
z/OS

DFSMSrmm Application Programming
Interface
Version 2 Release 1

SC23-6872-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 117.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

This edition replaces SC26-7403-11.

© Copyright IBM Corporation 1992, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this document ix
Required product knowledge ix
z/OS information ix
Notational conventions. ix

How to read syntax diagrams x
How to abbreviate commands and operands . . xii
How to use continuation characters xii
Delimiters xii
Character sets xii

How to send your comments to IBM . . xv
If you have a technical problem xv

Summary of changes xvii
z/OS Version 2 Release 1 summary of changes xvii

Chapter 1. Using the DFSMSrmm
application programming interface . . . 1
Supported RMM TSO subcommands 2
Using the EDGXCI macro 3
EDGXCI: Calling the DFSMSrmm interface 3

EDGXCI environment 3
EDGXCI programming requirements 3
EDGXCI syntax 5
EDGXCI parameters 5
EDGXCI return and reason codes 9
EDGXCI example 12

Chapter 2. Using the object-oriented
DFSMSrmm application programming
interface using C++ 15
DFSMSrmm high level language API classes . . . 20

C++ classes 20
Java class 20

DFSMSrmm API methods 20
Java methods 21

Receiving extensible markup language (XML)
output data in the XML output buffer 22

Chapter 3. Using the DFSMSrmm
application programming interface with
web services 25
Sample Java web service client 27
Using persistence and parallel processing 28
Defining how and when authentication is done . . 28

Chapter 4. Using the DFSMSrmm
application programming interface
using assembler language 29
Obtaining resources 29
Specifying TSO subcommand input in the EDGXCI
macro 29
Using the CONTINUE operation in the EDGXCI
macro 29
Requesting multiple resources for SEARCH
subcommands 30
Using parameter lists to pass information to the
DFSMSrmm API. 31

Coding a single parameter list, single token area 32
Coding a single parameter list, multiple token
areas 34
Coding multiple parameter lists, single token
area 36
Coding multiple parameter lists, multiple token
areas 37

Specifying the option to free a resource 38
Specifying the option to release a resource 39

Chapter 5. Using an alternative
interface to the DFSMSrmm application
programming interface 41
Parameter list to call EDGXHINT 42
Interface structure to pass the parameter list to
EDGXHINT 43
Communication with the API 43

Define the API 43
Start API communication 44
Issue a request 44
Continue a request 44
End a request. 45
End API communication 45

Return and reason codes using EDGXHINT . . . 45

Chapter 6. Processing the output data
in the output buffer 47
Description of structured fields 47
Requesting structured field introducer data format 48

Requesting line format 48
Requesting field format 49

Requesting types of output 51
Requesting standard output 51
Requesting expanded output 52

Accessing return and reason codes 54
Accessing messages and message variables 54
Interpreting date format and time format 54
Using different time zones 55
Identifying structured field introducers 55

Begin and End Resource groups 56
System return and reason code structured field
introducers 57

© Copyright IBM Corp. 1992, 2013 iii

Messages and message variables structured field
introducers 57
Structured field introducers for output data for
subcommands 58
ADD-Type of subcommands. 59
CHANGE-Type of subcommands 59
DELETE-Type of subcommands 60
GETVOLUME subcommand. 60
LIST-Type of subcommands 60
LISTBIN structured field introducers 61
LISTCONTROL structured field introducers . . 61
LISTDATASET structured field introducers . . . 65
LISTOWNER structured field introducers . . . 66
LISTPRODUCT structured field introducers . . 67
LISTRACK structured field introducers 67
LISTVOLUME structured field introducers . . . 67
LISTVRS structured field introducers 69
SEARCH-Type of subcommands 70
SEARCHBIN structured field introducers . . . 70
SEARCHDATASET structured field introducers 70
SEARCHOWNER structured field introducers . . 71
SEARCHPRODUCT structured field introducers 71
SEARCHRACK structured field introducers . . 72
SEARCHVOLUME structured field introducers 72
SEARCHVRS structured field introducers . . . 72

Controlling output from list and search type
requests 73

Limiting the search for a request 73
Output buffer examples 73

Appendix A. Structured field
introducers (SFIs) 77
Structured field introducer (SFI) format 77
Structured field lengths 77
Compound SFI 77
Structured field introducers for Begin and End
Resource groups 78
Structured field introducers for return and reason
codes 79

Structured field introducers for messages and
message variables 80
Structured field introducers for subcommand output
data 80

Appendix B. Structured field
introducers by subcommand 99

Appendix C. DFSMSrmm application
programming interface mapping
macros 103
EDGXCI: Parameter list 103
EDGXSF: Structured field definitions 103

EDGXSF parameters 104
EDGXSF mapping 104
EDGXSF labeling conventions 106

Appendix D. Hexadecimal example of
an output buffer 109
Hexadecimal representation of an output buffer 109
Description of the contents of an output buffer . . 109
Processing the contents of an output buffer . . . 111

Appendix E. Accessibility 113
Using assistive technologies 113
Keyboard navigation of the user interface 113
Dotted decimal syntax diagrams 113

Notices 117
Policy for unsupported hardware. 118
Minimum supported hardware 119
Programming interface information 119
Trademarks 119

Index 121

iv z/OS V2R1.0 DFSMSrmm Application Programming Interface

Figures

1. EDGXCI macro syntax diagram 5
2. Sample job control language (JCL) for prelink

step 16
3. Sample JCL for requesting LISTVOLUME

information 17
4. C++ code example for writing XML output to

a file 22
5. XMLFILE output file 23
6. Example of specifying the DFSMSrmm API

subcommand 29
7. Example of specifying the RMM TSO

subcommand 29
8. Single parameter list, single token area 33
9. Single parameter list, multiple token areas 35

10. Releasing all resources 36
11. Multiple parameter lists, single token area 37
12. TOKEN= specified on EDGXCI 39
13. TOKEN= not specified on EDGXCI 39
14. Binding a C++ program for use of EDGXHINT 41
15. C/C++ sample code for an interface struct 43
16. Issue a TSO subcommand using EDGXHINT 44
17. Example of list type of output using

OUTPUT=LINES. 49
18. Example of output using OUTPUT=FIELDS 50
19. Example of search type of output using

EXPAND=NO. 51
20. Example of search type of output using

OUTPUT=FIELDS, EXPAND=YES 53

21. Message and message variable structured
fields. 54

22. Begin and End Resource group SFI sequence 56
23. Begin and End Resource group SFI pairs 56
24. Begin and End Resource group SFI pairs for

subgroups 56
25. System return and reason codes. 57
26. Structured field introducers for messages and

message variables 57
27. Message group with the CONT SFI 57
28. Formatted lines 59
29. Structured field introducers for ADDVOLUME

with OUTPUT=FIELDS 59
30. SFIs for CHANGEVOLUME with

OUTPUT=FIELDS 60
31. Structured field introducers for GETVOLUME

with OUTPUT=FIELDS 60
32. CONTINUE example, first output buffer 75
33. CONTINUE example, second output buffer 75
34. CONTINUE example, third (Last) output

buffer 76
35. Mapping of the parameter list using the list

form of EDGXCI 103
36. Hexadecimal representation of the contents of

an output buffer 109
37. Output buffer definition 111
38. SFI definition. 111

© Copyright IBM Corp. 1992, 2013 v

vi z/OS V2R1.0 DFSMSrmm Application Programming Interface

Tables

1. Character sets xiii
2. Special characters used in syntax xiii
3. RMM TSO subcommands 2
4. Return and reason codes for the EDGXCI

macro 10
5. DFSMSrmm API command C++ classes 20
6. DFSMSrmm API command Java class 20
7. DFSMSrmm API C++ methods 20
8. DFSMSrmm API Java methods 21
9. Return codes and reason codes issued when

you specify OPERATION=CONTINUE . . . 30

10. Types of parameter lists 31
11. Parameter list for a call of EDGXHINT 42
12. Message related structured field introducers 58
13. Begin and End Resource group structured field

introducers. 78
14. Reason and return code structured field

introducers. 79
15. Message structured field introducers 80
16. Command structured field introducers . . . 81
17. Structured field introducers by subcommand 99
18. Structure XSF_OUTBUF 105

© Copyright IBM Corp. 1992, 2013 vii

viii z/OS V2R1.0 DFSMSrmm Application Programming Interface

About this document

This document is intended for application programmers who use the DFSMSrmm
application programming interface to obtain information about resources that are
managed by DFSMSrmm.

Refer to:
v Chapter 1, “Using the DFSMSrmm application programming interface,” on page

1 for information on the EDGXCI macro you use for communication between
your application program and DFSMSrmm.

v Chapter 2, “Using the object-oriented DFSMSrmm application programming
interface using C++,” on page 15 for information on using C++ and other
high-level programming languages to write programs to obtain information
about DFSMSrmm resources.

v Chapter 3, “Using the DFSMSrmm application programming interface with web
services,” on page 25 for information on using the DFSMSrmm application
programming interface with Web services.

v Chapter 4, “Using the DFSMSrmm application programming interface using
assembler language,” on page 29 for guidelines for using the application
programming interface.

v Chapter 6, “Processing the output data in the output buffer,” on page 47 for
information on the data that the DFSMSrmm application programming interface
returns.

For information about accessibility features of z/OS, for users who have a physical
disability, see Appendix E, “Accessibility,” on page 113.

Required product knowledge
To use this document effectively, you should be familiar with:
v The RMM TSO subcommand and operands
v Macros to communicate between programs

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross-document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS®,
see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, see
z/OS Internet Library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Notational conventions
This section explains the notational conventions used in this document.

© Copyright IBM Corp. 1992, 2013 ix

http://www.ibm.com/systems/z/os/zos/bkserv/

How to read syntax diagrams
Throughout this library, diagrams are used to illustrate the programming syntax.
Keyword parameters are parameters that follow the positional parameters. Unless
otherwise stated, keyword parameters can be coded in any order. The following
list tells you how to interpret the syntax diagrams:
v Read the diagrams from left-to-right, top-to-bottom, following the main path

line. Each diagram begins on the left with double arrowheads and ends on the
right with two arrowheads facing each other.

�� Syntax diagram ��

v If a diagram is longer than one line, each line to be continued ends with a single
arrowhead and the next line begins with a single arrowhead.

�� LISTDATASET
LD

data_set_name VOLUME(volume_serial) �

�
1

FILESEQ (physical_file_sequence_number)
SEQ

��

v Required keywords and values appear on the main path line. You must code
required keywords and values.

�� REQUIRED_KEYWORD ��

If several mutually exclusive required keywords or values exist, they are stacked
vertically in alphanumeric order.

�� REQUIRED_KEYWORD_OR_VALUE_1
REQUIRED_KEYWORD_OR_VALUE_2

��

v Optional keywords and values appear below the main path line. You can choose
not to code optional keywords and values.

��
KEYWORD

��

If several mutually exclusive optional keywords or values exist, they are stacked
vertically in alphanumeric order below the main path line.

��
KEYWORD_OR_VALUE_1
KEYWORD_OR_VALUE_2

��

v An arrow returning to the left above a keyword or value on the main path line
means that the keyword or value can be repeated. The comma means that each
keyword or value must be separated from the next by a comma.

�� �

,

REPEATABLE_KEYWORD ��

x z/OS V2R1.0 DFSMSrmm Application Programming Interface

v An arrow returning to the left above a group of keywords or values means more
than one can be selected, or a single one can be repeated.

��

�

,

REPEATABLE_KEYWORD_OR_VALUE_1
REPEATABLE_KEYWORD_OR_VALUE_2

��

v A word in all uppercase is a keyword or value you must spell exactly as shown.
In this example, you must code KEYWORD.

�� KEYWORD ��

If a keyword or value can be abbreviated, the abbreviation is discussed in the
text associated with the syntax diagram.

v If a diagram shows a character that is not alphanumeric (such as parentheses,
periods, commas, and equal signs), you must code the character as part of the
syntax. In this example, you must code KEYWORD=(001,0.001).

�� KEYWORD=(001,0.001) ��

v If a diagram shows a blank space, you must code the blank space as part of the
syntax. In this example, you must code KEYWORD=(001 FIXED).

�� KEYWORD=(001 FIXED) ��

v Default keywords and values appear above the main path line. If you omit the
keyword or value entirely, the default is used.

��
DEFAULT

KEYWORD
��

v A word in all lowercase italics is a variable. Where you see a variable in the
syntax, you must replace it with one of its allowable names or values, as defined
in the text.

��
(1)

variable ��

Notes:

1 An example of a syntax note.
v References to syntax notes appear as numbers enclosed in parentheses above the

line. Do not code the parentheses or the number.

�� KEYWORD ��

v Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in
mixed case and are shown in the diagram and in the heading of the fragment.
The fragment is placed below the main diagram.

About this document xi

�� Reference to syntax fragment ��

Syntax fragment:

1ST_KEYWORD,2ND_KEYWORD,3RD_KEYWORD

The following is an example of a syntax diagram.

�� DELETEOWNER
DO

owner_ID
newowner

��

newowner

(1)
NEWOWNER(new_owner_ID)

Notes:

1 Must be specified if the owner owns one or more volumes.

The possible valid versions of the RMM DELETEOWNER command are:
RMM DELETEOWNER owner
RMM DO owner
RMM DELETEOWNER owner NEWOWNER(new_owner)
RMM DO owner NEWOWNER(new_owner)

How to abbreviate commands and operands
The TSO abbreviation convention applies for all DFSMSrmm commands and
operands. The TSO abbreviation convention requires you to specify as much of the
command name or operand as is necessary to distinguish it from the other
command names or operands.

Some DFSMSrmm keyword operands allow unique abbreviations. All unique
abbreviations are shown in the command syntax diagrams.

How to use continuation characters
The symbol - is used as the continuation character in this document. You can use
either - or +.

- Do not ignore leading blanks on the continuation statement

+ Ignore leading blanks on the continuation statement

Delimiters
When you type a command, you must separate the command name from the first
operand by one or more blanks. You must separate operands by one or more
blanks or a comma. Do not use a semicolon as a delimiter because any character
you enter after a semicolon is ignored.

Character sets
To code job control statements, use characters from the character sets in Table 1 on
page xiii. Table 2 on page xiii lists the special characters that have syntactical
functions in job control statements.

xii z/OS V2R1.0 DFSMSrmm Application Programming Interface

Table 1. Character sets

Character Set Contents

Alphanumeric Alphabetic
Numeric

Capital A through Z
0 through 9

National
(See note)

“At” sign
Dollar sign
Pound sign

@ (Characters that can be
$ represented by hexadecimal
values X'7C', X'5B', and X'7B')

Special Comma
Period
Slash
Apostrophe
Left parenthesis
Right parenthesis
Asterisk
Ampersand
Plus sign
Hyphen
Equal sign
Blank

,
.
/
'
(
)
*
&
+
-
=

EBCDIC text EBCDIC printable character set Characters that can be represented by
hexadecimal X'40' through X'FE'

Note: The system recognizes the following hexadecimal representations of the U.S. National
characters; @ as X'7C'; $ as X'5B'; and # as X'7B'. In countries other than the U.S., the U.S. National
characters represented on terminal keyboards might generate a different hexadecimal representation
and cause an error. For example, in some countries the $ character may generate a X'4A'.

Table 2. Special characters used in syntax

Character Syntactical Function

, To separate parameters and subparameters

= To separate a keyword from its value, for example, BURST=YES

(�) To enclose subparameter list or the member name of a PDS or PDSE

& To identify a symbolic parameter, for example, &LIB

&& To identify a temporary data set name, for example, &&TEMPDS, and, to identify
an in-stream or sysout data set name, for example, &&PAYOUT

. To separate parts of a qualified data set name, for example, A.B.C., or parts of
certain parameters or subparameters, for example, nodename.userid

* To refer to an earlier statement, for example, OUTPUT=*.name, or, in certain
statements, to indicate special functions: //label CNTL * //ddname DD *

RESTART=* on the JOB statement

' To enclose specified parameter values which contain special characters

(blank) To delimit fields

About this document xiii

xiv z/OS V2R1.0 DFSMSrmm Application Programming Interface

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 DFSMSrmm Application Programming Interface
SC23-6872-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1992, 2013 xv

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xvi z/OS V2R1.0 DFSMSrmm Application Programming Interface

Summary of changes

z/OS Version 2 Release 1 summary of changes
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Planning for Installation

v z/OS Introduction and Release Guide

v z/OS Summary of Message and Interface Changes

v z/OS Migration

© Copyright IBM Corp. 1992, 2013 xvii

xviii z/OS V2R1.0 DFSMSrmm Application Programming Interface

Chapter 1. Using the DFSMSrmm application programming
interface

This topic tells you how to use the application programming interface (API)
provided by DFSMSrmm (which is a z/OS feature) to read, extract, and update
data in the DFSMSrmm control data set:
v From a high level language such as C++ or Java and receive the output through

structured field introducers (SFIs) or XML
v Through Web services and receive the output through SFIs or XML
v From assembler language (using EDGXCI) and receive the output by line format

or SFI format

You can use the output data to create reports or implement automation.

For details on using C++ or Web services, see these topics:
v Chapter 2, “Using the object-oriented DFSMSrmm application programming

interface using C++,” on page 15
v Chapter 3, “Using the DFSMSrmm application programming interface with web

services,” on page 25

Use macro EDGXCI as described in “EDGXCI: Calling the DFSMSrmm interface”
on page 3 to define a parameter list to call the DFSMSrmm application
programming interface. Use macro EDGXCI to pass any supported RMM TSO
subcommand to DFSMSrmm. See “Supported RMM TSO subcommands” on page
2 for a list of supported RMM TSO subcommands. “EDGXCI example” on page 12
provides an example you can modify to communicate with the DFSMSrmm
application programming interface.

Use macro EDGXSF as described in “EDGXSF: Structured field definitions” on
page 103 to help you process the data that the DFSMSrmm application
programming interface returns. The DFSMSrmm application programming
interface returns data as structured fields in an output buffer that you define.
Structured fields consist of these parts.
v A structured field introducer (SFI) that introduces the type of data, length, and

characteristics of the data that the API returns,
v Data.

You can request that the API returns data in line format or field format as
described in “Requesting structured field introducer data format” on page 48. You
can also request standard output or expanded output as described in “Requesting
types of output” on page 51.

To use the DFSMSrmm application programming interface, you must have High
Level Assembler installed on your system. z/OS Planning for Installation provides
information about the level of High Level Assembler required for DFSMS.

© Copyright IBM Corp. 1992, 2013 1

Supported RMM TSO subcommands
The DFSMSrmm API supports all the RMM TSO subcommands as shown in
Table 3.

Table 3. RMM TSO subcommands

Group Subcommand Abbrev Function

Add ADDBIN
ADDDATASET
ADDOWNER
ADDPRODUCT
ADDRACK
ADDVOLUME
ADDVRS

AB
AD
AO
AP
AR
AV
AS

Add bin number information
Add data set information
Add owner information
Add software product information
Add shelf location information
Add volume information
Add a vital record specification

Change CHANGEDATASET
CHANGEOWNER
CHANGEPRODUCT
CHANGEVOLUME

CD
CO
CP
CV

Change data set information
Change owner information
Change software product information
Change volume information

Delete DELETEBIN
DELETEDATASET
DELETEOWNER
DELETEPRODUCT
DELETERACK
DELETEVOLUME
DELETEVRS

DB
DD
DO
DP
DR
DV
DS

Delete bin number information
Delete data set information
Delete owner information
Delete software product information
Delete shelf location information
Release a volume and delete volume
Delete a vital record specification
information

Get GETVOLUME GV Request or assign a volume

List LISTBIN
LISTCONTROL

LISTDATASET
LISTOWNER
LISTPRODUCT
LISTRACK
LISTVOLUME
LISTVRS

LB
LC

LD
LO
LP
LR
LV
LS

Display bin number information
Display PARMLIB options and control
information
Display data set information
Display owner information
Display software product information
Display shelf location information
Display volume information
Display vital record specification
information

Search SEARCHBIN
SEARCHDATASET
SEARCHOWNER
SEARCHPRODUCT
SEARCHRACK
SEARCHVOLUME
SEARCHVRS

SB
SD
SO
SP
SR
SV
SS

Create a list of bin numbers
Create a list of data sets
Create a list of owners
Create a list of software products
Create a list of rack numbers
Create a list of volumes
Create a list of vital record
specifications

Refer to z/OS DFSMSrmm Managing and Using Removable Media for details on these
subcommands.

Rule: When you use the DFSMSrmm application programming interface, you must
specify the subcommand as a single, continuous string of characters rather than as
multiple input lines.

2 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Using the EDGXCI macro
Follow these steps to obtain information from DFSMSrmm using the EDGXCI
macro.
1. Use EDGXCI MF=(L,addr) to save space in your dynamic area for the

parameter list.
2. Save the address of an output buffer that the application programming

interface uses.
3. Load the DFSMSrmm API module, EDGXAPI, and then save the address of the

module.
4. Create the subcommand that you want to process.
5. Use the EDGXCI macro to complete the parameter list and call the DFSMSrmm

application programming interface.
6. Use EDGXCI with OPERATION=CONTINUE as needed to get more data for

the current subcommand.
7. Use EDGXCI with OPERATION=RELEASE to free resources that are obtained

by the DFSMSrmm API module.
8. Delete the EDGXAPI module that you loaded.

EDGXCI: Calling the DFSMSrmm interface
Use the EDGXCI macro in your application program (the caller) to:
v Define a parameter list.
v Set parameters in the list.
v Change parameters in the list.
v Call the DFSMSrmm application programming interface module, EDGXAPI.

EDGXCI environment
The requirements for the caller are:

Minimum authorization
Non-APF authorized, problem state and key (0-8).

Dispatchable unit mode
Task

Cross memory mode
PASN=HASN=SASN

AMODE
31-bit

ASC mode
Primary

Interrupt status
Enabled for I/O and external interrupts

Locks The caller must not be locked.

Control parameters
Control parameters must be in the primary address space.

EDGXCI programming requirements
The caller must load the DFSMSrmm API module, EDGXAPI, prior to using the
execute or standard form of EDGXCI. The caller must delete EDGXAPI when the
DFSMSrmm API is no longer needed.

Chapter 1. Using the DFSMSrmm application programming interface 3

The caller should also use the EDGXSF macro to define the structured fields that
are used in the output.

See Appendix C, “DFSMSrmm application programming interface mapping
macros,” on page 103 for a complete description of the EDGXCI and EDGXSF
macros.

EDGXCI restrictions
The caller must not have functional recovery routines (FRRs) established.

The DFSMSrmm API uses Name/Token services to create a non-persistent
task-level Name/Token pair for each TOKEN that has not been released. If you
plan to use Checkpoint/Restart, refer to the section "Using Checkpoint/Restart
with Name/Token Pairs" in z/OS MVS Programming: Assembler Services Guide.

EDGXCI input register information
Before issuing the EDGXCI macro, ensure that these general purpose registers
(GPRs) contain the specified information:

Register
Contents

13 The address of a 72-byte standard save area in the primary address space

Before issuing the EDGXCI macro, no information is needed in any access register
(AR) unless the access register is used in register notation for a particular
parameter or as a base register.

EDGXCI output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents that remain the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

4 z/OS V2R1.0 DFSMSrmm Application Programming Interface

EDGXCI syntax
Figure 1 shows the syntax for the EDGXCI macro. You can use this macro to
communicate with the DFSMSrmm application programming interface.

EDGXCI parameters
You can specify these parameters:

EDGXCI macro

��
name

b EDGXCI b APIADDR=apiaddr �

�
,OPERATION=BEGIN

parameters-1
,OPERATION=CONTINUE ,OUTBUFADDR=outbufaddr ,TOKEN=token
,OPERATION=RELEASE ,TOKEN=token
,OPERATION=ENDALL

�

�
,RETCODE=retcode ,RSNCODE=rsncode

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX
,PLISTVER=0

�

�
,MF=S

(1) ,0D
,MF=(L ,list addr)

,attr
,COMPLETE

,MF=(E ,list addr)
(2)

,NOCHECK
,COMPLETE

,MF=(M ,list addr)
(3)

,NOCHECK

��

parameters-1:

,SUBCMDADDR=subcmdaddr ,OUTBUFADDR=outbufaddr �

�
,OUTPUT=FIELDS ,EXPAND=YES ,MULTI=NO

,EXPAND=NO ,MULTI=YES
,OUTPUT=LINES

,TOKEN=token

Notes:

1 Only the PLISTVER parameter can be coded with MF=L.

2 When NOCHECK is specified with MF=E, all parameters are optional and the system
does not supply defaults for omitted optional parameters.

3 When NOCHECK is specified with MF=M, all parameters are optional and the system
does not supply defaults for omitted optional parameters.

Figure 1. EDGXCI macro syntax diagram

Chapter 1. Using the DFSMSrmm application programming interface 5

name
An optional symbol that starts in column 1. This is the name on the EDGXCI
macro call. The name must conform to the rules for an ordinary assembler
language symbol.

APIADDR=apiaddr
A required input parameter that contains the address of the DFSMSrmm API
load module. The calling program is responsible for loading the DFSMSrmm
API load module, saving, and then using the returned load address. Use the
z/OS LOAD service to obtain the DFSMSrmm API address.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

EXPAND=NO
EXPAND=YES

When OUTPUT=FIELDS and OPERATION=BEGIN are specified, EXPAND is
an optional parameter that specifies whether to expand the number of returned
data fields to be the same as for the corresponding list type of subcommand.
The default is EXPAND=YES.

EXPAND=NO
Specify to not expand the number of data fields for the subcommand.

EXPAND=YES
Specify to expand the number of data fields to be the same as the
corresponding list type of subcommand.

MF=S
MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)
MF=(E,list addr)
MF=(E,list addr,COMPLETE)
MF=(E,list addr,NOCHECK)
MF=(M,list addr)
MF=(M,list addr,COMPLETE)
MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro. This builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the macro list form with
the macro execute form for applications that require reentrant code. The list
form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter can be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list form and execute form of the macro for
service routines that need to provide different options according to
user-provided input. Use the list form to define a storage area. Use the modify
form to set the appropriate options. Then use the execute form to call the
service.

6 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Recommendation: Use the modify and execute forms of EDGXCI in this order:
1. Use EDGXCI ...MF=(M,list-addr,COMPLETE) and specify all the required

parameters and any appropriate optional parameters.
2. Use EDGXCI ...MF=(M,list-addr,NOCHECK) and specify the parameters

that you want to change.
3. Use EDGXCI ...MF=(E,list-addr,NOCHECK) to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register
(1)-(12).

attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value ofX'0F'to force the parameter
list to a word boundary orX'0D'to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value ofX'0D'.

COMPLETE
Specifies that the system should check for required parameters and supply
defaults for omitted optional parameters.

NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

MULTI=NO
MULTI=YES

When OUTPUT=FIELDS and OPERATION=BEGIN are specified, MULTI is an
optional parameter that specifies whether a single resource group is to be
returned in the buffer, or whether as many resources as fit in the buffer are to
be returned. The default is MULTI=NO

MULTI=NO
Specifies that only a single entry can be handled by the API caller.

MULTI=YES
Specifies that multiple entries can be handled by the API caller.

OPERATION=BEGIN
OPERATION=CONTINUE
OPERATION=RELEASE
OPERATION=ENDALL

An optional parameter that describes the processing of the current
subcommand. The default is OPERATION=BEGIN.

OPERATION=BEGIN
Specify BEGIN to start a new subcommand.

OPERATION=CONTINUE
Specify CONTINUE to continue the current subcommand.

OPERATION=RELEASE
Specify when you want the token and all its associated resources to be
released.

OPERATION=ENDALL
Specify when you want to end all operations by releasing all tokens and all
resources.

OUTBUFADDR=outbufaddr
When OPERATION=BEGIN is specified, OUTBUFADDR=outbufaddr is a

Chapter 1. Using the DFSMSrmm application programming interface 7

required input parameter that contains the address of your output buffer,
which is used for both data and messages. It must be at least 4096 bytes in
length. The first four bytes of the buffer must contain the length of the buffer,
including the four bytes of the length.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

OUTBUFADDR=outbufaddr
When OPERATION=CONTINUE is specified, OUTBUFADDR=outbufaddr is a
required input parameter that contains the address of your output buffer,
which is used for both data and messages. It must be at least 4096 bytes in
length. The first four bytes of the buffer must contain the length of the buffer,
including the four bytes of the length.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

OUTPUT=FIELDS
OUTPUT=LINES

When OPERATION=BEGIN is specified, OUTPUT is an optional parameter
that specifies the format of the returned data. The default is OUTPUT=FIELDS.

OUTPUT=FIELDS
Specify when you want data returned in field format.

OUTPUT=LINES
Specify when you want data returned in line format. Search output is
always returned in standard form when OUTPUT=LINES is specified.

PLISTVER=IMPLIED_VERSION
PLISTVER=MAX
PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
Specify PLISTVER on all macro forms used for a request and with the same
value on all of the macro forms. The PLISTVER values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, which allows you to change to the largest size currently possible. This
size might grow from release to release and affect the amount of storage that
your application program needs.
Recommendation: If you can tolerate the size change, always specify
PLISTVER=MAX on the list form of the macro. Specifying MAX ensures that
the list-form parameter list is large enough to hold all the parameters you
might specify on the execute form, when both are assembled with the same
level of the system. In this way, MAX ensures that the parameter list does
not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of these:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

8 z/OS V2R1.0 DFSMSrmm Application Programming Interface

RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

SUBCMDADDR=subcmdaddr
When OPERATION=BEGIN is specified, SUBCMDADDR=subcmdaddr is a
required input parameter that contains the address of the input subcommand.
The subcommand consists of a halfword field followed by the subcommand
text. The halfword field must contain the length of the subcommand, including
both the halfword field and the subcommand text. The maximum value is 32
761.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

TOKEN=token
When OPERATION=BEGIN is specified, TOKEN=token is a required input
parameter of a 4-byte area. The DFSMSrmm API creates a token and obtains
resources for it, or the DFSMSrmm API reuses the token and the resources.

TOKEN is required even when MF=(E,label,NOCHECK) is specified, unless
OPERATION=ENDALL is also specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a
4-character field.

TOKEN=token
When OPERATION=CONTINUE is specified, TOKEN=token is a required input
parameter of a 4-byte area containing the token used to begin the
subcommand. The DFSMSrmm API uses the resources for the token to
continue the subcommand.

TOKEN is required even when MF=(E,label,NOCHECK) is specified, unless
OPERATION=ENDALL is also specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a
4-character field.

TOKEN=token
When OPERATION=RELEASE is specified, TOKEN=token is a required input
parameter of a 4-byte area containing a token. The DFSMSrmm API releases
the resources for the token, releases the token, and clears the 4-byte area.

TOKEN is required even when MF=(E,label,NOCHECK) is specified, unless
OPERATION=ENDALL is also specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a
4-character field.

EDGXCI return and reason codes
When the EDGXCI macro returns control to your application program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v GPR 0 (and rsncode, when you code RSNCODE) contains a reason code.

Chapter 1. Using the DFSMSrmm application programming interface 9

The EDGXCI macro returns these types of return codes and reason codes:
v Return and reason codes that are associated with the processing of your

subcommand. These return and reason codes are the same ones that DFSMSrmm
returns when you issue a subcommand request. Refer to z/OS DFSMSrmm
Managing and Using Removable Media for more information about these return
and reason codes.

v Return codes and reason codes that are issued by the API. The API returns:
– Return code 0 and reason code 0 when processing has completed successfully.
– Return code 0 and reason code 4 when the output buffer is full and more

information is available.
– Any return code higher than 100 when an error has occurred.

v When you use the API with high-level programming languages, DFSMSrmm
returns a return code and reason code and a message described in the related
messages column in Table 4. When you use the standard API, DFSMSrmm does
not return a message but you can look to the related message for guidance.

Table 4identifies the decimal return and reason codes.

Table 4. Return and reason codes for the EDGXCI macro

Return Code Reason Code Meaning and Action Related Message

0 — Meaning: Success.

Action: Refer to the action provided with the specific
reason code.

0 0 Meaning: EDGXCI command is successfully completed.

Action: None required.

0 4 Meaning: There is more output waiting to be given to
you.

Action: After you have processed the output in your
output buffer, use OPERATION=CONTINUE to get
more output.

EDG3900I

104 — Meaning: Program error. An exception condition has
been encountered, but the operation you requested was
completed. The output results might not be acceptable
to you.

Action: Refer to the action provided with the specific
reason code.

104 02 Meaning: There is nothing to CONTINUE.

Action: None required.

EDG3901I

108 — Meaning: Program error. An error condition has been
encountered, and the operation you requested was not
successfully completed.

Action: Refer to the action provided with the specific
reason code.

108 02 Meaning: Required token is missing.

Action: You need to use TOKEN=token

EDG3902E

10 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Table 4. Return and reason codes for the EDGXCI macro (continued)

Return Code Reason Code Meaning and Action Related Message

108 04 Meaning: Required address of the input subcommand
is missing.

Action: You need to use SUBCMDADDR=subcmdaddr

EDG3903E

108 06 Meaning: Required address of your output buffer is
missing.

Action: Use OUTBUFADDR=outbufaddr to specify the
parameter.

EDG3904E

108 08 Meaning: Your output buffer is less than 4096 bytes in
size.

Action: Obtain storage and set its length.

EDG3905E

108 10 Meaning: Your output buffer is too small. The second
word in your buffer contains the size you need.

Action: Obtain the correct amount of storage and set its
length.

EDG3906E

108 12 Meaning: OPERATION parameter is invalid.

Action: Use OPERATION= to specify the parameter;
check your program for incorrect modifying of the
parameter list.

EDG3907E

108 14 Meaning: OUTPUT parameter is invalid.

Action: Use OUTPUT= to specify the parameter; check
your program for incorrect modifying of the parameter
list.

EDG3908E

108 16 Meaning: EXPAND parameter is invalid.

Action: Use EXPAND= to specify the parameter; check
your program for incorrect modifying of the parameter
list.

EDG3909E

108 18 Meaning: MULTI parameter is invalid.

Action: Use MULTI= to specify the parameter; check
your program for incorrect modifying of the parameter
list.

EDG3909E

108 56 Meaning: The token is already in use.

Action: Use TOKEN=token to specify a token that is
not in use.

EDG3910E

108 58 Meaning: OUTPUT=FIELDS is not supported for the
subcommand specified by
SUBCMDADDR=subcmdaddr.

Action: Use OUTPUT=LINES or specify a different
subcommand.

EDG3911E

108 60 Meaning: The length of the subcommand specified by
SUBCMDADDR=subcmdaddr is too large.

Action: Use a smaller subcommand.

EDG3912E

Chapter 1. Using the DFSMSrmm application programming interface 11

Table 4. Return and reason codes for the EDGXCI macro (continued)

Return Code Reason Code Meaning and Action Related Message

112 — Meaning: Environmental error. A limit, such as a
storage limit, was exceeded. The operation you
requested was not successfully completed.

Action: Refer to the action provided with the specific
reason code.

112 02 Meaning: Unable to obtain sufficient work area storage.

Action: Remove the cause of the short-on-storage
condition or request a larger region size. Rerun your
program.

EDG3913E

116 — Meaning: System error. An error caused by the system,
rather than your program, has been encountered. The
operation you requested was not successfully
completed.

Action: Refer to the action provided with the specific
reason code.

116 02 Meaning: DFSMSrmm is not installed.

Action: Ensure DFSMSrmm is installed and active
before running your program.

EDG3914E

116 04 Meaning: A call to a system service has resulted in a
non-zero return code. DFSMSrmm has placed the
return code and the associated reason code as
structured fields in your output buffer.

Action: Retry the subcommand after the cause of the
error has been corrected or removed.

EDG3915E

116 06 Meaning: An abnormal end has occurred.

Action: Remove the cause of the abnormal end. Rerun
your program.

EDG3916E

120 02 Meaning: Program error has occurred while you were
using the high-level API.

Action: Refer to the action provided with the specific
reason code.

EDG3918E

120 04 Meaning: The LOAD for program EDGXAPI failed.

Action: Correct the cause of the error and retry the
command.

EDG3919E

EDGXCI example
You can modify the example shown here to:
v Obtain space for your output buffer in your work area in dynamic storage.
v Obtain space for the parameter list in your work area in dynamic storage.
v Specify subcommands that have this format:

– The subcommand is prefixed by a two-byte length.
– The subcommand is specified as a single input string.

v Use addresses that are pointer fields.
v Reuse the same parameter list for many requests.

12 z/OS V2R1.0 DFSMSrmm Application Programming Interface

v Reuse your 4-byte token area by specifying TOKEN= on all EXECUTE forms of
EDGXCI. Your 4-byte token area is updated on return from the DFSMSrmm API.

v Make the list form parameter list large enough for all the parameters you might
specify by using PLISTVER=MAX on the execute form of the EDGXCI macro.

Note: SAMPLIB member EDGAPISR provides a similar example of using EDGXCI.

Macro continuation characters must be entered in column 72.
YOURPGM CSECT
R0 EQU 0
R1 EQU 1
R3 EQU 3
R4 EQU 4
R9 EQU 9
R11 EQU 11
R12 EQU 12
R13 EQU 13
R15 EQU 15
* ..

USING *,R11
USING WORKDS,R12
LA R13,REGSAVE Point to register save area

* ..
* ..

LA R0,OUTBUFWK Save the
ST R0,APIOUTB@ address of output buffer

* Load the API module **

LOAD EP=EDGXAPI
ST R0,APIMOD@ Save API module address

* ..
XC MYTOKEN,MYTOKEN Ensure no token yet
LA R4,LISTV@ List volume subcmd address
BAL R9,BEGINCMD Begin the command

* ..

* Going to reuse the resources, instead of releasing**
* resources obtained by the API for the 1st BEGIN **

LA R4,SEARCHD@ Search subcmd address
BAL R9,BEGINCMD Begin the command

* ..
BAL R9,MOREDATA Get more data for search

* ..
BAL R9,RELEASE All done, release resources

* ..

* Delete the API module **

DELETE EP=EDGXAPI
* ..

** Call API to begin a new subcommand **

BEGINCMD DS 0H
CALL1 EDGXCI MF=(E,MYPL),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=MYTOKEN, X
SUBCMDADDR=(R4),OUTBUFADDR=APIOUTB@

BR R9 Return

** Call API to get more data for current subcommand **

MOREDATA DS 0H

Chapter 1. Using the DFSMSrmm application programming interface 13

CALL2 EDGXCI MF=(E,MYPL,NOCHECK),PLISTVER=MAX, X
OPERATION=CONTINUE,TOKEN=MYTOKEN

BR R9 Return

** Call API to release resource such as storage and **
** loaded modules. **

RELEASE DS 0H
REL1 EDGXCI MF=(E,MYPL,NOCHECK),PLISTVER=MAX, X

OPERATION=RELEASE,TOKEN=MYTOKEN
BR R9 Return

** SEARCH DATA SET SUBCOMMAND **

SEARCHD DS 0C

DC AL2(SEARCHDL)
DC C’SEARCHDATASET’

SEARCHDL EQU *-SEARCHD
SEARCHD@ DC A(SEARCHD)

** LISTVOLUME SUBCOMMAND **

LISTV DS 0C Listv command buffer

DC AL2(LISTVL) Length of command
DC C’LISTVOLUME’

LISTVL EQU *-LISTV Length of command
LISTV@ DC A(LISTV) Address of command
* ..

** PROGRAM WORK AREA **

WORKDS DSECT
APIOUTB@ DS A Pointer to output buffer
APIMOD@ DS A Address of the API module
REGSAVE DS 18F Save area
MYTOKEN DS CL4 Token from the API

** PARAMETER LIST DEFINITION **

EDGXCI MF=(L,MYPL,0D),PLISTVER=MAX PLIST area
DS 0D

OUTBUFWK DS CL4096 Output buffer area

** STRUCTURED FIELD DEFINITIONS **

SFDEFDS DSECT

EDGXSF
END

14 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Chapter 2. Using the object-oriented DFSMSrmm application
programming interface using C++

DFSMSrmm samples provided in SAMPLIB: EDGHCLT is shipped in SAMPLIB.
The sample code shows how to issue RMM subcommands by using the
DFSMSrmm high-level language application programming interface classes and
methods.

Requirement: The dynamic link library (DLL) is compiled using the IBM z/OS
V1R10 XL C/C++ compiler. To compile your own program, you can use compiler
versions up to and including the IBM z/OS V1R10 XL (ISO C/C++) level of the
compiler.

Related reading: For information about using the IBM z/OS V1R10 XL C/C++
compiler, see z/OS XL C/C++ User's Guide. For migration and compatibility
considerations, see z/OS XL C/C++ Compiler and Run-Time Migration Guide for the
Application Programmer.

You can use C++ and other high-level programming languages to write programs
to obtain information about DFSMSrmm resources. You use the same DFSMSrmm
subcommand strings that you can use with the EDGXCI application programming
interface. You can get output as structured field introducers or in Extensible
Markup Language (XML). The XML output contains data and tags to define the
data. DFSMSrmm provides a schema called rmmxml.xsd that contains the
definitions for the XML. For XML output, DFSMSrmm converts the data to
character in Unicode format as defined in the XML Schema file for the DFSMSrmm
resources. See “Receiving extensible markup language (XML) output data in the
XML output buffer” on page 22.

To create your own program as shown in Figure 2 on page 16, you need access to
the EDGXHCLU (header file) and the EDGXHCLL (definition side deck). The
header file is necessary for the compile step and located in SYS1.MACLIB. The
definition side deck is necessary for the bind step and is located in SYS1.SIEASID.

© Copyright IBM Corp. 1992, 2013 15

Figure 3 on page 17 shows sample JCL that you can use to request information for
the RMM LISTVOLUME subcommand.

//COMPBIND JOB (4378),’COMPILE BIND HCLT’,MSGCLASS=H,MSGLEVEL=(1,1),
// TIME=3,CLASS=A,REGION=0M,NOTIFY=&SYSUID
//*
//***
//* ***
//* COMPILE AND BIND A C++ API USERPROGRAM ***
//* ***
//***
//*
//***
//* COMPILE STEP: *
//* SYSLIB : LIBRARIES for C++ CLASS DEFINITION FILES AS SOURCE CODE *
//* INCLUDED IN THE USER PROGRAM, RMM HLL API CLASS *
//* DEFINITION FILE IS EDGXHCLU IN SYS1.MACLIB *
//***
//COMPILE EXEC PGM=CCNDRVR,
// PARM=(’/CXX OPTFILE(DD:CPARMS)’),
// REGION=80M
//CPARMS DD *

XREF,OPTIMIZE,SOURCE,OBJ,MAR,
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=CEE.SCEEH.H,DISP=SHR
// DD DSN=CEE.SCEEH.SYS.H,DISP=SHR
//SYSLIN DD DSN=&SYSUID..CPP.OBJ(EDGHCLT),DISP=SHR
//SYSIN DD DSN=&SYSUID..CPP.SOURCE(EDGHCLT),DISP=SHR
//*
//***
//* BIND STEP: *
//* COMPILED MODULE EDGHCLT NEEDS TO BE CONCATENATED WITH DEFINITION *
//* SIDE DECK : SYS1.SIEASID(EDGXHCLL) SAME MEMBER NAME AS DLL *
//* *
//* SYSLMOD : OUTPUT DATASET (HLQ.CPP.LOAD)HAS TO BE PDSE FORMAT *
//***
//BINDCPP EXEC PGM=IEWL,REGION=1024K,
// PARM=’AMODE=31,MAP,RENT,DYNAM=DLL’
//SYSLIB DD DISP=SHR,DSN=CEE.SCEECPP
// DD DISP=SHR,DSN=CEE.SCEELKED
//SYSLMOD DD DISP=SHR,DSN=HLQ.CPP.LOAD
//SYSLIN DD DISP=SHR,DSN=&SYSUID..CPP.OBJ(EDGHCLT)
// DD DISP=SHR,DSN=SYS1.SIEASID(EDGXHCLL)
// DD DDNAME=SYSIN
//SYSDEFSD DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

NAME EDGHCLT(R) RC=0
//*

Figure 2. Sample job control language (JCL) for prelink step

16 z/OS V2R1.0 DFSMSrmm Application Programming Interface

You need to write the program using C++ using the DFSMSrmm API classes and
DFSMSrmm API methods to establish the connection to DFSMSrmm, issue the
DFSMSrmm subcommands, and receive the output. If you select SFI format for the
output, DFSMSrmm returns the information in structured field formats with all the
fields provided.

Here is sample code that you can modify to use the high-level application
programming interface.
/**
* *
* Module Name: EDGHCLT *
* *
* Description: SAMPLE CODE for USING C/C++ HIGH LEVEL API INTERFACE *
* *

* *
* z/OS DFSMSrmm V1R11 *
* *
* PROPRIETARY V3 STATEMENT *
* Licensed Materials - Property of IBM *
* 5694-A01 *
* Copyright IBM Corp. 1993,2009 *
* END PROPRIETARY V3 STATEMENT *

* *
* Function: *
* *
* This C++ Module is a sample program for the customer to use *
* the High Level Language C/C++ API *
* *

* *
* Change History *
* *
* $LV=RMMV1R6,1R6,030707 BRB: Created High Level API Interface @LVA*
* *
**/
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include "EDGXHCLU"

FILE* sfiFp;

/**
* function to print SFI buffer into file *

//*--*
//* JCL Example to use C/C++ HLLAPI submitting RMM LIST VOLUME command,*
//* using sample program EDGHCLT, *
//* EDGHCLT needs access to DLL: SYS1.SIEALNKE(EDGXHCLL) *
//* receiving SFI output (SFIFILE) and XML output (XMLFILE) *
//*--*
//SMPLAPI EXEC PGM=EDGHCLT,PARM=’"LISTVOLUME A00001"’
//STEPLIB DD DISP=SHR,DSN=HLQ.CPP.LOAD
//XMLFILE DD DISP=(NEW,CATLG),DSN=USERID.OUTPUT.XMLFILE,
// UNIT=SYSALLDA,VOL=SER=RMMDSK,
// SPACE=(CYL,(5,5)),DCB=(RECFM=VB,LRECL=1028,BLKSIZE=6144)
//SFIFILE DD DISP=(NEW,CATLG),DSN=USERID.OUTPUT.SFIFILE,
// UNIT=SYSALLDA,VOL=SER=RMMDSK,
// SPACE=(CYL,(5,5)),DCB=(RECFM=VB,LRECL=1028,BLKSIZE=6144)
//SYSPRINT DD SYSOUT=*

Figure 3. Sample JCL for requesting LISTVOLUME information

Chapter 2. Using the object-oriented DFSMSrmm application programming interface using C++ 17

**/
void printSFItoFile(RmmInterface::t_outp* outputPtr)
{

int outputlen=outputPtr->header.out_used;
char* p = outputPtr->outputBuffer;
char ch;
int i,len = 0;
int offset = 0;
int l = 0;

for (l=0; l < outputlen; l++)
{

len = (*p * 16) + *(p+1);

if (len == 0) break;

fwrite(p,1,len,sfiFp);

p = p + len;
}

}
/**
* start main *
***/
int main(int argc, char* argv [])
{

long rc = 0;
FILE* xmlFp;
RmmApi* pApi;
RmmCommand* pCom;
char* tsoCommand;
tsoCommand = argv[1];

/**
* get Output File names and open files *
***/

if ((xmlFp = fopen("DD:XMLFILE","w")) == NULL)
{

printf("could not open %s\n","DD:XMLFILE");
exit(0);

}
if ((sfiFp = fopen("DD:SFIFILE","wb,type=record")) == NULL)
{

printf("could not open %s\n","DD:SFIFILE");
exit(0);

}

/***
* create RmmApi object *
**/

pApi = new RmmApi();
printf(" \nAPI object created \n");

/***
* open Api *
**/

if (pApi->openApi() == 0)
{
printf("API Return Code : %d\n",pApi->getApiRC());
printf("API Reason Code : %d\n",pApi->getApiRS());
printf("API Message : %s\n",pApi->getMessageText());
}

else
{
printf("Could not open API \n");

18 z/OS V2R1.0 DFSMSrmm Application Programming Interface

exit(0);
}

/***
* create RmmCommand object *
**/

pCom = new RmmCommand(pApi);
/***
* processes a TSO command *
***/

rc = pCom->issueCmd(tsoCommand);

switch (rc)
{

case 0 :
printf("Return Code : %d\n",pCom->getApiRC());
printf("Reason Code : %d\n",pCom->getApiRS());
printf("Message : %s\n",pCom->getMessageText());
printSFItoFile((RmmInterface::t_outp*) pCom->getBufferSfi());
fprintf(xmlFp,"%s\n",pCom->getBufferXml());
break;

case 1 :
printf("Return Code : %d\n",pCom->getApiRC());
printf("Reason Code : %d\n",pCom->getApiRS());
printf("Message : %s\n",pCom->getMessageText());
printSFItoFile((RmmInterface::t_outp*) pCom->getBufferSfi());
fprintf(xmlFp,"%s\n",pCom->getBufferXml());

while((pCom->getApiRC()==0) && (pCom->getApiRS()==4))
{

rc = pCom->getNextEntry();
printf("Return Code : %d\n",pCom->getApiRC());
printf("Reason Code : %d\n",pCom->getApiRS());
printf("Message : %s\n",pCom->getMessageText());
printSFItoFile((RmmInterface::t_outp*) pCom->getBufferSfi());
fprintf(xmlFp,"%s\n",pCom->getBufferXml());

}
break;

case -1:
printf("Return Code : %d\n",pCom->getApiRC());
printf("Reason Code : %d\n",pCom->getApiRS());
printf("Message : %s\n",pCom->getMessageText());
break;

default:
printf("Return Code : %d\n",pCom->getApiRC());
printf("Reason Code : %d\n",pCom->getApiRS());
printf("Message : %s\n",pCom->getMessageText());

}

/***
* destruction
***/

delete pCom;
delete pApi;

fclose(sfiFp);
fclose(xmlFp);
exit(0);

} /* end main */

Chapter 2. Using the object-oriented DFSMSrmm application programming interface using C++ 19

DFSMSrmm high level language API classes

C++ classes
Use the DFSMSrmm RmmApi class to prepare the environment for using the
RmmCommand class to use the DFSMSrmm TSO subcommands with the API. You
can also use the RmmTransaction class that makes use of the RmmApi and
RmmCommand classes. All of these classes are defined in the DFSMSrmm header
file EDGXHCLU.

Table 5. DFSMSrmm API command C++ classes

Class Description

RmmInterface This is the superclass for DFSMSrmm processing. This class provides methods that are common
to the classes RmmApi and RmmCommand. This class cannot be instantiated.

RmmApi This class extends the RmmInterface class. Use this class to create an object to initiate a
communication session with DFSMSrmm. You must create an instance of this class before you use
class RmmCommand. This instance can be used to create one or more RmmCommand objects to
enable you to run DFSMSrmm subcommands. You need one RmmApi object for each Multiple
Virtual Storage (MVS) TCB under which DFSMSrmm runs. To end the communication session
with DFSMSrmm and to no longer run subcommands, delete the RmmApi object.

RmmCommand This class extends the RmmInterface class. Use this class to process a DFSMSrmm TSO
subcommand. You must pass a reference to the RmmApi object when you instantiate an instance
of this class. You can instantiate multiple instances of the RmmCommand class to process
multiple commands in parallel. For example, you can use the output from a SEARCH command
to issue LIST subcommands.

RmmTransaction This class makes use of the RmmApi and RmmCommand classes. Instantiate an instance of this
class, if you want to use the runCommandXml method.

Java class
If you want a Java™ application to access DFSMSrmm, use class RmmJApi.

Table 6. DFSMSrmm API command Java class

Class Description

RmmJApi Instantiate an instance of this class to communicate with DFSMSrmm from a Java application.

DFSMSrmm API methods
Use the DFSMSrmm API methods to retrieve and update information about
DFSMSrmm-managed resources. The naming convention for the methods is
ClassName.methodName.

Table 7. DFSMSrmm API C++ methods

Method Description

RmmApi.openApi() Use this method to check that DFSMSrmm is active and
available to process commands.

RmmApi.closeApi() Use this method when you no longer want to communicate with
DFSMSrmm using this command session.

RmmCommand.issueCmd() Use this method to issue a subcommand to DFSMSrmm.
DFSMSrmm returns the subcommand return code and reason
code. To access the output from the subcommand, use the
getBufferSfi method or the getBufferXml method.

RmmCommand.getBufferSfi() Use this method to obtain a string that contains the SFI output
buffer from subcommand processing. Use this method after
using the RmmCommand.issueCmd method and after using the
RmmCommand.getNextEntry method.

20 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Table 7. DFSMSrmm API C++ methods (continued)

Method Description

RmmCommand.getBufferXml() Use this method to obtain a string that contains the XML output
converted from the SFI output of subcommand processing.

RmmCommand.getNextEntry() Use this method to retrieve information for the next resource or
set of resources when there is more than one resource to be
returned. For example, SEARCH subcommands and
LISTCONTROL subcommands can return more than one
resource. The getBufferXml and getBufferSfi methods can return
multiple resources in a buffer; be sure to process all the returned
data (XML or SFIs) before using the getNextEntry method if
more entries may exist.

RmmInterface.getMessageText() Use this method to obtain a string that contains the DFSMSrmm
information or error message for the last command issued or the
last getNextEntry method processing.

RmmInterface.getApiRc() Use this method to obtain the return code from the last API
request. Use the getMessageText method to retrieve the
corresponding information or error message. See “EDGXCI
return and reason codes” on page 9 for information about
message processing.

RmmInterface.getApiRs() Use this method to obtain the reason code from the last API
request. Use the getMessageText method to retrieve the
corresponding information or error message. See “EDGXCI
return and reason codes” on page 9 for information about
message processing.

RmmTransaction.runCommandXml() Use this method to return a string containing the XML output
converted from the SFI output of subcommand processing. It
may also return error messages and return and reason codes for
the command in the XML.

RmmTransaction.runCommandXmlShort() Use this method to return a string containing the XML output
for key values only. Only specific search commands return key
fields. For example:

v For SearchVolume, only the volser is returned.

v For SearchDataset, only the datasetname, volume, and
filesequence number are returned.

v For SearchOwner, only the owner ID is returned.

v For SearchRack/SearchBin, only the rack/bin number,
location, and media name are returned.

Other commands work as well, but they return all of the data,
not just the key values.

Java methods
Table 8. DFSMSrmm API Java methods

Method Description

RmmJApi.runCommandXml() Use this method to return a string containing the XML output
converted from the SFI output of subcommand processing. It
may also return error messages and return and reason codes for
the command in the XML.

Chapter 2. Using the object-oriented DFSMSrmm application programming interface using C++ 21

Table 8. DFSMSrmm API Java methods (continued)

Method Description

RmmJApi.runCommandXmlShort() Use this method to return a string containing the XML output
for key values only. Only specific search commands return key
fields. For example:

v For SearchVolume, only the volser is returned.

v For SearchDataset, only the datasetname, volume, and
filesequence number are returned.

v For SearchOwner, only the owner ID is returned.

v For SearchRack/SearchBin, only the rack/bin number,
location, and media name are returned.

Other commands work as well, but they return all of the data,
not just the key values.

Receiving extensible markup language (XML) output data in the XML
output buffer

Use the high-level language application programming interface to obtain output in
XML format. The XML output may also return error messages and return and
reason codes.

Figure 4 shows an example that issues an RMM SEARCHRACK subcommand and
writes the XML output into the file named XMLFILE.

You can work with the output data in XML format by writing the output into a file
or by parsing the output directly. You can define this file in the JCL, which you use
to issue the command.

This example shows in C++ code how to:
v Issue a DFSMSrmm TSO subcommand by using the method issueCommand() .
v Use the method getBufferXml() to obtain access to the XML data.

Figure 5 on page 23 shows the content of the file XMLFILE.

FILE* xmlFp; /* declare file pointer */
RmmApi* pApi; /* declare an Api object */
RmmCommand* pCom; /* declare a Command object */
pApi = new RmmApi(); /* create an Api object */
pApi->openApi(); /* open Api */
pCom = new RmmCommand(pApi); /* create a Command object */
pCom->issueCmd("SR RACK(*)"); /* issue a Command */
xmlFp = fopen("DD:XMLFILE","w") /* open the file for writing */
fprintf(xmlFp,"%s",pCom->getBufferXml()); /* print the data into the file */
fclose(xmlFp); /* close the file */

Figure 4. C++ code example for writing XML output to a file

22 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Most of the DFSMSrmm-produced XML tags use the SFI names described in
Table 16 on page 81. For example, the XML tag for volume is <VOL>, which
corresponds to the SFI name VOL. The DFSMSrmm-produced XML tags that do
not use the SFI names are these tags.
v The XML tag <VOLINFO> for the volume resource group.
v The XML tag <VRSINFO > for the VRS resource group.
v The XML tags <JBN2>, <NME2>, <SCD2>, and <SCN2>, which represent the

structured field introducers <2JBN>, <2NME>, <2SCD> and <2SCN>. XML does
not allow tags to start with numeric characters.

v The XML tags <DSS6> and <USE6> are structured using additional tags for
factor (<xxxxF>) and value (<xxxxS>), where xxxx is the XML tag name.

The XML output structure is declared in the XML schema file RMMXML.XSD, that
you find in your file system directory /usr/lib/xml_schema. The schema contains
type definitions for all elements.

The XML data stream contains a Uniform Resource Identifier (URI) to reference the
required schema. To change the schema location, use the XML parser
setExternalnoNamespaceSchemaLocation method.

DFSMSrmm ensures it creates only well-formed and valid XML documents and
ensures that any text within an element contains only valid characters. The special
characters &, <, >, ", and ' are escaped using the entities:
&

&
< <
> >
"

"
'

'

Your XML parser will convert the entities back to the correct text character. Any
code, such as CIM provider, that processes the XML document without a parser
must consider that these entities might exist within the document and should be
converted back to the correct character before use of the data.

<?xml version="1.0" encoding="EBCDIC-CP-US" ?>
<document xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="/usr/lib/xml_schema/rmmxml.xsd">
<RACK>
<RCK>RACK </RCK>
<VOL xsi:nil="true"></VOL>
<RST>EMPTY</RST>
<LOC>SHELF</LOC>
<MEDN>3480</MEDN>
<PID>*</PID>
</RACK>
<INFO>
<RTNC>4</RTNC>
<RSNC>4</RSNC>
<MSGT>EDG3011I 1 ENTRY LISTED </MSGT>
</INFO>
</document>

Figure 5. XMLFILE output file

Chapter 2. Using the object-oriented DFSMSrmm application programming interface using C++ 23

Related reading: You can write your own application to parse the XML data by
using the XML parser. IBM provides an XML parser and sample applications in the
XML Toolkit for z/OS available at http://www.ibm.com/zseries/software/xml or
from the IBM Software Delivery for System Modification Program Extended
(SMP/E) installation.

24 z/OS V2R1.0 DFSMSrmm Application Programming Interface

http://www.ibm.com/zseries/software/xml

Chapter 3. Using the DFSMSrmm application programming
interface with web services

DFSMSrmm samples provided: A sample Java Web service application,
rmmSampleWSClient.java, is located in your file system directory
/usr/lpp/dfsms/rmm/. The sample code shows how the application
programming interface can be used with Web service.

Requirement: C/C++ or any other high-level language is required to exploit the
DFSMSrmm class library. An XML parser (such as the one available in the XML
toolkit for z/OS) is required to process the XML output from the DFSMSrmm
application programming interface. Also, Language Environment for z/OS is
required in order to install the DFSMSrmm class library. WebSphere Application
Server for z/OS V6.0.2 and later, or an equivalent, is required to host the
DFSMSrmm Web service. You can also use Apache Tomcat as an alternative web
server, or another web service middleware. Rational Application Developer (RAD) ,
formerly known as WebSphere Studio Application Developer, or an equivalent, is
required for implementation and development. The minimum requirement to do
any changes is Java SDK.

The Tomcat readme file, rmmtc.txt, located under /usr/lpp/dfsms/rmm, contains
installation and setup information.

You can write Java applications that run on any platform that can use the
DFSMSrmm API classes to obtain information about DFSMSrmm resources. You
use the same DFSMSrmm subcommand strings that you can use with the EDGXCI
application programming interface. You get output in Extensible Markup Language
(XML). If you receive the output from the DFSMSrmm application programming
interface as XML output, you can use an XML parser to process the returned data,
or you can package the XML in order to use it as the base for displaying
information for the end user. See “Receiving extensible markup language (XML)
output data in the XML output buffer” on page 22 for additional information about
XML output data.

Using Web services, the DFSMSrmm application programming interface appears to
the application as a local application programming interface even though it is
running on another system. The infrastructure to support the use of Web services
must be implemented and available on both the application system and the target
z/OS system running DFSMSrmm. The infrastructure to support Web services on
the target z/OS system is provided by WebSphere Application Server or Apache
Tomcat open source servlet container. You can use an equivalent product, but
additional customization and programming may be required by you. You can use
Rational Application Developer (RAD) to develop applications that use the
DFSMSrmm application programming interface with Web services.

The DFSMSrmm application programming interface Web service can be deployed
either under z/OS WebSphere Application Server or Apache Tomcat (or another
web service middleware).

The web service to be used under z/OS WebSphere Application Server is an
Enterprise ARchive (EAR) file called rmmapi.ear and is located in your file system
directory /usr/lpp/dfsms/rmm/. This EAR file contains all the elements needed
to implement and use the Web service. To install the DFSMSrmm Web service, use

© Copyright IBM Corp. 1992, 2013 25

the WebSphere Install Application. You can use either the graphical user interface
or the command line tool for the installment and customization of your WebSphere
environment. To develop a client application that uses the DFSMSrmm Web
service, either import the EAR file into your project using Rational Application
Developer (RAD) and use the definitions and codes it contains for your
application, or use the sample client application shipped with DFSMSrmm,
rmmSampleWSClient.java. After your application is written, modify the installation
or environment-dependent information in the EAR file so you can implement the
Web service in your environment. For more information, see the general web
service help file rmmwebs.txt.

The web service to be used under Apache Tomcat is shipped as a Web ARchive
(WAR), called rmmapitc.war. For more information, see the general web service
help file rmmwebs.txt. An additional help file for the Apache Tomcat environment,
rmmtc.txt, is also available.

The Java class, RmmJApi.class, is the core part of the DFSMSrmm Web services.
You can use it to access DFSMSrmm from inside z/OS, too. Packaged in
rmmjapi.jar, located in your file system directory /usr/lpp/dfsms/rmm/, it is
available to access the DFSMSrmm application programming interface locally from
a Java program. It is important to make sure that the rmmjapi.jar file is included in
the CLASSPATH environmental variable. RmmJApi.class supports the method
RmmJApi.runCommandXml. See “DFSMSrmm high level language API classes” on
page 20 for additional information.

When you use the runCommandXml method to run a search command, it is
possible to encounter a memory size limitation problem. A default limit of one
megabyte is set for the returned data. This equals roughly 500 volumes (one
volume resulting in about 2 kilobytes of data). If you are requesting a larger
number of resources to be returned, you will reach this limit. (See the readme files
for information on how to increase the memory limit of 1 megabyte.) The returned
XML string ends after a complete resource, and message EDG3921I is added to the
string. This message explains system status. Additionally, return code 4 and reason
code 10 are added to enable you to correctly handle the returned data. You can
narrow the search request by using one or more of the operands on the search
subcommand, such as LIMIT, OWNER, or CONTINUE, or try to adjust the default
limit (see z/OS DFSMSrmm Implementation and Customization Guide for additional
information). The possible maximum limit depends on your environment. Check
your JVM (Java Virtual Machine) and TCPIP settings. Using the CONTINUE
operand, you can issue a sequence of calls to the web service, with the second and
subsequent requests including the continue information returned by the previous
request.

Another way to deal with memory size limitation is to use method
runCommandXmlShort (see “DFSMSrmm API methods” on page 20). This method
returns key data for the requested resources only, thus significantly reducing the
size of the returned XML string.

To further help with memory usage and to reduce the amount of data returned
from the Web service, you can use GZIPInputStream to zip the command string
and then you can use GZIPOutputStream to convert the returned output back to a
string. See rmmSampleWSClient.java for a coding example.

You may want to publish your DFSMSrmm application programming interface
Web service in a UDDI registry. The sample client comes without UDDI support. It
is your task to publish the Web service to an UDDI registry and to implement the

26 z/OS V2R1.0 DFSMSrmm Application Programming Interface

code for the discovery of the service. You can also write your application so that it
does not need to dynamically discover where the Web service is located, or you
can use a local or more general UDDI registry to discover the system that provides
the Web service you need. If the services that the DFSMSrmm application
programming interface Web service provides are specific only to your local system,
it is recommended that you use a UDDI registry that is local to your system.

Sample Java web service client
The sample client code needs to be compiled with a Java compiler (javac) to obtain
the executable application. It contains:
v Some general methods to handle the Web Service endpoint and create a call.
v A client-side method to access the Web Service method runCommandXmlZip()

communicating with byte arrays.
v A client-side method to access the Web Service method runCommandXML()

communicating with strings arrays.
v A main program that:

– Handles the passed command line parameters.
– Zips the TSO subcommand to a byte array.
– Creates a client object.
– Sets the end point.
– Calls the Web service.
– Unzips the results and optionally writes to a file.
– For reference, there is code that shows how to pass both commands and data

as strings.

Usage:

java rmmSampleWSClient -i ip_address [-p port] [-u userid:password] [-d]
[-o output_file] [-x xml_schema] [-svwz] command

where:
-i = IP-address or domain name of the remote server
-p = Port number of the web service (default: 8080)
-u = Authorized user credentials, separated by a colon (default: none)
-o = Output file name (default: Screen output)
-d = Debug mode, for network connection test only
-x = XML schema file to be used for validation (default: No validation)
-s = Short XML response (default: Long XML response)
-v = Verbose mode On (default: Off)
-w = Use WebSphere server (default: Use Tomcat server)
-z = Zipped request (default: Unzipped request)
command = A valid DFSMSrmm TSO subcommand,
for example, LISTCONTROL OPTION

A sample Java web service client, EDGSJWS1, is provided in /usr/lpp/dfsms/
rmm/rmmSampleWSClient.java. For information on how to use the DFSMSrmm
Web service sample client, see the z/OS DFSMSrmm Implementation and
Customization Guide.

Chapter 3. Using the DFSMSrmm application programming interface with web services 27

Using persistence and parallel processing
The Web service uses a stateless session bean and enables a single command to be
run and the output returned in a single request. The method
RmmJApi.runCommandXml enables a command to be run by a single method call.
See Table 8 on page 21 for additional information.

Each caller of the Web service can use a different bean in WebSphere, and this
enables multiple commands to be run in sequence and also in parallel. By
customizing implementation options, you can enable WebSphere to instantiate a
stateless session bean to support the DFSMSrmm Web service and to retain the
session bean for use by any Web service requests. You can also limit how many
instances of the bean can be running at one time.

Defining how and when authentication is done
Authentication is not done by the DFSMSrmm Web service. You must use the
capabilities provided by the web service server to define how and when
authentication is done. All DFSMSrmm subcommands use the RACF ACEE to
perform authorization checking before the subcommand is processed. Therefore,
ensure that the authentication performed by web servcies causes a valid ACEE to
be created and that ACEE represents a valid RACF userid in the z/OS
environment.

When using WebSphere, you must use the capabilities provided by WebSphere
Application Server to define how and when authentication is done. All
DFSMSrmm subcommands issued using the DFSMSrmm application programming
interface from within WebSphere uses the RACF ACEE to perform authorization
checking before the subcommand is processed. Therefore, ensure that the
authentication performed using WebSphere causes a valid ACEE to be created and
that ACEE represents a valid RACF userid in the z/OS environment. At a
minimum, ensure that WebSphere is configured to:
v Perform basic authentication.
v Ensure that the extension and binding files for both client and server requests

and responding security settings match.
v Provide your chosen authentication method.

When using Apache Tomcat, the Tomcat server must be configured for RACF/SAF
Authentication and Authorization by downloading a separate package called
"Tomcat SAF Security 5.5" from www.dovetail.com/downloads/jzos/index.html.
The applied security model is called the Declarative Security, which is the
expression of application security external to the application. It allows runtime
configuration of application security without re-coding the application.

The web application configures Declarative Security in its unique deployment
descriptor, web.xml. This is a required XML-formatted configuration file (also
called the deployment descriptor) found in each web application's WEB-INF
directory. Tomcat uses role-based authorization to manage access. With this model,
access permissions are granted to an abstract entity called a security role, and
access is allowed only to users or groups of users, who have that role. The
deployment descriptor specifies the type of access granted to each role, but does
not specify the role to user or group mappings. That's done in the user repository,
which is typically another XML-formatted file in the server's production
environment. See the Tomcat readme file, rmmtc.txt, for information on how to
customize the XML-files for RACF/SAF-based security.

28 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Chapter 4. Using the DFSMSrmm application programming
interface using assembler language

Use the general programming guidelines to help you write your application
program.

Obtaining resources
When you begin a new subcommand request and provide a token that is set to all
zeros, the DFSMSrmm API obtains a new set of resources. When you begin a new
subcommand request and reuse a valid, nonzero token, DFSMSrmm reuses
resources associated with the token.

To use resources most efficiently, consider these items.
v Use a different output buffer for each RMM TSO subcommand request. Reuse an

output buffer to begin a new subcommand request only when there is nothing
in the buffer that you need.

v Allocate a sufficient number of token areas, and parameters lists.
v Use the correct token when continuing a RMM TSO subcommand or when

releasing a particular set of resources.
v Reuse a token to begin a new RMM TSO subcommand only when you no longer

need the information obtained from the previous request.
v Reuse the resources associated with the token, especially when you are

processing hundreds or thousands of subcommands.

Specifying TSO subcommand input in the EDGXCI macro
To obtain information from the DFSMSrmm control data set, specify a DFSMSrmm
TSO subcommand as a single input line without the RMM command, as shown in
Figure 6.

Do not specify it as an RMM command with multiple input lines, as shown in
Figure 7.

In addition, specify subcommands using fully specified subcommand operands
and their values. Avoid abbreviating the subcommands or operands because they
can change when new subcommand operands and values are added.

Using the CONTINUE operation in the EDGXCI macro
Use the EDGXCI OPERATION=CONTINUE parameter in your application
program to ensure that you obtain all the available data. When you use
OPERATION=CONTINUE, you might not receive more output data or you might
receive only messages in your output buffer.

AV MLV001 STATUS(MASTER) EXPDT(98001) OWNER(IBMUSER) OWNERACCESS(UPDATE) RACK(ML0001)

Figure 6. Example of specifying the DFSMSrmm API subcommand

RMM AV MLV001 STATUS(MASTER) EXPDT(98001) OWNER(IBMUSER)-
OWNERACCESS(UPDATE) RACK(ML0001)

Figure 7. Example of specifying the RMM TSO subcommand

© Copyright IBM Corp. 1992, 2013 29

The DFSMSrmm API can return control back to your application program before
returning all the data you expect because:
v There is no more room in the output buffer for the additional data.
v The API stops after returning data for a single resource when you issue a

request that uses a SEARCH command with OUTPUT=FIELDS and MULTI=NO
is specified (or assumed by default).

v There is no more data to return to your application program.

The DFSMSrmm API issues return codes and reason codes indicating the results of
processing when you specify OPERATION=CONTINUE. Write your application
program to check the return codes and reason codes that the DFSMSrmm API
returns to your application program.

Table 9. Return codes and reason codes issued when you specify
OPERATION=CONTINUE

Return Code Reason Code Processing

0 0 DFSMSrmm issues this return code and reason code
in response to a search type subcommand.
DFSMSrmm will not return any more records
because there are no more records to return or
because the search limit has been reached.

0 4 DFSMSrmm issues this return code and reason code
when you issue requests specifying the
LISTCONTROL subcommand and there are more
records to return. Specify the
OPERATION=CONTINUE to obtain more records.

4 2 DFSMSrmm issues this return code and reason code
in response to a SEARCH type subcommand. The
DFSMSrmm API issues these codes when the search
limit you set for a DFSMSrmm subcommand has
been reached but there might be more records to
return.

4 4 DFSMSrmm issues this return code and reason code
in response to a search type subcommand. The
DFSMSrmm API issues these codes when the search
processing indicates fewer records returned than
were requested.

4 8 DFSMSrmm issues this return code and reason code
in response to a search type subcommand. The
DFSMSrmm API issues these codes when no entry
meets then search criteria during search processing.

See “Controlling output from list and search type requests” on page 73 for an
example of the interaction between the size of an output buffer, the amount of
output data the API returns, and the LIMIT value you set.

Requesting multiple resources for SEARCH subcommands
The DFSMSrmm API can return resources either one at a time or multiple at a time
when you specify one of the DFSMSrmm TSO RMM SEARCHDATASET,
SEARCHBIN, SEARCHOWNER, SEARCHPRODUCT, SEARCHRACK,
SEARCHVOLUME, and SEARCHVRS subcommands together with
OUTPUT=FIELDS. Use the MULTI keyword to notify the API about which type of
output you can handle. To specify MULTI=YES, your application must be able to

30 z/OS V2R1.0 DFSMSrmm Application Programming Interface

handle multiple resources each separated by the begin/end group structured field
introducers. When you specify MULTI=YES, your output buffer can have one or
more resource groups returned in a single call of the API. Using MULTI=YES helps
reduce the system resources used for API processing.

Using parameter lists to pass information to the DFSMSrmm API
You can write your application program to include this processing:
v Serially or concurrently process subcommands.
v Use single parameter lists or multiple parameter lists for each subcommand. For

example, your application program can use one parameter list for a SEARCH
type of subcommand and another parameter list for a CHANGE type of
subcommand.

v Reuse resources (tokens).

You can use variations of parameter lists and tokens in your application program
to meet your application requirements.

Table 10. Types of parameter lists

Variation Guidelines Reference

Single parameter list and a
single token area

v Only one subcommand
request can be active at a
time.

v An active subcommand
request must be completed
before beginning another
subcommand request.

“Coding a single parameter
list, single token area” on
page 32

Single parameter list and
multiple token area

v More than one
subcommand request can
be active at a time.

v Only one subcommand
request can be processed
at any given time.

“Coding a single parameter
list, multiple token areas” on
page 34

Multiple parameter lists with
a single token area

v Only one subcommand
can be active at a time.

v Different parameter lists
can be used for these
tasks:

– Begin subcommand
requests.

– Continue subcommand
requests.

– Release resources.

v Starting a new
subcommand request ends
any previous subcommand
request.

“Coding multiple parameter
lists, single token area” on
page 36.

Chapter 4. Using the DFSMSrmm application programming interface using assembler language 31

Table 10. Types of parameter lists (continued)

Variation Guidelines Reference

Multiple parameter lists and
multiple token area

v More than one
subcommand request can
be active at a time.

v More than one active
subcommand request can
be processed at a time.

v Different parameter lists
can be used to:

– Begin subcommand
requests.

– Continue subcommand
requests.

– Release resources.

“Coding multiple parameter
lists, multiple token areas”
on page 37

For illustrative purposes, the examples use inline code segments with shortened
code lines.

Coding a single parameter list, single token area
Figure 8 on page 33 is an example of how your application program can use a
single parameter list and a single token area. The example includes a BEGIN,
CONTINUE, and RELEASE for each subcommand request because you are not
reusing resources. You need a new token for the second subcommand request
because you are not reusing any resources and need a separate token for each
request.

32 z/OS V2R1.0 DFSMSrmm Application Programming Interface

The example includes the OPERATION=RELEASE parameter. When you use
OPERATION=RELEASE, DFSMSrmm releases work areas that contain data and
pointers for the subcommand. You must obtain resources for the next subcommand
request. You might improve performance by deleting the OPERATION=RELEASE
for the first subcommand. Then when you begin the second subcommand, the
DFSMSrmm API module reuses resources, such as work areas, that it obtained for
the first subcommand. Reusing resources can reduce processing overhead
associated with releasing and obtaining resources.

If you do not use OPERATION=RELEASE, when the second subcommand request
starts, all data and pointers for the first subcommand are overwritten.

**
** Start the first subcommand
**

XC TOKENA,TOKENA No resources/token yet
LA R4,SUBCMD1 Point to 1st subcommand
EDGXCI MF=(E,PLIST),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=TOKENA, X
SUBCMDADDR=(R4),OUTBUFADDR=(R3)

...**
** Continue the subcommand
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=CONTINUE, X
TOKEN=TOKENA, X
OUTBUFADDR=(R3)

...
**
** Done with the subcommand, release
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE, X
TOKEN=TOKENA

...
**
** Start the second subcommand
**

LA R4,SUBCMD2 Point to 2nd subcommand
EDGXCI MF=(E,PLIST),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=TOKENA, X
SUBCMDADDR=(R4),OUTBUFADDR=(R3)

...
**
** Continue the subcommand
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=CONTINUE, X
TOKEN=TOKENA, X
OUTBUFADDR=(R3)

...
**
** Done with the subcommand, release
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE, X
TOKEN=TOKENA

Figure 8. Single parameter list, single token area

Chapter 4. Using the DFSMSrmm application programming interface using assembler language 33

For OPERATION=RELEASE, you do not specify SUBCMDADDR or
OUTBUFADDR. For OPERATION=CONTINUE, you do not specify
SUBCMDADDR.

Coding a single parameter list, multiple token areas
This variation allows you to continue a previous subcommand after you have
started another. You might need to use multiple token areas when your application
program is designed to support a sequence of subcommand requests like the one
that follows:
1. Use a SEARCHVOLUME subcommand to request volume information. For

example:
SEARCHVOLUME OWNER(userid) LIMIT(*)

2. Use a SEARCHDATASET subcommand to obtain data set information. For
example:
SEARCHDATASET VOLUME(volser) LIMIT(*)

3. Repeat subcommands until all information for all data sets is obtained and
passed back to your user.

Figure 9 on page 35 shows how you can use a single parameter list and multiple
tokens to identify work areas. The multiple token areas allow the flexibility of
continuing a previous subcommand after starting another subcommand. Use the
token you obtained from the previous subcommand when you want to continue
that subcommand.

34 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Figure 9 shows how you can reuse resources. When your application program is
finished with the first subcommand request, it can reuse the first token to begin a
third request. When that token is reused to begin a new subcommand request, you
cannot continue the previous request associated with that token.

In Figure 9, the same output buffers are used for all subcommand requests. As a
result, all of the output data in the output buffer must be processed before another
request can be started or continued. To avoid this situation, you might write your
application program to use multiple output buffers instead of a single output
buffer.

**
** Start the first subcommand
**

XC TOKEN1,TOKEN1 No resources/token yet
LA R4,SUBCMD1 Point to 1st subcommand
EDGXCI MF=(E,PLIST),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=TOKEN1, X
SUBCMDADDR=(R4),OUTBUFADDR=(R3)

...
**
** Start the second subcommand
**

XC TOKEN2,TOKEN2 No resources/token yet
LA R4,SUBCMD2 Point to 2nd subcommand
EDGXCI MF=(E,PLIST),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=TOKEN2, X
SUBCMDADDR=(R4),OUTBUFADDR=(R3)

...
**
** Continue the second subcommand
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=CONTINUE, X
TOKEN=TOKEN2, X
OUTBUFADDR=(R3)

...
**
** Continue the first subcommand
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=CONTINUE, X
TOKEN=TOKEN1, X
OUTBUFADDR=(R3)

...
**
** Release resources for the first subcommand
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE, X
TOKEN=TOKEN1

...
**
** Release resources for the second subcommand
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE, X
TOKEN=TOKEN2

Figure 9. Single parameter list, multiple token areas

Chapter 4. Using the DFSMSrmm application programming interface using assembler language 35

Figure 9 on page 35 shows multiple releases using the OPERATION=RELEASE
parameter. Instead of using multiple releases, you can specify the
OPERATION=ENDALL once to free all resources associated with all tokens. See
Figure 10 for an example of this method.

Note: You do not specify the TOKEN parameter when you use
OPERATION=ENDALL. Your application program, however, is responsible for
setting all tokens to zeros to prevent them from being reused.

Your application program might encounter a resource constraint condition like
short-on-storage before it issues the OPERATION=ENDALL.

Coding multiple parameter lists, single token area
Figure 11 on page 37 shows how you can use multiple parameter lists and a single
token area. With a single token area, you cannot continue the first subcommand
request, even though there are multiple parameter lists. The variation in Figure 11
on page 37 prevents you from continuing the first subcommand after you begin
the second subcommand.

**
** Release all resources
**

EDGXCI MF=(E,PLIST),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=ENDALL

Figure 10. Releasing all resources

36 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Coding multiple parameter lists, multiple token areas
This variation lends itself to processing in re-entrant code where subroutines can
be created for commonly used code. Here is an example that shows how the same
subroutines can be used to issue and process multiple subcommand requests with
each having its own token and output buffer area.

**
** Start the first subcommand
**

XC TOKENA,TOKENA No resources/token yet
LA R2,TOKENA Point to 1st token
LA R3,OUTBUF1 Point to 1st buffer
LA R4,SUBCMD1 Point to 1st subcommand
BAS R9,BEGRTN Issue command

**
** Start the first subcommand
**

XC TOKENA,TOKENA No resources/token yet
LA R4,SUBCMD1 Point to 1st subcommand
EDGXCI MF=(E,BEGINPL),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=TOKENA, X
SUBCMDADDR=(R4),OUTBUFADDR=(R3)

...
**
** Continue the subcommand
**

EDGXCI MF=(E,CONTPL),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=CONTINUE, X
TOKEN=TOKENA, X
OUTBUFADDR=(R3)

...
**
** Done with the subcommand, release
**

EDGXCI MF=(E,RELPL),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE, X
TOKEN=TOKENA

...
**
** Start the second subcommand
**

LA R4,SUBCMD2 Point to 2nd subcommand
EDGXCI MF=(E,BEGINPL),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=TOKENA, X
SUBCMDADDR=(R4),OUTBUFADDR=(R3)

**
** Continue the subcommand
**

EDGXCI MF=(E,CONTPL),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=CONTINUE, X
TOKEN=TOKENA, X
OUTBUFADDR=(R3)

...
**
** Done with the subcommand, release
**

EDGXCI MF=(E,RELPL),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE, X
TOKEN=TOKENA

Figure 11. Multiple parameter lists, single token area

Chapter 4. Using the DFSMSrmm application programming interface using assembler language 37

...
**
** Start the second subcommand
**

LA R2,TOKENB Point to 2nd token
LA R3,OUTBUF2 Point to 2nd buffer
LA R4,SUBCMD2 Point to 2nd subcommand
BAS R9,BEGRTN Issue command
...

**
** Continue the 2nd subcommand
**

LA R2,TOKENB Point to 2nd token
BAS R9,CONRTN Continue 2nd cmd
...

**
** Continue the 1st subcommand
**

LA R2,TOKENA Point to 1st token
BAS R9,CONRTN Continue 1st cmd
...

**
** Done with the subcommands, release
**

LA R2,TOKENA Point to 1st token
BAS R9,RELTRN Release 1st token
...
LA R2,TOKENB Point to 2nd token
BAS R9,RELTRN Release 2nd token
...

BEGRTN EQU *
EDGXCI MF=(E,BEGINPL),PLISTVER=MAX, X

APIADDR=APIMOD@,OPERATION=BEGIN, X
TOKEN=(R2), X
SUBCMDADDR=(R4),OUTBUFADDR=(R3)

BR R9
...

CONRTN EQU *
**
** Continue the subcommand
**

EDGXCI MF=(E,CONTPL),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=CONTINUE, X
TOKEN=(R2), X
OUTBUFADDR=(R3)

BR R9
...

RELRTN EQU *
**
** Done with the subcommand, release
**

EDGXCI MF=(E,RELPL),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE, X
TOKEN=(R2)

BR R9

Specifying the option to free a resource
You can free a resource when you no longer need to use it by performing one of
these actions:
v Use the OPERATION=RELEASE and TOKEN=token parameters to free all

resources associated with the specified token as shown in Figure 12 on page 39.

38 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Specifying TOKEN=TOKENA on the EXECUTE form of EDGXCI causes the
4-byte TOKENA area to be set to all zeros upon return from freeing the token.
TOKEN=token is required even when you specify MF=(E,label,NOCHECK),
unless you also specify OPERATION=ENDALL. Specifying TOKEN=token causes
the 4-byte token area to be updated upon return from the DFSMSrmm API. The
token is set to all zeros by the EDGXCI macro expansion.

v Specify the OPERATION=ENDALL parameter to free all resources associated
with all tokens, as shown in Figure 13.
Rule: You are responsible for setting applicable tokens to all zeros when you
specify OPERATION=ENDALL.

v Your application program ends (end-of-task occurs).

Specifying the option to release a resource
To release a resource, you must have access to the tokens associated with the
resources that you want to release. If you no longer have access to the tokens or
you have set the tokens to all zeros before you use OPERATION=RELEASE, there
are only two ways that resources can be freed:
v Your application program specifies OPERATION=ENDALL to free all resources

associated with all tokens.
v Your application program ends (end-of-task occurs).

In Figure 13, the OPERATION=ENDALL parameter is specified and TOKEN is not
required.

** Done with the subcommand, setup release parmlist

EDGXCI MF=(M,RELPL,NOCHECK),PLISTVER=MAX, X
APIADDR=APIMOD@,OPERATION=RELEASE

** Call the DFSMSrmm API

EDGXCI MF=(E,RELPL,NOCHECK),TOKEN=TOKENA

Figure 12. TOKEN= specified on EDGXCI

** Done with the subcommand, setup endall parmlist

EDGXCI MF=(M,RELPL,NOCHECK),PLISTVER=MAX, X
APIADDR=APIMOD@

** Call the DFSMSrmm API

EDGXCI MF=(E,RELPL,NOCHECK),OPERATION=ENDALL

Figure 13. TOKEN= not specified on EDGXCI

Chapter 4. Using the DFSMSrmm application programming interface using assembler language 39

40 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Chapter 5. Using an alternative interface to the DFSMSrmm
application programming interface

The EDGXHINT interface is an alternative interface to the DFSMSrmm application
programming interface (API):
v Assembler or C/C++ programs can be linked together with module EDGXHINT

to exploit the API interface provided.
v When using Java, you must use the Java Native Interface (JNI) to C/C++ before

you can use EDGXHINT.

EDGXHINT is shipped as a load module in LINKLIB.

When using high level languages to write applications to obtain information about
DFSMSrmm resources, you use the same DFSMSrmm subcommand strings that
you can use with the EDGXCI interface. You get output as structured field
introducers (SFIs). To receive output as an XML document, use the Object-Oriented
DFSMSrmm Application Programming Interface Using C++.

Related reading:
1. z/OS XL C/C++ User's Guide
2. Integrating Java with Existing Data and Applications on OS/390, SG24-5142-00

To create a program exploiting the EDGXHINT interface, bind EDGXHINT
together with your own module as shown in Figure 14.

The application program must provide buffers for the:
v Command string you want to pass to the API

//BINDPGM JOB (4378),’BIND A PROGRAM’,MSGCLASS=H,MSGLEVEL=(1,1),
// TIME=3,CLASS=A,REGION=0M,NOTIFY=&SYSUID
//*
//***
//* ***
//* BIND A C/C++ PROGRAM TO USE THE EDGXHINT INTERFACE TO RMM ***
//* ***
//* SYSLMOD: OUTPUT DATASET (HLQ.CPP.LINKLIB) MUST BE PDSE FORMAT ***
//* ***
//***
//BIND EXEC PGM=IEWL,REGION=4M,
// PARM=’AMODE=31,MAP,RENT’
//SYSLIB DD DSN=CEE.SCEELKEX,DISP=SHR
// DD DSN=CEE.SCEELKED,DISP=SHR
// DD DSN=CEE.SCEECPP,DISP=SHR
//SYSLMOD DD DISP=SHR,DSN=HLQ.CPP.LOAD
//SYSPRINT DD SYSOUT=*
//INOBJ DD DSN=HLQ.OBJ,DISP=SHR
//LINKLIB DD DISP=SHR,DSN=SYS2.LINKLIB
//SYSLIN DD *

INCLUDE INOBJ(USERPROG)
INCLUDE LINKLIB(EDGXHINT)
NAME USERPROG(R) RC=0

/*

Figure 14. Binding a C++ program for use of EDGXHINT

© Copyright IBM Corp. 1992, 2013 41

v Output you will receive back from the API. The minimum recommended size is
80KB. The larger the output buffer you provide, the more resources that can be
returned by one call to EDGXHINT.

v Messages that may be issued by the API as result of your command. The
minimum recommended size is 256 bytes

The application program also must fill an interface structure, which is used to
communicate with the API. You can then call EDGXHINT by passing the pointer to
the interface structure. For more details on the processing between your program
and the RMM API, see Chapter 4, “Using the DFSMSrmm application
programming interface using assembler language,” on page 29.

Parameter list to call EDGXHINT
Table 11. Parameter list for a call of EDGXHINT

Field Description Set from

Function code 1. Open API (start communication)
2. Close API (end communication)
3. Issue command (begin a request)
4. Get next buffer (continue a request)
5. Release (end a request)

User program

Pointer to the
command buffer

The user program needs to obtain the storage for a buffer big
enough to hold the TSO subcommand to be issued. Maximum is
255 byte. EDGXHINT will read the TSO command from this buffer.

User program

Pointer to the output
buffer

The user program needs to obtain the storage for an output buffer.
Minimum recommended is 80KB. EDGXHINT will use this buffer
to return the data requested.

User program

Pointer to first
message buffer

The user program must obtain the storage for a 256 byte buffer.
This buffer should always be cleared before EDGXHINT is called,
to delete pre-existing content. EDGXHINT will use this buffer to
return a message resulting from the last issued command, if
appropriate.

User program

Pointer to second
message buffer

The user program must obtain the storage for a 256 byte buffer.
This buffer should always be cleared before EDGXHINT is called,
to delete pre-existing content. EDGXHINT will use this buffer to
return a second message resulting from the last issued command, if
appropriate.

User program

Message count Number of messages returned by EDGXHINT EDGXHINT

API address Address of EDGXAPI. Set by OPEN function. Can be used to
determine if the API is open. If not NULL, then API is open.

EDGXHINT

MTAB address Address of the DFSMSrmm message table. Set by OPEN function,
used by EDGXHINT internally.

EDGXHINT

CMSG address Address of the DFSMSrmm message routine. Set by OPEN
function, used by EDGXHINT internally.

EDGXHINT

Token Token used by macro EDGXCI to identify the request. The token is
created at BEGIN processing (function 3) and used by CONTINUE
processing (function 4). The token is cleared (set to zero) by
EDGXHINT after RELEASE processing (function 5).

EDGXHINT

Return code API return code EDGXHINT

Reason code API reason code EDGXHINT

42 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Interface structure to pass the parameter list to EDGXHINT
In C/C++ programming language, a struct is used to pass the parameter list to
EDGXHINT. Sample code for this purpose is shown in Figure 15. In this sample,
the interface structure itself is defined in t_interface. Additional structs are used to
map the command buffer (t_comm) and the output buffer (t_outp).

Communication with the API

Define the API
Define the EDGXHINT program interface to your program, together with the
interface struct, using code such as:
extern "C" int EDGXHINT(t_interface*);

typedef struct t_comm // to map the output buffer
{

short com_length; // length of the command
char commandBuffer[255]; // storage to hold the command

};
t_comm commandStrct; // variable of type t_comm
t_comm* commPtr; // pointer to t_comm

typedef struct t_outph // to map the command buffer header
{

long out_length; // length of the output buffer
long out_needed; // output buffer length needed
long out_used; // output buffer length used

};
t_outph outputHeaderStrct; // variable of type t_outph

typedef struct t_outp // to map the output buffer
{

t_outph header; // output buffer header
char outputBuffer[80000]; // storage to hold the output

};
t_outp outputStrct; // variable of type t_outp
t_outp* outputPtr; // pointer to t_outp

typedef struct t_interface // to map the interface structure
{

long function; // function code
t_comm* command_ptr; // pointer to command buffer
t_outp* outputBuf_ptr; // pointer to output buffer
char* messageBuf_ptr1; // pointer to first message buffer
char* messageBuf_ptr2; // pointer to second message buffer
long messageCount; // number of messages returned
void* addr_XAPI; // address of module EDGXAPI
void* addr_MTAB; // address of module EDGMTAB
void* addr_CMSG; // address of module EDGCMSG
long token; // token to identify the request
long returncode; // API return code
long reasoncode; // API reason code

};
t_interface interStruct; // variable of type t_interface
t_interface* pI; // pointer to t_interface

Figure 15. C/C++ sample code for an interface struct

Chapter 5. Using an alternative interface to the DFSMSrmm application programming interface 43

Start API communication
To start API communication, first initialize all elements of the interface structure
and clear the buffers you provide. You can then open a communication session
with the API by setting the function code to 1 (=OPEN) and calling EDGXHINT,
passing the pointer to the interface struct:
interStruct.function = 1L;
EDGXHINT(pI);

You can use the return and reason code elements of the interface structure to
determine whether the open process was successful:
if (interStruct.returncode == 0L

&& interStruct.reasoncode == 0L)
..... // successfully opened the API session

else
.... // error handling needed

If the open process is successful, EDGXHINT fills the elements of the interface
structure as described in Table 11 on page 42.

Issue a request
If the open is successful, you can start a request session by issuing a TSO
subcommand through the API. Sample code for this is shown in Figure 16. Place
the command string in the command buffer, initialize buffers, set function code to
3 (=BEGIN), and call EDGXHINT.

You can evaluate the return and reason code to determine whether the command
was processed successfully. From the message count, you can determine whether
there are messages available in the message buffers. You will find returned data in
the output buffer. This data is in SFI format and can be processed as described in
Chapter 6, “Processing the output data in the output buffer,” on page 47. If a
search command was issued, you will find one or more complete resources in the
output buffer.

EDGXHINT always uses the EDGXCI MULTI=YES keyword on behalf of its
callers. Therefore, all callers must be updated, if necessary, to handle a buffer
containing multiple resources. A caller requiring the return of just a single resource
can use the LIMIT(1) operand on the SEARCH subcommand.

Continue a request
If more matching resources exist (returncode = 0, reasoncode = 4), you might want
to continue the request session. Clear the buffers, set function code to 4
(=CONTINUE) and call EDGXHINT again. The next set of resources are returned
to the output buffer.

char command[12] = "SV OWNER(*)"; // define the command
strcpy(commandStrct.commandBuffer,command); // fill the command buffer
commandStrct.com_length = strlen(command)+2; // set the command length

// command length + 2 byte length field
strcpy(outputStrct.outputBuffer,’\0’); // clear output buffer
outputStrct.header.out_used=0;
strcpy(interStruct.messageBuf_ptr1,'\0'); // clear message buffers
strcpy(interStruct.messageBuf_ptr2,'\0');
interStruct.function = 3L; // set function code
EDGXHINT(pI); // call EDGXHINT

Figure 16. Issue a TSO subcommand using EDGXHINT

44 z/OS V2R1.0 DFSMSrmm Application Programming Interface

End a request
To end the request session, release the corresponding token. Set function code to 5
(=RELEASE) and call EDGXHINT.
interStruct.function = 5L;
EDGXHINT(pI);

End API communication
To end communication with the API, set the function code to 2 (=CLOSE) and call
EDGXHINT, passing the pointer to the interface struct:
interStruct.function = 2L;
EDGXHINT(pI);

Return and reason codes using EDGXHINT
When using interface EDGXHINT, you receive return and reason codes, as
described in “EDGXCI return and reason codes” on page 9.

Chapter 5. Using an alternative interface to the DFSMSrmm application programming interface 45

46 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Chapter 6. Processing the output data in the output buffer

The DFSMSrmm application programming interface returns data in the output
buffer you define. The data is in this format:
v A four-byte length field into which your application program sets the total size

of the output buffer.
v A four-byte length field that is used by DFSMSrmm when your output buffer is

too small.
v A four-byte length field that contains the total size of all the output including

the bytes of the length field.
v Structured fields, which consist of structured field introducers (SFIs) and data.

– A structured field introducer (SFI) is a structure that separates one line or
field of output data from another. Structured field introducers are described
in “Description of structured fields.”

– Data in line format or field format.

Use the EDGXSF macro described in “EDGXSF: Structured field definitions” on
page 103 to map the output buffer header and the structured field introducers.
EDGXSF also defines values used in the output fields. Do not hardcode the offsets
because they might change in the future.

The DFSMSrmm API returns various types of output to your application program:
v Return and reason codes in registers from DFSMSrmm and the DFSMSrmm API.
v Return and reason codes from system services in structured fields.
v List header lines as formatted lines in structured fields.
v Messages as formatted lines or as message variables in structured fields.
v Report output data as formatted lines or as unformatted fields in structured

fields.

The DFSMSrmm API does not return output data in the output buffer for every
subcommand you issue using the API. See “Structured field introducers for output
data for subcommands” on page 58 for information on each subcommand and the
possible output data that the API returns as structured fields in your output buffer.

Description of structured fields
A structured field consists of:
v A structured field introducer (SFI)
v Data that follows the structured field introducer:

Part Description

SFI Structured field introducer. A structure with a minimum size of 8 bytes in
this format:

Byte count
Description

2 Two-byte length. The length includes the length of the structured
field introducer (8 bytes) and the length of the data following the
structured field introducer.

© Copyright IBM Corp. 1992, 2013 47

3 Three-byte SFI identifier (ID)

1 One-byte SFI type modifier

1 One-byte (reserved)

1 One-byte data-type identifier

Data Data following the structured field introducer, which can contain actual
data, no data, binary zeros, or blank data.

See Appendix A, “Structured field introducers (SFIs),” on page 77 for descriptions
of the structured field introducers that the DFSMSrmm API returns.

Structured fields can appear in any order. Write your application so it skips over
any structured field it is not prepared to handle. This makes your application
program less sensitive to changes like enhancements to DFSMSrmm that introduce
new or different structured fields and sequences. You can update your application
program when it is convenient to do so rather than being forced to do so because
your application program no longer works.

In the examples that follow, <SFI>data denotes a structured field introducer (SFI)
that is followed by data. In the examples, the term “SFI” is replaced with its
descriptive name, for example: <data-set-name>. There is no association between
the length of a particular structured field introducer and its descriptive name.

Requesting structured field introducer data format
You determine if the DFSMSrmm API returns line format or field format data to
your application program. Line format contains fixed text and variable data that
are formatted into lines. Line format is suitable for displaying at a terminal or for
printing. Field format data consists only of structured field introducers and
variable data.

You can request that the data be returned in line format when you specify the
EDGXCI macro OUTPUT=LINES parameter. You can request that the data be
returned in field format by specifying the OUTPUT=FIELDS parameter.

When you specify the EDGXCI macro OUTPUT=LINES parameter, the DFSMSrmm
API returns the output lines in the same format as information returned by the
DFSMSrmm RMM TSO subcommand.

In the examples that follow, assume that
A00001: RMMUSER.TSO.COMMAND1.

is only one data set on the volume

Requesting line format
Figure 17 on page 49 is an example of the line format data that the DFSMSrmm
API returns when you specify the OUTPUT=LINES parameter. In the example, the
request specifies the RMM TSO subcommand LISTDATASET RMMUSER.TAPE
VOLUME(A00001). The request might produce the output that is shown in
Figure 17 on page 49. The value for <line> is the SFI for each line and is followed
by the data returned from specifying the RMM LISTDATASET subcommand.

48 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Requesting field format
Figure 18 on page 50 is an example of the field format data that the DFSMSrmm
API returns when you specify the OUTPUT=FIELDS parameter. Your request
specifying LISTDATASET FIELD.TEST VOLUME(VOL001) subcommand might
also produce the output shown in Figure 18 on page 50.

<Begin DATASET Group>
<line>Data set name = RMMUSER.TAPE
<line>Volume = A06061 Physical file sequence number = 1
<line>Owner = RMMUSER Data set sequence = 1
<line>Create date = 11/18/2011 Create time = 05:02:23 System ID = EZU34
<line>Expiration date = 11/18/2011 Original expir. date =
<line> set by = OCE_DEF
<line>LASTREF Extra Days = 0
<line>Block size = 3120 Block count = 1
<line>Data set size(KB) = 97656
<line>Physical size(KB) = 0 Compression = 0.00
<line>Percent of volume = 0 Total block count = 1
<line>Logical Record Length = 80 Record Format = FB
<line>Date last written = 11/18/2011 Date last read = 11/18/2011
<line>Job name = RMMUSERJ Last job name = RMMUSERJ
<line>Step name = WRITE Last step name = WRITE
<line>Program name = IEBGENER Last program name = IEBGENER
<line>DD name = SYSUT2 Last DD name = SYSUT2
<line>Device number = 0590 Last Device number = 0590
<line>Management class = VRS management value =
<line>Storage group = VRS retention date =
<line>Storage class = VRS retained = NO
<line>Data class = Closed by Abend = NO
<line> Deleted = NO
<line>VRSEL exclude = YES Catalog status = UNKNOWN
<line>Primary VRS details:
<line> Name =
<line> Job name = Type =
<line> Subchain NAME = Subchain start date =
<line>Secondary VRS details:
<line> Value or class =
<line> Job name =
<line> Subchain NAME = Subchain start date =
<line>Security Class = UNCLASS Description = UNCLASSIFIED
<line>BES key index = 0
<line>
<line>Last Change information:
<line>Date = 11/18/2011 Time = 05:02:23 System = EZU0000
<line>User change date = Time = User ID = *OCE
<line>

<End DATASET Group>

Figure 17. Example of list type of output using OUTPUT=LINES

Chapter 6. Processing the output data in the output buffer 49

<Begin DATASET Group>
<DSN - Data Set Name : 44, character >
<CJBN - Job Name : 8, character >
<VOL - Volume Serial : 6, character >
<OWN - Owner : 8, character >
<DSEQ - Data Set Sequence : 4, bin(31) >
<TZ - Time Zone : 4, bin(31) >
<DEV - Device Number : 4, character >
<FILE - Physical File Sequence : 4, bin(31) >
<CDTJ - Create Date : 4, packed decimal >
<CTM - Create Time : 4, packed decimal >
<SYS - Creating system ID : 8, character >
<BLKS - Block Size : 4, bin(31) >
<BLKC - Block Count : 4, bin(31) >
<LRCL - Logical Record Length : 4, bin(31) >
<RCFM - Record Format : 4, character >
<DC - Data Class : 8, character >
<DLWJ - Date Last Written : 4, packed decimal >
<DLRJ - Date Last Read/Referenced: 4, packed decimal >
<STEP - Step Name : 8, character >
<DD - DD Name : 8, character >
<MC - Management Class : 8, character >
<SG - Storage Group Name : 8, character >
<SC - Storage Class : 8, character >
<VMV - VRS Management Value : 8, character >
<RTDJ - Retention Date : 4, packed decimal >
<VTYP - Primary VRS Type : 1, bin(8) >
<VJBN - Primary VRS Job Name : 8, character >
<VNME - Primary VRS Name : 44, character >
<VSCN - Primary VRS Subchain name: 8, character >
<VSCD - Primary VRS Subchain date: 4, packed decimal >
<VRSR - VRS Retained : 1, bin(8) >
<NME - Security Class Name : 8, character >
<CLS - Security Class Descriptio: 32, character >
<ABND - Abend while open : 1, bin(8) >
<CTLG - Catalog status : 1, bin(8) >
<2JBN - Secondary VRS jobname mas: 8, character >
<2NME - Secondary VRS mask : 8, character >
<2SCN - Secondary VRS subchain na: 8, character >
<2SCD - Secondary VRS subchain da: 4, packed decimal >
<BLKT - Total block count : 4, bin(31) >
<CPGM - Creating program name : 8, character >
<LPGM - Last used program name : 8, character >
<LJOB - Last used job : 8, character >
<LSTP - Last used step name : 8, character >
<LDD - Last used DD name : 8, character >
<LDEV - Last Drive : 4, character >
<DPCT - Percent of volume : 1, bin(8) >
<XDTJ - Expiration Date : 4, packed decimal >
<XDSB - Expiry date set by : 1, bin(8) >
<OXDJ - Original Expiration Date : 4, packed decimal >
<DSS6 - Data Set Size : 14, compound >
<LCDJ - Last Change Date : 4, packed decimal >
<LCTM - Last Change Time : 4, packed decimal >
<LCID - Last Change User ID : 8, character >
<LCSI - Last Change System ID : 8, character >
<LCUD - Last "User" Change Date : 4, packed decimal >
<LCUT - Last "User" Change Time : 4, packed decimal >
<DLTD - Deleted By Disposition Pr: 1, bin(8) >
<VEX - VRSEL EXCLUDE on : 1, bin(8) >
<BESK - CA Tape Encrytion key ind: 4, bin(31) >
<PSZ6 - Physical space used : 14, compound >
<CRAT - Compression ratio in hund: 6, bin(31) >
<BLK6 - Total block count (64 bi: 8, bin(64) >
<LRED - LASTREF extra days : 4, bin(31) >

<End DATASET Group>

Figure 18. Example of output using OUTPUT=FIELDS

50 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Figure 18 on page 50:
v Shows Begin and End group structured field introducers. In this example,

<Begin DATASET Group> and <End DATASET Group>.
v Includes descriptive names used to identify structured field introducers. The SFI

identifies the data type; and the long character <...> strings do not represent the
actual size of the structured field introducers, which are only 8 bytes in length.

v Can appear to have no data. This is because structured fields can
– Have no data (SFI only, as in this example), binary zeros, or blank characters.
– Be omitted if they have no data.

v Shows that structured fields can be order independent. For example, VOL occurs
before OWN for LISTDATASET (as shown in “LISTDATASET structured field
introducers” on page 65) while OWN occurs before VOL for LISTPRODUCT (as
shown in “LISTPRODUCT structured field introducers” on page 67).

v Shows that structured fields might not be in the same order as their
corresponding positions in any line-format output.

v Shows variable-length fields.

Refer to Appendix D, “Hexadecimal example of an output buffer,” on page 109 for
an example of an output buffer in hexadecimal representation.

Requesting types of output
The DFSMSrmm API can produce standard output and expanded output
depending on the values you specify for the OUTPUT and EXPAND parameters as
described in “EDGXCI parameters” on page 5.

The examples shown in “Requesting standard output” and “Requesting expanded
output” on page 52:
v Assume that there is only one data set on volume VOL001:

OWNERONE.FIELD.TEST.
v Use SFI data type descriptions, such as DSN for data set name.
v Show maximum length values, without the term “bytes”.
v Show the data type, such as character.

Requesting standard output
When you specify EXPAND=NO, your request specifying the SEARCHDATASET
VOLUME(VOL001) subcommand might produce the output that is shown in
Figure 19.

<Begin DATASET Group>
<DSN - Data Set Name : 44, character >RMMUSER.DATA01
<VOL - Volume Serial : 6, character >V10000
<OWN - Owner : 8, character >RMMUSER
<TZ - Time Zone : 4, bin(32) >x’FFFF9D90’
<CDTJ - Create Date : 4, packed decimal >x’2007339F’
<CTM - Create Time : 4, packed decimal >x’0116362F’
<FILE - Physical File Sequence : 4, bin(32) >x’00000001’
<RTDJ - Retention Date : 4, packed decimal >x’2010345F’
<XDTJ - Expiration Date : 4, packed decimal >x’2010344F’

<End DATASET Group>

Figure 19. Example of search type of output using EXPAND=NO

Chapter 6. Processing the output data in the output buffer 51

Refer to Appendix D, “Hexadecimal example of an output buffer,” on page 109 for
a hexadecimal representation and discussion of the contents of the output buffer
shown in Figure 19 on page 51.

Requesting expanded output
The DFSMSrmm API can provide expanded output for the DFSMSrmm TSO RMM
SEARCHDATASET, SEARCHPRODUCT, SEARCHVOLUME, and SEARCHVRS
subcommands when you specify OUTPUT=FIELDS and EXPAND=YES or use the
default EXPAND=YES in your application program.

The DFSMSrmm API does not provide expanded data for the DFSMSrmm TSO
RMM SEARCHBIN or SEARCHRACK subcommands.

When you specify OUTPUT=FIELDS and EXPAND=YES, your SEARCHDATASET
VOLUME(VOL001) subcommand might produce the output that is shown in
Figure 20 on page 53.

52 z/OS V2R1.0 DFSMSrmm Application Programming Interface

<Begin DATASET Group>
<DSN - Data Set Name : 44, character >RMMUSER.TAPE
<CJBN - Job Name : 8, character >RMMUSERJ
<VOL - Volume Serial : 6, character >A06061
<OWN - Owner : 8, character >RMMUSER
<DSEQ - Data Set Sequence : 4, bin(31) >x’00000001’
<TZ - Time Zone : 4, bin(31) >x’FFFF9D90’
<DEV - Device Number : 4, character >0590
<FILE - Physical File Sequence : 4, bin(31) >x’00000001’
<CDTJ - Create Date : 4, packed decimal >x’2007339F’
<CTM - Create Time : 4, packed decimal >x’0116381F’
<SYS - Creating system ID : 8, character >EZU0000
<BLKS - Block Size : 4, bin(31) >x’00000C30’
<BLKC - Block Count : 4, bin(31) >x’00000001’
<LRCL - Logical Record Length : 4, bin(31) >x’00000050’
<RCFM - Record Format : 4, character >FB
<DC - Data Class : 8, character >
<DLWJ - Date Last Written : 4, packed decimal >x’2007339F’
<DLRJ - Date Last Read/Referenced: 4, packed decimal >x’2007339F’
<STEP - Step Name : 8, character >WRITE
<DD - DD Name : 8, character >SYSUT2
<MC - Management Class : 8, character >
<SG - Storage Group Name : 8, character >
<SC - Storage Class : 8, character >
<VMV - VRS Management Value : 8, character >
<RTDJ - Retention Date : 4, packed decimal >
<VTYP - Primary VRS Type : 1, bin(8) >x’00’
<VJBN - Primary VRS Job Name : 8, character >
<VNME - Primary VRS Name : 44, character >
<VSCN - Primary VRS Subchain name: 8, character >
<VSCD - Primary VRS Subchain date: 4, packed decimal >
<VRSR - VRS Retained : 1, bin(8) >x’00’
<NME - Security Class Name : 8, character >
<CLS - Security Class Descriptio: 32, character >
<ABND - Abend while open : 1, bin(8) >x’00’
<CTLG - Catalog status : 1, bin(8) >x’00’
<2JBN - Secondary VRS jobname mas: 8, character >
<2NME - Secondary VRS mask : 8, character >
<2SCN - Secondary VRS subchain na: 8, character >
<2SCD - Secondary VRS subchain da: 4, packed decimal >
<BLKT - Total block count : 4, bin(31) >x’00000001’
<CPGM - Creating program name : 8, character >IEBGENER
<LPGM - Last used program name : 8, character >IEBGENER
<LJOB - Last used job : 8, character >RMMUSERJ
<LSTP - Last used step name : 8, character >WRITE
<LDD - Last used DD name : 8, character >SYSUT2
<LDEV - Last Drive : 4, character >0590
<DPCT - Percent of volume : 1, bin(8) >x’00’
<XDTJ - Expiration Date : 4, packed decimal >x’2007344F’
<XDSB - Expiry date set by : 1, bin(8) >x’06’
<OXDJ - Original Expiration Date : 4, packed decimal >
<DSS6 - Data Set Size : 14, compound >x’010303010A060000000000017D78’
<LCDJ - Last Change Date : 4, packed decimal >x’2011322F’
<LCTM - Last Change Time : 4, packed decimal >x’0502236F’
<LCID - Last Change User ID : 8, character >*OCE
<LCSI - Last Change System ID : 8, character >EZU0000
<LCUD - Last "User" Change Date : 4, packed decimal >
<LCUT - Last "User" Change Time : 4, packed decimal >
<DLTD - Deleted By Disposition Pr: 1, bin(8) >x’00’
<VEX - VRSEL EXCLUDE on : 1, bin(8) >x’01’
<BESK - CA Tape Encrytion key ind: 4, bin(31) >x’00000000’
<PSZ6 - Physical space used : 14, compound >x’010303010A060000000000000000’
<CRAT - Compression ratio in hund: 6, bin(31) >x’00000000’
<BLK6 - Total block count (64 bi: 8, bin(64) >x’0000000000000001’
<LRED - LASTREF extra days : 4, bin(31) >x’00000000’

<End DATASET Group>

Figure 20. Example of search type of output using OUTPUT=FIELDS, EXPAND=YES

Chapter 6. Processing the output data in the output buffer 53

Accessing return and reason codes
DFSMSrmm returns return codes and reason codes to your application program in
the general purpose registers and also as data in your output buffer as follows:
v Return codes and reason codes issued as a result of processing of your

subcommand request. Refer to z/OS DFSMSrmm Managing and Using Removable
Media for information about these codes.

v Return codes and reason codes associated with the API itself. These are the
return codes and reason codes listed in “EDGXCI return and reason codes” on
page 9 for macro EDGXCI.

v Return and reason codes from system services. DFSMSrmm uses various system
services, such as catalog services, to process the subcommands from your
application program. When DFSMSrmm receives a non-zero return code from a
system service, the DFSMSrmm API places the return code and associated
reason code in your output buffer as structured fields, along with a name to
identify the service. See “System return and reason code structured field
introducers” on page 57 for more information.

Accessing messages and message variables
The DFSMSrmm API can return messages and message variables in your output
buffer. Figure 21 show how messages are returned in line format when you specify
the OUTPUT=LINES parameter and field format when you specify the
OUTPUT=FIELDS parameter.

Refer to “Messages and message variables structured field introducers” on page 57
for information about which messages can be placed in your output buffer.

Interpreting date format and time format
DFSMSrmm dates are in packed decimal format: yyyydddC, where yyyyddd is a
Julian date and C is a standard packed-decimal sign character. The date formats
used are returned in internal format and can be interpreted as follows:
v Interpret 9999366 as PERMANENT retention date format.
v Interpret 9999365 as PERMANENT retention date format.
v Interpret 9800000 as WHILECATLG retention date format.
v Interpret 98ccccc as CYCL/ccccc retention date format.
v Interpret 0000098 as CATRETPD retention date format.

<message line>message text
<message line>message text

or

<Begin MESSAGE group>
<message number >number
<message variable>variable

<End MESSAGE group>
<Begin MESSAGE group>

<message number >number
<message variable>variable

<End MESSAGE group>

Figure 21. Message and message variable structured fields. Message and Message Variable Structured Fields

54 z/OS V2R1.0 DFSMSrmm Application Programming Interface

v Interpret yyyyddd as yyyy/mm/dd, yyyy/dd/mm, mm/dd/yyyy,
dd/mm/yyyy, dd/yyyy/mm, mm/yyyy/dd.

DFSMSrmm also returns time in packed decimal format: hhmmsstC, where
hhmmsst is the time in hours, minutes, seconds, and tenths of seconds and C is a
standard packed-decimal sign character.

Using different time zones
Default dates and times are returned in the time zone of the DFSMSrmm system
processing the subcommand. The TZ SFI provides the time zone offset so if
necessary, the application can convert dates and times to any other required time
zone. When issuing subcommands that specify date or time values, such as
ADDDATASET or CHANGEVOLUME, you can specify the TZ operand to indicate
to the DFSMSrmm system the time zone offset the application is using.
DFSMSrmm converts dates and times to UTC/GMT/local time in order to store
them in the DFSMSrmm control data set. Refer to z/OS DFSMSrmm Implementation
and Customization Guide for more information on creating or updating the
DFSMSrmm control data set control record and setting up DFSMSrmm common
time support.

Identifying structured field introducers
A structured field introducer (SFI) is a structure that identifies one line or field of
output data from another. The DFSMSrmm API returns these types of structured
field introducers in your output buffer:
v Structured field introducers that begin and end a resource group as described in

“Begin and End Resource groups” on page 56.
v Structured field introducers that introduce a single line of output data, as

described in:
– “System return and reason code structured field introducers” on page 57
– “Messages and message variables structured field introducers” on page 57
– “ADD-Type of subcommands” on page 59
– “CHANGE-Type of subcommands” on page 59
– “DELETE-Type of subcommands” on page 60
– “GETVOLUME subcommand” on page 60
– “LIST-Type of subcommands” on page 60
– “SEARCH-Type of subcommands” on page 70

This notation indicates an SFI:
<xxxx - descriptive name : data length, data type : >

where “xxxx” is a character type of mnemonic. In your application program, you
need to use the 3-byte or 4-byte hexadecimal identifiers for structured field
introducers.

Appendix A, “Structured field introducers (SFIs),” on page 77 describes all the
structured fields that the DFSMSrmm API can return to your application program.

Appendix B, “Structured field introducers by subcommand,” on page 99 shows all
of the structured field introducers by subcommand.

Chapter 6. Processing the output data in the output buffer 55

The DFSMSrmm API does not return information for all subcommands. For
example, the DFSMSrmm API does not produce structured fields for a successful
ADDBIN subcommand request.

Begin and End Resource groups
In the previous examples, you saw that output structured fields were grouped by a
pair of unique structured field introducers as shown in Figure 22.

The Begin and End Resource group structured field introducers identify when
output for a particular resource, such as a data set, begins and ends. The pairs of
Begin and End Resource group structured field introducers are shown in Figure 23.

In addition to identifying the beginning and ending of output for a particular
resource, the Begin and End Resource group structured field introducers shown in
Figure 24 are used to differentiate one subgroup of data from another in the output
the DFSMSrmm API returns for the LISTCONTROL, LISTVOLUME,
SEARCHVOLUME, LISTPRODUCT, and SEARCHPRODUCT subcommands.

Groups and subgroups, such as MESSAGE and SECCLS, are repeated as often as
necessary to differentiate resources.

<Begin DATASET group>
<.. >data set name
<.. >volume id

<End DATASET group>

Figure 22. Begin and End Resource group SFI sequence

<Begin BIN group> <End BIN group>
<Begin CONTROL group> <End CONTROL group>
<Begin DATASET group> <End DATASET group>
<Begin MESSAGE group> <End MESSAGE group>
<Begin OWNER group> <End OWNER group>
<Begin PRODUCT group> <End PRODUCT group>
<Begin RACK group> <End RACK group>
<Begin VOLUME group> <End VOLUME group>
<Begin VRS group> <End VRS group>

Figure 23. Begin and End Resource group SFI pairs

<Begin ACCESS group> <End ACCESS group>
<Begin ACTIONS group> <End ACTIONS group>
<Begin CNTL group> <End CNTL group>
<Begin LOCDEF group> <End LOCDEF group>
<Begin MEDINF group> <End MEDINF group>
<Begin MNTMSG group> <End MNTMSG group>
<Begin MOVES group> <End MOVES group>
<Begin OPENRULE group> <End OPENRULE group>
<Begin OPTION group> <End OPTION group>
<Begin PRTITION group> <End PRTITION group>
<Begin PRODVOL group> <End PRODVOL group>
<Begin REJECT group> <End REJECT group>
<Begin SECCLS group> <End SECCLS group>
<Begin STAT group> <End STAT group>
<Begin STATUS group> <End STATUS group>
<Begin STORE group> <End STORE group>
<Begin TASKS group> <End TASKS group>
<Begin VLPOOL group> <End VLPOOL group>
<Begin VOL group> <End VOL group>

Figure 24. Begin and End Resource group SFI pairs for subgroups

56 z/OS V2R1.0 DFSMSrmm Application Programming Interface

System return and reason code structured field introducers
When DFSMSrmm receives a non-zero return code from a system service, the
system return code and associated reason code are put into your output buffer as
shown in Figure 25. DFSMSrmm issues return code 116 and reason code 06 when
an error like this occurs.

The DFSMSrmm API returns the same structured field introducers for both line
format and field format.

Messages and message variables structured field introducers
When messages or message variables are returned to you as output data, they are
put into your output buffer as structured fields as shown in Figure 26.

When you use the CONTINUE operand on any SEARCH subcommand, the
DFSMSrmm API returns the continue information at the message group with the
CONT SFI as shown in Figure 27.

When you specify OUTPUT=LINES, messages issued by DFSMSrmm are placed in
your output buffer using the LINE SFI.

When you specify OUTPUT=FIELDS, only the messages listed in Table 12 on page
58 are placed in your output buffer. These messages, some of which are issued
only in conjunction with a subcommand parameter such as POOL or COUNT, are
included in the output because they contain data and codes that can be especially

<Begin SYSRETC group>
<SVCN - service name : 16 , character: >
<RTNC - return code : 4 , bin(32): >
<RSNC - reason code : 4 , bin(32): >

<End SYSRETC group>

Figure 25. System return and reason codes

<MSGL - message line : nn , character: >
<MSGL - message line : nn , character: >

or

<Begin MESSAGE group>
<MSGN - message number : 8 , character: >
<xxx - variable>

<End MESSAGE group>
<Begin MESSAGE group>

<MSGN - message number : 8 , character: >
<xxx - variable>

<End MESSAGE group>

Figure 26. Structured field introducers for messages and message variables

<Begin VOLUME group>
<Begin MESSAGE group>

<MSGN - message number : 8 , character: >
<ENTN - number of entries : 4 , bin(1): >

<End MESSAGE group>
<Begin MESSAGE group>

<MSGN - message number : 8 , character: >
<CONT -continue information :84 , character: >

<End MESSAGE group>
<End VOLUME group>

Figure 27. Message group with the CONT SFI

Chapter 6. Processing the output data in the output buffer 57

useful to your application. Your application program should use the return and
reason codes that it receives rather than messages to determine whether or not the
subcommand request was successful.

Table 12 lists:
v The structured field introducers that follow the <MSGN> SFI
v The applicable subcommands
v A non-inclusive list of the return codes (RC) and reason codes (RSN).

Table 12. Message related structured field introducers

Message SFI ID(s) Subcommand(s) RC RSN(s)

EDG3010 ENTN All SEARCH subcommands
when no (0) entry is
returned

4 8

EDG3011 ENTN All SEARCH subcommands
when 1 entry returned 0

4
0
2 and 4

EDG3012 ENTN All SEARCH subcommands
when > 1 entry returned 0

4
0
2 and 4

EDG3013 VOL AV 12 many

EDG3014 CNT AV 12 many

EDG3015 OWN VOL GV 0 0

EDG3016 RCK AV CV 0 0

EDG3017 RCK AB AR 12 18 68 70

EDG3018 CNT AB AR 12 18 68 70

EDG3019 RCK DB DR 12 many

EDG3020 CNT DB DR 12 many

EDG3025 CONT All SEARCH subcommands 4 2

EDG3277 FRC FRS AV CV 12 122

EDG3278 CSG AV CV 12 124

EDG3288 FRC FRS VOL CV DV 12 132

EDG3289 FRC FRS CV 12 134

EDG3292 CLIB AV CV 12 140

EDG3301 FRC FRS AV CV GV 12 152

EDG3310 CLIB CV DV 12 170

EDG3311 FRC FRS AV CV DV 12 172

EDG3314 MEDN CV 12 176

EDG3328 KEYF KEYT TYPF
TYPT

SD SV 4 12

For a detailed explanation of these messages, see z/OS MVS System Messages, Vol 5
(EDG-GFS). For DFSMSrmm return and reason codes, see z/OS DFSMSrmm
Managing and Using Removable Media.

Structured field introducers for output data for subcommands
When you specify OUTPUT=LINES, the DFSMSrmm API returns output data,
except for system return and reason codes, as formatted lines in structured fields.
The structured fields are introduced by the <LINE> and <MSGL> structured field
introducers as shown in Figure 28 on page 59. DFSMSrmm places system return
codes and reason codes in your output buffer as described in “System return and

58 z/OS V2R1.0 DFSMSrmm Application Programming Interface

reason code structured field introducers” on page 57.

When you specify OUTPUT=FIELDS, the DFSMSrmm API returns output data as
unformatted data in structured fields.

ADD-Type of subcommands
The DFSMSrmm ADD-type of subcommands are: ADDBIN, ADDDATASET,
ADDOWNER, ADDPRODUCT, ADDRACK, ADDVOLUME, and ADDVRS. You
use these subcommands to add information to the DFSMSrmm control data set.

The DFSMSrmm API returns information under these conditions:
v You specify the ADDVOLUME subcommand with the POOL operand. The

DFSMSrmm API returns the rack number that is assigned to the volume in the
format as shown in Figure 29.

v An error occurs for specific return and reason code combinations described in
“Messages and message variables structured field introducers” on page 57 and
“Structured field introducers for return and reason codes” on page 79.

CHANGE-Type of subcommands
The DFSMSrmm CHANGE-type of subcommands are: CHANGEDATASET,
CHANGEOWNER, CHANGEPRODUCT,and CHANGEVOLUME. You use these
subcommands to change information in the DFSMSrmm control data set.

The DFSMSrmm API returns information when:
v You specify the CHANGEVOLUME subcommand with the POOL operand. The

DFSMSrmm API returns the rack number that is assigned to the volume in the
format as shown in Figure 30 on page 60.

v When an error occurs for specific return and reason code combinations described
in “Messages and message variables structured field introducers” on page 57
and “Structured field introducers for return and reason codes” on page 79.

<Begin resource group>
<LINE - Formatted output line : nn , character: >
<LINE - Formatted output line : nn , character: >
<MSGL - Formatted output message: nn , character: >
<MSGL - Formatted output message: nn , character: >

<End resource group>

Figure 28. Formatted lines

<Begin VOLUME group>
<Begin MESSAGE group>

<MSGN - message number : 8 , character: >
<RCK - rack or bin number : 6 , character: >

<End MESSAGE group>
<End VOLUME group>

Figure 29. Structured field introducers for ADDVOLUME with OUTPUT=FIELDS

Chapter 6. Processing the output data in the output buffer 59

DELETE-Type of subcommands
The DFSMSrmm DELETE-type of subcommands are: DELETEBIN,
DELETEDATASET, DELETEOWNER, DELETEPRODUCT, DELETERACK,
DELETEVOLUME, and DELETEVRS. You use these subcommands to delete
information from the DFSMSrmm control data set.

The DFSMSrmm API returns information when an error occurs for specific return
and reason code combinations described in “Messages and message variables
structured field introducers” on page 57 and “Structured field introducers for
return and reason codes” on page 79.

GETVOLUME subcommand
You use the RMM GETVOLUME subcommand to obtain a volume from
DFSMSrmm.

The DFSMSrmm API returns information when:
v The GETVOLUME request was successful. The DFSMSrmm API returns volume

information and owner information as shown in Figure 31.
v When an error occurs, and then only for specific return and reason code

combinations described in “Messages and message variables structured field
introducers” on page 57 and “Structured field introducers for return and reason
codes” on page 79.

LIST-Type of subcommands
The DFSMSrmm LIST-type of subcommands are: LISTBIN, LISTCONTROL,
LISTDATASET, LISTOWNER, LISTPRODUCT, LISTRACK, LISTVOLUME, and
LISTVRS. You use these subcommands to obtain information from the DFSMSrmm
control data set about a single resource.

The DFSMSrmm API returns output data for LIST type of subcommands as
structured fields when you specify OUTPUT=FIELDS. The structured field
introducers for each type of LIST subcommand are found in:
v “LISTBIN structured field introducers” on page 61
v “LISTCONTROL structured field introducers” on page 61
v “LISTDATASET structured field introducers” on page 65

<Begin VOLUME group>
<Begin MESSAGE group>

<MSGN - message number : 8 , character: >
<RCK - rack or bin number : 6 , character: >

<End MESSAGE group>
<End VOLUME group>

Figure 30. SFIs for CHANGEVOLUME with OUTPUT=FIELDS

<Begin VOLUME group>
<Begin MESSAGE group>

<MSGN - message number : 8 , character: >
<VOL - volume serial : 6 , character: >
<OWN - owner : 8 , character: >

<End MESSAGE group>
<End VOLUME group>

Figure 31. Structured field introducers for GETVOLUME with OUTPUT=FIELDS

60 z/OS V2R1.0 DFSMSrmm Application Programming Interface

v “LISTOWNER structured field introducers” on page 66
v “LISTPRODUCT structured field introducers” on page 67
v “LISTRACK structured field introducers” on page 67
v “LISTVOLUME structured field introducers” on page 67
v “LISTVRS structured field introducers” on page 69

LISTBIN structured field introducers
The structured field introducers produced for the LISTBIN subcommand with
OUTPUT=FIELDS are:
<Begin RACK/BIN Group>

<RCK - Rack or Bin Number : 6, character >
<VOL - Volume Serial : 6, character >
<RST - Rack or Bin Status : 1, bin(8) >
<LOC - Location : 8, character >
<MEDN - Media Name : 8, character >
<MIV - Moving-In Volume : 6, character >
<MOV - Moving-Out Volume : 6, character >
<OVOL - Old Volume : 6, character >
<TZ - Time Zone : 4, bin(32) >
<LCDJ - Last Change Date : 4, packed decimal >
<LCTM - Last Change Time : 4, packed decimal >
<LCID - Last Change User ID : 8, character >
<LCSI - Last Change System ID : 8, character >
<LCUD - Last "User" Change Date : 4, packed decimal >
<LCUT - Last "User" Change Time : 4, packed decimal >

<End RACK/BIN Group>

LISTCONTROL structured field introducers
The structured field introducers produced for the LISTCONTROL subcommand
with OUTPUT=FIELDS differ depending on whether the STATUS operand is
specified.

The structured field introducers produced for the LISTCONTROL subcommand
with OUTPUT=FIELDS are:
<Begin CONTROL Group>

<Begin CNTL Group>
<TZ - Time Zone : 4, bin(31) >
<MTP - CDS type : 1, bin(8) >
<MDTJ - CDS Create Date : 4, packed decimal >
<MTM - CDS Create Time : 4, packed decimal >
<UDTJ - CDS Last update date : 4, packed decimal >
<UTM - CDS Last update time : 4, packed decimal >
<JRNU - Journal Percentage Used : 2, bin(15) >
<JRNF - JOURNALFULL Parmlib Value: 2, bin(15) >
<JRNS - Journal status : 1, bin(8) >
<BDTJ - Last CDS Backup Date : 4, packed decimal >
<BTM - Last CDS Backup Time : 4, packed decimal >
<JBDT - Last journal backup date : 4, packed decimal >
<JBTM - Last journal backup time : 4, packed decimal >
<XDTJ - Expiration Date : 4, packed decimal >
<XTM - Last Inven Mgt Expir Time: 4, packed decimal >
<RDTJ - Last CDS Extract Date : 4, packed decimal >
<RTM - Last CDS Extract Time : 4, packed decimal >
<DDTJ - Delete/Store Date : 4, packed decimal >
<DTM - Last Store update run tim: 4, packed decimal >
<SOSJ - Last XPROC Start Date : 4, packed decimal >
<SOST - Last XPROC Start Time : 4, packed decimal >
<VDTJ - Last Inven Mgt Proc Date : 4, packed decimal >
<VTM - Last Inven Mgt VRS Time : 4, packed decimal >
<LRK - # Library Rack Numbers : 4, bin(31) >
<FRK - Free Rack Num in Library : 4, bin(31) >

Chapter 6. Processing the output data in the output buffer 61

<LBN - Bin Numbers in LOCAL : 4, bin(31) >
<FLB - Free Bin Numbers in LOCAL: 4, bin(31) >
<DBN - Bin Numbers in DISTANT : 4, bin(31) >
<FDB - Free Bins in DISTANT Loc : 4, bin(31) >
<RBN - # Bin Numbers in REMOTE : 4, bin(31) >
<FRB - Free Bin Numbers in REMOT: 4, bin(31) >
<CACT - Control Active Functions : 1, bit(8) >
<CSDT - Catalog Synchronize date : 4, packed decimal >
<CSTM - Catalog Synchronize time : 4, packed decimal >
<FCSP - Catalog Synch in progress: 1, bin(8) >
<CSVE - Stacked volume enabled : 1, bin(8) >
<X100 - EDGUX100 exit status : 1, bin(8) >
<X200 - EDGUX200 exit status : 1, bin(8) >
<X300 - EDGUX300 exit status : 1, bin(8) >
<EBIN - Extended Bin Status : 1, bin(8) >
<CDSU - CDS percentage used : 2, bin(15) >
<CSHN - Client/Server host name : 63, character >
<CSIP - Client/Server IP address : 15, character >
<UTC - Common time status enable: 1, bin(8) >
<CDSQ - CDS id ENQ name enabled : 1, bin(8) >
<RMID - RMM started procedure nam: 17, character >

<End CNTL Group>
<Begin OPTION Group>

<OPM - Operating Mode : 1, bin(8) >
<DRP - Default Retention Period : 4, bin(31) >
<MRP - Maximum Retention Period : 4, bin(31) >
<CRP - CATRETPD Retention Period: 4, bin(31) >
<MDS - CDS Data Set Name : 44, character >
<JDS - Journal Name : 44, character >
<JRNF - JOURNALFULL Parmlib Value: 2, bin(15) >
<CATS - CATSYSID value : 1, bin(8) >
<SOSP - Scratch Procedure Name : 8, character >
<BKPP - Backup Procedure Name : 8, character >
<IPL - Data Check Required in IP: 1, bin(8) >
<DTE - Installation Date Format : 1, bin(8) >
<RCF - Installation RACF Support: 1, bin(8) >
<AUD - SMF Audit Record Number : 2, bin(15) >
<SSM - SMF Security Record Numbe: 2, bin(15) >
<CDS - Control Data Set ID : 8, character >
<SLM - MAXHOLD Value : 2, bin(15) >
<LCT - Default Lines per Page : 2, bin(15) >
<SID - SMF System ID : 8, character >
<BLP - BLP Option : 1, bin(8) >
<NOT - Notify : 1, bin(8) >
<UNC - Uncatalog Option : 1, bin(8) >
<VRJ - VRS Job Name : 1, bin(8) >
<MSGF - Case of Message Text : 1, bin(8) >
<MOP - Master Overwrite : 1, bin(8) >
<ACCT - Accounting Source : 1, bin(8) >
<VCHG - VRSCHANGE Value : 1, bin(8) >
<VRSL - VRSEL Value : 1, bin(8) >
<PSFX - Parmlib Member Suffix : 2, character >
<PSF2 - Parmlib Member Suffix 2 : 2, character >
<VACT - VRSMIN action : 1, bin(8) >
<VMIN - VRSMIN Count Value : 4, bin(31) >
<JRNT - Journal transaction : 1, bin(8) >
<VDRA - VRS Drop Action : 1, bin(8) >
<VDRC - VRS Drop Count : 4, bin(31) >
<VDRP - VRS Drop Percentage : 2, bin(15) >
<VREA - VRS Retain Action : 1, bin(8) >
<VREC - VRS Retain Count : 4, bin(31) >
<VREP - VRS Retain Percentage : 2, bin(15) >
<XDRA - EXPDT Drop Action : 1, bin(8) >
<XDRC - EXPDT Drop Count : 4, bin(31) >
<XDRP - EXPDT Drop Percentage : 2, bin(15) >
<DSPD - Disposition DD name : 8, character >
<DSPM - Disposition message prefi: 8, character >

62 z/OS V2R1.0 DFSMSrmm Application Programming Interface

<RTBY - Retain by : 1, bin(8) >
<MVBY - Move by : 1, bin(8) >
<GDGC - GDG cycleby : 1, bin(8) >
<GDGD - GDG duplicate : 1, bin(8) >
<PDA - PDA state : 1, bin(8) >
<PDAC - PDA block count : 1, bin(8) >
<PDAS - PDA block size : 1, bin(8) >
<PDAL - PDA log state : 1, bin(8) >
<TVXP - Extradays retention : 1, bin(8) >
<TVXD - Extradays for TVEXTPURGE : 4, bin(31) >
<SMP - System managed tape purge: 1, bin(8) >
<SMU - System managed tape updat: 1, bit(8) >
<ACS - SMS ACS support : 1, bin(8) >
<PACS - Pre-ACS support : 1, bin(8) >
<RUB - Reuse Bin at : 1, bin(8) >
<CMDD - Command Auth DSN : 1, bin(8) >
<CMDO - Command Auth Owner : 1, bin(8) >
<MEDN - Media Name : 8, character >
<LCTK - Local Task : 4, bin(31) >
<SSTY - Subsystem type : 1, bin(8) >
<SRHN - Server host name : 63, character >
<SRIP - Server IP Address : 15, character >
<SRPN - Server port number : 4, bin(31) >
<SRTK - Server task : 4, bin(31) >
<RM - Retention Method : 1, bin(8) >
<LRED - LASTREF extra days : 4, bin(31) >
<EXRB - EXPDT RetainBy : 1, bin(8) >
<MCAT - Management class attribut: 1, bin(8) >

<End OPTION Group>
<Begin SECCLS Group>

<SEC - Security Class Number : 1, bin(8) >
<NME - Security Class Name : 8, character >
<SCST - Security Class Status : 1, bit(8) >
<CLS - Security Class Descriptio: 32, character >

<End SECCLS Group>
<Begin VLPOOL Group>

<PID - Pool Prefix : 6, character >
<PSN - Pool Definition System ID: 8, character >
<PRF - Pool Def RACF Option : 1, bin(8) >
<PTP - Pool Def Pool Type : 1, bin(8) >
<XDC - Expiration Date Check : 1, bin(8) >
<ACT - Action on Release : 1, bit(8) >
<SCRM - Scratch mode : 1, bin(8) >
<PLN - Pool Name : 8, character >
<MEDN - Media Name : 8, character >
<PDS - Pool Description : 40, character >
<MOP - Master Overwrite : 1, bin(8) >

<End VLPOOL Group>
<Begin MNTMSG Group>

<MID - Mount Message ID : 12, character >
<SMI - Offset to Message ID : 2, bin(15) >
<OVL - Offset to Volume Serial : 2, bin(15) >
<OPL - Offset Rack Num or Pool I: 2, bin(15) >

<End MNTMSG Group>
<Begin REJECT Group>

<GRK - Generic Rack Number : 6, character >
<TAC - Reject Type : 1, bin(8) >

<End REJECT Group>
<Begin LOCDEF Group>

<LDDF - Location Definition Exist: 1, bin(8) >
<LDLC - Location Name : 8, character >
<LDMT - Location Management Type : 1, bin(8) >
<LDLT - Location Type : 1, bin(8) >
<LDPR - Location Priority : 4, bin(31) >
<LDAM - Location Automove : 1, bin(8) >
<LDMN - Location Media Name : 8, character >

<End LOCDEF Group>

Chapter 6. Processing the output data in the output buffer 63

<Begin MEDINF Group>
<MDNF - Media Information Name : 8, character >
<MEDT - Media Type : 1, bin(8) >
<MDTX - External Media Type : 8, character >
<MEDR - Media Recording Format : 1, bin(8) >
<MDRX - External Recording Techn.: 8, character >
<VCAP - Volume capacity : 4, bin(31) >
<MDRP - MEDINF Replace Policy Per: 4, bin(31) >
<MDRT - MEDINF Replace Policy Tem: 4, bin(31) >
<MDRW - MEDINF Replace Policy Wri: 4, bin(31) >
<MDRA - MEDINF Replace Policy Age: 4, bin(31) >

<End MEDINF Group>
<Begin PRTITION Group>

<PTVL - Volume Serial Number : 6, character >
<PTVS - Volume Range Start : 6, character >
<PTVE - Volume Range End : 6, character >
<PTTP - Type of Partition Entry : 1, bin(8) >
<PTSA - SMT Action for Partition : 1, bin(8) >
<PTNA - NOSMT Action for Partitio: 1, bin(8) >
<PTNL - Location Name : 8, character >

<End PRTITION Group>
<Begin OPENRULE Group>

<ORVL - Volume Serial Number : 6, character >
<ORVS - Volume Range Start : 6, character >
<ORVE - Volume Range End : 6, character >
<ORTP - Type of Openrule Entry : 1, bin(8) >
<ORIA - Input Action : 1, bin(8) >
<ORII - Input Ignore Condition : 1, bit(8) >
<ORIR - Input Reject Condition : 1, bit(8) >
<OROA - Output Action : 1, bin(8) >
<OROI - Output Ignore Condition : 1, bit(8) >
<OROR - Output Reject Condition : 1, bit(8) >

<End OPENRULE Group>
<Begin ACTIONS Group>

<ACT - Action on Release : 1, bit(8) >
<AST - Action Status : 1, bit(8) >

<End ACTIONS Group>
<Begin MOVES Group>

<MFR - Source Location Name : 8, character >
<MST - Move Status : 1, bin(8) >
<MTO - Target Location Name : 8, character >
<MTY - Move Type : 1, bin(8) >

<End MOVES Group>
<End CONTROL Group>

The structured field introducers produced for the LISTCONTROL STATUS
subcommand with OUTPUT=FIELDS are:
<Begin CONTROL Group>

<Begin STATUS Group>
<STRM - DFSMSrmm status : 1, bin(8) >
<JRNS - Journal status : 1, bin(8) >
<STSL - Server listener status : 1, bin(8) >
<STLO - Local tasks : 3, bin(15) >
<STLA - Local active tasks : 3, bin(15) >
<STLH - Local held tasks : 3, bin(15) >
<STSO - Server tasks : 3, bin(15) >
<STSA - Server active tasks : 3, bin(15) >
<STSH - Server held tasks : 3, bin(15) >
<STQR - Queued requests : 4, bin(32) >
<STQN - Nowait requests : 4, bin(32) >
<STQC - Catalog requests : 4, bin(32) >
<STLR - Last RESERVE : 4, packed decimal >
<STNH - New requests held : 1, bin(8) >
<STRH - CDS reserved : 1, bin(8) >
<STDS - Debug setting : 1, bit(8) >
<STPL - Trace levels : 1, bit(8) >

64 z/OS V2R1.0 DFSMSrmm Application Programming Interface

<End STATUS Group>
<Begin TASKS Group>

<STRF - Task req. function : 5, character >
<STRT - Task req. system : 8, character >
<STTR - Task req. type : 3, character >
<STTQ - Task requestor : 8, character >
<STST - Task start time : 4, packed decimal >
<STTT - Task token : 4, bin(32) >
<STTS - Task status : 1, bin(8) >
<STIV - IP verb : 1, bin(8) >
<STIS - IP verb state : 1, bin(8) >
<STIT - IP verb time : 4, packed decimal >

<End TASKS Group>
<End CONTROL Group>

When there is no information for a subgroup, such as MOVES, for the
LISTCONTROL subcommand, the DFSMSrmm API returns all of the structured
field introducers in the subgroup with no data. For example, when there are no
outstanding volume actions, the DFSMSrmm API returns the MOVES subgroup
(MFR, MST, MTO and MTY) with no data.

When DFSMSrmm cannot return all the output data for the LISTCONTROL
subcommands in your output buffer, you must specify OPERATION=CONTINUE
after processing your output buffer to obtain the rest of the LISTCONTROL output
data.

Related reading: See “Using the CONTINUE operation in the EDGXCI macro” on
page 29 for additional information.

LISTDATASET structured field introducers
The structured field introducers produced for the LISTDATASET subcommand
with OUTPUT=FIELDS are:
<Begin DATASET Group>

<DSN - Data Set Name : 44, character >
<CJBN - Job Name : 8, character >
<VOL - Volume Serial : 6, character >
<OWN - Owner : 8, character >
<DSEQ - Data Set Sequence : 4, bin(31) >
<TZ - Time Zone : 4, bin(31) >
<DEV - Device Number : 4, character >
<FILE - Physical File Sequence : 4, bin(31) >
<CDTJ - Create Date : 4, packed decimal >
<CTM - Create Time : 4, packed decimal >
<SYS - Creating system ID : 8, character >
<BLKS - Block Size : 4, bin(31) >
<BLKC - Block Count : 4, bin(31) >
<LRCL - Logical Record Length : 4, bin(31) >
<RCFM - Record Format : 4, character >
<DC - Data Class : 8, character >
<DLWJ - Date Last Written : 4, packed decimal >
<DLRJ - Date Last Read/Referenced: 4, packed decimal >
<STEP - Step Name : 8, character >
<DD - DD Name : 8, character >
<MC - Management Class : 8, character >
<SG - Storage Group Name : 8, character >
<SC - Storage Class : 8, character >
<VMV - VRS Management Value : 8, character >
<RTDJ - Retention Date : 4, packed decimal >
<VTYP - Primary VRS Type : 1, bin(8) >
<VJBN - Primary VRS Job Name : 8, character >
<VNME - Primary VRS Name : 44, character >
<VSCN - Primary VRS Subchain name: 8, character >
<VSCD - Primary VRS Subchain date: 4, packed decimal >

Chapter 6. Processing the output data in the output buffer 65

<VRSR - VRS Retained : 1, bin(8) >
<NME - Security Class Name : 8, character >
<CLS - Security Class Descriptio: 32, character >
<ABND - Abend while open : 1, bin(8) >
<CTLG - Catalog status : 1, bin(8) >
<2JBN - Secondary VRS jobname mas: 8, character >
<2NME - Secondary VRS mask : 8, character >
<2SCN - Secondary VRS subchain na: 8, character >
<2SCD - Secondary VRS subchain da: 4, packed decimal >
<BLKT - Total block count : 4, bin(31) >
<CPGM - Creating program name : 8, character >
<LPGM - Last used program name : 8, character >
<LJOB - Last used job : 8, character >
<LSTP - Last used step name : 8, character >
<LDD - Last used DD name : 8, character >
<LDEV - Last Drive : 4, character >
<DPCT - Percent of volume : 1, bin(8) >
<XDTJ - Expiration Date : 4, packed decimal >
<XDSB - Expiry date set by : 1, bin(8) >
<OXDJ - Original Expiration Date : 4, packed decimal >
<DSS6 - Data Set Size : 14, compound >
<LCDJ - Last Change Date : 4, packed decimal >
<LCTM - Last Change Time : 4, packed decimal >
<LCID - Last Change User ID : 8, character >
<LCSI - Last Change System ID : 8, character >
<LCUD - Last "User" Change Date : 4, packed decimal >
<LCUT - Last "User" Change Time : 4, packed decimal >
<DLTD - Deleted By Disposition Pr: 1, bin(8) >
<VEX - VRSEL Exclude : 1, bin(8) >
<BESK - CA Tape Encrytion key ind: 4, bin(31) >
<PSZ6 - Physical space used : 14, compound >
<CRAT - Compression ratio : 4, bin(31) >
<BLK6 - Total Block Count : 8, bin(64) >
<LRED - LASTREF extra days : 4, bin(31) >

<End DATASET Group>

LISTOWNER structured field introducers
The structured field introducers produced for the LISTOWNER subcommand with
OUTPUT=FIELDS are:
<Begin OWNER Group>

<OWN - Owner : 8, character >
<SUR - Owner’s Surname : 20, character >
<FOR - Owner’s Forename : 20, character >
<DPT - Owner’s Department : 40, character >
<ADL1 - Address Line 1 : 40, character >
<ADL2 - Address Line 2 : 40, character >
<ADL3 - Address Line 3 : 40, character >
<ITL - Owner’s Internal Tele Num: 8, character >
<ETL - Owner’s Ext Telephone Num: 20, character >
<EMU - Owner’s User ID : 8, character >
<EMN - Owner’s Node : 8, character >
<VLN - Number of Volumes : 4, bin(32) >
<EML - Owner’s Email Address : 63, character >
<TZ - Time Zone : 4, bin(32) >
<LCDJ - Last Change Date : 4, packed decimal >
<LCTM - Last Change Time : 4, packed decimal >
<LCID - Last Change User ID : 8, character >
<LCSI - Last Change System ID : 8, character >
<LCUD - Last "User" Change Date : 4, packed decimal >
<LCUT - Last "User" Change Time : 4, packed decimal >

<End OWNER Group>

66 z/OS V2R1.0 DFSMSrmm Application Programming Interface

LISTPRODUCT structured field introducers
The structured field introducers produced for the LISTPRODUCT subcommand
with OUTPUT=FIELDS are:
<Begin PRODUCT Group>

<PNUM - Software Product Number : 8, character >
<VER - Software Product Version : 6, character >
<OWN - Owner : 8, character >
<PNME - Product Software Name : 30, character >
<PDSC - Product Description : 32, character >
<VLN - Number of Volumes : 4, bin(32) >
<TZ - Time Zone : 4, bin(32) >
<LCDJ - Last Change Date : 4, packed decimal >
<LCTM - Last Change Time : 4, packed decimal >
<LCID - Last Change User ID : 8, character >
<LCSI - Last Change System ID : 8, character >
<LCUD - Last "User" Change Date : 4, packed decimal >
<LCUT - Last "User" Change Time : 4, packed decimal >
<Begin PRODVOL Group>

<VOL - Volume Serial : 6, character >
<RCK - Rack or Bin Number : 6, character >
<FCD - Product Feature Code : 4, character >

<End PRODVOL Group>
<End PRODUCT Group>

The PRODVOL group is repeated for each product volume.

LISTRACK structured field introducers
The structured field introducers produced for the LISTRACK subcommand with
OUTPUT=FIELDS are:
<Begin RACK/BIN Group>

<RCK - Rack or Bin Number : 6, character >
<VOL - Volume Serial : 6, character >
<RST - Rack or Bin Status : 1, bin(8) >
<LOC - Location : 8, character >
<MEDN - Media Name : 8, character >
<PID - Pool Prefix : 6, character >
<TZ - Time Zone : 4, bin(32) >
<LCDJ - Last Change Date : 4, packed decimal >
<LCTM - Last Change Time : 4, packed decimal >
<LCID - Last Change User ID : 8, character >
<LCSI - Last Change System ID : 8, character >
<LCUD - Last "User" Change Date : 4, packed decimal >
<LCUT - Last "User" Change Time : 4, packed decimal >

<End RACK/BIN Group>

LISTVOLUME structured field introducers
The structured field introducers produced for the LISTVOLUME subcommand
with OUTPUT=FIELDS are:
<Begin VOLUME Group>

<Begin VOL Group>
<VOL - Volume Serial : 6, character >
<RCK - Rack or Bin Number : 6, character >
<OWN - Owner : 8, character >
<TZ - Time Zone : 4, bin(31) >
<CJBN - Job Name : 8, character >
<CDTJ - Create Date : 4, packed decimal >
<CTM - Create Time : 4, packed decimal >
<ADTJ - Assigned Date : 4, packed decimal >
<ATM - Assigned Time : 4, packed decimal >
<XDTJ - Expiration Date : 4, packed decimal >
<XDSB - Expiry date set by : 1, bin(8) >
<OXDJ - Original Expiration Date : 4, packed decimal >

Chapter 6. Processing the output data in the output buffer 67

<RTDJ - Retention Date : 4, packed decimal >
<DSN - Data Set Name : 44, character >
<VST - Volume Status : 1, bit(8) >
<OCE - Volume Info. Recorded at : 1, bin(8) >
<AVL - Volume Availability : 1, bit(8) >
<LBL - Volume Label : 1, bit(8) >
<DEN - Media Density : 1, bin(8) >
<MDNF - Media Information Name : 8, character >
<MEDT - Media Type : 1, bin(8) >
<MDTX - External Media Type : 8, character >
<MEDR - Media Recording Format : 1, bin(8) >
<MDRX - External Recording Techn.: 8, character >
<MEDC - Media Compaction : 1, bin(8) >
<MEDA - Media Special Attributes : 1, bin(8) >
<ACT - Action on Release : 1, bit(8) >
<PEND - Actions Pending : 1, bit(8) >
<SG - Storage Group Name : 8, character >
<LOAN - Loan Location : 8, character >
<ACN - Account Number : 40, character >
<DESC - Volume or VRS Description: 30, character >
<NME - Security Class Name : 8, character >
<CLS - Security Class Descriptio: 32, character >
<VRSI - Scratch Immediate : 1, bin(8) >
<VRXI - Expiration date ignore : 1, bin(8) >
<VOLT - Volume Type : 1, bin(8) >
<LVC - Current label version : 1, bin(8) >
<LVN - Required label version : 1, bin(8) >
<RBYS - Retain by set : 1, bin(8) >
<STVC - Stacked volume count : 4, bin(31) >
<SYS - Creating system ID : 8, character >
<DSYS - Creation System IDfirst f: 8, character >
<VOL1 - VOL1 label volser : 6, character >
<WWID - Worldwide ID : 24, character >
<VNDR - Vendor : 8, character >
<KEL1 - Encryption Key Label 1 : 64, character >
<KEL2 - Encryption Key Label 2 : 64, character >
<KEM1 - Encryption Encoding mech : 5, character >
<KEM2 - Encryption Encoding mech : 5, character >
<WORM - WORM flag : 1, bin(8) >
<HLD - Volume HOLD attribute : 1, bin(8) >
<CRID - File 1 Create User ID : 8, character >
<DSEQ - Data Set Sequence : 4, bin(31) >
<OLON - Old Loan Location : 8, character >
<RM - Retention Method : 1, bin(8) >
<RMSB - Retention Method Set By : 1, bin(8) >

<End VOL Group>
<Begin ACCESS Group>

<OAC - Owner Access : 1, bin(8) >
<VAC - Volume Access : 1, bin(8) >
<LCID - Last Change User ID : 8, character >
<VM - VM Use : 1, bin(8) >
<MVS - MVS Use : 1, bin(8) >
<IRMM - IRMM use : 1, bin(8) >
<LCDJ - Last Change Date : 4, packed decimal >
<LCTM - Last Change Time : 4, packed decimal >
<LCSI - Last Change System ID : 8, character >
<LCUD - Last "User" Change Date : 4, packed decimal >
<LCUT - Last "User" Change Time : 4, packed decimal >
<UID01- User ID 1 : 8, character >

<End ACCESS Group>
<Begin STAT Group>

<DSC - Data Set Count : 4, bin(31) >
<DSR - Data Set Recording : 1, bin(8) >
<USEM - Volume Usage (KB) : 4, bin(31) >
<USEC - Volume Use Count : 4, bin(31) >
<DLRJ - Date Last Read/Referenced: 4, packed decimal >
<DLWJ - Date Last Written : 4, packed decimal >

68 z/OS V2R1.0 DFSMSrmm Application Programming Interface

<LDEV - Last Drive : 4, character >
<SEQ - Volume Sequence : 4, bin(31) >
<MEDN - Media Name : 8, character >
<PVL - Previous Volume : 6, character >
<NVL - Next Volume : 6, character >
<PNUM - Software Product Number : 8, character >
<VER - Software Product Version : 6, character >
<FCD - Product Feature Code : 4, character >
<TRD - Temporary Read Errors : 4, bin(31) >
<TWT - Temporary Write Errors : 4, bin(31) >
<PRD - Permanent Read Errors : 4, bin(31) >
<PWT - Permanent Write Errors : 4, bin(31) >
<VCAP - Volume capacity : 4, bin(31) >
<VPCT - Volume percent full : 1, bin(8) >
<VWMC - Volume Write Mount Count : 4, bin(31) >
<USE6 - Volume Usage : 14, compound >
<PSZ6 - Physical space used : 14, compound >
<CRAT - Compression ratio in hund: 6, bin(31) >

<End STAT Group>
<Begin STORE Group>

<LOC - Location : 8, character >
<LOCT - Location Type : 1, bin(8) >
<DEST - Destination Name : 8, character >
<DSTT - Destination Type : 1, bin(8) >
<INTR - Volume Intransit Status : 1, bin(8) >
<HLOC - Home Location : 8, character >
<HLOT - Home Location Type : 1, bin(8) >
<OLOC - Old Location : 8, character >
<OLOT - Old Location Type : 1, bin(8) >
<NLOC - Required Location : 8, character >
<NLOT - Required Location Type : 1, bin(8) >
<SDTJ - Movement Tracking Date : 4, packed decimal >
<MOVM - Move Mode : 1, bin(8) >
<BIN - Bin Number : 6, character >
<BMN - Bin Number Media Name : 8, character >
<OBN - Old Bin Number : 6, character >
<OBMN - Old Bin Number Media Name: 8, character >
<CTNR - Container : 16, character >
<DBIN - Destination Bin number : 6, character >
<DBMN - Destination Bin media nam: 8, character >
<RLPR - Required Location Priorit: 4, bin(31) >

<End STORE Group>
<End VOLUME Group>

LISTVRS structured field introducers
The structured field introducers produced for the LISTVRS subcommand with
OUTPUT=FIELDS are:
<Begin VRS Group>

<VRS - Vital Record Specificatio: 44, character >
<TYP - VRS Type : 1, bit(8) >
<VJBN - Primary VRS Job Name : 8, character >
<VRC - Vital Record Count : 4, bin(32) >
<RET - Retention Type : 3, bin(8) >
<VDD - VRS Delay Days : 2, bin(15) >
<LOC - Location : 8, character >
<SC1 - Store Number : 4, bin(32) >
<PRTY - Priority : 4, bin(32) >
<NVRS - Next VRS Name : 8, character >
<OWN - Owner : 8, character >
<DESC - Volume or VRS Description: 30, character >
<TZ - Time Zone : 4, bin(32) >
<DDTJ - Delete/Store Date : 4, packed decimal >
<VANX - Next VRS Type : 1, bin(8) >
<VRSI - Scratch Immediate : 1, bin(8) >
<VRXI - Expiration date ignore : 1, bin(8) >

Chapter 6. Processing the output data in the output buffer 69

<DLRJ - Date Last Read/Referenced: 4, packed decimal >
<TLR - Time Last Read/Referenced: 4, packed decimal >
<LCDJ - Last Change Date : 4, packed decimal >
<LCTM - Last Change Time : 4, packed decimal >
<LCID - Last Change User ID : 8, character >
<LCSI - Last Change System ID : 8, character >
<LCUD - Last "User" Change Date : 4, packed decimal >
<LCUT - Last "User" Change Time : 4, packed decimal >

<End VRS Group>

SEARCH-Type of subcommands
The DFSMSrmm SEARCH-type of subcommands are: SEARCHBIN,
SEARCHDATASET, SEARCHOWNER, SEARCHPRODUCT, SEARCHRACK,
SEARCHVOLUME, and SEARCHVRS. You use these subcommands to obtain
information from the DFSMSrmm control data set about resources defined to
DFSMSrmm.

When you specify OUTPUT=FIELDS, the DFSMSrmm API returns data for all
SEARCH type of subcommands as structured fields. DFSMSrmm returns the
output data for one or more resources in your output buffer each time you call the
API. Use the MULTI=YES keyword to specify that your application can handle
multiple resources returned in your output buffer. You must specify
OPERATION=CONTINUE after processing your output buffer to obtain the output
data for the next resource or set of resources. Continue to call the DFSMSrmm API
until the output data for all matching resources has been returned.

Related Reading: See “Using the CONTINUE operation in the EDGXCI macro” on
page 29 for additional information.

The DFSMSrmm API returns expanded output data for the RMM TSO
SEARCHDATASET, SEARCHPRODUCT, SEARCHVOLUME, and SEARCHVRS
subcommands when you also specify the EXPAND=YES parameter.

SEARCHBIN structured field introducers
The output that DFSMSrmm returns when you specify the SEARCHBIN
subcommand and the EDGXCI macro OUTPUT=FIELDS and EXPAND=NO
parameters is:
<Begin RACK/BIN Group>

<RCK - Rack or Bin Number : 6, character >
<VOL - Volume Serial : 6, character >
<RST - Rack or Bin Status : 1, bin(8) >
<LOC - Location : 8, character >
<MEDN - Media Name : 8, character >
<MIV - Moving-In Volume : 6, character >
<MOV - Moving-Out Volume : 6, character >
<OVOL - Old Volume : 6, character >
<TZ - Time Zone : 4, bin(32) >

<End RACK/BIN Group>

SEARCHDATASET structured field introducers
The output DFSMSrmm returns when you specify the SEARCHDATASET
subcommand and the EDGXCI macro OUTPUT=FIELDS and EXPAND=NO
parameters is:
<Begin DATASET Group>

<DSN - Data Set Name : 44, character >
<VOL - Volume Serial : 6, character >
<OWN - Owner : 8, character >
<TZ - Time Zone : 4, bin(32) >

70 z/OS V2R1.0 DFSMSrmm Application Programming Interface

<CDTJ - Create Date : 4, packed decimal >
<CTM - Create Time : 4, packed decimal >
<FILE - Physical File Sequence : 4, bin(32) >
<RTDJ - Retention Date : 4, packed decimal >
<XDTJ - Expiration Date : 4, packed decimal >

<End DATASET Group>

The expanded output that DFSMSrmm returns when you specify the
SEARCHDATASET subcommand with the OUTPUT=FIELDS and EXPAND=YES
parameters is the same as shown in “LISTDATASET structured field introducers”
on page 65 for LISTDATASET.

SEARCHOWNER structured field introducers
The output DFSMSrmm returns when you specify the SEARCHOWNER
subcommand and the EDGXCI macro OUTPUT=FIELDS and EXPAND=NO
parameters is:
<Begin OWNER group>

<OWN - owner : 8 , character: >
<SUR - owner’s surname : 20 , character: >
<FOR - owner’s forename : 20 , character: >
<DPT - owner’s department : 40 , character: >
<ADL - address line : 40 , character: >
<ADL - address line : 40 , character: >
<ADL - address line : 40 , character: >
<ITL - owner’s internal tel num : 8 , character: >
<ETL - owner’s external tele num: 20 , character: >
<EMU - owner’s user ID : 8 , character: >
<EMN - owner’s node : 8 , character: >
<VLN - number of volumes : 4 , bin(32): >
<EML - owner’s email address : 63 , character: >
<TZ - time zone : 4 , bin(32): >

<End OWNER group>

SEARCHPRODUCT structured field introducers
The output DFSMSrmm returns when you specify the SEARCHPRODUCT
subcommand and the EDGXCI macro OUTPUT=FIELDS parameter is:
<Begin PRODUCT Group>

<PNUM - Software Product Number : 8, character >
<VER - Software Product Version : 6, character >
<OWN - Owner : 8, character >
<PNME - Product Software Name : 30, character >
<PDSC - Product Description : 32, character >
<VLN - Number of Volumes : 4, bin(32) >
<TZ - Time Zone : 4, bin(32) >
<LCDJ - Last Change Date : 4, packed decimal >
<LCTM - Last Change Time : 4, packed decimal >
<LCID - Last Change User ID : 8, character >
<LCSI - Last Change System ID : 8, character >
<LCUD - Last "User" Change Date : 4, packed decimal >
<LCUT - Last "User" Change Time : 4, packed decimal >
<Begin PRODVOL Group>

<VOL - Volume Serial : 6, character >
<RCK - Rack or Bin Number : 6, character >
<FCD - Product Feature Code : 4, character >

<End PRODVOL Group>
<End PRODUCT Group>

EXPAND=NO and EXPAND=YES return the same data elements so the EXPAND
parameter can be omitted. Unlike LISTPRODUCT the SEARCHPRODUCT
command returns only the PRODVOL group for the first product volume, if at
least one volume exists.

Chapter 6. Processing the output data in the output buffer 71

SEARCHRACK structured field introducers
The output DFSMSrmm returns when you specify the SEARCHRACK
subcommand and the EDGXCI macro OUTPUT=FIELDS and EXPAND=NO
parameters is:
<Begin RACK/BIN Group>

<RCK - Rack or Bin Number : 6, character >
<VOL - Volume Serial : 6, character >
<RST - Rack or Bin Status : 1, bin(8) >
<LOC - Location : 8, character >
<MEDN - Media Name : 8, character >
<PID - Pool Prefix : 6, character >
<TZ - Time Zone : 4, bin(32) >

<End RACK/BIN Group>

SEARCHVOLUME structured field introducers
The output DFSMSrmm returns when you specify the SEARCHVOLUME
subcommand and the EDGXCI macro OUTPUT=FIELDS and EXPAND=NO
parameters is:
<Begin VOLUME Group>

<VOL - Volume Serial : 6, character >
<OWN - Owner : 8, character >
<RCK - Rack or Bin Number : 6, character >
<TZ - Time Zone : 4, bin(32) >
<ADTJ - Assigned Date : 4, packed decimal >
<XDTJ - Expiration Date : 4, packed decimal >
<RTDJ - Retention Date : 4, packed decimal >
<LOC - Location : 8, character >
<INTR - Volume Intransit Status : 1, bin(8) >
<HLOC - Home Location : 8, character >
<DSC - Data Set Count : 4, bin(32) >
<VST - Volume Status : 1, bit(8) >
<AVL - Volume Availability : 1, bit(8) >
<LBL - Volume Label : 1, bit(8) >
<MEDT - Media Type : 1, bin(8) >
<MEDR - Media Recording Format : 1, bin(8) >
<MEDC - Media Compaction : 1, bin(8) >
<MEDA - Media Special Attributes : 1, bin(8) >
<PEND - Actions Pending : 1, bit(8) >
<LOAN - Loan Location : 8, character >
<DEST - Destination Name : 8, character >
<DSR - Data Set Recording : 1, bin(8) >
<SEQ - Volume Sequence : 4, bin(32) >
<MEDN - Media Name : 8, character >
<LVC - Current label version : 1, bin(8) >
<LVN - Required label version : 1, bin(8) >

<End VOLUME Group>

The expanded output that DFSMSrmm returns when you specify the
SEARCHVOLUME subcommand with the OUTPUT=FIELDS and EXPAND=YES
parameters is the same as shown in “LISTVOLUME structured field introducers”
on page 67 for LISTVOLUME.

SEARCHVRS structured field introducers
The output DFSMSrmm returns when you specify the SEARCHVRS subcommand
and the EDGXCI macro OUTPUT=FIELDS and EXPAND=NO parameters is:
<Begin VRS Group>

<VRS - Vital Record Specificatio: 44, character >
<TYP - VRS Type : 1, bit(8) >
<VJBN - Primary VRS Job Name : 8, character >
<RET - Retention Type : 3, bin(8) >
<LOC - Location : 8, character >

72 z/OS V2R1.0 DFSMSrmm Application Programming Interface

<PRTY - Priority : 4, bin(32) >
<NVRS - Next VRS Name : 8, character >
<OWN - Owner : 8, character >
<TZ - Time Zone : 4, bin(32) >
<DDTJ - Delete/Store Date : 4, packed decimal >
<VANX - Next VRS Type : 1, bin(8) >
<VRSI - Scratch Immediate : 1, bin(8) >
<VRXI - Expiration date ignore : 1, bin(8) >
<VRC - Vital Record Count : 4, bin(32) >
<SC1 - Store Number : 4, bin(32) >
<DLRJ - Date Last Read/Referenced: 4, packed decimal >
<TLR - Time Last Read/Referenced: 4, packed decimal >

<End VRS Group>

The expanded output that DFSMSrmm returns when you specify the SEARCHVRS
subcommand with the OUTPUT=FIELDS and EXPAND=YES parameters is the
same as shown in “LISTVRS structured field introducers” on page 69 for LISTVRS.

Controlling output from list and search type requests
The DFSMSrmm API returns information for a SEARCH type of subcommand or
for a LISTCONTROL subcommand based on these factors:
v Whether you want line format or field format data.
v Whether you want one or multiple resources in your output buffer
v The size of your output buffer.
v The amount of output data.
v The LIMIT operand value used for a SEARCH type of subcommand.

Limiting the search for a request
Use the LIMIT keyword on SEARCH type of subcommands to limit the number of
entries DFSMSrmm returns. To conserve use of system resources, such as dynamic
storage, DFSMSrmm suspends a search operation after the number of entries
matches the limit value you specify or the default limit value.

When you issue an RMM TSO Search type of subcommand, you can use the LIMIT
operand to limit the number of entries returned. DFSMSrmm ends the search
because the limit you set is reached or all available entries have been returned.

For an application program, the DFSMSrmm API causes DFSMSrmm to resume the
search. LIMIT does not limit the total number of entries that the DFSMSrmm API
returns to your application program and you cannot use LIMIT to end the
subcommand before you have received all of the entries for a subcommand.
Instead, you can specify OPERATION=CONTINUE regardless of whether limit has
been reached, or begin a new command, or use EDGXCI OPERATION=RELEASE.

Output buffer examples
The examples in this section illustrate the:
v SEARCH type subcommands (and LISTCONTROL) might require your

application program to use one or more OPERATION=CONTINUE calls to the
DFSMSrmm API to receive all of the search results.

v Your application program should expect to receive more than one set of return
and reason codes. In the example, DFSMSrmm issued a different set of codes for
each output buffer:
– Return code 0, reason code 4.
– Return code 4, reason code 2.

Chapter 6. Processing the output data in the output buffer 73

– Return code 4, reason code 4.
Depending on the subcommand that you specify, the search criteria that you
specify (fully or partially qualified names), and whether you specify a LIMIT
value or LIMIT(*), DFSMSrmm can also issue these return codes and reason
codes.
– Return code 0, reason code 0.
– Return code 4, reason code 8.

For more information about the return codes and reason codes that the API
returns, see Table 9 on page 30.

v Header lines for search lists are placed at the beginning of the first output buffer
of each set of buffers: The first output buffer after OPERATION=BEGIN, and the
first output buffer after OPERATION=CONTINUE in response to the return
code 4 and reason code 2.

v Messages issued by DFSMSrmm and that are placed in your output buffers are
introduced by <MSGL> structured field introducers rather than <LINE>
structured field introducers.

v The number of output data lines that are placed in your buffer is dependent
upon the interaction of:
– The total number of searched records (entries).
– The size of your output buffer.
– The LIMIT value used for the search.

Figure 32 on page 75, Figure 33 on page 75, and Figure 34 on page 76 display the
contents of the output buffers when:
v Your application program issues an OPERATION=BEGIN, OUTPUT=LINES for

a SEARCHRACK RACK(*) LIMIT(90) subcommand.
v Your application program is using a minimum size (4096 bytes) output buffer.
v There are 130 records in the RMM inventory.

First output buffer
The DFSMSrmm API issues return code 0 and reason code 4 and returns control to
your application program. Your output buffer contains 78 structured fields.

In Figure 32 on page 75:
v The group begins with the <Begin RACK or BIN group>.
v The structured fields between the Begin and End RACK group structured field

introducers are all introduced by a <LINE> SFI.
v The first two lines after the Begin RACK group are the header lines for the list

of RACK entries.
v The group ends with the <End RACK or BIN group>.

The DFSMSrmm API returns code 0 and reason code 4 when there is more output
data. Specify the EDGXCI macro OPERATION=CONTINUE parameter to continue
the subcommand request..

74 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Second output buffer
After processing the OPERATION=CONTINUE parameter, the DFSMSrmm API
continues processing. The DFSMSrmm API issues return code 4 and reason code 2,
returns control to your application program. Your output buffer contains 20
structured fields.

In Figure 33:
v There are no header lines in the second output buffer.
v There are only 16 output data lines (the LINE structured field introducers).
v The last output data line is followed by two message lines introduced by the

<MSGL> SFI.

The DFSMSrmm API returns control to your application program even though
there is room in the output buffer for more data. This is because the LIMIT value
of 90 was reached as indicated by the second message line.

The return code 4 and reason code 2 indicate that more entries might exist. When
you use OPERATION=CONTINUE, one of these statements is likely to occur:
v When there are more entries, your application program receives control back

with more output data in your output buffer.
v When there are no other entries, your application program receives control back

with a buffer that is empty or that contains only messages.

Third (Last) output buffer
After the second OPERATION=CONTINUE, control is returned to your application
program with return code 4 and reason code 4, and your output buffer contains 45
structured fields.

<Begin RACK or BIN group>
<LINE>Rack Medianame Volume Status Location
<LINE>------ --------- ------ -------- --------
<LINE>020610 CART3480 020610 IN USE SHELF
<LINE>020742 CART3480 020742 IN USE SHELF
<LINE>021042 CART3480 021042 IN USE SHELF

...

...
<LINE>030311 CART3480 030311 IN USE SHELF
<LINE>030318 CART3480 030318 IN USE SHELF

<End RACK or BIN group>

Figure 32. CONTINUE example, first output buffer

<Begin RACK or BIN group>
<LINE>031086 CART3480 031086 IN USE SHELF
<LINE>031568 CART3480 031568 IN USE SHELF
<LINE>031599 CART3480 031599 IN USE TRON

...

...
<LINE>032848 CART3480 032848 IN USE SHELF
<LINE>032898 CART3480 032898 IN USE SHELF
<MSGL>EDG3203I SEARCH COMPLETE - MORE ENTRIES MAY EXIST
<MSGL>EDG3012I 90 ENTRIES LISTED

<End RACK or BIN group>

Figure 33. CONTINUE example, second output buffer

Chapter 6. Processing the output data in the output buffer 75

In Figure 34:
v The first two lines after the Begin RACK group are the header lines that you

saw in the first output buffer. This is the output for a second search that the
DFSMSrmm API started when you specified OPERATION=CONTINUE in
response to the return code 4 and reason code 2.

v The last output data line in your output buffer is followed by a single message
line.

v The return code 4 and reason code 4 indicate that the subcommand was ended
before the LIMIT value was reached.

v The total number of entries given to your application program in the three
output buffers is 130: 74 in the first, 16 in the second, and 40 in the last output
buffer.

<Begin RACK or BIN group>
<LINE>Rack Medianame Volume Status Location
<LINE>------ --------- ------ -------- --------
<LINE>032935 CART3480 032935 IN USE SHELF
<LINE>032941 CART3480 032941 IN USE SHELF
<LINE>032946 CART3480 032946 IN USE SHELF

...

...
<LINE>070692 CART3480 070692 IN USE SHELF
<LINE>070693 CART3480 070693 IN USE SHELF
<MSGL>EDG3012I 40 ENTRIES LISTED

<End RACK or BIN group>

Figure 34. CONTINUE example, third (Last) output buffer

76 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Appendix A. Structured field introducers (SFIs)

This section defines the structured field introducers (SFIs) used by the DFSMSrmm
API to identify fields in API output.

Structured field introducer (SFI) format
All structured field introducers have this format:

Bytes Description
0-1 2-byte length: SFI length plus data length
2-4 3-byte identifier: SFI ID (hexadecimal)
5 1-byte type modifier: Type of SFI

v 0 = 8-byte, fixed-length SFI
6 1-byte (Reserved)
7 1-byte data type: Type of data, if any, that follows the SFI

v 0=Undefined (no data)
v 1=Character (fixed-length)
v 2=Bit(8) (1-byte flag, multiple bits can be on)
v 3=Binary(8) (1-byte (hex) value)
v 4=Binary(15) (2-byte (hex) value)
v 5=Binary(32) (4-byte (hex) unsigned value)
v 6=Binary(64) (8-byte (hex) value)
v 7=Character (variable-length)
v 8=Compound SFI (multiple related values, see “Compound SFI.”)
v 9=(4 bytes) Packed decimal Julian date: yyyydddC
v A=(4 bytes) Packed decimal time format: hhmmsstC

Structured field lengths
All structured fields have a minimum length of 8 bytes (for the structured field
introducer). The length can be fixed-length or variable-length.
v Fixed-length:

The structured field has one of two length values: 8 when there is no data or the
defined maximum length. For example, if the length is defined as X'000C'
(decimal 12) for a particular structured field, the length in the structured field
introducer has a value of either X'0008' (no data) or X'000C' (data length = 4).

v Variable-length:
The structured field can have a length that varies from 8 (no data) up to
maximum stated size. For example, because a data set name varies from 1 to 44
characters in length, the length value in a structured field introducer for a data
set name can be X'0008' (no data), or it can vary from X'0009' to X'0034' (9 to 52
decimal).

Compound SFI
A compound SFI includes multiple values each with own data type and length.

Compound type:

1 Factored. A Binary(8) value combined with a second field containing a
count. The second field is identified by a data type.

© Copyright IBM Corp. 1992, 2013 77

Factor values:
0 Bytes (unfactored)
1 KB
2 MB
3 GB
4 TB

and so on.

Compound structured field introducers follow this structure;

Byte Count
Description

8 Standard SFI including 1 byte data type identifier (X'08')
1 Compound type identifier; 1 = Factored; 2 self describing fields where the

first is the factor used, and the second is the resultant value
1 Length of the first field, including this byte
1 Data type identifier
n First data field as identified by the preceding data type field; for example

Binary(8)
1 Length of the next field, including this byte
1 Data type identifier
n Next data field as identified by the preceding data type field; for example

Binary(64)

Structured field introducers for Begin and End Resource groups
Begin and End Resource group structured field introducers identify when the
output for a particular resource begins and ends. Begin and End Resource groups
can be used to identify subgroups within a group. The Begin and End Resource
groups are never followed by data. Table 13 shows structured field introducers that
identify Begin and End resource groups.

Table 13. Begin and End Resource group structured field introducers

Begin - End IDs Resource Group

X'021000' - X'021080' ACCESS - within VOLUME

X'022000' - X'022080' ACTIONS - within CONTROL

X'024000' - X'024080' CNTL - within CONTROL

X'025000' - X'025080' CONTROL

X'026000' - X'026080' DATASET

X'027000' - X'027080' LOCDEF - within CONTROL

X'027500' - X'027580' MEDINF - within CONTROL

X'028000' - X'028080' MESSAGE

X'029000' - X'029080' MNTMSG - within CONTROL

X'02A000' - X'02A080' MOVES - within CONTROL

X'03A000' - X'03A080' OPENRULE within CONTROL

X'02B000' - X'02B080' OPTION - within CONTROL

X'02C000' - X'02C080' OWNER

X'02D000' - X'02D080' PRODUCT

X'039000' - X'039080' PRODVOL - within PRODUCT

X'03B000' - X'03B080' PRTITION within CONTROL

78 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Table 13. Begin and End Resource group structured field introducers (continued)

Begin - End IDs Resource Group

X'02E000' - X'02E080' RACK or BIN

X'02F000' - X'02F080' REJECT - within CONTROL

X'030000' - X'030080' SECCLS - within CONTROL

X'031000' - X'031080' SECLVL - within CONTROL

X'032000' - X'032080' STAT - within VOLUME

X'033000' - X'033080' STORE - within VOLUME

X'034000' - X'034080' SYSRETC

X'035000' - X'035080' VLPOOL - within CONTROL

X'036000' - X'036080' VOL - within VOLUME

X'037000' - X'037080' VOLUME

X'038000' - X'038080' VRS

X'03C000' - X'03C080' STATUS - within CONTROL

X'03D000' - X'03D080' TASKS – within CONTROL

Structured field introducers for return and reason codes
The structured field introducers shown in Table 14 provide return codes and reason
codes in your output buffer.

The DFSMSrmm API issues the return and reason code structured field introducers
only when the subcommand fails. Each return and reason code pair is grouped
within the SYSRETC group. The FRC and FRS structured field introducers are used
for return and reason codes that are returned from OAM. The RSNC and RTNC
structured field introducers are used for return and reason codes that are from
another system service.

When the DFSMSrmm API builds a SYSRETC group for an error reported by a
system service, look for additional information that is available from system
messages in places like the operator terminal, SYSTSPRT, job log, and SYSLOG
data set.

Subcommands are described using standard DFSMSrmm abbreviations. For
example, AV is for ADDVOLUME as shown in Table 3 on page 2. The structured
field introducer values are enclosed in single quotes (') to signify that they are
8-byte hexadecimal values. Two spaces are included in the IDs for readability.

Table 14. Reason and return code structured field introducers

SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'400000' FRC 12 Binary(32) Function return code AV CV DV GV

X'401000' FRS 12 Binary(32) Function reason code AV CV DV GV

X'402000' RSNC 12 Binary(32) Reason code Any subcommand

X'403000' RTNC 12 Binary(32) Return code Any subcommand

X'404000' SVCN 16 Character (variable
length)

Service name Any subcommand

Appendix A. Structured field introducers (SFIs) 79

Structured field introducers for messages and message variables
The structured field introducers described in Table 15 introduce messages and
message variables that the DFSMSrmm API places in your output buffer:
v MSGL is used when OUTPUT=LINES.
v MSGN and ENTN are used when OUTPUT=FIELDS.
v The SFI definitions are enclosed in single quotes (') to signify that they are 8-byte

values and the two spaces are inserted for readability.

The MSGN and ENTN structured field introducers are always grouped within the
MESSAGE group. The MSGL structured field introducers are grouped within the
MESSAGE group when the DFSMSrmm API is unable to determine which
subcommand type the message is for. One or more structured field introducers
other than ENTN might follow MSGN as described in “Messages and message
variables structured field introducers” on page 57.

Table 15. Message structured field introducers

SFI Number SFI
Name

SFI Length SFI Data Type Data Description Subcommand

X'051000' MSGL 259 Character (variable
length)

Message line Any subcommand

X'052000' MSGN 16 Character (fixed
length)

Message number ID As previously
defined

X'053000' ENTN 12 Binary(32) Number of entries
Min 0, Max 10-digit

As previously
defined

X'054000' KEYF 65 Character (variable
length)

Key from SD SV

X'054200' KEYT 65 Character (variable
length)

Key to SD SV

X'055000' TYPF 16 Character (variable
length)

VOLUME or
DATASET

SD SV

X'055200' TYPT 16 Character (variable
length)

VOLUME or
DATASET

SD SV

X'057000' CONT 92 Character (variable
length)

SEARCH Continue
information

All search
subcommands

Structured field introducers for subcommand output data
The structured field introducers described in Table 16 on page 81 introduce
subcommand output data in your output buffer. These structured field introducers
are always grouped within a pair of Begin and End Resource group structured
field introducers.

This notation is used:
v Subcommands are described using standard DFSMSrmm abbreviations. For

example, LV is for LISTVOLUME and SS is for SEARCHVRS as described in
Table 3 on page 2.

v The (e) following a search type of subcommand abbreviation means the
expanded output is available if you specify EXPAND=YES. The absence of (e)
means the SFI is used for both EXPAND=NO and EXPAND=YES.

v The range of two-byte and four-byte numbers is denoted by the minimum
expected value and the maximum number of digits the number is expected to

80 z/OS V2R1.0 DFSMSrmm Application Programming Interface

have. For example: “Min 1, Max 4-digit” means the minimum expected value of
the number is one and the maximum expected number of digits in the number
is four.

v The SFI definitions are enclosed in single quotes (') to signify that they are 8-byte
values and the two spaces are inserted for readability. Bit data (flags) values are
also enclosed in single quotes.

Table 16. Command structured field introducers
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'800500' ABND 9 Binary(8) Closed by Abend 0=NO 1=YES LD SD(e)

X'800800' ACCT 9 Binary(8) Accounting source 0=JOB
1=STEP

LC

X'801000' ACN 48 Character (variable length) Account number LV SV(e)

X'801800' ACS 9 Binary(8)

SMSACS
0=NO 1=YES

LC

X'802000' ACT 9 Bit(8)

Actions on release
'80'=SCRATCH
'40'=REPLACE
'20'=INIT
'10'=ERASE
'08'=RETURN
'04'=NOTIFY
For LC VLPOOL
X'00', X'04'

LC LV SV(e)

X'803001' ADL 48 Character (variable length) Address line. The SFI is
incremented by one for each
ADL line that is found.
(X'803001' - X'803003')

LO SO

X'804000' ADTJ 12 Packed decimal Julian
date format

Assigned date LV SV

X'805000' AST 9 Bit(8) Action status '80'=PENDING
'40'=CONFIRMED
'20'=COMPLETE
'10'=UNKNOWN

LC

X'806000' ATM 12 Packed decimal time
format

Assigned time LV SV(e)

X'807000' AUD 10 Binary(15) SMF audit record type: 128-255,
42, or 0

LC

X'808000' AVL 9 Bit(8) Volume availability
'40'=PENDING_RELEASE
'20'=VITAL_RECORD
'08'=ON_LOAN '04'=OPEN

LV SV

X'809000' BDTJ 12 Packed decimal Julian
date format

Last control data set backup
date

LC

X'809310' BESK 12 Binary(32) CA Tape Encryption key index,
4 byte hex value

LD SD(e)

X'80A000' BIN 14 Character (fixed length) 6-character alphanumeric bin
number

LV SV(e)

X'80B000' BKPP 16 Character (Variable length) Backup procedure name LC

X'80C000' BLKC 12 Binary(32) Block count LD SD(e)

X'80D000' BLKS 12 Binary(32) Block size LD SD(e)

X'80D030' BLKT 12 Binary(32) Total block count LD SD(e)

X'80D0B0' BLK6 16 Binary(64) Total block count LD

X'80E000' BLP 9 Binary(8) BLP option: 0=RMM
1=NORMM

LC

X'80F000' BMN 16 Character (variable length) Bin number media name LV SV(e)

X'810000' BTM 12 Packed decimal time
format

Last control data set backup
time

LC

Appendix A. Structured field introducers (SFIs) 81

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'811000' CACT 9 Bit(8)

Control active functions
'80'=BACKUP
'40'=RESTORE
'20'=VERIFY
'10'=EXPROC
'08'=EXTRACT
'04'=DSTORE
'02'=VRSEL

LC

X'811800' CATS 9 Binary(8) CATSYSID value 0=SET
1=NOTSET 2=*

LC

X'812000' CDS 16 Character (variable length) Control data set identifier LC

X'812900' CDSQ 9 Binary(8) Control data set ENQ
0=Disabled 1=Enabled

LC

X'812A00' CDSU 10 Binary(15) Control data set percentage used LC

X'813000' CDTJ 12 Packed decimal Julian
date format

Create date LD LV SD SV(e)

X'814000' CJBN 16 Character (variable length) Job name LD LV SD(e) SV(e)

X'815000' CLIB 16 Character (variable length) Current library name AV CV DV

X'816000' CLS 40 Character (variable length) Security class description LC LD LV SD(e) SV(e)

X'816900' CMDD 9 Binary(8) Command Authorization -
based on DSN: 0=No 1=Yes

LC

X'8169A0' CMDO 9 Binary(8) Command Authorization -
based on owner: 0=No 1=Yes

LC

X'817000' CNT 12 Binary(32) Bin, rack, or volume count: Min
0, Max 5-digit

AB AR AV DB DR

X'817820' CPGM 16 Character (fixed length) Creating program name LD SD(e)

X'817890' CRAT 12 Binary(32) Compression ratio in hundreths LD LV

X'817900' CRID 16 Character (variable length) File 1 create user ID LV VOL,SV(e)

X'818000' CRP 12 Binary(32) CATRETPD retention period:
Min 0, Max 4-digit

LC

X'818800' CSDT 12 Packed decimal Julian
date

Catalog synchronize date LC

X'819000' CSG 16 Character (variable length) Current storage group name AV CV

X'819200' CSHN 71 Character (variable length) Client/server host name 1-to-63
alphanumeric characters
including hyphen, period, and
blank

LC

X'819250' CSIP 53 Character (variable length) Client IP address 1-to-45
numeric characters including
colon, period, and blank

LC

X'819400' CSTM 12 Packed decimal time date Catalog synchronize time LC

X'819600' CSVE 9 Binary(8)

Stacked volume enable
status:
0=None
1=Enabled
2=Disabled
3=Mixed

LC

X'819800' CTLG 9 Binary(8)

Catalog status:
0=UNKNOWN
1=NO
2=YES

LD SD(e)

X'81A000' CTM 12 Packed decimal time
format

Create time LD LV SD SV(e)

X'81A300' CTNR 24 Character (variable length) In container LV STORE

X'81A600' DBIN 14 Character (fixed length) Numeric: 0–999999 or 6
alphanumeric character
destination bin number

LV

82 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'81A700' DBMN 16 Character (variable length) Destination bin media name LV

X'81B000' DBN 12 Binary(32) Bin numbers in DISTANT
location: Min 0, Max 6-digit

LC

X'81C000' DC 16 Character (variable length) Data class name LD SD(e)

X'81D000' DD 16 Character (variable length) DD name LD SD(e)

X'81E000' DDTJ 12 Packed decimal Julian
date format

Delete date or last store update
date

LC LS SS

X'81F000' DEN 9 Binary(8)

Media density:
0=UNDEFINED
1=1600
2=6250
3=3480
4=COMPACT

LV SV(e)

X'820000' DESC 38 Character (variable length) Volume or VRS description LS LV SS(e) SV(e)

X'821000' DEST 16 Character (variable length) Destination name LV SV

X'822000' DEV 12 Character (fixed length) Device number LD SD(e)

X'823000' DLR/DLRJ 12 Packed decimal Julian
date format

Date last referenced/read LD LV LS SD(e) SS SV(e)

X'823700' DLTD 9 Binary(8) Deleted by disposition
processing:

0=NO
1=YES

LD SD(e)

X'824000' DLWJ 12 Packed decimal Julian
date format

Date last written LD LV SD(e) SV(e)

X'825000' DNM 52 Character (variable length) Data set name mask LC

X'825E00' DPCT 9 Binary(8) Percent of volume LD SD(e)

X'826000' DPT 48 Character (variable length) Owner's department LO SO

X'827000' DRP 12 Binary(32) Default retention period: Min 0,
Max 93000

LC

X'828000' DSC 12 Binary(32) Data set count: Min 0, Max
4-digit

LV SV

X'829000' DSEQ 12 Binary(32) Data set sequence: Min 0, Max
4-digit

LD LV SD(e) SV(e)

X'82A000' DSN 52 Character (variable length) Data set name LD LV SD SV(e)

X'82A500' DSPD 16 Character (variable length) Disposition DD name LC

X'82AA00' DSPM 16 Character (variable length) Disposition message prefix LC

X'82B000' DSR 9 Binary(8)

Data set recording:
0=NO
1=YES

LV SV

X'82B030' DSS6 22 Compound (Binary(8)
Factor, Binary(64) Value) Data set size,

Factor:
0=bytes
1=KB
2=MB
3=GB
4=TB
Value:
Minimum value = 0.

LD SD(e)

X'82B200' DSTT 9 Binary(8)

Destination type
0=SHELF
1=STORE_BUILTIN
2=MANUAL
3=AUTO
4=STORE_BINS
5=STORE_NOBINS

LV

Appendix A. Structured field introducers (SFIs) 83

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'82BB00' DSYS 16 Character (variable length)

Creating system ID

LV, SV(e)

X'82C000' DTE 9 Binary(8)

Installation date format:
1=A
2=E
3=I
4=J

LC

X'82D000' DTM 12 Packed decimal time
format

Last store update run time LC

X'82D500' EBIN 9 Binary(8)

Extended bin
enable status
0=DISABLED
1=ENABLED

LC

X'82DFF0' EML 71 Character (variable length) Owner's e-mail address, 1 to 63
characters

LO SO

X'82E000' EMN 16 Character (variable length) Owner's node LO SO

X'82F000' EMU 16 Character (variable length) Owner's user ID LO SO

X'830000' ETL 28 Character (variable length) Telephone number LO SO

X'830800' EXRB 9 Binary(8) Retained By

Volume = 0
Firstfile = 1
Set = 2

LC OPT,LV VOL,SV(e)

X'831000' FCD 12 Character (variable length) Feature code LP LV SP SV(e)

X'831800' FCSP 9 Binary(8) Catalog synchronize in progress:
0=NO 1=YES

LC

X'832000' FDB 12 Binary(32) Free bins in DISTANT location
Min 0, Max 6-digit

LC

X'833000' FILE 12 Binary(32) Physical file sequence Min 1,
Max 4-digit

LD SD

X'834000' FLB 12 Binary(32) Free bin numbers in LOCAL
location: Min 0, Max 6-digit

LC

X'835000' FOR 28 Character (variable length) Owner's forename LO SO

X'836000' FRB 12 Binary(32) Free bin numbers in REMOTE
location: Min 0, Max 6-digit

LC

X'837000' FRK 12 Binary(32) Free rack numbers in library:
Min 0, Max 10-digit

LC

X'837800' GDGC 9 Binary(8)

GDG CYCLEBY:
0=Generation
1=Create order

LC

X'837805' GDGD 9 Binary(8)

GDG DUPLICATE:
0=Bump from sub chain
1=Drop from chain
2=Keep
3=Count

LC

X'838000' GRK 14 Character (fixed length) Generic rack number = reject
prefix

LC

X'838F40' HLD 9 Binary(8)

0=Hold No
1=Hold Yes

LV SV(e)

X'839000' HLOC 16 Character (variable length) Home location LV SV

84 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'839200' HLOT 9 Binary(8)

Home location type
0=SHELF
1=STORE_BUILTIN
2=MANUAL
3=AUTO
4=STORE_BINS
5=STORE_NOBINS

LV

X'83A000' INTR 9 Binary(8) Volume intransit status: 0=NO
1=YES

LV SV

X'83B000' IPL 9 Binary(8) Date check required on IPL:
0=NO 1=YES

LC

X'83B830' IRMM 9 Binary(8) Managed by IRMM, 0=NO
1=YES

LV, SV (e)

X'83C000' ITL 16 Character (variable length) Telephone number LO, SO

X'83CA00' JBDT 12 Packed decimal Julian
date

Last Journal Backup Date LC

X'83CB00' JBTM 12 Packed decimal time
format

Last Journal Backup Time LC

X'83D000' JDS 52 Character (variable length) Journal name LC

X'83E000' JRNF 10 Binary(15) JOURNALFULL parmlib value:
0 - 99

LC

X'83EA00' JRNS 9 Binary(8) Journal status: 0=Disabled
1=Enabled 2=Locked

LC

X'83ED00' JRNT 9 Binary(8) Journal transaction: 0=No 1=Yes LC

X'83F000' JRNU 10 Binary(15) Journal percentage used: 0 - 100 LC

X'83F500' KEL1 72 Character (variable length) Key encryption key label 1 LV, SV(e)

X'83F505' KEL2 72 Character (variable length) Key encryption key label 2 LV, SV(e)

X'83F520' KEM1 13 Character (variable length) Key encoding mechanism for
key label 1: LABEL or HASH

LV, SV(e)

X'83F525' KEM2 13 Character (variable length) Key encoding mechanism for
key label 2: LABEL or HASH

LV, SV(e)

X'840000' LBL 9 Bit(8)

Volume label type:
'20'=NL
'10'=AL
'08'=SL
'02'=BLP
'01'=UL

LV SV

X'841000' LBN 12 Binary(32) Bin numbers in LOCAL location
Min 0, Max 6-digit

LC

X'841500' LCDJ 12 Packed decimal Julian
Date format

Last change date LB LD LO LP LR LV LS
SD(e) SP(e) SS(e)

X'842000' LCID 16 Character (variable length) Last change user IDID starts
with asterisk (*) for change
made by DFSMSrmm

LB LD LO LP LR LS LV
SD(e) SP(e) SS(e) SV(e)

X'842500' LCSI 16 Character (variable length) Last change system ID LB LD LO LP LR LS LV
SD(e) SP(e) SS(e) SV(e)

X'843000' LCT 10 Binary(15) Default lines per page Min 10,
Max 3-digit

LC

X'843100' LCTK 12 Binary (31) Local tasks binary value LC

X'843500' LCTM 12 Packed decimal time
format

Last change time LB LD LO LP LR LS LV
SD(e) SP(e) SS(e) SV(e)

X'843600' LCUD 12 Packed decimal Julian
Date format

Last user change date LB LD LO LP LR LS LV
SD(e) SP(e) SS(e) SV(e)

X'843700' LCUT 12 Packed decimal time
format

Last user change time LB LD LO LP LR LS LV
SD(e) SP(e) SS(e) SV(e)

X'844000' LDDF 9 Binary(8) Location definition exists: 0=NO
1=YES

LC

X'843B00' LDD 16 Character (fixed length) Last used DD name LD SD(e)

Appendix A. Structured field introducers (SFIs) 85

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'845000' LDEV 12 Character (fixed length) Last drive LD SD(e) LV SV(e)

X'846000' LDLC 16 Character (variable length) Location name LC

X'847000' LDLT 9 Binary(8)

Location type:
0=SHELF
1=AUTO
2=MANUAL
3=STORE

LC

X'848000' LDMN 16 Character (variable length) Location media name LC

X'849000' LDMT 9 Binary(8)

Location management
type:
0=UNDEFINED
1=BIN
2=NOBINS

LC

X'84A000' LDPR 12 Binary(32)

Location priority:
Min 0,
Max 4-digit

LC

X'84A100' LDAM 9 Binary(8)

Automove:
0= No
1= Yes

LC

X'84B000' LINE 264 Character (variable length) Output data line All list and search
subcommands

X'84B420' LJOB 16 Character (fixed length) Last used job name LD SD(e)

X'84C000' LOAN 16 Character (fixed length) Loan location LV SV

X'84D000' LOC 16 Character (variable length) Location LB LR LS LV SB SR SS SV

X'84E000' LOCT 9 Binary(8)

Location type
0=SHELF
1=STORE_BUILTIN
2=MANUAL
3=AUTO
4=STORE_BINS
5=STORE_NOBINS
6=IN_CONTAINER

LV SV(e)

X'84E760' LPGM 16 Character (fixed length) Last used program name LD SD(e)

X'84F000' LRCL 12 Binary(32)

Logical record length:
Min 0,
Max 5-digit

LD SD(e)

X'84F800' LRED 12 Binary(32) Last reference extra days

Min 0,
Max 93000

LC, LD,SD(e)

X'850000' LRK 12 Binary(32)

Library rack numbers:
Min 0,
Max 10-digit

LC

X'850370' LSTP 16 Character (variable length) Last used step name LD SD(e)

X'850500' LVC 9 Binary(8)

Current label version:
0=No version specified
1=Label version 1
3=Label version 3
4=Label version 4

LV SV

86 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'850A00' LVN 9 Binary(8)

Required label version:
0=No version specified
3=Label version 3
4=Label version 4

LV SV

X'851000' MC 16 Character (variable length) Management class LD SD(e)

X'851400' MDNF 16 Character (8) Media Information Name LV SV(e) LC

X'851200' MCAT 9 Binary(8) SMS Management class
attributes enabling

0 = NONE
1 = ALL
2 = VRSELXDI

LC

X'851980' MDRA 12 Binary(32) MEDINF replace policy for age LC

X'8519C0' MDRP 12 Binary(32) MEDINF replace policy for
permanent errors

LC

X'8519E0' MDRT 12 Binary(32) MEDINF replace policy for
temporary errors

LC

X'8519F0' MDRW 12 Binary(32) MEDINF replace policy for
write mount count

LC

X'851A00' MDRX 16 Character (8) External Recording Technology LV SV(e) LC

X'852000' MDS 52 Character (variable length) Control data set name LC

X'853000' MDTJ 12 Packed decimal Julian
date format Control data set

create date

LC

X'853400' MDTX 16 Character (8) External Media Type LV SV(e) LC

X'854000' MEDA 9 Binary(8) Media special attributes:
0=NONE 1=RDCOMPAT

LV SV

X'855000' MEDC 9 Binary(8)

Media compaction
0=UNDEFINED
1=NO
2=YES

LV SV

X'856000' MEDN 16 Character (variable length) Media name CV LC LB LR LV SB SR
SV

X'857000' MEDR 9 Binary(8)

Recording technology:
0=NON-CARTRIDGE
1=18TRK
2=36TRK
3=128TRK
4=256TRK
5=384TRK
6=EFMT1
7=EFMT2
8=EEFMT2
9=EFMT3
10=EEFMT3
11=EFMT4
12=EEFMT4

LV SV LC

Appendix A. Structured field introducers (SFIs) 87

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'858000' MEDT 9 Binary(8)

Media type:
0=UNDEFINED
1=CST
2=ECCST
3=HPCT
4=EHPCT
5=ETC/MEDIA5
6=EWTC/MEDIA6
7=EETC/MEDIA7
8=EEWTC/MEDIA8
9=EXTC/MEDIA9
10=EXWTC/MEDIA10
11=EATC/MEDIA11
12=EAWTC/MEDIA12
13=EAETC/MEDIA13

LV SV LC

X'859000' MFR 16 Character (variable length) Source location name LC

X'85A000' MID 20 Character (variable length) Mount message ID LC

X'85A500' MIV 14 Character (fixed length) Moving-in volume LB SB

X'85A900' MOV 14 Character (fixed length) Moving-out volume LB SB

X'85B000' MOVM 9 Binary(8)

Move mode:
0=AUTO
1=MANUAL

LV SV(e)

X'85C000' MOP 9 Binary(8)

Master overwrite:
1=ADD
2=LAST
3=MATCH
4=USER

LC

X'85D000' MRP 12 Binary(32) Maximum retention period: Min
0, Max 93000 -1 (negative)
means unlimited retention.

LC

X'85E000' MSGF 9 Binary(8) Message text case: 0=MIXED
1=UPPER

LC

X'85F000' MST 9 Binary(8) Move status: 0=UNKNOWN
1=PENDING 2=CONFIRMED
3=COMPLETE

LC

X'860000' MTM 12 Packed decimal time
format

Control data set create time LC

X'861000' MTO 16 Character (variable length) Target location name,
installation defined name,
SHELF, or SMS library name

LC

X'862000' MTP 9 Binary(8) Control data set type:
0=MASTER

LC

X'862800' MTY 9 Binary(8) Move type: 0=NOTRTS 1=RTS LC

X'862B00' MVBY 9 Binary(8) Move by: 0=VOLUME 1=SET LC

X'863000' MVS 9 Binary(8) MVS use 0=NO 1=YES LV SV(e)

X'865000' NLOC 16 Character (variable length) Required location LV SV(e)

X'865200' NLOT 9 Binary(8)

Required location type
0=SHELF
1=STORE_BUILTIN
2=MANUAL
3=AUTO
4=STORE_BINS
5=STORE_NOBINS

LV

X'866000' NME 16 Character (variable length) Security class name LC LD LV SD(e) SV(e)

X'866800' NOT 9 Binary(8) User notification: 0=NO 1=YES LC

X'867000' NVL 14 Character (fixed length) Next volume serial LV SV(e)

X'868000' NVRS 16 Character (variable length) Next VRS name LS SS

88 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'869000' OAC 9 Binary(8)

Owner access
0=READ
1=UPDATE
2=ALTER

LV SV(e)

X'86A000' OBMN 16 Character (variable length) Old bin number media name LV SV(e)

X'86B000' OBN 14 Character (fixed length) Old bin number LV SV(e)

X'86B800' OCE 9 Binary(8)

Volume information
recorded at O/C/EOV
0=NO
1=YES

LV SV(e)

X'86C000' OLOC 16 Character (variable length) Old location LV SV(e)

X'86C100' OLON 16 Character (variable length) Old loan location LV SV(e)

X'86C200' OLOT 9 Binary(8)

Old location type
0=SHELF
1=STORE_BUILTIN
2=MANUAL
3=AUTO
4=STORE_BINS
5=STORE_NOBINS
6=IN_CONTAINER

LV

X'86D000' OPL 10 Binary(15) Position of rack number or pool
ID Min 1, Max 3-digit

LC Position in the
message.

X'86E000' OPM 9 Binary(8)

Operating mode
1=M
2=R
3=W
4=P

LC

X'86E8A0' ORIA 9 Binary(8) Input action: 0=ACCEPT
1=IGNORE 2=REJECT

LC

X'86E8A8' ORII 9 Bit(8) Input IGNORE condition (BY):
X'80'=SPECIFIC
X'40'=NONSPECIFIC
X'C0'=ANY

LC

X'86E8B8' ORIR 9 Bit(8) Input REJECT condition (BY):
X'80'=SYSID X'40'=CATLG

LC

X'86EA00' OROA 9 Binary(8) Output action: 0=ACCEPT
1=IGNORE 2=REJECT

LC

X'86EA08' OROI 9 Bit(8) Output IGNORE condition (BY):
X'80'=SPECIFIC
X'40'=NONSPECIFIC
X'C0'=ANY

LC

X'86EA18' OROR 9 Bit(8) Output REJECT condition (BY):
X'80'=SYSID X'40'=CATLG

LC

X'86EF08' ORTP 9 Binary(8) Type of open rule entry:
0=RMM 1=NORMM

LC

X'86EF80' ORVS 14 Character (variable length) Volume range start LC

X'86EF85' ORVL 14 Character (variable length) Volume serial number, specific
or generic

LC

X'86EF8F' ORVE 14 Character (variable length) Volume range end LC

X'86F000' OVL 10 Binary(15) Position of volume serial
number: Min 1, Max 3-digit

LC Position in the
message.

X'86F500' OVOL 14 Character (fixed length) Old volume LB SB

X'870000' OWN 16 Character (variable length) Owner GV LD LO LP LS LV
SD(e) SO SP SS SV

X'871000' OXDJ 12 Packed decimal Julian
date format

Original expiration date LD LV SD(e) SV(e)

Appendix A. Structured field introducers (SFIs) 89

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'871800' PACS 9 Binary(8)

PREACS
0=NO
1=YES

LC

X'871E00' PDA 9 Binary(8)

PDA state:
0=Off
1=On
2=None

LC

X'871E10' PDAC 9 Binary(8) PDA block count: Numeric
2-255

LC

X'871E30' PDAL 9 Binary(8) PDA log state: 0=Off1=On LC

X'871E90' PDAS 9 Binary(8) PDA block size: Numeric 1-31 LC

X'872000' PDS 48 Character (variable length) Pool description LC

X'873000' PDSC 40 Character (variable length) Product description LP SP(e)

X'874000' PEND 9 Bit(8)

Actions pending:
'80'=SCRATCH
'40'=REPLACE
'20'=INIT
'10'=ERASE
'08'=RETURN
'04'=NOTIFY

LV SV

X'875000' PID 14 Character (variable length) Pool prefix LC LR SR

X'876000' PLN 16 Character (variable length) Pool name LC

X'877000' PNME 38 Character (variable length) Software product name LP SP

X'878000' PNUM 16 Character (variable length) Software product number LP LV SP SV(e)

X'879000' PRD 12 Binary(32) Permanent read errors: Min 0,
Max 5-digit

LV SV(e)

X'87A000' PRF 9 Binary(8) Pool definition RACF® (A
component of the Security
Server for z/OS) option: 0=NO
1=YES

LC

X'87B000' PRTY 12 Binary(32) Priority: Min 0, Max 4-digit LS SS

X'87C000' PSFX 10 Character (fixed length) Parmlib member suffix LC

X'87C010' PSF2 10 Character (fixed length) Second parmlib member suffix LC

X'87D000' PSN 16 Character (variable length) Pool definition system ID LC

X'87D300' PSZ6 22 Compound (Binary(8)
Factor, Binary(64) Value)

Physical space used LD LV

X'87DB00' PTNA 9 Binary(8) NOSMT action for partition
entry: 0=ACCEPT 1=IGNORE

LC

X'87DB0C' PTNL 16 Character (variable length) Location name LC

X'87E000' PTP 9 Binary(8) Pool definition pool type:
0=SCRATCH 1=RACK

LC

X'87EB80' PTSA 9 Binary(8) SMT action for partition entry:
0=ACCEPT 1=IGNORE

LC

X'87EBA8' PTTP 9 Binary(8) Type of partition entry: 0=RMM
1=NORMM

LC

X'87EC00' PTVS 14 Character (variable length) Volume range start LC

X'87EC08' PTVL 14 Character (variable length) Volume serial number, specific
or generic

LC

X'87EC0F' PTVE 14 Character (variable length) Volume range end LC

X'87F000' PVL 14 Character (fixed length) Previous volume: 1 - 6 character LV SV(e)

X'880000' PWT 12 Binary(32) Permanent write errors: Min 0,
Max 5-digit

LV SV(e)

X'881000' RBN 12 Binary(32) Number of bin numbers in
REMOTE location: Min 0, Max
6-digit

LC

90 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'881200' RBYS 9 Binary(8) Retain by set: 0=NO 1=YES LV SV(e)

X'882000' RCF 9 Binary(8)

Installation RACF support:
1=N
2=P
3=A
4=C

LC

X'883000' RCFM 12 Character (variable length) RECFM LD SD(e)

X'884000' RCK 14 Character (fixed length) Rack or bin number AB AR AV CV DB DR LB
LP LR LV SB SP(e) SR SV

X'888500' RLPR 12 Binary(32) Required location priority LV SV(e)

X'886000' RDTJ 12 Packed decimal Julian
date format

Last control data set extract date LC

X'888000' RET 11 Binary(8)

Retention type:
1st byte:
1=RETAIN WHILE
CATALOGED
2nd byte:
1=RETAIN UNTIL
EXPIRED
3rd byte:
1=CYCLES
2=DAYS
3=REFDAYS
4=VOLUMES
5=EXTRA DAYS
6=BY DAYS CYCLE

LS SS

X'888800' RM 9 Binary(8) Retention method:

0=VRSEL
1=EXPDT

LC OPT, LV VOL, SV(e)

X'889000' RMID 25 Character (variable length) Started procedure name. Up to
17 characters. One of:

v procedure name

v job name

v concatenation of procedure
name.identifier

LC

X'888A00' RMSB 9 binary(8) Retention method set by

0=blank (not set)
1=CMD
2=CMD_DEF
3=OCE_DEF
4=OCE_EXIT
5=LCS_DEF
6=CNVT
7=EXPORT_DEF
8=INERS_DEF

LV VOL SV(e)

X'88A000' RST 9 Binary(8)

Rack or bin status
0=EMPTY
1=FREE
2=INUSE

LB LR SB SR

X'88B900' RTBY 9 Binary(8) Retain by: 0=VOLUME 1=SET LC

X'88C000' RTDJ 12 Packed decimal Julian
date format

Retention date LD LV SD SV

X'88E000' RTM 12 Packed decimal time
format

Last control data set extract time LC

X'88E500' RUB 9 Binary(8) Reuse bin at
0=CONFIRMMOVE
1=STARTMOVE

LC

X'890000' SC 16 Character (variable length) Storage class name LD SD(e)

Appendix A. Structured field introducers (SFIs) 91

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'891000' SCRM 9 Binary(8) Binary value 0=Auto 1=manual LC

X'892000' SCST 9 Bit(8)

Security class status
'80'=SMF
'40'=MSGOPT
'20'=ERASE

LC

X'894000' SC1 12 Binary(32) Storenumber Min 1, Max 5-digit LS SS SS(e)

X'895000' SDTJ 12 Packed decimal Julian
date format

Movement tracking date LV SV(e)

X'896000' SEC 9 Binary(8) Security class number Min 0,
Max 255

LC

X'898000' SEQ 12 Binary(32) Volume sequence Min 1, Max
9999

LV SV

X'89A000' SG 16 Character (variable length) Storage group name LD LV SD(e) SV(e)

X'89B000' SID 16 Character (variable length) DFSMSrmm system ID LC

X'89C000' SLM 10 Binary(15) MAXHOLD value Min 10, Max
500

LC

X'89E000' SMI' 10 Binary(15) Offset to message ID Min 0,
Max 3-digit

LC

X'89E210' SMP 9 Binary(8)

System-managed
tape purge:
0=NO
1=YES
2=ASIS

LC

X'89E220' SMU 9 Bit(8) System-managed tape update:
20=Command 40=Scratch
80=Exits N/A

LC

X'89F000' SOSJ 12 Packed decimal Julian
date format

Last expiration processing start
date

LC

X'8A0000' SOSP 16 Character (variable length) Scratch procedure name LC

X'8A1000' SOST 12 Packed decimal time
format

Last expiration processing start
time

LC

X'8A1A00' SRHN 71 Character (variable length) Server host name 1-to-63
alphanumeric characters
including hyphen, period, and
blank

LC

X'8A1A30' SRIP 53 Character (variable length) Server IP address 1-to-45
numeric characters including
colon, period, and blank

LC

X'8A1A50' SRPN 12 Binary (31) Server number binary value LC

X'8A1AF0' SRTK 12 Binary (31) Server tasks binary value LC

X'8A2000' SSM 10 Binary(15) SMF security record type:
128-255, 42, or 0

LC

X'8A2500' SSTY 9 Binary (8)

Subsystem type
0=Standard system
1=Client system
2=Server system

LC

X'8A2800' STDS 9 Bit (8) Debug setting

X'80' OCE
X'40' SNAP

LC

X'8A3000' STEP 16 Character (variable length) Step name LD SD(e)

X'8A3200' STIS 9 Binary (8) Task - IP verb state

0=NONE
1=STARTED
2=ENDED

LC

92 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'8A3201' STIT 12 Packed decimal time
format

Task - IP verb time LC

X'8A3203' STIV 9 Binary (8) Task - IP verb

0=NONE
1=READ
2=WRITE
3=CONNECT
4=CLOSE

LC

X'8A3300' STLA 10 Binary (15) Local active tasks Numeric:
0-999

LC

X'8A3307' STLH 10 Binary (15) Local held tasks Numeric: 0-999 LC

X'8A3314' STLO 10 Binary (15) Local tasks Numeric: 0-999 LC

X'8A3317' STLR 12 Packed decimal time
format

Last RESERVE time LC

X'8A3400' STNH 9 Binary (8) New requests held

0=NOTHELD
1=HELD

LC

X'8A3450' STPL 9 Bit (8) PDA trace levels

X'80' level 1 trace
X'40' level 2 trace
X'20' level 3 trace
X'10' level 4 trace

LC

X'8A3500' STQC 12 Binary (32) Catalog requests Numeric:
0-999999

LC

X'8A3511' STQN 12 Binary (32) Nowait requests Numeric:
0-999999

LC

X'8A3515' STQR 12 Binary (32) Queued requests Numeric:
0-999999

LC

X'8A3600' STRF 13 Character (variable length) Task - requested function LC

X'8A3602' STRH 9 Binary (8) CDS RESERVEd 0=DEQ 1=ENQ LC

X'8A3607' STRM 9 Binary (8) RMM status:

0=ACTIVE
1=RESET
2=QUIESCED

LC

X'8A3614' STRT 16 Character (variable length) Task - requestor's system LC

X'8A3650' STSA 10 Binary (15) Server active tasks

Numeric: 0-999

LC

X'8A3657' STSH 10 Binary (15) Server held tasks Numeric:
0-999

LC

X'8A3661' STSL 9 Binary (8) Server listener task status

0=Standard or client system
1=task is active
2=task not active

LC

X'8A3664' STSO 10 Binary (15) Server tasks Numeric: 0-999 LC

X'8A3669' STST 12 Packed decimal time
format

Task - Start time LC

X'8A3700' STTQ 16 Character (variable length) Task - requestor LC

X'8A3701' STTR 11 Character (variable length) Task - requestor's type: JOB,
STC, TSU.

LC

X'8A3702' STTS 9 Binary (8) Task - status

0=NONE
1=HOLD
2=CANCEL
3=RESERVE

LC

Appendix A. Structured field introducers (SFIs) 93

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'8A3703' STTT 12 Binary (32) Task - Token Hexadecimal
value: X'00000000' - X'FFFFFFFF'

LC

X'8A3800' STVC 12 Binary(32) Count of volumes stacked on a
stacked volume

LV VOL SV(e)

X'8A4000' SUR 28 Character (variable length) Surname LO SO

X'8A5000' SYS 16 Character (variable length) SMF System ID LD LV SD(e) SV(e)

X'8A6000' TAC 9 Binary(8) Reject type 0=ANYUSE
1=OUTPUT

LC

X'8A6800' TLR 12 Packed decimal time
format

hhmmsstC, where hhmmsst is
the time in hours, minutes,
seconds, and tenths of seconds
and C is a standard
packed-decimal sign character.

LS SS

X'8A7000' TRD 12 Binary(32) Temporary read errors Min 0,
Max 5-digit

LV SV(e)

X'8A7800' TVXD 12 Binary(32) TVEXTPURGE days LC OPT

X'8A7900' TVXP 9 Binary(8) Tape volume exit purge option:
0=RELEASE 1=EXPIRE
2=NONE

LC

X'8A8000' TWT 12 Binary(32) Temporary write errors: Min 0,
Max 5-digit

LV SV(e)

X'8A9000' TYP 9 Bit(8)

VRS type:
'80'=GDG
'40'=PSEUDGDG
'20'=DSNAME
'10'=VOLUME
'08'=NAME

LS SS

X'8A9E00' TZ 12 Binary(32) Signed number; the offset from
common time in seconds. When
non-zero, use this value to
adjust all dates and times from
the DFSMSrmm systems' local
time to common time.

All

X'8AA000' UDTJ 12 Packed decimal Julian
date format

Late update date LC

X'8AB001' UID 16 Character (variable length) User ID. The SFI is incremented
by one for each UID that is
found. (X'8AB001'-X'8AB00C')

LV SV(e)

X'8AC000' UNC 9 Binary(8) Uncatalog option: 0=N 1=Y 2=S LC

X'8AD000' USEC 12 Binary(32) Volume use count: Min 0, Max
5-digit

LV SV(e)

X'8AE000' USEM 12 Binary(32) unsigned Volume usage (KB):

Min 0, Max 4294967295.
4294967295 indicates that USE6
must be used.

LV SV(e)

X'8AE030' USE6 22 Compound (Binary(8)
Factor, Binary(64) Value) Volume usage,

Factor:
0=bytes
1=KB
2=MB
3=GB
4=TB
Value:
Minimum value = 0.

LV SV(e)

X'8AE600' UTC 9 Binary(8) Common Time: 0=DISABLED
1=ENABLED

LC

X'8AE800' UTM 12 Packed decimal time
format

Late update time LC

94 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'8AF001' VAC 9 Binary(8)

Volume access:
0=NONE
1=READ
2=UPDATE

LV SV(e)

X'8B0000' VACT 9 Binary(8)

VRSMIN action:
0=FAIL
1=INFO
2=WARN
3=OFF

LC

X'8B0800' VANX 9' Binary(8)

Next VRS type:
0=Undefined
1=Next
2=And

LS SS

X'8B0B00' VCAP 12 Binary(32) Volume/Media capacity LV SV(e) LC

X'8B1000' VCHG 9 Binary(8) VRSCHANGE value: 0=INFO
1=VERIFY

LC

X'8B2000' VDD 10 Binary(15) VRS delay days: Min 0, Max 99 LS SS(e)

X'8B2800' VDRA 9 Binary(8)

VRSDROP action:
0=FAIL
1=INFO
2=WARN
3=OFF

LC

X'8B2802' VDRC 12 Binary(32) VRSDROP count LC

X'8B280F' VDRP 10 Binary(15) VRSDROP percent LC

X'8B3000' VDTJ 12 Packed decimal time
format

Last inventory management
processing date

LC

X'8B4000' VER 14 Character (variable length) Software produce version,
release, modification vvrrmm

LP LV SP SV(e)

X'8B4100' VEX 9 Binary(8) VRSEL exclude:

0=No
1=Yes

LD SD(e)

X'8B5000' VJBN 16 Character (variable length) Primary VRS job name LD LS SD(e) SS

X'8B6000' VLN 12 Binary(32) Number of volumes: Min 0,
Max 3-digit

LO LP SO SP

X'8B7000' VM 9 Binary(8) VM use: 0=NO 1=YES LV SV(e)

X'8B8000' VMIN 12 Binary(32) VRSMIN count value: Min 0,
Max 6-digit

LC

X'8B9000' VMV 16 Character (variable length) VRS management value LD SD(e)

X'8B9100' VWMC 12 Binary(32) Volume write mount count LV, SV(e)

X'8B9E00' VNDR 16 Character (8) Vendor information LV, SV(e)

X'8BA000' VNME 52 Character (variable length) Primary VRS name LD SD(e)

X'8BC000' VOL 14 Character (fixed length) 1 - 6 characters volume serial AV CV GV LB LD LP LR
LV SB SD SP SR SV

X'8BC200' VOLT 9 Binary(8) Volume type: 0=PHYSICAL
1=LOGICAL 2=STACKED

LV SV(e)

X'8BCD00' VOL1 14 Character (fixed length) VOL1 label volume serial
number

LV SV(e)

X'8BC300' VPCT 9 Binary(8) Volume percent full LV SV(e)

X'8BD000' VRC 12 Binary(32) Vital record count: Min 1, Max
5-digit

LS SS SS(e)

Appendix A. Structured field introducers (SFIs) 95

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'8BD500' VREA 9 Binary(8)

VRSRETAIN action:
0=FAIL
1=INFO
2=WARN
3=OFF

LC

X'8BD502' VREC 12 Binary(32) VRSRETAIN count LC

X'8BD50F' VREP 10 Binary(15) VRSRETAIN percent LC

X'8BE000' VRJ 9 Binary(8) VRS job name: 1 or 2 LC

X'8BF000' VRS 52 Character (variable length) Vital record specification name LS SS

X'8BF500' VRSI 9 Binary(8) Release action scratch
immediate: 0=NO 1=YES

LS LV SS SV(e)

X'8BFA00' VRSL 9 Binary(8) VRSEL value: 1=NEW LC

X'8C0000' VRSR 9 Binary(8) VRS retained status: 0=NO
1=YES

LD SD SD(e)

X'8C0800' VRXI 9 Binary(8) Expiration date ignore: 0=NO
1=YES

LV LS SS SV(e)

X'8C1000' VSCD 12 Packed decimal Julian
date format

Primary VRS subchain start date LD SD(e)

X'8C1800' VSCN 16 Character (variable length) Primary VRS subchain name LD SD(e)

X'8C2000' VST 9 Bit(8)

Volume status:
'80'=MASTER
'40'=SCRATCH
'20'=USER
'10'=INIT
'08'=ENTRY

LV SV

X'8C3000' VTM 12 Packed decimal time
format

Last inventory management
VRS time

LC

X'8C4000' VTYP 9 Binary(8)

Matching VRS type:
0=UNDEFINED
1=DATASET
2=SMSMC
3=VRSMV
4=DSNMV
5=DSNMC

LD SD(e)

X'8C4300' WORM 9 Binary(8)

Volume is WORM:
0=NO
1=YES

LV, SV (e)

X'8C4500' WWID 32 Character (24) World-wide identifier LV, SV (e)

X'8C5000' XDC 9 Binary(8)

Expiration date check:
0=NO
1=YES
2=OPERATOR

LC

X'8C5D00' XDRA 9 Binary(8)

EXPDTDROP action:
0=FAIL
1=INFO
2=WARN
3=OFF

LC

X'8C5D02' XDRC 12 Binary(32) EXPDTDROP count LC

X'8C5D0F' XDRP 10 Binary(15) EXPDTDROP percent LC

X'8C6000' XDTJ 12 Packed decimal Julian
date format

Expiration date LC LD LV SD SV

96 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Table 16. Command structured field introducers (continued)
SFI Number SFI Name SFI Length SFI Data Type Data Description Subcommand

X'8C6100' XDSB 9 Binary(8) Expiration date set by

0=blank (not set)
1=CMD
2=CMD_DEF
3=CMD_VOLCAT
4=OCE_JFCB
5=OCE_EXIT
6=OCE_DEF
7=OCE_MAX
8=OCE_VOLCAT
9=LCS
10=LCS_DEF
11=TVEXTPURGE
12=CNVT
13=EXPORT
14=LASTREF
15=OCE_MC

LV VOL, SV(e), LD, SD(e)

X'8C7000' XTM 12 Packed decimal time
format

Last inventory management
expiration time

LC

X'8C7800' X100 9 Binary(8) EDG_EXIT100 installation exit
status:
0 Exit is not defined or

no exit modules exist
1 At least one active

exit module exists
2 One or more exit

modules exist, but
none is active

LC

X'8C7801' X200 9 Binary(8) EDG_EXIT200 installation exit
status:
0 Exit is not defined or

no exit modules exist
1 At least one active

exit module exists
2 One or more exit

modules exist, but
none is active

LC

X'8C7802' X300 9 Binary (8) EDG_EXIT300 installation exit
status:
0 Exit is not defined or

no exit modules exist
1 At least one active

exit module exists
2 One or more exit

modules exist, but
none is active

LC

X'8C8000' 2JBN 16 Character (variable length) Secondary VRS jobname mask LD SD(e)

X'8C9000' 2NME 16 Character (variable length) Secondary VRS mask LD SD(e)

X'8CA000' 2SCD 12 Packed decimal Julian
date format

Secondary VRS subchain start
date

LD SD(e)

X'8CB000' 2SCN 16 Character (variable length) Secondary VRS subchain name LD SD(e)

Appendix A. Structured field introducers (SFIs) 97

98 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Appendix B. Structured field introducers by subcommand

Table 17 lists the structured field introducers by DFSMSrmm TSO subcommand.

The RMM SEARCHDATASET, RMM SEARCHPRODUCT, RMM
SEARCHVOLUME, and RMM SEARCHVRS subcommands return different sets of
structured field introducers depending on if you specify the EDGXCI macro
EXPAND=YES or EXPAND=NO parameter. When you specify the EXPAND=YES
parameter, these subcommands return the same information as their corresponding
RMM LIST subcommands: RMM LISTDATASET, RMM LISTPRODUCT, RMM
LISTVOLUME, and RMM LISTVRS.

Table 17. Structured field introducers by subcommand

Subcommand Structured field introducers

ADDBIN CNT ENTN MSGL MSGN RCK RSNC RTNC SVCN

ADDDATASET ENTN MSGL MSGN RSNC RTNC SVCN

ADDOWNER ENTN MSGL MSGN RSNC RTNC SVCN

ADDPRODUCT ENTN MSGL MSGN RSNC RTNC SVCN

ADDRACK CNT ENTN MSGL MSGN RCK RSNC RTNC SVCN

ADDVOLUME CLIB CNT CSG ENTN FRC FRS MSGL MSGN RCK RSNC RTNC
SVCN VOL

ADDVRS ENTN MSGL MSGN RSNC RTNC SVCN

CHANGEDATASET ENTN MSGL MSGN RSNC RTNC SVCN

CHANGEOWNER ENTN MSGL MSGN RSNC RTNC SVCN

CHANGEPRODUCT ENTN MSGL MSGN RSNC RTNC SVCN

CHANGEVOLUME CLIB CSG ENTN FRC FRS MEDN MSGL MSGN RCK RSNC RTNC
SVCN

CHANGEVRS ENTN MSGL MSGN RSNC RTNC SVCN

DELETEBIN CNT ENTN MSGL MSGN RCK RSNC RTNC SVCN

DELETEDATASET ENTN MSGL MSGN RSNC RTNC SVCN

DELETEOWNER ENTN MSGL MSGN RSNC RTNC SVCN

DELETEPRODUCT ENTN MSGL MSGN RSNC RTNC SVCN

DELETERACK CNT ENTN MSGL MSGN RCK RSNC RTNC SVCN

DELETEVOLUME CLIB ENTN FRC FRS MSGL MSGN RSNC RTNC SVCN

DELETEVRS ENTN MSGL MSGN RSNC RTNC SVCN

GETVOLUME ENTN FRC FRS MSGL MSGN OWN RSNC RTNC SVCN VOL

LISTBIN ENTN LCDJ LCID LCSI LCTM LCUD LCUT LINE LOC MIV MOV
MEDN MSGL MSGN OVOL RCK RSNC RST RTNC SVCN TZ VOL

LISTCONTROL ACTIONS ACT AST RC

LISTCONTROL CNTL ACS AUD BDT BTM CDSQ CDSU CSHN CSIP CSVE DBN CDS
CSDT CSTM DDT DRP DTE DTM EBIN FBP FCSP FDB FEP FKP
FLB FRB FRK FRP FSP FTP FVP FXP IPL JBDT JBTM JDS JRNS
JRNU LBN LCT LRK MDS MDT MRP MTM MTP NOT OPM PACS
RBN RC RCF RDT RMID RTM RUB SAT SDT SID SLM SOSD SOSP
SOST SSM STM UDT UTC UTM VDT VTM XDTJ XTM X100 X200
X300

© Copyright IBM Corp. 1992, 2013 99

Table 17. Structured field introducers by subcommand (continued)

Subcommand Structured field introducers

LISTCONTROL LOCDEF LDAM LDDF LDLC LDLT LDMN LDMT LDPR RC

LISTCONTROL MNTMSG MID OPL OVL RC SMI

LISTCONTROL MEDINF MDNF MDRA MDRP MDRT MDRW MDRX MDTX MEDR MEDT
VCAP

LISTCONTROL MOVES MFR MST MTO MTY

LISTCONTROL OPENRULE ORIA ORII ORIR OROA OROI OROR ORTP ORVE ORVL ORVS

LISTCONTROL OPTION ACCT AUD BLP BKPP CATS CDS CMDD CMDO CRP DRP DSPD
DSPM DTE EXRB GDGC GDGD IPL JDS JRNF JRNT LCT LCTK
LRED MCAT MDS MEDN MOP MRP MSGF MVBY OPM NOT
PDAC PDA PDAC PDAL PDAS PSFX PSF2 RC RCF RM RTBY RUB
SID SLM SMP SMUC SMUE SMUS SOSP SRHN SRIP SRPN SRTK
SSM SSTY TVXD TVXP UNC VACT VCHG VDRA VDRC VDRP
VMIN VREA VREC VREP VRJ VRSL XDRA XDRC XDRP

LISTCONTROL PRTITION PTNA PTNL PTSA PTTP PTVE PTVL PTVS

LISTCONTROL REJECT GRK RC TAC

LISTCONTROL SECCLS CLS ERS MSG NME RC SEC SMF

LISTCONTROL SECLEVEL CLS DNM ERS MSG NME RC SEC SMF

LISTCONTROL STATUS STDS STIS STIT STIV STLA STLH STLO STLR STNH STPL STQC
STQN STQR STRF STRH STRM STRT STSA STSH STSL STSO STST
STTQ STTR STTS STTT

LISTCONTROL VLPOOL ACT MEDN MOP PDS PID PLN PRF PSN PTP SCRM XDC

LISTDATASET ABND BESK BLKC BLKS BLKT BLK6 CDTJ CJBN CLS CPGM CRAT
CTLG CTM DC DD DEV DLRJ DLTD DLWJ DPCT DSEQ DSN DSS6
ENTN FILE LCDJ LCID LCSI LCTM LCUD LCUT LDD LDEV LINE
LPGM LRCL LRED LSTP MC MSGL MSGN NME OWN OXDJ PSZ6
RCFM RSNC RTDJ RTNC SC SG STEP SVCN SYS TZ VEX VJBN
VNME VOL VRSR VSCD VSCN VTYP XDSB XDTJ 2JBN 2NME
2SCD 2SCN

LISTOWNER ADL DPT EML EMN EMU ENTN ETL FOR ITL LCDJ LCID LCSI
LCTM LCUD LCUT LINE MSGL MSGN OWN RSNC RTNC SUR
SVCN TZ VLN

LISTPRODUCT ENTN FCD LCDJ LCID LCSI LCTM LCUD LCUT LINE MSGL
MSGN OWN PDSC PNME PNUM RCK RSNC RTNC SVCN TZ VER
VLN VOL

LISTRACK ENTN LCDJ LCID LCSI LCTM LCUD LCUT LINE LOC MEDN
MSGL MSGN PID RCK RSNC RST RTNC SVCN VOL

LISTVOLUME ACN ACT ADTJ ATM AVL BIN BMN CDTJ CJBN CLS CRAT CRID
CTM CTNR DBIN DBMN DEN DESC DEST DLRJ DLWJ DSC DSEQ
DSN DSR DSTT D12 ENTN EXRB FCD HLD HLOC HLOT INTR
KEL1 KEL2 KEM1 KEM2 LBL LCDJ LCID LCSI LCTM LCUD LCUT
LDEV LINE LOAN LOC LOCT LVC LVN MDNF MDRX MDTX
MEDA MEDC MEDN MEDR MEDT MOVM MSGL MSGN MVS
NLOC NLOT NME NVL OAC OBMN OBN OCE OLOC OLON
OLOT OWN OXDJ PEND PNUM PRD PSZ6 PVL PWT RBYS RCK
RLPR RM RMSB RSNC RTDJ RTNC SDTJ SEQ SG STVC SVCN TRD
TWT TZ UID01 UID02 UID03 UID04 UID05 UID06 UID07 UID08
UID09 UID10 UID11 UID12 USEC USEM USE6 VAC VCAP VER VM
VMIN VNDR VOL VOLT VOL1 VPCT VRSI VRXI VST VWMC
WORM WWID XDSB XDTJ

100 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Table 17. Structured field introducers by subcommand (continued)

Subcommand Structured field introducers

LISTVRS DDTJ DESC DLRJ ENTN LCDJ LCID LCSI LCTM LCUD LCUT LINE
LOC MSGL MSGN NVRS OWN PRTY RET RSNC RTNC SC1 SVCN
TLR TYP TZ VANX VDD VJBN VRC VRS VRSI VRXI

SEARCHBIN CONT ENTN LINE LOC MEDN MIV MOV MSGL MSGN OVOL
RCK RSNC RST RTNC SVCN TZ VOL

SEARCHDATASET CDTJ CONT CTM DSN ENTN FILE KEYF KEYT LINE LRED MSGL
MSGN OWN OXDJ RSNC RTDJ RTNC SVCN VOL XDTJ

SEARCHDATASET(EXPAND=YES) The same SFIs as the LISTDATASET subcommand.

SEARCHOWNER ADL CONT DPT EML EMN EMU ETL FOR ITL OWN SUR TZ VLN

SEARCHPRODUCT CONT ENTN FCD LINE MSGL MSGN OWN PNME PNUM RSNC
RTNC SVCN VER VLN VOL

SEARCHPRODUCT(EXPAND=YES) The same SFIs as the LISTPRODUCT subcommand.

SEARCHRACK CONT ENTN LINE LOC MEDN MSGL MSGN PID RCK RSNC RST
RTNC SVCN VOL

SEARCHVOLUME ADTJ AVL CONT DESC DSC DSR ENTN EXRB HLD HLOC INTR
KEYF KEYT LBL LINE LOAN LOC LVC LVN MDNF MDRX MDTX
MEDA MEDC MEDN MEDR MEDT MSGL MSGN OWN PEND
RCK RSNC RTDJ RTNC SEQ SVCN TYPF TYPT VCAP VOL VST
XDTJ

SEARCHVOLUME(EXPAND=YES) The same SFIs as the LISTVOLUME subcommand.

SEARCHVRS CONT DDTJ ENTN LINE LOC MSGL MSGN NVRS OWN PRTY
RET RSNC RTNC SVCN VANX VJBN VRS VRSI VRXI

SEARCHVRS(EXPAND=YES) The same SFIs as the LISTVRS subcommand.

Appendix B. Structured field introducers by subcommand 101

102 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Appendix C. DFSMSrmm application programming interface
mapping macros

DFSMSrmm API macros can be used to generate mappings: This section discusses:
v The parameter list generated by the list form of the EDGXCI macro, as shown in

“EDGXCI: Parameter list”
v The structured field definitions generated by the EDGXSF macro, as shown in

“EDGXSF: Structured field definitions”

EDGXCI: Parameter list
The mapping of the parameter list is generated by the list form of the EDGXCI
macro.

The EDGXCI mapping macro is provided for information only. Although the fields
and values of the parameter list are shown here, your application program should
not directly access and modify the parameter list. Always use macro EDGXCI.

EDGXSF: Structured field definitions
Use macro EDGXSF in your application program to define the data that the
DFSMSrmm API returns in your output buffer. This section includes:
v “EDGXSF parameters” on page 104
v “EDGXSF mapping” on page 104
v “EDGXSF labeling conventions” on page 106

MYPL DS 0D ++ EDGXCI PARM LIST
MYPL_XVERSION DS XL1 ++ INPUT XVERSION
MYPL_XOPERATION DS XL1 ++ XOPERATION
MYPL_XOPERATION_BEGIN EQU 0 ++ XOPERATION.BEGIN KEYWORD
MYPL_XOPERATION_CONTINUE EQU 1 ++ XOPERATION.CONTINUE KEYWORD
MYPL_XOPERATION_RELEASE EQU 2 ++ XOPERATION.RELEASE KEYWORD
MYPL_XOPERATION_ENDALL EQU 3 ++ XOPERATION.ENDALL KEYWORD
MYPL_XOUTPUT DS XL1 ++ XOUTPUT
MYPL_XOUTPUT_LINES EQU 0 ++ XOUTPUT.LINES KEYWORD
MYPL_XOUTPUT_FIELDS EQU 1 ++ XOUTPUT.FIELDS KEYWORD
MYPL_XEXPAND DS XL1 ++ XEXPAND
MYPL_XEXPAND_YES EQU 0 ++ XEXPAND.YES KEYWORD
MYPL_XEXPAND_NO EQU 1 ++ XEXPAND.NO KEYWORD
MYPL_XAPIADDR DS A ++ XAPIADDR
MYPL_XOUTBUFADDR DS A ++ XOUTBUFADDR
MYPL_XSUBCMDADDR DS A ++ XSUBCMDADDR
MYPL_XTOKEN DS CL4 ++ XTOKEN
MYPL_XMULTI DS XL1 ++ XMULTI
MYPL_XMULTI_NO EQU 0 ++ XMULTI.NO KEYWORD
MYPL_XMULTI_YES EQU 1 ++ XMULTI.YES KEYWORD
MYPL_XRSV0001 DS CL7 ++ RESERVED XRSV0001
MYPL_XRSV0002 DS CL4 ++ RESERVED XRSV0002
MYPL_XRSV0003 DS CL8 ++ RESERVED XRSV0003
MYPLL EQU *-MYPL ++ LENGTH OF PLIST

Figure 35. Mapping of the parameter list using the list form of EDGXCI

© Copyright IBM Corp. 1992, 2013 103

EDGXSF parameters
The EDGXSF parameters are:

DSECT=YES
DSECT=NO

An optional parameter that specifies whether a DSECT statement is generated.
The default is DSECT=YES.

DSECT=YES
Indicates that a DSECT statement should be generated.

DSECT=NO
Indicates that a DSECT statement should not be generated.

,LIST=YES
,LIST=NO

An optional parameter that specifies whether the macro expansion is printed.
The default is LIST=YES.

,LIST=YES
Indicates to print the expansion.

,LIST=NO
Indicates do not print the expansion.

,TITLE=YES
,TITLE=NO

An optional parameter that specifies whether the macro title is printed. The
default is TITLE=YES.

,TITLE=YES
Indicates to print the title.

,TITLE=NO
Indicates do not print the title

EDGXSF mapping
Always use macro EDGXSF to determine the exact labels used to define the
DFSMSrmm structured field introducers. The tables in this topic show the dummy
control section and the data types that define the generic mapping for the
structured field introducers defined in Appendix A, “Structured field introducers
(SFIs),” on page 77.

Common Name: API Structure Field Introducers
Macro ID: EDGXSF
DSECT Name: XSF_SFI
Owning Component: DFSMSrmm (DF186)
Eye-Catcher ID: None
Storage Attributes: Subpool: user specified

Key: any key
Residency: 31 bit

Size: Variable
Created by: Caller
Pointed to by: N/A
Serialization: None
Function: The XSF_SFI area is initialized by

DFSMSrmm when an API call is made
via the EDGXCI executable macro

104 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Table 18. Structure XSF_OUTBUF
Offset Offset

Dec Hex Type Len Name(Dim) Description

0 (0) STRUCTURE * XSF_OUTBUF Output buffer
0 (0) SIGNED 4 XSF_OUTBUF_BUFLNG Output buffer length
4 (4) SIGNED 4 XSF_OUTBUF_RQDLNG Required buffer length
8 (8) SIGNED 4 XSF_OUTBUF_DATALNG Length of output data
12 (C) CHARACTER * XSF_OUTBUF_FIELDS Start of structured fields

Structured Field Introducers for Structured Fields
0 (0) STRUCTURE * XSF_SFI Structured field introducers
0 (0) CHARACTER 8 XSF_SFI_HD
0 (0) SIGNED 2 XSF_SFI_LENGTH Length
2 (2) CHARACTER 3 XSF_SFI_ID Identifier
2 (2) CHARACTER 2 XSF_SFI_IDVAL Identifier value
4 (4) CHARACTER 1 XSF_SFI_IDQUAL Identifier qualifier
5 (5) UNSIGNED 1 XSF_SFI_TYPE Type
7 (7) UNSIGNED 1 XSF_SFI_DTYPE Data type
8 (8) CHARACTER * XSF_SFI_DATA Start of data

Compound SFI definition
8 (8) STRUCTURE 14 XSF_SFI_COMPTYPE1 Compound section
8 (8) CHARACTER 6 XSF_SFI_COMPDATA
8 (8) CHARACTER 6 XSF_SFI_COMPHDR Compound header
8 (8) CHARACTER 6 XSF_SFI_COMPENT Compound entry
8 (8) UNSIGNED 1 XSF_SFI_COMPTYPE Compound type
9 (9) CHARACTER 3 XSF_SFI_FIELD1
9 (9) UNSIGNED 1 XSF_SFI_LEN1 Length of first field
10 (A) UNSIGNED 1 XSF_SFI_DTYP1 Type of first field
11 (B) UNSIGNED 1 XSF_SFI_FACTOR Factor for second field
12 (C) CHARACTER 2 XSF_SFI_FIELD2
12 (C) UNSIGNED 1 XSF_SFI_LEN2 Length of second field
13 (D) UNSIGNED 1 XSF_SFI_DTYP2 Type of second field
14 (E) CHARACTER 8 XSF_SFI_COMPVAL The value

Len Type Value Name Description

Data Types (XSF_SFI_DTYPE, XSF_SFI_DTYP1, XSF_SFI_DTYP2)

1 HEX 00 XSF_SFI_DTYPE_UNDEF Undefined data
1 HEX 01 XSF_SFI_DTYPE_CHAR_FIX N byte character
1 HEX 02 XSF_SFI_DTYPE_BITFLAG Bit flag byte (8 bits)
1 HEX 03 XSF_SFI_DTYPE_BIN8 1 byte (hex) value
1 HEX 04 XSF_SFI_DTYPE_BIN15 2 byte hex value
1 HEX 05 XSF_SFI_DTYPE_BIN31 4 byte hex value
1 HEX 06 XSF_SFI_DTYPE_BIN64 8 byte hex value
1 HEX 07 XSF_SFI_DTYPE_CHAR_VAR Variable length character
1 HEX 08 XSF_SFI_DTYPE_COMPOUND Compound SFI
1 HEX 09 XSF_SFI_DTYPE_JDATE 4 byte packed decimal date

YYYYDDD
1 HEX 0A XSF_SFI_DTYPE_TIME 4 byte packed decimal time

HHMMSST

Compound Types (XSF_SFI_CompType)

1 HEX 00 XSF_SFI_COMPTYPE_UNDEF Undefined type
1 HEX 01 XSF_SFI_COMPTYPE_FACTOR Factored type

Factors (XSF_SFI_Factor)

Appendix C. DFSMSrmm application programming interface mapping macros 105

Len Type Value Name Description

1 HEX 00 XSF_SFI_FACTOR_BYTES Value is in bytes
1 HEX 01 XSF_SFI_FACTOR_KB Value is in kilobytes
1 HEX 02 XSF_SFI_FACTOR_MB Value is in megabytes
1 HEX 03 XSF_SFI_FACTOR_GB Value is in gigabytes
1 HEX 04 XSF_SFI_FACTOR_TB Value is in terabytes

EDGXSF labeling conventions
This topic includes the labeling conventions used in macro EDGXSF. The
conventions are provided to assist you until such time as you are able to obtain
macro EDGXSF.

Labeling: Begin and End Resource groups
Resource groups, except for VOL and VRS, are defined using this format:
v XSF_SFI_ID_xxxx and XSF_xxxx_LENGTH
v XSF_SFI_ID_Exxxx and XSF_Exxxx_LENGTH

Here is a sample mapping of the Begin and End ACCESS group:

Len Type Value Name

8 HEX 0008021000000000 XSF_SFI_ACCESS
3 HEX 021000 XSF_SFI_ID_ACCESS
2 HEX 0008 XSF_ACCESS_LENGTH
8 HEX 0008021080000000 XSF_SFI_EACCESS
3 HEX 021080 XSF_SFI_ID_EACCESS
2 HEX 0008 XSF_EACCESS_LENGTH

The VOL and VRS groups are defined using this format:
v XSF_SFI_ID_xxx and XSF_xxxGRP_LENGTH
v XSF_SFI_ID_Exxx and XSF_ExxxGRP_LENGTH

Here us a sample mapping of the Begin and End VOL group:

Len Type Value Name

8 HEX 0008036000000000 XSF_SFI_VOLGRP
3 HEX 036000 XSF_SFI_ID_VOL
2 HEX 0008 XSF_VOLGRP_LENGTH
8 HEX 0008036080000000 XSF_SFI_EVOLGRP
3 HEX 036080 XSF_SFI_ID_EVOL
2 HEX 0008 XSF_EVOLGRP_LENGTH

Labeling: Structured field introducers that introduce data
Structured field introducers introduce data and are defined using this format:
v XSF_SFI_xxxx_ID
v XSF_xxxx_LENGTH
v XSF_xxxx_DTYPE

Here is a sample mapping of the ATM SFI:

106 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Len Type Value Name Description

8 HEX 000C80600000000A XSF_SFI_ATM Assigned time
3 HEX 806000 XSF_SFI_ATM_ID
2 HEX 000C XSF_ATM_LENGTH
1 HEX 0A XSF_ATM_DTYPE

Labeling: Flags
Output data for some structured field introducers are defined as bit flags using this
format: XSF_xxxx_FLAG_name.

Here is a sample mapping of the ACT SFI:

Len Type Value Name Description

8 HEX 0009802000000002 XSF_SFI_ACT Actions on release
3 HEX 802000 XSF_SFI_ACT_ID
2 HEX 0009 XSF_ACT_LENGTH
1 HEX 02 XSF_ACT_DTYPE
1 HEX 80 XSF_ACT_FLAG_SCRATCH
1 HEX 40 XSF_ACT_FLAG_REPLACE
1 HEX 20 XSF_ACT_FLAG_INIT
1 HEX 10 XSF_ACT_FLAG_ERASE
1 HEX 08 XSF_ACT_FLAG_RETURN
1 HEX 04 XSF_ACT_FLAG_NOTIFY

Labeling: Bin(8) data
Output data for some structured field introducers are defined as one-byte binary
numbers using this format: XSF_xxxx_DATA_name.

Here is a sample mapping of the LOCT SFI:

Len Type Value Name Description

8 HEX 000984E000000003 XSF_SFI_LOCT Location type
3 HEX 84E000 XSF_SFI_LOCT_ID
2 HEX 0009 XSF_LOCT_LENGTH
1 HEX 03 XSF_LOCT_DTYPE
1 NUMB HEX 00 XSF_LOCT_DATA_SHELF
1 NUMB HEX 01 XSF_LOCT_DATA_STORE_BUILTIN_BINS
1 NUMB HEX 02 XSF_LOCT_DATA_MANUAL
1 NUMB HEX 03 XSF_LOCT_DATA_AUTO
1 NUMB HEX 04 XSF_LOCT_DATA_STORE_BINS
1 NUMB HEX 05 XSF_LOCT_DATA_STORE_NOBINS
1 NUMB HEX 06 XSF_LOCT_DATA_INCTNR

Unlabeled data
These output data types are unlabeled:
v Fixed-length and variable-length character data
v Two-byte binary values
v Four-byte binary values
v Dates
v Times

Appendix C. DFSMSrmm application programming interface mapping macros 107

108 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Appendix D. Hexadecimal example of an output buffer

This topic provides an example and discussion of a hexadecimal representation of
the contents of an output buffer for a SEARCHDATASET subcommand request.
You can modify this example for use in your installation.

Hexadecimal representation of an output buffer
Figure 36 is a hexadecimal representation of the contents in an output buffer that
might be produced for the SEARCHDATASET VOLUME(VOL001) subcommand
shown in “Requesting standard output” on page 51. This format is used:
v Relative buffer address shown as 2-byte values.
v Buffer contents are shown in groups of 8-bytes.

Description of the contents of an output buffer
The first line of the output buffer shown in Figure 36 shows:
0000 0000100000000000 0000007100080260 00000000001B82A0 00000007D6E6D5C5

v Three 4-byte length fields:
– 00001000

This is the length you specified for the output buffer.
– 00000000

This means that the output buffer is large enough. When the buffer length is
too small, DFSMSrmm sets this field with the size of the buffer needed.
DFSMSrmm also returns return code 108 and reason code 10.

– 00000084
This is the total size of the data in the output buffer, including the length of
this field. You can use this data length to determine when there is no more
data to process.

v Eight structured fields:
– 0008026000000000

This is the Begin DATASET group SFI, which begins at offset x'000C' into the
output buffer. Use this SFI to confirm that you are processing a DATASET
SFI. When you do not want to process a group of structured fields, scan to
the end of the group by looking for the corresponding End SFI, such as, the
End DATASET group SFI in this example.

The first and second lines of the output buffer shown in Figure 36 show:

0000 0000100000000000 0000008400080260 00000000001A82A0 00000007D9D4D4E4
0020 E2C5D94BC6C9C5D3 C44BE3C5E2E3000E 8BC000000001E5D6 D3F0F0F1000F8700
0040 00000007D9D4D4E4 E2C5D9000C8A9E00 000005FFFF9D9000 0C81300000000920
0060 05320F000C81A000 00000A0658226F00 0C83300000000500 0000010008026080
0080 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0FFC 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0FFE 0000000000000000 0000000000000000 0000000000000000 0000000000000000

Figure 36. Hexadecimal representation of the contents of an output buffer

© Copyright IBM Corp. 1992, 2013 109

0000 0000100000000000 0000007100080260 00000000001B82A0 00000007D6E6D5C5
0020 D9D6D5C54BC6C9C5 D3C44BE3C5E2E300 0E8BC000000001E5 D6D3F0F0F1001087

v Data Set Name structured field
– 001B82A000000007 D6E6D5C5D9D6D5C54BC6C9C5D3C44BE3C5E2E3

This is the Data Set Name structured field, which begins at offset x'0014' into
the output buffer. The structured field consists of the 8-byte DSN SFI and, in
this example, the 19-byte data set name (OWNERONE.FIELD.TEST). The
length of the structured field is 27 bytes (8 plus 19) as shown by the x'001B'
value at the beginning of the field.

v Volume Serial structured field
– 000E8BC000000001 E5D6D3F0F0F1

This is the Volume Serial structured field, which begins at offset x'002F' into
the output buffer. The structured field consists of the 8-byte VOL SFI and the
6-byte volume serial (VOL001).

The second and third lines of the output buffer shown in Figure 36 on page 109
show:
0020 D9D6D5C54BC6C9C5 D3C44BE3C5E2E300 0E8BC000000001E5 D6D3F0F0F1001087
0040 0000000007D6E6D5 C5D9D6D5C5000C81 3000000009199711 7C000C81A0000000

v Owner structured field
– 0010870000000007 D6E6D5C5D9D6D5C5

This is the Owner structured field, which begins at offset x'003D' into the
output buffer. The structured field consists of the 8-byte OWN SFI and the
8-byte owner (OWNERONE).

v Create Date structured field
– 000C813000000009 1997117C

This is the Create Date structured field, which begins at offset x'004D' into the
output buffer. The structured field consists of the 8-byte CDTJ SFI and the
4-byte packed-decimal date (x'1997117C').

The third and fourth lines of the output buffer shown in Figure 36 on page 109
show:
0040 0000000007D6E6D5 C5D9D6D5C5000C81 3000000009199711 7C000C81A0000000
0060 0A0815270C000C83 3000000005000000 0100080260800000 0000000000000000

v Create Time structured field
– 000C81A00000000A 0815270C

This is the Create Time structured field, which begins at offset x'0059' into the
output buffer. The structured field consists of the 8-byte CTM SFI and the
4-byte packed-decimal time (x'0815270C').

v Physical File Sequence structured field
– 000C833000000005 00000001

This is the Physical File Sequence structured field, which begins at offset
x'0065' into the output buffer. The structured field consists of the 8-byte FILE
SFI and the 4-byte binary sequence number (x'00000001').

v End DATASET group SFI
– 0008026080000000

This is the End DATASET group SFI, which begins at offset x'0071' into the
output buffer.

110 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Processing the contents of an output buffer
To process the contents of an output buffer, consider using these guidelines:
1. Base the XSF_OUTBUF definition in macro EDGXSF as shown in Figure 37 on

the address of the output buffer you are interested in.

2. Base the XSF_SFI definition in macro EDGXSF as shown in Figure 38 on the
address of XSF_OUTBUF_FIELDS.

3. Find the type of structured field you are processing by using the two-byte
structured field identifier at XSF_SFI_IDVAL. The values of XSF_SFI_IDQUAL
for ADL, address line SFI, and UID, User ID SFI, described in Appendix A,
“Structured field introducers (SFIs),” on page 77 are not constant values.

4. Move to the next structured field by adding the length at XSF_SFI_LENGTH to
the XSF_SFI pointer.

5. Verify that you have reached the end of the valid data in the output buffer by
using the length of the output data at XSF_OUTBUF_DATALNG.

6. Determine the type of data you are processing, by using the value in
XSF_SFI_DTYPE.

7. Obtain the length of the data that starts at XSF_SFI_DATA, by subtracting
XSF_SFI_LEN from the structured field length at XSF_SFI_LENGTH. in the
output buffer.

8. Move to the end of the SFI by adjusting the pointer. In this example, when
your pointer is at offset x'00000071' into the output buffer, there are two
indicators that you are done with the contents of the buffer:
v You are looking at the End DATASET group SFI.

XSF_OUTBUF DSECT Output Buffer
XSF_OUTBUF_BUFLNG DS 1FL4 Buffer Length
XSF_OUTBUF_RQDLNG DS 1FL4 Required Buffer Length
XSF_OUTBUF_DATALNG DS 1FL4 Length of Output Data
XSF_OUTBUF_FIELDS DS 0C Start of Structured Fields

Figure 37. Output buffer definition

XSF_SFI DSECT Structured Field Introducers
XSF_SFI_LENGTH DS 1FL2 Length
XSF_SFI_ID DS 1CL0003 ID (identifier)

ORG XSF_SFI_ID
XSF_SFI_IDVAL DS 1CL0002 ID (Identifier Value)
XSF_SFI_IDQUAL DS 1CL0001 ID (Identifier Qualifier)
XSF_SFI_TYPE DS 1FL1 Type

DS 1CL0001 Reserved
XSF_SFI_DTYPE DS 1FL1 Data type
XSF_SFI_LEN EQU *-XSF_SFI
XSF_SFI_DATA DS 0C Start of Data

Note: XSF_SFI_DATA can contain compound data with an internal structure of:

XSF_SFI_CompType
XSF_SFI_LEN1
XSF_SFI_DTYPE1
XSF_SFI_Factor
XSF_SFI_LEN2
XSF_SFI_DTYPE2
XSF_SFI_Value

Figure 38. SFI definition

Appendix D. Hexadecimal example of an output buffer 111

Note: This is true only if you did not specify MULTI=YES in your call to the
API. If you use MULTI=YES, your output buffer may contain more than one
resource group.

v Adjusting the XSF_SFI pointer by the length of this SFI (8 bytes) points you
past the last byte of data in the buffer.

9. Repeat these steps to process each structured field.

In the examples shown in Figure 37 on page 111 and Figure 38 on page 111:
v Adding the length of the data (x'00000071') at XSF_OUTBUF_DATALNG to the

address of XSF_OUTBUF_DATALNG results in the address just beyond the last
byte of data in the output buffer. You might find this a useful double-check to
ensure that you are looking at valid data.

v Your XSF_SFI pointer is at the first structured field in the output buffer (offset
000C in the buffer), and the SFI identifier value at XSF_SFI_IDVAL (0260) tells
you that the SFI is a Begin DATASET group. To move to the next structured
field, add XSF_SFI_LENGTH (0008) to your pointer.

v Your XSF_SFI pointer is now at the second structured field in the output buffer
(offset 0014 in the buffer); XSF_SFI_IDVAL (82A0) identifies the SFI as DSN
(Data Set Name); and XSF_SFI_LENGTH (001B) minus XSF_SFI_LEN (8) gives
you a length of 19 bytes for the data set name. The type of data is
variable-length character because the data type at XSF_SFI_DTYPE equals
XSF_SFI_DTYPE_CHAR_VAR.
One method to process structured field introducers is to use an SFI lookup table
containing ID values and addresses of corresponding processing routines.
Another method is to use the XSF_SFI_DTYPE: Call an appropriate data-type
routine with the address of the SFI or SFI data and the address of an output area
as inputs.
After you finish processing this structured field, update the XSF_SFI pointer to
the next structured field.

112 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Appendix E. Accessibility

Publications for this product are offered in Adobe Portable Document Format
(PDF) and XHTML through the z/OS Information Center, at http://
publib.boulder.ibm.com/infocenter/zos/v2r1/index.jsp. If you experience difficulty
with the accessibility of any z/OS information, send an email to
mhvrcfs@us.ibm.com or write to:

IBM® Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
Information Center using a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line,
because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

© Copyright IBM Corp. 1992, 2013 113

at http://publib.boulder.ibm.com/infocenter/zos/v2r1/index.jsp

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!
(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next

114 z/OS V2R1.0 DFSMSrmm Application Programming Interface

higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix E. Accessibility 115

116 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1992, 2013 117

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS™, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

118 z/OS V2R1.0 DFSMSrmm Application Programming Interface

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of DFSMSrmm.

Trademarks
DFSMSrmm
IBM
IBMLink
RACF
z/OS
z/VM

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Apache Tomcat and Tomcat are trademarks of the Apache Software Foundation in
the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 119

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/

120 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Index

Numerics
2JBN ('8C8000') - Secondary VRS Jobname

Mask 97
2NME ('8C9000') - Secondary VRS

Mask 97
2SCD ('8CA000') - Secondary VRS

Subchain Start Date 97
2SCN ('8CB000') - Secondary VRS

Subchain Name 97

A
abbreviations for subcommands 2
ABND ('800800') - closed by Abend 81
accessibility 113

contact IBM 113
features 113

account number SFI 81
accounting source SFI 81
ACCT ('800800') - Accounting Source 81
ACN ('801000') - Account Number 81
ACS ('801800') - SMSACS 81
ACT ('802000') - Actions on release 81
Action Status SFI 81
actions on release SFI 81
Actions Pending SFI 90
ADDBIN

SFIs for 59
subcommand abbreviation 2

ADDDATASET
SFIs for 59
subcommand abbreviation 2

ADDOWNER
SFIs for 59
subcommand abbreviation 2

ADDPRODUCT
SFIs for 59
subcommand abbreviation 2

ADDRACK
SFIs for 59
subcommand abbreviation 2

address line SFI 81
ADDVOLUME

SFIs for 59
subcommand abbreviation 2

ADDVRS
SFIs for 59
subcommand abbreviation 2

ADL ('803001') - Address Line 81
ADTJ ('804000') - Assigned Date 81
API methods 20
application programming interface

mapping macros 103
assigned date SFI 81
assigned time SFI 81
assistive technologies 113
AST ('805000') - Action Status 81
ATM ('806000') - Assigned Time 81
AUD ('807000') - SMF Audit Record

Number 81

authentication 28
Automove SFI 86
AVL ('808000') - Volume Availability 81

B
backup procedure name SFI 81
BDTJ ('809000') - Last Control Data Set

Backup Date 81
Begin and End Resource group structured

field introducers 78
Begin and End Resource groups 56
BESK ('809310') - CA Tape Encryption key

index 81
BIN ('80A000') - Bin Number 81
Bin Count SFI 82
Bin Number Media Name SFI 81
bin number SFI 81
Bin Numbers in DISTANT SFI 83
Bin Numbers in LOCAL SFI 85
Bin Status SFI 91
Bin(8) data

labeling 107
BKPP ('80B000') - Backup Procedure

Name 81
BLK6 ('80D0B0') - Total block count 81
BLKC ('80C000') - Block Count 81
BLKS ('80D000') - Block Size 81
BLKT ('80D030') - Total block count 81
block count SFI 81
block size SFI 81
BLP ('80E000') - BLP Option 81
BLP option SFI 81
BMN ('80F000') - Bin Number Media

Name 81
BTM ('810000') - Last Control Data Set

Backup Time 81

C
C++ classes 20
CA Tape Encryption key index 81
CACT ('811000') - Control Active

Functions 82
Catalog requests SFI 93
Catalog status SFI 82
Catalog Synchronize Date 82
Catalog Synchronize in Progress SFI 84
Catalog Synchronize Time 82
CATRETPD Retention Period SFI 82
CATS ('811800') - CATSYSID Value 82
CATSYSID Value 82
CDS ('812000') - Control Data Set

Identifier 82
CDS RESERVEd SFI 93
CDSQ ('812900') - Control Data Set

ENQ 82
CDSU ('812100') - Control Data Set

Percentage Used SFI 82
CDTJ ('813000') - Create Date 82

CHANGEDATASET
SFIs for 59
subcommand abbreviation 2

CHANGEOWNER
SFIs for 59
subcommand abbreviation 2

CHANGEPRODUCT
SFIs for 59
subcommand abbreviation 2

CHANGEVOLUME
SFIs for 59
subcommand abbreviation 2

character set
chart xii
use in statement xii

CJBN ('814000') - Job Name 82
CLIB ('815000') - Current Library

Name 82
Client IP address SFI 82
Client/server host name SFI 82
closed by Abend SFI 81
CLS ('816000') - Security Class

Description 82
CMDD ('816900') - Command

Authorization - DSN SFI 82
CMDO ('8169A0') - Command

Authorization - Owner SFI 82
CNT ('817000') - Bin, Rack, or Volume

Count 82
Command Authorization - DSN SFI 82
Command Authorization - Owner

SFI 82
command classes 20
Common Time SFI 94
compound SFI 77
Compression ratio in hundreths SFI 82
CONT ('057000') - Continue 80
CONT SFI 80
CONTINUE Operation 29
continuing a request 7, 73
Control Active Functions SFI 82
Control Data Set Create Date SFI 87
Control Data Set Create Time SFI 88
Control Data Set ENQ SFI 82
Control Data Set Identifier SFI 82
Control Data Set Name SFI 87
Control Data Set Percentage Used

SFI 82
Control Data Set Type SFI 88
Count of volumes stacked on a stacked

volume SFI 94
CPGM ('817820') - Creating program

name 82
CRAT ('817890') - Compression ratio in

hundreths 82
Create Date SFI 82
Create Time SFI 82
Creating program name SFI 82
Creating system ID for first file SFI 84
CRID ('817900') - File 1 create user ID 82

© Copyright IBM Corp. 1992, 2013 121

CRP ('818000') - CATRETPD Retention
Period 82

CSDT ('818800') - Catalog Synchronize
Date 82

CSG ('819000') - Current Storage
Group 82

CSHN ('819200') - Client/server host
name 82

CSIP ('819250') - Client IP address 82
CSTM ('818800') - Catalog Synchronize

Time 82
CSVE ('819600') - Stacked volume enable

status 82
CTLG ('819800') - Catalog status 82
CTM ('81A000') - Create Time 82
CTNR ('81A300') - In container 82
Current label version SFI 86
Current Library Name SFI 82
Current Storage Group SFI 82

D
Data Check Required in IPL SFI 85
Data Class SFI 83
data format 48
Data Set Count SFI 83
Data Set Name Mask SFI 83
Data Set Name SFI 83
Data Set Recording SFI 83
Data Set Sequence SFI 83
Data Set Size SFI 83
date format 54
Date Last Referenced/Read SFI 83
Date Last Written SFI 83
DBIN ('81A600') - Destination bin

number 82
DBMN ('81A700') - Destination bin media

name 83
DBN ('81B000') - Bin Numbers in

DISTANT 83
DC ('81C000') - Data Class 83
DD ('81D000') - DD Name 83
DD Name SFI 83
DDTJ ('81E000') - Delete Date, or Last

Store Update Date 83
Debug setting SFI 92
Default Lines Per Page SFI 85
Default Retention Period SFI 83
Delete Date SFI 83
DELETEBIN

SFIs for 60
subcommand abbreviation 2

Deleted by disposition processing SFI 83
DELETEDATASET

SFIs for 60
subcommand abbreviation 2

DELETEOWNER
SFIs for 60
subcommand abbreviation 2

DELETEPRODUCT
SFIs for 60
subcommand abbreviation 2

DELETERACK
SFIs for 60
subcommand abbreviation 2

DELETEVOLUME
SFIs for 60

DELETEVOLUME (continued)
subcommand abbreviation 2

DELETEVRS
SFIs for 60
subcommand abbreviation 2

delimiters xii
DEN ('81F000') - Media Density 83
DESC ('820000') - Volume or VRS

Description 83
DEST ('821000') - Destination Name 83
Destination bin media name SFI 83
Destination bin number SFI 82
Destination Name SFI 83
Destination Type SFI 83
DEV ('822000') - Device Number 83
Device Number SFI 83
DFSMSrmm API 15
DFSMSrmm API Command C++

Classes 20
DFSMSrmm API Command Classes 20
DFSMSrmm API Command Java

Classes 20, 21
DFSMSrmm API with Web services 25
DFSMSrmm System ID SFI 92
Disposition DD name SFI 83
Disposition Message Prefix SFI 83
DLR/DLRJ ('823000') - Date Last

Referenced/Read 83
DLTD ('823700') - Deleted by disposition

processing 83
DLWJ ('824000') - Date Last Written 83
DNM ('825000') - Data Set Name

Mask 83
DPCT ('825E00') - Percent of volume 83
DPT ('826000') - Owner's department 83
DRP ('827000') - Default Retention

Period 83
DSC ('828000') - Data Set Count 83
DSEQ ('829000') - Data Set Sequence 83
DSN ('82A000') - Data Set Name 83
DSPD ('82A500') - Disposition DD

name 83
DSPM ('82AA00') - Disposition message

prefix 83
DSR ('82B000') - Data Set Recording 83
DSS6 ('82B030') - Data Set Size 83
DSTT ('82B200') - Destination Type 83
DSYS ('82BB00') - Creating system ID for

first file 84
DTE ('82C000') - Installation Date

Format 84
DTM ('82D000') - Last Store Update Run

Time 84

E
EBIN ('82D500') - Extended bin enable

status 84
EDG_EXIT100 installation exit status 97
EDG_EXIT200 installation exit status 97
EDG_EXIT300 installation exit status 97
EDGXAPI module 3
EDGXCI

reason codes 9
return codes 9

EDGXCI macro
specifying TSO subcommand input

in 29
EDGXCI macro syntax 5
EDGXCI: Call DFSMSrmm Interface 3
EDGXHINT 41
EDGXSF

labeling conventions 106
mapping 104
parameters 104

EDGXSF Structured Field
Definitions 103

EML ('82DFF0') - Internet ID 84
EMN ('82E000') - Owner's Node 84
EMU ('82F000') - Owner's User ID 84
ENTN ('053000') - Number of Entries 80
ETL ('830000') - Owner's External

Telephone Number 84
expanded output 52
EXPDTDROP action SFI 96
EXPDTDROP count SFI 96
EXPDTDROP percent SFI 96
Expiration Date Check SFI 96
Expiration Date Ignore SFI 96
Expiration date set by SFI 97
Expiration Date SFI 96
EXRB ('830800') - retained by 84
Extended bin enable status SFI 84
External Media Type 87
External Recording Technology SFI 87

F
FCD ('831000') - Product Feature

Code 84
FCSP ('831800') - Catalog Synchronize in

Progress 84
FDB ('832000') - Free Bins in DISTANT

Location 84
field format for data 48
FILE ('833000') - Physical File

Sequence 84
File 1 create user ID 82
flags

labeling 107
FLB ('834000') - Free Bin Numbers in

LOCAL 84
FOR ('835000') - Owner's Forename 84
FRB ('836000') - Free Bin Numbers in

REMOTE 84
FRC ('400000') - Function Return

Code 79
Free Bin Numbers in LOCAL SFI 84
Free Bin Numbers in REMOTE SFI 84
Free Bins in DISTANT Location SFI 84
Free Rack Numbers in Library SFI 84
freeing resources 38
FRK ('837000') - Free Rack Numbers in

Library 84
FRS ('401000') - Function Reason

Code 79
Function Reason Code SFI 79
Function Return Code SFI 79

122 z/OS V2R1.0 DFSMSrmm Application Programming Interface

G
GDG CYCLEBY 84
GDG DUPLICATE 84
GDGC ('837800') - GDG CYCLEBY 84
GDGD ('837805') - GDG DUPLICATE 84
Generic Rack Number SFI 84
GETVOLUME

SFIs for 60
subcommand abbreviation 2

GRK ('838000') - Generic Rack
Number 84

H
high level assembler 1
HLD ('838F40') - HOLD 84
HLOC ('839000') - Home Location 84
HLOT ('839200') - Home Location

Type 85
HOLD SFI 84
Home Location SFI 84
Home Location Type SFI 85

I
In container SFI 82
Input action SFI 89
Input ignore condition SFI 89
Input reject condition SFI 89
Installation Date Format SFI 84
Installation RACF Support SFI 91
Integrated Removable Media Manager

SFI 85
Internet ID SFI 84
INTR ('83A000') - Volume Intransit

Status 85
IPL ('83B000') - Data Check Required in

IPL 85
IRMM ('83B30') - Integrated Removable

Media Manager 85
ITL ('83C000') - Owner's Internal

Telephone Number 85

J
Java class 20
Java methods 21
JBDT ('83CA00') - Last Journal Backup

Date SFI 85
JBTM ('83CB00') - Last Journal Backup

Time SFI 85
JDS ('83D000') - Journal Name 85
Job Name SFI 82
Journal Name SFI 85
Journal Percentage Used SFI 85
Journal status SFI 85
Journal transaction SFI 85
JOURNALFULL Parmlib Value SFI 85
JRNF ('83E000') - JOURNALFULL

Parmlib Value 85
JRNS ('83EA00') - Journal status 85
JRNT ('83ED00') - Journal transaction 85
JRNU ('83F000') - Journal Percentage

Used 85

K
KEL1 ('83F500') - Key encryption key

label 1 85
KEL2 ('83F505') - Key encryption key

label 2 85
KEM1 ('83F520') - Key encoding

mechanism for key label 1 85
KEM2 ('83F525') - Key encoding

mechanism for key label 2 85
Key encoding mechanism for key label 1

SFI 85
Key encoding mechanism for key label 2

SFI 85
Key encryption key label 1 SFI 85
Key encryption key label 2 SFI 85
Key From SFI 80
Key to SFI 80
keyboard

navigation 113
PF keys 113
shortcut keys 113

KEYF ('054000') - Key From 80
KEYT ('054200') - Key to 80

L
labeling

Begin and End Resource groups 106
labeling 106

Bin(8) data 107
flags 107
structured field introducers that

introduce data 106
Last change date SFI 85
Last change system ID SFI 85
Last change time SFI 85
Last change user ID SFI 85
Last Control Data Set Backup Date

SFI 81
Last Control Data Set Backup Time

SFI 81
Last control data set extract date SFI 91
Last Control Data Set Extract Time

SFI 91
Last Drive SFI 86
Last Expiration Processing Start Date

SFI 92
Last Expiration Processing Start Time

SFI 92
Last Inventory Management Expiration

Time SFI 97
Last Inventory Management Processing

Date SFI 95
Last Inventory Management VRS Time

SFI 96
Last Journal Backup Date SFI 85
Last Journal Backup Time SFI 85
last reference extra days SFI 86
Last RESERVE time SFI 93
Last Store Update Date SFI 83
Last Store Update Run Time SFI 84
Last used DD name SFI 85
Last used job name SFI 86
Last used program name SFI 86
Last used step name SFI 86
Last user change date SFI 85

Last user change time SFI 85
LBL ('840000') - Volume Label Type 85
LBN ('841000') - Bin Numbers in

LOCAL 85
LCDJ ('841500') - Last change date 85
LCID ('842000') - Last change user ID 85
LCSI ('842500') - Last change system

ID 85
LCT ('843000') - Default Lines Per

Page 85
LCTK ('843100') - Local tasks 85
LCTM ('843500') - Last change time 85
LCUD ('843600') - Last user change

date 85
LCUT ('843700') - Last user change

time 85
LDAM ('84A100') - Automove 86
LDD ('843B00') - Last used DD name 85
LDDF ('844000') - Location Definition

Exists 85
LDEV ('845000') - Last Drive 86
LDLC ('846000') - Location Name 86
LDLT ('847000') - Location Type 86
LDMN ('848000') - Location Media

Name 86
LDMT ('849000') - Location Management

Type 86
LDPR ('84A000') - Location Priority 86
Library Rack Numbers SFI 86
limiting the amount of information

returned 73
LINE ('84B000') - Output Data Line 86
line format for data 48
LISTBIN

SFIs for 61
subcommand abbreviation 2

LISTCONTROL
SFIs for 61
subcommand abbreviation 2

LISTCONTROL STATUS
SFIs for 64

LISTDATASET
SFIs for 65
subcommand abbreviation 2

LISTOWNER
SFIs for 66
subcommand abbreviation 2

LISTPRODUCT
SFIs for 67
subcommand abbreviation 2

LISTRACK
SFIs for 67
subcommand abbreviation 2

LISTVOLUME
SFIs for 67
subcommand abbreviation 2

LISTVRS
SFIs for 69
subcommand abbreviation 2

LJOB ('84B420') - Last used job name 86
LOAN ('84C000') - Loan Location 86
Loan Location SFI 86
LOC ('84D000') - Location 86
Local active tasks SFI 93
Local held tasks SFI 93
Local tasks SFI 85, 93
Location Definition Exists SFI 85

Index 123

Location Management Type SFI 86
Location Media Name SFI 86
Location name SFI 90
Location Name SFI 86
Location Priority SFI 86
Location SFI 86
Location Type SFI 86
LOCT ('84E000') - Location Type 86
Logical Record Length SFI 86
LPGM ('84E760') - Last used program

name 86
LRCL ('84F000') - Logical Record

Length 86
LRED ('84F800') - last reference extra

days 86
LRK ('850000') - Number of Library Rack

Numbers 86
LSTP ('850370') - Last used step name 86
LVC ('850500') - current label version 86
LVN ('850A00') - Required label

version 87

M
management class attributes enabling

SFI 87
Management Class SFI 87
mapping macros

EDGXCI 103
EDGXSF 103

Master Overwrite SFI 88
Matching VRS Job Name SFI 95
Matching VRS Name SFI 95
Matching VRS Type SFI 96
MAXHOLD Value SFI 92
Maximum Retention Period SFI 88
MC ('851000') - Management Class 87
MCAT ('851200') - management class

attributes enabling 87
MDNF ('851400') - Media Information

Name 87
MDRA ('851980') - MEDINF replace

policy 87
MDRP ('8519C0') - MEDINF replace

policy 87
MDRT ('8519E0') - MEDINF replace

policy 87
MDRW ('8519F0') - MEDINF replace

policy 87
MDRX ('851A00') - External Recording

Technology 87
MDS ('852000') - Control Data Set

Name 87
MDTJ ('853000') - Control Data Set Create

Date 87
MDTX ('853400') - External Media

Type 87
MEDA ('854000') - Media Special

Attributes 87
MEDC ('855000') - Media

Compaction 87
Media Compaction SFI 87
Media Density SFI 83
Media Information Name SFI 87
Media Name SFI 87
Media Recording Format SFI 87
Media Special Attributes SFI 87

Media Type SFI 88
MEDINF replace policy SFI 87
MEDN ('856000') - Media Name 87
MEDR ('857000') - Media Recording

Format 87
MEDT ('858000') - Media Type 88
memory size limitation 26
Message Line SFI 80
Message Number SFI 80
Message SFIs 80
Message Text Case SFI 88
Message Variable SFIs 80
message variables

structured field introducers 57
messages

structured field introducers 57
MFR ('859000) - Source Location

Name 88
MID ('85A000') - Mount message ID 88
MIV ('85A500') - Moving-in volume 88
MOP ('85C000') - Master Overwrite 88
Mount message ID SFI 88
MOV ('85A900') - Moving-out

volume 88
Move By SFI 88
Move Mode SFI 88
Move Status SFI 88
Move Type SFI 88
Movement Tracking Date SFI 92
Moving-in volume SFI 88
Moving-out volume SFI 88
MOVM ('85B000') - Move Mode 88
MRP ('85D000') - Maximum Retention

Period 88
MSGF ('85E000') - Case of Message

Text 88
MSGL ('051000') - Message Line 80
MSGN ('052000') - Message Number 80
MST ('85F000') - Move Status 88
MTM ('860000') - Control Data Set Create

Time 88
MTO ('861000') - Target Location

Name 88
MTP ('862000') - Control Data Set

Type 88
MTY ('862800') - Move Type 88
multiple parameter list, multiple token

areas 37
multiple parameter list, single token

area 36
MVBY ('862B00') - Move By 88
MVS ('863000') - MVS Use 88
MVS Use SFI 88

N
navigation

keyboard 113
New requests held SFI 93
Next Vital Record Specification Name

SFI 88
Next Volume SFI 88
Next VRS Value SFI 95
NLOC ('865000') - Required Location 88
NLOT ('865200') - Required location

type 88

NME ('866000') - Security Class
Name 88

NOSMT action for partition entry SFI 90
NOT ('866800') - Notify 88
Notices 117
Nowait requests SFI 93
Number of Bin Numbers in REMOTE

SFI 90
Number of Entries SFI 80
Number of Volumes SFI 95
NVL ('867000') - Next Volume 88
NVRS ('868000') - Next VRS Name 88

O
OAC ('869000') - Owner Access 89
OBMN ('86A000') - Old Bin Number

Media Name 89
OBN ('86B000') - Old Bin Number 89
obtaining space for output buffer 12
OCE ('86B800') - Volume Information

Recorded at O/C/EOV 89
Offset to Message ID SFI 92
Old Bin Number Media Name SFI 89
Old Bin Number SFI 89
Old loan location SFI 89
Old Location SFI 89
Old location type SFI 89
Old volume SFI 89
OLOC ('86C000') - Old Location 89
OLON ('86C100') - Old loan location 89
OLOT ('86C200') - Old location type 89
Operating Mode SFI 89
OPL ('86D000') - Position of Rack

Number or Pool ID 89
OPM ('86E000') - Operating Mode 89
ORIA ('86E8A0') - Input action 89
Original Expiration Date SFI 89
ORII ('86E8A8') - Input ignore

condition 89
ORIR ('86E8B8') - Input reject

condition 89
OROA ('86EA00') - Output action 89
OROI ('86EA08') - Output ignore

condition 89
OROR ('86EA18') - Output reject

condition 89
ORTP ('86EF08') - Type of open rule

entry 89
ORVE ('86EF8F') - Volume range end 89
ORVL ('86EF85') - Volume serial

number 89
ORVS ('86EF80') - Volume range start 89
Output action SFI 89
output buffer

hexadecimal example of an output
buffer 109

obtaining space for 12
processing contents of 111

Output Data Line SFI 86
Output ignore condition SFI 89
Output reject condition SFI 89
OVL ('86F000') - Position of Volume

Serial 89
OVOL ('86F500') - Old volume 89
OWN ('870000') - Owner 89
Owner Access SFI 89

124 z/OS V2R1.0 DFSMSrmm Application Programming Interface

Owner SFI 89
Owner's department SFI 83
Owner's External Telephone Number

SFI 84
Owner's Forename SFI 84
Owner's Internal Telephone Number

SFI 85
Owner's Node SFI 84
Owner's Surname SFI 94
Owner's User ID SFI 84
OXDJ ('871000') - Original Expiration

Date 89

P
PACS ('801800') - PREACS 90
parallel processing 28
parameter lists

multiple parameter list, multiple token
areas 37

multiple parameter list, single token
area 36

single parameter list, multiple token
areas 34

single parameter list, single token
area 32

Parmlib Member Suffix SFI 90
PDA ('871E00') - PDA state 90
PDA block count SFI 90
PDA block size SFI 90
PDA log state SFI 90
PDA state SFI 90
PDA trace levels SFI 93
PDAC ('871E90') - PDA block count 90
PDAL ('871E30') - PDA log state 90
PDAS ('871E90') - PDA block size 90
PDS ('872000') - Pool Description 90
PDSC ('873000') - Product

Description 90
PEND ('874000') - Actions Pending 90
Percent of volume SFI 83
Permanent Read Error SFI 90
Permanent Write Error SFI 90
persistence processing 28
Physical File Sequence SFI 84
Physical space used SFI 90
PID ('875000') - Pool Prefix 90
PLN ('876000') - Pool Name 90
PNME ('877000') - Product Software

Name 90
PNUM ('878000') - Software Product

Number 90
Pool Definition Pool Type SFI 90
Pool Definition RACF Option SFI 90
Pool Definition System ID SFI 90
Pool Description SFI 90
Pool Name SFI 90
Pool Prefix SFI 90
Position of Rack Number or Pool ID

SFI 89
Position of Volume Serial SFI 89
PRD ('879000') - Permanent Read

Errors 90
PREACS SFI 90
Previous Volume SFI 90
PRF ('87A000') - Pool Definition RACF

Option 90

Primary VRS Subchain Name SFI 96
Primary VRS Subchain Start Date SFI 96
Priority SFI 90
Product Description SFI 90
Product Feature Code SFI 84
Product Software Name SFI 90
Programming Guidelines 29
programming requirements 3
PRTY ('87B000') - Priority 90
PSF2 ('87C010') - Second Parmlib Member

Suffix 90
PSFX ('87C000') - Parmlib Member

Suffix 90
PSN ('87D000') - Pool Definition System

ID 90
PSZ6 ('87D300') - Physical space used 90
PTNA ('87DB00') - NOSMT action for

partition entry 90
PTNL ('87DB0C') - Location name 90
PTP ('87E000') - Pool Definition Pool

Type 90
PTSA ('87EB80') - SMT action for partition

entry 90
PTTP ('87EBA8') - Type of partition

entry 90
PTVE ('87EC0F') - Volume range end 90
PTVL ('87EC08') - Volume serial

number 90
PTVS ('87EC00') - Volume range start 90
PVL ('87F000') - Previous Volume 90
PWT ('880000') - Permanent Write

Errors 90

Q
Queued requests SFI 93

R
Rack Count SFI 82
Rack Number or Bin Number SFI 91
Rack Status SFI 91
RBN ('881000') - Number of Bin Numbers

in REMOTE 90
RBYS ('881200') - Retain by set 91
RCF ('882000') - Installation RACF

Support 91
RCFM ('883000') - Record Format 91
RCK ('884000') - Rack Number or Bin

Number 91
RDTJ ('886000') - Last control data set

extract date 91
Reason Code SFI 79
Reason code SFIs 79
reason codes

EDGXCI 9
Record Format SFI 91
Reject Type SFI 94
Release Action Scratch Immediate SFI 96
releasing all resources 36
Required label version SFI 87
Required location priority SFI 91
Required Location SFI 88
Required location type SFI 88
resources

freeing 38

resources (continued)
obtaining 29
releasing 39

RET ('888000') - Retention Type 91
Retain by set SFI 91
Retain by SFI 91
retained by SFI 84
Retention Date SFI 91
Retention method set by SFI 91
Retention method SFI 91
Retention Type SFI 91
Return Code SFI 79
Return Code SFIs 79
return codes

EDGXCI 9
Reuse bin at SFI 91
reusing resources 29
RLPR ('888500') - Required location

priority 91
RM ('888000') - Retention method 91
RMID ('889000') - Started procedure

name 91
RMM status SFI 93
RmmApi class 20
RmmCommand class 20
RmmTransaction class 20
RMSB ('888A00') - Retention method set

by 91
RSNC ('402000') - Reason Code 79
RST ('88A000') - Rack or Bin Status 91
RTBY ('88B900') - Retain by 91
RTDJ ('88C000') - Retention Date 91
RTM ('88E000') - Last Control Data Set

Extract Time 91
RTNC ('403000') - Return Code 79
RUB ('88E500') - Reuse bin at 91

S
SC ('890000') - Storage Class 91
SC1 ('894000') - Storenumber 92
Scratch Immediate SFI 96
Scratch mode SFI 92
Scratch Procedure Name SFI 92
SCRM ('891000') -Scratch mode 92
SCST ('892000') - Security Class

Status 92
SDTJ ('895000') - Movement Tracking

Date 92
SEARCHBIN

SFIs for 70
subcommand abbreviation 2

SEARCHDATASET
SFIs for 70
subcommand abbreviation 2

SEARCHOWNER
SFIs for 71

SEARCHPRODUCT
SFIs for 71
subcommand abbreviation 2

SEARCHRACK
limiting the amount of information

returned 73
SFIs for 72
subcommand abbreviation 2

SEARCHVOLUME
SFIs for 72

Index 125

SEARCHVOLUME (continued)
subcommand abbreviation 2

SEARCHVRS
SFIs for 72
subcommand abbreviation 2

SEC ('896000') - Security Class
Number 92

Second Parmlib Member Suffix SFI 90
Secondary VRS Jobname Mask SFI 97
Secondary VRS Mask SFI 97
Secondary VRS Subchain Name SFI 97
Secondary VRS Subchain Start Date

SFI 97
Security Class Description SFI 82
Security Class Name SFI 88
Security Class Number SFI 92
Security Class Status SFI 92
sending comments to IBM xv
SEQ ('898000') - Volume Sequence 92
Server active tasks SFI 93
Server held tasks SFI 93
Server host name SFI 92
Server IP address SFI 92
Server listener SFI 93
Server number SFI 92
Server tasks SFI 92, 93
Service Name SFI 79
SG ('89A000') - Storage Group Name 92
shortcut keys 113
SID ('89B000') - DFSMSrmm System

ID 92
single parameter list, multiple token

areas 34
single parameter list, single token

area 32
SLM ('89C000') - MAXHOLD Value 92
SMF audit record number SFI 81
SMF Security Record Number SFI 92
SMF System ID SFI 94
SMI ('89E000') - Offset to Message ID 92
SMP ('89E210') - System-managed tape

purge 92
SMSACS SFI 81
SMT action for partition entry SFI 90
SMU ('89E220') - System-managed tape

update 92
Software Product Number SFI 90
Software Product Version SFI 95
software requirements 1
SOSJ ('89F000') - Last Expiration

Processsing Start Date 92
SOSP ('8A0000') - Scratch Procedure

Name 92
SOST ('8A1000') - Last XPROC Start

Time 92
Source Location Name SFI 88
specifying TSO subcommand input

in EDGXCI macro 29
SRHN ('8A1A00') -Server host name 92
SRIP ('8A1A30') - Server IP address 92
SRPN ('8A1A50') - Server number 92
SRTK ('8A1AF0') - Server tasks 92
SSM ('8A2000') - SMF Security Record

Number 92
SSTY ('8A2500') - Subsystem type 92
Stacked volume enable status SFI 82
standard output 51

Started procedure name SFI 91
STDS ('8A2800') - Debug setting 92
STEP ('8A3000') - Step Name 92
Step Name SFI 92
STIS ('8A3200') - Task - IP verb state 92
STIT ('8A3201') - Task - IP verb time 93
STIV ('8A3203') - Task - IP verb 93
STLA ('8A3300') - Local active tasks 93
STLH ('8A3307') - Local held tasks 93
STLO ('8A3314') - Local tasks 93
STLR ('8A3317') - Last RESERVE time 93
STNH ('8A3400') - New requests held 93
Storage Class SFI 91
Storage Group Name SFI 92
Storenumber SFI 92
STPL ('8A3450') - PDA trace levels 93
STQC ('8A3500') - Catalog requests 93
STQN ('8A3511') - Nowait requests 93
STQR ('8A3515') - Queued requests 93
STRF ('8A3600') - Task - requested

function 93
STRH ('8A3602') - CDS RESERVEd 93
STRM ('8A3607') - RMM status 93
STRT ('8A3614') - Task - requestor's

system 93
structured field introducer

data format 48
definitions of 77
for Begin and End Resource

groups 78
for Messages and Message

Variables 80
for Return and Reason Codes 79
for subcommand output data 80
format 77
types of 55

structured field introducers
messages and message variables 57

structured field introducers that introduce
data

labeling 106
structured field lengths 77
STSA ('8A3650') - Server active tasks 93
STSH ('8A3657') - Server held tasks 93
STSL ('8A3661') - Server listener 93
STSO ('8A3664') - Server tasks 93
STST ('8A3669') - Task - Start time 93
STTQ ('8A3700') - Task - requestor 93
STTR ('8A3701') - Task - requestor's

type 93
STTS ('8A3702') - Task - status 93
STTT ('8A3703') - Task -Token 94
STVC ('8A3800') - Count of volumes

stacked on a stacked volume 94
subcommand output data SFIs 80
Subsystem type SFI 92
Summary of changes xvii
supported subcommands 2
SUR ('8A4000') - Owner's Surname 94
SVCN ('404000') - Service Name 79
syntax diagrams

how to read x
syntax for EDGXCI 5
SYS ('8A5000') - SMF System ID 94
System-managed tape purge SFI 92
System-managed tape update SFI 92

T
TAC ('8A6000') - Reject Type 94
Tape volume exit purge option SFI 94
Target Location Name SFI 88
Task - IP verb SFI 93
Task - IP verb state SFI 92
Task - IP verb time SFI 93
Task - requested function SFI 93
Task - requestor SFI 93
Task - requestor's system SFI 93
Task - requestor's type SFI 93
Task - Start time SFI 93
Task - status SFI 93
Task - Token SFI 94
Temporary Read Error SFI 94
Temporary Write Error SFI 94
time format 55
Time Last Referenced SFI 94
Time Zone SFI 94
time zones

using different 55
TLR ('8A6800') - Time Last

Referenced 94
Total block count SFI 81
TRD ('8A7000') - Temporary Read

Errors 94
TVEXTPURGE days SFI 94
TVXD ('8A7800') - TVEXTPURGE

days 94
TVXP ('8A7900') - Tape volume exit purge

option 94
TWT ('8A8000') - Temporary Write

Errors 94
TYP ('8A9000') - VRS Type 94
TYPE ('055200') - Type To 80
Type From SFI 80
Type of open rule entry SFI 89
Type of partition entry SFI 90
Type To SFI 80
Types of structured field introducers 55
TYPF ('055000') - Type From 80
TZ ('8A9E00') - Time Zone 94
TZ SFI 55

U
UDDI registry 26
UDTJ ('8AA000') - User ID 94
UID ('8AB001') - User ID 94
UNC ('8AC000') - Uncatalog Option 94
Uncatalog Option SFI 94
unlabeled data 107
USE6 ('8AE030') - Volume Usage 94
USEC ('8AD000') - Volume Use

Count 94
USEM ('8AE000') - Volume Usage

(KB) 94
User ID SFI 94
user interface

ISPF 113
TSO/E 113

User Notification SFI 88
using multiple parameter lists 31
UTC ('8AE600') - Common Time 94
UTM ('8AE800') - User ID 94

126 z/OS V2R1.0 DFSMSrmm Application Programming Interface

V
VAC ('8AF001') - Volume Access 95
VACT ('8B0000') - VRSMIN Action 95
VANX ('8B0800') - Next VRS Value 95
VCAP ('8B0B00') - Volume/Media

capacity 95
VCHG ('8B1000') - VRSCHANGE

Value 95
VDD ('8B2000') - VRS Delay Days 95
VDRA ('8B2800') - VRSDROP action 95
VDRC ('8B2802') - VRSDROP count 95
VDRP ('8B280F') - VRSDROP percent 95
VDTJ ('8B3000') - Last Inventory

Management Processing Date 95
Vendor information SFI 95
VER ('8B4000') - Software Product

Version 95
VEX ('8B4100') - VRSEL exclude 95
Vital Record Count SFI 95
Vital Record Specification Delay Days

SFI 95
Vital record specification name SFI 96
Vital Record Specification SFI 90
Vital Record Specification Type SFI 94
VJBN ('8B5000') - Matching VRS Job

Name 95
VLN ('8B6000') - Number of Volumes 95
VM ('8B7000') - VM Use 95
VM Use SFI 95
VMIN ('8B8000') - VRSMIN Count

Value 95
VMV ('8B9000') - VRS Management

Value 95
VNDR ('8B9E00') - Vendor

information 95
VNME ('8BA000') - Matching VRS

Name 95
VOL ('8BC000') - Volume Serial 95
VOL1 ('8BCD00') - VOL1 label volser 95
VOL1 label volser SFI 95
VOLT ('8BC200') - Volume type 95
Volume Access SFI 95
volume availability SFI 81
Volume Count SFI 82
Volume Description SFI 83
Volume Information Recorded at

O/C/EOV Indicator SFI 89
Volume Intransit Status SFI 85
Volume Label Type SFI 85
Volume percent full SFI 95
Volume range end SFI 89, 90
Volume range start SFI 89, 90
Volume Sequence SFI 92
Volume serial number SFI 89, 90
Volume Serial SFI 95
Volume Status SFI 96
Volume type SFI 95
Volume Usage SFI 94
Volume Use Count SFI 94
Volume write mount count SFI 95
Volume/Media capacity 95
VPCT ('8BC300') - Volume percent

full 95
VRC ('8BD000') - Vital Record Count 95
VREA ('8BD500') - VRSRETAIN

action 96

VREC ('8BD502') - VRSRETAIN
count 96

VREP ('8BD50F') - VRSRETAIN
percent 96

VRJ ('8BE000') - VRS Job Name 96
VRS ('8BF000') - Vital record specification

name 96
VRS Description SFI 83
VRS Job Name SFI 95, 96
VRS Management Value SFI 95
VRS Retained Status SFI 96
VRSCHANGE Value SFI 95
VRSDROP action SFI 95
VRSDROP count SFI 95
VRSDROP percent SFI 95
VRSEL exclude 95
VRSEL Value SFI 96
VRSI ('8BF500') - Scratch immediate 96
VRSL ('8BFA00') - VRSEL Value 96
VRSMIN Action SFI 95
VRSMIN Count Value SFI 95
VRSR ('8C0000') - VRS Retained

Status 96
VRSRETAIN action SFI 96
VRSRETAIN count SFI 96
VRSRETAIN percent SFI 96
VRXI ('8C0800') - Expiration Date

Ignore 96
VSCD ('8C1000') - Primary VRS Subchain

Start Date 96
VSCN ('8C1800') - Primary VRS Subchain

Name 96
VST ('8C2000') - Volume Status 96
VTM ('8C3000') - Last Inventory

Management VRS Time 96
VTYP ('8C4000') - Matching VRS

Type 96
VWMC ('8B9100') - Volume write mount

count 95

W
Web service client

sample 27
World-wide identifier SFI 96
WORM ('8C4300') - Write Once Read

Many 96
Write Once Read Many SFI 96
WWID ('8C4500') - World-wide

identifier 96

X
X100 ('8C78020') - EDG_EXIT100

installation exit status 97
X200 ('8C7801') - EDG_EXIT200

installation exit status 97
X300 ('8C7802') - EDG_EXIT300

installation exit status 97
XDC ('8C5000') - Expiration Date

Check 96
XDRA ('8C5D00') - EXPDTDROP

action 96
XDRC ('8C5D02') - EXPDTDROP

count 96

XDRP ('8C5D0F') - EXPDTDROP
percent 96

XDSB ('8C6100') - Expiration date set
by 97

XDTJ ('8C6000') - Expiration Date 96
XML output 22, 25
XTM ('8C7000') - Last Inventory

Management Expiration Time 97

Index 127

128 z/OS V2R1.0 DFSMSrmm Application Programming Interface

����

Product Number: 5650-ZOS

Printed in USA

SC23-6872-00

	Contents
	Figures
	Tables
	About this document
	Required product knowledge
	z/OS information
	Notational conventions
	How to read syntax diagrams
	How to abbreviate commands and operands
	How to use continuation characters
	Delimiters
	Character sets

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	z/OS Version 2 Release 1 summary of changes

	Chapter 1. Using the DFSMSrmm application programming interface
	Supported RMM TSO subcommands
	Using the EDGXCI macro
	EDGXCI: Calling the DFSMSrmm interface
	EDGXCI environment
	EDGXCI programming requirements
	EDGXCI restrictions
	EDGXCI input register information
	EDGXCI output register information

	EDGXCI syntax
	EDGXCI parameters
	EDGXCI return and reason codes
	EDGXCI example

	Chapter 2. Using the object-oriented DFSMSrmm application programming interface using C++
	DFSMSrmm high level language API classes
	C++ classes
	Java class

	DFSMSrmm API methods
	Java methods

	Receiving extensible markup language (XML) output data in the XML output buffer

	Chapter 3. Using the DFSMSrmm application programming interface with web services
	Sample Java web service client
	Using persistence and parallel processing
	Defining how and when authentication is done

	Chapter 4. Using the DFSMSrmm application programming interface using assembler language
	Obtaining resources
	Specifying TSO subcommand input in the EDGXCI macro
	Using the CONTINUE operation in the EDGXCI macro
	Requesting multiple resources for SEARCH subcommands
	Using parameter lists to pass information to the DFSMSrmm API
	Coding a single parameter list, single token area
	Coding a single parameter list, multiple token areas
	Coding multiple parameter lists, single token area
	Coding multiple parameter lists, multiple token areas

	Specifying the option to free a resource
	Specifying the option to release a resource

	Chapter 5. Using an alternative interface to the DFSMSrmm application programming interface
	Parameter list to call EDGXHINT
	Interface structure to pass the parameter list to EDGXHINT
	Communication with the API
	Define the API
	Start API communication
	Issue a request
	Continue a request
	End a request
	End API communication

	Return and reason codes using EDGXHINT

	Chapter 6. Processing the output data in the output buffer
	Description of structured fields
	Requesting structured field introducer data format
	Requesting line format
	Requesting field format

	Requesting types of output
	Requesting standard output
	Requesting expanded output

	Accessing return and reason codes
	Accessing messages and message variables
	Interpreting date format and time format
	Using different time zones
	Identifying structured field introducers
	Begin and End Resource groups
	System return and reason code structured field introducers
	Messages and message variables structured field introducers
	Structured field introducers for output data for subcommands
	ADD-Type of subcommands
	CHANGE-Type of subcommands
	DELETE-Type of subcommands
	GETVOLUME subcommand
	LIST-Type of subcommands
	LISTBIN structured field introducers
	LISTCONTROL structured field introducers
	LISTDATASET structured field introducers
	LISTOWNER structured field introducers
	LISTPRODUCT structured field introducers
	LISTRACK structured field introducers
	LISTVOLUME structured field introducers
	LISTVRS structured field introducers
	SEARCH-Type of subcommands
	SEARCHBIN structured field introducers
	SEARCHDATASET structured field introducers
	SEARCHOWNER structured field introducers
	SEARCHPRODUCT structured field introducers
	SEARCHRACK structured field introducers
	SEARCHVOLUME structured field introducers
	SEARCHVRS structured field introducers

	Controlling output from list and search type requests
	Limiting the search for a request
	Output buffer examples
	First output buffer
	Second output buffer
	Third (Last) output buffer

	Appendix A. Structured field introducers (SFIs)
	Structured field introducer (SFI) format
	Structured field lengths
	Compound SFI
	Structured field introducers for Begin and End Resource groups
	Structured field introducers for return and reason codes
	Structured field introducers for messages and message variables
	Structured field introducers for subcommand output data

	Appendix B. Structured field introducers by subcommand
	Appendix C. DFSMSrmm application programming interface mapping macros
	EDGXCI: Parameter list
	EDGXSF: Structured field definitions
	EDGXSF parameters
	EDGXSF mapping
	EDGXSF labeling conventions
	Labeling: Begin and End Resource groups
	Labeling: Structured field introducers that introduce data
	Labeling: Flags
	Labeling: Bin(8) data
	Unlabeled data

	Appendix D. Hexadecimal example of an output buffer
	Hexadecimal representation of an output buffer
	Description of the contents of an output buffer
	Processing the contents of an output buffer

	Appendix E. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

