DESP_FLAGS Flags (bitstring)

1... DESP_BYPASS_LLA 0=USE LLA, 1=BYPASS LLA

.x.. - Reserved

..1. DESP_SUBPOOL_FLG 0=SUBPOOL not specified, 1=SUBPOOL specified

...1 DESP_C370LIB 1=treat PDSs as C370LIB if @@DC370$ member
exists

.... xx.. - Reserved

.... ..1. DESP_SYSTEM_DCB 1=treat DCB as a system DCB

26 (X'1A') 1 - Reserved

27 (X'1B') 1 - Reserved

28 (X'1C') 1 DESP_LIBTYPE Indicates whether a DCB or DEB is input =X'02',
DEB input=X'01') (unsigned)

X'02' DESP_LIBTYPE_DCB Constant to be used with DESP_LIBTYPE

X'01' DESP_LIBTYPE_DEB Constant to be used with DESP_LIBTYPE

X'00' DESP_LIBTYPE_OMITTED Constant to be used with DESP_LIBTYPE

DESERV Exit

Chapter 10. Using the DESERV Exit 373

Table 72. Structure of DESP for DESERV GET Invocations (continued)

Offset
Length or Bit
Pattern Name Description

29 (X'1D') 1 DESP_GETTYPE Indicates whether Name List or PDSDE is input.
(NAME_LIST input=(X'01', PDSDE input=X'02')
(unsigned)

X'03' DESP_GETTYPE_SMDE Constant to be used with DESP_GETTYPE

X'02' DESP_GETTYPE_PDSDE Constant to be used with DESP_GETTYPE

X'01' DESP_GETTYPE_NAME_LIST Constant to be used with DESP_GETTYPE

X'00' DESP_GETTYPE_OMITTED Constant to be used with DESP_GETTYPE

30 (X'1E') 1 - Reserved

31 (X'1F') 1 - Reserved

32 (X'20') 1 - Reserved

33 (X'21') 1 DESP_SUBPOOL Subpool number for getting DESB.

34 (X'22') 1 DESP_CONN_INTENT Connect intent (unsigned)

X'03' DESP_CONN_INTENT_INPUT INPUT

X'02' DESP_CONN_INTENT_EXEC EXEC

X'01' DESP_CONN_INTENT_HOLD HOLD

X'00' DESP_CONN_INTENT_NONE None

35 (X'23') 1 - Reserved

36 (X'24') 4 DESP_DCB_PTR DCB address, valid if DESP_LIBTYPE=X'02'
(address)

40 (X'28') 4 DESP_DEB_PTR DEB address, valid if DESP_LIBTYPE=X'01'
(address)

44 (X'2C') 4 DESP_CONN_ID_PTR Connect identifier address

48 (X'30') 4 DESP_AREAPTR_PTR Address of output field for buffer address

52 (X'34') 4 DESP_AREA_PTR Buffer address

56 (X'38') 4 DESP_AREA2 Buffer length (unsigned)

60 (X'3C') 4 - Reserved

64 (X'40') 4 - Reserved

68 (X'44') 4 DESP_ENTRY_GAP Entry gap size (signed)

72 (X'48') 4 - Reserved

76 (X'4C') 4 - Reserved

80 (X'50') 4 DESP_NAME_LIST_PTR Name list address, valid if DESP_GETTYPE=X'01'
(address)

84 (X'54') 4 DESP_NAME_LIST2 Input list number of entries, valid if
DESP_GETTYPE=X'01' (unsigned)

88 (X'58') 4 - Reserved

92 (X'5C') 4 DESP_PDSDE_PTR BLDL directory entry address, valid if
DESP_GETTYPE=X'02' (address)

92 (X'5C') 4 DESP_SMDE_PTR SMDE directory entry address, valid if
DESP_GETTYPE=X'03' (address)

96 (X'60') 4 - Reserved

100 (X'64') 4 - Reserved

DESERV Exit

374 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 73. DESL Structure

Offset
Length or Bit
Pattern Name Description

00 (X'00') 16 DESL Name list (structure)

00 (X'00') 16 DESL_ENTRY Name list entry (character)

00 (X'00') 1 DESL_FLAGS Flags (unsigned)

1... DESL_MODULE_BUFFERED_
LLA

Module is staged by LLA

1 (X'1') 1 DESL_CODE Result code (New name exists=X'03', Error=X'02',
Not found or not processed=X'01', Found=X'00')
(unsigned)

X'03' DESL_CODE_NEWNAME_
EXISTS

For func=rename, indicates a new name already
existed in the PDSE.

X'02' DESL_CODE_ERROR An unexpected error has occurred. The
DESL_ERRCODE field is set to a DESRF value

X'01' DESL_CODE_NOTFOUND Entry not found or entry not processed. If
func=rename, old name was not found.

X'00' DESL_CODE_SUCC Entry successfully processed

2 (X'2') 2 DESL_ERRCODE Error reason code (low order halfword of DESERV
reason code if error) (unsigned)

4 (X'4') 4 - Reserved

08 (X'08') 4 DESL_SMDE_PTR Pointer to SMDE within DESB. Output for GET
function, input for UPDATE function (address)

08 (X'08') 4 DESL_NEW_NAME_PTR Pointer to new name (DESN) descriptor for
RENAME function (address)

12 (X'0C') 4 DESL_NAME_PTR Pointer to name (DESN) descriptor for GET and
DELETE functions (address)

12 (X'0C') 4 DESL_OLD_NAME_PTR Pointer to old name (DESN) descriptor for
RENAME function (address)

The DESERV GET caller will have built the DESL to point to variable length
names. The DESN DSECT maps these names in the IGWDES macro. See Table 74
for the DESN parameter list.

Table 74. DESN Parameter List

Offset
Length or Bit
Pattern Name Description

00 (X'00') variable DESN Name record (structure)

00 (X'00') 2 DESN_LEN Length of name that follows (unsigned)

2 (X'02') variable DESN_VAL Name data (character)

The DESP_CONN_INTENT field of the DESP indicates the connection intent
requested by the caller. The connection intent only has an effect if the name is
found in a PDSE. If the connection intent is DESP_CONN_INTENT_HOLD (X'01'),
the effect is similar to a BLDL invocation (because the member is connected for
HOLD which is not sufficient to read the member). If the connection intent is
DESP_CONN_EXEC (X'02') or DESP_CONN_INTENT_INPUT (X'03'), the effect is
similar to a FIND invocation (because the member is connected and sufficient

DESERV Exit

Chapter 10. Using the DESERV Exit 375

control blocks are built so that the member can be read). The GET function does
not currently support a connect intent of NONE.

The output from DESERV GET consists of flags and error codes in the DESL (if the
get type is name list) as well as an SMDE (system managed directory entry)
pointer. For a gettype of name list, the SMDE is pointed to by the
DESL_SMDE_PTR field. For a gettype of PDSDE, the SMDE is in the DESB at the
label DESB_DATA. The SMDE is mapped by the SMDE DSECT in the IGWSMDE
macro and the PMAR DSECT in the IEWPMAR macro. The SMDE resides in the
output buffer as provided by the caller of DESERV GET. The output buffer is
mapped by the DESP DSECT of the IGWDES macro. The DESB structure is shown
in Table 75.

The basic SMDE format is shown in Table 76.

Table 75. DESB Parameter List

Offset
Length or Bit
Pattern Name Description

00 (X'00') variable DESB DEServ buffer header (structure)

00 (X'00') 40 DESB_FIXED (character)

00 (X'00') 16 DESB_HEADER (character)

00 (X'00') 8 DESB_ID Eyecatcher - IGWDESB (character)

08 (X'08') 4 DESB_LEN Length of buffer (signed)

12 (X'0C') 1 DESB_LEV Control block level (character)

X'01' DESB_LEV_IV Constant to be used with DESB_LEV

13 (X'0D') 3 - Reserved

16 (X'10') 4 DESB_NEXT Next buffer pointer (address)

20 (X'14') 4 - Reserved

24 (X'18') 4 DESB_COUNT Count of entries in this buffer (unsigned)

28 (X'1C') 4 DESB_AVAIL Start of free space in buffer (address)

32 (X'20') 1 - Reserved

33 (X'21') 1 DESB_SUBPOOL Subpool number (unsigned)

34 (X'22') 2 DESB_GAP_LEN Length of user-requested gap (unsigned)

36 (X'24') 4 - Reserved

40 (X'28') variable DESB_DATA Start of data area (character)

Table 76. SMDE Format

Offset
Length or Bit
Pattern Name Description

00 (X'00') variable SMDE Member directory entry (structure)

00 (X'00') 44 SMDE_BASIC Start of basic section (character)

00 (X'00') 16 SMDE_HDR Header (character)

00 (X'00') 8 SMDE_ID Eyecatcher (character)

08 (X'08') 4 SMDE_LEN Length of control block. This is the sum of the
sizes of the SMDE sections and the size of the
user data. (unsigned)

DESERV Exit

376 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 76. SMDE Format (continued)

Offset
Length or Bit
Pattern Name Description

12 (X'0C') 1 SMDE_LVL SMDE version number (unsigned)

X'01' SMDE_LVL_VAL Constant to be used with SMDE_LVL

13 (X'0D') 3 - Reserved

16 (X'10') 1 SMDE_LIBTYPE Source library type. Possible values are declared
below with names like SMDE_LIBTYPE_XXX.
(unsigned)

X'03' SMDE_C370LIB Constant to be used with SMDE_LIBTYPE

X'02' SMDE_LIBTYPE_HFS Constant to be used with SMDE_LIBTYPE

X'01' SMDE_LIBTYPE_PDSE Constant to be used with SMDE_LIBTYPE

X'00' SMDE_LIBTYPE_PDS Constant to be used with SMDE_LIBTYPE

17 (X'11') 1 SMDE_FLAG Flag byte (bitstring)

1... SMDE_FLAG_ALIAS Entry is an alias

.1.. SMDE_FLAG LMOD Member is a program

..xx xxxx * Reserved

18 (X'12') 2 - Reserved, must be zero

20 (X'14') 5 - Extended MLTK (character)

20 (X'14') 1 - Reserved, must be zero

21 (X'15') 4 SMDE_MLTK MLT and concatenation number (character)

21 (X'15') 3 SMDE_MLT MLT of member - zero if HFS (character)

24 (X'18') 1 SMDE_CNCT Concatenation number (unsigned)

25 (X'19') 1 SMDE_LIBF Library flag - Z-byte (unsigned)

X'02' SMDE_LIBF_TASKLIB Constant to be used with SMDE_LIBF

X'01' SMDE_LIBF_LINKLIB Constant to be used with SMDE_LIBF

X'00' SMDE_LIBF_PRIVATE Constant to be used with SMDE_LIBF

26 (X'1A') 2 SMDE_NAME_OFF Name offset (signed)

28 (X'1C') 2 SMDE_USRD_LEN User data length (signed)

28 (X'1C') 2 SMDE_PMAR_LEN Sum of lengths of program management attribute
record sections (PMAR, PMARR, PMARL)
(signed)

30 (X'1E') 2 SMDE_USERD_OFF User data offset (signed)

30 (X'1E') 2 SMDE_PMAR_OFF Program management attribute record offset
(signed)

32 (X'20') 2 SMDE_TOKEN_LEN Token length (signed)

34 (X'22') 2 SMDE_TOKEN_OFF Token data offset (signed)

36 (X'24') 2 SMDE_PNAME_OFF Primary name offset, zero for non-alias SMDES or
if library type is a PDS and this is not a program.
(signed)

38 (X'26') 2 SMDE_NLST_CNT Number of note list entries that exist at beginning
of user data field. Always zero for non-PDS
members. (signed)

40 (X'28') 4 - Reserved

44 (X'2C') variable SMDE_SECTIONS Start of entry sections (character)

DESERV Exit

Chapter 10. Using the DESERV Exit 377

Table 77 through Table 80 shows the optional SMDE_SECTIONS, or extensions to
the SMDE.

Table 77. Directory Entry Name Section

Offset
Length or Bit
Pattern Name Description

00 (X'00') variable SMDE_NAME Name descriptor (structure)

00 (X'00') 2 SMDE_NAME_LEN Length of entry name (signed)

2 (X'02') variable SMDE_NAME_VAL Entry name (character)

Table 78. Directory Entry Notelist Section (PDS Only)

Offset
Length or Bit
Pattern Name Description

00 (X'00') variable SMDE_NLST Note list extension (structure)

00 (X'00') 4 SMDE_NLST_ENTRY Note list entries (character)

00 (X'00') 3 SMDE_NLST_RLT Note list record location token (character)

3 (X'03') 1 SMDE_NLST_NUM Number of RLT described by this note list block.
If 0 this is not a notelist but a data block.
(unsigned)

Table 79. Directory Entry Token Section

Offset
Length or Bit
Pattern Name Description

00 (X'00') 32 SMDE_TOKEN (structure)

00 (X'00') 4 SMDE_TOKEN_CONNID CONNECT_IDENTIFIER (unsigned)

4 (X'04') 4 SMDE_TOKEN_ITEMNO Item number (unsigned)

08 (X'08') 24 SMDE_TOKEN_FT File token (character)

Table 80. Directory Entry Primary Name Section

Offset
Length or Bit
Pattern Name Description

00 (X'00') variable SMDE_PNAME Primary name descriptor (structure)

00 (X'00') 2 SMDE_PNAME_LEN Length of primary name (signed)

2 (X'02') variable SMDE_PNAME_VAL Primary name (character)

If the SMDE represents a directory entry for a program (either a load module or a
program object) the program's attributes are defined by the PMAR structure. The
PMAR is a subfield of the SMDE and its offset is defined by the field
SMDE_PMAR_OFF. Table 81 on page 379 shows the basic PMAR definition.
Table 82 on page 381 and Table 83 on page 383 show the PMAR extensions for
program objects (PMARL) and load modules (PMARR), respectively.

If the SMDE represents a data member of a PDS or a PDSE, the SMDE_USRD_OFF
field indicates the offset into the SMDE for the user data of the directory entry.

DESERV Exit

378 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 81. Directory Entry Name Section. Data is always present at offset SMDE_PMAR_OFF in an SMDE.

Offset
Length or Bit
Pattern Name Description

00 (X'00') 30 PMAR Basic section of program user data (structure)

00 (X'00') 30 PMAR_ENTRY Alternative name for the PMAR section (character)

00 (X'00') 2 PMAR_SLEN Section length (unsigned)

2 (X'02') 1 PMAR_LVL PMAR format level (unsigned)

X'02' PMAR_LVL_VAL Constant to be used with PMAR

X'01' PMAR_PM1_VAL Constant to be used with PMAR

X'02' PMAR_PM2_VAL Constant to be used with PMAR

3 (X'03') 1 PMAR_PLVL Bind processor creating object 1 - E-level linkage
editor 2 - F-level linkage editor 3 - (VS1/VS2)
linkage editor 4 - XA linkage editor 5 - binder
version 1. (unsigned)

X'01' PMAR_PLVL_E_VAL Constant to be used with PMAR_PLVL

X'02' PMAR_PLVL_F_VAL Constant to be used with PMAR_PLVL

X'03' PMAR_PLVL_AOS_VAL Constant to be used with PMAR_PLVL

X'04' PMAR_PLVL_XA_VAL Constant to be used with PMAR_PLVL

X'05' PMAR_PLVL_B1_VAL Constant to be used with PMAR_PLVL

X'06' PMAR_PLVL_B2_VAL Constant to be used with PMAR_PLVL

4 (X'04') 4 PMAR_ATR Attribute bytes (character)

4 (X'04') 1 PMAR_ATR1 First attribute byte. These flags must be at the
same offsets as the corresponding flags in
PDS2ATR1 declared by macro IHAPDS. (bitstring)

1... PMAR_RENT Reenterable

.1.. PMAR_REUS Reusable

..1. PMAR_OVLY Overlay structure

...1 PMAR_TEST Module to be tested - TSO/E TEST

.... 1... PMAR LOAD Only loadable

.... .1.. PMAR_SCTR Scatter format

.... ..1. PMAR_EXEC Executable

.... ...1 PMAR_1BLK Load module contains only one block of text data
and has no RLD data.

DESERV Exit

Chapter 10. Using the DESERV Exit 379

Table 81. Directory Entry Name Section (continued). Data is always present at offset SMDE_PMAR_OFF in an
SMDE.

Offset
Length or Bit
Pattern Name Description

5 (X'05') 1 PMAR_ATR2 Second attribute byte. These flags must be at the
same offsets as the corresponding flags in
PDS2ATR2 declared by macro IHAPDS. (bitstring)

1... PMAR_FLVL If on, the program cannot be processed by the E
level linkage editor. If off, the program can be
processed by any level of the linkage editor or the
binder.

.1.. PMAR_ORGO Linkage editor assigned origin of first block of
text is zero.

..x. - Reserved

...1 PMAR_NRLD Program contains no RLD items

.... 1... PMAR_NREP Module cannot be reprocessed by the linkage
editor

.... .1.. PMAR_TSTN Module contains TSO/E TEST symbol records

.... ..x. - Reserved

.... ...1 PMAR REFR Refreshable program

6 (X'06') 1 PMAR_ATR3 Third attribute byte. (bitstring)

6 (X'06') 1 PMAR_FTB1 Alternative name for flags byte. These flags must
be at the same offsets as the corresponding flags
in PDS2FTB1 declared by macro IHAPDS.
(bitstring)

x... - Reserved

.1.. PMAR_BIG This program requires 16MB or more of virtual
storage.

..1. PMAR_PAGA Page alignment is required

...1 PMAR_XSSI SSI information present

.... 1... PMAR_XAPF APF information present

.... .1.. PMAR_LFMT PMARL follows PMAR.

.... ..xx - Reserved

7 (X'07') 1 PMAR_ATR4 Fourth attribute byte (bitstring)

DESERV Exit

380 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 81. Directory Entry Name Section (continued). Data is always present at offset SMDE_PMAR_OFF in an
SMDE.

Offset
Length or Bit
Pattern Name Description

7 (X'07') 1 PMAR_FTB2 Alternative name for flags byte. These flags must
be at the same offsets as the corresponding flags
in PDS2FTB2 declared by macro IHAPDS.
(bitstring)

1... PMAR_ALTP Alternate primary flag. If on for a primary name,
indicates primary name was generated by the
binder. If on for an alias, indicates the long alias
name was specified as the primary name on the
bind.

.xx. - Reserved

...1 PMAR_RMOD RMODE is ANY.

.... xx.. PMAR_AAMD Alias entry point addressing mode. If B'00',
AMODE is 24. If B'10', AMODE is 31. If B'11',
AMODE is ANY.

.... ..xx PMAR_MAMD Main entry point addressing mode. If B'00'
AMODE is 24. If B'10', AMODE is 31. If B'11',
AMODE is ANY.

08 (X'08') 1 - Reserved

9 (X'09') 1 PMAR_AC APF authorization code (unsigned)

10 (X'0A') 4 PMAR_STOR Virtual storage required (unsigned)

14 (X'0E') 4 PMAR_EPM Main entry point offset (unsigned)

18 (X'12') 4 PMAR_EPA This entry point offset (unsigned)

22 (X'16') 4 PMAR_SSI SSI information (bitstring)

22 (X'16') 1 PMAR_CHLV Change level of member (unsigned)

23 (X'17') 1 PMAR_SSFB SSI flag byte (bitstring)

24 (X'18') 2 PMAR_MSER Member serial number (Reserved)

26 (X'1A') 4 - Reserved

30 (X'1E') variable PMAR_END End of basic section (character)

Table 82. LSLoader Attributes Unique to Program Objects. If PMAR_LFMT=ON this section follows the PMAR basic
section.

Offset
Length or Bit
Pattern Name Description

00 (X'00') 50 PMARL LSLoader section for program objects (structure)

00 (X'00') 2 PMARL_SLEN Section length (unsigned)

2 (X'02') 48 PMARL_DATA Section data (character)

2 (X'02') 4 PMARL_ATR Attribute bytes (character)

2 (X'02') 1 PMARL_ATR1 Fifth attribute byte (bitstring)

1... PMARL_NMIG This program object cannot be converted directly
to PDS load module format.

.1.. PMARL_PRIM FETCHOPT PRIME option

..1. PMARL_PACK FETCHOPT PACK option

...x xxxx - Reserved

DESERV Exit

Chapter 10. Using the DESERV Exit 381

Table 82. LSLoader Attributes Unique to Program Objects (continued). If PMAR_LFMT=ON this section follows the
PMAR basic section.

Offset
Length or Bit
Pattern Name Description

3 (X'03') 1 PMARL_ATR2 Sixth attribute byte (bitstring)

1... PMARL_CMPR Compressed format module

.1.. PMARL_1RMOD 1st segment is RMODE Any, set for PM2-level PO
only

..1. PMARL_2RMOD 2nd segment is RMODE Any, set for PM2-level
PO if there are at least two segments.

...1 PMARL_SEGM Loader data includes a Segment Table with >1
loadable entry or a Gas Table, set for PM2-level
PO only.

.... 1... PMARL_1ALIN 1st segment is page-aligned, set for PM2-level PO
only

.... .1.. PMARL_2ALIN 2nd segment is page-aligned, set for PM2-level PO
if there are at least 2 segments.

.... ..1. PMARL_FILL FILL option specified set for PM2-level PO only

.... ...x - Reserved

4 (X'04') 1 PMARL_FILLVAL FILL character value set for PM2-level PO only

5 (X'05') 1 - Reserved

THE FOLLOWING NOTED FIELDS ARE NOT INTENDED FOR USE. INCLUDED HERE FOR INFORMATION
PURPOSES ONLY.

6 (X'06') 4 PMARL_MPGS Total length of program on DASD in pages
(unsigned)

10 (X'0A') 40 PMARL_MDAT DASD program descriptors (character)

10 (X'0A') 4 PMARL_TXTL Length of text (unsigned)

14 (X'0E') 4 PMARL_TXTO Offset to text (address)

18 (X'12') 4 PMARL_BDRL Length of binder index (unsigned)

22 (X'16') 4 PMARL_BDRO Offset to binder index (address)

26 (X'1A') 4 PMARL_RDTL Length of PRDT (unsigned)

30 (X'1E') 4 PMARL_RDTO Offset to PRDT (address)

34 (X'22') 4 PMARL_RATL Length of PRAT (unsigned)

38 (X'26') 4 PMARL_RATO Offset to PRAT (address)

42 (X'2A') 4 PMARL_NVSPGS Number of virtual storage pages to contain
program object, for PM2-level PO

42 (X'2A') 4 PMARL_LMDL Length of LSLoader data (unsigned) for PM1-level
PO

46 (X'2E') 4 PMARL_LMDO Offset to LSLoader data (address)

50 (X'32') 2 PMARL_NSEG Number of loadable segments

52 (X'34') 2 PMARL_NGAS Count of entries in Gas Table

54 (X'36') 4 PMARL_1STOR Virtual storage required for first loadable segment,
valid when PMARL_NSEG > 1.

58 (X'3A') 4 PMARL_2STOR Virtual storage required for second loadable
segment, valid when PMARL_NSEG > 1.

DESERV Exit

382 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 82. LSLoader Attributes Unique to Program Objects (continued). If PMAR_LFMT=ON this section follows the
PMAR basic section.

Offset
Length or Bit
Pattern Name Description

62 (X'3E') 4 PMARL_2TXTO Offset to second txt segment including gas, valid
when PMARL_NSEG > 1.

END INFORMATION ONLY FIELDS.

66 (X'42') 16 PMARL_TRACE AUDIT trace data

66 (X'42') 4 PMARL_DATE Date saved

70 (X'46') 4 PMARL_TIME Time saved

74 (X'4A') 8 PMARL_USER User or job identification

82 (X'52') variable PMARL_END End of LSLoader section (character)

Table 83. Attributes Unique to Load Modules (PDS only). If PMAR_LFMT=OFF then this section follows the PMAR
basic section.

Offset
Length or Bit
Pattern Name Description

00 (X'00') 23 PMARR Load module (PDS) attributes section (structure)

00 (X'00') 2 PMARR_SLEN Section length (unsigned)

2 (X'02') 21 PMARR_DATA Section data (character)

2 (X'02') 8 PMARR_TTRS TTR fields (character)

2 (X'02') 3 PMARR_TTRT TTR of first block of text (character)

5 (X'05') 1 PMARR_ZERO Zero (character)

6 (X'06') 3 PMARR_TTRN TTR of note list or scatter translation table. Used
for modules in scatter load format or overlay
structure only. (character)

9 (X'09') 1 PMARR_NL Number of entries in note list for scatter format
modules and modules in overlay structure,
otherwise zero. (address)

10 (X'0A') 2 PMARR_FTBL Length of first block of text (signed)

12 (X'0C') 3 PMARR_ORG Load module origin if 0 (unsigned)

12 (X'0C') 2 - Reserved

14 (X'0E') 1 PMARR_RLDS Number of RLD/CTL records that follow the first
text record

15 (X'F') 8 PMARR_SCAT Scatter load information (character)

15 (X'F') 2 PMARR_SLSZ Scatter list length (unsigned)

17 (X'11') 2 PMARR_TTSZ Translation table length (unsigned)

19 (X'13') 2 PMARR_ESDT ESDID of first text block (character)

21 (X'15') 2 PMARR_ESDC ESDID of EP control section (character)

23 (X'17') variable PMARR_END End of load module attributes (character)

Table 84. Alias in Unformatted Form. Used only as input to the PUT function.

Offset
Length or Bit
Pattern Name Description

00 (X'00') 7 PMARA PMAR alias entry section (structure)

DESERV Exit

Chapter 10. Using the DESERV Exit 383

Table 84. Alias in Unformatted Form (continued). Used only as input to the PUT function.

Offset
Length or Bit
Pattern Name Description

00 (X'00') 2 PMARA_LEN Section length (unsigned)

2 (X'02') 5 PMARA_DATA Section data (character)

2 (X'02') 4 PMARA_EPA Entry point offset (unsigned)

6 (X'06') 1 PMARA_ATR Attribute bytes (character)

6 (X'06') 1 PMARA_ATR1 First attribute byte (bitstring)

6 (X'06') 1 PMARA_FTB2 Alternative name for flags byte. These flags must
be at the same offsets as the corresponding flags
in PDS2FTB2 declared by macro IHAPDS.
(bitstring)

xxxx - Reserved

.... 11.. PMARA_AMD Alias entry addressing mode. If B'00', AMODE is
24. If B'10', AMODE is 31. If B'11', AMODE is
ANY.

.... ..xx - Reserved

7 (X'07') variable PMARA_END End of alias entry section (character)

Parameters Related to the PUT Function
If the DESERV exit gets control for a DESERV put function invocation,
DESX_DESP_PTR points to the DESERV parameter list. If the DESP field
DESP_FUNC=X'04' (DESP_FUNC_PUT), this indicates a PUT function parameter
list. Table 85 shows the fields of the DESP that pertain to the DESERV PUT
invocation.

Table 85. DESERV PUT DESP Fields

Offset
Length or Bit
Pattern Name Description

00 (X'00') 104 DESP DE Services parameter list (structure)

00 (X'00') 16 DESP_HEADER Standard header (character)

00 (X'00') 8 DESP_ID Eyecatcher 'IGWDESP' (character)

08 (X'08') 4 DESP_LEN Length of DESP (signed)

4 DESP_LEN_IV Constant to be used for DESP_LEN

12 (X'0C') 1 DESP_LEV Control block level (character)

4 DESP_LEV_IV Constant to be used for DESP_LEV

13 (X'0D') 3 - Reserved

16 (X'10') 1 DESP_FUNC Function type (GET=X'01', PUT=X'04',
DELETE=X'07', RENAME=X'08',
UPDATE=X'09') (unsigned)

X'07' DESP_FUNC_DELETE Constant to be used for DESP_FUNC

X'08' DESP_FUNC_RENAME Constant to be used for DESP_FUNC

X'09' DESP_FUNC_UPDATE Constant to be used for DESP_FUNC

X'04' DESP_FUNC_PUT Constant to be used for DESP_FUNC

X'01' DESP_FUNC_GET Constant to be used for DESP_FUNC

X'00' DESP_FUNC_OMITTED Constant to be used for DESP_FUNC

DESERV Exit

384 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 85. DESERV PUT DESP Fields (continued)

Offset
Length or Bit
Pattern Name Description

17 (X'11') 3 - Reserved

20 (X'14') 4 - Reserved

24 (X'18') 12 DESP_DATA Function data (character)

24 (X'18') 2 - Reserved

26 (X'1A') 1 - Reserved

27 (X'1B') 1 - Reserved

28 (X'1C') 1 DESP_LIBTYPE Indicates whether a DCB or a DEB is
input. (unsigned)

X'02' DESP_LIBTYPE_DCB DCB input

X'01' DESP_LIBTYPE_DEB DEB input

X'00' DESP_LIBTYPE_OMITTED Omitted

29 (X'1D') 1 - Reserved

30 (X'1E') 1 - Reserved

31 (X'1F') 1 - Reserved

32 (X'20') 1 DESP_OPTION REPLACE option (REPLACE=X'01',
NOREPLACE=X'00') (unsigned)

X'02' DESP_OPTION_REPLACE_ALIAS Constant to be used with
DESP_OPTION

X'01' DESP_OPTION_REPLACE Constant to be used with
DESP_OPTION

X'00' DESP_OPTION_NOREPLACE Constant to be used with
DESP_OPTION

33 (X'21') 1 - Reserved

34 (X'22') 1 - Reserved

35 (X'23') 1 - Reserved

36 (X'24') 4 DESP_DCB_PTR DCB address

40 (X'28') 4 DESP_DEB_PTR DEB address

44 (X'2C') 4 - Reserved

48 (X'30') 4 - Reserved

52 (X'34') 4 - Reserved

56 (X'38') 4 - Reserved

60 (X'3C') 4 - Reserved

64 (X'40') 4 - Reserved

68 (X'44') 4 - Reserved

72 (X'48') 4 DESP_MEM_DATA_PTR MEM_DATA_ADDRESS

76 (X'4C') 4 DESP_MEM_DATA2 MEM_DATA entry count (unsigned)

80 (X'50') 4 - Reserved

84 (X'54') 4 - Reserved

88 (X'58') 4 - Reserved

92 (X'5C') 4 - Reserved

96 (X'60') 4 - Reserved

DESERV Exit

Chapter 10. Using the DESERV Exit 385

Table 85. DESERV PUT DESP Fields (continued)

Offset
Length or Bit
Pattern Name Description

100 (X'64') 4 - Reserved

PUT Return and Reason Codes
Figure 45 on page 387 describes the return and reason codes for the PUT function.

DESERV Exit

386 z/OS V2R1.0 DFSMSdfp Advanced Services

The DESD (DESERV member data descriptor) is the input to the DESERV PUT
function. The DESD is an array consisting of the number of entries defined by the

Return Code Description

DESRC_SUCC X'00' Successful processing

Reason Code Description

DESRS_SUCC X'00' Successful processing

DESRC_INFO 4 Not completely successful

DESRC_WARN 8 Results questionable

Reason Code Description

DESRS_DST_ALREADY_EXISTS X'44B' An EXIT exists and DESERV FUNC EXIT with NOREPLACE
specified was issued. The current exit is not replaced

DESRS_DST_COMP_SWAP_FAILED X'451' An EXIT_OPTION=DELETE specified a DST address that
was not current. The compare and swap failed.

DESRC_PARM 12 Missing/invalid parameters

Reason Code Description

DESRS_EXIT_OPTION_INVALID X'44F' The EXIT_OPTION specified is not supported

DESRS_EXIT_SCOPT_INVALID X'45' The EXIT_SCOPE specified is not supported

DESRS_EXIT_DST_PTR_ZERO X'44C' The caller of DESERV FUNC=EXIT supplied a DST address
of zero via the EXIT_DST parameter

DESRS_INVAL_DST_HEADER X'44D' The DST header is not correct

DESRS_INVAL_PREVDST_HEADER X'453' The DST header is not valid for the DST pointed to by
DESP_PREV_DSTPTR_PTR. This is checked for
EXIT_OPTION=DELETE

DESRS_PREV_DSTPTR_PTR_ZERO X'452' The pointer to the previous DST is zero. This is checked
for EXIT_OPTION=DELETE

DESRS_INVALID_PARM_LIST_HEADER X'411' The id, length, or level of the DESP is not valid

DESRS_UNSUPPORTED_FUNC X'424' The FUNC value is incorrect

DESRS_DEB_REQUIRES_AUTH X'423' To pass the DEB the caller must be in supervisor state or a
privileged key

DESRS_INVALID_DCB_PTR X'422' The address of the DCB is 0

DESRS_DCB_NOT_OPEN X'421' The passed DCB is not opened

DESRS_INVALID_DEB_PTR X'41E' Address of the DEB is 0 or DEB was input but the DCB
pointed to by the DEB did not point back to the DEB

DESRC_CALR 16 Caller has a problem

Reason Code Description

DESRS_DEBCHK_FAILED X'41D' The DEBCHK macro failed. The DCB or DEB was not valid

DESRS_AUTH_ERROR X'449' Caller not supervisor state or system key

DESRC_ENVR 20 Resources unavailable

DESRC_IOER 24 I/O error

DESRC_MEDE 28 Media error

DESRC_DSLE 32 Data set logical error

DESRC_SEVE 36 Severe error

DESRS_UNKNOWN

DESRS_SET_ERROR

Reason Code Description

X'447' Issued by the DESERV recovery routine when entered for an
unknown reason (ie. prog chk).

DESRS_ADD_STACK_FAILED X'437' Non-zero return code from an IGWFESTK request

DESRS_SETLOOK_ERR X'407' Bad return code from SETLOCK

DESRS_EXTRACT_ERROR X'406' IGWFTOKM EXTRACT failed

X'405' IGWFTOKM SET failed

DA6S3027

Description

Figure 45. PUT Return and Reason Codes

DESERV Exit

Chapter 10. Using the DESERV Exit 387

DESP field DESP_MEM_DATA2. The DESP_MEM_DATA_PTR points to the DESD
and the DESD CSECT of the IGWDES macro maps it. The DESD structure is
shown in Table 86.

Table 86. DESD Parameter List

Offset
Length or Bit
Pattern Name Description

00 (X'00') 16 DESD Member data descriptor (structure)

00 (X'00') 16 DESD_ENTRY Entry descriptor (character)

00 (X'00') 1 DESD_FLAG Flags (bitstring)

1... DESD_FLAG_ALIAS Alias entry

1 (X'01') 1 DESD_CODE Processing code (error=X'02', not processed =X'01',
successful =X'00')(unsigned)

X'02' DESD_CODE_ERROR Constant to be used with DESD_CODE

X'01' DESD_CODE_NOGO Constant to be used with DESD_CODE

X'00' DESD_CODE_SUCC Constant to be used with DESD_CODE

2 (X'02') 2 DESD_ERRCODE Error code (low order halfword of DESERV reason
code if error) (unsigned)

4 (X'04') 2 - Reserved

6 (X'06') 2 DESD_DATA_LEN Length of data area (unsigned)

08 (X'08') 4 DESD_DATA_PTR Address of data (address)

12 (X'0C') 4 DESD_NAME_PTR Address of varying length name (address)

The DESD_NAME_PTR points to the DESN structure. The DESD_DATA_PTR
points to the directory entry for the program object being saved in the PDSE
directory. The format of the directory entry is different depending on whether the
DESD entry represents the primary name or an alias name. For the primary name,
the DESD_DATA_PTR points to the CSECT PMAR mapped by IEWPMAR. For an
alias name, the DESD_DATA_PTR points to the CSECT PMARA mapped by the
macro IEWPMAR. Table 84 on page 383 shows the PMARA structure. The
DESD_FLAG_ALIAS identifies the entry in the DESD as a primary or an alias.

The DESERV exit is passed to the current return and reason code that is to be
passed back to the DESERV caller. The exit (either the pre-processing or the
post-processing) can cause DESERV to return a different return and reason code to
the DESERV caller by returning with a return code of 4 in register 15. If the exit
returns control to DESERV with a return code of 4 in register 15, the (possibly
modified) values of DESX_RETURN_CODE and DESX_REASON_CODE are
returned to the caller of DESERV. If the pre-processing exit returns a return code of
0 in register 15, processing continues. Whereas if the post-processing exit returns
with a return code of 0 in register 15, the original values of DESX_RETURN_CODE
and DESX_REASON_CODE (those that were passed as input to the exit) are
returned to the DESERV caller.

The exit processing can include interrogation of the DESERV parameter list (DESP)
or interrogation or modification of the other interface structures and buffers. The
DESP will not be modified by the DESERV exit. The exit is passed the caller key
DESP, but DESERV has already made a key 5 copy of the DESP that is used for
DESERV processing. Therefore modifications to the caller key DESP would not

DESERV Exit

388 z/OS V2R1.0 DFSMSdfp Advanced Services

influence the DESERV processing. The DESERV interface structures are defined in
the macro IGWDES. The macros IGWSMDE and IEWPMAR define the directory
entry format.

Parameters Related to the DELETE Function
If the DESERV exit gets control for a DESERV DELETE function invocation,
DESX_DESP_PTR points to the DESERV parameter list. If the DESP field
DESP_FUNC=X'07' (DESP_FUNC_DELETE), this indicates a DELETE function
parameter list. Table 87 shows the fields of the DESP that pertain to the DESERV
DELETE invocation.

Table 87. DESERV DELETE DESP Fields

Offset
Length or Bit
Pattern Name Description

00 (X'00') 104 DESP DE Services parameter list (structure)

00 (X'00') 16 DESP_HEADER Standard header (character)

00 (X'00') 8 DESP_ID Eyecatcher IGWDESP (character)

08 (X'08') 4 DESP_LEN Length of DESP (signed)

X'04' DESP_LEN_IV Constant to be used with DESP_LEN

12 (X'0C') 1 DESP_LEV Control block level (character)

X'04' DESP_LEV_IV Constant to be used with DESP_LEV

13 (X'0D') 3 - Reserved

16 (X'10') 1 DESP_FUNC Function type (GET=X'01', PUT=X'04',
DELETE=X'07', RENAME=X'08', UPDATE=X'09')

X'09' DESP_FUNC_UPDATE Constant to be used with DESP_FUNC

X'08' DESP_FUNC_RENAME Constant to be used with DESP_FUNC

X'07' DESP_FUNC_DELETE Constant to be used with DESP_FUNC

X'04' DESP_FUNC_PUT Constant to be used with DESP_FUNC

X'01' DESP_FUNC_GET Constant to be used with DESP_FUNC

X'00' DESP_FUNC_OMITTED Constant to be used with DESP_FUNC

17 (X'11') 3 - Reserved

20 (X'14') 4 - Reserved

24 (X'18') 12 DESP_DATA Function data (character)

24 (X'18') 2 - Reserved

26 (X'1A') 1 - Reserved

27 (X'1B') 1 - Reserved

28 (X'1C') 1 DESP_LIBTYPE Indicates whether a DCB or a DEB in input. (DCB
input X'02', DEB input X'01') (unsigned)

X'02' DESP_LIBTYPE_DCB Constant to be used with DESP_LIBTYPE

X'01' DESP_LIBTYPE_DEB Constant to be used with DESP_LIBTYPE

X'00' DESP_LIBTYPE_OMITTED Constant to be used with DESP_LIBTYPE

29 (X'1D') 1 - Reserved

30 (X'1E') 1 - Reserved

31 (X'1F') 1 - Reserved

32 (X'20') 1 - Reserved

DESERV Exit

Chapter 10. Using the DESERV Exit 389

Table 87. DESERV DELETE DESP Fields (continued)

Offset
Length or Bit
Pattern Name Description

33 (X'21') 1 - Reserved

34 (X'22') 1 - Reserved

35 (X'23') 1 - Reserved

36 (X'24') 4 DESP_DCB_PTR DCB address

40 (X'28') 4 DESP_DEB_PTR DEB address

44 (X'2C') 4 - Reserved

48 (X'30') 4 - Reserved

52 (X'34') 4 - Reserved

56 (X'38') 4 - Reserved

60 (X'3C') 4 - Reserved

64 (X'40') 4 - Reserved

68 (X'44') 4 - Reserved

72 (X'48') 4 - Reserved

76 (X'4C') 4 - Reserved

80 (X'50') 4 DESP_NAME_LIST List of names to be deleted (DESL) (address)

84 (X'54') 4 DESP_NAME_LIST2 Number of entries in DESL name list (unsigned)

88 (X'58') 4 - Reserved

92 (X'5C') 4 - Reserved

96 (X'60') 4 - Reserved

100 (X'64') 4 - Reserved

The DESL points to the names to be deleted. The DESP_NAME_LIST_PTR points
to the DESL and the DESL DSECT in the IGWDES macro maps it. A DESL is an
array consisting of the number of entries the DESP field DESP_NAME_LIST2
defines. The DESL structure is shown in Table 73 on page 375.

Parameters Related to the RENAME Function
If the DESERV exit gets control for a DESERV RENAME function invocation,
DESX_DESP_PTR points to the DESERV parameter list. If the DESP field
DESP_FUNC=X'08' (DESP_FUNC_RENAME), this indicates a RENAME function
parameter list. Table 88 shows the fields of the DESP that pertain to the DESERV
RENAME invocation.

Table 88. DESERV RENAME DESP Fields

Offset
Length or Bit
Pattern Name Description

00 (X'00') 104 DESP DE Services parameter list (structure)

00 (X'00') 16 DESP_HEADER Standard header (character)

00 (X'00') 8 DESP_ID Eyecatcher IGWDESP (character)

08 (X'08') 4 DESP_LEN Length of DESP (signed)

X'04' DESP_LEN_IV Constant to be used with DESP_LEN

DESERV Exit

390 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 88. DESERV RENAME DESP Fields (continued)

Offset
Length or Bit
Pattern Name Description

12 (X'0C') 1 DESP_LEV Control block level (character)

X'04' DESP_LEV_IV Constant to be used with DESP_LEV

13 (X'0D') 3 - Reserved

16 (X'10') 1 DESP_FUNC Function type (GET=X'01', PUT=X'04',
DELETE=X'07', RENAME=X'08', UPDATE=X'09')

X'09' DESP_FUNC_UPDATE Constant to be used with DESP_FUNC

X'08' DESP_FUNC_RENAME Constant to be used with DESP_FUNC

X'07' DESP_FUNC_DELETE Constant to be used with DESP_FUNC

X'04' DESP_FUNC_PUT Constant to be used with DESP_FUNC

X'01' DESP_FUNC_GET Constant to be used with DESP_FUNC

X'00' DESP_FUNC_OMITTED Constant to be used with DESP_FUNC

17 (X'11') 3 - Reserved

20 (X'14') 4 - Reserved

24 (X'18') 12 DESP_DATA Function data (character)

24 (X'18') 2 - Reserved

26 (X'1A') 1 - Reserved

27 (X'1B') 1 - Reserved

28 (X'1C') 1 DESP_LIBTYPE Indicates whether a DCB or a DEB is input.
(DCB,DEB) (DCB input X'02', DEB input X'01')
(unsigned)

X'02' DESP_LIBTYPE_DCB Constant to be used with DESP_LIBTYPE

X'01' DESP_LIBTYPE_DEB Constant to be used with DESP_LIBTYPE

X'00' DESP_LIBTYPE_OMITTED Constant to be used with DESP_LIBTYPE

29 (X'1D') 1 - Reserved

30 (X'1E') 1 - Reserved

31 (X'1F') 1 - Reserved

32 (X'20') 1 - Reserved

33 (X'21') 1 - Reserved

34 (X'22') 1 - Reserved

35 (X'23') 1 - Reserved

36 (X'24') 4 DESP_DCB_PTR DCB address

40 (X'28') 4 DESP_DEB_PTR DEB address

44 (X'2C') 4 - Reserved

48 (X'30') 4 - Reserved

52 (X'34') 4 - Reserved

56 (X'38') 4 - Reserved

60 (X'3C') 4 - Reserved

64 (X'40') 4 - Reserved

68 (X'44') 4 - Reserved

72 (X'48') 4 - Reserved

DESERV Exit

Chapter 10. Using the DESERV Exit 391

Table 88. DESERV RENAME DESP Fields (continued)

Offset
Length or Bit
Pattern Name Description

76 (X'4C') 4 - Reserved

80 (X'50') 4 DESP_NAME_LIST List of pairs of names for rename operations
(DESL) (address)

84 (X'54') 4 DESP_NAME_LIST2 Number of entries in DESL name list (unsigned)

88 (X'58') 4 - Reserved

92 (X'5C') 4 - Reserved

96 (X'60') 4 - Reserved

100 (X'64') 4 - Reserved

The DESL points to the names that are to be renamed and to the new names. The
DESP_NAME_LIST_PTR points to the DESL and the DESL DSECT in the IGWDES
macro maps it. A DESL is an array consisting of the number of entries the DESP
field DESP_NAME_LIST2 defines. The DESL structure is shown in Table 73 on
page 375.

Parameters Related to the UPDATE Function
If the DESERV exit gets control for a DESERV UPDATE function invocation,
DESX_DESP_PTR points to the DESERV parameter list. If the DESP field
DESP_FUNC=X'09' (DESP_FUNC_UPDATE), this indicates an UPDATE function
parameter list. Table 89 shows the fields of the DESP that pertain to the DESERV
UPDATE invocation.

Table 89. DESERV UPDATE DESP Fields

Offset
Length or Bit
Pattern Name Description

00 (X'00') 104 DESP DE Services parameter list (structure)

00 (X'00') 16 DESP_HEADER Standard header (character)

00 (X'00') 8 DESP_ID Eyecatcher 'IGWDESP' (character)

08 (X'08') 4 DESP_LEN Length of DESP (signed)

X'04' DESP_LEN_IV Constant to be used with DESP_LEN

12 (X'0C') 1 DESP_LEV Control block level (character)

X'04' DESP_LEV_IV Constant to be used with DESP_LEV

13 (X'0D') 3 - Reserved

16 (X'10') 1 DESP_FUNC Function type (GET=X'01', PUT=X'04',
DELETE=X'07', RENAME=X'08', UPDATE=X'09')

X'09' DESP_FUNC_UPDATE Constant to be used with DESP_FUNC

X'08' DESP_FUNC_RENAME Constant to be used with DESP_FUNC

X'07' DESP_FUNC_DELETE Constant to be used with DESP_FUNC

X'04' DESP_FUNC_PUT Constant to be used with DESP_FUNC

X'01' DESP_FUNC_GET Constant to be used with DESP_FUNC

X'00' DESP_FUNC_OMITTED Constant to be used with DESP_FUNC

17 (X'11') 3 - Reserved

20 (X'14') 4 - Reserved

DESERV Exit

392 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 89. DESERV UPDATE DESP Fields (continued)

Offset
Length or Bit
Pattern Name Description

24 (X'18') 12 DESP_DATA Function data (character)

24 (X'18') 2 - Reserved

26 (X'1A') 1 - Reserved

27 (X'1B') 1 - Reserved

28 (X'1C') 1 DESP_LIBTYPE Function subtype (DCB,DEB) (DCB input X'02',
DEB input X'01') (unsigned)

X'02' DESP_LIBTYPE_DCB Constant to be used with DESP_LIBTYPE

X'01' DESP_LIBTYPE_DEB Constant to be used with DESP_LIBTYPE

X'00' DESP_LIBTYPE_OMITTED Constant to be used with DESP_LIBTYPE

29 (X'1D') 1 - Reserved

30 (X'1E') 1 - Reserved

31 (X'1F') 1 - Reserved

32 (X'20') 1 - Reserved

33 (X'21') 1 - Reserved

34 (X'22') 1 - Reserved

35 (X'23') 1 - Reserved

36 (X'24') 4 DESP_DCB_PTR DCB address

40 (X'28') 4 DESP_DEB_PTR DEB address

44 (X'2C') 4 - Reserved

48 (X'30') 4 - Reserved

52 (X'34') 4 - Reserved

56 (X'38') 4 - Reserved

60 (X'3C') 4 - Reserved

64 (X'40') 4 - Reserved

68 (X'44') 4 - Reserved

72 (X'48') 4 - Reserved

76 (X'4C') 4 - Reserved

80 (X'50') 4 DESP_NAME_LIST List of SMDEs with imbedded PMAR (and
PMARL) to update the directory information
(DESL) (address)

84 (X'54') 4 DESP_NAME_LIST2 Number of entries in DESL name list (unsigned)

88 (X'58') 4 - Reserved

92 (X'5C') 4 - Reserved

96 (X'60') 4 - Reserved

100 (X'64') 4 - Reserved

The DESL points to the SMDEs which are to be updated. The
DESP_NAME_LIST_PTR points to the DESL and the DESL DSECT in the IGWDES
macro maps it. A DESL is an array consisting of the number of entries the DESP
field DESP_NAME_LIST2 defines. The DESL structure is shown in Table 73 on
page 375.

DESERV Exit

Chapter 10. Using the DESERV Exit 393

Entry Environment for Exit Routine
Interrupts:

Enabled

State and Key:
Supervisor state and key 0

ASC Mode:
P=H=S

AMODE, RMODE:
AMODE=31, RMODE=ANY

LOCKS:
No locks held

Registers:
0 unpredictable
1 address of DESERV EXIT parameter list mapped by DSECT DESX

in IGWDES.
2-12 unpredictable
13 eighteen word save area (key 0).
14 return address
15 entry point address of exit routine

The exit is entered in TASK mode and the DESERV recovery environment is an
ESTAE; therefore, the exit routine can issue SVCs, if required.

Exit Environment for Exit routine
Interrupts:

Enabled

State and Key:
Supervisor state and key 0

ASC Mode:
P=H=S

AMODE, RMODE:
AMODE=31, RMODE=ANY

LOCKS:
No locks held

Registers:

Unless otherwise specified, all registers must be restored to their contents
on entry.

15 Return code
v For pre-processing exit:

R15 = 0
Continue processing of this DESERV call.

R15 = 4
Discontinue processing of this DESERV call. Control is
immediately returned to the caller of DESERV with the return
and reason codes as set by the exit in the DESX fields
DESX_RETURN_CODE and DESX_REASON_CODE.

v For post-processing exit:

DESERV Exit

394 z/OS V2R1.0 DFSMSdfp Advanced Services

R15 = 0
Continue processing of this DESERV call (that is, return to the
caller of DESERV).

R15 = 4
Control is returned to the caller of DESERV with the return and
reason codes as set by the exit in the DESX fields
DESX_RETURN_CODE and DESX_REASON_CODE. Values for
DESX_RETURN_CODE and DESX_REASON_CODE are
described in the macro IGWDES. The reason code structure is
such that the first two bytes are system component id and
module id (that is, system diagnostic information). The low
order two bytes contain the real reason code as indicated in the
macro IGWDES. For additional return and reason codes for the
GET, RENAME, DELETE, and UPDATE return and reason codes,
refer to z/OS DFSMS Macro Instructions for Data Sets.

v Restriction: Any other return code from the exits causes DESERV code
to take an SVC dump.

Registers on Entry to the DESERV Exit
When your DESERV exit gets control, the general-purpose registers have the
following content:

Register
Contents

0 not applicable
1 address of DESX
2-12 not applicable
13 address of register save area
14 return address
15 address of DESERV exit entry point

Registers on Return from the DESERV Exit
When you return control to DESERV, the register contents must be set up as
follows:

Register
Contents

0-14 restored to contents at entry
15 return code

DESERV Exit Return and Reason Codes
Return Code

Description

00 (X'00')
Continue with DESERV function

04 (X'04')
Return immediately to the DESERV caller and return the return and reason
codes as defined by DESX_RETURN_CODE and DESX_REASON_CODE
respectively.

DESERV FUNC=EXIT Return and Reason Codes
The formats of the return and reason codes are:

DESERV Exit

Chapter 10. Using the DESERV Exit 395

Offset/length
Description

00 (X'00') 1 byte
SMS Component code (X'27') indicates Common Adaptor (of which
DESERV is a part)

01 (X'01') 1 byte
Module ID - used for problem diagnosis

02 (X'02') 2 bytes
Reason code - identifies the error. A program testing the DESERV reason
code should only look at these last two bytes. The component id and
module id should not be tested. They are reported for diagnostic purposes
only.

The following are the two low order byte values for the reason codes that DESERV
FUNC=EXIT might return (sorted by return code).

Table 90. Return and Reason Codes for the Exit DESERV Function

Return Code Reason Code Symbolic name Description

X'0' DESRC_SUCC Successful

X'00' DESRS_SUCC Successful

X'4' DESRC_INFO Not completely successful.

X'400' DESRS_NAME_
NOT_DEFINED

Name to be replaced did not
previously exist

X'8' DESRC_WARN Results questionable

X'12' DESRC_PARM Missing or invalid
parameters

X'411' DESRS_INVALID_
PARM_LIST_HEADER

The id, length, or level of
the DESP is not valid

X'415' DESRS_PDS_
NOT_SUPPORTED

This function requires a
PDSE data set

X'41E' DESRS_INVALID_ DEB_PTR Address of the DEB is 0 or
DEB was input but the DCB
pointed to by the DEB did
not point back to the DEB

X'41F' DESRS_DCB_NOT_
OPEN_OUTPUT

With function PUT the DCB
must have been opened for
output

X'421' DESRS_DCB_ NOT_OPEN The passed DCB is not
opened

X'422' DESRS_INVALID_
DCB_PTR

The address of the DCB is 0

X'423' DESRS_DEB_
REQUIRES_AUTH

To pass the DEB, the caller
must be in supervisor state
or a privileged key

X'424' DESRS_
UNSUPPORTED_FUNC

The FUNC value is incorrect

X'427' DESRS_INVALID_
MEM_DATA_CNT

The count of entries in the
MEM_DATA block is 0

X'428' DESRS_INVALID_
MEM_DATA_PTR

The address of the
MEM_DATA block is 0

DESERV Exit

396 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 90. Return and Reason Codes for the Exit DESERV Function (continued)

Return Code Reason Code Symbolic name Description

X'429' DESRS_INVALID_
PUT_OPTION

The PUT function requires
that the OPTION field be
specified

X'16' DESRC_CALR Caller has a problem

X'3FD' DESRS_PRI_
NM_THIS_FILE

Alias name is same name as
primary name for this
member

X'400' DESRS_NAME_
ALREADY_EXISTS

Name to be replaced did not
previously exist

X'40E' DESRS_NAME_
ALREADY_EXISTS

The PUT failed because of a
name conflict

X'40F' DESRS_NP_
PRIMARY_NAME

The MEM_DATA must have
one member designated as
primary

X'410' DESRS_INVALID_
NAME_PREFIX

The first 8 bytes of a name
were all X'FF'

X'412' DESRS_MORE_
THAN_!_PRIMARY

The MEM_DATA must have
only one member designated
as primary

X'413' DESRS_ INVALID_MLT MLT is not valid

X'414' DESRS_ INVALID_CT Connect token is not valid

X'41D' DESRS_DEBCHK_ FAILED The DEBCHK macro failed,
the DCB or DEB was not
valid

X'425' DESRS_INVALID_
NAME_LENGTH

The length of an alias name
was either 0 or greater than
8

X'43A' DESRS_DATA_
LENGTH_ERROR

The DESD data length is not
valid, data length must be
greater than 0 and less than
108 bytes

X'43C' DESRS_NAME_
IS_PRIMARY_NAME

The alias name specified is a
primary name and the
options did not allow for
deleting primary name

X'20' DESRC_ENVR Resources unavailable

X'24' DESRC_IOER I/O error

X'28' DESRC_MEDE Media Error

X'32' DESRC_DSLE Data Set logical error

X'36' DESRC_SEVE Severe error

X'407' DESRS_ SETLOOK_ERR Bad return code from
SETLOCK

X'437' DESRS_ADD_
STACK_FAILED

Non-zero return code from
an IGWFESTK request

DESERV Exit

Chapter 10. Using the DESERV Exit 397

Table 90. Return and Reason Codes for the Exit DESERV Function (continued)

Return Code Reason Code Symbolic name Description

X'447' DESRS_UNKNOWN Issued by the DESERV
recovery routine when
entered for an unknown
reason (for example, a
program check) while the
exit routine was in control.
Most likely an exit error.

X'0C' X'469' DESRS_DST_EXIT_PTR_NOT_COMMONGlobal exit address is not in
common storage.

Additional Return and Reason Codes: For the GET, RENAME, DELETE, and
UPDATE return and reason codes, refer to z/OS DFSMS Macro Instructions for Data
Sets.

Example of the DESERV Exit
The following program segment establishes and deletes the task mode DESERV
exit and thereby restores the previous task. The sample is generic enough to apply
to either the global or the task level exit but shows here the task level support.
When establishing a global exit, obtain the DST storage in common storage.

DESERV Exit

398 z/OS V2R1.0 DFSMSdfp Advanced Services

||||
|

SAMPLE CSECT
USING *,12
STM 14,12,12(13) SAVE REGISTERS
LR 12,15 ESTABLISH BASE REGISTER
LA 2,SAVE ADDRESS REGISTER SAVE AREA
ST 2,8(13) FORWARD CHAIN SAVE AREA
ST 13,SAVE+4 BACKWARD CHAIN SAVE AREA
LR 13,2 ESTABLISH SAVE AREA
.
.
.

*
*
* ESTABLISH THE TASK LEVEL EXIT
*
* BUILD THE DST TO REPRESENT MY TASK LEVEL EXIT
*

LA 3,MY_DST ADDRESSABILITY TO MY DST
USING DST,3 MAP DST
XC DST,DST CLEAR MY DST STORAGE
MVC DST_ID,DST_ID_CONST SET EYECATCHER IN DST
LA 15,DST_LEN_IV(,0) GET LENGTH OF DST
ST 15,DST_LEN SET LENGTH OF DST
MVI DST_LEV,DST_LEV_IV SET LEVEL OF DST USED
OI DST_FLAGS,DST_FLAGS_PROP SET FLAG TO PROPAGATE THIS EXIT

* TO ATTACHED TASKS.
MVC DST_EXIT_PTR,ADDR_DESEXIT SET ADDRESS OF TASK EXIT

*
* CALL DESERV TO ENABLE MY TASK LEVEL EXIT
* THIS MODULE ASSUMES THAT IT IS RUNNING EITHER SUPERVISOR STATE
* OR SYSTEM KEY.
*

DESERV FUNC=EXIT, *
EXIT_SCOPE=TASK, *
EXIT_OPTION=REPLACE, *
EXIT_DST=MY_DST, *
EXIT_PREV_DSTPTR=MY_PREV_DSTPTR, *
MF=S

.

.

.
*
* QUERY THE CURRENT DST ADDRESS, RETURNED IN CURRENT_DSTPTR.
* THERE IS NO NEED TO QUERY PRIOR TO DOING THE DELETE, THIS IS
* HERE JUST TO SHOW THE INVOCATION SYNTAX.
*

DESERV FUNC=EXIT, *
EXIT_SCOPE=TASK, *
EXIT_OPTION=QUERY, *
EXIT_PREV_DSTPTR=CURRENT_DSTPTR, *
MF=S

Figure 46. Establishing and Deleting a Task Level DESERV Exit Part 1 of 2

DESERV Exit

Chapter 10. Using the DESERV Exit 399

The following program segment shows a sample DESERV exit. This is the exit
established by the previous segment of code. This sample shows how to pass
control to a previous exit. Note that this sample exit is not reentrant, so it assumes
there is only one subtask.

*
* HERE THE APPLICATION WOULD DO SOMETHING TO
* CAUSE A DESERV CALL TO BE DONE. AN EXAMPLE OF THIS TYPE OF THING
* WOULD BE ATTACHING THE BINDER AS A SUBTASK (THE BINDER USES
* DESERV.)
*

.

.

.
*
* DELETE THE TASK LEVEL EXIT
*

DESERV FUNC=EXIT, *
EXIT_SCOPE=TASK, *
EXIT_OPTION=DELETE, *
EXIT_DST=MY_DST, *
EXIT_PREV_DSTPTR=MY_PREV_DSTPTR, *
MF=S

.

.

.
*
* RESTORE REGISTERS AND RETURN

L 13,SAVE+4
LM 14,12,12(13)
SR 15,15 SET RETURN CODE
BR 14 RETURN TO CALLER

* THE FOLLOWING IS A BLOCK USED BY THIS APPLICATION. THIS BLOCK CAN
* BE USED BY THE EXIT. THE EXIT ALSO (SMARTLY) FINDS THE
* PREV_DST_PTR FIELD IN MY_BLOCK WHEN IT GIVES CONTROL TO THE
* PREVIOUSLY ESTABLISHED TASK LEVEL EXIT.
MY_BLOCK DS 0D MY APPLICATION BLOCK
MY_APPLICATION_STUFF DS CL8 MY APPLICATION STUFF
MY_DST DS CL(DST_LEN_IV) MY DST IMBEDDED IN MY BLOCK
MY_PREV_DSTPTR DS F ADDRESS OF PREVIOUS TASK LEVEL

EXTRN DESEXIT
ADDR_DESEXIT DC A(DESEXIT) ADDRESS OF MY TASK LEVEL EXIT
DST_ID_CONST DC CL8’IGWDST ’ DST EYECATCHER
* DST
CURRENT_DSTPTR DS F ADDRESS OF CURRENT TASK LEVEL
* DST
SAVE DS 18F REGISTER SAVE AREA

END

Figure 47. Establishing and Deleting a Task Level DESERV Exit Part 2 of 2

DESERV Exit

400 z/OS V2R1.0 DFSMSdfp Advanced Services

DESEXIT CSECT
DESEXIT AMODE 31 Must be AMODE 31
DESEXIT RMODE ANY Could be RMODE 24 if required
*
* entry code to save registers and establish base register.

USING *,12
STM 14,12,12(13) SAVE REGISTERS
LR 12,15 ESTABLISH BASE REGISTER
LA 2,SAVE ADDRESS REGISTER SAVE AREA
ST 2,8(13) FORWARD CHAIN SAVE AREA
ST 13,SAVE+4 BACKWARD CHAIN SAVE AREA
LR 13,2 ESTABLISH SAVE AREA

*
* Assume this exit is only interested in the output from GET functions.
* Therefore ignore entry for all other functions and only
* process the get function invocations where get processing is complete
*

SLR 2,2 clear reg
ST 2,EXIT_RC initialize return code
LR 2,1 get the DESX address in reg 2
USING DESX,2 map the DESX
L 3,DESX_DST_PTR get address of DST
LR 4,3 get address of DST
LA 5,MY_DST-MY_BLOCK(,0) get offset to DST within MY_BLOCK
SR 4,5 get the address of MY_BLOCK
USING MY_BLOCK,4 map MY_BLOCK

*
* First give control to any previously established DESERV
* exits. If the value in PREV_DST_PTR is zero, then there was no
* previous DST (that is, no previous DESERV exit). PREV_DST_PTR was
* saved in MY_BLOCK by the SAMPLE CSECT that enabled this
* exit.

SR 15,15 simulate previous exit’s return code
ICM 5,15,PREV_DST_PTR get previous DST address
BZ NOPREVDST branch if zero, no previous DST

* There was a previous exit, to which you transfer control.
* First build a DESX then branch to the previous exit.
*
*
* Getmain dynamic storage for interfacing with the other exit
*
*

GETMAIN RU,LV=DESX_LEN_IV,SP=230,KEY=0,LOC=(ANY)
ST 1,MY_DESX_STG_PTR
MVC 0(L’DESX,1),DESX copy the DESX that was input to this

* routine.
ST 5,DESX_DST_PTR-DESX(,1) Set previous DST address in DESX
L 15,DST_EXIT_PTR-DST(,5) get address of previous exit
BALR 14,15 call the previous exit in 31 bit amode

Figure 48. Sample DESERV Exit Routine Part 1 of 3

DESERV Exit

Chapter 10. Using the DESERV Exit 401

NOPREVDST EQU *
ST 15,EXIT_RC save previous exit’s return code

* If this invocation of the exit was the pre-processing exit and the
* exit we called just returned with a return code of 4 then they
* might have returned the data in question.

TM DESX_FLAGS,DESX_POST_BIT is this post-processing call
BO POST yes, branch

* this is a pre-processing call, did the exit just called request an
* immediate return, and therefore maybe fill in the output fields
* if the return code was zero, the called routine wants deserv to
* perform the function.

CLC EXIT_RC,ZERO was return code zero
BE RETURN yes, branch to return to deserv

POST EQU * either called exit performed the
* deserv function, or this is a post
* processing exit call.

L 6,DESX_DESP_PTR get the DESERV parameter list (DESP)
USING DESP,6 map DESP
CLI DESP_FUNC,DESP_FUNC_GET is this a function GET call
BNE RETURN no, branch
CLC DESX_REASON_CODE+2(2),=AL2(DESRS_SUCC) check low order

* halfword of reason code for success
BE GOODDATA branch if DESERV GET was successful
CLC DESX_REASON_CODE+2(2),=AL2(DESRS_NOTFOUND) check for

* some members not found
BNE BADDATA branch if some other error

GOODDATA EQU *
*
* Process the entries in the names list that were found
*

.

.

.
B RETURN return to the caller (DESERV)

BADDATA EQU *
.
.
.

*
RETURN EQU * Return to caller (DESERV)
*
* restore registers, FREEMAIN storage, etc.
*

L 15,EXIT_RC set return code
L 13,SAVE+4
L 14,12(13) restore return address
LM 0,12,20(13) restore callers other registers
BR 14 return to deserv

Figure 49. Sample DESERV Exit Routine Part 2 of 3

DESERV Exit

402 z/OS V2R1.0 DFSMSdfp Advanced Services

*
* CONTROL INFORMATION
*
SAVE DS 18F REGISTER SAVE AREA
ZERO DC F’0’ constant of zero
EXIT_RC DC F’0’ Return code to pass back to DESERV
DESX_ID_CONST DC CL8’IGWDESX ’ EYECATCHER FOR DESX
MY_DESX_STG_PTR DC F’0’ ADDRESS OF GETMAINED STORAGE FOR
* DESX TO PASS TO PREVIOUS EXIT.
MY_BLOCK DSECT MY APPLICATION BLOCK
MY_APPLICATION_STUFF DS CL8 MY APPLICATION STUFF
MY_DST DS CL(DST_LEN_IV) MY DST IMBEDED IN MY BLOCK
PREV_DST_PTR DS F ADDRESS OF PREVIOUS TASK LEVEL EXIT

IGWDES DESERV MAPPINGS
IGWSMDE DIRECTORY ENTRY
IEWPMAR PROGRAM MANAGEMENT ATTRIBUTE RECORD

* THE PMAR IS A SUB RECORD OF THE SMDE
END

Figure 50. Sample DESERV Exit Routine Part 3 of 3

Chapter 10. Using the DESERV Exit 403

404 z/OS V2R1.0 DFSMSdfp Advanced Services

Chapter 11. Managing Hierarchical File System Data Sets

A hierarchical file system (HFS) data set is a data set that contains a
POSIX-compliant hierarchical file system, which is a collection of files and
directories organized in a hierarchical structure that can be accessed using z/OS
UNIX system services. You can use many of the standard BSAM, QSAM, BPAM,
and VSAM interfaces to access data in z/OS UNIX HFS files. Most applications
that use these access methods can access HFS files without reassembly or
recompliation.

The contents of HFS data sets are structured like a tree, based on a root directory
with various subdirectories. The files within an HFS data set are identified by their
path and file names.

DFSMShsm can automatically back up HFS data sets if it is using DFSMSdss as its
data mover, but it cannot back up individual files within an HFS data set.

Once you evaluate z/OS UNIX and decide to install it in your enterprise, you may
proceed with the following planning tasks:
v Deciding which DASD devices will contain the HFS data sets
v Deciding how to control access to them
v Structuring the file systems
v Determining backup, restore, and expiration date policies
v Determining HFS naming policies (file names can be up to 255 characters long

and path names can be up to 1023 characters)
v Defining data classes, management classes, and coding ACS routines and JCL

statements for HFS data sets

Creating Hierarchical File System Data Sets
You specify HFS in the DSNTYPE parameter to allocate an HFS data set. You can
also define a data class for HFS data sets. Both cataloged and uncataloged HFS
data sets can reside on a single non-SMS-managed volume. A cataloged HFS data
set can also be a multivolume if it resides on Storage Management Subsystem
managed volumes. This type of data set can expand to as many as 255 extents of
direct access storage device (DASD) space on multiple volumes (59 volumes
maximum with 123 extents per volume).

RACF or an equivalent security product must be installed and active on your
system to use z/OS UNIX or HFS data sets. z/OS UNIX maintains system security
by verifying user identities and file access control information.

This information covers the following:
v “Defining the Root File System” on page 406
v “Creating and Mounting the Root File System” on page 406
v “Creating Additional File Systems and Directories” on page 406
v “Adding and Mounting File Systems to the Root File System” on page 407

© Copyright IBM Corp. 1979, 2014 405

Defining the Root File System
During installation of z/OS UNIX, a system programmer or storage administrator
codes the ROOT statement in the BPXPRMxx member of SYS1.PARMLIB. This
identifies the HFS data set containing the root file system for the system to
logically mount when it starts z/OS UNIX system services.

ROOT FILESYSTEM(’OMVS.ROOT’)
TYPE(HFS)
MODE(RDWR)

The root file system is the starting point of the overall file structure. It consists of
the root directory and any related HFS files or subdirectories. After installation is
complete and the MVS system is running, you can create (allocate) an HFS data
set, which contains the root file system.

See z/OS MVS Initialization and Tuning Reference for information about member
BPXPRMxx.

Creating and Mounting the Root File System
Create an HFS data set to contain the root file system by running a job to allocate
the data set. During allocation, z/OS UNIX builds a basic root directory, which
you can alter to meet your specific needs. You specify DSNTYPE=HFS to designate
an HFS data set.

//STEP1 EXEC PGM=IEFBR14
//MKFS DD DSNAME=OMVS.ROOT,DISP=(NEW,CATLG),
// DSNTYPE=HFS,SPACE=(CYL,(1,1,1))

Tip: To make the HFS data set SMS-managed, use the ACS routines or specify the
STORCLAS parameter in the JCL. HFS data sets do not have to be SMS-managed.

Write operations present the greatest exposure to file system damage. For this
reason the root file system should be small, minimizing the amount of write
activity to it, thus offering the least exposure to damage.

Additionally, if all users' files are in file systems that are mounted on the root file
system, rather than defined as part of the root itself, and users are denied write
access to the root, the root is further protected from inadvertent damage. Damaged
user directories or files can be unmounted and replaced without causing z/OS
UNIX system services to fail.

Creating Additional File Systems and Directories
After allocating an HFS data set for the root file system and logging on as a
TSO/E user, you can define additional directories in the root file system using the
MKDIR command. For example, to create the /u/joe directory, issue:

MKDIR '/u'
MKDIR '/u/joe'

These directories can be used as mount points for additional mountable file
systems. You can use an IBM-supplied program that creates directories,
pseudo-TTY pairs, and device files. Interactive users and application programs can
then add files to those additional file systems.

The MKDIR command requires written permission on the parent directory of the
directory to be created.

Planning for HFS

406 z/OS V2R1.0 DFSMSdfp Advanced Services

Adding and Mounting File Systems to the Root File System
If you have appropriate authority, you can create other mountable file systems
with their own directory and data file structures, and mount them on a directory
in the root file system or in another file system. Each file system can be logically
mounted to a directory (mount point) in another file system by using the TSO/E
MOUNT command. Use the UNMOUNT command to unmount a file system. To
create and mount additional file systems:
1. Allocate an additional HFS data set by using either the TSO/E ALLOCATE

command as shown in the following example or a JCL DD statement similar to
that shown in “Creating and Mounting the Root File System” on page 406.

ALLOCATE DSNAME(’OMVS.USER.JOE’) NEW DSNTYPE(HFS) BLKSIZE(0)
LRECL(0) RECFM(U) DSORG(PO) SPACE(1,1) CYLINDERS

The new data set is allocated with an empty root directory.
2. Have an authorized user enter a TSO/E MOUNT command to logically mount

the new file system in the directory of an existing file system.
MOUNT FILESYSTEM(’OMVS.USER.JOE’) TYPE(HFS) MOUNTPOINT(’/u/joe’)

You can specify additional file systems to be logically mounted automatically every
time z/OS UNIX is started by adding MOUNT commands to the BPXPRMxx
member of SYS1.PARMLIB. The following restrictions apply to mounting file
systems:
v The mount point must be a directory.
v Any files in the directory are not accessible while the file system is mounted.
v Only one mount can be active at any time for a mount point.
v A file system can be mounted on only one directory at a time.

You can also create special HFS files to perform the following tasks:
v Represent hardware devices (character special files).
v Allow the use of alias names for HFS files (symbolic links).
v Send data from one process to another so that the receiving process reads the

data first-in-first-out (FIFO special files, also called named pipes). The term
process as used here is defined as either a program that is created by the fork
function, or a program that requests z/OS UNIX system services.

Managing File System Size
File system size increases as users add files and extend existing files. Eventually, a
file system can outgrow the space on its volume. In this case, the storage
administrator or system programmer responsible for HFS data sets can either make
more space available on the volume by moving individual HFS files to other file
systems that have space available, or do one of the following:
v Move the entire file system to another set of volumes as follows:

1. Have an authorized user enter a TSO/E UNMOUNT command to logically
unmount the file system.

2. Allocate an HFS data set with a different data set name on a volume, or set
of volumes, that has adequate space available.

3. Use the DFSMSdss DUMP function to logically dump the old file system.
4. Use the DFSMSdss RESTORE function to restore the dumped file system

with a new name to a volume, or set of volumes, that has sufficient space. If
you want to maintain the original file system name, delete the existing file
system first, and then restore it using DFSMSdss without renaming it.

Planning for HFS

Chapter 11. Managing Hierarchical File System Data Sets 407

v Remove files from the file system by either deleting them or by moving them to
another file system. If it is impossible to remove the chosen files from a
particular directory in the file system, it may be possible to remove other files
from a different directory in the same file system. The objective is to reduce the
size of the file system.

v Create a new file system on another volume, or set of volumes, and move some
files from the full file system to the new file system. To avoid problems that can
result from this approach, define symbolic links using the original names.

v Add another volume to the file system candidate volume list with the IDCAMS
ALTER ADDVOLUMES command. The file system must be unmounted and
remounted for the additional volumes to be usable by the HFS.

v The storage administrator or system programmer can monitor the space in a file
system by mounting an HFS with parm FSFULL. For example, mount
parm('FSFULL(70,10)') will cause HFS to issue message IGW023A when the file
system is 70 percent full and then issues an additional IGW023I messages when
the file system is 80 and 90 percent full.

The BPX1PCT callable service can be used to extend the file system (see “Using
pfsctl (BPX1PCT) Physical File System Control for HFS” on page 411.

Managing File System Activity
If activity for a file system becomes so extensive that accesses are slow, you can do
one of the following tasks:
v Move the file system to a volume that processes I/O more quickly, for example,

a volume that has a faster channel or a cached storage control.
v Move a subtree from the full file system into a new file system on a different

volume. Mount the new file system on the now-empty directory, which was the
head of the subtree. This divides I/O activity between two volumes. To avoid
failures from this action, define symbolic links using the original names.

Accessing HFS Data Set Attributes
Any application (for example, Interactive System Productivity Facility (ISPF) option
3.4I or DCOLLECT) that requests size information about HFS file system requires
OMVS to service that request. This means that the user ID must be defined to
OMVS and have Resource Access Control Facility (RACF) authority to access the
data set. The HFS file system must be either mounted on this file system or
mountable (that is, not already mounted READ/WRITE on another system).

Transporting a File System
You might also want to copy a data set to a storage medium that can be physically
transported to another location. In order to do that, perform one of the following
tasks:
v Use either the PAX, CPIO, or TAR shell commands to copy the file system in

tape archive (TAR) format.
v Have an authorized user logically unmount the file system, allocate an HFS data

set with a different data set name, and use the DFSMSdss dump utility to copy
the old file system to the new data set.

Planning for HFS

408 z/OS V2R1.0 DFSMSdfp Advanced Services

Removing (Deleting) a File System
If you mount the file system (HFS data set) to a different file system or you want
to delete it, first logically unmount it using the TSO/E UNMOUNT command
against the HFS data set containing it. Then you can use either or both of the
MOUNT commands (see “Adding and Mounting File Systems to the Root File
System” on page 407).

You can eliminate the file system by using any of the following techniques:
v Use the DELETE command (IDCAMS or TSO).
v Execute an IEFBR14 job with DISP=(OLD,DELETE) specified for the HFS data

set.
v ISPF option 3.x.
v Use the SCRATCH and UNCATLG commands of IEHPROGM.

Migrating a File System
If a file system is unmounted and remains so for a predetermined time, the system
can migrate it to a lower priority storage medium. The system automatically recalls
a migrated file system from migration storage if a mount command is issued for
the file system.

If you plan to migrate HFS data sets, consider migrating them only to level 1
(DASD) storage. Recalling a data set that was migrated to tape could adversely
affect performance because of the time required to physically mount the tape
volume.

If the tape is in an automated library, then recalling it should be much faster than
if the system has to request an operator to mount it.

Backing Up File Systems
DFSMShsm provides automatic backup facilities for HFS data sets. You can back
up mountable file systems by periodically backing up the HFS data sets that
contain them; the data sets can be restored if necessary. DFSMShsm is also used for
migrating and restoring unmounted file systems.

You can manually back up a mountable file system, including the root file system,
periodically with DFSMSdss data set dumps. To do this, issue the DFSMSdss
DUMP command. This quiesces activity against the specified HFS data set, then
invokes backup processing. When the backup is complete, the file system is
unquiesced and user activity can resume.

Retain periodic DFSMSdss data set dumps of file systems in case a program fails
and damages files and directories. Keep this backup in another area or different
building in case the computer site experiences physical damage.

There is no facility for automatically backing up individual files within an HFS
data set. You can manually back up files with the PAX, CPIO, and TAR commands.

For more information on using DFSMSdss, refer to the DFSMSdss section of z/OS
DFSMSdfp Storage Administration.

Planning for HFS

Chapter 11. Managing Hierarchical File System Data Sets 409

Recovering a Backed-Up File System
If a file system is damaged, you can recover by replacing it with a saved version
that was created from an earlier backup. To recover a backed up file system, you
must perform the following tasks:
1. Notify all users to stop all activity on the damaged file system.
2. Have an authorized user enter the TSO/E UNMOUNT command with the

IMMEDIATE option to logically unmount the damaged file system. If the
unmount fails, reenter the UNMOUNT command with the FORCE option.

3. Use the DFSMSdss dump utility to restore the backed up file system to a
replacement file system (HFS data set). You can do this simultaneously with the
previous steps.

4. Have an authorized user enter a TSO/E MOUNT command to logically mount
the replacement file system. Ensure that the MOUNT commands in the
BPXPRMxx member in SYS1.PARMLIB are consistent with this MOUNT
command.

5. Issue a broadcast message to all users or a message to all z/OS UNIX users
when they invoke the shell, telling them that you have mounted a back-level
file system and informing them of the mount point. Users must recreate and
add any files added since the file system was backed up.

You might choose a more disruptive method to recover a backed up file system for
the root file system. Refer to z/OS UNIX System Services Planning, “Shutting Down
z/OS Unix“, for more information on how to perform a shutdown.

HFS Deferred File System Synchronization
Normal HFS disk hardening executes under a sync daemon that runs periodically
to write out all file and metadata changes that have occurred since the last time the
sync daemon ran. If a large number of files are created, modified, or deleted within
the time span that is between the file system sync intervals, then with the next file
system sync, these file changes are collected and the disk version of the file system
is sync'ed with a greatly reduced number of media manager calls. This reduces the
actual I/O activity.

The reduced I/O can have a dramatic effect on performance, because the default
sync daemon interval is one minute. The sync daemon runs in the OMVS address
space and is independent of any user request to the file system.

When the sync daemon runs, all the HFS changes are batched into one large I/O
request that gets passed to the media manager. The intent is to perform one long
I/O operation to the HFS on disk. However, even with optimal conditions, where
the HFS resides on one volume and is contained within a single extent, it is
necessary to have a few media manager calls during the disk hardening I/O
operation. If the HFS has multiple extents or resides on multiple volumes, multiple
channel programs must be built, because a single I/O operation cannot span
multiple extents.

In addition to the sync daemon interval, HFS also supports the individual file sync
(fsync). The fsync can be performed at any time by the application program.
However, be aware that an fsync will result in the entire file system being sync'ed.
It is very important to note that during the HFS file system sync operation, the
sync task runs independently of the users that are currently accessing the HFS.
When the sync task runs, it obtains an exclusive latch for the file system being
sync'ed. This latch is held for the duration of the file system sync operation. While

Planning for HFS

410 z/OS V2R1.0 DFSMSdfp Advanced Services

this latch is held UNIX system services users of the HFS file system will not be
able to access the HFS. When the sync task runs, the HFS must:
1. Update all of the new or changed files' metadata
2. Delete structures for any removed files
3. Update the internal HFS storage maps within the HFS attributes directory
4. Call the media manager to perform the I/O operation that makes the changes

to the disk version of the HFS data set.

The I/O operation is synchronous, which means that HFS sync task will be
suspended for the duration of the media manager call. Normally, this file system
sync lockout condition is brief, lasting for a few seconds, and is rarely noticed by
the end user. However, in some situations the file system sync lockout could last
much longer. The duration of the lockout depends on the sync interval, the amount
of work that must be performed by the SYNC task, and the performance of the
I/O subsystem.

To minimize the effect on applications from the file system sync operations that
take a long time to complete, you can do one or more of the following:
1. Mount the affected HFS with a shorter sync interval. This will reduce overall

HFS performance, but the sync lockout will not be as long.
2. Split the HFS into two or more smaller HFS data sets.
3. Avoid high impact commands such as "rm -R" on large directories.

How to specify a SYNC value
The default HFS SYNC daemon interval value is 60 seconds. You may override this
default by changing the SYNCDEFAULT option of the FILESYSTYPE parameter in
the BPXPRMxx member of SYS1.PARMLIB. Individual HFS data sets can have an
overriding SYNC value. This can be accomplished by specifying a SYNC value on
the ROOT parameter, or a SYNC value on the MOUNT parameter in the
BPXPRMxx member of SYS1.PARMLIB.

Refer to z/OS MVS Initialization and Tuning Reference for details on how to specify
FILESYSTYPE, ROOT, and MOUNT parameters. Additionally, individual HFS data
sets can be mounted by the user with the MOUNT command that specifies a
SYNC value.

Using pfsctl (BPX1PCT) Physical File System Control for HFS
The following information describes the use of pfsctl, BPX1PCT callable service, for
HFS.

The pfsctl callable service, BPX1PCT, conveys a command and an argument to a
physical file system. The meaning of the command and argument are specific to
the physical file system and are defined by the physical file system.

Format:
CALL BPX1PCT,(File_System_type,

Command,
Argument_length,
Argument,
Return_value,
Return_code,
Reason_code)

File_System_type:

Planning for HFS

Chapter 11. Managing Hierarchical File System Data Sets 411

Type: Character string
Length: 8 bytes
Character string: HFS

Command:
Type: Integer
Length: Fullword

If the physical file system is an HFS data set, you can code one of these values:
X’40000001’ DisplayBufferLimits
X’00000002’ ChangeBufferLimits
X’40000003’ DisplayGlobalStats
X’40000004’ DisplayFSStats
X’00000005’ ExtendFS

These HFS-defined commands and the data areas for each are defined in
GFUMPCTL, located in SYS1.MODGEN.

Argument_Length: A 4-byte integer. See below for the valid values.

Argument: Structure as described below and in Table 92 on page 416, Table 93 on
page 417, Table 94 on page 418, or Table 95 on page 419.

Return Value: Fullword

Return_Code: A 4-byte integer that BPX1PCT sets to one of the values described in
Table 91 on page 415.

Reason_Code: A 4-byte integer that BPX1PCT sets to one of the values described
in Table 91 on page 415.

If the physical file system is an HFS data set, then the following apply:
v “DisplayBufferLimits Command”
v “Output from TRKCALC” on page 315
v “ChangeBufferLimits Command” on page 413
v “DisplayGlobalStats Command” on page 413
v “DisplayFSStats Command” on page 414
v “BPX1PCT Return and Reason Codes” on page 415

DisplayBufferLimits Command
Function:

The DisplayBufferLimits command returns the storage limits in the data
area, specifically the VMAX and FMIN values for the HFS buffers currently
in effect.

Command:
X'40000001'

Argument_Length:
The argument length is the length of the data area. The data area must be
at least the length of PCTL_BFRLIMITS_TYPE. See Table 92 on page 416.

Argument:
PCTL_BFRLIMITS_TYPE

Planning for HFS

412 z/OS V2R1.0 DFSMSdfp Advanced Services

Usage Notes
1. The caller does not have to be authorized.
2. VMAX and FMIN values are both in megabytes (MB).
3. This command is equivalent to the confighfs shell command:

confighfs -l

ChangeBufferLimits Command
Function:

The ChangeBufferLimits command modifies the storage limits, specifically
the VMAX and FMIN values, for HFS buffers as requested in the data area.

Command:
X'00000002'

Argument_length:
The argument length is the length of the data area. The data area must be
at least the length of PCTL_BFRLIMITS_TYPE. See Table 92 on page 416.

Argument:
PCTL_BFRLIMITS_TYPE

Usage Notes
1. The following fields must be set within this structure:

v The PCTL_BL_ACTION flag must be set.
v Modify VMAX by setting the PCTL_BL_VMAX flag and specifying the new

VMAX value in the field PCTL_BL_VMAX_VAL.
v Modify FMIN by setting the PCTL_BL_FMIN flag and specifying the new

FMIN value in the field PCTL_BL_FMIN_VAL.
2. The caller must be a superuser.
3. A request to modify both VMAX and FMIN can be made in one call.
4. The VMAX and FMIN values are in megabytes (MB).
5. This command is equivalent to the confighfs shell commands. The following

confighfs command sets virtual storage maximum (VMAX) to n, where n is in
MB.:

confighfs -v n

The following confighfs command sets virtual storage minimum (FMIN) to n,
where n is in MB.

confighfs -f n

DisplayGlobalStats Command
Function:

The DisplayGlobalStats command returns HFS global system level statistics
in the data area.

Command:
X'40000003'

Argument_Length:
The argument length is the length of the data area. The data area must be
at least the length of PCTL_GLOBALSTATS_TYPE. See Table 93 on page
417.

Planning for HFS

Chapter 11. Managing Hierarchical File System Data Sets 413

Argument:
PCTL_GLOBALSTATS_TYPE

Usage Notes
1. The caller does not have to be authorized.
2. This command is equivalent to the command:

confighfs -q

DisplayFSStats Command
Function:

The DisplayFSStats command returns HFS file system level statistics in the
data area. The values returned for file system statistics are associated with
the current mount of the specified file system.

Command:
X'40000004'

Argument_Length:
The argument length is the length of the data area. The data area must be
the length of PCTL_FSSTATS_TYPE. See Table 94 on page 418.

Argument:
PCTL_FSSTATS_TYPE

Usage Notes
1. The file system name must be supplied as input in the field PCTL_FS_NAME

within the PCTL_FSSTATS_TYPE structure.
2. The caller does not have to be authorized.
3. This command is equivalent to the confighfs shell command:

confighfs pathname

where the pathname is an absolute or relative pathname that identifies the HFS.

ExtendFS Command
Function:

The ExtendFS command attempts to extend (allocate additional disk space
for) the specified file system by the requested amount as specified in the
data area.

Command:
X'00000005'

Argument_Length:
The argument length is the length of the data area. The length of the data
area must be at least the length of PCTL_EXTENDFS_TYPE. See Table 95
on page 419.

Argument:
PCTL_EXTENDFS_TYPE

Usage Notes
v The following fields must be set within this structure:

– Set PCTL_EXT_FSNAME to the name of the file system to be extended.
– If your request is to allocate space on a new volume, set the

PCTL_EXT_NEW_VOL flag on.
– Set PCTL_EXT_UNIT to one of the following units to extend:

Planning for HFS

414 z/OS V2R1.0 DFSMSdfp Advanced Services

1. ExtendFS_UNIT_MB to indicate that the amount to extend is in megabytes
(MB).

2. ExtendFS_UNIT_TRK to indicate that the amount to extend is in tracks.
3. ExtendFS_UNIT_CYL to indicate that the amount to extend is in cylinders.

– Set PCTL_EXT_AMT to the amount to be extended.
– The caller must be a superuser.
– If the flag PCTL_EXT_NEW_VOL = off, an attempt to obtain additional space

is only made on the last volume of the HFS. The HFS will not be extended to
a new volume.

– If the flag PCTL_EXT_NEW_VOL = on, an attempt to obtain additional space
is only made on a new volume. In this case, candidate volumes must exist for
the HFS, and the candidate volumes must have existed at the time of the
current mount of the HFS.

– If a secondary space amount exists for the HFS, it is ignored.
– If the entire amount requested cannot be obtained, the operation fails.

v This command is equivalent to the confighfs shell command:
confighfs -x size pathname To extend on the same volume

confighfs -xn size pathname To extend to a new volume

where size is the amount to be extended suffixed by the extend unit of M
(megabytes), T (tracks), or C (cylinders) and pathname is an absolute or relative
pathname that identifies the HFS.

BPX1PCT Return and Reason Codes
Using BPX1PCT for HFS returns a non-zero return code and reason code only if
the return value is -1. Table 91 contains a list of return and reason codes returned
by BPX1PCT for the HFS DisplayBufferLimits, ChangeBufferLimits,
DisplayGlobalStats, DisplayFSStats, and ExtendFS commands.

Table 91. BPX1PCT - Return Codes and Reason Codes

Return Code Reason Code Description Command

0 0 Successful completion

EINVAL 5B360106 The HFS pfsctl service
ExtendFS function was called
with an invalid
PCTL_EXT_UNIT parameter.

ExtendFS only

5B360108 The HFS pfsctl ExtendFS
function was called with an
extend value of zero.

ExtendFS only

EFAULT 5B360102 The HFS pfsctl service was
called with an unsupported
command code.

5B360103 The data area address provided
for the HFS pfsctl command is
zero.

5B360107 The HFS pfsctl service
ChangeBufferLimits or
ExtendFS function was called
by an unauthorized caller.

Planning for HFS

Chapter 11. Managing Hierarchical File System Data Sets 415

Table 91. BPX1PCT - Return Codes and Reason Codes (continued)

Return Code Reason Code Description Command

EMVSERR 5B360101 An error occurred during the
add local recovery routine
function.

ENOBUFS 5B360104 The data area length provided
for the HFS pfsctl command
was less than the minimum
size required to complete the
request.

ENOENT 5B360105 An HFS pfsctl service was
called with an unmounted
HFS.unted

DisplayFSStats and
ExtendFS only.

ENOSPC 5B27C005 DADSM error occurred; no
space available to extend the
HFS data set

ExtendFS only

>80000000 File system was in an HFS Out
of Space error state and the
extend amount was insufficient
to meet the requirement to
complete the sync shadow
write. The reason code contains
the 2's complement of the
additional number of tracks
required.

ExtendFS only

EIO 5B27C00A DADSM error occurred; I/O
error VTOC

ExtendFS only

EMVSPFSPERM 5B27xxxx Unexpected error encountered ExtendFS only

5BB3xxxx Unexpected error encountered ChangeBufferLimits
only

EMVSPARM 5B36000E VMAX below minimum
(VMAX set to minimum)

ChangeBufferLimits
only

5B36000F FMIN exceeded VMAX (FMIN
set to VMAX)

ChangeBufferLimits
only

5B360010 FMIN at maximum available
(FMIN set to maximum)

ChangeBufferLimits
only

5B360014 VMAX below FMIN (VMAX
set to FMIN)

ChangeBufferLimits
only

Table 92 shows the GFUMPCTL structure for the DisplayBufferLimits and the
ChangeBufferLimits commands:

Table 92. Structure for the DisplayBufferLimits and ChangeBufferLimits Commands (GFUMPCTL)
Offsets Type Length Name Description
0 (0) STRUCTURE 28 PCTL_BFRLIMITS_TYPE
0 (0) CHARACTER 1 PCTL_BL_FLGS Flags

Planning for HFS

416 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 92. Structure for the DisplayBufferLimits and ChangeBufferLimits Commands (GFUMPCTL) (continued)
Offsets Type Length Name Description

1... 1 PCTL_BL_ACTION off: display buffer limits

on: change buffer limits
1 (1) CHARACTER 1 PCTL_BL_LIMIT Limits to be modified

1... PCTL_BL_VMAX Modify VMAX request
.1.. PCTL_BL_FMIN Modify FMIN request

2 (2) CHARACTER 1 * Reserved
4 (4) SIGNED 4 PCTL_BL_VMAX_VAL Modify VMAX value
8 (8) SIGNED 4 PCTL_BL_FMIN_VAL Modify FMIN value
12 (C) CHARACTER 16 * Reserved
28 (1C) CHARACTER PCTL_BL_END

Table 93 shows the GFUMPCTL structure for the DisplayGlobalStats command:

Table 93. Structure for the DisplayGlobalStats Command (GFUMPCTL)
Offsets Type Length Name Description
0 (0) (0) STRUCTURE 200 PCTL_GLOBALSTATS_TYPE
0 (0) CHARACTER 8 PCTL_GS_CURR_TIME Current timestamp
8 (8) CHARACTER 8 * Reserved
16 (10) SIGNED 4 PCTL_GS_TOTVIRT Combined total virtual (in pages) in

use by all buffer pools
20 (14) SIGNED 4 PCTL_GS_TOTFIX Combined total fixed (in pages) in use

by all buffer pools
24 (18) CHARACTER 28 PCTL_GS_BP1 Stats for buffer pool 1
24 (18) UNSIGNED 2 PCTL_GS_BP1_BFRSIZE Size of each buffer (in pages)
26 (1A) UNSIGNED 2 PCTL_GS_BP1_DSCNT Number of data spaces in pool
28 (1C) SIGNED 4 PCTL_GS_BP1_TOTVIRT Total virtual used by this pool
32 (20) SIGNED 4 PCTL_GS_BP1_TOTFIX Total fixed used by this pool
36 (24) UNSIGNED 8 PCTL_GS_BP1_FIXD_Y Times a buffer was already fixed prior

to an I/O request
44 (2C) UNSIGNED 8 PCTL_GS_BP1_FIXD_N Times a buffer was not already fixed

prior to an I/O request
52 (34) CHARACTER 28 PCTL_GS_BP2 Stats for buffer pool 2
52 (34) UNSIGNED 2 PCTL_GS_BP2_BPRSIZE Size of each buffer (in pages)
54 (36) UNSIGNED 2 PCTL_GS_BP2_DSCNT Number of data spaces in pool
56 (38) SIGNED 4 PCTL_GS_BP2_TOTVIRT Total virtual used by this pool
60 (3C) SIGNED 4 PCTL_GS_BP2_TOTFIX Total fixed used by this pool
64 (40) UNSIGNED 8 PCTL_GS_BP2_FIXD_Y Times a buffer was already fixed prior

to an I/O request
72 (48) UNSIGNED 8 PCTL_GS_BP2_FIXD_N Times a buffer was not already fixed

prior to an I/O request
80 (50) CHARACTER 28 PCTL_GS_BP3 Stats for buffer pool 3
80 (50) UNSIGNED 2 PCTL_GS_BP3_BFRSIZE Size of each buffer (in pages)
82 (52) UNSIGNED 2 PCTL_GS_BP3_DSCNT Number of data spaces in pool
84 (54) SIGNED 4 PCTL_GS_BP3_TOTVIRT Total virtual used by this pool
88 (58) SIGNED 4 PCTL_GS_BP3_TOTFIX Total fixed used by this pool
92 (5C) UNSIGNED 8 PCTL_GS_BP3_FIXD_Y Times a buffer was already fixed prior

to an I/O request
100 (64) UNSIGNED 8 PCTL_GS_BP3_FIXD_N Times a buffer was not already fixed

prior to an I/O request
108 (6C) CHARACTER 28 PCTL_GS_BP4 Stats for buffer pool 4
108 (6C) UNSIGNED 2 PCTL_GS_BP4_BFRSIZE Size of each buffer (in pages)
110 (6E) UNSIGNED 2 PCTL_GS_BP4_DSCNT Number of data spaces in pool
112 (70) SIGNED 4 PCTL_GS_BP4_TOTVIRT Total virtual used by this pool

Planning for HFS

Chapter 11. Managing Hierarchical File System Data Sets 417

Table 93. Structure for the DisplayGlobalStats Command (GFUMPCTL) (continued)
Offsets Type Length Name Description
116 (74) SIGNED 4 PCTL_GS_BP4_TOTFIX Total fixed used by this pool
120 (78) CHARACTER 8 PCTL-GS_BP4_FIXD_Y Times a buffer was already fixed prior

to an I/O request
128 (80) CHARACTER 8 PCTL_GS_BP4_FIXD_N Times a buffer was not already fixed

prior to an I/O request
136 (88) CHARACTER 8 PCTL_GS_META_Y Times metadata in cache on a lookup
144 (90) CHARACTER 8 PCTL_GS_META_N Times metadata not in cache on a

lookup
152 (98) CHARACTER 8 PCTL_GS_RPN0_Y Times RPN0 in cache on read/write
160 (A0) CHARACTER 8 PCTL_GS_RPN0_N Times RPN0 not in cache on

read/write
168 (A8) CHARACTER 32 * Reserved
200 (C8) CHARACTER PCTL_GS_END

Table 94 contains the GFUMPCTL structure DisplayFSStats command:

Table 94. Structure for the DisplayFSStats Command (GFUMPCTL)
Offsets Type Length Name Description
0 (0) STRUCTURE 228 PCTL_FSSTATS_TYPE
0 (0) CHARACTER 44 PCTL_FS_NAME File system name
44 (2C) BITSTRING 4 PCTL_FS_FLAGS Flags from RFS (an internal HFS

control block)
44 (2C) BITSTRING 1 PCTL_FS_RFS_MTAB_FLAGS MTAB flags
45 (2D) BITSTRING 1 PCTL_FS_RFS_FLAGS RFS flags
46 (2E) BITSTRING 1 PCTL_FS_RFS_SYNC_ERR RFS error flags
47 (2F) BITSTRING 1 * Reserved
48 (30) CHARACTER 8 PCTL_FS_CURR_TIME Current timestamp
56 (38) CHARACTER 8 PCTL_FS_MOUNT_TIME Mount timestamp
64 (40) UNSIGNED 2 PCTL_FS_SYNC SYNC interval (in seconds)
66 (42) CHARACTER 2 * Reserved
68 (44) SIGNED 4 PCTL_FS_SIZE File system size (in pages)
72 (48) SIGNED 4 PCTL_FS_USED Number of pages used in FS
76 (4C) SIGNED 4 PCTL_FS_AD_ALLOC Number of pages allocated to AD in

FS
80 (50) UNSIGNED 8 PCTL_FS_SEQ_IO Number of sequential I/O requests for

data
88 (58) UNSIGNED 8 PCTL_FS_RANDOM_IO Number of random I/O requests for

data
96 (60) UNSIGNED 8 PCTL_FS_META_Y Times metadata in cache on a lookup
104 (68) UNSIGNED 8 PCTL_FS_META_N Times metadata not in cache on a

lookup
112 (70) UNSIGNED 8 PCTL_FS_RPN0_Y Times RPN0 in cache on read/write
120 (78) UNSIGNED 8 PCTL_FS_RPN0_N Times RPN0 NOT in cache on

read/write
128 (80) UNSIGNED 8 PCTL_FS_IX_TOPS Number of index new tops
136 (88) UNSIGNED 8 PCTL_FS_IX_SPLITS Number of index splits
144 (90) UNSIGNED 8 PCTL_FS_IX_JOINS Number of index joins
152 (98) UNSIGNED 8 PCTL_FS_IX_RDHIT Number of index page read hits
160 (A0) UNSIGNED 8 PCTL_FS_IX_RDMISS Number of index page read misses
168 (A8) UNSIGNED 8 PCTL_FS_IX_WRHIT Number of index page write hits
176 (B0) UNSIGNED 8 PCTL_FS_IX_WRMISS Number of index page write misses
184 (B8) UNSIGNED 4 PCTL_FS_PGS_CACHED Number of data buffer pages cached

by this file system
188 (BC) CHARACTER 4 PCTL_FS_HFRFN HFRFN from DMIB

Planning for HFS

418 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 94. Structure for the DisplayFSStats Command (GFUMPCTL) (continued)
Offsets Type Length Name Description
192 (C0) UNSIGNED 4 PCTL_FS_MEM_CNT Member count from RFS
196 (C4) UNSIGNED 4 PCTL_FS_APM_CNT Number of available page maps
200 (C8) CHARACTER 28 * Reserved
228 (E4) CHARACTER PCTL_FS_END

Table 95 contains the GFUMPCTL structure ExtendFS command:

Table 95. Structure for the ExtendFS Command (GFUMPCTL)
Offsets Type Length Name Description
0 (0) STRUCTURE 68 PCTL_EXTENDFS_TYPE
0 (0) CHARACTER 44 PCTL_EXT_FSNAME File system name
44 (2C) CHARACTER 1 PCTL_EXT_FLGS Flags

1... PCTL_EXT_NEW_VOL Extend to new volume
45 (2D) CHARACTER 1 PCTL_EXT_UNIT Unit of amount to extend (‘M’, ‘T’ or

‘C’)
46 (2E) CHARACTER 2 * Reserved
48 (30) SIGNED 4 PCTL_EXT_AMT Amount to be extended
52 (34) CHARACTER 16 * Reserved
68 (44) CHARACTER PCTL_EXT_END

Table 96. Constants for Extend Units Supported

Type Value Name Description

CHARACTER 1 EXTENDFS_UNIT_MB Constant (‘M’, Megabytes (MB) for pctl_ext_unit

CHARACTER 1 EXTENDFS_UNIT_TRK Constant (‘T’, Tracks) for pctl_ext_unit

CHARACTER 1 EXTENDFS_UNIT_CYL Constant (‘C’, Cylinders) for pctl_ext_unit

Planning for HFS

Chapter 11. Managing Hierarchical File System Data Sets 419

Planning for HFS

420 z/OS V2R1.0 DFSMSdfp Advanced Services

Chapter 12. User Access to Subsystem Statistics, Status, and
Counts Information

This information documents programming interfaces provided by IDCAMS.

Your program can call a system service that returns the information that the access
method services LISTDATA command returns. This information is subsystem
statistics, status and count information. To obtain this information, your program
must be APF-authorized. Your program will call IDCSS01 with the LINK macro.
You pass to IDCSS01 a three-word parameter list pointed to by register 1. If your
program is not authorized and attempts to link to IDCSS01, the system issues
ABEND with system code 047. The following shows an example of the IDCSS01
call:

ST R5,AddrSGARGL Set address of SSGARGL
LINK EP=IDCSS01,PARAM=(,MyArgL,MyRetCode) Call LISTDATA
SR R15,R15 Prepare for ICM
ICM R15,B’0011’,MyRetCode Obtain and test return code
BNZ ListDataFail Branch if call failed
. . .

MyArgL DC A(AddrSSGARGL) Address of SSGARGL address
AddrSGARGL DC A(0) Address of SSGARGL
MyRetcode DC H’0’ Return code from service

IDCDF70 , Map the parameter list

Your program must point register 13 to a standard 18-word save area when calling
IDCSS01.

Register 1 Parameter List
Word 1

must be zero.

Word 2
contains an address of a pointer to the argument list SSGARGL (detailed
below), which IDCSS01 requires. Within this argument list is a field named
SSGOADR, which points to the buffer area in which IDCSS01 returns
subsystem statistics, status, or counts information. The buffer area may be
obtained by the caller or may be left for IDCSS01 to obtain.

Word 3
points to an area to receive a 2-byte binary return code. Possible return
codes are listed at the end of SSGARGL. IDCSS01 also returns this return
code in the low order bytes of register 15.

Passed Argument List -- SSGARGL
The following describes SSGARGL. SSGARGL is the area pointed to by the word
that Word 2 points to. Word 2 is part of the parameter list passed to IDCSS01. The
caller must establish some fields; IDCSS01 establishes other fields. The caller must
set an option flag to indicate whether information requested is status information
(SSGRSS), counts information (SSGRPD), Space Efficient Volume status (SSGSEV),
or Extent Pool Configuration status (SSGEPC). If the caller passes SSGADDN,
IDCSS01 establishes SSGAVOL and SSGUNIT. .

© Copyright IBM Corp. 1979, 2014 421

If counts information is requested, the caller must indicate whether it applies to all
subsystems (SSGALL), a specific subsystem (SSG1SS), or a specific device
(SSGDEV). In addition, the caller must either pass the ddname (through
SSGADDN) of a DD statement that allocates a caching subsystem volume, or the
caller must identify the volume and unit (through SSGAVOL and SSGUNIT) of a
caching subsystem volume for which information is being requested.

If Space Efficient Volume status, or Extent Pool Configuration status is requested,
the caller must follow the instruction described in the mapping for the space
efficient volume status output buffer, or mapping for the extent pool configuration
status output buffer described in later of this section.

Note: The SSGOLN may be larger than the data returned in the SSGBUFR buffer.
To detect end of data, the following should be considered:
v If “current index into the SSGBUFR buffer” is within SSGOLN-4 bytes, then the

full six bytes of SSGDAVOL being zero is the way to determine the premature
“end of data”.

v If “current index into the SSGBUFR buffer” is beyond SSGOLN-4 bytes of the
data, then they are at “end of data”.

The following list contains other fields that IDCSS01 establishes:
==
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 96 SSGARGL
0 (0) CHARACTER 8 SSGHEAD SSGARGL IDENTIFIER
8 (8) ADDRESS 4 SSGADDN DDNAME ADDRESS
12 (C) ADDRESS 4 SSGAVOL VOLUME ADDRESS
16 (10) BITSTRING 4 SSGUNIT DEVICE TYPE
16 (10) BITSTRING 1 SSGUNIT1 GENERAL FLAGS
17 (11) BITSTRING 1 SSGUNIT2 GENERAL FLAGS
18 (12) BITSTRING 1 SSGUNIT3 DEVICE CLASS
19 (13) BITSTRING 1 SSGUNIT4 DEVICE TYPE WITHIN THE CLASS
20 (14) SIGNED 4 SSGOLN LENGTH OF OUTPUT BUFFER
24 (18) ADDRESS 4 SSGOADR ADDRESS OF OUTPUT BUFFER
28 (1C) BITSTRING 2 SSGOPT OPTIONS BYTE

1... SSGRPD SENSE SUBSYSTEM COUNTS
.1.. SSGRSS SENSE SUBSYSTEM STATUS
..1. SSGCACHE ON=CACHING,OFF=PAGING
...1 SSGSDS ON=1 SD, OFF= 2 SD’S
.... 1... SSGALL SENSE FOR ALL SUBSYSTEMS
.... .1.. SSG1SS SENSE FOR SPECIFIED SUBSYSTEM
.... ..1. SSGDEV SENSE FOR SPECIFIED DEVICE
.... ...1 SSGAMD PTR TO 3880 MODEL PASSED

INSTEAD OF PTR TO VOLUME
29 (1D) 1... SSG2SD PRINT 2 SD

.1.. SSGACD ACCESSCODE

..1. SSGOFFL SSGAVOL POINTS TO DEVICE ID OF
AN OFFLINE DEVICE

...1 SSGARGL2 this flag indicates that the
parameter list is extended by
the 16 bytes defined as
SSGARGLX

.... 1... SSGLINKP Link performance statistics
supported by caller and
request return of statistics
when request for Subsystem
counts are made (SSGRPD = ON)
for one or more Subsystems
(SSG1SS=ON or SSGALL = ON).
Results passed back in area
pointed to by SSGLPOAR
Extended size statistics are
provided if SSGEXRQ is
specified. The returned field,
SSGLLSET, will be set to the
size for each set of link
statistics.

422 z/OS V2R1.0 DFSMSdfp Advanced Services

.... .1.. SSGARGL3 this flag indicates that the
paramter list is extended with
area defined as SSGARLGY

30 (1E) BITSTRING 1 SSGMDLID CU MODEL IDENTIFIER
31 (1F) CHARACTER 1 SSGRCIOS ’old’ parameter list end

Parameter List Extension.
Note: IDCSS01 will not reference fields contained in SSGARGLX

unless the bit defined as SSGARGL2 is set to ’1’.
==

32 (20) CHARACTER 16 SSGARGLX parm list extension
32 (20) UNSIGNED 1 SSGATIME I/O timeout value in

seconds.When SSGATIME is
not zero, it will be stored
into IOSXTIME in the IOSB. If
the I/O is active or queued
longer that SSGATIME, the I/O
will be terminated and IDCSS01
will return a return code of
60. Hex values for SSGATIME
support seconds from 1 to 255.

33 (21) CHARACTER 2 SSGADEVN Binary device number that
received an IO (RC8) or
timeout (RC60) from IDCSS01

35 (23) UNSIGNED 1 SSGLPRET Reason code from link
performance statistics
processing

36 (24) ADDRESS 4 SSGLPOAR Address of link performance
Statistics output buffer
queue. When zero on return
statistics not available for
devices found on counts
request or statistics not not
requested by the caller

40 (28) CHARACTER 8 * reserved for future use

Parameter List Extension number 3
Note: IDCSS01 will not reference fields contained in SSGARGLY

unless the bit defined as SSGARGL3 is set to ’1’.
Entire section added

==
48 (30) CHARACTER 48 SSGARGLY Parm list extension 3
48 (30) BITSTRING 4 SSGOPTY Extended options

1... SSGRANKP RANK performance statistics
are supported by caller and
request return of statistics
when request for Subsystem
counts are made (SSGRPD = ON)
for one or more Subsystems
(SSG1SS=ON or SSGALL = ON).
Results passed back in area
pointed to by SSGRSOAR

.1.. SSGSEGMP Segment pool statistics are
supported by caller and
request return of statistics
when request for Subsystem
counts are made (SSGRPD = ON)
for one or more Subsystems
(SSG1SS=ON or SSGALL = ON).
Results passed back in area
pointed to by SSGSPOAR

..1. SSGSEV Space Efficient Volume
(SEVOL) status is
supported by caller and
request return of status
in SSGSEBUF pointed by
SSGSEOAR when request for
SEVOL are made (SSGSEV
=ON) for the scope of
single device
(SSGDEV=ON), online SEVOL
devices in the subsystem
(SSG1SS=ON), or all
online SEVOL devices
(SSGALL=ON). For single
offline SEVOL status,
caller set address of
the MVS addr character
in SSGAVOL and set

Chapter 12. User Access to Subsystem Statistics, Status, and Counts Information 423

offline (SSGOFFL=ON).
The Fixed Block (FB)
SEVOL device status is
returned when the
reporting scope is single
(SSGDEV=ON), the FB user
request is active
(SSGURFBD=ON), FB LSS
number is in SSGFBLSS,
and FB device number is
in SSGFBDEV. FB SEVOL
status is available
through CKD I/O device
that resides in the same
Storage Facility Image as
FB SEVOL and resides in
the same Even or Odd
number LSS as even or odd
FB LSS. SEVOL status is
not supported when other
statistics or status is
requested by caller.

...1 SSGEPC Extent Pool Config (EPC)
status is supported by
caller and request return
of status in SSGEPBUF
pointed by SSGEPOAR when
request for EPC of
Storage Facility Image
oriented by I/O device in
SSGADDN or SSGAVOL are
made (SSGEPC=ON). When
Extent Pool ID (SSGEPID)
is set as ’FFFF’X by
caller, EPC summary
status is returned. When
even numbered Extent Pool
ID is specified in
SSGEPID with the I/O
device in the even LSS,
detail status of EPC for
the specified Extent Pool
is returned. When odd
numbered Extent Pool ID
is specified with the I/O
device in the odd LSS,
detail status of EPC for
the specified Extent Pool
is returned. SSGURBMP is
internal use only. When
Extent Pool ID (SSGEPID)
is set as ’FFFF’X with
SSGURBMP is ON, branch
entry caller receives
error. Whether ON or OFF
of SSGURBMP does not make
difference in EPC detail
status for branch entry
caller. EPC status report
is not supported when
other statistics or
status is requested
by caller.

.... 1... SSGURFBD Request Fixed Block SEVOL
status by turning
SSGURFBD flag ON.

.... .1.. SSGURBMP IDCAMS internal use.
Refer SSGEPC bit
description.

.... ..1. SSGEXRQ By setting this attribute bit
along with other request(s),
caller supports and requests the
return of extended length
statistics. The extended
length is any set of statistics
that is larger than the standard
length of statistics. The
extended length statistics will
be returned if target storage

424 z/OS V2R1.0 DFSMSdfp Advanced Services

facility supports it, otherwise
the standard size statistics
will be returned. Ignored this
attribute bit for requests where
the statistics do not support
the extended length and where
caller does not make any
request.
Current request that supports
the extended length is:
- Link performance statistics

52 (34) CHARACTER 8 SSGRETY Extended return codes
52 (34) UNSIGNED 1 SSGRSRET Reason code from Rank

Performance Statistics
processing

53 (35) UNSIGNED 1 SSGSGRET Reason code from Segm
Performance Statistics
processing

60 (3C) ADDRESS 4 SSGRSOAR Address of Rank performance
Statistics output buffer
queue. When zero on return
statistics not available for
devices found on counts
request or statistics not not
requested by the caller

64 (40) ADDRESS 4 SSGSPOAR Address of segment pool
performance Statistics output
buffer queue. When zero on
return statistics not
available for devices found on
counts request or statistics
not not requested by the
caller

68 (44) ADDRESS 4 SSGSEOAR Address of SE Volume
status output buffer
queue. When zero on
return status not
available for devices
found on SEVOL status
request or status not
requested.

72 (48) ADDRESS 4 SSGEPOAR Address of Extent Pool
Config (EPC) status
output buffer. When zero
on return status not
available for Storage
Facility Image found on
EPC status request or
status not requested
by the caller.

76 (4C) UNSIGNED 2 SSGEPID Extent Pool ID.
’FFFF’X indicates no
Ext Pool ID is
provided by caller.

78 (4E) UNSIGNED 2 SSGFBLSS Fix Block device number
80 (50) UNSIGNED 2 SSGFBDEV Fix Block LSS number
82 (52) CHARACTER 14 * reserved for future use

MAPPING FOR THE SUBSYSTEM GET OUTPUT BUFFER
==
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE * SSGBUFR
0 (0) CHARACTER 6 SSGDAVOL VOLUME SERIAL
6 (6) BITSTRING 1 SSGDAFLG

1... SSG_UA_FLAG "ONE" UNIT ADDR FORMAT
.1.. SSG_FND_STG2 2ND STG DIR PATH FND SS01 TO

LA01 IDCSS01 PASSED TO IDCLA01
..11 1111 * RESERVED

7 (7) CHARACTER 1 SSGDCUID Real CUID for data in
SSGDADA

8 (8) CHARACTER 4 SSGDAUA1 FIRST UNIT ADDRESS
12 (C) CHARACTER 2 SSGDAUB1 FIRST UNIT ADDRESS (BINARY)
14 (E) SIGNED 2 SSGDALN DATA LENGTH
16 (10) CHARACTER 192 SSGDADA DATA AREA
16 (10) CHARACTER 192 SSGDAXPF CACHING SUBSYSTEM PERFORMANCE

STATISTICS
16 (10) CHARACTER 160 SSGDASPF CACHING SUBSYSTEM COUNTS
16 (10) CHARACTER 80 SSGDA2SD STATUS FOR 2 SD

Chapter 12. User Access to Subsystem Statistics, Status, and Counts Information 425

16 (10) CHARACTER 80 SSGDAIPF PAGING SUBSYSTEM COUNTS
16 (10) CHARACTER 44 SSGDASS SUBSYSTEM STATUS (LNGTHND)
16 (10) CHARACTER 40 SSGDASS_40

STATUS FOR 3380
16 (10) CHARACTER 24 SSGDAACD

ACCESSCODES
16 (10) CHARACTER 12 SSGDAAC0

STORAGE CLUSTER 0 WORD
28 (1C) CHARACTER 12 SSGDAAC1

STORAGE CLUSTER 1 WORD

MAPPING FOR THE SUBSYSTEM GET OUTPUT BUFFER
FOR LINK PERFORMANCE STATISTICS
Output buffer is a chain, anchored by SSGLPOAR, of link
performance statistics tables. Each table entry represents
data read from a single storage subsystem box. The
statistics from a single box may be described with more than
table entry. The chain is a single threaded queue. Each
chain element needs to be freed by the caller of this
interface. Output buffer is built for storage boxes
that support link performance statistics and are returned
only if requested by caller (SSGLINKP) on a request for
performance data (SSGRPD) for requests with scope of
of subsystem (SSG1SS) or all subsystems (SSGALL).
The parameter list extension must also be passed as
indicated with SSGARLG2.

==
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE * SSGLBUFR
0 (0) CHARACTER 56 SSGLHDR Queue element header
0 (0) UNSIGNED 4 SSGLQDAL Length of this queue element,

header plus data
4 (4) UNSIGNED 4 SSGLQDAO Offset to the start of the

statistics sets
8 (8) ADDRESS 4 SSGLFWDP Pointer to next queue element,

when zero end of queue

Orientation to subsystem that stats pertain
==

12 (C) CHARACTER 6 SSGLVOL Volume serial of device that
stats where read from

18 (12) CHARACTER 2 SSGLDEVN Device number of device that
Stats where read from

20 (14) CHARACTER 8 * Reserved
28 (1C) CHARACTER 28 SSGLLHDR Link stats info
28 (1C) UNSIGNED 2 SSGLNSET Num of link stats sets read
30 (1E) UNSIGNED 2 SSGLLSET Size of each set

The extended size would be set
if the target storage facility
supports it and SSGEXRQ is set,
otherwise the standard 96-bytes
entry size for each interface
ID will be set.

32 (20) CHARACTER 6 SSGLCUT Control unit type
38 (26) CHARACTER 3 SSGLCUM Control unit model
41 (29) CHARACTER 10 SSGLSEQ Control unit sequence number
51 (33) CHARACTER 1 SSGLVER Version of link statistics.

When value of version is X’00’,
it indicates that the link
statistics are defined in the
96 byte format. When value of
version is X’01’, it indicates
that the link statistics are
defined in the 156 byte format.

52 (34) CHARACTER 4 * Not used
56 (38) CHARACTER * SSGLDADA Link performance stats

read

SSGLDADA consists of link statistics sets with Interface ID
containing one or more table information entries. Each
entry can be 96 bytes defined in SSGLLSTA or 156 bytes
defined in SSGLXSTA depending on version number in SSGLVER.

==
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

56 (38) CHARACTER 96 SSGLLSTA(*) Stats entry

426 z/OS V2R1.0 DFSMSdfp Advanced Services

56 (38) UNSIGNED 1 SSGLLTYP Link type
01 - ESCON
02 - Fibre Channel 1 Gb/s
03 - Fibre Channel 2 Gb/s
04 - Fibre Channel 4 Gb/s
05 - Fibre Channel 8 Gb/s
06 - Fibre Channel 16 Gb/s

57 (39) UNSIGNED 1 * Unused
58 (3A) UNSIGNED 1 SSGLLBYI Byte increment 01 - 128K bytes
59 (3B) UNSIGNED 1 SSGLLTMI Time increment 01 - 16 MS
60 (3C) CHARACTER 2 * Unused
62 (3E) CHARACTER 2 SSGLLIID Interface id
64 (40) CHARACTER 88 SSGLLSAT Link statistics
64 (40) UNSIGNED 4 SSGLERDB Eckd read bytes in byte

increment
68 (44) UNSIGNED 4 SSGLEWRB Eckd write bytes in byte

increment
72 (48) UNSIGNED 4 SSGLERDO Eckd read operations. for

escon ports, one count per
chain which transfers data to
the host. for ficon ports, one
count per command which
transfer data to the host

76 (4C) UNSIGNED 4 SSGLEWRO Eckd write operations. for
escon ports, one count per
chain which transfers data to
the host. for ficon ports, one
count per command which
transfer data to the host

80 (50) UNSIGNED 4 SSGLERDT Eckd read accumulated time on
channel. the active processing
time for each command is
accumulated based on increment
value.

84 (54) UNSIGNED 4 SSGLEWRT Eckd write accumulated time on
channel. the active processing
time for each command is
accumulated based on increment
value.

88 (58) UNSIGNED 4 SSGLPRDB Pprc send bytes in byte
increment

92 (5C) UNSIGNED 4 SSGLPWRB Pprc received bytes in byte
increment

96 (60) UNSIGNED 4 SSGLPRDO Pprc send operations. each
pprc write command sent by the
pprc primary

100 (64) UNSIGNED 4 SSGLPWRO Pprc received operations. each
pprc write command received by
the pprc secondary.

104 (68) UNSIGNED 4 SSGLPRDT Pprc send accumulated time
based on incremant value

108 (6C) UNSIGNED 4 SSGLPWRT Pprc received accumulated time
based on increment value

112 (70) UNSIGNED 4 SSGLSRDB Scsi read bytes in byte
increment

116 (74) UNSIGNED 4 SSGLSWRB Scsi write bytes in byte
increment

120 (78) UNSIGNED 4 SSGLSRDO Scsi read operations. each
scsi read is counted

124 (7C) UNSIGNED 4 SSGLSWRO Scsi write operations. each
scsi write is counted

128 (80) UNSIGNED 4 SSGLSRDT Scsi read accumulated time
based on increment value

132 (84) UNSIGNED 4 SSGLSWRT Scsi write accumulated time
based on increment value

136 (88) CHARACTER 16 * Reserved

SSGLDADA consists of table entris defined by SSGLXSTA shown
below when SSGLVER is decimal value of 1.

==
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ================================

56 (38) CHARACTER 156 SSGLXSTA(*) Stats entry
56 (38) UNSIGNED 96 * Mapped in SSGLLSTA
152 (98) UNSIGNED 4 SSGLFLKF Fibre Channel Link Failure

Error Count.
This count is the number of
miscellaneous fibre channel link

Chapter 12. User Access to Subsystem Statistics, Status, and Counts Information 427

errors, such as unexpected NOS
received or a link state machine
failure detected.

156 (9C) UNSIGNED 4 SSGLFLSY Fibre Channel Loss of
Synchronization Error Count.
This count is the number of loss
of synchronization errors where
it is a confirmed and
a persistent synchronization
loss on the fibre channel link.

160 (A0) UNSIGNED 4 SSGLFLSG Fibre Channel Loss of Signal
Error Count.
This count is the number of times
that a loss of signal was
detected on the fibre channel
link when a signal was
previously detected.

164 (A4) UNSIGNED 4 SSGLFPSQ Fibre Channel Primitive Sequence
Error Count.
This count is the number of
primitive sequence protocol error
counts where an unexpected
primitive sequence was received.

168 (A8) UNSIGNED 4 SSGLFITW Fibre Channel Invalid
Transmission Word Error Count.
This count is the number of times
a "bit" error was detected.
Examples of a "bit" errors are a
code violation, invalid special
code alignment, or disparity
errors.

172 (AC) UNSIGNED 4 SSGLFCRC Fibre Channel CRC Error Count.
This count is the number of
times a received frame’s CRC
is in error.

176 (B0) UNSIGNED 4 SSGLFLR1 Fibre Channel Link Recovery
(LR) Sent Count Count.
This count is the number of times
the port has transitioned from
an active (AC) state to a Link
Recovery (LR1) state.

180 (B4) UNSIGNED 4 SSGLFLR2 Fibre Channel Link Recovery
(LR) Received Count Recovery
Count.
This count is the number of times
the port has transitioned from
an active (AC) state to a Link
Recovery (LR2) state.

184 (B8) UNSIGNED 4 SSGLFILF Fibre Channel Illegal Frame
Count. This count is the number
of frames that violated Fibre
Channel protocol. One example is
an invalid frame header. One
common reason is when the first
frame of data sequence is missing
and a subsequent data frame is
detected as illegal.

188 (BC) UNSIGNED 4 SSGLFOOD Fibre Channel Out of Order
Data Count.
This count is the number of times
that a out of order frame is
detected. The frame is either
missing from a data sequence or
it is received beyond the port’s
sequence reassembly threshold.

192 (C0) UNSIGNED 4 SSGLFOOA Fibre Channel Out of Order
ACK Count.
This count is the number of times
that a out of order ACK frame is
detected. The frame is either
missing from a data sequence
or it is received beyond the
port’s sequence reassembly
threshold.

196 (C4) UNSIGNED 4 SSGLFDPF Fibre Channel Duplicate
Frame Count.
This count is the number of
times a frame was received
that has been detected as

428 z/OS V2R1.0 DFSMSdfp Advanced Services

previously processed.
200 (C8) UNSIGNED 4 SSGLFIRO Fibre Channel Invalid

Relative Offset Count.
This count is the number of
times that a frame was received
with bad relative offset in the
frame header.

204 (CC) UNSIGNED 4 SSGLFSQT Fibre Channel Sequence
Timeout Count.
This count is the number of
times the port has detected a
timeout condition on receiving
sequence initiative for a fibre
channel exchange.

208 (D0) UNSIGNED 4 SSGLFBER Fibre Channel Bit Error
Rate Count.
This count is the number of the
bit error (invalid transmission
word) bursts for the previous 5
minute counting window.

MAPPING FOR THE SUBSYSTEM GET OUTPUT BUFFER
FOR RANK PERFORMANCE STATISTICS
Output buffer is a queue, anchored by SSGRSOAR, of rank
performance statistics. Each queue element represents data
read from a single storage subsystem box that describes sets
of statistics. The queue is a single threaded queue. Each
queue element needs to be freed by the caller of this
interface. Output buffer built for storage subsystem boxes
that support rank performance statistics and are returned
only if requested by caller (SSGRANKP) on a request for
performance data (SSGRPD) for requests with scope of
of subsystem (SSG1SS) or all subsystems (SSGALL).

==
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE * SSGRBUFR
0 (0) CHARACTER 56 SSGRHDR Queue element header
0 (0) UNSIGNED 4 SSGRQDAL Length of this queue element,

header plus data
4 (4) UNSIGNED 4 SSGRQDAO Offset to the start of the

statistics sets
8 (8) ADDRESS 4 SSGRFWDP Pointer to next queue element,

when zero end of queue

Orientation to subsystem that stats pertain
==

12 (C) CHARACTER 6 SSGRVOL Volume serial of device that
stats where read from

18 (12) CHARACTER 2 SSGRDEVN Device number of device that
Stats where read from

20 (14) CHARACTER 8 * Reserved
28 (1C) CHARACTER 28 SSGRRHDR Rank stats info
28 (1C) UNSIGNED 2 SSGRNSET Num of rank stat sets

available to be returned on
the ESS starting from first
rank ID SSGRRID. Can be used
to determine buffer
requirements

30 (1E) UNSIGNED 2 SSGRLSET Size of each rank stats set
excluding size of array info
SSGRRAR

32 (20) CHARACTER 6 SSGRCUT Control unit type
38 (26) CHARACTER 3 SSGRCUM Control unit model
41 (29) CHARACTER 10 SSGRSEQ Control unit sequence number
51 (33) CHARACTER 1 SSGRVER Version of rank statistics
52 (34) UNSIGNED 2 SSGRARNM Num of array info sets avail

to be returned on the ESS
starting from first rank id
SSGRRID. Can be used to
determine buffer requirements

54 (36) UNSIGNED 2 SSGRARSZ Size of each array information
set SSGRRAR

56 (38) CHARACTER * SSGRDADA Rank performance stats read
56 (38) CHARACTER 56 SSGRRSTA(*) Rank statistics entry
56 (38) UNSIGNED 2 SSGRRKID Rank Identifier

The returned data consists of rank sets with each rank set

Chapter 12. User Access to Subsystem Statistics, Status, and Counts Information 429

containing one or more array information entries.
==
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE * SSGRRSTT Rank stats entry mapping
includes one or more entries
for array information

0 (0) UNSIGNED 2 SSGRRID Rank identifier
2 (2) UNSIGNED 2 SSGRRPNM Segment pool number
4 (4) UNSIGNED 1 SSGRRCNT Count of arrays in rank
5 (5) BITSTRING 1 SSGRRRTQ Rank Type Qualifier

1... SSGRRDER Data Encrypted Rank. When ’1’,
the data stored on the physical
media (i.e disk) is encrypted.

6 (6) CHARACTER 2 * Not used

In the statistics below bytes are accumulated in units of
128 KB, and time is accumulated in units of 16 milliseconds

==
8 (8) UNSIGNED 4 SSGRRBYR Rank bytes read
12 (C) UNSIGNED 4 SSGRRBYW Rank bytes written
16 (10) UNSIGNED 4 SSGRRROP Rank read operations
20 (14) UNSIGNED 4 SSGRRWOP Rank write operations
24 (18) UNSIGNED 4 SSGRRKRT Rank read repsonse time
28 (1C) UNSIGNED 4 SSGRRKWT Rank wrirte response time
32 (20) CHARACTER 24 SSGRRAR(*) Array information

mapping
The format of the next 24 bytes is repeated the number
times as indicated by SSGRRCNT.

32 (20) UNSIGNED 2 SSGRRAID Rank array id
34 (22) CHARACTER 16 SSGRREBC Array type in ebcdic
50 (32) UNSIGNED 1 SSGRRTYP Array type

01 = RAID-5
02 = RAID-10
03 = RAID-6
04-FF NOT USED

51 (33) UNSIGNED 1 SSGRRAWD Array width
52 (34) UNSIGNED 1 SSGRRASP Array speed (1000 RPM)
53 (35) BITSTRING 1 SSGRRACS Array Device Class and Array

Status
11.. SSGRRADC Mask bits for Array Device Class

Device Class
’00’b Enterprise
’01’b Near-line (An Advanced

Technology Attachment
(ATA) Drive)

’10’b SATA (Serial Advanced
Technology Attachment
(ATA) Drive)

’11’b Solid State Drive (SSD)
..1. SSGRRAS1 Raid Degraded. One or more

array members need rebuilding
...1 SSGRRAS2 DDM Throttling. A Near-line DDM

in the array is throttling
performance due to temperature
or workload.

.... 1... SSGRRAS3 RPM Exception. A DDM with an
slower RPM than the normal
array DDMs is a member of
the array as a result of
a sparing action.

54 (36) CHARACTER 2 SSGRRACP Array capacity (GB)

MAPPING FOR THE SUBSYSTEM GET OUTPUT BUFFER
FOR SEGMENT POOL PERFORMANCE STATISTICS
Output buffer is a queue, anchored by SSGSPOAR, of segment
pool perf statistics. Each queue element represents data
read from a single storage subsystem box that describes sets
of statistics. The queue is a single threaded queue. Each
queue element needs to be freed by the caller of this
interface. Output buffer built for storage subsystem boxes
that support rank performance statistics and are returned
only if requested by caller (SSGSEGMP) on a request for
performance data (SSGRPD) for requests with scope of
of subsystem (SSG1SS) or all subsystems (SSGALL).

==
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

430 z/OS V2R1.0 DFSMSdfp Advanced Services

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE * SSGSBUFR
0 (0) CHARACTER 56 SSGSHDR Queue element header
0 (0) UNSIGNED 4 SSGSQDAL Length of this queue element,

header plus data
4 (4) UNSIGNED 4 SSGSQDAO Offset to the start of the

statistics sets
8 (8) ADDRESS 4 SSGSFWDP Pointer to next queue element,

when zero end of queue

Orientation to subsystem that stats pertain
==

12 (C) CHARACTER 6 SSGSVOL Volume serial of device that
stats where read from

18 (12) CHARACTER 2 SSGSDEVN Device number of device that
Stats where read from

20 (14) CHARACTER 8 * Reserved
28 (1C) CHARACTER 28 SSGSSHDR Segment pool stats info
28 (1C) UNSIGNED 2 SSGSNSET Num of pool stats sets read
30 (1E) UNSIGNED 2 SSGSLSET Size of each set
32 (20) CHARACTER 6 SSGSCUT Control unit type
38 (26) CHARACTER 3 SSGSCUM Control unit model
41 (29) CHARACTER 10 SSGSSEQ Control unit sequence number
51 (33) CHARACTER 1 SSGSVER Version of pool statistics
52 (34) BITSTRING 1 SSGSFLG Flags

1... SSGSVLD Extent pool statistics valid
Bytes 44-67 starting at
SSGSSRSC

53 (35) CHARACTER 3 * Not used
56 (38) CHARACTER * SSGSDADA Segment pool perf stats read
56 (38) CHARACTER 52 SSGSSSTA(*) Segment pool stats entry
56 (38) UNSIGNED 2 SSGSSGID Segment pool

identifier

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 52 SSGSSSTT seg pool statistics entry
includes one or more entry

0 (0) UNSIGNED 2 SSGSSPID Seg pool identifier
2 (2) UNSIGNED 1 SSGSSPLT Segment pool type

00-03 = reserved
04 = FB 1GB
05-131 = reserved
132 = CKD 1GB
133-255 = reserved

3 (3) BITSTRING 1 SSGSSPTQ Extent Pool Type Qualifier
1... SSGSSDEP Data Encrypted Extent Pool.

When ’1’, the data stored on
the physical media (i.e disk)
is encrypted.

4 (4) UNSIGNED 4 SSGSSCAP Real seg pool capacity (GB)
00-03 = reserved
04 = FB 1GB
05-131 = reserved
132 = CKD 1GB
133-255 = reserved

==
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

3 (3) CHARACTER 1 * Not used
4 (4) UNSIGNED 4 SSGSSCAP Real seg pool capacity (GB)
8 (8) UNSIGNED 4 SSGSSNMS Num real segments in seg pool
12 (C) UNSIGNED 4 SSGSSNMA Num real allocated segments in

in segment pool
16 (10) UNSIGNED 4 SSGSSRSC Real segment conversions
20 (14) UNSIGNED 4 SSGSSVCP Virtual seg pool capacity(GB)
24 (18) UNSIGNED 4 SSGSSNMV Number of virtual segments in

segment pool
28 (1C) UNSIGNED 4 SSGSSVSC Virtual segment conversions
32 (20) UNSIGNED 4 SSGSSSDY Number of segments that were

sources of dynamic segment
relocations

36 (24) UNSIGNED 4 SSGSSTDY Number of segments that were
targets of cynamic segment
relocations

Chapter 12. User Access to Subsystem Statistics, Status, and Counts Information 431

40 (28) CHARACTER 12 * Not used

MAPPING FOR THE SPACE EFFICIENT VOLUME STATUS
OUTPUT BUFFER
Output buffer is a queue, anchored by SSGSEOAR, of Space
Efficient Volume (SEVOL) status. Each queue element represents
status of the space efficient volume specified in the header.
The queue is a single threaded queue. Each queue element
needs to be freed by the caller of this interface.
Output buffer is built for SEVOL(s) when SEVOL status is
requested (SSGSEV=ON).
Caller sets the scope of SEVOL(s) by turning one of flag bit
that is the single device (SSGDEV), subsystem (SSG1SS),
or all subsystems (SSGALL). For a single SEVOL status request,
the SEVOL status can be obtain when the path of SEVOL is
available. For a subsystem (SSG1SS) and all systems (SSGALL)
scope, the SEVOL status is available when SEVOL is ONLINE.
When the scope is the single device (SSGDEV=ON) and
the Fix Block SEVOL is requested (SSGURFBD=ON), the status
of FB SEVOL oriented by LSS (SSGFBLSS) and Device
(SSGFBDEV) is reported. FB SEVOL status is not available
with the scope of the subsystem (SSG1SS=ON) or
the all subsystems (SSGALL=ON). FB SEVOL status is available
when LSS number of both the I/O device (SSGAVOL or SSGDDN) and
FB SEVOL are numbered in the same even or odd number.

Flag and variable combinations of SEVOL status request
are shown as below in the railroad chart format.

>>_SSGSEV_ _SSGALL________ ________________> (A)
|_SSG1SS________|
|
|_SSGDEV_ ____________________ __> (B)

|_SSGFBLSS__SSGFBDEV_|

(A)>__ _SSGAVOL__SSGUNIT__ __ __________________><
|_SSGADDN___________| |

|
|

(B)> __ _SSGAVOL__SSGUNIT__ _|
|_SSGADDN___________|
|_SSGAVOL__SSGOFFL__|

MAPPING FOR THE SPACE EFFICIENT VOLUME STATUS OUTPUT
BUFFER

==
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 84 SSGSEBUF
0 (0) CHARACTER 56 SSGSEHDR Queue element header
0 (0) UNSIGNED 4 SSGSEQAL Length of this queue

element, header plus
data

4 (4) UNSIGNED 4 SSGSEQAO Offset to the start
of the statistics sets

8 (4) ADDRESS 4 SSGSEFWP Pointer to next queue
element, when zero end
of queue

Orientation to device that status pertain
==
12 (C) CHARACTER 6 SSGSEVOL Volume serial of device

that stat where read
from

18 (12) CHARACTER 2 SSGSEDEV Device number of device
that Status where read
from

20 (14) CHARACTER 2 SSGSESCX Subsystem ID
22 (16) CHARACTER 2 * not used
24 (18) UNSIGNED 4 SSGSETTL Total SE VOL Count,

only valid for head of
buffer queue

28 (1C) CHARACTER 28 SSGSVHDR SE VOL header
28 (1C) UNSIGNED 2 SSGSESZ Size of data
30 (1E) CHARACTER 6 SSGSECUT Control unit type
36 (24) CHARACTER 3 SSGSECUM Control unit model
39 (27) CHARACTER 3 SSGSECUC Control unit maker /

432 z/OS V2R1.0 DFSMSdfp Advanced Services

company
42 (2A) CHARACTER 2 SSGSECUP Control unit plant
44 (2C) CHARACTER 12 SSGSESEQ Control unit sequence

number
56 (38) CHARACTER 28 SSGSEDAD SE Vol statistics
56 (38) BITSTRING 1 SSGSEFLG Flag byte 1

1... SSGSEVF ON=SE Vol
.1.. SSGSEAN Space currently

allocated is
not available

57 (39) CHARACTER 1 * not used
58 (3A) UNSIGNED 2 SSGSEEP Extent Pool ID

The following two fields are a remaining percentage of
usable space that will initiate a notification to the host

==
60 (3C) UNSIGNED 1 SSGSECWW Capacity warning

watermark
61 (3D) UNSIGNED 1 SSGSEGWW Guarantee warning

watermark
62 (3E) CHARACTER 2 * not used

The following fields are expressed in number of
cylinders for CKD device. The following fields are
expressed in TENTH of binary Gigabytes for Fix Block
device.

==
64 (40) UNSIGNED 4 SSGSEC SE Volume capacity

limit. This field is
always zero.

68 (44) UNSIGNED 4 SSGSEG SE Volume guarantee
capacity. This field
is always zero.

72 (48) UNSIGNED 4 SSGSESCA Space currently
consumed

76 (4C) UNSIGNED 4 SSGSEEPR Size of Repository
volume in Extent Pool

80 (50) UNSIGNED 4 SSGSECAP SE Volume capacity

MAPPING FOR THE EXTENT POOL CONFIGURATION STATUS
OUTPUT BUFFER
Output buffer is a queue, anchored by SSGEPOAR, of Extent
Pool Configuration status. Each queue element represents
the status of the Extent Pools defined in Storage Facility
image. If the caller provide a Extent Pool ID (SSGEPID
has value between ’0’X and ’FFFE’X), then in addition to
the summary status of Extent Pool, the detail status of
that Extent Pool identified by Extent Pool ID is reported.
Caller is responsible for freeing the output buffer.

The flag and variable combinations for EPC status is
shown as below railroad chart.

Below variable defines scope

>>__SSGEPC__ _SSGEPID=(’FFFF’X)________________________>(A)
|_SSGEPID=(’0’X to ’FFFE’X of even number)_>(B)
|_SSGEPID=(’1’X to ’FFFD’X of odd number)__>(C)

(A)>______________________________ ______________________>
(B)>_(Even LSS I/O dev follows)_ _|
(C)>_(Odd LSS I/O dev follows)__|

Following variable and flag represent I/O device

>______ _SSGAVOL__SSGUNIT__ ______________________________><
|_SSGADDN___________|
|_SSGAVOL__SSGOFFL__|

MAPPING FOR THE EXTENT POOL CONFIGURATION STATUS OUTPUT BUFFER
==
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE * SSGEPBUF
0 (0) CHARACTER 36 SSGEHDR Queue element header

Chapter 12. User Access to Subsystem Statistics, Status, and Counts Information 433

0 (0) UNSIGNED 4 SSGEPQAL Length of this queue
element,
header plus data

4 (4) UNSIGNED 4 SSGEPQAO Offset to the start of
the statistics sets

8 (8) UNSIGNED 4 SSGEPFWD Pointer to next queue
element,
when zero end of queue

Orientation to device that stats pertain
==
12 (C) CHARACTER 6 SSGEPVOL Volume serial of device

that status where read
from

18 (12) CHARACTER 2 SSGEPDEV Device number of device
that tats where read from

20 (14) UNSIGNED 2 SSGEPIDC Ext Pool ID provided by
caller

22 (16) CHARACTER 6 * Reserved
28 (1C) ADDRESS 4 SSGEPSIP Internal code use only.

Branch Entry caller shall
set zero.

32 (20) UNSIGNED 2 SSGEPSDO Offset to 1st Summary data
(SSGEPSUM) array

34 (22) UNSIGNED 2 SSGEPDDO Offset to Detail data
(SSGEPDAT)

36 (24) CHARACTER * SSGEPDAD Ext Pool Config status
36 (24) CHARACTER 32 SSGEPDHL Fixed length of epc data

header
36 (24) UNSIGNED 2 SSGEPLEN Length of data returned
38 (26) UNSIGNED 2 SSGEPCNT Count of Extent Pools
40 (28) BITSTRING 2 SSGEPFL1 Extent Pool Flags

1... SSGEPIDV Ext Pool detailed data
valid

.1.. SSGEPLSS 0 = odd LSS 1 = even LSS

..1. SSGEPCC No EPC status data is
available. Following
2 cases cause no EPC
data.
When Ext Pool ID specified
in even number, EPC
status request was sent
to the device in the odd
numbered LSS.
When Ext Pool ID specified
in odd number, EPC status
request was sent to the
device in the even
numbered LSS.

42 (2A) CHARACTER 6 SSGEPCUT Control unit type
48 (30) CHARACTER 3 SSGEPCUM Control unit model
51 (33) CHARACTER 3 SSGEPCUC Control unit maker/company
54 (36) CHARACTER 2 SSGEPCUP Control unit plant
56 (38) CHARACTER 12 SSGEPSEQ Control unit sequence

number

The format of the next eight bytes is repeated the number
times as indicated by SSGEPCNT.

==
68 (44) CHARACTER 8 SSGEPSUM Ext Pool summary data
68 (44) CHARACTER 2 SSGEPIDS Extent Pool ID

The following two fields are a remaining percentage of
usable space that will initiate a notification to the host

==
70 (46) UNSIGNED 1 SSGEPRWP Ext Pool Repository full

warning percentage
71 (47) UNSIGNED 1 SSGEPFWP Ext Pool Full warning

percentage
72 (48) BITSTRING 2 SSGEPFLG Ext Pool flags

1... SSGEPFB 0=CKD Ext Pool,
1=FB Ext Pool

.1.. SSGEPRC Ext Pool repository
configured

..1. SSGEOPV Over Provisioned volumes
in Ext pool

...1 * not used

.... 1... * not used

.... .1.. SSGEPWP Ext Pool at warning

434 z/OS V2R1.0 DFSMSdfp Advanced Services

percentage
.... ..1. SSGEPF Ext Pool full

74 (4A) CHARACTER 2 * not used

The following fields contain detailed Extent Pool
configuration information for Extent Pool identified
by Ext Pool ID specified by caller. The address of SSGEPDAT is
the sum of SSGEPOAR and SSGEPDDO.

===
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
OFFSET OFFSET
======== ======== ========= ======== ============== ===============================

0 (0) CHARACTER 12316 SSGEPDAT
0 (0) CHARACTER 2 SSGEPIDD Ext Pool ID for detailed

data
2 (2) BITSTRING 1 SSGEPDFG Extent Pool Detailed Flags

1... SSGEPARN Allocated Space in
Repository is not
available

.1.. SSGEPRAW Repository at warning
percent

..1. SSGEPRF Repository full
3 (3) CHARACTER 1 * not used

The following fields are expressed in number of cylinders
for CKD device. The following fields are expressed
in TENTH of binary Gigabytes for Fix Block device.

==
4 (4) UNSIGNED 4 SSGEPSZ Ext Pool size
8 (8) UNSIGNED 4 SSGEALOC Space currently allocated

in Ext Pool
12 (C) UNSIGNED 4 SSGEPRSZ Size of Ext Pool

Repository, this set
to 0 when SSGEPRC=0

16 (10) UNSIGNED 4 SSGEPRAL Space currently allocated
in Ext Pool Repository,
set to 0 when SSGEPRC=0

20 (14) UNSIGNED 4 SSGEPGSZ Amount of guaranteed
space in Repository.
Set to 0 when SSGEPRC=0

24 (18) CHARACTER 4 * not used

The next three fields are 32k bitmaps
==

28 (1C) BITSTRING 4096 SSGENORM Normally provisioned
volumes

4124 (101C) BITSTRING 4096 SSGEPOPV Over provisioned volumes
8220 (201C) BITSTRING 4096 SSGEPSEV Space Efficient volumes

MAPPING FOR THE DEVICE PERFORMANCE STATISTICS
OUTPUT BUFFER
Output buffer is anchored by SSGOADR, of a device performance
statistics output table. Output buffer needs to be freed
by the caller of this interface. Output buffer is built
for a device that supports device performance statistics and
returned only if requested by caller for performance data
(SSGRPD) for a request with scope of of device (SSGDEV).
The parameter list extension must also be passed as
indicated with SSGARGL2.

==

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 256 SSGDPBUF DEVICE PERFORMANCE
STATISTICS OUTPUT BUFFER

0 (0) CHARACTER 6 SSGDPVOL VOLUME SERIAL
6 (6) BITSTRING 1 SSGDPFLG

1... SSGDP_UA_FLAG ’ONE’ UNIT ADDR FORMAT
.1.. SSGDP_FND_STG2 2ND STG DIR PATH FND

SS01 TO LA01 IDCSS01
PASSED TO IDCLA01

..11 1111 * RESERVED
7 (7) CHARACTER 1 SS

GDPCUI Real CUID for data
in ssgdada

8 (8) CHARACTER 4 SSGDPUA1 FIRST UNIT ADDRESS
12 (C) CHARACTER 2 SSGDPUB1 FIRST UNIT ADDRESS

Chapter 12. User Access to Subsystem Statistics, Status, and Counts Information 435

(BINARY)
14 (E) SIGNED 2 SSGDPLN DATA LENGTH
16 (10) CHARACTER 192 SSGDPDA DEVICE PERFORMANCE

STATISTICS DATA AREA
16 (10) BITSTRING 1 SSGDPFTF

1... SSGDPNAV Bit =1 : Cache Storage
unavailable (Set to zero
for 2107/1750)

.111 SSGDPPDR Mask bits for Format of
Perf Data Returned
Value after masking
(SSGDPFTF & SSGDPPDR)
’000’b 3990 Format
’001’b 2107/1750 Format

.... 1111 SSGDPFDR Mask bits for Format of
data returned.
The same definition and
values of bit 4-7 of
byte 0 from Sense
Subsystem status.

17 (11) CHARACTER 1 SSGDPDUA Device Unit Address of
the device to which the
statistics pertain

18 (12) CHARACTER 2 SSGDPDST Device Status. The same
as Sense Subsystem
Status in bytes 26-27

20 (14) UNSIGNED 4 SSGDPRNI Search/Read Normal I/O
Requests. The number of
command chains which meet
the following requirements.
- The chain is not part of
a sequential operation.

- The chain did not include
a Define Extent command
which specified Cache
Fast Write Data.

- The chain contained at
least one search or read
command but no write
commands.

24 (18) UNSIGNED 4 SSGDPRNH Search/Read Normal I/O
Request Hits. The number of
command chains which meet
the following requirements.
- The chain is not part of
a sequential operation.

- The chain did not include
a Define Extent command
which specified Cache Fast
Write Data.

- The chain contained at
least one search or read
command but no write
commands.

- The chain was completed
without requiring access
to any DDM.

28 (1C) UNSIGNED 4 SSGDPWNI Write Normal I/O Requests.
The number of command chains
which meet the following
requirements.
- The chain is not part of
a sequential operation.

- The chain did not include
a Define Extent command
which specified Cache
Fast Write Data.

- The chain contained at
least one write command.

32 (20) UNSIGNED 4 SSGDPFWH DASD Fast Write I/O Request
Hits. The number of command
chains which meet the
following requirements.
- The chain is not part of
a sequential operation.

- The chain did not include
a Define Extent command
which specified Cache Fast
Write Data.

436 z/OS V2R1.0 DFSMSdfp Advanced Services

- The chain contained at
least one write command.

- The chain was completed
without requiring access
to any DDM.

36 (24) UNSIGNED 4 SSGDPRSI Search/Read Sequential I/O
Requests. The number of
sequential mode command
chains which meet the
following requirements.
- The chain contained at
least one search or read
command but no write
commands.

40 (28) UNSIGNED 4 SSGDPRSH Search/Read Sequential I/O
Request Hits. The number of
sequential mode command
chains which meet the
following requirements.
- The chain contained at
least one search or read
command but no write
commands.

- The chain was completed
without requiring access
to any DDM.

44 (2C) UNSIGNED 4 SSGDPWSI Write Sequential I/O
Requests. The number of
sequential mode command
chains which meet the
following requirements.
- The chain contained at
least one write command.

48 (30) UNSIGNED 4 SSGDPWSH Fast Write Sequential I/O
Request Hits. The number
sequential write operations
that did not require movement
of data to or from a storage
device before completion of
the I/O operation.

52 (34) UNSIGNED 4 SSGDPRCF Search/Read Cache Fast Write
I/O Requests. The number of
command chains which meet
the following requirements.
- The chain included a Define
Extent command which
specified the Cache Fast
Write Data attribute.

- The chain contained at
least one search or read
command but no write
commands.

- Cache Fast Write Data must
be activated for the
subsystem.

56 (38) UNSIGNED 4 SSGDPRCH Search/Read Cache Fast Write
I/O Request Hits. The number
of command chains which meet
the following requirements.
- The chain included a
Define Extent command
which specified the Cache
Fast Write Data attribute.

- The chain contained at
least one search or read
command but no write
commands.

- Cache Fast Write Data must
be actuated for the
subsystem.

- The chain was completed
without requiring access
to any DDM.

60 (3C) UNSIGNED 4 SSGDPCFW Cache Fast Write I/O
Requests. The number of
command chains which meet
the following requirements.
- The chain included a Define
Extent command which

Chapter 12. User Access to Subsystem Statistics, Status, and Counts Information 437

specified the Cache Fast
Write Data attribute.

- The chain contained at
least one write command.

- Cache Fast Write Data must
be actuated for the
subsystem.

64 (40) UNSIGNED 4 SSGDPCFH Cache Fast Write I/O Request
Hits. The number of command
chains which meet the
following requirements.
- The chain included a Define
Extent command which
specified the Cache Fast
Write Data attribute.

- The chain contained at
least one write command.

- Cache Fast Write Data must
be actuated for the
subsystem.

- The chain was completed
without requiring access
to any DDM.

68 (44) UNSIGNED 4 SSGDPICL Inhibit Cache Loading I/O
Request that operate with
DASD (Set to zeros for
2107/1750)

72 (48) UNSIGNED 4 SSGDPBCI Bypass Cache I/O Requests
(Set to zeros for
2107/1750)

76 (4C) UNSIGNED 4 SSGDPSDC Seq DASD to Cache
Transfer Operations

80 (50) UNSIGNED 4 SSGDPDCC DASD to Cache Transfer
Operation Count

84 (54) UNSIGNED 4 SSGDPCDC Cache to DASD Transfer
Operation Count

88 (58) UNSIGNED 4 SSGDPFWD DASD Fast Write Operation
Delayed Due to
non-volatile storage
Space constraints

92 (5C) UNSIGNED 4 SSGDPNFW Normal ’DASD Fast Write’
Write Operation Counts.
The number of command chains
which meet the following
requirements.
- The chain is not part of
a sequential operation.

- The chain did not include
a Define Extent command
which specified Cache Fast
Write Data.

- The chain contained at
least one write command.

- The chain was completed
without requiring access
to any DDM.

96 (60) UNSIGNED 4 SSGDPSFW Sequential Access ’DASD
Fast Write’ Write
Operation Counts

100 (64) UNSIGNED 4 SSGDPNRM Number of record cache
Read misses

104 (68) CHARACTER 1 SSGDPDS2 Device Status - Group 2
The device status,
SSGDPDS2, is identical
to the data returned by
the Sense Subsystem
Status in Byte 36.
Note: The format of the
data in SSGDPDS2 is
determined by the value
in SSGDPFDR.

105 (69) UNSIGNED 4 SSGDPQWP Quick Write Promotes
109 (6D) BITSTRING 1 SSGDPDVD Flag byte

SSGDPDVD describes the
validity of data returned
and the increment values
used for certain counters

1111 SSGDPRVA Mask for reserved bits
.... 1... SSGDPZHV When set on, SSGDPZHR and

438 z/OS V2R1.0 DFSMSdfp Advanced Services

SSGDPZHW are valid.
......11. SSGDPUNI Mask bits for Units

Value after masking
(SSGDPDVD & SSGDPUNI)
’00’b Unit of SSGDPRRT,

SSGDPWRT,SSGDPBRD,
SSGDPBWR,SSGDPRAT,
and SSGDPWAT is
16 milliseconds.
Unit of SSGDPPBR
SSGDPPBW is
128 KB.

’01’b Reserved
’10’b Reserved
’11’b Reserved

.... ...1 SSGDPBYV 1 indicates SSGDPBRD,
SSGDPBWR, SSGDPRAT, and
SSGDPWAT are valid

110 (6E) CHARACTER 2 SSGDPSID SSID
112 (70) UNSIGNED 4 SSGDPITA Irregular Track Accesses
116 (74) UNSIGNED 4 SSGDPITH Irregular Track Access

Hits
120 (78) UNSIGNED 4 SSGDPODC Operation Delayed Due To

Cache Space Constraints
124 (7C) UNSIGNED 4 SSGDPMSL Milliseconds of lower

interface I/O activity
for the indicated device
(Set to zeros for
2107/1750)

128 (80) BITSTRING 1 SSGDPNVI Non-volume information
contain in the record
Value Definition
0 No Additional Information
1 RAID Rank Information
2 Segment Pool and Physical
Storage Counter information

3-255 Not Defined
129 (81) CHARACTER 1 SSGDPRVB Not used
130 (82) CHARACTER 2 SSGDPSPI Segment Pool ID
132 (84) CHARACTER 1 SSGDPSTY Non-volume information

contained in the record
Segment Type
00-03 Reserved
04 FB 1GB
05-131 Reserved
132 CKD 1GB
133-255 Reserved

133 (85) BITSTRING 1 SSGDPSFL Segment Flags
1... SSGDPSF0 Dynamic Segment

Allocation
.1.. SSGDPSF1 Data Sharing
..1. SSGDPSF2 Migrating/Migration Error

State
134 (86) CHARACTER 2 * Not used
136 (88) UNSIGNED 4 SSGDPPRO Physical Storage Read

Operations
140 (8C) UNSIGNED 4 SSGDPPWO Physical Storage Write

Operations
144 (90) UNSIGNED 4 SSGDPPBR Physical Storage Bytes

Read. See Increment Value
in SSGDPDVD

148 (94) UNSIGNED 4 SSGDPPBW Physical Storage Bytes
Written. See Increment
Value in SSGDPDVD

152 (98) UNSIGNED 4 SSGDPRMR Record Mode Read
Operations

156 (9C) UNSIGNED 4 SSGDPNTR Number of tracks read
from the concurrent Copy
or XRC Sidefile

160 (A0) UNSIGNED 4 SSGDPNCW Number of contaminating
writes for a Concurrent Copy
or XRC volume as a result of:
- Update to a Concurrent Copy
protected track.

- Update to an XRC monitored
track.

164 (A4) UNSIGNED 4 SSGDPTTS Number of tracks or
portion of tracks that
were transferred to

Chapter 12. User Access to Subsystem Statistics, Status, and Counts Information 439

the secondary device of
a PPRC pair

168 (A8) UNSIGNED 4 SSGDPNSA NVS Space Allocations
172 (AC) UNSIGNED 4 SSGDPRRT Physical Storage Read

Response Time. See
Increment Value in
SSGDPDVD

176 (B0) UNSIGNED 4 SSGDPWRT Physical Storage Write
Response Time. See
Increment Value in
SSGDPDVD

180 (B4) UNSIGNED 4 SSGDPBRD Bytes Read. See Increment
Value in SSGDPDVD

184 (B8) UNSIGNED 4 SSGDPBWR Bytes Written. See
Increment Value in
SSGDPDVD

188 (BC) UNSIGNED 4 SSGDPRAT Read Accumulated Time.
The accumulated response
time for all read
operations.
See Increment Value in
SSGDPDVD

192 (C0) UNSIGNED 4 SSGDPWAT Write Accumulated Time.
The accumulated response
time for all write
operations. See Increment
Value in SSGDPDVD

196 (C4) UNSIGNED 4 SSGDPZHR zHPF Read I/O Requests. This
count is the number of Transport
Mode read command chains. The
Read I/O Request will also be
counted in one of the following
counters:
- SSGDPRNI, Search/Read Normal
I/O Requests

- SSGDPRSI, Search/Read
Sequential I/O Requests

- SSGDPRCF, Search/Read Cache
Fast Write I/O Requests

200 (C8) UNSIGNED 4 SSGDPZHW zHPF Write I/O Requests. This
count is the number of Transport
Mode write command chains. The
Write I/O Request will also be
counted in one of the following
counters:
- SSGDPWNI, Write Normal I/O
Requests

- SSGDPWSI, Write Sequential I/O
Requests

- SSGDPCFW, Cache Fast Write I/O
Requests

204 (CC) CHARACTER 4 SSGDPRVX Not used - zeros
208 (D0) UNSIGNED 4 SSGDPZHL zHPF List Pre-fetch I/O

Requests. This count is the
number of command chains which
meet the following requirements:
- The Transport Mode operation
specified a non-zero Imbedded
Locate Record Count.

212 (D4) UNSIGNED 4 SSGDPZHH zHPF List Pre-fetch I/O Requests
Hits. This count is the number
of common chains which meet the
following requirements:
- The Transport Mode operation
specified a non-zero Imbedded
Locate Record Count.

- The chain was completed
without requiring access to
any DDM.

216 (D8) UNSIGNED 4 SSGDPGSF Global Mirror Collisions
Sidefile Count. A GM collision
occurs when, during the sending
of data to the secondary to
create a consistency group, a
subsequent host update is
attempted before the modified
track has been transmitted to
the secondary volume. The
modified track will be moved

440 z/OS V2R1.0 DFSMSdfp Advanced Services

to the sidefile before allowing
a new host write. This counter
will be incremented by one when
a track is added to the
sidefile.

220 (DC) UNSIGNED 4 SSGDPGSS Global Mirror Collisions Send
Synchronous Count. When a
write collision occurs, the
modified track data which
belongs to the current
consistency group may be sent
to the remote control unit
before allowing the write. The
data may come from the
sidefile if it is full or from
cache if the collision
sidefile is not being
utilized.

224 (E0) CHARACTER 32 SSGDPRVY Not used - zeros
RETURN CODES FROM IDCSS01

==

LEN TYPE VALUE NAME DESCRIPTION
===== ========= ================= =============== ===============================

2 NUMB HEX 0000 SS01CC00 SUCCESSFUL COMPLETION
2 NUMB HEX 0004 SS01CC04 GETMAIN FAILED
2 NUMB HEX 0008 SS01CC08 I/O ERROR OCCURRED
2 NUMB HEX 000C SS01CC12 VOLUME NOT FOUND
2 NUMB HEX 0010 SS01CC16 ESTAE FAILED
2 NUMB HEX 0014 SS01CC20 LRA INSTRUCTION FAILED
2 NUMB HEX 0018 SS01CC24 BUFFER NOT LARGE ENOUGH
2 NUMB HEX 001C SS01CC28 FILE NOT IN TIOT
2 NUMB HEX 0020 SS01CC32 VOLUME NOT FOUND ALL
2 NUMB HEX 0024 SS01CC36 NO PATH(S) TO SD(S)
2 NUMB HEX 0028 SS01CC40 NO ONLINE PATH FROM IOS
2 NUMB HEX 002C SS01CC44 REQUEST NOT SUPPORTED
2 NUMB HEX 0030 SS01CC48 WARNING MSG ISSUED
2 NUMB HEX 0034 SS01CC52 ERROR MSG ISSUED
2 NUMB HEX 0038 SS01CC56 SERIOUS ERROR MSG
2 NUMB HEX 003C SS01CC60 I/O timeout occured
2 NUMB HEX 0040 SS01CC64 Reserved
2 NUMB HEX 0044 SS01CC68 RESERVED
2 NUMB HEX 0046 SS01CC70 IOSCDR ERROR
2 NUMB HEX 0047 SS01CC71 UCBINFO ERROR
2 NUMB HEX 0048 SS01CC72 RESERVED
2 NUMB HEX 0049 SS01CC73 MISSING CDR INFOR
2 NUMB HEX 004A SS01CC74 ERR DURING CDR INFOR

GATHERING.
2 NUMB HEX 0063 SS01CC99 RESERVED

REASON CODES FROM ESS (BOX) PERFORMANCE STATISTICS
(SSGLPRET, SSGRSRET, SSGSGRET).

==
LEN TYPE VALUE NAME DESCRIPTION

===== ========= ================= =============== ===============================
1 NUMB HEX 01 SS01LP01 Stats requested, all stats

returned on supporting
subsystem boxes

1 NUMB HEX 02 SS01LP02 Stats not requested by the
caller

1 NUMB HEX 03 SS01LP03 Stats requested, but no
supporting subsystem boxes
found to support them

1 NUMB HEX 04 SS01LP04 Stats requested, but stats
from one or more supporting
subsystem boxes could not be
read

Chapter 12. User Access to Subsystem Statistics, Status, and Counts Information 441

442 z/OS V2R1.0 DFSMSdfp Advanced Services

Appendix A. Control Blocks

The following control blocks are described here:
v “Data Extent Block (DEB) Fields” for EXCP and EXCPVR.
v “Data Facilities Area (DFA) Fields” on page 449

Data Extent Block (DEB) Fields
The data extent block (DEB) fields shown here should only be used with EXCP and
EXCPVR (see z/OS DFSMSdfp Diagnosis53 for all fields in the DEB).
Common Name:

Data Extent Block
Macro ID:

IEZDEB
DSECT Name:

v DEB (DSECT card precedes AVT section)
v DEBBASIC should be used for USING basic section.
v DEBDASD (DSECT name for direct access section)
v DEBACSMD (DSECT name for access method sections)
v DEBSUBNM (DSECT name for subroutine name section)
v DEBXTN (DSECT name for DEB extension)

Owning Component:
Data Management, subcomponent OPEN/CLOSE/EOV

Eye-Catcher ID:
None

Subpool and Key:
230 and key 5

Size: Variable (device and access method dependent sections)
Created by:

OPEN
Pointed to by:

DCBDEBAD field of the DCB data area. DEBDEBAD field of the DEB data
area (next DEB on the chain)

Serialization:
LOCAL lock serializes the placing of a DEB on the TCB DEB chain and in
the DEB table. OPEN/CLOSE/EOV processing is serialized by local lock
and DEBCHK.

Function:
The DEB is an extension of the information in the DCB. Each DEB is
associated with a DCB, and the two point to each other. It contains
information about the physical characteristics of the data set, and other
information used by the control program.

Table 97. Partial Listing of DEB Fields

Offset Type Length Name Description

Appendage vector table section of the DEB pointed to by DEBAPPAD

0(0) 20 DEBAVT(0) Appendage vector table
0(0) ADDRESS 4 DEBEOEA(0) Address of end-of-extent appendage routine
0(0) BITSTRING 1 DEBEOEAB Flag byte

. . . . xxxx DEBEOENP X'0F'– number of 2K pages to be fixed for the end–of–extent appendage
1(1) ADDRESS 3 DEBEOEAD Address of end-of-extent appendage routine
4(4) ADDRESS 4 DEBSIOA(0) Address of start I/O appendage routine

© Copyright IBM Corp. 1979, 2014 443

Table 97. Partial Listing of DEB Fields (continued)

Offset Type Length Name Description

4(4) BITSTRING 1 DEBSIOAB Flag byte
1. DEBPGFX X'80' Address in DEBSIOAD can be used to determine the entry point to the

page fix (PGFX) appendage routine by adding 4 to the address in
DEBSIOAD

.1. DEBSIOX X'40'– if zero, do not enter SIO appendage when ERP IS active. If one, enter
SIO appendage even when ERP is active.

. .1. DEBIOVR X'20'– If one, EXCPVR request is valid. If zero, EXCPVR request is invalid
and will not be executed. Currently has no effect.

. . .1 DEBFIX X'10' Indication that DEB has been fixed

. . . . xxxx DEBSIONP X'0F'– number of 2K pages to be fixed for the SIO appendage
5(5) ADDRESS 3 DEBSIOAD Address of start I/O appendage routine
8(8) ADDRESS 4 DEBPCIA(0) Address of PCI appendage routine
8(8) BITSTRING 1 DEBPCIAB Flag byte

. . . . xxxx DEBPCINP X'0F'–number of 2K pages to be fixed for the PCI appendage
9(9) ADDRESS 3 DEBPCIAD Address of program controlled interruption (PCI) appendage routine
12(C) ADDRESS 4 DEBCEA(0) Address of channel end appendage routine
12(C) BITSTRING 1 DEBCEAB Flag byte

1. DEBESMVR X'80',c'x' validity check for EXCPVR caller
. . . . xxxx DEBCENP X'0F'– number of 2K pages to be fixed for the channel–end appendage

13(D) ADDRESS 3 DEBCEAD Address of channel end appendage routine
16(10) ADDRESS 4 DEBXCEA(0) Address of abnormal end appendage routine
16(10) BITSTRING 1 DEBXCEAB Flag byte

. . . . xxxx DEBXCENP X'0F'– number of 2K pages to be fixed for the abnormal–end appendage
17(11) ADDRESS 3 DEBXCEAD Address of abnormal end appendage routine

X'' DEBAVTE "*" End of appendage vector table

DEB PREFIX TABLE. Addressable as negative offset from DEB basic section. Not necessarily contiguous with DEB appendage vector
table.

-16(10) 16 DEBPREFX(0) DEB prefix table
-16(10) BITSTRING 1 DEBWKARA O/C/E work area (direct access)
-15(F) BITSTRING 7 DEBDSCBA DSCB address (BBCCHHR) used by O/C/E (direct access)
-8(8) ADDRESS 4 DEBXTNP(0) Pointer to DEB extension
-4(4) BITSTRING 1 DEBLNGTH Length of DEB in double words. If it exceeds 2040 bytes (X'FF'

doublewords), the excess bits are ignored.
-3(3) CHARACTER 1 DEBAMTYP Access method type

X'0' DEBAMNON "0" Access method type not known
X'1' DEBAMVSM "1" VSAM access method type
X'2' DEBAMXCP "2" EXCP access method type
X'4' Reserved
X'8' DEBAMGAM "8" Graphics access method type
X'10' DEBAMTAM "16" BTAM access method type
X'20' DEBAMBPM "32" BPAM access method type
X'20' DEBAMSAM "32" Sequential access method type
X'40' DEBAMBDM "64" Direct access method type
X'81' DEBAMSUB "129" subsystem access method type
X'82' DEBAMVTM "130" VTAM® access method type
X'84' Reserved

-2(2) UNSIGNED 2 DEBTBLOF For system use
X'24' DEBPREFE "*" End of DEB prefix table

DEB basic section

0(0) DEBBASIC "*"
0(0) ADDRESS 4 DEBTCBAD(0) Address of TCB for this DEB
0(0) BITSTRING 1 DEBNMSUB Number of subroutines loaded by OPEN executor routines and identified in

the subroutine name section (DEBSUBID)
1(1) ADDRESS 3 DEBTCBB Address of TCB for this DEB
4(4) ADDRESS 4 DEBDEBAD(0) Address of the next DEB in the same task

Control Blocks

444 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 97. Partial Listing of DEB Fields (continued)

Offset Type Length Name Description

4(4) BITSTRING 1 DEBAMLNG Number of bytes in the access method dependent section. For BDAM this
field contains the length expressed in number of words.

5(5) ADDRESS 3 DEBDEBB Address of the next DEB in the same task
8(8) ADDRESS 4 DEBIRBAD(0) IRB storage address used for appendage asynchronous exits
8(8) BITSTRING 1 DEBOFLGS Data set status flags

xx. DEBDISP X'C0'– data set disposition flags bit setting disposition
01. DEBDSOLD X'40' old data set
10 DEBDSMOD X'80' mod data set
11. DEBDSNEW X'C0' new data set
. .1. DEBEOF X'20'– end of file (EOF) encountered (tape input) format 1 DSCB bit 93.0

indicates that the current volume is the last volume of the data set (DASD
input)

. . .1 DEBRLSE X'10'– release unused external storage (DASD) emulator tape with second
generation format. Tape might contain blocks shorter than 12 characters.
(tape)

.1. . DEBSPLIT X'04'–7–track emulator tape with possible mixed parity records (tape)

.1. DEBLABEL X'02'– nonstandard labels

.1 DEBRERR X'01'– use reduced error recovery procedure (tape) concatenated partitioned
organization data sets processed using BPAM (DASD)

9(9) ADDRESS 3 DEBIRBB IRB storage address used for appendage asynchronous exits
12(C) BITSTRING 1 DEBOPATB Flags indicating both the method of I/O processing and the disposition that

is to be performed when an end of volume (EOV) condition occurs
1. DEBABEND X'80'– set by abend indicating a sysabend or sysudump data set
.1. DEBZERO X'40'– always zero
. .xx DEBPOSIT X'30'– data set positioning flags bit setting positioning
. . 01 DEBRERED X'10' reread
. .11 DEBLEAVE X'30' leave
. . . . xxxx DEBACCS X'0F'– type of I/O accessing being done bit setting accessing
. . . . 0000 DEBINPUT X'0' INPUT
. . . . 1111 DEBOUTPT X'F' OUTPUT or EXTEND
. . . . 0011 DEBINOUT X'3' INOUT
. . . . 0111 DEBOUTIN X'7' OUTIN or OUTINX
. . . . 0001 DEBRDBCK X'1' RDBACK
. . . . 0100 DEBUPDAT X'4' UPDAT

13(D) BITSTRING 1 DEBQSCNT PURGE (SVC 16) – Quiesce count. Number of devices executing user's
channel programs, as shown by bits 5 and 6 of UCBFL1 fields.

14(E) BITSTRING 1 DEBFLGS1 Flag field
1. DEBPWCKD X'80'– password was supplied during OPEN. EOV will not request a

password for each additional volume of a multivolume data set.
.1. DEBEOFDF X'40'– set by EOV to inform close that an end of file has been encountered

and, therefore, deferred user label processing is allowed.
. . .1 DEBEXCPA X'10'– EXCP(VR) is authorized for this DEB
.1. . DEBF1CEV X'04'–not valid with an EXCP DCB.
.1. DEBAPFIN X'02'– if on, authorized programs can be loaded
.1 DEBXTNIN X'01'– if one, DEB extension exists

15(F) BITSTRING 1 DEBFLGS2 Flag field two
The following two flag bits are used by O/C/EOV to maintain a uniform
recording mode (compaction or non-compaction) on tape data sets that span
over more than one volume.

. . . . 1. . . DEBDSCMP X'08' tape data set compaction mode

.1. . DEBDSNCP X'04' tape data set non-compaction mode

. 1. DEB31UCB UCB address fields are four bytes. Use DEBSUCBA, DEBUCBAD,
DEBSDVMX or DEBDVMOD31 instead of DEBSUCBB, DEBUCBA,
DEBSDVM or DEBDVMOD.

16(10) ADDRESS 4 DEBUSRPG(0) Address of purged I/O restore list (PIRL)
16(10) BITSTRING 1 DEBNMEXT Number of extent descriptions starting at DEBBASND. One extent per unit

for extended format or PDSE data sets.
17(11) ADDRESS 3 DEBUSRPB Address of purged I/O restore list (PIRL)

Control Blocks

Appendix A. Control Blocks 445

Table 97. Partial Listing of DEB Fields (continued)

Offset Type Length Name Description

20(14) ADDRESS 4 DEBRRQ(0) Pointer to related request queue
20(14) BITSTRING 1 DEBPRIOR Priority of the task owning DEB
24(18) ADDRESS 4 DEBDCBAD(0) Address of DCB or ACB associated with this DEB
24(18) BITSTRING 1 DEBPROTG(0) Task protection key in high order 4 bits
24(18) BITSTRING 1 DEBDEBID A hex F in low–order 4 bits to identify this block as a DEB
25(19) ADDRESS 3 DEBDCBB Address of DCB or ACB associated with this DEB
28(1C) ADDRESS 4 DEBAPPAD(0) Address of the I/O appendage vector table
28(1C) ADDRESS 1 DEBEXSCL This field is used to determine the size of the device dependent section. Two

to this power gives the length of the device dependent section at
DEBBASND. Extent scale – 4 (16 bytes) for direct access device and 3525
card punch with device–associated data set support and 2 (4 bytes) for
nondirect access device and communication device.

29(1D) ADDRESS 3 DEBAPPB Address of the I/O appendage vector table
32(20) DEBBASND End of basic section

Unit Record, Magnetic Tape, Telecommunications Devices Section

32(20) DEBDDS1 "*"
32(20) ADDRESS 4 DEBSUCBA(0) See the DEBUCBAD field.
32(20) BITSTRING 1 DEBSDVM Device modifier. For magnetic tape, MODESET operation code. For unit

record, not defined. Valid only if DEB31UCB is off.
1101 0011 DEBMTDN4 X'D3' 9–track MODESET CCW CODE DENSITY=6250BPI
1100 0011 DEBMTDN3 X'C3' 9–track MODESET CCW CODE DENSITY=1600BPI
1100 1011 DEBMTDN2 X'CB' 9–track MODESET CCW CODE DENSITY= 800BPI 7–track TAPE

MODESET skeleton codes (must be completed with parity, translation
and/or conversion)

0000 0011 DEBM7DN0 X'03' 7–track MODESET SKELETON DENSITY=200BPI
0100 0011 DEBM7DN1 X'43' 7–track MODESET SKELETON DENSITY=556BPI
1000 0011 DEBM7DN2 X'83' 7–track MODESET SKELETON DENSITY=800BPI 3480 tape operation

code
1100 0011 DEBMSTWI X'C3' 3480 set tape write immediate ccw code. Tape mode set function byte
1. DEBMTRF0 X'80' tape recording format bit 0
.1. DEBMTRF1 X'40' tape recording format bit 1
. .1. DEBMTWI X'20' tape write immediate (non-buffered write)
. . .1 DEBMINHS X'10' inhibit supervisor commands
. . . . 1. . . DEBMCOMP X'08' compacted recording mode
. . . . 1. . . DEBCMPAC "DEBMCOMP" COMPACTED RECORDING MODE
.1. DEBM3424 X'02' 3424 mode set flag
.1 DEBMINHE X'01' inhibit control unit ERP
X'C2' DEBM6250 "DEBMTRF0+ DEBMTRF1+ DEBM3424"SET 3424 DENSITY=6250BPI
X'42' DEBM1600 "DEBMTRF1+ DEBM3424" SET 3424 DENSITY=1600BPI

33(21) ADDRESS 3 DEBSUCBB Address of a UCB associated with a given data set
36(24) 0 DEBDEVED(0) End of common tape and unit record fields if DEB31UCB is off.

Next four bytes present only if DEB31UCB is on

36(24) BITS 1 DEBSDVMX Device modifier. For magnetic tape, modeset operation code or modeset
function byte. For unit record reserved. Present only if DEB31UCB is on.

37(25) CHARACTER 3 Reserved

40(28) 0 DEBDVEDX End of section if DEB31UCB is on.

The following fields are present only for the 3525 with device–associated data set support

36(24) ADDRESS 4 DEBRDCB(0)
36(24) BITSTRING 1 DEBRSV06
37(25) ADDRESS 3 DEBRDCBA
40(28) ADDRESS 4 DEBPDCB(0)
40(28) BITSTRING 1 DEBRSV07
41(29) ADDRESS 3 DEBPDCBA

Control Blocks

446 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 97. Partial Listing of DEB Fields (continued)

Offset Type Length Name Description

44(2C) ADDRESS 4 DEBWDCB(0)
44(2C) BITSTRING 1 DEBRSV08
45(2D) ADDRESS 3 DEBWDCBA

DEBASDSE Address of DCB for the read associated data set

Direct–access storage device section it follows the basic section. There is one of these sections for each extent, except for a pdse or
extended format data set, in which case there is one section per device.

0(0) ADDRESS 4 DEBUCBAD Address of a UCB associated with this extent. The following applies to
DEBSUCBA, DEBSUCBB, DEBUCBAD and DEBUCBA: If the actual UCB is
above the 16 MB line and the dynamic allocation nocapture option is not in
effect, allocation normally captures the UCB to create a 24-bit address. When
using EXCP and you specify the nocapture option of dynamic allocation but
not the LOC=ANY option on the DCBE, then OPEN or EOV captures the
UCB until a later EOV or close. In these cases the high order byte of this
word contains the device modifier byte. If you specify nocapture on the
dynamic allocation and the actual DASD or tape UCB address is above the
line and the DCB is for BSAM, BPAM, QSAM or EXCP and the DCBE has
specified LOC=ANY, then the system does not capture the UCB. In that case
OPEN turns on the DEB31UCB bit to signify the 31-bit UCB address field is
valid and that the device modifier byte is in DEBSDVMX or DEBDVMOD31.
It may remain on for subsequent volumes even though they have actual
24-bit addresses in a four-byte field.

0(0) BITSTRING 1 DEBDVMOD Device modifier. File mask. Valid only if DEB31UCB is off.
1(1) ADDRESS 3 DEBUCBA Address of UCB for this extent. Valid only if DEB31UCB is off.
4(4) BINARY 1 DEBDVMOD31 Reserved if DEB31UCB is off. File mask (device modifier) if DEB31UCB is

on.
5(5) BINARY 1 DEBNMTRKHI High order byte of number of tracks in extent. Low order two bytes are in

DEBNMTRK. DEBNMTRKHI combined with DEBNMTRK gives total
number of tracks in this extent. DEBNMTRKHI is 0 for a basic format data
set and may be non-zero for a large format data set.

6(6) BINARY 2 DEBSTRCC Low order 16 bits of cylinder number of start of extent
8(8) BINARY 2 DEBSTRHH High order 12 bits of cylinder number and four-bit track number of start of

extent
10(A) BINARY 2 DEBENDCC Low order 16 bits of cylinder number of end of extent. Not set for a PDSE
12(C) BINARY 2 DEBENDHH High order 12 bits of cylinder number and four-bit track number of end of

extent. For PDSE this field is reserved. For an extended format data set this
field contains the track number of the format-1 dscb address.

14(E) BINARY 2 DEBNMTRK Number of tracks allocated to a given extent. For a pdse this field is set to
one(X'0001'). For an extended format sequential data set the first byte
contains the record number of the format-1 dscb address, and the second
byte is zero.

DEBDASDE "*" end of DASD device section

EXCP Access Method, Bsam And Qsam Dependent Section Length Is In DEBAMLNG.
0(0) BINARY 2 DEBVOLSQ Volume sequence number for multivolume sequential data sets

0(0) BITSTRING 1 DEBVOLBT First byte of debvolsq. Reserved for system use.
1(1) SIGNED 1 DEBVLSEQ For direct access, sequence number of the volume of the data set relative to

the first volume of the data set. For tape, sequence number of the volume of
the data set relative to the first volume processed.

2(2) BINARY 2 DEBVOLNM Total number of volumes in a multivolume sequential data set.
4(4) BINARY 8 DEBDSNM Member name. This field appears only when an output data set has been

opened for a member name and the dscb specifies a partitioned data set.
4(4) ADDRESS 4 DEBUTSAA Address of the user totaling save area
4(4) BITSTRING 1 DEBRSV13 For system use
5(5) ADDRESS 3 DEBUTSAB Address of the user totaling save area
8(8) BITSTRING 4 DEBRSV14 For system use (if user totaling was specified)
12(C) SIGNED 2 DEBBLKSI Maximum block size
14(E) SIGNED 2 DEBLRECL Logical record length

BPAM Dependent Section

Control Blocks

Appendix A. Control Blocks 447

Table 97. Partial Listing of DEB Fields (continued)

Offset Type Length Name Description

0(0) BINARY 1 DEBEXTNM For a partitioned data set opened for input, each one–byte field contains the
extent number of the first extent entry for each data set except the first, if
two or more data sets are concatenated. The number of bytes in the field is
equal to one less than the number of data sets concatenated.

0(0) CHARACTER 8 DEBDSNAM For a partitioned data set opened for output for a member name, this field is
the member name.

BDAM Dependent Section For Fixed Length Records With The Option Of Relative Block Addressing

0(0) BINARY 4 DEBDBLK One four byte field for each extent described in the device dependent section
0(0) ADDRESS 1 DEBDBPT Number of blocks per track
1(1) BINARY 3 DEBDBPE Number of blocks per extent

Subroutine Name Section Note Follows The Access Method Dependent Section, Or The Device Dependent Section If There Is No
Access Method Section

0(0) CHARACTER 2 DEBSUBID Subroutine identification. Each access method subroutine, appendage
subroutine, and irb routine will have a unique eight–byte name. The
low–order two bytes of each routine name will be in this field if the
subroutine is loaded by the OPEN routines.

DEB Extension Pointed To By DEBXTNP In The DEB Prefix

0(0) SIGNED 2 DEBXLNGH Length of DEB extension
2(2) BITSTRING 1 DEBXFLG1 Flag byte—for system use
3(3) BITSTRING 1 DEBXFLG2 Flag byte

.1. DEBBYP X'40'– when on EXCP scan routine will set iosbyp on and bypass building a
prefix

. .1. DEBCHCMP X'20'– when on EXCP scan routine will set ioschcmp on and bypass building
a prefix

4(4) ADDRESS 4 DEBXDSAB Pointer to dsab
8(8) BITSTRING 4 For system use
12(C) ADDRESS 4 DEBXDBPR Pointer to DEB
16(10) CHARACTER 24 For system use
40(28) BITSTRING 8 DEBXDEF(0) Define extent data area
40(28) BITSTRING 1 DEBDEFG1 Flag byte

1. DEBNSHED X'80' no seek head permitted
.1. DEBXVDEF X'40' DEB def ext data parms valid. Must be on for dx data to be used.

41(29) BITSTRING 1 DEBGATTR Global attributes
xx. DEBECKD X'C0' extent definition 2 b'00......' define extent operates as defined for fixed

block arch b'11......' define extent operates as defined for ckd ext-cchh extents
1. DEBGAEX1 X'80' extent definition 1
.1. DEBGAEX2 X'40' extent definition 2
. .1. DEBSTRTP X'20' data storage type-norm/temp b'..1.....' normal data storage b'..0.....'

temporary data storage
. . .x xx . . DEBGA345 X'1c' attributes bits 3,4,5 b'...000..' normal cache access b'...001..' bypass cache

load b'...010..' inhibit cache load b'...011..' sequential access b'...100..' reserved
b'...101..' reserved b'...111..' reserved b'......xx' reserved

. . .1 DEBGA1 X'10' attribute 1

. . . . 1 . . . DEBGA2 X'08' attribute 2

.1 . . DEBGA3 X'04' attribute 3 b'...000..' normal cache access b'...001..' bypass cache load
b'...010..' inhibit cache load b'...011..' sequential access b'...100..' sequential
staging mode'...101..' record access mode b'...111..' reserved b'......xx' reserved

. . . 0 00 . . DEBNCACH X'00' normal cache access

. . . 0 01 . . DEBBCACH X'04' bypass cache load

. . . 0 10 . . DEBICACH X'08' inhibit cache load

. . . 0 11 . . DEBSCACH X'0c' sequential access

.1. DEBNRD X'02' non-retentive data access

.1 DEBINHFW X'01' inhibit fast write b'......10' use non-retentive data b'......11' inhibit DASD
fast write

42(2A) BITSTRING 2 DEBBLKSZ Blocksize in bytes if less than or equal to 32760

Control Blocks

448 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 97. Partial Listing of DEB Fields (continued)

Offset Type Length Name Description

44(2C) CHARACTER 4 DEBEXTOK Zero,extent locator or token
44(2C) CHARACTER 2 DEBNRDID Subsystem function id: non-retentive data id or concurrent copy / xrc

session id
46(2E) CHARACTER 2
48(30) CHARACTER 4 DEBIOPID For system use
52(34) CHARACTER 4 DEBBLKID Block id value used to calculate number of blocks in this tape volume for

extended block count checking

Data Facilities Area (DFA) Fields
Except for DFADFVAD, all of the fields in the DFA are part of the intended
programming interface.
Common Name:

Data Facilities Area
Macro ID:

IHADFA
DSECT Name:

DFA
Eye-Catcher ID:

DFAACRON
Subpool and Key:

Nucleus resident and Key 0; Resident below 16MB
Size: 112 bytes
Created by:

Assembled into nucleus
Pointed to by:

CVTDFA field of the CVT
Serialization:

N/A
Function:

Maps the Data Facilities Area, which contains information that applies to
DFSMS.

Table 98. DFA Fields
Offset Type/Value Length Name Description

0(0) UNSIGNED 2 DFALEN LENGTH OF THIS TABLE

VERSION, RELEASE, AND MODIFICATION LEVEL INFORMATION FOR DFP. THE FIRST THREE DIGITS OF DFAREL REPRESENTS THE LAST
LEVEL OF DFP(X'332'). THE FOURTH DIGIT OF DFAREL BEING NON-ZERO INDICATES THE LEVEL OF THIS PRODUCT IS HIGHER THAN THE
INDICATED LEVEL.

2(2) BITSTRING 2 DFAREL FOUR DIGITS = VERSION, RELEASE, MOD, X

THE FOLLOWING ARE THE FEATURE BYTES. WHEN A BIT IS ON, IT MEANS EITHER THAT THE CURRENT RELEASE SUPPORTS THE
FEATURE OR THAT THIS PARTICULAR INSTANCE OF THE SYSTEM SUPPORTS THE FEATURE. IF THE SOFTWARE SUPPORTS A FEATURE BUT
IT CANNOT BE USED, PERHAPS BECAUSE COREQUISITE SOFTWARE OR HARDWARE IS NOT AVAILABLE, THEN THE FEATURE BIT WILL BE
OFF.

4(4) SIGNED 4 DFAFEATS(0) ALL FEATURES BYTES–USED BY CS INSTR

4(4) BITSTRING 1 DFAFEAT1 FEATURES BYTE 1

1... DFAXA "X'80'" MVS/XA (COPY OF CVTMVSE IN CVT)

.1.. DFALSR "X'40'" MULTIPLE VSAM LSR POOLS SUPPORTED (1.1.0)

..1. DFAEOS "X'20'" DASDM ERASE ON SCRATCH SUPPORTED (2.1.0)

...1 DFAXRF "X'10'" EXTENDED RECOVERY FACILITY (2.1.0)

.... 1... DFAEXPCI "X'08'" EXPORT BY CONTROL INTERVAL (2.1.0)

.... .1.. DFAEOSIC "X'04'" ERASE ON SCRATCH FOR ICF (2.1.0)

.... ..1. DFASMS "X'02'" SYSTEM MANAGED STORAGE (3.1.0)

Control Blocks

Appendix A. Control Blocks 449

Table 98. DFA Fields (continued)
Offset Type/Value Length Name Description

.... ...1 DFAPDSE "X'01'" PDSE SUPPORT AVAILABLE ON THE SYSTEM SET BY
IEAVNP26 WHEN DFP LEVEL IS 3.2.0 OR GREATER AND AN
APPROPRIATE LEVEL OF SP EXISTS.

.... ...1 DFAIPDS "DFAPDSE" IPDS IS OLD NAME FOR PDSE

5(5) BITSTRING 1 DFAFEAT2 FEATURES BYTE 2

1... DFADLS "X'80'" RESERVED

.1.. DFAPML "X'40'" RESERVED

..1. DFAFMS "X'20'" FILE MANAGEMENT SERVICES SUPPORTED

...1 DFACMPAC "X'10'" INSTALLATION DEFAULT FOR COMPACTION

.... 1... DFABPBLD "X'08'" BYPASS CHANNEL PROGRAM PREFIX BUILD

.... .1.. DFASSF "X'04'" SSF SERVICES ARE AVAILABLE

.... ..1. DFAMMEXT "X'02'" MMS SUPPORTS XTIOT

.... ...1 DFAINDEF "X'01'" COMPACTION DEFAULT EXPLICITLY SET BY
INSTALLATION

6(6) BITSTRING 1 DFAFEAT3 FEATURES BYTE 3

1... DFAVOLSN "X'80'" VOLSER EXTRACTED FROM SENSE INFO ACCEPTABLE
BY THE INSTALLATION

.1.. DFASAMEX EXTENDED FORMAT SEQUENTIAL DATA SETS SUPPORTED

.1.. DFASMSEX ALIAS FOR DFASAMEX

..1. DFAKSDEX EXTENDED FORMAT KSDS SUPPORTED

...1 DFACMPCT DFSMS ACCESS METHOD COMPRESSION SUPPORTED. BIT SET
BY SMS SUB-SYSTEM INITIALIZATION.

.... 1... DFARLSJ3 THE SMSVSAM SERVER HAS SUCCESSFULLY INITIALIZED ON
THIS SYSTEM. THIS BIT IS USED BY SMS SCHEDULING. ONCE
ON, THIS BIT REMAINS ON FOR THE LIFE OF THE IPL. THIS BIT
DOES NOT INDICATE THAT THE SMSVSAM SERVER IS
CURRENTLY OPERATIONAL.

.... .1.. DFARECAL DATA SET RECALL CAPABILITY VIA® THE ARCHRCAL MACRO
IS AVAILABLE.

.... ..1. DFADEEXT DESERV EXIT FUNCTION IS AVAILABLE

.... ...1 DFADLL DFSMS DLL SUPPORT IS AVAILABLE

7(7) BITSTRING 1 DFAFEAT4 FEATURES BYTE 4

1... DFAFDAT RESERVED

.1.. DFANSRV DFP NIP SERVICES CAN BE INVOKED VIA IGGSSRV MACRO

..1. DFADYNL DYNAMIC LINKLIST IS SUPPORTED

..1. DFACIR2 THE CATALOG INFORMATION ROUTINE, IKJEHCIR, SUPPORTS
A FORMAT 2 WORK AREA, I.E., FULL WORD LENGTH FIELDS

.... 1... DFADYLPA DFSMS SUPPORT FOR DYNAMIC LPA IS AVAILABLE.

.... .1.. DFAFORK DFSMS LOADER FORK EXIT IS PRESENT

.... ..1. DFASNBK SOFTWARE SUPPORT PROVIDING “FAST” BACKUP USING THE
SNAPSHOT FEATURE OF THE RAMAC VIRTUAL ARRAY (RVA)
INSTALLED.

.... ...1 DFASNAP THE API SUPPORT FOR THE SNAPSHOT FEATURE OF THE
RAMAC VIRTUAL ARAY (RVA) IS INSTALLED.

8(8) CHARACTER 4 DFAACRON ACRONYM FOR THIS CONTROL BLOCK.

12(C) BITSTRING 1 DFAFEAT5 FEATURES BYTE 5

1... DFAUPDSE UNMANAGED PDSE SUPPORT INSTALLED ON THIS SYSTEM.

.1.. DFABTSREQ 1 means BLOCKTOKENSIZE=REQUIRE in IGDSMSxx member of
PARMLIB. Restrictions on opening large format data sets. 0 means
BLOCKTOKENSIZE=NOREQUIRE.

..1. DFABLDLS BLDL START= and STOP= parameters are supported.

...1 DFAUSEAV System default USEEAV setting for an extended address volume
(EAV) when SMS is not active. Initially set on, to allow the use of
EAV, and changed to the IGDSMSxx PARMLIB specified or defaulted
USEEAV value if SMS is active.

....1... DFASAMHPF SAM_USE_HPF, On = yes

Note: If DFASAMHPF is set but ZHPF=YES in IECIOSxx is not in
effect, BAM will not use zHPF.

.... .x.. RESERVED.

.... ..1. DFAALVER VERSION LEVEL AT WHICH NEW TAPE LABELS WILL BE
WRITTEN. OFF: ANSI LABEL VERSION 3. ON: ANSI LABEL
VERSION 4.

Control Blocks

450 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 98. DFA Fields (continued)
Offset Type/Value Length Name Description

.... ...1 DFAALFOR DETERMINES WHETHER INSTALLATION ISO/ANSI VERSION
LEVEL IS FORCED

13(D) BITSTRING 1 DFAFEAT6 FEATURES BYTE 6

1111 DFACPSDB COPYSDB VALUE IN DEVSUPxx IN PARMLIB. SYSTEM LEVEL
DEFAULT FOR THE SDB OPTION OF IEBGENER AND OTHER
COPYING PROGRAMS. VAE CONSTANTS BELOW DFACPS**

0001 DFACPSNO COPYSDB = NO

0010 DFACPSYE COPYSDB = YES

0010 DFACPSSM COPYSDB = SMALL (SAME AS COPYSDB = YES)

0011 DFACPSIN COPYSDB = INPUT

0100 DFACPSLA COPYSDB = LARGE

.... 1... DFADCMET Data class media enforced for all tapes outside of libraries
(ENFORCE_DC_MEDIA=ALMEDIATY)

.... .1.. DFADCMEJ Data class media enforced for IBM 3592 outside of libraries
(ENFORCE_DC_MEDIA=MEDIA5PLUS)

.... ..1. DFAMTLAM When no media preference is expressed, accept all media types for a
manual tape library (MTL_NO_DC_WORM_OK)

.... ...1 DFASTIFF STOW supports the IFF operand

14(E) UNSIGNED 2 DFABPV System default break point value (BPV) for an extended address
volume (EAV) when the BPV is not specified in the SMS IGDSMSxx
PARMLIB or when SMS is not active. Initially set to 10 and changed
to the IGDSMSxx SPECIFIED BPV value if SMS is active.

PRODUCT, VERSION, RELEASE, AND MODIFICATION LEVEL INFORMATION. BYTE 0 DEFINES A PRODUCT CODE, BYTES 1-3 DEFINE THE
VERSION, RELEASE, AND MODIFICATION LEVELS OF THIS PRODUCT. A PRODUCT BYTE (DFAPROD) OF X'00' INDICATES DFP AS A
PRODUCT, BYTES 1-3 OF DFARELS WILL ALSO BE X'00' IN THIS CASE. THE USER MAY CHOOSE TO CHECK DFAREL FOR THE RELEASE
LEVEL OF THE DFP PRODUCT IN THIS CASE. IF DFAPROD IS NOT EQUAL TO X'00', DFAREL SHOULD NOT BE CHECKED AS IT WILL BE
FROZEN AT THE LAST LEVEL OF DFP PRODUCT SHIPPED. A PRODUCT BYTE (DFAPROD) OF X'01' INDICATES DFSMS AS A PRODUCT BYTES
1-3 OF DFARELS WILL INDICATE THE VERSION, RELEASE AND MODIFICATION LEVELS OF THE DFSMS PRODUCT. A PRODUCT BYTE
(DFAPROD) OF X'02' INDICATES OS/390. THIS VALUE INDICATES THIS LEVEL OF DFSMS IS OS/390 EXCLUSIVE. SINCE DFSMS MIGHT NOT
BE REFRESHED WITH EACH OS/390 RELEASE, THE VERSION, RELEASE, AND MODIFICATION FIELDS INDICATE THE LEVEL OF OS/390 IN
WHICH THIS LEVEL OF DFSMS WAS FIRST SHIPPED. THE VERSION, RELEASE, AND MODIFICATION FIELDS ARE BINARY VALUES. (FOR
EXAMPLE TEN WOULD BE X'0A').

16(10) BITSTRING 4 DFARELS 4 BYTES = PRODUCT, VERSION, REL, MOD

16(10) BITSTRING 1 DFAPROD PRODUCT BYTE

0000 0000 DFADFP DFP PRODUCT CODE.

0000 0001 DFADFSMS PRODUCT CODE FOR DFSMS.

0000 0002 DFAOS390 PRODUCT CODE FOR OS/390 VERSION 2.

0000 0003 DFAZOS PRODUCT CODE FOR z/OS.

17(11) BITSTRING 1 DFAVER VERSION BYTE

18(12) BITSTRING 1 DFARLSE RELEASE BYTE

19(13) BITSTRING 1 DFAMOD MODIFICATION BYTE

20(14) SIGNED 2 DFAMSMDE MAXIMUM LENGTH OF THE SMDE IN THIS RELEASE WITH AN
8-BYTE ALIAS NAME

22(16) UNSIGNED 1 DFAVERBO FLAGS

1... * Reserved.

.1.. DFATVS IF ON, TRANSACTIONAL VSAM IS INSTALLED.

..1. DFAFCXHS FlashCopy® across Hyperswap enabled

23(17) UNSIGNED 1 DFASEFVR Data set format version for new sequential extended format data
sets. This is set by the PS_EXT_VERSION keyword in the IGDSMSxx
member of SYS1.PARMLIB.

24(18) ADDRESS 4 DFACSSVT CALLABLE SYSTEM SERVICES VECTOR TABLE ADDRESS

28(1C) ADDRESS 4 DFADCVSO DATA CONVERSION SERVICES –OPEN.

32(20) ADDRESS 4 DFADCVSD DATA CONVERSION SERVICES –CONVERT.

36(24) ADDRESS 4 DFADCVSC DATA CONVERSION SERVICES –CLOSE.

40(28) ADDRESS 4 DFAELNMP Address of DFSMS element name. Name is mapped by DSECT
DFAELNM. See Table 99 on page 452. Valid only on z/OS 1.3 and
later.

44(2C) ADDRESS 4 DFADFVAD DATA FACILITIES VECTOR TABLE ADDR

END OF DFA AS IT WAS WHEN IT WAS FIRST SHIPPED IN MVS/XA DFP VERSION 2 RELEASE 1 MODIFICATION LEVEL 0. PRIOR TO
REFERENCING ANY FIELD BEYOND THIS COMMENT, THE USER MUST ENSURE THAT DFARELS IS GREATER THAN OR EQUAL TO
X'02020A00' OR DFALEN IS BIG ENOUGH (SEE DFALEN).

48(30) INTEGER 8 DFABLKSZ LIMIT ON SYSTEM DETERMINED BLOCK SIZE. DEFAULT IS
32760. OBTAINED FROM DEVSUPxx PARMLIB MEMBER.

Control Blocks

Appendix A. Control Blocks 451

||||||
||||||
|
|

Table 98. DFA Fields (continued)
Offset Type/Value Length Name Description

56(38) BITSTRING 1 DFAFEAT7 FEATURES BYTE 7

1... DFATADSN TAPEAUTHDSN=YES

.1.. DFATADS1 TAPEAUTHF1=YES

..1. DFATARC8 TAPEAUTHRC8=WARN

...1 DFATARC4 TAPEAUTHRC4=FAIL

.... 1... DFAXTBAM THE NON_VSAM_XTIOT OPTION OF THE DEVSUPxx MEMBER
OF PARMLIB HAS BEEN SET TO 'YES'.

.... .1.. DFATPMVA TAPEMULTIVOLUMEERROR=ALLOW.

.... ..1. DFATPMVF TAPEMULTIVOLUMEERROR=FAIL.

.... ...1 Reserved

57(39) BITSTRING 1 DFAFEAT8 FEATURES BYTE 8. The following 7 flags indicate VSAM and
non-VSAM data set support for the Extended Addressing Space
(EAS) on an EAV.

THE FOLLOWING 8 FLAGS INDICATE VSAM AND NON-VSAM DATA SET SUPPORT FOR THE EXTENDED ADDRESSING SPACE (EAS) ON AN
EAV

1... DFAVSAMFOREAS VSAM enabled for EAS

.1.. DFASEQFOREAS Basic, large format sequential (QSAM, BSAM, BDAM access) enabled
for EAS

..1. DFAPDSEFOREAS PDSE enabled for EAS

...1 DFAPDSFOREAS PDS enabled for EAS

.... 1... DFADIRFOREAS Direct (BDAM access) enabled for EAS

.... .1.. DFAEFSEQFOREAS Extended format sequential enabled for EAS

.... ..1. DFAUNDEFFOREAS Undef DSORGs enabled for EAS

.... ...1 DFAEXPMSG EXPIRATION_MESSAGE=NEVER

58(3A) 6

58(3A) Unsigned 2 DFADDRSZ Storage size limit allowed in DDR swap (number of megabytes)

58(3A) Unsigned 2 DFADDRSZ Storage size limit allowed in DDR swap (number of megabytes)

60 (3C) Bit String 1 DFAFEAT9 FEATURES BYTE 9

1... DFAJ3AA JES3_ALLOC_ASSIST ENABLED

.1.. DFAMEMUX MEMBER SELECTION USER EXIT SUPPORT

..1. DFAPDSEG PDSE Generation support is installed

...1 DFAZEDCCMP zEDC Compression support is installed

61 (3D) 3 Reserved

64 (40) Unsigned 8 DFA47S PRSDx47 counts (Use for QUERYFC)

64 (40) Signed 4 DFA47MAX Maximum PRSD47 so far

68 (44) Signed 4 DFA47CNT Current PRSDx47s count

72 (48) Bit string 4 DFAFEATC HPF/FCX Feature Code bytes

..1. 4 Multi track operations supported

.... 1... DFAFCX_TTEDcw Transfer TCA Extension

.... .1.. DFAFCX_REL1 FCX phase 1

.... ..1. DFAFCX_ImbeddedLR Imbedded LR List

.... ...1 DFAFCX_FmtUpdWrt Format Update Writes

73 (49) Bit string 1 Second HPF feature code byte

1... 8 DFAFCX_FmtWrite Format Write Enable

74 (4A) Bit string 1 Third HPF feature code byte

75 (4B) Bit string 1 Fourth HPF feature code byte

76 (4C) Signed 4 DFAMAXGN Maximum Generations supported for this system

80 (5C) Unsigned 1 DFACMPTYPE Default compression type.

DFACMPTYPEGEN 0 = Generic compression

DFACMPTYPETLRD 1 = Tailored compression

DFACMPTYPEzEDCR 2 = zEDC compression required

DFACMPTYPEzEDCP 3 = zEDC compression prefered

81 (5D) 31 Reserved.

Table 99. DFA Element Name

Offset Type/Value Length Name Description

0(0) DSECT DFAELNM DSECT name
0(0) UNSIGNED 2 DFAELNML Length of significant characters in next field. Currently ten.

Control Blocks

452 z/OS V2R1.0 DFSMSdfp Advanced Services

||||||

||||||

Table 99. DFA Element Name (continued)

Offset Type/Value Length Name Description

2(2) CHARACTER 22 DFAEXTXT DFSMS element name in EBCDIC. May contain lower case
characters. Currently is "z/OS DFSMS".

Control Blocks

Appendix A. Control Blocks 453

Control Blocks

454 z/OS V2R1.0 DFSMSdfp Advanced Services

Appendix B. Maintaining the System Image Library

This information describes how to maintain the system image library,
SYS1.IMAGELIB. SYS1.IMAGELIB is a partitioned data set (a PDSE is not
supported) containing universal character set (UCS), forms control buffer (FCB),
and printer control information for DFSMSdfp–supported IBM printers in the
following forms, depending on the type of printer:
v UCS images (also called modules)
v UCS image tables
v FCB images (also called modules)
v Control modules.

The system uses UCS images and image tables to relate a user-requested UCS to
the corresponding print band/train. Most IBM standard UCS images are included
in SYS1.IMAGELIB during system installation. Note that when you install a new
release of DFSMS it replaces images that have the IBM-supplied names. If you
modified or replaced any of these you might want to maintain a separate copy of
them. The following table shows the standard character set images for the IBM
1403, 3203, and 3211 printers:

Printer Images

1403 or 3203 AN, HN, PCAN, PCHN, PN, QN, QNC, RN,
SN, TN, XN, YN

3211 A11, G11, H11, P11, T11

For detailed, printer-specific information, or to determine which print bands/trains
are available, see the publications listed in the following table:

Publication Title Contents

IBM 2821 Control Unit Component Description Information on creating a user-designed
chain/train for the 1403 Printer.

IBM 3203 Printer Component Description and
Operator's Guide

Information on creating a user-designed train
for the 3203 Printer.

IBM 3211 Printer, 3216 Interchangeable Train
Cartridge, and 3811 Printer Control Unit
Component Description and Operator's Guide

Information on creating a user-designed train
for the 3211 Printer.

IBM 3262 Model 5 Printer Product Description Information on band IDs for the 3262 Model
5 Printer.

IBM 3800 Printing Subsystem Programmer's
Guide

Information on planning for, conversion to,
and use of the IBM 3800 Model 1 Printing
Subsystem.

IBM 3800 Printing Subsystem Model 3
Programmer's Guide: Compatibility

Information on planning for, conversion to,
and use of the IBM 3800 Model 3, 6, and 8
Printing Subsystem.

IBM 4245 Printer Model 1 Component
Description and Operator's Guide

Information on band IDs for the 4245 Printer.

IBM 4248 Printer Model 1 Description Information on band IDs for the 4248 Printer.

IBM 6262 Printer Print Band Manual Information on band IDs for the 6262 Printer.

© Copyright IBM Corp. 1979, 2014 455

Publication Title Contents

IBM 6262 Printer Model 014 User's Guide Information on operating and maintaining
the 6262 Model 14 Printer.

To use the information in this chapter, you should be familiar with the publications
listed in the following table:

Publication Title Contents

z/OS DFSMS Macro Instructions for Data Sets Describes the SETPRT macro. You can use it
to specify the images (modules) that you
want.

z/OS DFSMSdfp Utilities Describes the IEBIMAGE utility program.

z/OS MVS JCL Reference Describes the CHARS, MODIFY, UCS, and
FCB parameters of the DD statement, that are
processed at OPEN.

z/OS JES2 Initialization and Tuning Guide Contains JES2 reference information.

z/OS JES3 Initialization and Tuning Guide Contains JES3 reference information.

Table 100 provides information about the printer-specific contents of
SYS1.IMAGELIB.

Table 100. SYS1.IMAGELIB Contents

Printer Type UCS Image UCS Image
Table 8

FCB Image Control
Module

1403 X

3203 1 X X

3211 X X

3262 Model 5 2, 4, 5 X X

4245 3 X6 X

4248 3 X6 X

6262 Model 14 2, 4, 5 X X

3800 X 7

Notes to Table 100:

1. The IBM 3203 Model 5 Printer is treated as a 3211 Printer by JES, except that
the 3203 Model 5 does not support the 3211 indexing feature and ignores any
indexing commands from JES. The 3203 Model 5 uses its own unique UCS
images, but uses 3211 FCB images.

2. You can operate this printer as if it were a 4248 operating in 4248 native mode.
In this case, use the 4248-related UCS sections of this chapter. The UCS
information is contained in image tables.

3. You can operate this printer in native mode, in which case the UCS information
is contained in image tables. You can also operate these printers in 3211
compatibility mode, in which case the UCS information is contained in UCS
images; you should then use the 3211-related UCS sections of this chapter.

4. This printer uses the same image table as the 4248 printer. However, it does not
support variable printer speeds or the horizontal copy feature and host stacker
controls of the 4248 printer.

Maintaining IMAGELIB

456 z/OS V2R1.0 DFSMSdfp Advanced Services

5. This printer uses the same FCB image as the 4248 Printer.
6. The image table is supplied by IBM. The contents of the 4245 image table are

shown in Table 101 on page 463. The contents of the 4248 image table are
shown in Table 102 on page 464.

7. 3800 Printing Subsystem control modules exist for:
v Character arrangement tables
v Graphics character modification tables
v Copy modification tables
v Library character sets
v FCB images.

You can use the IEBIMAGE utility program to create and maintain these control
modules. See z/OS DFSMSdfp Utilities for details about IEBIMAGE. IEBIMAGE
and SYS1.IMAGELIB are not used when the printer is running in page mode.
In that case, PSF for z/O uses other types of modules from other libraries. See
3900 Product Description for more information.

8. Figure 54 on page 463 defines and describes the structure of a UCS image table
entry.

UCS Images in SYS1.IMAGELIB
This information applies to the IBM 1403, 3203, and 3211 printers. SYS1.IMAGELIB
contains UCS images for these printers. You can use the assembler and linkage
editor to add a UCS image to those that reside in SYS1.IMAGELIB. The assembler
does not generate executable code. It merely prepares DC statements, and the
linkage editor puts them into SYS1.IMAGELIB. Observe the following rules when
creating a new UCS image:
1. The member name must be 5 to 8 characters long; the first 4 characters must be

the appropriate UCS prefix, as follows:

Prefix Meaning

UCS1 1403 printer
UCS2 3211 printer (or 3211-compatible printer)
UCS3 3203 printer

These first four characters must be followed by a character set code, one to four
characters long. Any valid combination of letters and numbers under assembler
language rules is acceptable. However, do not use the single letters U or C,
because they are symbols for special conditions recognized by the system.
Specify the assigned character set code on the DD statement or SETPRT macro
to load the image into the UCS buffer.
You can supply an alias name for a new image with the ALIAS statement. (For
more information on the ALIAS statement, see z/OS MVS Program Management:
User's Guide and Reference.)

2. The first byte of the character set image load module specifies whether the
image is a default. If a program issues an OPEN macro to a printer in which
the UCS buffer has been loaded with a default image and the JCL does not
specify a UCS name, the system uses the image in the buffer. If the buffer has
not been loaded with a default image the system directs the operator to take
action.
Specify the following in the first byte for JES2:

Value Meaning

X'00' Indicates that the image is not to be used as a default.

Maintaining IMAGELIB

Appendix B. Maintaining the System Image Library 457

Value Meaning

X'40' Indicates that the output is to be folded.
X'80' Indicates a default image.
X'C0' Indicates default image and folding.

For non-JES2, specify:

Value Meaning

X'00' Indicates that the image is not to be used as a default.
X'80' Indicates a default image.

3. The second byte of the load module indicates the number of lines (n) to be
printed for image verification. See “Verifying the UCS Image” on page 470 for
more information on image verification.

4. Each byte of the next n bytes indicates the number of characters to be printed
on each verification line. For the 3211 Printer, the maximum number of
characters printed per line is 48; the bytes of associative bits (see Rule 5, which
follows) do not print during verification.

5. The UCS image itself must follow the previously described fields. The image
must fill the number of bytes required by the printer; see the following table
for image lengths. Note that, because of Assembler language syntax, you must
code two apostrophes or two ampersands to represent a single apostrophe or a
single ampersand, respectively, within a character set image.

Printer Image Length

1403 240 bytes
3203 304 bytes (240 characters followed by 64 bytes of associative bits)
3211 512 bytes (432 characters followed by 15 bytes of X'00', 64 bytes of

associative bits, and 1 reserved byte of X'00')

You must code associative bits to prevent data checks when adding a UCS
image to SYS1.IMAGELIB. See the appropriate printer publication for more
information on coding associative bits.

See the following information:
v “Examples of UCS Image Coding”
v “UCS Image Alias Names” on page 462
v “UCS Image Tables in SYS1.IMAGELIB” on page 462
v “Alias Names in UCS Image Tables” on page 462
v “Adding or Modifying a UCS Image Table Entry” on page 466
v “Verifying the UCS Image” on page 470

Examples of UCS Image Coding
Figure 51 on page 459 shows an example of the JCL to add a 1403 UCS image, YN,
to SYS1.IMAGELIB. Notes, which apply to all examples, follow Figure 53 on page
461.

Maintaining IMAGELIB

458 z/OS V2R1.0 DFSMSdfp Advanced Services

See Figure 53 on page 461 for the notes to this figure.

Figure 52 on page 460 shows an example of the JCL to add a 3203 UCS image, YN,
to SYS1.IMAGELIB. Notes to this figure follow Figure 53 on page 461.

//ADDYN JOB MSGLEVEL=1
//STEP EXEC PROC=ASMHCL,PARM.ASM=’NODECK,LOAD’,
// PARM.LKED=’LIST,OL,REFR,RENT,XREF’
//ASM.SYSIN DD *
UCS1YN CSECT

DC X’80’ (THIS IS A DEFAULT IMAGE)
DC AL1(6) (NUMBER OF LINES TO BE PRINTED)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 1)
DC AL1(42) (42 CHARACTERS TO BE PRINTED ON LINE 2)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 3)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 4)
DC AL1(42) (42 CHARACTERS TO BE PRINTED ON LINE 5)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 6)

* THE FOLLOWING SIX LINES REPRESENT THE TRAIN IMAGE
DC C’1234567890STABCDEFGHIJKLMNOPQRUVWXYZ*,.’
DC C’1234567890STABCDEFGHIJKLMNOPQRUVWXYZ*,.#-$’
DC C’1234567890STABCDEFGHIJKLMNOPQRUVWXYZ*,.’
DC C’1234567890STABCDEFGHIJKLMNOPQRUVWXYZ*,.’
DC C’1234567890STABCDEFGHIJKLMNOPQRUVWXYZ*,.#-$’
DC C’1234567890STABCDEFGHIJKLMNOPQRUVWXYZ*,.’
END

/*
//LKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS1YN),DISP=OLD,
// SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 51. Code to Add a 1403 UCS Image to SYS1.IMAGELIB

Maintaining IMAGELIB

Appendix B. Maintaining the System Image Library 459

Notes: See Figure 53 on page 461 for the notes to this figure.

Figure 53 on page 461 shows an example of the JCL to add a 3211 UCS image, A11,
to SYS1.IMAGELIB.

//ADYN3203 JOB MSGLEVEL=1
//STEP EXEC PROC=ASMHCL,PARM.ASM=’NODECK,LOAD’,
// PARM.LKED=’LIST,OL,REFR,RENT,XREF’
//ASM.SYSIN DD *
UCS3YN CSECT

DC X’80’ (THIS IS A DEFAULT IMAGE)
DC AL1(6) (NUMBER OF LINES TO BE PRINTED)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 1)
DC AL1(42) (42 CHARACTERS TO BE PRINTED ON LINE 2)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 3)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 4)
DC AL1(42) (42 CHARACTERS TO BE PRINTED ON LINE 5)
DC AL1(39) (39 CHARACTERS TO BE PRINTED ON LINE 6)

* THE FOLLOWING SIX LINES REPRESENT THE TRAIN IMAGE
DC C’1234567890STABCDEFGHIJKLMNOPQRUVWXYZ*,.’
DC C’1234567890STABCDEFGHIJKLMNOPQRUVWXYZ*,.#-$’
DC C’1234567890STABCDEFGHIJKLMNOPQRUVWXYZ*,.’
DC C’1234567890STABCDEFGHIJKLMNOPQRUVWXYZ*,.’
DC C’1234567890STABCDEFGHIJKLMNOPQRUVWXYZ*,.#-$’
DC C’1234567890STABCDEFGHIJKLMNOPQRUVWXYZ*,.’

* THE FOLLOWING FOUR DC INSTRUCTIONS DEFINE THE ASSOCIATIVE BITS,
* UCSB BYTE POSITIONS 241-304

DC X’C01010101010101010100040000000000010’
DC X’101010101010101000404000000040001010’
DC X’101010101010004000000000101010101010’
DC X’10101010004000000000’
END

/*
//LKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS3YN),DISP=OLD,
// SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 52. Code to Add a 3203 UCS Image to SYS1.IMAGELIB

Maintaining IMAGELIB

460 z/OS V2R1.0 DFSMSdfp Advanced Services

In the sample code in the Figure 51 on page 459, Figure 52 on page 460, and
Figure 53 be aware of the following:

v The RENT linkage editor attribute is required.
v For the 3203 and 3211 printers, to avoid data checks code the 64 bytes of

associative bits. To determine how to code these bits for a particular image, see
IBM 3203 Printer Component Description and Operator's Guide or IBM 3211 Printer,
3216 Interchangeable Train Cartridge, and 3811 Printer Control Unit Component
Description and Operator's Guide.

v Executing the ASMHCL procedure does not generate executable code. The
assembler/linkage editor merely places the UCS image into SYS1.IMAGELIB.

v The SPACE parameter is overridden here because the ASMHCL cataloged
procedure has secondary allocation specified. You can specify use of the original
secondary allocation amount by deleting the override.

//ADDA11 JOB MSGLEVEL=1

//STEP EXEC PROC=ASMHCL,PARM.ASM=’NODECK,LOAD’,

// PARM.LKED=’LIST,OL,REFR,RENT,XREF’

//ASM.SYSIN DD *

UCS2A11 CSECT
X’80’

AL1(9)

AL1(48)

AL1(48)

AL1(48)

AL1(48)

AL1(48)

AL1(48)

AL1(48)

AL1(48)

AL1(48)

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

(THIS IS A DEFAULT IMAGE)

(NUMBER OF LINES TO BE PRINTED)

(48 CHARACTERS TO BE PRINTED ON LINE 1)

(48 CHARACTERS TO BE PRINTED ON LINE 2)

(48 CHARACTERS TO BE PRINTED ON LINE 3)

(48 CHARACTERS TO BE PRINTED ON LINE 4)

(48 CHARACTERS TO BE PRINTED ON LINE 5)

(48 CHARACTERS TO BE PRINTED ON LINE 6)

(48 CHARACTERS TO BE PRINTED ON LINE 7)

(48 CHARACTERS TO BE PRINTED ON LINE 8)

(48 CHARACTERS TO BE PRINTED ON LINE 9)

* THE FOLLOWING NINE LINES REPRESENT THE TRAIN IMAGE

* NOTE 2 AMPERSANDS MUST BE CODED TO GET 1 IN ASSEMBLER SYNTAX

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

C’1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432’

C’1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432’

C’1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432’

C’1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432’

C’1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432’

C’1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432’

C’1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432’

C’1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432’

C’1<.+IHGFEDCBA*$-RQPONMLKJ%,&&ZYXWVUTS/@#098765432’

15X’00’ (RESERVED FIELD, BYTES 433-447)

* THE FOLLOWING FOUR DC INSTRUCTIONS DEFINE THE ASSOCIATIVE BITS,

* UCSB BYTE POSITIONS 448-5111

DC

DC

DC

DC

DC

END

X’C01010101010101010100040404240004010’

X’101010101010101000404041000040401010’

X’101010101010004040000000101010101010’

X’10101010004040444800’

X’00’ (RESERVED FIELD, BYTE 512)

/*

//LKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS2A11”DISP=OLD,

// SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 53. Sample Code to Add a 3211 UCS Image to SYS1.IMAGELIB

Maintaining IMAGELIB

Appendix B. Maintaining the System Image Library 461

UCS Image Alias Names
Alias names are provided for many of the IBM-supplied print bands and trains.
For example, if the data set were printed on a 3211, a request for the 1403 TN train
would assign the T11 train. The assigned alias names that follow the naming
conventions currently used in SYS1.IMAGELIB are:

Image Alias

UCS1AN UCS1A11
UCS1HN UCS1H11
UCS1PN UCS1P11
UCS1TN UCS1T11
UCS2A11 UCS2AN
UCS2H11 UCS2HN
UCS2P11 UCS2PN, UCS2RN, UCS2QN
UCS2T11 UCS2TN

The image and alias names are included in SYS1.IMAGELIB at system installation.

Some bands/trains, such as SN and G11, do not have aliases because neither has
an equivalent band/train on the other printer. An installation can assign an alias, if
it chooses. (For details about the ALIAS statement, see z/OS MVS Program
Management: User's Guide and Reference.) If you do not specify a name (or alias),
you must specify an installation-defined SYSOUT class or a printer routing code to
assign the data set to the correct printer. If JES is directed to print a data set on a
printer for which the specified image does not exist, JES notifies the operator. The
operator can then cause the data set to be printed with a valid band/train or
redirect the data set to the proper printer. If an installation defines a new
band/train, it can supply an alias name for it through the ALIAS statement when
including the image in SYS1.IMAGELIB.

UCS Image Tables in SYS1.IMAGELIB
This section applies only to the IBM 3262 Model 5, 4245 , 4248, and 6262 Model 14
printers. SYS1.IMAGELIB does not contain UCS images for these printers, but,
instead, contains image tables. If you are running the printer in 3211 compatibility
mode, UCS information is contained in image tables. Use the 3211-related sections
of this chapter. The UCS image for each band is stored within the printer and is
automatically loaded into the UCS buffer when you turn on machine power or
install a new band. See Figure 54 on page 463 for the format of image table entries,
and “Adding or Modifying a UCS Image Table Entry” on page 466 for information
on how to add or modify an image table entry.

SYS1.IMAGELIB contains one UCS image table for each type of printer that
supports image tables. An image table contains an entry for most
installation-standard IBM-supplied bands. The 4245 image table is named UCS5.
The shared 4248, 3262 Model 5, and 6262 Model 14 image table is named UCS6.

Alias Names in UCS Image Tables
The image tables also define alias names for most installation-standard print bands
used on the IBM 4245 and 4248 printers. The IBM-supplied image tables do not
provide alias names for the IBM 3262 Model 5 or 6262 Model 14 printers.

Maintaining IMAGELIB

462 z/OS V2R1.0 DFSMSdfp Advanced Services

Some print bands, such as SN and KA22, do not have alias names because there is
no equivalent band on other printers. You can add an alias name by adding or
modifying an entry in the appropriate UCS image table. See “Adding or Modifying
a UCS Image Table Entry” on page 466. A typical UCS image table entry is shown
in Figure 54.

Notes to Figure 54:

1. This field is optional. The description data field is of variable length, up to a
maximum of 32 bytes.

2. This field is optional for the 4245 Printer. For the 3262 Model 5, 4248, and 6262
Model 14, this field does not apply and is set to X'00'.

The contents of the UCS image table UCS5 (IGGUCS5 macro) for the 4245 Printer
are shown in Table 101.

Table 101. UCS5 Image Table Contents

Name Alias Default Description

AN21 AN21 YES Default UCS image

AN21 AN NO 1403/3203 AN image

AN21 A11 NO 3211 A11 image

AN21 40E1 NO 4248 40E1 image

HN21 HN21 NO Nondefault UCS image

0 1-4 5-8 9 10 11 16 1712-15

Description
data

Length of description
data

Lengths of verification lines
(VLENGTH); one byte per line

Number of verification lines

Reserved (set to zero)

Description offset (set to zero if omitted)

Verification offset (set to zero if omitted)

UCS Image name

Length of this entry

UCS Image Name or Alias (1- to 4-character name, left-justified
and padded to a 4-character length with blanks, if necessary)

Flag byte: X’00’ - Non-default image
X’40’ - Fold image
X’80’ - Default image
X’C0’ - Fold image/Default

1

1

2

2

Figure 54. UCS Image Table Entry Format

Maintaining IMAGELIB

Appendix B. Maintaining the System Image Library 463

Table 101. UCS5 Image Table Contents (continued)

Name Alias Default Description

HN21 HN NO 1403/3203 HN image

HN21 H11 NO 3211 H11 image

HN21 4101 NO 4248 4101 image

PL21 PL21 NO Nondefault UCS image

PL21 PN NO 1403/3203 PN image

PL21 P11 NO 3211 P11 image

PL21 4121 NO 4248 4121 image

SN21 SN21 NO Nondefault UCS image

SN21 4201 NO 4248 4201 image

TN21 TN21 NO Nondefault UCS image

TN21 TN NO 1403/3203 TN image

TN21 T11 NO 3211 T11 image

TN21 4181 NO 4248 4181 image

GN21 GN21 NO Nondefault UCS image

GN21 G11 NO 3211 G11 image

GN21 41C1 NO 4248 41C1 image

RN21 RN21 NO Nondefault UCS image

RN21 RN NO 1403/3203 RN image

KA21 KA21 NO Nondefault UCS image

KA21 4041 NO 4248 4041 image

KA22 KA22 NO Nondefault UCS image

FC21 FC21 NO Nondefault UCS image

FC21 4161 NO 4248 4161 image

The contents of the UCS image table UCS6 (IGGUCS6 macro), for the 4248 printer,
are shown in Table 102.

Table 102. UCS6 Image Table Contents

Name Alias Default Description

40E1 40E1 YES Default UCS image

40E1 AN21 NO 4245 AN21 image

40E1 AN NO 1403/3203 AN image

40E1 A11 NO 3211 A11 image

4101 4101 NO Nondefault UCS image

4101 HN21 NO 4245 HN21 image

4101 HN NO 1403/3203 HN image

4101 H11 NO 3211 H11 image

41C1 41C1 NO Nondefault UCS image

41C1 GN21 NO 4245 GN21 image

41C1 G11 NO 3211 G11 image

4121 4121 NO Nondefault UCS image

Maintaining IMAGELIB

464 z/OS V2R1.0 DFSMSdfp Advanced Services

Table 102. UCS6 Image Table Contents (continued)

Name Alias Default Description

4121 PL21 NO 4245 PL21 image

4121 PN NO 1403/3203 PN image

4121 P11 NO 3211 P11 image

4181 4181 NO Nondefault UCS image

4181 TN21 NO 4245 TN21 image

4181 TN NO 1403/3203 TN image

4181 T11 NO 3211 T11 image

4061 4061 NO Nondefault UCS image

40C1 40C1 NO Nondefault UCS image

4161 4161 NO Nondefault UCS image

4161 FC21 NO 4245 FC21 image

4201 4201 NO Nondefault UCS image

4201 SN21 NO 4245 SN21 image

4041 4041 NO Nondefault UCS image

4041 KA21 NO 4245 KA21 image

Tip: The image tables for the 4245 and 4248 printers include USA and Canada
band IDs only. To support other national band IDs, modify the UCS image table.
See Table 103 and “Adding or Modifying a UCS Image Table Entry” on page 466.

The 3262 Model 5 and 6262 Model 14 printers use the 4248 UCS image table,
UCS6. However, IBM does not provide band names or aliases for either the 3262
Model 5 or 6262 Model 14 printer. To use 3262 Model 5 or 6262 Model 14 UCS
images, add the names and aliases to UCS6. “Adding or Modifying a UCS Image
Table Entry” on page 466 describes how to add entries to the UCS image table. For
a list of the bands available for the 3262 Model 5, see Table 103. For a list of the
bands available for the 6262 Model 14, see IBM 6262 Printer Print Band Manual and
IBM 6262 Printer Model 014 User's Guide.

For Table 103, be aware of the following:
v You can define any 1- to 4-character name as aliases of the UCS6 Band names.
v xx designates switch settings that are ignored. Switch number 3 must be on if

you are using a special order (RPQ) band.
v Note that bb here represents a space.

Table 103. 3262 Model 5 Print Bands

Character Set Name UCS6 Band Name 3262 Model 5 Band Image
Select Switch Settings
(positions 1-8)

U.S./International
48 char EBCDIC 00bb xx00 0000
63 char EBCDIC 01bb xx00 0001
64 char EBCDIC 02bb xx00 0010
96 char EBCDIC 03bb xx00 0011
48 char AON OCR 04bb xx00 0100
48 char BON OCR 05bb xx00 0101

Maintaining IMAGELIB

Appendix B. Maintaining the System Image Library 465

Table 103. 3262 Model 5 Print Bands (continued)

Character Set Name UCS6 Band Name 3262 Model 5 Band Image
Select Switch Settings
(positions 1-8)

Austria/Germany
52 char EBCDIC 06bb xx00 0110
63 char EBCDIC 07bb xx00 0111
64 char EBCDIC 08bb xx00 1000
96 char EBCDIC 09bb xx00 1001
52 char AON OCR 0Abb xx00 1010
52 char BON OCR 0Bbb xx00 1011
Canada/French
116 char EBCDIC 0Cbb xx00 1100
Katakana
96 char EBCDIC 0Dbb xx00 1101
128 char EBCDIC 0Ebb xx00 1110
UINN
128 char U.S. text 0Fbb xx00 1111
WTNN
128 char World Trade text 10bb xx01 0000

Adding or Modifying a UCS Image Table Entry
To use a new UCS image name/alias with the 3262 Model 5, 4245, 4248, or 6262
Model 14 printers, add an entry for that image name/alias to the UCS image table.
Use the assembler to create the image table object module, then link-edit the object
module into SYS1.IMAGELIB, as shown in the following procedure. Similarly, to
specify other images as defaults or change the description on an old image, change
the image table.

To build new UCS table entries, or to change the format of old entries, use the
following procedure. For examples of coding the IGGUCSIT macro, see Figure 55
on page 469 and Figure 56 on page 470.
1. To build a new UCS image table entry issue the IGGUCSIT macro, as described

in the following text. If you are updating the image table as shown in the
following examples, the linkage editor builds a new entry at the start of the
table, even if you intended to replace an existing entry. When the system
subsequently uses the table, it encounters the new entry first, thus the old one
is effectively replaced.

2. Include the UCS image table source, using the IGGUCS5 or IGGUCS6 macro,
both of which reside in SYS1.MODGEN.

3. Assemble the image table module (UCS5 or UCS6).
4. Link-edit the assembled module into SYS1.IMAGELIB.

Requirement: The RENT linkage editor attribute is required.

The format of the IGGUCSIT macro is:

Maintaining IMAGELIB

466 z/OS V2R1.0 DFSMSdfp Advanced Services

MF=LIST or DSECT
Specifies the form of the macro instruction.

LIST
Produces a UCS image table entry based on the information supplied in
other IGGUCSIT parameters. If LIST is selected or allowed to default, the
NAME parameter must also be coded.

DSECT
Produces a DSECT for a single UCS image table entry, similar to the
sample entry shown in Figure 54 on page 463. If you code DSECT, all other
parameters of IGGUCSIT are ignored.

LIST is the default.

NAME=image_name
Specifies the one to four character UCS image name.

ALIAS=image_alias
Specifies a one to four character alias name for the UCS image. If ALIAS is not
specified, the image name coded in the NAME parameter will be entered in
the UCS image table.

Exception: The 3262, 4248, and 6262 printers have no band IDs in common.
Because these devices all use the UCS6 image table, select a unique alias name
for each of these printer types. The alias must not appear in the image table
more than once.

DEFAULT=YES or NO
Indicates whether the new UCS image is to be used as a default value.

YES
Indicates that this UCS image is a default. Default images are used by the
system for jobs that do not request a specific image.

NO Indicates that this UCS image should not be used as a default.

If the DEFAULT parameter is not specified, the new UCS image is not used as
a default.

DESCR=description
Specifies descriptive information about the new UCS image. description can be
up to 32 EBCDIC or hexadecimal characters long. You cannot use EBCDIC and
hexadecimal characters in combination.

�� IGGUCSIT
LIST

MF= DSECT ,NAME=image_name
,ALIAS=image_alias

�

�
NO

,DEFAULT= YES
,DESCR=description 4245

,DEVICE= 4248

�

�
,VLENGTH=(n1,n2,...n) NO

,FOLD= YES

��

Maintaining IMAGELIB

Appendix B. Maintaining the System Image Library 467

Descriptive information is placed in the header line of the verification display,
following the real UCS image name. If you omit the DESCR parameter, no
description appears in the display. For more information on the verification
display, see “Verifying the UCS Image” on page 470.

If VLENGTH is not specified for the 4245 Printer, the DESCR parameter is
ignored.

DEVICE=4245 or 4248
Specifies the type of device for which an image table entry is to be created.

If you specify MF=LIST on the first invocation of the IGGUCSIT macro,
DEVICE defaults to 4245. The default for subsequent invocations is the printer
type that you specified (or the default) on the first invocation. Table entries
with different DEVICE specifications are not allowed.

For the 3262 Model 5 or 6262 Model 14 printers, DEVICE=4248 should be
specified to create the appropriate form of the image table entry.

VLENGTH=(n1,n2,. . . n)
Specifies the lengths of each line in the UCS verification display. The length of
each line must be specified separately, even if all lines are of the same length.

n1 is the length of print line 1; n2 is the length of print line 2; n is the length of
the last print line. To display the complete image, the sum of the verification
line lengths should equal 350.

For details on the verification report, see “Verifying the UCS Image” on page
470.

The VLENGTH parameter is not valid for the 3262 Model 5, 4248, or 6262
Model 14 printers.

FOLD=YES or NO
Indicates whether the UCS image is to be folded.

YES
Indicates that the UCS image is to be folded. Allows printing only
uppercase characters from either upper- or lowercase data codes. Folding
continues until an UNFOLD command is received.

NO Indicates that the UCS image is not to be folded. This is the default.

Adding to the UCS Image Table
In Figure 55 on page 469, the band name RPQ1 with description “RPQ BAND” is
added to UCS5. In the UCS verification display, 7 lines of 50 characters each are
printed. Macro IGGUCS5 causes the UCS image table source (as distributed by
IBM) to be included in the table entry.

Maintaining IMAGELIB

468 z/OS V2R1.0 DFSMSdfp Advanced Services

When adding a new band ID to the 4245 UCS image table as shown in Figure 55,
be aware of the following:
v The RENT linkage editor attribute is required.
v Executing the ASMHCL procedure does not generate executable code. The

assembler/linkage editor places the updated UCS image table into
SYS1.IMAGELIB.

v The SPACE parameter is overridden here because the ASMHCL cataloged
procedure has a secondary allocation specified. Eliminating the override causes
the original secondary allocation amount to be used.

In Figure 56 on page 470 the band name 40E1 DEFAULT BAND has been added to
UCS6 and defined as a default band. An alias name, HN21, is also defined for
band 40E1. Macro IGGUCS6 causes the UCS image table source (as distributed by
IBM) to be included in the table entry.

72
//UCS5 JOB . . .
// EXEC ASMHCL,
// PARM.ASM=’NODECK,LOAD’,
// PARM.LKED=’OL,RENT,REUS’
//SYSPRINT DD SYSOUT=A
//ASM.SYSIN DD *

TITLE ’UPDATED UCS5 IMAGE TABLE’
UCS5 CSECT

IGGUCSIT NAME=RPQ1, X
VLENGTH=(50,50,50,50,50,50,50), X
DESCR=’RPQ BAND’

IGGUCS5
END

/*
//LKED.SYSLMOD DD DSN=SYS1.IMAGELIB(UCS5),DISP=OLD,
// SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 55. Adding a New Band ID to the 4245 UCS Image Table (UCS5)

Maintaining IMAGELIB

Appendix B. Maintaining the System Image Library 469

For Figure 56, be aware of the following:
v This method creates a duplicate entry for 40E1 that becomes the first entry in the

table. Because the table is searched sequentially, the new entry is always found
before the old entry, thus replacing the old entry.

v The RENT linkage editor attributes is required.
v Executing the ASMHCL procedure does not generate executable code. The

assembler/linkage editor places the updated UCS image table into
SYS1.IMAGELIB.

v The SPACE parameter is overridden because the ASMHCL cataloged procedure
has a secondary allocation specified. Eliminating the override causes the original
secondary allocation amount to be used.

Verifying the UCS Image
For the 1403 (with the UCS feature), 3203, 3211, 3262 Model 5, 4245, 4248, and 6262
Model 14 printers, you can print the UCS image for visual verification using either
of the following parameters:
v In JCL: UCS=(character set code,,VERIFY)
v In the SETPRT macro: UCS=(character set code,,V).

These parameters have no effect for SYSOUT data sets.

You can also use these parameters for the 3262 Model 5, 4248, and 6262 Model 14
printers. However, because the UCS image cannot be read directly from the 3262
Model 5, 4248, or 6262 Model 14, only the header information is printed. The
verification display header appears on the printer as follows:
UCS IMAGE VERIFICATION image_id [,FOLD] [description]

image_id
A one to four character name of the UCS image.

description
The descriptive information supplied for this UCS image in the UCS image
table.

72
//UCS6 JOB . . .
// EXEC ASMHCL,
// PARM.ASM=’NODECK,LOAD’,
// PARM.LKED=’OL,RENT,REUS’
//SYSLIB DD
// DD DSN=SYS1.AMODGEN,DISP=SHR
//SYSPRINT DD SYSOUT=A
//ASM.SYSIN DD *

TITLE ’UPDATED UCS6 IMAGE TABLE’
UCS6 CSECT

IGGUCSIT NAME=40E1, X
DEVICE=4248, X
ALIAS=HN21, X
DEFAULT=YES, X
DESCR=’40E1 DEFAULT BAND’

IGGUCS6
END

/*
//LKED.SYSLMOD DD DSN=SYS1.IMAGELIB(UCS6),DISP=OLD,
// SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 56. Adding a New Default Entry to the 4248 UCS Image Table (UCS6).

Maintaining IMAGELIB

470 z/OS V2R1.0 DFSMSdfp Advanced Services

For more information about the UCS VERIFY parameters, see z/OS MVS JCL
Reference and z/OS DFSMS Macro Instructions for Data Sets.

FCB Images in SYS1.IMAGELIB
Two standard FCB images, STD1 and STD2, are included in SYS1.IMAGELIB
during system installation. The names of these standard images begin with the
characters “FCB2”. You can define FCB images whose names begin with “FCB4”
for the 4248, 3262 Model 5, and 6262 Model 14 Printers. These printers can use
both the “FCB2”-prefixed images (referred to as 3211 format FCBs) and the
“FCB4”-prefixed images. All other printers, except the 3800, can use only
“FCB2”-prefixed images.

This section describes how you can create or replace “FCB2”-prefixed images. z/OS
DFSMSdfp Utilities describes how you can use the IEBIMAGE utility program to
create, update, or replace an “FCB4”-prefixed image for the 3262 Model 5, 4248, or
6262 Model 14 Printers. For details about the “FCB4”-prefixed images, see either
IBM 6262 Printer Model 014 Product Description or IBM 4248 Printer Model 1
Description.

The 3262 Model 5, 4245, 4248, and 6262 Model 14 printers each load a default FCB
image into the buffer when they are powered on. The 3262 Model 5 default FCB
image is an 11-inch form with 6 lines per inch, a Channel 1 on the third print line,
and a Channel 12 on line 64. The 4245 default FCB image is an 11-inch form with 6
lines per inch and a Channel 1 on the first print line. The 4248 default FCB image
is the last FCB image loaded. The 6262 Model 14 default FCB image is either the
last FCB image loaded and saved or the default shipped with the printer.

STD1 sets line spacing at 6 lines per inch for an 8½ inch form; STD2 is a default
FCB image that sets line spacing at 6 lines per inch for an 11-inch form. Channels
for both images are evenly spaced, with Channel 1 on the fourth line and Channel
9 on the last line. See Figure 57 on page 472 and Figure 58 on page 473 for the
format of the standard STD1 and STD2 images.

The standard FCB image for the 3800 Printing Subsystem, STD3, is included in
SYS1.IMAGELIB during system installation. All models of the 3800 use FCB images
whose names begin with “FCB3”. Use the IEBIMAGE utility to create and modify
FCB modules for the 3800 Printing Subsystem.

Maintaining IMAGELIB

Appendix B. Maintaining the System Image Library 471

FCB2STD1 CSECT
DC X’80’ DEFAULT
DC AL1(48) FCB IMAGE LENGTH = 48
DC X’000000’ LINE 1, 2, 3
DC X’01’ LINE 4, CHANNEL 1
DC X’000000’ LINE 5, 6, 7
DC X’02’ LINE 8, CHANNEL 2
DC X’000000’ LINE 9, 10, 11
DC X’03’ LINE 12, CHANNEL 3
DC X’000000’ LINE 13, 14, 15
DC X’04’ LINE 16, CHANNEL 4
DC X’000000’ LINE 17, 18, 19
DC X’05’ LINE 20, CHANNEL 5
DC X’000000’ LINE 21, 22, 23
DC X’06’ LINE 24, CHANNEL 6
DC X’000000’ LINE 25, 26, 27
DC X’07’ LINE 28, CHANNEL 7
DC X’000000’ LINE 29, 30, 31
DC X’08’ LINE 32, CHANNEL 8
DC X’000000’ LINE 33, 34, 35
DC X’0A’ LINE 36, CHANNEL 10
DC X’000000’ LINE 37, 38, 39
DC X’0B’ LINE 40, CHANNEL 11
DC X’000000’ LINE 41, 42, 43
DC X’0C’ LINE 44, CHANNEL 12
DC X’000000’ LINE 45, 46, 47
DC X’19’ LINE 48, CHANNEL 9-END OF FCB IMAGE
END

Figure 57. Format of the Standard STD1 FCB Image

Maintaining IMAGELIB

472 z/OS V2R1.0 DFSMSdfp Advanced Services

See the following information:
v “Adding an FCB Image to the Image Library”
v “Modifying an FCB Image” on page 475

Adding an FCB Image to the Image Library
You can add a 3211-format FCB image to those that reside in SYS1.IMAGELIB,
using the assembler and linkage editor. No executable code is generated; the
assembler prepares DCs, and the linkage editor links them into SYS1.IMAGELIB.
The new FCB image must be structured according to the following rules:
1. The member name cannot exceed 8 bytes and must begin with the prefix FCB2.

The characters that follow identify the FCB image and are referred to as the
image identifier (ID). Any combination of valid assembler language characters
can be used, with the exception of a single 'C' or 'U', because these are used by
the system to recognize special conditions. To load the image into the FCB
buffer, the image identifier must be specified in the FCB keyword of a DD
statement or in the SETPRT macro.

2. The first byte of the FCB load module specifies whether the image is the
default. (Default images are used by the system for jobs that do not request a
specific image.) Specify the following in the first byte:

Value Meaning

X'80' Indicates a default image
X'00' Indicates a nondefault image

FCB2STD2 CSECT
DC X’80’ DEFAULT
DC AL1(66) FCB IMAGE LENGTH = 66
DC X’000000’ LINE 1, 2, 3
DC X’01’ LINE 4, CHANNEL 1
DC X’0000000000’ LINE 5, 6, 7, 8, 9
DC X’02’ LINE 10, CHANNEL 2
DC X’0000000000’ LINE 11, 12, 13, 14, 15
DC X’03’ LINE 16, CHANNEL 3
DC X’0000000000’ LINE 17, 18, 19, 20, 21
DC X’04’ LINE 22, CHANNEL 4
DC X’0000000000’ LINE 23, 24, 25, 26, 27
DC X’05’ LINE 28, CHANNEL 5
DC X’0000000000’ LINE 29, 30, 31, 32, 33
DC X’06’ LINE 34, CHANNEL 6
DC X’0000000000’ LINE 35, 36, 37, 38, 39
DC X’07’ LINE 40, CHANNEL 7
DC X’0000000000’ LINE 41, 42, 43, 44, 45
DC X’08’ LINE 46, CHANNEL 8
DC X’0000000000’ LINE 47, 48, 49, 50, 51
DC X’0A’ LINE 52, CHANNEL 10
DC X’0000000000’ LINE 53, 54, 55, 56, 57
DC X’0B’ LINE 58, CHANNEL 11
DC X’0000000000’ LINE 59, 60, 61, 62, 63
DC X’0C’ LINE 64, CHANNEL 12
DC X’00’ LINE 65
DC X’19’ LINE 66, CHANNEL 9-END OF FCB IMAGE
END

Figure 58. Format of the Standard STD2 FCB Image

Maintaining IMAGELIB

Appendix B. Maintaining the System Image Library 473

3. The second byte of the load module indicates the number of bytes to be
transferred to the control unit to load the FCB image. This count includes the
byte, if used, for the print position indexing feature.

4. The third byte of the load module (the first byte of the FCB image) is either the
print position indexing byte, or the lines-per-inch byte. The print position
indexing byte is optional and, when used, precedes the lines-per-inch byte. The
3203 Model 5, 3262 Model 5, 4245, 4248, and 6262 Model 14 printers accept and
discard the index byte if it is present, because they do not support the indexing
feature. A description of the print position indexing feature and its use can be
found in the publication IBM 3211 Printer, 3216 Interchangeable Train Cartridge,
and 3811 Printer Control Unit Component Description and Operator's Guide.

The special index flag in the third byte contains X'80' plus a binary index value,
from 1 to 32 (the default is 1). This index value sets the left margin: 1 indicates
flush-left; any other value indicates a line indented the specified number of
spaces.
The form image begins with the lines-per-inch (LPI) byte. The LPI byte defines
the number of lines per inch (6 or 8) and also represents the first line of the
page.

Requirement: Printers controlled by JES2 require a channel 1 identifier here.
Typically, the length of an FCB image is consistent with the length of the form
it represents. For example, an 8½ inch form to be printed at 6 LPI has an FCB
image that is 51 bytes long (8½ inches times 6 LPI).
The LPI byte appears as follows:

Value Meaning

X'1n' Sets 8 LPI
X'0n' Sets 6 LPI

5. All remaining bytes (lines) must contain X'0n', except the last byte, which must
be X'1n'. The letter n can be a hexadecimal value from 1 to C, representing a
channel (one to 12), or it can be 0, which means no channel is indicated.

In Figure 59 on page 475, an FCB load module is assembled and added to
SYS1.IMAGELIB. The image defines a print density of 8 lines per inch on an
11-inch form, with a right shift of 15 line character positions (1½ inches).

Maintaining IMAGELIB

474 z/OS V2R1.0 DFSMSdfp Advanced Services

For Figure 59, be aware of the following:
v The RENT linkage editor attribute is required.
v Executing the ASMHCL procedure does not generate executable code. The

assembler/linkage editor is used to place the FCB image into SYS1.IMAGELIB.
v The SPACE parameter is overridden here because the ASMHCL cataloged

procedure has a secondary allocation specified. Eliminating the override causes
the original secondary allocation amount to be used.

Modifying an FCB Image
To modify an FCB image in virtual storage before loading it into a forms control
buffer, use the following sequence of macro instructions to read the FCB image into
virtual storage.
1. An IMGLIB macro instruction, along with the OPEN parameter.
2. A BLDL macro instruction to determine if the FCB image is in the image

library.
3. A LOAD macro instruction to load the image into virtual storage.

//ADDFCB JOB MSGLEVEL=1
//STEP EXEC PROC=ASMHCL,PARM.ASM=’NODECK,LOAD’,
// PARM.LKED=’LIST,OL,REFR,RENT,XREF’
//ASM.SYSIN DD *
FCB2ID1 CSECT
*THIS EXAMPLE IS FOR A FORM LENGTH OF 11 INCHES WITH 8 LPI (88 LINES)

DC X’80’ THIS IS A DEFAULT IMAGE
DC AL1(89) LENGTH OF FCB IMAGE AND INDEXING BYTE
DC X’8F’ OFFSET 15 CHARACTERS TO THE RIGHT
DC X’10’ 8 LINES PER INCH-NO CHANNEL FOR LINE 1
DC XL4’0’ 4 LINES NO CHANNEL
DC X’01’ CHANNEL 1 IN LINE 6
DC XL6’0’ 6 LINES NO CHANNEL
DC X’02’ CHANNEL 2 IN LINE 13
DC XL6’0’ 6 LINES NO CHANNEL
DC X’03’ CHANNEL 3 IN LINE 20
DC XL6’0’ 6 LINES NO CHANNEL
DC X’04’ CHANNEL 4 IN LINE 27
DC XL6’0’ 6 LINES NO CHANNEL
DC X’05’ CHANNEL 5 IN LINE 34
DC XL6’0’ 6 LINES NO CHANNEL
DC X’06’ CHANNEL 6 IN LINE 41
DC XL6’0’ 6 LINES NO CHANNEL
DC X’07’ CHANNEL 7 IN LINE 48
DC XL6’0’ 6 LINES NO CHANNEL
DC X’08’ CHANNEL 8 IN LINE 55
DC XL6’0’ 6 LINES NO CHANNEL
DC X’09’ CHANNEL 9 IN LINE 62
DC XL6’0’ 6 LINES NO CHANNEL
DC X’0A’ CHANNEL 10 IN LINE 69
DC XL6’0’ 6 LINES NO CHANNEL
DC X’0B’ CHANNEL 11 IN LINE 76
DC XL6’0’ 6 LINES NO CHANNEL
DC X’0C’ CHANNEL 12 IN LINE 83
DC XL4’0’ 4 LINES NO CHANNEL
DC X’10’ POSITION 88 LAST LINE IN IMAGE
END

/*
//LKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(FCB2ID1),DISP=OLD,
// SPACE= (OVERRIDE SECONDARY ALLOCATION)

Figure 59. Sample Code to Assemble and Add an FCB Load Module to SYS1.IMAGELIB

Maintaining IMAGELIB

Appendix B. Maintaining the System Image Library 475

4. After the image has been read in, issue the IMGLIB macro instruction with the
CLOSE. parameter and the address of the DCB built by the first IMGLIB macro.

A SETPRT macro instruction can be used to load the forms control buffer with the
modified image. Printers other than the 3800 require the use of an FCB entry in an
exit list, as described in z/OS DFSMS Using Data Sets.

The formats of the BLDL and SETPRT macros are given in z/OS DFSMS Macro
Instructions for Data Sets; the format of the LOAD macro is given in z/OS MVS
Programming: Assembler Services Guide and z/OS MVS Programming: Assembler
Services Reference ABE-HSP.

The format of the IMGLIB macro is:

OPEN
Opens SYS1.IMAGELIB and specifies that a DCB is to be built for it. The
address of the DCB is returned in register 1.

CLOSE
Closes SYS1.IMAGELIB.

addr
Specifies the RX-type address of a word that points to the DCB. If coded in the
form (reg), the register in parentheses contains the address of the DCB, not the
address of the word.

Return Codes from IMGLIB
Return codes from the IMGLIB macro with the OPEN parameter are as follows:

Return Code Meaning

0 (X'00') Operation successful.
4 (X'04') Either the volume containing SYS1.IMAGELIB is not

mounted or a required catalog volume is not mounted.
8 (X'08') Either SYS1.IMAGELIB does not exist on the volume to

which the catalog points, or SYS1.IMAGELIB is not
cataloged.

12 (X'0C') An error occurred in reading the catalog or VTOC.

BLDL and LOAD are the only macros that can refer to the DCB built by the
IMGLIB macro.

JES Support for the 3211 Indexing Feature
JES2 supports the 3211 indexing feature in two ways:
v Specification of the INDEX parameter on the /*OUTPUT card.
v The extended FCB image.

The system supplies two special FCBs: FCB26 for 6 lines per inch and FCB28 for 8
lines per inch (specified as FCB=6 and FCB=8, respectively). These FCBs contain a

�� IMGLIB
label

OPEN
CLOSE,addr

��

Maintaining IMAGELIB

476 z/OS V2R1.0 DFSMSdfp Advanced Services

channel 1 indication in position 1, a special index flag in the third byte, and the
number of lines per inch in the fourth byte of the image.

The special index flag in the third byte of FCB26 and FCB28 contains X'80' plus a
binary index value, in the range 1 to 32 (default=1). The index value sets the left
margin (1 indicates flush-left; other values cause indentation of the print line by
N-1 positions).

If JES2 is to use any other FCB images, the images must specify channel 1 in
position 1; otherwise, JES2 positions the forms in the printer incorrectly. (Because
STD1 and STD2 do not specify channel 1 in position 1, they must be modified for
JES2.)

If the third byte of any other FCB image (specifying the number of lines per inch)
contains a data character other than X'80', JES2 uses that specification and supplies
an index value of 1.

JES3 does not support the 3211 indexing feature, and any indexing commands
from JES3 are ignored by the 3203 Model 5.

Maintaining IMAGELIB

Appendix B. Maintaining the System Image Library 477

478 z/OS V2R1.0 DFSMSdfp Advanced Services

Appendix C. Using the extended address volume (EAV)
migration assistance tracker

The EAV migration assistance tracker can help you find programs that you might
need to change if you want to support extended address volumes (EAV). The EAV
migration assistance tracker is an extension of the console ID tracking facility. It
helps you:
v Identify select systems services by job and program name, where the invoking

programs might require analysis for changes to use new services. The program
calls are identified as informational instances for possible migration actions.
They are not considered errors, because the services return valid information.

v Identify possible instances of improper use of returned information in programs,
like parsing 28-bit cylinder numbers in output as 16-bit cylinder numbers. These
instances are identified as warnings.

v Identify instances of programs that will either fail or run with an informational
message if they run on an EAV. These are identified as programs in error. The
migration assistance tracker flags programs with the following functions, when
the target volume of the operation is non-EAV, and the function invoked did not
specify the EADSCB=OK keyword:
– OBTAIN
– CVAFDIR
– CVAFSEQ
– CVAFDSM
– CVAFFILT
– CVAFVSM - Note that the CVAFVSM interface is an internal system function

that is not documented externally for general use.
– OPEN of VTOC
– DCB OPEN of an EAS eligible data set

This allows the system programmer to identify programs in error by job and
program name, without failing the programs. It also allows you to exclude
programs that are not yet ready for evaluation.
Programs identified in this phase of migration assistance tracking will continue
to fail if the system service is issued for an EAV if you do not specify the
EADSCB=OK keyword for them.

The EAV migration assistance tracker can be manipulated with the following
commands:
v The SETGTZ operator command, which is used to activate and deactivate the

tracking facility.
v The DISPLAY GTZ[,STATUS] operator command, which is used to display the

current status of the tracking facility.
v The DISPLAY GTZ,TRACKDATA operator command, which is used to display

any recorded instances of violations.
v The GTZPRMxx dynamic parmlib member, which is used to list violations that

have already been identified in order to prevent them from being recorded
again.

See console ID tracking facility in z/OS MVS Diagnosis: Tools and Service Aids for
more information.

© Copyright IBM Corp. 1979, 2014 479

|
|

|
|

The following describe the instances identified and recorded by the EAV migration
assistance tracker:
v “Information conventions for the EAV migration assistance tracker”
v “DFSMS instances tracked by the EAV migration assistance tracker” on page 481

Information conventions for the EAV migration assistance tracker
The information returned by the EAV migration assistance tracker describes the
occurrence of an instance in text. Like the console ID tracking facility, the EAV
migration assistance tracker returns tracking information and a tracking value. The
tracking information can be from 1 to 28 characters in length and the system can
set any EBCDIC value. The tracking value is four bytes of binary data associated
with this instance. For DFSMS, these values include data to associate an instance to
a specific DFSMS function and to define the reason for the instance being recorded.
This standard allows for maximum flexibility in defining exclusion records that
apply to DFSMS records.

The conventions for the tracking information and tracking value for a DFSMS
instance follow.

Tracking information
The tracking information for a DFSMS instance might look as follows:
'SMS-I:3 LSPACE MSG= '

It can be broken down into several parts:
1. The first portion of the tracking information will be set to ‘SMS-’ to identify

this as a DFSMS instance.
2. Appended to this is an error category, of "E" for error, "W" for warning, or "I"

for informational, followed by a colon.
3. Appended to the colon is a numeric value that will identify the reason for the

recorded instance. These values are
v 1 - EAV migration: EADSCB=OK keyword was not specified on an invoking

program where the target volume was non-EAV. The invoking program fails
if the target volume is an EAV.

v The invoking program would fail if the target volume was an EAV. The
following section of the tracking information indicates the error that would
have occurred. This instance is recorded in the tracker as an error message.

v 2 - EAV migration. Formatted output display may contain 28-bit cylinder
numbers. Program usage of these track addresses may need to be changed.
Use macro TRKADDR for the comparison and manipulation of 28-bit
cylinder numbers. This instance is recorded in the tracker as a warning
message.

v 3 - EAV migration. The new function is available on the invoking program.
The identified program may want to exploit the available new function. This
instance is recorded in the tracker as an informational message.

4. The remaining tracking information must be an EBCDIC value that describes
the function executing when the tracker recorded the instance.

In the example above, the 'SMS-I:3 LSPACE MSG= ' tracking information describes
a DFSMS instance as an informational instance where new function is available
that the invoking program might want to exploit. The function running when the
tracker recorded this instance was LSPACE MSG=.

EAV migration assistance tracker

480 z/OS V2R1.0 DFSMSdfp Advanced Services

Tracking value
For DFSMS instances, the EAV migration assistance tracker sets the tracking value
as follows:
v The system sets the low order byte of the track value to the same numeric value

that identifies the reason for the instance.
v The remaining high order 3-bytes are left for the function recording the tracked

instance. These 3-bytes are optional. For example, these values could be set to
return and reason codes or parameter list flags.

Note that the tracking value must be set to a non-zero value in order for the
SETCON TRACKING=ONWITHABEND to be applicable when an instance is
recorded in the tracker. If the track value is 0 or 128 no ABEND will be issued
when you specify tracking ONWITHABEND.

DFSMS instances tracked by the EAV migration assistance tracker

LSPACE (SVC 78)
An LSPACE request with the DATA=, MSG=, or EXPMSG= keywords was issued.
Additional data from track-managed space is available with the EXPDATA= and
XEXPMSG= keywords. When this instance occurs for any volume type, it will be
recorded in the tracker as an informational message.

These five keywords are mutually exclusive.

LSPACE processing (IGC0007H) will set the following tracking information:
TRPL_TRACK_INFO =

'SMS-I:3 LSPACE reqtype '
where,

reqtype = DATA= or MSG= or EXPMSG=

TRPL_TRACK_DATA =

Byte 0-1
Set to zero, not used.

Byte 2
Set to the LSPACE parameter flag byte

BIT 2 ON INDICATES THAT LSPACE WITH THE DATA= KEYWORD WAS
SPECIFIED
BIT 3 ON INDICATES THAT LSPACE WITH THE MSG= KEYWORD WAS SPECIFIED
BIT 4 ON INDICATES THAT LSPACE WITH THE EXPMSG=KEYWORD WAS
SPECIFIED

Byte 3
Set to 03.
DFSMS Tracking category 3: EAV Migration. Informational Message. New
function is available. Additional data from track-managed space is
available with the EXPDATA= and XEXPMSG= keywords.

TRPL_VIOLATORS_ADDR =

SET TO THE RESUME PSW OF THE RB THAT ISSUED SVC 78. TRACKER CODE WILL
DETERMINE JOB AND PROGRAM NAMES FROM THIS ADDRESS.

SAMPLE OUTPUT =

15.00.00 SYSTEM1 d opdata,tracking
15.00.00 SYSTEM1 CNZ1001I 15.00.00 TRACKING DISPLAY 631
STATUS=ON NUM=3 MAX=1000 MEM=7T EXCL=0 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM
SMS-I:3 LSPACE MSG= 5003 ALLOCAS IEFW21SD 4CE5C 11 1
SMS-I:3 LSPACE DATA= 2003 VTDS0IS1 VTDS0IS2 118 28 2
SMS-I:3 LSPACE EXPMSG= 8803 VTDS0IS1 VTDS0IS2 118 28 2
SMS-I:3 LSPACE MSG= 9003 *MASTER* IEE70110 52F6 01 46
--

EAV migration assistance tracker

Appendix C. Using the extended address volume (EAV) migration assistance tracker 481

SAMPLE EXCLUSION LIST =

* Jobname Pgmname *
* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
|SMS-I:3 LSPACE* |*MASTER*|IEE70110| I SMF CALLS TO LSPACE|
|SMS-I:3 LSPACE* |ALLOCAS |IEFW21SD| VARY DEVICE OFFLINE |
|SMS-I:3 LSPACE* |* |VTDSOIS2| VTDSOIS2 PROG CALLS |
|SMS-I:3 LSPACE* |VTDSOIS1|* | VTDSOIS1 JOB CALLS |

DEVTYPE (SVC 24)
A DEVTYPE request with DEVTAB or UCBLIST without INFOLIST, returns the
number of cylinders on the volume. This is in a two-byte field at offset 8, which is
too small if the volume has more than 65 520 cylinders. Consider using
INFO=DASD which returns the number of cylinders in a four-byte field. When
INFO=DASD is specified additional fields are now provided. They include (see
mapping macro IHADVA):
DVAIXVLD BIT DVACYLMG, DVAEADSCB, DVAVIRSZ valid
DVACYLMG BIT Cylinder-managed space exists on
* this volume and begins at DVALCYL
* in multicylinder units of DVAMCU.
* DVAEADSCB is also set with this
* flag on. Valid when DVAIXVLD is set.
DVAEADSCB BIT Extended attribute DSCBs, Format 8
* and 9 DSCBs, are allowed on this
* volume. Valid when DVAIXVLD is set.
DVAMCU 8-BIT UNSIGNED INTEGER
* Minimum allocation size in
* cylinders for cylinder-managed
* space. Each extent in this space
* must be a multiple of this value.
* space. Also referred to as the
* multicylinder unit (MCU). This is
* the smallest unit of disk space in
* cylinders that can be allocated
* in cylinder-managed space.
* Valid when DVACYLMG is set.
* This field is zero on releases
* before z/OS 1.10 or if the status
* is not yet known. In these two
* cases DVAIXVLD is not set.
DVALCYL 16-BIT UNSIGNED INTEGER
* First cylinder address divided by
* 4095 where space is managed in
* multicylinder units. Cyl-managed
* space begins at this address.
* Valid when DVACYLMG is set. This
* field is zero on releases before
* z/OS 1.10 or if the status is not
* yet known. In these two cases
* DVAIXVLD is not set.
DVAVIRSZ 16-BIT UNSIGNED INTEGER
* Block size of the index data set.
* Valid when DAVIXVLD is set on.
* When valid and zero the volume
* has no working VTOC index. This
* field is zero on releases before
* z/OS 1.10 or if the status is not
* yet known. In these cases
* DVAIXVLD is not set.

When this instance occurs for any volume type, it will be recorded in the tracker as
an informational message.

EAV migration assistance tracker

482 z/OS V2R1.0 DFSMSdfp Advanced Services

DEVTYPE processing (IGC0002D) will set the following tracking information:
TRPL_TRACK_INFO =

'SMS-I:3 DEVTYPE '

TRPL_TRACK_DATA =

Byte 0-2
Set to zero, not used.

Byte 3
Set to 03.

DFSMS Tracking category 3: EAV Migration. Informational Message. New
function is available. Additional data from DEVTYPE INFO=DASD
invocation is available. See mapping macro IHADVA.

TRPL_VIOLATORS_ADDR =
SET TO THE RESUME PSW OF THE RB THAT ISSUED SVC 24. TRACKER CODE WILL
DETERMINE JOB AND PROGRAM NAMES FROM THIS ADDRESS.

SAMPLE OUTPUT =

15.00.00 SYSTEM1 d opdata,tracking
15.00.00 SYSTEM1 CNZ1001I 15.00.00 TRACKING DISPLAY 631
STATUS=ON NUM=1 MAX=1000 MEM=7T EXCL=0 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM
SMS-I:3 DEVTYPE 03 DEVTJOB DEVTPROG 4CE5C 11 1
--

SAMPLE EXCLUSION LIST =

* Jobname Pgmname *
* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
|SMS*DEVTYPE* |* |* | ALL DEVTYPE |

IDCAMS LISTDATA PINNED
An IDCAMS LISTDATA PINNED request was processed. The track addresses for
the PINNED tracks may contain 28-bit cylinder numbers.

When this instance occurs for any volume type, it will be recorded in the tracker as
a warning message.

IDCAMS LISTDATA PINNED processing (IDCSS05) will set the following tracking
information:
TRPL_TRACK_INFO =

'SMS-W:2 IDCAMS LISTDATA PINN'

TRPL_TRACK_DATA =

Byte 0-2
Set to zero, not used.

Byte 3
Set to 02.

DFSMS Tracking category 2: EAV Migration. Warning Message.
An IDCAMS LISTDATA PINNED request was processed. The track addresses for the
PINNED tracks may contain 28-bit cylinder numbers.

TRPL_VIOLATORS_ADDR =

SET TO THE RESUME PSW OF THE PRB WITH A VALID POINTER (RBCDE1) TO
THE 'IDCAMS' CDNAME. USE THE PREVIOUS RB (RBLINKB) IF THIS PRB
IS NOT THE FIRST RB. TRACKER CODE WILL DETERMINE JOB AND PROGRAM
NAMES FROM THIS ADDRESS.

SAMPLE OUTPUT =

07.34.08 SYSTEM1 d opdata,tracking
07.34.08 SYSTEM1 CNZ1001I 07.34.08 TRACKING DISPLAY 673
STATUS=ON,ABEND NUM=1 MAX=1000 MEM=7T EXCL=5 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM

EAV migration assistance tracker

Appendix C. Using the extended address volume (EAV) migration assistance tracker 483

SMS-W:2 IDCAMS LISTDATA PINN 02 LISTDATA IDCAMS E48E 28 4

SAMPLE EXCLUSION LIST =

* Jobname Pgmname *
* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
|SMS*LISTDATA PINNED* |* |IDCAMS | All IDCAMS PGM CALLS |

IEHLIST LISTVTOC
An IEHLIST LISTVTOC request was processed. Extent descriptors may contain
cylinder addresses 65520 or larger. Free space descriptors may contain track
addresses 982800 or larger and/or full cylinders 65520 or larger. The generated
report will display the information in different columns as compared to reports
generated on releases prior to z/OS V1.10.

When this instance occurs for any volume type, it will be recorded in the tracker as
a warning message.

IEHLIST LISTVTOC processing will set the following tracking information:
TRPL_TRACK_INFO =

'SMS-W:2 IEHLIST LISTVTOC '

TRPL_TRACK_DATA =

Byte 0-2

Set to zero, not used.

Byte 3

Set to 02.

DFSMS Tracking category 2: EAV Migration. Warning Message.
An IEHLIST LISTVTOC request was processed. Extent descriptors may
contain cylinder addresses 65520 or larger. Free space descriptors
may contain track addresses 982800 or larger and/or full cylinders
65520 or larger. The generated report will display the information
in different columns as compared to reports generated on releases
prior to z/OS V1.10.

TRPL_VIOLATORS_ADDR =

SET TO THE RESUME PSW OF THE PRB WITH A VALID POINTER (RBCDE1) TO THE 'IEHLIST' CDNAME.
USE THE PREVIOUS RB (RBLINKB) IF THIS PRB IS NOT THE FIRST RB. TRACKER CODE WILL DETERMINE
JOB AND PROGRAM NAMES FROM THIS ADDRESS.

SAMPLE OUTPUT =

07.34.08 SYSTEM1 d opdata,tracking
07.34.08 SYSTEM1 CNZ1001I 07.34.08 TRACKING DISPLAY 673
STATUS=ON,ABEND NUM=1 MAX=1000 MEM=7T EXCL=5 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM
SMS-W:2 IEHLIST LISTVTOC 02 LNKLST LNKLST 2A 29 2
SMS-W:2 IEHLIST LISTVTOC 02 LST004 IEHLIST 2304 29 1
SMS-W:2 IEHLIST LISTVTOC 02 LST004 IEHLIST 34A6 29 1

SAMPLE EXCLUSION LIST =

* Jobname Pgmname *
* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
| SMS*IEHLIST LISTVTOC |* |IEHLIST | IEHLIST PGM CALLS |

EAV migration assistance tracker

484 z/OS V2R1.0 DFSMSdfp Advanced Services

IDCAMS DCOLLECT
An IDCAMS DCOLLECT request for 'V' (Volume Record Field) and 'VL' (SMS
Volume Definition Field) records was processed. Additional data for track-managed
space was recorded.

When this instance occurs for any volume type, it will be recorded in the tracker
an informational message.

IDCAMS DCOLLECT processing will set the following tracking information:
TRPL_TRACK_INFO =

'SMS-I:3 IDCAMS DCOLLECT '

TRPL_TRACK_DATA =

Byte 0-2

Set to zero, not used.

Byte 3
Set to 03.

DFSMS Tracking category 3: EAV Migration. Informational Message. An
IDCAMS DCOLLECT request for ’V’ (Volume Record Field) and ’VL’ (SMS
Volume Definition Field) records was processed. Additional data
for track-managed space was recorded.

TRPL_VIOLATORS_ADDR =

SET TO THE RESUME PSW OF THE PRB WITH A VALID POINTER (RBCDE1) TO THE
'IDCAMS' CDNAME. USE THE PREVIOUS RB (RBLINKB) IF THIS PRB IS NOT THE
FIRST RB. TRACKER CODE WILL DETERMINE JOB AND PROGRAM NAMES FROM THIS
ADDRESS.

SAMPLE OUTPUT =

07.34.08 SYSTEM1 d opdata,tracking
07.34.08 SYSTEM1 CNZ1001I 07.34.08 TRACKING DISPLAY 673
STATUS=ON,ABEND NUM=1 MAX=1000 MEM=7T EXCL=5 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM
SMS-I:3 IDCAMS DCOLLECT 03 DCOLLECT IDCAMS xxx 28 4

SAMPLE EXCLUSION LIST =

* Jobname Pgmname *
* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
|SMS*DCOLLECT* |* |IDCAMS | IDCAMS DCOLLECT PGM |

IDCAMS LISTCAT
An IDCAMS LISTCAT request was processed that printed extent descriptors for
one or more EAS eligible data set (VSAM in z/OS V1R10). The returned extent
descriptors may contain 28-bit cylinder numbers.

When this instance occurs for any volume type, it will be recorded in the tracker as
a warning message.

IDCAMS LISTCAT processing will set the following tracking information:
TRPL_TRACK_INFO =

'SMS-W:2 IDCAMS LISTCAT '

TRPL_TRACK_DATA =

Byte 0-2

Set to zero, not used.

EAV migration assistance tracker

Appendix C. Using the extended address volume (EAV) migration assistance tracker 485

Byte 3

Set to 02.

DFSMS Tracking category 2: EAV Migration. Warning Message.
An IDCAMS LISTCAT request was processed that printed extent
descriptors for one or more EAS eligible data set (VSAM in z/OS V1R10).
The returned extent descriptors may contain 28-bit cylinder numbers.
This instance will be recorded for both EAS and non-EAS capable volumes.
Please note thatAMS Listcat output format may change as a result of
service and new function support. IBM recommends applications processing
LISTCAT output be updated to obtain results directly from the Catalog
Search Interface (CSI). For more information on CSI, see
z/OS DFSMS Managing Catalogs and HLASM Programmer’s Guide.

TRPL_VIOLATORS_ADDR =

SET TO THE RESUME PSW OF THE PRB WITH A VALID POINTER (RBCDE1) TO THE
'IDCAMS' CDNAME. USE THE PREVIOUS RB (RBLINKB) IF THIS PRB IS NOT THE
FIRST RB. TRACKER CODE WILL DETERMINE JOB AND PROGRAM NAMES FROM THIS
ADDRESS.

SAMPLE OUTPUT =

07.34.08 SYSTEM1 d opdata,tracking
07.34.08 SYSTEM1 CNZ1001I 07.34.08 TRACKING DISPLAY 673
STATUS=ON,ABEND NUM=1 MAX=1000 MEM=7T EXCL=5 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM
SMS-W:2 IDCAMS LISTCAT 02 LISTCAT IDCAMS xxx 28 4

SAMPLE EXCLUSION LIST =

* Jobname Pgmname *
* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
|SMS*IDCAMS LISTCAT |* |IDCAMS | IDCAMS LISTCAT PGM |

OBTAIN (SVC 27)
OBTAIN was issued with the search or seek option to a non-EAV volume. The
caller did not specify with EADSCB=OK That it supports the extended attribute
DSCBs and the target data set is EAS eligible.

When this instance occurs for a non-EAV volume type, it will be recorded in the
tracker as an error message.

OBTAIN processing will set the following tracking information:
TRPL_TRACK_INFO =

'SMS-E:1 DADSM OBTAIN '

TRPL_TRACK_DATA =

Byte 0

Set to zero, not used.

Byte 1-2

Operation code.
X’C100’ SEARCH for DSNAME.
X’C080’ SEEK for track address.

Byte 3

Set to 01.

DFSMS Tracking category 1: EAV Migration. Error Message. DADSM
OBTAIN was issued with the search or seek option to a non-EAV
volume. The caller did not specify with EADSCB=OK That it supports
the extended attribute DSCBs and the target data set is 'EAS
eligible'.

EAV migration assistance tracker

486 z/OS V2R1.0 DFSMSdfp Advanced Services

TRPL_VIOLATORS_ADDR =

SET TO THE RESUME PSW OF THE RB THAT ISSUED SVC 27. TRACKER CODE WILL
DETERMINE JOB AND PROGRAM NAMES FROM THIS ADDRESS.

SAMPLE OUTPUT =

07.34.08 SYSTEM1 d opdata,tracking
07.34.08 SYSTEM1 CNZ1001I 07.34.08 TRACKING DISPLAY 673
STATUS=ON,ABEND NUM=1 MAX=1000 MEM=7T EXCL=5 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM
SMS-E:1 DADSM OBTAIN C08001 OBTJBN OBTPGM xxx 28 4

SAMPLE EXCLUSION LIST =

* Jobname Pgmname *
* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
|SMS*OBTAIN* |* |* | DADSM OBTAIN |

CVAFDIR
CVAFDIR was issued with the search or seek option to a volume that does not
support extended attribute DSCBs. The caller did not specify with EADSCB=OK
That it supports the extended attribute DSCBs and the target data set is ‘EAS
eligible’. CVAF return code 4 and CVSTAT of X’52’ would have been set if issued
to a volume that supports extended attribute DSCBs.

When this instance occurs for a volume that does not support extended attribute
DSCBs, it will be recorded in the tracker as an error message.

CVAFDIR processing will set the following tracking information:
TRPL_TRACK_INFO =

'SMS-E:1 CVAFDIR STAT082 '

TRPL_TRACK_DATA =

Byte 0

Set to zero, not used.

Byte 1

CVAF Return Code = 4

Byte 2

CVAF Status Code = STAT082 (X'52')

Byte 3

Set to 01.

DFSMS Tracking category 1: EAV Migration. Error Message. CVAFDIR was
issued with the search or seek option to a volume that does not
support extended attribute DSCBs. The caller did not specify with
EADSCB=OK That it supports the extended attribute DSCBs and the
target data set is 'EAS eligible'. CVAF return code 4 and CVSTAT of
X'52' would have been set if issued to a device that supports
extended attribute DSCBs.

TRPL_VIOLATORS_ADDR =

FOR BRANCH ENTRY CALLERS, SET TO THE CALLER OF CVAF RETURN ADDRESS.
TRACKER CODE WILL DETERMINE JOB AND PROGRAM NAMES FROM THIS ADDRESS.

FOR SVC CALLS, SET TO THE RESUME PSW OF THE RB THAT ISSUED SVC 139.
TRACKER CODE WILL DETERMINE JOB AND PROGRAM NAMES FROM THIS ADDRESS.

SAMPLE OUTPUT =

EAV migration assistance tracker

Appendix C. Using the extended address volume (EAV) migration assistance tracker 487

07.34.08 SYSTEM1 d opdata,tracking
07.34.08 SYSTEM1 CNZ1001I 07.34.08 TRACKING DISPLAY 673
STATUS=ON,ABEND NUM=1 MAX=1000 MEM=7T EXCL=5 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM
SMS-E:1 CVAFDIR STAT082 045201 CVAFJBN CVAFPGM xxx 28 4

SAMPLE EXCLUSION LIST =

* Jobname Pgmname *
* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
|SMS*CVAFDIR STAT082* |* |* | CVAFDIR |

CVAFSEQ
CVAFSEQ was issued for physical sequential or index order to a volume that does
not support extended attribute DSCBs. The caller did not specify with
EADSCB=OK That it supports the extended attribute DSCBs and the target data set
is ‘EAS eligible’. CVAF return code 4 and CVSTAT of X’52’ would have been set if
issued to a volume that supports extended attribute DSCBs.

When this instance occurs for a volume that does not support extended attribute
DSCBs, it will be recorded in the tracker as an error message.

CVAFSEQ processing will set the following tracking information:
TRPL_TRACK_INFO =

'SMS-E:1 CVAFSEQ STAT082 '

TRPL_TRACK_DATA =

Byte 0

Set to zero, not used.

Byte 1

CVAF Return Code = 4

Byte 2

CVAF Status Code = STAT082 (X'52')

Byte 3

Set to 01.

DFSMS Tracking category 1: EAV Migration. Error Message. CVAFSEQ was
issued for physical sequential or index order to a volume that does
not support extended attribute DSCBs. The caller did not specify
with EADSCB=OK That it supports the extended attribute DSCBs and the
target data set is 'EAS eligible'. CVAF return code 4 and CVSTAT of
X'52' would have been set if issued to a volume that supports
extended attribute DSCBs.

TRPL_VIOLATORS_ADDR =

FOR BRANCH ENTRY CALLERS, SET TO THE CALLER OF CVAF RETURN ADDRESS.
TRACKER CODE WILL DETERMINE JOB AND PROGRAM NAMES FROM THIS ADDRESS.

FOR SVC CALLS, SET TO THE RESUME PSW OF THE RB THAT ISSUED SVC 139.
TRACKER CODE WILL DETERMINE JOB AND PROGRAM NAMES FROM THIS ADDRESS.

SAMPLE OUTPUT =

07.34.08 SYSTEM1 d opdata,tracking
07.34.08 SYSTEM1 CNZ1001I 07.34.08 TRACKING DISPLAY 673
STATUS=ON,ABEND NUM=1 MAX=1000 MEM=7T EXCL=5 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM
SMS-E:1 CVAFSEQ STAT082 045201 CVAFJBN CVAFPGM xxx 28 4

SAMPLE EXCLUSION LIST =

EAV migration assistance tracker

488 z/OS V2R1.0 DFSMSdfp Advanced Services

* Jobname Pgmname *
* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
|SMS*CVAFSEQ STAT082* |* |* | CVAFSEQ |

CVAFDSM
CVAFDSM was issued to retrieve unallocated space on a volume that does not
support extended attribute DSCBs. The caller did not specify with EADSCB=OK
That it supports the extended attribute DSCBs. CVAF return code 4 and CVSTAT
of X’52’ would have been set if issued to a volume that supports extended
attribute DSCBs.

When this instance occurs for a volume that does not support extended attribute
DSCBs, it will be recorded in the tracker as an error message.

CVAFDSM processing will set the following tracking information:
TRPL_TRACK_INFO =

'SMS-E:1 CVAFDSM STAT082 '

TRPL_TRACK_DATA =

Byte 0

Set to zero, not used.

Byte 1

CVAF Return Code = 4

Byte 2

CVAF Status Code = STAT082 (X'52')

Byte 3

Set to 01.

DFSMS Tracking category 1: EAV Migration. Error Message. CVAFDSM was
issued to retrieve unallocated space on a volume (CVAFDSM
ACCESS=MAPDATA, MAP=VOLUME, RTA4BYTE=YES) that does not support
extended attribute DSCBs. The caller did not specify with
EADSCB=OK That it supports the extended attribute DSCBs. CVAF
return code 4 and CVSTAT of X'52' would have been set if issued to a
volume that supports extended attribute DSCBs.
CVAFVSM interface is an internal system function that is not documented
externally for general use.

TRPL_VIOLATORS_ADDR =

FOR BRANCH ENTRY CALLERS, SET TO THE CALLER OF CVAF RETURN ADDRESS.
TRACKER CODE WILL DETERMINE JOB AND PROGRAM NAMES FROM THIS ADDRESS.

FOR SVC CALLS, SET TO THE RESUME PSW OF THE RB THAT ISSUED SVC 139.
TRACKER CODE WILL DETERMINE JOB AND PROGRAM NAMES FROM THIS ADDRESS.

SAMPLE OUTPUT =

07.34.08 SYSTEM1 d opdata,tracking
07.34.08 SYSTEM1 CNZ1001I 07.34.08 TRACKING DISPLAY 673
STATUS=ON,ABEND NUM=1 MAX=1000 MEM=7T EXCL=5 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM
SMS-E:1 CVAFDSM STAT082 045201 CVAFJBN CVAFPGM xxx 28 4

SAMPLE EXCLUSION LIST =

* Jobname Pgmname *
* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
|SMS*CVAFDSM STAT082* |* |* | CVAFDSM |

EAV migration assistance tracker

Appendix C. Using the extended address volume (EAV) migration assistance tracker 489

CVAFFILT
CVAFFILT was issued to obtain DSCB information for fully or partially qualified
data set names on a volume that does not support extended attribute DSCBs. The
caller did not specify with EADSCB=OK That it supports the extended attribute
DSCBs and the qualified data set is ‘EAS eligible’. CVAF return code 4 and
CVSTAT of X’56’ along with data set name status in the FCL (FCLDSNST) of X’06’
would have been set if the request was issued to a volume that supports extended
attribute DSCBs.

When this instance occurs for a volume that does not support extended attribute
DSCBs, it will be recorded in the tracker as an error message.

CVAFFILT processing will set the following tracking information:
TRPL_TRACK_INFO =

'SMS-E:1 CVAFFILT STAT086 '

TRPL_TRACK_DATA =

Byte 0

CVAF Return Code = 4

Byte 1

CVAF Status Code = STAT086 (X'56')

Byte 2

FCL data set status code = X'06'

Byte 3

Set to 01.

DFSMS Tracking category 1: EAV Migration. Error Message. CVAFFILT
was issued to obtain DSCB information for fully or partially
qualified data set names on a volume that does not support extended
attribute DSCBs. The caller did not specify with EADSCB=OK that is
supports the extended attribute DSCBs and the qualified data set is
'EAS eligible'. CVAF return code 4 and CVSTAT of X'56' along with
data set name status in the FCL (FCLDSNST) of X'06' would have been
set if the request was issued to a volume that supports extended
attribute DSCBs.

TRPL_VIOLATORS_ADDR =

FOR BRANCH ENTRY CALLERS, SET TO THE CALLER OF CVAF RETURN ADDRESS.
TRACKER CODE WILL DETERMINE JOB AND PROGRAM NAMES FROM THIS ADDRESS.

FOR SVC CALLS, SET TO THE RESUME PSW OF THE RB THAT ISSUED SVC 139.
TRACKER CODE WILL DETERMINE JOB AND PROGRAM NAMES FROM THIS ADDRESS.

SAMPLE OUTPUT =

07.34.08 SYSTEM1 d opdata,tracking
07.34.08 SYSTEM1 CNZ1001I 07.34.08 TRACKING DISPLAY 673
STATUS=ON,ABEND NUM=1 MAX=1000 MEM=7T EXCL=5 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM
SMS-E:1 CVAFFILT STAT086 04560601 CVAFJBN CVAFPGM xxx 28 4

SAMPLE EXCLUSION LIST =

* Jobname Pgmname *

EAV migration assistance tracker

490 z/OS V2R1.0 DFSMSdfp Advanced Services

* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
|SMS*CVAFFILT STAT086* |* |* | CVAFFILT |

CVAFVSM
CVAFVSM was issued to allocate space for a volume that is not an EAV. The caller
did not specify with EADSCB=OK That it supports an EAV. CVAF return code 4
and CVSTAT of X’52’ would have been set if issued to an EAV.

When this instance occurs for a non EAV, it will be recorded in the tracker as an
error message.

Note that the CVAFVSM interface is an internal system function that is not
documented externally for general use.

CVAFVSM processing will set the following tracking information:
TRPL_TRACK_INFO =

'SMS-E:1 CVAFVSM STAT082 '

TRPL_TRACK_DATA =

Byte 0

Set to zero, not used.

Byte 1

CVAF Return Code = 4

Byte 2

CVAF Status Code = STAT082 (X'52')

Byte 3

Set to 01.

DFSMS Tracking category 1: EAV Migration. Error message. CVAFVSM was
issued to allocate space for a volume that is not an EAV. The
caller did not specify with EADSCB=OK That it supports an EAV. CVAF
return code 4 and CVSTAT of X'52' would have been set if issued to
an EAV. CVAFVSM interface is an internal system function that is not
documented externally for general use.

When this instance occurs for a non EAV, it will be recorded in the
tracker as an error message.

TRPL_VIOLATORS_ADDR =

FOR BRANCH ENTRY CALLERS, SET TO THE CALLER OF CVAF RETURN ADDRESS.
TRACKER CODE WILL DETERMINE JOB AND PROGRAM NAMES FROM THIS ADDRESS.

FOR SVC CALLS, SET TO THE RESUME PSW OF THE RB THAT ISSUED SVC 139.
TRACKER CODE WILL DETERMINE JOB AND PROGRAM NAMES FROM THIS

SAMPLE OUTPUT =

07.34.08 SYSTEM1 d opdata,tracking
07.34.08 SYSTEM1 CNZ1001I 07.34.08 TRACKING DISPLAY 673
STATUS=ON,ABEND NUM=1 MAX=1000 MEM=7T EXCL=5 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM
SMS-E:1 CVAFVSM STAT082 045201 CVAFJBN CVAFPGM xxx 28 4

SAMPLE EXCLUSION LIST =

* Jobname Pgmname *

EAV migration assistance tracker

Appendix C. Using the extended address volume (EAV) migration assistance tracker 491

* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
|SMS*CVAFVSM STAT085* |* |* | CVAFVSM |

DCB Open of a VTOC
A DCB Open of a VTOC was issued to a volume that does not support extended
attribute DSCBs. The caller did not specify EADSCB=OK on the DCBE macro
indicating that it supports the extended attribute DSCBs in the VTOC. Open would
have issued an ABEND, MSGIEC142I 113-48 if an attempt was made to open the
VTOC of a volume that supported extended attribute DSCBs.

When this instance occurs for a volume that does not support extended attribute
DSCBs, it will be recorded in the tracker as an error message.

OPEN processing will set the following tracking information:
TRPL_TRACK_INFO =

'SMS-E:1 DCB OPEN VTOC 113-48'

TRPL_TRACK_DATA =

Byte 0-2

Set to zero, not used.

Byte 3

Set to 01.

DFSMS Tracking category 1: EAV Migration. Error Message. A DCB Open
of a VTOC was issued to a volume that does not support extended
attribute DSCBs. The caller did not specify EADSCB=OK on the
DCBE macro indicating that it supports the extended attribute DSCBs in the
VTOC. Open would have issued an ABEND, MSGIEC142I 113-48 if an
attempt was made to open the VTOC of a volume that supported
extended attribute DSCBs.

TRPL_VIOLATORS_ADDR =

SET TO THE RESUME PSW OF THE RB THAT ISSUED THE OPEN SVC. TRACKER CODE
WILL DETERMINE JOB AND PROGRAM NAMES FROM THIS ADDRESS.

SAMPLE OUTPUT =

07.34.08 SYSTEM1 d opdata,tracking
07.34.08 SYSTEM1 CNZ1001I 07.34.08 TRACKING DISPLAY 673
STATUS=ON,ABEND NUM=1 MAX=1000 MEM=7T EXCL=5 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM
SMS-E:1 DCB OPEN VTOC 113-48 01 OPENJBN OPENPGM xxx 28 4

SAMPLE EXCLUSION LIST =

* Jobname Pgmname *
* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
|SMS*DCB OPEN VTOC* |* |* | MSGIEC142I 113-48 |

DCB Open of EAS eligible data set
A DCB Open (MACRF = E for EXCP) of an EAS eligible data set was issued to a
volume that does not support extended attribute DSCBs. The caller did not specify
with EADSCB=OK on the DCBE macro to indicate that it supports the extended
attribute DSCBs for an EAS eligible data set. Open would have issued an ABEND,
MSGIEC142I 113-44 if an attempt was made to open the EAS eligible data set on a
volume that supported extended attribute DSCBs.

EAV migration assistance tracker

492 z/OS V2R1.0 DFSMSdfp Advanced Services

When this instance occurs for a volume that does not support extended attribute
DSCBs, it will be recorded in the tracker as an error message.

OPEN processing will set the following tracking information:
TRPL_TRACK_INFO =

'SMS-E:1 DCB OPEN EAS 113-44'

TRPL_TRACK_DATA =

Byte 0-2

Set to zero, not used.

Byte 3

Set to 01.

DFSMS Tracking category 1: EAV Migration. Error Message.
A DCB Open (MACRF = E for EXCP) of an EAS eligible data
set was issued to a volume that does not support extended
attribute DSCBs. The caller did not specify with EADSCB=OK on the
DCBE macro to indicate that it supports the extended attribute
DSCBs for an EAS eligible data set. Open would have issued
an ABEND, MSGIEC142I 113-44 if an attempt was made to open the
EAS eligible data set on a volume that supported extended attribute
DSCBs.

TRPL_VIOLATORS_ADDR =

SET TO THE RESUME PSW OF THE RB THAT ISSUED THE OPEN SVC. TRACKER CODE
WILL DETERMINE JOB AND PROGRAM NAMES FROM THIS ADDRESS.

SAMPLE OUTPUT =

07.34.08 SYSTEM1 d opdata,tracking
07.34.08 SYSTEM1 CNZ1001I 07.34.08 TRACKING DISPLAY 673
STATUS=ON,ABEND NUM=1 MAX=1000 MEM=7T EXCL=5 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM
SMS-E:1 DCB OPEN EAS 113-44 01 OPENJBN OPENPGM xxx 28 4

SAMPLE EXCLUSION LIST =

* Jobname Pgmname *
* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
|SMS*DCB OPEN VSAM* |* |* | MSGIEC142I 113-44 |

Other Sample exclusion list
SAMPLE EXCLUSION LIST =

* Jobname Pgmname *
* Tracking Information Mask Mask Mask Comments (ignored) *
*----------------------------+--------+--------+----------------------+
|SMS* |* |* | SMS all instances |
|SMS*E* |* |* | SMS Errors |
|SMS*W* |* |* | SMS Warnings |
|SMS*I* |* |* | SMS Informational |
|SMS*:1* |* |* | EAV EADSCB=OK missing|
|SMS*:2* |* |* | EAV 28-bitcyls output|
|SMS*:3* |* |* | EAV new function |

Recommend exclustion list
To be obtained from the following web site in the CNIDTRxx parmlib member:
Recommended EXCLUSION LIST FOR DFSMS =

* Download latest 1.6 Console ID tracker data from
* http://www-03.ibm.com/servers/eserver/zseries/zos/downloads/

EAV migration assistance tracker

Appendix C. Using the extended address volume (EAV) migration assistance tracker 493

Summary of DFSMS instances
07.34.08 SYSTEM1 d opdata,tracking
07.34.08 SYSTEM1 CNZ1001I 07.34.08 TRACKING DISPLAY 673
STATUS=ON,ABEND NUM=1 MAX=1000 MEM=7T EXCL=5 REJECT=0
----TRACKING INFORMATION---- -VALUE-- JOBNAME PROGNAME+OFF-- ASID NUM
SMS-E:1 CVAFDIR STAT082 045201 CVAFJBN CVAFPGM 123 28 4
SMS-E:1 CVAFDSM STAT082 045201 CVAFJBN CVAFPGM 456 28 4
SMS-E:1 CVAFFILT STAT086 04560601 CVAFJBN CVAFPGM 789 28 1
SMS-E:1 CVAFSEQ STAT082 045201 CVAFJBN CVAFPGM 123 28 4
SMS-E:1 CVAFVSM STAT082 045201 CVAFJBN CVAFPGM 456 28 4
SMS-E:1 DADSM OBTAIN C08001 OBTJBN OBTPGM 789 28 4
SMS-E:1 DCB OPEN EAS 113-44 01 OPENJBN OPENPGM 123 28 1
SMS-E:1 DCB OPEN VTOC 113-48 01 OPENJBN OPENPGM 456 28 1
SMS-I:3 DEVTYPE 03 DEVTJOB DEVTPROG 4CE5C 11 1
SMS-I:3 LSPACE MSG= 5003 ALLOCAS IEFW21SD 4CE5C 11 1
SMS-I:3 LSPACE DATA= 2003 VTDS0IS1 VTDS0IS2 118 28 2
SMS-I:3 LSPACE EXPMSG= 8803 VTDS0IS1 VTDS0IS2 118 28 2
SMS-I:3 IDCAMS DCOLLECT 03 DCOLLECT IDCAMS 123 28 4
SMS-W:2 IDCAMS LISTCAT 02 LISTCAT IDCAMS 456 28 4
SMS-W:2 IDCAMS LISTDATA PINN 02 LISTDATA IDCAMS E48E 28 4
SMS-W:2 IEHLIST LISTVTOC 02 LISTVTOC IEHLIST 123 28 4

EAV migration assistance tracker

494 z/OS V2R1.0 DFSMSdfp Advanced Services

Appendix D. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1979, 2014 495

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

496 z/OS V2R1.0 DFSMSdfp Advanced Services

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix D. Accessibility 497

498 z/OS V2R1.0 DFSMSdfp Advanced Services

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1979, 2014 499

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

500 z/OS V2R1.0 DFSMSdfp Advanced Services

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available at Copyright and Trademark
information (http://www.ibm.com/legal/copytrade.shtml).

Notices 501

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

502 z/OS V2R1.0 DFSMSdfp Advanced Services

Index

Numerics
1403 printer

UCS images 457
28-bit cylinder address

perform calculations on 317
perform conversions on 317

31-bit IDAW (indirect addressing
word) 177

3203 Model 5 printer
JES support 456
UCS images 457

3211 printer
indexing feature 474, 476
JES support 476
UCS images 457

3262 Model 5 printer
alias names 462
default FCB image 471
print bands 465
UCS image table 462, 465

3480/3490 Magnetic Tape Subsystem
messages, displaying 325
MSGDISP macro 325
tape recording technique 206

3800 Printing Subsystem
standard FCB image 471

4245 printer
alias names 462
default FCB image 471
UCS image table 462
UCS image table, contents 463

4248 printer
alias names 462
default FCB image 471
image table, contents 464
UCS image table 462

6262 Model 14 printer
alias names 462
default FCB image 471
UCS image table 462, 465

64–bit IDAW (indirect addressing
word) 177

A
ABE appendage

conditions 229
XENDA operand 200

accessibility 495
contact IBM 495
features 495

actual track address to relative track
address conversion routine 234

alias
retrieving catalog information 161

allocation
DASD space 16
retrieval area format 295
retrieval list format 294

ALTER ADDVOLUMES command 408

AMCAP
DEVTYPE macro 271

AMODE value
requirement to match UCB

address 77
APF (authorized program facility)

EXCP 173, 188
EXCPVR 186
VTOC operations 143

CVAFDIR BRANCH 77
CVAFDIR DEB 75
CVAFDIR IOAREA 75
CVAFDSM BRANCH 97
CVAFDSM DEB 95
CVAFFILT BRANCH 101
CVAFFILT DEB 100
CVAFFILT IOAREA 101
CVAFSEQ BRANCH 123
CVAFSEQ DEB 120
CVAFSEQ IOAREA 123

API 341
appendages

ABE (abnormal end) 229
CHE (channel end) 231
description 222
entry points 223, 224
EOE (end-of-extent) 228
installing 224
list, authorized 224, 229
naming convention 224
PCI (program controlled

interruption) 227
PGFX (page fix) 226
programming restrictions 223
returns 223, 224
SIO (start I/O) 225, 227
SYS1.PARMLIB listing 224
work areas available 224

assistive technologies 495
authorization

RACF, DASDVOL 143, 144, 146

B
backing up a data set 347
bit

IOBEIOT 219
S99ACUCB 171
S99DSABA 171
S99TIOEX 171
UCBRPS 236
UCBVRDEB 227

bit maps, allocated DSCBs, VIRs 19
BLDL 363
block ID, high-speed cartridge tape

positioning 301
BLOCKTOKENSIZE parameter

large format data set 207
BPX1PCT

callable service 411
ChangeBufferLimits 413

BPX1PCT (continued)
DisplayBufferLimits 412
DisplayFSStats, using

using 414
DisplayGlobalStats, using 413
ExtendFS, using 414

BPXPRMxx member 410
buffer

data transfer rate with EXCP 202
installing 202
lists

creating 60
entries 61
format 62
function 60
header format 60
reading DSCBs 102
releasing 65, 78

operating system overhead 202
performance considerations with

BUFNO 202
releasing 65, 78

BWO (backup-while-open) facility
indicator bits 347

C
callable service, IECTRKAD 359
callable services

data set attribute retrieval 345
data set backup-while-open

support 347
description 341
DFSMSdfp share attribute

retrieval 353
invoking 342
nonreentrant program 341
return and reason codes 354
system level determination 342

CAMLST macro
CAT(BX) operand 163
EADSCB operand 36
format 36
NUMBERDSCB operand 36
RECAT operand 166
RENAME operand 150, 155
SCRATCH operand 145, 150
SEARCH operand 36, 38
SEEK operand 41
UNCAT operand 164

cartridge tape
high-speed positioning 301

catalog
entry

non-VSAM data set 163
reading 157

information retrieval
alias 161
data set name 158
GDS name 159

maintenance 158

© Copyright IBM Corp. 1979, 2014 503

catalog (continued)
management

information retrieval 157
macro functions 157

non-VSAM data sets
example 164
macro specifications 163
return codes 167

CATALOG macro
CAT(BX) operand 163
RECAT operand 166
UNCAT operand 164

CCW (channel command word) 187
CDRA 341, 362
cfltm macro

using 56
chaining check 229
ChangeBufferLimits command 413
channel

control check 229
data check 229

channel error
channel program ending status 192

channel program
channel error 192
invalid ending status 192

channel programs
appendages 222
command chaining 173, 175
completion codes 184, 189
control information 185
data set characteristics 184
EXCP

initiation and execution 185, 189
related 190
translating virtual addresses to

central storage addresses 232
problem program

communication 184
executing 170

processing requirements 184
real storage 186
seek address 214
translation

V=R address space 226
V=V address space 187

XDAP 240, 244
CHE appendage

CENDA operand 200
description 231

CLOSE macro
EXCP 195
XDAP 241

command retry 188
communication vector table (CVT) 232,

237
completion codes xi

EXCP I/O 220
XDAP I/O 244

confighfs command 413
control block

data facilities area (DFA) 449
DCBE (data control block

extension) 207
DEB-EXCP(VR) 443
DFA 449
EXCP 207

control block (continued)
DCB 184, 196, 207
DCBE 185
DEB 185, 222, 443
ECB 184, 220
IEDB 184, 209
IOB 184, 210, 211
IOBE 184, 216

fields used with EXCP 207
fields-EXCP(VR) 443
purged I/O restore list 307
XDAP 244

control password 252
conversion

actual track address to relative track
address

register usage 234
return codes 235

relative track address to actual track
address

procedure 232
register usage 232
return codes 234

sector value, RPS devices 236, 245
virtual channel program to real

channel program 186
VTOC 143

count information
programming interface for 421

CPIO command 409
CSW (channel status word) 149, 188
CVAF (common VTOC access facility)

addressing mode 56
buffer 78

freeing 79
filter service

control blocks required 68
invoking 100
reading sets of DSCBs 67

macros
coding 73
uses and format 73
VTOC access 56, 73

parameter list xi
recommendation 121
return codes

PARTREL 47
RENAME 154
SCRATCH 149

serialization 56
status codes 149, 154
tracing calls 141
volume identification 57

CVAFDIR macro
coding 74
examples 81
parameters 75, 81
return codes 81
using 63

CVAFDSM macro
format 94
parameters 94, 100
return codes 100
using 56, 94

CVAFFILT macro
control block address resolution 101
DSCBs, reading 67

CVAFFILT macro (continued)
entry 104
example 83, 106
filter criteria list

entry format 70
header format 69

format 101
forms 104
invocation sequences 72, 73
parameters 102, 105
partially-qualified names,

examples 106
restriction 101
RESUME capability 68
return codes 105
RLSE function 73
tip 103
using 56, 100

CVAFSEQ macro
DSCB or DSN access 65
examples 129
format 120
parameters 121, 125
return codes 125
using 120

CVAFTST macro
format 139
return codes 139
using 56, 138

CVFCTN field of CVPL 60
CVPL (CVAF parameter list)

creation 58
format 58
function 58, 60
initializing 100
mapping 100

CVSTAT
codes 47, 140
recommendation 105

D
DADSM (direct access device space

management) 43
allocate routine 16

return codes 54
CAMLST macro

EADSCB operand 39
format 39
NUMBERDSCB operand 39
reading by absolute device

address 39
SEEK operand 39

definition 1
non-VSAM data sets, deleting 145
OBTAIN routine

EADSCB operand 39
NUMBERDSCB operand 39
reading by absolute device

address 39
reading by data set name 36
return codes 38, 41

RENAME macro
return codes 154
status codes 155

return codes 32

504 z/OS V2R1.0 DFSMSdfp Advanced Services

DADSM (direct access device space
management) (continued)

SCRATCH macro
return codes 149
status codes 150

DASD (direct access storage device)
block size 202
buffer allocation 202
data set, creating 48
data transfer rate 202
password protected data sets 250
reading and writing to, with XDAP

macro 239, 244
releasing space 16
track capacity calculations 307
volume

fragmentation information 20
initializing 144
restoring from tape 144
space allocation 19
space information 20, 36
VTOC status 20

DASD rotational positioning
sensing 188

DASDVOL
RACF, class 143, 144, 146

data
areas, fixing with EXCPVR 186
class

name 345
control block xi

data control block extension (DCBE)
used with EXCP 207

Data Extent Block (see DEB) 443
data facilities area (DFA)

control block 449
data set

allocation
absolute 49
movable 49

attribute retrieval 345
backup 347
control block xi
defining 2
deleting

macro instructions 145, 150
shared cylinders 146, 147
stored across devices 146
VIO processed 146

device, assigning 203
DSCB formats 2
expiration date 146
non-VSAM

recataloging 166
organization 201
password protection 247, 250
renaming

data set that might be in use 152
password protection 152
VTOC 150
WRITE protection mode

indicator 152
repositioning on tape 199
security

access types 248
concatenation 251

space allocation, releasing 42

data set (continued)
space, releasing 20
user label extent 49

DCB (data control block)
address 184
buffer parameters 201
device dependent parameters

(EXCP) 203, 207
device-dependent format 201
EXCP 184, 207
fields 196
format after OPEN (EXCP) 196
generating 184
initializing 207
macro instruction

XDAP 240
OPEN installation exit 202
parameters

device dependent 203
EXCP 196
foundation block 199

restoring 195
DCBD mapping macro for EXCP 207
DCBE (data control block

extension) 184, 207
EXCP 185

DCBFDAD field 205
DCBOFLGS field 194, 196
DCBTRBAL field 205
DDR (dynamic device reconfiguration)

repositioning tape data sets 199
DEB (data extent block)

EXCP 185
fields 222
layout (EXCP and EXCPVR) 443
obtaining 57
validating with DEBCHK 259, 263

DEBCHK macro
functions 263
list form 263
register contents 262
return codes 263
specification 260, 263

DELETE
as functional replacement 363

DELETE command 409
DEQ macro, tape volume demount

facility 299
DESERV Exit

DELETE 363
GET 363
global exit 365
interaction between task and global

exits 365
PUT 363
RENAME 363
SVC Screening 363
SVCUPDTE 363
task level exit 364
UPDATE 363

determining DFSMSdfp release level 342
determining release level 321
DEVD

DCB operands 206
parameters 203

device
characteristics table entry

(DCTE) 311
characteristics, I/O 263
dependent parameters 203
end error recovery procedures 189

DEVTYPE macro
AMCAP 271
examples 278
execute form 267
INFO form 270
INFOLIST type 265
list form 265, 269
output 276, 277
return, reason codes 278
RPS devices 266
specification 264, 265
UCBLIST type 265

DFA
fields 449
mapping of 321

DFSMS level determination 321
DFSMSdfp callable services

data set
attribute retrieval 345
backup-while-open support 347

description 341
DFSMSdfp share attribute

retrieval 353
invoking 342
reason codes 354
return codes 354
system attribute call 342
system level determination 342

DFSMSdfp level determination 321, 342
DFSMSdfp share attribute retrieval 353
DFSMSdss

dump utility (restore) 410
DisplayBufferLimits command 412
DisplayFSStats command 414
DisplayGlobalStats command 413
DSCB (data set control block) 4, 14

absolute track address 36
access

direct 63
indexed 66
physical sequential 66
sequential 65

buffer generation 81
chains 72, 100
format sequence 2
format-1 5
format-7 14
format-8 5
format-9 15
mapping 81
nonindexed VTOC 14
qualified data set name 100
reading

buffer list 102
by absolute device address 39
by address 74
by data set name 36, 74
directly by data set name 63
directly by DSCB location 64
sequentially 65, 128
sets, CVAF filter service 67

Index 505

DSCB (data set control block) (continued)
retrieving 102
VSAM data space extents 11
VTOC contents 11
VTOC types 2
writing

by address 74
by data set name 74
directly by data set name 63
directly by DSCB location 64

DSN order, accessing DSNs, DSCBs 66
DSSIZE value 51
DSTYPE data set attribute 345
DUMP command 409
dynamic device reconfiguration 199

E
EADSCB operand

on CAMLST SEARCH macro 36
on CAMLST SEEK macro 39
on OBTAIN macro 36, 39

EAV
migration assistance tracker 479

ECB (event control block)
completion code 154
completion codes 149
EXCP 184, 220
XDAP 244

end-of-data-set
condition 241
routine 201

EOE (end-of-extent) appendage
description 228
EOEA operand 200

EOV (end-of-volume)
erasing data 145
EXCP 194
macro 194

end-of-data-set routine, user 194
EXCP 194
XDAP 241

magnetic tape 194
erasing sensitive data 145
error

CVAF VTOC index 139
I/O recovery procedures (EXCP) 190
routines, ignoring 201
VTOC or index

processing 140
recovery from system or user

errors 140
event control block xi
examples

DEVTYPE macro 278
exception

printers 467
exception conditions 201
EXCP (execute channel program)

ABE appendage 229
appendages 222
CHE appendage 231
command chaining 173, 175
completion processing 189
control blocks 207

DCB 184, 196, 207
DCBE 185

EXCP (execute channel program)
(continued)

control blocks (continued)
DEB 185, 222
ECB 184, 220
error recovery 212
IOB 184, 210, 211

DCBE 207
device-end error recovery

procedures 189
EOE appendage 228
I/O error handling 190
indirect addressing word

requirements 177
initiation and execution 185, 189
interface parameters 200
macro instruction 196
macros

CLOSE 195
EOV 194
format 185
OPEN 172, 173

multivolume data set
requirement 172

overhead 202
PCI appendage 227
PDSE 169
problem programs 170
programming 169

considerations 188
real

channel programs 186
storage 186

return codes 149
SIO appendage 225
status information 220
translation by system 226

EXCP(VR)
DEB layout 443
executing your own channel

programs 169
EXCPVR 177
EXCPVR macro

format 186
using 186

expiration date, overriding 146, 147
extended format data set

cannot be used as PASSWORD data
set 249

ExtendFS command 414
extent area

ICVEDT02 mapping macro 62
extents

allocating 49
available 20
control information 185
end of, appendage 200
free space 14
tracking 4
VSAM data space 11

F
FCB (forms control buffer) image

JES support 476
standard image STD1 471
standard image STD2 471

FCB (forms control buffer) image
(continued)

standard images 471
SYS1.IMAGELIB

adding image 473, 475
function 471, 476
modifying image 475, 476

FCL (filter criteria list)
entry format 70
header format 69

file mark, writing 204
file system

create 405
filter criteria list xi
FORCE option 410
format 0-6 DSCBs, overview 2
format-1 DSCB

reading from VTOC 36
formats 14

free VTOC record 4
forms control buffer image xi
free space

DASD volume 20, 36
reestablishing 140

free VTOC record 4

G
GDS (generation data set)

retrieving by name 159
generation

name
absolute 159
relative 159

number 159
GET

DESERV 363
global exit (DESERV) 365
GTF trace of CVAF processing 141

H
HFS

planning 405
HFS data set 2, 7, 346

description 405
file system activity 408
managing 407
SMS-managed 406

HFS file system
deleting 409

HFS files
backing up 409
migrating 409
recovering 410
transporting 408

high-speed cartridge tape
positioning 301

I
I/O

device characteristics 263
efficiency, improving 186
purged restore list 307

506 z/OS V2R1.0 DFSMSdfp Advanced Services

I/O (continued)
requests

purging 304
reprocessing 307
restoring 304

ICVEDT02 mapping macro 62
IDAL (indirect addressing list) 177
IDAW (indirect addressing word) 177
IDCAMS

programming interfaces for 421
IEAAPP00 224
IEBUPDTE program

SYS1.PARMLIB appendage
listing 224

IEC301A message 146, 152
IEC502E message 299
IEC606I message 139
IEC614I message 149, 154
IECDPPL macro 305
IECPDSCB macro 49
IECSDSL1 macro 4, 81
IECTRKAD callable service 359
IEDB (input/output error data block)

EXCP 184
status information 191
VIO considerations 192

IEEE POSIX standard 2
IEHLIST program 141
IEWPMAR macro 389, 403
IEZDEB

fields-EXCP(VR) 443
IGGUCSIT macro 466
IGW023A message 407
IGW023I message 407
IGWABWO call statement

format 347
return and reason codes 354
using 350

IGWARLS call statement
format 355
return codes 357

IGWASMS call statement
format 346
return and reason codes 354

IGWASYS call statement
format 342
return and reason codes 354

IGWDES macro 367, 403
IGWLSHR call statement

format 353
return and reason codes 354

IGWSMDE macro 389, 403
IHAARA macro 295
IHAARL macro 294
IHADFA

control block 449
fields 449
macro 321

IHADVA macro 263
IHAPDS macro 372
image

alias name 457
identifier 473
length 458
library

adding FCB image 473
IMAGELIB macro 475

image (continued)
library (continued)

maintaining 455, 476
modifying an FCB image 475
printer information 456

table
entries, adding or modifying 466
object module 466

verification 458, 470
image tables

tip 465
IMGLIB macro 475
IMMEDIATE option 410
indexed VTOC xi

buffer
disposition 78

contents 11
conversion 143
DSCB

access 66
reading 74
writing 74

initializing 143
listings 141
modifying 74
password protection 144
protecting 143
records 74
structure 19
system

error 140
support 138

unauthorized user 140
volume

restoring 144
updating 144

volume update 144
indexing feature for 3211 474, 476
indirect

addressing word (IDAW) 177
INFO form

DEVTYPE macro 270
INFOLIST parameter

DEVTYPE macro 265
intercept condition 229
interface control check 229
interruption handling procedures 190
IOAREA 76
IOB (input/output block)

EXCP 184
fields used with EXCP 210, 211
PURGE macro 306
sense bytes 149, 154
XDAP 244
XDAP fields 244

IOBE (input/output block common
extension)

EXCP 184
requesting extended error

information 191
IOBEIOT bit 219
IPL volume 249

J
JES (job entry subsystem)

processing printed output 462

JFCB (job file control block) xi
macros used with

IHAARL 294, 297
OPEN 302
RDJFCB 287, 293

modifying
functions 284, 304
precautions 285

type 07 exit list entry 290

K
keyboard

navigation 495
PF keys 495
shortcut keys 495

KEYLEN operand 206

L
labels, standard 194
large block interface

DEVTYPE macro 271
large format data set

213-14 ABEND 207
BLOCKTOKENSIZE parameter 207
cannot be used as PASSWORD data

set 249
level

DFSMSdfp or DFSMS 321, 342
library

callable services 341
FCB images 475
maintenance 475
printer control information 455
SYS1.IMAGELIB data set 455

list form, DEVTYPE macro 269
LOCATE macro

alias name 161
data set name 158
generation name 159
retrieving catalog information 158
return codes 162

locate-record CCW (EXCP) 187
LSPACE macro 31

data return area 35
description 36
format 20

data return area 34
expanded message return area 34
message return area 32
parameter list 30

message return area 35

M
macro

data management
CATALOG 163
LOCATE 157, 162

MSGDISP 325, 339
macro, mapping

ICVEDT02 62
macros system

DEVTYPE macro 267

Index 507

macros, data management
CAMLST

RENAME operand 150, 155
SCRATCH operand 145, 150
SEARCH operand 36, 38
SEEK operand 39, 41

CLOSE
EXCP 195
XDAP 241

CVAF VTOC access 56, 73
CVAFDIR 63, 74
CVAFDSM 94
CVAFFILT 67, 100
CVAFSEQ 65, 120
CVAFTST 138
DCB 207

EXCP 196
XDAP 240

DEBCHK 260, 263
DEVTYPE 263, 280
EOV

EXCP 194
XDAP 241

EXCP 185, 196, 207
EXCPVR 186
LSPACE 20, 36
OBTAIN 36, 41
OPEN

EXCP 172, 173
modified JFCB 302
XDAP 240

PARTREL 41, 47
PROTECT 252, 258
PURGE 304
RDJFCB 284, 293
REALLOC 48, 54
RENAME 150, 155
RESTORE 307
SCRATCH 145
TRKCALC 307, 317
using XDAP 240, 241
VTOC access

DADSM 19, 54
XDAP 239, 244

management class
name 345

mapping macros
IECSDSL1 81
IHADFA 321

messages
CVAF VTOC index error 139
displaying 325
displaying on 3480/3490

options 336
parameters 325
ready 330
resetting display 334
verify volume 328
volume demount 331
volume mounting 326

IEC502E 299
IGW023A 407
IGW023I 407
LSPACE macro 32
MSGDISP macro 325

migration assistance tracker
EAV 479

MINAU parameter 51
MKDIR command 406
MODE

restriction 46
MOUNT command 407, 410
MSG

restriction 24
MSGDISP macro

parameters
demount message 331
display options 336
ready message 330
reset message display 334
verify volume 328
volume mounting 326

return codes 338
multivolume data set

processing with EXCP 172

N
name

VTOC index 17
navigation

keyboard 495
nocapture option 195, 446
non-VSAM

data set
cataloging 163
recataloging 166
uncataloging 164

nonindexed VTOC
available space 14
structure 19

NOPWREAD protection-mode
indicator 252

Notices 499
NOWRITE protection-mode

indicator 252
NUMBERDSCB operand

on CAMLST SEARCH macro 36
on CAMLST SEEK macro 39
on OBTAIN macro 36, 39

O
OBTAIN macro 41

reading by data set name 36
restriction 20

OPEN macro
DEQ at demount facility, tape

volumes 299
EXCP

dummy data set restriction 172
procedures performed 172

modified JFCB 302
TYPE=J

example 292
invoking 299
specification 303

XDAP 240
OPENJ (OPEN, TYPE=J) macro 302
OSF XPG/4.2 standard 2
out-of-extent error 229
overhead, system 202
overwriting data 145

P
page

fix
appendage 226
list processing 226

formatting 474
paging exceptions 226
partial DSCB 49, 50
partially-qualified data set name

restriction 158
partitioned data set

space
releasing 42, 47

PARTREL macro
description 42, 47
DSECT form 46
list form 46
return codes 47

password xi
control 252
counter maintenance 251
data set concatenation 251
deleting protected data set 251
parameter list

ADD record 254
DELETE record 256
LIST record 257
REPLACE record 255

protection
data sets 247, 258
JFCB modifications 290
mode indicator 252
tape data sets 250
volume switching 251
VTOC indexes 144

record 250
renaming protected data set 251
secondary 252

PASSWORD data set
creating 250
maintenance 252
requirements 249
restrictions on 249

PAX command 409
PCI (program controlled interruption)

appendage 200, 227
CCW modification 188
description 227
PCIA operand 200

PD1SCALO flag byte 51
PDDIRQTY (number of directory

blocks) 49
PDPRIQTY (primary space request in

tracks) 49
PDSE (partitioned data set extended)

attribute retrieval 345
sharing protocol 353
space

releasing 42, 47
releasing unused 20

TRKCALC macro 307
pfsctl

callable service (BPX1PCT) 411
PGFX appendage 226
physical file system 411
POSIX 2

508 z/OS V2R1.0 DFSMSdfp Advanced Services

posting completion code in ECB
EXCP I/O 220

printer
bands

3262 Model 5 465
alias names 462
national band IDs 465
special order (RPQ) 465
storing 462

character set images 455
control information 455
default image

print position indexing
feature 473

specifying defaults 473
standard FCB images 471

image xi
image library 456
page layout 474
UCS image table 457

printers
exception 467

program check 229
programming interfaces

for count information 421
for subsystem statistics 421
for subsystem status 421
provided by IDCAMS 421

PROTECT macro xi
format 253
functions 252
parameter list

ADD function 254
DELETE function 256
LIST function 257
REPLACE function 255

PASSWORD data set 247, 257
protection-mode indicator 252
requirement 254
return codes 257

protection
check 229
mode indicator 252
VTOC index 143

PURGE macro
parameter list 304
return codes 306
specification 304

purge routines 304
purged I/O restore list 307
PUT

as functional replacement 363
PWREAD protection-mode indicator 252
PWWRITE protection-mode

indicator 252

R
RACF (resource access control facility)

DASDVOL class 143, 144, 146
renaming a data set 150
return codes 149
scratching a data set 145
VTOCs and VTOC indexes 143

RACF (resource access naming facility)
return codes 154

RDJFCB macro
DCB exit list entry

type '13' 293
type 07 290

description 287
example 288
format

allocation retrieval area 295
allocation retrieval list 294

invoking DEQ at demount 299
retrieving allocation information

DCB exit list entry 294
example 297

return codes 289
security 290
specification 287
use by authorized programs 291

REALLOC macro
description 48, 54
DSECT form 53
execute form 50
list form 53
return codes 54

reason codes
DEVTYPE macro 278

recommendation
CVAF 121
CVSTAT 105
UCB parameter 76, 122, 139

record
current location 204

REFORMAT REFVTOC command
rebuilding VTOC index with 17

register
contents 222
conversion routines usage

actual to relative 235
relative to actual 232

related requests 190, 213
relative

generation number 159
to actual track address conversion

routine 232
release, determining level of 321
release, determining level of

DFSMSdfp 342
RENAME

as functional replacement 363
RENAME macro

example 153
return codes 154
SMS-managed volumes 151
specification 150
status codes 155

RENAME Parameter List 154
renaming a data set

data set security 152
multivolume considerations 151
renaming a data set that might be in

use 152
SMS considerations 151
specifying volumes affected 151
unrenamable data sets and UNIX

files 151
RENT

requirement 466

requesting different levels of ERP
processing 192

requesting extended error
information 191

requirement
PROTECT macro 254
RENT 466
SMS-managed non-VSAM data

set 147
TEST=YES 334, 335
UCB 22
VTOC 78, 79, 97, 124

Resource Access Control Facility xi
RESTORE macro 307
restore routines 304
restriction

CVAFFLIT 101
MODE 46
MSG 24
OBTAIN 20
partially-qualified data set name 158
UCATDX 165
UCB 46
VERIFY 76

retrieving data set attributes 345
retrieving DFSMSdfp share

attributes 353
return codes

CATALOG macro 167
CVAF VTOC index error

message 140
CVAFDIR macro 81
CVAFDSM macro 100
CVAFFILT macro 105
CVAFSEQ macro 125
CVAFTST macro 139
DADSM allocation 54
DEBCHK macro 263
DEVTYPE macro 278
IGWABWO call statement 354
IGWARLS call statement 357
IGWASMS call statement 354
IGWASYS call statement 354
IGWLSHR call statement 354
LOCATE macro 162
LSPACE macro 31
MSGDISP macro 338
OBTAIN macro

reading from VTOC by absolute
device address 41

reading from VTOC by data set
name 38

PARTREL macro 47
RDJFCB macro 289
REALLOC macro 54
RENAME macro 154
SCRATCH macro 149
track address convert routine 234
track address convert routines 235
TRKCALC macro 316

root file system 406
rotational position sensing 266
RPS (rotational position sensing)

device sector number 236, 244
parameter 266

Index 509

S
S99ACUCB bit 171
S99DSABA bit 171
S99TIOEX bit 171
SCRATCH command 409
SCRATCH macro

description 145
example 147
return codes 149
status codes 150

scratch parameter list 148
scratching a data set 145, 150
secondary passwords 252
sector

address
(RPS device) 236, 244
XDAP macro 243

conversion routine 236, 245
number (RPS device) 236, 244

sending comments to IBM xvii
sensitive data, erasing 145
sequential data set

space, releasing 42
serializing CVAF requests 56
share attributes, retrieval of

DFSMSdfp 353
shortcut keys 495
SIO (start I/O) appendage

entry points 226
EXCP (execute channel program) 225
SIOA operand 200

SMF (System Management Facilities)
volume information 25

SMS (Storage Management Subsystem)
class names 345
data set, deleting 145
indexed VTOC 17
release level 342
status 342
version 342
VTOC

deleting data sets 145
SMS-managed non-VSAM data set

requirement 147
space allocation

releasing unused 42
space map 19
SSGARGL 421
start I/O appendage 226
status codes

RENAME macro 155
SCRATCH macro 150

storage class. name 345
STORCLASS parameter 406
STOW 363
subsystem statistics

programming interface for 421
subsystem status

programming interface for 421
SUFFIX, block 273
summary of changes

as updated March 2014 xix
Summary of changes xix
SVC Screening 363
SVCUPDTE 363

replacing SVC routine 363

switching volumes, password
protection 251

syntax diagram
how to read xiii

SYS1.CSSLIB data set 341
SYS1.IMAGELIB data set

adding
FCB image 473, 475
UCS image 457

alias name 462
maintaining 455, 476
modifying FCB image 475, 476
UCS image tables 462

system
attribute call 342
macro instructions 259

system level determination 342
system residence volume 249

T
tape

block count field 214
end-of-volume 194
recording

density 206
technique 206

reduced error recovery 200
reflective spot 194
repositioning data sets 199
tapemark 194
volumes

DEQ at demount facility 299
password protected data sets 250

tape, cartridge
high-speed positioning 301

TAR command 409
task level exit (DESERV) 364, 365
TEST=YES

requirement 334, 335
tip

CVAFFILT 103
image tables 465

track
balance 310, 311
calculating capacity 307, 317
deleting a record 312
fixed-length records 311
TRKCALC output 315

trademarks 501
TRKADDR macro

ABSTOREL parameter 317
calculating relative track number

with 317
COMPARE parameter 318
comparing two track addresses

with 318
converting normalized track address

into absolute track address
with 321

converting relative track number to
28-bit cylinder address with 320

description 317
EXTRACTCYL parameter 318
extracting 28-bit cylinder number

with 318

TRKADDR macro (continued)
extracting 4-bit track number

with 319
EXTRACTTRK parameter 319
incrementing track address with 319
NEXTTRACK parameter 319
normalize cylinder number with 320
NORMALIZE parameter 320
NORMTOABS parameter 321
RELTOABS parameter 320
SETCYL parameter 320
setting cylinder number with 320

TRKCALC macro
description 307, 317
DSECT form 314
examples 316
execute form 313
for extended sequential d.s. 273
inconsistency with PDSE 307
list form 314
output 315
parameter list

creating 314
empty, in-line 314
initialization 313
remote 313
storage definition 313
symbolic expansion 314

return codes 316
standard form 307

TRTCH operand 206
TYPE operand

DEBCHK macro 260
OPEN macro 303

TYPE=J (OPEN macro) 302

U
UCATDX

restriction 165
UCB (unit control block)

index 214
mapping macro 273
requirement 22
restriction 46
track address 311

UCB parameter
recommendation 76, 122, 139
requirement to match AMODE

value 77
UCBLIST parameter

DEVTYPE macro 265
UCBRPS bit 236
UCBVRDEB bit 227
UCS (universal character set)

image
adding, JCL 459
alias name 462
creating 457
SYS1.IMAGELIB addition 457
SYS1.IMAGELIB, examples 458,

462
verifying 470, 471

image table
adding data 468
aliases 466
entry format 462

510 z/OS V2R1.0 DFSMSdfp Advanced Services

UCS (universal character set) (continued)
image table (continued)

image names 466
modifying entries 466
object module 466
UCS5 contents 463
UCS6 contents 464

system image library
maintenance 455

VERIFY parameters 471
UE (unit exception) 231
UNCATLG command 409
unit

check 229
control block xi
exception 229

universal character set xi
UNIX file system 2
UNMOUNT command 407, 409, 410
UPDATE

as functional replacement 363
user interface

ISPF 495
TSO/E 495

V
V=V address space 187
validating the DEB (DEBCHK) 259, 263
VCB (volume control block) 158
VERIFY

restriction 76
VIER (VTOC index entry record)

characteristics 18
description 17
index search 74
reading 74
retaining in virtual storage 78

VIO data sets
EXCP 192

VIR (VTOC index record) 17
buffer, releasing 75
reading 74
releasing 74

virtual
IDAW (indirect addressing

word) 177
VIXM (VTOC index map)

bit maps
allocated DSCBs, VIRs 19

description 19
maps of allocated space

for VIRs 19
volume

copying (VTOC) 144
indexed VTOC 144
label 1
list 157, 158

description 145
renaming 150

list entry
scratch status code 149, 154
secondary status code 149, 154

nonindexed VTOC 144
restoring from tape 144
space allocation 19
swapping with DDR 199

volume (continued)
switching

during EOV 194
multivolume data sets 251, 292
password protection 251

table of contents xi
tape, protecting 250

volume serial in CAMLST
names 157

volume, IPL 249
VPSM (VTOC pack space map)

allocated cylinders and tracks 19
description 19

VSAM (virtual storage access method)
data space, defining 2

VTOC (volume table of contents)
access 63

CVAF macros 73
DADSM macros 19, 54
DSCB directly, with CVAFDIR 63
DSCB sequentially, with

CVAFSEQ 65
DSN sequentially, with

CVAFSEQ 65
access macros

CVAFDIR 63, 74
CVAFDSM 94
CVAFFILT 67, 100
CVAFSEQ 65, 120
CVAFTST 138
LSPACE 20
PARTREL 41
REALLOC 48
SCRATCH 145

APF authorization 143
contents 11
conversion 143
data set renaming 150
deleting

non-VSAM data sets 145
temporary VSAM data sets 145

description 1
DSCB

defining data sets 2
formats 2
map xi
nonindexed 2
reading 74
writing 74

index
contents 17
creating 143
description 17
entry record (VIER) 18
error messages 140
listing 141
maintaining 145
map (VIXM) 19
name 17
password protection 144
RACF protection 143
rebuilding 17
record 17
relationship 17
renaming 17
structure 17
testing 138

VTOC (volume table of contents)
(continued)

index (continued)
volumes 144

initializing 143
locating 1
map of DSCBs (VMDS) 17
modifying 74, 145
nonindexed 14
pack space map (VPSM) 19
protection 143
reading

by data set name 36, 41
DSN order 120
physical sequential order 120

recording facility 19
records 74
requirement 78, 79, 97, 124
structure 19
system support 138
updating 57
using 1
volume space allocation 19

VTOC index
rebuilding 17

W
WLR (wrong-length record) 231
wrong-length indication 229

X
XDAP (execute direct access program)

channel program 244
control blocks

DCB 240
ECB 244
IOB 244

macros
CLOSE 241
DCB 240
EOV 241
OPEN 240
specification 241, 244

requirements 239, 241

Z
z/OS UNIX files

device characteristics
information 273

RENAME macro 153
zFS data set 2

Index 511

512 z/OS V2R1.0 DFSMSdfp Advanced Services

����

Product Number: 5650-ZOS

Printed in USA

SC23-6861-01

	Contents
	Figures
	Tables
	About This Document
	Required product knowledge
	Referenced documents
	z/OS information
	How to Read Syntax Diagrams
	Address and Register Conventions

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated March 2014
	z/OS Version 2 Release 1 summary of changes

	Chapter 1. Using the Volume Table of Contents
	VTOC Components
	Data Set Control Block (DSCB) Types
	Format-0 DSCB
	Format-1 and Format-8 DSCBs
	Format-2 DSCB
	Format-3 DSCB
	Format-4 DSCB
	Format-5 DSCB
	Format-7 DSCB
	Format-9 DSCB

	Allocating and Releasing DASD Space

	The VTOC Index
	VTOC Index Records
	VTOC Index Entry Record
	VTOC Pack Space Map
	VTOC Index Map
	VTOC map of DSCBs
	Structure of an Indexed VTOC

	Accessing the VTOC with DADSM Macros
	Requesting DASD Volume Information Using LSPACE
	LSPACE—Standard Form
	LSPACE-Execute Form
	LSPACE—List Form
	LSPACE–DSECT Form
	Return Codes from LSPACE
	LSPACE Information Return Areas
	LSPACE Examples

	Reading DSCBs from the VTOC Using OBTAIN
	Reading a DSCB by Data Set Name
	Return Codes from OBTAIN (Reading by Data Set Name)
	Reading a DSCB by Absolute Device Address
	Return Codes from OBTAIN (Reading by Absolute Device Address)

	Releasing Unused Space from a DASD Data Set Using PARTREL
	The PARTREL Macro
	PARTREL–Execute Form
	PARTREL—List Form
	PARTREL–DSECT Form
	Return Codes From PARTREL

	Creating (Allocating) a DASD Data Set Using REALLOC
	REALLOC–Execute Form
	REALLOC–List Form
	REALLOC–DSECT Form
	REALLOC Parameter List
	Return Codes from REALLOC

	Accessing the VTOC with CVAF Macros
	Serializing and Updating
	Identifying the Volume
	Generating a CVPL (CVAF Parameter List)
	Using Buffer Lists
	Buffer List Header
	Buffer List Entry

	Using Macro ICVEDT02 to Map the Extents Area
	Accessing the DSCB Directly
	Specifying a Data Set Name to Read or Write a DSCB
	Specifying the DSCB Location
	Releasing Buffers and Buffer Lists Obtained by CVAF

	Accessing DSNs or DSCBs in Sequential Order
	Initiating Indexed Access (DSN Order)
	Initiating Physical-Sequential Access

	Reading Sets of DSCBs with CVAF Filter
	RESUME Capability
	Filter Criteria List (FCL)
	Example of CVAFFILT Macro Sequences

	Coding CVAF VTOC Access Macros
	CVAFDIR Macro Overview and Specification
	ACCESS: Read or Write a DSCB or VIRs, or Release Buffer Lists
	DSN: Specify the Name of the DSCB
	BUFLIST: Specify One or More Buffer Lists
	VERIFY: Verify that a DSCB is a Format-0 DSCB
	UCB or DEB: Specify the VTOC to Be Accessed
	IOAREA: Keep or Free the I/O Work Area
	MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers
	IXRCDS: Retain VIERS in Virtual Storage
	BRANCH: Specify the Entry to the Macro
	EADSCB: Specify the support level for extended attribute DSCBs
	MULTIPLEDSCBS: Specify whether multiple DSCBs should be processed
	MF: Specify the Form of the Macro
	Return Codes from CVAFDIR
	Example of Using the CVAFDIR Macro with a VTOC
	Example of Using the CVAFDIR Macro with an Indexed VTOC
	Example of Using the CVAFDIR macro to read multiple DSCBs

	CVAFDSM Macro Overview and Specification
	ACCESS: Request Information from Index Space Maps or the VTOC
	MAP: Identify the Map to Be Accessed
	EXTENTS: Storage Area Where Extents Are Returned
	RTA4BYTE: Specify the Type of Extent Area Used
	MAPRCDS: Keep or Free MAPRCDS Buffer List and Buffers
	UCB or DEB: Specify the VTOC to Be Accessed
	COUNT: Obtain a Count of Unallocated DSCBs or VIRs
	CTAREA: Supply a Field to Contain the Number of Format-0 DSCBs
	HADSCB: Supply a Field to Contain the CCHHR of the Highest Allocated DSCB
	IOAREA: Keep or Free the I/O Work Area
	BRANCH: Specify the Entry to the Macro
	EADSCB: Specify the support level for extended attribute DSCBs
	MF: Specify the Form of the Macro
	Return Codes from CVAFDSM

	CVAFFILT Macro Overview and Specification
	Control Block Address Resolution: Keyword=addr or (reg)
	ACCESS: Retrieve a DSCB, or Release FLTAREA and/or IOAREA
	BUFLIST: Specify a Buffer List
	UCB or DEB: Specify the VTOC to Be Accessed
	FCL: Specify a Filter Criteria List
	FLTAREA: Keep or Free the Filter Save Area
	IOAREA: Keep or Free the I/O Work Area
	BRANCH: Specify the Entry to the Macro
	EADSCB=value: Specify the support level for extended attribute DSCBs.
	MF: Specify the Form of the Macro
	Return Codes from CVAFFILT
	Partially-Qualified Names for CVAFFILT
	Example of Using the CVAFFILT Macro

	CVAFSEQ Macro Overview and Specification
	ACCESS: Specify Relationship between Supplied and Returned DSN
	BUFLIST: Specify One or More Buffer Lists
	DSN: Specify Access by DSN Order or by Physical-Sequential Order
	UCB or DEB: Specify the VTOC to Be Accessed
	DSNONLY: Specify That Only the Data Set Name Is Read
	ARG: Specify Where the Argument of the DSCB Is to Be Returned
	IOAREA: Keep or Free the I/O Work Area
	IXRCDS: Retain VIERs in Virtual Storage
	BRANCH: Specify the Entry to the Macro
	EADSCB=value: Specify the support level for extended attribute DSCBs.
	MF: Specify the Form of the Macro
	Return Codes from CVAFSEQ
	Example of using the CVAFSEQ macro with an indexed VTOC
	Example of using the CVAFSEQ macro to process a volume in physical sequential order

	CVAFTST Macro Overview and Specification
	UCB: Specify the VTOC to Be Tested
	Return Codes from CVAFTST

	VTOC Index Error Message and Associated Codes
	Error Message
	Codes Put in the CVSTAT Field

	VTOC Error Responses
	Recovering from System or User Errors
	GTF Trace
	VTOC and VTOC Index Listings

	Chapter 2. Managing the Volume Table of Contents
	Creating the VTOC and VTOC Index
	Protecting the VTOC and VTOC Index
	RACF®
	APF
	Password Protection

	Copying/Restoring/Initializing the VTOC
	Volumes Containing a Nonindexed VTOC
	Volumes Containing an Indexed VTOC

	Deleting a Data Set from the VTOC
	Specifying the Volumes Affected
	Erasing Sensitive Data
	System-Managed-Storage Considerations
	General Considerations and Restrictions

	SCRATCH and CAMLST Macro Specification
	Example
	SCRATCH Parameter List
	Return Codes from SCRATCH
	Status Codes from SCRATCH

	Renaming a Data Set in the VTOC
	Specifying the Volumes Affected
	System-Managed-Storage Considerations
	General Considerations and Restrictions
	Multivolume Considerations
	Unrenamable Data Sets and UNIX Files
	Data Set Security
	Renaming a Data Set That Might be in Use

	RENAME and CAMLST Macro Specification
	Example
	RENAME Parameter List
	Return Codes from RENAME
	Status Codes from RENAME

	Chapter 3. Using Catalog Management Macros
	Application Program Considerations
	Catalog Search Order
	Retrieving Information from a Catalog
	Retrieving Information by Data Set Name (LOCATE and CAMLST NAME)
	Example

	Retrieving Information by Generation Data Set Name (LOCATE and CAMLST NAME)
	Example

	Retrieving Information by Alias (LOCATE and CAMLST NAME)
	Example

	Reading a Block by Relative Block Address (LOCATE and CAMLST BLOCK)
	Return Codes from LOCATE

	Using Non-VSAM Data Set Catalog Entries
	Cataloging a Non-VSAM Data Set (CATALOG and CAMLST CAT)
	Programming Considerations for Multiple-Step Jobs
	Example

	Uncataloging a Non-VSAM Data Set (CATALOG and CAMLST UNCAT)
	Example

	Recataloging a Non-VSAM Data Set (CATALOG and CAMLST RECAT)
	Example

	Return Codes from CATALOG

	Chapter 4. Executing Your Own Channel Programs
	Comparing EXCP and EXCPVR
	Using EXCP and EXCPVR
	Allocating the Data Set or Device
	Opening the Data Set
	Direct Data Set Considerations
	VSAM Data Set Considerations

	Creating the Channel Program
	CCW Channel Program
	zHPF Channel Program
	Comparing CCW and zHPF channel programs
	EXCP 64-bit Storage Considerations
	IDAW Requirements for EXCP Requests
	IDAW Requirements for EXCPVR Requests
	MIDAW Requirements
	TIDAW requirements for EXCP requests
	An EXCP Request with a Single 16K Storage Area
	An EXCP Request with a virtual TIDAL

	Determining Whether zHPF is Supported for a Device
	Modifying a Channel Program During Execution
	VIO Considerations

	Creating the EXCP-Related Control Blocks
	Input/Output Block (IOB)
	Input/Output Block Common Extension (IOBE)
	Event Control Block (ECB)
	Input/Output Error Data Block (IEDB)
	Data Control Block (DCB)
	Data Control Block Extension (DCBE)
	Data Extent Block (DEB)

	Executing the Channel Program
	Using the EXCP macro instruction
	Using the EXCPVR macro instruction
	Initiating the Channel Program
	Translating the Channel Program
	DASD Channel Program Prefix CCW Commands
	DASD Rotational Positioning Sensing
	Command Retry Considerations
	Magnetic Tape Considerations
	Lost Data Condition on IBM 3800

	Processing the I/O Completion Status
	Interruption Handling and Error Recovery Procedures
	Reexecuting Channel Programs by Error Recovery Procedures
	Example
	Requesting Extended Error Information
	Requesting Different Levels of ERP Processing
	VIO considerations
	Invalid ending status
	Device No Longer Supports zHPF or Required zHPF functions

	Handling End of Volume and End-Of-Data-Set Conditions
	Closing the Data Set
	Control Block Fields
	Data Control Block (DCB) Fields
	DCB Fields that do not have Macro Parameters
	Foundation Block Parameters
	EXCP Interface Parameters
	Foundation Block Extension and Common Interface Parameters
	Device-Dependent Parameters
	Mapping the DCB

	Data Control Block Extension (DCBE) Fields
	Set and Retrieve Data Set Block Size

	Input/Output Error Data Block (IEDB) Fields
	Input/Output Block (IOB) Fields
	IOBFLAG3 and IOBCSW Format for Different Channel Program Types

	Input/Output Block Common Extension (IOBE) Fields
	Event Control Block (ECB) Fields
	Data Extent Block (DEB) Fields

	EXCP and EXCPVR Appendages
	Making Appendages Available to the System
	The Authorized Appendage List (IEAAPP00)
	Start-I/O Appendage
	Page Fix and EXCPVR Start I/O Appendage
	PGFX Appendage
	SIO Appendage

	Program-Controlled Interruption Appendage
	End-of-Extent Appendage
	Abnormal-End Appendage
	Channel-End Appendage

	Converting a Relative Track Address to an Actual Track Address
	Return Codes from the Relative to Actual Conversion Routine

	Converting an Actual Track Address to a Relative Track Address
	Return Codes from the Conversion Routine

	Using the IECTRKAD Callable Service or the TRKADDR Macro
	Obtaining the Sector Number of a Block on an RPS Device

	Chapter 5. Using XDAP to Read and Write to Direct Access Devices
	Using XDAP
	Macro Instructions Used with XDAP
	Defining a Data Control Block (DCB)
	Initializing a Data Control Block (OPEN)
	End of Volume (EOV)
	Restoring a Data Control Block (CLOSE)

	Executing Direct Access Programs
	Control Blocks Used with XDAP
	Input/Output Block
	Event Control Block
	Direct Access Channel Program
	RPS Device Sector Numbers

	Chapter 6. Using Password Protected Data Sets
	Providing Data Set Security
	PASSWORD Data Set Characteristics
	Creating Protected Data Sets
	Tape Volumes Containing Multiple Password-protected Data Sets

	Protection Feature Operating Characteristics
	Terminating the Protection Feature Process
	Password Protection When Switching Volumes
	Password Protection When Concatenating Data Sets
	Password Protection SCRATCH and RENAME Functions
	Maintaining the Counter for Password Protection

	Maintaining the PASSWORD Data Set Using PROTECT
	Record Format
	Protection-Mode Indicator
	PROTECT Macro Specification
	PROTECT Macro Parameter Lists
	Return Codes from the PROTECT Macro

	Chapter 7. Using System Macro Instructions
	Ensuring Data Security by Validating the Data Extent Block (DEBCHK macro)
	DEBCHK Macro Specification
	Return Codes from DEBCHK

	Obtaining I/O Device Characteristics (DEVTYPE macro)
	DEVTYPE Macro Specification
	Minimum Type Call
	UCBLIST or INFOLIST Type of Call
	DEVTYPE—Execute Form
	DEVTYPE—List Form
	DEVTYPE—Info Form
	Device Characteristics Information
	DEVTYPE—Return Codes and Reason Codes
	DEVTYPE—Example 1—Referring to a DD Statement
	DEVTYPE—Example 2—Includes Building a Parameter List
	DEVTYPE—Example 3—Building a Parameter List and Using IHADVA

	IHADVA Mapping macro

	Reading and Modifying a Job File Control Block (RDJFCB Macro)
	RDJFCB Macro Specification
	Example
	Type 07 JFCB Exit List Entry
	Type 13 JFCB Exit List Entry

	DEQ at Demount Facility for Tape Volumes
	High-Speed Cartridge Tape Positioning
	OPEN - Initialize Data Control Block for Processing the JFCB

	Purging and Restoring I/O Requests (PURGE and RESTORE macros)
	PURGE Macro Specification
	Return Codes from PURGE
	Modifying the IOB Chain

	RESTORE Macro Specification

	Performing Track Calculations (TRKCALC macro)
	Using TRKCALC
	Determining the number of equal-length records that can be written on a track
	Determining the total track capacity
	Determine whether a record can be written in the space remaining on a track and return the new track balance
	Determine the track balance if the last record were removed from a track
	Determine the length of the longest possible record that can be written on a track

	Restrictions
	TRKCALC Macro Specification
	TRKCALC—Standard Form
	TRKCALC—Execute Form
	TRKCALC—List Form
	TRKCALC—DSECT Only
	Input Register Usage for All Forms of MF
	Output from TRKCALC
	Return Codes from TRKCALC
	TRKCALC Macro Examples

	Perform calculations and conversions with 28-bit cylinder addresses (TRKADDR macro)
	Calculate the relative track number on the volume (TRKADDR ABSTOREL)
	Parameters

	Compare two track addresses (TRKADDR COMPARE)
	Parameters

	Extract 28-bit cylinder number (TRKADDR EXTRACTCYL)
	Parameters

	Extract 4-bit track number (TRKADDR EXTRACTTRK)
	Parameters

	Increment track address (TRKADDR NEXTTRACK)
	Parameters

	Normalize cylinder number (TRKADDR NORMALIZE)
	Parameters

	Convert a relative track number to a 28-bit cylinder address (TRKADDR RELTOABS)
	Parameters

	Set cylinder number from register (TRKADDR SETCYL)
	Parameters

	Convert normalized track address into an absolute 28-bit track address (TRKADDR NORMTOABS)
	Parameters

	Determining Level and Name of DFSMS
	Determining Version, Release, and Modification Level of DFSMS
	Determining Name of DFSMS
	Determining DFARELS During Assembler Macro Phase

	Chapter 8. Displaying Messages on Cartridge Magnetic Tape Subsystems (MSGDISP macro)
	MSGDISP—Displaying a Mount Message
	MSGDISP—Displaying a Verify Message
	MSGDISP—Displaying a Ready Message
	MSGDISP—Displaying a Demount Message
	MSGDISP—Resetting the Message Display
	MSGDISP—Providing the Full Range of Display Options
	Return Codes from MSGDISP

	Chapter 9. Using DFSMSdfp Callable Services
	Call for DFSMS Level Determination
	Format
	Parameters
	Return Codes
	Example

	Call for Data Set Attribute Retrieval
	Format
	Parameters
	Return Codes
	Example

	Call for Data Set Backup-While-Open Support
	Format
	Parameters
	Return Codes
	Example
	Using the Backup-While-Open Facility

	Call for DFSMSdfp Share Attributes
	Format
	Parameters
	Return Codes
	IGWASYS, IGWASMS, IGWABWO, IGWLSHR Return and Reason Codes

	Call for Record-Level Sharing Query (IGWARLS)
	Format
	Parameters
	Return Codes
	Example

	Call for converting and comparing 28-bit cylinder addresses (IECTRKAD)
	Format
	Parameters

	Character Data Representation Architecture (CDRA) APIs

	Chapter 10. Using the DESERV Exit
	Task Level Exit
	Global Exit
	Interactions Between the Task Level and Global Exits
	Establishing Multiple Task level or Multiple Global Exits
	Issuing DESERV FUNC=EXIT (invocation environment)
	Invocation Syntax

	Installing or Replacing the DESERV Exit
	Deleting the DESERV Exit
	Determining If a DESERV Exit Is Active
	Writing the DESERV Exit
	Parameters Related to the GET Function
	Parameters Related to the PUT Function
	PUT Return and Reason Codes
	Parameters Related to the DELETE Function
	Parameters Related to the RENAME Function
	Parameters Related to the UPDATE Function
	Entry Environment for Exit Routine
	Exit Environment for Exit routine
	Registers on Entry to the DESERV Exit
	Registers on Return from the DESERV Exit
	DESERV Exit Return and Reason Codes
	DESERV FUNC=EXIT Return and Reason Codes

	Example of the DESERV Exit

	Chapter 11. Managing Hierarchical File System Data Sets
	Creating Hierarchical File System Data Sets
	Defining the Root File System
	Creating and Mounting the Root File System
	Creating Additional File Systems and Directories
	Adding and Mounting File Systems to the Root File System

	Managing File System Size
	Managing File System Activity
	Accessing HFS Data Set Attributes
	Transporting a File System
	Removing (Deleting) a File System
	Migrating a File System
	Backing Up File Systems
	Recovering a Backed-Up File System
	HFS Deferred File System Synchronization
	How to specify a SYNC value

	Using pfsctl (BPX1PCT) Physical File System Control for HFS
	DisplayBufferLimits Command
	Usage Notes

	ChangeBufferLimits Command
	Usage Notes

	DisplayGlobalStats Command
	Usage Notes

	DisplayFSStats Command
	Usage Notes

	ExtendFS Command
	Usage Notes

	BPX1PCT Return and Reason Codes

	Chapter 12. User Access to Subsystem Statistics, Status, and Counts Information
	Register 1 Parameter List
	Passed Argument List -- SSGARGL

	Appendix A. Control Blocks
	Data Extent Block (DEB) Fields
	Data Facilities Area (DFA) Fields

	Appendix B. Maintaining the System Image Library
	UCS Images in SYS1.IMAGELIB
	Examples of UCS Image Coding
	UCS Image Alias Names
	UCS Image Tables in SYS1.IMAGELIB
	Alias Names in UCS Image Tables
	Adding or Modifying a UCS Image Table Entry
	Adding to the UCS Image Table

	Verifying the UCS Image

	FCB Images in SYS1.IMAGELIB
	Adding an FCB Image to the Image Library
	Modifying an FCB Image
	Return Codes from IMGLIB

	JES Support for the 3211 Indexing Feature

	Appendix C. Using the extended address volume (EAV) migration assistance tracker
	Information conventions for the EAV migration assistance tracker
	Tracking information
	Tracking value

	DFSMS instances tracked by the EAV migration assistance tracker
	LSPACE (SVC 78)
	DEVTYPE (SVC 24)
	IDCAMS LISTDATA PINNED
	IEHLIST LISTVTOC
	IDCAMS DCOLLECT
	IDCAMS LISTCAT
	OBTAIN (SVC 27)
	CVAFDIR
	CVAFSEQ
	CVAFDSM
	CVAFFILT
	CVAFVSM
	DCB Open of a VTOC
	DCB Open of EAS eligible data set
	Other Sample exclusion list
	Recommend exclustion list
	Summary of DFSMS instances

	Appendix D. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

