
z/OS

DFSMStvs Planning and Operating Guide
Version 2 Release 1

SC23-6877-00

���

z/OS

DFSMStvs Planning and Operating Guide
Version 2 Release 1

SC23-6877-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 127.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 2003, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this document ix
Required product knowledge ix
z/OS information. x

How to send your comments to IBM . . xi
If you have a technical problem. xi

z/OS Version 2 Release 1 summary of
changes xiii

Chapter 1. Understanding the DFSMStvs
environment 1
Transaction processing and transactional recovery . . 1

Terminology 1
Transaction processing 4
Transactional recovery 4

VSAM record-level sharing (RLS) 6
Overview of VSAM RLS 6
Read sharing of recoverable data sets. 10
VSAM RLS read integrity options 10
Read-sharing integrity across KSDS
control-interval and control-area splits 11
Read and write sharing of nonrecoverable data
sets 11
Non-RLS access to VSAM data sets 11
Differences between VSAM RLS access and
non-RLS access 12
Requirements for VSAM RLS request execution
mode 13
VSAM options that RLS and DFSMStvs do not
support. 14

DFSMStvs overview 14
Transaction processing from a batch job 15
Recovery coordination 15
Access to recoverable VSAM data sets 16
Transaction processing. 16
How DFSMStvs works with RRS and other
resource managers 19
How DFSMStvs complements CICS 20

Context services and RRMS 20
Native contexts 21
Privately managed contexts 21
Units of recovery 21

Chapter 2. Planning for DFSMStvs . . . 25
Planning tasks 25
Coupling-facility planning 26

Coupling facilities 26
Number of coupling facilities 27
Standalone or internal coupling facility 27

Volatile or nonvolatile coupling facility 28
Contents of a coupling facility 28
Coupling-facility size 29
Coupling facility links 31

Processor-capacity planning 31
Software-configuration planning 32
System-logger planning 32

Logging flow overview 33
Log streams 33
Structures and log streams 35
DASD-only log streams 36
Log stream sizing 36
DASD staging data sets 37
DASD log data sets. 37

VSAM operations planning 38
Recovery procedures 38
Forward recovery operation planning. 39
Reorganization 39
Automatic Restart Manager planning 39
DFSMStvs and ARM 40

Installation of DFSMStvs 40

Chapter 3. Configuring the DFSMStvs
environment and defining resources . . 41
Defining your Parallel Sysplex environment . . . 42
Setting up the logging environment 42
Using coupling facilities 43
Defining staging data sets 44
Specifying SYS1.PARMLIB parameters for DFSMStvs 45

Defining a PARMLIB member specific to one
system 46
Defining a parmlib member that applies to
multiple systems 46

Chapter 4. Setting up DFSMStvs
logging 47
Determining the amount of logging to do 47
Defining coupling-facility structures for log streams 48

Definition of a coupling-facility structure for a
log stream 50
Log structure names 50

Allocating system log streams 51
Examples of system log stream definitions . . . 52
System log stream names 53
Offloading of log data 54

Using backout logging. 54
Backout records for in-doubt and long-running
units of recovery 55
Backout logging events 55

Defining forward recovery logs 56
Creating a log of logs 59
Authorizing access to log streams 60

Authorization to access log streams 60
RACF RDEFINE coding 61

© Copyright IBM Corp. 2003, 2013 iii

Chapter 5. Designing and coding
applications to use DFSMStvs 63
Determining which applications should use
DFSMStvs 63
Modifying an application to use DFSMStvs 64
Coding an application to use DFSMStvs 64

Defining transactions 64
Understanding DFSMStvs restrictions 65
Considering RLS and DFSMStvs restrictions . . 67
Using VSAM data sets in a transaction 67
Accessing a data set with DFSMStvs 67
Structuring your application for commit and
backout. 69
Understanding the effects of a task ending . . . 70
Understanding record locking that DFSMStvs
uses 70

Handling long-running jobs and programs 73
Using restartable applications 73
Establishing positioning after logical errors 74
Using sequential or random access to a data set . . 75
Deleting and renaming data sets 75
Monitoring and retrying shunted transactions . . . 76
Applying advanced application development
techniques 77

Record management requests 78
Multitasking 78

Chapter 6. Monitoring performance and
tuning the DFSMStvs environment. . . 81
Monitoring performance 81

SMF record type 42 (hexadecimal 2A) 81
SMF record type 88 (hexadecimal 58) 82
RMF post-processor reports 82
RMF monitor III 83
CICS monitoring tools 83
System messages 83
Operator commands 83
Shunted units of recovery 83
Effects of DFSMStvs, log stream, and data set
states 84
Effects of DFSMStvs states based on events . . . 87

Improving sequential performance 104
Improving logging performance 104
Tuning the DFSMStvs environment 105

Chapter 7. Diagnosing and recovering
from DFSMStvs problems 107
Diagnosing system logger and performance
problems 107

Categorizing a system logger problem 107
Collecting diagnostic information about logging
problems 108
Investigating console messages and dumps . . 108
Displaying coupling-facility status 109
Checking global resource serialization (GRS)
resource contention 110
Checking SMF and RMF statistics for
performance problems 111

Interrupting an operation or resource request . . . 111
Recovering from a log stream problem 112
Resolving waits. 113
Restarting DFSMStvs after SMSVSAM address
space failure 113
Cold starting DFSMStvs 114
Performing peer recovery 114

Peer recovery initiation 115
SMSVSAM failures while peer recovery is in
process 116
System failures while peer recovery is in process 116
Peer-recovery interference with failed instance
restart 116

Appendix A. Quiescing a data set. . . 117

Appendix B. Accessing data sets that
have retained locks or lost locks . . . 119

Appendix C. Accessibility 123
Accessibility features 123
Using assistive technologies 123
Keyboard navigation of the user interface 123
Dotted decimal syntax diagrams 123

Notices 127
Policy for unsupported hardware. 128
Minimum supported hardware 129
Trademarks 129

Glossary 131

Index 145

iv z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Figures

1. CICS VSAM non-RLS access 7
2. CICS VSAM RLS access 8
3. Batch jobs designed to use transactional

recovery 20
4. Contexts as a series of units of recovery 22
5. Two-phase commit processing actions 23
6. Sample definition of the CFRM policy . . . 49
7. Sample log stream coupling-facility structure

definition 50
8. Sample definitions of the system logs 53
9. Sample definitions of forward recovery logs 58

10. Sample definition of the log of logs 59
11. Example of an RACF PERMIT command 61
12. Example of RACF RDEFINE commands 61
13. Example of RACF commands to grant VSAM

RLS authority to read and write log streams . 61
14. Example of key hashing 72
15. Multitasking 79
16. Example of MVS commands to produce a

dump of XCF and system logger address
spaces 108

17. Example of a command to display system
logger couple data set status 109

18. Example of a normal response from a
command to display system logger couple
data set status 109

19. Example of a command to reconnect the
couple data set 109

20. Example of a command to display all
structures with Failed_Persistent connections . 109

21. Examples of DISPLAY GRS commands 110
22. Example of a normal response from a

DISPLAY GRS command 110
23. Example of a GRS command showing

contention 110
24. Example of a GRS command to display log

streams with an exclusive enqueue 111
25. Example of output from a GRS command to

display log streams with an exclusive
enqueue 111

© Copyright IBM Corp. 2003, 2013 v

vi z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Tables

1. Effect of MAXSYSTEM value on
lock-table-entry size 30

2. Lock-allocation estimates 30
3. Opening recoverable and nonrecoverable

VSAM data sets from batch jobs 68
4. Effects of DFSMStvs states on DFSMStvs

processing 84

5. Effects of log states on DFSMStvs processing 85
6. Effects of data set states on DFSMStvs

processing 86
7. Installation exit environment and state 120

© Copyright IBM Corp. 2003, 2013 vii

viii z/OS V2R1.0 DFSMStvs Planning and Operating Guide

About this document

This document is intended for system programmers, application programmers, and
operators who are responsible for customizing, writing applications for, and
operating z/OS DFSMS Transactional VSAM Services (DFSMStvs).

You can use this document to perform these tasks:
v Plan for using DFSMStvs to share VSAM data for concurrent batch updates
v Install and operate DFSMStvs
v Design and code applications to use DFSMStvs
v Diagnose and recover from DFSMStvs problems.

For information about accessibility features of z/OS, for users who have a physical
disability, see Appendix C, “Accessibility,” on page 123.

Required product knowledge
Before you read this document, you should understand storage management
concepts and be familiar with the virtual sequential access method (VSAM)
information in z/OS DFSMS Using Data Sets.

To use this document effectively, you should also be familiar with the following
IBM products, programs, and components:
v CICS® (Customer Information Control System)

DFSMStvs extends the availability of CICS by enabling multiple batch jobs and
CICS to share access to the same data sets to update data as well as to read it.
DFSMStvs and CICS can use the same log of logs, a log stream that provides
information for forward recovery programs.

v CICS VSAM Recovery (CICSVR)
CICSVR is a forward recovery program. It can use written to forward recovery
logs by CICS or DFSMStvs to recover VSAM data sets.

v Data Facility Storage Management Subsystem data facility product (DFSMSdfp)
DFSMSdfp provides functions for storage management, data management,
program management, device management, and distributed data access. For
information about DFSMSdfp, see z/OS DFSMSdfp Storage Administration.

v Hierarchical Storage Manager (DFSMShsm)
DFSMShsm provides automatic space management and availability functions
through a hierarchy of storage devices. For information about DFSMShsm, see
z/OS DFSMShsm Storage Administration.

v Recoverable resource management services (RRMS)
RRMS provides the context and unit-of-recovery management under which
DFSMStvs participates as a recoverable resource manager. Part of the operating
system, RRMS comprises registration services, context services, and recoverable
resource services (RRS). For information about RRMS, see z/OS MVS
Programming: Resource Recovery.

v System logger
DFSMStvs uses the services of the system logger for logging. For information
about the system logger, see z/OS MVS Setting Up a Sysplex.

© Copyright IBM Corp. 2003, 2013 ix

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS®,
see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, see
z/OS Internet Library (http://www.ibm.com/systems/z/os/zos/bkserv/).

x z/OS V2R1.0 DFSMStvs Planning and Operating Guide

http://www.ibm.com/systems/z/os/zos/bkserv/

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 DFSMStvs Planning and Operating Guide
SC23-6877-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 2003, 2013 xi

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xii z/OS V2R1.0 DFSMStvs Planning and Operating Guide

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 2003, 2013 xiii

xiv z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Chapter 1. Understanding the DFSMStvs environment

Before you plan for z/OS DFSMS Transactional VSAM Services (DFSMStvs), you
need to understand it. This topic provides an overview of DFSMStvs in these
topics:
v “Transaction processing and transactional recovery”
v “VSAM record-level sharing (RLS)” on page 6
v “DFSMStvs overview” on page 14
v “Context services and RRMS” on page 20

Transaction processing and transactional recovery
Different applications often need to share VSAM data sets. Sometimes the
applications need only to read the data set. Sometimes an application needs to
update a data set while other applications are reading it. The most complex case of
sharing a VSAM data set is when multiple applications need to update the data set
and all require complete data integrity.

Consider these examples:
v Transactions initiated by different applications might need to access the same

VSAM data set at the same time.
v A transaction might need to access a VSAM data set at the same time that a

batch job is using the data set.

Transaction processing provides functions that coordinate work flow and the
processing of individual tasks for the same data sets. VSAM record-level sharing
and DFSMStvs provide key functions that enable multiple batch update jobs to run
concurrently with CICS access to the same data sets, while maintaining integrity
and recoverability.

Terminology
This topic introduces several new terms or uses terms with definitions that are
specific to either VSAM record-level sharing (RLS) or DFSMStvs.

Atomic

When an application changes data in multiple resource managers as a
single transaction, and all of the changes are accomplished through a single
commit request by a syncpoint manager, the transaction is called atomic. If
the transaction is successful, all the changes will be committed. If any piece
of the transaction is not successful, then all of the changes will be backed
out. An atomic instant occurs when the syncpoint manager in a two-phase
commit process logs a commit record for the transaction.

Backout

A request to remove all changes to resources since the last commit or
backout or for the first unit of recovery, since the beginning of the
application. Backout is also called rollback or abort. Any of these events
can initiate backout:
v A user request
v An inability of a resource manager to commit resource changes

© Copyright IBM Corp. 2003, 2013 1

v An abnormal end of a user task while a transaction is in-flight

Commit

A request to make all changes to recoverable resources permanent since the
last commit or backout or, for the first unit of recovery, since the beginning
of the application.

Context

Sometimes called a work context, a context is a representation of a work
request, or part of a work request, in an application. A context might have
a series of units of recovery associated with it. A context represents a work
request in an application, and the life of a context consists of a series of
units of recovery, with zero or one unit of recovery associated with the
context at any point in time.

Forward recoverable data set

A data set that was defined with the LOG(ALL) attribute option.

Forward recovery

A process used to recover a lost data set. The data is recovered from a
backup copy and all the changes that were made after the backup copy
was taken are applied. The forward recovery process requires a log of the
changes made to a data set, together with a date and time stamp. The log
of changes is called the forward recovery log.

Forward recovery log

A log that contains copies of records after they were changed. The forward
recovery log records are used by forward recovery programs and products
such as CICS VSAM Recovery (CICSVR) to reconstruct the data set in the
event of hardware or software damage to the data set.

Log of logs

A log that DFSMStvs and CICS write to provide information to forward
recovery programs such as CICS VSAM Recovery (CICSVR). The log of
logs is a form of user journal that contains copies of the tie-up records that
DFSMStvs or CICS has written to forward recovery logs. This log provides
a summary of which recoverable VSAM data sets that DFSMStvs or CICS
has used, when they were used, and to which log stream the forward
recovery log records were written.
If you have a forward recovery product that can utilize the log of logs,
ensure that all CICS regions that share the recoverable data sets write to
the same log-of-logs log stream.

Nonrecoverable data set

A data set for which no changes are logged. Neither backout nor forward
recovery is provided.

Primary system log

The undo log.

Recoverable data set

A data set that can be recovered using backout or forward recovery
processing, defined with the LOG parameter set to UNDO or ALL.

Resource manager

Understanding the DFSMStvs environment

2 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

A subsystem or component, such as CICS, IMS™, or DB2®, or DFSMStvs,
that manages resources that can be involved in transactions. There are
three types of resource managers: work managers, data resource managers,
and communication resource managers.

Secondary system log

The shunt log.

Shunt log

The secondary system log, which contains entries that were shunted to the
log when DFSMStvs was unable to finish processing sync points. If a unit
of work fails, it is removed (shunted) from the primary system log to the
secondary system log, pending recovery from the failure.

Sync point

An end point during processing of a transaction. A sync point occurs when
an update or modification to one or more of the transaction's protected
resources is logically complete. A sync point can be either a commit or a
backout.

Syncpoint manager

A syncpoint manager is a function that coordinates the two-phase commit
process for protected resources, so that all changes to data are either
committed or backed out. In z/OS, RRS can act as the system level
syncpoint manager.

Two-phase commit

The process used by syncpoint managers and resource managers to
coordinate changes in an ACID transaction, which is a transaction that
involves multiple resource managers using the two-phase commit process
to ensure atomic, consistent, isolated, and durable properties.
In the first phase of the process, resource managers prepare a set of
coordinated changes, but the changes are uncommitted pending the
agreement of all the resource managers involved in the transaction. In the
second phase, those changes are all committed if the resource managers all
agreed to them; or, the changes are all backed out if any of the resource
managers failed or disagreed.
Using the two-phase commit process, multiple changes across multiple
resource managers can be treated as a single ACID transaction.

Undo log

The primary system log, which contains images of changed records as they
existed prior to being changed. Backout processing uses the undo log to
back out the changes that a transaction made to resources.

Unit of recovery (UR)

A set of changes on one node that is committed or backed out as part of an
ACID transaction.
A UR is implicitly started the first time a resource manager touches a
protected resource on a node. A UR ends when the two-phase commit
process for the ACID transaction changing it completes.

Unit of work

In DFSMStvs, one or more logical units of recovery that are committed or
backed out together as a transaction.

Understanding the DFSMStvs environment

Chapter 1. Understanding the DFSMStvs environment 3

Transaction processing
Transaction processing provides data sharing of recoverable resources and ensures
that data is synchronized. In z/OS, transaction processing means that each logical
unit of work runs as a single transaction. Products such as CICS, IMS, DB2, and
DFSMStvs provide a transaction-processing environment. An application that
maintains a database must be capable of managing transactions. The transactions
can arrive virtually simultaneously from clients.

Transactional recovery
Transactional recovery is the capability to isolate the changes made to recoverable
resources by a transaction. This means that when the transaction makes a change,
that change is seen only by that transaction. After the transaction reaches the
commit point, all changes that the transaction made are visible to other
transactions. If an application decides to back out a transaction rather than
complete it, then the resource manager backs out all changes that the transaction
made. This transactional recovery is a major part of transaction processing.

For example, consider a context in which changes are made to two different
records in a recoverable VSAM data set. A field in one record is decremented from
200 to 100. A field in the other record item is incremented from 700 to 800.
Transactional recovery ensures that either both changes are made or neither change
is made. When the application requests that the changes be committed, both
changes are made atomically.

If an application makes these changes to nonrecoverable data and the application
or the system fails, one or both of the changes could be lost.

Coordination of recovery
DFSMStvs requires three key programs and three key functions to coordinate the
recovery of protected resources.

Key programs: These three programs work together to coordinate the recovery of
protected resources and the records within a recoverable VSAM data set:

Application program
The application program accesses protected resources and requests changes
to the resources.

Resource manager
A resource manager controls and manages access to a resource. A resource
manager is an authorized program that provides an application
programming interface (API) that enables the application program to read
and change a protected resource. The resource manager, in conjunction
with the syncpoint manager, controls whether changes to resources are
committed or backed out. For DFSMStvs, the resources consist of records
in recoverable VSAM data sets.

Syncpoint manager

A syncpoint manager uses a two-phase commit protocol to coordinate
changes to protected resources, so that either all changes are made or none
of the changes are made. Recoverable resource services (RRS) functions as
the syncpoint manager.

Key functions: These three programs work in concert to provide the three basic
functions needed to implement transactional recovery:

Understanding the DFSMStvs environment

4 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Resource locking
This function provides serialized access to changed resources.

Resource recovery logging
This function enables a resource manager to keep a record of the changes
made to recoverable resources by a transaction.

Two-phase commit processing
This function provides the services that ensure that a transaction appears
as an atomic operation. A two-phase commit protocol and backout
processing work together to ensure that either all changes that are made by
a transaction are committed, or that all of the changes are backed out.

Resource locking
Locking serializes access to the records that are being changed. Locking at a more
granular level, such as record level rather than at a control interval (CI) level, is
done to minimize the need to wait for locks. Record locks are generally released at
syncpoint time, when commit processing occurs and the unit of recovery ends. A
transaction might be required to wait if it requests a change to a record that is
locked by another transaction. This wait generally lasts until the lock-holding
transaction reaches a sync point or the transaction reaches a timeout.

Resource recovery logging
Using the services of the system logger, logging provides a means of backing out
the changes to resources. The undo log contains images of changed records as they
existed prior to being changed. When forward recoverability is requested, records
are also written to a forward recovery log, which contains copies of records after
they were changed. In the event that a unit of work fails, a secondary system log is
used. The failed unit of work is moved from the primary log to the secondary log,
pending resolution of the failure by the user.

Two-phase commit processing
When an application is ready to commit or back out its changes, the application
invokes RRS through its commit or backout interface. RRS invokes commit or
backout interfaces of the participating resource managers to begin the two-phase
commit protocol or to back out the changes. The two-phase commit protocol is a
set of actions. The actions ensure that all participating resource managers either
make all changes to the resources represented by a unit of recovery or make no
changes to the resources. The protocol verifies that the all-or-nothing changes are
made even if the application program, the system, RRS, or a resource manager
fails.

After an application program completes the set of updates to resources, it can
invoke the RRS commit interface to make those changes permanent. The commit
occurs in two phases. The first phase is called prepare, and the second phase is
called commit.

During the prepare phase, the commit coordinator, RRS, invokes the prepare exits of
each of the resource managers. The resource managers determine whether they can
make the changes permanent during the commit phase. This means that they must
keep their backout information until the commit phase in case they are told to
back out the changes. If any of the resource managers are unable to perform the
prepare function, RRS directs all of the resource managers to back out the
transaction.

During the commit phase, the resource managers commit the changes represented
by a unit of recovery and release any resource serialization. When all resource

Understanding the DFSMStvs environment

Chapter 1. Understanding the DFSMStvs environment 5

managers have completed the task, the application is notified, the unit of recovery
is completed, and the two-phase commit process ends.

After making a number of uncommitted changes, an application program can
choose to invoke the RRS backout interface to reverse all the changes. In this case,
RRS calls backout exits for each of the resource managers involved in the
transaction. In this exit, the resource managers restore the resources to their prior
state and release any resource serialization.

VSAM record-level sharing (RLS)
VSAM record-level sharing (RLS) extends the DFSMS storage hierarchy to support
a data-sharing environment across multiple systems in a Parallel Sysplex®. This
support is primarily for VSAM data sets that online-transaction-processing
applications use.

Overview of VSAM RLS
VSAM RLS processing involves support from multiple products:
v CICS Transaction Server
v CICS VSAM Recovery (CICSVR)
v DFSMS

VSAM RLS is a data set access mode that enables multiple address spaces, CICS
application-owning regions on multiple systems, and batch jobs to access
recoverable VSAM data sets at the same time.

With VSAM RLS, multiple CICS systems can directly access a shared VSAM data
set, eliminating the need to ship functions between the application-owning regions
and file-owning regions. CICS provides the logging, commit, and backout
functions for VSAM recoverable data sets. VSAM RLS provides record-level
serialization and cross-system caching. CICSVR provides a forward recovery utility.

The level of sharing that is allowed between applications is determined by whether
or not a data set is recoverable. For example:
v Both CICS and non-CICS jobs can have concurrent read or write access to

nonrecoverable data sets. However, there is no coordination between CICS and
non-CICS, so data integrity can be compromised.

v Non-CICS jobs can have read-only access to recoverable data sets concurrently
with CICS jobs, which can have read or write access.

VSAM RLS uses a coupling facility to perform data set-level locking, record
locking, and data caching. VSAM RLS uses the conditional write and
cross-invalidate functions of the coupling facility cache structure, thereby avoiding
the need for control interval (CI) level locking. VSAM RLS uses the coupling
facility caches as store-through caches. When a control interval of data is written, it
is written to both the coupling facility cache and to direct access storage device
(DASD). This ensures that problems occurring with a coupling facility cache do not
result in the loss of VSAM data.

Data set types that VSAM RLS supports
VSAM RLS supports access to these types of data sets:
v Key-sequenced data set (KSDS)
v Entry-sequenced data set (ESDS)
v Relative-record data set (RRDS)

Understanding the DFSMStvs environment

6 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

v Variable-length relative-record data set cluster (VRRDS)

VSAM RLS also supports access to a data set through an alternate index but does
not support opening an alternate index directly in RLS mode. Also, VSAM RLS
does not support access through an alternate index to data stored under z/OS
UNIX System Services.

How CICS uses VSAM RLS
The CICS file-control program is a transactional file system built on top of VSAM.
Without VSAM RLS, the CICS file-control program must perform its own
record-level locking. The VSAM data sets are accessed through a single CICS. Local
data sets are accessed by the CICS application-owning region (AOR) that submits
requests directly to VSAM. Remote (shared) data sets are accessed by the CICS
AOR that submits (function ships) a data set control request to a CICS file-owning
region (FOR) and by the FOR that submits a request to VSAM.

Figure 1 illustrates the AOR, FOR, and VSAM request flow. CICS AORs function
ship VSAM requests to access a specific data set to the CICS FOR that owns that
data set. This distributed access form of data sharing has existed in CICS for some
time.

Figure 2 on page 8 illustrates how VSAM RLS enables multiple CICS transaction
server AORs to access VSAM data sets for update while preserving data integrity.
The updating regions can reside in any MVS™ image within a Parallel Sysplex.
Each MVS image has one SMSVSAM server. Each AOR that needs to access the
VSAM data in RLS mode connects automatically to the SMSVSAM server address
space. VSAM RLS stores locking information in a coupling-facility structure that
SMSVSAM owns.

MVS n

VSAM

CICS
AOR

VSAM

MVS 1

CICS
AOR

CICS
AOR

VSAM

CICS
FOR

CICS
AOR

Figure 1. CICS VSAM non-RLS access

Understanding the DFSMStvs environment

Chapter 1. Understanding the DFSMStvs environment 7

The CICS file-control program provides commit, backout, and forward recovery
logging functions for VSAM recoverable data sets. With VSAM RLS, CICS
continues to provide the transactional functions. VSAM RLS itself does not provide
the transactional functions but does provide record locking based on a coupling
facility as well as coupling-facility data caching.

Recoverable and nonrecoverable data sets
VSAM RLS introduced a VSAM data set attribute named LOG. With this attribute,
you can declare a data set as recoverable or nonrecoverable. For recoverable data
sets, a log of changed records is maintained and used to commit or back out a
transaction's changes to a data set. CICS maintains logs of its changes to
recoverable data sets.

The CICS file-control program supports recoverable and nonrecoverable data sets.
The data set definition includes a recoverability attribute. You can specify these
attribute options:

LOG(NONE)
Nonrecoverable.

This option declares the data set to be nonrecoverable. CICS does not
perform any logging of changes for a data set that has this attribute.
Neither backout nor forward recovery is provided.

LOG(UNDO)
Recoverable.

This option declares the data set to be backward recoverable.

LOG(ALL)
Recoverable.

MVS 32MVS 1

CICS
AOR

CICS
AOR

CICS
AOR

CICS
AOR

VSAM RLS
Instance 1

SMSVSAM
Address space

Coupling facility (CF)

VSAM RLS
Instance

SMSVSAM
Address space

n

Figure 2. CICS VSAM RLS access

Understanding the DFSMStvs environment

8 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

This option declares the data set to be both backward recoverable and
forward recoverable.

In addition to the logging and recovery functions provided for backout, CICS
records the image of changes to the data set, after they were made. The forward
recovery log records are used by forward recovery programs and products such as
CICS VSAM Recovery (CICSVR) to reconstruct the data set in the event of
hardware or software damage to the data set.

You can use CICS recoverable file attributes that correspond to VSAM data set
attributes. The file definition must match the data set attributes in the catalog. You
can use the IDCAMS DEFINE and ALTER (LOG(xxx)) commands to set the data
set attributes, either by running an IDCAMS job or by defining them in the SMS
DATACLAS parameter. You can also use the BWO and LOGSTREAMID
parameters in the IDCAMS commands.

For CICS and DFSMStvs access, you can define VSAM data sets as recoverable
with the backup-while-open (BWO) parameter set to TYPECICS. Both CICS and
DFSMStvs can open a recoverable data set for output.

You can open a non-RLS data set in nonshared resources (NSR), local shared
resources (LSR), or global shared resources (GSR) mode. When you open a data set
in NSR, LSR, or GSR access mode, the recoverable attributes of the data set do not
apply and are ignored. Thus, existing programs that do not use VSAM RLS access
are not impacted by the recoverable data set rules.

Related reading:

v For more information about the IDCAMS DEFINE and ALTER commands, see
z/OS DFSMS Access Method Services Commands.

v For more information about NSR, LSR, and GSR access mode, see z/OS DFSMS
Using Data Sets.

CICS transactional recovery for VSAM recoverable data sets
In most cases, changes to recoverable data sets made by a transaction remain
invisible to other transactions until the modifying transaction reaches the commit.
However, if you are using the no-read integrity (NRI) option, you might see
uncommitted changes. Exclusive locks that VSAM RLS holds on the modified
records cause other transactions that have read-with-integrity requests and write
requests for these records to wait. After the modifying transaction is committed or
backed out, VSAM RLS releases the locks and the other transactions can access the
records.

The CICS backout function removes changes made to the recoverable data sets by
a transaction. When a transaction abnormally ends, CICS performs a backout
implicitly.

The commit and backout functions protect an individual transaction from changes
that other transactions make to a recoverable data set (or other recoverable
resource).

How VSAM RLS provides functions
The SMSVSAM server provides VSAM RLS functions. This server resides in a
system address space. The address space is created and the server is started at
MVS IPL time. VSAM internally performs cross-address space accesses and
linkages between requestor address spaces and the SMSVSAM server address
space.

Understanding the DFSMStvs environment

Chapter 1. Understanding the DFSMStvs environment 9

The SMSVSAM server owns two data spaces. One data space is called the
SMSVSAM data space. It contains some VSAM RLS control blocks and a
system-wide buffer pool. The other data space, named MMFSTUFF, is used by
VSAM RLS to collect statistical information that is used to produce VSAM RLS
system management facilities (SMF) 42 subtype 16-19 records.

VSAM RLS is an access option interpreted at open time. To enable RLS access,
specify the MACRF=RLS parameter in the ACB macro, or specify the RLS
parameter in JCL. The RLS MACRF option is mutually exclusive with the MACRF
NSR (nonshared resources), LSR (local shared resources), and GSR (global shared
resources) options.

Read sharing of recoverable data sets
A non-CICS application can open a recoverable data set for input in RLS mode.
CICS provides the necessary transactional recovery for the write operations to a
recoverable data set. Concurrently, non-CICS applications can have the sphere open
for read-RLS access.

VSAM RLS read integrity options
VSAM RLS provides three levels of read integrity:
1. NRI (no read integrity)

This level tells VSAM not to obtain a record lock on the record accessed by a
GET or POINT request. This avoids the overhead of record locking. This is
sometimes referred to as a “dirty” read because the reader might see an
uncommitted change made by another transaction.
Even with this option specified, VSAM RLS still performs buffer validity
checking and refreshes the buffer when the buffer is invalid. Thus, a sequential
reader of a KSDS does not miss records that are moved to new control intervals
by CI and CA splits.
There are situations where VSAM RLS temporarily obtains a shared lock on the
record even though NRI is specified. A shared lock is one in which several
tasks can hold the lock. This happens when the read encounters an
inconsistency within the VSAM sphere while attempting to access the record.

2. CR (consistent read)
This level tells VSAM to obtain a shared lock on the record that is accessed by
a GET or POINT request. It ensures that the reader does not see an
uncommitted change made by another transaction. Instead, the GET or POINT
request waits for the change to be committed or backed out. The request also
waits for the exclusive lock on the record to be released.

3. CRE (consistent read explicit)
This level has a similar meaning as CR, except that VSAM RLS holds the
shared lock on the record until the end of the unit of recovery, or unit of work.
CRE is not available to VSAM RLS (non-DFSMStvs) non-CICS applications.
CRE is valid only when used by CICS or in DFSMStvs mode because of the
syncpoint nature of the locks. VSAM can only handle an end-of-transaction for
CICS. This capability is also called a repeatable read.
The record locks obtained by the VSAM RLS GET requests, with CRE option,
inhibit the ability to update or erase the records by other concurrently
executing transactions. However, the CRE requests do not inhibit other
transactions from inserting other records.

Understanding the DFSMStvs environment

10 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Read-sharing integrity across KSDS control-interval and
control-area splits

VSAM does not ensure read integrity across splits for non-RLS access to a data set
with cross-region share options 2, 3, and 4. If the application requires read
integrity, the application must ensure it. When KSDS control-interval (CI) and
control-area (CA) splits move records from one CI to another CI, the writer cannot
invalidate the data and index buffers for the reader. This can result in the reader
not seeing some records that were moved.

VSAM RLS can ensure read integrity across splits. It uses the cross-invalidate
function of the coupling facility to invalidate copies of data and index control
intervals in buffer pools other than the writer's buffer pool. This invalidation
ensures that all VSAM RLS readers, CICS and non-CICS, are able to see any
records moved by a concurrent CI or CA split. On each GET request, VSAM RLS
tests the validity of the buffers, and if invalid, refreshes the buffers from the
coupling facility or DASD.

Read and write sharing of nonrecoverable data sets
Nonrecoverable data sets do not participate in transactional recovery. Commit,
backout, and forward recovery logging do not apply to these spheres. Because
CICS and non-CICS applications are not required to use transactional recovery,
VSAM RLS allows concurrent read-and-write sharing of nonrecoverable data sets.
Any application can open the sphere for output in RLS mode.

VSAM RLS provides record locking and buffering across the CICS and non-CICS
read or write sharers of nonrecoverable data sets. VSAM RLS releases the record
lock when the buffer that contains the change is written to the coupling-facility
cache and DASD. This record locking differs from the case in which a CICS
transaction modifies VSAM RLS recoverable data sets. In that case, the
corresponding locks are held until the end of a recoverable unit of work. For a
CICS transaction, however, the locks are not held until the end of a transaction in
either of these cases:
v The transaction is made up of multiple units of work.
v The locks are released at a sync point (at the end of each logical unit of work).

For sequential and skip-sequential processing, VSAM RLS does not write a
modified CI until one of these actions occurs:
v The processing moves to another CI.
v The application issues an ENDREQ.

If an application or the VSAM RLS server abnormally ends, the changes to
nonrecoverable data sets that were buffered are lost.

VSAM RLS permits read-sharing and write-sharing of nonrecoverable data sets
across CICS and non-CICS programs. However, most programs are not designed to
tolerate this type of sharing. The absence of transactional recovery requires very
careful design of the data and the programs.

Non-RLS access to VSAM data sets
VSAM RLS access does not change the format of the data in the VSAM data sets.
The data sets are compatible for non-RLS access. If you set the cross-region share
option to 2, you can issue a non-RLS open-for-input request while the data set is
already open for VSAM RLS access. However, a non-RLS open-for-output request

Understanding the DFSMStvs environment

Chapter 1. Understanding the DFSMStvs environment 11

fails. If the data set is already open for non-RLS output, an open for VSAM RLS
fails. Therefore, at any point in time, a data set (sphere) can be open for non-RLS
write access or open for VSAM RLS access.

CICS and VSAM RLS provide a quiesce function to assist in the process of
switching a sphere from CICS RLS usage to non-RLS usage.

Recommendation: Be careful about quiesce with a path name; always use a base
name.

Related reading: For information about the quiesce function, see Appendix A,
“Quiescing a data set,” on page 117.

Differences between VSAM RLS access and non-RLS access
This topic describes the differences between VSAM RLS access and non-RLS
access.

Share options
For non-RLS access, VSAM uses the share options settings to determine the type of
sharing allowed. VSAM provides full read and write integrity for the VSAM RLS
users, but does not provide read integrity for the non-RLS user. You cannot specify
a non-RLS open-for-output request when the data set is already opened for VSAM
RLS.

VSAM RLS provides read sharing and write sharing for multiple users; it does not
use share option settings to determine levels of sharing. When you request an RLS
open and the data set is already open for non-RLS input, VSAM does check the
cross-region setting. If the share option is 2, the data set can be opened in RLS
mode. The open fails if you use any other share option, or if the data set is opened
for non-RLS output.

Locking
Non-RLS access provides local locking (within the scope of a single buffer pool) at
the VSAM CI level. A locking contention can result in an exclusive control conflict
error response to a VSAM record management request.

All SMSVSAM servers (one per MVS image) use the coupling facility for
locking.When contention occurs on a VSAM record, the request that encountered
the contention waits for the contention to be removed. The lock manager provides
deadlock detection. When a lock request is in deadlock, the request is rejected
resulting in the VSAM record management request completing with a deadlock
error response.

VSAM RLS supports a timeout value that can be specified through the request
parameter list (RPL), in the PARMLIB member, or in the JCL. CICS provides two
places where you can supply a timeout value:
v By transaction, you can specify the DTIMOUT value in the transaction

definition.
v By CICS region, you can use the FTIMOUT system initialization value.

CICS uses DTIMOUT when it is supplied; otherwise, it uses FTIMOUT. This
ensures that a transaction does not wait indefinitely for a lock to become available.
VSAM RLS uses a timeout function of the lock manager.

Lock Retention: VSAM RLS uses share and exclusive record locks to control
access to the shared data. An exclusive lock ensures that a single user is updating a

Understanding the DFSMStvs environment

12 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

specific record. The exclusive lock causes a read-with-integrity request for the
record by another user, such as a CICS transaction or non-CICS application, to wait
until the update is complete and the lock is released.

Failure conditions can delay completion of an update to a recoverable data set.
This occurs when a CICS transaction enters in-doubt status. This means that CICS
waits for a distributed unit of work to complete before CICS can back out or
commit the unit of work. Therefore, the recoverable records modified by the
transaction must remain locked. Failure of a CICS AOR also causes the current
transaction's updates to recoverable data sets to not complete. They cannot
complete until CICS restarts the AOR.

When a transaction enters an in-doubt state or a CICS AOR abnormally ends,
exclusive locks on records of recoverable data sets held by the transaction must
remain held. However, other users waiting for these locks should not continue to
wait. The outage is likely to be longer than the user would want to wait. When
these conditions occur, VSAM RLS converts these exclusive locks into retained
locks.

Exclusive and retained locks are not available to other users. When another user
encounters a lock contention with an exclusive lock, the user's lock request waits.
When another user encounters a lock contention with a retained lock, the lock
request is immediately rejected with a retained lock error response. This causes the
VSAM record management request, which produced the lock request, to fail.

Non-RLS access while retained locks exist: Retained locks are created when a
failure occurs. The locks need to remain until completion of the corresponding
recovery. The retained locks have meaning only for RLS access. Lock requests
issued by RLS access requests can encounter the retained locks. Non-RLS access
does not perform record locking and does not encounter the retained locks.

To ensure integrity of a recoverable sphere, VSAM does not permit non-RLS
update access to the sphere while retained locks exist for that sphere. An
installation might need to run a non-CICS application that requires non-RLS
update access to the sphere. VSAM RLS provides an IDCAMS command that sets
the status of a sphere to enable non-RLS update access to a recoverable sphere
while retained locks exist. This command does not release the retained locks.
VSAM informs the CICS transaction servers that hold the retained locks when they
later open the sphere with RLS.

Related reading: For information about non-RLS access to data sets that have
retained locks, see Appendix B, “Accessing data sets that have retained locks or
lost locks,” on page 119.

Requirements for VSAM RLS request execution mode
When a program makes a request while a data set is open in RLS mode (OPEN,
CLOSE, or record management request), the program must be running in the
following execution mode, with the listed constraints:
v Task mode (not SUB mode)
v Address space control=primary
v Home address space=primary address space=secondary address space
v No functional recovery routine (FRR) is in effect, but an ESTAE routine might be

in effect.

Understanding the DFSMStvs environment

Chapter 1. Understanding the DFSMStvs environment 13

The VSAM RLS record management request task must be the same task that
opened the ACB, or the task that opened the access method control block (ACB)
must be in the task hierarchy.

VSAM options that RLS and DFSMStvs do not support
VSAM RLS does not support these options and capabilities:
v Linear data sets
v Addressed access to a KSDS
v Control interval processing (CNV or ICI) to any VSAM data set type
v User buffering (UBF)
v Clusters that have been defined with the IMBED option
v Key range data sets
v Temporary data sets
v GETIX and PUTIX requests
v DFSMS checkpoint/restart facility
v ACBSDS (system data set) specification
v Hiperbatch
v Catalogs, VVDS, JRNAD exit, any AMP=JCL parameters
v Data that is stored under UNIX System Services

In addition, VSAM RLS does not support these usages:
v If the caller, executing in cross-memory mode, issues a request, RLS does not

honor the request.
v When accessing a VSAM data set using the ISAM compatibility interface, you

cannot specify RLS access.
v You cannot open individual components of a VSAM cluster for RLS access.
v You cannot specify a direct open of an alternate index for RLS access, but you

can specify an RLS open request of a data set through an alternate index path.
v You cannot specify an RLS open request to implicitly establish position to the

beginning of the data set. For sequential or skip-sequential processing, you must
specify a POINT or GET DIR, NSP request to establish position.

DFSMStvs overview
Without DFSMStvs, a CICS system might have been available only during normal
business hours. After business hours, the CICS system or application would be
shut down for the supporting batch work to run. As soon as CICS stopped,
backups were taken of key data sets as a point of recovery. Batch jobs could then
be scheduled to run. If several jobs updated the same data set, they ran in
sequence because they could not update the data set at the same time. After the
updates were complete, a job would read the updated data and produce reports,
and another backup would be taken. Finally, CICS could be restarted and become
active again. However, the need to extend the availability of CICS has increased
due to growing business volume.

DFSMStvs is an enhancement to VSAM RLS access that enables multiple batch
update jobs and CICS to share access to the same data sets. DFSMStvs provides
two-phase commit and backout protocols, as well as backout logging and forward
recovery logging.

Understanding the DFSMStvs environment

14 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

DFSMStvs provides transactional recovery directly within VSAM. DFSMStvs is an
extension to VSAM RLS. It enables any job or application that is designed for data
sharing to read-share or write-share VSAM recoverable data sets. VSAM RLS
provides a server for sharing VSAM data sets in a sysplex. VSAM RLS uses
coupling-facility-based locking and data caching to provide sysplex-scope locking
and data access integrity, while DFSMStvs adds logging, commit, and backout
processing.

DFSMStvs supports data sets that are defined as recoverable. That is, the log
attribute for the data set is either UNDO (backout logging only) or ALL (backout
and forward recovery logging). A batch job can open a recoverable data set for
update in DFSMStvs mode. DFSMStvs provides the necessary transactional
recovery for the data set. If a recoverable VSAM data set is opened for output and
RLS is specified either in the JCL or the ACB, the data set is opened for DFSMStvs
access.

Related reading: For information about programming language environments that
support DFSMStvs, see z/OS DFSMStvs Administration Guide.

Transaction processing from a batch job
DFSMStvs enables a batch job to open a VSAM recoverable data set for output
concurrently with CICS online access. DFSMStvs is an extension of the function
provided by VSAM RLS and, therefore, uses the same record-locking protocols as
VSAM RLS. These locking protocols provide the data integrity that is required for
concurrent access. DFSMStvs uses the record locking protocols when it does
forward and backout logging. This provides a transaction-processing environment
for batch jobs.

If you use DFSMStvs, you can run some batch jobs without taking your data sets
offline. Most likely, you need to make changes to enable batch applications to use
DFSMStvs.

DFSMStvs also provides batch program support for the repeatable read option.
This option enables a transaction to reread a record and see the same data the
second time. This is because a share record lock is obtained for this type of access,
which prohibits other transactions from making updates until the transaction is
committed or backed out.

Related reading For more information about application changes, see “Coding an
application to use DFSMStvs” on page 64.

Recovery coordination
The records within a recoverable VSAM data set are protected resources. The
application program, the resource manager, and the syncpoint manager work
together to protect resources.

DFSMStvs builds on these components:
v VSAM record-level sharing (RLS)
v System logger
v Recoverable resource management services (RRMS)

These three components work in concert to provide the three basic functions
necessary for implementing transactional recovery:
v Resource locking

Understanding the DFSMStvs environment

Chapter 1. Understanding the DFSMStvs environment 15

This function provides serialized access to changed resources. VSAM RLS and
DFSMStvs use a locking function based on a coupling facility, and the locking is
done at the VSAM record level.

v Resource recovery logging
This function enables a resource manager to keep a record of the changes that a
transaction makes recoverable resources. The system logger is the service that is
used to accomplish this task.

v Two-phase commit and backout protocols
This function provides the services that ensure that a transaction appears as an
atomic operation. It is the responsibility of two-phase commit and backout
protocols to ensure that all of the changes made by a transaction are either
committed or backed out. DFSMStvs uses the resource recovery services (RRS)
provided by the MVS syncpoint manager to accomplish this task.

Access to recoverable VSAM data sets
For a non-CICS application to operate in DFSMStvs mode, begin by requesting
RLS processing in either of these ways:
v Specify the MACRF=RLS parameter in the ACB macro.
v Specify the RLS parameter in the JCL.

In addition, do either of these tasks:
v Open a recoverable data set for output from a batch job.

The data set is open for DFSMStvs access if its recoverability attribute, LOG, is
set to UNDO or ALL:

LOG=UNDO
Specifies backout logging.

LOG=ALL
Specifies backout logging and forward recovery logging.

v Request the CRE read-integrity option in the JCL or through the ACB.

VSAM RLS support enables batch jobs to access recoverable data sets in RLS mode,
but only for reading; batch jobs cannot write to these data sets in RLS mode. With
DFSMStvs, batch jobs are able to read and write to recoverable data sets while
CICS is concurrently processing those same data sets. A non-CICS application must
use RRS to partition the updates done to recoverable VSAM data sets into units of
recovery. The application must invoke the RRS commit and backout interfaces to
cause points of synchronization. The points of synchronization delineate units of
recovery.

If a batch job attempts to communicate with RRS and the system logger goes
down, RRS suspends the job until the logger comes back up. If this happens, you
cannot cancel the job. To make RRS release the job, you need to bring the system
logger back up or take RRS down.

Transaction processing
When an application uses DFSMStvs to process a transaction, DFSMStvs and RLS
perform these tasks:
v Resource locking
v Logging the updates to records in recoverable data sets and logging the image of

records before they are updated. This allows the updates to be backed out, if

Understanding the DFSMStvs environment

16 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

necessary. Optionally, DFSMStvs also records the images of records after they are
updated so that forward recovery programs can use the records.

Serializing resources with locking
Locking serializes access to the records that are being added, changed, or deleted;
this applies to both VSAM RLS as well as DFSMStvs access. In this way, CICS is
allowed to access data sets in RLS mode, while a DFSMStvs application is
accessing the same data sets.

VSAM RLS uses the coupling facility to provide locking for read and write
integrity and caching. DFSMStvs uses the same locking structure and cache
structure as other users of VSAM RLS. This allows applications that use DFSMStvs
to read and write recoverable data sets concurrently.

When a transaction requests a change to a record, that record is locked. Any new
request to change that record must wait. If a DFSMStvs job requests a record lock
that is held by another task, the requesting job must wait until the lock is freed.
Similarly, if a job holds a lock with data sets that are open in DFSMStvs mode,
another task cannot obtain the lock.

VSAM RLS obtains the exclusive lock at GET UPD time, not when you change the
record. DFSMStvs does backout logging at this time because GET UPD implies that
the you are going to update the record, and a complete before image of the record
is available then. Spanned and compressed records are not necessarily available
any more when you get to the PUT or ERASE.

Because of the locking and logging overhead, GET UPD is not an efficient way to
browse a data set when you use DFSMStvs. If you are browsing and updating only
one record in ten or so, use GET NUP instead. If you need read integrity, you can
specify CR or CRE. When you find a record that you want to update, do a GET
UPD followed by PUT UPD or ERASE.

Logging resource recovery data
DFSMStvs uses the services of the system logger for logging. Logging captures the
data needed for backout. An undo log is private to a unit of recovery. The undo
log contains images of changed records as they existed before they were changed.
The system logger writes log entries to the coupling facility, data space, DASD, or
some combination of the three.

Log records can also be written to a forward recovery log. The forward recovery
log contains copies of records after they were changed. The records are written to
the system logger log streams. Forward recovery logs are shared between systems;
these logs are shared across all CICS and DFSMStvs instances. This provides
sysplex-wide merged log streams that can be used as input to forward recovery
products such as CICSVR.

Initiating transactions
VSAM record management requests initiate transactions. DFSMStvs calls RRS to
register an interest in a unit of recovery, which creates the unit of recovery and
associates it with the task control block (TCB) or context.

Sync points are initiated by calling RRS interfaces for commit and backout
processing.

Two-phase commit: To RRS, a unit of recovery consists of a set of changes that is
to be made as one unit. A unit of recovery represents an application program's

Understanding the DFSMStvs environment

Chapter 1. Understanding the DFSMStvs environment 17

changes to resources since the last commit or backout. For the first unit of recovery,
a unit of recovery represents changes since the beginning of the application. Each
unit of recovery is associated with a context. The context consists of the unit of
recovery together with the associated application programs, resource managers,
and protected resources. A context represents a work request in an application, and
the life of a context consists of a series of units of recovery, with zero or one unit
of recovery associated with the context at any point in time.

In processing the first record management request of a transaction, DFSMStvs calls
RRS to register an interest in a unit of recovery. When an application is ready to
commit or back out its changes, the application invokes RRS. The invocation
begins either the two-phase commit protocol or the backout of the changes.

The two-phase commit protocol is a set of actions. These actions are used to ensure
that an application program makes either all changes to the resources represented
by a unit of recovery or makes no changes to the resources. The protocol verifies
that the all-or-nothing changes (sometimes called atomic changes) are made even if
the application program, the system, RRS, or a resource manager fails. The data
sets and the transaction are at a point of consistency based on the data committed
with the last sync point, including when DFSMStvs restarts.

The first phase of the commit process is called prepare, the second phase is called
commit. The phases of commit processing are described as follows:

Phase 1, prepare
During the prepare phase, the commit coordinator, RRS, invokes the
prepare exits of each of the participating resource managers. In these exits,
each of the resource managers determine whether they can make the
changes permanent during the commit phase. This means that they must
keep their backout information until the commit phase, in case they are
told to back out the changes.

The process of making the changes permanent is called committing. If all of
the resource managers are able to commit their changes, processing
continues with the second phase of commit processing. If any of the
resource managers is unable to perform the commit function, RRS directs
all of the resource managers to back out the unit of recovery.

For data sets that have the forward recovery attribute, backout creates
compensating forward recovery records. After a media failure and the
restoration of a dated backup copy of the data, forward recovery reapplies
all updates since that backup.

Phase 2, commit
In the second phase, the resource managers either commit or back out the
changes represented by a unit of recovery, and they release the held locks.
When all resource managers have completed the task, the following
processing occurs:
v The application is notified.
v The unit of recovery is completed.
v The locks are released.
v The two-phase commit protocol ends.

Understanding the DFSMStvs environment

18 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

If a batch application is using recoverable and nonrecoverable data sets, a commit
does not affect the nonrecoverable data sets. A close or ENDREQs are required to
get buffers written and locks released for nonrecoverable data sets.

Backout: DFSMStvs logs all updates to recoverable data sets that are modified in
a unit of recovery. In this way, if a unit of recovery fails, the changes that were
made as part of the unit of recovery can be reversed.

Each instance of DFSMStvs has a private undo log. This log contains the status of
the units of recovery in a DFSMStvs instance and the backout records required to
back out changes that were made to VSAM recoverable data sets by these units of
recovery. Any of the following events can trigger a backout request:
v A backout request from the application
v An abnormal end of the unit of recovery or the TCB with which it is associated
v Detection of an error that DFSMStvs cannot fix, such as an I/O error on one of

the data sets

If DFSMStvs detects such an error, it votes against committing the unit of recovery
when the application calls prepare.

Should an instance of DFSMStvs fail or abnormally end, all in-flight units of
recovery that were using that instance at the time of failure are backed out. The
backouts for these units of recovery are not performed at the time of the failure by
the failed DFSMStvs instance. The backouts are performed either at the time of the
failure or later by a peer recovery instance of DFSMStvs.

Records added to the end of an ESDS are not backed out by DFSMStvs because no
such function as ERASE exists for an ESDS. You cannot actually delete a record
that has been written over in an ESDS. CICS has an exit that can modify the record
to imply that it has been deleted.

How DFSMStvs works with RRS and other resource managers
For DFSMStvs, RRS performs syncpoint management for the resource managers,
which provide the two-phase commit and backout services that ensure a
transaction appears as one unit. Two-phase commit and backout processing must
ensure that either all of the changes made by a transaction are committed or all are
backed out.

Applications designed to follow the transaction model make it easy to share
recoverable resources. Resource managers provide the sharing isolation when a
transaction fails or when the execution environment fails. IMSDB and DB2 are
resource managers that provide transactional recovery for their databases. The
CICS file-control program provides transactional recovery for VSAM recoverable
data sets accessed through CICS.

Restriction: When you are running DFSMStvs concurrently CICS and bad input
was used for a batch job, you cannot restore the data set, bring CICS up, and then
and rerun the batch job later with good input as you could with just CICS. The
forward recovery logs do not identify job names, which you would need to
identify the specific records updated by the batch job with the bad input. If other
batch jobs or CICS updated the same records, backing out the changes is not
possible.

Understanding the DFSMStvs environment

Chapter 1. Understanding the DFSMStvs environment 19

How DFSMStvs complements CICS
VSAM RLS provides an environment in which multiple CICS transaction servers
can directly access a shared VSAM data set. At the same time, batch jobs can share
nonrecoverable data sets for reading and updating while CICS is using them.
VSAM RLS and CICS can also share recoverable data sets for reading when the
data sets have share options defined. Batch jobs are able to share recoverable data
sets for reading when they are opened in RLS mode.

Figure 3 is an example of how DFSMStvs can be used with CICS and with batch
jobs. DFSMStvs works with RRS to commit the VSAM data set changes and release
the corresponding VSAM locks.

While VSAM RLS provides multisystem data sharing for CICS, DFSMStvs is
intended for non-CICS applications. From a logical perspective, CICS and
DFSMStvs do the same kind of work. DFSMStvs and CICS complement one
another by using the same locking protocols and the same type of commit and
backout protocol. If both DFSMStvs and CICS want to update the same group of
records, one application has to complete its current unit of recovery before the
other can begin.

Context services and RRMS
Recoverable resource management services (RRMS) is part of the operating system
and comprises registration services, context services, and recoverable resource
services (RRS). RRMS provides the context and unit of recovery management
under which DFSMStvs participates as a recoverable resource manager. This topic
briefly discusses conceptual information about contexts and units of recovery as
they relate to DFSMStvs.

A context is a unit of recovery together with the associated application programs,
resource managers, and protected resources. Resource managers perform services
for contexts and units of recovery. A resource manager allocates resources to a
context and assigns units of recovery to it. A resource manager also allocates
resources to a unit of recovery and assigns lock ownership to it. A unit of recovery
is work that is done by or on behalf of a context between one point of consistency

DA0TV400

Batch Job

CICS functions:
- transactional recovery

- logging
- commit
- backout

Batch jobs
designed to
use
transactional
recovery

CICS AOR

GET

PUT

GET

PUT

CICS AOR
Batch Job

VSAM RLS Functions
- Data sharing

- locking
- buffer coherency

Transactional VSAM functions:
- VSAM RLS

Function +
- Transactional recovery

- logging
- commit
- backout

VSAM RLS & Transactional
VSAM

Figure 3. Batch jobs designed to use transactional recovery

Understanding the DFSMStvs environment

20 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

and another. A context represents a work request in an application, and the life of
a context consists of a series of units of recovery, with zero or one unit of recovery
associated with the context at any point in time.

Related reading: For more information about RRS, units of recovery, and contexts,
see z/OS MVS Programming: Resource Recovery.

Native contexts
A native context is the automatically occurring context of the application program,
and the protected resources associated with a work request. A native context is
always associated with a single application task. This context is associated with a
specific MVS dispatchable unit (task) and always exists.

Privately managed contexts
A privately managed context is one that a resource manager creates. The resource
manager owns any privately managed contexts it creates, and the resource
manager can switch privately managed contexts from one task to another. A
privately managed context is usually used by a work manager that is a resource
manager. For example, IMS accepts and manages work, such as transactions, from
outside the system.

Every task in the system has an associated context, thus, for a given task there is
always a context. When a task is created, context services provide the native
context for the task. Resource managers can create privately managed contexts and
associate them with a specific task. The privately managed context then becomes
the current context. The native context still exists, but it is not current. If the
resource manager later disassociates the privately managed context from the task,
the native context would again become current. The native context would also
become current if the privately managed context ends but the task with which it is
associated does not. DFSMStvs does not create or switch contexts; it does, however,
allow others to do so. DFSMStvs runs under a privately managed context only if
another resource manager has created one. That context must be the current
context associated with a task when DFSMStvs receives control.

Units of recovery
Using the two-phase commit protocols, applications use the commit service of the
syncpoint manager to make changes permanent, and the backout service to back
out the changes. When the syncpoint manager receives a commit request, the
syncpoint manager synchronizes commitment of resources.

A unit of recovery is an entity in which a resource manager can express interest,
letting the syncpoint manager know that the unit of work is using some protected
resources that it manages. The protocol verifies the all or nothing changes, even if
the application program, the system, RRS, or a resource manager fails. Figure 4 on
page 22 shows how contexts become a series of units of recovery.

Understanding the DFSMStvs environment

Chapter 1. Understanding the DFSMStvs environment 21

A context has only one active unit of recovery at a time. This unit of recovery must
complete before another unit of recovery begins. The syncpoint manager knows
about the context and tracks resource managers that express interest in a given
unit of recovery. When the application invokes the commit service, the syncpoint
manager initiates the two-phase commit protocol with the interested resource
managers. The syncpoint manager reports the result back to the application.

Unit-of-recovery states
The unit of recovery changes from state to state throughout the course of the
two-phase commit protocol. Figure 5 on page 23 shows the flow of the two-phase
commit process. In the first in-reset state, the application is at the start of its unit of
recovery and has not used any protected resources. When protected resources are
accessed for add, delete or update, the unit of recovery moves into the in-flight
state with the resource manager expressing interest in the unit of recovery. Once
the application issues its commit, the in-prepare state is entered. Phase one begins
when the syncpoint manager tells each resource manager to prepare its resources
to move forward or backward. When all resource managers reply positively, the
unit of recovery transitions to the in-commit state and phase 2 begins. The
syncpoint manager tells each resource manager to make its changes permanent.

When all resource managers have completed the task, the application is notified,
the unit of recovery is completed, and the two-phase commit protocol ends. The
application might have altered protected resources using multiple resource
managers (for example, DB2, IMS, and DFSMStvs) within a recoverable unit of
work.

The protocol also has provisions if a resource manager replies negatively to the
prepare notification. In this case, the in-commit state becomes an in-backout state,
and resource managers are told to back out any changes.

Figure 4. Contexts as a series of units of recovery

Understanding the DFSMStvs environment

22 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Distributed units of recovery

The resources that a unit of recovery updates can be distributed; that is, they can
reside on more than one system. A unit of recovery can be distributed among
multiple resource managers. Those resource managers can be on a local system or
even on another system in the network. Two programs that participate in
distributed resource recovery are DB2 and IMS.

For example, when multiple resource managers are involved, an application might
do some DB2 work, and then some DFSMStvs work, and finally some IMS work.
All of the work can be interrelated so that it is all under the umbrella of a single
unit of recovery that RRS coordinates. The application completes its transactions
and then calls RRS to commit or back out those transactions. In this way, the work
within this unit of recovery spans several different resource managers. A unit of
recovery can be distributed not only across multiple resource managers but across
systems and networks.

Figure 5. Two-phase commit processing actions

Understanding the DFSMStvs environment

Chapter 1. Understanding the DFSMStvs environment 23

24 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Chapter 2. Planning for DFSMStvs

This information covers the following topics to help you plan for the use of
DFSMStvs:
v “Planning tasks”
v “Coupling-facility planning” on page 26
v “Processor-capacity planning” on page 31
v “Software-configuration planning” on page 32
v “System-logger planning” on page 32
v “VSAM operations planning” on page 38
v “Installation of DFSMStvs” on page 40

Planning tasks
Because DFSMStvs builds on VSAM RLS, many of the planning steps for the
implementation of VSAM RLS are common to a DFSMStvs implementation. You
should perform the following tasks to plan for using DFSMStvs:
v Determine the hardware and availability requirements for coupling facilities. For

DFSMStvs, the coupling facilities not only support lock tables and caching of
data but should also be used for logging.

v Determine which applications need the ability to update recoverable data sets
concurrent with CICS usage of those data sets, and then determine which of
them can use the DFSMStvs support.

v Determine the size and number of coupling-facility cache structures and their
connectivity.

v Determine the size of the coupling-facility lock structure. With the use of
DFSMStvs, batch jobs update recoverable data sets while CICS is also using
them, which results in increased locking activity.

v Determine the requirements for the SMS configuration, including storage-class
specifications of coupling-facility structures, connectivity, and modifications to
the ACS routines. If you have already established storage classes for VSAM RLS
and coupling-facility cache structures, you can use those for both VSAM RLS
and DFSMStvs. You might need to make the structures larger, however, due to
increased usage.

v Add new parameters to the IGDSMSxx member of SYS1.PARMLIB for
DFSMStvs initialization, quiesce time out, and activity keypointing.

v Convert batch jobs for use of DFSMStvs to update recoverable data sets:
– Modify each job to recognize sync points and to take the appropriate action,

whether commit or backout, by calling z/OS RRS services.
Recommendation: Do not perform a commit or backout through an RRS
panel.

– Modify the programs or JCL to specify that DFSMStvs is to be used.
– Examine each job to ensure that the use of multiple request-parameter lists

within a single program will not cause lock contention within that program.
– Code each job to handle the loss of positioning that occurs at commit or

backout for unpaired requests (an unpaired request consists of a GET UPD
not followed by a PUT UPD).

© Copyright IBM Corp. 2003, 2013 25

– Examine each job to ensure that it handles any new return and reason codes
from VSAM appropriately.

– Introduce restart logic to prevent duplicate or missing updates in the event of
a rerun.

v Update your recovery procedures to make use of forward recovery.

Coupling-facility planning
VSAM record-level sharing and DFSMStvs use coupling facilities to hold cached
copies of individual records and to hold lock and log structures. Planning the use
of coupling facilities is important to ensure that you meet your availability and
performance objectives. This topic introduces some of the coupling-facility
functions and provide information to help you decide the type and number of
coupling facilities and how much storage you need to implement DFSMStvs.

Related reading: For more information about coupling facilities, see z/OS MVS
Setting Up a Sysplex.

Coupling facilities
A coupling facility provides locking, caching, and list services between
coupling-capable z/OS processors. Coupling-facility links connect a coupling
facility to the coupling-capable processors. The coupling-facility control code
(CFCC) provides the coupling-facility functions. The CFCC can run in a processor
resource/systems manager (PR/SM™) logical partition (LP) in the following
processors
v IBM Enterprise System/9000 (ES/9000) 9021 711-based processor
v An IBM S/390 Parallel Enterprise Server 9672 (IBM 9672)
v An IBM S/390® coupling facility 9674 (IBM 9674)

You can use the Integrated Coupling Migration Facility (ICMF) for migration and
for testing software that requires a coupling facility. ICMF provides the CFCC
functions without coupling-facility links and is limited to z/OS systems that run in
an LP on a single physical system. ICMF is available on the 9021 711-based
processors, 9121 511-based processors, and IBM 9672s.

A coupling facility enables software on different systems in the Parallel Sysplex to
share data with the assurance that the data will not be corrupted and will be
consistent among all sharing users. To share data, systems must have connectivity
to the coupling facility through coupling-facility links.

DFSMStvs is one of many exploiters of coupling facilities. You might already have
coupling facilities in use for one or more of these functions:
v Enhanced catalog sharing
v Tape drive sharing
v JES2 checkpoint
v Operator log
v Global resource serialization
v VTAM® generic resources
v SmartPipes
v Resource recovery services (RRS)
v CICS logs, temporary storage, and data tables
v DB2 locks and buffer pools

Planning for DFSMStvs

26 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

v IMS short message queue, locks and buffer pools
v VSAM record-level sharing (RLS) for caching and locking

Requirement: You must have at least CF level 2 microcode installed before using
DFSMStvs.

Number of coupling facilities
A subsystem builds a structure in one coupling facility. If that coupling facility
should fail, the subsystem is notified. Most subsystems attempt to rebuild the
structure in an another coupling facility. A subsystem running on any z/OS system
in the Parallel Sysplex that attempts a rebuild will rebuild the structure from
information kept in processor storage.

Recommendation: For maximum availability, set up at least two coupling facilities
in your Parallel Sysplex, with global connectivity to the multiple z/OS images in a
multiple-processor environment. One is not enough because a coupling facility
could fail, or maintenance could require the temporary removal of a coupling
facility from the Parallel Sysplex. Both coupling facilities should have enough
processor power and storage resources to run as the only coupling facility, if
necessary.

While it is possible to set a coupling facility up as an LPAR, this is not the ideal
configuration. If you set the coupling facility up that way and the machine goes
down, you lose both the coupling facility and the SMSVSAM server that was
running in another LPAR. If there is only one coupling facility, this results in the
loss of the lock structure as well as the SMSVSAM server. Any data sets it might
have been accessing are now in lost locks throughout the Parallel Sysplex until the
SMSVSAM image comes back up and does lost locks recovery.

Related reading: For information about non-RLS access to data sets that have lost
locks, see Appendix B, “Accessing data sets that have retained locks or lost locks,”
on page 119.

Standalone or internal coupling facility
You can configure the coupling facilities both in the processor where z/OS images
run and in a special coupling-facility processor like the IBM 9674 S/390 coupling
facility. The former is called an Internal coupling facility, and the latter is called a
standalone coupling facility. A

You can configure an internal coupling facility (ICF) in either of these processors:
v IBM Enterprise System/9000 (ES/9000) 9021 711-based processor
v IBM S/390 Parallel Enterprise Server 9672 (IBM 9672)

The 9672 G3 servers (or later models) support an ICF, in which one of the
central processors is used only to run CFCC, the licensed internal code of the
coupling facility.

Both z/OS images and a coupling facility could fail at the same time in the event
of a processor complex failure. In this situation, some structures cannot be rebuilt
in another coupling facility. In general, an internal coupling facility should be used
as backup for a production coupling facility if you do not also use coupling-facility
duplexing.

A typical standalone coupling facility is an IBM 9674 S/390 coupling facility. If an
IBM 9672 in which CFCC runs does not also have a z/OS image from the same

Planning for DFSMStvs

Chapter 2. Planning for DFSMStvs 27

Parallel Sysplex, this internal coupling facility has the same availability as a
standalone coupling facility, which gives you the highest availability. At least one
of the configured coupling facilities should be standalone.

If you use DFSMStvs under one z/OS system or in a one-processor environment,
one internal coupling facility is sufficient. But, if you have a multiple-processor
environment, two standalone coupling facilities are recommended for maximum
availability. At a minimum, you should have at least one internal coupling facility
and one standalone coupling facility.

Volatile or nonvolatile coupling facility
A volatile coupling facility is one in which interruption of the power supply causes
loss of the memory contents. You can make a standalone coupling facility
nonvolatile by adding to it an uninterruptible power supply, which provides
power during external power failures. As an alternative, you can use a battery
backup, which uses internal batteries to provide power during an outage.

The batteries last for a few minutes if the coupling facility continues to run. You
can use the internal batteries to supply power for the power-saver state, in which
they keep only the memory active during a power outage.

In general, you should put lock structures and list structures for the system logger
in nonvolatile coupling facilities.

Contents of a coupling facility
A coupling facility stores information in structures. The structure types are cache,
list, and lock, each providing a specific set of services to the exploiting system
component. Coupling-facility users such as CICS TS or SMSVSAM, or authorized
programs, use coupling-facility storage to implement data sharing and high-speed
serialization. This topic discusses the structures that VSAM RLS and DFSMStvs
use.

Lock structure for VSAM sharing
In a Parallel Sysplex, you need only one lock structure for VSAM RLS because
only one VSAM sharing group is permitted.

Recommendation: For high-availability environments, use a nonvolatile coupling
facility for the lock structure.

If you maintain the lock structure in a volatile coupling facility, a power outage
could cause a failure and loss of information in the coupling-facility lock structure.
Should that happen, all outstanding recovery (CICS restart and backout) for any
affected data sets must be completed before new sharing work is allowed for those
data sets.

The name of the coupling-facility lock structure is IGWLOCK00.

Related reading: For more information about the IGWLOCK00 lock structure, see
z/OS DFSMSdfp Storage Administration.

Cache structures for VSAM sharing
The coupling-facility cache structures provide a level of storage between local
memory and DASD cache. They are also used as a system buffer pool for VSAM
RLS data with cross-invalidation being done when data is modified on other

Planning for DFSMStvs

28 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

systems. Each coupling-facility cache structure is contained in a single coupling
facility. You might have multiple coupling facilities and multiple coupling-facility
cache structures.

List structures for the system logger
The system logger writes log data to log streams. The log streams are put in list
structures. You can design both a single structure and multiple structures. CICS,
SMSVSAM, and RRS use log streams to write logs.

Related reading: For more information about log streams, see Chapter 4, “Setting
up DFSMStvs logging,” on page 47.

Coupling-facility size
The size of a coupling facility is defined as the total amount of storage it uses.
Total storage includes both the control areas that the coupling-facility control code
(CFCC) requires and data areas that applications use. The coupling-facility
allocation rules and coupling-facility allocation-increment size, a function of the
level of CFCC, affect the size of the coupling facility.

The storage in a coupling facility is divided into distinct objects called structures.
The majority of coupling-facility storage is used for structures. The Coupling
Facility Resource Management (CFRM) policy defines these structures.

To determine the size of the system logs, look at the individual batch jobs that you
plan to use with DFSMStvs and estimate how much space they are likely to
require. Determine how many batch jobs there are and how much data they are
likely to update per transaction.

An estimate of the amount of storage that you need in a coupling facility for
DFSMStvs should include an estimate of the space required for the primary and
secondary system logs (undo log and shunt log) and the additional space required
in the log of logs and forward recovery logs. The undo log and shunt log need to
be large enough for backout logging from all the batch jobs that you plan to use
with DFSMStvs, based on how much data that the jobs are likely to update for
each transaction. You also need to make the log of logs and forward recovery logs
large enough to account for the extra activity from the batch jobs; if these logs
already exist, you need to increase their sizes. These logs might need to be twice as
large if the batch activity would be roughly equivalent to CICS activity and you do
not plan to change your frequency of backups or of clearing out space in the
forward recovery logs.

This topic discusses sizing of the structures that DFSMStvs uses:
v The IGWLOCK00 lock structure
v Coupling-facility ache structures
v List structures for log streams

Related reading: For information about other structures, see Parallel Sysplex
Configuration, Volume 2: Cookbook.

Lock-structure sizing
You define the coupling facility lock structure, IGWLOCK00, in the CFRM policy,
using the IXCMIAPU utility. The following formula is for estimating the size of
IGWLOCK00 (in megabytes) for VSAM RLS. You can use this formula and then
add additional space for the extra locking activity by batch jobs that use
DFSMStvs.

Planning for DFSMStvs

Chapter 2. Planning for DFSMStvs 29

10 MB * number_of_systems * lock_entry_size

In the formula, the variables have these values:

number_of_systems
Is the number of systems in the Parallel Sysplex.

lock_entry_size
Is the size of each lock entry. This value depends on the MAXSYSTEM
value that is specified to the IXCL1DSU couple-data-set format utility.

Use the information in Table 1 to determine the actual lock-entry size for different
MAXSYSTEM values.

Table 1. Effect of MAXSYSTEM value on lock-table-entry size

MAXSYSTEM value Lock-entry size

7 or fewer 2 bytes

> = 8 and < 24 4 bytes

> = 24 and < 56 8 bytes

Table 2 shows some sample lock-allocation estimates.

Table 2. Lock-allocation estimates

Number of systems Total lock-structure size
(MB)

< = 7 2 40

4 80

default = 8 2 80

4 160

8 320

32 2 160

4 320

8 320

Use these estimates as rough initial values. Other factors influence the size of the
lock structure, such as false contentions and retained locks.

Related reading:

v For more information about the sizing of the lock structure, see z/OS DFSMSdfp
Storage Administration.

v For more information about the MAXSYSTEM parameter, see z/OS MVS Setting
Up a Sysplex.

Cache-structure sizing
You need to define cache structures large enough for the activity of VSAM RLS as
well as the additional activity of batch jobs that use DFSMStvs.

For the best performance with VSAM RLS buffering without DFSMStvs, the total
of all of the coupling-facility cache-structure sizes that you define (the
coupling-facility cache) should be the total of the VSAM local-shared-resource

Planning for DFSMStvs

30 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

(LSR) buffer-pool sizes used in non-RLS mode. The VSAM LSR buffer-pool size is
the sum of the LSR pool size and if used, the corresponding Hiperspace™ pool
size.

You can run VSAM RLS with less coupling-facility cache storage than this, but the
coupling-facility cache must be large enough for the coupling-facility cache
directories to contain an entry for each of the VSAM RLS local buffers across all
instances of the RLS server. Otherwise, the VSAM RLS local buffers become falsely
not valid and must be refreshed. To minimize false invalidation, the size of the
coupling-facility cache structure should be at least one-tenth of the sum of the local
buffer-pool sizes.

Performance should improve when the coupling-facility cache is larger than the
sum of the local VSAM LSR buffer pool sizes. When the coupling-facility cache is
smaller, performance depends on the dynamics of the data references among the
systems involved. In some cases, you might want to consider increasing the size of
a very small (2 MB to 10 MB) coupling-facility cache.

Related reading: For more information about CICS TS structures, see
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp .

List-structure sizing
The size of list structures is calculated by determining the sum of the log stream
sizes. To estimate the total size of the log streams, see “Log stream sizing” on page
36

Coupling facility links
Three kinds of links are available between coupling facilities and z/OS:
v Single-mode Intersystem Coupling (ISC) link

This is an old kind of link with a data-transfer speed of 100 MB/second. If the
distance between the coupling facility and the z/OS processor complex is more
than 7 meters or your processor is not a 9672 G5 or later processor, you must
use this kind of link.

v Integrated Cluster Bus (ICB)
This kind of link is supported by 9672 G5 and later processors and by z/OS
Version 1 Release 3 and later systems. The data transfer speed is 280
MB/second. You can use this kind of link, however, only if the distance between
the coupling facility and the z/OS processor complex is less than 7 meters. If
your installation meets these requirements, you should use ICB links.

v Internal Coupling Channel (ICC)
This is not a real physical link. If you run both the coupling facility and z/OS in
the same processor complex, you can use an ICC to connect the coupling facility
and z/OS to get maximum performance. An ICC is supported by 9672 G5 and
later processors onwards and by z/OS Version 1 Release 3 and later systems.

Processor-capacity planning
Before you can use DFSMStvs functions, you must have implemented a Parallel
Sysplex and VSAM record-level sharing (RLS). In the same way that it is difficult
to estimate the resources needed by coupling facilities, it is difficult to estimate the
additional processor use for DFSMStvs applications.

Planning for DFSMStvs

Chapter 2. Planning for DFSMStvs 31

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp

These applications will, however, cause a noticeable increase in processor use. If
you have spare capacity at the time you expect to run these jobs, this might not be
an issue.

Software-configuration planning
If you have multiple z/OS images in a Parallel Sysplex, you can get
near-continuous availability of DFSMStvs. If one z/OS system fails, the others can
continue to run. When you stop one of the systems for hardware or software
maintenance, you do not need to stop all the systems. If you have an environment
with multiple z/OS JES2 systems, you should use JES2 Multiple Access Spool
(JES/MAS). If you use JES2 MAS, batch jobs can be executed on any of the
systems. In the case of a system failure, ARM supports started task and job restart
on the other systems.

If your current software configuration has only a single z/OS image, you can still
use DFSMStvs if you are not running it in LOCAL mode and the system is set up
as a single-system sysplex. You can share VSAM data sets between CICS systems
and batch programs, or among batch programs. By using sharing, you can aim for
24-hour availability for your online CICS system, and you can minimize or even
eliminate your batch window. For batch jobs alone, DFSMStvs offers you the
ability to run jobs in parallel against the same data.

The following configuration rules apply to DFSMStvs:
v The z/OS systems that share VSAM data sets must be in the same Parallel

Sysplex and in the same SMSplex.
These z/OS systems must have connectivity to the same coupling facilities,
Sysplex CDSs, SMS ACDS, SMS COMMDS, and CFRM CDSs.

v Each z/OS system can have only one SMSVSAM address space.
v You can have only one sharing group in one Parallel Sysplex because the names

of the lock structures are fixed.

System-logger planning
The system logger provides a sysplex-wide logging mechanism for VSAM, CICS,
and RRS. An integrated MVS function designed to support system and subsystem
components in a Parallel Sysplex, the system logger implements a set of services
that enables applications to write, browse, and delete log data. The system logger
exploits coupling facility technology.

You can use the system logger services to merge data from multiple instances of an
application, including from different systems across a Parallel Sysplex. The system
logger significantly reduces the complexity of managing multiple logs (which
would otherwise be required) and allows a single-system view of the log data in a
Parallel Sysplex environment.

The system logger gives subsystems the following functions:
v Real-time merged logs
v Easy management of logs
v Continuous availability of logs

Subsystems that use these functions do not need separate log archival and log
merge procedures.

Planning for DFSMStvs

32 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Logging flow overview
Log entries that must be merged are written to the same log stream. The logging
flow is as follows:
1. Each subsystem (CICS, SMSVSAM, or RRS) sends log entries to the system

logger, IXGLOGR.
2. The system logger writes log entries, not only to log streams in the coupling

facility, but also to the local buffer in the IXGLOGR data space.
3. If you set up DASD staging data sets (optional), the system logger also writes

log entries to the DASD staging data sets.
4. If the utilization reaches the HIOFFLOAD value set in your LOGR policy, the

system logger moves the log entries to DASD log data sets. This process is
called offloading.

5. If a DASD log data set becomes full, the system logger allocates a new one.
6. When offloading is complete, the system logger deletes the offloaded log

entries from the coupling facility, from the local buffers in the IXGLOGR data
space, and from the DASD staging data sets.

Log streams
The log data area that subsystems use to write log entries is called a log stream.
DFSMStvs, SMSVSAM, RRS, and CICS use log streams to write logs.

Log streams for DFSMStvs
DFSMStvs uses two log streams for backward recovery: the primary system log
and the secondary system log. Each DFSMStvs instance must have both log
streams. They cannot be shared between different instances of DFSMStvs.

Primary system log: The primary system log provides a separate backout log
stream for each instance of DFSMStvs, called the undo log. The name of the undo
log must be as follows:
IGTWTVnnn.IGWLOG.SYSLOG

In the name, nnn completes the DFSMStvs instance name.

The undo log must be allocated before you start DFSMStvs. This log stream is
connected during DFSMStvs initialization and disconnected when the DFSMStvs
instance ends.

A DFSMStvs instance logs its backout records in its undo log stream. These undo
log records are used to back out the uncommitted changes made by a unit of
recovery and are therefore written before the data is changed. An application can
initiate backout, or it can occur as a result of an error, such as an abnormal end of
the application.

Secondary system log: The secondary system log stream for DFSMStvs is called
the shunt log. The name of the shunt log must be as follows:
IGTWTVnnn.IGWSHUNT.SHUNTLOG

In the name, nnn completes the DFSMStvs instance name.

The shunt log must be allocated before you start DFSMStvs. This log stream is
connected during DFSMStvs initialization and disconnected when the DFSMStvs
instance ends.

Planning for DFSMStvs

Chapter 2. Planning for DFSMStvs 33

This log stream is used for the following units of recovery:
v Units of recovery that DFSMStvs is unable to complete (for example, due to an

I/O error or unavailability of a resource, such as a volume or a cache)
v Long-running units of recovery. The log entries are moved to the shunt log.

RRS log streams
RRS uses five log streams that are shared by all the systems in a sysplex. Every
MVS image with RRS running needs access to the coupling facility and the DASD
on which the system logger log streams are defined.

Related reading: For information about the tasks you need to perform related to
logging, see z/OS MVS Setting Up a Sysplex.

Resource manager data log: This log includes the information about the resource
managers using RRS services.

Restart log: This log includes the information about incomplete units of recovery
needed during restart. This information enables a functioning RRS instance to take
over incomplete work left over from an RRS instance that failed.

Main UR state log: This log includes the state of active units of recovery. RRS
periodically moves this information into the RRS delayed unit-of-recovery state log
when unit-of-recovery completion is delayed.

Delayed UR state log: This log includes the state of active units of recovery,
when unit-of-recovery completion is delayed.

Archive log: This log includes the information about completed units of recovery.
This log is optional but recommended.

Log streams for forward recovery
Forward recovery is optional. If you want to use it, you need two sets of log
streams: forward recovery logs and a log of logs.

Forward recovery logs: The forward recovery logs compose a set of user-defined
log streams that is connected when the first data set that uses it is opened and
disconnected when the last data set that uses it is closed.

These log streams are shared across all instances of DFSMStvs. The forward
recovery log stream used for recording the redo records for a data set is specified
by the log stream ID attribute of the data set in the catalog entry. You can define
the log stream ID at a data set level. The minimum number of log streams is one,
and the maximum number is the same as the number of forward recoverable data
sets. You can determine the number of forward recovery log streams and assign
the log streams to the recoverable data sets.

Because redo log records contain changed images of records, they are written after
the changed records are written to the data set. One exception to this is the case
where sequential I/O is used and the records are buffered prior to being written
out. The redo log stream might also contain compensating records, which are
written during backout processing to indicate that records were restored to their
original state.

DFSMStvs and CICS write to forward recovery log streams, and forward recovery
programs, such as CICSVR, use them.

Planning for DFSMStvs

34 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Log of logs: This log stream is used only if one is specified in the IGDSMSxx
member of SYS1.PARMLIB or the CICS definition. Definition of the log of logs is
optional. If you define a log of logs, it must be present; otherwise, DFSMStvs jobs
would fail. It contains copies of the tie-up records and file-close records written to
forward recovery logs and is used by forward recovery utilities, such as CICSVR,
to automate the forward recovery process.

CICS log streams
Each CICS region uses a system log, which can be defined as DUMMY if recovery
action is not required for the region. A DUMMY system log prevents warm
restarts. If CICS uses only nonrecoverable data sets, this system log is optional.
However, if CICS uses recoverable data sets, it is mandatory, because the system
log is used for dynamic transaction backout.

The CICS system log is a single logical stream made up of two separately defined
log streams: the primary system log and the secondary system log. If CICS uses
recoverable data sets, one primary system log and one secondary system log are
needed for each CICS instance.

CICS and DFSMStvs should share the log of logs so that forward recovery can be
done correctly.

Structures and log streams
You can put multiple log streams in one list structure, thereby facilitating the
management of structures.

Recommendation: Put the same kinds of log streams in the same structure.

Consider the following guidelines for structures and log streams:
v All data sets used by the same job should use the same log stream to reduce the

number of log streams written to at a sync point.
v Consider sharing a forward recovery log stream between data sets that have

similar security requirements and a similar backup frequency.
v Avoid mixing data sets that have a high number of updates with data sets with

a low number of updates to avoid reading excessive amounts of log data when
recovering a low update data set.

v Do not place all your high-update data sets in one log stream as this might
exceed the throughput that a single log stream can provide.

For example, in a cloned CICS environment, all the primary system logs of the
application owning regions have the same attributes, so they can be put in the
same structures. In contrast, the primary system log of an application owning
region and the primary system log of a TOR have completely different
characteristics, so they should not be put in the same structure.

Recommendation: For DFSMStvs log streams, do not put the primary system log
and the secondary system log in the same structure. You can put all primary
system logs in the same structures. Similarly, you can put all secondary system
logs in the same structures.

For RRS log streams, the main UR state log, the delayed UR state log, and the
archive log can be put in one structure. The resource-manager data log and the
restart log should be put in another structure.

Planning for DFSMStvs

Chapter 2. Planning for DFSMStvs 35

DASD-only log streams
A DASD-only log stream has a single-system scope; only one system at a time can
connect to a DASD-only log stream. Multiple applications from the same system
can, however, simultaneously connect to a DASD-only log stream. No coupling
facility is needed for a DASD-only log stream.

When a system logger application writes a log block to a DASD-only log stream,
the system logger writes it first to the local storage buffers for the system and
duplexes it to the DASD staging data set associated with the log stream. When the
DASD staging data set's space allocated for the log stream reaches the
installation-defined threshold, the system logger offloads the log blocks from its
local storage buffers to VSAM linear data sets. From a user's point of view, the
actual location of the log data in the log stream is transparent.

Both a DASD-only log stream and a coupling facility log stream can have data in
multiple DASD log data sets; as a log stream fills log data sets on DASD, the
system logger automatically allocates new ones for the log stream.

If you use DFSMStvs in a single-z/OS environment, you can use DASD-only log
streams for all log streams. Even if you run in a multiple z/OS environment, the
following log streams can be placed in DASD-only log streams because they are
not shared:
v Primary system log for DFSMStvs
v Secondary system log for DFSMStvs
v Primary system log for CICS
v Secondary system log for CICS

If you use DASD-only log streams, performance problems can easily occur. In
general, you should use the coupling facility for all production log streams because
you must set up the coupling facility for DFSMStvs locking anyway.

Recommendation: Do not use DASD-only log streams for the log of logs or for
forward recovery logs in a multisystem sysplex environment because they cannot
be shared. The first system that opened a data set would be able to use the logs,
but any subsequent opens on other systems would fail because they could not
connect to the forward recovery logs.

Log stream sizing
To decide how much storage you need in a coupling facility, you must estimate the
size of the log streams that you will store in it. Estimate a size for each of the logs
that DFSMStvs uses:
v Primary system log for SMSVSAM
v Secondary system log for SMSVSAM
v Forward recovery logs
v Log of logs
v Log streams for RRS
v Primary system log for CICS
v Secondary system log for CICS

You can use the DFHLSCU utility, which CICS supplies, to help calculate the
amount of coupling-facility space that you need and the average buffer size of
your log streams.

Planning for DFSMStvs

36 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Related reading:

v For information about how to use the DFHLSCU utility, see
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp

v For more information about estimating the size of log streams, see Parallel
Sysplex Configuration, Volume 2: Cookbook.

DASD staging data sets
In the system logger environment, log entries are written to both the coupling
facility and the IXGLOGR data space before offloading. So, if a coupling facility or
MVS failure occurs, log data is not lost. However, if both the coupling facility and
MVS fail at the same time, log data is lost because the coupling facility and the
data space are not permanent media.

Recommendation: Do not set up your sysplex with two LPARs, your MVS image
and your coupling facility, on one machine.

If you want to protect against this double failure, you can keep the log data on
disk in DASD staging data sets. The performance for log writes can degrade,
however, if you choose DASD staging data sets, which IBM does

Recommendation: Do not use DASD staging sets for DFSMStvs logs except to
protect against a double failure of MVS and the coupling facility.

If you decide to use DASD staging data sets, you need one per log stream. A
DASD staging data set is a VSAM linear data set, and it should be managed by
SMS. The following recommendations apply to defining log streams:
v Define STG_DUPLEX(YES) and DUPLEXMODE(COND) for log streams that are

associated with the system log. This ensures that the system logger
automatically duplexes to DASD staging data sets if it detects that the coupling
facility is not failure independent.

v If you are operating with only a single coupling facility, define
STG_DUPLEX(YES) and DUPLEXMODE(UNCOND) for log streams that are
associated with the system log.

v Define STG_DUPLEX(YES) for log streams that are associated with forward
recovery logs. If you do not and a failure causes loss of data from the log
stream, you would need to take a new image copy of the associated VSAM data
sets. There would be a consequent period of time until this was complete when
the data sets would not be fully protected.

v Define each DASD staging data set to be at least the same size as the associated
log stream's share of the coupling facility, but round the average block size up to
4 K.

DASD log data sets
The system logger writes log data to log streams in a coupling facility and to its
data space. When the utilization of a log stream reaches the value of
HIGHOFFLOAD that you have defined in your LOGR policy, the system logger
will move the log data to disk data sets and delete the log data from the log
stream. These data sets, called DASD log data sets, are allocated by the system
logger as VSAM linear data sets and should be managed by SMS.

The recommended value for HIGHOFFLOAD is 85 percent for the primary system
log.

Planning for DFSMStvs

Chapter 2. Planning for DFSMStvs 37

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp

Log trimming
DFSMStvs deletes most of the log stream entries in the undo log and shunt log
automatically. For example, SMSVSAM periodically requests that the system logger
delete old entries in the system log. This activity is called log trimming.

Log trimming does not apply to the log of logs or to any forward recovery log.
Your installation is responsible for the maintenance of these logs.

DFSMStvs deletes entries that were needed for the backout of a unit of recovery
that has now completed. Trimming keeps the size of the log down and makes it
more likely that offloading of the log is not necessary.

Excessively large units of recovery might defeat the process of log trimming. Units
of recovery might become excessively large if you run a batch job that does not
issue commit or backout calls. Such programs would cause performance problems
because they could force log offloads that would otherwise be unnecessary. They
could also interfere with your online applications by holding a large number of
locks.

Recommendation: Modify your batch jobs to issue periodic sync points before you
convert them to use DFSMStvs.

Sizing
In general, the primary and secondary system logs should not be offloaded
because you need high performance access. So if you have enough storage in the
coupling facility for the system logger log streams, you do not need to spend much
time estimating the capacity needed for DASD log data sets.

In contrast, you should estimate the capacity for DASD log data sets needed by
forward recovery log streams and the RRS archive log stream because you will
keep the log information until you think it is no longer needed to perform a
forward recovery, probably because you have taken one or more backup copies.
When you decide that you no longer need the forward recovery log entries, you
need to archive or delete them yourself.

For example, if you take a backup copy of your VSAM data sets once a week, you
might choose to delete the forward recovery log stream in DASD log data sets one
week after taking the backup. In this case, you would estimate the capacity needed
by the DASD log data sets for your redo logs for one week.

VSAM operations planning
DFSMStvs gives you sharing and forward recovery logging for VSAM data sets. To
take advantage of these, you should review your backup and recovery procedures
and your operational procedures for jobs using DFSMStvs.

Recovery procedures
DFSMStvs gives you the ability to do both forward recovery and backward
recovery using a separate program such as CICSVR. You can either select both of
them or just backward recovery at a VSAM data set level.

If you select forward recovery, the cost of running applications increases because of
the additional logging activity. You also need operational procedures for log
management and forward recovery.

Planning for DFSMStvs

38 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Forward recovery operation planning
If you want to use forward recovery, you need to plan the following tasks:
v Regular operational tasks

– Backup of VSAM data sets
– Archive of redo logs
– Eventual deletion of redo logs

v VSAM recovery tasks
– Reallocate the VSAM data set
– Restore the backup
– Use a product such as CICSVR to apply the forward recovery logs.

Basically, backups of VSAM data sets are not used on their own. You perform
forward recovery to return the data sets right up to the point of a failure.

Reorganization
If you need to reorganize your VSAM data sets to remove the effects of control
interval and control area splits or to increase the space allocated, you will still need
to perform these tasks while nobody else is using the data sets.

Automatic Restart Manager planning
z/OS includes a component known as the Automatic Restart Manager (ARM).
ARM offers automated restart capabilities that are attractive in a CICS TS
environment.

ARM is a recovery function that provides improved availability for batch jobs and
started tasks by automatically restarting them after they unexpectedly end. In a
Parallel Sysplex, ARM provides additional benefit through its ability to restart
registered clients on another MVS system image in the Parallel Sysplex if the MVS
system image they were originally using fails. Transaction managers, resource
managers, and restartable subsystems can be restarted automatically. Any system
that require automatic restart must register with ARM. Systems affected by a
failure are usually restarted on the same MVS system image, or on a different one
if the MVS system image itself has failed.

The cost of computing, productivity, and availability are improved because shared
resources and transactions in progress can be recovered and lost function and
services restored. The following points apply to the use of ARM:
v ARM provides job and started task recovery. Transaction or database recovery is

the responsibility of the restarted applications.
v ARM does not start the applications initially (that is, at the first IPL or

subsequent IPLs after failures). This is the function of automation or production
control products. Interface points are provided through exits, the Event
Notification Facility (ENF), and macros.

v The MVS system image or Parallel Sysplex must have sufficient spare capacity to
guarantee a successful restart.

v Elements that are on an MVS system image that fails are restarted on another
MVS system image.

ARM support is part of the overall task of planning for and installing Parallel
Sysplex support.

Planning for DFSMStvs

Chapter 2. Planning for DFSMStvs 39

Related reading: For more information about ARM, see z/OS MVS Setting Up a
Sysplex.

DFSMStvs and ARM
In case of an SMSVSAM failure or a CICS failure, locked records within some
VSAM data sets might not be accessible because of retained locks. This lack of
accessibility could prevent many transactions and jobs from being restarted. To
maintain high availability, you should resolve the retained locks as soon as
possible. They will be resolved by a restart of CICS TS and SMSVSAM. The
SMSVSAM address space will restart automatically. It would be helpful to use
ARM for CICS automatic restart.

If the MVS system image fails, ARM restarts a peer recovery instance of DFSMStvs
on another MVS system image.

If the SMSVSAM address space fails, all in-flight units of recovery that were using
the DFSMStvs instance at the time of failure are backed out. The backouts for these
units of recovery are not performed at the time of the failure by the failed
DFSMStvs instance. The backouts are performed either at the time of the failure or
later by a peer recovery instance of DFSMStvs.

However, in the case of a z/OS system failure, restart can take a long time in
comparison, and the process is not automatic. So in-flight units of recovery can
remain for a long time. To prevent this situation, DFSMStvs provides a function
known as peer recovery.

When peer recovery occurs, another SMSVSAM instance in the sysplex (a peer)
performs the backout for in-flight units of recovery that were being processed by
the SMSVSAM address space that failed. Peer recovery will start automatically if
there is an ARM policy (created using IXCMIAPU) which includes DFSMStvs and
any other resource managers which might be involved in a unit of recovery in a
restart group.

If you do not use ARM, you should change your operational procedures to issue
the following command in another system as soon as possible in case of a system
failure:
VARY SMS,TRANSVSAM(tvsname),PEERRECOVERY,ACTIVE

Installation of DFSMStvs
For information about enabling DFSMStvs on your z/OS system, see "Installation
Information" in the ZOS V1R4 PSP upgrade, subsets ZOSGEN and DFSMS.

Planning for DFSMStvs

40 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Chapter 3. Configuring the DFSMStvs environment and
defining resources

Before your applications can use DFSMStvs, you need to set up your environment
and define resources for DFSMStvs. You can use these list to help plan the tasks
that you need to complete.
v Determine which applications need the ability to update recoverable data sets

concurrently with CICS usage of those data sets.
Determine which of them can use DFSMStvs support.

v Determine the sizes and number of coupling-facility cache structures and their
connectivity.

v Determine the size of the coupling-facility lock structure.
With the use of DFSMStvs, batch jobs update recoverable data sets while CICS is
also using them. This might result in an increase in locking activity.

v Determine the requirements for the SMS configuration, including storage-class
specifications, specification of coupling-facility cache structures, connectivity, and
modifications to the ACS routines.
If you have already established storage classes for VSAM RLS and
coupling-facility cache structures, it might be possible to use those for both
VSAM RLS and DFSMStvs.

This information covers these topics:
v “Defining your Parallel Sysplex environment” on page 42
v “Setting up the logging environment” on page 42
v “Using coupling facilities” on page 43
v “Defining staging data sets” on page 44
v “Specifying SYS1.PARMLIB parameters for DFSMStvs” on page 45

In order to enable DFSMStvs on your z/OS system, you need to:
1. Contact IBM to obtain a license for DFSMStvs
2. Update SYS1.PARMLIB member IFAPRDxx with the following statements:

PRODUCT OWNER(’IBM CORP’)
NAME(’z/OS’)
ID(5650-ZOS)
VERSION(*) RELEASE(*) MOD(*)
FEATURENAME(DFSMSTVS)
STATE(ENABLED)

and issue the MVS command: SET PROD to enable this member
3. Configure the DFSMStvs environment including the SYS1.PARMLIB parameters

as explained in this chapter
4. Restart SMSVSAM.

For information about enabling DFSMStvs on your z/OS system, see "Installation
Information" in the ZOSV1R4 PSP upgrade, subsets ZOSGEN and DFSMS. For
migration considerations, see the migration chapter of z/OS DFSMStvs
Administration Guide.

© Copyright IBM Corp. 2003, 2013 41

Defining your Parallel Sysplex environment
Two web-based assistants are available to ease your migration to a Parallel Sysplex
environment.
v The z/OS Parallel Sysplex Customization Wizard is for system programmers

who plan to migrate to a Parallel Sysplex environment for the first time. You can
also use it to verify your Parallel Sysplex setup.

v The Coupling Facility Structure Sizer Tool simplifies the task of estimating the
amount of storage you need for the coupling-facility structures in your
installation.

You can find both assistants on the Parallel Sysplex Web site:

http://www-1.ibm.com/servers/eserver/zseries/pso/

Setting up the logging environment
This topic outlines the tasks that you need to complete to set up the DFSMStvs
logging environment correctly. These steps are in the order in which you should
complete them. You might have completed some of the tasks in your planning
phase.
1. Plan your DFSMStvs logging environment by gathering this information:

a. The number of DFSMStvs instances in your environment
b. The number of forward recovery logs that you require
c. The expected average buffer sizes and transaction rates in your environment
d. The number of coupling-facility structures that you require and their sizes

2. Ensure that you are authorized to use the MVS IXCMIAPU utility. This utility
enables you to define, update, and delete entries in the LOGR couple data set.

3. Format and define the LOGR couple data set. You need to know how many log
streams and structures that you are likely to need. Each DFSMStvs instance
needs two system log streams. Optionally, you might want to have a log of logs
and a number of forward recovery log streams.
Perform these steps:
a. Use the MVS IXCMIAPU utility to create the LOGR couple data set.
b. Define the LOGR couple data set to the sysplex and make it available.

4. Define coupling-facility structures in the CFRM policy couple data set.
5. Activate the LOGR subsystem.
6. Using RACF®, a component of the Security Server for z/OS, define RACF

profiles in LOGSTRM classes so that DFSMStvs can access log streams.
7. Use the MVS IXCMIAPU utility to add information about log streams, log

stream models, and coupling-facility structures to the LOGR couple data set.

Because DFSMStvs writes to forward recovery log streams, the space required for
these log streams might increase. Similarly, because DFSMStvs writes to the
primary and secondary system log streams (undo and shunt log streams), the
demand increases for space in the coupling-facility structure. DFSMStvs moves
long-running transactions and transactions that become shunted (due to backout
failure) from the undo log stream to the shunt log stream.

Configuring the environment and defining resources for DFSMStvs

42 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

The size of the coupling-facility structure for the primary log stream can affect
performance. If the structure is too small, the system logger moves log buffers off
to DASD spill data sets. While the system logger is moving log buffers, it is unable
to service write requests from DFSMStvs.

Chapter 4, “Setting up DFSMStvs logging,” on page 47 describes how to set up
DFSMStvs logging.

Related reading: For more information about the utility, see z/OS MVS Setting Up a
Sysplex.

Using coupling facilities
To plan and use a coupling facility configuration requires attention to the storage
volatility of the coupling facility where the structures reside. The advantage of a
nonvolatile coupling facility is that, if you lose power to a coupling facility that is
configured to be nonvolatile, the coupling facility enters power save mode. This
saves the data contained in the structures.

The safest environment is one in which there are two or more nonvolatile coupling
facilities that are failure-independent from any of the exploiting MVS images, using
dedicated processor resources.

One dedicated coupling facility plus a coupling facility LPAR provides the next
safest environment for normal logging and lock-structure use. This environment
has the same advantages of rebuilding with minimal impact to DFSMStvs instances
that are running. Furthermore, MVS detects that the LPAR coupling facility is not
in a failure-independent domain and causes the system logger to write log stream
data to staging data sets for extra security.

The DFSMS cache structures are store-through caches, and no changed data resides
in them. Store-through caching means that a user writes changed data to the cache
structure and to permanent storage at the same time and under the same
serialization. This way, the data in the cache structure always matches the data in
permanent storage.

Because there is no chance of data loss, the DFSMS cache structures do not need to
be in a nonvolatile coupling facility. The DFSMS lock structure has persistent
connections and is a persistent structure. Data loss in the lock table requires a
double failure. For example, a double failure occurs at the loss of the
coupling-facility structure and the failure of one system in the sysplex at the same
time. VSAM RLS also has a sharing-control data set to protect the integrity of the
data even if there is a double failure. If this protection is not enough, the DFSMS
lock structure can be placed in a nonvolatile coupling facility.

DFSMStvs caches all of its data in DFSMS cache structures that you define. The
DFSMS lock structure and the system logger do all the logging for DFSMStvs. The
IGWLOCK00 coupling-facility lock structure controls all VSAM RLS and DFSMStvs
locks. DFSMStvs defines the names of its undo and shunt log streams, and you
define the DFSMStvs log of logs and forward recovery log streams. RRS, which
must be active for DFSMStvs to function, needs five log streams to be defined.

If you run with a single coupling facility, its failure would cause the system logger
and any other users of the coupling facility to suspend normal operation until
access to the coupling facility is restored. DFSMStvs would, effectively, be unusable
in such a situation.

Configuring the environment and defining resources for DFSMStvs

Chapter 3. Configuring the DFSMStvs environment and defining resources 43

If a batch job attempts to communicate with RRS and the system logger goes
down, RRS suspends the job until the logger comes back up. You cannot cancel the
batch job because RRS has suspended it. If you cancel RRS or bring the system
logger back up, however, RRS releases the batch job, which then ends; otherwise,
the job remains suspended.

Recommendation: Do not perform a commit or backout through an RRS panel.

Unless you specify that the system logger is to use staging data sets, the recovery
of log stream data depends on the MVS images remaining active. This is so that
the system logger can use copies of log records that are held in storage to
repopulate the coupling facility when it is again available. If you must run with a
single coupling facility, specify the DUPLEXMODE(UNCOND) command to force
the use of staging data sets.

Defining staging data sets
To ensure maximum protection of log data, the system logger allows duplexing of
log write requests to both the coupling facility and to DASD. Duplexing provides
failure-isolation of committed log data, even when the coupling facility and a
connected MVS are in the same failure domain. For example, a failure domain is
when the coupling facility and MVS are in the same central processor complex
(CPC), or if the coupling facility storage is volatile. The records are written
temporarily to a staging data set associated with the log stream. They are later
offloaded asynchronously to permanent storage on the persistent log stream data
sets. Offloading occurs when the HIGHOFFLOAD threshold of either the log
stream or the staging data set is reached.

You can specify whether duplexing to staging data sets is either conditional or
unconditional, depending on whether or not the coupling facility is in an
independent failure domain. If conditional, the system logger chooses either the
data space option or a staging data set; if unconditional, duplexing to a staging
data set is forced.

MVS normally keeps a second copy of the data written to the coupling facility in a
data space. The second copy is used to build a coupling-facility log in the event of
an error. This is satisfactory as long as the coupling facility is failure-independent
(in a separate central processor complex (CPC) and nonvolatile) from MVS.

The coupling facility is in the same CPC or uses volatile storage, the system logger
supports staging data sets for copies of log stream data. That log stream data
would otherwise be vulnerable to failures that impact both the coupling facility
and the MVS images.

Use these guidelines when defining log streams:
v Unless you are operating with only a single coupling facility, define

STG_DUPLEX(YES) and DUPLEXMODE(COND) for those log streams
associated with the system log. This ensures that the system logger
automatically copies log stream data to staging data sets if it detects that the
coupling facility is not failure-independent.

v Define STG_DUPLEX(YES) for log streams that are associated with forward
recovery logs. If you do not, you must take a new image copy of the associated
VSAM data sets after any failure that causes loss of data from the log stream.
Until the copying is complete, the data sets are not fully protected.

Configuring the environment and defining resources for DFSMStvs

44 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

v Define all log streams with STG_DUPLEX(YES) and DUPLEXMODE(UNCOND)
if both of these conditions are true:
– The coupling facility is a nonvolatile, standalone coupling facility for normal

logging
– A PR/SM LPAR, configured as a coupling facility, is acting as backup

v Define each staging data set to be at least the same size as the log stream share
of the coupling facility, but round the average block size up to 4 KB.
Use this formula to calculate the staging data set size corresponding to the basic
coupling facility space requirement for each DFSMStvs system log stream:
4 x akp x average buffer size

Round up the average buffer size to a multiple of 4096.
The activity keypoint frequency value (akp) specifies the number of physical
outputs to the DFSMStvs system log before an activity keypoint is taken.

Specifying SYS1.PARMLIB parameters for DFSMStvs
You can define these fields in the IGDSMSxx member of SYS1.PARMLIB for
DFSMStvs:
v LOG_OF_LOGS(logstream)
v QTIMEOUT({nnn|300})
v RLSTMOUT({nnn|0})
v MAXLOCKS({max|0},{incr|0})
v SYSNAME(sysname[,sysname[...)
v SYSTEMS({8|32})
v TVSNAME(nnn[,nnn]...)
v AKP(nnn[,nnn]...)
v TV_START_TYPE({WARM|COLD}[,{WARM|COLD}]...)

For the syntax and descriptions of these fields, see z/OS MVS Initialization and
Tuning Reference.

Some of the parameters in the IGDSMSxx member of SYS1.PARMLIB apply only to
the system on which they are found; others apply across the sysplex. Values are
not remembered across IPLs, so always specify a complete set of the parameters
for DFSMStvs.

Recommendations:

v Share the IGDSMSxx parmlib member across all systems in the sysplex.
v After a cold start, follow these steps for any data set for which recovery was not

complete:
1. Recover the data set manually (without using forward recovery).
2. Take a backup of the data set and of any other data set that uses the same

forward recovery log.
3. Delete and redefine the data set's forward recovery log.
If recovery was not complete for a data set, it is most likely in a damaged state,
and you must recovered it manually. If the data set is forward recoverable, then
its forward recovery log might also be damaged.

The DFSMStvs instance names must be unique. Because some parameters are
positional, ensure that you specify the parameters in the proper order.

Configuring the environment and defining resources for DFSMStvs

Chapter 3. Configuring the DFSMStvs environment and defining resources 45

These examples show how to set up the SYS1.PARMLIB parameters.

Defining a PARMLIB member specific to one system
This example defines a PARMLIB member that is specific to one system, and sets
up these properties:
v An ACDS of SYS1.ACDS9
v A communications data set of SYS1.COMMDS
v An interval of 10 seconds before synchronizing with any other SMS subsystems

in the complex
v One DFSMStvs name in the form of IGWTVnnn, for example, IGWTV001
v A quiesce timeout value of 240
v An activity keypoint (AKP) value of 2000
v No log of logs
v DFSMStvs is to perform a warm start

Code this statement in the IGDSMSxx member of SYS1.PARMLIB:
SMS ACDS(SYS1.ACDS9) COMMDS(SYS1.COMMDS) INTERVAL(10)

TVSNAME(1) QTIMEOUT(240) AKP(2000) TV_START_TYPE(WARM)

Defining a parmlib member that applies to multiple systems
This example defines a PARMLIB member that applies to multiple systems and
sets up these properties:
v An ACDS of SYS1.ACDS10
v A communications data set of SYS1.COMMDS10
v An interval of 20 seconds before synchronizing with any other SMS subsystems

in the complex
v Three instances of the DFSMStvs name, IGWTV001, IGWTV002, and IGWTV003,

to be established on the systems named SYSTEM1, SYSTEM2, and SYSTEM3,
respectively

v The default quiesce timeout value (300)
v The default activity keypoint value (1000)
v A log of logs, which has the log stream name: IGWLOG.LOGLOGS
v DFSMStvs performs a cold start on all systems

The IGDSMSxx member of PARMLIB includes this statement:
SMS ACDS(SYS1.ACDS10) COMMDS(SYS1.COMMDS10) INTERVAL(20)

LOG_OF_LOGS(IGWLOG.LOGLOGS)
SYSNAME (SYSTEM1,SYSTEM2,SYSTEM3)
TVSNAME(1, 2, 3)
TV_START_TYPE(COLD,COLD,COLD)

Recommendation: You should cold start DFSMStvs only when the log has been
damaged and cannot be trusted to use for backouts. In any other situation, you
should always warm start DFSMStvs because you would leave your data sets
damaged if you did a cold start. Before a cold start, print the log so that you have
some information about what might be damaged.

Configuring the environment and defining resources for DFSMStvs

46 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Chapter 4. Setting up DFSMStvs logging

DFSMStvs uses the system logger to record log records in log streams. A log stream
is a collection of data in log blocks that reside in the coupling facility or on DASD.
DFSMStvs uses the system logger because it provides both sysplex-wide logging
services and the integrity needed for protected resources. The system logger
merges data from multiple instances of an application, including merging data
from different systems in a sysplex.

This information covers these topics:
v “Determining the amount of logging to do”
v “Defining coupling-facility structures for log streams” on page 48
v “Allocating system log streams” on page 51
v “Using backout logging” on page 54
v “Defining forward recovery logs” on page 56
v “Creating a log of logs” on page 59
v “Authorizing access to log streams” on page 60

Determining the amount of logging to do
By logging updates, you can reconstruct data sets from backup copies, if necessary.
When you specify the kind of logging that DFSMStvs should do, you must balance
the need for logging with the disadvantages of logging. For example, logging can
cause performance delays. Delays include the time that it takes to do the logging,
from the standpoint of I/O, and the amount of logging that is done.

The recoverability of the data set determines the amount of logging that DFSMStvs
does:

LOG(NONE)
The data set is nonrecoverable, and no logging is done. Nonrecoverable
data sets are not normally accessed in DFSMStvs mode, but are accessed in
DFSMStvs mode if CRE is specified.

LOG(UNDO)
The data set is recoverable and receives only backout logging. Syncpoint
processing is done on its behalf, but the data set is not forward
recoverable.

LOG(ALL)
The data set is recoverable and receives both backout and forward
recovery logging.

© Copyright IBM Corp. 2003, 2013 47

Defining coupling-facility structures for log streams
You have to define log structures in two places: the coupling facility resource
management (CFRM) policy and the system logger LOGR policy. Use the DEFINE
STRUCTURE keyword of the ICXMIAPU utility to define the coupling facility
structures needed for all the log streams that your DFSMStvs instances will use.
Define structures in the LOGR policy in the system logger couple data sets.

Related reading: For details on how to code the ICXMIAPU utility, see z/OS MVS
Setting Up a Sysplex.

Use the CFRM policy to divide coupling facility space into structures. The CFRM
policy enables you to define how MVS should manage coupling facility resources.
Figure 6 on page 49 shows the beginning of the definition of a CFRM policy:

Setting up DFSMStvs logging

48 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

//RLSPOL01 JOB CLASS=A,MSGCLASS=H,
// MSGLEVEL=(1,1),REGION=4096K,TIME=1440
//***
//* This job defines the CFRM policy. Log structures are only part
//* of it. This contains the structures for all the TVS logs and the
//* RRS logs. The structures must have also been defined to the
//* logger policy.
//***
//*
//* UPDATE THE ADMINISTRATIVE POLICY DATA IN THE COUPLE DATA SET
//* FOR COUPLING FACILITY RESOURCE MANAGER (CFRM)
//*
//**
//STEP20 EXEC PGM=IXCMIAPU
//*STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=H
//SYSIN DD *

DATA TYPE(CFRM)
DEFINE POLICY NAME(RLSPOL01) REPLACE(YES)

STRUCTURE NAME(OPERLOG_STR)
SIZE(60512)
PREFLIST(CFSVTX,CFSVTY,CFSVTZ)

STRUCTURE NAME(LOG_DFHLOG_001)
SIZE(10240)
PREFLIST(CFSVTX,CFSVTY,CFSVTZ)

STRUCTURE NAME(LOG_DFHLOG_002)
SIZE(10240)
PREFLIST(CFSVTX,CFSVTY,CFSVTZ)

STRUCTURE NAME(LOG_DFHLOG_003)
SIZE(10240)
PREFLIST(CFSVTX,CFSVTY,CFSVTZ)

STRUCTURE NAME(LOG_DFHLOG_004)
SIZE(10240)
PREFLIST(CFSVTX,CFSVTY,CFSVTZ)

STRUCTURE NAME(LOG_DFHSHUNT_001)
SIZE(10240)
PREFLIST(CFSVTX,CFSVTY,CFSVTZ)

STRUCTURE NAME(LOG_DFHSHUNT_002)
SIZE(10240)
PREFLIST(CFSVTX,CFSVTY,CFSVTZ)

STRUCTURE NAME(LOG_DFHSHUNT_003)
SIZE(10240)
PREFLIST(CFSVTX,CFSVTY,CFSVTZ)

STRUCTURE NAME(LOG_DFHSHUNT_004)
SIZE(10240)
PREFLIST(CFSVTX,CFSVTY,CFSVTZ)

STRUCTURE NAME(LOG_USERJRNL_001)
SIZE(10240)
PREFLIST(CFSVTX,CFSVTY,CFSVTZ)

STRUCTURE NAME(LOG_USERJRNL_002)
SIZE(10240)
PREFLIST(CFSVTX,CFSVTY,CFSVTZ)

STRUCTURE NAME(LOG_USERJRNL_003)
SIZE(10240)
PREFLIST(CFSVTX,CFSVTY,CFSVTZ)

STRUCTURE NAME(LOG_USERJRNL_004)
SIZE(10240)
PREFLIST(CFSVTX,CFSVTY,CFSVTZ)

STRUCTURE NAME(LOG_GENERAL_001)
SIZE(10240)
PREFLIST(CFSVTX,CFSVTY,CFSVTZ)

/*

Figure 6. Sample definition of the CFRM policy

Setting up DFSMStvs logging

Chapter 4. Setting up DFSMStvs logging 49

Multiple log streams can write data to a single coupling-facility structure. This
does not mean that the log data is merged; the log data stays segregated according
to log stream. You can specify the number of log streams that use the resources of
a single coupling facility structure. Use the LOGSNUM parameter on the
IXCMIAPU service to define a structure.

Each log stream is allocated a proportion of the structure space, based on the
number of currently connected log streams (up to the limit specified in
LOGSNUM). For example, a structure can be defined to contain a maximum of 30
log streams. If only 10 log streams are connected, each log stream can use one
tenth of the space in the structure. As other log streams are connected and
disconnected, the system logger adjusts the proportion of space to each log stream
used.

It is important to plan carefully before specifying a value for LOGSNUM. This
parameter determines how much storage space in the structure is available to each
log stream. A number in the range 10 to 20 is optimum in many environments.

Definition of a coupling-facility structure for a log stream
The example JCL shown in Figure 7 defines log stream coupling-facility structures
to the system logger. The example is a guide; substitute values that are appropriate
for your system.

Log structure names
As you define your log structures, consider adopting a naming convention for
your log structures that helps to identify the purpose of the structure. For example,
you can use a format such as LOG_purpose_nnn:
v purpose identifies how you use the structure.
v nnn is a sequence number to allow for more than one structure for each

purpose.

//DEFSTRUC JOB ...

//POLICY EXEC PGM=IXCMIAPU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//***
//* Define log stream CF structures to the MVS logger.
//* AVGBUFSIZE and LOGSNUM values are for illustration,
//* substitute values appropriate for your intended usage.
//***
//SYSIN DD *

DATA TYPE(LOGR) REPORT(YES)
/* Primary system logs */
DEFINE STRUCTURE NAME(LOG_IGWLOG_001) LOGSNUM(10)

MAXBUFSIZE(64000) AVGBUFSIZE(4096)
/* Secondary system logs */
DEFINE STRUCTURE NAME(LOG_IGWSHUNT_001) LOGSNUM(10)

MAXBUFSIZE(64000) AVGBUFSIZE(4096)
/* Forward recovery logs and user journals that are forced */
DEFINE STRUCTURE NAME(LOG_IGWFR1) LOGSNUM(10)

MAXBUFSIZE(64000) AVGBUFSIZE(8192)
/* Log of logs */
DEFINE STRUCTURE NAME(LOG_IGWLGLGS_001) LOGSNUM(10)

MAXBUFSIZE(64000) AVGBUFSIZE(4096)
/*
//

Figure 7. Sample log stream coupling-facility structure definition

Setting up DFSMStvs logging

50 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

For example, you might choose the following names:

LOG_IGWLOG_001
For the DFSMStvs system log. The structure should be large to avoid the
need to write data to DASD.

LOG_IGWSHUNT_001
For the DFSMStvs secondary system log. The structure should be small.
However, it requires a large buffer size. A structure of 100 KB per log
stream is usually sufficient.

LOG_FORWARD_001
For forward recovery logs in which block writes are forced periodically.

LOG_IGWLGLGS_001
For the log of logs.

These examples define one structure per log. Multiple log streams can be within a
single structure so defining this many log structures is optional.

Related reading: For more information about th LOG_IGWLGLGS_001 log stream,
see “Creating a log of logs” on page 59.

Allocating system log streams
Each DFSMStvs instance requires its own pair of system logs: a primary (undo) log
and a secondary (shunt) log. The system logs are used for recovery purposes. For
example, they are used during backout and DFSMStvs restart. They are not meant
to be used for any other purpose or by any other instance of DFSMStvs except in
the case of peer recovery. Peer recovery is the process of completing the work that
was left in an incomplete state by another instance of DFSMStvs when the system
on which the instance was running failed. You can find more information about
peer recovery in Chapter 7, “Diagnosing and recovering from DFSMStvs
problems,” on page 107. DFSMStvs connects to its system logs automatically
during initialization.

You must define the log streams for the DFSMStvs undo log and shunt log to the
system logger before accessing a recoverable VSAM data set in DFSMStvs mode.

For each log stream that is in use, DFSMStvs needs two buffers. Each buffer can be
a maximum block size of 64 KB for the log stream, and approximately 600 bytes of
state data, all of which are above the 16 MB line. The SMSVSAM server address
space contains the buffers.

A log stream is a sequence of data blocks, with each log stream identified by its
own log stream identifier, which is called the log stream name. The DFSMStvs
system logs, log of logs, and forward recovery logs map to specific MVS log
streams. Each log stream is a sequence of blocks of user data, which the system
logger internally partitions over three different types of storage:

Primary storage
This is a structure within a coupling facility that holds the most recent
records written to the log stream. Log data written to the coupling facility
is also copied to either a data space or a staging data set.

Setting up DFSMStvs logging

Chapter 4. Setting up DFSMStvs logging 51

Secondary storage
When the primary storage structure for a log stream becomes full, the
older records automatically spill into secondary storage. The secondary
storage structure consists of data sets that are managed by the storage
management subsystem. Each log stream, identified by its log stream
name, is written to its own log data sets.

Tertiary storage
The tertiary storage is specified in your hierarchical storage manager
(HSM) policy. Tertiary storage is used to migrate older records to some
form of archive storage. This can be either DASD data sets or tape
volumes. HSM manages this log data migration option.

The system logger provides access to these logs. DFSMStvs has access to the log
stream data during recovery operations, when it can browse the data, read forward
and backward, or read any block directly. Figure 8 on page 53, Figure 9 on page 58,
and Figure 10 on page 59 show you how you can define log streams for DFSMStvs
to use. In these examples, each of the log streams has its own structure; your log
streams can share structures.

Recommendations:

v Specify DIAG(YES) for the DFSMStvs system logs. This parameter indicates that
special logger-diagnostic system activity is allowed for this log stream. This is
especially useful when certain system logger errors occur, such as an X'804' type
condition, which indicates that some data might have been lost.

v Log stream and log stream staging data sets are single extent VSAM linear data
sets that require SHAREOPTIONS(3,3). The default is SHAREOPTIONS(1,3).
Recommendation: Explicitly specify the SHAREOPTIONS values.

Examples of system log stream definitions
The sample JCL in Figure 8 on page 53 defines system log streams. These
definitions are a guide, Substitute values that are appropriate for your system.

Setting up DFSMStvs logging

52 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

System log stream names
System log stream names are qualified names in which the high-level qualifier,
IGWTVnnn, is the DFSMStvs instance name, such as IGWTV001. DFSMStvs
requires the following log stream names:
v IGWTVnnn.IGWLOG.SYSLOG
v IGWTVnnn.IGWSHUNT.SHUNTLOG

DFSMStvs instance names must be unique throughout the sysplex. Each DFSMStvs
instance accesses its system logs for its exclusive use. All other logs are separate
from the system logs. The log stream names for forward recovery logs and the log
of logs must not be the same as the names of the DFSMStvs system logs.

//JTVS01 JOB ,’DEF/DEL LOG STRMS’,
// CLASS=S,MSGCLASS=H,NOTIFY=SYSUSER
/*JOBPARM SYSAFF=SY02
//***
//*This job deletes and redefines the system logs for TVS
//*INSTANCE IGWTV001, WHICH RUNS ON SY01.
//***
//LGDELDEF EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*,DCB=RECFM=FBA
//SYSIN DD *

DATA TYPE(LOGR) REPORT(NO)
DELETE LOGSTREAM NAME(IGWTV001.IGWLOG.SYSLOG)
DELETE LOGSTREAM NAME(IGWTV001.IGWSHUNT.SHUNTLOG)
DEFINE LOGSTREAM NAME(IGWTV001.IGWSHUNT.SHUNTLOG)

STRUCTNAME(LOG_IGWSHUNT_001)
LS_SIZE(6000)
LS_DATACLAS(LOGRDC)
LS_STORCLAS(S1P02S01)

/* STG_DUPLEX(NO) */
STG_DUPLEX(YES)
DUPLEXMODE(COND)
STG_SIZE(6000)
STG_STORCLAS(S1P02S01)
STG_DATACLAS(LOGRDC)
HIGHOFFLOAD(95)
LOWOFFLOAD(15)
DIAG(YES)

DEFINE LOGSTREAM NAME(IGWTV001.IGWLOG.SYSLOG)
STRUCTNAME(LOG_IGWLOG_001)
LS_SIZE(6000)
LS_DATACLAS(LOGRDC)
LS_STORCLAS(S1P02S01)

/* STG_DUPLEX(NO) */
DIAG(YES)
STG_DUPLEX(YES)
STG_SIZE(6000)
STG_STORCLAS(S1P02S01)
STG_DATACLAS(LOGRDC)
DUPLEXMODE(COND)
HIGHOFFLOAD(95)
LOWOFFLOAD(15)

/*

Figure 8. Sample definitions of the system logs

Setting up DFSMStvs logging

Chapter 4. Setting up DFSMStvs logging 53

Offloading of log data
For better system performance, you can store the entire system log within the
coupling facility to prevent the log from spilling to disk.

Recommendation: Take frequent sync points to minimize the amount of data being
held in the coupling facility.

Generally, the volume of data that DFSMStvs keeps in the primary system log at
any one time covers between two and three activity keypoints. The activity
keypoint frequency, which is measured in blocks of log data, and defined by the
AKP parameter in the IGDSMSxx member of SYS1.PARMLIB, determines this
volume.

The way that DFSMStvs manages the system log data makes the frequency of
activity keypointing an important factor when planning the size of the primary log
stream. Use the AKP parameter to specify keypointing frequency. Review the
activity keypoint (AKP) frequency defined for each DFSMStvs instance. The larger
the value, the more coupling facility space you need for the system logs. But do
not set AKP so low that transactions last longer than an activity keypoint interval.
DFSMStvs manages the size of the system log by deleting old, completed units of
work (log tail deletion). If you need long-term data retention, then you might want
to copy the data from the log stream into alternative archive storage.

A log tail is the oldest end of the log. At each activity keypoint, DFSMStvs deletes
the tail of the system log by establishing a point on the system log before which all
older data blocks can be deleted. If the oldest "live" unit of work is in data block x,
all data blocks older than x (x-1 and older) can be deleted. DFSMStvs keeps the
two most recent, complete activity keypoints on the primary system log and
deletes data from complete units of work older than this.

The system log is designed to ensure the availability of logged data following a
system or DFSMStvs failure, thereby maintaining data integrity. Do not use the
system log for any other purpose. Forward recovery logs cannot be written to
system log streams.

Related reading: For more information about the AKP parameter, see z/OS MVS
Initialization and Tuning Reference.

Using backout logging
Each instance of DFSMStvs has a private backout log stream in the undo log. This
log stream contains both the status of the units of recovery and the backout
records that are required to back out changes to a VSAM recoverable data set that
are made by units of recovery. Any of the following scenarios can trigger a
backout:
v The application requests a backout.
v The unit of recovery abnormally ends.
v The application requests commit, but one of the resource managers detects a

problem and responds no during the prepare phase. (An application can use
multiple resources managers within a single unit of recovery.)

If DFSMStvs fails or abnormally ends, all in-flight units of recovery that were
using DFSMStvs at the time of its failure are backed out. A unit of recovery that is
in-flight is one that has made a change to a recoverable resource but has not yet
committed or backed out that change. The backouts for these units of recovery are

Setting up DFSMStvs logging

54 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

not performed at the time of the failure by the failed DFSMStvs instance. The
backouts are performed either at the time of the failure or later by a peer recovery
instance of DFSMStvs. You can find more information about DFSMStvs restarts and
peer recovery in Chapter 7, “Diagnosing and recovering from DFSMStvs
problems,” on page 107.

In the event of a DFSMStvs failure during the backout, the recovery or restart
processing repeats the entire backout. Backout processing tolerates duplicate
records and attempts to delete nonexistent record conditions, which arise from the
attempt to repeat a backout operation that was previously completed.

Backout records for in-doubt and long-running units of
recovery

A unit of recovery can become in-doubt between the time when the resource
managers reply positively to the prepare notification from RRS and the time when
RRS begins the commit phase. A unit of recovery can become in-doubt only if one
of the interested resource managers has taken on the role of distributed or
communication resource manager, and if more than one system is involved. In this
case, after a commit request is issued and both systems have responded positively
to the prepare request, the following processing occurs:
v The unit of recovery on the system that issued the commit request goes into the

in-commit state
v The unit of recovery on the other system goes into the in-doubt state until the

syncpoint resource manager receives the prepare response from the system that
initiated the commit request.

A unit of recovery is considered long-running if it survives two activity keypoints
without a sync point. This can cause the unit of recovery to hold a large number of
locks until the next sync point, as well as to write a large number of log records.

The backout records for in-doubt and long-running units of recovery present
space-management problems within undo log streams. Ideally, the backout records
in an undo log stream have a short life cycle. This enables the obsolete portion of
the log stream to be deleted. Also, the system logger does not need to off-load the
log data from the coupling facility to DASD data sets. Units of recovery that do
not reach an end-of-unit of recovery status within a short period of time interfere
with this space management algorithm.

If too much old data is left in the log, there are two conditions that can occur
when attempting to write records to a log stream. First, the system logger could
return a return-and-reason code that indicates that the coupling facility storage
limit was reached. Second, the system logger can return a return-and-reason code
that indicates that the staging data set storage limit was reached. In either case, the
system logger offloads data to DASD. DFSMStvs cannot write any further
information to its log streams until the problem has been resolved.

DFSMStvs uses a secondary log, called a shunt log. This log tracks units of recovery
for which DFSMStvs is unable to complete processing, for example due to an I/O
error or unavailability of a resource, such as a volume or a cache.

Backout logging events
Logging begins when a request is made to add, delete, or update a record. An
application might issue a pure read request and then later issue a get-for-update
request (the first read did not initiate logging). Two VSAM requests, put (either

Setting up DFSMStvs logging

Chapter 4. Setting up DFSMStvs logging 55

update or add) and erase, can modify a record. The purpose of the undo log is to
contain a copy of the data prior to any changes being made, so backout logging is
always done when any indication is given of intent to update the data. Backout
logging is done at the following times:

GET UPD
Get a record with the intent to update or erase it.

Recommendation: With RLS and DFSMStvs, use GET NUP instead of GET
UPD for browsing because the use of GET UPD results in logging and
obtaining an exclusive lock. If you need read integrity, you can specify CR
or CRE. When you find a record that you want to update, do a GET UPD
followed by PUT UPD or ERASE.

PUT ADD
Add a new record.

Backout records are not written to the undo log for a PUT UPD or ERASE request
because these operations modify existing records that are first obtained using GET
UPD.

Defining forward recovery logs
DFSMStvs supports a set of forward recovery log streams. These log streams are
separate from the DFSMStvs undo log streams. Each installation determines the
number of forward recovery log streams.

DFSMStvs logs the forward recovery records to system-logger log streams. These
log streams are shared across DFSMStvs instances and provide sysplex-wide log
streams that you can use as input to forward recovery products, for example,
CICSVR.

For data sets with LOG(ALL) specified, DFSMStvs backout processing creates the
forward recovery log records. These records, due to their more recent time stamps,
supersede the corresponding forward recovery records generated during earlier
processing of the unit of recovery. The log records are in the order in which the
changes are made. When forward recovery is needed, the forward recovery
product reads through the records and actually makes the change, and then find
the compensating record and undoes the change. The records do not supersede one
another; both changes are applied.

You can use one forward recovery log stream for multiple data sets, so you do not
need to define a log stream for each forward recoverable data set. Consider the
following criteria before you decide to share a forward recovery log stream:
v Your installation's ability to balance transaction performance
v Rapid recovery
v The work involved in managing a large number of log streams

The system logger can store all the forward recovery log records from multiple
DFSMStvs instances in a shared forward recovery log.

Here are some guidelines for defining forward recovery logs:
v Have all the data sets used by one transaction share the same log stream to

reduce the number of log streams that are written to at a sync point.

Setting up DFSMStvs logging

56 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

v Share a forward recovery log stream between data sets if these conditions are
true:
– The data sets have similar security requirements.
– The data sets have similar backup frequencies.
– The data sets are likely to need restoring in their entirety at the same time.

v Choose log stream names that relate to the data sets. For example,
PAYROLL.data_sets could be mapped to a forward recovery log named
PAYROLL.FWDRECOV.PAYLOG.

v Do not mix high-update frequency data sets with low-update frequency data
sets. This causes a disproportionate amount of unwanted log data to be read
during recovery of low-update frequency data sets.

v Do not put all high-update frequency data sets on a single log stream because
you could exceed the throughput capacity of the stream.

v Do not define too many data sets to a single log stream. Doing so could cause
frequent structure-full events when the log stream cannot keep up with data
flow.

v Delete redundant data from log streams periodically so that the log streams do
not become excessively large. Typically, for a forward recovery log, the amount
of old data that is deleted is related to the frequency that data is backed up. For
example, you might keep the four most recent generations of backup. When you
delete a redundant backup generation, you should also delete the corresponding
redundant forward recovery log records. These are the records older than the
redundant backup because they are no longer needed for forward recovery. The
log of logs provides information to forward recovery programs such as CICSVR.

You can have a separate forward recovery log by data set, rather than by job. A
separate forward recovery log by data set has these benefits:
v Recovery can be more straightforward with a one-to-one relationship between

logs and the data sets to be recovered.
v Shared logs are related to multiple jobs and units of work using the same data

set.

The log of logs provides a summary of which recoverable VSAM data sets
DFSMStvs has used, when the data sets were used, and to which log stream the
forward recovery log records were written. If you have a forward recovery product
that can utilize the log of logs, ensure that all DFSMStvs instances sharing the
recoverable data sets write to the same log of logs. Do not share the log of logs
between test and production DFSMStvs instances. Sharing the log of logs could
compromise the contents of production data sets during a restore operation.

Figure 9 on page 58 gives an example of defining forward recovery log streams for
DFSMStvs and CICS.

Setting up DFSMStvs logging

Chapter 4. Setting up DFSMStvs logging 57

//DELFR JOB ,’DEFINE FR LOGS’,
// CLASS=A,MSGCLASS=H,NOTIFY=SYSUSER
//***
//*THIS JOB DELETES AND REDEFINES THE LOG STREAMS USED
//*FOR FORWARD RECOVERY BY THE TVS AND CICS WORKLOADS.
//*Note that this defines the structures and logs to the logger
//*policy. To use the structures, you must have defined them
//*to the CFRM policy.
//***
//LOGDEF EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=A,DCB=RECFM=FBA
//SYSIN DD *

DATA TYPE(LOGR) REPORT(YES)

DELETE LOGSTREAM NAME(TVSRCVY.GROUP1E)
DELETE LOGSTREAM NAME(TVSRCVY.GROUP2E)
DELETE LOGSTREAM NAME(TVSRCVY.GROUP1F)
DELETE LOGSTREAM NAME(TVSRCVY.GROUP2F)
DELETE LOGSTREAM NAME(TVSRCVY.GROUP3F)
DEFINE LOGSTREAM NAME(TVSRCVY.GROUP1E)

STRUCTNAME(LOG_IGWFR) LS_SIZE(4720)
AUTODELETE(YES) RETPD(2)
LS_DATACLAS(LOGRDC)
LS_STORCLAS(S1P02S01)
DIAG(YES)
STG_DUPLEX(YES)
DUPLEXMODE(COND)
STG_SIZE(6000)
STG_STORCLAS(S1P02S01)
STG_DATACLAS(LOGRDC)

DEFINE LOGSTREAM NAME(TVSRCVY.GROUP2E)
STRUCTNAME(LOG_IGWFR) LS_SIZE(4720)
AUTODELETE(YES) RETPD(2)
LS_DATACLAS(LOGRDC)
LS_STORCLAS(S1P02S01)
DIAG(YES)
STG_DUPLEX(YES)
DUPLEXMODE(COND)
STG_SIZE(6000)
STG_STORCLAS(S1P02S01)
STG_DATACLAS(LOGRDC)

DEFINE LOGSTREAM NAME(TVSRCVY.GROUP1F)
STRUCTNAME(LOG_IGWFR1) LS_SIZE(4720)
AUTODELETE(YES) RETPD(2)
LS_DATACLAS(LOGRDC)
LS_STORCLAS(S1P02S01)
DIAG(YES)
STG_DUPLEX(YES)
DUPLEXMODE(COND)
STG_SIZE(6000)
STG_STORCLAS(S1P02S01)
STG_DATACLAS(LOGRDC)

DEFINE LOGSTREAM NAME(TVSRCVY.GROUP2F)
STRUCTNAME(LOG_IGWFR1) LS_SIZE(4720)
AUTODELETE(YES) RETPD(2)
LS_DATACLAS(LOGRDC)
LS_STORCLAS(S1P02S01)
DIAG(YES)
STG_DUPLEX(YES)
DUPLEXMODE(COND)
STG_SIZE(6000)
STG_STORCLAS(S1P02S01)
STG_DATACLAS(LOGRDC)

/*

Figure 9. Sample definitions of forward recovery logs

Setting up DFSMStvs logging

58 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Creating a log of logs
If you want DFSMStvs to write to a log of logs, you must specify so in the
IGDSMSxx member of SYS1.PARMLIB. The log of logs contains copies of these
records and information:
v Start-of-run records
v Tie-up records
v File-close records for recoverable data sets
v Log-stream exception information

The log of logs provides data set recovery products such as CICSVR with the
information required to control forward recovery. If you use both DFSMStvs and
CICS, use the same log of logs for both. When an application opens a file to access
a data set, a tie-up record records the association between the file and the data set
in the forward recovery log.

If you do not want DFSMStvs to write to a log of logs, omit the LOG_OF_LOGS
parameter from the IGDSMSxx member of SYS1.PARMLIB.

If you use DFSMStvs in a sysplex and you use a log of logs, all DFSMStvs
instances that access the same recoverable data sets should share the log of logs as
a single log stream. Figure 10 gives an example of defining a log of logs for
DFSMStvs and CICS.

//DDLOL JOB ,’DEF/DEL LOG STRMS’,NOTIFY=SYSUSER,
// CLASS=4,MSGCLASS=H
//**
//* This job defines the log of logs that is identified
//* in the IGDSMSnn parmlib member and to CICS.
//* TVS does not allow multiple log of logs as CICS does.
//**
//LGDELDEF EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*,DCB=RECFM=FBA
//SYSIN DD *

DATA TYPE(LOGR) REPORT(NO)
DELETE LOGSTREAM NAME(IGWTVS.LOG.OF.LOGS)
DEFINE LOGSTREAM NAME(IGWTVS.LOG.OF.LOGS)

STRUCTNAME(LOG_IGWLOG_01)
AUTODELETE(YES) RETPD(4)
STG_DUPLEX(YES)
DUPLEXMODE(COND)
STG_SIZE(6000)
STG_STORCLAS(S1P02S01)
STG_DATACLAS(LOGRDC)
LS_SIZE(1180)
LS_DATACLAS(LOGRDC)
LS_STORCLAS(S1P02S01)

/* /*

Figure 10. Sample definition of the log of logs

Setting up DFSMStvs logging

Chapter 4. Setting up DFSMStvs logging 59

Authorizing access to log streams
You must define authorization for system logger resources so that DFSMStvs can
access, read, and write to its log streams. DFSMStvs uses undo, shunt, log of logs,
and forward recovery log streams. This authorization applies to log streams in the
coupling facility and DASD-only log streams. You can use RACF or an equivalent
security product to implement access to log streams.

Authorization to access log streams
Assign an RACF attribute of PRIVILEGED or TRUSTED to the VSAM RLS server
address space (SMSVSAM) to define authorization to access the log streams.
Privileged means that most RACROUTE REQUEST=AUTH macro instructions
done for SMSVSAM are considered successful, without actually performing any
checking. In addition, follow these guidelines:
v RACF does not call any exit routines.
v RACF does not generate any SMF records.
v RACF does not update any statistics.

Bypassing the checking step also applies to the checking done for the CHKAUTH
operand on the RACROUTE REQUEST=DEFINE macro instruction. All other
RACF processing occurs as usual.

The attribute TRUSTED is similar to PRIVILEGED. It means that RACF assumes
most RACROUTE REQUEST=AUTH macro instructions that are done for
SMSVSAM are successfully completed, without actually performing any checking.
RACF performs the following functions:
v Does not call any exit routines
v Does not update any statistics
v Does generate SMF records that are based on the audit options specified in

SETROPTS LOGOPTIONS and the UAUDIT setting in the USER ID profile

Bypassing the checking step also applies to the checking done for the CHKAUTH
operand on the RACROUTE REQUEST=DEFINE macro instruction. All other
RACF processing occurs as usual.

If the VSAM RLS server address space is neither PRIVILEGED nor TRUSTED,
grant the SMSVSAM server the appropriate access authorization for log stream
profiles. Specify the authorization in the RACF LOGSTRM general resource class
for the user ID of the VSAM RLS address space, SMSVSAM. First you must
associate SMSVSAM with an RACF-defined user ID, such as SYSTASK, in the
started procedures table. Do not use a user ID of SMSVSAM.

DFSMStvs has no facility for controlling LOGSTRM security checks. These are
controlled when the MVS security administrator activates the LOGSTRM general
resource class by means of the SETROPTS command. If the LOGSTRM resource
class is active, DFSMStvs needs update authority for the log stream profiles for the
logs to which it writes. Use the user ID of the VSAM RLS address space,
SMSVSAM, when you grant access. Define the log streams to MVS.

Permit read access to users who need to read the DFSMStvs system log streams,
but not update access. Only DFSMStvs instances should have update access to the
primary system log stream (undo log stream) and secondary system log stream
(shunt log stream).

Setting up DFSMStvs logging

60 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

RACF RDEFINE coding
You can define the generic profile to cover all the log streams referenced by a
DFSMStvs instance. For example, issue the command: RDEFINE LOGSTRM tvsname.**
UACC(NONE). The tvsname is in the form of IGWTVnnn.

The examples in Figure 11 give access to three categories of users:

In these examples, smsvsam_userid is the user ID of the VSAM RLS address space
in which DFSMStvs makes its calls to the system logger. The number of profiles
you define depends on the following criteria:
v The naming convention that you used for the logs
v The extent to which you can use generic profiling

DFSMStvs also writes to forward recovery log streams and a log of logs that is
used to optimize forward recovery. To protect these log streams, code the
appropriate RDEFINE commands and PERMIT commands for each of them.

For all forward recoverable data sets that DFSMStvs accesses, grant DFSMStvs
access to these logs:
v The log of logs
v The forward recovery log streams

Each of these log streams requires update authority for each of the other log
streams. For example, issue the commands shown in Figure 12:

For peer recovery to be possible, grant the VSAM RLS server the authority to read
and write to the log streams of the DFSMStvs instances on other systems. Issue the
commands shown in Figure 13 to grant the VSAM RLS server authority:

PERMIT tvsname.** CLASS(LOGSTRM) ACCESS(UPDATE)
ID(smsvsam_userid)

PERMIT tvsname.** CLASS(LOGSTRM) ACCESS(READ)
ID(authorized_browsers)

PERMIT tvsname.** CLASS(LOGSTRM) ACCESS(UDPATE)
ID(archive_userid)

Figure 11. Example of an RACF PERMIT command

RDEFINE LOGSTRM FORWARD.RECOVERY.** UACC(NONE)
RDEFINE LOGSTRM FR.LOG.** UACC(NONE)
RDEFINE LOGSTRM LOG.OF.LOGS UACC(NONE)
PERMIT FOWARD.RECOVERY.** CLASS(LOGSTRM) ACCESS(UPDATE)

ID(smsvsam_userid)
PERMIT FR.LOG.** CLASS(LOGSTRM) ACCESS(UPDATE)

ID(smsvsam_userid)
PERMIT LOG.OF.LOGS CLASS(LOGSTRM) ACCESS(UPDATE)

ID(smsvsam_userid)

Figure 12. Example of RACF RDEFINE commands

PERMIT IGWTV001.** CLASS(LOGSTRM) ACCESS(UPDATE)
ID(smsvsam_userid)

PERMIT IGWTV002.** CLASS(LOGSTRM) ACCESS(UPDATE)
ID(smsvsam_userid)

Figure 13. Example of RACF commands to grant VSAM RLS authority to read and write log
streams

Setting up DFSMStvs logging

Chapter 4. Setting up DFSMStvs logging 61

62 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Chapter 5. Designing and coding applications to use
DFSMStvs

Application programs that use DFSMStvs are written in much the same way as
any other program that uses VSAM to read and write to data sets. For an
application to participate in transactional recovery, you need to code the
application to process data within transactions.

This topic covers this information:
v “Determining which applications should use DFSMStvs”
v “Modifying an application to use DFSMStvs” on page 64
v “Coding an application to use DFSMStvs” on page 64
v “Handling long-running jobs and programs” on page 73
v “Using restartable applications” on page 73
v “Establishing positioning after logical errors” on page 74
v “Using sequential or random access to a data set” on page 75
v “Deleting and renaming data sets” on page 75
v “Monitoring and retrying shunted transactions” on page 76
v “Applying advanced application development techniques” on page 77

Determining which applications should use DFSMStvs
You can determine which of your installation's applications should use DFSMStvs
support by sorting them into these categories:

DFSMStvs intolerant applications
These applications use facilities that VSAM RLS does not support, access
VSAM internal data structures, or are incompatible with VSAM RLS and
DFSMStvs sharing.

DFSMStvs tolerant applications
These applications operate correctly in a multiple-updater environment
when you specify either record-level sharing (RLS) in the JCL (job control
language) or MACRF=RLS in the ACB (access control block). Without
further modifications to an application, however, specifying RLS mode
would make the entire application a single unit of recovery. RLS mode
would also cause locks and log data to be kept for the length of the job.
This could impact system resources and performance.

For these reasons, do not convert this type of application to use DFSMStvs
access without additional application modification.

DFSMStvs exploiting applications
These applications recognize data sets that can be accessed using
DFSMStvs, and they use DFSMStvs to access those data sets. Such an
application also understands the scope of changes and sync points and
makes use of resource recovery services (RRS) for commit and backout.
These applications can read and write recoverable data sets that are
concurrently in use by CICS.

© Copyright IBM Corp. 2003, 2013 63

Modifying an application to use DFSMStvs
You can modify an application to use DFSMStvs by specifying RLS in the JCL or
the ACB and having the application access a recoverable data set using either open
for input with CRE or open for output from a batch job.

If you want an application that currently uses nonshared resources to use
DFSMStvs, consider these points:
v Write the application so that it uses RRS services and understands sync points.

Write the application so that it issues commit or backout requests at regular
intervals. An application that does all of its work under a single unit of recovery
can significantly impact other applications and system resources. Holding locks
for an excessive period of time could lock out other applications. An extremely
long-running unit of recovery could result in your using significant processor
storage to maintain control blocks, as well as overusing the undo log stream.

v Write applications that use DFSMStvs so that they can function in a
multiple-updater environment. Do not convert an application that cannot
function in this environment to use DFSMStvs. For example, do not convert an
application that uses DISP=OLD, if you cannot convert it to use DISP=SHR.

v Use the no read integrity (NRI) level of integrity for read processing. Using NRI
gives the application similar locking rules with RLS and DFSMStvs as it does
with nonshared resources. Using the consistent read (CR) or consistent read
explicit (CRE) level of integrity can result in waiting for the availability of a
record. Waiting could result in a deadlock, a timeout, or a retained lock
condition with other applications.

v Do not use open and record management requests if you do not write the
application to handle a return code of 16 from these requests. Return code 16
implies that either RLS or DFSMStvs is not currently available. You do not need
to be concerned with the application handling a return code of 16 for nonshared
resources.

v Use SHOWCB or TESTCB macros to access control blocks other than the user
access method control block (ACB), request parameter list (RPL), and exit list
(EXLST). These control blocks are not available to the application other than
through the facilities provided on SHOWCB or TESTCB macros.

v Understand that for update processing, unlike nonshared resources, the
application waits for an exclusive record lock if another user has the record
locked. The application is then subject to deadlock or timeout return codes.

v Understand that if you code a user processing exit routine (UPAD) exit, RLS and
DFSMStvs ignore it.

Use care if a batch job uses multiple RPLs. Using different RPLs to access the same
record can cause lock contention within a unit of recovery. Because sync points
(commits or backouts) cause all locks to be released, the application cannot depend
on locking across a sync point.

Coding an application to use DFSMStvs
This topic describes how to code an application to use DFSMStvs.

Defining transactions
You should not simply modify an existing batch job to use DFSMStvs with no
further changes. This would cause the entire job to be seen as a single transaction
and locks would be held. The log records would need to exist for the entire life of

Designing and coding applications to use DFSMStvs

64 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

the job. This could cause a tremendous amount of contention for locked resources,
and it could also cause performance degradation as the undo log becomes
exceedingly large.

Understanding DFSMStvs restrictions
Any reader can share a data set, whatever the access mode. Batch jobs can also
open nonrecoverable data sets for either input or output. Batch jobs can open
recoverable data sets for update in non-RLS mode under the one of these
conditions:
v Only when there is no program currently using them
v Non-RLS readers are the only users of the data sets

Batch jobs cannot open recoverable data sets for output in RLS mode; only CICS
can do that. In an application that shares a recoverable data set, a batch job must
use DFSMStvs to access the data set for output. The application must also support
transactional recovery.

The following restrictions apply to DFSMStvs processing:
v Defer processing

The DFR/NDF specification in the ACB does not apply to either RLS or
DFSMStvs.
For sequential and skip-sequential processing, RLS and DFSMStvs defer writing
the current data buffer of the string. A subsequent request against the RPL in the
string that positions the string to another control interval (CI), causes the
modified buffer to be written to DASD.

v Load mode
VSAM hides load mode with either RLS or DFSMStvs access. Loading a data set
in either RLS or DFSMStvs mode forfeits load mode optimizations available with
nonshared resource access (for example, SPEED). If you want these options, load
the data set with nonshared resource access.

v Positioning
An OPEN request for a data set with RLS or DFSMStvs does not establish an
implicit position to at beginning of the data set. An explicit POINT request or
GET NSP request is required.

v Locking
VSAM RLS and DFSMStvs obtain a record lock on POINT for consistent read
and consistent read explicit. The record positioned to by the POINT request is
the record that is returned on a subsequent GET SEQ request.

v Sharing
You can use the DISP=OLD parameter for data sets that are accessed with RLS
or DFSMStvs, but this is not recommended.
Recommendation: Use the DISP=SHR parameter. The DISP=OLD parameter
causes backouts to fail because DFSMStvs tries to allocate the data set with the
DISP=SHR parameter.
The access method services DELETE command causes an exclusive enqueue on
the data set name for the length of the job. Backouts in the same job fail, even if
they are in different steps, because they are unable to allocate the data set
dynamically.

v SHAREOPTIONS
For RLS and DFSMStvs access, use SHAREOPTIONS(2,X). This allows
concurrent non-RLS readers while the data set is in use in RLS or DFSMStvs

Designing and coding applications to use DFSMStvs

Chapter 5. Designing and coding applications to use DFSMStvs 65

mode. RLS and DFSMStvs ignore all other specifications and assume that there
are multiple concurrent writers and readers.

v DEFINE parameters
The parameters on the DEFINE command that are ignored or changed for RLS
are also ignored or changed for DFSMStvs.

v Alternate indexes
RLS and DFSMStvs support alternate indexes through path access. However,
RLS and DFSMStvs do not support a direct open request of an alternate index.

v Exits
Neither RLS nor DFSMStvs access supports the JRNAD exit. RLS and DFSMStvs
ignore it. Use the RLSWAIT exit to perform a similar function; RLS and
DFSMStvs access supports the RLSWAIT exit.
The RLSWAIT exit is optional. Applications that cannot tolerate VSAM
suspending the execution unit that issued the original record management
request use it. The exit must do its own wait processing. The wait processing is
associated with the record management request that is being asynchronously
executed. When the record management request is complete, VSAM posts the
event control block (ECB) specified in the request parameter list of an event
control block (RPLECB).

v Request environment
A VSAM RLS or DFSMStvs record management request task must be the same
as the task that opened the ACB or at the same hierarchical level as the record
management request.Issue VSAM RLS and DFSMStvs record management
requests in AMODE 24 or AMODE 31. Issue OPEN, CLOSE, IDAQUIES, and
record management requests in task mode, non-cross-memory mode, and
primary ASC mode. A functional recovery routine (FRR) must not be in effect.
DFSMStvs does not support callers who are running in service request block
(SRB) mode.
Unless privately managed contexts are used, the application must issue all
record management, commit, and backout requests pertaining to a given unit of
recovery under the same task control block (TCB). This is because a unit of
recovery is associated with a context and a context is associated with a TCB.
Any requests issued under a different TCB would be handled under the context
associated with that TCB and would, therefore, belong to a different unit of
recovery. The only exception to this is the case in which a resource manager is
using privately managed contexts and switching them between TCBs.
A work manager, which takes work requests and parcels them out to tasks,
might create privately managed contexts. These contexts and the units of
recovery associated with them can be moved around, unlike the default contexts
that every TCB in the system has. So, if the work manager knows that a piece of
work it is about to submit belongs to a particular unit of recovery, the work
manager can take that unit of recovery's privately managed context and attach it
to the TCB before giving that TCB the work to do.

v Global resource serialization (GRS)
Like VSAM RLS, DFSMStvs requires GRS or an equivalent product that provides
cross-system serialization to serialize:
– VSAM OPEN requests
– CLOSE requests
– EOV processing
– Access to DFSMS control structures (for example, catalog)

Designing and coding applications to use DFSMStvs

66 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Considering RLS and DFSMStvs restrictions
Like VSAM RLS, DFSMStvs does not support the following options and
capabilities:
v Linear data sets
v Control interval access (CNV) for any data set organization.
v Addressed access to a KSDS (relative byte address or relative record address)
v Access to key-range data sets
v Access to clusters with the IMBED attribute
v Access to temporary data sets
v Access using the ISAM compatibility interface
v Opening the individual components of a cluster
v Direct open of an alternate index
v GETIX and PUTIX macros
v Checkpoint/restart facility
v Catalogs accessed in RLS or DFSMStvs mode
v VSAM volume data sets (VVDS) accessed in RLS or DFSMStvs mode
v The ACBSDS specification
v Implicit positioning when a data set is opened (explicit POINT or GET NSP

request required)
v Hiperbatch
v ADR MACRF option for a KSDS
v CFX MACRF option (ignored; NFX assumed)
v DDN or DSN MACRF options (ignored)
v DFR MACRF option (ignored; NDF assumed for direct requests that do not

specify NSP)
v Improved control-interval processing (ICIP)
v Control blocks in common (CBIC)
v User buffering (UBF)
v SHRPOOL parameter of the BLDVRP macro (ignored)

Using VSAM data sets in a transaction
DFSMStvs supports access to these types of data sets:
v Key-sequenced data set (KSDS)
v Entry-sequenced data set (ESDS)
v Relative record data set (RRDS) (both fixed and variable record lengths)

VSAM data sets are stored on direct access storage devices (DASD). VSAM divides
its data set storage into control areas, which are further divided into control
intervals. Control intervals are the unit of data transmission between virtual and
auxiliary storage. Each one is of fixed size and, in general, contains a number of
records. A KSDS or ESDS can have records that extend over more than one control
interval. These are called spanned records.

Accessing a data set with DFSMStvs
To enable DFSMStvs processing, begin by requesting RLS processing in either of
these ways:
v Specify the MACRF=RLS parameter in the ACB macro.

Designing and coding applications to use DFSMStvs

Chapter 5. Designing and coding applications to use DFSMStvs 67

v Specify the RLS parameter in the JCL.

In addition, do either of these tasks:
v Open a recoverable data set for output from a non-CICS batch job.

The data set is recoverable if its LOG parameter is specified as UNDO or ALL.
v Request the CRE read-integrity option in the JCL or through the ACB.

VSAM RLS enables batch jobs to access recoverable data sets in RLS mode, but
only for reading; batch jobs cannot write to these data sets in RLS mode. With
DFSMStvs, batch jobs that support two-phase commit and backout protocols are
able to read and write to recoverable data sets. Concurrently, CICS is processing
those same data sets.

For DFSMStvs, a commit protocol application includes programs that can be
invoked from a batch job and that use RRS to support two-phase commit and
backout. To use DFSMStvs, batch jobs must support and understand sync points
(commit and backout) and use RRS services.

Table 3 shows the type of open resulting from the parameters specified for a VSAM
data set opened by a batch job (non-CICS). The left column shows the type of data
set and type of open. Column headings indicate the RLS option specified.

Table 3. Opening recoverable and nonrecoverable VSAM data sets from batch jobs

Data set type and
type of open

NRI CR CRE

Recoverable open for
input

RLS RLS DFSMStvs

Recoverable open for
output

DFSMStvs DFSMStvs DFSMStvs

Nonrecoverable open
for input

RLS RLS DFSMStvs

Nonrecoverable open
for output

RLS RLS DFSMStvs

The results of opening different types of VSAM data sets with different read
integrity options (NRI, CR, or CRE) depend on whether the batch job opens the
data set for input or output, as follows:
1. If you open a recoverable data set for output from a batch job (non-CICS) and

you specify RLS with any option (NRI, CR, or CRE), you get a DFSMStvs
open.

2. If you attempt to open a recoverable data set for output from a batch job
(non-CICS) and you do not specify RLS, the open will fail (unless the open
attempt is during your batch window processing and you have disabled
access by CICS to the data set).

3. If you open a recoverable data set for input from a batch job (non-CICS) and
you specify RLS with any option (NRI, CR, or CRE), you get an RLS open.

4. If you open a recoverable data set for input from a batch job (non-CICS) and
you do not specify RLS, you get whatever type of open you requested: NSR,
LSR, or GSR (provided share option 2 is in effect).

5. If you open a nonrecoverable data set for output from a batch job (non-CICS)
and you specify RLS as either NRI or CR, you get an RLS open.

Designing and coding applications to use DFSMStvs

68 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

6. If you open a nonrecoverable data set for output from a batch job (non-CICS)
and you specify RLS as CRE, you get a DFSMStvs open.

7. If you open a nonrecoverable data set for input from a batch job (non-CICS)
and you specify RLS as either NRI or CR, you get an RLS open.

8. If you open a nonrecoverable data set for input from a batch job (non-CICS)
and you specify RLS as CRE, you get a DFSMStvs open.

9. If you open a nonrecoverable data set for output from a batch job (non-CICS)
and you do not specify RLS, you get whatever type of open you requested:
NSR, LSR, or GSR (provided share option 2 is in effect).

10. If you open a nonrecoverable data set for input from a batch job (non-CICS)
and you do not specify RLS, you get whatever type of open you requested:
NSR, LSR, or GSR (provided share option 2 is in effect).

Structuring your application for commit and backout
Before invoking commit or backout for a unit of recovery, your application
program should complete all I/O for the unit of recovery. To commit data, all
changes must be saved. If your application program neglects to save the changes,
DFSMStvs ensures that they are saved for you.

Recommendation: For best performance, however, an application should not rely
on DFSMStvs to save the changes. Also, it is possible that an attempt by DFSMStvs
to save the data could fail. If a save attempt fails, DFSMStvs cannot guarantee that
all of the data was put on DASD and will back out the unit of recovery, regardless
of whether the user issued a commit or a backout.

Other considerations follow:
v If your application program issues ENDREQs or CHECKs, ensure that the

ENDREQs or CHECKs complete before invoking commit or backout processing.
v Never invoke a commit or backout from the RLSWAIT exit or from OPEN or

EOV exits.
v Be aware that a commit or a backout normally releases all of the locks held by a

unit of recovery.
v An application can successfully close a data set while it has an in-flight unit of

recovery that modified the data set, but this is not recommended. If this is the
last close of the data set on this system, RLS converts all of the locks held by the
unit of recovery for the data set from active locks to retained locks. This causes
any other units of recovery that attempt to get those locks to receive a retained
lock reject instead of waiting for the lock to become available. In addition, the
data written to the data set during the unit of recovery is not committed or
backed out until the unit of recovery issues a commit or backout. An implicit
commit occurs when a job ends normally for in-flight units of recovery; an
implicit backout occurs when a job abnormally ends for in-flight units of
recovery.
Recommendation: Do an explicit commit before closing a data set.
If you close a data set that has active locks for an in-flight unit of recovery
before it issues a commit or backout and your close is the last close on the
system for the data set, RLS changes all of your active locks into retained locks.
After that happens, another user who opens the data set and attempts to process
any of the records that you have locked receives a retained lock rejection instead
of waiting for the lock to become available.

v DFSMStvs never invokes commit or backout processing directly for in-flight or
in-doubt units of recovery during normal processing. (However, it might do so
during restart processing for failed units of recovery.)

Designing and coding applications to use DFSMStvs

Chapter 5. Designing and coding applications to use DFSMStvs 69

v Applications can choose to attempt to commit data after a failure, such as an
error that was returned by VSAM. However, if DFSMStvs determines that the
error might have affected data integrity, it responds negatively during commit
phase 1 (prepare). DFSMStvs then requires the unit of recovery to be backed out.
For example, an application might attempt to commit data after an I/O error on
either the data set or the system undo log. Before the commit, DFSMStvs
determines that the data is not in a consistent state and requires a backout
instead.

v Applications can choose to attempt to commit the data after a failure against a
forward recovery log. This failure does not affect the success of the commit
process.
Recommendation: After the data is committed, back up the data set before
continuing. Without a backup, you might lose the ability to recover the data set
because its forward recovery log is damaged.

v Failures that occur during commit phase 1 (prepare) result in the unit of
recovery being backed out. Failures that occur during commit phase 2 do not
result in the unit of recovery being backed out. The commit is retried at a later
time.

v A failure that prevents completion of a sync point causes DFSMStvs to shunt
those portions of the unit of recovery that DFSMStvs cannot finish processing.
I/O errors or unavailability of a resource are examples of failures that prevent
completion of a sync point.
All shunted transactions are automatically retried by DFSMStvs every 15
minutes until the retry is successful. For each transaction that is successfully
retried, DFSMStvs issues message IGW892I. You can also manually retry a
shunted transaction, using the access method services SHCDS command.
Because DFSMStvs automatically retries transactions that are in the shunt log,
you need to make sure that the log does not contain anything that cannot be
retried. For example, if you delete a data set for which recovery is owed, VSAM
RLS releases all of the locks associated with the data set. Suppose you then
allocate a data set with the same name as the deleted data set. If the shunt log
still contains outstanding work for the deleted data set, DFSMS might
automatically retry this work on the new data set of the same name, without
any locks.
Recommendation: Before you delete a data set, use the the SHCDS PURGE
command to rid the shunt log of any outstanding work for the data set.
Various levels of authorization are required to use the SHCDS parameters.

Understanding the effects of a task ending
When a task ends, its context ends with it. If a unit of recovery is active, the unit
of recovery ends as well. Normally, your applications should invoke the commit or
backout process prior to the end of a task. If they do not, RRS issues an implicit
sync point when the task ends. If the task is ending normally, RRS attempts to
commit the data implicitly. If the task is abnormally ending, RRS attempts to back
out the data implicitly.

Do not rely on these implicit sync points. Performing syncpoint processing in this
manner can cause units of recovery to be much longer than necessary and
adversely affect system performance.

Understanding record locking that DFSMStvs uses
VSAM maintains a single central lock structure using the MVS coupling facility.
This central lock structure provides sysplex-wide locking at a record-level. The lock

Designing and coding applications to use DFSMStvs

70 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

is used to control updates, for CR and CRE reads, and to serialize adds to an ESDS
data set when used for DFSMStvs processing.

For CICS, the lock owner name is the application identifier (APPLID) of the CICS
region, plus the unit of work ID. For DFSMStvs, the lock owner name is based on
the DFSMStvs instance name combined with the 16-byte URID supplied by RRS.

There is no need for an application that is using DFSMStvs services to provide the
URID when invoking VSAM. When VSAM invokes DFSMStvs services, DFSMStvs
determines the URID by using the RRS unit of recovery under which the VSAM
request was issued. VSAM builds the lock name using the unit of work identifier
(UOW ID) or URID, the record key, and the name of the CICS APPLID or
DFSMStvs instance.

If a request is made to update a recoverable data set, the associated exclusive lock
must remain held until the next sync point. This ensures that the resource remains
protected until a decision is made to commit or back out the request. If DFSMStvs
fails, VSAM continues to hold the lock until DFSMStvs restarts.

Using read integrity options in your application program
DFSMStvs supports three options to control read integrity. You can specify these
options in the JCL, in the ACB, or at the RPL level. Which one you choose depends
on the application programming language in which your application is coded. If
you specify different read integrity options, the RPL specification overrides the
ACB, which overrides the JCL. If you do not specify an option, no read integrity
(NRI), the default option, is in effect. The read integrity options are as follows:

NRI (no read integrity)
There is no read integrity and shared locks are not used for read requests.
This is the default.

CR (consistent read)
A request to read a record is queued if the record is being updated by
another task. The read completes only when the update is complete, and
the updating unit of recovery relinquishes exclusive control by issuing a
sync point. Specifying CR ensures that your applications do not see
uncommitted data. However, it is possible that another application could
modify the record after it has been read, but before your application has
finished its operations on the record.

CRE (consistent read explicit)
Processing of the read request is the same as for consistent read requests.
However, in this case, the reader holds on to its shared lock until the next
sync point. This ensures that a record read in a unit of recovery cannot be
modified while the unit of recovery makes further read requests. It is
particularly useful when issuing a series of related read requests to ensure
that none of the records are modified before the last record is read. This
option is also known as a repeatable read.

Understanding reasons for retained locks and locking duration
The following conditions delay the release of exclusive record locks for an
indefinite period of time:
v A sysplex failure
v An MVS failure
v A failure of an instance of the SMSVSAM server or DFSMStvs
v The last close by all users of the data set on this system image

Designing and coding applications to use DFSMStvs

Chapter 5. Designing and coding applications to use DFSMStvs 71

However, when the application that closed the data set reaches the sync point,
this problem is resolved.

v A commit or backout processing failure

When these conditions occur, the affected exclusive record locks are converted to
retained locks. Any subsequent attempt to obtain a retained record lock fails
immediately rather than waiting for the lock to be released.

A VSAM request obtains the record lock and the lock is held until released by
DFSMStvs during commit or backout processing.

If an application uses sequential, skip-sequential, or direct NSP (note string
position) requests to modify data sets that were accessed by DFSMStvs, ensure that
your application writes the modified buffers to the coupling facility before issuing
a commit or backout request.

Avoiding false lock contention
Real contention occurs when two units of recovery are trying to lock the same
record if the key length is 16 bytes or less. However, if the key length is more than
16 bytes, VSAM or VSAM RLS locks a hashed value of the key.

While the example shown in Figure 14 is not an accurate flow of hashing, it
provides an example to help you understand how false contention can happen.
The example shows how the hash table would look (17-byte keys) if the key is
hashed by just taking the last 16 bytes.

The first two keys have different hash values but the last two have the same value.
If UR1 is accessing key 18888888888888885 and UR2 tries to access key
28888888888888885, UR2 gets an indication that it has contention with UR1. Since
they are trying to lock different records, this is false contention. The program
would treat it as a real contention, back out the unit of recovery and try again.

Avoiding deadlocks
When applications access data sets in VSAM RLS or DFSMStvs mode, deadlocks
can occur within a single instance. They can also arise between two instances of
DFSMStvs running under different MVS images. VSAM RLS performs deadlock
detection and resolution across systems, within its own resources. If it detects a
deadlock condition, VSAM RLS fails one of the requests to break the deadlock
cycle. DFSMStvs writes messages that identify the members of the deadlock chain.

However, VSAM RLS cannot detect a cross-resource deadlock (for example, a
deadlock arising from the use of VSAM RLS and DB2 resources) in which another
resource manager is involved. VSAM RLS resolves a cross-resource deadlock when
the timeout period expires and the waiting request times out. In this situation,
VSAM RLS cannot determine whether the cause of the timeout is a cross-resource
deadlock or another unit of recovery acquiring an RLS lock and not releasing it. In
the event of a timeout, DFSMStvs writes messages to identify the holder of the
lock for which a timed-out unit of recovery is waiting.

KEY HASH
18888888888888888 8888888888888888
18888888888888885 8888888888888885
28888888888888885 8888888888888885

Figure 14. Example of key hashing.

Designing and coding applications to use DFSMStvs

72 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Because timeouts are the only way VSAM RLS has for resolving cross-resource
deadlocks, you need to specify a timeout value for DFSMStvs requests. You can
specify the timeout value in the RLSTMOUT parameter in the IGDSMSxx member
of SYS1.PARMLIB, in the JCL, in the ACB, or in the RPL request. If you specify
different timeout values, the RPL specification overrides the ACB, which overrides
the JCL, which overrides the parmlib member. If you do not specify a timeout
value (0), it defaults to no timeout, and requests could wait indefinitely with
VSAM RLS unable to resolve the problem.

Handling long-running jobs and programs
For long-running programs, ensure that you do not have a large number of
changes that meet these criteria:
v Have accumulated over a period of time
v Are exposed to the possibility of a backout in the event of a task or system

failure

You can avoid problems by using the commit services provided by RRS to split the
program into logically separate sections, thus creating units of recovery. The end of
a unit of recovery is initiated by a sync point. If a task fails after a sync point but
before the task has been completed, only changes made after the sync point are
backed out.

A unit of recovery should be entirely logically independent, not merely with regard
to protected resources but also with regard to execution flow.

If an abend occurs during either application or DFSMStvs processing, do not issue
further requests for the same unit of recovery. The abend can cause some
DFSMStvs control blocks to be invalidated. Similarly, do not try to recover from
I/O errors. Because of the risk to data integrity, DFSMStvs does not allow a
commit of a unit of recovery after it has received a hard I/O error for one of its
VSAM record management requests. Also, it does not allow a commit of a unit of
recovery for any type of error occurring during a close if a previous explicit
commit was not already done.

Using restartable applications
A restartable application is one that can be rerun after a failure. Batch applications
that update VSAM data sets in a nonshared environment can create backup copies
of the data sets to establish a restart or recovery point for the data. If such a batch
application fails, the data sets can be restored from the backup copies, and the
batch jobs can be rerun to reapply all the changes.

You cannot use this restart or recovery procedure in a data-sharing DFSMStvs
environment. Restoring to the point in time of backup would erase any changes
made by other applications that are sharing the data set.

Instead, the batch application must have a built-in method of tracking its
processing position within its string or series of transactions. One possible method
is to use a VSAM recoverable data set or a job-processing position file to track the
commit position for the job. This is a nonshared VSAM recoverable data set in
which the application records its progress. Every time it reaches a sync point, the
application makes a note of it in the job processing position file. Because it is a
recoverable file, if the unit of recovery is committed, so is the job processing

Designing and coding applications to use DFSMStvs

Chapter 5. Designing and coding applications to use DFSMStvs 73

position file. Likewise, if the unit of recovery is backed out, the job processing
position file is backed out and correctly indicates that the last successful unit of
recovery was the prior one.

When the application fails, any uncommitted changes are backed out. The already
committed changes cannot be backed out because they are already visible to other
jobs and transactions. In fact, the records that were changed by previously
committed units of recovery might have since been changed again by other jobs or
transactions. Therefore, when the job is rerun, it is important that it determine its
restart point. The job should not attempt to redo any changes it had committed
before the failure.

For this reason, it is important that jobs and applications using DFSMStvs be
written to execute as a string of transactions. They must use a commit point
tracking mechanism for restart. When they restart, they should skip any units of
recovery that were already completed and begin from the first unit of recovery that
was either not attempted or backed out.

One method of tracking the position of a job within the input stream is with a
VSAM recoverable data set. As the application executes its units of recovery, the
application writes information indicating which units of recovery have been
processed to the position file. At commit time, the position file and the application
data sets are in sync. If the unit of recovery is backed out, the change to the
position file is also backed out. It is not necessary for each input record to
correspond to a commit point, but the position file must have a record of each
commit or backout request.

Use a private (nonshared) recoverable data set to track the input stream of the job
at commit time. Use these steps as a guide in setting up your application to
determine the restart point:
1. When the job is rerun, position the input stream to the position shown in the

private data set.
2. Read the next record from the input stream.
3. Update the private data set to reflect the new position.
4. Perform the indicated processing.
5. Issue the commit at the end of the transaction.

The position file and the application data sets are in sync.

Recommendation: Do not use an entry-sequenced data set as your position file
because it is impossible to erase anything from an entry-sequenced data set.

Establishing positioning after logical errors
VSAM is unable to maintain positioning after every logical error. Whenever VSAM
does not maintain positioning after an error request, you must reestablish
positioning before processing resumes. After a direct or sequential access request
that resulted in a logical error, positioning can be in one of four states:

Yes VSAM is positioned at the position in effect before the request in error was
issued.

No VSAM is not positioned because no positioning was established at the time
the request in error was issued.

New VSAM is positioned at a new position.

Designing and coding applications to use DFSMStvs

74 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

U VSAM is positioned at an unpredictable position.

Undefined
The reason code is undefined.

Related reading: For a list of the positioning states for reason codes for sequential,
direct, and skip-sequential processing, see the z/OS DFSMStvs Administration Guide.

Using sequential or random access to a data set
Skip-sequential processing is generally used to speed browsing when reading
through a data set. VSAM locates the next record by reading through the lowest
level index rather than repositioning from scratch. This method is faster if the
records being retrieved are relatively close together, but not necessarily adjacent. It
can have the opposite effect if they are far apart in a large data set. If you know
the key to which you are positioning is much higher and there might be a long
index scan, use the POINT request to reset your positioning.

Deleting and renaming data sets
It is possible to delete or rename a data set that has retained locks and shunted log
records. This enables you to delete and re-create a data set in the event that the
data set is damaged and must be forward recovered. In this case, the retained locks
associated with the data set are normally unbound by using the access method
services SHCDS command prior to deleting the data set. If the locks are unbound
prior to the delete request, any retained locks and log records associated with the
data set are kept across the delete request. They are again associated with the data
set when the locks are rebound. If the unbind is not done prior to deleting the data
set, the locks are discarded when the data set is deleted.

It is possible for an application to close a data set that has uncommitted changes
(that is, a unit of recovery is in-flight). It is also possible for a data set to be deleted
or renamed before the unit of recovery completes. The data sets that have retained
locks and shunted log records associated with them could be deleted or renamed.

Recommendation: Do not delete or rename a data set unless you are doing so in
preparation for forward recovery (in which case, locks should first be unbound).
Deleting or renaming a data set can result in loss of any association between the
data set and its log records and locks.

An access method services DELETE command results in an exclusive enqueue on
the data set, making it impossible for DFSMStvs to allocate the data set during
backout. For example, consider the following scenario:
v Step 1

1. Execute PGM=IDCAMS
2. Specify a DD statement for data set MY.TVS.KSDS with DISP=SHR
3. Delete MY.TVS.KSDS

v Step 2
1. Execute PGM=IDCAMS
2. Define MY.TVS.KSDS

v Step 3
1. Open MY.TVS.KSDS for DFSMStvs access
2. Update records in MY.TVS.KSDS
3. Attempt to backout the changes

Designing and coding applications to use DFSMStvs

Chapter 5. Designing and coding applications to use DFSMStvs 75

This results in a failure such as this message describes:
IGW10117I DYNAMIC ALLOCATION OF DATA SET dsn FAILED.
RETURN CODE (00000004) REASON CODE (02100000)
ATR306I RESOURCE MANAGER rmname CAUSED A HEURISTIC-MIXED CONDITION FOR URID = urid

The problem occurs because the access method services DELETE command
upgrades the enqueue for the data set MY.TVS.KSDS from shared to exclusive. The
solution is to delete the data set at the end of the job or in a previous job. The data
set cannot be deleted in a different step of the same job because, in this case, the
job would still hold the enqueue. In the case where a unit of recovery is in-flight,
deleting or renaming the data set causes failures if the unit of recovery needs to be
backed out. It also results in any work that cannot be completed being moved to
the shunt log. Then you need to manually clean up the shunted log records by
using the access method services SHCDS PURGE command.

Various levels of authorization are required to use the SHCDS parameters. For
information about this autorization, see z/OS DFSMS Access Method Services
Commands.

After a data set has been deleted or renamed, it is possible for another data set to
be created with the name. If any shunted log records related to the original data
set are not purged using the access method services SHCDS PURGE command,
they could be applied to the new data set in error.

Although users might not be using a data set, the data set could be in use if
DFSMStvs restart processing is in progress. If this is the case, it is not be possible
to delete or rename the data set until DFSMStvs is finished.

Monitoring and retrying shunted transactions
All shunted transactions are automatically retried by DFSMStvs every 15 minutes.
If the retry is unsuccessful, another retry occurs after 15 minutes. For each
transaction that is successfully retried, DFSMStvs issues message IGW892I.

All shunted transactions are automatically retried by DFSMStvs every 15 minutes
until the retry is successful. For each transaction that is successfully retried,
DFSMStvs issues message IGW892I. You can also manually retry a shunted
transaction, using the access method services SHCDS command.

Because DFSMStvs automatically retries transactions that are in the shunt log, you
need to make sure that the log does not contain anything that cannot be retried.
For example, if you delete a data set for which recovery is owed, VSAM RLS
releases all of the locks associated with the data set. Suppose you then allocate a
data set with the same name as the deleted data set. If the shunt log still contains
outstanding work for the deleted data set, DFSMS might automatically retry this
work on the new data set of the same name, without any locks.

Recommendation: Before you delete a data set, use the the SHCDS PURGE
command to rid the shunt log of any outstanding work for the data set.

Various levels of authorization are required to use the SHCDS parameters. For
information about this autorization, see z/OS DFSMS Access Method Services
Commands.

Alternatively, if you have units of recovery that were shunted due to backout
failures, you can resolve those units of recovery by following these steps:

Designing and coding applications to use DFSMStvs

76 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

1. Use the access method services SHCDS LISTSHUNTED(dsname) command to
list all the shunted entries for a particular data set.

2. Make certain that the problem that caused the failure has been corrected. This
might involve ensuring that the volume is available or that the data set has
been recovered.

3. Determine whether the shunted entries should be retried.
4. If the shunted entries should be retried, use the access method services RETRY

command to request that DFSMStvs take action on them.
5. If the shunted entries should not be retried, use the access method services

SHCDS PURGE command to request that DFSMStvs delete the shunted
information.

6. It might also be necessary to use interfaces provided by RRS to inform RRS that
the unit of recovery has been resolved.

If you used the access method services SHCDS RESETLOCKS command to reset
the locks for a data set, the reset causes any attempt to take action on shunted log
entries for the data set to fail.

The same is true if you delete the data set without unbinding the locks. If you
used the access method services SHCDS FRUNBIND command, followed by the
access method services SHCDS RFDELETEUNBOUNDLOCKS command to reset
the locks for a data set, it causes any attempt to take action on shunted log entries
for the data set to fail.

Both problems cause DFSMStvs to see a unit of recovery that has log records but
no locks, which can be referred to as suspended state. A unit of recovery that is in a
suspended state cannot be retried because it is not safe to do so without the locks.
Use the access method services SHCDS command to purge the unit of recovery.

Applying advanced application development techniques
If you use DFSMStvs for more than just running batch jobs that are in a CICS
batch window, this topic can help you apply advanced techniques for coding your
application.

You need to convert batch jobs that use DFSMStvs to update recoverable data sets.
This involves the following tasks:
v Modifying jobs to use sync points and take appropriate action (commit or

backout)
v Modifying jobs to use RRS services to invoke commit and backout processing
v Modifying jobs to specify that DFSMStvs is to be used
v Examining jobs to ensure that multiple RPLs in use within a single application

does not cause lock contention within a unit of recovery
v Coding jobs to handle loss of positioning. Loss of positioning might occur at

commit or backout for unpaired requests (a GET UPD request is not followed by
a PUT UPD request, or an IDALKADD request not followed by a PUT NUP
request)

v Examining jobs to ensure that any new reason codes are handled appropriately.
v If any applications act as work dispatchers, examining jobs to ensure that all

work intended to be part of a single unit of recovery is handled under the same
context

Designing and coding applications to use DFSMStvs

Chapter 5. Designing and coding applications to use DFSMStvs 77

Another reason to use more advanced techniques would be if you would like to
split a batch process into several jobs. By splitting a batch process, originally
written to be a single threaded job, you can use DFSMStvs and run the jobs in
parallel.

Another reason to use more advanced techniques would be if you have a batch
process that was originally written to be a single threaded job, but using
DFSMStvs, you would like to split it into several jobs that run in parallel.

For example: You have a recoverable data set that contains 100 000 records, and a
batch job that processes all the records and updates them. Assuming that the
updates are independent of each other, you might split the batch job into four jobs.
The first job would process records 1-25 000. The second job would process records
25 001 - 50 000. The third job would process records 50 001 - 75 000, and the fourth
job would process records 75 001 - 100 000. Alternatively, your batch job could run
as a mother task which attached four subtasks. The mother task would give work
to each of the subtasks, and as each subtask completed its job, the mother task
would give it more work. Using this approach, each of the subtasks would be
dealing with an independent context and unit of recovery.

Record management requests
Unless privately managed contexts are used, all record management, commit, and
backout requests pertaining to a given unit of recovery must be issued under the
same task control block (TCB). This is because a unit of recovery is associated with
a context and a context is associated with a TCB. Any requests issued under a
different TCB would be handled under the context associated with that TCB and
would, therefore, belong to a different unit of recovery. The only exception to this
is the case in which a resource manager is using privately managed contexts and
switching them between TCBs.

A work manager, which takes work requests and parcels them out to tasks, might
create privately managed contexts. These contexts and the units of recovery
associated with them can be moved around, unlike the default contexts that every
TCB in the system has. So, if the work manager knows that a piece of work it is
about to submit belongs to a particular unit of recovery, the work manager can
take that unit of recovery's privately managed context and attach it to the TCB
before giving that TCB the work to do.

Record management requests get the locks; commit and backout processing release
the locks. For example, GET UPDATE, PUT ADD requests get locks. ENDREQ,
PUT UPDATE and DELETE requests do not release locks. Commit and backout
processing release the locks unless there is a problem, in which case the locks are
retained.

Multitasking
DFSMStvs can be used within an application that uses multitasking. That is, the
application can consist of a mother task with multiple daughter tasks to which
work is allotted. For example, Figure 15 on page 79 shows a mother task and three
subtasks.

Designing and coding applications to use DFSMStvs

78 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

One use for multitasking might be for an application that functions as a transaction
dispatcher. The following rules apply; if they are not followed, unpredictable
results can occur. The application must follow these rules because DFSMStvs has
no way to detect violations or to enforce these rules.
1. When DFSMStvs is invoked, it uses the current context. Normally, this is the

RRS native context that is associated with a dispatchable unit of work. A
context is a representation of a work request, and a unit of recovery is the work
done by or on behalf of the context between one point of consistency and
another. Therefore, all work within a single unit of recovery (transaction) must
come under a single context. When using native contexts, a single unit of
recovery cannot cross task boundaries. In this example, subtask 1 and subtask 2
cannot do work on behalf of the same unit of recovery.

2. If an application wishes to share work for a single unit of recovery across task
boundaries, it must create one or more privately managed contexts. The
application is responsible for managing those contexts and ensuring that the
correct context is associated with a dispatchable unit when DFSMStvs is
invoked. This ensures that the work being done is associated with the correct
unit of recovery. Because privately managed contexts take precedence over
native contexts, associating a privately managed context with a dispatchable
unit causes it to become the current context.

3. Applications must ensure that the same context is used for operations that are
part of the same unit of recovery. If an application issued a GET UPD request
then switched contexts before issuing the corresponding PUT UPD request
unpredictable results could occur.

4. DFSMStvs allows context switching provided that your application completes
all asynchronous I/O. You can use the CHECK macro to wait for I/O
associated with an RPL to complete.

DA0TV800

Context/UR

ATTACH

Subtask 1 Subtask 2 Subtask 3

Context/UR Context/UR Context/UR

Mother Task

Figure 15. Multitasking.

Designing and coding applications to use DFSMStvs

Chapter 5. Designing and coding applications to use DFSMStvs 79

Designing and coding applications to use DFSMStvs

80 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Chapter 6. Monitoring performance and tuning the DFSMStvs
environment

This topic contains information that is NOT Programming Interface information.

The additional work that DFSMStvs performs to obtain locks, to perform
two-phase commits, and to log updates consumes additional resources and affects
performance. This topic describes how to monitor performance and how to tune
the DFSMStvs environment for the best performance.

Use of DFSMStvs can have these effects on performance:
v Increased application run time
v Increased processor usage
v Increased response time for CICS transactions
v Increased coupling facility use
v Increased use of processor storage
v Logs spilling from the coupling facility to disk

This information covers these topics:
v “Monitoring performance”
v “Improving sequential performance” on page 104
v “Improving logging performance” on page 104
v “Tuning the DFSMStvs environment” on page 105

Monitoring performance
You can use this information and tools to monitor DFSMStvs performance:
v SMF record type 42 (hexadecimal 2A)
v SMF record type 88 (hexadecimal 58)
v RMF™ post-processor reports
v RMF monitor III
v CICS monitoring tools
v System messages
v Operator commands

SMF record type 42 (hexadecimal 2A)
In SMF record type 42 (hexadecimal 2A), subtypes 15 to 18 include statistics
generated by VSAM RLS:
v Subtype 15: VSAM RLS storage class response time summary

Look for a low read-hit rate in the coupling facility or a high false-invalidation
rate, either of which points to a lack of space in the coupling-facility structure.

v Subtype 16: VSAM RLS data set response time summary
Look for a low read-hit rate in the coupling facility or a high false-invalidation
rate, either of which points to a lack of space in the coupling-facility structure.

v Subtype 17: VSAM RLS coupling facility lock structure usage

© Copyright IBM Corp. 2003, 2013 81

The key measurement in this subtype is the number of false contention events.
False contention happens when the hash code calculated for an entry collides
with that for another entry. This can happen purely by accident because of the
way the hashing algorithm works; however, false contention events also occur if
the lock structure is too small.

v Subtype 18: VSAM RLS coupling facility cache partition usage
Monitor the read-hit counter as a proportion of the number of reads, the number
of read misses with directory hits, and the number of cross-invalidations due to
directory-entry reclamation or due to local cache-vector replacement. These
numbers can be symptoms of insufficient space in the coupling facility.

Related reading: For more information about SMF records, see z/OS MVS System
Management Facilities (SMF).

SMF record type 88 (hexadecimal 58)
This record contains information about the system logger. z/OS provides a sample
reporting program, IXGRPT1, in SYS1.SAMPLIB. Monitor the following key values,
which you can obtain from type 88 records:
v Average buffer size

This size is not reported directly. Divide the number of bytes written by the
number of writes completed to calculate this value.

v Structure-full events
If you see these events, the amount of space in the coupling facility is
insufficient. Review your sizing assumptions and provide more space.

Related reading: For more information about SMF records, see z/OS MVS System
Management Facilities (SMF).

RMF post-processor reports
The coupling facility activity report (use SYSRPTS(CF) in your RMF options to get
this) is in three parts:
v Usage summary

This summary has the following information:
– What structures are in use
– Whether they are list, lock, or cache structures
– The space used
– The number of requests

v XES structure activity
This report shows you, by structure, the number of requests (both synchronous
and asynchronous), the service time, and the number of requests that were
delayed. The following key indicators in the structure-activity report that could
alert you to configuration problems:
– More directory entries than data entries
– High number of directory reclaims
– High number of cross-invalidations
– Synchronous requests changed to asynchronous
– Low number of successful reads compared to writes

v Subchannel activity
Key indicators in this report follow:

Monitoring performance and tuning the DFSMStvs environment

82 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

– High degree of subchannels busy
– Number of subchannels used less than the number defined in the IOCDS

RMF monitor III
The coupling-facility activity summary, CFACT, shows you information by
structure name and system. Interesting items are request rates, service times, and
lock contention.

The data set by job summary, DSNJ, might help you to identify how individual
data sets are being used.

The RMF component of z/OS contains additional Monitor III displays for RLS.

CICS monitoring tools
If you are monitoring the effect that RLS and DFSMStvs have on online CICS
transactions, you should look at CICS statistics as well as system logger and
SMSVSAM information to gain the complete picture.

The CICS statistics titled File: requests information give you information about the
types of accesses to files open in CICS. You can produce reports with this
information by using the DFHSTUP program supplied with CICS.

You can also use CICS Monitoring Facility data to break down transaction response
time into its components, including I/O time.

System messages
Message IGW859I is issued to the system console when an individual unit of
recovery is holding more unique locks than the limit specified in the MAXLOCKS
parameter in SYS1.PARMLIB(IGDSMSxx). This message can help you identify a job
that is not issuing commits frequently enough or that has a logic problem, which is
probably causing performance problems for other users of DFSMStvs.

Operator commands
The options for the DISPLAY SMS command show you the status of these items:
v DFSMStvs facilities
v A specific job that is using DFSMStvs
v One or more units of recovery
v Entries in the shunt logs
v Log streams in use by DFSMStvs
v A data set being accessed in DFSMStvs mode

Related reading: For information about the options for the DISPLAY SMS
command, see z/OS MVS System Commands

Shunted units of recovery
The following list gives reasons why a unit of recovery might be shunted.
v A VSAM RLS cache structure, or connection to it, has failed.
v A log stream became or was made unavailable.
v A sync point for a unit of recovery failed for one of the data sets that it was

using. In this case, the name of the data set and the reason for the failure are
included. Failure can occur for any of these reasons:

Monitoring performance and tuning the DFSMStvs environment

Chapter 6. Monitoring performance and tuning the DFSMStvs environment 83

– The commit failed.
– An error occurred at some point when RLS locks were in the process of being

released. This error can normally be resolved by recycling the SMSVSAM
server (which should happen automatically).

– The locks were acquired as a result of recoverable requests having been
issued against the data set.

– A data set is full; no space is available on the direct access device for adding
records to it. You need to reallocate the data set with more space. You can
then retry the backout using SHCDS RETRY. You can also find information in
Various levels of authorization are required to use the SHCDS parameters.

– Backout failed. This occurs as a result of a severe error being identified
during backout, and is possibly an error in either DFSMStvs or VSAM. The
problem might go away if the backout is retried.

– Index record is full. A larger alternate index record size needs to be defined
for the data set.

– A hard I/O error occurred during backout. To correct this error, restore a full
backup copy of the data set and perform forward recovery.

– An attempt to acquire a lock during backout of an update to this data set
failed because the RLS lock structure was full. You must allocate a larger lock
structure in an available coupling facility and rebuild the existing lock
structure into it, then use the SHCDS RETRY command to drive the backout
retry.

– An error occurred during an open of the data set for backout. A console
message notifies you of the reason for the open error. One likely reason could
be that the data set was quiesced.

Related reading:

v For information on moving and reallocating data sets, see z/OS DFSMSdfp
Storage Administration.

v http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp
v For information about the level of authorization required to use the SHCDS

parameters, see z/OS DFSMS Access Method Services Commands.

Effects of DFSMStvs, log stream, and data set states
These tables describe the effects of the DFSMStvs states, log stream states, and data
set states on DFSMStvs processing.

You can use the VARY SMS command to change the state of DFSMStvs, log
streams that DFSMStvs uses, and data sets that DFSMStvs processes.

Recommendation: Be careful about quiesce with a path name; always use a base
name.

Related reading: For information about the VARY SMS command, see z/OS MVS
JCL Reference.

Table 4 describes the effects of the states of a DFSMStvs instance.

Table 4. Effects of DFSMStvs states on DFSMStvs processing

DFSMStvs state Effect

Initializing DFSMStvs is in the process of coming up and cannot
accept any work until it has completed this process.

Monitoring performance and tuning the DFSMStvs environment

84 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp

Table 4. Effects of DFSMStvs states on DFSMStvs processing (continued)

DFSMStvs state Effect

Active DFSMStvs is fully initialized and is accepting work. It is
possible for DFSMStvs to be in the active state while it is
still completing restart processing.

Quiescing DFSMStvs is in the process of completing any units of
recovery that were in progress when the quiesce
occurred but will not accept any new ones. DFSMStvs
transitions from quiescing to quiesced when all
in-progress units of recovery are completed and all data
sets that are open in DFSMStvs mode are closed.

Quiesced DFSMStvs has completed all units of recovery that were
in progress when the quiesce occurred, and there are no
active DFSMStvs opens. DFSMStvs does not accept any
work until it is enabled.

Disabling DFSMStvs is not accepting any requests. DFSMStvs
transitions from disabling to disabled when all data sets
that are open in DFSMStvs mode are closed.

Disabled DFSMStvs is not accepting any requests, and all data sets
that were open in DFSMStvs mode have been closed.
DFSMStvs does not accept any new work until it is
enabled.

Table 5 describes the effects of undo log states, shunt log states, log-of-log states,
and forward recovery log states.

Table 5. Effects of log states on DFSMStvs processing

Log type Log state Effect

Undo or shunt Enabled DFSMStvs services are available for use both by
in-progress units of recovery and new units of recovery.

Undo or shunt Quiescing DFSMStvs allows requests by existing units of recovery to
be processed but does not allow new units of recovery to
start. Quiescing the undo or shunt log is equivalent to
quiescing DFSMStvs.

Undo or shunt Quiesced There are no units of recovery using DFSMStvs services
and new units of recovery cannot start

Undo or shunt Disabling All DFSMStvs requests are failed, including those
submitted by in-progress units of recovery. Units of
recovery are neither committed nor backed out and cannot
be completed until DFSMStvs restart processing is run.
Disabling the undo or shunt log is equivalent to disabling
DFSMStvs.

Undo or shunt Disabled There are no units of recovery using DFSMStvs services
and new units of recovery cannot start. All data sets that
were open for DFSMStvs processing have been closed, and
DFSMStvs has unregistered with RRS and the lock
manager and disconnected from its logs.

Log of logs Enabled DFSMStvs writes tie-up records and file-close records to
the log of logs so that they can be used to optimize
forward recovery processing.

Monitoring performance and tuning the DFSMStvs environment

Chapter 6. Monitoring performance and tuning the DFSMStvs environment 85

Table 5. Effects of log states on DFSMStvs processing (continued)

Log type Log state Effect

Log of logs Quiescing DFSMStvs writes file-close records to the log of logs for
any forward recoverable data sets that are currently open
but does not write any additional tie up records to the log
of logs.

Log of logs Quiesced All paired tie-up records and file-close records were
written to the log of logs, but no additional records are
being written to the log of logs.

Log of logs Disabling DFSMStvs runs without the log of logs. If forward
recovery is needed for any forward recoverable data sets,
the forward recovery utility will not be able to use the
optimization provided by the log of logs.

Log of logs Disabled DFSMStvs runs without the log of logs. If forward
recovery is needed for any forward recoverable data sets,
the forward recovery utility will not be able to use the
optimization provided by the log of logs. All data sets that
had written tie up records to the log of logs have been
closed.

Forward
recovery

Enabled DFSMStvs allows data sets that use the forward recovery
log to be opened and processed.

Forward
recovery

Quiescing DFSMStvs allows all jobs that are using the forward
recovery log to continue processing but does not allow
any new opens of data sets that use the forward recovery
log.

Forward
recovery

Quiesced There are no jobs that have data sets that use the forward
recovery log open, and DFSMStvs does not allow any new
opens of data sets that use the forward recovery log.

Forward
recovery

Disabling DFSMStvs fails any requests that need to write to the
forward recovery log, which causes logging failures in jobs
that had data sets open that use it. Because no further
records can be written to the forward recovery log, units
of recovery that were in progress and using it can be
neither committed nor backed out. They are shunted and
must be either purged or manually retried when the
forward recovery log is later enabled.

Forward
recovery

Disabled All data sets that had been using the forward recovery log
have been closed. Any open that requires the use of the
forward recovery log will be failed.

Table 6 describes the effects of data set states.

Table 6. Effects of data set states on DFSMStvs processing

Data set state Effect

Not quiesced The data set is available for normal use.

Quiescing VSAM RLS allows those jobs that were using the data set to continue
using it but does not allow additional opens.

Quiesced The data set is not open for either RLS or DFSMStvs access and cannot
be opened for RLS or DFSMStvs access until it is unquiesced.

Monitoring performance and tuning the DFSMStvs environment

86 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Table 6. Effects of data set states on DFSMStvs processing (continued)

Data set state Effect

Quiescing for
copy

DFSMStvs allows any units of recovery that had previously updated
the data set (or issued a GET UPD) to continue using the data set. It
will also allow both new and in-progress units of recovery to read the
data set, but it will not allow any unit of recovery that had not
previously updated the data set (or issued a GET UPD) to issue GET
UPD, PUT, or ERASE against the data set.

Quiesced for
copy

There are no units of recovery that have updated the data set (or issued
a GET UPD), and DFSMStvs will not allow any unit of recovery to
issue GET UPD, PUT, or ERASE against the data set. Units of recovery
can read the data set.

Quiesced for
backup-while-
open (BWO)

DFSMStvs ensures the writing of any log records required to enable
forward recovery of the sphere from the backup copy that is about to
be taken. DFSMStvs also writes a record to indicate that it received a
QUIBWO. The sphere remains open and normal processing of the data
set is allowed.

Effects of DFSMStvs states based on events
This topic describes the effects of DFSMStvs states when different events occur.
1. The DFSMStvs state is initializing.

In this state, all opens and record management requests are failed with
nonzero return and reason codes. All closes are allowed; the opens with which
the closes are associated probably belonged to a previous instance of
DFSMStvs.

Event Effect

VARY command to enable
DFSMStvs

The command is rejected. DFSMStvs is already initializing.

VARY command to quiesce
DFSMStvs

The command waits until DFSMStvs finishes initializing to
quiesce DFSMStvs processing and change its state to
quiescing.

VARY command to disable
DFSMStvs

The command waits until DFSMStvs finishes initializing to
disable DFSMStvs processing and change its state to
disabling.

RRS becomes unavailable DFSMStvs makes a note that RRS is unavailable. DFSMStvs
begins disabling itself and sets its state to disabling when
initialization reaches a point where it can do so.

A system log I/O error
occurs

DFSMStvs makes a note that the I/O error occurred.
DFSMStvs begins quiescing itself and sets its state to
quiescing when initialization reaches a point where it can
do so.

2. The DFSMStvs state is initializing and an operator command was issued to
quiesce DFSMStvs processing.
In this state, DFSMStvs initialization completes and then the DFSMStvs state
changes from initializing to quiescing. It performs DFSMStvs restart
processing as part of the process of quiescing, but no work is allowed to start.
All opens and record management requests are failed with nonzero return and
reason codes. All closes are allowed; the opens with which the closes are
associated probably belonged to a previous instance of DFSMStvs.

Monitoring performance and tuning the DFSMStvs environment

Chapter 6. Monitoring performance and tuning the DFSMStvs environment 87

Event Effect

VARY command to enable
DFSMStvs

Command waits until DFSMStvs finishes initializing and
then stacks behind the quiesce command.

VARY command to quiesce
DFSMStvs

Command waits until DFSMStvs finishes initializing and is
then rejected because such a command was already issued.

VARY command to disable
DFSMStvs

Command waits until DFSMStvs finishes initializing and
then stacks behind the quiesce command.

RRS becomes unavailable DFSMStvs makes a note that this occurred. DFSMStvs
begins disabling itself and sets its state to disabling when
initialization reaches a point where it can do so.

A system log I/O error
occurs

DFSMStvs makes a note that this occurred. DFSMStvs will
begin quiescing itself and will set its state to quiescing
when initialization reaches a point where it can do so.

3. When the DFSMStvs state is initializing, a system log I/O error occurred, and
an operator command has been issued to quiesce the previous instance of
DFSMStvs.
In this state, DFSMStvs would not be initializing unless a cold start has been
requested to clear the system log I/O error. All opens and record management
requests are failed with nonzero return and reason codes. All closes are
allowed; the opens with which the closes are associated probably belonged to
a previous instance of DFSMStvs.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

Command waits until DFSMStvs finishes initializing and
then is rejected because DFSMStvs is already initialized.

VARY command to quiesce
DFSMStvs

Command waits until DFSMStvs finishes initializing and
then DFSMStvs begins quiescing its processing and sets its
state to quiescing.

VARY command to disable
DFSMStvs

Command waits until DFSMStvs finishes initializing and
then DFSMStvs begins disabling its processing and sets its
state to disabling.

RRS becomes unavailable DFSMStvs makes a note that this occurred. DFSMStvs
begins disabling itself and sets its state to disabling when
initialization reaches a point where it can do so.

A system log I/O error
occurs

This cannot occur. In this state, a cold start must be done,
and DFSMStvs would not be writing to the system log
during a cold start.

4. The DFSMStvs state is initializing, a system log I/O error occurred, and an
operator command has been issued to quiesce the previous instance of
DFSMStvs processing.
In this state, DFSMStvs would not be initializing unless a cold start has been
requested to clear the system log I/O error. All opens and record management

Monitoring performance and tuning the DFSMStvs environment

88 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

requests are failed with nonzero return and reason codes. All closes are
allowed; the opens with which the closes are associated probably belonged to
a previous instance of DFSMStvs.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

Command waits until DFSMStvs finishes initializing and
then stacks behind the previous quiesce command.

VARY command to quiesce
DFSMStvs

Command waits until DFSMStvs finishes initializing and
then is rejected because such a command was already
issued.

VARY command to disable
DFSMStvs

Command waits until DFSMStvs finishes initializing and
then stacks behind the previous quiesce command.

RRS becomes unavailable DFSMStvs makes a note that this occurred. DFSMStvs
begins the process of disabling itself and sets its state to
disabling when initialization reaches a point where it can
do so.

A system log I/O error
occurs

This cannot occur. In this state, a cold start must be done,
and DFSMStvs would not be writing to the system log
during a cold start.

5. DFSMStvs has initialized and its state is active.
In this state, opens, closes, and record management requests are all processed
normally.

Event Effect

VARY command to enable
DFSMStvs

The command is rejected. DFSMStvs is already available.

VARY command to quiesce
DFSMStvs

DFSMStvs begins the process of quiescing itself and sets its
state to quiescing.

VARY command to disable
DFSMStvs

DFSMStvs begins the process of disabling itself and sets its
state to disabling.

RRS becomes unavailable DFSMStvs begins the process of disabling itself and sets its
state to disabling.

A system log I/O error
occurs

DFSMStvs begins the process of quiescing itself and sets its
state to quiescing.

6. DFSMStvs has initialized and its state is quiescing because a VARY command
was issued to quiesce DFSMStvs processing.
In this state, opens and closes are all processed normally. Any record
management requests for units of recovery that are already in progress are
also processed normally. Record management requests for new units of
recovery are rejected.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using

Monitoring performance and tuning the DFSMStvs environment

Chapter 6. Monitoring performance and tuning the DFSMStvs environment 89

forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs sets its state to initializing and reinitializes itself.

VARY command to quiesce
DFSMStvs

The command is rejected. DFSMStvs is already in the
process of quiescing itself.

VARY command to disable
DFSMStvs

DFSMStvs begins the process of disabling itself and sets its
state to disabling.

RRS becomes unavailable DFSMStvs begins the process of disabling itself and sets its
state to disabling.

A system log I/O error
occurs

The DFSMStvs state does not change, because DFSMStvs is
already quiescing. However, DFSMStvs makes a note of the
error, because a cold start will be required to correct the
problem.

7. DFSMStvs has initialized and its state is quiescing because a system log I/O
error occurred.
In this state, opens and closes are all processed normally. Any record
management requests for units of recovery that are already in progress are
also processed normally. Record management requests for new units of
recovery are rejected.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

The command is rejected. A cold start is required to
recovery from the system log I/O error.

VARY command to quiesce
DFSMStvs

DFSMStvs is already in the process of quiescing itself, but
make a note that this occurred so that it will not come back
up until another VARY command is issued to tell it to
ENABLE itself.

VARY command to disable
DFSMStvs

DFSMStvs begins the process of disabling itself and sets its
state to disabling.

RRS becomes unavailable DFSMStvs begins the process of disabling itself and sets its
state to disabling.

A system log I/O error
occurs

There is no operational change because such an error has
already occurred.

8. DFSMStvs has initialized and its state is quiescing because a system log I/O
error occurred and because a VARY command was issued to quiesce
DFSMStvs processing.
In this state, opens and closes are all processed normally. Any record
management requests for units of recovery that are already in progress are
also processed normally. Record management requests for new units of
recovery are rejected.

Monitoring performance and tuning the DFSMStvs environment

90 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs makes a note that it was told to enable, but it
issues a message to indicate that it is still quiescing due to
the system log I/O error.

VARY command to quiesce
DFSMStvs

The command is rejected. DFSMStvs is already quiescing.

VARY command to disable
DFSMStvs

DFSMStvs begins the process of disabling itself and sets its
state to disabling.

RRS becomes unavailable DFSMStvs begins the process of disabling itself and sets its
state to disabling.

A system log I/O error
occurs

There is no operational change because such an error has
already occurred.

9. The DFSMStvs state is quiesced because a VARY command was issued to
quiesce DFSMStvs processing.
DFSMStvs does not reach this state until the last data set that was open for
DFSMStvs processing is closed. In this state, all opens are failed with nonzero
return and reason codes. All closes and record management requests are
rejected with X'0F4' abends because no closes or record management requests
can occur after the last data set open for DFSMStvs processing is closed.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs begins the process of reinitializing itself and sets
its state to initializing.

VARY command to quiesce
DFSMStvs

The command is rejected. DFSMStvs is already quiesced.

VARY command to disable
DFSMStvs

The command is rejected. DFSMStvs is already quiesced.

RRS becomes unavailable DFSMStvs unregisters with RRS and RLS, disconnects from
its logs, and sets its state to disabled.

A system log I/O error
occurs

This cannot happen. DFSMStvs processing is quiesced;
therefore, DFSMStvs cannot write to its system logs.

10. The DFSMStvs state is quiesced because a system log I/O error occurred.
DFSMStvs does not reach this state until the last data set that was open for
DFSMStvs processing is closed. In this state, all opens are failed with nonzero
return and reason codes. All closes and record management requests are
rejected with X'0F4' abends because no closes or record management requests
can occur after the last data set open for DFSMStvs processing is closed.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

The command is rejected. A cold start is required to recover
from the system log I/O error. The SMSVSAM server must
be recycled.

Monitoring performance and tuning the DFSMStvs environment

Chapter 6. Monitoring performance and tuning the DFSMStvs environment 91

Event Effect

VARY command to quiesce
DFSMStvs

DFSMStvs makes a note that the command was issued so
that it will not come up automatically if the SMSVSAM
server happens to recycle with TV_START_TYPE set to
COLD.

VARY command to disable
DFSMStvs

DFSMStvs makes a note that the command was issued so
that it will not come up automatically if the SMSVSAM
server happens to recycle with TV_START_TYPE set to
COLD.

RRS becomes unavailable DFSMStvs unregisters with RRS and RLS, disconnects from
its logs, and sets its state to disabled.

A system log I/O error
occurs

This cannot happen. DFSMStvs processing is quiesced;
therefore, DFSMStvs cannot write to its system logs.

11. The DFSMStvs state is quiesced because a VARY command was issued to
quiesce DFSMStvs processing and a system log I/O error occurred.
DFSMStvs does not reach this state until the last data set that was open for
DFSMStvs processing is closed. In this state, all opens are failed with nonzero
return and reason codes. All closes and record management requests are
rejected with X'0F4' abends because no closes or record management requests
can occur after the last data set open for DFSMStvs processing is closed.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs resets the indicator that a command was issued
to quiesce but does not reinitialize. A cold start is required
to recover from the system log I/O error. The SMSVSAM
server must be recycled.

VARY command to quiesce
DFSMStvs

The command is rejected. DFSMStvs is already quiesced.

VARY command to disable
DFSMStvs

The command is rejected. DFSMStvs is already quiesced.

RRS becomes unavailable DFSMStvs unregisters with RRS and RLS, disconnects from
its logs, and sets its state to disabled.

A system log I/O error
occurs

This cannot happen. DFSMStvs processing is quiesced,
therefore, DFSMStvs cannot write to its system logs.

12. The DFSMStvs state is disabling because RRS became unavailable, and then
RRS became available again.
In this state, DFSMStvs must complete the disable process before it can
reinitialize because RRS reinitialized, which requires that DFSMStvs reinitialize
as a new instance. All opens are failed with nonzero return and reason codes.
All closes are processed normally. All record management requests are failed
with nonzero return and reason codes.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs

Monitoring performance and tuning the DFSMStvs environment

92 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

The command is rejected. DFSMStvs must complete the
disable process before can reinitialize. It will do so
automatically once the disable process completes.

VARY command to quiesce
DFSMStvs

DFSMStvs makes a note that the command was issued.
When RRS comes back up, DFSMStvs will reinitialize in a
quiescing state long enough to clean up any incomplete
units of recovery. It will not allow new work to begin.

VARY command to disable
DFSMStvs

DFSMStvs makes a note that the command was issued so
that it will not automatically reinitialize when the disable
completes.

RRS becomes unavailable DFSMStvs makes a note that this occurred and reinitializes
when RRS becomes available again.

A system log I/O error
occurs

DFSMStvs makes a note that this error occurred so that it
does not automatically reinitialize until DFSMStvs is cold
started.

13. The DFSMStvs state is disabling because RRS became unavailable, and then
RRS became available again; in addition, an operator command was issued to
quiesce DFSMStvs processing.
In this state, DFSMStvs must complete the disable process before it can
reinitialize because RRS reinitialized, which requires that DFSMStvs reinitialize
as a new instance. All opens are failed with nonzero return and reason codes.
All closes are processed normally. All record management requests are failed
with nonzero return and reason codes.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs makes a note that this occurred. It will
reinitialize automatically once the disable process
completes.

VARY command to quiesce
DFSMStvs

The command is rejected. Such a command was previously
issued.

VARY command to disable
DFSMStvs

DFSMStvs makes a note that the command was issued so
that it will not automatically reinitialize when the disable
completes.

RRS becomes unavailable DFSMStvs makes a note that this occurred. It does not
reinitialize automatically when RRS becomes available
again because a command was issued to quiesce it.

A system log I/O error
occurs

DFSMStvs makes a note that this error occurred so that it
does not automatically reinitialize until DFSMStvs is cold
started.

Monitoring performance and tuning the DFSMStvs environment

Chapter 6. Monitoring performance and tuning the DFSMStvs environment 93

14. The DFSMStvs state is disabling because an operator command was issued to
disable DFSMStvs processing.
In this state, all opens are failed with nonzero return and reason codes. All
closes are processed normally. All record management requests are failed with
nonzero return and reason codes.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs begins the process of reinitializing itself and sets
its state to initializing.

VARY command to quiesce
DFSMStvs

The command is rejected. Quiescing is a less restrictive
state than disabling. As a result, transitioning from
disabling to quiescing is not allowed.

VARY command to disable
DFSMStvs

The command is rejected. DFSMStvs is already disabling.

RRS becomes unavailable DFSMStvs makes a note that this occurred. It does not
reinitialize automatically when RRS becomes available
again because a command was issued to disable it.

A system log I/O error
occurs

DFSMStvs makes a note that this error occurred so that it
does not automatically reinitialize until DFSMStvs is cold
started.

15. The DFSMStvs state is disabling because RRS became unavailable and then
became available again; in addition, a system log I/O error occurred.
In this state, DFSMStvs must complete the disable process before it can
reinitialize because RRS reinitialized, which requires that DFSMStvs reinitialize
as a new instance. All opens are failed with nonzero return and reason codes.
All closes are processed normally. All record management requests are failed
with nonzero return and reason codes.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

The command is rejected. A cold start must be done to
recover from the system log I/O error, which requires
recycling the server.

VARY command to quiesce
DFSMStvs

DFSMStvs makes a note that this occurred. When the
SMSVSAM server recycles with TV_START_TYPE set to
COLD, DFSMStvs reinitializes in a quiescing state long
enough to clean up any incomplete units of recovery. It will
not allow new work to begin.

Monitoring performance and tuning the DFSMStvs environment

94 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Event Effect

VARY command to disable
DFSMStvs

DFSMStvs makes a note that this occurred so that it does
not automatically reinitialize if the SMSVSAM server
recycles with TV_START_TYPE set to COLD.

RRS becomes unavailable DFSMStvs makes a note that this occurred. It does not
reinitialize automatically when RRS becomes available
again because of the system log I/O error.

A system log I/O error
occurs

There is no operational change because such an error has
already occurred.

16. The DFSMStvs state is disabling because RRS became unavailable.
In this state, DFSMStvs must complete the disable process before it can
reinitialize because RRS reinitialized, which requires that DFSMStvs reinitialize
as a new instance. All opens are failed with nonzero return and reason codes.
All closes are processed normally. All record management requests are failed
with nonzero return and reason codes.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

The command is rejected. DFSMStvs will automatically
reinitialize when the disable completes and RRS becomes
available.

VARY command to quiesce
DFSMStvs

DFSMStvs makes a note that the command was issued.
When RRS comes back up, DFSMStvs reinitializes in a
quiescing state long enough to clean up any incomplete
units of recovery. It does not allow new work to begin.

VARY command to disable
DFSMStvs

DFSMStvs makes a note that this occurred so that it does
not automatically reinitialize when RRS becomes available.

RRS becomes available DFSMStvs finishes disabling and then reinitializes itself
automatically.

A system log I/O error
occurs

DFSMStvs makes a note that this occurred. A cold start is
required to recover from the error.

17. The DFSMStvs state is disabling because an operator command was issued to
disable DFSMStvs processing and a system log I/O error occurred.
In this state, all opens are failed with nonzero return and reason codes. All
closes are processed normally. All record management requests are failed with
nonzero return and reason codes.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Monitoring performance and tuning the DFSMStvs environment

Chapter 6. Monitoring performance and tuning the DFSMStvs environment 95

Event Effect

VARY command to enable
DFSMStvs

The command is rejected. Quiescing is a less restrictive
state than disabling. As a result, transitioning from
disabling to quiescing is not allowed.

VARY command to quiesce
DFSMStvs

DFSMStvs switches from disabling to quiescing and sets its
state to quiescing.

VARY command to disable
DFSMStvs

The command is rejected. DFSMStvs is already disabling.

RRS becomes unavailable DFSMStvs makes a note that this occurred. It does not
automatically reinitialize when RRS becomes available
because an operator command was issued to disable it.

A system log I/O error
occurs

There is no operational change because such an error has
already occurred.

18. The DFSMStvs state is disabling because RRS is unavailable and because an
operator command was issued to disable DFSMStvs processing
In this state, DFSMStvs must complete the disable process before it can
reinitialize because RRS reinitialized, which requires that DFSMStvs reinitialize
as a new instance. All opens are failed with nonzero return and reason codes.
All closes are processed normally. All record management requests are failed
with nonzero return and reason codes.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs makes a note that this occurred. It will
reinitialize automatically when RRS becomes available.

VARY command to quiesce
DFSMStvs

DFSMStvs makes a note that this occurred, but the state
remains disabling because of the RRS failure. When RRS
comes back up, DFSMStvs will reinitialize in a quiescing
state long enough to clean up any incomplete units of
recovery. It will not allow new work to begin.

VARY command to disable
DFSMStvs

The command is rejected. DFSMStvs is already disabling.

RRS becomes available DFSMStvs makes a note that this occurred. It does not
reinitialize itself automatically because an operator
command was issued to disable DFSMStvs processing.

A system log I/O error
occurs

DFSMStvs makes a note that this occurred. A cold start will
be required to recover from the error.

19. The DFSMStvs state is disabling because RRS is unavailable; in addition, an
operator command was issued to quiesce DFSMStvs processing.
In this state, DFSMStvs must complete the disable process before it can
reinitialize because RRS reinitialized, which requires that DFSMStvs reinitialize
as a new instance. All opens are failed with nonzero return and reason codes.
All closes are processed normally. All record management requests are failed
with nonzero return and reason codes.

Monitoring performance and tuning the DFSMStvs environment

96 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs makes a note that this occurred. It will
reinitialize automatically when RRS becomes available.

VARY command to quiesce
DFSMStvs

The command is rejected. Such a command was already
issued.

VARY command to disable
DFSMStvs

DFSMStvs makes a note that this occurred.

RRS becomes available DFSMStvs makes a note that this occurred. It will not
reinitialize automatically when RRS becomes available
again because an operator command was issued to quiesce
DFSMStvs processing.

A system log I/O error
occurs

DFSMStvs makes a note that this occurred. A cold start will
be required to recover.

20. The DFSMStvs state is disabling because RRS is unavailable; in addition, a
system log I/O error occurred.
In this state, DFSMStvs must complete the disable process before it can
reinitialize because RRS reinitialized, which requires that DFSMStvs reinitialize
as a new instance. All opens are failed with nonzero return and reason codes.
All closes are processed normally. All record management requests are failed
with nonzero return and reason codes.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

The command is rejected. A cold start is required to recover
from the system log I/O error.

VARY command to quiesce
DFSMStvs

DFSMStvs makes a note that this occurred. When the
SMSVSAM server recycles with TV_START_TYPE set to
COLD, DFSMStvs will reinitialize in a quiescing state long
enough to clean up any incomplete units of recovery. It will
not allow new work to begin.

VARY command to disable
DFSMStvs

DFSMStvs makes a note that this occurred so that it will
not automatically reinitialized if the SMSVSAM server
recycles with TV_START_TYPE set to COLD.

RRS becomes available DFSMStvs makes a note that this occurred. It will not
reinitialize automatically because a cold start is required to
recover from the system log I/O error.

A system log I/O error
occurs

There is no operational change because such an error has
already occurred.

Monitoring performance and tuning the DFSMStvs environment

Chapter 6. Monitoring performance and tuning the DFSMStvs environment 97

21. The DFSMStvs state is disabling because RRS is unavailable; in addition, a
system log I/O error occurred and an operator command was issued to
disable DFSMStvs processing.
In this state, DFSMStvs must complete the disable process before it can
reinitialize because RRS reinitialized, which requires that DFSMStvs reinitialize
as a new instance. All opens are failed with nonzero return and reason codes.
All closes are processed normally. All record management requests are failed
with nonzero return and reason codes.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs makes a note that this occurred. It will not
automatically reinitialize when RRS becomes available
because of the system log I/O error.

VARY command to quiesce
DFSMStvs

DFSMStvs makes a note that this occurred. When the
SMSVSAM server recycles with TV_START_TYPE set to
COLD, DFSMStvs will reinitialize in a quiescing state long
enough to clean up any incomplete units of recovery. It will
not allow new work to begin.

VARY command to disable
DFSMStvs

The command is rejected. Such a command was already
issued.

RRS becomes available DFSMStvs makes a note that this occurred. It will not
reinitialize automatically because a cold start is required to
recover from the system log I/O error.

A system log I/O error
occurs

There is no operational change because such an error has
already occurred.

22. The DFSMStvs state is disabling because RRS is unavailable; in addition, a
system log I/O error occurred and an operator command was issued to
quiesce DFSMStvs processing.
In this state, DFSMStvs must complete the disable process before it can
reinitialize because RRS reinitialized, which requires that DFSMStvs reinitialize
as a new instance. All opens are failed with nonzero return and reason codes.
All closes are processed normally. All record management requests are failed
with nonzero return and reason codes.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs makes a note that this occurred. It will not
automatically reinitialize when RRS becomes available
because of the system log I/O error.

Monitoring performance and tuning the DFSMStvs environment

98 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Event Effect

VARY command to quiesce
DFSMStvs

The command is rejected. Such a command was already
issued.

VARY command to disable
DFSMStvs

DFSMStvs makes a note that this occurred.

RRS becomes available DFSMStvs makes a note that this occurred. It will not
reinitialize automatically because a cold start is required to
recover from the system log I/O error.

A system log I/O error
occurs

There is no operational change because such an error has
already occurred.

23. The DFSMStvs state is disabling because RRS became unavailable and then
became available again, and an operator command was issued to disable
DFSMStvs; in addition, a system log I/O error occurred.
In this state, DFSMStvs must complete the disable process before it can
reinitialize because RRS reinitialized, which requires that DFSMStvs reinitialize
as a new instance. All opens are failed with nonzero return and reason codes.
All closes are processed normally. All record management requests are failed
with nonzero return and reason codes.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs makes a note that this occurred but does not
reinitialize. cold start must be done to recover from the
system log I/O error, which requires recycling the server.

VARY command to quiesce
DFSMStvs

The command is rejected. Such a command was already
issued.

VARY command to disable
DFSMStvs

DFSMStvs makes a note that this occurred.

RRS becomes available DFSMStvs makes a note that this occurred. It will not
reinitialize automatically because of the system log I/O
error.

A system log I/O error
occurs

There is no operational change because such an error has
already occurred.

24. The DFSMStvs state is disabled because RRS became unavailable and then
became available again.
When DFSMStvs reaches this state, it begins the process of reinitialize itself
and sets its state to initializing, as long as no commands are issued to the
contrary. In this state, all opens are failed with nonzero return and reason
codes. All closes and record management requests are rejected with X'0F4'
abends because no data sets should be open for DFSMStvs processing if
DFSMStvs is disabled.

Monitoring performance and tuning the DFSMStvs environment

Chapter 6. Monitoring performance and tuning the DFSMStvs environment 99

Event Effect

VARY command to enable
DFSMStvs

The command is rejected. DFSMStvs is about to reinitialize
on its own.

VARY command to quiesce
DFSMStvs

DFSMStvs makes a note that the command was issued.
When RRS comes back up, DFSMStvs will reinitialize in a
quiescing state long enough to clean up any incomplete
units of recovery. It will not allow new work to begin.

VARY command to disable
DFSMStvs

DFSMStvs makes a note that this occurred. The state
remains DISABLE and DFSMStvs does not reinitialize.

RRS becomes unavailable DFSMStvs makes a note that this occurred. It begins the
process of reinitializing itself and waits for RRS to become
available.

A system log I/O error
occurs

This cannot occur when DFSMStvs is disabled because
there is no DFSMStvs activity.

25. The DFSMStvs state is disabled because RRS became unavailable and then
became available again, and an operator command was issued to quiesce
DFSMStvs processing before DFSMStvs could begin to reinitialize.
In this state, all opens are failed with nonzero return and reason codes. All
closes and record management requests are rejected with X'0F4' abends
because no data sets should be open for DFSMStvs processing if DFSMStvs is
disabled.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs begins the process of reinitializing itself and sets
its state to initializing.

VARY command to quiesce
DFSMStvs

The command is rejected. Such a command was already
issued.

VARY command to disable
DFSMStvs

DFSMStvs makes a note that this occurred.

RRS becomes unavailable DFSMStvs makes a note that this occurred. It will not
reinitialize itself automatically when RRS becomes available
again because an operator command was issued to quiesce
DFSMStvs processing.

A system log I/O error
occurs

This cannot occur when DFSMStvs is disabled because
there is no DFSMStvs activity.

26. The DFSMStvs state is disabled because an operator command was issued to
disable DFSMStvs processing.
In this state, all opens are failed with nonzero return and reason codes. All
closes and record management requests are rejected with X'0F4' abends
because no data sets should be open for DFSMStvs processing if DFSMStvs is
disabled.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs begins the process of reinitializing itself and sets
its state to initializing.

VARY command to quiesce
DFSMStvs

The command is rejected. DFSMStvs is already disabled.

VARY command to disable
DFSMStvs

The command is rejected. DFSMStvs is already disabled.

Monitoring performance and tuning the DFSMStvs environment

100 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Event Effect

RRS becomes unavailable DFSMStvs makes a note that this occurred. It will not
reinitialize itself automatically when RRS becomes available
again because an operator command was issued to disable
DFSMStvs processing.

A system log I/O error
occurs

This cannot occur when DFSMStvs is disabled because
there is no DFSMStvs activity.

27. The DFSMStvs state is disabled because an operator command was issued to
disable DFSMStvs processing; in addition, a system log I/O error occurred. A
subsequent VARY command might also have been issued to change the state
of DFSMStvs, as follows:
v Enable DFSMStvs, but DFSMStvs could not reinitialize because of the

system log I/O error
v Quiesce DFSMStvs, which made a note of this, but the state did not change

because DFSMStvs was already disabled
In this state, all opens are failed with nonzero return and reason codes. All
closes and record management requests are rejected with X'0F4' abends
because no data sets should be open for DFSMStvs processing if DFSMStvs is
disabled.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

The command is rejected. A cold start is required to recover
from the system log I/O error.

VARY command to quiesce
DFSMStvs

DFSMStvs makes a note that this occurred.

VARY command to disable
DFSMStvs

The command is rejected. DFSMStvs is already disabled.

RRS becomes unavailable DFSMStvs makes a note that this occurred. It will not
reinitialize itself automatically when RRS becomes available
again because of the system log I/O error.

A system log I/O error
occurs

This cannot occur when DFSMStvs is disabled because
there is no DFSMStvs activity.

28. The DFSMStvs state is disabled because RRS is unavailable.
In this state, all opens are failed with nonzero return and reason codes. All
closes and record management requests are rejected with X'0F4' abends
because no data sets should be open for DFSMStvs processing if DFSMStvs is
disabled.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs begins the process of reinitializing itself and sets
its state to initializing.

Monitoring performance and tuning the DFSMStvs environment

Chapter 6. Monitoring performance and tuning the DFSMStvs environment 101

Event Effect

VARY command to quiesce
DFSMStvs

DFSMStvs makes a note that the command was issued.
When RRS comes back up, DFSMStvs will reinitialize in a
quiescing state long enough to clean up any incomplete
units of recovery. It will not allow new work to begin.

VARY command to disable
DFSMStvs

DFSMStvs makes a note that this occurred. It will not
automatically reinitialize when RRS becomes available.

RRS becomes available DFSMStvs begins the process of reinitializing itself and sets
its state to initializing.

A system log I/O error
occurs

This cannot occur when DFSMStvs is disabled because
there is no DFSMStvs activity.

29. The DFSMStvs state is disabled because RRS is unavailable and an operator
command was issued to disable DFSMStvs processing.
In this state, all opens are failed with nonzero return and reason codes. All
closes and record management requests are rejected with X'0F4' abends
because no data sets should be open for DFSMStvs processing if DFSMStvs is
disabled.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs begins the process of reinitializing itself and sets
its state to initializing.

VARY command to quiesce
DFSMStvs

DFSMStvs makes a note that this occurred. It will not
automatically reinitialize when RRS becomes available.

VARY command to disable
DFSMStvs

The command is rejected. DFSMStvs is already disabled.

RRS becomes available DFSMStvs makes a note that this occurred. It does not
automatically reinitialize itself because an operator
command was issued to disable DFSMStvs processing.

A system log I/O error
occurs

This cannot occur when DFSMStvs is disabled because
there is no DFSMStvs activity.

30. The DFSMStvs state is disabled because RRS is unavailable and an operator
command was issued to quiesce DFSMStvs processing.
In this state, all opens are failed with nonzero return and reason codes. All
closes and record management requests are rejected with X'0F4' abends
because no data sets should be open for DFSMStvs processing if DFSMStvs is
disabled.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs begins the process of reinitializing itself and sets
its state to initializing.

VARY command to quiesce
DFSMStvs

The command is rejected. Such a command was already
issued.

VARY command to disable
DFSMStvs

DFSMStvs makes a note that this occurred.

RRS becomes available DFSMStvs makes a note that this occurred. It does not
automatically reinitialize itself because an operator
command was issued to quiesce DFSMStvs processing.

A system log I/O error
occurs

This cannot occur when DFSMStvs is disabled because
there is no DFSMStvs activity.

Monitoring performance and tuning the DFSMStvs environment

102 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

31. The DFSMStvs state is disabled because RRS is unavailable; in addition, a
system log I/O error occurred.
In this state, all opens are failed with nonzero return and reason codes. All
closes and record management requests are rejected with X'0F4' abends
because no data sets should be open for DFSMStvs processing if DFSMStvs is
disabled.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

The command is rejected. A cold start is required to recover
from the system log I/O error.

VARY command to quiesce
DFSMStvs

DFSMStvs makes a note that this occurred. When the
SMSVSAM server recycles with TV_START_TYPE set to
COLD, DFSMStvs will reinitialize in a quiescing state long
enough to clean up any incomplete units of recovery. It will
not allow new work to begin.

VARY command to disable
DFSMStvs

DFSMStvs makes a note that this occurred so that it will
not automatically reinitialize if the SMSVSAM server
recycles with TV_START_TYPE set to COLD.

RRS becomes available DFSMStvs makes a note that this occurred. It does not
automatically reinitialize itself because the system log I/O
error requires a cold start.

A system log I/O error
occurs

This cannot occur when DFSMStvs is disabled because
there is no DFSMStvs activity.

32. The DFSMStvs state is disabled because RRS is unavailable; in addition, an
operator command was issued to disable or quiesce DFSMStvs processing,
and a system log I/O error occurred.
In this state, all opens are failed with nonzero return and reason codes. All
closes and record management requests are rejected with X'0F4' abends
because no data sets should be open for DFSMStvs processing if DFSMStvs is
disabled.
Recommendation: After a cold start, any data sets for which recovery was not
completed are most likely left in a damaged state and must be recovered
manually. If the data sets are forward recoverable, their forward recovery logs
might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use
the forward recovery log, and then delete and redefine the forward recovery
log.

Event Effect

VARY command to enable
DFSMStvs

DFSMStvs makes a note that this occurred. It does not
reinitialize. A cold start is required to recover from the
system log I/O error.

Monitoring performance and tuning the DFSMStvs environment

Chapter 6. Monitoring performance and tuning the DFSMStvs environment 103

Event Effect

VARY command to quiesce
DFSMStvs

DFSMStvs makes a note that this occurred. When the
SMSVSAM server recycles with TV_START_TYPE set to
COLD, DFSMStvs will reinitialize in a quiescing state long
enough to clean up any incomplete units of recovery. It will
not allow new work to begin.

VARY command to disable
DFSMStvs

DFSMStvs makes a note that this occurred so that it will
not automatically reinitialize if the SMSVSAM server
recycles with TV_START_TYPE set to COLD.

RRS becomes available DFSMStvs makes a note that this occurred. It does not
automatically reinitialize itself because the system log I/O
error requires a cold start.

A system log I/O error
occurs

This cannot occur when DFSMStvs is disabled because
there is no DFSMStvs activity.

Improving sequential performance
You can tune VSAM NSR to provide better sequential performance by requesting
additional data buffers using BUFND. The performance difference depends on the
degree of tuning in your applications. If you use the default number of buffers, the
difference in performance is much less pronounced than if you have optimized
buffer use to transfer entire cylinders of data in a single I/O.

For sequential processing, the way that locks are held and released is predictable.
Locks are obtained and released in sequence through the data set as the job
progresses.

Sequential update applications that use large buffers can have the greatest
performance difference when moved to DFSMStvs, which caches data in the
coupling facility. DFSMStvs does not attempt to read ahead for sequential access.
Unless a record is found in the SMSVSAM buffer pool, each VSAM request results
in the transfer of one control interval. This is a lower degree of buffering than you
can do for sequential nonshared access to VSAM data. So, the elapsed time of
sequential updates increases because the data transfer is less efficient.

Improving logging performance
An application that commits changes regularly incurs some additional cost because
DFSMStvs logs changes. DFSMStvs uses the z/OS system logger, which keeps log
entries in the coupling facility for as long as the size of the log permits.

However, an application that does not commit often enough could cause the log
entries to spill from the coupling facility to disk. DFSMStvs regularly trims its
system log entries when they are no longer needed after a commit. If a long time
passes between commits, the effectiveness of this process is diminished. Should
this occur, the cost of logging could rise significantly.

You should plan to review logging activity using the SMF type 88 records
produced by the system logger.

Monitoring performance and tuning the DFSMStvs environment

104 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Tuning the DFSMStvs environment
In addition to improving sequential performance and logging, you can tune several
things in the DFSMStvs environment to influence the performance. What you tune
depends on the information you gained from performance monitoring, as
“Monitoring performance” on page 81 describes. The following list describes some
things that you might want to tune:
v Applications

If you detect that there is excessive lock contention or that the system logger is
forced to spill active log records to disk, you might want to tune the commit
frequency that you have implemented in an application program.

v Coupling-facility storage
– SMSVSAM use

If you see structure-full events for the SMSVSAM structures, you might want
to change the amount of storage in the coupling facility available for
SMSVSAM.

– System logger use
If you see structure-full events for the logger structures, you might want to
change the amount of storage within the coupling facility available to the
system logger.
When a log becomes full and the system logger has to offload log data, the
system logger starts surfacing temporary errors. While this occurs, it is
impossible to write anything to the log.

v DFSMStvs SMS settings
If you see many occurrences of a coupling facility log structure filling and
spilling to disk, you might want to reduce the activity keypoint frequency.
Setting the activity keypoint frequency too low, however, would increase the
amount of processor time needed to trim logs.

v Application parallelism
When you run multiple batch jobs against the same shared VSAM data sets, you
can obtain benefits by rescheduling existing jobs. You can take advantage of
application parallelism still further by taking existing jobs and splitting them
into multiple parallel jobs. This reduces the overall run time substantially,
depending on how many ways you split a single job. A shorter run time does,
however, mean that the total amount of resources consumed by the job is now
consumed in a shorter period of time, so creating more parallel jobs can cause a
peak in processor use and I/O demand.

Recommendation: Improve performance by setting up your z/OS system
optimally in these ways:
v Run DFSMStvs batch and CICS from separate z/OS images rather than

combining the two within one z/OS image.
v Place a couple data sets and JES2 checkpoint on different volumes.
v Place the primary sysplex CDS and the coupling facility resource management

(CFRM) CDS on different volumes.
v Ideally, spread the primary and alternate couple data sets and the CFRM data

sets across four volumes.
v Give SMSVSAM a higher dispatching priority than VTAM and CICSPlex®

System Manager, which in turn should have a higher dispatching priority than
CICS. When you run in goal mode, however, you should allow these system
address spaces to default to SYSTEM/SYSSTC.

Monitoring performance and tuning the DFSMStvs environment

Chapter 6. Monitoring performance and tuning the DFSMStvs environment 105

v As a starting point, set the activity keypoint to 5000.
v Use GRS star mode.
v Define only the number of systems that will actually join the sysplex in a couple

data set MAXSYSTEM value.
The RLS lock structure, IGWLOCK00, bases the size of each lock entry on the
number of systems permitted to join the sysplex. Each lock entry increases in
size as more systems are defined. If you define more systems in the couple data
set MAXSYSTEM value than will actually join, each record is larger than
necessary and you can fit fewer records in a given amount of coupling facility
space.

v Increase the size of your lock structure (IGWLOCK00). DFSMStvs introduces
additional locking because batch jobs do not hold locks in today's processing
environment.

Monitoring performance and tuning the DFSMStvs environment

106 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Chapter 7. Diagnosing and recovering from DFSMStvs
problems

This topic contains information that is NOT Programming Interface information.

This information covers these topics:
v “Diagnosing system logger and performance problems”
v “Interrupting an operation or resource request” on page 111
v “Recovering from a log stream problem” on page 112
v “Resolving waits” on page 113
v “Restarting DFSMStvs after SMSVSAM address space failure” on page 113
v “Cold starting DFSMStvs” on page 114
v “Performing peer recovery” on page 114

Diagnosing system logger and performance problems
Problems within the system logger or other areas of MVS can cause extended waits
by DFSMStvs for logging. If the system logger is not available, DFSMStvs cannot
continue processing. This topic provides information to help you resolve problems
with the system logger.

Categorizing a system logger problem
DFSMStvs could encounter the following categories of problems, shown in
ascending order of impact on the user:
1. Those problems within the system logger that the system logger resolves for

itself.
DFSMStvs has no involvement in this category and the problem might be
perceived as merely an increase in response times.
There is also a dependency on RRS. If RRS encounters a problem, perhaps with
one of its log streams, DFSMStvs is impacted. If RRS is not active or fails,
DFSMStvs is impacted.

2. The system logger is unable to immediately satisfy a DFSMStvs request. This
problem state can be encountered on a structure full condition where the
coupling facility has reached its capacity before offloading data to DASD. This
state can also be encountered during the rebuilding of a coupling facility
structure.
DFSMStvs is able to recognize this situation and retries the request every three
seconds until the request is satisfied. Typically, this can take up to a minute.
Message IGW838I is issued to indicate that this has occurred.

3. If the system logger fails, DFSMStvs becomes disabled. If the system log has
not been damaged, a subsequent restart of DFSMStvs should succeed.

4. If a return code implies that the system log has been damaged or records have
been lost, DFSMStvs is quiesced. This means that transactions run to
completion as far as possible with no further records written to the system log.
You must then specify TV_START_TYPE(COLD) in your IGDSMSxx member of
SYS1.PARMLIB and use the SET SMS command to cold start DFSMStvs.
Recommendation: After a cold start, data sets for which recovery was not
completed could be left in a damaged state and must be recovered manually. If

© Copyright IBM Corp. 2003, 2013 107

the data sets are forward recoverable, their forward recovery logs might also be
damaged. Manually recover the data sets (without using forward recovery),
take backups of them and of any other data sets that use the same forward
recovery log, and then delete and redefine the forward recovery log.
If a return code implies damage to a forward recovery log or one of the system
logs, DFSMStvs quiesces the log, and the units of recovery run to completion.
The data needed to back out in-flight units of recovery is lost, and some
manual recovery might be necessary.
Before you continue to use the log stream, follow these steps:
a. Delete and redefine the log stream.
b. Take an image copy of all data sets that reference the log stream.
c. Unquiesce the affected logs.
d. In some circumstances, DFSMStvs quiesces a data set. You must unquiesce

it. Then you can explicitly open the data set.
DFSMStvs does not provide any mechanism to automatically delete records
from forward recovery log streams. You must delete such data in order to
manage the size of forward recovery log streams. If you need long-term data
retention of data in the log stream, you might want to copy the data from log
stream storage to alternative archive storage.

Collecting diagnostic information about logging problems
If you think there is a problem within the system logger, you can begin to collect
additional diagnostic information. The dumps generated by DFSMStvs generally
do not contain sufficient information about the system logger. DFSMStvs log
records include the subsystem ID, like IGWTVS01 and IGWTVS02.

Recommendation: Define the system log streams with DIAG(YES). This forces the
system logger to create memory dump in the event of a lost data condition.

A dump of XCF and system logger address spaces from all systems are useful in
diagnosing such problems. Issue the following series of MVS commands as shown
in Figure 16:

If you suspect a problem with the coupling facility structure, use the
R xx,STRLIST=(STRNAME=structure,(LISTNUM=ALL),ACC=NOLIM),CONT
instruction.

Error records written to the log data set might also be useful.

Related reading: For more information about how to code the commands, see z/OS
MVS Diagnosis: Tools and Service Aids.

Investigating console messages and dumps
You can diagnose some problems by investigating MVS console messages and
dumps. Look for the following clues:

DUMP COMM=(meaningful dump title)
R ww,JOBNAME=(IXGLOGR,XCFAS,DFSMStvs_jobname),DSPNAME=(’XCFAS’.*),CONT
R xx,STRLIST=(STRNAME=structure,(LISTNUM=ALL),ACC=NOLIM),CONT
R yy,REMOTE=(SYSLIST=*(’XCFAS’,’IXGLOGR’),DSPNAME,SDATA),CONT
R zz,SDATA=(COUPLE,ALLNUC,LPA,LSQA,PSA,RGN,SQA,TRT,CSA,GRSQ,XESDATA) ,END

Figure 16. Example of MVS commands to produce a dump of XCF and system logger
address spaces

Diagnosing and recovering from DFSMStvs problems

108 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

v Outstanding WTOR messages
v IXGxxx messages
v Allocation, catalog, and HSM error messages
v I/O errors for log stream data sets or LOGR couple data sets

Log stream data sets that are named IXGLOGR.stream_name.Annnnnnn. The
high-level qualifier (IXGLOGR) can be different if the HLQ parameter was
specified when the log stream was defined.

v IXCxxx messages, which indicate problems with the coupling facility structure or
couple data sets.

v 1C5 abends and other abends from the IXGLOGR address space.

Displaying coupling-facility status
To display the system logger couple data set status, issue the MVS command as
shown in Figure 17

A normal response looks like the example shown in Figure 18:

If the response shows that LOGR is not in use by all systems, this could be a sign
of a problem you need to investigate further. Look for IXCxxx messages that might
indicate the cause of the problem, and issue the command as shown in Figure 19 to
attempt reconnection to the couple data set:

To display all structures with Failed_Persistent connections, issue the MVS
command as shown in Figure 20:

You might also see latch set name SYS.IXGLOGER_MISC. The system logger
should resolve any failed connections.

D XCF,CPL,TYPE=LOGR

Figure 17. Example of a command to display system logger couple data set status

D XCF,CPL,TYPE=LOGR
IXC358I 14.47.51 DISPLAY XCF 391
LOGR COUPLE DATA SETS
PRIMARY DSN: SYS1.SYSPLEX2.SEQ26.PLOGR
VOLSER: P2SS05 DEVN: 230D
FORMAT TOD MAXSYSTEM
12/20/95 09:25:48 8
ALTERNATE DSN: SYS1.SYSPLEX2.SEQ26.ALOGR
VOLSER: P2SS06 DEVN: 2C10
FORMAT TOD MAXSYSTEM
12/20/95 09:27:45 8
LOGR IN USE BY ALL SYSTEMS

Figure 18. Example of a normal response from a command to display system logger couple
data set status

SETXCF CPL,TYPE=(LOGR),PCOUPLE=(couple_dataset_name)

Figure 19. Example of a command to reconnect the couple data set

D XCF,STR,STRNM=*,STATUS=FPCONN

Figure 20. Example of a command to display all structures with Failed_Persistent connections

Diagnosing and recovering from DFSMStvs problems

Chapter 7. Diagnosing and recovering from DFSMStvs problems 109

Checking global resource serialization (GRS) resource
contention

To check GRS resource contention by displaying GRS enqueues and latch usage on
all machines in the sysplex, issue either of the following MVS commands, as
shown in Figure 21:

A normal response looks like one shown in Figure 22:

A response showing GRS contention is shown in Figure 23:

This example shows which tasks have exclusive enqueues on the log streams and
which tasks are waiting for them. It is quite normal for enqueues and latches to be
obtained, occasionally with contention. They are indications of a problem only
when they last for more than a minute or so.

Long term enqueuing on the SYSZLOGR resource can be a sign of problems even
if there is no contention.

You can choose to display only those log streams exclusively enqueued on, or
being waited on, by DFSMStvs jobs in the sysplex. Issue the MVS command shown

D GRS,C

D GRS,RES=(SYSZLOGR,*)

Figure 21. Examples of DISPLAY GRS commands

D GRS,C
ISG020I 12.06.49 GRS STATUS 647
NO ENQ CONTENTION EXISTS
NO LATCH CONTENTION EXISTS
D GRS,RES=(SYSZLOGR,*)
ISG020I 14.04.28 GRS STATUS 952
NO REQUESTORS FOR RESOURCE SYSZLOGR *

Figure 22. Example of a normal response from a DISPLAY GRS command

GRS,C
ISG020I 12.06.31 GRS STATUS 619
LATCH SET NAME: SYS.IXGLOGER_LCBVT
CREATOR JOBNAME: IXGLOGR CREATOR ASID: 0202
LATCH NUMBER: 7
REQUESTOR ASID EXC/SHR OWN/WAIT
IXGLOGR 0202 EXCLUSIVE OWN
IXGLOGR 0202 SHARED WAIT
D GRS,RES=(SYSZLOGR,*)
ISG020I 19.58.33 GRS STATUS 374
S=STEP SYSZLOGR 91
SYSNAME JOBNAME ASID TCBADDR EXC/SHR OWN/WAIT
MV26 MSLDELC1 002F 008F6370 EXCLUSIVE OWN
S=STEP SYSZLOGR 93
SYSNAME JOBNAME ASID TCBADDR EXC/SHR OWN/WAIT
MV26 MSLWRTC1 002E 008DED90 EXCLUSIVE OWN
MV26 MSLWRTC1 002E 008DB990 EXCLUSIVE WAIT
MV26 MSLWRTC1 002E 008DB700 EXCLUSIVE WAIT
MV26 MSLWRTC1 002E 008F60C8 EXCLUSIVE WAIT
S=SYSTEMS SYSZLOGR LPAYROL.TESTLOG.TLOG1
SYSNAME JOBNAME ASID TCBADDR EXC/SHR OWN/WAIT
MV27 IXGLOGR 0011 008F7398 EXCLUSIVE OWN
MV26 IXGLOGR 0011 008F7398 EXCLUSIVE WAIT

Figure 23. Example of a GRS command showing contention

Diagnosing and recovering from DFSMStvs problems

110 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

in Figure 24:

A typical response to this command looks like the example in Figure 25:

Checking SMF and RMF statistics for performance problems
SMF type 88 log stream statistics records and RMF coupling facility usage reports
are useful for analyzing problems that are affecting performance. Increasing the
amount of coupling facility storage allocated to a structure can improve both
system logger performance and DFSMStvs performance.

The sample program IXGRPT1, supplied in SYS1.SAMPLIB, provides an example
of a program to analyze SMF type 88 records.

Interrupting an operation or resource request
When the system logger becomes hung up on an operation or waits for a resource,
bottlenecks can occur on that system. Because the system logger manages sysplex
resources, a bottleneck on a single system can have an effect on the entire sysplex.
Interrupting a particular stream request for a resource might allow much other
work to continue in the system and sysplex.

The system logger monitors its allocation and HSM recall service tasks for delays
and provides a mechanism (through WTORs) to interrupt these delayed requests.
To the system logger, the interruption is an error condition for the current request.
Removal of a delayed request enables the processing of other log stream resource
requests. Messages IXG271I and IXG272E are issued if the system logger detects
that a delay of a service request is inhibiting other log stream resource requests.

You can reply FAIL to message IXG272E to interrupt a delayed logger service
request. This reply causes the request to fail and might also allow other work that
was waiting to continue.

D GRS,RES=(SYSDSN,*)

Figure 24. Example of a GRS command to display log streams with an exclusive enqueue

S=SYSTEMS SYSDSN ANTHEM.SPFLOG2.LIST
SYSNAME JOBNAME ASID TCBADDR EXC/SHR STATUS
SY02 ANTHEM 002B 009FFBF8 EXCLUSIVE OWN
S=SYSTEMS SYSDSN ASM.SASMMOD1
SYSNAME JOBNAME ASID TCBADDR EXC/SHR STATUS
SY03 XCFAS 0006 008FFBF8 SHARE OWN
SY03 LLA 0017 008FFBF8 SHARE OWN
SY01 XCFAS 0006 008FFBF8 SHARE OWN
SY01 LLA 0017 008FFBF8 SHARE OWN
SY05 XCFAS 0006 008FFBF8 SHARE OWN
SY05 LLA 0017 008FFBF8 SHARE OWN
SY04 XCFAS 0006 009FFBF8 SHARE OWN
SY04 LLA 0017 009FFBF8 SHARE OWN
SY02 XCFAS 0006 009FFBF8 SHARE OWN
SY02 LLA 0017 009FFBF8 SHARE OWN
S=SYSTEMS SYSDSN ASM.SASMMOD2
SYSNAME JOBNAME ASID TCBADDR EXC/SHR STATUS
SY03 XCFAS 0006 008FFBF8 SHARE OWN

Figure 25. Example of output from a GRS command to display log streams with an exclusive
enqueue

Diagnosing and recovering from DFSMStvs problems

Chapter 7. Diagnosing and recovering from DFSMStvs problems 111

Use the FAIL option only if you cannot determine why the request is not
completing. Replying FAIL might cause undesirable results. This option is meant to
keep the rest of the system logger applications running, at the expense of one hung
application.

Examine any other error messages from the system logger or from any exploiter of
the affected log stream. If you reply FAIL, the system logger might cause other
components such as allocation to enter their recovery, create memory dumps, or
issue various messages. If you reply FAIL to message IXG272E, you might see a
dump in media manager, dynamic allocation, or catalog, depending on what type
of I/O delay that the system logger was experiencing at the time IXG272E was
issued. There is an unexpected dump that results in abend 0E0 during SVCDMP
processing.

Recovering from a log stream problem
In the event of a problem with a specific log stream, you might need to keep
DFSMStvs from using the log stream while you correct the problem. To stop
DFSMStvs from using the log stream, follow these steps:
1. Use the VARY SMS,LOG operator command to quiesce or disable DFSMStvs

from using the log stream. If the log stream is usable but currently experiencing
problems, quiesce access to it. This enables DFSMStvs to complete processing of
any in-progress units of recovery. If the log stream has become unusable,
disable it. This causes DFSMStvs to stop using the log stream immediately.
Recommendation: Be careful about quiesce with a path name; always use a
base name.
If you disable DFSMStvs, it goes into a disabling state in which it rejects any
new record management requests (get, point, put, or erase). For DFSMStvs to
go into a disabled state, all current transactions must be brought to a sync
point (committed or backed out) and all ACBs must be closed.
If you quiesce DFSMStvs, it goes into a quiescing state in which it processes
record management requests for existing transactions but fails any record
management request that would initiate a new transaction. For DFSMStvs to go
to a quiesced state, all current transactions must be brought to a sync point and
all ACBs must be closed.
Quiescing or disabling a DFSMStvs primary system (undo) log or secondary
system (shunt) log is equivalent to quiescing or disabling DFSMStvs. DFSMStvs
processing is unavailable until the log is re-enabled.

2. For a system log problem, identify and recover any data sets that might have
been involved in in-flight units of recovery.
a. Do not try to bring DFSMStvs back up until you have finished this

procedure.
b. Obtain a dump of XCF and system logger address spaces from all systems

by issuing the following series of MVS commands:
DUMP COMM=(meaningful dump title)
R ww,JOBNAME=(IXGLOGR,XCFAS,cics_job),DSPNAME=(’IXGLOGR’.*,’XCFAS’.*),CONT
R xx,STRLIST=(STRNAME=structure,(LISTNUM=ALL),ACC=NOLIM),CONT
R yy,REMOTE=(SYSLIST=*(’XCFAS’,’IXGLOGR’),DSPNAME,SDATA),CONT
R zz,SDATA=(COUPLE,ALLNUC,LPA,LSQA,PSA,RGN,SQA,TRT,CSA,GRSQ,XESDATA),END

Use the R
xx,STRLIST=(STRNAME=structure,(LISTNUM=ALL),ACC=NOLIM),CONT
instruction only where you suspect a problem with the coupling-facility
structure.

Diagnosing and recovering from DFSMStvs problems

112 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

c. Use the log data to identify any data sets that might have been involved in
in-flight units of recovery.

d. For forward recoverable data sets, revert to the last good backup of the data
set and apply forward recovery to it. Make sure not to apply anything that
might belong to the in-flight unit of recovery because backout would not
have been able to write the compensating records.

e. For data sets that are not forward recoverable, you probably need to look at
the individual log records and fix each of the record manually by looking at
what your batch job was doing and putting the records back the way they
were. DFSMStvs log records include the subsystem ID, like IGWTVS01 and
IGWTVS02.

3. Correct the problem. If the log is severely damaged, this might involve deleting
and redefining it. If you delete and redefine the primary system log, ensure
that any incomplete units of recovery are discarded. One way to do this is to
cold start DFSMStvs, following these steps:
a. Use SET SMS=xx to assign an IGDSMSxx parmlib member in which a start

type of cold is specified (TV_START_TYPE(COLD)) .
b. Use the V SMS,TRANVSAM(nnn),E command to restart DFSMStvs.
c. Use the SET SMS command (TV_START_TYPE) to specify a PARMLIB

member that has a start type of WARM.
4. Re-enable the log stream to give DFSMStvs access using the VARY SMS,LOG

operator command.

Resolving waits
For a batch job wait that you think might be related to DFSMStvs, diagnosis starts
with a dump of the batch job. First examine the linkage stack of the batch job to
determine with which component the batch job might have a cross-memory
problem. Then perform a dump of that component. Many components can cause
hangs, including DFSMStvs, VSAM RLS, a catalog, the system logger, and RRS.

A possible cause of apparent waits is RRS. If there is an in-flight UR and RRS loses
access to its logs (for example, because the system logger goes down), RRS hold
onto the batch jobs until the logs become available again. While the batch jobs are
in this state, you cannot cancel them. The only way to free up the batch jobs is to
cancel RRS or to get the system logger working again.

If you encounter a wait that you think is related to logging, check the MVS console
for messages that have the prefix IXG. This prefix is for system logger messages.
These messages might provide more information about the cause of the wait. The
MVS console might also reveal evidence of resource contention within MVS.

Restarting DFSMStvs after SMSVSAM address space failure
If a DFSMStvs instance or the SMSVSAM server fails, normally, it restarts
automatically unless it has been specifically requested not to restart automatically.
An operator command, for example, is one way to request a DFSMStvs instance to
not start automatically. When DFSMStvs restarts, it collects information about any
units of recovery that were in progress at the time of the failure. This information
comes from three sources:
v The system logs (undo and shunt logs)
v The lock manager (locks that are held on behalf of a unit of recovery)

Diagnosing and recovering from DFSMStvs problems

Chapter 7. Diagnosing and recovering from DFSMStvs problems 113

v RRS, which indicates the state of the unit of recovery (for example, in-commit,
in-doubt, or in-backout)

Based on this information, DFSMStvs determines what action to take on behalf of
the unit of recovery:
v If the unit of recovery has locks or log records but is not known to RRS:

– If a commit record is present in the log, DFSMStvs simply releases the locks;
processing on behalf of this unit of recovery is complete.

– If a commit record is not present in the log, the unit of recovery was in-flight
at the time of the failure, and restart processing backs out the unit of
recovery.

v If RRS indicates that the unit of recovery was in-backout, then restart processing
backs out the unit of recovery.

v If RRS indicates that the unit of recovery was in-commit, DFSMStvs completes
commit processing for the unit of recovery.

v If RRS indicates that the unit of recovery was in-doubt, DFSMStvs waits for the
in-doubt conditions to be resolved and takes the action indicated by RRS.

v If a unit of recovery has log records that do not include a commit record and for
which no locks are held, DFSMStvs assumes there is an error. The locks are used
to protect the modified records. This error can occur under either of these
circumstances:
– A data set that has retained locks and shunted log records is deleted .
– The access method services SHCDS RESETLOCKS command is used.

Use the access method services SHCDS command to purge the unit of recovery.

Various levels of authorization are required to use the SHCDS parameters. For
information about this authorization, see z/OS DFSMS Access Method Services
Commands.

Cold starting DFSMStvs
A cold start is a DFSMStvs restart in which restart processing is not performed.
Instead, DFSMStvs deletes any information remaining in its system logs, releases
any locks, and starts as if the log had been empty.

Recommendation: Do not cold start DFSMStvs unless the DFSMStvs system logs
have been damaged. Any recovery processing that was to be done for recoverable
data sets is not done after a cold start of DFSMStvs. Any data sets for which
recovery was not complete are most likely left in a damaged state. If the data sets
are forward recoverable, then their forward recovery logs might also be damaged.
You should manually recover the data sets (without using forward recovery), make
a backup of those data sets and any other data sets that use the same forward
recovery log, and then delete and redefine the forward recovery log.

Performing peer recovery
Peer recovery is the process of completing the work that was left in an incomplete
state due to the failure of an instance of DFSMStvs by another instance of
DFSMStvs. The only function of peer recovery is to complete that work and then
end; a peer recovery instance of DFSMStvs does not accept any new work.

Peer recovery occurs only in cases of system failure, not merely when DFSMStvs
fails. These rules apply to peer recovery:

Diagnosing and recovering from DFSMStvs problems

114 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

v Peer recovery occurs only when both DFSMStvs and the system on which it was
running fail. Peer recovery does not occur when the DFSMStvs instance failed,
but the system continued to run. If this were the case, either DFSMStvs would
automatically restart, or the DFSMStvs instance was stopped and was not meant
to be restarted.

v All resource managers that had shared interest in units of recovery restart on the
same system. For this reason, DFSMStvs uses the automatic restart manager
(ARM) to manage the grouping. If the installation is not using ARM, or if ARM
is unavailable, you can manually initiate peer recovery by issuing the VARY
SMS command, as follows:
VARY SMS,TRANVSAM(001),PEERRECOVERY,ACTIVE

Issue the VARY SMS command on another system. That system then runs peer
recovery for the instance specified on the command, as well as any instances for
which that instance was performing peer recovery.
Normally, if a DFSMStvs was disabling or disabled due to an operator
command, peer recovery does not run. This is because that instance of
DFSMStvs was told to come down and not restart. If you want peer recovery to
occur, issue this command:
VARY SMS,TRANVSAM(001),PEERRECOVERY,ACTIVEFORCE

v A peer recovery DFSMStvs instance is only started if there is a primary
DFSMStvs instance of DFSMStvs running on the system. If DFSMStvs is not
started on the system, peer recovery does not run.

v Peer recovery starts asynchronous tasks to process outstanding units of recovery
in parallel. As the tasks complete, additional tasks are started, until all the
outstanding units of recovery are processed or an operator command is issued to
request the end of peer recovery processing. If such a command is issued, tasks
that are already running are allowed to complete, then peer recovery processing
ends.

v Peer recovery is allowed to run if the state of the failed DFSMStvs instance was
quiescing, enabling, or enabled, since peer recovery would only complete the
quiesce process. It is not allowed if the state was quiesced since, in this case,
there should be no work to do. It also is not allowed if the state was disabled;
this implies that the installation did not want the DFSMStvs instance to do any
work. If you want peer recovery to be performed on behalf of a DFSMStvs
instance that was disabling or disabled, you must use the VARY SMS command
with the ACTIVEFORCE keyword.
If the DFSMStvs instance had been disabling due to an RRS failure, peer
recovery is allowed to run. In this case DFSMStvs is reinitialized when RRS
became available again.

Peer recovery initiation
You can use the ARM to initiate automatic peer recovery processing or the VARY
SMS command to initiate peer recovery manually.

Recommendation: Use ARM as the method of initiating peer recovery processing.

To use ARM, you must create an ARM policy that groups instances of DFSMStvs
with other resource managers that might have a shared instance in a unit of
recovery. ARM supports this method with the administrative policy
RESTART_GROUP utility control statement, which identifies related elements that
are to be restarted as a group if the system on which they are running fails.

Diagnosing and recovering from DFSMStvs problems

Chapter 7. Diagnosing and recovering from DFSMStvs problems 115

DFSMStvs registers with ARM as an abstract resource (one that is not associated
with a job or started task) when it initializes. DFSMStvs requests that it be
restarted only when the system on which it is running fails unexpectedly by
specifying an element ending type of SYSTERM and an element bind of CURSYS.
DFSMStvs provides its restart method by supplying the text of the required VARY
SMS command as its start text when it registers with ARM. If DFSMStvs ends, it
deregisters with ARM.

If the installation is not using ARM or if ARM is unavailable, you can initiate peer
recovery manually by using the VARY SMS command. For example, issue this
command:
VARY SMS,TRANVSAM(001),PEERRECOVERY,ACTIVE

SMSVSAM failures while peer recovery is in process
DFSMStvs registers with ARM, requesting that it be restarted only in event of a
system failure. If the SMSVSAM server in which peer recovery was running fails,
ARM cannot automatically restart peer recovery. Instead, DFSMStvs remembers
that it was performing peer recovery by writing that information to the SHCDS.
During initialization, it reads this information and restarts any failed peer recovery
work.

System failures while peer recovery is in process
A system failure has the effect of ending the primary instance of DFSMStvs
running on the system, as well as any peer recovery instances. All instances
register with ARM while they are active. ARM recognizes a failure and initiates
peer recovery for all involved instances on another system or systems. If peer
recovery is being initiated manually, then a VARY SMS command must be issued
on another system. That system then runs peer recovery for the instance specified
on the command, as well as any instances for which that instance was performing
peer recovery.

For example, DFSMStvs instance IGWTV001 was running peer recovery for
instances IGWTV002 and IGWTV003. If the system fails, and peer recovery is
initiated for IGWTV001 on another system, that system performs peer recovery for
IGWTV001, IGWTV002, and IGWTV003. However, starting peer recovery for
IGWTV002 or IGWTV003 on another system would start peer recovery for the
specified instance, and only for the specified instance.

Peer-recovery interference with failed instance restart
Depending on the amount of work left incomplete by a failure, peer recovery can
take a significant amount of time. It is possible that the DFSMStvs instance might
attempt to restart while peer recovery is in progress. Since another system is
registered with its instance name, its initialization would fail. To prevent this,
DFSMStvs has serialization in place to detect this type of error. The DFSMStvs
instance finishes coming up when the peer recovery instance finishes.

Peer recovery processing obtains an enqueue, releasing it when peer recovery ends,
which allows the DFSMStvs instance to proceed with initialization. If peer recovery
is running and you need it to stop to allow the failed instance of DFSMStvs to
reinitialize, you can stop it at any time by using the VARY SMS command to vary
it INACTIVE. Peer recovery does not stop immediately but instead completes any
tasks that it has already started and then ends without starting any additional
tasks. The failed instance of DFSMStvs completes the remaining work when the
instance reinitializes as part of its restart processing.

Diagnosing and recovering from DFSMStvs problems

116 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Appendix A. Quiescing a data set

DFSMS and application programs can initiate a quiesce of DFSMStvs activity
against a sphere across the sysplex. You can quiesce a sphere using the CICS SET
DSNAME command, the equivalent CEMT command, or the MVS VARY SMS
command.

Recommendation: Be careful about quiesce with a path name; always use a base
name.

Unlike CICS, DFSMStvs does not control the open requests and close requests of
data sets that it accesses. DFSMStvs supports the ability to quiesce and close ACBs
in a limited manner. If a data set is not currently open for DFSMStvs access, the
data set is quiesced; otherwise, the quiesce of the data set is rejected. To quiesce a
data set completely, ensure that it is not currently open in DFSMStvs mode; take
these steps

Take these steps to quiesce a data set:
1. Display the jobs that use the data with the DISPLAY SMS,DSNAME operator

command or the access method services SHCDS LISTDS(dsname) JOBS
command.
Various levels of authorization are required to use the SHCDS parameters. For
information about this authorization, see z/OS DFSMS Access Method Services
Commands.

2. Either allow those jobs to complete normally or cancel them. An in-flight unit
of recovery is backed out if it is cancelled.

3. Use the VARY SMS,SMSVSAM,SPHERE command, or an equivalent CICS
command, to quiesce the data set.
Recommendation: Be careful about quiesce with a path name; always use a
base name.

4. Perform the operation or operations that required the data set to be quiesced.
5. Use the VARY SMS,SMSVSAM,SPHERE command, or an equivalent CICS

command, to enable the data set for DFSMStvs and CICS.
When you specify data sets for a VARY SMS,SMSVSAM,SPHERE command,
the data sets are not necessarily quiesced in the order in which you specified
them or in any other order. When you use an asterisk (*) to specify data sets,
they are not necessarily quiesced alphabetically or in any other order. So, when
the last data set that you specified is quiesced, the other data sets that you
specified might not have been quiesced yet. Do not issue a quiesce command
for a particular data set until the previous operation on that data set completes.
For example, if an operator at a console enters VARY A QUIESCE followed by
VARY A ENABLE, either command could take effect first. Also, the operator
could enter the VARY QUIESCE or VARY ENABLE command with a path
name while someone else enters one of these commands with a base name, and
either command could take effect first.
Recommendation: Be careful about quiesce with a path name; always use a
base name.

DFSMStvs supports the following VSAM IDAQUIES macro quiesce types:

© Copyright IBM Corp. 2003, 2013 117

QUICLOSE
Quiesce and close ACBs

QUIOPEN
Unquiesce

QUICOPY
Quiesce for COPY operation

QUICEND
End of quiesce for COPY operation

QUIBWO
Prepare for BWO copy operation

QUIBEND
End of prepare for BWO copy operation

QUIFRC
Forward recovery complete

QUICMP
Completion of quiesce processing

QUICA
Cache available

Quiescing a data set

118 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Appendix B. Accessing data sets that have retained locks or
lost locks

If a data set has retained locks or is in a lost-locks state, an open request from a
batch job fails if it is neither for DFSMStvs nor VSAM RLS access. To enable the
batch job to access this data set without DFSMStvs or VSAM RLS, the operator can
issue the access method services SHCDS PERMITNONRLSUPDATE command.
After the operator issues the command, the batch job's open request is successful,
even if there are retained or lost locks, provided that there are no concurrent
DFSMStvs or VSAM RLS open requests for the data set.

Various levels of authorization are required to use the SHCDS parameters. For
information about this authorization, see z/OS DFSMS Access Method Services
Commands.

The SHCDS PERMITNONRLSUPDATE command enables the batch job to update
or delete records for which there are retained locks. Some time after the batch job
runs, DFSMStvs might be required to back out the units of recovery for which it
holds retained locks. If the backout is done, DFSMStvs might invalidate the update
requests or the delete requests that were performed by the batch job. The backout
can be requested in any of the following ways:
v An in-progress unit of recovery requires a backout.
v DFSMStvs restarts.
v An operator issues the access method services SHCDS RETRY command.
v An automatic retry of a shunted transaction occurs.
v A resource manager issues a backout request for a unit of recovery that had

been in an in-doubt state.

To prevent damage to the data set, DFSMStvs defers the decision to back out a
specific record to an installation-provided exit that is a batch override exit. This is
an optional exit that DFSMStvs calls. It uses the exit to back out a unit of recovery
involving a data set that a PERMITNONRLSUPDATE command impacts.
DFSMStvs calls the exit once for each affected undo log record in the data set. The
purpose of the exit is to return to DFSMStvs an indication of whether or not the
undo log record should be applied. The input is an undo log record and a data set
name. The output is a Boolean response of whether or not to do the backout.

Recommendation: Although the exit can perform other processing, it should not
attempt to update any recoverable resources.

If you do not provide the installation exit and DFSMStvs encounters backouts that
a PERMITNONRLSUPDATE command impacts, DFSMStvs issues a message. It
does not apply the backout records. Use the access method services SHCDS RETRY
or PURGE command to clean up the backout records.

Requirements: In a DFSMStvs environment, you must quiesce the data set, as
Appendix A, “Quiescing a data set,” on page 117 describes. In addition, you must
issue the PERMITNONRLSUPDATE command because a failure could cause
DFSMStvs to restart.

© Copyright IBM Corp. 2003, 2013 119

Recommendation: Be careful about quiesce with a path name; always use a base
name.

The exit receives control in the following environment:

Table 7. Installation exit environment and state

Environment State

Interrupts Enabled

State and key Problem program state, key 8

ASC mode Home address space=Primary address
space=Secondary address space , RLS
address space

AMODE, RMODE No restrictions

Locks None held

Reentrancy The exit must be reentrant

Registers at entry DFSMStvs saves the registers before calling
the exit, and DFSMStvs restores registers
upon return.

Reg 0 Not applicable

Reg 1 Points to IGWUNLR (in key 8
storage)

Reg 2 Points to an area to be used as an
autodata area (in key 8 storage)

Reg 3 Length of the autodata area

Reg 4 - 13
Not applicable

Reg 14 Return address

Reg 15
Entry point for exit

Registers on return
Reg 0 - 14

Not applicable

Reg 15 Return code

0 Do not back out this record

4 Back out this record

Serialization requirements None

Restrictions:

1. The exit does not receive a save area and must not attempt to use the value in
register 13 or the exit abends. The storage pointed to by register 13 is in a
different key than the key in which the exit receives control. As a result, the
exit should not attempt to use register 13 to save or restore the registers. It is
not necessary for the exit to restore the registers before returning. This is
because it receives control through the SYNCHX (SVC 12) exit, and the
SYNCHX exit restores the registers.

2. It is difficult for the exit to obtain an autodata area because it runs in key 8
problem state, which is not authorized. This limits the subpools it can use to
those subpools that obtain storage in the TCB key. The TCB key is normally

Accessing data sets that have retained locks or lost locks

120 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

key 5, which prevents the exit from referring to the storage. Therefore, the exit
receives passed a pointer to an area that can be used as an autodata area in
register 2. The length of the autodata area is in register 3; and is normally 8192.
Use the value that is in register 3 rather than the hard-coded length.

The name of this exit must be IGW8PNRU. DFSMStvs loads the module, which
must reside in LINKLIB or LPALIB. If the load fails (for example, no exit is found),
DFSMStvs issues a message. If the following conditions exist, DFSMStvs shunts the
unit of recovery:
v No exit is found.
v One of the data sets was accessed through PERMITNONRLSUPDATE.

To fix a code error or enhance the function of the exit, restart DFSMStvs to enable
the new exit. The exit must be loadable from any system that might perform peer
recovery for another system. The exit can issue SVC instructions.

DFSMStvs establishes an ESTAE recovery environment before calling the exit to
protect the VSAM RLS address space from failures in the exit. If the exit fails or an
attempt to invoke it fails, DFSMStvs shunts the unit of recovery. DFSMStvs
provides a dump and disables the exit until the next DFSMStvs restart but does
not recycle the server. If the exit abnormally ended, the abend might result in a
dump with a title, as in this example:
DUMP TITLE=COMPID=?????,CSECT=????????+FFFF,DATE=????????,MAINT

ID=????????,ABND=0C4,RC=00000000,RSN=00000004

If this problem occurs, examine the dump to investigate why the exit abnormally
ended.

Accessing data sets that have retained locks or lost locks

Appendix B. Accessing data sets that have retained locks or lost locks 121

122 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Appendix C. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM® Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 2003, 2013 123

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

124 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix C. Accessibility 125

126 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2003, 2013 127

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

128 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).

Notices 129

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

130 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Glossary

This glossary defines technical terms and
abbreviations. If you do not find the term you are
looking for, refer to the index of the appropriate
DFSMS manual, or view the Glossary of Computing
Terms at this Web address:

http://www.ibm.com/ibm/terminology/

This glossary includes terms and definitions from
the following sources:
v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). You can purchase
copies from the American National Standards
Institute, 11 West 42nd Street, New York, New
York 10036. The symbol (A) after a definition
identifies it as a definition from this source.

v The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee
1, of the International Organization for
Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). The symbol (I) after a definition
identifies it as a definition from the published
part of this vocabulary. The symbol (T) after a
definition identifies it as a definition from a
draft international standard, committee draft, or
working paper that ISO/IEC JTC1/SC1 is
developing, indicating that the participating
National Bodies of SC1 have not yet reached
final agreement on the definition.

v The IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

The following cross-reference is used in this
glossary:

See Refers to a preferred term, a synonym, or
a term that is the expanded form of an
abbreviation or acronym, .

See also
Refers to a related term.

Contrast with
Refers to a contrasting term.

access method control block (ACB)
A control block that links an application
program to VSAM or VTAM programs.

access method services
A multifunction service program that
manages VSAM and non-VSAM data sets.
Access method services provides the
following services:
v Define and allocate space for data sets

and catalogs
v Convert indexed-sequential data sets to

key-sequenced data sets
v Modify data set attributes in the catalog
v Reorganize data sets
v Facilitate data portability among

operating systems
v Create backup copies of data sets
v Assist in making inaccessible data sets

accessible
v List the records of data sets and

catalogs
v Define and build alternate indexes

ACID transaction
A transaction involving multiple resource
managers using the two-phase commit
process to ensure ACID (atomic,
consistent, isolated, and durable)
properties.
v Atomic: When an application changes

data in multiple resource managers as a
single transaction, and all of the
changes are accomplished through a
single commit request by a syncpoint
manager, the transaction is called
atomic. If the transaction is successful,
all the changes will be committed. If
any piece of the transaction is not
successful, then all of the changes will
be backed out. An atomic instant occurs
when the syncpoint manager in a
two-phase commit process logs a
commit record for the transaction.

v Consistent: Applications involved in an
ACID transaction must be written to
maintain a consistent view of data. The
transaction either makes valid changes
to data or returns all the data to its
state before the transaction was started.

v Isolated: Databases involved in an
ACID transaction isolate the updates to
their data so that only the application

© Copyright IBM Corp. 2003, 2013 131

changing the data knows about the
individual update requests until the
transaction is complete.

v Durable: Databases involved in an
ACID transaction ensure that the data
is persistent, both before and after the
transaction, regardless of success or
failure.

ACS routine
See automatic class selection (ACS) routine.

activity keypoint (AKP)
In DFSMStvs, a record of task-entry status
in the system log made on a periodic
basis to facilitate the identification of
transaction backout information during
restart. In the event of an uncontrolled
shutdown and subsequent restart, activity
keypoints can shorten the process of
backward scanning through the system
log.

activity keypoint interval
The number of logging operations that
the system logger performs between
keypoints.

addressed-direct access
In VSAM, the retrieval or storage of a
data record identified by its relative byte
address (RBA), independent of the
record's location relative to the previously
retrieved or stored record.

addressed-sequential access
In VSAM, the retrieval or storage of a
data record in its entry sequence relative
to the previously retrieved or stored
record.

addressing mode (AMODE)
An attribute of an entry point in a
program that identifies the addressing
range in virtual storage that the module is
capable of addressing. In 24-bit
addressing mode, only 24-bit addresses
can be used.

AKP See activity keypoint.

alias An alternative name for a catalog, a
non-VSAM data set, or a member of a
partitioned data set (PDS) or partitioned
data set extended (PDSE).

alias entry
An entry that relates an alias to the real
entry name of a user catalog or
non-VSAM data set.

allocation
Generically, the entire process of obtaining
a volume and unit of external storage,
and setting aside space on that storage for
a data set.

The process of connecting a program to a
data set or devices.

alternate index
A key-sequenced data set that contains
index entries organized by the alternate
keys of its associated base data records. It
provides an alternate means of locating
records in the data component of a cluster
on which the alternate index is based.

alternate key
One or more characters within a data
record used to identify the data record or
to control its use. Unlike the primary key,
the alternate key can identify more than
one data record. An alternate key is used
to build an alternate index or to locate
one or more base data records through an
alternate index. See also generic key, key,
and key field.

application owning region
A CICS address space whose primary
purpose is to manage application
programs.

application
The use to which an access method is put
or the end result that it serves, contrasted
to the internal operation of the access
method.

ARM See automatic restart manager.

atomic
Pertaining to a transaction's changes to
the state of resources: either all changes
happen or none happen. It would not be
possible for some updates to be made but
for others to fail and still maintain data
integrity. The process of making final
changes to the data is committing.

automatic class selection (ACS) routine
A procedural set of ACS language
statements. Based on a set of input
variables, the ACS language statements
generate the name of a predefined SMS
class, or a list of names of predefined
storage groups, for an MVS data set.

automatic restart manager (ARM)
A z/OS recovery function that can

132 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

automatically restart a batch job, started
task, or abstract resource after it ends
unexpectedly or after the system on
which it is running goes down
unexpectedly.

backout
A request to remove all changes to
resources since the last commit or backout
or for the first unit of recovery, since the
beginning of the application. Backout is
also called rollback or abort.

backout log
See undo log.

binder
The DFSMS program that processes the
output of language translators and
compilers into an executable program
(load module or program object). It
replaces the linkage editor and batch
loader in in z/OS.

blocking
The process of combining two or more
records into one block.

block size
The number of records, words, or
characters in a block; usually specified in
bytes.

CA See control area.

catalog
A data set that contains extensive
information required to locate other data
sets, to allocate and deallocate storage
space, to verify the access authority of a
program or operator, and to accumulate
data set usage statistics. (A) (I)

central processor complex (CPC)
A physical collection of hardware that
consists of main storage, one or more
central processors, timers, and channels.

CI See control interval.

CICS Customer Information Control System.

CICSVR
Customer Information Control System
VSAM Recovery, a forward recovery
utility, which can can perform forward
recovery for DFSMStvs and others as well
as for CICS.

class See SMS class.

cluster
A data component and an index
component in a VSAM key-sequenced
data set; or a data component alone in a
VSAM entry-sequenced data set.

commit
A request to make all changes to
recoverable resources permanent since the
last commit or backout or, for the first
unit of recovery, since the beginning of
the application.

component
A named, cataloged collection of stored
records. A component, the lowest member
of the hierarchy of data structures that
can be cataloged, contains no named
subsets.

compress
(1) To reduce the amount of storage
required for a given data set by having
the system replace identical words or
phrases with a shorter token associated
with the word or phrase. (2) To reclaim
the unused and unavailable space in a
partitioned data set that results from
deleting or modifying members by
moving all unused space to the end of the
data set.

compressed format data set
A type of extended format data set
created in a data format which supports
record level compression.

configuration
The arrangement of a computer system as
defined by the characteristics of its
functional units.

See SMS configuration.

consistent read
A level of read integrity that VSAM RLS
obtains for a share lock on the record that
is accessed by a GET or POINT request.
Consistent read ensures that the reader
does not see an uncommitted change
made by another transaction.

consistent read explicit
A level of read integrity that is the same
as consistent read, except that VSAM RLS
keeps the share lock on the record until
the end of the transaction. This option is
available only to CICS transactions and to

Glossary 133

DFSMStvs. VSAM does not recognize the
end of the transaction for usage other
than by CICS or DFSMStvs. This
capability is often referred to as
repeatable read.

context
Sometimes called a work context, a
context is a representation of a work
request, or part of a work request, in an
application. A context might have a series
of units of recovery associated with it. See
also native context and privately managed
context.

control area (CA)
(1) A group of control intervals used as a
unit for formatting a data set before
adding records to it.

(2) In a key-sequenced data set, the set of
control intervals, pointed to by a
sequence-set index record, that is used for
distributing free space and for placing a
sequence-set index record adjacent to its
data.

control blocks in common (CBIC)
A facility that allows a user to open a
VSAM data set so the VSAM control
blocks are placed in the common service
area (CSA) of the MVS operating system.
This provides the capability for multiple
memory accesses to a single VSAM
control structure for the same VSAM data
set.

control interval (CI)
A fixed-length area of auxiliary storage
space in which VSAM stores records. It is
the unit of information (an integer
multiple of block size) transmitted to or
from auxiliary storage by VSAM.

control interval definition field (CIDF)
In VSAM, the 4 bytes at the end of a
control interval that contain the
displacement from the beginning of the
control interval to the start of the free
space and the length of the free space. If
the length is 0, the displacement is to the
beginning of the control information.

control program
A routine, usually part of an operating
system, that aids in controlling the
operations and managing the resources of
a computer system.

control unit
A hardware device that controls the
reading, writing, or displaying of data at
one or more input/output devices. See
also storage control.

cross memory
A synchronous method of communication
between address spaces.

coupling facility (CF)
The hardware that provides high-speed
caching, list processing, and locking
functions in a Parallel Sysplex.

coupling facility (CF) cache structure
The CF hardware that provides a data
cache.

coupling facility (CF) lock structure
The CF hardware that supports Parallel
Sysplex-wide locking.

CPC See central processor complex.

data class
A collection of allocation and space
attributes, defined by the storage
administrator, that are used to create a
data set.

data extent block (DEB)
A control block that describes the physical
attributes of the data set.

Data Facility Storage Management Subsystem
(DFSMS)

An operating environment that helps
automate and centralize the management
of storage. To manage storage, SMS
provides the storage administrator with
control over data class, storage class,
management class, storage group, and
automatic class selection routine
definitions.

Data Facility Storage Management Subsystem
data facility product (DFSMSdfp)

A DFSMS functional component or base
element of z/OS that provides functions
for storage management, data
management, program management,
device management, and distributed data
access.

Data Facility Storage Management Subsystem
data set services (DFSMSdss)

A DFSMS functional component or base

134 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

element of z/OS that is used to copy,
move, dump, and restore data sets and
volumes.

Data Facility Storage Management Subsystem
Transactional VSAM Services (DFSMStvs)

An IBM licensed program for running
batch VSAM processing concurrently with
CICS online transactions. DFSMStvs users
can run multiple batch jobs and online
transactions against VSAM data, in data
sets defined as recoverable, with
concurrent updates. DFSMStvs is a
licensed component of DFSMS

data record
A collection of items of information from
the standpoint of its use in an application,
as a user supplies it to the system storage.
Contrast with index record.

data security
Prevention of access to or use of data or
programs without authorization. As used
in this publication, the safety of data from
unauthorized use, theft, or purposeful
destruction.

data set control block (DSCB)
A control block in the VTOC that
describes data set characteristics.

data synchronization
The process by which the system ensures
that data previously given to the system
via WRITE, CHECK, PUT, and PUTX
macros is written to some form of
nonvolatile storage.

device number
The reference number assigned to any
external device.

DFSMS
See Data Facility Storage Management
Subsystem.

DFSMSdfp
See Data Facility Storage Management
Subsystem data facility product.

DFSMSdss
See Data Facility Storage Management
Subsystem data set services.

DFSMStvs
See Data Facility Storage Management
Subsystem Transactional VSAM Services.

dictionary
A table that associates words, phrases, or

data patterns to shorter tokens. The
tokens are used to replace the associated
words, phrases, or data patterns when a
data set is compressed.

direct access
The retrieval or storage of data by a
reference to its location in a data set
rather than relative to the previously
retrieved or stored data. See also
addressed-direct access.

direct access device space management
(DADSM)

A DFP component used to control space
allocation and deallocation on DASD.

direct data set
A data set whose records are in random
order on a direct access volume. Each
record is stored or retrieved according to
its actual address or its address according
to the beginning of the data set. Normally
accessed via BDAM.

directly-allocated printer
A printer that is allocated to the
application program.

dynamic buffering
A user-specified option that requests that
the system handle acquisition,
assignment, and release of buffers.

entry-sequenced data set
A data set whose records are loaded
without respect to their contents, and
whose relative byte addresses (RBAs)
cannot change. Records are retrieved and
stored by addressed access, and new
records are added at the end of the data
set.

ESA See Enterprise Systems Architecture.

exclusive control
A way of preventing multiple write-add
BDAM requests from updating the same
dummy record or writing over the same
available space on a track. When specified
by the user, the exclusive control lock
requests that the system prevent the data
block that is about to be read from being
modified by other requests; it is specified
in a read macro and released in a write or
relex macro. When a write-add request is
about to be processed, the system

Glossary 135

automatically gets exclusive control of
either the data set or the track.

extended format
The format of a data set that has a data
set name type (DSNTYPE) of
EXTENDED, for example, extended
format and extended key-sequenced data
sets. Data sets in extended format can be
striped or compressed. Data in an
extended format VSAM KSDS can be
compressed.

extended format data set
A sequential data set that is structured
logically the same as a physical sequential
data set but that is stored in a different
physical format. Extended format data
sets consist of one or more stripes and
can take advantage of the sequential data
striping access technique. See also striping
and stripe.

extent A continuous space on a DASD volume
occupied by a data set or portion of a
data set.

field In a record or control block, a specified
area used for a particular category of data
or control information.

file-owning region (FOR)
A data-owning region, a CICS address
space whose primary purpose is to
manage files and databases.

file system
In the z/OS UNIX hierarchical file system
(HFS) environment, the collection of files
and file management structures on a
physical or logical mass storage device,
such as a diskette or minidisk. See also
hierarchical file system (HFS) data set.

FOR See file-owning region.

forgotten
The state of a unit of recovery that occurs
when the unit of recovery has completed
and RRS has deleted its log records.

format-D
ASCII variable-length records.

format-DB
ASCII variable-length, blocked records.

format-DBS
ASCII variable-length, blocked spanned
records.

format-DS
ASCII variable-length, spanned records.

format-F
Fixed-length records.

format-FB
Fixed-length, blocked records.

format-FBS
Fixed-length, blocked, standard records.

format-FS
Fixed-length, standard records.

format-U
Undefined-length records.

format-V
Variable-length records.

format-VB
Variable-length, blocked records.

format-VBS
Variable-length, blocked, spanned records.

format-VS
Variable-length, spanned records.

Forward recoverable data set
A data set that was defined with the
LOG(ALL) attribute option.

forward recovery
A process used to recover a lost data set.
The data is recovered from a backup copy
and all the changes that were made after
the backup copy was taken are applied.
The forward recovery process requires a
log of the changes made to a data set,
together with a date and time stamp. The
log of changes is called the forward
recovery log.

forward recovery log
A log that contains copies of records after
they were changed. The forward recovery
log records are used by forward recovery
programs and products such as CICS
VSAM Recovery (CICSVR) to reconstruct
the data set in the event of hardware or
software damage to the data set.

free space
Space reserved within the control
intervals of a key-sequenced data set for
inserting new records into the data set in
key sequence or for lengthening records
already there; also, whole control intervals
reserved in a control area for the same
purpose.

136 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

gigabyte
1 073 741 824 bytes.

global shared resources (GSR)
. Indicates use of a global resource pool.

GSR See global shared resources.

header label
An internal label, immediately preceding
the first record of a file, that identifies the
file and contains data used in file control.

The label or data set label that precedes
the data records on a unit of recording
medium.

HFS See hierarchical file system

hierarchical file system (HFS) data set
A data set that contains a
POSIX-compliant file system, which is a
collection of files and directories
organized in a hierarchical structure, that
can be accessed using z/OS UNIX System
Services. See also file system.

hierarchical file system (HFS)
A POSIX-compliant file system, which is a
collection of files and directories
organized in a hierarchical structure, that
can be accessed using z/OS UNIX System
Services. HFS enables an application
written in a high-level language to create,
store, retrieve, and manipulate data on a
storage device. The view of the data to
the end user is a hierarchical directory
structure similar to IBM DOS. See also file
system.

index record
A collection of data-record pointers
retrieved and stored together. Contrast
with index record

instance
(1) The code and control blocks that
represent access to VSAM data sets
through DFSMStvs. An instance of
DFSMStvs starts when DFSMStvs is
initialized as part of SMSVSAM address
space initialization or enabled by operator
command. The instance ends when
DFSMStvs enters a quiesced or disabled
state or when the SMSVSAM address
space ends.

(2) A peer recovery instance of DFSMStvs
serves to recover from the failure of some
other DFSMStvs instance that ran on
another system within a sysplex when the
system on which the other DFSMStvs
instance was running failed. The peer
recovery instance shares the SMSVSAM
address space, and certain control blocks,
with a "native" DFSMStvs instance.
Automatic restart manager (ARM) can
start a peer recovery instance
automatically when a system in a sysplex
fails. A peer recovery instance can also be
started manually by operator command.
The instance ends when it completes its
peer recovery process, when it is stopped
by operator command and enters a
quiesced state, or when the SMSVSAM
address space ends.

in-backout
The state of a unit of recovery when one
or more resource managers reply
negatively to a commit request. The
syncpoint manager tells each resource
manager to back out the changes. The
resources are returned to the values they
had before the unit of recovery was
processed. When all the resource
managers have backed out the changes,
the syncpoint manager notifies the
application.

in-commit
The state of a unit of recovery when all
resource managers reply positively to a
commit request. The syncpoint manager
tells each resource manager to make its
changes permanent. When all resource
managers have made the changes, the
syncpoint manager notifies the
application.

in-completion
The state of a unit of recovery when any
enabled completion exit routines run.
After this phase completes, RRS passes a
return code to the application indicating
that the changes have been committed or
backed out.

in-doubt
For a distributed request, the state of a
unit of recovery on the originating system
from the end of the prepare phase of the
two-phase commit until the distributed
syncpoint resource manager (DSRM)
returns a commit or backout request.

Glossary 137

in-end The state of a unit of recovery when the
resource managers have responded to the
syncpoint manager that commit or
backout is complete. The unit of recovery
is logically complete.

in-flight
The state of a unit of recovery when an
application accesses protected resources.
The resource managers express interest in
the unit of recovery.

in-forget
The state of a unit of recovery for a
distributed request. The unit of recovery
has completed, but RRS is waiting for the
server distributed syncpoint resource
manager (SDSRM) to indicate how to
process the log records for the unit of
recovery.

in-only-agent
The state of a unit of recovery when only
one resource manager has expressed an
interest in the unit of recovery. RRS
invokes the ONLY_AGENT exit routine to
tell the resource manager to process the
commit immediately.

in-prepare
The state of a unit of recovery when the
application has issued a commit request
and the syncpoint manager tells each
resource manager to prepare its resources
for commit or backout.

in-reset
The state of a unit of recovery before an
application program has used any
protected resources.

in-state-check
The state of a unit of recovery when the
application has issued a commit request
and the resource managers check if their
resources are in the correct state.

key-sequenced data set (KSDS)
A VSAM data set whose records are
loaded in ascending key sequence and
controlled by an index. Records are
retrieved and stored by keyed access or
by addressed access, and new records are
inserted in key sequence because of free
space allocated in the data set. Relative
byte addresses of records can change
because of control interval or control area
splits.

keyed-sequential access
In VSAM, the retrieval or storage of a
data record in its key or relative-record
sequence, relative to the previously
retrieved or stored record as defined by
the sequence set of an index.

kilobyte
1024 bytes.

library
Synonym for partitioned data set. See
partitioned data set.

linear data set (LDS)
A VSAM data set that contains data but
no control information. A linear data set
can be accessed as a byte-addressable
string in virtual storage.

load module
The output of the linkage editor; a
program in a format ready to load into
virtual storage for execution. Contrast
with program object.

local shared resources (LSR)
Resources in the local resource pool.

locate mode
A transmittal mode in which a pointer to
a record is provided instead of moving
the record. Contrast with move mode.

log of logs
A log that DFSMStvs and CICS write to
provide information to forward recovery
programs such as CICS VSAM Recovery
(CICSVR). The log of logs is a form of
user journal that contains copies of the
tie-up records that DFSMStvs or CICS has
written to forward recovery logs. This log
provides a summary of which recoverable
VSAM data sets that DFSMStvs or CICS
has used, when they were used, and to
which log stream the forward recovery
log records were written.

If you have a forward recovery product
that can utilize the log of logs, ensure that
all CICS regions that share the
recoverable data sets write to the same
log-of-logs log stream.

log stream
A log stream is a collection of data in log
blocks that reside in the coupling facility
or on DASD.

138 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

log tail
In DFSMStvs, the oldest log record of
interest. Log tail deletion is the process of
deleting unneeded records that are older
than the oldest record of interest to
DFSMStvs.

log trimming
Removal of records that are no longer
required from the DFSMStvs primary
system log or secondary system log.

LSR See local shared resources.

management class
A collection of management attributes,
defined by the storage administrator, used
to control the release of allocated but
unused space; to control the retention,
migration, and back up of data sets; to
control the retention and back up of
aggregate groups, and to control the
retention, back up, and class transition of
objects.

member
A partition of a partitioned data set or
PDSE.

move mode
A transmittal mode in which the record to
be processed is moved into a user work
area.

MVS Multiple Virtual Storage.

native context
The automatically occurring context of a
work request. A native context is
associated with a single task. This context
always exists.

non-VSAM data set
A data set allocated and accessed using
one of the following methods: BDAM,
BPAM, BISAM, BSAM, QSAM, QISAM.

nonrecoverable data set
A data set for which no changes are
logged because its LOG parameter is
either undefined or set to NONE. Neither
backout nor forward recovery is provided
for a nonrecoverable data set.

nonshared resources
A data set that does not use shared
resources.

NSR See nonshared resources.

object A named byte stream having no specific
format or record orientation.

z/OS UNIX System Services (z/OS UNIX)
The set of functions provided by the
SHELL and UTILITIES, kernel, debugger,
file system, C/C++ Run-Time Library,
Language Environment, and other
elements of the z/OS operating system
that allow users to write and run
application programs that conform to
UNIX standards.

operand
Information entered with a command
name to define the data on which a
command operates and to control the
execution of the command.

optimum block size
For non-VSAM data sets, optimum block
size represents the block size that would
result in the smallest amount of space
utilization on a device, taking into
consideration record length and device
characteristics.

Parallel Sysplex
A sysplex that uses one or more coupling
facilities.

partitioned data set (PDS)
A data set on direct access storage that is
divided into partitions, called members,
each of which can contain a program, part
of a program, or data.

partitioned data set extended (PDSE)
An system-managed data set that contains
an indexed directory and members that
are similar to the directory and members
of partitioned data sets. A PDSE can be
used instead of a partitioned data set.

path A named, logical entity composed of one
or more clusters (an alternate index and
its base cluster, for example).

PDS directory
A set of records in a partitioned data set
(PDS) used to relate member names to
their locations on a DASD volume.

peer recovery
A recovery process that occurs when an

Glossary 139

application fails. Peer users can perform
recovery and clean up resources.

peer recovery instance
See instance.

pointer
An address or other indication of location.
For example, an RBA is a pointer that
gives the relative location of a data record
or a control interval in the data set to
which it belongs.

primary key
One or more characters within a data
record used to identify the data record or
control its use. A primary key must be
unique.

primary space allocation
Amount of space requested by a user for
a data set when it is created. Contrast
with secondary space allocation.

primary system log
See undo log.

privately managed context
A context created and owned by a
resource manager. The resource manager
can switch a privately managed context
from one task to another. Privately
managed contexts are usually used by a
resource manager that is also a work
manager, like IMS. This sort of work
manager can accept and manage
transactions, or other kinds of work, from
outside the system.

program library
A type of PDSE which contains program
objects only. A PDSE from which
programs are loaded into memory for
execution by the operating system.

program object
All or part of a computer program in a
form suitable for loading into virtual
storage for execution. Program objects are
stored in PDSE program libraries and
have fewer restrictions than load
modules. Program objects are produced
by the binder.

protected resource
A local or distributed resource that can be
changed in a synchronized manner
during processing coordinated by a
syncpoint manager, such as RRS.
Databases, conversations between two

communications managers, or
product-specific resources can all be
protected resources. A protected resource
is also often called a recoverable resource.

random access
See direct access.

record definition field (RDF)
A field stored as part of a stored record
segment; it contains the control
information required to manage stored
record segments within a control interval.

record-level sharing
See VSAM record-level sharing (VSAM
RLS).

recoverable data set
A data set that can be recovered using
backout or forward recovery processing,
defined with the LOG parameter set to
UNDO or ALL. See also protected resource.

recoverable resource
A data set that can be recovered using
commit, backout, or forward recovery
processing because its LOG parameter is
set to UNDO or ALL.

register
An internal computer component capable
of storing a specified amount of data and
accepting or transferring this data rapidly.

relative byte address (RBA)
The displacement of a data record or a
control interval from the beginning of the
data set to which it belongs; independent
of the manner in which the data set is
stored.

relative record data set (RRDS)
A type of VSAM data set whose records
have fixed or variable lengths, and are
accessed by relative record number.

residence mode (RMODE)
The attribute of a load module that
identifies where in virtual storage the
program will reside (above or below 16
megabytes).

resource
A database, a conversation between two
systems, or a product-specific item. A
resource can be local (residing on the
current system) or distributed (residing
on another system). A resource is

140 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

protected when it can be changed in a
synchronized manner.

resource manager (RM)
A subsystem or component, such as CICS,
IMS, or DB2, or DFSMStvs, that manages
resources that can be involved in
transactions. There are three types of
resource managers: work managers, data
resource managers, and communication
resource managers.

reusable data set
A VSAM data set that can be reused as a
work data set, regardless of its old
contents. It must not be a base cluster of
an alternate index.

RLS See VSAM record-level sharing (VSAM
RLS).

scheduling
The ability to request that a task set
should be started at a particular interval
or on occurrence of a specified program
interrupt.

secondary space allocation
Amount of additional space requested by
the user for a data set when primary
space is full. Contrast with primary space
allocation.

secondary system log
See shunt log.

security
See data security.

sequence checking
The process of verifying the order of a set
of records relative to some field's collating
sequence.

sequential access
The retrieval or storage of a data record
in: its entry sequence, its key sequence, or
its relative record number sequence,
relative to the previously retrieved or
stored record. See also addressed-sequential
access and keyed-sequential access.

sequential data set
A data set whose records are organized
on the basis of their successive physical
positions, such as on magnetic tape.
Contrast with direct data set.

service request block (SRB)
A system control block used for
dispatching tasks.

shared lock
A lock that several tasks can hold.

shared resources
A set of functions that permit the sharing
of a pool of I/O-related control blocks,
channel programs, and buffers among
several VSAM data sets open at the same
time.

shunt The process of moving failed work or
long-running work from the primary
system log to the secondary system log. If
a unit of work fails, it is removed
(shunted) from the primary system log to
the secondary system log, pending
recovery from the failure.

shunt log
The secondary system log, which contains
entries that were shunted to the log when
DFSMStvs was unable to finish processing
sync points. If a unit of work fails, it is
removed (shunted) from the primary
system log to the secondary system log,
pending recovery from the failure.

shunted
The state of a unit of recovery when it
has been moved from the primary system
log to the secondary system log because
of a failed or long-running unit of work.

slot For a fixed-length relative record data set,
the data area addressed by a relative
record number, which might contain a
record or be empty.

single point of failure
An environment in which one failure can
result in simultaneous loss of both the
coupling-facility list structure for a log
stream and the local storage-buffer copy.

skip-sequential access
Keyed-sequential retrieval or storage of
records here and there throughout a data
set, skipping automatically to the desired
record or collating position for insertion:
VSAM scans the sequence set to find a
record or a collating position. Valid for
processing in ascending sequences only.

SMF See System Management Facilities.

SMS class
A list of attributes that SMS applies to

Glossary 141

data sets having similar allocation (data
class), performance (storage class), or
backup and retention (management class)
needs.

SMS configuration
A configuration base, Storage
Management Subsystem class, group,
library, and drive definitions, and ACS
routines that the Storage Management
Subsystem uses to manage storage.

SMS-managed data set
A data set that has been assigned a
storage class.

spanned record
For VSAM, a logical record whose length
exceeds control interval length, and as a
result, crosses, or spans one or more
control interval boundaries within a
single control area. For non-VSAM, a
spanned record that occupies part or all
of more than one block.

staging data set
Staging data sets are allocated by the
system logger to safeguard log data when
there is an error that leaves the only copy
of log data in a volatile configuration.

storage class
A collection of storage attributes that
identify performance goals and
availability requirements, defined by the
storage administrator, used to select a
device that can meet those goals and
requirements.

storage control
The component in a storage subsystem
that handles interaction between
processor channel and storage devices,
runs channel commands, and controls
storage devices.

storage group
A collection of storage volumes and
attributes, defined by the storage
administrator. The collections can be a
group of DASD volumes or tape volumes,
or a group of DASD, optical, or tape
volumes treated as a single object storage
hierarchy.

Storage Management Subsystem (SMS)
A DFSMS facility used to automate and to
centralize the management of storage.
Using SMS, a storage administrator
describes data allocation characteristics,

performance and availability goals,
backup and retention requirements, and
storage requirements to the system
through data class, storage class,
management class, storage group, and
ACS routine definitions.

store-through caching
A process used by the store-through user
in which changed data is written to the
cache structure and to permanent storage
at the same time and under the same
serialization so that at any time, the data
in the cache structure matches the data in
permanent storage.

stripe The portion of a striped data set (for
example, an extended format data set)
that resides on one volume. The records
in that portion are not necessarily
logically consecutive. The system
distributes records among the stripes such
that the volumes can be read or written
simultaneously to gain better
performance.

striping
A software implementation of a disk
array that distributes data sets across
multiple volumes to improve
performance.

system-managed storage
Storage managed by the Storage
Management Subsystem. SMS attempts to
deliver required services for availability,
performance, and space to applications.
See also DFSMS environment.

system management facilities (SMF)
A component of z/OS that collects
input/output (I/O) statistics, provided at
the data set and storage class levels,
which help you monitor the performance
of the direct access storage subsystem.

sync point
An end point during processing of a
transaction. A sync point occurs when an
update or modification to one or more of
the transaction's protected resources is
logically complete. A sync point can be
either a commit or a backout.

syncpoint manager
A syncpoint manager is a function that
coordinates the two-phase commit process
for protected resources, so that all
changes to data are either committed or

142 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

backed out. In z/OS, RRS can act as the
system level syncpoint manager.

tie-up record
A record that associates each data set
after-image record in the log with a file
name. You can associate a data set with
more than one file with the same data set.
When a file is opened, DFSMStvs records
the association between the file and the
data set as a tie-up record in the forward
recovery log. This information is also
written to the log of logs. For non-BWO
backups, the forward recovery utility uses
this tie-up record to apply the log records
to the correct data sets.

transaction
A unit of application data processing
initiated by a single request. A transaction
might involve multiple application
programs and might require the initiation
of one or more jobs for its execution. In
DFSMStvs, a transaction is a unit of work,
which consists of one or more logical
units of recovery.

transaction ID (TRANSID)
A number associated with each of several
request parameter lists that define
requests belonging to the same data
transaction.

TRANSID
See transaction ID.

trimming
See log trimming.

two-phase commit
The process used by syncpoint managers
and resource managers to coordinate
changes in an ACID transaction.

In the first phase of the process, resource
managers prepare a set of coordinated
changes, but the changes are
uncommitted pending the agreement of
all the resource managers involved in the
transaction. In the second phase, those
changes are all committed if the resource
managers all agreed to them; or, the
changes are all backed out if any of the
resource managers failed or disagreed.

Using the two-phase commit process,
multiple changes across multiple resource
managers can be treated as a single ACID
transaction.

undo log
The primary system log, which contains
images of changed records as they existed
prior to being changed. Backout
processing uses the undo log to back out
the changes that a transaction made to
resources.

unit address
The last two hexadecimal digits of a
device address. This identifies the storage
control and DAS string, controller, and
device to the channel subsystem. Often
used interchangeably with control unit
address and device address in
System/370 mode.

unit of recovery (UR)
A set of changes on one node that is
committed or backed out as part of an
ACID transaction.

A UR is implicitly started the first time a
resource manager touches a protected
resource on a node. A UR ends when the
two-phase commit process for the ACID
transaction changing it completes.

unit of recovery identifier (URID)
Persistent tokens used by RRS to identify
a transaction.

unit of work
In DFSMStvs, one or more logical units of
recovery that are committed or backed
out together as a transaction.

universal character set (UCS)
A printer feature that permits the use of a
variety of character arrays. Character sets
used for these printers are called UCS
images.

update number
For a VSAM spanned record, a binary
number in the second RDF of a record
segment that indicates how many times
the segments of a spanned record should
be equal. An inequality indicates a
possible error.

user buffering
The use of a work area in the processing
program's address space for an I/O

Glossary 143

buffer; VSAM transmits the contents of a
control interval between the work area
and direct access storage without
intermediary buffering.

virtual storage access method (VSAM)
An access method for direct or sequential
processing of fixed and variable-length
records on direct access storage devices.
You can organize the records in a VSAM
data set in logical sequence by a key field
(key sequence), in the physical sequence
in which they are written to the data set
(entry sequence), or by relative record
numbers.

VSAM
See virtual storage access method.

VSAM record-level sharing (VSAM RLS)
An extension to VSAM that provides
direct record-level sharing of VSAM data
sets from multiple address spaces across
multiple systems. Record-level sharing
uses the z/OS coupling facility to provide
cross-system locking, local buffer
invalidation, and cross-system data
caching.

VSAM volume data set (VVDS)
A data set that describes the
characteristics of VSAM and
system-managed data sets residing on a
given DASD volume; part of a catalog.

z/OS A network computing-ready, integrated
operating system consisting of more than
50 base elements and integrated optional
features delivered as a configured, tested
system.

144 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

Index

A
access mode 8
accessibility 123

contact IBM 123
features 123

accessing data sets 16
activity keypoint frequency (AKP) 54
advanced application development 77
application program

coordinating recovery 4
applications

coding 64
archive log 34
assistive technologies 123
atomic 17

change 4
definition 1

automatic restart manager (ARM) 115
Automatic Restart Manager (ARM) 39

B
backout 1, 19

log stream 54
logging 54

GET UPD 56
PUT ADD 56
PUT UPD 56

logs 17
protocols 16
records 55

batch job
transaction processing 15

C
cache structures 28

size 30
CICS

transactional recovery 9
with VSAM RLS 7

CICS log streams 35
coding applications 64
cold start 114
commit 2
commit processing

phases of 18
commit 18
prepare 18

two-phase 17
commit, two-phase 16
console messages and dumps 108
context 2, 18, 20

native 21
privately managed 21
services 20

coordination of recovery 4
coupling facilities

contents 28
internal 27

coupling facilities (continued)
links 31
number 27
overview 26
size 29
standalone 27
volatile or nonvolatile 28

coupling facility 6
defining structures for log

streams 48
log stream example 50
status 109
using 43

coupling-facility planning 26

D
DASD log data sets 37
DASD staging data sets 37
DASD-only log streams 36
data sets

deleting 75
nonrecoverable 11
recoverable 14
renaming 75

deadlocks 72
defining transactions 64
delayed UR state log 34
DFSMStvs

accessing data sets 67
applications 63

exploiting 63
intolerant 63
redesigning 64
tolerant 63

backout logging 54
coding your application program to

use 63
commit and backout 69
defining resources 41
end of task, effects of 70
logging 42, 47
PARMLIB 45

examples 45
recommendations and

requirements 45
record locking 70
restarts 113

DFSMStvs environment 1
direct access storage devices (DASD) 67
distributed resource recovery 23
distributed units of recovery 23

E
enabling VSAM RLS 9
execution mode requirements 13

F
false lock contention 72
forward recoverable data set 2
forward recovery 2
forward recovery log 2, 17
forward recovery log streams 34, 56
forward recovery logging 56
forward recovery logs 34
forward recovery operation planning 39
functional recovery routine (FRR) 66

G
global resource serialization (GRS) 110

I
Integrated Cluster Bus (ICB) 31
Internal Coupling Channel (ICC) 31

K
keyboard

navigation 123
PF keys 123
shortcut keys 123

L
list structures 29

size 31
lock structure 28

size 29
locking

non-RLS 12
retained locks 12
serializing resources 17

locking, resource 15
log 19

backout 17, 19
forward recovery 17
system

primary 2
secondary 3

log forward recovery 2
log log of logs 2
log of logs 2, 35, 59
log shunt 3
log stream 47, 51

forward recovery 56
log streams

access to 60
CICS 35
DASD log data sets 37
DASD staging data sets 37
DASD-only 36
definition examples 52
DFSMStvs 33
forward recovery logs 34

© Copyright IBM Corp. 2003, 2013 145

log streams (continued)
log of logs 35
overview 33
primary system log 2, 33
RRS 34
secondary system log 3, 33
shunt 3
shunt log 55
size 36, 38
structures 35
system log names 53
undo log 3, 54

log structures 50
log tail deletion 54
log trimming 38
LOG(ALL) 8, 47
LOG(NONE) 8, 47
LOG(UNDO) 8, 47
logging 17

problems
categories 107
collecting diagnosis

information 108
recovery from 112

resource recovery 16
logging flow 33
logging updates 47

M
main UR state log 34
multitasking 78

N
native contexts 21
navigation

keyboard 123
non-CICS applications 20
non-RLS

access to VSAM data sets 11
access with retained locks 13
locking 12

nonrecoverable data set 2
nonrecoverable data sets

read and write sharing 11
Notices 127

O
offloading 54
Overview of DFSMStvs 14

P
parallel sysplex environment 42
peer recovery 51, 114

interference 116
SMSVSAM failures during 116
starting 115
system failures during 116

performance delays 47
planning for DFSMStvs

coupling-facility planning 26
overview 25

planning for DFSMStvs (continued)
planning tasks 25
processor capacity 31
software configuration 32
system logger 32
VSAM operations planning 38

planning tasks 25
positioning states

new 74
no 74
u 74
undefined 74
yes 74

primary system log 2, 33
privately managed contexts 21
processing restrictions

alternate indexes 66
defer processing 65
DEFINE parameters 66
exits 66
global resource serialization (GRS) 66
load mode 65
locking 65
positioning 65
request environment 66
SHAREOPTIONS 65
sharing 65

processor capacity planning 31

Q
quiescing 108

R
random access 75
read and write sharing

nonrecoverable data sets 11
read integrity options 10

CR (consistent read) 71
CRE (consistent read explicit) 71
NRI (no read integrity) 71
repeatable read 71

Read integrity options 10
read sharing integrity 11
Read-sharing integrity 11
record locking protocols 15
record management request 17
record management requests 78
record-level sharing 6, 8, 10, 11, 12, 13,

14
recoverable data set 2, 6, 14
recoverable data sets 6, 8

CICS 20
read sharing 10
VSAM RLS 20

recoverable VSAM data sets
access to 16

recovery
application program 4
backout 1
coordination 4
forward recoverable data set 2
forward recovery 2
forward recovery log 2
log of logs 2

recovery (continued)
primary system log 2
resource locking 5
resource manager 4
resource recovery logging 5
syncpoint manager 4
transactional 4, 15
two-phase commit processing 3, 5
undo log 3

recovery coordination 15
recovery procedures 38
recovery tracking 55
reorganization 39
repeatable read option 15
requirements

CF level 2 microcode 27
lost locks 119
retained locks 119

resource locking 5, 15
resource manager

coordinating recovery 4
DB2 19
definition 3
IMSDB 19

resource manager data log 34
resource recovery logging 5, 16
restart log 34
restarting applications 73
restrictions

CICS and DFSMStvs 19
DFSMStvs 67
DFSMStvs processing 65
processing 65
RLS 67
understanding 65

retained locks 13, 71
RRMS 20
RRS 19, 20
RRS log streams

archive log 34
delayed UR state log 34
main UR state log 34
overview 34
resource manager data log 34
restart log 34

S
secondary system log 3, 33
sending comments to IBM xi
sequential access 75
service request block (SRB) 66
share options 12
shortcut keys 123
shunt log 3, 42, 55
shunted transactions

monitoring 76
retrying 76

single-mode Intersystem Coupling (ISC)
link 31

SMF and RMF statistics 111
SMSVSAM 9

address space failure 113
software configuration 32
spanned records 67
staging data sets 44

146 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

storage types
primary 51
secondary 52
tertiary 52

Summary of changes xiii
sync point 3
syncpoint manager

coordinating recovery 4
definition 3

system log
storage 54

system log streams
names 53

system logger 47
availability 107
list structures 29
logging flow 33
planning 32

T
task control block (TCB) 66, 78
trademarks 129
transaction processing

batch job 15
description 4
DFSMStvs and RLS tasks 16
overview 1
transactional recovery 4

transactional recovery 15
CICS 9
CICS file-control program 19
coordinating recovery 4
description 4
nonrecoverable data sets 11
overview 1
programs

application program 4
resource manager 4
syncpoint manager 4

resource locking 5
resource recovery logging 5
two-phase commit processing 5

transactions
defining 64

two-phase commit 16, 19, 22
processing 3, 5

two-phase commit processing 5

U
undo log 3

backout logging 54
unit of recovery 3, 20
unit of work 3
unit-of-recovery states

in-backout state 22
in-commit 22
in-flight 22
in-prepare 22
in-reset 22

units of recovery 21
in-doubt 55
long-running 55

user interface
ISPF 123

user interface (continued)
TSO/E 123

V
VSAM data sets 67

non-RLS access 11
RLS access 12
share options 12

VSAM operations
ERASE 55
PUT 55

VSAM operations planning
Automatic Restart Manager

(ARM) 39
forward recovery operation 39
overview 38
recovery procedures 38
reorganization 39

VSAM record management requests 17
VSAM RLS

Read integrity options 10
VSAM RLS (record-level sharing) 6, 14,

20
access mode

GSR 8
LSR 8
NSR 8

and CICS 6
data set types

ESDS 6, 67
KSDS 6, 67
RRDS 6, 67
VRRDS 6

enabling
MACRF=RLS 9

execution mode requirements 13
options not supported 14
processing 6
read integrity options 10
read sharing integrity 11
recoverable data set 6
recoverable data sets 8
request 13
retained locks 12
share options 12
SMSVSAM

server 9
using the coupling facility 6

VSAM sharing
cache structures 28
lock structure 28

W
waits 113

Index 147

148 z/OS V2R1.0 DFSMStvs Planning and Operating Guide

����

Product Number: 5650-ZOS

Printed in USA

SC23-6877-00

	Contents
	Figures
	Tables
	About this document
	Required product knowledge
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Understanding the DFSMStvs environment
	Transaction processing and transactional recovery
	Terminology
	Transaction processing
	Transactional recovery
	Coordination of recovery
	Resource locking
	Resource recovery logging
	Two-phase commit processing

	VSAM record-level sharing (RLS)
	Overview of VSAM RLS
	Data set types that VSAM RLS supports
	How CICS uses VSAM RLS
	Recoverable and nonrecoverable data sets
	CICS transactional recovery for VSAM recoverable data sets
	How VSAM RLS provides functions

	Read sharing of recoverable data sets
	VSAM RLS read integrity options
	Read-sharing integrity across KSDS control-interval and control-area splits
	Read and write sharing of nonrecoverable data sets
	Non-RLS access to VSAM data sets
	Differences between VSAM RLS access and non-RLS access
	Share options
	Locking

	Requirements for VSAM RLS request execution mode
	VSAM options that RLS and DFSMStvs do not support

	DFSMStvs overview
	Transaction processing from a batch job
	Recovery coordination
	Access to recoverable VSAM data sets
	Transaction processing
	Serializing resources with locking
	Logging resource recovery data
	Initiating transactions

	How DFSMStvs works with RRS and other resource managers
	How DFSMStvs complements CICS

	Context services and RRMS
	Native contexts
	Privately managed contexts
	Units of recovery
	Unit-of-recovery states
	Distributed units of recovery

	Chapter 2. Planning for DFSMStvs
	Planning tasks
	Coupling-facility planning
	Coupling facilities
	Number of coupling facilities
	Standalone or internal coupling facility
	Volatile or nonvolatile coupling facility
	Contents of a coupling facility
	Lock structure for VSAM sharing
	Cache structures for VSAM sharing
	List structures for the system logger

	Coupling-facility size
	Lock-structure sizing
	Cache-structure sizing
	List-structure sizing

	Coupling facility links

	Processor-capacity planning
	Software-configuration planning
	System-logger planning
	Logging flow overview
	Log streams
	Log streams for DFSMStvs
	RRS log streams
	Log streams for forward recovery
	CICS log streams

	Structures and log streams
	DASD-only log streams
	Log stream sizing
	DASD staging data sets
	DASD log data sets
	Log trimming
	Sizing

	VSAM operations planning
	Recovery procedures
	Forward recovery operation planning
	Reorganization
	Automatic Restart Manager planning
	DFSMStvs and ARM

	Installation of DFSMStvs

	Chapter 3. Configuring the DFSMStvs environment and defining resources
	Defining your Parallel Sysplex environment
	Setting up the logging environment
	Using coupling facilities
	Defining staging data sets
	Specifying SYS1.PARMLIB parameters for DFSMStvs
	Defining a PARMLIB member specific to one system
	Defining a parmlib member that applies to multiple systems

	Chapter 4. Setting up DFSMStvs logging
	Determining the amount of logging to do
	Defining coupling-facility structures for log streams
	Definition of a coupling-facility structure for a log stream
	Log structure names

	Allocating system log streams
	Examples of system log stream definitions
	System log stream names
	Offloading of log data

	Using backout logging
	Backout records for in-doubt and long-running units of recovery
	Backout logging events

	Defining forward recovery logs
	Creating a log of logs
	Authorizing access to log streams
	Authorization to access log streams
	RACF RDEFINE coding

	Chapter 5. Designing and coding applications to use DFSMStvs
	Determining which applications should use DFSMStvs
	Modifying an application to use DFSMStvs
	Coding an application to use DFSMStvs
	Defining transactions
	Understanding DFSMStvs restrictions
	Considering RLS and DFSMStvs restrictions
	Using VSAM data sets in a transaction
	Accessing a data set with DFSMStvs
	Structuring your application for commit and backout
	Understanding the effects of a task ending
	Understanding record locking that DFSMStvs uses
	Using read integrity options in your application program
	Understanding reasons for retained locks and locking duration
	Avoiding false lock contention
	Avoiding deadlocks

	Handling long-running jobs and programs
	Using restartable applications
	Establishing positioning after logical errors
	Using sequential or random access to a data set
	Deleting and renaming data sets
	Monitoring and retrying shunted transactions
	Applying advanced application development techniques
	Record management requests
	Multitasking

	Chapter 6. Monitoring performance and tuning the DFSMStvs environment
	Monitoring performance
	SMF record type 42 (hexadecimal 2A)
	SMF record type 88 (hexadecimal 58)
	RMF post-processor reports
	RMF monitor III
	CICS monitoring tools
	System messages
	Operator commands
	Shunted units of recovery
	Effects of DFSMStvs, log stream, and data set states
	Effects of DFSMStvs states based on events

	Improving sequential performance
	Improving logging performance
	Tuning the DFSMStvs environment

	Chapter 7. Diagnosing and recovering from DFSMStvs problems
	Diagnosing system logger and performance problems
	Categorizing a system logger problem
	Collecting diagnostic information about logging problems
	Investigating console messages and dumps
	Displaying coupling-facility status
	Checking global resource serialization (GRS) resource contention
	Checking SMF and RMF statistics for performance problems

	Interrupting an operation or resource request
	Recovering from a log stream problem
	Resolving waits
	Restarting DFSMStvs after SMSVSAM address space failure
	Cold starting DFSMStvs
	Performing peer recovery
	Peer recovery initiation
	SMSVSAM failures while peer recovery is in process
	System failures while peer recovery is in process
	Peer-recovery interference with failed instance restart

	Appendix A. Quiescing a data set
	Appendix B. Accessing data sets that have retained locks or lost locks
	Appendix C. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

