
Db2 12 for z/OS

Utility Guide and Reference

IBM

SC27-8860-02

Notes

Before using this information and the product it supports, be sure to read the general information under
"Notices" at the end of this information.

Subsequent editions of this PDF will not be delivered in IBM® Publications Center. Always download the
latest edition from PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM Documentation).

2024-05-14 edition

This edition applies to Db2® 12 for z/OS® (product number 5650-DB2), Db2 12 for z/OS Value Unit Edition (product
number 5770-AF3), Db2 Utilities Suite for z/OS 12.1 (product number 5770-AF4), and to any subsequent releases until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.
© Copyright International Business Machines Corporation 1983, 2024.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

https://www.ibm.com/docs/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

Contents

About this information... xv
Who should read this information... xvi
Db2 Utilities Suite for z/OS..xvi
Terminology and citations... xvi
Accessibility features for Db2 12 for z/OS... xvii
How to send your comments about Db2 for z/OS documentation..xvii
Naming conventions used in this information...xviii
How to read syntax diagrams...xx

Part 1. Basic information about Db2 utilities...1

Chapter 1. Db2 utilities packaging...3

Chapter 2. Enabling the Db2 Utilities Suite for z/OS product... 5

Chapter 3. Privileges and authorization IDs for Db2 utilities..7

Chapter 4. Utilities that can be run on declared temporary objects.. 9

Chapter 5. Effect of utilities on objects that have the DEFINE NO attribute..11

Chapter 6. Effect of utilities on encrypted data ... 13

Part 2. Db2 online utilities..15

Chapter 7. Invoking Db2 online utilities..17
Data sets that online utilities use.. 18
Utility control statements.. 20
Invoking an online utility by using the DB2 Utilities panel in DB2I.. 23
DB2 Utilities panel...24
Data Set Names panel...26
Control Statement Data Set Names panel.. 27
Invoking a Db2 utility by using the DSNU CLIST command in TSO.. 27

DSNU CLIST command syntax... 30
DSNU CLIST command output... 35

The supplied JCL procedure (DSNUPROC) for invoking a Db2 online utility...................................... 36
Invoking a Db2 online utility by creating the JCL data set yourself ...38

Chapter 8. Monitoring and controlling online utilities.. 41
Monitoring utilities..41
Monitoring processor use by utilities...42
Subsystem parameters for refining DFSMSdss COPY operation with utilities................................... 42
Determining why a utility failed to complete...44
Terminating an online utility...44
Restarting an online utility... 46

Overriding the default utility restart behavior by using the RESTART parameter.........................49
Restarting a utility after the output data set is full.. 50
How utilities restart with templates...50
How utilities restart with lists ..51

 iii

Chapter 9. BACKUP SYSTEM... 53
Syntax and options of the BACKUP SYSTEM control statement... 54
Before running BACKUP SYSTEM...57

Copy pools...57
Data sets that BACKUP SYSTEM uses.. 58
Concurrency and compatibility for BACKUP SYSTEM..59

Dumping a fast replication copy to tape.. 59
Backups of log copy pools..60
Termination or restart of BACKUP SYSTEM... 60
Sample BACKUP SYSTEM control statements.. 60

Chapter 10. CATMAINT..63
Updating the catalog for installation or migration to Db2 12... 67
Renaming the owner, creator, and schema of database objects.. 67
Changing the ownership of objects from an authorization ID to a role.. 67
Changing the catalog name used by storage groups or index spaces and table spaces................... 68
Identifying invalidated packages after the owner, creator, or schema name of an object is

renamed.. 69

Chapter 11. CHECK DATA.. 71
Syntax and options of the CHECK DATA control statement.. 72
Before running CHECK DATA..81

Data sets that CHECK DATA uses... 82
Concurrency and compatibility for CHECK DATA... 86

Exception tables for the CHECK DATA utility...88
Exception processing for tables with auxiliary columns... 89
Specifying the scope of CHECK DATA.. 89
How violations are identified... 89
Detection and correction of constraint violations... 90
CHECK DATA XML error detection..90
Correcting XML data after running CHECK DATA...91
Resetting CHECK-pending status...91
LOB column errors..92
Resetting auxiliary CHECK-pending status..93
Termination and restart of CHECK DATA... 93
Sample CHECK DATA control statements..94

Chapter 12. CHECK INDEX.. 97
Syntax and options of the CHECK INDEX control statement..98
Data sets that CHECK INDEX uses.. 101

Shadow data sets for CHECK INDEX..102
Concurrency and compatibility for CHECK INDEX.. 104
Single logical partitions..106
Indexes in parallel..106
Reviewing CHECK INDEX output... 109
Termination or restart of CHECK INDEX..109
Correcting XML data after running CHECK INDEX.. 110
Sample CHECK INDEX control statements... 110

Chapter 13. CHECK LOB.. 113
Syntax and options of the CHECK LOB control statement..114
Before running CHECK LOB..116

Data sets that CHECK LOB uses... 116
Concurrency and compatibility for CHECK LOB...119

How CHECK LOB identifies violations..119
Resetting CHECK-pending status for a LOB table space...120
Resolving media failure..120

iv

Termination or restart of CHECK LOB.. 120
Sample CHECK LOB control statements... 121

Chapter 14. COPY.. 123
Syntax and options of the COPY control statement..125
Before running COPY..135

Data sets that COPY uses... 135
Concurrency and compatibility for COPY...137

Full image copies..140
Incremental image copies... 141
Multiple image copies.. 142
FlashCopy image copies.. 144
Backing up data efficiently by using FlashCopy image copies..148
Copies of lists of objects.. 148
Using more than one COPY statement.. 150
Copying partitions or data sets simultaneously.. 150
Copies of partition-by-growth table spaces..151
Copies of XML table spaces... 151
Copying catalog and directory objects.. 151
Make copies of XML schema repository objects... 152
Copies of indexes... 152
Using DFSMSdss concurrent copy... 152
Specifying conditional image copies... 154
How COPY uses real-time statistics... 155
Allocation of sequential image copy data sets..156
Preparing for recovery by using the COPY utility...156
Improving performance of the COPY utility.. 157
Generation data group definitions for the COPY utility...158
Using Db2 with DFSMS products... 158
Image copies on tape...158
Termination of COPY.. 158
Restart of COPY..159
Sample COPY control statements... 160

Chapter 15. COPYTOCOPY.. 171
Syntax and options of the COPYTOCOPY control statement.. 172
Data sets that COPYTOCOPY uses...176
Concurrency and compatibility for COPYTOCOPY.. 178
Full or incremental image copies with COPYTOCOPY...178
Incremental image copies with COPYTOCOPY... 178
Using more than one COPYTOCOPY statement.. 179
Copying from a specific image copy.. 179
Copying a FlashCopy image copy by using COPYTOCOPY..179
Using TEMPLATE with COPYTOCOPY.. 180
SYSCOPY records that are updated by COPYTOCOPY.. 180
How COPYTOCOPY determines which input copy to use... 180
Generation data group definitions for the COPYTOCOPY utility... 181
Using Db2 with DFSMS products... 181
Image copies on tape...181
Copies of lists of objects from tape... 181
Termination or restart of COPYTOCOPY.. 182
Sample COPYTOCOPY control statements..183

Chapter 16. DIAGNOSE... 187
How to force a utility abend...193

Chapter 17. EXEC SQL... 195

 v

Chapter 18. LISTDEF... 199
Syntax and options of the LISTDEF control statement... 199
Concurrency and compatibility for LISTDEF... 208
Creating the LISTDEF control statement...208
How to include objects in a list.. 209
Previewing the contents of a list..212
Creating LISTDEF libraries... 213
Referencing LISTDEF lists in other utility jobs.. 213
Using the TEMPLATE utility with LISTDEF...215
Using the OPTIONS utility with LISTDEF...215
Termination or restart of LISTDEF... 216
Sample LISTDEF control statements...216

Chapter 19. LOAD.. 221
Syntax and options of the LOAD control statement.. 223
Before running LOAD..283

Data sets that LOAD uses... 285
Concurrency and compatibility for LOAD...292
Preparing Db2 internal format input records that are not generated by UNLOAD for LOAD......294

When to use SORTKEYS NO... 295
Loading variable-length data... 295
How LOAD orders loaded records..295
Replacing data with LOAD..296
Loading tables with special column types by using generated LOAD statements...........................298
Adding more data to a table or partition... 300
Deleting all the data in a table space...300
Loading partitions...300
Loading partition-by-growth table spaces.. 303
Loading data containing XML columns.. 303
Loading delimited files... 304
Loading data with referential constraints..307
Referential constraint violations..308
Compressing data by using the LOAD utility ...309
Loading data by using the cross-loader function.. 311
Taking an inline COPY with LOAD...312
Creating a FlashCopy image copy with LOAD..313
Improving LOAD performance... 314
Conversion of input data.. 317
Specifying input fields..319
Specifying the TRUNCATE and STRIP options.. 319
How LOAD builds indexes while loading data... 320
Building indexes in parallel for LOAD.. 320
How LOAD leaves free space... 323
Loading with RECOVER-pending or REBUILD-pending status... 323
Exit procedures.. 323
Loading ROWID and row change timestamp columns..323
Loading a LOB column..324
LOAD LOG on a LOB table space.. 325
Loading an XML column... 325
LOAD LOG on an XML table space..326
Running LOAD RESUME YES SHRLEVEL CHANGE without logging.. 327
Collecting inline statistics while loading a table... 327
Termination of LOAD.. 328
Restart of LOAD.. 329
After running LOAD...331

Copying the loaded table space or partition..332
Resetting restricted status after running the LOAD utility...332

vi

Running CHECK INDEX after loading a table that has indexes... 336
Recovering data after a failed LOAD job...336
Reorganization of an auxiliary index after LOAD..337

Effects of running LOAD... 337
Sample LOAD control statements..339

Chapter 20. MERGECOPY.. 353
Syntax and options of the MERGECOPY control statement..354
Data sets that MERGECOPY uses.. 356
Concurrency and compatibility for MERGECOPY.. 357
Full or incremental image copy..358
How MERGECOPY determines which input copy to use... 358
Using MERGECOPY with individual data sets..358
Using MERGECOPY or COPY.. 359
Avoiding MERGECOPY LOG RBA inconsistencies..359
Termination or restart of MERGECOPY..360
Sample MERGECOPY control statements... 360

Chapter 21. MODIFY RECOVERY...363
How MODIFY RECOVERY deletes rows... 369
Reclaiming space in the DBD... 370
Improving REORG performance after adding a column..371
The effect of MODIFY RECOVERY on version numbers.. 371
Sample MODIFY RECOVERY control statements.. 372

Chapter 22. MODIFY STATISTICS... 375
Syntax and options of the MODIFY STATISTICS control statement...376
Data sets that MODIFY STATISTICS uses... 378
Concurrency and compatibility for MODIFY STATISTICS... 378
Guidelines for deciding which statistics history rows to delete... 379
Deletion of specific statistics history rows..379
Termination or restart of MODIFY STATISTICS...379
Sample MODIFY STATISTICS control statements.. 379

Chapter 23. OPTIONS..381
Syntax and options of the OPTIONS control statement... 381
Concurrency and compatibility for OPTIONS..384
Executing statements in preview mode.. 384
Specifying LISTDEF and TEMPLATE libraries.. 385
Overriding standard utility processing behavior... 385
Termination or restart of OPTIONS..385
Sample OPTIONS control statements... 385

Chapter 24. QUIESCE.. 389
Syntax and options of the QUIESCE control statement..390
Before running QUIESCE..392

Data sets that QUIESCE uses... 392
Concurrency and compatibility for QUIESCE...393

Use of QUIESCE on catalog and directory objects.. 394
Common quiesce points.. 395
Running QUIESCE on a table space in pending status..396
Reasons why QUIESCE fails to write to disk... 396
Termination and restart of QUIESCE... 396
Sample QUIESCE control statements... 397

Chapter 25. REBUILD INDEX.. 399
Syntax and options of the REBUILD INDEX control statement.. 400
Before running REBUILD INDEX..410

 vii

Data sets that REBUILD INDEX uses... 410
Concurrency and compatibility for REBUILD INDEX... 412

Access with REBUILD INDEX SHRLEVEL...414
Rebuilding index partitions.. 415
Rebuilding indexes on partition-by-growth table spaces... 415
How to improve performance when rebuilding index partitions.. 415
Rebuilding multiple indexes.. 416
Rebuilding critical catalog indexes.. 420
Recoverability of a rebuilt index.. 420
Creating a FlashCopy image copy with REBUILD INDEX.. 420
Termination or restart of REBUILD INDEX.. 421
The effect of REBUILD INDEX on index version numbers.. 421
Sample REBUILD INDEX control statements..422

Chapter 26. RECOVER... 425
Syntax and options of the RECOVER control statement... 427
Before running RECOVER...439

Data sets that RECOVER uses.. 440
Concurrency and compatibility for RECOVER.. 441

Recovering with a system-level backup.. 444
How to determine which system-level backups Db2 recovers...444
Determining which recovery base Db2 uses... 445
Determining whether the system-level backups reside on disk or tape.. 445
Recovering a table space or index space.. 446
Recovering a list of objects.. 447
Recovering a data set or partition..448
Recovery with incremental copies...448
Recovering with FlashCopy image copies... 448
Recovering a page.. 450
Recovering an error range..450
Effect on RECOVER of the NOT LOGGED or LOGGED table space attributes................................... 451
Recovering with a data set copy that is not made by Db2.. 451
Recovering catalog and directory objects... 452

Objects that contain recovery information.. 457
Point-in-time recovery of the catalog, directory, and all user objects.. 458

Reinitializing DSNDB01.SYSUTILX.. 460
Recovering a table space that contains LOB or XML data...461
Recovering a table space that contains clone objects.. 461
Point-in-time recovery... 462
Avoiding specific image copy data sets during a recovery..470
How to improve RECOVER performance... 471
Optimizing the LOGAPPLY phase... 471
Recovering image copies in a JES3 environment..473
How the RECOVER utility performs fallback recovery.. 473
How the RECOVER utility retains tape mounts... 473
Avoiding damaged media...474
Running a redirected recovery...474
Termination or restart of RECOVER... 480
Effects of running RECOVER.. 481
Sample RECOVER control statements...482

Chapter 27. REORG INDEX..487
Syntax and options of the REORG INDEX control statement... 488
Before running REORG INDEX... 505

Data sets that REORG INDEX uses ..506
Concurrency and compatibility for REORG INDEX.. 510

Determining which indexes require reorganization.. 512

viii

Using the LEAFDISTLIMIT and REPORTONLY options to determine when reorganization is
needed...512

Access with REORG INDEX SHRLEVEL..513
Creating a FlashCopy image copy with REORG INDEX... 514
Temporarily interrupting REORG... 515
Improving performance with REORG INDEX.. 515
Termination of REORG INDEX..516
Restart of REORG INDEX... 517
Review of REORG INDEX output..518
Effect of REORG INDEX on index version numbers.. 518
Sample REORG INDEX control statements...519

Chapter 28. REORG TABLESPACE... 523
Syntax and options of the REORG TABLESPACE control statement...526
Before running REORG TABLESPACE.. 569

Data sets that REORG TABLESPACE uses..574
Concurrency and compatibility for REORG TABLESPACE..582

Determining whether an object requires reorganization.. 587
Access with REORG TABLESPACE SHRLEVEL... 589
Unloading without reloading..592
Reclaiming space from dropped tables...592
Reorganizing the catalog and directory... 592
Changing data set definitions.. 596
Temporarily interrupting REORG... 596
How to override dynamic sort work data set allocation..596
Redistributing data across partitions by using REORG... 597
How partitions can be unloaded and reloaded in parallel.. 598
How to use inline copy with REORG TABLESPACE..598
Creating a FlashCopy image copy with REORG TABLESPACE...599
Improving REORG TABLESPACE performance..600
Parallel index building for REORG TABLESPACE... 602
How Db2 unloads data...605
Failure during the RELOAD phase..605
Reorganization of partitioned table spaces...605
Reorganization of partition-by-growth table spaces...605
Reorganization of segmented (non-UTS) table spaces...606
Comparison of the numbers of loaded and unloaded records... 607
Reorganization of a LOB table space... 607
Reorganization of an XML table space...608
Reorganization with pending definition changes.. 609
Compression after materialization of inline LOB changes.. 611
Termination of REORG TABLESPACE... 611
Restart of REORG TABLESPACE...612
Review of REORG TABLESPACE output... 615
After running REORG TABLESPACE... 615
Effects of running REORG TABLESPACE..616
Sample REORG TABLESPACE control statements.. 618

Chapter 29. REPAIR...631
Syntax and options of the REPAIR control statement.. 632
Before running REPAIR.. 649

Data sets that REPAIR uses... 650
Concurrency and compatibility for REPAIR... 651

Resetting table space status..654
Resetting index space status... 654
Repairing a damaged page...655
Repairing DBDs.. 655
Locating rows by key.. 656

 ix

Using VERIFY with REPLACE and DELETE operations.. 657
Repairing critical catalog table spaces and indexes... 657
Checking for missing system pages...657
Termination or restart of REPAIR.. 658
Review of REPAIR output...658
After running REPAIR...658
Sample REPAIR control statements.. 659

Chapter 30. REPORT..663
Syntax and options of the REPORT control statement... 664
Data sets that REPORT uses.. 668
Concurrency and compatibility for REPORT..669
Running REPORT on the catalog and directory... 669
Termination or restart of REPORT..669
REPORT output...669
Sample REPORT control statements... 674

Chapter 31. RESTORE SYSTEM... 689
Syntax and options of the RESTORE SYSTEM control statement... 690
Before running RESTORE SYSTEM...692
While running RESTORE SYSTEM.. 694
After running RESTORE SYSTEM..696
Sample RESTORE SYSTEM control statements...696

Chapter 32. RUNSTATS..699
RUNSTATS TABLESPACE syntax and options.. 701
RUNSTATS INDEX syntax and options...714
Statistics profile syntax..720
Data sets that RUNSTATS uses.. 722
Concurrency and compatibility for RUNSTATS..724
Collecting distribution statistics for column groups... 726
Updating statistics for a partitioned table space.. 727
Collection of statistics on the Db2 catalog and directory... 727
Collecting frequency statistics for data-partitioned secondary indexes..728
Collecting statistics history..728
Collection of statistics on LOB table spaces... 729
Collection of statistics on XML objects..729
Review of RUNSTATS output..731
Resetting access path statistics.. 736
Sample RUNSTATS control statements... 739

Chapter 33. STOSPACE..745
Syntax and options of the STOSPACE control statement..746
Data sets that STOSPACE uses.. 746
Concurrency and compatibility for STOSPACE..746
How STOSPACE ensures availability of objects it STOSPACE requires.. 747
Obtaining statistical information with STOSPACE...747
Analysis of the values in a SPACE or SPACEF column...748
Termination or restart of STOSPACE..748
Sample STOSPACE control statement...748

Chapter 34. TEMPLATE..751
Syntax and options of the TEMPLATE control statement... 751
Before running TEMPLATE... 766

Concurrency and compatibility for TEMPLATE.. 767
Key TEMPLATE operations...767
Choosing data set names...767
Default space calculations for data set templates..768

x

Guidelines for templates and tape data sets.. 769
How TEMPLATE supports GDG data sets.. 771
Template switching.. 771
Termination or restart of TEMPLATE... 771
Sample TEMPLATE control statements... 772

Chapter 35. UNLOAD... 777
Syntax and options of the UNLOAD control statement .. 781
Unloading partitions...815
Unloading XML data... 816
Unloading LOB data..816
Unloading data in spanned record format...817
Selecting tables and rows to unload... 818
Selecting and ordering columns to unload..819
Unloading data from image copy data sets... 819
Data type conversion with the UNLOAD utility.. 821
Output field types...821
Output field positioning and size... 823
Layout of output fields... 824
Output for special values Infinity, sNaN, or NaN...826
Unloading delimited files... 826
Specifying TRUNCATE and STRIP options for output data... 829
LOAD statements that are generated by UNLOAD.. 830
Unloading compressed data.. 831
Field specification errors... 831
Sample UNLOAD control statements.. 831

Part 3. Db2 stand-alone utilities...837

Chapter 36. Invoking stand-alone utilities... 839
Specifying options for stand-alone utilities by using the JCL EXEC PARM parameter.....................840
Stand-alone utility control statements..840

Chapter 37. DSNJCNVB...843

Chapter 38. DSNJCNVT... 845

Chapter 39. DSNJLOGF (preformat active log)...847

Chapter 40. DSNJU003 (change log inventory)..849
Making changes for active logs..864
Making changes for archive logs..866
A conditional restart control record...867
Deleting log data sets with errors..867
Altering references to log data sets in the BSDS...868
Defining the high-level qualifier for catalog and directory objects...869
Renaming Db2 system data sets... 869
Renaming Db2 active log data sets... 870
Renaming Db2 archive log data sets... 870
Sample DSNJU003 control statements...870

Chapter 41. DSNJU004 (print log map).. 873
Syntax and options of the DSNJU004 control statement... 874
Sample DSNJU004 control statement.. 875
DSNJU004 (print log map) output... 875

Chapter 42. DSNJU008 (print CDDS)..889

 xi

Syntax and options of the DSNJU008 control statement... 890
DSNJU008 examples... 892

Chapter 43. DSN1COMP.. 893
Syntax and options of the DSN1COMP control statement..895
Before running DSN1COMP... 898
How to estimate compression savings achieved with option REORG.. 899
Free space in compression calculations on table space...899
Sample DSN1COMP control statements... 901
DSN1COMP output...903

Chapter 44. DSN1COPY...911
Syntax and options of the DSN1COPY control statement ..914
Before running DSN1COPY.. 918

Data sets that DSN1COPY uses..920
Inconsistent data checks...925
The effects of not specifying the OBIDXLAT option..925
Requirements for using an image copy as input to DSN1COPY..925
Copying from an image copy..925
Restoring indexes with DSN1COPY... 926
Restoring table spaces with DSN1COPY... 927
Printing with DSN1COPY..928
Copying tables from one subsystem to another..929
Sample DSN1COPY control statements ... 930

Chapter 45. DSN1LOGP...935
Syntax and options of the DSN1LOGP control statement...937
Determining the PSID for base and clone objects.. 944
Archive log data sets on tape...944
Sample DSN1LOGP control statements.. 945
DSN1LOGP output..947

Chapter 46. DSN1PRNT...953
Syntax and options of the DSN1PRNT control statement.. 955
Printing with DSN1PRNT instead of DSN1COPY... 960
Determining the page size and data set size for DSN1PRNT..960
Sample DSN1PRNT control statements.. 960

Chapter 47. DSN1SDMP.. 963
Syntax and options of the DSN1SDMP control statement.. 965
Assigning buffers..969
Conditions for generating a dump... 969
Stopping or modifying DSN1SDMP traces...969
Sample DSN1SDMP control statements... 970

Appendix A. Supplied stored procedures for utility operations............................ 973

Appendix B. Advisory or restrictive states.. 975
Auxiliary CHECK-pending status... 975
Auxiliary warning status.. 976
CHECK-pending status.. 977
COPY-pending status...979
DBETE status... 979
Group buffer pool RECOVER-pending status..980
Informational COPY-pending status... 981
PRO restricted status...981
REBUILD-pending status...982

xii

RECOVER-pending status..983
REFRESH-pending status.. 984
REORG-pending status..985
Restart-pending status..988

Appendix C. DSN1SMFP...991
Before running DSN1SMFP..993
Running DSN1SMFP.. 993
Sample DSN1SMFP control statement... 994
DSN1SMFP output... 994
DSN1SMFP output record structure..996

Standard report header..996
IFCID003: DDF Location.. 997
IFCID004: Trace Start..998
IFCID005: Trace Stop.. 999
IFCID023: Utility Start... 999
IFCID024: Utility Change...1002
IFCID025: Utility End...1003
IFCID083: Identify End... 1004
IFCID106: System Parameters (security-relevant fields only).. 1005
IFCID140: Audit Authorization Failures.. 1013
IFCID141: Audit DDL Grant/Revoke..1019
IFCID142: Audit DDL Create/Alter/Drop...1020
IFCID143: Audit First Write... 1022
IFCID144: Audit First Read... 1023
IFCID145: Audit DML Statement...1023
IFCID269: Trusted Connection... 1025
IFCID270: Trusted Context... 1026
IFCID350: SQL Statement...1027
IFCID361: Audit Administrative Authorities... 1028
IFCID362: Trace Start with Audit Policy... 1032
SYSPRINT: Runtime messages and end-of-job summary..1034

Appendix D. DSNADMSB.. 1035
Parameters of the DSNADMSB program...1036
Before running DSNADMSB...1044
Data sets that DSNADMSB uses..1044
Copying the data that DSNADMSB and ADMIN_INFO_SQL collect to another subsystem................ 1045
Examples of DSNADMSB invocation... 1046

Appendix E. DSNTSMFD... 1055
Before running DSNTSMFD... 1055
Data sets that DSNTSMFD uses.. 1055
Examples of DSNTSMFD invocation..1056

Appendix F. How real-time statistics are used by Db2 utilities...........................1059

Appendix G. Delimited file format.. 1061
Data types in delimited files..1062
Examples of delimited files... 1063

Information resources for Db2 12 for z/OS and related products....................... 1065

Notices..1067
Programming interface information..1068
Trademarks..1068

 xiii

Terms and conditions for product documentation... 1069
Privacy policy considerations..1069

Glossary.. 1071

Index.. 1073

xiv

About this information

This information contains usage information for the tasks of system administration, database
administration, and operation. It presents detailed information about using utilities, specifying syntax
(including keyword and parameter descriptions), and starting, stopping, and restarting utilities. This book
also includes job control language (JCL) and control statements for each utility.

Throughout this information, "Db2" means "Db2 12 for z/OS". References to other Db2 products use
complete names or specific abbreviations.

Important: To find the most up to date content for Db2 12 for z/OS, always use IBM Documentation
or download the latest PDF file from PDF format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM
Documentation).

Most documentation topics for Db2 12 for z/OS assume that the highest available function level is
activated and that your applications are running with the highest available application compatibility level,
with the following exceptions:

• The following documentation sections describe the Db2 12 migration process and how to activate new
capabilities in function levels:

– Migrating to Db2 12 (Db2 Installation and Migration)
– What's new in Db2 12
– Adopting new capabilities in Db2 12 continuous delivery

• FL 501 A label like this one usually marks documentation changed for function level 500 or higher,
with a link to the description of the function level that introduces the change in Db2 12. For more
information, see How Db2 function levels are documented (What's New).

The availability of new function depends on the type of enhancement, the activated function level, and
the application compatibility levels of applications. In the initial Db2 12 release, most new capabilities are
enabled only after the activation of function level 500 or higher.
Virtual storage enhancements

Virtual storage enhancements become available at the activation of the function level that introduces
them or higher. Activation of function level 100 introduces all virtual storage enhancements in
the initial Db2 12 release. That is, activation of function level 500 introduces no virtual storage
enhancements.

Subsystem parameters
New subsystem parameter settings are in effect only when the function level that introduced them or
a higher function level is activated. Many subsystem parameter changes in the initial Db2 12 release
take effect in function level 500. For more information about subsystem parameter changes in Db2
12, see Subsystem parameter changes in Db2 12 (What's New).

Optimization enhancements
Optimization enhancements become available after the activation of the function level that introduces
them or higher, and full prepare of the SQL statements. When a full prepare occurs depends on the
statement type:

• For static SQL statements, after bind or rebind of the package
• For non-stabilized dynamic SQL statements, immediately, unless the statement is in the dynamic

statement cache
• For stabilized dynamic SQL statements, after invalidation, free, or changed application compatibility

level

Activation of function level 100 introduces all optimization enhancements in the initial Db2 12
release. That is, function level 500 introduces no optimization enhancements.

© Copyright IBM Corp. 1983, 2024 xv

https://www.ibm.com/docs/db2-for-zos/12
https://www.ibm.com/docs/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_migrdb2.html
https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_12_wnew.html
https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_managenewcapability.html
https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m501.html
https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_aboutflinfo.html
https://www.ibm.com/docs/SSEPEK_13.0.0/wnew/src/tpc/db2z_12_subsysparmchanges.html

SQL capabilities
New SQL capabilities become available after the activation of the function level that introduces them
or higher, for applications that run at the equivalent application compatibility level or higher. New SQL
capabilities in the initial Db2 12 release become available in function level 500 for applications that
run at the equivalent application compatibility level or higher. You can continue to run SQL statements
compatibly with lower function levels, or previous Db2 releases, including Db2 11 and DB2® 10. For
details, see Application compatibility levels in Db2 (Db2 Programming)

Who should read this information
This information is intended for system administrators, database administrators, system operators, and
application programmers of Db2 online and stand-alone utilities.

Recommendation: Familiarize yourself with Db2 for z/OS prior to using this book.

Db2 Utilities Suite for z/OS
Important: In Db2 12, Db2 Utilities Suite for z/OS is available as an optional product. You must separately
order and purchase a license to such utilities, and discussion of those utility functions in this publication is
not intended to otherwise imply that you have a license to them.

The Db2 Utilities Suite for z/OS is designed to work exclusively with DFSORT or Db2 Sort for z/OS.

Db2 12 utilities can use the DFSORT program regardless of whether you purchased a license for DFSORT
on your system. For more information about DFSORT, see https://www.ibm.com/support/pages/dfsort.

Db2 utilities can use IBM Db2 Sort for z/OS as an alternative to DFSORT for utility SORT and MERGE
functions. Use of Db2 Sort for z/OS requires the purchase of a Db2 Sort for z/OS license. For more
information about Db2 Sort for z/OS, see Db2 Sort for z/OS documentation.

Related concepts
“Db2 utilities packaging” on page 3
Several utilities are included with Db2 at no extra charge. Other utilities are available in the separate Db2
Utilities Suite for z/OS product.

Terminology and citations
When referring to a Db2 product other than Db2 for z/OS, this information uses the product's full name to
avoid ambiguity.

The following terms are used as indicated:

Db2
Represents either the Db2 licensed program or a particular Db2 subsystem.

IBM re-branded DB2 to Db2, and Db2 for z/OS is the new name of the offering previously know as
"DB2 for z/OS". For more information, see Revised naming for IBM Db2 family products on IBM z/OS
platform. As a result, you might sometimes still see references to the original names, such as "DB2 for
z/OS" and "DB2", in different IBM web pages and documents. If the PID, Entitlement Entity, version,
modification, and release information match, assume that they refer to the same product.

Tivoli® OMEGAMON® XE for Db2 Performance Expert on z/OS
Refers to any of the following products:

• IBM Tivoli OMEGAMON XE for Db2 Performance Expert on z/OS
• IBM Db2 Performance Monitor on z/OS
• IBM Db2 Performance Expert for Multiplatforms and Workgroups
• IBM Db2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

xvi About this information

https://www.ibm.com/docs/SSEPEK_12.0.0/apsg/src/tpc/db2z_applicationcompatibility.html
https://www.ibm.com/support/pages/dfsort
https://www.ibm.com/docs/en/db2-sort-for-zos
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html
https://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/7/899/ENUSLP18-0047/index.html

CICS®
Represents CICS Transaction Server for z/OS.

IMS
Represents the IMS Database Manager or IMS Transaction Manager.

MVS™
Represents the MVS element of the z/OS operating system, which is equivalent to the Base Control
Program (BCP) component of the z/OS operating system.

RACF®
Represents the functions that are provided by the RACF component of the z/OS Security Server.

Accessibility features for Db2 12 for z/OS
Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in z/OS products, including Db2 12 for z/OS.
These features support:

• Keyboard-only operation.
• Interfaces that are commonly used by screen readers and screen magnifiers.
• Customization of display attributes such as color, contrast, and font size

Tip: IBM Documentation (which includes information for Db2 for z/OS) and its related publications are
accessibility-enabled for the IBM Home Page Reader. You can operate all features using the keyboard
instead of the mouse.

Keyboard navigation
For information about navigating the Db2 for z/OS ISPF panels using TSO/E or ISPF, refer to the z/OS
TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS ISPF User's Guide. These guides describe how
to navigate each interface, including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their functions.

Related accessibility information

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information about the commitment
that IBM has to accessibility.

How to send your comments about Db2 for z/OS documentation
Your feedback helps IBM to provide quality documentation.

Send any comments about Db2 for z/OS and related product documentation by email to
db2zinfo@us.ibm.com.

To help us respond to your comment, include the following information in your email:

• The product name and version
• The address (URL) of the page, for comments about online documentation
• The book name and publication date, for comments about PDF manuals
• The topic or section title
• The specific text that you are commenting about and your comment

About this information xvii

http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com

Naming conventions used in this information
When you use Db2 commands and utilities, be aware of the applicable naming conventions

When you use a parameter for an object that is created by SQL statements (for example, tables, table
spaces, and indexes), identify the object by following the SQL syntactical naming conventions.

In this information, characters are classified as letters, digits, or special characters.

• A letter is any one of the uppercase characters A through Z (including the three characters that are
reserved in the United States as alphabetic extenders for national languages, #, @, and $.).

• A digit is any one of the characters 0 through 9.
• A special character is any character other than a letter or a digit.

authorization-id
A short identifier of one to eight letters, digits, or the underscore that identifies a set of privileges. An
authorization ID must begin with a letter.

connection-name
An identifier of one to eight characters that identifies an address space connection to Db2. A
connection identifier is one of the following values:

• TSO (for DSN processes that run in TSO foreground).
• BATCH (for DSN processes that run in TSO batch).
• DB2CALL (for the call attachment facility (CAF)).
• The system identification name (for IMS and CICS processes).

Related information:

Managing connection requests from local applications (Managing Security)

correlation-id
An identifier of 1 to 12 characters that identifies a process within an address space connection. A
correlation ID must begin with a letter.

A correlation ID can be one of the following values:

• The TSO logon identifier (for DSN processes that run in TSO foreground and for CAF processes).
• The job name (for DSN processes that run in TSO batch).
• The PST#.PSBNAME (for IMS processes).
• The entry identifier.thread_number.transaction_identifier (for CICS processes).

cursor-name
An identifier that designates a result set. Cursor names that are specified with the EXEC SQL and
LOAD utilities cannot be longer than eight characters.

database-name
A short identifier that identifies a database. The identifier must start with a letter and must not include
special characters.

data-set-name
An identifier of 1 to 44 characters that identifies a data set.

dbrm-member-name
An identifier of one to eight letters or digits that identifies a member of a partitioned data set.

A DBRM member name should not begin with DSN because of a potential conflict with Db2-provided
DBRM member names. If you specify a DBRM member name that begins with DSN, Db2 issues a
warning message.

dbrm-pds-name
An identifier of 1 to 44 characters that identifies a partitioned data set.

ddname
An identifier of one to eight characters that identifies the name of a DD statement.

xviii About this information

https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_localrequest.html

hexadecimal-constant
A sequence of digits or any of the letters from A to F (uppercase or lowercase).

hexadecimal-string
An X followed by a sequence of characters that begins and ends with the string delimiter, an
apostrophe. The characters between the string delimiters must be a hexadecimal number.

index-name
A qualified or unqualified name that identifies an index.

A qualified index name is a schema name followed by a period and an identifier.

An unqualified index name is an identifier with an implicit schema name qualifier. The implicit schema
is determined by the SQL rules for unqualified types, functions, procedures, global variables, and
specific names.

If the index name contains a blank character, the name must be enclosed in quotation marks when
specified in a utility control statement.

Related information:

Unqualified type, function, procedure, global variable, and specific names (Db2 SQL)

location-name
A location identifier of 1 to 16 letters (but excluding the alphabetic extenders), digits, or the
underscore that identifies an instance of a database management system. A location name must
begin with a letter.

luname
An SQL short identifier of one to eight characters that identifies a logical unit name. A LU name must
begin with a letter.

member-name
An identifier of one to eight letters (including the three alphabetic extenders) or digits that identifies a
member of a partitioned data set.

A member name should not begin with DSN because of a potential conflict with Db2-provided
member names. If you specify a member name that begins with DSN, Db2 issues a warning message.

qualifier-name
An SQL short identifier of one to eight letters, digits, or the underscore that identifies the implicit
qualifier for unqualified table names, views, indexes, and aliases.

string
A sequence of characters that begins and ends with an apostrophe.

subsystem-name
An identifier that specifies the Db2 subsystem as it is known to the operating system.

table-name
A qualified or unqualified name that designates a table.

A fully qualified table name is a three-part name. The first part is a location name that designates
the DBMS at which the table is stored. The second part is a schema name. The third part is an SQL
identifier. A period must separate each of the parts.

A two-part table name is implicitly qualified by the location name of the current server. The first part is
a schema name. The second part is an SQL identifier. A period must separate the two parts.

A one-part or unqualified table name is an SQL identifier with two implicit qualifiers. The first
implicit qualifier is the location name of the current server. The second is a schema name, which
is determined by the SQL rules for unqualified types, functions, procedures, global variables, and
specific names.

If the table name contains a blank, the name must be enclosed in quotation marks when specified in a
utility control statement.

Related information:

About this information xix

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_unqualifiedroutinenames.html

Unqualified type, function, procedure, global variable, and specific names (Db2 SQL)

table-space-name
A short identifier that identifies a table space of an identified database. The identifier must start with
a letter and must not include special characters. If a database is not identified, a table space name
specifies a table space of database DSNDB04.

utility-id
An identifier of 1 to 16 characters that uniquely identifies a utility process within Db2. A utility ID
must begin with a letter. The remaining characters can be uppercase and lowercase letters, numbers
0 through 9, and the following characters: #, $, ., ¢, !, ¬, and @.

Related concepts
Naming conventions (Db2 SQL)
SQL identifiers (Db2 SQL)

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM documentation.

Apply the following rules when reading the syntax diagrams that are used in Db2 for z/OS documentation:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ►►─── symbol indicates the beginning of a statement.

The ───► symbol indicates that the statement syntax is continued on the next line.

The ►─── symbol indicates that a statement is continued from the previous line.

The ───►◄ symbol indicates the end of a statement.
• Required items appear on the horizontal line (the main path).

required_item

• Optional items appear below the main path.
required_item

optional_item

If an optional item appears above the main path, that item has no effect on the execution of the
statement and is used only for readability.

required_item

optional_item

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

required_item required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

required_item

optional_choice1

optional_choice2

If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

xx About this information

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_unqualifiedroutinenames.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sqlidentifiers.html

required_item

default_choice

optional_choice

optional_choice

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

required_item

,

repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.
• Sometimes a diagram must be split into fragments. The syntax fragment is shown separately from the

main syntax diagram, but the contents of the fragment should be read as if they are on the main path of
the diagram.

required_item fragment-name

fragment-name
required_item

optional_name

• For some references in syntax diagrams, you must follow any rules described in the description for that
diagram, and also rules that are described in other syntax diagrams. For example:

– For expression, you must also follow the rules described in Expressions (Db2 SQL).
– For references to fullselect, you must also follow the rules described in fullselect (Db2 SQL).
– For references to search-condition, you must also follow the rules described in Search conditions

(Db2 SQL).
• With the exception of XPath keywords, keywords appear in uppercase (for example, FROM). Keywords

must be spelled exactly as shown. XPath keywords are defined as lowercase names, and must be
spelled exactly as shown. Variables appear in all lowercase letters (for example, column-name). They
represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must
enter them as part of the syntax.

Related concepts
“Db2 online utilities” on page 15
Db2 online utilities run as standard batch jobs or stored procedures, and they require Db2 to be running.
They do not run under control of the terminal monitor program (TMP); they have their own attachment
mechanism and they invoke Db2 control facility services directly.
“Db2 stand-alone utilities” on page 837
The stand-alone utilities run as batch jobs that are independent of Db2. The only way to run these utilities
is to use JCL.
Related reference
Commands in Db2 (Db2 Commands)

About this information xxi

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_expressionsintro.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_fullselect.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_searchconditionssql.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_searchconditionssql.html
https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_aboutcommands.html

xxii Db2 12 for z/OS: Utility Guide and Reference

Part 1. Basic information about Db2 utilities
Use IBM Db2 utilities to help maintain data in your Db2 for z/OS databases.

Online and stand-alone utilities
Most of the basic utilities, such as LOAD and COPY, are online utilities; they require Db2 to be up and
running. Db2 online utilities run as standard batch jobs or stored procedures. They do not run under
control of the terminal monitor program (TMP); they have their own attachment mechanism and they
invoke Db2 control facility services directly. For more information about online utilities, see Part 2, “Db2
online utilities,” on page 15 and Chapter 7, “Invoking Db2 online utilities,” on page 17.

The other type of utilities is stand-alone utilities. These utilities run independently of Db2. They work
directly on the data sets. You can use stand-alone utilities to do tasks such as format logs, modify the
bootstrap data set (BSDS), and copy and print data sets. The stand-alone utilities run as batch jobs. The
only way to run these utilities is to use JCL. For more information about stand-alone utilities, see Part 3,
“Db2 stand-alone utilities,” on page 837 and Chapter 36, “Invoking stand-alone utilities,” on page 839.

Exception: Some Db2 for z/OS users use the term online utilities to mean something other than what
IBM means when it uses this term in the documentation. Some users use this term to refer to utilities
that leave the data available while they are running. For example, when you use the REORG TABLESPACE
utility to reorganize data, you can specify the level of access that other applications and processes have
to that same data. If you specify the SHRLEVEL CHANGE option, the data can be changed while the utility
runs. Therefore, REORG TABLESPACE SHRLEVEL CHANGE is considered by some users to be an "online
utility" because the data is never taken offline. However, IBM does not use the term this way.

Related concepts
Db2 utilities (Introduction to Db2 for z/OS)
Related information
Db2 for z/OS Utilities in Practice

© Copyright IBM Corp. 1983, 2024 1

https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_controlwithutilities.html
http://www.redbooks.ibm.com/abstracts/redp5503.html?Open

2 Db2 12 for z/OS: Utility Guide and Reference

Chapter 1. Db2 utilities packaging
Several utilities are included with Db2 at no extra charge. Other utilities are available in the separate Db2
Utilities Suite for z/OS product.

The following utilities are core utilities, which are included (at no extra charge) with Db2 12 for z/OS:

• CATMAINT
• DIAGNOSE
• LISTDEF
• OPTIONS
• QUIESCE
• REPAIR
• REPORT
• TEMPLATE
• All DSN stand-alone utilities

All other utilities are enabled for general use by the Db2 Utilities Suite for z/OS (FMID HDBCC1K):

• BACKUP SYSTEM
• CHECK DATA
• CHECK INDEX
• CHECK LOB
• COPY
• COPYTOCOPY
• EXEC SQL
• LOAD
• MERGECOPY
• MODIFY RECOVERY
• MODIFY STATISTICS
• REBUILD INDEX
• RECOVER
• REORG INDEX
• REORG TABLESPACE
• RESTORE SYSTEM
• RUNSTATS
• STOSPACE
• UNLOAD

All Db2 utilities operate on catalog, directory, and sample objects, without requiring purchase of the Db2
Utilities Suite for z/OS.

SMP/E jobs for the Db2 Utilities Suite for z/OS product
To load the Db2 utility products, use System Modification Program Extended (SMP/E). SMP/E processes
the installation cartridges and creates Db2 distribution target libraries.

Db2 provides several jobs that invoke SMP/E. These jobs are on the cartridge that you received with Db2
Utilities Suite for z/OS:

© Copyright IBM Corp. 1983, 2024 3

SMP/E RECEIVE job, DSNRECVK
Job DSNRECVK loads the Db2 Utilities Suite for z/OS Db2 12 procedures and samples into temporary
data sets (SMPTLIBs).

SMP/E APPLY job, DSNAPPLK
Job DSNAPPLK copies and link-edits the procedures and samples for the Db2 Utilities Suite for z/OS
Db2 12 into the Db2 Utilities Suite target libraries.

SMP/E ACCEPT job, DSNACCPK
Job DSNACCPK copies the procedures and samples for the Db2 Utilities Suite Db2 12 into the Db2
Utilities Suite distributed libraries.

The prologue for each job contains directions for tailoring the job for your site. Follow the instructions
carefully to ensure that your SMP/E process for Db2 Utilities Suite for z/OS works correctly.

For detailed instructions for installing the Db2 Utilities Suite for z/OS product, see Db2 Utilities Suite for
z/OS Program Directory.

Operation of Db2 utilities in a mixed-release data sharing environment

The utilities batch program, DSNUTILB, has a release-independent module called DSNUTILB and a
release-dependent module for Db2 12 called DSNUT121. To operate in a mixed-release data sharing
environment, you must have these modules available to the utility jobs that operate across the data
sharing group, plus a release-dependent module for Db2 11 called DSNUT111. For more information, see
Db2 utilities coexistence recommendations (Db2 Installation and Migration).

Related concepts
System installation and maintenance using SMP/E (z/OS basic skills)
Related tasks
“Enabling the Db2 Utilities Suite for z/OS product” on page 5
Before you can run any Db2 Utilities Suite for z/OS applications or functions in Db2 12, you must enable
and register Db2 Utilities Suite for z/OS in the Dynamic Registration Services component of z/OS.
Related information
Db2 for z/OS Program Directories

4 Db2 12 for z/OS: Utility Guide and Reference

http://publibfp.boulder.ibm.com/epubs/pdf/i1346321.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/i1346321.pdf
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_recommendsforutils.html
https://www.ibm.com/docs/zosbasics/com.ibm.zos.zsysprog/zsysprogc_whatissmpe.htm
http://www-01.ibm.com/support/docview.wss?uid=swg27047206#db2-pd

Chapter 2. Enabling the Db2 Utilities Suite for z/OS
product

Before you can run any Db2 Utilities Suite for z/OS applications or functions in Db2 12, you must enable
and register Db2 Utilities Suite for z/OS in the Dynamic Registration Services component of z/OS.

About this task
The required product enablement policy is contained in member DSNUPREG in data set hlq.SDSNBASU.
(hlq is a high level qualifier.)

For more information about completing this task, see "Enable/Register Db2 Utilities Suite for z/OS" in Db2
Utilities Suite for z/OS Program Directory.

Procedure
To enable Db2 Utilities Suite for z/OS:
1. Update IFAPRDxx.
2. Issue the SET PROD=(xx) operator command.

Related reference
IBM product enablement (MVS Product Management)
Registering a product (MVS Programming: Product Registration)
Related information
IFAPRDxx (product enablement policy) (MVS Initialization and Tuning Reference)
Db2 for z/OS Program Directories

© Copyright IBM Corp. 1983, 2024 5

http://publibfp.boulder.ibm.com/epubs/pdf/i1346321.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/i1346321.pdf
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.iear100/enable.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieaq200/greg.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieae200/ifaprd.htm
http://www-01.ibm.com/support/docview.wss?uid=swg27047206#db2-pd

6 Db2 12 for z/OS: Utility Guide and Reference

Chapter 3. Privileges and authorization IDs for Db2
utilities

A utility job can be issued by an individual user, a program that runs in batch mode, or an IMS or CICS
transaction. The term process describes any of these initiators.

Db2 processes are represented by a set of identifiers (IDs), which are called authorization IDs. What the
process can do with Db2 is determined by the privileges and authorities that are held by its identifiers.

For Db2 online utilities, the process can be represented by the following identifiers:

• A primary authorization ID.
• Possibly one or more secondary IDs.
• A role, if the process is running in a trusted connection with an associated role.

For example, a process can have a secondary authorization ID that is a Resource Access Control Facility
(RACF) group ID. Suppose that a RACF group holds the LOAD privilege on a particular database. Any
member of the group can run the LOAD utility to load table spaces in that database.

The privileges that are required for each utility are listed in the documentation for the utility.

Required authorizations for invoking utilities on tables that have multilevel security
with row-level granularity

If you use RACF access control with multilevel security, you need additional authorizations to run the
following utilities on tables that have multilevel security with row-level granularity:

• LOAD
• UNLOAD
• REORG TABLESPACE

The authorization requirements are listed in the documentation for each of these utilities.

All other utilities, including all stand-alone utilities, ignore the row-level granularity. They check only for
authorization to operate on the table space; they do not check row-level authorization.

Db2 online utilities in a trusted connection

Db2 online utilities can run in a trusted connection if both of the following conditions are true:

• A matching trusted context is defined where the primary authorization ID matches the trusted context
SYSTEM AUTHID.

• The job name matches the JOBNAME attribute that is defined for the identified trusted context.

The primary authorization ID can acquire a special set of privileges in a trusted context, by roles.

Related concepts
Authorization IDs (Managing Security)
Privileges and authorities (Managing Security)
Multilevel security (Managing Security)
Related information
Managing access through trusted contexts (Managing Security)

© Copyright IBM Corp. 1983, 2024 7

https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_authorizationid.html
https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_privilegeauthority.html
https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_mls.html
https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_usetrustedconnection.html

8 Db2 12 for z/OS: Utility Guide and Reference

Chapter 4. Utilities that can be run on declared
temporary objects

You can run the REPAIR and STOSPACE utilities on declared temporary objects.

You can use REPAIR with the DBD option on declared temporary tables. Declared temporary tables must
be created in a database that is defined with the AS TEMP clause.

You can use STOSPACE on storage groups that have objects within temporary databases.

No other Db2 utilities can be used on a declared temporary table, its indexes, or its table spaces.

Related concepts
Creation of temporary tables (Introduction to Db2 for z/OS)
Related tasks
“Repairing DBDs” on page 655
You can check and repair database definitions (DBDs) in the catalog and directory by using the REPAIR
utility with the DBD statement.
Related reference
“STOSPACE” on page 745
The STOSPACE online utility updates Db2 catalog columns that indicate how much space is allocated for
storage groups and related table spaces and indexes.

© Copyright IBM Corp. 1983, 2024 9

https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_creationoftemporarytables.html

10 Db2 12 for z/OS: Utility Guide and Reference

Chapter 5. Effect of utilities on objects that have the
DEFINE NO attribute

When you create a table space or index space with the DEFINE NO attribute, the object is defined;
however, Db2 does not allocate the associated data sets until a row is inserted or loaded into a table in
that table space.

You can populate table spaces whose data sets are not yet defined by using the LOAD utility with either
the RESUME option or the REPLACE option. In this case, LOAD performs the following actions:

• Allocates the data sets for the table space and index space and any auxiliary objects.
• Updates the SPACE column in the SYSTABLEPART and SYSINDEXPART catalog tables to indicate that

data sets exist.
• Loads the specified table space.

For a partitioned table space, all partitions are allocated even if the utility loads only one partition. Do not
attempt to populate a partitioned table space with concurrent LOAD PART jobs until after one job creates
all of the data sets.

For auxiliary objects with the DEFINE NO attribute, you can request that LOAD allocate the associated
data sets even if the objects are not populated by LOAD. To do so, specify the DEFINEAUX YES option on
the LOAD statement.

After any objects are defined and committed by the current unit of work in the LOAD processing, this
action cannot be rolled back or undone.

If one of the following online utilities encounters a target object with the DEFINE NO attribute, the utility
issues informational message DSNU185I, skips that object, and continues processing:

• CHECK DATA
• CHECK INDEX
• COPY
• MERGECOPY
• MODIFY RECOVERY
• QUIESCE
• REBUILD INDEX
• RECOVER
• REORG INDEX
• REORG TABLESPACE (One exception is if ROWFORMAT RRF is specified in the REORG statement and the
specified target is an undefined table space in basic row format. In this case, REORG updates the row
format definition in the catalog and directory. No data sets are defined for the table space.)

• REPAIR, but not REPAIR DBD
• RUNSTATS TABLESPACE INDEX(ALL)
• RUNSTATS INDEX ()
• UNLOAD

RUNSTATS recognizes DEFINE NO objects and updates the access path statistics in the Db2 catalog to
reflect the empty objects.

The SYSIBM.SYSSTATFEEDBACK table might contain rows that recommend collection of statistics for
DEFINE NO objects or empty table space partitions. However, statistics cannot be collected for such
objects until after data is inserted and the underlying data sets are created.

You cannot use stand-alone utilities on objects whose data sets are not yet defined.

© Copyright IBM Corp. 1983, 2024 11

Related tasks
Deferring allocation of Db2-managed data sets (Db2 Administration Guide)
Related information
DSNU185I (Db2 Messages)

12 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_deferdatasetallocation.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu185i.html

Chapter 6. Effect of utilities on encrypted data
In Db2, you can encrypt data through built-in functions. You can copy and recover this encrypted
data. You can also move encrypted data between systems. Data remains encrypted throughout these
processes.

Running any of the following utilities on encrypted data might produce unexpected results:

• CHECK DATA
• LOAD
• REBUILD INDEX
• REORG TABLESPACE
• REPAIR
• RUNSTATS
• UNLOAD
• DSN1PRNT

Related concepts
Encrypting your data through Db2 built-in functions (Managing Security)

© Copyright IBM Corp. 1983, 2024 13

https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_dataencryptthrubuiltin.html

14 Db2 12 for z/OS: Utility Guide and Reference

Part 2. Db2 online utilities
Db2 online utilities run as standard batch jobs or stored procedures, and they require Db2 to be running.
They do not run under control of the terminal monitor program (TMP); they have their own attachment
mechanism and they invoke Db2 control facility services directly.

© Copyright IBM Corp. 1983, 2024 15

16 Db2 12 for z/OS: Utility Guide and Reference

Chapter 7. Invoking Db2 online utilities
To invoke Db2 online utilities, Db2 must be up and running.

Before you begin
Make sure that you are authorized to run the utility that you want to invoke. You can check the required
authorization in the documentation for each utility.

Procedure
To run Db2 online utilities:
1. Prepare the necessary data sets.

For more information about allocating data sets for utilities, see “Data sets that online utilities use” on
page 18. For a list of the data sets that are required for a utility, see the documentation for that utility.

2. Create a utility control statement.

For general information about utility control statements, see “Utility control statements” on page 20.
For information about statement syntax for a utility, see the documentation for that utility.

Some utilities can operate at the partition level. For those utilities, any reference in the utility
statement to a partition number denotes the physical partition number unless otherwise specified.
Similarly, any partition numbers that are included in the utility output are the physical partition
numbers.

3. Check for any concurrency and compatibility restrictions.
These restrictions limit what other utilities and processes can run at the same time. For a list of
restrictions, see the documentation for the utility that you want to use.

If the utility supports parallelism, it can use additional threads to support the parallel subtasking.
Consider increasing the values of subsystem parameters that control threads, such as MAX BATCH
CONNECT and MAX USERS.

4. Invoke the utility by using one of the following methods:

Requirement: In the JCL for all utility jobs, specify a load library (prefix.SDSNLOAD) that is at a
maintenance level that is compatible with the Db2 subsystem. Otherwise, errors can occur.

• “Invoking an online utility by using the DB2 Utilities panel in DB2I” on page 23
• “Invoking a Db2 utility by using the DSNU CLIST command in TSO” on page 27
• “The supplied JCL procedure (DSNUPROC) for invoking a Db2 online utility” on page 36
• “Invoking a Db2 online utility by creating the JCL data set yourself ” on page 38
• Invoke utilities from a Db2 application program by calling stored procedure DSNUTILV stored

procedure (Db2 SQL) or DSNUTILU stored procedure (Db2 SQL)

Data Sharing: When you submit a utility job, specify the name of the Db2 subsystem to which the
utility is to attach, the group attachment name, or subgroup attachment name. If you do not use the
group attachment name or subgroup attachment name, the utility job must run on the z/OS system
where the specified Db2 subsystem is running. Ensure that the utility job runs on the appropriate z/OS
system. To do so, use one of several z/OSinstallation-specific statements, such as:

• For JES2 multi-access spool (MAS) systems, insert the following statement into the utility JCL:

/*JOBPARM SYSAFF=cccc

• For JES3 systems, insert the following statement into the utility JCL:

//*MAIN SYSTEM=(main-name)

© Copyright IBM Corp. 1983, 2024 17

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_dsnutilv.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_dsnutilv.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_dsnutilu.html

Your installation might have other mechanisms for controlling where batch jobs run, such as using job
classes.

Results
If the utility fails, you can either terminate it or restart it.
Related concepts
“Privileges and authorization IDs for Db2 utilities” on page 7
A utility job can be issued by an individual user, a program that runs in batch mode, or an IMS or CICS
transaction. The term process describes any of these initiators.
Group attachment names and subgroup attachment names (Db2 Installation and Migration)
Related tasks
“Terminating an online utility” on page 44
You can terminate the execution of an active utility or release the resources that are associated with a
stopped utility.
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.

Data sets that online utilities use
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.

In the utility job, use the SYSIN DD statement to define an in-stream data set with the utility statement.
Use other DD statements to define any other data sets that the utility needs. Alternatively, you can use the
TEMPLATE utility to define those data sets.

See the description of each utility for a list of data sets that it uses.

General rules for utility data sets
Data sets for utilities have the following requirements and restrictions:

For input data sets
Db2 utilities use the logical record length (LRECL), the record format (RECFM) and the block size
(BLKSIZE) with which the data set was created.

Variable-spanned (VS) or variable-blocked-spanned (VBS) record formats are not allowed for utility
input data sets. The only exceptions are for the LOAD and UNLOAD utilities. These utilities use VBS
data sets when you specify the FORMAT SPANNED YES option. Also, LOAD accepts VBS data sets
when you specify the FORMAT SQL/DS option.

For output data sets
Db2 utilities determine both the logical record length (LRECL) and the record format (RECFM). Any
specified values for LRECL or RECFM are ignored.

If you supply block size (BLKSIZE), that size is used; otherwise, the system determines the optimal
block size for the storage device. Db2 supports the large block interface (LBI), which allows block
sizes that are greater than 32 KB on certain tape drives. UNLOAD SPANNED YES ignores LBI for output
data sets. The TAPEBLKSZLIM parameter of the DEVSUPxx member of SYS1.PARMLIB controls the
block size limit for tapes.

Partitioned data sets (PDS) are not allowed for output data sets.

For output data sets for FlashCopy® image copies
The output VSAM data sets are allocated during the processing of the DFSMSdss COPY command. The
output data sets for FlashCopy image copies are always cataloged.

18 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_groupattachnamespecs.html

For both input and output data sets
Db2 utilities use the value that you supply for the number of buffers (BUFNO), with a maximum of 99
buffers. The default number of buffers is 20. The utilities set the number of channel programs equal
to the number of buffers. Utilities ignore the parameters that specify the buffer size (BUFSIZE) and the
number of channel programs (NCP).

Increasing the number of buffers (BUFNO) can result in an increase in real storage usage and page
fixing below the 16-MB line.

If you omit any data control block (DCB) parameters, the utilities use default values.

Db2 utilities support the use of extended address volumes (EAV) for VSAM data sets and extended
format (EF) sequential data sets.

Restriction: Db2 does not support the undefined record format (RECFM=U) for any data set.

Related information:

Data set record formats(z/OS basic skills)
DEVSUPxx (device support options) (MVS Initialization and Tuning Reference)
Large Block Interface (LBI) (z/OS DFSMS Using Data Sets)
DCB subparameters (MVS JCL Reference)
Extended Address Volumes (z/OS DFSMS Using Data Sets)

Sort work data sets
Allocate sort work data sets dynamically for automatic adjustment to the amount of data being processed
by the utility. To facilitate dynamic allocation of sort work, specify a valid disk device type for the
SORTDEVT parameter. Tape devices are not supported by the sort program.

The DD names for sort work data sets often include nn or mm in the naming convention. For example,
SORTWKnn or SWnnWKmm. In these cases, the first of these DD statements must use 01 for nn and mm,
for example, SORTWK01 or SW01WK01. This consideration applies to the following DD names:

• SORTWKnn
• SWnnWKmm
• ST01WKnn
• DATAWKnn
• DAnnWKmm
• RNmmWKnn
• DTPRINnn

Data set concatenation

When you use Db2 utilities, you can concatenate input data sets. The data sets in a concatenation list can
have different block sizes, logical record lengths, and record formats. If you want to concatenate variable
and fixed-blocked data sets, the logical record length must be 8 bytes smaller than the block size.

You cannot concatenate output data sets.

Related information:

Concatenating data sets (MVS JCL User's Guide)

Data set disposition

Because you might need to restart a utility, define your data sets as follows:

• Use DISP=(NEW,CATLG,CATLG) or DISP=(MOD,CATLG) for data sets that you want to retain.

Chapter 7. Invoking Db2 online utilities 19

https://www.ibm.com/docs/zosbasics/com.ibm.zos.zconcepts/zconcepts_159.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieae200/devsup.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idad400/lbi99999.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieab600/dcbsub.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idad400/eav.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieab500/iea3b5_Concatenating_data_sets.htm

• Use DISP=(MOD,DELETE,CATLG) for data sets that you want to discard after utility execution.
• Use DISP=(NEW,DELETE) for the SORTWKnn data sets for your sort program, or refer to the

documentation for your sort program for alternatives.
• Do not use temporary data set names.

Related information:

DISP parameter (MVS JCL Reference)
DFSORT Application Programming Guide
Db2 Sort for z/OS

Preventing unauthorized access to data sets

To prevent unauthorized access to data sets (for example, image copies), you can protect the data sets
with the Resource Access Control Facility (RACF) licensed program. To use a utility with a data set that is
protected by RACF, you must be authorized to access the data set.

Related information:

Protecting data sets through RACF (Managing Security)

Utility control statements
Utility control statements define the function that the utility job performs.

For example, the following LOAD utility control statement specifies how tables are to be loaded into the
DSN8C10.DEPT table:

LOAD
 INTO TABLE DSN8C10.DEPT PART 1 REPLACE

You can create a utility control statement with the ISPF/PDF edit function and save it in a sequential or
partitioned data set.

Db2 typically reads utility control statements from the SYSIN in-stream data set. Db2 can read LISTDEF
control statements from the SYSLISTD data set and TEMPLATE control statements from the SYSTEMPL
data set.

Control statement coding rules

Utility control statements must obey the following rules:

• Fixed-length records: If the records are 80-character fixed-length records, Db2 ignores columns 73
through 80.

• Statements that span records: The records are concatenated before they are parsed; therefore, a
statement or any of its syntactical constructs can span more than one record. No continuation character
is necessary.

However, if the input data set contains variable-length records, Db2 might interpret the part of a
statement that is in column 1 as the continuation of the statement from the previous record. To avoid
syntax errors, ensure that all syntactical constructs in utility control statements are properly delimited.

• Character set encoding: All utility control statements in a data set must be written entirely in a single
character set. They can be written in EBCDIC (code page 500) or Unicode UTF-8 (code page 1208). Db2
automatically detects and processes Unicode UTF-8 control statements if the first character of the data
set is one of the following characters:

– A Unicode UTF-8 blank (x'20')
– A Unicode UTF-8 dash (x'2D')

20 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieab600/xdddisp.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_protectdsthruracf.html

– A Unicode UTF-8 uppercase A through Z (x'41' through x'5A')

In all other cases, the control statement data set is processed as EBCDIC. Db2 issues an informational
message (DSNU1044I or DSNU1045I) to identify the character set that it is using to process the
statement.

Avoid the following EBCDIC characters as the first character in the input data set:

¢ . < (+ | &

These EBCDIC characters have the same hexadecimal code point value as the Unicode UTF-8
characters J to P. Therefore, the control statement can be misinterpreted as Unicode. This
misinterpretation causes a utility syntax error. However, these characters might cause Unicode to
EBCDIC translation errors and abends before the syntax error is detected. In this case, after the
syntax error is detected, message DSNU005I might contain indecipherable statements and message
DSNU082I might identify an indecipherable keyword.

Related information:

Code pages and CCSIDs (Db2 Internationalization Guide)
EBCDIC (Db2 Internationalization Guide)
Unicode (Db2 Internationalization Guide)
DSNU1044I (Db2 Messages)
DSNU1045I (Db2 Messages)
DSNU005I (Db2 Messages)
DSNU082I (Db2 Messages)

• Syntax: The utility statement must start with the syntax for a utility. Other syntactical constructs in the
utility control statement describe options. You can separate these constructs with an arbitrary number
of blanks.

• Options: The options that you can specify after the utility name depend on which online utility you
use. To specify a utility option, specify the option keyword, followed by its associated parameter or
parameters, if any. The parameter value can be a keyword. You need to enclose the values of some
parameters in parentheses. The syntax diagrams for utility control statements show parentheses where
they are required.

Where the syntax of each utility control statement is described, parameters are indented under the
option keyword that they must follow. The following option is a typical example:

WORKDDN ddname
Specifies a temporary work file.

ddname is the data set name of the temporary file.

The default value is SYSUT1.

In the example, WORKDDN is an option keyword, and ddname is a variable parameter. You can enclose
parameter values in parentheses, but parentheses are not always required. In this case, you can specify
the temporary work file as either WORKDDN SYSUT1 or WORKDDN (SYSUT1).

• Delimiter character and decimal character: In a utility control statement, when you specify multiple
numeric values that are meant to be delimited, you must delimit these values with a comma (","). You
must use this delimiter regardless of the definition of DECIMAL in the application defaults load module
(either DSNHDECP or a user-specified application defaults load module). Likewise, when you specify a
decimal number in a utility control statement, you must use a period ("."), regardless of the definition of
DECIMAL in the application defaults load module.

Related information:

DECIMAL POINT IS field (DECIMAL DECP value) (Db2 Installation and Migration)
• Multiple utility control statements: You can specify more than one utility control statement in the

SYSIN stream. However, if any of the control statements return a return code of 8 or greater, the
subsequent statements in the job step are not executed.

Chapter 7. Invoking Db2 online utilities 21

https://www.ibm.com/docs/SSEPEK_12.0.0/char/src/tpc/db2z_codepageccsid.html
https://www.ibm.com/docs/SSEPEK_12.0.0/char/src/tpc/db2z_ebcdic.html
https://www.ibm.com/docs/SSEPEK_12.0.0/char/src/tpc/db2z_unicode.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu1044i.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu1045i.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu005i.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu082i.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_decimal.html

Although Db2 does not limit the number of utility statements that you can include in a single input
stream (SYSIN) , running too many statements might result in failures or long-running jobs, depending
on available resources. For example, running thousands of EXEC SQL statements can take unacceptable
amount of time or fail.

• Comments: You can enter comments within the SYSIN stream. Comments must begin with two
hyphens (--) and are subject to the following rules:

– You must use two hyphens on the same line with no space between them.
– You can start comments wherever a space is valid, except within a delimiter token.
– The end of a line terminates a comment.

For example, the following statement shows two comments:

// SYSIN DD *
RUNSTATS TABLESPACE DSNDB06.SYSDDF -- COMMENT HERE
-- COMMENT HERE
/*

• The concatenation operator: Utility control statements support the || concatenation operator. The
operator is allowed between two delimited character strings or between two non-delimited character
strings. (Delimited character strings are enclosed in double quotation marks.) The result is a character
string that consists of the string that is after the operator concatenated to the string that precedes the
operator.

For example, the following statement shows the concatenation operator:

string1 || string2

Both string1 and string2 must be syntactically correct within each SYSIN input record. Quotation marks
must be balanced within each string. If DBCS characters are used, shift-out and shift-in characters must
be balanced within each string. Any one multi-byte character must be contained entirely within a single
SYSIN record.

The || operator must be entered as a stand-alone token, with one or more blanks before and after it.
It can be entered on the same input record as "string1", alone on an input record, or on the same
input record with "string2". This operator functions at the token level before any context is detected or
semantic meaning is applied. An example utility statement is shown in the following statement:

COPY INDEX
 "A" ||
 "B"
results in:
 COPY INDEX "AB"

The || operator in an EXEC SQL control statement is ignored by utility processing, because the
operator has an existing SQL meaning. The operators remain part of the SQL statement for subsequent
processing by SQL.

Another example of the || concatenation operator is shown in the following statement:

LOAD INTO TABLE
CREA ||
TOR.
"TABL" ||
"ENAME"

In this example, the strings CREA and TOR are non-delimited, and the strings TABL and ENAME
are delimited by double quotation marks. The processed output of this example is equivalent to the
following statement:

LOAD INTO TABLE CREATOR."TABLENAME"

• RBA and LRSN: When specifying a log point in a utility statement, specify an RBA value for a non-data
sharing environment and specify an LRSN for a data sharing environment.

22 Db2 12 for z/OS: Utility Guide and Reference

Tips for using multi-byte character sets in control statements
Multi-byte character sets can be difficult to work with in fixed 80-byte SYSIN data sets. Long object
names and long character literals might not fit on a single line.

Where possible, avoid having to break object names or character literals by using the following
techniques:

• Use a SYSIN data set with variable length records or sufficiently large record length.
• Use shorter object names. The longer the name, the more likely continuation issues arise.
• If possible, process the object by space name (table space or index space) and avoid specifying long

multi-byte table and index names in utility syntax.

If necessary, use one of the following continuation techniques:

• Shift the starting point of the string to the left or right within the input record so that a complete
multi-byte character ends in column 72. Continue with the next character in column 1 of the next input
record.

• Separate qualified object names into two parts following the dot ".", which separates the qualifiers.
Separating long names into multiple parts makes it easier to follow the continuation rules. This
technique cannot be used in the EXEC SQL utility, which must follow both utility and SQL syntax rules.

• Use the || concatenation operator to divide long identifiers into two or more parts that fit into each
SYSIN record.

Invoking an online utility by using the DB2 Utilities panel in DB2I
One way to invoke Db2 online utilities is to use the DB2 Utilities panel. Consider using this method if you
do not have much JCL knowledge.

To use this method, you must have TSO and access to the Db2 Utilities Panel in Db2 Interactive (DB2I).

Restriction: You cannot use the DB2 Utilities panel in DB2I to submit jobs for the following utilities:

• BACKUP SYSTEM
• COPYTOCOPY
• RESTORE SYSTEM
• COPY for a list of objects if templates are not used for the output data sets

Procedure
To invoke an online utility by using the DB2 Utilities panel in DB2I:
1. Create the utility control statement for the online utility that you want to invoke, and save it in a

sequential or partitioned data set.
2. From the ISPF Primary Option Menu, select DB2 until the DB2I Primary Option Menu is displayed.

(Depending on how your menus are set up, you might need to select DB2 from several menus until the
DB2I Primary Option Menu is displayed.)

3. On the DB2I Primary Option Menu, select the UTILITIES option.
4. On the DB2 Utilities panel, complete the following fields and press Enter::

1 FUNCTION
EDITJCL

3 UTILITY
The name of the utility that you want to run

4 STATEMENT DATA SET
The name of the data set that contains the utility control statement.

For more information about the fields on this panel, see “DB2 Utilities panel” on page 24

Chapter 7. Invoking Db2 online utilities 23

5. If the Data Set Names panel is displayed, complete the relevant fields with the data set names and
press Enter. This panel is displayed if you specified COPY, LOAD, MERGECOPY, REORG TABLESPACE,
or UNLOAD.
For more information about the fields on this panel, see “Data Set Names panel” on page 26

6. If the Control Statement Data Set Names panel is displayed, complete the fields on that panel and
press Enter.
This panel is displayed if you specified that you want to use templates or lists on the DB2 Utilities
panel. For more information about the fields on this panel, see “Control Statement Data Set Names
panel” on page 27

7. Edit the generated JCL as needed and type SUBMIT or SUB on the editor command line.

Results
You can view the output of the job as you normally view the output of any batch job on your system. One
common way is by using System Display and Search Facility (SDSF).
Related concepts
“Utility control statements” on page 20
Utility control statements define the function that the utility job performs.
What is the System Display and Search Facility (SDSF)? (z/OS basic skills)
Related reference
“LISTDEF” on page 199
The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.
“TEMPLATE” on page 751
The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the
data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.

DB2 Utilities panel
Use the DB2 Utilities panel to invoke utilities without writing JCL.

Fields that you must specify on this panel are highlighted in the following figure:

24 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/zosbasics/com.ibm.zos.zconcepts/zconc_whatissdsf.htm

DSNEUP01 DB2 UTILITIES
 ===>

 Select from the following:

 1 FUNCTION ===> EDITJCL (SUBMIT job, EDITJCL, DISPLAY, TERMINATE)
 2 JOB ID ===> TEMP (A unique job identifier string)
 3 UTILITY ===> COPY (CHECK DATA, CHECK INDEX, CHECK LOB,

 COPY, DIAGNOSE, LOAD, MERGE, MODIFY,
 QUIESCE, REBUILD, RECOVER, REORG INDEX,
 REORG LOB, REORG TABLESPACE, REPORT,
 REPAIR, RUNSTATS, STOSPACE, UNLOAD.)

 4 STATEMENT DATA SET ===> UTIL

 Specify restart or preview option, otherwise specify NO.

 5 RESTART ===> NO (NO, CURRENT, PHASE or PREVIEW)

 6 LISTDEF? (YES|NO) ===> NO TEMPLATE? (YES|NO) ===> NO

 7 LIB ==> (BLANK or DB2 LIB NAME)

* The data set names panel will be displayed when required by a utility.

 PRESS: ENTER to process END to exit HELP for more information

Figure 1. Db2 Utilities panel

1 FUNCTION
Specify one of the following options:
SUBMIT

The generated JCL is submitted for processing after you complete this panel and any subsequent
panels. You cannot edit the JCL.

EDITJCL
You can edit the generated JCL before you submit the utility job. For example, you might want to
add or edit parameters on the JOB statement or add a ROUTE statement.

The other two options for this field, DISPLAY and TERMINATE, are not part of invoking a utility.
DISPLAY performs the same function as the DISPLAY UTILITY command; it shows the status of a
utility job. TERMINATE performs the same function as the TERM UTILITY command; it terminates a
utility.

2 JOB ID
Specify a unique identifier for your utility job. The default value is TEMP.

3 UTILITY
Specify the utility that you want to run.

4 STATEMENT DATA SET
Specify the data set that contains the utility control statement. TSO adds your user ID as a prefix
unless you enclose the data set name between apostrophes. The default data set is UTIL.

5 RESTART
If you want to restart a stopped utility, specify CURRENT or PHASE. If you want to run a utility in
PREVIEW mode, specify PREVIEW. Otherwise, leave the default value of NO.

6 LISTDEF? TEMPLATE?
Specify whether you are using LISTDEF statements or TEMPLATE statements for this utility job.

7 LIB
If you want the generated JCL to use a Db2 subsystem library other than the default, specify the data
set name of the Db2 subsystem library.

Chapter 7. Invoking Db2 online utilities 25

Data Set Names panel
Use the Data Set Names panel to provide the relevant data set names when invoking utilities by using
DB2I.

This panel is displayed if you specified COPY, LOAD, MERGECOPY, REORG TABLESPACE, or UNLOAD on
the DB2 Utilities panel as the utility that you want to invoke.

DSNEUP02 DATA SET NAMES
 ===>

 Enter data set name for LOAD or REORG TABLESPACE:
1 RECDSN ==>

 Enter data set name for
LOAD, REORG TABLESPACE or UNLOAD:
2 DISCDSN ==>

 Enter output data sets for local/current site for COPY, MERGECOPY,
 LOAD, or REORG:
3 COPYDSN ==>
4 COPYDSN2 ==>

 Enter output data sets for recovery site for COPY, LOAD, or REORG:
5 RCPYDSN1 ==>
6 RCPYDSN2 ==>
 Enter output data sets for REORG or UNLOAD:
7 PUNCHDSN ==>
 PRESS: ENTER to process END to exit HELP for more information

Figure 2. Data Set Names panel

1 RECDSN
Complete this field if you are running LOAD, REORG TABLESPACE, or UNLOAD. For LOAD, specify the
name of the data set that contains the records that are to be loaded. For REORG TABLESPACE or
UNLOAD, specify the unload data set.

2 DISCDSN
If you are running LOAD or REORG TABLESPACE with discard processing, specify a discard data set.

3 COPYDSN
If you are running COPY, LOAD, or REORG TABLESPACE, specify the name of the primary output data
set for the local site. If you are running MERGECOPY, specify the name of the primary output data
set for the current site. The DD name that the panel generates for this field is SYSCOPY. This field is
optional for the following jobs:

• LOAD
• REORG TABLESPACE with the SHRLEVEL NONE option

This field is required for the following jobs:

• COPY
• MERGECOPY
• REORG TABLESPACE with the SHRLEVEL REFERENCE or SHRLEVEL CHANGE options.

4 COPYDSN2
If you are running COPY, LOAD, or REORG TABLESPACE, specify the name of the backup output data
set for the local site. If you are running MERGECOPY, specify the name of the backup output data set
for the current site. The DD name that the panel generates for this field is SYSCOPY2.

5 RCPYDSN1
If you are running COPY, LOAD, or REORG TABLESPACE, specify the name of the primary output data
set for the recovery site. The DD name that the panel generates for this field is SYSRCOPY1.

6 RCPYDSN2
If you are running COPY, LOAD, or REORG TABLESPACE, specify the name of the backup output data
set for the recovery site. The DD name that the panel generates for this field is SYSRCOPY2.

26 Db2 12 for z/OS: Utility Guide and Reference

7 PUNCHDSN
If you are running any of the following utility jobs, specify the name of the output data set for the
generated LOAD utility control statements:

• REORG TABLESPACE with the UNLOAD EXTERNAL or DISCARD options
• UNLOAD

The DD name that the panel generates for this field is SYSPUNCH.
Related reference
“DB2 Utilities panel” on page 24
Use the DB2 Utilities panel to invoke utilities without writing JCL.

Control Statement Data Set Names panel
Use the Control Statement Data Set Names panel to provide the data set names for LISTDEF and
TEMPLATE statements when invoking utilities by using DB2I.

This panel is displayed if you specified YES in the LISTDEF field or TEMPLATE field on the DB2 Utilities
panel. All of the fields on this panel are optional.

DSNEUP03 CONTROL STATEMENT DATA SET NAMES SSID:
===>

Enter the data set name for the LISTDEF data set (SYSLISTD DD):
 1 LISTDEF DSN ===>
 OPTIONAL or IGNORED

Enter the data set name for the TEMPLATE data set (SYSTEMPL DD):
 2 TEMPLATE DSN ===>
 OPTIONAL or IGNORED

PRESS: ENTER to process END to exit HELP for more information

Figure 3. Control Statement Data Set Names panel

1 LISTDEF DSN
Specify the name of the data set that contains a LISTDEF control statement. The default is the SYSIN
data set. This field is ignored if you specified NO in the LISTDEF field in the DB2 Utilities panel.

2 TEMPLATE DSN
Specify the name of the data set that contains a TEMPLATE control statement. The default is the
SYSIN data set. This field is ignored if you specified NO in the TEMPLATE field in the DB2 Utilities
panel.

Related reference
“DB2 Utilities panel” on page 24
Use the DB2 Utilities panel to invoke utilities without writing JCL.

Invoking a Db2 utility by using the DSNU CLIST command in TSO
One way to run a Db2 online utility is to invoke the DSNU CLIST command under TSO. This command
generates a data set with JCL that invokes the DSNUPROC procedure to execute utilities as batch jobs.

Restriction: You cannot use the DSNU CLIST command for a COPY job with a list of objects.

Before you begin
Ensure that the Db2 CLIST library (prefix.SDSNCLST) is included in the SYSPROC DD statement in the
startup procedure for your TSO session.

Chapter 7. Invoking Db2 online utilities 27

About this task
The DSNU CLIST command generates a job that performs only one utility operation. If you need to run
more than one utility in a single job, you can invoke the DSNU CLIST command for each utility that you
need; then edit and merge all of the output into one job or step.

Procedure
To invoke a Db2 utility by using the DSNU CLIST command in TSO:
1. Create a data set or member that contains the utility control statement.
2. Execute the DSNU CLIST command. See “DSNU CLIST command syntax” on page 30.

If you want to be able to edit the generated JCL, specify EDIT(SPF) or EDIT(TSO) on the command.

DSNU generates the JCL in a data set that is named DSNUxxx.CNTL, where DSNUxxx is the control file
name for the utility. See Table 1 on page 34. This output data set contains the statements that are
necessary to invoke the DSNUPROC procedure, which, in turn, executes the utility. See “DSNU CLIST
command output” on page 35.

3. Optional: Edit the generated JCL data set.

You can add a JCL statement to the job stream, change JCL parameters (such as DD names), or change
utility control statements.

If your utility control statement specifies a DD name value that is not the default value, you must
change the DD name in the generated JCL. For example, in the REORG TABLESPACE utility statement,
the UNLDDN option specifies the name of the unload data set. The default value for UNLDDN is the
DD name SYSREC. Therefore, DSNU CLIST builds a SYSREC DD statement for REORG TABLESPACE. If
you specify a different value for UNLDDN in the utility statement, you must edit the JCL data set and
change SYSREC to the DD name value that you used.

4. Optional: Rename the JCL data set.

DSNU CLIST reuses the DSNUxxx.CNTL data set for any subsequent jobs with the same utility name.
If you want to submit more than one job that executes the same utility, rename the JCL data sets and
submit them separately.

Examples
Example 1: Invoking the DSNU CLIST command for the REORG TABLESPSACE utility

The following DSNU CLIST command generates a data set, authorization-id.DSNURGT.CNTL, that
contains JCL statements. That JCL invokes the DSNUPROC procedure, which in this case invokes the
REORG TABLESPACE utility.

%DSNU UTILITY(REORG TABLESPACE) INDSN(MYREOR.DATA)RECDSN(MYREOR.WORK)
RESTART(NO)EDIT(TSO)SUBMIT(YES)

The MYREOR.DATA data set contains the REORG TABLESPACE utility statement. MYREOR.WORK is a
temporary data set that is required by REORG TABLESPACE. The TSO editor is invoked to allow editing
of the JCL data set, authorization-id.DSNURGT.CNTL. After the data set is edited, the TSO editor then
submits the JCL data set as a batch job. This JCL data set is not modified by this CLIST command
statement until a new request is made to execute the REORG TABLESPACE utility.

Example 2: Invoking the DSNU CLIST command for the COPY utility

The following example shows how to invoke the DSNU CLIST command for the COPY utility.

%DSNU
 UTILITY (COPY)
 INDSN ('MYCOPY(STATEMNT)')
 COPYDSN ('MYCOPIES.DSN8D12A.JAN1')
 EDIT (TSO)
 SUBMIT (YES)
 UID (TEMP)
 RESTART (NO)

28 Db2 12 for z/OS: Utility Guide and Reference

Related reference
“The supplied JCL procedure (DSNUPROC) for invoking a Db2 online utility” on page 36

Chapter 7. Invoking Db2 online utilities 29

One way to invoke a Db2 online utility is to execute the supplied JCL procedure DSNUPROC. The
advantage of using DSNUPROC is that it limits the amount of JCL that you need to write.

DSNU CLIST command syntax
You can execute the DSNU CLIST command from the TSO command processor or from the DB2I Utilities
panel.

30 Db2 12 for z/OS: Utility Guide and Reference

Syntax

%

DSNU UTILITY( utility-name)

INDSN( data-set-name

( member-name)

)

CONTROL (NONE)

CONTROL (

:

control-option)

DB2I (NO)

DB2I (YES)

DISCDSN( data-set-name
1

)

COPYDSN( data-set-name
1

)

COPYDSN2( data-set-name
1

)

RCPYDSN1( data-set-name
1

)

RCPYDSN2( data-set-name
1

)

RECDSN( data-set-name
1

) PUNCHDSN (data-set-name
1

)

EDIT (NO)

EDIT (SPF

TSO

)

RESTART (NO)

RESTART (CURRENT

PHASE

PREVIEW

)

SUBMIT (NO)

SUBMIT (YES

PROMPT

)

SYSTEM (DSN)

SYSTEM (subsystem-name

group-attach

) UID( utility-id)

UNIT (SYSDA)

UNIT (unit-name) VOLUME( vol-ser)

LIB( data-set-name)

Notes:
1 All data sets must be cataloged.

Chapter 7. Invoking Db2 online utilities 31

DSNU CLIST option descriptions

The parentheses that are shown in the following descriptions are required.

%
Identifies DSNU as a member of a command procedure library. Specifying this parameter is optional;
however, it does improve performance.

UTILITY (utility-name)
Specifies the utility that you want to execute.

For a list of the online utilities that you can specify, see Table 1 on page 34.

INDSN(data-set-name(member-name))
Specifies the name of the data set that contains the utility statements. If the data set is partitioned,
also specify the member name (member-name).

Do not specify a data set or member that includes double-byte character set (DBCS) data.

CONTROL(control-option: …)
Specifies whether to trace the CLIST command execution.

The default value is NONE, which omits tracing. NONE generates a CONTROL statement with the
options NOLIST, NOCONLIST, and NOSYMLIST.

Otherwise, you can specify one or more of the following options. Separate items in the list by colons
(:). To abbreviate, specify only the first letter of the option.

LIST
Displays TSO commands after symbolic substitution and before command execution.

CONLIST
Displays CLIST commands after symbolic substitution and before command execution.

SYMLIST
Displays all executable statements (TSO commands and CLIST statements) before the scan for
symbolic substitution.

DB2I
Indicates whether the DSNU CLIST command is being called from the DB2I environment.
(NO)

The command is not being called from the DB2I environment.
(YES)

The command is called from the DB2I environment.

Only the DB2I utility panels are to execute the CLIST command with DB2I(YES).

DISCDSN (data-set-name)
The name of the data set to be used as a discard data set. DISCDSN applies only to the LOAD and
REORG utilities. For LOAD, this data set holds records that are not loaded. For REORG, this data set
holds records that are not reloaded.

COPYDSN(data-set-name)
The name of the data set to be used as the output data set. COPYDSN is required for COPY,
MERGECOPY, and REORG with SHRLEVEL REFERENCE or CHANGE. COPYDSN is optional for LOAD
and REORG with SHRLEVEL NONE.

COPYDSN2 (data-set-name)
The name of the data set to be used for the backup copy. COPYDSN2 is optional for COPY,
MERGECOPY, LOAD, and REORG.

RCPYDSN1 (data-set-name)
The name of the data set to be used for the remote-site primary copy. RCPYDSN1 is optional for COPY,
LOAD, and REORG.

32 Db2 12 for z/OS: Utility Guide and Reference

RCPYDSN2 (data-set-name)
The name of the data set to be used for the remote-site backup copy. RCPYDSN2 is optional for COPY,
LOAD, and REORG.

RECDSN (data-set-name)
The name of the data set that LOAD is to use for input or that REORG TABLESPACE or UNLOAD is to
use as the unload data set. RECDSN is required for LOAD and REORG TABLESPACE.

PUNCHDSN (data-set-name)
The name of the data set that REORG or UNLOAD is to use to hold the generated LOAD utility control
statements for UNLOAD EXTERNAL or DISCARD.

EDIT
Specifies whether to invoke an editor so that you can edit the temporary file that the CLIST command
generates.
(NO)

Does not invoke an editor.
(SPF)

Invokes the ISPF editor.
(TSO)

Invokes the TSO editor.
RESTART

Specifies whether this job restarts a current utility job, and, if so, at what point it is to be restarted.
(NO)

Indicates that the utility is a new job, not a restarted job. The utility identifier (UID) must be
unique for each utility job step.

(CURRENT)
Restarts the utility at the most recent commit point.

(PHASE)
Restarts the utility at the beginning of the current stopped phase. You can determine the current
stopped phase by issuing the DISPLAY UTILITY command.

(PREVIEW)
Restarts the utility in PREVIEW mode. While in PREVIEW mode, the utility checks for syntax errors
in all utility control statements, but normal utility execution does not take place.

SUBMIT
Specifies whether to submit the generated JCL for processing.
(NO)

Does not submit the JCL data set for processing.
(YES)

Submits the JCL data set for background processing by using the TSO SUBMIT command.
(PROMPT)

Prompts you, after the data set is processed, to specify whether to submit the JCL data set for
batch processing. You cannot use PROMPT when the CLIST command is executed in the TSO
batch environment.

SYSTEM (subsystem-name)
Specifies the Db2 subsystem or group attachment name or subgroup attachment name. The default
value is DSN.

UID (utility-id)
Provides a unique identifier for this utility job within Db2.

Do not reuse the utility ID of a stopped utility that has not yet been terminated, unless you want to
restart that utility. If you do use the same utility ID to invoke a different utility, Db2 tries to restart the
original stopped utility with the information that is stored in the SYSUTIL directory table.

Chapter 7. Invoking Db2 online utilities 33

The default value is tso-userid.control-file-name, where tso-userid is your TSO user ID and control-file-
name is one of the following values:

Table 1. Control-file name for each utility

Utility control-file-name

CHECK INDEX DSNUCHI

CHECK DATA DSNUCHD

CHECK LOB DSNUCHL

COPY DSNUCOP

DIAGNOSE DSNUDIA

LOAD DSNULOA

MERGECOPY DSNUMER

MODIFY DSNUMOD

QUIESCE DSNUQUI

REBUILD INDEX DSNUREB

RECOVER DSNUREC

REORG INDEX DSNURGI

REORG LOB DSNURGL

REORG TABLESPACE DSNURGT

REPAIR DSNUREP

REPORT DSNURPT

RUNSTATS DSNURUN

STOSPACE DSNUSTO

UNLOAD DSNUUNL

UNIT (unit-name)
Assigns a unit address, a generic device type, or a user-assigned group name for a device on which a
new temporary or permanent data set resides. When the CLIST command generates the JCL, it places
unit-name after the UNIT clause of the generated DD statement.

The default value is SYSDA.

VOLUME (vol-ser)
Assigns the serial number of the volume on which a new temporary or permanent data set resides.
When the CLIST command generates the JCL, it places vol-ser after the VOL=SER clause of the
generated DD statement. If you omit VOLUME, the VOL=SER clause is omitted from the generated DD
statement.

LIB (data-set-name)
Specifies the data set name of the Db2 subsystem library. The value that you specify is used as the
LIB parameter value when the DSNUPROC JCL procedure is invoked.

Related reference
“DSNU CLIST command output” on page 35

34 Db2 12 for z/OS: Utility Guide and Reference

The DSNU CLIST command builds a one-step job stream. The generated JCL consists of a JOB statement,
an EXEC statement that executes the Db2 utility processor, and the required DD statements. The JOB
statement also includes the SYSIN DD * job stream. You can edit any of these statements.

DSNU CLIST command output
The DSNU CLIST command builds a one-step job stream. The generated JCL consists of a JOB statement,
an EXEC statement that executes the Db2 utility processor, and the required DD statements. The JOB
statement also includes the SYSIN DD * job stream. You can edit any of these statements.

The following example shows JCL that the DSNU CLIST command generates before any editing.

//DSNUCOP JOB your-job-statement-parameters
// USER=userid,PASSWORD=password
//*ROUTE PRINT routing-information
//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID=TEMP,UTPROC='
//SYSCOPY DD DSN=MYCOPIES.DSN8D12A.JAN1,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSIN DD *
 COPY TABLESPACE DSN8D12A.DSN8S12D
 FULL NO
 SHRLEVEL CHANGE

/*

The JCL includes the following statements:

JOB
The CLIST command uses any JOB statements that you saved when using DB2I. If no JOB statements
exist, Db2 produces a skeleton JOB statement that you can modify. The job name is DSNU, followed
by the first three letters of the name of the utility that you are using.

EXEC
The CLIST command builds the EXEC statement to invoke DSNUPROC. The values that you specified
for the SYSTEM, UID, and RESTART options for the DSNU CLIST command become the values of the
SYSTEM, UID, and UTPROC parameters for DSNUPROC.

DD
The CLIST command also builds the necessary JCL DD statements. The following DD statements are
always generated by the CLIST command:
SYSPRINT DD SYSOUT=A

Defines OUTPUT, SYSPRINT as SYSOUT=A. Utility messages are sent to the SYSPRINT data set.
You can use the TSO ALLOCATE command to control the disposition of the SYSPRINT data set. For
example, you can send the data set to your terminal.

UTPRINT DD SYSOUT=A
Defines UTPRINT as SYSOUT=A. If any utility requires a sort, it executes the sort program.
Messages from that program are sent to UTPRINT.

SYSIN DD *
Defines SYSIN. To build the SYSIN DD * job stream, DSNU copies the data set that is named by
the INDSN parameter. The INDSN data set does not change, and you can reuse it when the DSNU
procedure finishes running.

Other DD statements are generated depending on the utility that you are executing.

Related reference
ALLOCATE command (TSO/E Command Reference)
Related information
Db2 Sort for z/OS
DFSORT Application Programming Guide

Chapter 7. Invoking Db2 online utilities 35

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ikjc500/dup0009.htm
https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm

The supplied JCL procedure (DSNUPROC) for invoking a Db2 online
utility

One way to invoke a Db2 online utility is to execute the supplied JCL procedure DSNUPROC. The
advantage of using DSNUPROC is that it limits the amount of JCL that you need to write.

DSNUPROC is a standard set of JCL that IBM provides to invoke online utilities. You customize this JCL
procedure at installation time (in SYS1.PROCLIB).

Executing DSNUPROC
To execute the DSNUPROC procedure, write and submit a JCL job that contains the following statements:

• An EXEC statement that specifies DSNUPROC and any parameters that you want. Possible parameters
are listed in “DSNUPROC syntax” on page 36.

• A SYSIN DD statement for the utility control statements.
• DD statements for any other data sets that your utility job needs except for SYSPRINT and UTPRINT.

DSNUPROC provides the SYSPRINT and UTPRINT DD statements for printed output.

DSNUPROC uses the parameters that you supply to build an EXEC statement that executes an online
utility.

DSNUPROC syntax

DSNUPROC

LIB= prefix .SDSNLOAD

LIB=DB2  library-name

,SIZE=OM

,SIZE=  region-size

,SYSTEM=DSN

,SYSTEM=  subsystem-name

,UID=' '

,UID=  utility-qualifier

,UTPROC=' '

,UTPROC= 'RESTART'

'RESTART(CURRENT)'

'RESTART(PHASE)'

'PREVIEW'

DSNUPROC option descriptions

The following list describes all the parameters.
LIB=

Specifies the data set name of the Db2 subsystem library.

The default value is prefix.SDSNLOAD.

SIZE=
Specifies the region size of the utility execution area; that is, the value represents the number of bytes
of virtual storage that are allocated to this utility job.

The default value is 0M.

SYSTEM=
Specifies the Db2 subsystem or group attachment name or subgroup attachment name.

36 Db2 12 for z/OS: Utility Guide and Reference

The default value is DSN.

UID=
Specifies the unique identifier for your utility job. The maximum name length is 16 characters. If
the name contains special characters, enclose the entire name between apostrophes (for example,
'PETERS.JOB').

Do not reuse the utility ID of a stopped utility that has not yet been terminated. If you do use the
same utility ID to invoke a different utility, Db2 tries to restart the original stopped utility with the
information that is stored in the SYSUTIL directory table.

The default is an empty string. If you do not specify UID, or you specify UID='', Db2 assigns a utility ID
of the form user-id.job-name to the utility job. user-id is the user ID. job-name is the job name in the
JCL in which DSNUPROC is executed. If the total length of the generated utility ID is longer than 16
bytes, the user ID is truncated to 7 bytes.

UTPROC=
Controls restart processing. The default is an empty string. Use the default if you want to allow Db2 to
perform default restart processing.

To override the default restart behavior, specify one of the following values:

'RESTART'
Restarts at the most recent commit point.

'RESTART(CURRENT)'
Restarts at the most recent commit point. RESTART and RESTART(CURRENT) have the same
meaning.

'RESTART(PHASE)'
Restarts at the beginning of the phase that was being processed.

'PREVIEW'
Restarts in preview mode. While in preview mode, the utility checks for syntax errors in all utility
control statements, but normal utility execution does not take place.

Related information:

“Restarting an online utility” on page 46

Sample DSNUPROC listing

You can use JCL similar to the following example to invoke DSNUPROC:

//DSNUCOP JOB your-job-statement-parameters
// USER=userid,PASSWORD=password
//*ROUTE PRINT routing-information
//UTIL EXEC DSNUPROC,SYSTEM=DSN,UID=TEMP,UTPROC='
//SYSCOPY DD DSN=MYCOPIES.DSN8D12A.JAN1,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSIN DD *
 COPY TABLESPACE DSN8D12A.DSN8S12D
 FULL NO
 SHRLEVEL CHANGE

/*

The preceding JCL job (DSNUCOP) executes the following DSNUPROC procedure:

//DSNUPROC PROC LIB='DSN!!0.SDSNLOAD',
// SYSTEM=DSN,
// SIZE=0K,UID='',UTPROC=''
//**
//* PROCEDURE-NAME: DSNUPROC *
//* *
//* DESCRIPTIVE-NAME: UTILITY PROCEDURE *
//* *
//* FUNCTION: THIS PROCEDURE INVOKES THE ADMF UTILITIES IN THE *
//* BATCH ENVIRONMENT *

Chapter 7. Invoking Db2 online utilities 37

//* *
//* PROCEDURE-OWNER: UTILITY COMPONENT *
//* *
//* COMPONENT-INVOKED: ADMF UTILITIES (ENTRY POINT DSNUTILB). *
//* *
//* ENVIRONMENT: BATCH *
//* *
//* INPUT: *
//* PARAMETERS: *
//* LIB = THE DATA SET NAME OF THE DB2 PROGRAM LIBRARY. *
//* THE DEFAULT LIBRARY NAME IS PREFIX.SDSNLOAD, *
//* WITH PREFIX SET DURING INSTALLATION. *
//* SIZE = THE REGION SIZE OF THE UTILITIES EXECUTION AREA.*
//* THE DEFAULT REGION SIZE IS 2048K. *
//* SYSTEM = THE SUBSYSTEM NAME USED TO IDENTIFY THIS JOB *
//* TO DB2. THE DEFAULT IS "DSN". *
//* UID = THE IDENTIFIER WHICH WILL DEFINE THIS UTILITY *
//* JOB TO DB2. IF THE PARAMETER IS DEFAULTED OR *
//* SET TO A NULL STRING, THE UTILITY FUNCTION WILL *
//* USE ITS DEFAULT, USERID.JOBNAME. EACH UTILITY *
//* WHICH HAS STARTED AND IS NOT YET TERMINATED *
//* (MAY NOT BE RUNNING) MUST HAVE A UNIQUE UID. *
//* UTPROC = AN OPTIONAL INDICATOR USED TO DETERMINE WHETHER *
//* THE USER WANTS TO INITIALLY START THE REQUESTED*
//* UTILITY OR TO RESTART A PREVIOUS EXECUTION OF *
//* THE UTILITY. IF OMITTED, THE UTILITY WILL *
//* BE INITIALLY STARTED. OTHERWISE, THE UTILITY *
//* WILL BE RESTARTED BY ENTERING THE FOLLOWING *
//* VALUES: *
//* RESTART(PHASE) = RESTART THE UTILITY AT THE *
//* BEGINNING OF THE PHASE EXECUTED *
//* LAST. *
//* RESTART = RESTART THE UTILITY AT THE LAST *
//* OR CURRENT COMMIT POINT. *
//* *
//* OUTPUT: NONE. *
//* *
//* EXTERNAL-REFERENCES: NONE. *
//* *
//* CHANGE-ACTIVITY: *
//* *
//**
//DSNUPROC EXEC PGM=DSNUTILB,REGION=&SIZE,
// PARM='&SYSTEM,&UID,&UTPROC'
//STEPLIB DD DSN=&LIB,DISP=SHR
//**
//* *
//* THE FOLLOWING DEFINE THE UTILITIES' PRINT DATA SETS *
//* *
//**
//*
//SYSPRINT DD SYSOUT=*
//UTPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//*DSNUPROC PEND REMOVE * FOR USE AS INSTREAM PROCEDURE

Invoking a Db2 online utility by creating the JCL data set yourself
Db2 online utilities run as standard z/OS jobs. You can either write the JCL for these jobs yourself or use
tools to generate some or all of the JCL for you.

About this task
To limit the amount of JCL that you need write, you can use “The supplied JCL procedure (DSNUPROC) for
invoking a Db2 online utility” on page 36.

Procedure
Include the following JCL statements:

• The JOB statement that is required by your installation standards.
• The JOBLIB or STEPLIB DD statements that are required to access Db2.
• An EXEC statement.

38 Db2 12 for z/OS: Utility Guide and Reference

The statement can specify a procedure that contains the required JCL, such as DSNUPROC, or it can be
of the following form:

//stepname EXEC PGM=DSNUTILB,PARM='system,[uid],[utproc]'

The brackets, [], indicate optional parameters. The parameters have the following meanings:

DSNUTILB
The utility control program. The program must reside in an APF-authorized library.

system
The Db2 subsystem.

uid
The unique identifier for your utility job.

Do not reuse the utility ID of a stopped utility that has not yet been terminated. If you do use the
same utility ID to invoke a different utility, Db2 tries to restart the original stopped utility with the
information that is stored in the SYSIBM.SYSUTIL directory table.

utproc
The restart processing behavior. Specify this option only when you want to restart the utility job. You
can specify one of the following values:
'RESTART'

Restarts the utility at the most recent commit point. This option has the same meaning as
'RESTART(CURRENT).'

'RESTART(CURRENT)'
Restarts the utility at the most recent commit point. This option has the same meaning as
'RESTART.'

'RESTART(PHASE)'
Restarts the utility at the beginning of the phase that executed most recently.

'PREVIEW'
Restarts the utility in preview mode. While in preview mode, the utility checks for syntax errors
in all utility control statements, but normal utility execution does not take place.

Example EXEC statement:

//stepname
 EXEC PGM=DSNUTILB,PARM='DSN,TEMP'

• Any required DD statements. For information about the DD statements that each utility needs, see “Data
sets that online utilities use” on page 18.

Related concepts
Basic JCL concepts (z/OS Basic Skills)
Related tasks
Accessing the correct Db2 program library (Db2 Installation and Migration)

Chapter 7. Invoking Db2 online utilities 39

https://www.ibm.com/docs/zosbasics/com.ibm.zos.zjcl/zjclc_basicjclconcepts.htm
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_accessdb2proglibr.html

40 Db2 12 for z/OS: Utility Guide and Reference

Chapter 8. Monitoring and controlling online utilities
You can monitor utilities, run utilities concurrently, terminate utilities, and restart utilities.

Monitoring utilities
You can check the status of any Db2 online utility jobs. You can also check the phase in which the utility is
executing or stopped.

About this task
An online utility can have one of the following statuses:

Status Description

Active The utility is started.

Stopped The utility abnormally stopped before completion, but the table spaces and indexes that
were accessed by the utility remain under utility control. To make the data available again,
take one of the following actions:

• Correct the condition that stopped the utility, and restart the utility so that it runs to
completion.

• Terminate the utility with the Db2 TERM UTILITY command.

Terminated The Db2 TERM UTILITY command requested that the utility be terminated.

Db2 online utility execution is divided into phases. Each utility starts with the UTILINIT phase, which
performs initialization and setup. Each utility finishes with a UTILTERM phase, which cleans up after
processing completes. The other phases of online utility execution differ, depending on the utility. For a
list of execution phases for each utility, see the documentation for the utility.

Procedure
Use the Db2 DISPLAY UTILITY command.
The status and phase is displayed in message DSNU100I, DSNU105I or DSNU106I. (All of these
messages are documented under DSNU100I.)

Related tasks
“Terminating an online utility” on page 44
You can terminate the execution of an active utility or release the resources that are associated with a
stopped utility.
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.
Related reference
-DISPLAY UTILITY (Db2) (Db2 Commands)
-TERM UTILITY (Db2) (Db2 Commands)
Related information
DSNU100I (Db2 Messages)

© Copyright IBM Corp. 1983, 2024 41

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displayutility.html
https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_termutility.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu100i.html

Monitoring processor use by utilities
You can run traces to collect data about the amount of processor time that is used by online utilities.

Procedure

To monitor processor use by utilities:
• Run a trace that writes IFCID 0025 trace records.

For a list of trace classes that include IFCID 0025, see Performance trace (Db2 Performance).

The following types of information are collected:

– Whether DFSORT or DB2SORT was invoked.
– The number of parallel data or index sorts that were performed.
– The amounts of time that a utility job used:

- Total elapsed time
- Total CPU time
- Total zIIP time (if an accounting class 1 trace is also activated)
- CPU time for sorts
- zIIP time for sorts (if the sort program provided this value)

Related concepts
Db2 trace (Db2 Performance)
Related tasks
Controlling the Db2 trace (Db2 Administration Guide)
Monitoring use of IBM specialty engines (Db2 Performance)

Subsystem parameters for refining DFSMSdss COPY operation with
utilities

You can use subsystem parameters to control whether utilities that invoke DFSMSdss COPY use
FlashCopy technology.

The following utilities invoke DFDSMSdss COPY:

• CHECK DATA with SHRLEVEL CHANGE
• CHECK INDEX with SHRLEVEL CHANGE
• CHECK LOB with SHRLEVEL CHANGE
• COPY with FLASHCOPY YES or FLASHCOPY CONSISTENT
• LOAD with FLASHCOPY YES or FLASHCOPY CONSISTENT
• REBUILD INDEX with FLASHCOPY YES or FLASHCOPY CONSISTENT
• RECOVER from FlashCopy image copies
• REORG INDEX with FLASHCOPY YES or FLASHCOPY CONSISTENT
• REORG TABLESPACE with FLASHCOPY YES or FLASHCOPY CONSISTENT

You can use the following subsystem parameters to control how FlashCopy technology is used by all
utilities that invoke DFSMSdss COPY:

42 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_performancetrace.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_usdb2trace2monitorperf.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_controldb2trace.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_monitorziipuse.html

FLASHCOPY_XRCP
Specifies whether a data set level FlashCopy operation is allowed to a primary volume in a z Global
Mirror (Extended Remote Copy or XRC) relationship when the z/OS DFSMSdss support for RPFC for
XRC is installed and enabled.

FLASHCOPY_PPRC
Specifies the behavior for DFSMSdss FlashCopy requests when the target disk storage volume is the
primary device in a Peer-to-Peer Remote Copy (Metro Mirror) relationship.

In the case of the RECOVER utility, FLASHCOPY_PPRC specifies the default behavior when the
recovery base is a FlashCopy image copy or a system-level backup. You can override this behavior
by specifying the FLASHCOPY_PPRCP option in the RECOVER statement.

You can use the following subsystem parameters to specify how certain utilities use FlashCopy:

CHECK_FASTREPLICATION
Specifies whether the CHECK utilities direct DFSMSdss COPY to use FlashCopy as the preferred
method for copying objects to shadow data sets, or as the only method for copying objects to shadow
data sets.

COPY_FASTREPLICATION
Specifies whether the COPY utility directs DFSMSdss COPY to use FlashCopy as the preferred method
for copying objects to shadow data sets, as the only method for copying objects to shadow data sets,
or not at all.

REC_FASTREPLICATION
Specifies how the RECOVER utility directs DFSMSdss COPY to restore an image copy that was created
with FlashCopy. REC_FASTREPLICATION directs DFSMSdss COPY to use FlashCopy as the preferred
method, as the only method, or not to use FlashCopy.

The parameters that DFSMSdss COPY specifies for the RECOVER, COPY, and CHECK utilities
depend on the combination of the FLASHCOPY_PPRC value and the REC_FASTREPLICATION,
COPY_FASTREPLICATION, or CHECK_FASTREPLICATION value, as shown in the following table.

Table 2. The DFSMSdss COPY parameter values used for the COPY, CHECK, and RECOVER utilities based on
subsystem parameter values

FLASHCOPY_PPRC
value

REC_FASTREPLICATION, COPY_FASTREPLICATION, or CHECK_FASTREPLICATION
value

NONE PREFERRED REQUIRED

blank FASTREP(NONE) FASTREP(PREF) FASTREP(REQ)

NONE FASTREP(NONE) FASTREP(PREF) FASTREP(REQ)

FCTOPPRCP(PresMirNone) FCTOPPRCP(PresMirNone)

PREFERRED FASTREP(NONE) FASTREP(PREF) FASTREP(REQ)

FCTOPPRCP(PresMirPref) FCTOPPRCP(PresMirPref)

REQUIRED FASTREP(NONE) FASTREP(PREF) FASTREP(REQ)

FCTOPPRCP(PresMirReq) FCTOPPRCP(PresMirReq)

Related concepts
“FlashCopy image copies” on page 144
FlashCopy image copies can reduce both the time that data is unavailable during the copy operation and
the time that is required for backup and recovery operations. Certain Db2 utilities can create these copies

Chapter 8. Monitoring and controlling online utilities 43

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopyxrcp.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopypprc.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_checkfastreplication.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_copyfastreplication.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_recfastreplication.html

by invoking the FlashCopy function that is provided by z/OS DFSMS and the IBM TotalStorage Enterprise
Storage Server (ESS) storage subsystems.

Determining why a utility failed to complete
If an online utility job completes normally, it issues return code 0. If it completes with warning messages,
it issues return code 4. Return code 8 means that the job failed to complete. Return code 12 means that
an authorization error occurred.

Procedure
Use the following list of possible scenarios to help resolve the problem:

Problem Solution

Db2 terminates the utility job step and any
subsequent utility steps.

Submit a new utility job to execute the terminated
steps. Use the same utility identifier for the new job
to ensure that no duplicate utility job is running.

Db2 does not execute the particular utility function,
but prior utility functions are executed.

Submit a new utility step to execute the function.

Db2 places the utility function in the stopped state. Restart the utility job step at either the last commit
point or the beginning of the phase by using the
same utility identifier. Alternatively, use the TERM
UTILITY command to terminate the job step and
then resubmit it.

Related information:

“Restarting an online utility” on page 46
“Terminating an online utility” on page 44

Db2 terminates the utility and issues return code 8. One or more objects might be in a restrictive or
advisory state. Resolve that status and resubmit
the job.

Also, a DEADLINE condition in REORG might have
terminated the reorganization.

Related information:

Appendix B, “Advisory or restrictive states,” on
page 975
“Syntax and options of the REORG INDEX
control statement” on page 488
“Syntax and options of the REORG TABLESPACE
control statement” on page 526

Terminating an online utility
You can terminate the execution of an active utility or release the resources that are associated with a
stopped utility.

About this task

After you terminate a utility, you cannot restart the terminated utility job. The objects on which the utility
was operating might be left in an indeterminate state. In many cases, you cannot rerun the same utility
without first recovering the objects on which the utility was operating. The situation varies, depending

44 Db2 12 for z/OS: Utility Guide and Reference

on the utility and the phase that was in process when you issued the command. These considerations
about the state of the object are particularly important when you terminate the COPY, LOAD, and REORG
utilities.

Procedure
Issue the TERM UTILITY command. If the utility was started in a previous release of Db2, issue the TERM
UTILITY command from that release.

In a data sharing environment, the following rules apply:

• For active utilities, issue the command from the Db2 subsystem on which the utility was started. If a
Db2 subsystem fails while a utility is in progress, you must restart that Db2 subsystem, and then you
can terminate the utility from any system.

• For stopped utilities, you can terminate them from any active member of the data sharing group.
• In a data sharing coexistence environment, you can terminate a utility only on the same release in which

the utility was started.

If the utility is active, Db2 terminates the execution of the utility at the next commit point and then
performs any necessary cleanup operations. If the utility is stopped, Db2 releases the resources that are
associated with the stopped utility.

Example of conditionally terminating a utility

You can put the TERM UTILITY command in a conditionally executed job step, as shown in the following
example. You might choose to add such a job step if you never want to restart certain utility jobs.

//TERM EXEC PGM=IKJEFT01,COND=((8,GT,S1),EVEN)
//*
//**
//* IF THE PREVIOUS UTILITY STEP, S1, ABENDS, ISSUE A
//* TERMINATE COMMAND. IT CANNOT BE RESTARTED.
//**
//*
//SYSPRINT DD SYSOUT=A
//SYSTSPRT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//SYSTSIN DD *
DSN SYSTEM(DSN)
-TERM UTILITY(TEMP)
END
/*

Alternatively, consider specifying the TIMEOUT TERM parameter for some online REORG situations.

Related reference
-TERM UTILITY (Db2) (Db2 Commands)
“Syntax and options of the REORG INDEX control statement” on page 488
The REORG INDEX utility control statement, with its multiple options, defines the function that the utility
job performs.
“Syntax and options of the REORG TABLESPACE control statement” on page 526

Chapter 8. Monitoring and controlling online utilities 45

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_termutility.html

The REORG TABLESPACE utility control statement, with its multiple options, defines the function that the
utility job performs.

Restarting an online utility
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.

About this task
Utilities can be restarted with one of the following two methods:

Phase restart
The utility restarts from the beginning of the phase that was being processed. This method is
indicated by the parameter RESTART(PHASE).

Current restart
The utility restarts from the last checkpoint that was taken during the execution of the utility
phase. If the utility phase does not take any checkpoints or has not reached the first checkpoint,
current restart is equivalent to phase restart. This method is indicated by the parameter RESTART or
RESTART(CURRENT).

Restarting a utility job is not always possible. If you cannot restart a utility job, you might have to
terminate it to make the data available to other applications. To terminate a utility job, issue the Db2 TERM
UTILITY command. For more information, see “Terminating an online utility” on page 44.

Important: In data sharing release coexistence, you must restart a utility on a member on the same Db2
release as the member where the utility job was originally submitted. The same utility ID (UID) must be
used to restart the utility. That UID is unique within a data sharing group. However, if Db2 fails, you must
restart Db2 on either the same or another z/OS system before you restart the utility.

Procedure
To restart an online utility:
1. Correct the problem that caused the utility job to stop.
2. If needed, make changes to the utility job. Use the following guidelines:

• Do not specify z/OS automatic step restart.
• Ensure that the required data sets are properly defined.

Recommendation: Allocate the data sets by using TEMPLATE statements that do not specify the
DISP and SPACE parameter values. When these parameters are not specified, Db2 determines the
correct disposition and size of these data sets.

• Check the DISP parameters on the DD statements. For example, for DD statements that have
DISP=NEW and need to be reused, change DISP to OLD or MOD. If generation data groups (GDGs)
are used and any (+1) generations were cataloged, ensure that the JCL is changed to GDG (+0) for
such data sets.

Automatically generated JCL normally has DISP=MOD. DISP=MOD allows a data set to be allocated
during the first execution and then reused during a restart.

When restarting a job that involves templates, Db2 automatically changes the disposition from NEW
to MOD. Therefore, you do not need to change template specifications for restart.

• For any data sets that are not dynamically allocated, ensure that the DD name that is specified in the
restart JCL matches the DD name for the original job. Do not change DD names on a restart job.

If the LOAD utility is restarted with a different SYSREC data set from the SYSREC data set for
the initial invocation, the data control block (DCB) parameters must be the same as the SYSREC
DCB parameters for the initial invocation. RESTART(PHASE) is recommended. RESTART(CURRENT)

46 Db2 12 for z/OS: Utility Guide and Reference

might have unpredictable results because data set checkpoint information is not used during restart
processing.

• For any data sets that are dynamically allocated, ensure that the file sequence numbers in the restart
job match those file sequence numbers in the original job.

• For data sets that are not cataloged, ensure that any explicit VOLSER specifications in the restart
job match those specifications in the original job. If you copy a work data set, such as SYSUT1, after
abend B37, and the number of volumes changes, do not specify RESTART(CURRENT). If you do,
abend 413-1C occurs. To prevent this abend, start the utility in RESTART(PHASE).

• For any cataloged data sets, do not specify VOLSER. Let Db2 determine the VOLSER value of the data
sets from the system catalog.

• Include all of the original utility statements and do not change the position of any other utility
statements that have executed. During restart processing, Db2 remembers the relative position of
the stopped utility statement in the input stream. The exception is DIAGNOSE statements. You can
add or delete DIAGNOSE statements as needed.

• Do not change the utility function that is stopped and the Db2 objects on which it is operating.
However, you can change other parameters that are related to the stopped step and to subsequent
utility steps.

• Do not change any EXEC SQL or OPTIONS utility control statements that executed before the
stopped utility, if possible. If you must change these utility control statements, use caution; any
changes can cause the restart processing to fail. For example, if you specify a valid OPTIONS
statement in the initial invocation, and then on restart, specify OPTIONS PREVIEW, the restart fails.

• Use caution if you change LISTDEF lists before you restart the utility. When Db2 restarts list
processing, it uses a saved copy of the list. Modifying the LISTDEF list that is referenced by the
stopped utility has no effect. Only control statements that follow the stopped utility are affected. See
“How utilities restart with lists ” on page 51.

• Use caution if you change TEMPLATE statements before restarting the utility. See “How utilities
restart with templates” on page 50.

• If you are using the DSNUTILS stored procedure, specify NONE or ANY for the utility-name
parameter. These values suppress the dynamic allocation that is normally performed by DSNUTILS.
You can then specify TEMPLATE statements (in the utstmt parameter) to allocate the necessary data
sets.

3. Resubmit the job with the same utility ID and optionally specify a RESTART parameter value.

Db2 recognizes the utility ID and restarts the utility job if possible. Db2 retrieves information about the
stopped utility from the SYSIBM.SYSUTIL directory table.

For each utility, Db2 uses the default RESTART value that is specified in the following table.

Table 3. Default RESTART values for each utility

Utility Default RESTART value Description of restart behavior
and restrictions

BACKUP SYSTEM RESTART(CURRENT) “Termination or restart of
BACKUP SYSTEM” on page 60

CATMAINT No restart NA

CHECK DATA RESTART(CURRENT) “Termination and restart of
CHECK DATA” on page 93

CHECK INDEX RESTART(CURRENT) “Termination or restart of
CHECK INDEX” on page 109

CHECK LOB RESTART(CURRENT) “Termination or restart of
CHECK LOB” on page 120

COPY RESTART(CURRENT) “Restart of COPY” on page 159

Chapter 8. Monitoring and controlling online utilities 47

Table 3. Default RESTART values for each utility (continued)

Utility Default RESTART value Description of restart behavior
and restrictions

COPYTOCOPY RESTART(CURRENT) “Termination or restart of
COPYTOCOPY” on page 182

DIAGNOSE Restarts from the beginning “Termination or restart of
DIAGNOSE” on page 191

EXEC SQL Restarts from the beginning “Termination or restart of EXEC
SQL” on page 196

LISTDEF Restarts from the beginning “Termination or restart of
LISTDEF” on page 216

LOAD RESTART(CURRENT) or
RESTART(PHASE)a

“Restart of LOAD” on page 329

MERGECOPY RESTART(PHASE) “Termination or restart of
MERGECOPY” on page 360

MODIFY RECOVERY RESTART(CURRENT) “Termination or restart of
MODIFY RECOVERY” on page
369

MODIFY STATISTICS RESTART(CURRENT) “Termination or restart of
MODIFY STATISTICS” on page
379

OPTIONS Restarts from the beginning “Termination or restart of
OPTIONS” on page 385

QUIESCE RESTART(CURRENT) “Termination and restart of
QUIESCE” on page 396

REBUILD INDEX RESTART(PHASE) “Termination or restart of
REBUILD INDEX” on page 421

RECOVER RESTART(CURRENT) “Termination or restart of
RECOVER” on page 480

REORG INDEX RESTART(CURRENT) or
RESTART(PHASE)a

“Restart of REORG INDEX” on
page 517

REORG TABLESPACE RESTART(CURRENT) or
RESTART(PHASE)a

“Restart of REORG
TABLESPACE” on page 612

REPAIR No restart “Termination or restart of
REPAIR” on page 658

REPORT RESTART(CURRENT) “Termination or restart of
REPORT” on page 669

RESTORE SYSTEM RESTART(CURRENT) “Termination and restart of
RESTORE SYSTEM” on page 695

RUNSTATS RESTART(CURRENT) “Termination or restart of
RUNSTATS” on page 701

STOSPACE RESTART(CURRENT) “Termination or restart of
STOSPACE” on page 748

TEMPLATE Restarts from the beginning “Termination or restart of
TEMPLATE” on page 771

48 Db2 12 for z/OS: Utility Guide and Reference

Table 3. Default RESTART values for each utility (continued)

Utility Default RESTART value Description of restart behavior
and restrictions

UNLOAD RESTART(CURRENT) “Termination or restart of
UNLOAD” on page 781

Note:

a. The RESTART value that Db2 uses for these utilities depends on the situation. For a complete
explanation for each utility, see the restart information in the third column.

You can override the default RESTART value by specifying the RESTART parameter in the original JCL
data set. See “Overriding the default utility restart behavior by using the RESTART parameter” on page
49.

If a utility is restarted in the UTILINIT phase, it is re-executed from the beginning of the phase.

What to do next
If you restarted a LOAD, REBUILD INDEX, or REORG job with the STATISTICS option, run the RUNSTATS
utility after the restarted job completes. When you restart these jobs, Db2 does not collect inline
statistics. The exception is REORG UNLOAD PAUSE; when restarted after the pause, REORG UNLOAD
PAUSE collects statistics.
Related tasks
“Terminating an online utility” on page 44
You can terminate the execution of an active utility or release the resources that are associated with a
stopped utility.
Related information
Automatic Step Restart (DFSMSdfp Checkpoint/Restart)

Overriding the default utility restart behavior by using the RESTART
parameter

You do not need to use the RESTART parameter to restart a utility job.When you resubmit a job that
finished abnormally and has not been terminated, Db2 recognizes the utility ID from the SYSIBM.SYSUTIL
directory table and restarts the utility job if possible. However, if you want to override the default
RESTART value, you can update the original JCL data set by adding the RESTART parameter. Any RESTART
values that you specify always override the default values. Db2 ignores the RESTART parameter if you are
submitting the utility job for the first time.

Procedure
To override the default utility restart behavior, add the RESTART parameter by using one of the following
methods:
• If you invoke the utility by using DB2I, specify the RESTART value on a DB2I panel:

a) Access the DB2 Utilities panel.
b) Complete the panel fields.
c) Change field 5 (RESTART) to CURRENT or PHASE, depending on the restart method that you want.
d) Press Enter.
For information about the DB2 Utilities panel fields, see “Invoking an online utility by using the DB2
Utilities panel in DB2I” on page 23

• If you invoke the utility by using the DSNU CLIST command, change the value of the RESTART
parameter on the command.
See “DSNU CLIST command syntax” on page 30.

Chapter 8. Monitoring and controlling online utilities 49

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idac400/da4c446.htm

• If you created your own JCL to invoke the utility, specify RESTART (CURRENT) or RESTART(PHASE) on
the EXEC statement.
For information about the RESTART parameter, see “Invoking a Db2 online utility by creating the JCL
data set yourself ” on page 38.

Restarting a utility after the output data set is full
If a utility job terminates with an out-of-space condition on the output data set, you might need to restart
the job at the last commit point.

Procedure
To restart a utility after the output data set is full:
1. Copy the output data set to a temporary data set. Use the same data control block (DCB) parameters.

Use z/OS utilities that do not reblock the data set during the copy operation (for example, DFSMSdss
ADRDSSU or DFSORT ICEGENER). Avoid using the IEBGENER or ISPF 3.3 utilities.

2. Delete or rename the output data set. Ensure that you know the current DCB parameters.
3. Redefine the output data set with additional space. Use the same VOLSER (if the data set is not

cataloged), the same DSNAME, and the same DCB parameters.
4. Copy the data from the temporary data set into the new, larger output data set. Use z/OS utilities that

do not reblock the data set during the copy operation (for example, DFSMSdss ADRDSSU or DFSORT
ICEGENER).

5. Restart the online utility

Related information
DCB subparameters (MVS JCL Reference)
Examples of Data Set Copy Operations (z/OS DFSMSdss Storage Administration)
ICEGENER (DFSORT Tuning Guide)

How utilities restart with templates
Unlike most other utility control statements, TEMPLATE utility control statements can be modified before
you restart a utility. In some cases, they must be modified to correct a prior failure.

If possible, do not change the TEMPLATE control statement. If you must change it, use caution. In some
cases, modifications can cause restart processing to fail. For example, if you change the template name of
a temporary work data set that was opened in an earlier phase and closed but is to be used later, restart
processing fails.

Restriction: When a TEMPLATE utility control statement includes the PATH keyword, the utility that uses
that template cannot be restarted.

When a utility is restarted, template allocation automatically adjusts data set dispositions to reallocate
the data sets from the prior execution. You do not need to change the TEMPLATE DISP option. Db2 also
takes checkpoints for the values that are used for TEMPLATE DSN variables, and the old values are reused
when the utility is restarted.

If the failure of the utility job was due to space problems on a data set, the same restart considerations
apply as if DD statements were used.

If the failure of the utility job was due to insufficient space on a volume, you can alter the TEMPLATE
statement. How the TEMPLATE statement needs to be altered depends on whether the SPACE keyword
was specified. If SPACE was specified, specify a different volume or alter the primary and secondary
space quantities. If SPACE was not specified, specify a different volume or add the PCTPRIME and
NBRSECND options. Lower the value of the PCTPRIME option to decrease the size of the primary
allocation, and increase the value of the NBRSECND option to decrease the size of the secondary
allocation.

50 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieab600/dcbsub.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.adru000/r2248.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icet100/icet10024.htm

Related tasks
“Restarting a utility after the output data set is full” on page 50
If a utility job terminates with an out-of-space condition on the output data set, you might need to restart
the job at the last commit point.
Related reference
“TEMPLATE” on page 751
The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the
data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.

How utilities restart with lists
Lists are defined by the LISTDEF utility. Unlike other utility control statements, LISTDEF control
statements can be modified before you restart a utility. However, those changes do not affect the
currently running utility. The changed list affects only those utility control statements that follow the
stopped utility.

When you originally submit a utility control statement that references a list, Db2 expands the contents
of the list and saves the list before executing the utility. Db2 uses this saved list to restart the utility at
the point of failure. After LISTDEF repositions in the list at the point of failure, individual utility restart
processing is invoked. This restart behavior varies by utility. After the utility is successfully restarted, the
LISTDEF list is re-expanded before it is used by subsequent utilities in the same job step.

To determine whether the utility that you are restarting is processing a list or the size of the list that the
utility is processing, issue the DISPLAY UTILITY command. If a list is being used, the size is reported in
message DSNU100 or DSNU105 in the DISPLAY UTILITY output.

Related reference
“LISTDEF” on page 199
The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.
-DISPLAY UTILITY (Db2) (Db2 Commands)
Related information
DSNU100I (Db2 Messages)

Chapter 8. Monitoring and controlling online utilities 51

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displayutility.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu100i.html

52 Db2 12 for z/OS: Utility Guide and Reference

Chapter 9. BACKUP SYSTEM
The online BACKUP SYSTEM utility invokes z/OS DFSMShsm to copy the volumes on which the Db2 data
and log information resides. These system-level backups can be taken for either a Db2 subsystem or data
sharing group. You can later run the RESTORE SYSTEM utility to recover the subsystem or data sharing
group.

You can use BACKUP SYSTEM to copy all data for a single application (for example, when Db2 is the
database server for a resource planning solution).

Restrictions:

• All data sets that you want to copy must be SMS-managed data sets.
• A data sharing environment, no failed abnormally quiesced members can exist. Otherwise, the BACKUP

SYSTEM request fails.

The BACKUP SYSTEM utility uses copy pools. You must define these copy pools before you run BACKUP
SYSTEM. See “Copy pools” on page 57.

Output

The output for BACKUP SYSTEM is the copy of the volumes on which the Db2 data and log information
resides. The copies are called system-level backups.

The BACKUP SYSTEM history is recorded in the bootstrap data sets (BSDSs).

BACKUP SYSTEM does not reset COPY-pending status. To remove COPY-pending status, take an image
copy of the affected object.

Related information:

“COPY-pending status” on page 979

Authorization required
To execute this utility, you must use a privilege set that includes SYSCTRL or SYSADM authority.

Execution phases of BACKUP SYSTEM
The BACKUP SYSTEM utility operates in these phases:
Phase

Description
UTILINIT

Performs initialization and setup.
COPY

Copies data.
UTILTERM

Performs cleanup.
Related concepts
Point-in-time recovery with system-level backups (Db2 Administration Guide)
Related reference
“RESTORE SYSTEM” on page 689

© Copyright IBM Corp. 1983, 2024 53

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_recovertotimeusingbackupsystem.html

The RESTORE SYSTEM online utility invokes z/OS DFSMShsm to recover a Db2 subsystem or a data
sharing group to a previous point in time. To perform the recovery, the utility uses data that is copied by
the BACKUP SYSTEM utility.

Syntax and options of the BACKUP SYSTEM control statement
The BACKUP SYSTEM utility control statement, with its multiple options, defines the function that the
utility job performs.

Use the ISPF/PDF edit function to create a control statement and to save it in a sequential or partitioned
data set. When you create the JCL for running the job, use the SYSIN DD statement to specify the name of
the data set that contains the utility control statement.

When you specify BACKUP SYSTEM, you can specify only the following statements in the same step:

• DIAGNOSE
• OPTIONS PREVIEW
• OPTIONS OFF
• OPTIONS KEY
• OPTIONS EVENT WARNING

In addition, BACKUP SYSTEM must be the last statement in SYSIN.

Syntax diagram

BACKUP SYSTEM
FULL

DATA ONLY

ALTERNATE_CP( copy-pool)

DBBSG( stogroup) LGBSG( stogroup)

ESTABLISH FCINCREMENTAL

END FCINCREMENTAL

FORCE

DUMP

dumpclass-spec FORCE

DUMPONLY

TOKEN( X'byte-string') dumpclass-spec

dumpclass-spec

DUMPCLASS (

,

dc1

dc2

dc3

dc4

dc5

)

54 Db2 12 for z/OS: Utility Guide and Reference

Option descriptions

FULL
Indicates that you want to copy both the database copy pool and the log copy pool.

You must ensure that the database copy pool is set up to contain the volumes for the databases and
the associated integrated catalog facility (ICF) catalogs. You must also ensure that the log copy pool is
set up to contain the volumes for the BSDSs, the active logs, and the associated catalogs.

Use BACKUP SYSTEM FULL to allow for recovery of both data and logs. You can use the RESTORE
SYSTEM utility to recover the data. However, RESTORE SYSTEM does not restore the logs; the utility
only applies the logs. If you want to restore the logs, you must use another method to restore them.

DATA ONLY
Indicates that you want to copy only the database copy pool. You must ensure that the database copy
pool is set up to contain the volumes for the databases and the associated ICF catalogs.

ALTERNATE_CP
Specifies an alternate copy pool that BACKUP SYSTEM is to use for the system-level backup. The
ALTERNATE_CP value applies to both the database copy pool and the log copy pool, if one is specified.

Specify ALTERNATE_CP if you want to make extra system-level backups on different target volumes.
You can then use the DBBSG and LGBSG options to specify alternate backup storage groups rather
than using the backup storage group that is associated with the copy pool storage group.

If the ALTERNATE_CP option is omitted from the utility control statement, BACKUP SYSTEM uses the
following copy pools:

• If the value of the ALTERNATE_CP subsystem parameter is blank, BACKUP SYSTEM uses the
standard copy pools (DSN$locname$DB for the database copy pool and DSN$locname$LG for the
log copy pool).

• If the ALTERNATE_CP subsystem parameter is not blank, BACKUP SYSTEM alternates between
the standard copy pools and the alternate copy pools that are specified in the ALTERNATE_CP
subsystem parameter.

(copy-pool)
A string value to be used for the copy pool name. This value can be up to 14 characters. DB2
builds the copy pool names as follows:

• DSN$copy-pool$DB for the database copy pool
• DSN$copy-pool$LG for the log copy pool

These copy pool names must be defined in the DFSMS configuration.

Related information:

“Copy pools” on page 57
Defining Copy Pools (DFSMSdfp Storage Administration)
Defining a copy pool backup storage group (DFSMSdfp Storage Administration)
ALTERNATE COPY POOL field (ALTERNATE_CP subsystem parameter) (Db2 Installation and
Migration)

DBBSG
Specifies the backup storage group for the database copy pool. This option is valid only if
ALTERNATE_CP is specified.
(storgroup)

The name of the storage group. This name can be up to 8 characters and must be defined to
DFSMS with the COPY POOL BACKUP attribute.

If DBBSG is not specified, BACKUP SYSTEM uses the value of the UTIL_DBBSG subsystem parameter.
If UTIL_DBBSG is blank, BACKUP SYSTEM uses the copy pool backup storage group that is associated
with each copy pool storage group, as defined in DFSMS.

Chapter 9. BACKUP SYSTEM 55

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idas200/defcopy.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idas200/defcpbsg.htm
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_alternatecp.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_alternatecp.html

Related information:

DB BACKUP STG GROUP field (UTIL_DBBSG subsystem parameter) (Db2 Installation and
Migration)

LGBSG
Specifies the backup storage group for the log copy pool. This option is valid only if ALTERNATE_CP is
specified.
(storgroup)

The name of the storage group. This name can be up to 8 characters and must be defined to
DFSMS with the COPY POOL BACKUP attribute.

If LGBSG is not specified, BACKUP SYSTEM uses the value of the UTIL_LGBSG subsystem parameter.
If UTIL_LGBSG is blank, BACKUP SYSTEM uses the copy pool backup storage group that is associated
with each copy pool storage group, as defined in DFSMS.

Related information:

LOG BACKUP STG GRP field (UTIL_LGBSG subsystem parameter) (Db2 Installation and Migration)

ESTABLISH FCINCREMENTAL
Specifies that a persistent incremental FlashCopy relationship is to be established, if none exists, for
source copy volumes in the database copy pool. Use this keyword once to establish the persistent
incremental FlashCopy relationships. Subsequent invocations of BACKUP SYSTEM (without this
keyword) automatically process the persistent incremental FlashCopy relationship.

END FCINCREMENTAL
Specifies that a last incremental FlashCopy is to be taken and that the persistent incremental
FlashCopy relationship is to be withdrawn for all of the volumes in the database copy pool. Use this
keyword only if you do not want further incremental FlashCopy backups of the database copy pool.

FORCE
Indicates that you want to overwrite the oldest DFSMShsm version of the fast replication copy of the
database copy pool. You can overwrite these copy pools even if the dump to tape or the copy pool's
DFSMShsm dump classes were initiated, but are only partially completed.

Use the FORCE option only if it is more important to take a new system-level backup than to save a
previous system-level backup to tape.

DUMP
Indicates that you want to create a fast replication copy of the database copy pool and the log copy
pool on disk and then initiate a dump to tape of the fast replication copy. The dump to tape begins
after Db2 successfully establishes relationships for the fast replication copy.

The BACKUP SYSTEM utility does not wait for the dump processing to complete.

This option requires z/OS Version 1.8.

DUMPCLASS
Indicates the DFSMShsm dump class that you want to use for the dump processing. You can specify
up to five dump classes. If you do not specify a dump class, Db2 uses the default dump classes that
are defined for the copy pools.

DUMPONLY
Indicates that you want to create a dump on tape of an existing fast replication copy (that resides on
the disk) of the database copy pool and the log copy pool. You can also use this option to resume a
dump process that failed.

The BACKUP SYSTEM utility does not wait for the dump processing to complete.

This option requires z/OS Version 1.8.

TOKEN (X'byte-string')
Specifies which fast replication copy of the database copy pool and the log copy pool to dump to tape.

The token is a 36 digit or 44-digit hexadecimal byte string that uniquely identifies each system-level
backup and is reported in the DSNJU0004 job output. For a data sharing system, run DSNJU0004

56 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_utildbbsg.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_utildbbsg.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_utillgbsg.html

with the MEMBER option so that the system-level backup information is displayed for all members.
Backups that are taken before the BSDS is converted to 10-byte extended format are identified with
36-digit tokens. Backups that are taken after the BSDS is converted to 10-byte extended format
are identified with 44-digit tokens. If specified, the token must be in the correct format for the
system-level backup.

If you do not specify TOKEN, the most recent fast replication copy of the copy pools is dumped to
tape.

Before running BACKUP SYSTEM
Certain activities might be required before you run the BACKUP SYSTEM utility, depending on your
situation.

To run BACKUP SYSTEM, ensure that the following conditions are true:

• The data sets that you want to copy are SMS-managed data sets.
• You have disk control units that support ESS FlashCopy.
• Any needed copy pools are defined. See “Copy pools” on page 57.
• The ICF catalog for the data must be on a separate volume than the ICF catalog for the logs.
• An SMS backup storage group is defined for each storage group in the copy pools.
• Before defining the copy pool or pools, ensure that all members in a data sharing group are in an active,

quiesced, or deactivated status. You can use the DISPLAY GROUP command to check member status. If
a member is in a failed state, correct the error that caused the failure and restart the failed member. If a
member is in an unknown state ('********'), contact IBM Support.

Related information
Defining Copy Pools (DFSMSdfp Storage Administration)
Defining Storage Group Attributes (DFSMSdfp Storage Administration)
Altering copy pools (DFSMSdfp Storage Administration)

Copy pools
The BACKUP SYSTEM utility uses copy pools. A copy pool is a defined set of storage groups that contain
data that DFSMShsm can back up and recover collectively. Each of these storage groups contains the
name of the associated backup storage group for storing the backup.

Each Db2 subsystem can have up to two standard copy pools, one for databases and one for logs.
BACKUP SYSTEM copies the volumes that are associated with these copy pools at the time of the copy.

You must define any needed copy pools before you run BACKUP SYSTEM. You must at least define a
database copy pool, and that definition must include the ICF catalog names. (You can add the ICF catalog
names to the database copy pool definition by altering the copy pools.) If you plan to also copy the logs,
define another copy pool for your logs.

Use the following Db2 naming convention when you define the required copy pools:

DSN$locn-name$cp-type

where:

DSN
The unique Db2 product identifier.

$
A delimiter. You must use the dollar sign character ($).

locn-name
The Db2 location name.

cp-type
The copy pool type. Use DB for database and LG for log.

Chapter 9. BACKUP SYSTEM 57

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idas200/defcopy.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idas200/defnsg.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idas200/altcp.htm

Optionally, you can define alternate copy pools. An alternate copy pool includes the same defined set
of storage groups as the standard copy pool; however different backup storage groups are specified.
Therefore, you can make system-level backups on different target volumes. These target volumes can
be shared among different Db2 subsystems. That is, a volume can be used by another subsystem if it is
not part of an active copy. You can make these extra backups without overwriting the primary production
system-level backup or invalidating any versions in the regular backup storage group.

Use the following Db2 naming convention when you define the alternate copy pools:

DSN$name$cp-type

where name is a string value, up to 14 characters.

You can use one of the following two methods to specify that BACKUP SYSTEM use an alternate copy pool
for the system-level backup

• Specify a value for the ALTERNATE_CP subsystem parameter. In this case, BACKUP SYSTEM alternates
between using the standard copy pool and the alternate copy pool.

• Explicitly specify ALTERNATE_CP on the BACKUP SYSTEM utility control statement. In this case,
BACKUP SYSTEM uses the specified alternate copy pool for that utility invocation only.

The ALTERNATE_CP value applies to both the database copy pool and the log copy pool, if one is
specified.

If you use Metro Mirror (Peer-to-Peer Remote Copy or PPRC) or z Global Mirror (Extended Remote Copy
or XRC), and Remote Pair FlashCopy (RPFC) support is enabled, use the following fields on the Copy Pool
Define panel to allow volume-level FlashCopy operations on the primary volumes by DFSMShsm:

• FRBACKUP to PPRC Primary Volumes allowed
• FRRECOV to PPRC Primary Volumes allowed
• FRBACKUP to XRC Primary Volumes allowed
• FRRECOV to XRC Primary Volumes allowed

Related reference
ALTERNATE COPY POOL field (ALTERNATE_CP subsystem parameter) (Db2 Installation and Migration)
Related information
Steps for defining a copy pool (DFSMSdfp Storage Administration)
Defining Copy Pools (DFSMSdfp Storage Administration)
Defining Storage Group Attributes (DFSMSdfp Storage Administration)
Altering copy pools (DFSMSdfp Storage Administration)

Data sets that BACKUP SYSTEM uses
The BACKUP SYSTEM utility uses a number of data sets during its operation.

The following table lists the data sets that the BACKUP SYSTEM utility uses. The table lists the DD name
that is used to identify the data set, a description of the data set, and an indication of whether it is
required. Include statements in your JCL for each required data set

Table 4. Data sets that BACKUP SYSTEM uses

Data sets Description Required?

SYSIN An input data set that contains the utility control
statement

Yes

SYSPRINT An output data set for messages Yes

58 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_alternatecp.html
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idas200/stepdcp.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idas200/defcopy.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idas200/defnsg.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idas200/altcp.htm

HSM and DFDSS messages in SYSPRINT

If the HSM_MSGDS_HLQ subsystem parameter is set to the same high-level qualifier that is specified
in the MESSAGEDATASET parameter of the HSM SETSYS command, the SYSPRINT data set contains
diagnostic messages that are generated by HSM and DFDSS. The HSM messages are bracketed by
the DSNU421I and DSNU422I messages. The name of the HSM message is displayed in the utility
SYSPRINT.

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.

Concurrency and compatibility for BACKUP SYSTEM
The BACKUP SYSTEM utility has certain concurrency and compatibility characteristics associated with it.

The BACKUP SYSTEM utility can run concurrently with any other utility; however, it must wait for the
following Db2 events to complete before the copy can begin:

• Extending of data sets
• Writing of 32-KB pages
• Writing close page set control log records (PSCRs)
• Creating data sets (for table spaces, indexes, and so forth)
• Deleting data sets (for dropping tables spaces, indexes, and so forth)
• Renaming data sets (for online reorganizing of table spaces, indexes, and so forth during the SWITCH

phase)

Only one BACKUP SYSTEM job can be running at one time.

BACKUP SYSTEM cannot run concurrently with utilities that use FlashCopy to create data sets in the
database copy pool. For example, suppose that CHECK INDEX SHRLEVEL CHANGE does a FlashCopy from
a source object to a shadow data set. The disk volume where the shadow data set resides becomes the
target in a FlashCopy relationship. If this disk volume is in the database copy pool, BACKUP SYSTEM
cannot copy it.

For the CHECK INDEX, CHECK DATA, and CHECK LOB utilities, you can use subsystem parameter
UTIL_TEMP_STORCLAS to specify an alternative storage class that contains volumes that are not in the
database copy pool. When UTIL_TEMP_STORCLAS is specified, the CHECK utilities use the alternative
storage class to create the shadow data sets. Therefore, volumes that are targets in a FlashCopy
relationship after the CHECK utilities run are not in the database copy pool.

Dumping a fast replication copy to tape
With the BACKUP SYSTEM online utility, you can dump a fast replication copy of a system-level backup
to tape. You can then manage the available disk space, retain the system-level backups, and provide a
means of recovery after a media failure.

Procedure
To dump a fast replication copy of a system-level backup to tape that was taken without the DUMP option,
or to re-initiate dump processing that has failed:
1. Identify the token (a 36 digit or 44 digit hexadecimal byte string) in the DSNJU004 output.
2. Create and run your utility control statement with the DUMPONLY option. Specify the token if the

system-level backup is not the most recent system-level backup taken.

Restriction: Do not dump system-backups to the same tape that contains image copies or concurrent
copies because the RECOVER utility requires access to both

Chapter 9. BACKUP SYSTEM 59

3. Run the DFSMShsm command LIST COPYPOOL with the ALLVOLS option to verify that the dump to
tape was successful.
The BACKUP SYSTEM utility issues the DFSMShsm command to initiate a dump, but it does not wait for
the dump to be completed.

Backups of log copy pools
If you take backups of both the log and database copy pool, you can use the backups to restore the log
copy pool.

When you use backups to restore the log copy pool, if the active log data sets are stripped, or if the
log copy pool is for a data sharing environment, you must specify the data complete LRSN during the
conditional restart in the following scenarios:

• You are cloning a Db2 system by using a system-level backup as the source. In this case, conditionally
restart Db2 with an ENDRBA or ENDLRSN that is equal to the data complete LRSN of the system-level
backup.

• You are performing a system-level point-in-time recovery. In this case, conditionally restart Db2 with
the log truncation point equal to or less than the data complete LRSN of the system-level backup. Use
the data complete LRSN as the CRESTART ENDRBA, ENDLRSN, or SYSPITR log truncation point.

You can determine the data complete LRSN from the following places:

• Message DSNU1614I, which is generated when BACKUP SYSTEM completes successfully
• The report that is generated by the print log map utility (DSNJU004)

Related concepts
“Before running RESTORE SYSTEM” on page 692
Certain activities might be required before you run the RESTORE SYSTEM utility, depending on your
situation.
Conditional restart with system-level backups (Db2 Administration Guide)
Related reference
“DSNJU004 (print log map)” on page 873
The DSNJU004 (print log map) stand-alone utility generates a variety of information that can be useful in
backup and recovery situations.
Related information
DSNU1614I (Db2 Messages)

Termination or restart of BACKUP SYSTEM
You can terminate BACKUP SYSTEM by using the TERM UTILITY command. BACKUP SYSTEM checks for
the TERM UTILITY command before the call to copy data. TERM UTILITY deletes the copy that is being
created through the BACKUP SYSTEM utility.

To use TERM UTILITY to terminate BACKUP SYSTEM on a data sharing group, you must issue the
command from the member on which the BACKUP SYSTEM utility is invoked.

You can restart a BACKUP SYSTEM utility job, but it starts from the beginning again.

Sample BACKUP SYSTEM control statements
Use sample control statements as models for developing your own BACKUP SYSTEM utility control
statements.

Example 1: Creating a full backup of a Db2 subsystem or data sharing group

60 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_conditionalrestartwithslb.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu1614i.html

The following control statement specifies that the BACKUP SYSTEM utility is to create a full backup copy
of a Db2 subsystem or data sharing group. The full backup includes copies of both the database copy pool
and the log copy pool. In this control statement, the FULL option is not explicitly specified, because it is
the default.

//STEP1 EXEC DSNUPROC,TIME=1440,
// UTPROC='',
// SYSTEM='DSN'
//SYSIN DD *
 BACKUP SYSTEM
/*

Example 2: Creating a data-only backup of a Db2 subsystem or data sharing group

The following control statement specifies that BACKUP SYSTEM is to create a backup copy of only the
database copy pool for a Db2 subsystem or data sharing group.

//STEP1 EXEC DSNUPROC,TIME=1440,
// UTPROC='',
// SYSTEM='DSN'
//SYSIN DD *
 BACKUP SYSTEM DATA ONLY
/*

Example 3: Creating a fast replication copy of the database copy pool and dumping the copy to tape

The following control statement specifies that BACKUP SYSTEM is to create a fast replication copy of the
database copy pool and initiate a dump to tape of the fast replication copy.

//SYSOPRB JOB (ACCOUNT),'NAME',CLASS=K
//UTIL EXEC DSNUPROC,SYSTEM=V91A,UID='TEMB',UTPROC=''
//*
//*
//DSNUPROC.SYSUT1 DD DSN=SYSOPR.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
 BACKUP SYSTEM DATA ONLY DUMP
/*

Example 4: Creating a fast replication copy of the database copy pool, dumping the copy to tape, and
allowing oldest copy to be overwritten

The following control statement specifies that BACKUP SYSTEM is to perform the following actions:

• Create a fast replication copy of the database copy pool
• Initiate® a dump to tape of the fast replication copy
• Allow the oldest fast replication copy to be overwritten

//SYSOPRB JOB (ACCOUNT),'NAME',CLASS=K
//UTIL EXEC DSNUPROC,SYSTEM=V91A,UID='TEMB',UTPROC=''
//*
//*
//DSNUPROC.SYSUT1 DD DSN=SYSOPR.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
 BACKUP SYSTEM DATA ONLY DUMP FORCE
/*

Chapter 9. BACKUP SYSTEM 61

Example 5: Dumping an existing fast replication copy to tape

The following control statement specifies that BACKUP SYSTEM is to dump the existing fast replication
copy X'E5F9F1C1BD1909683AA8A1A600000E6962DE' to tape, using the DB2STGD2 dump class.

//SYSOPRB JOB (ACCOUNT),'NAME',CLASS=K
//UTIL EXEC DSNUPROC,SYSTEM=V91A,UID='TEMB',UTPROC=''
//*
//*
//DSNUPROC.SYSUT1 DD DSN=SYSOPR.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
 BACKUP SYSTEM DATA ONLY DUMPONLY
 TOKEN (X'E5F9F1C1BD1909683AA8A1A600000E6962DE')
 DUMPCLASS(DB2STGD2)
/*

Example 6: Creating a system-level backup with alternate copy pools

The following control statement specifies that BACKUP SYSTEM is to use an alternate copy pool for the
system-level backup. The DBBSG option specifies the backup storage group for the database copy pool.
The LGBSG option specifies the backup storage group for the log copy pool.

BACKUP SYSTEM DUMPONLY TOKEN(X'C4C2F2C1CD93124D9A9833340000A50079AA') DUMPCLASS(DB2STGD2)
ALTERNATE_CP(ALTERNATE1) DBBSG(BACKUP2) LGBSG(BACKUP1)

When you run this utility, the output messages show that the utility uses the following copy pool names:

• DSN$ALTERNATE1$DB for the database copy pool
• DSN$ALTERNATE1$LG for the log copy pool

DSNU050I 220 09:46:07.85 DSNUGUTC - BACKUP SYSTEM DUMPONLY TOKEN(X'C4C2F2C1CD93124D9A9833340000A50079AA')
DUMPCLASS(DB2STGD2) ALTERNATE_CP(ALTERNATE1) DBBSG(BACKUP2) LGBSG(BACKUP1)
DSNU1600I 220 09:46:07.85 DSNUVBBD - BACKUP SYSTEM UTILITY FOR DATA STARTING,
 COPYPOOL = DSN$ALTERNATE1$DB
 TOKEN = X'C4C2F2C1CD93124D9A9833340000A50079AA'.
...
DSNU1600I 220 09:46:07.94 DSNUVBBD - BACKUP SYSTEM UTILITY FOR LOGS STARTING,
 COPYPOOL = DSN$ALTERNATE1$LG
 TOKEN = X'C4C2F2C1CD93124D9A9833340000A50079AA'.

BACKUP SYSTEM generated these names based on the ALTERNATE_CP value in the utility statement and
the DB2 convention for copy pool names.

Related information:

“Copy pools” on page 57

62 Db2 12 for z/OS: Utility Guide and Reference

Chapter 10. CATMAINT
The CATMAINT utility updates the catalog; run this utility during migration to Db2 12, before you activate
a function level that requires a new catalog level, or when instructed by IBM Support.

You can tailor and run the DSNTIJTC job to run the CATMAINT utility. For more information, see Migration
step: Tailor Db2 12 catalog: DSNTIJTC (Db2 Installation and Migration) or Installation step: Tailor the Db2
catalog: DSNTIJTC (Db2 Installation and Migration).

Important: Do not attempt to start Db2 at a lower code level after any part of the CATMAINT job for a
higher function level completes. Run the CATMAINT job only after you are satisfied that Db2 can continue
to run at the required code level. The code to tolerate catalog changes is contained in the code level that
delivers the CATMAINT job.

Restriction: Before you can run CATMAINT to tailor the Db2 catalog for function level 502 or higher, you
must first activate function level 500 or 501. That is, the DISPLAY GROUP command output must indicate
HIGHEST ACTIVATED FUNCTION LEVEL (V12R1M500) or higher. This restriction prevents tailoring
the Db2 catalog for function levels higher than 500 while fallback to Db2 11 remains possible. However,
later activating a lower function level such as function level 100* does not restrict the CATMAINT
operation.

Output
Output for CATMAINT UPDATE is the updated catalog.

Authorization required

The required authorization for CATMAINT is the installation SYSADM or installation SYSOPR authority. The
installation SYSOPR authority enables you to install or migrate Db2 without access to user objects.

Execution phases of CATMAINT
The CATMAINT utility operates in the following phases:

1. UTILINIT performs initialization.
2. UTILTERM performs cleanup

If the catalog contains plans or packages that were bound with DBPROTOCOL(PRIVATE), the CATMAINT
utility executes successfully; however, plans and packages that were bound with DBPROTOCOL(PRIVATE)
and access remote locations cannot execute in DB2 10 and later. To enable the plans or packages to
execute, convert them to use the DRDA protocol by rebinding them.

Before running CATMAINT
During migration, the work file database is used for CATMAINT sorting. If you are migrating from a
previous version, calculate the size of the work file database.

If you are migrating to Db2 12 or activating a function level that requires a new catalog level, ensure that
no incompatible applications will interfere with the catalog update. For details, see Identify applications
that are incompatible with online catalog migration.

Data sets for CATMAINT

Include DD statements for all data sets that your job uses. The following table lists the data sets that
CATMAINT uses. The table lists the DD name that is used to identify the data set, a description of the data
set, and an indication of whether it is required.

© Copyright IBM Corp. 1983, 2024 63

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntijtcmigr.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntijtcmigr.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntijtc.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntijtc.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_identifyincompatible.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_identifyincompatible.html

Table 5. Data sets that CATMAINT uses

Data set Description Required?

SYSIN An input data set that contains the utility control
statement

Yes

SYSPRINT An output data set for messages Yes

Concurrency and compatibility for CATMAINT
Many catalog and directory indexes are not available while CATMAINT is running. The unavailability of
these indexes can cause other jobs to time out with messages DSNT318I, DSNT376I or DSNT501I.

CATMAINT syntax and options

Use the ISPF/PDF edit function to create a control statement and to save it in a sequential or partitioned
data set. When you create the JCL for running the job, use the SYSIN DD statement to specify the name of
the data set that contains the utility control statement.

CATMAINT UPDATE LEVEL( level)

switch-spec

utilx-spec

UNLDDN action-token

switch-spec

SCHEMA SWITCH( schema-name , new-schema-name)

OWNER FROM (

,

owner-name) TO ROLE

VCAT SWITCH( catalog-name , new-catalog-name)

utilx-spec
UTILX BASIC

EXTENDED

RESET

UPDATE
Indicates that you want to update the catalog.

LEVEL(level)
Specifies the target function level or catalog level for the CATMAINT job. The format is VvvRrMmmm,
where vv is the version, r is the release, and mmm is the modification level.

If you specify a function level value, Db2 determines the appropriate target catalog level and message
DSNU777I indicates the result. The resulting catalog level might be lower than the value that you
specify because not every function level requires a new catalog level.

64 Db2 12 for z/OS: Utility Guide and Reference

If the target function level requires multiple catalog level updates, the CATMAINT job processes each
update in sequential order. If a later update in the sequence fails, the previous successful updates do
not roll back, and the catalog level remains at the highest level reached. If that occurs, you can correct
the reason for the failure and resubmit the same CATMAINT job.

UNLDDN action-token
Specifies service activity that CATMAINT needs to perform. Run CATMAINT UPDATE UNLDDN action-
token only if the instructions for applying a PTF or IBM Support direct you to do so.
action-token

A value that is passed to CATMAINT to identify the service activity that it is to perform.
SCHEMA SWITCH(schema-name,new-schema-name)

Changes the owner, creator, and schema of database objects. The authorization IDs of the creator or
owner for plans and packages that use the objects are not changed.

schema-name is a string that identifies the existing owner, creator, or schema to be changed. It will be
ignored if it does not identify any owner, creator, or schema names.

schema-name cannot identify a schema or qualifier of an object on which any of the following objects
depend:

• Triggers
• Views
• SQL functions
• Materialized query tables
• Native SQL procedures
• Expression-based indexes
• Column masks
• Row permissions

schema-name cannot be referenced in a check condition in any check constraints. Ownership of
objects will not be changed if the owner is a role.

new-schema-name specifies the new name for the owner, creator, or schema. The name cannot be a
schema that qualifies existing objects.

OWNER FROM(owner-name) TO ROLE
Changes the ownership of objects from a user to a role. A trusted context must have been created for
INSTALL SYSADM before CATMAINT UPDATE OWNER can run. The authorization IDs of the creator or
owner for plans and packages that use the objects are not changed.

owner-name specifies the current owner of the object. You can specify multiple owners.

VCAT SWITCH(catalog-name,new-catlog-name)
Changes the catalog name that is used by storage groups, user indexes, and table spaces.
catalog-name

Identifies the integrated catalog facility catalog that is currently used by user-managed data sets
for indexes, table spaces, and storage groups.

new-catalog-name
Specifies the new user-managed data sets for indexes, table spaces, and storage groups.

The data sets are linear VSAM data sets cataloged in the integrated catalog facility catalog
that catalog-name identifies. For more information about catalog-name values, see Naming
conventions (Db2 SQL).

More than one Db2 subsystem can share the integrated catalog facility catalogs with the current
server. To avoid the chance of those subsystems attempting to assign the same name to different
data sets, specify a catalog-name value that is not used by the other Db2 subsystems.

To specify any non-alphanumeric characters, enclose each name in single quotes.

Chapter 10. CATMAINT 65

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html

UTILX
Updates the catalog and OBD to the state specified (BASIC or EXTENDED).

• If the table space is already in the requested state no change is made, and a successful message
and return code is given.

• If the table space is different from the requested state and the table space is not empty, it fails with
a DSNU777I message.

• If the table space is different from the requested state and the table space is empty, the table space
is reset to the new state.

BASIC
Initializes SYSUTILX and its indexes to basic 6-byte RBA format. Ensure that all utilities are
completed or terminated before you change the format or the command will fail with a DSNU777I
message.

EXTENDED
Initializes SYSUTILX and its indexes to extended 10-byte RBA format. Ensure that all utilities are
completed or terminated before you change the format or the command will fail with a DSNU777I
message.

RESET
Reinitializes the DSNDB01.SYSUTILX directory table space. Because DSNDB01.SYSUTILX
contains information about active and outstanding utilities, you must determine which objects
have a utility in progress and resolve any utility-in-progress states and restrictive states to make
the object available for access.

Reinitialize the DSNDB01.SYSUTILX directory table space in any of the following situations:

• You cannot successfully run the DISPLAY UTILITY or TERMINATE UTILITY commands.

After you run this statement, DSNDB01.SYSUTILX is reset to an empty state, and the previous
contents are lost. If there were active or stopped utilities at that time, their tracking information
is lost and the subsystem might experience unpredictable results. It is important that all utilities that
can be terminated are terminated before you run UPDATE UTILX RESET.

Termination or restart of CATMAINT

You can terminate CATMAINT by using the TERM UTILITY command, but the termination might leave
some indexes in REBUILD-pending status.

CATMAINT cannot be restarted. If you attempt to restart CATMAINT, you receive message DSNU181I,
which states that the utility cannot be restarted. You must terminate the job with the TERM UTILITY
command, and rerun CATMAINT from the beginning.

Related tasks

Migration step: Tailor Db2 12 catalog: DSNTIJTC (Db2 Installation and Migration)
Installation step: Tailor the Db2 catalog: DSNTIJTC (Db2 Installation and Migration)
“Reinitializing DSNDB01.SYSUTILX” on page 460

66 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_activatefunctionlevel.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntijtcmigr.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntijtc.html

You need to reinitialize the DSNDB01.SYSUTILX directory table space if you cannot successfully execute
the DISPLAY UTILITY and TERMINATE UTILITY commands. In this case, DSNDB01.SYSUTILX is damaged
and you cannot recover DSNDB01.SYSUTILX, because errors occur in the LOGAPPLY phase.

Updating the catalog for installation or migration to Db2 12
When you install or migrate to a new release of Db2, you must update the catalog for the prior release to
the new version.

Procedure
Run job DSNTIJTC.
For details, see Installation step: Tailor the Db2 catalog: DSNTIJTC (Db2 Installation and Migration) or
Migration step: Tailor Db2 12 catalog: DSNTIJTC (Db2 Installation and Migration).
Job DSNTIJTC runs the CATMAINT UPDATE to update the catalog. Db2 displays migration status message
DSNU777I at several points during CATMAINT execution. If an abend occurs during migration processing,
message DSNU776I or DSNU778I can give you information about the problem.

Related information
DSNU776I (Db2 Messages)
DSNU777I (Db2 Messages)
DSNU778I (Db2 Messages)

Renaming the owner, creator, and schema of database objects
You can rename the owner, creator, and schema of database objects.

Procedure
Run the CATMAINT utility with the SCHEMA SWITCH options.

This process updates every owner, creator, or schema name in the catalog and directory that matches the
specified schema-name-value.

If schema-name identifies the grantor for existing grants on the updated objects, new-schema-name
becomes the new grantor, and if schema-name identifies the grantee, new-schema-name becomes the
new grantee.

You can change multiple names by repeating the SWITCH keyword, but you can not specify the same
name more than once. The names cannot be longer than 8 bytes in EBCDIC representation. 'SYSIBM' is
not allowed as a schema-name or new-schema-name.

OWNER FROM and SCHEMA SWITCH are mutually exclusive. You cannot specify both clauses in the same
CATMAINT UPDATE statement.

Changing the ownership of objects from an authorization ID to a
role

If a Db2 role is the owner of an object, all users that are associated with that role have the same
owner privileges. You can change the owner of an object from an authorization ID to a role by using the
CATMAINT utility.

Before you begin
You must be running under a trusted context with a role.

Procedure
Run CATMAINT with the OWNER FROM owner_name TO ROLE clause.

Chapter 10. CATMAINT 67

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntijtc.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntijtcmigr.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu776i.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu777i.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu778i.html

The current role will become the owner. All privileges that are held on the object will be transferred from
the original owner to the role with the exception of plans and packages. The original user can be the
grantor or grantee. After the utility completes, the original owner does not have any privileges to the
object .

You can change multiple object owners by specifying multiple owner_name values, but you cannot specify
the same name more than once. If the owner_name value does not own any objects, that value is ignored.
SYSIBM is not allowed as an owner_name value.

Ownership of roles is changed like other objects. However, if the associated trusted context role is owned
by owner_name, the ownership of the role will not be changed, because a role cannot be owned by itself.

Related reference
“CATMAINT” on page 63
The CATMAINT utility updates the catalog; run this utility during migration to Db2 12, before you activate
a function level that requires a new catalog level, or when instructed by IBM Support.
Related information
Authorization IDs and roles (Managing Security)

Changing the catalog name used by storage groups or index spaces
and table spaces

You can use the CATMAINT online utility to change the catalog name that is used by data sets for storage
groups, by index spaces, and table spaces.

About this task
The data sets are linear VSAM data sets cataloged in the integrated catalog facility catalog that catalog-
name identifies. For more information about catalog-name values, see Naming conventions (Db2 SQL).

More than oneDb2 subsystem can share the integrated catalog facility catalogs with the current server. To
avoid the chance of those subsystems attempting to assign the same name to different data sets, specify
a catalog-name value that is not used by the other Db2 subsystems.

Procedure
Run the CATMAINT utility and specify the VCAT SWITCH keywords.
The VCAT SWITCH keyword is similar to the USING VCAT clause of the ALTER TABLESPACE statement
for changing the catalog name. You must move the data for the affected indexes or table spaces to
the data set on the new catalog in a separate step. You can change multiple names by repeating the
SWITCH keyword, but you cannot specify the same name more than once. The VCAT SWITCH option has
no effect on the system indexes and table spaces in DSNDB06 or DSNDB01 because the catalog name is
maintained in the parameter.

Related reference
CREATE TABLESPACE (Db2 SQL)
Data set naming conventions (Db2 Administration Guide)

68 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_authidrole.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_namingconventions.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtablespace.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_datasetnamingconventions.html

Identifying invalidated packages after the owner, creator, or
schema name of an object is renamed

When the schema name of an object is changed, any packages that are dependent on the object are
invalidated. Automatic rebind occurs when the invalidated package is executed.

About this task
Rebind might not be successful if the object is referenced in the application explicitly with the original
schema name. In this case, you need to modify the application. The following queries identify the
packages that will be invalidated:

SELECT DISTINCT DCOLLID, DNAME, DTYPE
 FROM SYSIBM.SYSPACKDEP
 WHERE BQUALIFIER IN (schema_name1, schema_name2,...)
 ORDER BY DCOLLID, DNAME;

Chapter 10. CATMAINT 69

70 Db2 12 for z/OS: Utility Guide and Reference

Chapter 11. CHECK DATA
The CHECK DATA online utility checks table spaces for violations of referential and table check
constraints. This utility also checks for consistency between a base table space and the corresponding
LOB or XML table spaces.

CHECK DATA also verifies data consistency in hash access tables and checks the integrity of XML
documents and their related node ID indexes. CHECK DATA does not check LOB table spaces or
informational referential constraints.

After a conditional restart or a point-in-time recovery, run CHECK DATA on all table spaces where parent
and dependent tables or base and auxiliary tables might not be synchronized.

Restriction: Do not run CHECK DATA on data that is encrypted through built-in functions. Because CHECK
DATA does not decrypt that data, the utility might produce unpredictable results.

Output

CHECK DATA SHRLEVEL REFERENCE optionally copies and deletes rows that violate referential or table
check constraints. The utility copies each row that violates one or more constraints to an exception table.
If a row violates two or more constraints, the utility copies the row only once. CHECK DATA SHRLEVEL
REFERENCE resets any CHECK-pending (CHKP), auxiliary CHECK-pending (ACHKP), and auxiliary warning
(AUXW) restrictive states if the utility finds no errors or if all rows that contain violations were copied to
exception tables and deleted.

CHECK DATA SHRLEVEL CHANGE operates on shadow copies of the table space and generates REPAIR
statements to correct any violations. CHECK DATA SHRLEVEL CHANGE resets any existing CHKP, ACHKP,
and AUXW states if it finds no errors.

CHECK DATA does not set CHECK-pending status on a table space, even if it finds violations of constraints
in the table space.

Authorization required
To execute this utility, you must use a privilege set that includes one of the following authorities:

• STATS privilege for the database
• DBADM, DBCTRL, or DBMAINT authority for the database. If the object on which the utility operates is

in an implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• DATAACCESS authority
• SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can execute CHECK DATA on only SYSUTILX in database
DSNDB01.

If you specify SHRLEVEL CHANGE, the user ID that invokes COPY with the CONCURRENT option must
provide the necessary authority to execute the DFSMSdss COPY command. DFSMSdss creates a shadow
data set with the authority of the utility batch address space. The submitter should have an RACF ALTER
authority, or its equivalent, for the shadow data set.

If you specify the DELETE option, the privilege set must include the DELETE privilege on the tables
that are being checked. If you specify the FOR EXCEPTION option, the privilege set must include the
INSERT privilege on any exception table that is used. If you specify AUXERROR INVALIDATE, LOBERROR
INVALIDATE, or XMLERROR INVALIDATE, the privilege set must include the UPDATE privilege on the base
tables.

© Copyright IBM Corp. 1983, 2024 71

Execution phases of CHECK DATA

Phase
Description

UTILINIT
Initializes utility processing.

CHECKXML
Checks XML structures for all XML table spaces that are specified by INCLUDE XML TABLESPACES.

SCANTAB
Extracts foreign keys. The utility uses an index if the index contains the same columns or a superset
of the columns in the foreign key. Otherwise, the utility scans the table. The following are other
conditions that will cause a scan of the table:

• PART is specified.
• The table contains both indexed and non-indexed foreign keys.
• The table contains LOB columns.
• The table contains XML columns.

SORT
Sorts foreign keys if they are not extracted from the foreign key index.

CHECKDAT
Looks in primary indexes for foreign key parents, checks XML schema validations, checks XML
structure, and issues messages to report detected errors.

REPORTCK
Copies error rows into exception tables and deletes them from the source table if DELETE YES is
specified.

UTILTERM
Performs cleanup.

Syntax and options of the CHECK DATA control statement
The CHECK DATA utility control statement, with its multiple options, defines the function that the utility
job performs.

You can create a control statement with the ISPF/PDF edit function. After you create it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

72 Db2 12 for z/OS: Utility Guide and Reference

Syntax diagram
CHECK DATA

TABLESPACE

database-name .

table-space-name

PART integer

INCLUDE XML TABLESPACES
ALL

xml-spec

CLONE

SHRLEVEL REFERENCE

SHRLEVEL CHANGE

DRAIN_WAIT IRLMRWT-value

DRAIN_WAIT integer

RETRY UTIMOUT-value

RETRY integer

RETRY_DELAY calculated-default

RETRY_DELAY integer

SCOPE PENDING

SCOPE AUXONLY

ALL

REFONLY

XMLSCHEMAONLY

AUXERROR REPORT
1

AUXERROR INVALIDATE

LOBERROR REPORT

LOBERROR INVALIDATE

XMLERROR REPORT

XMLERROR INVALIDATE

FOR EXCEPTION IN table-name1 USE table-name2

DELETE NO

DELETE YES
LOG YES

LOG NO

EXCEPTIONS 0

EXCEPTIONS integer

ERRDDN SYSERR

ERRDDN ddname

WORKDDN SYSUT1 , SORTOUT

WORKDDN ddname1 , ddname2

ddname1

, SYSUT2

SYSUT1
, ddname2

PUNCHDDN SYSPUNCH

PUNCHDDN ddname SORTDEVT device-type

SORTNUM integer

xml-spec

Chapter 11. CHECK DATA 73

(

,

TABLESPACE

database-name .

table-space-name

TABLE

schema-name .

table-name XMLCOLUMN column-name

)

XMLSCHEMA

Notes:
1 If you specify AUXERROR and LOBERROR or AUXERROR and XMLERROR, the options for these keywords
(REPORT and INVALIDATE) must match.

Option descriptions

DATA
Indicates that you want the utility to check referential and table check constraints. CHECK DATA does
not check informational referential constraints.

TABLESPACE database-name.table-space-name
Specifies the table space to which the data belongs. You can specify base table spaces or, if
TABLESPACE is specified as a part of the INCLUDE XML TABLESPACES option, XML table spaces.
TABLESPACE cannot be used to specify LOB table spaces.

database-name is the name of the database and is optional. The default value is DSNDB04.

table-space-name is the name of the table space.

PART integer
Identifies which partition to check for constraint violations.

integer is the physical partition number. It must be in the range from 1 to the number of partitions that
are defined for the table space. The maximum is 4096.

INCLUDE XML TABLESPACES
Indicates that CHECK DATA is to perform consistency checks on the specified XML table spaces and
related node ID indexes.

By default, the utility checks only the XML table spaces and their related node ID indexes. If an
XML type modifier exists for an XML column and xml-spec is specified, XML documents can also be
checked against the stored XML schemas. Specify XMLSCHEMA on the xml-spec option to enable the
check against stored XML schemas.

The consistency checks enabled by INCLUDE XML TABLESPACE are performed in addition to the
existing checks specified by the SCOPE keyword.

XML indexes that are associated with the XML table spaces that are checked are not verified. Run the
CHECK INDEX utility separately on those indexes.

The following checks are performed:

• The XML table space is checked to ensure that all rows of each XML document are present in the
XML table space and that the XML document is structurally intact.

• All entries in the node ID index are checked against the rows in the XML table space. Each index
entry must have a corresponding row in the XML table space, and vice versa. This functionality is
equivalent to running the CHECK INDEX utility on the node ID index.

74 Db2 12 for z/OS: Utility Guide and Reference

• All values in the document ID column are checked against the node ID index. Each document ID
value must have matching entries in the node ID index. Each node ID index value must also have a
document ID value.

• If XMLSCHEMA is specified, CHECK DATA validates documents that are stored in that column.
When a document is validated, the base table row is updated with the validated document that is
returned when SHRLEVEL REFERENCE and XMLERROR INVALIDATE or AUXERROR INVALIDATE are
specified.

ALL
Checks all XML table spaces that are related to the base table spaces that are identified by
the table-space-spec. Specifying ALL is equivalent to explicitly specifying all the XML column
identifiers.

xml-spec
Checks only those XML table spaces and related node ID indexes that are identified by either the
XML column of a table or by the explicit table space name.

Each XML column has a single XML table space that is associated with it. Therefore, an XML table
space can be identified either by the XML column of the base table or by the explicit table space
name.

If an XML column identifier is used, the utility finds the name of the XML table space in the Db2
catalog or the database directory.

table-space-spec
Identifies an XML table space to check. The XML table space specification must identify an
XML table space that has a corresponding column in a base table. The base table must reside
in the table space that is identified by the table-space-spec option of the main CHECK DATA
control statement.

xml-column-spec
Identifies an XML table space to check by the XML column of the XML table space in a base
table. An XML column identifier consists of the fully qualified table name and the name of the
XML column. An XML column identifier must reference a table in any one of the base table
spaces that are to be checked.

XMLSCHEMA
Specifies that if the XML columns have an XML type modifier, the CHECK DATA utility checks
the XML documents against the stored XML schema.

CLONE
Indicates that CHECK DATA is to check the clone table in the specified table space. Because clone
tables cannot have referential constraints, the utility checks only constraints for inconsistencies
between the clone table data and the corresponding LOB data. If you do not specify CLONE, CHECK
DATA operates against only the base table.

SHRLEVEL
Indicates the type of access that is to be allowed for the index, table space, or partition that is to be
checked during CHECK DATA processing.
REFERENCE

Specifies that applications can read from but cannot write to the index, table space, or partition
that is to be checked.

The CHECK DATA utility can write changes to the table space, index space, or partition during
processing.

Restriction: You cannot run CHECK DATA with the SHRLEVEL REFERENCE option on a table space
that contains an archive-enabled table or system-period temporal table when one of the following
options is also specified:

• DELETE YES
• LOBERROR INVALIDATE
• AUXERROR INVALIDATE

Chapter 11. CHECK DATA 75

• XMLERROR INVALIDATE

CHANGE
Specifies that applications can read from and write to the index, table space, or partition that is to
be checked.

When you specify SHRLEVEL CHANGE, CHECK DATA operates on shadow copies only and does not
change the table space, index space, or partition during processing. Specifically, Db2 performs the
following actions:

• Drains all writers and forces the buffers to disk for the specified object and all of its indexes
• Invokes DFSMSdss to copy the specified object and all of its indexes to shadow data sets
• Enables read/write access for the specified object and all of its indexes
• Runs CHECK INDEX on the shadow data sets

By default, DFSMSdss uses FlashCopy to copy Db2 objects to shadow data sets, if FlashCopy
is available. If DFSMSdss cannot use FlashCopy, DFSMSdss uses a slower method. As a result,
creating copies of objects might take a long time, and the time during which the data and indexes
have read-only access might increase. You can set the CHECK_FASTREPLICATION subsystem
parameter to REQUIRED to force the CHECK utility to use only FlashCopy. If FlashCopy is not
available, the CHECK utility fails.

When you specify SHRLEVEL CHANGE, CHECK DATA also generates REPAIR LOCATE DELETE
statements that you can run to delete the rows that were found to be in error. These statements
are written to the PUNCHDDN data set. When you also specify one of the following options, CHECK
DATA does not generate REPAIR statements for inconsistencies that it finds in compressed rows:

• AUXERROR INVALIDATE
• LOBERROR INVALIDATE
• XMLERROR INVALIDATE

Important: Check any generated REPAIR statements after you run CHECK DATA SHRLEVEL
CHANGE on tables that have data versioning activated or on history tables. Historic information
could be deleted.

Related information:

“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on page 42

DRAIN_WAIT
Specifies the number of seconds that CHECK DATA is to wait when it drains the table space or index.
The specified time is the aggregate time for objects that are to be checked. This value overrides the
values that are specified by the IRLMRWT and UTIMOUT subsystem parameters.

integer can be any integer from 0 to 1800. If you do not specify DRAIN_WAIT or specify a value of 0,
CHECK DATA uses the value of the lock timeout subsystem parameter IRLMRWT.

RETRY integer
Specifies the maximum number of retries that CHECK DATA is to attempt.

integer can be any integer from 0 to 255. If you do not specify RETRY, CHECK DATA uses the value of
the utility multiplier system parameter UTIMOUT.

Specifying RETRY can increase processing costs and result in multiple or extended periods during
which the specified index, table space, or partition is in read-only access.

RETRY_DELAY integer
Specifies the minimum duration, in seconds, between retries. integer can be any integer from 1 to
1800.

If you do not specify RETRY_DELAY, CHECK DATA uses the smaller of the following two values:

• DRAIN_WAIT value × RETRY value
• DRAIN_WAIT value × 10

76 Db2 12 for z/OS: Utility Guide and Reference

SCOPE
Limits the scope of the rows in the table space that are to be checked.
PENDING

Indicates that the only rows to be checked are those rows that are in table spaces or partitions
that are in CHECK-pending (CHKP) status. For each or these rows, CHECK DATA checks all
referential and check constraints and LOB and XML columns.

When CHECK DATA checks XML columns, the utility verifies the relationship between the node ID
index and the values in the XML indicator column in the base table space. If the INCLUDE XML
TABLESPACES option is specified, CHECK DATA also validates the schema for all specified XML
table spaces that satisfy both of the following conditions:

• Are in CHKP status
• Reference a table in any of the base table spaces to be checked

If you specify SCOPE PENDING for a table space that is not in CHKP status, CHECK DATA does not
check the table space. The utility does not issue an error message.

AUXONLY
Indicates that only the LOB and XML columns are to be checked for table spaces that have tables
with LOB columns or XML columns. CHECK DATA does not check referential and check constraints.

When CHECK DATA checks XML columns, the utility verifies only the relationship between the
node ID index and the values in the XML indicator column in the base table space.

ALL
Indicates that all dependent tables in the specified table spaces are to be checked. CHECK DATA
checks all referential and check constraints and LOB and XML columns.

If the INCLUDE XML TABLESPACES option is specified, the associated XML table space and node
ID index are checked for structural defects and inconsistencies.

REFONLY
Indicates the same behavior as the ALL option, except that the LOB and XML columns are not
checked. CHECK DATA checks all referential and check constraints.

XMLSCHEMAONLY
Indicates that only the XML schema is to be validated for the XML objects that are specified by the
INCLUDE XML TABLESPACE option. CHECK DATA does not check XML and LOB column integrity or
referential and check constraints.

AUXERROR
Specifies the action that CHECK DATA is to perform when it finds a LOB or XML column check error.
REPORT

A LOB or XML column check error is reported with a warning message. The base table space is set
to the auxiliary CHECK-pending (ACHKP) status.

Note: CHECK DATA sets the base table space to ACHKP status if SHRLEVEL REFERENCE is
specified. If SHRLEVEL CHANGE is specified, CHECK DATA does not change the status of the
base table space.

INVALIDATE
A LOB or XML column check error is reported with a warning message. The base table LOB or XML
column is set to an invalid status. A LOB or XML column with invalid status that is now correct is
set valid. This action is also reported with a message. The base table space is set to the auxiliary
warning (AUXW) status if any LOB column remains in invalid status.

If SHRLEVEL REFERENCE is specified, CHECK DATA sets the base table of a LOB or XML column
to an invalid status and the base table space to AUXW status. If SHRLEVEL CHANGE is specified,
CHECK DATA does not change the status of the base table space or a LOB or XML column.

If SHRLEVEL REFERENCE and INCLUDE XML TABLESPACES are specified, CHECK DATA deletes
corrupted XML documents and the associated node ID index entries. If the node ID index is not
consistent with the content in the XML table, CHECK DATA corrects the node ID index.

Chapter 11. CHECK DATA 77

Restrictions: You cannot run CHECK DATA SHRLEVEL REFERENCE with AUXERROR INVALIDATE
on the following objects:

• A table or a history table that is defined with data versioning
• A table space that contains an archive-enabled table

Before you use CHECK DATA to check a LOB or XML column, take the following actions:

1. Run CHECK LOB to ensure the validity of the LOB table space.
2. Run REBUILD INDEX or CHECK INDEX on the index on the auxiliary table to ensure its validity.
3. Run REBUILD INDEX or CHECK INDEX on the NODE ID index on the XML table space to ensure its

validity.

LOBERROR
Specifies the action that CHECK DATA is to perform when it finds a LOB column check error. Do
not specify LOBERROR if AUXERROR is specified. If both are specified, the keywords must match.
LOBERROR is ignored for SCOPE XMLONLY since LOB checking is not being performed.
REPORT

A LOB column check error is reported with a warning message. The base table space is set to the
auxiliary CHECK-pending (ACHKP) status.

If AUXERROR is not specified, the default value is REPORT.

INVALIDATE
A LOB column check error is reported with a warning message. The base table LOB column is set
to an invalid status. A LOB column with invalid status that is now correct is set valid. The base
table space is set to the auxiliary warning (AUXW) status if any LOB column remains in invalid
status.

Restrictions: You cannot run CHECK DATA with LOBERROR INVALIDATE on the following objects:

• A table or a history table that is defined with data versioning
• A table space that contains an archive-enabled table if SHRLEVEL REFERENCE is also specified

XMLERROR
Specifies the action that CHECK DATA is to perform when it finds an XML column check error. Do
not specify XMLERROR if AUXERROR is specified. If both are specified, the keywords must match.
XMLERROR is ignored for SCOPE XMLONLY since LOB checking is not being performed.
REPORT

An XML column check error is reported with a warning message. The base table space is set to the
auxiliary CHECK-pending (ACHKP) status.

If AUXERROR is not specified, the default value is REPORT.

Note: CHECK DATA sets the base table space to ACHKP status if SHRLEVEL REFERENCE is
specified. If SHRLEVEL CHANGE is specified, CHECK DATA does not change the status of the
base table space.

INVALIDATE
An XML column check error is reported with a warning message. The base table XML column is
set to an invalid status. An XML column with invalid status that is now correct is set valid. The
base table space is set to the auxiliary warning (AUXW) status if any LOB column remains in invalid
status.

CHECK DATA sets the base table of a LOB or XML column to an invalid status and the base table
space to AUXW only if SHRLEVEL REFERENCE is specified. If SHRLEVEL CHANGE is specified,
CHECK DATA does not change the status of the base table space or a LOB or XML column.

If SHRLEVEL REFERENCE and INCLUDE XML TABLESPACES are specified, CHECK DATA deletes
corrupted XML documents and the associated node ID index entries. If the node ID index is not
consistent with the content in the XML table, CHECK DATA corrects the node ID index.

78 Db2 12 for z/OS: Utility Guide and Reference

Restrictions: You cannot run CHECK DATA SHRLEVEL REFERENCE with XMLERROR INVALIDATE
on the following objects:

• A table or a history table that is defined with data versioning
• A table space that contains an archive-enabled table

FOR EXCEPTION

Indicates that any row that is in violation of referential or table check constraints is to be copied to an
exception table. Although this keyword does not apply to the checking of LOB or XML columns, rows
with LOB or XML columns are moved to the exception tables. If you specify AUXONLY for LOB and XML
checking only, the FOR EXCEPTION option is ignored.

If any row violates more than one constraint, that row is included only once in the exception table.
CHECK DATA includes checking for XML schema violations and XML structure checking.

This option is ignored when SHRLEVEL CHANGE is specified.

If you run CHECK DATA on a base table with XML columns, the EXCEPTIONS keyword has an effect
only if the INCLUDE XML TABLESPACES option is also specified.

IN table-name1
Specifies the table (in the table space that is specified on the TABLESPACE keyword) from which
rows are to be copied.

table-name1 is the name of the table.

USE table-name2
Specifies the exception table into which error rows are to be copied.

table-name2 is the name of the exception table and must be a base table; it cannot be a view,
synonym, or alias.

For both table-name1 and table-name2, enclose the table name in quotation marks if the name
contains a blank or a special character. (A special character is any character other than a letter or a
digit.)

DELETE
Indicates whether rows that are in violation of referential or table check constraints are to be deleted
from the table space.

You can specify DELETE only if you specify the FOR EXCEPTION clause.

NO
Indicates that error rows are to remain in the table space. Primary errors in dependent tables are
copied to exception tables.

If DELETE NO and SHRLEVEL REFERENCE are specified, and constraint violations are detected,
CHECK DATA places the table space in the CHECK-pending status.

YES
Indicates that error rows are to be deleted from the table space.

When you specify FOR EXCEPTION, deleted rows from both dependent and descendant tables are
placed into exception tables.

If you delete rows from a table space that is not logged, the table space is placed in informational
COPY-pending (ICOPY) status.

Restrictions: You cannot run CHECK DATA with DELETE YES on the following objects:

• A table or a history table that is defined with data versioning
• A table space that contains an archive-enabled table if SHRLEVEL REFERENCE is also specified

LOG
Specifies the logging action that is to be taken when records are deleted.

Chapter 11. CHECK DATA 79

YES
Logs all records that are deleted during the REPORTCK PHASE.

If the table space has the NOT LOGGED attribute, LOG YES is ignored.

NO

Does not log any records that are deleted during the REPORTCK phase. Other types of log records
are still written. If any rows are deleted, CHECK DATA places the table space in COPY-pending
status and any indexes with the COPY YES attribute in informational COPY-pending status. If
rows are deleted from a table space that is not logged, the table space is marked informational
COPY-pending.

Attention: Use the LOG NO option with caution because its use limits your ability to
recover data by using the log. For example, suppose that you issue a CHECK DATA DELETE
YES LOG NO statement at particular log RBA. You can recover data that exists on the
log before that point in time or after the point on the log at which the utility execution
completes.

EXCEPTIONS integer
Specifies the maximum number of exceptions, which are reported by messages only. CHECK
DATA terminates in the CHECKDATA phase when it reaches the specified number of exceptions; if
termination occurs, the error rows are not written to the EXCEPTION table.

Only records that contain primary referential integrity errors or table check constraint violations are
applied toward the exception limit. The number of records that contain secondary errors is not limited.

integer is the maximum number of exceptions. The default value is 0, which indicates no limit on the
number of exceptions.

This keyword does not apply to LOB table spaces or base table spaces that contain XML columns.

ERRDDN ddname
Specifies a DD statement for an error processing data set.

ddname is either a DD name or a TEMPLATE name specification from a previous TEMPLATE control
statement. If utility processing detects that the specified name is both a DD name in the current job
step and a TEMPLATE name, the utility uses the DD name. The default value isSYSERR.

WORKDDN (ddname1,ddname2)
Specifies the DD statements for the temporary work file for sort input and the temporary work file for
sort output. A temporary work file for sort input and output is required.

You can use the WORKDDN keyword to specify either a DD name or a TEMPLATE name specification
from a previous TEMPLATE control statement. If utility processing detects that the specified name is
both a DD name in the current job step and a TEMPLATE name, WORKDDN uses the DD name.

ddname1 is the DD name of the temporary work file for sort input. The default is SYSUT1.

ddname2 is the DD name of the temporary work file for sort output. The default is SORTOUT.

PUNCHDDN ddname
Specifies the DD statement for a data set that is to receive the REPAIR utility control statements that
CHECK DATA SHRLEVEL CHANGE generates.

ddname is the DD name.

The default value is SYSPUNCH.

The PUNCHDDN keyword specifies either a DD name or a TEMPLATE name specification from a
previous TEMPLATE control statement. If utility processing detects that the specified name is both a
name in the current job step and a TEMPLATE name, the utility uses the DD name.

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically allocated by a sort
program. You can specify any disk device type that is acceptable to the DYNALLOC parameter of the

80 Db2 12 for z/OS: Utility Guide and Reference

SORT or OPTION control statement for the sort program. Tape devices are not supported by the sort
program.

Do not use a TEMPLATE specification to dynamically allocate sort work data sets. The presence of the
SORTDEVT keyword controls dynamic allocation of these data sets.

device-type is the device type. If you omit SORTDEVT and a sort is required, you must provide the DD
statements that the sort program requires for the temporary data sets.

SORTNUM integer
Specifies the number of temporary data sets that are to be dynamically allocated by the sort program.

integer is the number of temporary data sets that can range from 2 to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and omit SORTNUM, no value is
passed to the sort program; the sort program uses its own default.

You need at least two sort work data sets for each sort. The SORTNUM value applies to each sort
invocation in the utility.

Important: The SORTNUM keyword is ignored if the IGNSORTN subsystem parameter is set to YES.

Related reference
“TEMPLATE” on page 751
The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the
data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.

Before running CHECK DATA
Certain activities might be required before you run the CHECK DATA utility, depending on your situation.

For a table with no LOB columns
Before running CHECK DATA, you should run CHECK INDEX on primary key indexes and foreign key
indexes to ensure that the indexes that CHECK DATA uses are valid. This action is especially important
before using CHECK DATA with the DELETE YES or PART options.

For a table with LOB columns

If you plan to run CHECK DATA on a base table space that contains at least one LOB column, complete the
following steps prior to running CHECK DATA:

1. Run CHECK LOB on the LOB table space.
2. Run CHECK INDEX on the index on the auxiliary table to ensure the validity of the LOB table space and

the index on the auxiliary table.
3. Run CHECK INDEX on the indexes on the base table space.

The relationship between a base table with a LOB column and the LOB table space is shown in the
following figure. The LOB column in the base table points to the auxiliary index on the LOB table space, as
illustrated in the figure.

Chapter 11. CHECK DATA 81

Figure 4. Relationship between a base table with a LOB column and the LOB table space

If the LOB table space is in either the CHECK-pending or RECOVER-pending status, or if the index on the
auxiliary table is in REBUILD-pending status, CHECK DATA issues an error message and fails.

Complete all LOB column definitions. You must complete all LOB column definitions for a base table
before running CHECK DATA. A LOB column definition is not complete until the LOB table space, auxiliary
table, and index on the auxiliary table have been created. If any LOB column definition is not complete,
CHECK DATA fails and issues error message DSNU075E.

For an XML table space
Before running CHECK DATA, run CHECK INDEX on the node ID index of each XML column. If you need to
determine the XML objects, query the SYSXMLRELS catalog table.

Data sets that CHECK DATA uses
The CHECK DATA utility uses a number of data sets during its operation.

The following table lists the data sets that CHECK DATA uses. The table lists the DD name that is used
to identify the data set, a description of the data set, and an indication of whether it is required. Include
statements in your JCL for each required data set and any optional data sets that you want to use.

Table 6. Data sets that CHECK DATA uses

Data set Description Required?

SYSIN An input data set that contains the utility control
statement.

Yes

SYSPRINT An output data set for messages. Yes

Work data sets Two temporary data sets for sort input and
sort output. Specify the DD names by using the
WORKDDN option of the utility control statement.
The default ddname for sort input is SYSUT1. The
default ddname for sort output is SORTOUT.

Yes

82 Db2 12 for z/OS: Utility Guide and Reference

Table 6. Data sets that CHECK DATA uses (continued)

Data set Description Required?

Error data set An output data set that collects information
about violations that are encountered during the
CHECKDAT phase for referential constraints or the
SCANTAB phase for check constraints. Specify the
DD name by using the ERRDDN parameter of the
utility control statement. The default ddname is
SYSERR.

Yes

UTPRINT A data set that contains messages from the sort
program (usually, SYSOUT or DUMMY).

Yes

The following objects are named in the utility control statement and do not require DD statements in the
JCL:

Table space
Object that is to be checked. (If you want to check only one partition of a table space, use the PART
option in the control statement.)

Exception table
Table that stores rows that violate any referential constraints. For each table in a table space that is
checked, specify the name of an exception table in the utility control statement. Any row that violates
a referential constraint is copied to the exception table.

Sort work data sets cannot span volumes. Smaller volumes require more sort work data sets to sort the
same amount of data; therefore, large volume sizes can reduce the number of needed sort work data sets.
It is recommended that at least 1.2 times the amount of data to be sorted be provided in sort work data
sets on disk.

Tape devices are not supported for sort work data sets.

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Defining work data sets
Three sequential data sets are required during execution of CHECK DATA. Two work data sets and one
error data set are described by DD statements in the WORKDDN and ERRDDN options.

Procedure
To define work data sets:
1. Find the approximate size, in bytes, of the WORKDDN data set:

Option Description

If a table space has a
LOB column

Count a total of 70 bytes for the LOB column and multiply the sum by the
number of keys and LOB columns that are checked.

If a table space does
not have a LOB column

Add 20 to the length of the longest foreign key.

For nonpadded indexes, the length of the longest foreign key is the
maximum possible length of the key with all varying-length columns in the

Chapter 11. CHECK DATA 83

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

Option Description

key padded to their maximum length, plus 2 bytes for each varying-length
column.

2. Create the ERRDDN data set so that it is large enough to accommodate one error entry (length=60
bytes) per violation that CHECK DATA detects.

Shadow data sets for CHECK DATA
When you execute the CHECK DATA utility with the SHRLEVEL CHANGE option, the utility uses shadow
data sets.

If a table space, partition, or index resides in Db2-managed data sets and shadow data sets do not
already exist when you execute CHECK DATA, Db2 creates the shadow data sets. At the end of CHECK
DATA processing, the Db2-managed shadow data sets are deleted.

For user-managed data sets, DFSMSdss can create, or scratch and re-create, the required shadow data
sets as needed. When the CHECK DATA utility completes the processing of user-managed data sets, the
shadow data sets are not automatically scratched.

If you do not want the shadow data sets to be allocated in the same storage class as the production data
sets, set the UTIL_TEMP_STORCLAS system parameter to specify the storage class for the shadow data
sets.

Shadow data set names
Each shadow data set must have the following name:

catname.DSNDBx.dbname.psname.y000z.Lnnn

In the preceding name, the variables have the following meanings:

variable
meaning

catname
The VSAM catalog name or alias

x
C or D

dbname
Database name

psname
Table space name or index name

y
I or J

z
1 or 2

Lnnn
Partition identifier. Use one of the following values:

• A001 through A999 for partitions 1 through 999
• B000 through B999 for partitions 1000 through 1999
• C000 through C999 for partitions 2000 through 2999
• D000 through D999 for partitions 3000 through 3999
• E000 through E996 for partitions 4000 through 4096

84 Db2 12 for z/OS: Utility Guide and Reference

To determine the names of existing data sets, execute one of the following queries against the
SYSTABLEPART or SYSINDEXPART catalog tables:

SELECT DBNAME, TSNAME, IPREFIX
 FROM SYSIBM.SYSTABLEPART
 WHERE DBNAME = 'dbname'
 AND TSNAME = 'psname';

SELECT DBNAME, IXNAME, IPREFIX
 FROM SYSIBM.SYSINDEXES X, SYSIBM.SYSINDEXPART Y
 WHERE X.NAME = Y.IXNAME
 AND X.CREATOR = Y.IXCREATOR
 AND X.DBNAME = 'dbname'
 AND X.INDEXSPACE = 'psname';

For a partitioned table space, Db2 returns rows from which you select the row for the partitions that you
want to check.

Defining shadow data sets
For a partitioned table space, Db2 returns rows from which you select the row for the partitions that you
want to check.

Consider the following actions when you preallocate the data sets:

• Allocate the shadow data sets according to the rules for user-managed data sets.
• Define the shadow data sets as LINEAR.
• Use SHAREOPTIONS(3,3).
• Define the shadow data sets as EA-enabled if the original table space or index space is EA-enabled.
• Allocate the shadow data sets on the volumes that are defined in the storage group for the original table

space or index space.

If you specify a secondary space quantity, Db2 does not use it. Instead, Db2 uses the SECQTY value for
the table space or index space.

Recommendation: Use the MODEL option, which causes the new shadow data set to be created like the
original data set. This method is shown in the following example:

DEFINE CLUSTER +
 (NAME('catname.DSNDBC.dbname.psname.x0001.L001') +
 MODEL('catname.DSNDBC.dbname.psname.y0001.L001')) +
 DATA +
 (NAME('catname.DSNDBD.dbname.psname.x0001.L001') +
 MODEL('catname.DSNDBD.dbname.psname.y0001.L001'))

Creating shadow data sets for indexes
When you preallocate shadow data sets for indexes, create the data sets as follows:

• Create shadow data sets for the partition of the table space and the corresponding partition in each
partitioning index and data-partitioned secondary index.

• Create a shadow data set for logical partitions of nonpartitioned secondary indexes.

Use the same naming scheme for these index data sets as you use for other data sets that are associated
with the base index, except use J0001 instead of I0001.

Estimating the size of shadow data sets
If you have not changed the value of FREEPAGE or PCTFREE, the amount of required space for a shadow
data set is comparable to the amount of required space for the original data set.

Chapter 11. CHECK DATA 85

Concurrency and compatibility for CHECK DATA
The CHECK DATA utility has certain concurrency and compatibility characteristics associated with it.

Db2 treats individual data and index partitions as distinct target objects. Utilities that operate on different
partitions of the same table space or index space are compatible.

Claims and drains
The following table lists any claims or drains that the utility acquires and any restrictive states that are set
on the target object.

Table 7. Claim classes of CHECK DATA operations

Target objects
CHECK DATA
DELETE NO

CHECK DATA
DELETE YES

CHECK DATA
PART DELETE
NO

CHECK DATA
PART DELETE
YES

Table space or partition DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Partitioning index or index
partition

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Secondary index DW/UTRO DA/UTUT none DR

Logical partition of index none none DW/UTRO DA/UTUT

Primary index DW/UTRO DW/UTRO DW/UTRO DW/UTRO

RI dependent and
descendent table spaces
and indexes

none DA/UTUT none DA/UTUT

RI exception table
spaces and indexes (FOR
EXCEPTION only)

DA/UTUT DA/UTUT DA/UTUT DA/UTUT

Legend:

• DA: Drain all claim classes, no concurrent SQL access
• DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers
• DW: Drain the write claim class, concurrent access for SQL readers
• UTUT: Utility restrictive state, exclusive control
• UTRO: Utility restrictive state, read-only access allowed
• none: Object not affected by this utility
• RI: Referential Integrity

The following table shows claim classes on a LOB table space and an index on the auxiliary table.

Table 8. Claim classes of CHECK DATA operations on a LOB table space and index on the auxiliary table

Target objects CHECK DATA DELETE NO CHECK DATA DELETE YES

LOB table space DW/UTRO DA/UTUT

Index on the auxiliary table DW/UTRO DA/UTUT

86 Db2 12 for z/OS: Utility Guide and Reference

Table 8. Claim classes of CHECK DATA operations on a LOB table space and index on the auxiliary table
(continued)

Target objects CHECK DATA DELETE NO CHECK DATA DELETE YES

Legend:

• DW: Drain the write claim class, concurrent access for SQL readers
• DA: Drain all claim classes, no concurrent SQL access
• UTRO: Utility restrictive state, read-only access allowed
• UTUT: Utility restrictive state, exclusive control

The following table shows claim classes of XML objects.

Table 9. Claim classes of XML objects

Target objects CHECK DATA DELETE NO CHECK DATA DELETE YES

XML table space DW/UTRO DA/UTUT

document ID and node ID indexes DW/UTRO DA/UTUT

XML index DW/UTRO DA/UTUT

Legend:

• DW: Drain the write claim class, concurrent access for SQL readers
• DA: Drain all claim classes, no concurrent SQL access
• UTRO: Utility restrictive state, read-only access allowed
• UTUT: Utility restrictive state, exclusive control

When you specify CHECK DATA AUXERROR INVALIDATE, a drain-all is performed on the base table space,
and the base table space is set UTUT.

Compatibility
The following utilities are compatible with CHECK DATA and can run concurrently on the same target
object:

• DIAGNOSE
• MERGECOPY
• MODIFY
• REPORT
• STOSPACE
• UNLOAD (when CHECK DATA DELETE NO)

SQL operations and other online utilities are incompatible.

To run on DSNDB01.SYSUTILX, CHECK DATA must be the only utility in the job step and the only utility
that is running in the Db2 subsystem.

The index on the auxiliary table for each LOB column inherits the same compatibility and concurrency
attributes of a primary index.

Chapter 11. CHECK DATA 87

Exception tables for the CHECK DATA utility
An exception table is a user-created table that duplicates the definition of a dependent table. The CHECK
DATA utility checks the number of columns in the dependent table. The CHECK DATA utility also copies
the deleted rows from the dependent table to the exception table.

The following table describes the contents of an exception table. This table lists the columns, a
description of the column content, whether or not the column is required, the data type and length of
the column value, and whether or not the column has the NULL attribute.

Table 10. Contents of exception tables

Column Description Required?
Data type and
length NULL attribute

Scale of data
type

Default value

1 to n Corresponds to
columns in the
table that is
being checked.
These columns
hold data from
table rows that
violate referential
or table check
constraints.

Yes The same as
the corresponding
columns in the
table that is being
checked.

The same as
the corresponding
columns in the
table that is being
checked.

The same as
the corresponding
columns in the
table that is being
checked.

Most defaults
must be the
same as the
corresponding
columns in the
table that is being
checked.

n+1 Identifies the
RIDs of the invalid
rows of the table
that is being
checked.

No CHAR(4);
CHAR(5)1 for
table spaces
that are defined
with LARGE or
DSSIZE options;
CHAR(7) for
partition-by-range
table spaces with
relative page
numbering

Anything Anything Anything

n+2 Indicates the
starting time of
the CHECK DATA
utility.

No TIMESTAMP Anything Anything Anything

≥ n+2 Additional
columns that
the CHECK DATA
utility does not
use.

No Anything Anything Anything Anything

Note:

1. You can use CHAR(7) for any type of table space, but you must use it for partition-by-range table spaces with relative page numbering.
You must use CHAR(5) or CHAR(7) for table spaces that are defined with the LARGE or DSSIZE options.

If you delete rows by using the CHECK DATA utility with SCOPE ALL, you must create exception tables for
all tables that are named in the table spaces and for all their descendents. All descendents of any row are
deleted.

When creating or using exception tables, be aware of the following guidelines:

• The exception tables should not have any unique indexes or referential or table check constraints that
might cause errors when CHECK DATA inserts rows into them.

• You can create a new exception table before you run CHECK DATA, or you can use an existing exception
table. The exception table can contain rows from multiple invocations of CHECK DATA.

• If column n+2 is of type TIMESTAMP, CHECK DATA records the starting time. Otherwise, it does not use
column n+2.

• You must have DELETE authorization on the dependent table that is being checked.

88 Db2 12 for z/OS: Utility Guide and Reference

• You must have INSERT authorization on the exception table.
• Column names in the exception table can have any name.
• Any change to the structure of the dependent table (such as a dropped column) is not automatically

recorded in the exception table. You must make that change in the exception table.

Related reference
CREATE TABLE (Db2 SQL)

Exception processing for tables with auxiliary columns
CHECK DATA writes constraint violations to exception tables. The exception table for the base table must
have a similar auxiliary column and an auxiliary table space for each auxiliary column.

If an exception is found, Db2 moves the base table row with its auxiliary column to the exception table. If
you specify DELETE YES, Db2 deletes the base table row and the auxiliary column.

An auxiliary table cannot be an exception table. A LOB column check error is not included in the exception
count. A row with only a LOB column check error does not participate in exception processing.

Specifying the scope of CHECK DATA
Running CHECK DATA with SCOPE PENDING is normally sufficient. Db2 records which data rows must be
checked to ensure the referential integrity of the table space.

About this task
You can find inconsistencies in the XML table space, the node ID index, or in the relationship between the
document ID column and the node ID index by running the CHECK DATA utility.

Running CHECK DATA with SCOPE ALL or SCOPE AUXONLY and specifying INCLUDE XML TABLESPACES
enables the XML structure checking of the specified XML table spaces and consistency checking of the
XML columns in the base table and their associated node ID indexes. Specifying XMLSCHEMAONLY with
INCLUDE XML TABLESPACES limits the CHECK DATA scope to only XML schema validation for the XML
columns.

Procedure
Use one of the following approaches:

• If the scope information is in doubt, run the utility with the SCOPE ALL option. The scope information is
recorded in the Db2 catalog. The scope information can become indoubt whenever you start the target
table space with ACCESS(FORCE), or when the catalog is recovered to a point in time.

• If you want to check only the tables with LOB columns, specify the AUXONLY option. If you want to
check all dependent tables in the specified table spaces except tables with LOB columns, specify the
REFONLY option.

How violations are identified
CHECK DATA issues a message for every row that contains a referential constraint violation or table check
constraint violation.

The violation is identified by:

• The RID of the row
• The name of the table that contains the row
• The name of the constraint that is being violated

Chapter 11. CHECK DATA 89

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html

The following example shows messages that CHECK DATA issues.

DSNU0501 DSNUGUTC - CHECK DATA TABLESPACE DBJM1203.TLJM1203
 TABLESPACE DBJM1203.TPJM1204
 FOR EXCEPTION IN TLJM1203.TBJM1203 USE ADMF001.EXCPT3
 IN TPJM1204.TBJM1204 USE ADMF001.EXCPT4 DELETE YES
DSNU7271 = DSNUKINP - TABLESPACE 'DBJM1203.TLJM1203' IS NOT CHECK PENDING

DSNU7301 DSNUKDST - CHECKING TABLE TPJM1204.TBJM1204
DSNU0421 DSNUGSOR - SORT PHASE STATISTICS -
 NUMBER OF RECORDS=4
 ELAPSED TIME=00:00:00
DSN0733l DSNUKERK - ROW (RID=X'000000020B') HAS NO PARENT FOR
TPJM1204.TBJM1204.TABFK
DSN0733l DSNUKERK - ROW (RID=X'0010000201') HAS NO PARENT FOR
TPJM1204.TBJM1204.TABFK
DSN0733l DSNUKERK - ROW (RID=X'002000020B') HAS NO PARENT FOR
TPJM1204.TBJM1204.TABFK
DSN0733l DSNUKERK - ROW (RID=X'0030000201') HAS NO PARENT FOR
TPJM1204.TBJM1204.TABFK
DSNU739l DSNUKDAT - CHECK TABLE TPJM1204.TBJM1204 COMPLETE, ELAPSED
TIME=00:00:00
DSNU741l = DSNUKRDY - 4 ROWS DELETED FROM TABLE TPJM1204.TBJM1204
DSNU568l = DSNUGSRX - INDEX TPJM1204.IPJM1204 IS IN INFORMATIONAL COPY PENDING
DSNU568l = DSNUGSRX - INDEX TPJM1204.IXJM1204 IS IN INFORMATIONAL COPY PENDING
DSNU7491 DSNUK001 - CHECK DATA COMPLETE,ELAPSED TIME=00:00:02
DSNU010l DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=4

Detection and correction of constraint violations
You can avoid problems by running CHECK DATA with DELETE NO to detect violations before you attempt
to correct the errors.

If required, use DELETE YES after you analyze the output and understand the errors.

You can automatically delete rows that violate referential or table check constraints by specifying CHECK
DATA with DELETE YES. However, you should be aware of the following possible problems:

• The violation might be created by a non-referential integrity error. For example, the indexes on a table
might be inconsistent with the data in a table.

• Deleting a row might cause a cascade of secondary deletes in dependent tables. The cascade of deletes
might be especially inconvenient within referential integrity cycles.

• The error might be in the parent table.

CHECK DATA uses the primary key index and all indexes that exactly match a foreign key. Therefore,
before running CHECK DATA, ensure that the indexes are consistent with the data by using the CHECK
INDEX utility.

CHECK DATA XML error detection
Run CHECK DATA with the INCLUDE XML TABLESPACES option to verify the consistency of the XML table
space and the node ID index.

The following checks are performed:

• Verify that all rows that comprise an XML document exist in the XML table space and that all nodes in
that XML document are structurally intact.

• Verify that the node ID index is consistent with the content in the XML table space. No index entries
must exist without an associated XML document and each XML document in the XML table space must
have corresponding entries in the node ID index.

• Verify that the references from the base table space ID column contains only entries that can be found
in the node ID index in the XML table space. Also verify that the node ID index does not contain any
entries for which no matching value in the document ID column in the base table space can be found.

90 Db2 12 for z/OS: Utility Guide and Reference

Any inconsistencies found are reported as errors. All remaining parts of corrupted XML documents will be
deleted from the XML table space. All the associated node ID index entries for the affected XML document
will be deleted and the XML column in the base table will be set to an invalid status.

When running with SHRLEVEL CHANGE, CHECK DATA operates on shadow copies of the table spaces
to be checked, corresponding REPAIR statements are generated. These generated statements must be
executed by the REPAIR utility to perform the mandatory actions which CHECK DATA has identified.

Two REPAIR statements are generated.

• One statement deletes the corrupted XML document and its associated node ID index entries.
• The other REPAIR statement sets the XML column in the base table to an invalid status.

Correcting XML data after running CHECK DATA
After you run the CHECK DATA utility, you might need to correct XML data.

Procedure
Based on the CHECK DATA output, perform one of the following actions:
Problem Action

Problem with corrupted XML data REPAIR statements are generated to delete each
corrupted XML document from the XML table space and
its associated node ID index entry.

Problem with document ID index Run generated REPAIR LOCATE TABLESPACE control
statements.

Problem with node ID index Run generated REPAIR LOCATE TABLESPACE control
statements.

Problem with integrity of XML column in the
base table and the node ID index

Resetting CHECK-pending status
If a table space has a status of CHECK-pending (CHKP), you can remove this status by correcting the error
and running the CHECK DATA utility.

Procedure
To reset CHECK-pending status:
• Run CHECK DATA with SHRLEVEL REFERENCE and one of the following DELETE values:

– Specify DELETE YES to remove all rows that violate referential or table check constraints.
– Specify DELETE NO if the tables do not contain any rows that violate referential or table check

constraints or you want to detect the errors only. If you specify DELETE NO and any of these
violations are found, the table space remains in CHECK-pending status. In this case, you need to
correct the errors and run CHECK DATA again to reset this status.

Tip: If the table space is in CHKP status because of a particular referential constraint or check
constraint, specify the SCOPE PENDING option or the SCOPE REFONLY option in the CHECK DATA
statement to reduce utility processing time. You can check whether a constraint is the cause of the
CHKP status by issuing the DISPLAY DATABASE command with the RESTRICT(CHKP) option.

• Run CHECK DATA with SHRLEVEL CHANGE. If any REPAIR utility statements are generated in the
PUNCHDDN data set, run those statements to fix the errors. Then, run CHECK DATA again to reset the
status.

Chapter 11. CHECK DATA 91

Results
If no inconsistencies remain in the table space, CHECK-pending status is reset.
Related reference
“CHECK-pending status” on page 977
CHECK-pending (CHKP) restrictive status indicates that an object might be in an inconsistent state and
must be checked.

LOB column errors
If you run CHECK DATA on a base table space that contains at least one LOB column, you might receive an
error on the LOB column.

If you specify CHECK DATA AUXERROR REPORT, AUXERROR INVALIDATE, LOBERROR REPORT, or
LOBERROR INVALIDATE and a LOB column check error is detected, Db2 issues a message that identifies
the table, row, column, and type of error. Any additional actions depend on the option that you specify for
the AUXERROR or LOBERROR parameter:

When you specify the AUXERROR REPORT or LOBERROR REPORT option
Db2 sets the base table space to the auxiliary CHECK-pending (ACHKP) status. If CHECK DATA
encounters only invalid LOB columns and no other LOB column errors, the base table space is set to
the auxiliary warning (AUXW) status.

When you specify the AUXERROR INVALIDATE or LOBERROR INVALIDATE option
Db2 sets the base table LOB columns that are in error to an invalid status. Db2 resets the invalid
status of LOB columns that have been corrected. If any invalid LOB columns remain in the base table,
Db2 sets the base table space to auxiliary warning (AUXW) status. You can use SQL to update a LOB
column that is in the AUXW status; however, any other attempt to access the column results in a -904
SQL return code.

If you run CHECK DATA AUXERROR REPORT or INVALIDATE on a base table space that contains at least
one LOB column, the following errors might be reported:

Orphan LOBs
An orphan LOB column is a LOB that is found in the LOB table space but that is not referenced by the
base table space. If an orphan error is the only type of error reported by CHECK DATA, the base table is
considered correct.

An orphan can result from the following situations:

• You recover the base table space to a point in time prior to the insertion of the base table row.
• You recover the base table space to a point in time prior to the definition of the LOB column.
• You recover the LOB table space to a point in time prior to the deletion of a base table row.
• A base record ROWID is incorrect, which results in an orphan LOB column error message and a missing

LOB column error message. The missing LOB column error message identifies the ROWID, VERSION
and row in error. The missing LOB column is handled depending on the value that you specify for the
AUXERROR or LOBERROR parameter.

Missing LOBs
A missing LOB column is a LOB that is referenced by the base table space but that is not in the LOB table
space. A missing LOB can result from the following situations:

• You recover the LOB table space to a point in time prior to the first insertion of the LOB into the base
table.

• You recover the LOB table space to a point in time when the LOB column is null or has a zero length

92 Db2 12 for z/OS: Utility Guide and Reference

Out-of-synch LOBs
An out-of-synch LOB error is a LOB that is found in both the base table and the LOB table space, but the
LOB in the LOB table space is at a different level. A LOB column is also out-of-synch if the base table is
null or has a zero length, but the LOB is found in the LOB table space. An out-of-synch LOB can occur
anytime you recover the LOB table space or the base table space to a prior point in time.

Invalid LOBs
An invalid LOB is an uncorrected LOB column error that is found by a previous execution of CHECK DATA
AUXERROR INVALIDATE.

Related reference
“Advisory or restrictive states” on page 975
To control access and help ensure data integrity, Db2 can set a restrictive or nonrestrictive (advisory)
status on certain objects. However, you can take steps to correct each status.

Resetting auxiliary CHECK-pending status
A table space with LOB or XML columns can be recovered to a point in time. In this case, RECOVER
TABLESPACE sets the auxiliary CHECK-pending (ACHKP) status on the table space. You can remove the
auxiliary CHECK-pending status if Db2 does not find any inconsistencies.

About this task
Use one of the following actions to reset auxiliary CHECK-pending status:

Procedure
To reset auxiliary CHECK-pending status:
• Take one of the following actions:

• Use the SCOPE ALL option to check all dependent tables in the specified table space. The checks
include referential integrity constraints, table check constraints, and the existence of LOB and XML
columns.

• Use the SCOPE PENDING option to check table spaces or partitions with CHKP status. The checks
include referential integrity constraints, table check constraints, and the existence of LOB and XML
columns.

• Use the SCOPE AUXONLY option to check for LOB and XML columns.

Results
If you specified the AUXERROR INVALIDATE , LOBERROR INVALIDATE or XMLERROR INVALIDATE option
and Db2 finds inconsistencies, it places the table space in AUXW status.

Related reference
“Auxiliary CHECK-pending status” on page 975
When auxiliary CHECK-pending (ACHKP) restrictive status is set on a base table space, that table space is
unavailable for processing by SQL.

Termination and restart of CHECK DATA
You can terminate and restart the CHECK DATA utility.

When you terminate CHECK DATA, table spaces remain in the same CHECK-pending status as they
were at the time the utility was terminated. The CHECKDAT phase places the table space in the CHECK-
pending status when CHECK DATA detects an error; at the end of the phase, CHECK DATA resets the
CHECK-pending status if it detects no errors. The REPORTCK phase resets the CHECK-pending status if
you specify the DELETE YES option.

Chapter 11. CHECK DATA 93

You can restart a CHECK DATA utility job, but it starts from the beginning again.

Related tasks
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.
“Terminating an online utility” on page 44
You can terminate the execution of an active utility or release the resources that are associated with a
stopped utility.

Sample CHECK DATA control statements
Use sample control statements as models for developing your own CHECK DATA control statements.

Example 1: Copying violations into exception tables

The control statement specifies that the CHECK DATA utility is to check for and delete any rows
that violate referential and table check constraints in table spaces DSN8D12A.DSN8S12D and
DSN8D12A.DSN8S12E. CHECK DATA copies any rows that violate these constraints into the exception
tables that are specified in the FOR EXCEPTION clause. For example, CHECK DATA is to copy the
violations in table DSN8810.DEPT into table DSN8810.EDEPT.

//STEP1 EXEC DSNUPROC,UID='IUIQU1UQ.CHK1',
// UTPROC='',
// SYSTEM='DSN'
//SYSUT1 DD DSN=IUIQU1UQ.CHK3.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(8000,(200,20),,,ROUND)
//SYSERR DD DSN=IUIQU1UQ.CHK3.SYSERR,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(6000,(20,20),,,ROUND)
//SORTOUT DD DSN=IUIQU1UQ.CHK3.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(6000,(20,20),,,ROUND)
//SYSIN DD *
CHECK DATA TABLESPACE DSN8D12A.DSN8S12D
 TABLESPACE DSN8D12A.DSN8S12E
 FOR EXCEPTION IN DSN8C10.DEPT USE DSN8C10.EDEPT
 IN DSN8C10.EMP USE DSN8C10.EEMP
 IN DSN8C10.PROJ USE DSN8C10.EPROJ
 IN DSN8C10.PROJACT USE DSN8C10.EPROJACT
 IN DSN8C10.EMPPROJACT USE DSN8C10.EEPA
 DELETE YES
//*

Example 2: Creating an exception table for the project activity table

You can create an exception table for the project activity table by using the following SQL statements:

EXEC SQL
CREATE TABLE EPROJACT
 LIKE DSN8C10.PROJACT
 IN DATABASE DSN8D12A
ENDEXEC

EXEC SQL
ALTER TABLE EPROJACT
 ADD RID CHAR(4)
ENDEXEC

EXEC SQL
ALTER TABLE EPROJACT
 ADD TIME TIMESTAMP NOT NULL WITH DEFAULT
ENDEXEC

94 Db2 12 for z/OS: Utility Guide and Reference

 The first statement requires the SELECT privilege on table DSN8C10.PROJACT and the privileges
that are usually required to create a table.

Table EPROJACT has the same structure as table DSN8C10.PROJACT, but it can have two extra columns.
The columns in EPROJACT are:

• Its first five columns mimic the columns of the project activity table; they have exactly the same names
and descriptions. Although the column names are the same, they do not need to be. However, the
rest of the column attributes for the initial columns must be same as those of the table that is being
checked.

• The next column, which is added by ALTER TABLE, is optional; CHECK DATA uses it as an identifier. The
name "RID" is an arbitrary choice; if the table already has a column with that name, use a different
name. The column description, CHAR(4), is required.

• The final timestamp column is also optional. If you define the timestamp column, a row identifier (RID)
column must precede this column. You might define a permanent exception table for each table that is
subject to referential or table check constraints. You can define it once and use it to hold invalid rows
that CHECK DATA detects. The TIME column allows you to identify rows that were added by the most
recent run of the utility.

Eventually, you correct the data in the exception tables, perhaps with an SQL UPDATE statement, and
transfer the corrections to the original tables by using statements that are similar to those in the following
example:

INSERT INTO DSN8C10.PROJACT
 SELECT PROJNO, ACTNO, ACSTAFF, ACSTDATE, ACENDATE
 FROM EPROJACT
 WHERE TIME > CURRENT TIMESTAMP - 1 DAY;

Example 3: Running CHECK DATA on a table space with LOBs

Assume that table space DBIQUQ01.TPIQU01 contains LOB columns. In the following control statement,
the SCOPE ALL option indicates that CHECK DATA is to check all rows in all dependent tables in table
space DBIQUQ01.TPIQU01 for the following violations:

• Violations of referential constraints
• Violations of table check constraints
• Inconsistencies between the base table space and the corresponding LOB table space.

The AUXERROR INVALIDATE option indicates that if the CHECK DATA utility finds a LOB column error in
this table space, it is to perform the following actions:

• Issues a warning message
• Sets the base table LOB column to an invalid status
• Sets the base table to auxiliary warning (AUXW) status

//STEP11 EXEC DSNUPROC,UID='IUIQU1UQ.CHK2',
// UTPROC='',
// SYSTEM='SSTR'
//SYSUT1 DD DSN=IUIQU1UQ.CHK2.STEP5.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=IUIQU1UQ.CHK2.STEP5.SORTOUT,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSERR DD DSN=IUIQU1UQ.CHK2.SYSERR,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
 CHECK DATA TABLESPACE DBIQUQ01.TPIQUQ01 SCOPE ALL
 AUXERROR INVALIDATE
/*

Chapter 11. CHECK DATA 95

Example 4: Specifying the maximum number of exceptions

The control statement specifies that the CHECK DATA utility is to check all rows in partition number 254
in table space DBNC0216.TPNC0216. The EXCEPTIONS 1 option indicates that the utility is to terminate
when it finds one exception. Any exceptions are to be reported by messages only.

//CKDATA EXEC DSNUPROC,UID='L450TST3.CHECK',
// UTPROC='',
// SYSTEM='SSTR'
//SYSERR DD DSN=L450TST3.CHECK.STEP1.SYSERR,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(2000,(20,20),,,ROUND)
//SYSUT1 DD DSN=L450TST3.CHECK.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=L450TST3.CHECK.STEP1.SORTOUT,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
 CHECK DATA TABLESPACE DBNC0216.TPNC0216 PART 254
 SCOPE ALL EXCEPTIONS 1
/*

Example 5: Running CHECK DATA SHRLEVEL CHANGE

The control statement specifies that the CHECK DATA utility is to specifies that applications can read from
and write to the table space that is to be checked.

CHECK DATA TABLESPACE DBNI0101.TSNI010P SHRLEVEL CHANGE

Example 6: Checking several table spaces

To check several table spaces, you can specify more than one table space in a CHECK DATA control
statement. This technique is useful for checking a complete set of referentially related table spaces. The
following example shows a CHECK DATA control statement that lists more than one table space.

CHECK DATA
 TABLESPACE DBJM1203.TLJM1203
 TABLESPACE DBJM1203.TPJM1204
 FOR EXCEPTION IN TLJM1203.TBJM1203 USE ADMF001.EXCPT3
 IN TPJM1204.TMBJM1204 USE ADMF001.EXCPT4
 DELETE YES

Example 7: Checking XML columns

The control statement specifies how to include consistency checking of XML columns in a base table with
the associated node ID indexes. Specify XMLSCHEMAONLY with INCLUDE XML TABLESPACES to limit the
CHECK DATA scope to only XML schema validation for the XML columns.

CHECK DATA TABLESPACE DBNI0101.TSNI010P INCLUDE XML TABLESPACES
 SCOPE XMLSCHEMAONLY AUXONLY

Example 8: Running CHECK DATA on a clone table

The control statement specifies that the CHECK DATA utility is to check the clone table in the specified
table space.

CHECK DATA TABLESPACE DBNI0101.TSNI010P CLONE SCOPE ALL
 ERRDDN SYSERR

96 Db2 12 for z/OS: Utility Guide and Reference

Chapter 12. CHECK INDEX
The CHECK INDEX online utility tests whether indexes are consistent with the data that they index, and it
issues warning messages when it finds an inconsistency.

Run the CHECK INDEX utility after a conditional restart or a point-in-time recovery on all table spaces
whose indexes might not be consistent with the data.

Also run CHECK INDEX before running CHECK DATA, especially if you specify DELETE YES. Running
CHECK INDEX before CHECK DATA ensures that the indexes that CHECK DATA uses are valid. When
checking an auxiliary table index, CHECK INDEX verifies that each LOB is represented by an index entry,
and that an index entry exists for every LOB.

Important: Inaccurate statistics for tables, table spaces, or indexes can result in a sort failure during
CHECK INDEX.

Running CHECK INDEX when the index has a VARBINARY column
If you run CHECK INDEX against the index with the following characteristics, CHECK INDEX fails:

• The index was created on a VARBINARY column or a column with a distinct type that is based on a
VARBINARY data type.

• The index column has the DESC attribute.

To fix the problem, alter the column data type to BINARY, and then rebuild the index.

Output

CHECK INDEX generates several messages that show whether the indexes are consistent with the data.

For unique indexes, any two null values are treated as equal values, unless the index was created with the
UNIQUE WHERE NOT NULL clause. In that case, if the key is a single column, it can contain any number of
null values, and CHECK INDEX does not issue an error message.

CHECK INDEX issues an error message if it finds two or more null values and the unique index was not
created with the UNIQUE WHERE NOT NULL clause.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• STATS privilege for the database
• DBADM, DBCTRL, or DBMAINT authority for the database. If the object on which the utility operates is

in an implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• System DBADM authority
• SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute CHECK INDEX, but only on a table space in the
DSNDB01 or DSNDB06 databases.

If you are using SHRLEVEL CHANGE, the user ID that invokes COPY with the CONCURRENT option must
provide the necessary authority to execute the DFSMSdss ADRDSSU command. DFSMSdss will create a
shadow data set with the authority of the utility batch address space. The submitter should have an RACF
ALTER authority, or its equivalent, for the shadow data set.

© Copyright IBM Corp. 1983, 2024 97

Execution phases of CHECK INDEX

Phase
Description

UTILINIT
Performs initialization

UNLOAD
Unloads data keys

SORTCHK
Sorts unloaded data keys and scans the index to validate data keys.

UTILTERM
Performs cleanup

Syntax and options of the CHECK INDEX control statement
The CHECK INDEX utility control statement, with its multiple options, defines the function that the utility
job performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram
CHECK INDEX

LIST listdef-name

( index-name

PART integer

)

(ALL) TABLESPACE

database-name .

table-space-name

PART integer

CLONE

SHRLEVEL REFERENCE

SHRLEVEL CHANGE

DRAIN_WAIT IRLMRWT-value

DRAIN_WAIT integer

RETRY UTIMOUT-value

RETRY integer

RETRY_DELAY calculated-default

RETRY_DELAY integer SORTDEVT device-type

SORTNUM integer

PARALLEL 0

PARALLEL num-subtasks

Option descriptions

98 Db2 12 for z/OS: Utility Guide and Reference

INDEX
Indicates that you are checking for index consistency.

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. The list must contain only index spaces.
Do not specify the name of an index or of a table space. Db2 groups indexes by their related table
space and executes CHECK INDEX once per table space. CHECK INDEX allows one LIST keyword for
each control statement in CHECK INDEX. This utility processes clone data only if the CLONE keyword
is specified. The use of CLONED YES on the LISTDEF statement is not sufficient.

The partitions or partition ranges can be specified in a list.

(index-name, …)
Specifies the indexes that are to be checked. All indexes must belong to tables in the same table
space. If you omit this option, you must use the (ALL) TABLESPACE option. Then, CHECK INDEX
checks all indexes on all tables in the table space that you specify.

index-name is the name of an index, in the form creator-id.name. If you omit the qualifier creator-id.,
the user identifier for the utility job is used. If you use a list of names, separate items in the list
by commas. Parentheses are required around a name or list of names. Enclose the index name in
quotation marks if the name contains a blank.

PART integer
Identifies a physical partition of a partitioned index or a logical partition of a nonpartitioned index that
is to be checked for consistency. If you specify an index on a nonpartitioned table space, an error
occurs.

integer is the physical partition number. It must be in the range from 1 to the number of partitions that
are defined for the table space. The maximum is 4096.

If the PART keyword is not specified, CHECK INDEX tests the entire target index for consistency.

(ALL)
Specifies that all indexes in the specified table space that are referenced by the table space are to be
checked.

TABLESPACE database-name.table-space-name
Specifies the table space from which all indexes are to be checked. If an explicit list of index names is
not specified, all indexes on all tables in the specified table space are checked.

Do not specify TABLESPACE with an explicit list of index names.

database-name is the name of the database that the table space belongs to. The default value is
DSNDB04.

table-space-name is the name of the table space from which all indexes are checked.

CLONE
Indicates that CHECK INDEX is to check only the specified indexes that are on clone tables. This utility
processes clone data only if the CLONE keyword is specified. The use of CLONED YES on the LISTDEF
statement is not sufficient.

SHRLEVEL
Indicates the type of access that is to be allowed for the index, table space, or partition that is to be
checked during CHECK INDEX processing.
REFERENCE

Specifies that applications can read from but cannot write to the index, table space, or partition
that is to be checked.

If you specify SHRLEVEL REFERENCE or use this value as the default, Db2 unloads the index
entries, sorts the index entries, and scans the data to validate the index entries.

CHANGE
Specifies that applications can read from and write to the index, table space, or partition that is to
be checked.

Chapter 12. CHECK INDEX 99

If you specify SHRLEVEL CHANGE, Db2 performs the following actions:

• Drains all writers and forces the buffers to disk for the specified object and all of its indexes
• Invokes DFSMSdss to copy the specified object and all of its indexes to shadow data sets
• Enables read/write access for the specified object and all of its indexes
• Runs CHECK INDEX on the shadow data sets

By default, DFSMSdss uses FlashCopy to copy Db2 objects to shadow data sets, if FlashCopy
is available. If DFSMSdss cannot use FlashCopy, DFSMSdss uses a slower method. As a result,
creating copies of objects might take a long time, and the time during which the data and indexes
have read-only access might increase. You can set the CHECK_FASTREPLICATION subsystem
parameter to REQUIRED to force the CHECK utility to use only FlashCopy. If FlashCopy is not
available, the CHECK utility fails.

Related information:

“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on page 42

DRAIN_WAIT integer
Specifies the number of seconds that CHECK INDEX is to wait when draining the table space or index.
The specified time is the aggregate time for objects that are to be checked. This value overrides the
values that are specified by the IRLMRWT and UTIMOUT subsystem parameters.

integer can be any integer from 0 to 1800. If you do not specify DRAIN_WAIT or specify a value of 0,
CHECK INDEX uses the value of the lock timeout subsystem parameter IRLMRWT.

RETRY integer
Specifies the maximum number of times that CHECK INDEX is to keep trying to drain the object.

integer can be any integer from 0 to 255. Specifying a value other than 0 can increase processing
costs and result in multiple or extended periods during which the specified index, table space, or
partition is in read-only access.

If you do not specify RETRY, CHECK INDEX uses the value of the utility multiplier subsystem
parameter UTIMOUT.

RETRY_DELAY integer
Specifies the minimum duration, in seconds, between attempts to drain the object. integer can be any
integer from 1 to 1800.

If you do not specify RETRY_DELAY, CHECK INDEX uses the smaller of the following two values:

• DRAIN_WAIT value × RETRY value
• DRAIN_WAIT value × 10

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically allocated by the external
sort program. You can specify any disk device type that is acceptable to the DYNALLOC parameter of
the SORT or OPTION control statement for the sort program.

A TEMPLATE specification does not dynamically allocate sort work data sets. The SORTDEVT keyword
controls dynamic allocation of these data sets.

device-type is the device type. If you omit SORTDEVT and a sort is required, you must provide the DD
statements that the sort program requires for the temporary data sets.

SORTNUM integer
Specifies the number of temporary data sets that are to be dynamically allocated by the sort program.

integer is the number of temporary data sets that can range from 2 to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and omit SORTNUM, no value is
passed to the sort program; the sort program uses its own default.

You need at least two sort work data sets for each sort. The SORTNUM value applies to each sort
invocation in the utility. For example, suppose CHECK INDEX is checking three indexes, no constraints

100 Db2 12 for z/OS: Utility Guide and Reference

exist to limit parallelism, and you specify SORTNUM 8. In this case, a total of 24 sort work data sets
are allocated for a job.

Each sort work data set consumes both above-the-line and below-the-line virtual storage. Therefore,
if you specify a value for SORTNUM that is too high, the utility might decrease the degree of
parallelism due to virtual storage constraints. The degree of parallelism might possibly be decreased
down to one, which means that no parallelism is used.

PARALLEL num-subtasks
Specifies the maximum number of subtasks that are to be started in parallel to check indexes for
consistency.

The value of num-subtasks must be an integer between 0 and 32767, inclusive. If the specified
value for num-subtasks is greater than 32767, the CHECK INDEX statement fails. If 0 or no value is
specified for num-subtasks, the CHECK INDEX utility uses the optimal number of parallel subtasks. If
the specified value for num-subtasks is greater than the calculated optimal number, the CHECK INDEX
utility limits the number of parallel subtasks to the optimal number with applied constraints. CHECK
INDEX typically allocates subtasks in groups of two or three. Therefore, the actual number of subtasks
that are started might be less than the number that is specified by the PARALLEL option.

The specified number of subtasks for PARALLEL always overrides the value of the PARAMDEG_UTIL
subsystem parameter. Therefore, PARALLEL can be smaller or larger than the value of
PARAMDEG_UTIL.

Related information:

“Indexes in parallel” on page 106
MAX UTILS PARALLELISM field (PARAMDEG_UTIL subsystem parameter) (Db2 Installation and
Migration)

Related reference
“LISTDEF” on page 199
The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Data sets that CHECK INDEX uses
The CHECK INDEX utility uses a number of data sets during its operation.

The following table lists the data sets that CHECK INDEX uses. The table lists the DD name that is used
to identify the data set, a description of the data set, and an indication of whether it is required. Include
statements in your JCL for each required data set and any optional data sets that you want to use.

Table 11. Data sets that CHECK INDEX uses

Data set Description Required?

SYSIN An input data set that contains the utility control
statement.

Yes

SYSPRINT An output data set for messages. Yes

UTPRINT A data set that contains messages from the sort
program (usually, SYSOUT or DUMMY).

Yes

The following object is named in the utility control statement and does not require a DD statement in the
JCL:

Chapter 12. CHECK INDEX 101

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_paramdegutil.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_paramdegutil.html
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

Index space
Object that is to be checked. (If you want to check only one partition of an index, use the PART option
in the control statement.)

Sort work data sets cannot span volumes. Smaller volumes require more sort work data sets to sort the
same amount of data; therefore, large volume sizes can reduce the number of needed sort work data sets.
When you allocate sort work data sets on disk, the recommended amount of space to allow provides at
least 1.2 times the amount of data that is to be sorted.

Tape devices are not supported for sort work data sets.

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Shadow data sets for CHECK INDEX
When you execute the CHECK INDEX utility with the SHRLEVEL CHANGE option, the utility uses shadow
data sets.

If a table space, partition, or index resides in Db2-managed data sets and shadow data sets do not
already exist when you execute CHECK INDEX, Db2 creates the shadow data sets. At the end of CHECK
INDEX processing, the Db2-managed shadow data sets are deleted.

For user-managed data sets, DFSMSdss can create or scratch and re-create the required shadow data
sets as needed. When the CHECK INDEX utility completes the processing of user-managed data sets, the
shadow data sets are not automatically scratched.

If you do not want the shadow data sets to be allocated in the same storage class as the production data
sets, set the UTIL_TEMP_STORCLAS system parameter to specify the storage class for the shadow data
sets.

Shadow data set names
Each shadow data set must have the following name:

catname.DSNDBx.dbname.psname.y000z.Lnnn

In the preceding name, the variables have the following meanings:

variable
meaning

catname
The VSAM catalog name or alias

x
C or D

dbname
Database name

psname
Table space name or index name

y
I or J

z
1 or 2

102 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

Lnnn
Partition identifier. Use one of the following values:

• A001 through A999 for partitions 1 through 999
• B000 through B999 for partitions 1000 through 1999
• C000 through C999 for partitions 2000 through 2999
• D000 through D999 for partitions 3000 through 3999
• E000 through E996 for partitions 4000 through 4096

To determine the names of existing data sets, execute one of the following queries against the
SYSTABLEPART or SYSINDEXPART catalog tables:

SELECT DBNAME, TSNAME, IPREFIX
 FROM SYSIBM.SYSTABLEPART
 WHERE DBNAME = 'dbname'
 AND TSNAME = 'psname';

SELECT DBNAME, IXNAME, IPREFIX
 FROM SYSIBM.SYSINDEXES X, SYSIBM.SYSINDEXPART Y
 WHERE X.NAME = Y.IXNAME
 AND X.CREATOR = Y.IXCREATOR
 AND X.DBNAME = 'dbname'
 AND X.INDEXSPACE = 'psname';

Defining shadow data sets
For a partitioned table space, Db2 returns rows from which you select the row for the partitions that you
want to check.

Consider the following actions when you preallocate the data sets:

• Allocate the shadow data sets according to the rules for user-managed data sets.
• Define the shadow data sets as LINEAR.
• Use SHAREOPTIONS(3,3).
• Allocate base or clone objects
• Define the shadow data sets as EA-enabled if the original table space or index space is EA-enabled.
• Allocate the shadow data sets on the volumes that are defined in the storage group for the original table

space or index space.

If you specify a secondary space quantity, Db2 does not use it. Instead, Db2 uses the SECQTY value for
the table space or index space.

Recommendation: Use the MODEL option, which causes the new shadow data set to be created like the
original data set. This method is shown in the following example:

DEFINE CLUSTER +
 (NAME('catname.DSNDBC.dbname.psname.x000z.L001') +
 MODEL('catname.DSNDBC.dbname.psname.y000z.L001')) +
 DATA +
 (NAME('catname.DSNDBD.dbname.psname.x000z.L001') +
 MODEL('catname.DSNDBD.dbname.psname.y000z.L001'))

Creating shadow data sets for indexes
When you preallocate shadow data sets for indexes, create the data sets as follows:

• Create shadow data sets for the partition of the table space and the corresponding partition in each
partitioning index and data-partitioned secondary index.

• Create a shadow data set for logical partitions of nonpartitioned secondary indexes.

Chapter 12. CHECK INDEX 103

Use the same naming scheme for these index data sets as you use for other data sets that are associated
with the base index, except use J0001 instead of I0001.

Estimating the size of shadow data sets
If you have not changed the value of FREEPAGE or PCTFREE, the amount of required space for a shadow
data set is comparable to the amount of required space for the original data set.

Concurrency and compatibility for CHECK INDEX
The CHECK INDEX utility has certain concurrency and compatibility characteristics associated with it.

Db2 treats individual data and index partitions as distinct target objects. Utilities that operate on different
partitions of the same table space or index space are compatible.

Claims and drains
The following table lists any claims or drains that the utility acquires and any restrictive states that are set
on the target object.

Table 12. Claim classes of CHECK INDEX operations

Target

CHECK INDEX
SHRLEVEL
REFERENCE

CHECK INDEX
PART
SHRLEVEL
REFERENCE

CHECK INDEX
SHRLEVEL
CHANGE

CHECK INDEX
PART
SHRLEVEL
CHANGE

Table space or partition DW/UTRO DW/UTRO DW/UTRW DW/UTRW

Partitioning index or index
partition

DW/UTRO DW/UTRO DW/UTRW DW/UTRW

Secondary index1 DW/UTRO none DW/UTRW DW/UTRW

Data-partitioned secondary index
or index partition2

DW/UTRO DW/UTRO DW/UTRW DW/UTRW

Logical partition of an index none DW/UTRO DW/UTRW DW/UTRW

Legend:

• DW: Drain the write claim class, concurrent access for SQL readers
• UTRO: Utility restrictive state, read only-access allowed
• UTRW: Utility restrictive state, read and write access allowed
• none: Object not affected by this utility

Note:

1. Includes document ID indexes and node ID indexes over non-partitioned XML table spaces and XML
indexes.

2. Includes document ID indexes and node ID indexes over partitioned XML table spaces.

CHECK INDEX does not set a utility restrictive state if the target object is DSNDB01.SYSUTILX.

CHECK INDEX of an XML index cannot run if REBUILD INDEX, REORG INDEX, or RECOVER is being run on
that index because CHECK INDEX needs access to the node ID index. CHECK INDEX SHRLEVEL CHANGE
cannot run two jobs concurrently for two different indexes that are in the same table space or partition
because the snapshot shadow will have a conflicting name for the table space.

104 Db2 12 for z/OS: Utility Guide and Reference

Compatibility
The following table shows which utilities can run concurrently with CHECK INDEX on the same target
object. The first column lists the other utility and the second column lists whether or not that utility
is compatible with CHECK INDEX. The target object can be a table space, an index space, or an index
partition. If compatibility depends on particular options of a utility, that information is also documented in
the table.

Table 13. Compatibility of CHECK INDEX SHRLEVEL REFERENCE with other utilities

Action Compatible with
CHECK INDEX?

CHECK DATA No

CHECK INDEX. Yes

CHECK LOB Yes

COPY INDEXSPACE Yes

COPY TABLESPACE Yes

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

MODIFY Yes

QUIESCE Yes

REBUILD INDEX No

RECOVER INDEX No

RECOVER TABLESPACE No

REORG INDEX No

REORG TABLESPACE UNLOAD CONTINUE or PAUSE No

REORG TABLESPACE UNLOAD ONLY or EXTERNAL Yes

REPAIR DELETE or REPLACE No

REPAIR DUMP or VERIFY Yes

REPORT Yes

RUNSTATS Yes

STOSPACE Yes

UNLOAD Yes

An instance of CHECK INDEX can run on SYSIBM.DSNLUX01 or SYSIBM.DSNLUX02 only if that instance is
the only utility within a job step. In addition, an instance of CHECK INDEX with SHRLEVEL REFERENCE as
a specified or default value can run on SYSIBM.DSNLUX01 or SYSIBM.DSNLUX02 only if that instance is
the only utility that is running in the Db2 subsystem.

Chapter 12. CHECK INDEX 105

Single logical partitions
You can run CHECK INDEX on a single logical partition of a secondary index. However, what CHECK INDEX
can detect is limited.

• CHECK INDEX does not detect duplicate unique keys in different logical partitions. For example, logical
partition 1 might have the following keys:

A B E F T Z

Logical partition 2 might have the following keys:

M N Q T V X

In this example, the keys are unique within each logical partition, but both logical partitions contain
the key, T; so for the index as a whole, the keys are not unique. CHECK INDEX does not detect the
duplicates.

• CHECK INDEX does not detect keys that are out of sequence between different logical partitions. For
example, the following keys are out of sequence:

1 7 5 8 9 10 12

If keys 1, 5, 9, and 12 belong to logical partition 1 and keys 7, 8, and 10 belong to logical partition 2, the
keys within each partition are in sequence, but the keys for the index, as a whole, are out of sequence,
as shown in the following example:

LP 1 1 5 9 12 LP 2 7 8 10

When checking a single logical partition, CHECK INDEX does not detect this out-of-sequence condition.

Indexes in parallel
If you specify more than one index, CHECK INDEX checks the indexes in parallel unless they are
constrained by available memory, sort work files, or the PARALLEL option. Sorting the index keys and
checking multiple indexes in parallel, rather than sequentially, reduces the elapsed time for a CHECK
INDEX job.

If you do not specify the PARALLEL option, the PARAMDEG_UTIL subsystem parameter determines the
maximum degree of parallelism for the utility.

The following figure shows the flow of a CHECK INDEX job with a parallel index check for a nonpartitioned
table space or a single partition of a partitioned table space.

106 Db2 12 for z/OS: Utility Guide and Reference

Figure 5. Parallel index check for a nonpartitioned table space or a single partition of a partitioned table
space

The following figure shows the flow of a CHECK INDEX job with a parallel index check for all partitioning
indexes on a partitioned table space.

Figure 6. Parallel index check for all partitioning indexes on a partitioned table space

The following figure shows the flow of a CHECK INDEX job with a parallel index check for a partitioned
table space with a single nonpartitioned secondary index.

Chapter 12. CHECK INDEX 107

Figure 7. Parallel index check for a partitioned table space with a single nonpartitioned secondary index

The following figure shows the flow of a CHECK INDEX job with a parallel index check for all indexes on a
partitioned table space. Each unload task pipes keys to each sort task, sorting the keys and piping them
back to the check tasks.

Figure 8. Parallel index check for all indexes on a partitioned table space

108 Db2 12 for z/OS: Utility Guide and Reference

Reviewing CHECK INDEX output
CHECK INDEX indicates whether a table space and its indexes are inconsistent, but it does not correct
any such inconsistencies. If CHECK INDEX detects inconsistencies, you should analyze the output to
determine the problem and then correct the inconsistency.

Procedure
To identify the inconsistency:
1. Examine the error messages that CHECK INDEX issues.
2. Verify the point in time for each object that is recovered. Use output from REPORT RECOVERY to

ensure that the table space and indexes are recovered to the same point in time.
If you specify TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY, ensure that the point in time is a
SHRLEVEL REFERENCE copy.

3. If the table space is correct, run the REBUILD INDEX utility to rebuild the indexes.
4. If the index is correct, determine a consistent point in time for the table space, and run the RECOVER

utility on the table space. Run CHECK INDEX again to verify consistency.
5. If neither the table space nor its indexes are correct, determine a point in time to which to recover both

the table space and indexes, and then rerun the RECOVER utility job, including the table space and its
indexes all in the same list.

Related concepts
How to report recovery information (Db2 Administration Guide)
Related reference
“REBUILD INDEX” on page 399
The REBUILD INDEX online utility reconstructs indexes or index partitions from the table that they
reference.
“RECOVER” on page 425
The RECOVER utility recovers data to the current state or to a previous point in time by restoring a copy
and then applying log records. The RECOVER utility can also recover data to a previous point in time by
backing out committed work.
“REPORT” on page 663
The REPORT utility provides information about table spaces, tables, and indexes. You can use REPORT to
find the names of related table spaces, such as referentially related table spaces and LOB table spaces.
You can also use REPORT to find information that is necessary for recovery.

Termination or restart of CHECK INDEX
You can terminate and restart the CHECK INDEX utility.

You can terminate CHECK INDEX in any phase without any integrity exposure.

You can restart a CHECK INDEX utility job, but it starts from the beginning again.

Related tasks
“Terminating an online utility” on page 44
You can terminate the execution of an active utility or release the resources that are associated with a
stopped utility.
“Restarting an online utility” on page 46

Chapter 12. CHECK INDEX 109

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_howreportrecoveryinfo.html

If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.

Correcting XML data after running CHECK INDEX
After you run the CHECK INDEX utility, you might need to correct XML data.

Procedure
Based on the CHECK INDEX output, perform one of the following actions:
Problem Action

Problem with a document ID index a. Confirm that the base table space is at the correct
level.

b. Rebuild the index.

Problem with an XML table space for a
node ID index or an XML index and the
index is correct

Run REPAIR LOCATE RID DELETE to remove the orphan
row.

Problem with an XML table space for a
node ID index or an XML index and the
index is incorrect

Run REBUILD INDEX or RECOVER INDEX to rebuild the
index.

Problem with an XML index over an XML
table space

Run REBUILD INDEX to rebuild the index.

Restriction: Do not run REPAIR LOCATE RID DELETE to
remove orphan rows unless the node ID index does not
represent the same row and the base table space does
not use the document ID index.

Sample CHECK INDEX control statements
Sample control statements are helpful as models for developing your own CHECK INDEX control
statements.

Example 1: Checking all indexes

The control statement specifies that the CHECK INDEX utility is to check all indexes in sample table space
DSN8D81A.DSN8S81E.

//STEP1 EXEC DSNUPROC,UID='IUIQU1UQ.CHK1',
// UTPROC='',
// SYSTEM='DSN'
//SYSERR DD DSN=IUIQU1UQ.CHK3.SYSERR,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(6000,(20,20),,,ROUND)
//SORTOUT DD DSN=IUIQU1UQ.CHK3.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(6000,(20,20),,,ROUND)
//SYSIN DD *
CHECK INDEX (ALL) TABLESPACE DSN8D12A.DSN8S12E
//*

Example 2: Checking one index

110 Db2 12 for z/OS: Utility Guide and Reference

The following control statement specifies that the CHECK INDEX utility is to check the project-number
index (DSN8C10.XPROJ1) on the sample project table. SORTDEVT SYSDA specifies that SYSDA is the
device type for temporary data sets that are to be dynamically allocated by the sort program.

CHECK INDEX (DSN8C10.XPROJ1)
 SORTDEVT SYSDA

Example 3: Checking more than one index

The following control statement specifies that the CHECK INDEX utility is to check the indexes
DSN8C10.XEMPRAC1 and DSN8C10.XEMPRAC2 on the employee-to-project-activity sample table.

CHECK INDEX (DSN8C10.XEMPRAC1, DSN8C10.XEMPRAC2)

Example 4: Checking partitions of all indexes

In the following control statement, table space DB0S0301.TP0S0301 has one partitioned
index (ADMF001.IP0S0301), one data-partitioned secondary index (ADMF001.ID0S0302), and one
nonpartitioned secondary index (ADMF001.IX0S0303). The (ALL) option indicates that all three indexes
on the table space are to be checked. PART 3 indicates that CHECK INDEX is to check the third physical
partition of any partitioned indexes and the third logical partition of any nonpartitioned indexes.

CHECK INDEX(ALL) TABLESPACE DBOS0301.TPOS0301 PART 3 SORTDEVT SYSDA

In this case, CHECK INDEX checks the third physical partition of ADMF001.IP0S0301, the third physical
partition of ADMF001.ID0S0302, and the third logical partition of ADMF001.IX0S0303, as indicated by
the following output.

DSNU050I DSNUGUTC- CHECK INDEX(ALL) TABLESPACE DBOS0301.TPOS0301 PART 3 SORTDEVT SYSDA
DSNU700I= DSNUKGET- 10 INDEX ENTRIES UNLOADED FROM INDEX='ADMF001.IPOS0301' PARTITION=3
DSNU700I= DSNUKGET- 10 INDEX ENTRIES UNLOADED FROM INDEX='ADMF001.IDOS0302' PARTITION=3
DSNU701I= DSNUKGET- 10 INDEX ENTRIES UNLOADED FROM 'ADMF001.IXOS0303'
DSNU705I DSNUK001- UNLOAD PHASE COMPLETE - ELAPSED TIME=00:00:00
DSNU717I= DSNUKTER- 10 ENTRIES CHECKED FOR INDEX 'ADMF001.IPOS0301' PARTITION=3
DSNU717I= DSNUKTER- 10 ENTRIES CHECKED FOR INDEX 'ADMF001.IDOS0302' PARTITION=3
DSNU717I= DSNUKTER- 10 ENTRIES CHECKED FOR INDEX 'ADMF001.IXOS0303' PARTITION=3
DSNU720I DSNUK001- CHECKIDX PHASE COMPLETE, ELAPSED TIME=00:00:00
DSNU010I DSNUGBAC- UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 5: Checking indexes in a list

The LISTDEF control statement defines a list of indexes called CHKIDXB_LIST. The CHECK INDEX control
statement specifies that CHECK INDEX is to check all indexes that are included in the CHKIDXB_LIST
list. SORTDEVT SYSDA specifies that SYSDA is the device type for temporary data sets that are to be
dynamically allocated by the sort program. SORTNUM 4 specifies that four of these data sets are to be
dynamically allocated.

//CHKIDXB EXEC PGM=DSNUTILB,REGION=4096K,PARM='SSTR,CHKINDX1'
//SYSPRINT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//UTPRINT DD SYSOUT=A
//DSNTRACE DD SYSOUT=A
//SYSOUT DD UNIT=SYSDA,SPACE=(CYL,(5,2)),VOL=SER=SCR03
//SORTLIB DD DISP=SHR,DSN=SYS1.SORTLIB
//SORTOUT DD UNIT=SYSDA,SPACE=(CYL,(5,2)),VOL=SER=SCR03
//SYSERR DD UNIT=SYSDA,SPACE=(CYL,(5,2)),VOL=SER=SCR03
//SYSIN DD *
LISTDEF CHKIDXB_LIST INCLUDE INDEXSPACE DBOT55*.* ALL
CHECK INDEX LIST CHKIDXB_LIST
 SORTDEVT SYSDA

Chapter 12. CHECK INDEX 111

 SORTNUM 4
/*

Example 6: Checking all specified indexes on clone tables

The following control statement specifies that the CHECK INDEX utility is to check all specified indexes
that are on clone tables.

CHECK INDEX (ALL) TABLESPACE DBLOB01.TSLOBC4 CLONE

Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

112 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

Chapter 13. CHECK LOB
You can run the CHECK LOB online utility on a LOB table space to identify any structural defects in the LOB
table space and any invalid LOB values.

The CHECK LOB utility is useful in a variety of circumstances:

• Run the utility on a LOB table space that is in CHECK-pending (CHKP) status to identify structural
defects. If none are found, the CHECK LOB utility turns the CHKP status off.

• Run the utility on a LOB table space that is in auxiliary-warning (AUXW) status to identify invalid LOBs. If
none exist, the CHECK LOB utility turns AUXW status off.

• Run the utility after a conditional restart or a point-in-time recovery on all table spaces where LOB table
spaces might not be synchronized.

• Run the utility before you run the CHECK DATA utility on a table space that contains at least one LOB
column.

Output

After successful execution, CHECK LOB resets any CHECK-pending (CHKP) and auxiliary warning (AUXW)
restrictive states. CHECK LOB SHRLEVEL CHANGE does not set the CHKP or AUXW states, even if the
utility finds inconsistencies.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• STATS privilege for the database
• DBADM, DBCTRL, or DBMAINT authority for the database. If the object on which the utility operates is

in an implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• System DBADM authority
• SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute CHECK LOB.

If you are using SHRLEVEL CHANGE, the user ID that invokes COPY with the CONCURRENT option must
provide the necessary authority to execute the DFSMSdss ADRDSSU command. DFSMSdss will create a
shadow data set with the authority of the utility batch address space. The submitter should have a RACF
ALTER authority, or its equivalent, for the shadow data set.

Execution phases of CHECK LOB

The CHECK LOB utility operates in the following phases:

UTILINIT
Performs initialization

CHECKLOB
Scans all active pages of the LOB table space; generates up to four records per LOB page; passes
records to the SORTIN phase

SORTIN
Passes CHECKLOB phase records to SORT

© Copyright IBM Corp. 1983, 2024 113

SORT
Sorts the records from the CHECKLOB phase

SORTOUT
Passes sorted records to the REPRTLOB phase

REPRTLOB
Examines records that are produced by the CHECKLOB phase; issues error messages

UTILTERM
Performs cleanup

Syntax and options of the CHECK LOB control statement
The CHECK LOB utility control statement, with its multiple options, defines the function that the utility job
performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram
CHECK LOB TABLESPACE

database-name .

lob-table-space-name

CLONE

SHRLEVEL REFERENCE

SHRLEVEL CHANGE

DRAIN_WAIT IRLMRWT-value

DRAIN_WAIT integer

RETRY UTIMOUT-value

RETRY integer

RETRY_DELAY calculated-default

RETRY_DELAY integer

EXCEPTIONS 0

EXCEPTIONS integer

PUNCHDDN SYSPUNCH

PUNCHDDN ddname SORTDEVT device-type

SORTNUM integer

Option descriptions

LOB
Indicates that you are checking a LOB table space for defects.

TABLESPACE database-name.lob-table-space-name
Specifies the table space to which the data belongs.

database-name is the name of the database and is optional.

The default value is DSNDB04.

lob-table-space-name is the name of the LOB table space.

114 Db2 12 for z/OS: Utility Guide and Reference

SHRLEVEL
Indicates the type of access that is to be allowed for the index, table space, or partition that is to be
checked during CHECK LOB processing.
REFERENCE

Specifies that applications can read from but cannot write to the index, table space, or partition
that is to be checked.

CHANGE
Specifies that applications can read from and write to the index, table space, or partition that is to
be checked.

If you specify SHRLEVEL CHANGE, Db2 performs the following actions:

• Drains all writers and forces the buffers to disk for the specified object and all of its indexes
• Invokes DFSMSdss to copy the specified object and all of its indexes to shadow data sets
• Enables read-write access for the specified object and all of its indexes
• Runs CHECK INDEX on the shadow data sets

By default, DFSMSdss uses FlashCopy to copy Db2 objects to shadow data sets, if FlashCopy
is available. If DFSMSdss cannot use FlashCopy, DFSMSdss uses a slower method. As a result,
creating copies of objects might take a long time, and the time during which the data and indexes
have read-only access might increase. You can set the CHECK_FASTREPLICATION subsystem
parameter to REQUIRED to force the CHECK utility to use only FlashCopy. If FlashCopy is not
available, the CHECK utility fails.

Related information:

“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on page 42

DRAIN_WAIT
Specifies the number of seconds that CHECK LOB is to wait when draining the table space or index.
The specified time is the aggregate time for objects that are to be checked. This value overrides the
values that are specified by the IRLMRWT and UTIMOUT subsystem parameters.

integer can be any integer from 0 to 1800. If you do not specify DRAIN_WAIT or specify a value of 0,
CHECK LOB uses the value of the lock timeout subsystem parameter IRLMRWT.

RETRY integer
Specifies the maximum number of retries that CHECK LOB is to attempt.

integer can be any integer from 0 to 255. If you do not specify RETRY, CHECK LOB uses the value of
the utility multiplier system parameter UTIMOUT.

Specifying RETRY can increase processing costs and result in multiple or extended periods during
which the specified index, table space, or partition is in read-only access.

RETRY_DELAY integer
Specifies the minimum duration, in seconds, between retries. integer can be any integer from 1 to
1800.

If you do not specify RETRY_DELAY, CHECK LOB uses the smaller of the following two values:

• DRAIN_WAIT value × RETRY value
• DRAIN_WAIT value × 10

EXCEPTIONS integer
Specifies the maximum number of exceptions, which are reported by messages only. CHECK LOB
terminates in the CHECKLOB phase when it reaches the specified number of exceptions.

All defects that are reported by messages are applied to the exception count.

integer is the maximum number of exceptions.

The default value is 0, which indicates no limit on the number of exceptions.

Chapter 13. CHECK LOB 115

PUNCHDDN ddname
Specifies the DD statement for a data set that is to receive the REPAIR utility control statements
that CHECK LOB SHRLEVEL CHANGE generates. The REPAIR statements generated deletes the LOBs
reported in error messages from the LOB table space. CHECK DATA should then be run against the
base table space to set the deleted LOB columns in the base records to invalid.

ddname is the DD name.

The default value is SYSPUNCH.

The PUNCHDDN keyword specifies either a DD name or a TEMPLATE name specification from a
previous TEMPLATE control statement. If utility processing detects that the specified name is both a
name in the current job step and a TEMPLATE name, the utility uses the DD name.

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically allocated by the sort
program.

A TEMPLATE specification does not dynamically allocate sort work data sets. The SORTDEVT keyword
controls dynamic allocation of these data sets.

device-type is the device type and can be any disk device type that is acceptable to the DYNALLOC
parameter of the SORT or OPTION control statement for the sort program. Tape devices are not
supported by the sort program.

If you omit SORTDEVT and a sort is required, you must provide the DD statements that the sort
program requires for the temporary data sets.

SORTNUM integer
Indicates the number of temporary data sets that are to be dynamically allocated by the sort program.

integer is the number of temporary data sets that can range from 2 to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and omit SORTNUM, no value is
passed to the sort program, which then uses its own default. You need at least two sort work data sets
for each sort.

Important: The SORTNUM keyword is ignored if the IGNSORTN subsystem parameter is set to YES.

CLONE
Indicates that CHECK LOB is to check the LOB space data for only the clone table, not the LOB data for
the base table.

Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Before running CHECK LOB
Certain activities might be required before you run the CHECK LOB utility, depending on your situation.

You must first recover a LOB table space that is in RECOVER-pending status before running CHECK LOB.

Beginning in Version 8, the CHECK LOB utility does not require SYSUT1 and SORTOUT data sets. Work
records are written to and processed from an asynchronous SORT phase. The WORKDDN keyword, which
provided the DD names of the SYSUT1 and SORTOUT data sets in earlier versions of Db2, is not needed
and is ignored. You do not need to modify existing control statements to remove the WORKDDN keyword.

Data sets that CHECK LOB uses
The CHECK LOB utility uses a number of data sets during its operation.

The following table lists the data sets that CHECK LOB uses. The table lists the DD name that is used to
identify the data set, a description of the data set, and an indication of whether it is required. Include
statements in your JCL for each required data set and any optional data sets that you want to use.

116 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

Table 14. Data sets that CHECK LOB uses

Data set Description Required?

SYSIN An input data that contains the utility control
statement.

Yes

SYSPRINT An output data set for messages. Yes

UTPRINT A data set that contains messages from the sort
program (usually, SYSOUT or DUMMY).

Yes

The following object is named in the utility control statement and does not require DD statements in the
JCL:

Table space
Object that is to be checked.

Sort work data sets cannot span volumes. Smaller volumes require more sort work data sets to sort the
same amount of data; therefore, large volume sizes can reduce the number of needed sort work data sets.
When you allocate sort work data sets on disk, the recommended amount of space to allow provides at
least 1.2 times the amount of data that is to be sorted.

Tape devices are not supported for sort work data sets.

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Shadow data sets for CHECK LOB
When you execute the CHECK LOB utility with the SHRLEVEL CHANGE option, the utility uses shadow data
sets.

If a table space, partition, or index resides in Db2-managed data sets and shadow data sets do not
already exist when you execute CHECK LOB, Db2 creates the shadow data sets. At the end of CHECK LOB
processing, the Db2-managed shadow data sets are deleted.

For user-managed data sets, DFSMSdss can create or scratch and recreate the required shadow data sets
as needed. When the CHECK LOB utility completes the processing of user-managed data sets, the shadow
data sets are not automatically scratched.

If you have not changed the value of FREEPAGE or PCTFREE on the CREATE TABLESPACE statement, the
amount of required space for a shadow data set is comparable to the amount of required space for the
original data set.

If you do not want the shadow data sets to be allocated in the same storage class as the production data
sets, set the UTIL_TEMP_STORCLAS system parameter to specify the storage class for the shadow data
sets.

Shadow data set names
Each shadow data set must have the following name:

catname.DSNDBx.dbname.psname.y000z.Lnnn

In the preceding name, the variables have the following meanings:

Chapter 13. CHECK LOB 117

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

variable
meaning

catname
The VSAM catalog name or alias

x
C or D

dbname
Database name

psname
Table space name or index name

y
I or J

z
1 or 2

Lnnn
Partition identifier. Use one of the following values:

• A001 through A999 for partitions 1 through 999
• B000 through B999 for partitions 1000 through 1999
• C000 through C999 for partitions 2000 through 2999
• D000 through D999 for partitions 3000 through 3999
• E000 through E996 for partitions 4000 through 4096

To determine the names of existing data sets, execute one of the following queries against the
SYSTABLEPART or SYSINDEXPART catalog tables:

SELECT DBNAME, TSNAME, IPREFIX
 FROM SYSIBM.SYSTABLEPART
 WHERE DBNAME = 'dbname'
 AND TSNAME = 'psname';

SELECT DBNAME, IXNAME, IPREFIX
 FROM SYSIBM.SYSINDEXES X, SYSIBM.SYSINDEXPART Y
 WHERE X.NAME = Y.IXNAME
 AND X.CREATOR = Y.IXCREATOR
 AND X.DBNAME = 'dbname'
 AND X.INDEXSPACE = 'psname';

Defining shadow data sets
For a partitioned table space, Db2 returns rows from which you select the row for the partitions that you
want to check.

Consider the following actions when you preallocate the data sets:

• Allocate the shadow data sets according to the rules for user-managed data sets.
• Define the shadow data sets as LINEAR.
• Use SHAREOPTIONS(3,3).
• Define the shadow data sets as EA-enabled if the original table space or index space is EA-enabled.
• Allocate the shadow data sets on the volumes that are defined in the storage group for the original table

space or index space.

If you specify a secondary space quantity, Db2 does not use it. Instead, Db2 uses the SECQTY value for
the table space or index space.

118 Db2 12 for z/OS: Utility Guide and Reference

Recommendation: Use the MODEL option, which causes the new shadow data set to be created like the
original data set. This method is shown in the following example:

DEFINE CLUSTER +
 (NAME('catname.DSNDBC.dbname.psname.x000z.L001') +
 MODEL('catname.DSNDBC.dbname.psname.y000z.L001')) +
 DATA +
 (NAME('catname.DSNDBD.dbname.psname.x000z.L001') +
 MODEL('catname.DSNDBD.dbname.psname.y000z.L001'))

Creating shadow data sets for indexes
When you preallocate shadow data sets for indexes, create the data sets as follows:

• Create shadow data sets for the partition of the table space and the corresponding partition in each
partitioning index and data-partitioned secondary index.

• Create a shadow data set for logical partitions of nonpartitioned secondary indexes.

Use the same naming scheme for these index data sets as you use for other data sets that are associated
with the base index, except use J0001 instead of I0001.

Concurrency and compatibility for CHECK LOB
The CHECK LOB utility has certain concurrency and compatibility characteristics associated with it.

Db2 treats individual data and index partitions as distinct target objects. Utilities that operate on different
partitions of the same table space or index space are compatible.

Claims and drains
The following table lists any claims or drains that the utility acquires and any restrictive states that are set
on the target object.

Table 15. Claim classes for CHECK LOB operations on a LOB table space and index on the auxiliary table

Target objects
CHECK LOB SHRLEVEL
REFERENCE

CHECK LOB SHRLEVEL
CHANGE

LOB table space DW/UTRO CR/UTRW

Index on the auxiliary table DW/UTRO CR/UTRW

Legend:

• CR: Claim the read claim class
• DW: Drain the write claim class, concurrent access for SQL readers
• UTRO: Utility restrictive state, read-only access allowed
• UTRW: Utility restrictive state, read and write access allowed

Compatibility
Any SQL operation or other online utility that attempts to update the same LOB table space is
incompatible.

How CHECK LOB identifies violations
You can find and resolve violations by reviewing messages that the CHECK LOB utility issues.

CHECK LOB issues message DSNU743I whenever it finds a LOB value that is invalid. The violation is
identified by the row ID and version number of the LOB. You can resolve LOB violations by using the

Chapter 13. CHECK LOB 119

UPDATE or DELETE SQL statements to update the LOB column or delete the row that is associated with
the LOB. (Use the row ID from message DSNU743I.)

Contact IBM Support for assistance with diagnosing and resolving the problem.

Related reference
DELETE (Db2 SQL)
UPDATE (Db2 SQL)

Resetting CHECK-pending status for a LOB table space
If a LOB table space has a status of CHECK-pending (CHKP), you can remove the CHKP status by
correcting the error and either rerunning the CHECK LOB utility or by running the REPAIR utility.

Procedure
To reset CHECK-pending status:
1. Correct any defects that are found in the LOB table space by using the REPAIR utility.

Attention: Use the REPAIR utility with care because improper use can further damage the data.
If necessary, contact IBM Support for guidance on using the REPAIR utility.

2. Run CHECK LOB again or run the REPAIR utility to reset CHECK-pending status.
If no inconsistencies remain in the table space, CHECK LOB resets the CHECK-pending status.

3. If the table space is in auxiliary warning (AUXW) status, take the actions in “Auxiliary warning status”
on page 976 .

Related reference
“Syntax and options of the CHECK LOB control statement” on page 114
The CHECK LOB utility control statement, with its multiple options, defines the function that the utility job
performs.
“REPAIR” on page 631
The REPAIR online utility repairs data. The data can be your own data or data that you would not normally
access, such as space map pages and index entries.
“CHECK-pending status” on page 977
CHECK-pending (CHKP) restrictive status indicates that an object might be in an inconsistent state and
must be checked.

Resolving media failure
Some media failures leave LOB pages in the logical page list (LPL), which requires action.

Procedure
Run CHECK LOB on a LOB table space.
The pages that were in the LPL are removed from the list so that they are available.

Related tasks
Displaying the logical page list (Db2 Administration Guide)

Termination or restart of CHECK LOB
You can terminate and restart the CHECK LOB utility.

If you terminate CHECK LOB during the CHECKLOB phase, LOB table spaces remain in CHECK-pending
status. During normal execution, the CHECKLOB phase places the LOB table space in CHECK-pending
status; at the end of the phase, the CHECK-pending status is reset if no errors are detected.

You can restart a CHECK LOB utility job, but it starts from the beginning again.

120 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_delete.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_update.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_displaylogicalpagelist.html

Related tasks
“Terminating an online utility” on page 44
You can terminate the execution of an active utility or release the resources that are associated with a
stopped utility.
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.

Sample CHECK LOB control statements
Sample control statements are helpful as models for developing your own CHECK LOB control
statements.

Example 1: Checking a LOB table space
The following control statement specifies that the CHECK LOB utility is to check LOB table space
DBIQUG01.TLIQUG02 for structural defects or invalid LOB values. The EXCEPTIONS 3 option indicates
that the CHECK LOB utility is to terminate when it finds three exceptions. The SORTDEVT and SORTNUM
options provide information about temporary data sets that are to be dynamically allocated by the sort
program. SORTDEVT SYSDA specifies that the device type is SYSDA, and SORTNUM 4 indicates that four
temporary data sets are to be dynamically allocated by the sort program.

//STEP1 EXEC DSNUPROC,UID='IUIQU2UG.CHECKL',
// UTPROC='',
// SYSTEM='DSN'
//SYSIN DD *
CHECK LOB TABLESPACE DBIQUG01.TLIQUG02
 EXCEPTIONS 3 SORTDEVT SYSDA
 SORTNUM 4

Example 2: Checking the LOB table space data
The following control statement specifies that the CHECK LOB utility is to check the LOB table space data
with the SHRLEVEL CHANGE option, which specifies that the application can read from and write to the
table space that is to be checked.

//STEP2 EXEC DSNUPROC,
// UTPROC='',SYSTEM='SSTR',
// UID='CHKLOB12.STEP2'
//*SYSPUNCH DD DN=PUNCHS,DISP=(NEW,DELETE,DELETE),UNITE=SYSDA,
//* SPACE=(CYL,(1,1)),VOL=SER=SCR03
//SYSPRINT DD SYSOUT=*
//UTPRINT DD DUMMY
//SYSIN DD *
 CHECK LOB TABLESPACE
 DABA12.TSL12
 SHRLEVEL CHANGE
 EXCEPTIONS 5
/*

Example 3: Checking the LOB space data for a clone table
The following control statement specifies that the CHECK LOB utility is to check the LOB space data
for only the clone table, not the LOB data for the base table. The EXCEPTIONS 0 option indicates that
there is no limit on the number of exceptions. The SORTDEVT and SORTNUM options provide information
about temporary data sets that are to be dynamically allocated by the sort program. SORTDEVT SYSDA
specifies that the device type is SYSDA, and SORTNUM 10 indicates that ten temporary data sets are to be
dynamically allocated by the sort program.

CHECK LOB TABLESPACE DBLOB01.TSLOBB1 CLONE
 EXCEPTIONS 0

Chapter 13. CHECK LOB 121

 SORTDEVT SYSDA
 SORTNUM 10

Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

122 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

Chapter 14. COPY
The COPY online utility creates copies of certain objects. These copies, called image copies, can later be
used for recovery.

COPY can create up to five image copies: two sequential image copies for the local site, two sequential
image copies for the recovery site, and one FlashCopy image copy. These copies can be created for any of
the following objects:

• Table space
• Table space partition
• Data set of a nonpartitioned table space
• Index space
• Index space partition

The sequential image copies can be either full or incremental. A full image copy is a copy of all pages in a
table space, partition, data set, or index space. An incremental image copy is a copy of the system pages
and only those data pages that have been modified since the last use of the COPY utility.

The RECOVER utility uses image copies when recovering a table space or index space to the most recent
time or to a previous point in time. Copies can also be used by the MERGECOPY, COPYTOCOPY, and
UNLOAD utilities.

Output

The COPY utility produces up to four sequential data sets that contain the image copy and optionally
one FlashCopy image copy. COPY also adds rows in the SYSIBM.SYSCOPY catalog table that describe the
image copy data sets that are available to the RECOVER utility. Your installation is responsible for ensuring
that these data sets are available if the RECOVER utility requests them.

COPY resets COPY-pending status as follows:

• If the copy is a full image copy, Db2 resets any COPY-pending status for the copied table spaces.
• If you copy a single table space partition, Db2 resets any COPY-pending status only for the copied

partition and not for the whole table space.
• If you copy a single piece of a multi-piece linear data set, Db2 does not reset any COPY-pending status.
• If you copy an index space or index, Db2 resets any informational COPY-pending (ICOPY) status.
• If you copy a NOT LOGGED table space, Db2 resets any informational COPY-pending (ICOPY) status.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• IMAGCOPY privilege for the database
• DBADM, DBCTRL, or DBMAINT authority for the database. If the object on which the utility operates is

in an implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• System DBADM authority
• SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute COPY, but only on a table space in the
DSNDB01 or DSNDB06 database.

© Copyright IBM Corp. 1983, 2024 123

If the CONCURRENT option is specified, the user ID that invokes the COPY utility must have the authority
to execute the DFSMSdss DUMP command.

If either the FLASHCOPY YES or FLASHCOPY CONSISTENT option is specified, the user ID that invokes
the COPY utility must have the authority to execute the DFSMSdss COPY command.

Restrictions on running COPY
COPY cannot be run on a table space during the period after RECOVER is run to a point in time before
materialization of pending definition changes and before REORG is run to complete the point-in-time
recovery process.

Execution phases of COPY

The COPY utility operates in the following phases:

UTILINIT
Performs initialization and setup.

REPORT
Reports image copy information if the CHANGELIMIT option is specified.

COPY
Creates copies.

If FLASHCOPY YES or FLASHCOPY CONSISTENT is specified, the FlashCopy image copies are created
in this phase. Otherwise, sequential image copies are created in this phase.

SEQCOPY
Creates additional sequential image copies from a FlashCopy image copy if FLASHCOPY YES or
FLASHCOPY CONSISTENT is specified. The phase is included only when both FlashCopy image copies
and sequential image copies are requested.

LOGAPPLY
Identifies the most recent checkpoint for each member. All objects that are being copied are updated
to the same log point to prepare for backout processing.

If FLASHCOPY CONSISTENT is specified, Db2 applies the updates to the FlashCopy image copy to
ensure that copy includes all activity up to the point of consistency.

LOGCSR
Calls log apply do the current status rebuild (CSR).

If FLASHCOPY CONSISTENT is specified, the utility reads the logs during this phase. The utility uses
the logs to identify the uncommitted work that needs to be backed out of the image copy.

LOGUNDO
Backs out uncommitted work from the image copy.

If FLASHCOPY CONSISTENT is specified, the utility backs out uncommitted work from the FlashCopy
image copy to make the image copy consistent.

UTILTERM
Performs cleanup.

Related reference
“RECOVER” on page 425

124 Db2 12 for z/OS: Utility Guide and Reference

The RECOVER utility recovers data to the current state or to a previous point in time by restoring a copy
and then applying log records. The RECOVER utility can also recover data to a previous point in time by
backing out committed work.

Syntax and options of the COPY control statement
The COPY utility control statement, with its multiple options, defines the function that the utility job
performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram

COPY copy-spec
1

concurrent-spec
2

filterddn-spec
3

CLONE

SHRLEVEL REFERENCE

SHRLEVEL CHANGE

SCOPE ALL

SCOPE PENDING

copy-spec

LIST listdef-name data-set spec
FULL YES

FULL NO

changelimit-spec

table-space-spec

index-space-spec

FULL YES

FULL NO

changelimit-spec

DSNUM ALL

DSNUM integer
4

data-set spec

PARALLEL

( num-objects) TAPEUNITS ( num-tape-units)

CHECKPAGE
5

NOCHECKPAGE

SYSTEMPAGES YES

SYSTEMPAGES NO

FLASHCOPY NO

FLASHCOPY YES

CONSISTENT FCCOPYDDN ( template-name)

concurrent-spec

Chapter 14. COPY 125

LIST listdef-name data-set spec

table-space-spec

index-space-spec

DSNUM ALL

DSNUM integer
4

data-set spec

CONCURRENT

filterddn-spec
LIST listdef-name

table-space-spec

index-space-spec

DSNUM ALL

DSNUM integer
4

data-set spec

FILTERDDN ( ddname) CONCURRENT

data-set spec
COPYDDN (ddname1

6

, ddname2

, ddname2

)

RECOVERYDDN (ddname3

, ddname4

, ddname4

)

RECOVERYDDN (ddname3

, ddname4

, ddname4

)

changelimit-spec
CHANGELIMIT

(ANY)

( percent_value1

, percent_value2

)

REPORTONLY

table-space-spec
TABLESPACE

database-name .

table-space-name

index-space-spec

INDEXSPACE
7

database-name .

index-space-name

INDEX

creator-id .

index-name

Notes:
1 Use copy-spec if you do not want to use the CONCURRENT option.
2 Use concurrent-spec if you want to use the CONCURRENT option, but not the FILTERDDN option.
3 Use filterddn-spec if you want to use the CONCURRENT and FILTERDDN options.
4 Not valid for nonpartitioning indexes.
5 CHECKPAGE is the default for table spaces but not for indexes.
6 COPYDDN SYSCOPY is the default for the primary copy, but this default can be used for only one object in
the list.

126 Db2 12 for z/OS: Utility Guide and Reference

7 INDEXSPACE is the preferred specification.

Option descriptions

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. LIST specifies one LIST keyword for
each COPY control statement. Do not specify LIST with either the INDEX or the TABLESPACE keyword.
Db2 invokes COPY once for the entire list.

This utility does not support lists that specify more than 32,000 objects. Partitions of table spaces or
index spaces that are included by the PARTLEVEL keyword count as separate objects.

This utility processes clone data only if the CLONE keyword is specified. The use of CLONED YES on
the LISTDEF statement is not sufficient.

The partitions or partition ranges can be specified in a list.

TABLESPACE database-name.table-space-name
Specifies the table space (and, optionally, the database it belongs to) that is to be copied.

database-name is the name of the database that the table space belongs to. The default value is
DSNDB04.

table-space-name is the name of the table space to be copied.

Specify the DSNDB01.SYSUTILX, DSNDB06.SYSTSCPY, or DSNDB01.SYSLGRNX table space by itself
in a single COPY statement. Alternatively, specify the DSNDB01.SYSUTILX, DSNDB06.SYSTSCPY, or
DSNDB01.SYSLGRNX table space with indexes over the table space that were defined with the COPY
YES attribute.

If you specify a segmented (non-UTS) table space, COPY locates empty and unformatted data pages
in the table space and does not copy them.

You cannot copy a table space that uses a storage group that is defined with a mixture of specific and
non-specific volume IDs.

CLONE
Indicates that COPY is to copy only clone table or index data. This utility will only process clone data if
the CLONE keyword is specified. The use of CLONED YES on the LISTDEF statement is not sufficient.

If the utility is processing a table space and CLONE is specified, the utility will only process clone table
data. If the utility is processing an index and CLONE is specified, the utility will only process indexes
over clone tables. If you use the LIST keyword to specify a list of objects, COPY processes only those
objects in the list that contain clone tables or indexes on clone tables. COPY ignores other objects in
the list.

INDEXSPACE database-name.index-space-name
Specifies the qualified name of the index space that is to be copied; the name is obtained from the
SYSIBM.SYSINDEXES table. The specified index space must be defined with the COPY YES attribute.

database-name Optionally specifies the name of the database that the index space belongs to. The
default value is DSNDB04.

index-space-name specifies the name of the index space that is to be copied.

You cannot copy an index space that uses a storage group that is defined with mixture of specific and
non-specific volume IDs.

INDEX creator-id.index-name
Specifies the index that is to be copied. Enclose the index name in quotation marks if the name
contains a blank.

creator-id optionally specifies the creator of the index. The default value is the user identifier for the
utility.

index-name specifies the name of the index that is to be copied.

Chapter 14. COPY 127

COPYDDN (ddname1,ddname2)
Specifies a DD name or a TEMPLATE name for the primary (ddname1) and backup (ddname2) copy
data sets for the image copy at the local site.

You can use the COPYDDN keyword to specify either a DD name or a TEMPLATE name specification
from a previous TEMPLATE control statement. If utility processing detects that the specified name is
both a DD name in the current job step and a TEMPLATE name, the utility uses the DD name. For more
information about TEMPLATE specifications, see Chapter 34, “TEMPLATE,” on page 751.

ddname is the DD name. The default value is SYSCOPY for the primary copy. You can use the default
for only one object in the list. The first object in the list that does not have COPYDDN specified uses
the default. Any other objects in the list that do not have COPYDDN specified cause an error.

If you use the CHANGELIMIT REPORTONLY option, you can use a DD DUMMY statement when you
specify the SYSCOPY output data set. This card prevents a data set from being allocated and opened.

Recommendation: Catalog all of your image copy data sets.

You cannot have duplicate image copy data sets. If the DD statement identifies a noncataloged data
set with the same name, volume serial, and file sequence number as one that is already recorded
in the SYSIBM.SYSCOPY catalog table, the COPY utility issues a message and does not make an
image copy. If COPY identifies a cataloged data set with only the same name, it does not make an
image copy. For cataloged image copy data sets, CATLG must be specified for the normal termination
disposition in the DD statement, as shown in the following example:

DISP=(MOD,CATLG,CATLG)

The DSVOLSER field of the SYSCOPY entry is blank.

If you use the CONCURRENT and FILTERDDN options, ensure that the size of the copy data set is large
enough to include all of the objects in the list.

RECOVERYDDN (ddname3,ddname4)
Specifies a DD name or a template name for the primary (ddname3) and backup (ddname4) copy data
sets for the image copy at the recovery site.

You can use the RECOVERYDDN keyword to specify either a DD name or a template name. If utility
processing detects that the specified name is both a DD name in the current job step and a template
name, the utility uses the DD name.

ddname3 and ddname4 are DD names.

You cannot have duplicate image copy data sets.

If you use the CONCURRENT and FILTERDDN options, ensure that the size of the copy data set is large
enough to include all of the objects in the list.

FULL
Specifies that COPY is to make either a full or an incremental image copy.
YES

Specifies a full image copy. Making a full image copy resets the COPY-pending status for the table
space or index, or for the partition if you specify DSNUM.

NO
Specifies only an incremental image copy. Only changes since the last image copy are to be
copied. NO is not valid for indexes.

Incremental image copies are not allowed in the following situations:

• The last full image copy of the table space was taken with the CONCURRENT option.
• No full image copies exist for the table space or data set that is being copied.
• After a successful LOAD or REORG operation, unless an inline copy was made during the LOAD

or REORG job.

128 Db2 12 for z/OS: Utility Guide and Reference

• You specify one of the following table spaces: DSNDB01.DBD01, DSNDB01.SYSUTILX,
DSNDB06.SYSTSCPY, or DSNDB01.SYSDBDXA.

• A previous COPY was terminated with the -TERM UTIL command, so the most recent
SYSIBM.SYSCOPY record for the object contains ICTYPE = T.

• If you specify both FLASHCOPY YES or CONSISTENT and FULL NO, the COPY utility issues
an informational message and creates a FlashCopy image copy. (FlashCopy image copies are
created as data set level copies of the object and cannot be incremental.) If you also request
that sequential image copies be taken, those copies are created from the FlashCopy image copy.

For incremental image copies of partitioned table spaces, COPY includes the header page for each
partition that has changed pages.

COPY automatically takes a full image copy of a table space if you specify FULL NO when an
incremental image copy is not allowed.

Related information:

“Allocation of sequential image copy data sets” on page 156

CHANGELIMIT

The CHANGELIMIT option is deprecated, and the alternative is running DSNACCOX.

Specifies the limit of changed pages in the table space, partition, or data set at which an incremental
or full image copy is to be taken.

ANY
Specifies that COPY is to take a full image copy if any pages have changed since the last image
copy.

percent_value1
Specifies the first value in the CHANGELIMIT range. percent_value1 must be an integer or decimal
value from 0.0 to 100.0. You do not need to specify leading zeroes, and the decimal point is not
required when specifying a whole integer. Specify a maximum of one decimal place for a decimal
value. For example, you can specify .5. If you specify this value, COPY takes an incremental image
copy if more than one half of one percent of the pages have changed.

percent_value2
Specifies the second value in the CHANGELIMIT range. percent_value2 must be an integer or
decimal value from 0.0 to 100.0. You do not need to specify leading zeroes, and the decimal point
is not required when specifying a whole integer. Specify a maximum of one decimal place for a
decimal value (for example, .5).

COPY CHANGELIMIT accepts percentage values in any order. For example, you can specify (10,1) or
(1,10).

If only one percentage value is specified, COPY CHANGELIMIT:

• Creates an incremental image copy if the percentage of changed pages is greater than 0 and less
than percent_value1.

• Creates a full image copy if the percentage of changed pages is greater than or equal to
percent_value1, or if CHANGELIMIT(0) is specified.

• Does not create an image copy if no pages have changed, unless CHANGELIMIT(0) is specified.
• Always creates a full image copy, even when no pages have been updated since the last image copy,

if CHANGELIMIT(0) is specified.
• Creates a full image copy if CHANGELIMIT(100) is specified and all pages have been changed since

the last image copy.
• Creates an incremental image copy if CHANGELIMIT(100) is specified and some but not all pages

have been changed since the last image copy.

If two percentage values are specified, COPY CHANGELIMIT:

Chapter 14. COPY 129

• Creates an incremental image copy if the percentage of changed pages is greater than the lowest
specified value and less than the highest specified value.

• Creates a full image copy if the percentage of changed pages is equal to or greater than the highest
specified value.

• Does not create an image copy if the percentage of changed pages is less than or equal to the lowest
specified value.

• If both values are equal, creates a full image copy if the percentage of changed pages is equal to or
greater than the specified value.

The default value is (10).

You cannot use the CHANGELIMIT option for a table space or partition that is defined with
TRACKMOD NO. If you change the TRACKMOD option from NO to YES, you must take an image copy
before you can use the CHANGELIMIT option. For nonpartitioned table spaces, you must copy the
entire table space to allow future CHANGELIMIT requests.

Related information:

“Allocation of sequential image copy data sets” on page 156

REPORTONLY
Specifies that image copy information is to be displayed. If you specify the REPORTONLY option,
only image copy information is displayed. Image copies are not taken in this case; they are only
recommended.

DSNUM
For a table space, identifies a partition or data set within the table space to be copied; or it copies
the entire table space. For an index space, DSNUM identifies a partition to be copied, or it copies the
entire index space. This option can specify a partition of a data-partitioned secondary index if the
index is copy-enabled.

If a data set of a nonpartitioned table space is in the COPY-pending status, you must copy the entire
table space.

If DSNUM ALL is implicitly or explicitly specified for a table space that has a partition in PRO restricted
status, COPY fails. If COPY is specified for a single partition that is in PRO restricted status, an
informational message is issued, and no image copy is produced.

ALL
Indicates that the entire table space or index space is to be copied. You must use ALL for a
nonpartitioned secondary index.

integer
Is the number of a partition or data set that is to be copied.

An integer value is not valid for nonpartitioned secondary indexes.

For a partitioned table space or index space, the integer is its physical partition number. The
maximum is 4096.

For a nonpartitioned table space, find the integer at the end of the data set name as it is
cataloged in the ICF catalog. The data set name has the following format:

catname.DSNDBx.dbname.spacename.y000Z.Annn

In this format:
catname

Is the ICF catalog name or alias.
x

Is C (for VSAM clusters) or D (for VSAM data components).
dbname

Is the database name.

130 Db2 12 for z/OS: Utility Guide and Reference

spacename
Is the table space or index space name.

y
Is I or J, which indicates the data set name used by REORG with FASTSWITCH.

z
Is 1 or 2.

nnn
Is the data set integer.

If COPY takes an image copy of data sets (rather than on table spaces), RECOVER, MERGECOPY, or
COPYTOCOPY must use the copies on a data set level. For a nonpartitioned table space, if COPY takes
image copies on data sets and you run MODIFY RECOVERY with DSNUM ALL, the table space is placed
in COPY-pending status if a full image copy of the entire table space does not exist.

PARALLEL
For sequential format image copies, specifies the maximum number of objects in the list that are to be
processed in parallel. The utility processes the list of objects in parallel for image copies being written
to or from different disk or tape devices. If you specify TAPEUNITS with PARALLEL, you control the
number of tape drives that are dynamically allocated for the copy.

If you omit PARALLEL, one object is copied at a time.

Restriction: Do not specify the PARALLEL keyword if one or more of the output data sets are defined
with DD statements that specify UNIT=AFF to refer to the same device as a previous DD statement.
This usage is not supported with the PARALLEL keyword and could result in an abend. Instead,
consider using templates to define your data sets.

The PARALLEL keyword is ignored for FlashCopy image copies.

(num-objects)
Specifies the number of objects in the list that are to be processed in parallel. You can adjust this
value to a smaller value if COPY encounters storage constraints.

If you specify 0 or do not specify a value for num-objects, COPY determines the optimal number of
objects to process in parallel.

TAPEUNITS
Specifies the maximum number of tape drives that the utility dynamically allocates for the list of
objects to be processed in parallel. TAPEUNITS applies only to tape drives that are dynamically
allocated through the TEMPLATE keyword. It does not apply to JCL allocated tape drives.

If you omit this keyword or specify TAPEUNITS(0), the default is set to the minimum number of
tape drives necessary for processing one object at a time to avoid monopolizing tape resources. For
example, when a local primary image copy is requested, TAPEUNITS is set to 1. However, if local
primary and recovery site primary image copies are requested, TAPEUNITS is set to 2.

The TAPEUNITS keyword is ignored for FlashCopy image copies.

(num-tape-units)
Specifies the number of tape drives to allocate. Specify a TAPEUNITS value that is the maximum
COPY can consume. COPY TAPEUNITS has a max value of 32767.

CHECKPAGE
Indicates that each page in the table space or index space is to be checked for validity. The validity
checking operates on one page at a time and does not include any cross-page checking. If it finds an
error, COPY issues a message that describes the type of error. If more than one error exists in a given
page, only the first error is identified. COPY continues checking the remaining pages in the table space
or index space after it finds an error. CHECKPAGE is the default for table spaces. CHECKPAGE is not
the default for indexes. This keyword is ignored by FlashCopy.

Important: Use of the CHECKPAGE option for indexes can result in greatly increased processor usage.

Chapter 14. COPY 131

NOCHECKPAGE
Indicates that only basic checks on each page in the table space or index space are done. Among the
basic checks that are performed are:

• Whether the page number is valid
• Whether pages are in the correct order
• Whether the page is logically broken

SYSTEMPAGES
Specifies whether the COPY utility puts system pages at the beginning of the image copy data set.

Although the system pages are located at the beginning of many image copies, this placement is not
guaranteed. In many cases, the system pages are not included. For example, incremental copies do
not include system pages. This keyword is ignored by FlashCopy.

YES
Ensures that any header, dictionary, and version system pages are copied at the beginning of the
image copy data set. Dictionary and version system pages can be copied twice.

Selecting YES ensures that the image copy contains the necessary system pages for subsequent
UNLOAD utility jobs to correctly format and unload all data rows.

NO
Does not ensure that the dictionary and version system pages are copied at the beginning of the
image copy data set. The COPY utility copies the pages in the current order, including the header
pages.

FLASHCOPY
Specifies whether FlashCopy technology is used to create a copy of the object. Valid values are YES,
NO, or CONSISTENT. When FlashCopy is used, a separate data set is created for each partition or
piece of the object.

Specify YES or CONSISTENT only if the Db2 data sets are on FlashCopy Version 2 disk volumes.

The FlashCopy specifications on the utility control statement override any specifications for FlashCopy
that are defined by using the Db2 subsystem parameters. If the FlashCopy subsystem parameters
specify the use of FlashCopy as the default behavior of this utility, the FLASHCOPY option can be
omitted from the utility control statement.

Important: If the input data set is less than one cylinder, FlashCopy technology might not be used
for copying the objects regardless of the FLASHCOPY settings. The copy is performed by IDCAMS if
FlashCopy is not used.

NO
Specifies that no FlashCopy is made. NO is the default value for FLASHCOPY.

YES
Specifies that FlashCopy technology is used to copy the object.

Important: Under the following circumstances, the COPY utility might not use FlashCopy even
though YES is specified:

• FlashCopy Version 2 disk volumes are not available
• The source tracks are already the target of a FlashCopy operation
• The target tracks are the source of a FlashCopy operation
• The maximum number of relationships for the copy is exceeded

In the event that FlashCopy is not used, the COPY utility uses traditional I/O methods to copy the
object, which can result in longer than expected execution time.

CONSISTENT
Specifies that when SHRLEVEL CHANGE is also specified, FlashCopy technology is used to copy
the object and that any uncommitted work included in the copy is backed out of the copy to make

132 Db2 12 for z/OS: Utility Guide and Reference

the copy consistent. If SHRLEVEL CHANGE is not specified, specifying FLASHCOPY CONSISTENT
is the same as specifying FLASHCOPY YES.

Specifying FLASHCOPY CONSISTENT requires additional time and system resources during utility
processing, because the COPY utility must read the logs and apply the changes to the image copy.
Similarly, recovering from a consistent FlashCopy image copy also requires additional time and
system resources to read the logs and reapply work that was previously backed out.

Restriction: CONSISTENT cannot be specified when copying objects that have been defined with
the NOT LOGGED attribute. If CONSISTENT is specified for an object that is defined with the
NOT LOGGED attribute, the COPY utility does not make a copy of the object and issues message
DSNU076I with return code 8.

Related information:

“FlashCopy image copies” on page 144
“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on page 42

FCCOPYDDN
Specifies the template to be used to create the FlashCopy image copy data set names. If a value is not
specified for FCCOPYDDN on the COPY control statement when FlashCopy is used, the value specified
on the FCCOPYDDN subsystem parameter determines the template to be used.
(template-name)

The data set names for the FlashCopy image copy are allocated according to the template
specification. For table space or index space level FlashCopy image copies, because a data set
is allocated for each partition or piece, ensure that the data set naming convention in the template
specification is unique enough. Use the &DSNUM variable, which resolves to a partition number or
piece number at execution time.

CONCURRENT
Specifies that DFSMSdss concurrent copy is to make the full image copy. The image copy is recorded
in the SYSIBM.SYSCOPY catalog table with ICTYPE=F and STYPE=C or STYPE=J.

If the SYSPRINT DD statement points to a data set, you must use a DSSPRINT DD statement.

When you specify SHRLEVEL(REFERENCE), an ICTYPE=Q record is placed into the SYSIBM.SYSCOPY
catalog table after the object has been quiesced. If COPY fails, this record remains in
SYSIBM.SYSCOPY. When COPY is successful, this ICTYPE=Q record is replaced with the ICTYPE=F
record.

If the page size in the table space matches the control interval for the associated data set, you can
use either the SHRLEVEL CHANGE option or the SHRLEVEL REFERENCE option with the CONCURRENT
option. If the page size does not match the control interval, you must use the SHRLEVEL REFERENCE
option for table spaces with a 8-KB, 16-KB, or 32-KB page size.

When you do not specify FILTERDDN, the DFSMSdss dump statement cannot include more than
255 data sets. When you request a concurrent copy on an object that exceeds this limitation, Db2
dynamically allocates a temporary filter data set for you.

FILTERDDNddname
Specifies the optional DD statement for the filter data set that COPY is to use with the CONCURRENT
option. COPY uses this data set to automatically build a list of table spaces that are to be copied by
DFSMSdss with one DFSMSdss DUMP statement.

You can use the FILTERDDN keyword to specify either a DD name or a TEMPLATE name specification
from a previous TEMPLATE control statement. If utility processing detects that the specified name is
both a DD name in the current job step and a TEMPLATE name, the utility uses the DD name.

If you specify FILTERDDN, the SYSCOPY records for all objects in the list have the same data set
name.

ddname is the DD name.

Chapter 14. COPY 133

SHRLEVEL
Indicates whether other programs can access or update the table space or index while COPY is
running.
REFERENCE

Allows read-only access by other programs.
CHANGE

Allows other programs to change the table space or index space.

When you specify SHRLEVEL CHANGE, uncommitted data might be copied.

When SHRLEVEL CHANGE with FLASHCOPY CONSISTENT is specified, the COPY utility uses Db2
shadow processing to backout uncommitted work to make the FlashCopy image copy consistent
without any availability outage to applications. Application updates are allowed throughout the
creation of the FlashCopy image copy and the creation of the sequential image copies.

Recommendation: Except when creating FlashCopy image copies or traditional image copies with
SHRLEVEL CHANGE and FLASHCOPY CONSISTENT specified, do not use image copies that are
made with SHRLEVEL CHANGE when you run RECOVER TOCOPY.

SHRLEVEL CHANGE is not allowed for a table space that is defined as NOT LOGGED unless it is a
LOB table space and its base table space has the LOGGED attribute.

SHRLEVEL CHANGE is not allowed when you use DFSMSdss concurrent copy for table spaces that
have a page size that is greater than 4 KB and does not match the control interval size. If the page
size in the table space matches the control interval size for the associated data set, you can use
either the SHRLEVEL CHANGE option or the SHRLEVEL REFERENCE option.

If you are copying a list and you specify the SHRLEVEL CHANGE option, you can specify OPTIONS
EVENT(ITEMERROR,SKIP) so that each object in the list is placed in UTRW status and the read
claim class is held only while the object is being copied.

The read claim class is briefly obtained for each object during the UTILINIT phase to determine
the object size if LIMIT is specified on the COPYDDN or RECOVERYDDN template. This applies only
if OPTIONS EVENT(ITEMERROR,SKIP) is specified.

If you do not specify OPTIONS EVENT(ITEMERROR,SKIP), all of the objects in the list are placed in
UTRW status and the read claim class is held on all objects for the entire duration of the COPY.

SCOPE
Indicates the scope of the copy for the specified objects.
ALL

Indicates that you want to copy all of the specified objects.
PENDING

Indicates that you want to copy only those objects in COPY-pending or informational COPY-
pending status. When the DSNUM ALL option is specified for partitioned objects, and one or more
of the partitions are in COPY-pending or informational COPY-pending status, a copy will be taken
of the entire table space or index space.

For partitioned objects, if you only want the partitions in COPY-pending status or informational
COPY-pending status to be copied, then a list of partitions should be specified. This is done by
invoking COPY on a LISTDEF list built with the PARTLEVEL option. An output image copy data set
will be created for each partition that is in COPY-pending or informational COPY-pending status.

Related reference
“LISTDEF” on page 199
The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.
“TEMPLATE” on page 751
The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the

134 Db2 12 for z/OS: Utility Guide and Reference

data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.

Before running COPY
Certain activities might be required before you run the COPY utility, depending on your situation.

Before running COPY, check that the table spaces and index spaces that you want to copy are not in any
restricted states.

Data sets that COPY uses
The COPY utility uses a number of data sets during its operation.

The following table lists the data sets that COPY uses. The table lists the DD name that is used to identify
the data set, a description of the data set, and an indication of whether it is required. Include statements
in your JCL for each required data set and any optional data sets that you want to use.

Table 16. Data sets that COPY uses

Data set Description Required?

SYSIN Input data set that contains the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

DSSPRINT Output data set for messages when making
concurrent copies or FlashCopy image copies.

No1

Filter A single data set that Db2 uses when you
specify the FILTERDDN option in the utility control
statement. This data set contains a list of VSAM
data set names that Db2 builds, and is used during
COPY when you specify the CONCURRENT and
FILTERDDN options.

No2

Sequential image copies From one to four sequential output data sets
that contain the resulting sequential format image
copy data sets. Specify their DD names with the
COPYDDN and RECOVERYDDN options of the utility
control statement. The default is one copy to be
written to the data set described by the SYSCOPY
DD statement.

Yes

FlashCopy image copies For table space or index space level copies, a VSAM
data set for the output FlashCopy image copy of
each partition or piece.

For a partition level or piece level copy, a VSAM
data set for the output FlashCopy image copy of the
partition or piece.

No3

Note:

1. Required if you specify CONCURRENT, FLASHCOPY YES, or FLASHCOPY CONSISTENT and the
SYSPRINT DD statement points to a data set.

2. Required if you specify the FILTERDDN option.
3. Required if you specify either FLASHCOPY YES or FLASHCOPY CONSISTENT.

The following objects are named in the utility control statement and do not require DD statements in the
JCL:

Chapter 14. COPY 135

Table space or index space
Object that is to be copied. (If you want to copy only certain data sets in a table space, you must use
the DSNUM option in the control statement.)

Db2 catalog objects
Objects in the catalog that COPY accesses. The utility records each copy in the Db2 catalog table
SYSIBM.SYSCOPY.

Output data set size

Sequential image copies are written to sequential non-VSAM data sets.

FlashCopy image copies are written to VSAM data sets.

Recommendation: Use a template for the image copy data set by specifying a TEMPLATE statement
without the SPACE keyword. When you omit this keyword, the utility calculates the appropriate size of the
data set for you.

Alternatively, you can find the approximate size of the image copy data set for a table space, in bytes, by
either executing COPY with the CHANGELIMIT REPORTONLY option, or using the following procedure:

1. Find the high-allocated page number, either from the NACTIVEF column of SYSIBM.SYSTABLESPACE
after running the RUNSTATS utility, or from information in the VSAM catalog data set.

2. Multiply the high-allocated page number by the page size.

Filter data set size

Recommendation: Use a template for the filter data set by specifying a TEMPLATE statement without the
SPACE keyword. When you omit this keyword, the utility calculates the appropriate size of the data set for
you.

Alternatively, you can determine the approximate size of the filter data set size that is required, in bytes,
by using the following formula, where n = the number of specified objects in the COPY control statement:

(240 + (80 * n))

JCL parameters

For the output data sets of sequential format image copies, you can specify a block size by using the
BLKSIZE parameter on the DD statement for the output data set. Valid block sizes are multiples of
4096 bytes. You can increase the buffer using the BUFNO parameter; for example, you might specify
BUFNO=30, which creates 30 buffers.

For the output data sets of image copies created by invoking either the concurrent copy function or
FlashCopy function of DFSMSdss, the required specifications for the output data sets might be different
than those for sequential format image copies. For example, the BUFNO parameter does not apply to the
output data sets for concurrent image copies.

Cataloging image copies

To catalog your image copy data sets, use the DISP=(MOD,CATLG,CATLG) parameter in the DD statement
or TEMPLATE that is named by the COPYDDN option. After the image copy is taken, the DSVOLSER column
of the row that is inserted into SYSIBM.SYSCOPY contains blanks.

FlashCopy image copy data sets are always cataloged. The DISP= parameter is not specified in the
FlashCopy template. After the image copy is taken, unless uncommitted work is backed out of the image
copy when FLASHCOPY CONSISTENT is specified, the DSVOLSER column of the row that is inserted into

136 Db2 12 for z/OS: Utility Guide and Reference

SYSIBM.SYSCOPY contains blanks. If uncommitted work is backed out of a FlashCopy image copy, the
DSVOLSER column contains the Db2 checkpoint information for each member.

Duplicate image copy data sets are not allowed. If a cataloged data set is already recorded in
SYSIBM.SYSCOPY with the same name as the new image copy data set, the COPY utility issues a message
and does not make the copy.

When RECOVER locates the SYSCOPY entry, it uses the operating system catalog to allocate the required
data set. If you have uncataloged the data set, the allocation fails. In that case, the recovery can still
go forward; RECOVER searches for a previous image copy. But even if it finds one, RECOVER must use
correspondingly more of the log during recovery.

Recommendation: Keep the ICF catalog consistent with the information about existing image copy data
sets in the SYSIBM.SYSCOPY catalog table.

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.

Concurrency and compatibility for COPY
The COPY utility has certain concurrency and compatibility characteristics associated with it.

Db2 treats individual data and index partitions as distinct target objects. Utilities that operate on different
partitions of the same table space or index space are compatible.

Restricted states

Do not copy a table space that is in any of the following states:

• CHECK-pending
• RECOVER-pending
• REFRESH-pending
• Logical error range
• Group buffer pool RECOVER-pending
• Stopped
• STOP-pending
• PRO restricted status

Do not copy an index space that is in any of the following states:

• CHECK-pending
• REBUILD-pending
• RECOVER-pending
• REFRESH pending
• Logical error range
• Group buffer pool RECOVER-pending
• Stopped
• STOP-pending

If a table space is in COPY-pending status, or a table space or index is in informational COPY-pending
status, you can reset the status only by taking a full image copy of the entire table space, all partitions
of the partitioned table space, or the index space. When you make an image copy of a partition, the
COPY-pending status of the partition is reset. If a nonpartitioned table space is in COPY-pending status,

Chapter 14. COPY 137

you can reset the status only by taking a full image copy of the entire table space, and not of each data
set.

Claims and drains
The following table lists any claims or drains that the utility acquires and any restrictive states that are set
on the target object.

Table 17. Claim classes of COPY operations

Target SHRLEVEL REFERENCE SHRLEVEL CHANGE

Table space, index space, or partition DW UTRO CR UTRW1

Table notes:

1. If the target object is a segmented (non-UTS) table space, SHRLEVEL CHANGE does not allow you to
concurrently execute an SQL DELETE without the WHERE clause.

Table legend:

• DW - Drain the write claim class - concurrent access for SQL readers
• CR - Claim the read claim class
• UTRO - Utility restrictive state, read-only access allowed
• UTRW - Utility restrictive state, read-write access allowed

COPY does not set a utility restrictive state if the target object is DSNDB01.SYSUTILX.

Compatibility
The following table documents which utilities can run concurrently with COPY on the same target object.
The target object can be a table space, an index space, or a partition of a table space or index space. If
compatibility depends on particular options of a utility, that information is also documented in the table.

Table 18. Compatibility of COPY with other utilities

Action

COPY
INDEXSPACE
SHRLEVEL
REFERENCE

COPY
INDEXSPACE
SHRLEVEL
CHANGE

COPY
TABLESPACE
SHRLEVEL
REFERENCE1

COPY
TABLESPACE
SHRLEVEL
CHANGE

BACKUP SYSTEM Yes Yes Yes Yes

CHECK DATA Yes Yes No No

CHECK INDEX Yes Yes Yes Yes

CHECK LOB Yes Yes Yes Yes

COPY INDEXSPACE No No Yes Yes

COPY TABLESPACE Yes Yes No No

COPYTOCOPY No No No No

DIAGNOSE Yes Yes Yes Yes

LOAD No No No No

MERGECOPY No No No No

MODIFY No No No No

QUIESCE Yes No Yes No

138 Db2 12 for z/OS: Utility Guide and Reference

Table 18. Compatibility of COPY with other utilities (continued)

Action

COPY
INDEXSPACE
SHRLEVEL
REFERENCE

COPY
INDEXSPACE
SHRLEVEL
CHANGE

COPY
TABLESPACE
SHRLEVEL
REFERENCE1

COPY
TABLESPACE
SHRLEVEL
CHANGE

REBUILD INDEX No No Yes Yes

RECOVER INDEX No No Yes Yes

RECOVER TABLESPACE Yes Yes No No

REORG INDEX No No Yes Yes

REORG TABLESPACE
SHRLEVEL CHANGE

No No No Yes2

REORG TABLESPACE UNLOAD
CONTINUE or PAUSE

No No No No

REORG TABLESPACE UNLOAD
ONLY or EXTERNAL

Yes Yes Yes Yes

REPAIR LOCATE by KEY, RID,
or PAGE DUMP or VERIFY

Yes Yes Yes Yes

REPAIR LOCATE by KEY or
RID DELETE or REPLACE

No No No No

REPAIR LOCATE INDEX PAGE
REPLACE

No No Yes No

REPAIR LOCATE TABLESPACE
PAGE REPLACE

Yes Yes No No

REPORT Yes Yes Yes Yes

RESTORE SYSTEM No No No No

RUNSTATS INDEX Yes Yes Yes Yes

RUNSTATS TABLESPACE Yes Yes Yes Yes

STOSPACE Yes Yes Yes Yes

UNLOAD1 Yes Yes Yes Yes

Table notes:

1. If CONCURRENT option is used, contention might be encountered when other utilities are run on the
same object at the same time.

2. REORG TABLESPACE SHRLEVEL CHANGE and COPY SHRLEVEL CHANGE are compatible and can run
concurrently except during the period when exclusive control is needed to drain claimers of a target
table space.

Restriction:

• COPY with the FLASHCOPY CONSISTENT option is not compatible with REORG.
• If REORG has drained the claimers of a table space or table space partition and a COPY utility

is submitted to access the same object, the COPY utility terminates with a message that it is not
compatible.

• If COPY and REORG are accessing the same table space or table space partitions, REORG cannot
drain claimers until COPY completes. The REORG DRAIN options determine the actions taken.

Chapter 14. COPY 139

• If COPY and REORG are accessing the same table space or table space partitions and COPY abends,
restart of the COPY is not allowed if REORG completes.

To run on DSNDB01.SYSUTILX, COPY must be the only utility in the job step. Also, if SHRLEVEL
REFERENCE is specified, the COPY job of DSNDB01.SYSUTILX must be the only utility running in the
Sysplex.

COPY on SYSUTILX is an "exclusive" job; such a job can interrupt another job between job steps, possibly
causing the interrupted job to time out.

Related tasks
“Monitoring utilities” on page 41
You can check the status of any Db2 online utility jobs. You can also check the phase in which the utility is
executing or stopped.
Related reference
“Advisory or restrictive states” on page 975
To control access and help ensure data integrity, Db2 can set a restrictive or nonrestrictive (advisory)
status on certain objects. However, you can take steps to correct each status.

Full image copies
You can make full image copies of a variety of data objects. Data objects include table spaces, table space
partitions, data sets of nonpartitioned table spaces, index spaces, and index space partitions.

The following statement specifies that the COPY utility is to make a full image copy of the DSN8S12E
table space in database DSN8D12A:

COPY TABLESPACE DSN8D12A.DSN8S12E

The COPY utility writes pages from the table space or index space to the output data sets. The JCL for
the utility job must include DD statements or have a template specification for the data sets. If the object
consists of multiple data sets and all are copied in one run, the copies reside in one physical sequential
output data set.

For sequential image copies, if the object consists of multiple data sets and all are copied in one run,
the copies reside in one physical sequential output data set. For FlashCopy image copies, if the object
consists of multiple data sets and all are copied in one run, there is a FlashCopy image copy data set for
each data set.

Image copies should be made either by entire page set or by partition, but not by both.

Recommendations:

• Take a full image copy after any of the following operations:

– CREATE or LOAD operations for a new object that is populated.
– REORG operation for an existing object.
– LOAD RESUME of an existing object.
– LOGGED operation of a table space.

• Copy the indexes over a table space whenever a full copy of the table space is taken. More frequent
index copies decrease the number of log records that need to be applied during recovery. At a minimum,
you should copy an index when it is placed in informational COPY-pending (ICOPY) status.

If you create an inline copy during LOAD or REORG, you do not need to execute a separate COPY job for
the table space. If you do not create an inline copy, and if the LOG option is NO, the COPY-pending status
is set for the table space. You must then make a full image copy for any subsequent recovery of the data.
An incremental image copy is not allowed in this case. If the LOG option is YES, the COPY-pending status
is not set. However, your next image copy must be a full image copy. Again, an incremental image copy is
not allowed.

140 Db2 12 for z/OS: Utility Guide and Reference

The COPY utility automatically takes a full image copy of a table space if you attempt to take an
incremental image copy when it is not allowed.

If a table space changes after an image copy is taken and before the table space is altered from NOT
LOGGED to LOGGED, the table space is marked COPY-pending, and a full image copy must be taken.

The catalog table SYSIBM.SYSCOPY and the directory tables SYSIBM.SYSUTILX and SYSIBM.SYSLGRNX
record information from the COPY utility. Copying the table spaces for those tables can lock out
separate COPY jobs that are running simultaneously; therefore, defer copying the table spaces for
SYSIBM.SYSCOPY, SYSIBM.SYSUTILX, and SYSIBM.SYSLGRNX until the other copy jobs have completed.
However, if you must copy other objects while another COPY job processes the catalog or directory,
specify SHRLEVEL(CHANGE) for copying the catalog and directory table spaces. Beginning in DB2 10, the
COPY control statements in the DSNTIJIC job specify SHRLEVEL(CHANGE).

Related tasks
“Copying catalog and directory objects” on page 151
For backup purposes, take image copies of catalog and directory objects.
Related reference
“Advisory or restrictive states” on page 975
To control access and help ensure data integrity, Db2 can set a restrictive or nonrestrictive (advisory)
status on certain objects. However, you can take steps to correct each status.

Incremental image copies
An incremental image copy is a copy of the pages that have been changed since the last full or
incremental image copy.

You cannot take an incremental image copy of an index space.

You can make an incremental image copy of a table space if the following conditions are true:

• A full image copy of the table space exists.
• The COPY-pending status is not on for that table space.
• The last copy was taken without the CONCURRENT option.
• The previous copy was not made by using FlashCopy. This applies even if sequential copies were made

from the FlashCopy image copy.

Copy by partition or data set

You can make an incremental image copy by partition or data set (specified by DSNUM) in the following
situations:

• A full image copy of the table space exists.
• A full image copy of the same partition or data set exists and the COPY-pending status is not on for the

table space or partition.

In addition, the full image copy must have been made after the most recent use of CREATE, REORG or
LOAD, or it must be an inline copy that was made during the most recent use of LOAD or REORG.

Sample control statement
To specify an incremental image copy, use FULL NO on the COPY statement, as in the following example:

COPY TABLESPACE DSN8D12A.DSN8S12E FULL NO SHRLEVEL CHANGE

Chapter 14. COPY 141

Performance advantage

An incremental image copy generally does not require a complete scan of the table space, with two
exceptions:

• The table space is defined with the TRACKMOD NO option.
• You are taking the first copy after you altered a table space to TRACKMOD YES.

Space maps in each table space indicate, for each page, whether it has changed since the last image
copy. Therefore, making an incremental copy can be significantly faster than making a full copy if the
table space is defined with the TRACKMOD YES option. Incremental image copies of a table space that is
defined with TRACKMOD NO still save space, although the performance advantage is smaller.

Restriction: You cannot make incremental copies of DSNDB01.DBD01, DSNDB01.SYSDBDXA,
DSNDB01.SYSUTILX, or DSNDB06.SYSTSCPY in the catalog. For those objects, COPY always makes a
full image copy and places the SYSCOPY record in the log.

Multiple image copies
In a single COPY job, you can create up to five exact copies of various data objects. Data objects include
table spaces, table space partitions, data sets of a nonpartitioned table space, index spaces, and index
space partitions.

You can make two sequential copies for use on the local Db2 system (installed with the option
LOCALSITE), and two more for offsite recovery (on any system that is installed with the option
RECOVERYSITE). You can also make a fifth FlashCopy image copy for use on the local Db2 system. All
copies are identical, and all are produced at the same time from one invocation of COPY.

Alternatively you can use COPYTOCOPY to create the needed image copies. COPYTOCOPY can be used to
create sequential image copies from a FlashCopy image copy.

The ICBACKUP column in SYSIBM.SYSCOPY specifies whether the image copy data set is for the local or
recovery system, and whether the image copy data set is for the primary copied data set or for the backup
copied data set. The ICUNIT column in SYSIBM.SYSCOPY specifies whether the image copy data set is on
tape or disk.

Remote-site recovery

For remote site recovery, Db2 assumes that the system and application libraries and the Db2 catalog and
directory are identical at the local site and recovery site. You can regularly transport copies of archive
logs and database data sets to a safe location to keep current data for remote-site recovery current. This
information can be kept on tape until needed.

Naming the data sets for the copies
The COPYDDN option of COPY names the output data sets that receive copies for local use. The
RECOVERYDDN option names the output data sets that receive copies that are intended for remote-site
recovery. The options have the following formats:

COPYDDN (ddname1,ddname2) RECOVERYDDN (ddname3,ddname4)

The DD names for the primary output data sets are ddname1 and ddname3. The ddnames for the backup
output data sets are ddname2 and ddname4.

Sample control statement
The following statement makes four full image copies of the table space DSN8S12E in database
DSN8D12A. The statement uses LOCALDD1 and LOCALDD2 as DD names for the primary and backup

142 Db2 12 for z/OS: Utility Guide and Reference

copies that are used on the local system and RECOVDD1 and RECOVDD2 as DD names for the primary and
backup copies for remote-site recovery:

COPY TABLESPACE DSN8D12A.DSN8S12E
 COPYDDN (LOCALDD1,LOCALDD2)
 RECOVERYDDN (RECOVDD1,RECOVDD2)

You do not need to make copies for local use and for remote-site recovery at the same time. COPY
allows you to use either the COPYDDN or the RECOVERYDDN option without the other. If you make
copies for local use more often than copies for remote-site recovery, a remote-site recovery could be
performed with an older copy, and more of the log, than a local recovery; hence, the recovery would take
longer. However, in your plans for remote-site recovery, that difference might be acceptable. You can also
use MERGECOPY RECOVERYDDN to create recovery-site full image copies, and merge local incremental
copies into new recovery-site full copies.

Conditions for making multiple incremental image copies
Db2 cannot make incremental image copies if any of the following conditions is true:

• The incremental image copy is requested only for a site other than the current site (the local site from
which the request is made).

• Incremental image copies are requested for both sites, but the most recent full image copy was made
for only one site.

• Incremental image copies are requested for both sites and the most recent full image copies were made
for both sites, but between the most recent full image copy and current request, incremental image
copies were made for the current site only.

If you attempt to make incremental image copies under any of these conditions, COPY terminates with
return code 8, does not take the image copy or update the SYSIBM.SYSCOPY table, and issues the
following message:

DSNU404I csect-name
 LOCAL SITE AND RECOVERY SITE INCREMENTAL
 IMAGE COPIES ARE NOT SYNCHRONIZED

To proceed, and still keep the two sets of data synchronized, take another full image copy of the table
space for both sites, or change your request to make an incremental image copy only for the site at which
you are working.

Db2 cannot make an incremental image copy if the object that is being copied is an index or index space.

Maintaining copy consistency
Make full image copies for both the local and recovery sites:

• If a table space is in COPY-pending status
• After a LOAD or REORG procedure that did not create an inline copy
• If an index is in the informational COPY-pending status
• If a table space is in informational COPY-pending status

This action helps to ensure correct recovery for both local and recovery sites. If the requested full image
copy is for one site only, but the history shows that copies were made previously for both sites, COPY
continues to process the image copy and issues the following warning message:

DSNU406I FULL IMAGE COPY SHOULD BE TAKEN FOR BOTH LOCAL SITE AND
 RECOVERY SITE.

The COPY-pending status of a table space is not changed for the other site when you make multiple image
copies at the current site for that other site. For example, if a table space is in COPY-pending status at the
current site, and you make copies from there for the other site only, the COPY-pending status is still on
when you bring up the system at that other site.

Chapter 14. COPY 143

Related reference
“COPYTOCOPY” on page 171
The COPYTOCOPY online utility makes image copies from an image copy that was taken by the COPY
utility. The COPYTOCOPY utility can also make image copies from inline copies that the REORG or LOAD
utilities make.

FlashCopy image copies
FlashCopy image copies can reduce both the time that data is unavailable during the copy operation and
the time that is required for backup and recovery operations. Certain Db2 utilities can create these copies
by invoking the FlashCopy function that is provided by z/OS DFSMS and the IBM TotalStorage Enterprise
Storage Server (ESS) storage subsystems.

DFSMSdss creates the FlashCopy image copies on cataloged VSAM data sets. A separate VSAM data set is
created for each partition or piece of the object that is being copied.

The other image copies that are created by Db2 utilities (those copies that are not FlashCopy image
copies) are written to non-VSAM sequential format data sets.

Utilities that support FlashCopy
The following Db2 for z/OS utilities can use FlashCopy to create image copies:

• COPY
• LOAD
• REBUILD INDEX
• REORG INDEX
• REORG TABLESPACE

When creating a FlashCopy image copy, the COPY and LOAD utilities with SHRLEVEL CHANGE can
include additional phases of execution, depending on the options that are specified in the utility control
statement. The additional execution phases include:

• SEQCOPY
• LOGAPPLY
• LOGCSR
• LOGUNDO

You can use templates for FlashCopy image copies. However, Db2 uses only the following TEMPLATE
utility statement options: DSN name-expression STORCLAS, and MGMTCLAS. (STORCLAS and MGMTCLAS
are optional.)

The following utilities accept the VSAM data sets that are produced by FlashCopy as input:

• COPYTOCOPY
• DSN1COMP
• DSN1COPY
• DSN1PRNT
• RECOVER

Using a FlashCopy image copy for porting data: Use the FlashCopy image copy as input to the
DSN1COPY utility. If your data is versioned (with an immediate ALTER statement), run the REORG utility
before creating the FlashCopy image copy.

Using FlashCopy image copies with the UNLOAD utility: The UNLOAD utility cannot operate directly on a
FlashCopy image copy. To unload data from a FlashCopy image copy, first use the COPYTOCOPY utility to
create a sequential format image copy from the FlashCopy image copy. Then, run the UNLOAD job on the
sequential copy. In certain cases, individual rows might not be properly unloaded, in which case a warning

144 Db2 12 for z/OS: Utility Guide and Reference

message is issued. This situation might occur in two circumstances, mentioned below, but you can take
actions to avoid the problem.

• If your data is versioned (with an immediate ALTER statement), run REORG on your data before creating
the FlashCopy image copy.

• If your data has been compressed (by a compression during an insert operation), run the REORG on
your data before creating the FlashCopy image copy. REORG is required only once after the compression
during the insert operation occurred.

Requesting FlashCopy image copies
For utilities that support the creation of FlashCopy image copies, you can specify that you want these
copies by using Db2 subsystem parameters, utility control statement options, or both.

To request a FlashCopy image copy for a particular utility job, specify FLASHCOPY YES in the utility control
statement.

To request that a utility create FlashCopy image copies as the default behavior, specify YES for one or
more of the following subsystem parameters:

• FLASHCOPY_COPY subsystem parameter
• FLASHCOPY_LOAD subsystem parameter
• FLASHCOPY_REORG_TS subsystem parameter
• FLASHCOPY_REBUILD_INDEX subsystem parameter
• FLASHCOPY_REORG_INDEX subsystem parameter

When these subsystem parameters are set to YES, you do not need to specify the FLASHCOPY option
in the utility control statement. However, any FLASHCOPY value that you specify in a utility control
statement overrides the value of the subsystem parameter.

When creating a FlashCopy image copy, the following utilities can also create one to four additional
sequential format image copies in a single execution:

• COPY
• LOAD with the REPLACE option specified
• REORG TABLESPACE

The COPYTOCOPY utility can create sequential format image copies by using an existing FlashCopy image
copy as input.

Recommendation: To provide a recovery base for media failures, create one or more additional
sequential format image copies when you create a FlashCopy image copy.

A return code of 8 or greater from DFSMSdss results in termination of the utility FlashCopy process, even
if OPTIONS EVENT(ITEMERROR,SKIP) was specified.

Related information:

“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on page 42

Data Set Level FlashCopy with disk mirroring
By default, FlashCopy operations are allowed to a primary volume in a z Global Mirror (Extended Remote
Copy or XRC) relationship when the z/OS DFSMSdss support for RPFC for XRC is installed and enabled.
If you want to change this default behavior, change the value of the FLASHCOPY_XRCP subsystem
parameter.

Related information:

FLASHCOPY XRCP field (FLASHCOPY_XRCP subsystem parameter) (Db2 Installation Guide)

Chapter 14. COPY 145

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopycopy.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopyload.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopyreorgts.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopyrebuildindex.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopyreorgindex.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopyxrcp.html

Image copy consistency with FlashCopy
When you create FlashCopy image copies with COPY or LOAD with the SHRELEVEL CHANGE option,
you can specify that you want that image copy to be consistent for recovery purposes. To ensure this
consistency, specify the FLASHCOPY CONSISTENT option.

Restriction: You cannot specify CONSISTENT when copying objects that are defined with the NOT
LOGGED attribute.

When you specify FLASHCOPY CONSISTENT, the utility checks the logs for changes to the copied data
that were uncommitted at the time that the image copy was created. Any uncommitted data that is
identified in the logs is backed out of the image copy before the utility terminates. Therefore, the process
of creating an consistent FlashCopy image copy uses more system resources and takes longer than
creating a FlashCopy image copy without specifying FLASHCOPY CONSISTENT.

The utilities use Db2 shadow processing to make the FlashCopy image copy consistent. The FlashCopy
image copy data set is used as the shadow. The naming convention that is used in this case is different
than the naming convention that is used by other utilities for Db2 shadow processing.

Operational restrictions for FlashCopy
Only one utility can create a FlashCopy image copy of an object at a time. For example, suppose that
the COPY utility with the SHRLEVEL CHANGE and FLASHCOPY options is running on an object. Then, the
LOAD utility with the SHRLEVEL CHANGE and FLASHCOPY options starts running on the same object. The
LOAD utility receives message DSNU180I with a return code of 8 to indicate that the LOAD utility is not
compatible with the COPY utility.

A utility cannot create FlashCopy image copies in the following situations: (In these situations, the term
data set refers to a Db2 table space or index space or a FlashCopy image copy.)

• FlashCopy Version 2 disk volumes are not available.
• The source data set is already the target of a FlashCopy relationship.
• The target data set is already the source of a FlashCopy relationship.
• The source data set is already participating in the maximum number of FlashCopy relationships.
• The CISIZE, CASIZE, physical record size, or physical block size of the target data set is different from

that of the source data set. The CASIZE of the target data set can be different from the source data set if
the source data set is less than one cylinder.

• The source data set and the target data set are not both fully contained on the same physical control
unit (controller).

Recommendation: Use the storage class attribute ACCESSIBILITY=CONTINUOUS or
ACCESSIBILITY=CONTINUOUS PREFERRED for both the source data set and the target data set. If
the storage class that is associated with a data set has this attribute, DFSMS attempts to select volumes
such that the data set is contained on volumes within a single physical control unit.

• Either the source data set or the target data set is not SMS-managed.

For more information about FlashCopy restrictions, see Moving Data Sets with FlashCopy (z/OS DFSMSdss
Storage Administration).

If FlashCopy cannot be used, the utility creates sequential format image copies of the object. This process
can take longer than the expected execution time for creating FlashCopy image copies.

You cannot use a FlashCopy image copy with the PAGE or ERRORRANGE options of the RECOVER utility.
If you specify PAGE or ERROR RANGE, RECOVER bypasses any FlashCopy image copy records when
searching the SYSIBM.SYSCOPY table for a recovery point.

SYSCOPY records for FlashCopy image copies

146 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.adru000/u2139.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.adru000/u2139.htm

For each FlashCopy image copy, Db2 creates one or more records in the SYSIBM.SYSCOPY table. These
SYSCOPY records can differ slightly from the records for sequential format image copies depending on
whether the object that is being copied is partitioned and the number of partitions or object pieces that
are being copied.

For a FlashCopy image copy of a single partition or piece of an object, one SYSCOPY record is created for
the partition or piece.

For a FlashCopy image copy of a table space or index space that contains more than one partition or
piece, Db2 creates a separate SYSCOPY record for each of the following items:

• The table space or index space
• Each partition or piece in the table space or index space

In the DSNUM column of the SYSCOPY record, Db2 assigns a data set number to the table space or index
space and to each partition or piece. The data set numbers start at 0 for the table space or index space
and are incremented by 1 for each partition or piece.

For example, if a table space has two partitions, a FlashCopy image copy of the table space creates three
SYSCOPY records as follows:

• A SYSCOPY record for the tables space with DSNUM=0
• A SYSCOPY record for the first partition with DSNUM=1
• A SYSCOPY record for the second partition with DSNUM=2

For a FlashCopy image copy of a table space or index space that contains only one partition or piece, only
one SYSCOPY record is created with DSNUM=0.

For FlashCopy image copies that were created without the FLASHCOPY CONSISTENT option, the
START_RBA value corresponds to the RBA or LRSN when the object's pages were last externalized to
disk.

For FlashCopy image copies that were created with the FLASHCOPY CONSISTENT option, the START_RBA
value depends on whether active units of work existed. If active units of work existed, the START_RBA
value corresponds to the beginning RBA or LRSN of the oldest uncommitted unit of work that was backed
out. If no active units of work existed, the START_RBA value corresponds to the RBA or LRSN when the
object's pages were last externalized to disk.

The implication of the START_RBA value for FlashCopy image copies is that a recovery from a FlashCopy
image copy likely requires more log processing.

In the SYSCOPY section of the output from REPORT RECOVERY, the SYSCOPY records are presented
in ascending START_RBA order and not in timestamp order. Thus, the SYSCOPY records for FlashCopy
image copies might be shown in the REPORT RECOVERY out of chronological order as compared to other
SYSCOPY records.

Related tasks
“Recovering with FlashCopy image copies” on page 448
Recovering from a FlashCopy image copy is potentially faster than recovering from a traditional
image copy. If an appropriate FlashCopy image copy is available, the RECOVER utility can use it to
instantaneously restore an image copy.
Related reference
“Syntax and options of the COPY control statement” on page 125
The COPY utility control statement, with its multiple options, defines the function that the utility job
performs.
“Syntax and options of the LOAD control statement” on page 223
The LOAD utility control statement, with its multiple options, defines the function that the utility job
performs.
“Syntax and options of the REBUILD INDEX control statement” on page 400

Chapter 14. COPY 147

The REBUILD INDEX utility control statement, with its multiple options, defines the function that the
utility job performs.
“Syntax and options of the REORG INDEX control statement” on page 488
The REORG INDEX utility control statement, with its multiple options, defines the function that the utility
job performs.
“Syntax and options of the REORG TABLESPACE control statement” on page 526
The REORG TABLESPACE utility control statement, with its multiple options, defines the function that the
utility job performs.

Backing up data efficiently by using FlashCopy image copies
You can use a combination of FlashCopy image copies and sequential image copies to define an efficient
backup procedure that uses minimal disk space.

Procedure
To back up data efficiently:
1. Create a consistent FlashCopy image copy virtually instantaneously by using the COPY utility with the

FLASHCOPY CONSISTENT option.
Alternatively, you can use the LOAD, REBUILD INDEX or REORG utility to create an inline FlashCopy
image copy.

2. Create a sequential image copy from the FlashCopy image copy by using the COPYTOCOPY utility.
3. To free up disk space, delete the FlashCopy image copy by using the MODIFY RECOVERY utility with

the FLASHCOPY ONLY option and the DELETEDS option.
The DELETEDS option deletes the data set. Otherwise, only the SYSCOPY records are deleted.

If you later need to recover the object, the RECOVER utility knows to use the sequential image copy
that you created in step 2 as a possible recovery base.

Related reference
“Syntax and options of the COPY control statement” on page 125
The COPY utility control statement, with its multiple options, defines the function that the utility job
performs.
“Syntax and options of the COPYTOCOPY control statement” on page 172
The COPYTOCOPY utility control statement, with its multiple options, defines the function that the utility
job performs.
“MODIFY RECOVERY” on page 363
Run the MODIFY RECOVERY utility regularly to remove outdated information from SYSIBM.SYSCOPY and
SYSIBM.SYSLGRNX. These tables, particularly SYSIBM.SYSLGRNX, can become very large and take up a
considerable amount of space. By deleting outdated information from these tables, you can help improve
the performance of processes that access data from these tables.

Copies of lists of objects
Within a single COPY control statement, the COPY utility allows you to process a list that contains any of
the following objects: table space, table space partition, data set of a nonpartitioned table space, index
space, and index space partition.

Specifying objects in a list is useful for copying a complete set of referentially related table spaces before
running QUIESCE. Consider the following information when taking an image copy for a list of objects:

• Db2 copies table spaces and index spaces in the list one at a time, in the specified order, unless you
invoke parallelism by specifying the PARALLEL keyword.

• Each table space in the list with a CHANGELIMIT specification has a REPORT phase, so the phase
switches between REPORT and COPY while processing the list.

148 Db2 12 for z/OS: Utility Guide and Reference

• If processing completes successfully, any COPY-pending or informational COPY-pending status on the
table spaces and informational COPY-pending status on the indexes are reset.

• If you use COPY with the SHRLEVEL(REFERENCE) option:

– Db2 drains the write claim class on each table space and index in the UTILINIT phase, which is held
for the duration of utility processing.

– Utility processing inserts SYSCOPY rows for all of the objects in the list at the same time, after all of
the objects have been copied.

– All objects in the list have identical RBA or LRSN values for the START_RBA column for the SYSCOPY
rows: the START_RBA is set to the current LRSN at the end of the COPY phase.

• If you use COPY with the SHRLEVEL(CHANGE) option:

– If you specify OPTIONS EVENT(ITEMERROR,SKIP):

- Each object in the list is placed in UTRW status and the read claim class is held only while the
object is being copied.

- The object is not opened by Db2 for an incremental copy when no pages were updated since the
last copy or when the criteria is not met for a CHANGELIMIT copy request.

– If you do not specify OPTIONS EVENT(ITEMERROR,SKIP), all of the objects in the list are placed in
UTRW status and the read claim class is held on all objects for the entire duration of the COPY.

– Utility processing inserts a SYSCOPY row for each object in the list when the copy of each object is
complete.

– Objects in the list have different LRSN values for the START_RBA column for the SYSCOPY rows; the
START_RBA value is set to the current RBA or LRSN at the start of copy processing for that object.

When you specify the PARALLEL keyword, Db2 supports parallelism for image copies on disk or tape
devices. You can control the number of tape devices to allocate for the copy function by using TAPEUNITS
with the PARALLEL keyword. If you use JCL statements to define tape devices, the JCL controls the
allocation of the devices.

When you explicitly specify objects with the PARALLEL keyword, the objects are not necessarily
processed in the specified order. Objects that are to be written to tape and whose file sequence numbers
have been specified in the JCL are processed in the specified order. If templates are used, you cannot
specify file sequence numbers. In the absence of overriding JCL specifications, Db2 determines the
placement and, thus, the order of processing for such objects. When only templates are used, objects are
processed according to their size, with the largest objects processed first.

Both the PARALLEL and TAPEUNITS keywords act as constraints on the processing of the COPY utility. The
PARALLEL keyword constrains the amount of parallelism by restricting the maximum number of objects
that can be processed simultaneously. The TAPEUNITS keyword constrains the number of tape drives
that can be dynamically allocated for the COPY command. The TAPEUNITS keyword can constrain the
amount of parallelism if an object requires a number of tapes such that the number of remaining tapes is
insufficient to service another object.

To calculate the number of threads that you need when you specify the PARALLEL keyword, use the
formula (n * 2 + 1), where n is the number of objects that are to be processed in parallel, regardless of the
total number of objects in the list. If you do not use the PARALLEL keyword, n is 1 and COPY uses three
threads for a single-object COPY job.

COPY SCOPE PENDING indicates that you want to copy only those objects in COPY-pending or
informational COPY-pending status. When the DSNUM ALL option is specified for partitioned objects,
and one or more of the partitions are in COPY-pending or informational COPY-pending status, a copy will
be taken of the entire table space or index space.

For partitioned objects, if you only want the partitions in COPY-pending status or informational COPY-
pending status to be copied, then a list of partitions should be specified. It is recommended that you do
this by invoking COPY on a LISTDEF list built with the PARTLEVEL option. An output image copy data set
will be created for each partition that is in COPY-pending or informational COPY-pending status.

Chapter 14. COPY 149

The LIMIT option on the TEMPLATE statement allows you to switch templates for output copy data sets.
Template switching is most commonly needed to direct small data sets to DASD and large data sets to
TAPE. This allows you to switch to templates that differ in the UNIT, DSNs, or HSM classes.

The following table spaces cannot be included in a list of table spaces. You must specify each one as a
single object:

• DSNDB01.SYSUTILX
• DSNDB06.SYSTSCPY
• DSNDB01.SYSLGRNX

The only exceptions to this restriction are the indexes over these table spaces that were defined with the
COPY YES attribute. You can specify such indexes along with the appropriate table space.

Related reference
“TEMPLATE” on page 751
The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the
data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.

Using more than one COPY statement
You can use more than one control statement for COPY in one Db2 utility job step.

About this task
After each COPY statement executes successfully:

• A row that refers to each image copy is recorded in the SYSIBM.SYSCOPY table.
• The image copy data sets are valid and available for RECOVER, MERGECOPY, COPYTOCOPY, and

UNLOAD.

If a job step that contains more than one COPY statement abends, do not use TERM UTILITY. Restart
the job from the last commit point by using RESTART instead. Terminating COPY by using TERM UTILITY
in this case creates inconsistencies between the ICF catalog and Db2 catalogs.

Copying partitions or data sets simultaneously
To potentially improve the performance of the COPY utility, copy partitions or data sets at the same time.

Procedure
To copy partitions or data sets simultaneously:
• If the table space is partitioned, take one of the following actions:

– Specify the PARALLEL option in the COPY utility control statement to copy partitions in the same
COPY execution in parallel.

– Copy the partitions independently in separate simultaneous jobs. This method can reduce the time
that it takes to create sequential image copies of the entire table space.

• If the table space is a nonpartitioned table space that consists of more than one data set, copy several
or all of the data sets independently in separate jobs.
To do so, run simultaneous COPY jobs (one job for each data set) and specify SHRLEVEL CHANGE on
each job. However, creating copies simultaneously does not provide you with a consistent recovery
point unless you subsequently run a QUIESCE for the table space.

Related reference
“Syntax and options of the COPY control statement” on page 125

150 Db2 12 for z/OS: Utility Guide and Reference

The COPY utility control statement, with its multiple options, defines the function that the utility job
performs.

Copies of partition-by-growth table spaces
An image copy at the table space level with SHRLEVEL(CHANGE) will not contain any new partitions that
are added by SQL INSERT operations after the image copy began. The newly added partitions can be
recovered by using the Db2 logs.

When you make an image copy of a partition-by-growth table space, a partition might be empty as a result
of REORG, SQL delete operations, or recovery to a prior point in time. The empty partition has a header
page and space map pages or system pages. The COPY utility still copies the empty partition.

Copies of XML table spaces
The COPY utility supports full and incremental image copies for XML table spaces. The COPY utility
options SHRLEVEL REFERENCE, SHRLEVEL CHANGE, CONCURRENT, and FLASHCOPY are also supported
for XML table spaces.

Unless either the CONCURRENT option or the FLASHCOPY option is specified, COPY does not copy empty
or unformatted data pages of an XML table space.

If you copy a LOB table space that has a base table space with the NOT LOGGED attribute, copy the base
table space and the LOB table space together so that a RECOVER TOLOGPOINT of the entire set results in
consistent data across the base table space and all of the associated LOB table spaces.

Note: RECOVER TOLASTCOPY is not allowed on a list of objects. Instead, use RECOVER TOLOGPOINT,
where the TOLOGPOINT is the common RBA or LRSN associated with the SHRLEVEL REFERENCE image
copies.

To copy an XML table space with a base table space that has the NOT LOGGED attribute, all associated
XML table spaces must also have the NOT LOGGED attribute. The XML table space acquires this NOT
LOGGED attribute by being linked to the logging attribute of its associated base table space. You cannot
independently alter the logging attribute of an XML table space.

If the LOG column of the SYSIBM.SYSTABLESPACE record for an XML table space has the value of "X",
the logging attributes of the XML table space and its base table space are linked, and that the logging
attribute of both table spaces is NOT LOGGED. To break the link, alter the logging attribute of the base
table space back to LOGGED, and the logging attribute of both table spaces are changed back to LOGGED.

Copying catalog and directory objects
For backup purposes, take image copies of catalog and directory objects.

Procedure
To copy catalog and directory objects, use the following guidance:
• If you are migrating from a Db2 11 system, and new function is not activated on your Db2 12

subsystem, use the DSNTIJIC job that is produced by running the installation CLIST in MIGRATE mode.
• When LISTDEF is used for catalog and directory objects, LISTDEF object expansion for the

COPY utility issues message DSNU1530I for obsolete catalog or directory objects. If OPTIONS
EVENT(ITEMERROR,SKIP) is specified, the object is skipped, and RC 4 is issued. Otherwise, the COPY
utility terminates with RC 8.

• When LISTDEF is not used for catalog and directory objects, the COPY utility skips new or obsolete
catalog and directory objects during processing and issues message DSNU1530I with RC0 for
each skipped object. For example, before new function is activated in Db2 12, the COPY utility
skips catalog and directory objects that are new in Db2 12. After new function is activated, the
COPY utility skips catalog and directory objects that are obsolete in Db2 12. Specifying OPTIONS

Chapter 14. COPY 151

EVENT(ITEMERROR,SKIP) or OPTIONS EVENT(ITEMERROR,HALT) does not impact the skipping of
new or obsolete objects.

Make copies of XML schema repository objects
Although the XML schema repository is not part of the Db2 catalog, you need to create backup copies of
XML schema repository table spaces when you back up catalog objects.

To determine which table spaces are part of the XML schema repository, see job DSNTESR.

The table spaces for which you need to make image copies are in database DSNXSR.

Copies of indexes
If you copy a COPY YES index of a table space that has the NOT LOGGED attribute, copy the indexes and
table spaces together. Copying the indexes and table spaces together ensures that the indexes and the
table space have the same recoverable point.

An index should be image copied after an ALTER INDEX REGENERATE. You should copy the index after it
has been rebuilt for these types of ALTER statements:

• alter to padded
• alter to not padded
• alter add of a key column
• alter of a numeric data type key column

Any new partitions added by SQL INSERT are not contained in the image copy, but the newly added
partitions are recoverable by the Db2 logs.

When the index has the COMPRESS YES attribute, concurrent copies of indexes and FlashCopy image
copies of indexes are compressed because DFSMSdss is invoked to copy the VSAM linear data sets (LDS)
for the index. Sequential image copies of indexes are not compressed because the index pages are copied
from the Db2 buffer pool. When image copies are taken without the concurrent option, you can choose to
compress the image copies by using access method compression via DFSMS or by using IDRC if the image
copies reside on tape.

Restriction: You cannot request both a sequential copy and FlashCopy image copy of a compressed index
in the same COPY utility statement. Additionally, you cannot request that a sequential copy be created
from a FlashCopy image copy of a compressed index with the COPYTOCOPY utility.

Using DFSMSdss concurrent copy
You might be able to gain improved availability by using the concurrent copy function of the DFSMSdss
component of the Data Facility Storage Management Subsystem (DFSMS). To complete recovery, you can
subsequently run the Db2 RECOVER utility to restore those image copies and apply the necessary log
records to them.

The CONCURRENT option of COPY invokes DFSMSdss concurrent copy. The COPY utility records the
resulting DFSMSdss concurrent copies in the catalog table SYSIBM.SYSCOPY with ICTYPE=F and
STYPE=C or STYPE=J. STYPE=C indicates that the concurrent copy was taken of the "I" instance of the
table space (which means that the instance qualifier in the name of the corresponding data set begins
with the letter "I"). STYPE=J indicates that the concurrent copy was taken of the "J" instance of the table
space (which means that the instance qualifier in the name of the corresponding data set begins with the
letter "J").

To obtain a consistent offline backup copy outside of Db2:

1. Start the Db2 objects that are being backed up for read-only access by issuing the following command:

-START DATABASE(database-name) SPACENAM(
tablespace-name) ACCESS(RO)

152 Db2 12 for z/OS: Utility Guide and Reference

Allowing read-only access is necessary to ensure that no updates to data occur during this procedure.
2. Run QUIESCE with the WRITE(YES) option to quiesce all Db2 objects that are being backed up.
3. Back up the Db2 data sets after the QUIESCE utility completes successfully.
4. Issue the following command to allow transactions to access the data:

-START DATABASE(database-name) SPACENAM(tablespace-name)

If you use the CONCURRENT option:

• You must supply either a COPYDDN DD name, a RECOVERYDDN DD name, or both. Note that the
required JCL parameter specifications for the output data sets for the CONCURRENT option might differ
from the JCL specifications required for sequential format data sets. For example, do not specify the
BUFNO parameter for the output data sets when specifying the CONCURRENT option.

• You can set the disposition to DISP=(MOD,CATLG,CATLG) if you specify the new data set for the
image copy on a scratch volume (a specific volume serial number is not specified). You must set the
disposition to DISP=(NEW,CATLG,CATLG) if you specify a specific volume serial number for the new
image copy data set.

• If you are restarting COPY, specify DISP=(MOD,CATLG,CATLG) or DISP=(NEW,CATLG,CATLG) for the
COPYDDN and RECOVERYDDN data sets. The DFSMSdss DUMP command does not support appending
to an existing data set. Therefore, the COPY utility converts any DISP=MOD data sets to DISP=OLD
before invoking DFSMSdss.

• If the SYSPRINT DD statement points to a data set, you must use a DSSPRINT DD statement.
• If the page size in the table space matches the control interval for the associated data set, you can

use either the SHRLEVEL CHANGE option or the SHRLEVEL REFERENCE option. If the page size does
not match the control interval, you must use the SHRLEVEL REFERENCE option for table spaces with a
8-KB, 16-KB, or 32-KB page size.

Restrictions on using DFSMSdss concurrent copy
You cannot use a copy that is made with DFSMSdss concurrent copy with the PAGE or ERRORRANGE
options of the RECOVER utility. If you specify PAGE or ERROR RANGE, RECOVER bypasses any concurrent
copy records when searching the SYSIBM.SYSCOPY table for a recovery point.

You can use the CONCURRENT option with SHRLEVEL CHANGE on a table space if the page size in the
table space matches the control interval for the associated data set.

Also, you cannot run the following Db2 stand-alone utilities on copies that are made by DFSMSdss
concurrent copy:

DSN1COMP
DSN1COPY
DSN1PRNT

You cannot execute the CONCURRENT option from the DB2I Utilities panel or from the DSNU TSO CLIST
command.

Requirements for using DFSMSdss concurrent copy
DFSMSdss concurrent copy is enabled by specific hardware. Contact IBM or the vendor for your specific
storage product to verify whether your controller or storage server supports the concurrent copy function.

Table space availability
If you specify COPY SHRLEVEL REFERENCE with the CONCURRENT option, and if you want to copy
all of the data sets for a list of table spaces to the same dump data set, specify FILTERDDN in your
COPY statement to improve table space availability. If you do not specify FILTERDDN, COPY might force
DFSMSdss to process the list of table spaces sequentially, which might limit the availability of some of the
table spaces that are being copied.

Chapter 14. COPY 153

Related concepts
“How utilities restart with lists ” on page 51
Lists are defined by the LISTDEF utility. Unlike other utility control statements, LISTDEF control
statements can be modified before you restart a utility. However, those changes do not affect the
currently running utility. The changed list affects only those utility control statements that follow the
stopped utility.
Encrypted FlashCopy image copies, copies made with DFSMSdss concurrent copy, and system-level
backups (Managing Security)

Specifying conditional image copies
Use the CHANGELIMIT option of the COPY utility to specify conditional image copies. You can use it to
get a report of image copy information about a table space, or you can let Db2 decide whether to take an
image copy based on this information.

You cannot use the CHANGELIMIT option for a table space or partition that is defined with TRACKMOD
NO. If you change the TRACKMOD option from NO to YES, you must take an image copy before you
can use the CHANGELIMIT option. When you change the TRACKMOD option from NO to YES for a
nonpartitioned table space, you must take a full image copy by using DSNUM ALL before you can copy
using the CHANGELIMIT option.

Obtaining image copy information about a table space

When you specify COPY CHANGELIMIT REPORTONLY, COPY reports image copy information for the table
space and recommends the type of copy, if any, to take. The report includes:

• The total number of pages in the table space. This value is the number of pages that are to be copied if a
full image copy is taken.

• The number of empty pages, if the table space is segmented.
• The number of changed pages. This value is the number of pages that are to be copied if an incremental

image copy is taken.
• The percentage of changed pages.
• The type of image copy that is recommended.

Adding conditional code to your COPY job

You can add conditional code to your jobs so that an incremental or full image copy, or some other step, is
performed depending on how much the table space has changed. For example, you can add a conditional
MERGECOPY step to create a new full image copy if your COPY job took an incremental copy. COPY
CHANGELIMIT uses the following return codes to indicate the degree that a table space or list of table
spaces has changed:

1 (informational)
If no CHANGELIMIT was met.

2 (informational)
If the percentage of changed pages is greater than the low CHANGELIMIT and less than the high
CHANGELIMIT value.

3 (informational)
If the percentage of changed pages is greater than or equal to the high CHANGELIMIT value.

If you specify multiple COPY control statements in one job step, that job step reports the highest return
code from all of the imbedded statements. Basically, the statement with the highest percentage of
changed pages determines the return code and the recommended action for the entire list of COPY
control statements that are contained in the subsequent job step.

154 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_backupencryptedfcic.html
https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_backupencryptedfcic.html

Using conditional copy with generation data groups (GDGs)

For incremental image copies, COPY can avoid allocating empty image copy data sets if your real-time
statistics are valid. However, even if your real-time statistics are not valid and you are using generation
data groups (GDGs), you can ensure that COPY does not create any empty image copies by using the
following procedure:

When you use generation data groups (GDGs) and need to make an incremental image copy, take the
following steps to prevent creating an empty image copy:

1. Include in your job a first step in which you run COPY with CHANGELIMIT REPORTONLY. Set the
SYSCOPY DD statement to DD DUMMY so that no output data set is allocated. If you specify
REPORTONLY and use a template, Db2 does not dynamically allocate the data set.

2. Add a conditional JCL statement to examine the return code from the COPY CHANGELIMIT
REPORTONLY step.

3. Add a second COPY step without CHANGELIMIT REPORTONLY to copy the table space or table space
list based on the return code from the second step.

Related concepts
“Allocation of sequential image copy data sets” on page 156
If you specify the CHANGELIMIT option in the COPY utility control statement, COPY uses real-time
statistics to determine when the criteria for CHANGELIMIT is met. If the CHANGELIMIT criteria is not met,
COPY avoids allocating the image copy data set.
“How COPY uses real-time statistics” on page 155
Real-time statistics in SYSIBM.SYSTABLESPACESTATS are used by the COPY utility when creating
sequential image copies for table spaces.

How COPY uses real-time statistics
Real-time statistics in SYSIBM.SYSTABLESPACESTATS are used by the COPY utility when creating
sequential image copies for table spaces.

Specifically, COPY uses the following columns in SYSTABLESPACESTATS:

• COPYUPDATEDPAGES is used to determine the number of pages updated since the last copy for
incremental and CHANGELIMIT processing. This information is used to avoid allocation of the image
copy data set when no pages have been updated or the CHANGELIMIT criteria is not met.

When COPY is used with SHRLEVEL CHANGE, COPYUPDATEDPAGES includes the number of pages
updated during and after the last copy. In this case, COPYUPDATEDPAGES might be indeterminate,
because Db2 does not know whether pages updated during the last copy were included and therefore
cannot reset COPYUPDATEDPAGES to zero during a subsequent incremental copy. In this case, when
COPYUPDATEDPAGES remains non-zero, each space map page is checked for updated pages by
incremental or CHANGELIMIT processing.

If real-time statistics are not valid (for example, NULL) and the table space has the TRACKMOD YES
attribute, COPY uses the object’s space map pages. For table spaces with the TRACKMOD NO attribute,
COPY scans all of the pages.

• NACTIVE is used to estimate the size of the image copy data set. If NACTIVE is not valid (for example,
NULL) COPY opens the table space and uses the size of the table space to estimate the size of the image
copy data set.

Related concepts
“Specifying conditional image copies” on page 154
Use the CHANGELIMIT option of the COPY utility to specify conditional image copies. You can use it to
get a report of image copy information about a table space, or you can let Db2 decide whether to take an
image copy based on this information.
“Allocation of sequential image copy data sets” on page 156

Chapter 14. COPY 155

If you specify the CHANGELIMIT option in the COPY utility control statement, COPY uses real-time
statistics to determine when the criteria for CHANGELIMIT is met. If the CHANGELIMIT criteria is not met,
COPY avoids allocating the image copy data set.
Related reference
SYSTABLESPACESTATS catalog table (Db2 SQL)

Allocation of sequential image copy data sets
If you specify the CHANGELIMIT option in the COPY utility control statement, COPY uses real-time
statistics to determine when the criteria for CHANGELIMIT is met. If the CHANGELIMIT criteria is not met,
COPY avoids allocating the image copy data set.

If you specify the FULL NO option in the COPY utility control statement, COPY uses real-time statistics
to determine if a table space has changed pages since the last copy. If the table space has no changed
pages, COPY avoids allocating the incremental copy data set.

If the real-time statistics are not valid, the object's space map pages are used to determine whether the
CHANGELIMIT criteria is met or, for FULL NO, whether the table space has changed pages. Additionally, if
real-time statistics are not used to determine whether the table space has changed pages, the image copy
data set is always allocated.

Related concepts
“Specifying conditional image copies” on page 154
Use the CHANGELIMIT option of the COPY utility to specify conditional image copies. You can use it to
get a report of image copy information about a table space, or you can let Db2 decide whether to take an
image copy based on this information.
“How COPY uses real-time statistics” on page 155
Real-time statistics in SYSIBM.SYSTABLESPACESTATS are used by the COPY utility when creating
sequential image copies for table spaces.
Related reference
“Syntax and options of the COPY control statement” on page 125
The COPY utility control statement, with its multiple options, defines the function that the utility job
performs.

Preparing for recovery by using the COPY utility
To prepare for recovery, you can use the COPY utility to create copies and establish points of recovery.

Use the following guidelines to help you prepare for recovery:

• Consider periodically merging incremental image copies into one copy.

The RECOVER utility merges all incremental image copies since the last full image copy, and it must
have all the image copies available at the same time. If this requirement is likely to strain your system
resources (for example, by demanding more tape units than are available), consider regularly merging
multiple image copies into one copy.

Even if you do not periodically merge multiple image copies into one copy, when you do not have
enough tape units, RECOVER can still attempt to recover the object. RECOVER dynamically allocates the
full image copy and attempts to dynamically allocate all the incremental image copy data sets. If every
incremental copy can be allocated, recovery proceeds to merge pages to table spaces and apply the
log. If a point is reached where RECOVER cannot allocate an incremental copy, the log RBA of the last
successfully allocated data set is noted. Attempts to allocate incremental copies cease, and the merge
proceeds with only the allocated data sets. The log is applied from the noted RBA, and the incremental
image copies that were not allocated are ignored.

• Create primary and backup image copies after a LOAD or REORG operation with LOG NO when an inline
copy is not created. Create these copies, so that if the primary image copy is not available, fallback
recovery with the secondary image copy is possible.

156 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsystablespacestatstable.html

• If you use COPY SHRLEVEL REFERENCE to copy a list of referentially related structures, you do not
need to quiesce these objects to create a consistent point of recovery. The copy serves as a point of
consistency.

• For LOB data, quiesce and copy both the base table space and the LOB table space at the same time to
establish a point of consistency for recovery. QUIESCE does not create a recovery point for a LOB table
space that contains LOBs that are defined with LOG NO.

• If an index is in informational COPY-pending (ICOPY) status, take a full image copy of the index space so
that the RECOVER utility can recover the index space.

For an index that was defined with the COPY YES attribute the following utilities can place the index in
ICOPY status:

– REORG INDEX
– REORG TABLESPACE LOG YES or NO
– LOAD TABLE LOG YES or NO
– REBUILD INDEX

After the utility processing completes, take the full image copy. If you need to recover an index of which
you did not take a full image copy, use the REBUILD INDEX utility to rebuild the index from data in the
table space.

• Take image copies of table spaces with the NOT LOGGED attribute that have been updated since the last
full copy.

These table spaces are placed in ICOPY status. To copy the table spaces that have been updated, run
the COPY utility with the SCOPE PENDING option.

Related concepts
“Point-in-time recovery” on page 462
Recovering data to a prior time is called a point-in-time recovery. You can recover objects to a particular
RBA, LRSN, or image copy. You can do this type of recovery by using the RECOVER utility point-in-time
recovery options. These options are TOCOPY, TOLOGPOINT, TOLASTCOPY, TORBA, and TOLASTFULLCOPY.
Related reference
“QUIESCE” on page 389
The QUIESCE utility establishes a quiesce point for a table space, partition, table space set, or list of table
spaces and table space sets. A quiesce point is a point at which data is consistent across these objects.
You can later recover a table space to its quiesce point by using the RECOVER utility.

Improving performance of the COPY utility
You can improve the performance of the COPY utility by taking certain actions.

You can copy a list of objects in parallel to improve performance. Specifying a list of objects along with
the SHRLEVEL REFERENCE option creates a single recovery point for that list of objects. Specifying the
PARALLEL keyword allows you to copy a list of objects in parallel, rather than serially.

To calculate the number of threads you need when you specify the PARALLEL keyword, use the formula
(n * 2 + 1), where n is the number of objects that are to be processed in parallel, regardless of the total
number of objects in the list. If you do not use the PARALLEL keyword, n is one and COPY uses three
threads for a single-object COPY job.

You can merge a full image copy and subsequent incremental image copies into a new full copy by running
the MERGECOPY utility. After reorganizing a table space, the first image copy must be a full image copy.

Do not base the decision of whether to run a full image copy or an incremental image copy on the
number of rows that are updated since the last image copy was taken. Instead, base your decision on
the percentage of pages that contain at least one updated record (not the number of updated records).
Regardless of the size of the table, if more than 50% of the pages contain updated records, use full
image copy (this saves the cost of a subsequent MERGECOPY). To find the percentage of changed pages,

Chapter 14. COPY 157

you can execute COPY with the CHANGELIMIT REPORTONLY option. Alternatively, you can execute COPY
CHANGELIMIT to allow COPY to determine whether a full image copy or incremental copy is required.

Using Db2 data compression for table spaces can improve COPY performance because COPY does not
decompress data. The performance improvement is proportional to the amount of compression.

Generation data group definitions for the COPY utility
Use generation data groups to hold image copies. Use of generation data groups offers the benefit of
automating the allocation of data set names and the deletion of the oldest data set.

When you define the generation data group:

• You can specify that the oldest data set is automatically deleted when the maximum number of data
sets is reached. If you do that, make the maximum number large enough to support all recovery
requirements. When data sets are deleted, use the MODIFY utility to delete the corresponding rows in
SYSIBM.SYSCOPY.

• Make the limit number of generation data sets equal to the number of copies that you want to keep. Use
NOEMPTY to avoid deleting all the data sets from the integrated catalog facility catalog when the limit is
reached.

Recommendation: Use templates when using generation data groups.

Related concepts
“Specifying conditional image copies” on page 154
Use the CHANGELIMIT option of the COPY utility to specify conditional image copies. You can use it to
get a report of image copy information about a table space, or you can let Db2 decide whether to take an
image copy based on this information.

Using Db2 with DFSMS products
You can use Db2 with DFSMS products.

If image copy data sets are managed by HSM or SMS, all data sets are cataloged.

If you plan to use SMS, catalog all image copies. Never maintain cataloged and uncataloged image copies
that have the same name.

Image copies on tape
Do not combine a full image copy and incremental image copies for the same table space on one tape
volume. If you do, the RECOVER TABLESPACE utility cannot allocate the incremental image copies.

Termination of COPY
You can terminate an active or stopped COPY job with the TERM UTILITY command.

SYSIBM.SYSCOPY records
When you terminate COPY, Db2 inserts an ICTYPE=T record in the SYSIBM.SYSCOPY catalog table for
each object that COPY started processing, but did not yet complete processing. The exception is if COPY
is already in the UTILTERM phase. In this case, the image copy is considered complete.

For copies that are made with the SHRLEVEL REFERENCE option specified, some objects in the list might
not have an ICTYPE=T record. For copies that were made with the SHRLEVEL CHANGE option specified,
some objects might have a valid ICTYPE=F, I, or T record, or no record at all.

COPY does not allow you to take an incremental image copy if an ICTYPE=T record exists. You must take a
full image copy.

158 Db2 12 for z/OS: Utility Guide and Reference

Image copy data sets with DISP=(MOD,CATLG,CATLG)
If you terminate a COPY job where the data sets for the image copies are defined with parameter
DISP=(MOD,CATLG,CATLG), take one of the following actions:

• If the job step contains only one COPY utility statement, delete the image copy data set. In this
case, no row was written to SYSIBM.SYSCOPY, but an image copy data set was created and cataloged in
the ICF catalog. You should delete that data set.

• If the job step contains several COPY utility statements, delete all image copy data sets that are
not recorded in SYSIBM.SYSCOPY. In this case, a row for each successfully completed copy was
written to SYSIBM.SYSCOPY. However, all the image copy data sets were created and cataloged. You
should delete those data sets that are not recorded in SYSIBM.SYSCOPY.

Restart of COPY
You can restart the COPY utility.

Recommendation: Use restart current when possible, because it:

• Is valid for full image copies and incremental copies
• Is valid for a single job step with several COPY control statements
• Is valid for a list of objects
• Requires a minimum of re-processing
• Keeps the Db2 catalog and the integrated catalog facility catalog synchronized

If you do not use the TERM UTILITY command, you can restart a COPY job. COPY jobs with the
CONCURRENT option restart from the beginning, and other COPY jobs restart from the last commit point.
You cannot use RESTART(PHASE) for any COPY job. If you are restarting a COPY job with uncataloged
output data sets, you must specify the appropriate volumes for the job in the JCL or on the TEMPLATE
utility statement. Doing so could impact your ability to use implicit restart.

If the recommended procedure is not followed an ABEND 413-1C may occur during restart of the COPY.

Restarting with a new data set
If you define a new output data set for a current restart, complete the following actions before restarting
the COPY job:

1. Copy the failed COPY output to the new data set.
2. Delete the old data set.
3. Rename the new data set to use the old data set name.

Restarting COPY after an out-of-space condition
You can also restart COPY from the last commit point after receiving an out-of-space condition.

Related tasks
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.
“Restarting a utility after the output data set is full” on page 50

Chapter 14. COPY 159

If a utility job terminates with an out-of-space condition on the output data set, you might need to restart
the job at the last commit point.

Sample COPY control statements
Use the sample control statements as models for developing your own COPY control statements.

In some cases, you might run a COPY utility job more than once. To avoid duplicate image copy data sets,
a DSN qualifier is used in the following examples.

Example 1: Making a full image copy

The following control statement specifies that the COPY utility is to make a full image copy of table space
DSN8D12A.DSN8S12E. The copy is to be written to the data set that is defined by the SYSCOPY DD
statement in the JCL; SYSCOPY is the default.

//STEP1 EXEC DSNUPROC,UID='IUJMU111.COPYTS',
// UTPROC='',
// SYSTEM='DSN'
//SYSCOPY DD DSN=COPY001F.IFDY01,UNIT=SYSDA,VOL=SER=CPY01I,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//SYSIN DD *
COPY TABLESPACE DSN8D12A.DSN8S12E
/*

Instead of defining the data sets in the JCL, you can use templates. In the following example, the
preceding job is modified to use a template. In this example, the name of the template is LOCALDDN. The
LOCALDDN template is identified in the COPY statement by the COPYDDN option.

//STEP1 EXEC DSNUPROC,UID='IUJMU111.COPYTS',
// UTPROC='',
// SYSTEM='DSN'
//SYSIN DD *
TEMPLATE LOCALDDN UNIT SYSDA DSN(COPY001F.IFDY01)
 SPACE(15,1) CYL DISP(NEW,CATLG,CATLG)
 COPY TABLESPACE DSN8D81A.DSN8S81E
COPYDDN(LOCALDDN)

/*

Recommendation: When possible, use templates to allocate data sets.

Example 2: Making full image copies for local site and recovery site

The following COPY control statement specifies that COPY is to make primary and backup full image
copies of table space DSN8D12P.DSN8S12C at both the local site and the recovery site. The COPYDDN
option specifies the output data sets for the local site, and the RECOVERYDDN option specifies the output
data sets for the recovery site. The PARALLEL option indicates that up to 2 objects are to be processed in
parallel.

The OPTIONS statement at the beginning indicates that if COPY encounters any errors (return code 8)
while making the requested copies, Db2 ignores that particular item. COPY skips that item and moves on
to the next item. For example, if Db2 encounters an error copying the specified data set to the COPY1 data
set, Db2 ignores the error and tries to copy the table space to the COPY2 data set.

OPTIONS EVENT(ITEMERROR,SKIP)
COPY TABLESPACE DSN8D81P.DSN8S81C
 COPYDDN(COPY1,COPY2)
 RECOVERYDDN(COPY3,COPY4)
 PARALLEL(2)

160 Db2 12 for z/OS: Utility Guide and Reference

Example 3: Making full image copies of a list of objects

The control statement below specifies that COPY is to make local and recovery full image copies (both
primary and backup) of the following objects:

• Table space DSN8D12A.DSN8S12D, and its indexes:

– DSN8C10.XDEPT1
– DSN8C10.XDEPT2
– DSN8C10.XDEPT3

• Table space DSN8D12A.DSN8S12E, and its indexes:

– DSN8710.XEMP1
– DSN8710.XEMP2

These copies are to be written to the data sets that are identified by the COPYDDN and RECOVERYDDN
options for each object. The COPYDDN option specifies the data sets for the copies at the local site, and
the RECOVERYDDN option specifies the data sets for the copies at the recovery site. The first parameter of
each of these options specifies the data set for the primary copy, and the second parameter specifies the
data set for the backup copy. For example, the primary copy of table space DSN8D81A.DSN8S81D at the
recovery site is to be written to the data set that is identified by the COPY3 DD statement.

PARALLEL(4) indicates that up to four of these objects can be processed in parallel. As the COPY job of an
object completes, the next object in the list begins processing in parallel until all of the objects have been
processed.

SHRLEVEL REFERENCE specifies that no updates are allowed during the COPY job. This option is the
default and is recommended to ensure the integrity of the data in the image copy.

//STEP1 EXEC DSNUPROC,UID='IUJMU111.COPYTS',
// UTPROC='',
// SYSTEM='DSN'
//COPY1 DD DSN=C81A.S20001.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY2 DD DSN=C81A.S20001.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY3 DD DSN=C81A.S20001.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY4 DD DSN=C81A.S20001.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY5 DD DSN=C81A.S20002.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY6 DD DSN=C81A.S20002.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY7 DD DSN=C81A.S20002.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY8 DD DSN=C81A.S20002.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY1 DD DSN=C81A.S20001.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY2 DD DSN=C81A.S20001.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY3 DD DSN=C81A.S20001.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY4 DD DSN=C81A.S20001.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY5 DD DSN=C81A.S20002.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY6 DD DSN=C81A.S20002.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY7 DD DSN=C81A.S20002.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY8 DD DSN=C81A.S20002.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY9 DD DSN=C81A.S20003.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY10 DD DSN=C81A.S20003.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY11 DD DSN=C81A.S20003.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY12 DD DSN=C81A.S00003.D2003142.T155241.RB,

Chapter 14. COPY 161

// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY13 DD DSN=C81A.S00004.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY14 DD DSN=C81A.S00004.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY15 DD DSN=C81A.S00004.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)

//COPY16 DD DSN=C81A.S00004.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY17 DD DSN=C81A.S00005.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY18 DD DSN=C81A.S00005.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY19 DD DSN=C81A.S00005.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY20 DD DSN=C81A.S00005.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY21 DD DSN=C81A.S00006.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY22 DD DSN=C81A.S00006.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY23 DD DSN=C81A.S00006.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY24 DD DSN=C81A.S00006.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY25 DD DSN=C81A.S00007.D2003142.T155241.LP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY26 DD DSN=C81A.S00007.D2003142.T155241.LB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY27 DD DSN=C81A.S00007.D2003142.T155241.RP,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//COPY28 DD DSN=C81A.S00007.D2003142.T155241.RB,
// SPACE=(CYL,(15,1)),DISP=(NEW,CATLG,CATLG)
//SYSIN DD *
 COPY
 TABLESPACE DSN8D12A.DSN8S12D
 COPYDDN (COPY1,COPY2)
 RECOVERYDDN (COPY3,COPY4)
 INDEX DSN8C10.XDEPT1
 COPYDDN (COPY5,COPY6)
 RECOVERYDDN (COPY7,COPY8)
 INDEX DSN8C10.XDEPT2
 COPYDDN (COPY9,COPY10)
 RECOVERYDDN (COPY11,COPY12)
 INDEX DSN8C10.XDEPT3
 COPYDDN (COPY13,COPY14)
 RECOVERYDDN (COPY15,COPY16)
 TABLESPACE DSN8D12A.DSN8S12E
 COPYDDN (COPY17,COPY18)
 RECOVERYDDN (COPY19,COPY20)
 INDEX DSN8C10.XEMP1
 COPYDDN (COPY21,COPY22)
 RECOVERYDDN (COPY23,COPY24)
 INDEX DSN8C10.XEMP2
 COPYDDN (COPY25,COPY26)
 RECOVERYDDN (COPY27,COPY28)
 PARALLEL(4)
 SHRLEVEL REFERENCE
/*

You can also write this COPY job so that it uses lists and templates, as shown below. In this example, the
name of the template is T1. Note that this TEMPLATE statement does not contain any space specifications
for the dynamically allocated data sets. Instead, Db2 determines the space requirements. The T1
template is identified in the COPY statement by the COPYDDN and RECOVERYDDN options. The name
of the list is COPYLIST. This list is identified in the COPY control statement by the LIST option.

//STEP1 EXEC DSNUPROC,UID='IUJMU111.COPYTS',
// UTPROC='',
// SYSTEM='DSN'
//SYSIN DD *
TEMPLATE T2 UNIT(SYSDA) SPACE CYL
 DSN(T2.&SN..T&TI..COPY&IC.&LOCREM.)
TEMPLATE T1 UNIT(SYSDA) SPACE CYL
 DSN(T1.&SN..T&TI..COPY&IC.&LOCREM.)
 LIMIT(5 MB,T2)
 LISTDEF COPYLIST
 INCLUDE TABLESPACE DSN8D81A.DSN8S81D

162 Db2 12 for z/OS: Utility Guide and Reference

 INCLUDE INDEX DSN8810.XDEPT1
 INCLUDE INDEX DSN8810.XDEPT2
 INCLUDE INDEX DSN8810.XDEPT3
 INCLUDE TABLESPACE DSN8D81A.DSN8S81E
 INCLUDE INDEX DSN8810.XEMP1
 INCLUDE INDEX DSN8810.XEMP2
 COPY LIST COPYLIST COPYDDN(T1,T1)
 RECOVERYDDN(T1,T1)
 PARALLEL(4) SHRLEVEL REFERENCE
/*

Example 4: Using template switching

The following TEMPLATE control statement assumes that tables space SMALL.TS occupies 10 cylinders
and table space LARGE.TS occupies 100 cylinders. Both COPY statements use the SMALLTP template
which specifies a limit of 20 cylinders. Table space SMALL.TS is smaller than this limit so no switching
is performed. The output data set for table space SMALL.TS will be allocated on UNIT=SYSALLDA. Table
space LARGE.TS is larger than this limit so the template is switched to the LARGETP template. The output
data set for table space LARGE.TS will be allocated on UNIT=TAPE.

TEMPLATE LARGETP DSN &DB..&TS..D&DA..T&TI. UNIT=TAPE
TEMPLATE SMALLTP DSN &DB..&TS..D&DA..T&TI. UNIT=SYSALLDA LIMIT(20 CYL, LARGETP)
COPY TABLESPACE SMALL.TS COPYDDN(SMALLTP)
COPY TABLESPACE LARGE.TS COPYDDN(SMALLTP)

Note that the DSN option of the TEMPLATE statement identifies the names of the data sets to which the
copies are to be written.

Each of the preceding COPY jobs create a point of consistency for the table spaces and their indexes. You
can subsequently use the RECOVER utility with the TOLOGPOINT option to recover all of these objects.

Example 5: Making full image copies of a list of objects in parallel on tape

The following COPY control statement specifies that COPY is to make image copies of the specified table
spaces and their associated index spaces in parallel and stack the copies on different tape devices.

The PARALLEL 2 option specifies that up to two objects can be processed in parallel. The TAPEUNITS
2 option specifies that up to two tape devices can be dynamically allocated at one time. The COPYDDN
option for each object specifies the data set that is to be used for the local image copy. In this example,
all of these data sets are dynamically allocated and defined by templates. For example, table space
DSN8D81A.DSN8S81D is copied into a data set that is defined by the A1 template.

The TEMPLATE utility control statements define the templates A1 and A2.

//COPY2A EXEC DSNUPROC,SYSTEM=DSN
//SYSIN DD *
 TEMPLATE A1 DSN(&DB..&SP..COPY1) UNIT CART STACK YES
 TEMPLATE A2 DSN(&DB..&SP..COPY2) UNIT CART STACK YES
COPY PARALLEL 2 TAPEUNITS 2
 TABLESPACE DSN8D81A.DSN8S81D COPYDDN(A1)
 INDEXSPACE DSN8810.XDEPT COPYDDN(A1)
 TABLESPACE DSN8D81A.DSN8S81E COPYDDN(A2)
 INDEXSPACE DSN8810.YDEPT COPYDDN(A2)

Although use of templates is recommended, you can also define the output data sets by coding JCL DD
statements, as in the following example. This COPY control statement also specifies a list of objects to be
processed in parallel, but in this case, the data sets are defined by DD statements. In each DD statement,
notice the parameters for the VOLUME option. These values show that the data sets are defined on three
different tape devices as follows:

• The first tape device contains data sets that are defined by DD statements DD1 and DD4. (For DD4, the
VOLUME option has a value of *.DD1 for the REF parameter.)

Chapter 14. COPY 163

• A second tape device contains data sets that are defined by DD statements DD2 and DD3. (For DD3, the
VOLUME option has a value of *.DD3 for the REF parameter.)

• A third tape device contains the data set that is defined by DD statement DD5.

The following table spaces are to be processed in parallel on two different tape devices:

• DSN8D81A.DSN8S81D on the device that is defined by the DD1 DD statement and the device that is
defined by the DD5 DD statement

• DSN8D81A.DSN8S81E on the device that is defined by the DD2 DD statement

Copying of the following tables spaces must wait until processing has completed for
DSN8D81A.DSN8S81D and DSN8D81A.DSN8S81E:

• DSN8D81A.DSN8S81F on the device that is defined by the DD2 DD statement after
DSN8D81A.DSN8S81E completes processing

• DSN8D81A.DSN8S81G on the device that is defined by the DD1 DD statement after
DSN8D81A.DSN8S81D completes processing

//COPY1A EXEC DSNUPROC,SYSTEM=DSN
//DD1 DD DSN=DB1.TS1.CLP,
// DISP=(NEW,CATLG,CATLG),
// UNIT=TAPE,LABEL=(1,SL),
// VOLUME=(,RETAIN)
//DD2 DD DSN=DB2.TS2.CLP,
// DISP=(NEW,CATLG,CATLG),
// UNIT=TAPE,LABEL=(1,SL),
// VOLUME=(,RETAIN)
//DD3 DD DSN=DB3.TS3.CLB.BACKUP,
// DISP=(NEW,CATLG,CATLG),
// UNIT=TAPE,LABEL=(2,SL),
// VOLUME=(,RETAIN,REF=*.DD2)
//DD4 DD DSN=DB4.TS4.CLB.BACKUP,
// DISP=(NEW,CATLG,CATLG),
// UNIT=TAPE,LABEL=(2,SL),
// VOLUME=(,RETAIN,REF=*.DD1)
//DD5 DD DSN=DB1.TS1.CLB.BACKUP,
// DISP=(NEW,CATLG,CATLG),
// UNIT=TAPE,LABEL=(1,SL),
// VOLUME=(,RETAIN)
 COPY PARALLEL 2 TAPEUNITS 3
 TABLESPACE DSN8D81A.DSN8S81D COPYDDN(DD1,DD5)
 TABLESPACE DSN8D81A.DSN8S81E COPYDDN(DD2)
 TABLESPACE DSN8D81A.DSN8S81F COPYDDN(DD3)
 TABLESPACE DSN8D81A.DSN8S81G COPYDDN(DD4)

Example 6: Using both JCL-defined and template-defined data sets to copy a list of objects on tape

This example uses both JCL DD statements and utility templates to define four data sets for the image
copies. The JCL defines two data sets (DB1.TS1.CLP and Db2.TS2.CLB.BACKUP), and the TEMPLATE utility
control statements define two data sets that are to be dynamically allocated (&DB..&SP..COPY1 and
&DB..&SP..COPY2).

The COPYDDN options in the COPY control statement specify the data sets that are to be used for the
local primary and backup image copies of the specified table spaces. For example, the primary copy
of table space DSN8D81A.DSN8S71D is to be written to the data set that is defined by the DD1 DD
statement (DB1.TS1.CLP), and the primary copy of table space DSN8D81A.DSN8S71E is to be written to
the data set that is defined by the A1 template (&DB..&SP..COPY1).

Four tape devices are allocated for this COPY job: the JCL allocates two tape drives, and the TAPEUNITS
2 option in the COPY statement indicates that two tape devices are to be dynamically allocated. Note that
the TAPEUNITS option applies only to those tape devices that are dynamically allocated by the TEMPLATE
statement.

164 Db2 12 for z/OS: Utility Guide and Reference

Recommendation: Although this example shows how to use both templates and DD statements, use only
templates, if possible.

//COPY1D EXEC DSNUPROC,SYSTEM=DSN
//DD1 DD DSN=DB1.TS1.CLP,
// DISP=(,CATLG),
// UNIT=3490,LABEL=(1,SL)
// VOLUME=(,RETAIN)
//DD2 DD DSN=DB2.TS2.CLB.BACKUP,
// DISP=(,CATLG),
// UNIT=3490,LABEL=(2,SL)
// VOLUME=(,RETAIN)
//SYSIN DD *
 TEMPLATE A1 DSN(&DB..&SN..COPY1) UNIT CART STACK YES
 TEMPLATE A2 DSN(&DB..&SN..COPY2) UNIT CART STACK YES
 COPY PARALLEL 2 TAPEUNITS 2
 TABLESPACE DSN8D81A.DSN8S81D COPYDDN(DD1,DD2)
 TABLESPACE DSN8D81A.DSN8S81E COPYDDN(A1,A2)

Example 7: Using LISTDEF to define a list of objects to copy in parallel to tape

The following example uses the LISTDEF utility to define a list of objects to be copied in parallel to
different tape sources. The COPY control statement specifies that the table spaces that are included
in the PAYROLL list are to copied. (The PAYROLL list is defined by the LISTDEF control statement.)
The TEMPLATE control statements define two output data sets, one for the local primary copy
(&DB..©..LOCAL) and one for the recovery primary copy (&DB..©..REMOTE).

//COPY3A EXEC DSNUPROC,SYSTEM=DSN
//SYSIN DD *
 LISTDEF PAYROLL INCLUDE TABLESPACES TABLESPACE DBPAYROLL.*
 TEMPLATE LOCAL DSN(&DB..©..LOCAL) (+1) UNIT CART STACK YES
 TEMPLATE REMOTE DSN(&DB..©..REMOTE) (+1) UNIT CART STACK YES
 COPY LIST PAYROLL PARALLEL(10) TAPEUNITS(8)
 COPYDDN(LOCAL) RECOVERYDDN(REMOTE)

In the preceding example, the utility determines the number of tape streams to use by dividing the value
for TAPEUNITS (8) by the number of output data sets (2) for a total of 4 in this example. For each tape
stream, the utility attaches one subtask. The list of objects is sorted by size and processed in descending
order. The first subtask to finish processes the next object in the list. In this example, the PARALLEL(10)
option limits the number of objects to be processed in parallel to 10 and attaches four subtasks. Each
subtask copies the objects in the list in parallel to two tape drives, one for the primary and one for the
recovery output data sets.

Example 8: Making incremental copies with updates allowed

The FULL NO option in the following COPY control statement specifies that COPY is to make incremental
image copies of any specified objects. In this case, the objects to be copied are those objects
that are included in the NAME1 list, as indicated by the LIST option. The preceding LISTDEF utility
control statement defines the NAME1 list to include index space DSN8D81A.XEMP1 and table space
DSN8D81A.DSN8S81D. Although one of the objects to be copied is an index space and COPY does not
take incremental image copies of index spaces, the job does not fail; COPY takes a full image copy of the
index space instead. However, if a COPY FULL NO statement identifies only an index that is not part of a
list, the COPY job fails.

All specified copies (local primary and backup copies and remote primary and backup copies) are written
to data sets that are dynamically allocated according to the specifications of the COPYDS template. This
template is defined in the preceding TEMPLATE utility control statement.

Chapter 14. COPY 165

The SHRLEVEL CHANGE option in the following COPY control statement specifies that updates can be
made during the COPY job.

TEMPLATE COPYDS DSN &US.2.&SN..&LR.&PB..D&DATE.
 LISTDEF NAME1 INCLUDE INDEXSPACE DSN8D81A.XEMP1
 INCLUDE TABLESPACE DSN8D81A.DSN8S81D
 COPY LIST NAME1 COPYDDN(COPYDS, COPYDS) RECOVERYDDN(COPYDS,COPYDS)
 FULL NO SHRLEVEL CHANGE

Example 9: Making a conditional image copy

The CHANGELIMIT(5) option in the following control statement specifies the following conditions for
making an image copy of table space DSN8D81P.DSN8S81C:

• Take a full image copy of the table space if the percentage of changed pages is equal to or greater than
5%.

• Take an incremental image copy of the table space if the percentage of changed pages is greater than 0
and less than 5%.

• Do not take an image copy if no pages have changed.

COPY TABLESPACE DSN8D12P.DSN8S12C CHANGELIMIT(5)

Example 10: Reporting image copy information for a table space

The REPORTONLY option in the following control statement specifies that image copy information is to
be displayed only; no image copies are to be made. The CHANGELIMIT(10,40) option specifies that the
following information is to be displayed:

• Recommendation that a full image copy be made if the percentage of changed pages is equal to or
greater than 40%.

• Recommendation that an incremental image copy be made if the percentage of changed pages is
greater than 10% and less than 40%.

• Recommendation that no image copy be made if the percentage of changed pages is 10% or less.

COPY TABLESPACE DSN8D12P.DSN8S12C CHANGELIMIT(10,40) REPORTONLY

Example 11: Invoking DFSMSdss concurrent copy

The CONCURRENT option in the following COPY control statement specifies that DFSMSdss concurrent
copy is to make a full image copy of the objects in the COPYLIST list (table space DSN8D81A.DSN8S81D
and table space DSN8D81A.DSN8S81P). The COPYDDN option indicates that the copy is to be written to
the data set that is defined by the SYSCOPY1 template. The DSSPRINT DD statement specifies the data
set for message output.

//COPY EXEC DSNUPROC,SYSTEM=DSN
//SYSPRINT DD DSN=COPY1.PRINT1,DISP=(NEW,CATLG,CATLG),
// SPACE=(4000,(20,20),,,ROUND),UNIT=SYSDA,VOL=SER=DB2CC5
//DSSPRINT DD DSN=COPY1.PRINT2,DISP=(NEW,CATLG,CATLG),
// SPACE=(4000,(20,20),,,ROUND),UNIT=SYSDA,VOL=SER=DB2CC5
//SYSIN DD *
 TEMPLATE SYSCOPY1 DSN &DB..&TS..COPY&IC.&LR.&PB..D&DATE..T&TIME.
 UNIT(SYSDA) DISP (MOD,CATLG,CATLG)
 LISTDEF COPYLIST INCLUDE TABLESPACE DSN8D81A.DSN8S81D
 INCLUDE TABLESPACE DSN8D81A.DSN8S81P
 COPY LIST COPYLIST
 COPYDDN (SYSCOPY1)
 CONCURRENT

166 Db2 12 for z/OS: Utility Guide and Reference

Example 12: Invoking DFSMSdss concurrent copy and using a filter data set

The control statement specifies that DFSMSdss concurrent copy is to make full image copies of the
objects in the TSLIST list (table spaces TS1, TS2, and TS3). The FILTERDDN option specifies that COPY is
to use the filter data set that is defined by the FILT template. All output is sent to the SYSCOPY data set,
as indicated by the COPYDDN(SYSCOPY) option. SYSCOPY is the default. This data set is defined in the
preceding TEMPLATE control statement.

LISTDEF TSLIST
 INCLUDE TABLESPACE TS1
 INCLUDE TABLESPACE TS2
 INCLUDE TABLESPACE TS3
TEMPLATE SYSCOPY DSN &DB..&TS..COPY&IC.&LR.&PB..D&DATE..T&TIME.
 UNIT(SYSDA) DISP (MOD,CATLG,CATLG)
TEMPLATE FILT DSN FILT.TEST1.&SN..D&DATE.
 UNIT(SYSDA) DISP (MOD,CATLG,DELETE)
COPY LIST TSLIST
FILTERDDN(FILT)
COPYDDN(SYSCOPY)
CONCURRENT
 SHRLEVEL REFERENCE

Example 13: Copying LOB table spaces together with related objects

Assume that table space TPIQUD01 is a base table space and that table spaces TLIQUDA1, TLIQUDA2,
TLIQUDA3, and TLIQUDA4 are LOB table spaces. The control statement specifies that COPY is to take the
following actions:

• Take a full image copy of each specified table space if the percentage of changed pages is equal to or
greater than the highest decimal percentage value for the CHANGELIMIT option for that table space.
For example, if the percentage of changed pages for table space TPIQUD01 is equal to or greater than
6.7%, COPY is to take a full image copy.

• Take an incremental image copy of each specified table space if the percentage of changed pages is in
the range between the specified decimal percentage values for the CHANGELIMIT option for that table
space. For example, if the percentage of changed pages for table space TLIQUDA1 is greater than 7.9%
and less than 25.3%, COPY is to take an incremental image copy.

• Do not take an image copy of each specified table space if the percentage of changed pages is equal to
or less than the lowest decimal percentage value for the CHANGELIMIT option for that table space. For
example, if the percentage of changed pages for table space TLIQUDA2 is equal to or less than 2.2%,
COPY is not to take an incremental image copy.

• Take full image copies of index spaces IPIQUD01, IXIQUD02, IUIQUD03, IXIQUDA1, IXIQUDA2,
IXIQUDA3, and IXIQUDA4.

COPY
 TABLESPACE DBIQUD01.TPIQUD01 DSNUM ALL CHANGELIMIT(3.3,6.7)
 COPYDDN(COPYTB1)
 TABLESPACE DBIQUD01.TLIQUDA1 DSNUM ALL CHANGELIMIT(7.9,25.3)
 COPYDDN(COPYTA1)
 TABLESPACE DBIQUD01.TLIQUDA2 DSNUM ALL CHANGELIMIT(2.2,4.3)
 COPYDDN(COPYTA2)
 TABLESPACE DBIQUD01.TLIQUDA3 DSNUM ALL CHANGELIMIT(1.2,9.3)
 COPYDDN(COPYTA3)
 TABLESPACE DBIQUD01.TLIQUDA4 DSNUM ALL CHANGELIMIT(2.2,4.0)
 COPYDDN(COPYTA4)
 INDEXSPACE DBIQUD01.IPIQUD01 DSNUM ALL
 COPYDDN(COPYIX1)
 INDEXSPACE DBIQUD01.IXIQUD02 DSNUM ALL
 COPYDDN(COPYIX2)
 INDEXSPACE DBIQUD01.IUIQUD03 DSNUM ALL
 COPYDDN(COPYIX3)
 INDEXSPACE DBIQUD01.IXIQUDA1 DSNUM ALL
 COPYDDN(COPYIXA1)
 INDEXSPACE DBIQUD01.IXIQUDA2 DSNUM ALL
 COPYDDN(COPYIXA2)
 INDEXSPACE DBIQUD01.IXIQUDA3 DSNUM ALL

Chapter 14. COPY 167

 COPYDDN(COPYIXA3)
 INDEXSPACE DBIQUD01.IXIQUDA4 DSNUM ALL
 COPYDDN(COPYIXA4)
 SHRLEVEL REFERENCE

Example 14: Using GDGs to make a full image copy

The following control statement specifies that the COPY utility is to make a full image copy of table
space DBLT2501.TPLT2501. The local copies are to be written to data sets that are dynamically allocated
according to the COPYTEM1 template. The remote copies are to be written to data sets that are
dynamically allocated according to the COPYTEM2 template. For both of these templates, the DSN option
indicates the name of generation data group JULTU225 and the generation number of +1. (If a GDG base
does not already exist, Db2 creates one.) Both of these output data sets are to be modeled after the
JULTU255.MODEL data set (as indicated by the MODELDCB option in the TEMPLATE statements).

//***
//* COMMENT: MAKE A FULL IMAGE COPY OF THE TABLESPACE.
//* USE A TEMPLATE FOR THE GDG.
//***
//STEP2 EXEC DSNUPROC,UID='JULTU225.COPY',
// UTPROC='',
// SYSTEM='SSTR'
//SYSIN DD *
 TEMPLATE COPYTEM1
 UNIT SYSDA
 DSN 'JULTU225.GDG.LOCAL.&PB.(+1)'
 MODELDCB JULTU225.MODEL
 TEMPLATE COPYTEM2
 UNIT SYSDA
 DSN 'JULTU225.GDG.REMOTE.&PB.(+1)'
 MODELDCB JULTU225.MODEL
 COPY TABLESPACE DBLT2501.TPLT2501
 FULL YES
 COPYDDN (COPYTEM1,COPYTEM1)
 RECOVERYDDN (COPYTEM2,COPYTEM2)
 SHRLEVEL REFERENCE

Example 15: Copying updated table space data

The following control statement indicates that COPY is to copy only the objects that have been updated.
SCOPE PENDING indicates that you want to copy only those objects in COPY-pending or informational
COPY-pending status.

COPY SHRLEVEL REFERENCE
 TABLESPACE DBIQUD01.TPIQUD01 DSNUM ALL CHANGELIMIT(3.3,6.7)
 COPYDDN(COPYTB1)
 TABLESPACE DBIQUD01.TLIQUDA1 DSNUM ALL CHANGELIMIT(7.9,25.3)
 COPYDDN(COPYTA1)
 TABLESPACE DBIQUD01.TLIQUDA2 DSNUM ALL CHANGELIMIT(2.2,4.3)
 COPYDDN(COPYTA2)
 TABLESPACE DBIQUD01.TLIQUDA3 DSNUM ALL CHANGELIMIT(1.2,9.3)
 COPYDDN(COPYTA3)
 TABLESPACE DBIQUD01.TLIQUDA4 DSNUM ALL CHANGELIMIT(2.2,4.0)
 COPYDDN(COPYTA4)
 INDEXSPACE DBIQUD01.IPIQUD01 DSNUM ALL
 COPYDDN(COPYIX1)PARALLEL(4)
 SCOPE PENDING
/*

Example 16: Copying clone table data

168 Db2 12 for z/OS: Utility Guide and Reference

The following control statement indicates that COPY is to copy only clone table data in the specified table
spaces or indexes.

COPY SHRLEVEL REFERENCE CLONE
 TABLESPACE DBIQUD01.TPIQUD01 DSNUM ALL CHANGELIMIT(3.3,6.7)
 COPYDDN(COPYTB1)
 TABLESPACE DBIQUD01.TLIQUDA1 DSNUM ALL CHANGELIMIT(7.9,25.3)
 COPYDDN(COPYTA1)
 TABLESPACE DBIQUD01.TLIQUDA2 DSNUM ALL CHANGELIMIT(2.2,4.3)
 COPYDDN(COPYTA2)
 TABLESPACE DBIQUD01.TLIQUDA3 DSNUM ALL CHANGELIMIT(1.2,9.3)
 COPYDDN(COPYTA3)
 TABLESPACE DBIQUD01.TLIQUDA4 DSNUM ALL CHANGELIMIT(2.2,4.0)
 COPYDDN(COPYTA4)
 INDEXSPACE DBIQUD01.IPIQUD01 DSNUM ALL
 COPYDDN(COPYIX1)

Chapter 14. COPY 169

170 Db2 12 for z/OS: Utility Guide and Reference

Chapter 15. COPYTOCOPY
The COPYTOCOPY online utility makes image copies from an image copy that was taken by the COPY
utility. The COPYTOCOPY utility can also make image copies from inline copies that the REORG or LOAD
utilities make.

Starting with the local primary copy or a recovery-site primary copy, or a copy created by using FlashCopy
technology, COPYTOCOPY can make up to four sequential format copies of one or more of the following
types of copies:

• Local primary
• Local backup
• Recovery site primary
• Recovery site backup

You can make both full and incremental image copies of a LOB or XML table space.

You cannot run COPYTOCOPY on concurrent copies.

The RECOVER utility uses the copies when recovering a table space or index space to the most recent
time or to a previous time. These copies can also be used by MERGECOPY, UNLOAD, and possibly a
subsequent COPYTOCOPY execution.

Output

Output from the COPYTOCOPY utility consists of:

• Up to three sequential data sets that contain the image copy. If the copy base is a FlashCopy, four
sequential copies can be made.

• Up to three sequential data sets that contain the image copy.
• Rows in the SYSIBM.SYSCOPY catalog table that describe the image copy data sets that are available to

the RECOVER utility. Your installations responsible for ensuring that these data sets are available if the
RECOVER utility requests them.

The entries for SYSCOPY columns remain the same as the original entries in the SYSCOPY row
when the COPY utility recorded them. The COPYTOCOPY job inserts values in the columns DSNAME,
GROUP_MEMBER, JOBNAME, AUTHID, DSVOLSER, and DEVTYPE.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• IMAGCOPY privilege for the database
• DBADM, DBCTRL, or DBMAINT authority for the database. If the object on which the utility operates is

in an implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• System DBADM authority
• SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute COPYTOCOPY, but only on a table space in the
DSNDB01 or DSNDB06 database.

Restrictions on running COPYTOCOPY
• COPYTOCOPY does not support the following catalog and directory objects:

© Copyright IBM Corp. 1983, 2024 171

– DSNDB01.SYSUTILX and its indexes
– DSNDB01.DBD01 and its indexes
– DSNDB01.SYSDBDXA and its indexes
– DSNDB06.SYSTSCPY and its indexes

• An image copy from a COPY job with the CONCURRENT option cannot be processed by COPYTOCOPY.
• COPYTOCOPY does not check the recoverability of an object.
• COPYTOCOPY cannot be run on a table space during the period after RECOVER is run to a point in

time before materialization of pending definition changes and before REORG is run to complete the
point-in-time recovery process.

• COPYTOCOPY does not support a range of partitions within a partitioned table space. Specify individual
DSNUM(n). From the inline copy, COPYTOCOPY copies only the specified partition into the output image
copy data set.

Execution phases of COPYTOCOPY

The COPYTOCOPY utility operates in these phases:

Phase
Description

UTILINIT
Performs initialization

CPY2CPY
Copies an image copy

UTILTERM
Performs cleanup

Syntax and options of the COPYTOCOPY control statement
The COPYTOCOPY utility control statement, with its multiple options, defines the function that the utility
job performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram
COPYTOCOPY LIST listdef-name from-copy-spec data-set-spec

table-space-spec

index-space-spec

from-copy-spec data-set-spec

CLONE

table-space-spec

TABLESPACE

database-name .

table-space-name
DSNUM ALL

DSNUM integer

index-space-spec

172 Db2 12 for z/OS: Utility Guide and Reference

INDEXSPACE
1

database-name .

index-space-name

INDEX

creator-id .

index-name

DSNUM ALL

DSNUM integer
2

from-copy-spec
FROMLASTCOPY

FROMLASTFULLCOPY

FROMLASTINCRCOPY

FROMLASTFLASHCOPY
3

FROMCOPY
4

dsn

FROMVOLUME CATALOG

volser

FROMSEQNO n
5

data-set-spec
COPYDDN

6
(ddname1

7

, ddname2

, ddname2

)

RECOVERYDDN (ddname3

, ddname4

, ddname4

)

RECOVERYDDN (ddname3

, ddname4

, ddname4

)

Notes:
1 INDEXSPACE is the preferred specification.
2 Not valid for nonpartitioning indexes.
3 FROMLASTFLASHCOPY is not valid with either of the following keywords: INDEXSPACE, INDEX.
4 FROMCOPY is not valid with the LIST keyword.
5 The FROMSEQNO option is required if you are copying an image copy from a tape data set that is not
cataloged.
6 You can specify up to three DD names for both the COPYDDN and RECOVERYDDN options combined.
7 Use this option if you want to make a local site primary copy from one of the recovery site copies.

Option descriptions

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. The utility allows one LIST keyword
for each COPYTOCOPY control statement. Do not specify LIST with either the INDEX or TABLESPACE
keywords. Db2 invokes COPYTOCOPY once for the entire list.

This utility does not support lists that specify more than 32,000 objects. Partitions of table spaces or
index spaces that are included by the PARTLEVEL keyword count as separate objects.

This utility only processes clone data if the CLONE keyword is specified. The use of CLONED YES on
the LISTDEF statement is not sufficient.

Chapter 15. COPYTOCOPY 173

The partitions or partition ranges can be specified in a list.

TABLESPACE
Specifies the table space (and, optionally, the database it belongs to) that is to be copied. database-
name is the name of the database that the table space belongs to. The default value is DSNDB04.

table-space-name is the name of the table space to be copied.

INDEXSPACE database-name.index-space-name
Specifies the qualified name of the index space that is to be copied; the name is obtained from the
SYSIBM.SYSINDEXES table. Define the index space with the COPY YES attribute.

database-name optionally specifies the name of the database that the index space belongs to. The
default value is DSNDB04.

index-space-name specifies the name of the index space that is to be copied.

INDEX creator-id.index-name
Specifies the index that is to be copied. Enclose the index name in quotation marks if the name
contains a blank.

creator-id optionally specifies the creator of the index. The default value is the user identifier for the
utility.

index-name specifies the name of the index that is to be copied.

DSNUM
Identifies a partition or data set, within the table space or the index space, that is to be copied. The
keyword ALL specifies that the entire table space or index space is to be copied.

You cannot specify DSNUM for nonpartitioned indexes.

ALL
Specifies that the entire table space or index space is to be copied. You must use ALL for a
nonpartitioned secondary index.

integer
Is the number of a partition or data set that is to be copied.

An integer value is not valid for nonpartitioned secondary indexes.

For a partitioned table space or index space, the integer is its physical partition number. The
maximum is 4096.

For a nonpartitioned table space, find the integer at the end of the data set name as cataloged in
the VSAM catalog. The data set name has the following format:

catname.DSNDBx.dbname.spacename.y000Z.Annn

In this format:

catname
Is the VSAM catalog name or alias.

x
Is C or D.

dbname
Is the database name.

spacename
Is the table space or index space name.

y
Is I or J.

z
Is 1 or 2.

174 Db2 12 for z/OS: Utility Guide and Reference

nnn
Is the data set integer.

Specifying or using the default of DSNUM(ALL) causes COPYTOCOPY to look for an input image copy
that was taken at the entire table space or index space level.

FROMLASTCOPY
Specifies the most recent image copy that was taken for the table space or index space that is to
be the input to the COPYTOCOPY utility. This could be a full image copy or incremental copy that is
retrieved from SYSIBM.SYSCOPY.

FROMLASTFULLCOPY
Specifies the most recent full image copy that was taken for the object, which is to be the input to the
COPYTOCOPY job.

FROMLASTINCRCOPY
Specifies the most recent incremental image copy that was taken for the object that is to be the input
to COPYTOCOPY job.

FROMLASTINCRCOPY is not valid with the INDEXSPACE or INDEX keyword. If FROMLASTINCRCOPY
is specified for an INDEXSPACE or INDEX, COPYTOCOPY uses the last full copy that was taken, if one
is available.

FROMLASTFLASHCOPY
Specifies that the most recent FlashCopy image copy that was taken for the object is to be the input to
COPYTOCOPY job.

FROMCOPY dsn
Specifies a particular image copy data set (dsn) as the input to the COPYTOCOPY job. This option is
not valid for LIST.

If the image copy data set is a generation data set, then supply a fully qualified data set name,
including the absolute generation and version number. If the image copy data set is not a generation
data set and more than one image copy data set have the same data set name, use the FROMVOLUME
option to identify the data set exactly.

If the image copy is a FlashCopy image copy of a nonpartitioned index (NPI), specify the data set
name of the FlashCopy image copy for any one of the pieces. In this case, you must also specify
DSNUM ALL, either explicitly or as the default. The resulting sequential image copy or copies will
contain the pages from all pieces of the multi-piece NPI.

FROMVOLUME
Identifies the image copy data set.
CATALOG

Identifies the data set as cataloged. Use this option only for an image copy that was created as a
cataloged data set. (Its volume serial is not recorded in SYSIBM.SYSCOPY.)

COPYTOCOPY refers to the SYSIBM.SYSCOPY catalog table during execution. If you use
FROMVOLUME CATALOG, the data set must be cataloged. If you remove the data set from the
catalog after creating it, you must catalog the data set again to make it consistent with the record
that appears in SYSIBM.SYSCOPY for this copy.

vol-ser
Identifies the data set by an alphanumeric volume serial identifier of its first volume. Use this
option only for an image copy that was created as a noncataloged data set. Specify the first vol-ser
in the SYSCOPY record to locate a data set that is stored on multiple tape volumes.If an individual
volume serial number contains leading zeros, it must be enclosed in single quotation marks.

FROMSEQNO n
Identifies the image copy data set by its file sequence number. n is the file sequence number.

COPYDDN (ddname1,ddname2)
Specifies a DD name (ddname) or a TEMPLATE name for the primary (ddname1) and backup
(ddname2) copied data sets for the image copy at the local site. If ddname2 is specified by itself,

Chapter 15. COPYTOCOPY 175

COPYTOCOPY expects the local site primary image copy to exist. If it does not exist, error message
DSNU1401 is issued and the process for the object is terminated.

Recommendation: Catalog all of your image copy data sets.

You cannot have duplicate image copy data sets. If the DD statement identifies a noncataloged data
set with the same name, volume serial, and file sequence number as one that is already recorded
in SYSIBM.SYSCOPY, COPYTOCOPY issues a message and no copy is made. If the DD statement
identifies a cataloged data set with only the same name, no copy is made. For cataloged image copy
data sets, you must specify CATLG for the normal termination disposition in the DD statement; for
example, DISP=(MOD,CATLG,CATLG). The DSVOLSER field of the SYSCOPY entry is blank.

When the image copy data set is going to a tape volume, specify VOL=SER parameter in the DD
statement.

The COPYDDN keyword specifies either a DD name or a TEMPLATE name specification from a previous
TEMPLATE control statement. If utility processing detects that the specified name is both a DD name
in the current job step and a TEMPLATE name, the utility uses the DD name.

RECOVERYDDN (ddname3,ddname4)
Specifies a DD name (ddname) or a TEMPLATE name for the primary (ddname3) and backup
(ddname4) copied data sets for the image copy at the recovery site. If ddname4 is specified by itself,
COPYTOCOPY expects the recovery site primary image copy to exist. If this image copy does not exist,
error message DSNU1401 is issued and the process for the object is terminated.

You cannot have duplicate image copy data sets. The same rules apply for RECOVERYDDN as for
COPYDDN.

The RECOVERYDDN keyword specifies either a DD name or a TEMPLATE name specification from a
previous TEMPLATE control statement. If utility processing detects that the specified name is both a
DD name in the current job step and a TEMPLATE name, the utility uses the DD name.

CLONE
Indicates that COPYTOCOPY is to process only image copy data sets that were taken against clone
tables or indexes on clone tables. This utility will only process clone data if the CLONE keyword is
specified. The use of CLONED YES on the LISTDEF statement is not sufficient.

Related reference
“TEMPLATE” on page 751
The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the
data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.
“LISTDEF” on page 199
The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.

Data sets that COPYTOCOPY uses
The COPYTOCOPY utility uses a number of data sets during its operation.

The following table describes the data sets that COPYTOCOPY uses. The table lists the DD name that is
used to identify the data set, a description of the data set, and an indication of whether it is required.
Include statements in your JCL for each required data set and any optional data sets that you want to use.

Table 19. Data sets that COPYTOCOPY uses

Data set Description Required?

SYSIN Input data set that contains the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

176 Db2 12 for z/OS: Utility Guide and Reference

Table 19. Data sets that COPYTOCOPY uses (continued)

Data set Description Required?

Output copies From one to four output data sets that contain
the resulting image copy data sets. Specify their
DD names with the COPYDDN and RECOVERYDDN
options of the utility control statement.

Yes

The following objects are named in the utility control statement and do not require DD statements in the
JCL:

Table space or Index space
Object that is to be copied. (If you want to copy only certain partitions in a partitioned table space, use
the DSNUM option in the control statement.)

Db2 catalog objects
Objects in the catalog that COPYTOCOPY accesses. The utility records each copy in the Db2 catalog
table SYSIBM.SYSCOPY.

Input image copy data set
This information is accessed through the Db2 catalog. COPYTOCOPY retains all tape mounts for you.
You do not need to code JCL statements to retain tape mounts. If the image copy data sets that are
used by COPYTOCOPY reside on the same tape, you do not need to remove the tape.

Output data set size

Image copies are written to sequential non-VSAM data sets.

Recommendation: Use a template for the image copy data set for a table space by specifying a
TEMPLATE statement without the SPACE keyword. When you omit this keyword, the utility calculates
the appropriate size of the data set for you.

Alternatively, you can find the approximate size, in bytes, of the image copy data set for a table space by
using the following procedure:

1. Find the high-allocated page number from the COPYPAGESF column of SYSIBM.SYSCOPY or from
information in the VSAM catalog data set.

2. Multiply the high-allocated page number by the page size.

Another option is to look at the size of the input image copy.

JCL parameters: You can specify a block size for the output by using the BLKSIZE parameter on the
DD statement for the output data set. Valid block sizes are multiples of 4096 bytes. It is recommended
that the BLKSIZE parameter be omitted. The TAPEBLKSZLIM parameter of the DEVSUPxx member of
SYS1.PARMLIB controls the block size limit for tapes.

Related information:

• MVS Initialization and Tuning Guide

Cataloging image copies

To catalog your image copy data sets, use the DISP=(NEW,CATLG,CATLG) parameter in the DD statement
or TEMPLATE that is named by the COPYDDN or RECOVERYDDN option. After the image copy is taken, the
DSVOLSER column of the row that is inserted into SYSIBM.SYSCOPY contains blanks.

Duplicate image copy data sets are not allowed. If a cataloged data set is already recorded in
SYSIBM.SYSCOPY with the same name as the new image copy data set, a message is issued and the
copy is not made.

Chapter 15. COPYTOCOPY 177

https://www.ibm.com/docs/en/zos/2.5.0?topic=mvs-zos-initialization-tuning-guide

When RECOVER locates the entry in SYSIBM.SYSCOPY, it uses the ICF catalog to allocate the required
data set. If you have uncataloged the data set, the allocation fails. In that case, the recovery can still
go forward; RECOVER searches for a previous image copy. But even if RECOVER finds one, it must use
correspondingly more of the log to recover. You are responsible for keeping the z/OS catalog consistent
with SYSIBM.SYSCOPY with regard to existing image copy data sets.

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.

Concurrency and compatibility for COPYTOCOPY
The COPYTOCOPY utility has certain concurrency and compatibility characteristics associated with it.

Db2 treats individual data and index partitions as distinct target objects. Utilities that operate on different
partitions of the same table space or index space are compatible.

Claims
The following table lists any claims or drains that the utility acquires and any restrictive states that are set
on the target object.

Table 20. Claim classes of COPYTOCOPY operations.

Target COPYTOCOPY

Table space or partition, or index space or partition UTRW

Legend:

• UTRW - Utility restrictive state - read-write access allowed

Compatibility
COPYTOCOPY can run concurrently with any utility on the same target object.

Full or incremental image copies with COPYTOCOPY
You can copy a full image copy or an incremental image copy by using FROMLASTCOPY keyword.

If you do not specify FROMLASTCOPY, it will be used by default, as shown in the following example. In
this example, the COPYTOCOPY control statement specifies that the utility is to make a backup copy of
the most recent full image copy or an incremental image copy of the table space DSN8S12E in database
DSN8D12A:

COPYTOCOPY TABLESPACE DSN8D12A.DSN8S12E
 COPYDDN(,DDNAME2)

The COPYTOCOPY utility makes a copy from an existing image copy and writes pages from the image copy
to the output data sets. The JCL for the utility job must include DD statements or a template for the output
data sets. If the object consists of multiple data sets and all are copied in one job, the copies reside in one
physical sequential output data set.

Incremental image copies with COPYTOCOPY
You can use COPYTOCOPY to make an incremental image copy. An incremental image copy is a copy of
the pages that have changed since the last full or incremental image copy.

To make a copy of an incremental image copy, use the keyword FROMLASTINCRCOPY.

178 Db2 12 for z/OS: Utility Guide and Reference

The following example control statement specifies that COPYTOCOPY is to make a local site backup
image copy, a recovery site primary image copy, and a recovery site backup image copy from an
incremental image copy.

COPYTOCOPY TABLESPACE DSN8D12A.DSN8S12E
 FROMLASTINCRCOPY
 COPYDDN(,COPY2)
 RECOVERYDDN(COPY3,COPY4)

Using more than one COPYTOCOPY statement
You can use more than one control statement for COPYTOCOPY in one Db2 utility job step.

About this task
After each COPYTOCOPY statement executes successfully:

• A row referring to the image copy is recorded in SYSIBM.SYSCOPY table.
• The image copy data set is valid and available for RECOVER, MERGECOPY, COPYTOCOPY, and UNLOAD.

If a job step that contains more than one COPYTOCOPY statement abnormally terminates, do not use
TERM UTILITY. Restart the job from the last commit point by using RESTART instead. Terminating
COPYTOCOPY in this case might cause inconsistencies between the ICF catalog and Db2 catalogs if
generation data sets are used.

Copying from a specific image copy
You can specify a particular image copy that is to be used as input to the COPYTOCOPY utility by using the
FROMCOPY option.

Procedure
Invoke the COPYTOCOPY utility with the FROMCOPY keyword.
If the input data set is a FlashCopy image copy and the copied object is partitioned, you must also specify
the data set number by including the DSNUM option in the control statement.
If you specify the FROMCOPY keyword and the specified data set is not found in SYSIBM.SYSCOPY,
COPYTOCOPY issues message DSNU1401I. Processing for the object then terminates.

Example

The following control statement specifies that COPYTOCOPY is to make three copies of the table space
TPA9031C in database DBA90301 from the image copy data set DH109003.COPY1.STEP1.COPY3:

COPYTOCOPY TABLESPACE DBA90301.TPA9031C
 FROMCOPY DH109003.COPY1.STEP1.COPY3
 COPYDDN(,COPY2)
 RECOVERYDDN(COPY3,COPY4)

Copying a FlashCopy image copy by using COPYTOCOPY
COPYTOCOPY can create up to four sequential image copies of a FlashCopy image copy. COPYTOCOPY
and COPY are the only utilities that can create sequential copies from a FlashCopy image copy.

About this task
Making sequential copies of a FlashCopy image copy is useful if you need to unload data from an image
copy. Because the UNLOAD utility does not accept FlashCopy image copies as input, you must first make a
sequential copy of the FlashCopy image copy and then unload the data from the sequential copy.

Chapter 15. COPYTOCOPY 179

Procedure
In the COPYTOCOPY utility control statement, specify all of the following options:

• FROMCOPY option with the name of VSAM data set that contains the FlashCopy image copy
• DSNUM option with the appropriate data set or partition number for the FlashCopy image copy
• COPYDDN and RECOVERYDDN as needed to indicate which sequential copies you want to create

Related concepts
“FlashCopy image copies” on page 144
FlashCopy image copies can reduce both the time that data is unavailable during the copy operation and
the time that is required for backup and recovery operations. Certain Db2 utilities can create these copies
by invoking the FlashCopy function that is provided by z/OS DFSMS and the IBM TotalStorage Enterprise
Storage Server (ESS) storage subsystems.
Related tasks
“Unloading data from image copy data sets” on page 819
In addition to unloading data from table spaces and partitions, you can also unload data from one or more
image copy data sets. The UNLOAD utility accepts full image copies, incremental image copies, and copies
of pieces as valid input sources.

Using TEMPLATE with COPYTOCOPY
Template data set name substitution variables resolve as usual. COPYTOCOPY does not use the template
values of the original COPY utility execution.

SYSCOPY records that are updated by COPYTOCOPY
The image copies COPYTOCOPY made are registered in SYSIBM.SYSCOPY for later use by the RECOVER
utility. Other utilities can use these copies, too.

Columns that are inserted by COPYTOCOPY are the same as those of the original entries in SYSCOPY
row when the COPY utility recorded them. Except for columns GROUP_MEMBER, JOBNAME, AUTHID,
DSNAME, DEVTYPE, and DSVOLSER, the columns are those of the COPYTOCOPY job. When COPYTOCOPY
is invoked at the partition level (DSNUM n) and the input data set is an inline copy that was created by the
REORG of a range of partitions, COPYTOCOPY inserts zeros in the HIGHDSNUM and LOWDSNUM columns
of the SYSCOPY record.

How COPYTOCOPY determines which input copy to use
The COPYTOCOPY utility makes a copy of an existing image copy. Which image copy the utility uses as
input depends on the options that you specify and where you run the utility job.

If you specify the FROMCOPY keyword in the utility control statement, only the specified data set is used
as input to the COPYTOCOPY job.

If you do not specify the FROMCOPY keyword, COPYTOCOPY uses the following search order to determine
the input data set:

• If you run the utility at the local site, the search order is the local site primary copy, the local site backup
copy, the recovery site primary copy, and the recovery site backup copy.

• If you run the utility at the recovery site, the search order is the recovery site primary copy, the recovery
site backup copy, the local site primary copy, and the local site backup copy.

If the input data set cannot be allocated or opened, COPYTOCOPY attempts to use the next image copy
data set, with the same START_RBA value in the SYSIBM.SYSCOPY catalog table, in the preceding search
order.

Related reference
“Syntax and options of the COPYTOCOPY control statement” on page 172

180 Db2 12 for z/OS: Utility Guide and Reference

The COPYTOCOPY utility control statement, with its multiple options, defines the function that the utility
job performs.
SYSCOPY catalog table (Db2 SQL)

Generation data group definitions for the COPYTOCOPY utility
You can use generation data groups to hold image copies. Use of generation data groups offers the benefit
of automating allocation of data set names and deletion of the oldest data set. You can also use templates
when using generation data groups.

To define the generation group, follow these guidelines:

• Use generation data groups to hold image copies because their use automates the allocation of data set
names and the deletion of the oldest data set.

• Use templates when using generation data groups.
• When you define the generation data group:

– You can specify that the oldest data set is to be automatically deleted when the maximum number of
data sets is reached. If you do that, make the maximum number large enough to accommodate
all recovery requirements. When data sets are deleted, use the MODIFY utility to delete the
corresponding rows in SYSIBM.SYSCOPY.

– Make the limit number of generation data sets equal to the number of copies that you want to keep.
Use NOEMPTY to avoid deleting all the data sets from the integrated catalog facility catalog when the
limit is reached.

Using Db2 with DFSMS products
You can use Db2 with DFSMS products.

If image copy data sets are managed by HSM or SMS, all data sets are cataloged.

If you plan to use SMS, catalog all image copies. Never maintain cataloged and uncataloged image copies
that have the same name.

Image copies on tape
Do not combine a full image copy and incremental image copies for the same table space on one tape
volume. If you do, the RECOVER TABLESPACE utility cannot allocate the incremental image copies.

Copies of lists of objects from tape
The COPYTOCOPY utility determines the number of tape drives to use for the function.

If you use JCL to define tape drives, the JCL allocates tape drives for those definitions. If you use
TEMPLATES to allocate tape drives for the output data sets, the utility dynamically allocates the tape
drives according to the following algorithm:

• One tape drive if the input data set resides on tape.
• A tape drive for each template with STACK YES that references tape.
• Three tape drives, one for each of the local and remote output image copies, in case non-stacked

templates reference tape.

Thus, COPYTOCOPY allocates a minimum of three tape drives. The utility allocates four tape drives if the
input data set resides on tape, and more tape drives if you specified tape templates with STACK YES.

If input data sets to be copied are stacked on tape and output data sets are defined by a template, the
utility sorts the list of objects by the file sequence numbers (FSN) of the input data sets and processes the
objects serially.

Chapter 15. COPYTOCOPY 181

https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsyscopytable.html

Image copies of compressed indexes are copied in uncompressed format, so if you perform COPYTOCOPY
using those image copies as input, it will result in uncompressed image copies.

For example, image copies of the following table spaces with their FSNs are stacked on TAPE1:

• Db2.TS1 FSN=1
• Db2.TS2 FSN=2
• Db2.TS3 FSN=3
• Db2.TS4 FSN=4

In the following statements, COPYTOCOPY uses a template for the output data set:

//COPYTOCOPY EXEC DSNUPROC,SYSTEM=V71A
//SYSIN DD *
TEMPLATE A1 &DB..&SP..COPY1 TAPE UNIT CART STACK YES
 COPYTOCOPY
 TABLESPACE DB1.TS4
 LASTFULL
 RECOVERYDDN(A1)
 TABLESPACE DB1.TS1
 LASTFULL
 RECOVERYDDN(A1)
 TABLESPACE DB1.TS2
 LASTFULL
 RECOVERYDDN(A1)
 TABLESPACE DB1.TS3
 LASTFULL
 RECOVERYDDN(A1)

As a result, the utility sorts the objects by FSN and processes them in the following order:

• DB1.TS1
• DB1.TS2
• DB1.TS3
• DB1.TS4

If the output data sets are defined by JCL, the utility gives stacking preference to the output data
sets over input data sets. If the input data sets are not stacked, the utility sorts the objects by size in
descending order.

Termination or restart of COPYTOCOPY
You can terminate or restart the COPYTOCOPY utility.

Termination of COPYTOCOPY

You can use the TERM UTILITY command to terminate a COPYTOCOPY job

Restart of a COPYTOCOPY job

If you do not use the TERM UTILITY command, you can restart a COPYTOCOPY job. COPYTOCOPY jobs
restart from the last commit point. You cannot use RESTART(PHASE) for any COPYTOCOPY job. If you
are restarting a COPYTOCOPY job with uncataloged output data sets, you must specify the appropriate
volumes for the job in the JCL or on the TEMPLATE utility statement. Doing so could impact your ability to
use implicit restart.

To prepare for restarting a COPYTOCOPY job, specify DISP=(MOD,CATLG,CATLG) on your DD statements.

Restart of COPYTOCOPY after an out-of-space condition

182 Db2 12 for z/OS: Utility Guide and Reference

You can restart COPYTOCOPY from the last commit point after receiving an out-of-space condition.

Related tasks
“Terminating an online utility” on page 44
You can terminate the execution of an active utility or release the resources that are associated with a
stopped utility.
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.
“Restarting a utility after the output data set is full” on page 50
If a utility job terminates with an out-of-space condition on the output data set, you might need to restart
the job at the last commit point.

Sample COPYTOCOPY control statements
Use the sample control statements as models for developing your own COPYTOCOPY control statements.

Example 1: Making a local backup copy

The following control statement specifies that the COPYTOCOPY utility is to make a local backup copy
of the most recent full image copy or incremental image copy, whichever is most recent. The COPYDDN
option specifies that the data set for the local site backup image copy is defined by the COPY2 DD
statement. Because no data set is specified for the local site primary image copy, which is usually the first
parameter of the COPYDDN option, COPYTOCOPY expects this copy to already exist. If it does not exist,
Db2 issues an error message and terminates the job.

//STEP1 EXEC DSNUPROC,UID='DH109001.COPY1',
// UTPROC='',
// SYSTEM='DSN'
//COPY2 DD DSN=DH109001.C2C01.STEP2.COPY2,DISP=(MOD,CATLG,CATLG),
// SPACE=(1000,(20,20),,,ROUND)
//SYSIN DD *
 COPYTOCOPY TABLESPACE DBA90101.TLA9011A COPYDDN(,COPY2)
//

Example 2: Copying the most recent copy

The following control statement specifies that COPYTOCOPY is to make a local site backup copy, a
recovery site primary copy, and a recovery site backup copy of table space DBA90102.TPA9012C.
The COPYDDN and RECOVERYDDN options also indicate the data sets to which these copies should
be written. For example, the recovery site primary copy is to be written to the COPY3 data set. The
FROMLASTCOPY option specifies that the most recent full image copy or incremental image copy is to be
used as the input copy data set. This option is the default and is therefore not required.

COPYTOCOPY TABLESPACE DBA90102.TPA9012C
 FROMLASTCOPY COPYDDN(,COPY2)
 RECOVERYDDN(COPY3,COPY4)

Example 3: Copying the most recent full image copy

Chapter 15. COPYTOCOPY 183

The following control statement specifies that COPYTOCOPY is to make primary and backup copies at
the recovery site of table space DBA90201.TPA9021C. The FROMLASTFULLCOPY option specifies that the
most recent full image copy is to be used as the input copy data set.

COPYTOCOPY TABLESPACE DBA90201.TPA9021C
 FROMLASTFULLCOPY
 RECOVERYDDN(COPY3,COPY4)

Example 4: Specifying a copy data set for input

The following control statement specifies that COPYTOCOPY is to make a local site backup
copy, a recovery site primary copy, and a recovery site backup copy from data set
DH109003.COPY1.STEP1.COPY3. This input data set is specified by the FROMCOPY option. The output
data sets (COPY2, COPY3, and COPY4) are specified by the COPYDDN and RECOVERYDDN options.

COPYTOCOPY TABLESPACE DBA90301.TPA9031C
 FROMCOPY DH109003.COPY1.STEP1.COPY3
 COPYDDN(,COPY2)
 RECOVERYDDN(COPY3,COPY4)

Example 5: Identifying a cataloged image copy data set

The following control statement specifies that COPYTOCOPY is to make a local site backup copy from
a cataloged data set that is named DH109003.COPY1.STEP1.COPY4. This data set is identified by the
FROMCOPY and FROMVOLUME options. The FROMCOPY option specifies the input data set name, and
the FROMVOLUME CATALOG option indicates that the input data set is cataloged. Use the FROMVOLUME
option to distinguish a data set from other data sets that have the same name.

COPYTOCOPY TABLESPACE DBA90302.TLA9032A
 FROMCOPY DH109003.COPY1.STEP1.COPY4
 FROMVOLUME CATALOG
 COPYDDN(,COPY2)

Example 6: Identifying an uncataloged image copy data set

The control statement specifies that COPYTOCOPY is to make a local site backup copy, a
recovery site primary copy, and a recovery site backup copy from an uncataloged data set,
JUKQU2BP.COPY1.STEP1.TP01. The FROMCOPY option identifies this input data set name, and the
FROMVOLUME option identifies the volume (SCR03) for the input data set. Use the FROMVOLUME option
to distinguish a data set from other data sets that have the same name. The COPYDDN option identifies
the data set for the local site backup copy. This data set is to be dynamically allocated according
to the specifications of the C2C1_T1 template, which is defined in one of the preceding TEMPLATE
control statements. The RECOVERYDDN option identifies the data sets for the recovery site copies. These
data sets are to be dynamically allocated according to the specifications of the C2C1_T2 and C2C1_T3
templates, which are defined in the preceding TEMPLATE control statements.

//STEP1 EXEC DSNUPROC,UID='JUKQU2BP.C2C1',
// UTPROC='',
// SYSTEM='SSTR'
//SYSIN DD *

 TEMPLATE C2C1_T1
 DSN(JUKQU2BP.C2C1.LB.&SN.)
 DISP(NEW,CATLG,CATLG)
 UNIT(SYSDA)

 TEMPLATE C2C1_T2
 DSN(JUKQU2BP.C2C1.RP.&SN.)
 DISP(NEW,CATLG,CATLG)
 UNIT(SYSDA)

184 Db2 12 for z/OS: Utility Guide and Reference

 TEMPLATE C2C1_T3
 DSN(JUKQU2BP.C2C1.RB.&SN.)
 DISP(NEW,CATLG,CATLG)
 UNIT(SYSDA)

 COPYTOCOPY TABLESPACE DBKQBP01.TPKQBP01
 FROMCOPY JUKQU2BP.COPY1.STEP1.TP01
 FROMVOLUME SCR03
 COPYDDN(,C2C1_T1)
 RECOVERYDDN(C2C1_T2,C2C1_T3)
/*

Example 7: Processing a list of objects

The following control statement specifies that COPYTOCOPY is to make local site backup copies of
the three partitions of table space DBA90402.TPA9042C that are specified by the DSNUM option
(partitions 2, 3, and 4). COPYTOCOPY uses the following input copy data sets, as indicated by the
FROMLASTFULLCOPY, FROMLASTCOPY, and FROMLASTINCRCOPY options:

• The most recent full image copy for partition 2
• The most recent full image copy or incremental image copy, whichever is most recent, for partition 3
• The most recent incremental image copy for partition 4

The COPYDDN option for each partition indicates the output data sets (COPY2, COPY3, and COPY4).

COPYTOCOPY
 TABLESPACE DBA90402.TPA9042C DSNUM 2
 FROMLASTFULLCOPY COPYDDN(,COPY2)
 TABLESPACE DBA90402.TPA9042C DSNUM 3
 FROMLASTCOPY COPYDDN(,COPY3)
 TABLESPACE DBA90402.TPA9042C DSNUM 4
 FROMLASTINCRCOPY COPYDDN(,COPY4)

Example 8: Using LISTDEF and TEMPLATE switching

The following COPYTOCOPY control statement specifies that the utility is to copy the list of objects that
are included in the CPY1 list, which is defined by the LISTDEF control statement. The copies are to be
written to the data sets that are defined by the T3 template, which is defined in the TEMPLATE control
statement. Additionally, T3 template has defined the LIMIT keyword, that is to switch from T3 template to
T4 template if the output data set size is bigger than the specified limit value 5 MB. This template defines
the naming convention for the output data sets that are to be dynamically allocated.

The OPTIONS PREVIEW statement before the LISTDEF statement is used to force the CPY1 list contents
to be included in the output. For long lists, using this statement is not recommended, because it might
cause the output to be too long. The OPTIONS OFF statement ends the PREVIEW mode processing, so
that the following TEMPLATE and COPYTOCOPY jobs run normally.

OPTIONS PREVIEW
 LISTDEF CPY1 INCLUDE TABLESPACES TABLESPACE DBA906*.T*A906*
 INCLUDE INDEXSPACES COPY YES INDEXSPACE ADMF001.I?A906*
 OPTIONS OFF
 TEMPLATE T4 UNIT(3B0)
 DSN(T4.&SN..T&TI..COPY&IC.&LOCREM.)
 TEMPLATE T3 UNIT(SYSDA) SPACE CYL
 DSN(T3.&SN..T&TI..COPY&IC.&LOCREM.)
 LIMIT(5 MB,T4)
 COPYTOCOPY LIST CPY1 COPYDDN(T3,T3)

Example 9: Using LISTDEF and TEMPLATE with the CLONE option

Chapter 15. COPYTOCOPY 185

The following COPYTOCOPY control statement specifies that the utility is to copy the list of objects
that are included in the C2C1_LIST list, which is defined by the LISTDEF control statement. The CLONE
option indicates that COPYTOCOPY is to process only image copy data sets that were taken against clone
objects.

LISTDEF C2C1_LIST
 INCLUDE TABLESPACES TABLESPACE DBKQBS01.TPKQBS01
 INCLUDE INDEXSPACES INDEXSPACE DBKQBS01.IPKQBS11
 INCLUDE INDEXSPACES INDEXSPACE DBKQBS01.IXKQBS12
 INCLUDE TABLESPACES TABLESPACE DBKQBS02.TSKQBS02
 INCLUDE INDEXSPACES INDEXSPACE DBKQBS02.IXKQBS21
 INCLUDE INDEXSPACES INDEXSPACE DBKQBS02.IXKQBS22

 TEMPLATE C2C1_T1
 DSN(JUKQU2BS.C2C1.LB.&SN.)
 DISP(NEW,CATLG,CATLG)
 UNIT(SYSDA)

 TEMPLATE C2C1_T2
 DSN(JUKQU2BS.C2C1.RP.&SN.)
 DISP(NEW,CATLG,CATLG)
 UNIT(SYSDA)

 TEMPLATE C2C1_T3
 DSN(JUKQU2BS.C2C1.RB.&SN.)
 DISP(NEW,CATLG,CATLG)
 UNIT(SYSDA)

 COPYTOCOPY LIST C2C1_LIST
 FROMLASTFULLCOPY
 COPYDDN(,C2C1_T1)
 RECOVERYDDN(C2C1_T2,C2C1_T3)
 CLONE

186 Db2 12 for z/OS: Utility Guide and Reference

Chapter 16. DIAGNOSE
The DIAGNOSE online utility generates information that is useful in diagnosing problems. Use this utility
only under the direction of IBM Software Support.

At the direction of IBM Support, you can use the DIAGNOSE utility to complete the following tasks:

• Obtain dumps for any utility abend, overriding any considerations that might suppress such a dump.
• Send OBD and SYSUTIL information to SYSPRINT for review (DISPLAY option).
• Dump both the Db2 MEPL and the application space (DSNUTILB) MEPL to SYSPRINT without forcing an

SVC dump (DISPLAY MEPL option).
• Dump an entry for a database in SYSIBM.SYSDATABASE to SYSPRINT (DISPLAY option).
• Force Db2 to abend after a specific Db2 message is specified or when a module trace ID is encountered

(ABEND option with the MESSAGE or TRACEID option).

Interpreting output

One intended use of this utility is to aid in determining and correcting system problems. When diagnosing
Db2 problems, you might need to refer to licensed documentation to interpret output from this utility.

Authorization required

To execute this utility for options which access relational data, you must use a privilege set that includes
one of the following authorizations:

• REPAIR privilege for the database
• DBADM or DBCTRL authority for the database. If the object on which the utility operates is in an

implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• System DBADM authority
• DATAACCESS authority
• SQLADM authority
• SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can execute the DIAGNOSE utility on a table space in the
DSNDB01 or DSNDB06 database.

An ID with installation SYSADM authority can execute the DIAGNOSE utility with the WAIT statement
option on any table space.

You can create a control statement with the ISPF/PDF edit function. After you create it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram

DIAGNOSE diagnose statement

END

diagnose statement

© Copyright IBM Corp. 1983, 2024 187

TYPE (

,

integer)

ALLDUMPS

(

,

X' abend-code ')

NODUMPS

(

,

X' abend-code ')

display statement

wait statement abend statement

display statement
DISPLAY

OBD

database-name .

 table-space-name
ALL

TABLES

INDEXES

CLONE

SYSUTIL

MEPL

AVAILABLE

RBLP

DBET DATABASE database-name

TABLESPACE

database-name .

 table-space-name

INDEX index-name

CLONE

wait statement

WAIT MESSAGE message-id

INSTANCE integer

TRACEID X' trace-id '

integer INSTANCE integer

abend statement

188 Db2 12 for z/OS: Utility Guide and Reference

ABEND MESSAGE message-id

INSTANCE integer

TRACEID X' trace-id '

integer INSTANCE integer

NODUMP

Option descriptions

TYPE(integer, …)
Specifies one or more types of diagnose that you want to perform.

integer is the number of types of diagnoses. The maximum number of types is 32. IBM Support
defines the types as needed to diagnose problems with IBM utilities.

ALLDUMPS(X'abend-code', …)
Forces a dump to be taken in response to any utility abend code.

X'abend-code' is a member of a list of abend codes to which the scope of ALLDUMPS is limited.

abend-code is a hexadecimal value.

NODUMPS(X'abend-code', …)
Suppresses the dump for any utility abend code.

X'abend-code' is a member of a list of abend codes to which the scope of NODUMPS is limited.

abend-code is a hexadecimal value.

DISPLAY
Formats the specified database items using SYSPRINT.
OBD database-name.table-space-name

Formats the object descriptor (OBD) of the table space.

database-name is the name of the database in which the table space belongs.

table-space-name is the name of the table space whose OBD is to be formatted.
ALL

Formats all OBDs of the table space. The OBD of any object that is associated with the table
space is also formatted.

TABLES
Formats the OBDs of all tables in the specified table spaces.

INDEXES
Formats the OBDs of all indexes in the specified table spaces.

SYSUTIL
Formats every record from SYSIBM.SYSUTIL. This directory table stores information about all
utility jobs.

MEPL
Dumps the module entry point lists (MEPLs) to SYSPRINT.

AVAILABLE
Displays the utilities that are installed on this subsystem in both bitmap and readable format.
The presence or absence of the Db2 Utilities Suite for z/OS (5770-AF4) affects the results of this
display. Message DSNU862I displays the output from DIAGNOSE DISPLAY AVAILABLE.

Related information:

DSNU862I (Db2 Messages)

Chapter 16. DIAGNOSE 189

https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu862i.html

RBLP
Displays the recovery-based log point RBA or LRSN that is the system restart and redo point.

DBET
Dumps the contents of a database exception table (DBET) to SYSPRINT.
DATABASE database-name

Dumps the DBET entry that is associated with the specified database.

database-name is the name of the database.

TABLESPACE database-name.table-space-name
Dumps the DBET entry that is associated with the specified table space.

database-name is the name of the database.

table-space-name is the name of the table space.

INDEX creator-name.index-name
Dumps the DBET entry that is associated with the specified index.

creator-name is the ID of the creator of the index.

index-name is the name of the index.

Enclose the index name in quotation marks if the name contains a blank.

CLONE
Indicates that DIAGNOSE is to display information for only the following specified objects:

• Clone tables
• Table spaces that contain clone tables
• Indexes on clone tables
• Index spaces that contain indexes on clone tables.

WAIT
Suspends utility execution when it encounters the specified utility message or utility trace ID.
DIAGNOSE issues a message to the console. Utility execution does not resume until the operator
replies to that message, the utility job times out, or the utility job is canceled. This waiting period
allows events to be synchronized while you are diagnosing concurrency problems. The utility waits for
the operator to reply to the message, allowing the opportunity to time or synchronize events.

If the utility message or trace ID is not encountered, processing continues.

ABEND
Forces an abend during utility execution if the specified utility message or utility trace ID is issued.

If the utility message or trace ID is not encountered, processing continues
NODUMP

Suppresses the dump that is generated by an abend of DIAGNOSE.

MESSAGE message-id
Specifies a DSNUxxx or DSNUxxxx message that causes a wait or an abend to occur when that
message is issued.

message-id is the message, in the form of Uxxx or Uxxxx.
INSTANCE integer

Specifies that a wait or an abend is to occur when the MESSAGE option message is encountered a
specified number of times. If INSTANCE is not specified, a wait or abend occurs each time that the
message is encountered.

integer is the number of times that a message is to be encountered before a wait or an abend
occurs.

190 Db2 12 for z/OS: Utility Guide and Reference

TRACEID trace-id
Specifies a trace ID that causes a wait or an abend to occur when the ID is encountered. You can find
valid trace IDs can be found in data set prefix.SDSNSAMP(DSNWEIDS).

trace-id is a trace ID that is associated with the utility trace (RMID21). You can specify trace-id in
either decimal (integer) or hexadecimal (X'trace-id') format.
INSTANCE integer

Specifies that a wait or an abend is to occur when the TRACEID option is encountered a specified
number of times. If INSTANCE is not specified, a wait or abend occurs each time that the trace ID
is encountered.

integer is the number of times that a trace ID is to be encountered before a wait or an abend
occurs.

END
Ends DIAGNOSE processing.

Data sets that DIAGNOSE uses

The following table lists the data sets that DIAGNOSE uses. The table lists the DD name that is used to
identify the data set, a description of the data set, and an indication of whether it is required. Include
statements in your JCL for each required data set.

Table 21. Data sets that DIAGNOSE uses

Data set Description Required?

SYSIN Input data set that contains the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

The following objects are named in the utility control statement and do not require DD statements in the
JCL:

Database
Database about which DIAGNOSE is to gather diagnosis information.

Table space
Table space about which DIAGNOSE is to gather diagnosis information.

Index space
Index about which DIAGNOSE is to gather diagnosis information.

Concurrency and compatibility

DIAGNOSE can run concurrently on the same target object with any SQL operation or utility, except a
utility that is running on DSNDB01.SYSUTILX.

Termination or restart of DIAGNOSE

You can terminate a DIAGNOSE utility job by using the TERM UTILITY command if you submitted the job
or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a DIAGNOSE utility job, but it starts from the beginning again.

Chapter 16. DIAGNOSE 191

Example 1: Displaying Db2 MEPLs

The following DIAGNOSE utility control statement specifies that the Db2 MEPLs are to be displayed. You
can use the output from this statement to find the service level of a specific Db2 module. The output lists
each module, the most recent PTF or APAR that was applied to the module, and the date that the PTF or
APAR was installed.

Important: Specify Db2 load libraries in the JOBLIB or STEPLIB of the DIAGNOSE DISPLAY MEPL job that
are at the same maintenance level as the load libraries for the Db2 subsystem on which you execute the
utility. Doing this ensures that the information that DIAGNOSE DISPLAY MEPL reports reflects the current
state of the Db2 subsystem.

DIAGNOSE
 DISPLAY MEPL

Example 2: Forcing a dump

The following control statement forces a dump if an abend occurs with either of the following reason
codes: X'00E40322' or X'00E40323'.

DIAGNOSE
 ALLDUMPS(X'00E40322',X'00E40323')

The following control statement forces a dump for any utility abend that occurs during the execution of
the specified COPY job. The DIAGNOSE END option ends DIAGNOSE processing.

DIAGNOSE
 ALLDUMPS
 COPY TABLESPACE DSNDB06.SYSDDF
DIAGNOSE END

Example 3: Performing a diagnosis of a specific type

The following DIAGNOSE statement specifies that you want to perform a diagnosis of type 66. Run this
job under the direction of IBM Support to diagnose problems with utility parallelism.

//STEP3 EXEC DSNUPROC,UID='JUOSU226.REBUI',
// UTPROC='',SYSTEM='SSTR'
//SYSIN DD *
DIAGNOSE TYPE(66)
 REBUILD INDEX (IDOS0302, IDOS0304, IPOS0301)
 SORTDEVT SYSDA SORTNUM 3
DIAGNOSE END
/*

Example 4: Forcing a utility abend

The following DIAGNOSE statement forces an abend of the specified COPY job when one instance of
message DSNU400 is issued. The NODUMP option indicates that DIAGNOSE is not to generate a dump in
this situation.

//STEP1 EXEC DSNUPROC,UID='IUJMU116.COPY1',
// UTPROC='',
// SYSTEM='DSN'
//SYSCOPY1 DD DSN=IUJMU116.COPY.STEP1.SYSCOPY1,DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
DIAGNOSE ABEND MESSAGE U400
 INSTANCE 1

192 Db2 12 for z/OS: Utility Guide and Reference

 NODUMP
 COPY TABLESPACE DSN8D12A.DSN8S12E
 COPYDDN SYSCOPY1
DIAGNOSE END
//*

The following DIAGNOSE statement forces an abend of the specified LOAD job when message DSNU311
is issued for the fifth time. The NODUMP option indicates that the DIAGNOSE utility is not to generate a
dump in this situation.

DIAGNOSE
 ABEND MESSAGE U311 INSTANCE 5 NODUMP
LOAD DATA RESUME NO
 INTO TABLE TABLE1
 (NAME POSITION(1) CHAR(20))
DIAGNOSE END

Example 5: Suspending utility execution

The following DIAGNOSE statement indicates that the specified COPYTOCOPY job is to be suspended
when it encounters 51 occurrences of the trace ID X'2E6F'.

//STEP2 EXEC DSNUPROC,UID='DH109012.C2C01',
// UTPROC='',
// SYSTEM='SSTR'
//COPY2 DD DSN=DH109012.C2C01.STEP2.COPY2,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(1000,(20,20),,,ROUND)
//COPY3 DD DSN=DH109012.C2C01.STEP2.COPY3,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(1000,(20,20),,,ROUND)
//COPY4 DD DSN=DH109012.C2C01.STEP2.COPY4,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(1000,(20,20),,,ROUND)
//SYSIN DD *
 DIAGNOSE WAIT TRACEID X'2E6F' INSTANCE 51
 COPYTOCOPY TABLESPACE DBA91201.TPA91201 DSNUM 1
 FROMLASTFULLCOPY COPYDDN(,COPY2)
 RECOVERYDDN(COPY3,COPY4)
 DIAGNOSE END
/*

Example 6: Displaying only CLONE data

The control statement indicates that the DIAGNOSE utility is to be display information for only the
specified objects that are table clones, table spaces that contain clone tables, indexes on clone tables, or
index spaces that contain indexes on clone tables.

DIAGNOSE DISPLAY DBET
 DATABASE DBNI0501
 CLONE

Related concepts
Db2 utilities for troubleshooting (Diagnosing Db2 problems)

How to force a utility abend
You can force a utility abend by specifying either a message or a trace IFCID in the DIAGNOSE utility
control statement.

Procedure
To force utilities to abend, use the following approaches:
• Issue a DIAGNOSE utility control statement.

Chapter 16. DIAGNOSE 193

https://www.ibm.com/docs/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_trbshootdb2utilities.html

To force an abend when unique-index or referential-constraint violations are detected, you must
specify the message that is issued when the error is encountered. Specify this message by using the
MESSAGE option of the ABEND statement.

• Instead of using a message, you can force an abend by using the TRACEID option of the ABEND
statement to specify a trace IFCID that is associated with the utility to force an abend.

• Use the INSTANCE keyword to specify the number of times that the specified message or trace record
is to be generated before the utility abends.

194 Db2 12 for z/OS: Utility Guide and Reference

Chapter 17. EXEC SQL
The EXEC SQL online utility control statement declares cursors or executes dynamic SQL statements. You
can use this utility as part of the Db2 cross-loader function of the LOAD utility.

The cross-loader function enables you to use a single LOAD job to transfer data from one location to
another location or from one table to another table at the same location. You can use either a local server
or any DRDA-compliant remote server as a data input source for populating your tables. Your input can
even come from other sources besides Db2 for z/OS; you can use IBM Information Integrator Federation
feature for access to data from sources as diverse as Oracle and Sybase, as well as the entire Db2 family
of database servers.

Important: If you bind DSNUTIL with DBPROTOCOL(DRDACBF), you cannot use EXEC SQL to issue
remote dynamic SQL statements that modify data; you can use EXEC SQL only to declare a cursor, which
can then be used by LOAD to make updates.

Output

The EXEC SQL control statement produces a result table when you specify a cursor.

Authorization required

The EXEC SQL statement itself requires no privileges to execute. The authorization rules that are defined
for the dynamic preparation of the SQL statement specified by EXECUTE IMMEDIATE apply.

Execution phases of EXEC SQL

The EXEC SQL control statement executes entirely in the EXEC phase. You can restart the EXEC phase if
necessary.

Concurrency and compatibility of EXEC SQL

You can use the EXEC SQL control statement with any utility that allows concurrent SQL access on a table
space. Other databases are not affected.

Limitations on the number of EXEC SQL statements
Although Db2 does not limit the number of EXEC SQL statements that you can include in a single input
stream (SYSIN) , running too many statements might result in failures or long-running jobs, depending
on available resources. For example, running thousands of EXEC SQL statements can take unacceptable
amount of time or fail.

EXEC SQL syntax

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Utility control statements submitted in UNICODE, including EXEC SQL, are translated into EBCDIC before
processing; however, character string constants are not translated. Character string constants are left in
the character set in which the were specified. In some cases, you might need to use hexadecimal string
constants in order to achieve the behavior that you want.

© Copyright IBM Corp. 1983, 2024 195

EXEC SQL DECLARE cursor-name CURSOR FOR select-statement

non-select dynamic SQL statement

ENDEXEC

Option descriptions

cursor-name
Specifies the cursor name. The name must not identify a cursor that is already declared within the
same input stream. When using the Db2 cross-loader function to load data from a remote server, you
must identify the cursor with a three-part name. Cursor names that are specified with the EXEC SQL
utility cannot be longer than eight characters.

select-statement
Specifies the result table for the cursor. This statement can be any valid SQL SELECT statement,
including joins, unions, conversions, aggregations, special registers, and user-defined functions.

non-select dynamic SQL statement
Specifies a dynamic SQL statement that is to be used as input to EXECUTE IMMEDIATE. You can
specify the following dynamic SQL statements in a utility statement:

ALTER
COMMENT ON
COMMIT
CREATE
DELETE
DROP
EXPLAIN
GRANT
INSERT
LABEL ON
RENAME
REVOKE
SET CURRENT DEGREE
SET CURRENT SQLID
UPDATE

Each SQL statement runs as a separate thread. When the utility executes the SQL statement, the
specified statement string is parsed and checked for errors. If the SQL statement is invalid, EXEC SQL
does not execute the statement and reports the error condition. If the SQL statement is valid, but an
error occurs during execution, EXEC SQL reports that error condition. When an error occurs, the utility
terminates.

Termination or restart of EXEC SQL

You can terminate an EXEC SQL utility job by using the TERM UTILITY command if you submitted the job
or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart an EXEC SQL utility job, but it starts from the beginning again. If you are restarting this
utility as part of a larger job in which EXEC SQL completed successfully, but a later utility failed, do not
change the EXEC SQL utility control statement, if possible. If you must change the EXEC SQL utility control
statement, use caution; any changes can cause the restart processing to fail.

196 Db2 12 for z/OS: Utility Guide and Reference

Example 1: Creating a table

The following control statement specifies that Db2 is to create table MYEMP with the same rows and
columns as sample table EMP.

EXEC SQL
 CREATE TABLE MYEMP LIKE DSN8C10.EMP CCSID EBCDIC
ENDEXEC

This type of statement can be used to create a mapping table.

Example 2: Inserting rows into a table

The following control statement specifies that Db2 is to insert all rows from sample table EMP into table
MYEMP.

EXEC SQL
 INSERT INTO MYEMP SELECT * FROM DSN8C10.EMP
ENDEXEC

Example 3: Declaring a cursor

The following control statement declares C1 as the cursor for a query that is to return all rows from table
DSN8810.EMP.

EXEC SQL
 DECLARE C1 CURSOR FOR SELECT * FROM DSN8C10.EMP
ENDEXEC

You can use a declared cursor with the Db2 cross-loader function to load data from a local server or from
any DRDA-compliant remote server as part of the Db2 cross-loader function.

Related tasks
“Loading data by using the cross-loader function” on page 311
The LOAD utility can directly load the output of a dynamic SQL SELECT statement into a table. The
dynamic SQL statement can be executed on data at a local server or at any remote server that complies
with DRDA. This functionality is called the Db2 family cross-loader function.
Related reference
Statements (Db2 SQL)
select-statement (Db2 SQL)

Chapter 17. EXEC SQL 197

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_statementsintro.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_selectstatement.html

198 Db2 12 for z/OS: Utility Guide and Reference

Chapter 18. LISTDEF
The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.

You can use LISTDEF to standardize object lists and the utility control statements that refer to them. This
standardization reduces the need to customize or alter utility job streams.

If you do not use lists and you want to run a utility on multiple objects, you must run the utility multiple
times or specify an itemized list of objects in the utility control statement.

Output

Output from the LISTDEF control statement consists of a list with a name.

Authorization required

To execute the LISTDEF utility, you must have SELECT authority on SYSIBM.SYSINDEXES,
SYSIBM.SYSTABLES, and SYSIBM.SYSTABLESPACE.

You must use a privilege set that includes one of the following authorities:

• SELECT authority on SYSIBM.SYSINDEXES, SYSIBM. SYSTABLES, and SYSIBM.SYSTABLESPACE
• SQLADM authority
• DATAACCESS authority
• System DBADM authority
• SYSCTRL or SYSADM authority

Additionally, you must have the authority to execute the utility that is used to process the list, as currently
documented in the "Authorization required" topic for each utility.

If you do not have authorization to execute the utility on one or more of the items in the list, the utility
will stop on the first authorization error. To skip items in the list that return an error, use the OPTIONS
(ITEMERROR, SKIP) control statement.

Execution phases of LISTDEF

The LISTDEF control statement executes entirely within the UTILINIT phase.

Syntax and options of the LISTDEF control statement
The LISTDEF utility control statement, with its multiple options, defines a list of table spaces, index
spaces, or both on which other utilities can operate.

You can create a control statement with the ISPF/PDF edit function. After you create it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram

LISTDEF list-name list options

list options

© Copyright IBM Corp. 1983, 2024 199

INCLUDE

EXCLUDE TABLESPACES
1

INDEXSPACES
1

COPY NO

YES

LIST referenced-list

initial-object-spec CLONED YES

NO

DEFINED YES

DEFINED NO

ALL

RI BASE

LOB

XML

ALL

HISTORY
2

ARCHIVE
2

BASIC NO

YES

EXTENDED NO

YES

initial-object-spec
DATABASE database-name

TABLESPACE

database-name .

table-space-name

INDEXSPACE

database-name .

index-space-name

TABLE

creator-id .

table-name

INDEX

creator-id .

index-name

PARTLEVEL

(

,

integer

integer1: integer2

)

Notes:
1 You must specify TABLESPACES or INDEXESPACES if you specify DATABASE.
2 HISTORY or ARCHIVE can be specified either before or after the BASE, LOB, XML, and ALL keywords.
However, HISTORY and ARCHIVE are always processed last, after all other keywords are handled.

Option descriptions

200 Db2 12 for z/OS: Utility Guide and Reference

LISTDEF list-name
Defines a list of Db2 objects and assigns a name to the list. The list name makes the list available for
subsequent execution as the object of a utility control statement or as an element of another LISTDEF
statement.

list-name is the name (up to 18 alphanumeric characters in length) of the defined list.

list-name cannot be a utility keyword name.

You can put LISTDEF statements either in a separate LISTDEF library data set or before a Db2 utility
control statement that references the list-name.

INCLUDE
Specifies that the list of objects that results from the expression that follows is to be added to the
list. You must first specify an INCLUDE clause. You can then specify subsequent INCLUDE or EXCLUDE
clauses in any order to add to or delete clauses from the existing list.

Referencing a large number of databases in a single LISTDEF list might fill the EDM DBD pool and
result in an abend 04E with reason code 00C90089. If this situation occurs, decrease the number of
databases that are referenced in the LISTDEF statement. If this condition occurs frequently, increase
the size of your EDM DBD pool.

Related information:

Calculating EDM pool sizes (Db2 Installation and Migration)

EXCLUDE
Specifies, after the initial INCLUDE clause, a list of objects to exclude. The expression that follows
the EXCLUDE keyword determines this list of objects to exclude. These objects are excluded from the
existing LISTDEF list if the objects are already in the list. If the objects are not in the existing list, they
are ignored, and Db2 proceeds to the next INCLUDE or EXCLUDE clause.

TABLESPACES
Specifies that the INCLUDE or EXCLUDE object expression is to create a list of related table spaces.

TABLESPACES is the default type for lists that use a table space or a table for the initial search. For
more information about specifying these objects, see the descriptions of the TABLESPACE and TABLE
options.

No default type value exists for lists that use other lists for the initial search. The list that is reference
in the LIST option is used unless you specify TABLESPACES or INDEXSPACES. Likewise, no type
default value exists for lists that use databases for the initial search. If you specify the DATABASE
option, you must specify INDEXSPACES or TABLESPACES. For more information about specifying lists
and databases, see the descriptions of the LIST and DATABASE options.

The result of the TABLESPACES keyword varies depending on the type of object that you specify in the
INCLUDE or EXCLUDE clause. These results are shown in The following table.

Table 22. Result of the TABLESPACES keyword based on the object type that is specified in the
INCLUDE or EXCLUDE clause.

Object type that is
specified in INCLUDE or
EXCLUDE clause

Result of the TABLESPACES keyword

DATABASE Returns all table spaces that are contained within the database

TABLESPACE Returns the specified table space

TABLE Returns the table space that contains the table

INDEXSPACE Returns the table space that contains the related table

INDEX Returns the table space that contains the related table

LIST of table spaces Returns the table spaces from the expanded referenced list

Chapter 18. LISTDEF 201

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_calcedmpoolsize.html

Table 22. Result of the TABLESPACES keyword based on the object type that is specified in the
INCLUDE or EXCLUDE clause. (continued)

Object type that is
specified in INCLUDE or
EXCLUDE clause

Result of the TABLESPACES keyword

LIST of index spaces Returns the related table spaces for the index spaces in the expanded
referenced list

LIST of table spaces and
index spaces

Returns the table spaces from the expanded referenced list and the
related table spaces for the index spaces in the same list

INDEXSPACES
Specifies that the INCLUDE or EXCLUDE object expression is to create a list of related index spaces.

INDEXSPACES is the default type for lists that use an index space or an index for the initial search. For
more information about specifying these objects, see the descriptions of the INDEXSPACE and INDEX
options.

No default type value exists for lists that use other lists for the initial search. The list that is referenced
in the LIST option is used unless you specify TABLESPACES or INDEXSPACES. Likewise, no type
default value exists for lists that use databases for the initial search. If you specify the DATABASE
option, you must specify INDEXSPACES or TABLESPACES. For more information about specifying lists
and databases, see the descriptions of the LIST and DATABASE options.

The result of the INDEXSPACES keyword varies depending on the type of object that you specify in the
INCLUDE or EXCLUDE clause. These results are shown in The following table.

Table 23. Result of the INDEXSPACES keyword based on the object type that is specified in the
INCLUDE or EXCLUDE clause.

Object type that is
specified in INCLUDE or
EXCLUDE clause

Result of the INDEXSPACES keyword

DATABASE Returns all index spaces that are contained within the database

TABLESPACE Returns all index spaces for indexes over all tables in the table space

TABLE Returns all index spaces for indexes over the table

INDEXSPACE Returns the specified index space.

INDEX Returns the index space that contains the index

LIST of table spaces Returns the related index spaces for the table spaces in the expanded
referenced list

LIST of index spaces Returns the index spaces from the expanded referenced list

LIST of table spaces and
index spaces

Returns the index spaces from the expanded referenced list and the
related index spaces for the table spaces in the same list

COPY
Specifies whether indexes with COPY YES or COPY NO attributes are to be included or excluded in this
portion of the list. If you omit COPY, all index spaces that satisfy the INCLUDE or EXCLUDE expression,
regardless of their COPY attribute, are included or excluded in this portion of the list. If specified, this
keyword must immediately follow the INDEXSPACES keyword. If you specify this keyword elsewhere,
it is interpreted as the start of the COPY utility control statement.

202 Db2 12 for z/OS: Utility Guide and Reference

YES
Specifies that only index spaces that were defined with or altered to COPY YES are to be included
in this portion of the list. Use INCLUDE with COPY YES to develop a list of index spaces that the
COPY utility can process.

NO
Specifies that only index spaces that were defined with or altered to COPY NO are to be included
in this portion of the list. Use EXCLUDE with COPY NO to remove indexes that the COPY utility
cannot process from a larger list.

LIST referenced-list
Specifies the name of a previously defined object list that is to be expanded and used for the initial
search for the object.

referenced-list is the name of the list. You must explicitly specify this name. You cannot specify
pattern-matching characters (%,*, ?, and _) for lists.

No default type value exists for lists that are developed from the LIST option. The list is expanded as
defined, and it is then modified by subsequent keywords, if any.

You can specify a type-spec of TABLESPACES to create a list of only table spaces. If the list to be
processed contains index spaces, the TABLESPACES keyword creates a list that includes related table
spaces.

You can specify a type-spec of INDEXSPACES to create a list of only index spaces. If the list to be
processed contains table spaces, the INDEXSPACES keyword creates a list that includes related index
spaces.

You can use the LIST keyword to perform any of the following actions:

• Make aggregate lists of lists
• Exclude entire lists from other lists
• Develop lists of objects that are related to other lists

The partitions or partition ranges can be specified in a list.

DATABASE database-name
Specifies the database that is to be used for the initial search for the object.

You can specify the database-name explicitly or as a pattern-matched name. DATABASE * and
DATABASE % are not supported.

If you specify DATABASE, you must also specify either TABLESPACES or INDEXSPACES as the list
type. Depending on the list type that you specify, Db2 includes all table spaces or index spaces in
database-name that satisfy the pattern-matching expression in the list.

You cannot specify DSNDB01, DSNDB06, DSNDB07, or user-defined work file databases in a LISTDEF.

Use caution when you specify an implicit DATABASE name. Authorization to access objects that are
within an implicit database is not uniform. Use the OPTIONS EVENT (ITEMERROR, SKIP) control
statement to continue processing when authorization errors occur.

TABLESPACE database-name.table-space-name
Specifies the table space that is to be used for the initial search for the object.

If you specify TABLESPACE, the default list type is TABLESPACES. All table spaces that satisfy the
pattern-matching expression are included in the list unless the list is modified by other keywords.
TABLESPACE *.* and TABLESPACE %.% are not supported.

database-name specifies the name of the database to which the table space belongs. The default
value is DSNDB04.

table-space-name specifies the name of the table space.

You can explicitly specify or use pattern-matching characters to specify database-name, table-space-
name, or both.

Chapter 18. LISTDEF 203

You cannot include any objects in DSNDB07 or any user-defined work file databases in a LISTDEF.
Pattern matching is not supported for DSNDB01 and DSNDB06 objects.

INDEXSPACE database-name.index-space-name
Specifies the index space that is to be used for the initial search for the object.

If you specify INDEXSPACE, the default list type is INDEXSPACES. All index spaces that satisfy the
pattern-matching expression are included in the list unless the index spaces are excluded by other
LISTDEF options. INDEXSPACE *.* and INDEXSPACE %.% are not supported.

database-name specifies the name of the database to which the index space belongs. The default
value is DSNDB04.

index-space-name specifies the name of the index space.

You can explicitly specify or use pattern-matching characters to specify database-name, index-space-
name, or both.

You cannot include any objects in DSNDB07 or any user-defined work file databases in a LISTDEF.
Pattern-matching is not supported for DSNDB01 and DSNDB06 objects.

TABLE creator-id.table-name
Specifies the table that is to be used for the initial search for the object.

If you specify TABLE, the default list type is TABLESPACES. All table spaces that contain tables that
satisfy the pattern-matching expression are included in the list unless the list is modified by other
keywords. TABLE *.* and TABLE %.% are not supported.

creator-id specifies the qualifier creator ID for the table. The default value is the user identifier for
the utility. table-name specifies the name of the table. If you specify a table name with CLONED, the
CLONED keyword is ignored.

You can explicitly specify or use pattern-matching characters to specify creator-id,table-name, or
both. However, the underscore pattern-matching character is ignored in a table name.

Pattern-matching is not supported for catalog and directory objects. In a LISTDEF statement, you
must include catalog and directory objects by their fully qualified names.

Enclose the table name in quotation marks if the name contains a blank.

INDEX creator-id.index-name
Specifies the index that is to be used for the initial search for the object.

If you specify INDEX, the default list type is INDEXSPACES. All index spaces that contain indexes that
satisfy the pattern-matching expression are included in the list unless the list is modified by other
keywords. INDEX *.* and INDEX %.% are not supported.

creator-id specifies the qualifier creator ID for the index. The default value is the user identifier for the
utility.

index-name specifies the name of the index.

Enclose the index name in quotation marks if the name contains a blank.

You can explicitly specify or use pattern-matching characters to specify creator-id, index-name, or
both. However, the underscore pattern-matching character is ignored in an index name.

Pattern-matching is not supported for catalog and directory objects. In a LISTDEF statement, you
must include catalog and directory objects by their fully qualified names.

PARTLEVEL
Specifies the partition granularity for partitioned table spaces, partitioning indexes, and data-
partitioned secondary indexes that are to be contained in the list. You cannot specify the PARTLEVEL
keyword with the RI keyword.
(integer)

integer is the physical partition number where integer >= 0.

If you specify PARTLEVEL 0, the resulting list contains one entry for each nonpartitioned object.

204 Db2 12 for z/OS: Utility Guide and Reference

If you specify PARTLEVEL with a nonzero operand, the resulting list contains one entry for the
specified partition for partitioned objects and one entry for each nonpartitioned object.

If you specify PARTLEVEL without (integer), the resulting list contains one entry for each partition
in the partitioned object and one entry for each nonpartitioned object.

(integer1:integer2)
Designates a range of partitions to be specified in the list. integer1 and integer2 are physical
partition numbers and must be greater than 1. You can specify the range in any order. For
example, you can specify (100:199) or (199:100). In either case, partitions 100 through 199
are specified in the list. If integer1 is equal to integer2, only that one partition is specified. For
example, if you specify (5:5), only partition 5 is specified.

An INCLUDE with the PARTLEVEL keyword can be removed from the list only by an EXCLUDE with
PARTLEVEL.

For partition-by-growth objects, the PARTLEVEL keyword results in an entry for each partition that
exists when the LISTDEF list is evaluated. Partitions that are added after the list is evaluated are not
included in the list. If a partition is added during long-running job steps in which the list is reused, the
partitions that were added are not included in the list and not processed. If a utility job that uses a
PARTLEVEL list is restarted, the original list is saved during the original execution for a later restart.
The list does not include any added partitions.

CLONED
Use the CLONED keyword to have LISTDEF perform a final filtering of the INCLUDE or EXCLUDE clause
contents based on the existence or absence of clone data. This operation is performed last, after
LISTDEF processes all other keywords on the INCLUDE or EXCLUDE clause.

CLONED YES specifies that only table spaces and index spaces that contain cloned objects are to be
returned in the INCLUDE or EXCLUDE clause. CLONED NO specifies that only table spaces and index
spaces that do not contain cloned objects are to be returned in the INCLUDE or EXCLUDE clause. Omit
the CLONED keyword if the existence of clone data is not a factor.

The use of CLONED YES or CLONED NO affects only the contents of the list. It does not determine
whether clone or base data is later processed by the utility that uses the list. Only the presence or
absence of the CLONE keyword on individual utility control statements determines whether clone or
base data is processed.

DEFINED
Specifies whether table spaces or index spaces with defined or undefined data sets are to be returned
in the INCLUDED or EXCLUDE clause. If you omit the DEFINED keyword, DEFINED YES is the default.
YES

Specifies that only table spaces or index spaces that are currently defined are to be included in the
INCLUDED or EXCLUDED clause.

YES is the default if DEFINED is not specified. By default, only defined objects are included in
the list. Before DB2 10, the DEFINED keyword did not exist and all objects, both defined and
undefined, were included in the list. Specify DEFINED ALL to get the behavior of DB2 9 and earlier.

NO
Specifies that only table spaces or index spaces that are currently undefined are included in the
INCLUDED or EXCLUDED clause. Use EXCLUDE with DEFINED NO to remove table spaces and
index spaces that are currently undefined and would not normally be processed by the utility. If
you specify DEFINED NO, you cannot specify CLONED YES.

ALL
Specifies that table spaces or index spaces that are both undefined and defined are to be included
in the INCLUDED or EXCLUDED clause.

Before DB2 10, the DEFINED keyword did not exist and all objects, both defined and undefined,
were included in the list. Specify DEFINED ALL to get the behavior of DB2 9 and earlier.

Chapter 18. LISTDEF 205

RI
Specifies that all objects that are referentially related to the object expression (PRIMARY KEY <-->
FOREIGN KEY) are to be included in the list. Db2 processes all referential relationships repeatedly
until the entire referential set is developed. You cannot specify RI with PARTLEVEL(n).

Auxiliary indicator keywords: Use one of four auxiliary indicator keywords to direct LISTDEF processing
to follow auxiliary relationships to include related LOB or XML objects in the list. The auxiliary relationship
can be followed in either direction. Auxiliary objects include the auxiliary table spaces, auxiliary tables,
indexes on auxiliary tables, and their containing index spaces.

Incomplete LOB or XML definitions cause seemingly related objects to not be found. The auxiliary
relationship does not exist until you create the AUX TABLE with the STORES keyword.

No default auxiliary indicator keyword exists. If you do not specify BASE, LOB, XML, or ALL, Db2 does not
follow the auxiliary relationships.

ALL
Specifies that BASE, LOB, and XML objects are to be included in the list. Auxiliary relationships are
followed from all objects that result from the initial object lookup. BASE, LOB, and XML objects remain
in the final enumerated list.

Any implicitly created LOB auxiliary indexes are not included in (or excluded from) the list when
the INCLUDE (or EXCLUDE) clause specifies a base table name that has a LOB column and the ALL
option. These implicit indexes are created by Db2 when an index is not explicitly created for a LOB
column. They are created with a Db2-generated table name that is different from the base table
name. Therefore, when your LISTDEF statement requests a list of indexes (with the INDEXSPACES
option) and the INCLUDE (or EXCLUDE) clause specifies a base table name that has a LOB column
and the ALL option, and no other index exists for any column on the base table name, the list will not
include (or exclude) the LOB auxiliary index space, because the auxiliary table name differs.

The behavior of the ALL keyword is altered by the presence or absence of the HISTORY or ARCHIVE
keywords. When ALL is specified with HISTORY, the resulting list clause contains all related history
objects. When ALL is specified with ARCHIVE, the resulting list clause contains all related archive
objects (table spaces and index spaces that contain archive tables and their related indexes). When
ALL is specified without HISTORY or ARCHIVE, the resulting list clause contains all related objects
that are not history or archive objects.

BASE
Specifies that only base table spaces (non-LOB, non-XML) and index spaces are to be included in
this element of the list. If the result of the initial search for the object is a base object, auxiliary
relationships are not followed. If the result of the initial search for the object is a LOB or XML object,
the auxiliary relationship is applied to the base table space or index space. Only those base objects
become part of the resulting list.

The behavior of the BASE keyword is altered by the presence or absence of the HISTORY or ARCHIVE
keywords. When BASE is specified with HISTORY, the resulting list clause contains only base history
objects. When BASE is specified with ARCHIVE, the resulting list clause contains only base archive
objects (base table spaces and index spaces that contain archive tables and their related indexes).
When BASE is specified without HISTORY or ARCHIVE, the resulting list clause contains only base
objects that are not history or archive objects.

LOB
Specifies that only LOB table spaces and related index spaces that contain indexes on auxiliary tables
are to be included in this element of the list. If the result of the initial search for the object is a LOB
object, auxiliary relationships are not followed. If the result of the initial search for the object is a base
object, the auxiliary relationship is applied to the LOB table space or index space. Only those LOB
objects become part of the resulting list.

The behavior of the LOB keyword is altered by the presence or absence of the HISTORY or ARCHIVE
keywords. When LOB is specified with HISTORY, the resulting list clause contains only LOB history
objects (LOB table spaces and index spaces for history tables). When LOB is specified with ARCHIVE,
the resulting list clause contains only LOB archive objects (LOB table spaces and index spaces

206 Db2 12 for z/OS: Utility Guide and Reference

for archive tables). When LOB is specified without HISTORY or ARCHIVE , the resulting list clause
contains only LOB objects that are not history or archive objects.

XML
Specifies that only XML table spaces and related index spaces that contain indexes on auxiliary tables
are to be included in this element of the list. If the result of the initial search for the object is an XML
object, auxiliary relationships are not followed. If the result of the initial search for the object is a base
object, the auxiliary relationship is applied to the XML table space or index space. Only those XML
objects become part of the resulting list.

The behavior of the XML keyword is altered by the presence or absence of the HISTORY or ARCHIVE
keywords. When XML is specified with HISTORY, the resulting list clause contains only XML history
objects (XML table spaces and index spaces for history tables). When XML is specified with ARCHIVE,
the resulting list clause contains only XML archive objects (XML table spaces and index spaces for
archive tables). When XML is specified without HISTORY or ARCHIVE, the resulting list clause contains
only XML objects that are not history or archive objects.

HISTORY
Specifies that only history (versioning) objects are to be included in the resulting list clause.

HISTORY is a filtering keyword that operates against the list clause contents after other keywords are
applied. Use the keywords BASE, LOB, XML, or ALL with or without the HISTORY keyword to reference
related objects. The order in which these keywords are specified has no meaning. Two INCLUDE or
EXCLUDE clauses are required if both history and non-history objects are required.

ARCHIVE
Specifies that only archive objects are to be included in the resulting list clause.

ARCHIVE is a filtering keyword that operates against the list clause contents after other keywords are
applied. Use the BASE, LOB, XML, or ALL keywords with or without the ARCHIVE keyword to reference
related objects. The order in which these keywords are specified has no meaning. Two INCLUDE or
EXCLUDE clauses are required if both archive and non-archive objects are required.

ARCHIVE cannot be specified with the HISTORY or CLONED YES keywords

Related information:

Archive-enabled tables and archive tables (Introduction to Db2 for z/OS)

BASIC
Specifies that LISTDEF is to perform a final filtering of the INCLUDE or EXCLUDE clause contents
based on the basic format with 6-byte RBA or LRSN values. This operation is performed last, after
LISTDEF processes all other keywords on the INCLUDE or EXCLUDE clause.
YES

Specifies that only table spaces and index spaces that are in basic format with 6-byte RBA or
LRSN values are to be returned in the INCLUDE or EXCLUDE clause. This option is the same as
EXTENDED NO.

NO
Specifies that only table spaces and index spaces that are not in basic format with 6-byte RBA or
LRSN values format are to be returned in the INCLUDE or EXCLUDE clause. This option is the same
as EXTENDED YES.

The BASIC keyword does not have a default value. If the RBA or LRSN format is not a factor, omit the
BASIC and EXTENDED keywords.

If the clause also includes the PARTLEVEL keyword with either a non-zero operand or no operand,
filtering is performed based on the RBA or LRSN format of the partition. If partitioned objects have
partitions in different formats, PARTLEVEL must specify a non-zero operand or no operand to use
BASIC or EXTENDED.

Chapter 18. LISTDEF 207

https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html

EXTENDED
Specifies that LISTDEF is to perform a final filtering of the INCLUDE or EXCLUDE clause contents
based on the extended format with 10-byte RBA or LRSN values. This operation is performed last,
after LISTDEF processes all other keywords on the INCLUDE or EXCLUDE clause.
YES

Specifies that only table spaces and index spaces that are in extended format with 10-byte RBA
or LRSN values are to be returned in the INCLUDE or EXCLUDE clause. This option is the same as
BASIC NO.

NO
Specifies that only table spaces and index spaces that are not in extended format with 10-byte
RBA or LRSN values format are to be returned in the INCLUDE or EXCLUDE clause. This option is
the same as BASIC YES.

The EXTENDED keyword does not have a default value. If the RBA or LRSN format is not a factor, omit
the BASIC and EXTENDED keywords.

If the clause also includes the PARTLEVEL keyword with either a non-zero operand or no operand,
filtering is performed based on the RBA or LRSN format of the partition. If partitioned objects have
partitions in different formats, PARTLEVEL must specify a non-zero operand or no operand to use
BASIC or EXTENDED.

Concurrency and compatibility for LISTDEF
The LISTDEF utility has certain concurrency and compatibility characteristics associated with it.

LISTDEF is a control statement that is used to set up an environment for another utility to follow.
The LISTDEF list is stored until it is referenced by a specific utility. When referenced by an utility, the
list expands. At that time, the concurrency and compatibility restrictions of that utility apply, with the
additional restriction that the catalog tables that are necessary to expand the list must be available for
read-only access.

List processing limitations
Although Db2 does not limit the number of objects that a list can contain, be aware that if your list is too
large, the utility might fail with an error or abend in either Db2 or another program. These errors or abends
can be caused by storage limitations, limitations of the operating system, or other restrictions imposed by
either Db2 or non-Db2 programs. Whether such a failure occurs depends on many factors including, but
not limited to the following items:

• The amount of available storage in both the utility batch and DBM1 address spaces
• The utility that is running.
• The type and number of other utilities that are running at the same time.
• The specific combination of keywords and operands of all the utilities that are running

Recommendation: If you receive a failure that you suspect is caused by running a utility on a list that
is too large, divide your list into smaller lists and run the utility or utilities in separate job steps on the
smaller lists until they run successfully.

Creating the LISTDEF control statement
The LISTDEF control statement defines a list of objects and assigns a name to the list.

Procedure
To create a LISTDEF control statement, include the following elements in the control statement:

• The name of the list.

208 Db2 12 for z/OS: Utility Guide and Reference

• An INCLUDE clause, optionally followed by additional INCLUDE or EXCLUDE clauses to either include or
exclude objects from the list.

Related concepts
“How to include objects in a list” on page 209
You can use the LISTDEF control statement options to specify which objects to include in the list. The
INCLUDE clause adds objects to the list. The EXCLUDE clause removes objects from the list.
Related reference
“Syntax and options of the LISTDEF control statement” on page 199
The LISTDEF utility control statement, with its multiple options, defines a list of table spaces, index
spaces, or both on which other utilities can operate.

How to include objects in a list
You can use the LISTDEF control statement options to specify which objects to include in the list. The
INCLUDE clause adds objects to the list. The EXCLUDE clause removes objects from the list.

You must first specify an INCLUDE clause. You can then specify subsequent INCLUDE or EXCLUDE clauses
in any order to add to or delete objects from the existing list.

Db2 constructs the list, one clause at a time, by adding objects to or removing objects from the list. If
an EXCLUDE clause attempts to remove an object that is not yet in the list, Db2 ignores the EXCLUDE
clause of that object and proceeds to the next INCLUDE or EXCLUDE clause. Be aware that a subsequent
INCLUDE can return a previously excluded object to the list.

You must specify either INCLUDE or EXCLUDE. No default specification exists.

Specifying objects to include or exclude

Each INCLUDE or EXCLUDE clause identifies specific objects to add to or remove from the list.

You must include the following elements in each INCLUDE or EXCLUDE clause:

• The object that is to be used in the initial catalog lookup for each INCLUDE or EXCLUDE clause. The
search for objects can begin with databases, table spaces, index spaces, tables, indexes, or other lists.
You can explicitly specify the names of these objects or, with the exception of other lists, use a pattern
matching expression. The resulting list contains only table spaces, only index spaces, or both.

• The type of objects that the list contains, either TABLESPACES or INDEXSPACES. You must explicitly
specify the list type only when you specify a database as the initial object by using the keyword
DATABASE. Otherwise, LISTDEF uses the default list type values shown in the following table. These
values depend on the type of object that you specified for the INCLUDE or EXCLUDE clause.

Table 24. Default list type values that LISTDEF uses.

Specified object Default list type value

TABLESPACE TABLESPACES

TABLE TABLESPACES

INDEXSPACE INDEXSPACES

INDEX INDEXSPACES

LIST Existing type value of the list

For example, the following INCLUDE clause specifies that table space DBLT0301.TLLT031A is to be added
to the LIST:

INCLUDE TABLESPACE DBLT0301.TLLT031A

Chapter 18. LISTDEF 209

In the preceding example, table space DBLT0301.TLLT031A is specified as the object that LISTDEF is to
use for the initial catalog lookup. By default, the list type value for a TABLESPACE object is TABLESPACES.
Therefore, the list includes only table space DBLT0301.TLLT031A.

The following example INCLUDE clause is similar to the preceding example, except that it includes the
INDEXSPACES keyword:

INCLUDE INDEXSPACES TABLESPACE DBLT0301.TLLT031A

In this example, the clause specifies that all index spaces over all tables in table space
DBLT0301.TLLT031A are to be added to the list.

Optionally, you can add related objects to the list by specifying keywords that indicate a relationship,
such as referentially related objects or auxiliary related objects. Valid specifications include the following
keywords:

• BASE (non-LOB and non-XML objects)
• LOB (LOB objects)
• XML (XML objects)
• ALL (BASE, LOB, and XML objects)
• TABLESPACES (related table spaces)
• INDEXSPACES (related index spaces)
• RI (related by referential constraints, including informational referential constraints)

The preceding keywords perform two functions: they determine which objects are related, and they then
filter the contents of the list. The behavior of these keywords varies depending on the type of object that
you specify. For example, if your initial object is a LOB object, the LOB keyword is ignored. If, however,
the initial object is not a LOB object, the LOB keyword determines which LOB objects are related, and Db2
excludes non-LOB objects from the list.

Db2 processes each INCLUDE and EXCLUDE clause in the following order:

1. Perform the initial search for the object that is based on the specified pattern-matching expression,
including PARTLEVEL specification, if specified.

2. Add or remove related objects and filter the list elements based on the specified list type, either
TABLESPACES or INDEXSPACES (COPY YES or COPY NO).

3. Add or remove related objects depending on the presence or absence of the RI, BASE, LOB, XML, and
ALL keywords.

For example, to generate a list of all table spaces in the ACCOUNT database but exclude all LOB table
spaces, you can specify the following LISTDEF statement:

LISTDEF ACCNT INCLUDE TABLESPACES DATABASE ACCOUNT BASE

In the preceding example, the name of the list is ACCNT. The TABLESPACES keyword indicates that the
list is to include table spaces that are associated with the specified object. In this case, the table spaces
to be included are those table spaces in database ACCOUNT. Finally, the BASE keyword limits the objects
to only base table spaces.

If you want a list of only LOB index spaces in the ACCOUNT database, you can specify the following
LISTDEF statement:

LISTDEF ACLOBIX INCLUDE INDEXSPACES DATABASE ACCOUNT LOB

In the preceding example, the INDEXSPACES and LOB keywords indicate that the INCLUDE clause is to
add only LOB index spaces to the ACLOBIX list.

Restriction: Utilities do not support SYSUTILX-related objects inside a LISTDEF specification. You cannot
specify the following objects in a LISTDEF:

210 Db2 12 for z/OS: Utility Guide and Reference

• TABLESPACE DSNDB01.SYSUTILX
• TABLE SYSIBM.SYSUTILX
• TABLE SYSIBM.SYSUTIL
• INDEXSPACE DSNDB01.DSNLUX01
• INDEXSPACE DSNDB01.DSNLUX02
• INDEX SYSIBM.DSNLUX01
• INDEX SYSIBM.DSNLUX02

Using pattern matching expressions
You can use four special pattern-matching characters (%, *, _,?) to define generic object names in a
LISTDEF statement. These characters are similar to those characters that are used in the SQL LIKE
predicate. Utilities that reference a list access the Db2 catalog at execution time and dynamically expand
each generic object name into an equivalent enumerated list. A utility processes this enumerated list
either sequentially or in parallel, depending on the utility function and the parameters that you specify.

Restrictions: Db2 does not support all-inclusive lists (such as DATABASE * or TABLESPACE *.*).

Pattern-matching of Db2 catalog and directory objects (DSNDB06 and DSNDB01) is not supported.
Catalog and directory objects must be included in a LISTDEF by their full table space or index space
name. Even if catalog and directory objects match a LISTDEF pattern matching expression, they are not
included in the list. To process those objects, you must use syntax from releases prior to Version 7.

Specify pattern-matching object names by using the pattern-matching characters that are shown in the
following table. This table lists the pattern-matching character, the equivalent SQL symbol, and any
additional information.

Table 25. LISTDEF pattern-matching characters

LISTDEF pattern-
matching
character

Equivalent symbol
used in SQL LIKE
predicates

Usage notes

Percent sign (%) Percent sign (%) Performs the same function.

Question mark (?) Underscore (_) Use the question mark (?) instead of underscore (_) as a
pattern-matching character in table and index names. The
underscore character (_) in table and index names represents a
single occurrence of itself.

Asterisk (*) Percent sign (%) Performs the same function.

Underscore (_) Underscore (_) Use the underscore (_) as an alternative to the question mark
(?) for database, table space, and index space names.

Including catalog and directory objects

If you specify Db2 directory objects (DSNDB01) and Db2 catalog objects (DSNDB06) in object lists, you
must specify the fully qualified table space or index space names for those objects. Pattern-matching is
not supported for catalog or directory objects. Db2 issues error messages for any catalog or directory
objects that are invalid for a utility.

Although Db2 catalog and directory objects can appear in LISTDEF lists, these objects might be invalid for
a utility and result in an error message.

The following valid INCLUDE clauses contain catalog and directory objects:

Chapter 18. LISTDEF 211

• INCLUDE TABLESPACE DSNDB06.SYSDDF

• INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSDDF

• INCLUDE INDEXSPACE DSNDB06.DSNDXX01

• INCLUDE INDEXSPACES INDEXSPACE DSNDB06.DSNDXX01

Restriction: If you specify a catalog or directory object in a LISTDEF control statement, you cannot
specify the following keywords:

• DATABASE
• TABLE
• INDEX
• BASE
• LOB
• ALL
• Databases DSNDB01, DSNDB06, and DSNDB07
• Table or indexes with a creator id of SYSIBM

These keywords require Db2 to access the catalog, which can cause problems when you specify a catalog
or directory object.

All LISTDEF lists automatically exclude work file databases, which consist of DSNDB07 objects and
user-defined work file objects, because Db2 utilities do not process these objects.

Previewing the contents of a list
You can preview the objects that are to be included in a list by using the PREVIEW function.

About this task
When you run a utility using the PREVIEW function, Db2 checks for syntax errors in all utility control
statements, but normal utility execution does not take place. If the syntax is valid, the utility expands all
LISTDEF lists (and TEMPLATE DSN expressions) in SYSIN and prints results to the SYSPRINT data set.

Procedure
To preview the objects that are included in the list:
• Specify PREVIEW as a JCL parameter.
• Specify PREVIEW on the OPTIONS PREVIEW control statement.

Related concepts
“Using the OPTIONS utility with LISTDEF” on page 215
You can use the OPTIONS utility with LISTDEF.
Related reference
“OPTIONS” on page 381

212 Db2 12 for z/OS: Utility Guide and Reference

The OPTIONS online utility control statement specifies processing options that are applicable across
many utility executions in a job step.

Creating LISTDEF libraries
When Db2 encounters a reference to a list, Db2 first searches SYSIN. If Db2 does not find the definition of
the referenced list, Db2 searches the specified LISTDEF library.

Procedure
Use a DD statement to name LISTDEF data sets.

For example, assume that data sets ADMF001.DB.LIST1 and ADMF001.DB.LIST2 each contain several
LISTDEF statements. For any utility jobs that reference these LISTDEF statements, you can include the
following DD statement in the JCL:

//LISTDSN DD DSN=ADMF001.DB.LIST1,DISP=SHR
// DD DSN=ADMF001.DB.LIST2,DISP=SHR

This DD statement defines a LISTDEF library. The statement gives a name (LISTDSN) to a group of data
sets that contain LISTDEF statements, in this case ADMF001.DB.LIST1 and ADMF001.DB.LIST2. Defining
such a library enables you to subsequently refer to the LISTDEF statements in that library by using the
OPTIONS LISTDEFDD control statement.

Any data sets that are identified as part of a LISTDEF library must contain only LISTDEF statements.

In the utility job that references those LISTDEF statements, include an OPTIONS statement before the
utility statement. In the OPTIONS statement, specify the DD name of the LISTDEF library as LISTDEFDD
ddname.

Db2 uses this LISTDEF library for any subsequent utility control statements, until either the end of
input or until you specify another OPTIONS LISTDEFDD ddname. The default DD name for the LISTDEF
definition library is SYSLISTD.

Referencing LISTDEF lists in other utility jobs
You can use a list of objects that was defined with a LISTDEF control statement as a target object for
another utility.

Procedure
To reference LISTDEF lists in other utility jobs:
1. Specify LISTDEF control statements to define the lists of objects.

You can specify these LISTDEF statements in one of the following places:

• In the SYSIN DD statement before the utility control statement that references it

Example:

//SYSIN DD *
 LISTDEF MYLIST INCLUDE TABLESPACES DATABASE PAYROLL
 INCLUDE INDEXSPACES DATABASE PAYROLL

• In one or more LISTDEF library data sets

Example:

//*--
//* Create an input data set.
//*--
//LOAD1 EXEC PGM=IEBGENER
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY
//SYSUT2 DD DSN=JULTU103.TCASE.DATA2,

Chapter 18. LISTDEF 213

// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)
//SYSUT1 DD *
 LISTDEF NAME1 INCLUDE TABLESPACE DBLT0301.TLLT031A
 INCLUDE TABLESPACE DBLT0301.TSLT031B

Any LISTDEF statement that is defined within the SYSIN DD statement overrides another LISTDEF
definition of the same name in a LISTDEF library data set.

2. If you want to reference a list that is defined in a LISTDEF library data set, use the OPTIONS utility. In
the SYSIN DD statement before the utility control statement that references the list, specify OPTIONS
LISTDEFDD with the name of the LISTDEF library.

Example:

//***
//* QUIESCE LISTDEF DD LILSTDEF data sets
//***
//STEP1 EXEC DSNUPROC,UID='JULTU103.QUIESC2',
// UTPROC='',SYSTEM='SSTR'
//LISTLIB DD DSN=JULTU103.TCASE.DATA2,DISP=SHR
//SYSIN DD *
 OPTIONS LISTDEFDD LISTLIB

3. In the utility control statement, specify the LIST keyword and the list name.

For example, you can use the QUIESCE utility to quiesce all objects in a list by specifying the following
control statement:

QUIESCE LIST list-name

Some utilities such as COPY and RECOVER, can process a LIST without a specified object type.
Object types are determined from the list contents. Other utilities, such as REPORT, RUNSTATS, and
REORG INDEX, must know the object type that is to be processed before processing can begin.
These utilities require that you specify an object type in addition to the LIST keyword (for example:
REPORT RECOVERY TABLESPACE LIST, RUNSTATS INDEX LIST, and REORG INDEX LIST). See the
syntax diagrams for an individual utility for details.

Results
In general, utilities process the objects in the list in the order in which they are specified. However, some
utilities alter the list order for optimal processing. The following table shows the utilities that support the
LIST keyword and how each utility processes the list.

Utility Order of list processing

CHECK INDEX Items are grouped by related table space. All index spaces that are related to a
particular table space are processed at one time, regardless of list order.

COPY Items are processed in the specified order on a single call to COPY. The
PARALLEL keyword is supported for a list, but if used, the order of processing is
determined by Db2.

COPYTOCOPY Items are processed in the specified order on a single call to COPYTOCOPY.

MERGECOPY Items are processed in the specified order.

MODIFY RECOVERY Items are processed in the specified order.

MODIFY STATISTICS Items are processed in the specified order.

QUIESCE All items are processed in the specified order on a single call to QUIESCE.

REBUILD Items are grouped by related table space. All index spaces that are related to a
particular table space are processed at one time, regardless of list order.

214 Db2 12 for z/OS: Utility Guide and Reference

Utility Order of list processing

RECOVER Items are processed in the specified order on a single call to RECOVER.

REORG Items are processed in the specified order with one exception. Items at the
partition level are grouped by table space when the first partition of a particular
table space is encountered. Those partitions are processed on a single call to
REORG.

REPORT Items are processed in the specified order.

RUNSTATS INDEX Items are grouped by related table space. All index spaces that are related to a
particular table space are processed at one time, regardless of list order.

RUNSTATS
TABLESPACE

Items are processed in the specified order.

UNLOAD Items at the partition level are grouped by table space. All specified partitions of
a particular table space are processed at one time, regardless of list order.

Related tasks
“Creating LISTDEF libraries” on page 213
When Db2 encounters a reference to a list, Db2 first searches SYSIN. If Db2 does not find the definition of
the referenced list, Db2 searches the specified LISTDEF library.
Related reference
“Syntax and options of the LISTDEF control statement” on page 199
The LISTDEF utility control statement, with its multiple options, defines a list of table spaces, index
spaces, or both on which other utilities can operate.
“Sample LISTDEF control statements” on page 216
Use the sample control statements as models for developing your own LISTDEF control statements.
“Syntax and options of the OPTIONS control statement” on page 381
The OPTIONS utility control statement, with its multiple options, defines the function that the utility job
performs.

Using the TEMPLATE utility with LISTDEF
Together, the LISTDEF and TEMPLATE utilities enable faster development of utility job streams, and
require fewer modifications when the underlying list of database objects change.

Many utilities require output data sets. In those cases, you should use the TEMPLATE control statement to
specify the naming convention and, optionally, the allocation parameters for each type of output data set.
Templates, like lists, can be reused if the naming convention is robust enough to prevent duplicate data
set names from being allocated.

In some cases you can use traditional JCL DD statements with LISTDEF lists, but this method is usually
not practical unless you are processing small lists one object at a time.

Related reference
“TEMPLATE” on page 751
The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the
data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.

Using the OPTIONS utility with LISTDEF
You can use the OPTIONS utility with LISTDEF.

Use the following three functions of the OPTIONS utility in conjunction with the LISTDEF utility when
needed:

Chapter 18. LISTDEF 215

OPTIONS PREVIEW
Enables you to preview the list contents before actual processing.

OPTIONS ITEMERROR
Enables you to alter the handling of errors that might occur during list processing.

OPTIONS LISTDEFDD
Enables you to identify a LISTDEF library. The default value is LISTDEFDD.

Related tasks
“Creating LISTDEF libraries” on page 213
When Db2 encounters a reference to a list, Db2 first searches SYSIN. If Db2 does not find the definition of
the referenced list, Db2 searches the specified LISTDEF library.

Termination or restart of LISTDEF
You can terminate and restart the LISTDEF utility.

You can terminate a LISTDEF utility job by using the TERM UTILITY command if you submitted the job or
have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a LISTDEF utility job, but it starts from the beginning again. Use caution when changing
LISTDEF lists prior to a restart. When Db2 restarts list processing, it uses a saved copy of the list.
Modifying the LISTDEF list that is referred to by the stopped utility has no effect. Only control statements
that follow the stopped utility are affected.

Related tasks
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.

Sample LISTDEF control statements
Use the sample control statements as models for developing your own LISTDEF control statements.

Example 1: Defining a list of objects

The following control statement defines a list that includes the following objects:

• Table space DBLT0301.TLLT031A
• Index space DBLT0301.IXlT031A
• Table space DBLT0301.IPLT031C
• Table space that contains ADMF001.TBLT032A_1

The name of the list is NAME1. This list can be referenced by any subsequent utility statements.

LISTDEF NAME1 INCLUDE TABLESPACE DBLT0301.TLLT031A
 INCLUDE INDEXSPACE DBLT0301.IXLT031A
 INCLUDE TABLESPACE DBLT0301.TPLT031C
 INCLUDE TABLESPACES TABLE ADMF001.TBLT032A_1

Example 2: Defining a list of all objects in a database

The following control statement defines a list (EXAMPLE2) that includes all table spaces and all index
spaces in the PAYROLL database.

LISTDEF EXAMPLE2 INCLUDE TABLESPACES DATABASE PAYROLL
 INCLUDE INDEXSPACES DATABASE PAYROLL

216 Db2 12 for z/OS: Utility Guide and Reference

Example 3: Defining a list by using pattern-matching characters

The following control statement defines a list (PAYROLL) that includes the following objects:

• All table spaces in the PAYROLL database, except for any table spaces whose names begin with TEMP.
• All index spaces in the PAYROLL database that end with IX, except for those index spaces that begin

with TMPIX.

The subsequent COPY utility control statement processes this list.

LISTDEF PAYROLL INCLUDE TABLESPACE PAYROLL.*
 EXCLUDE TABLESPACE PAYROLL.TEMP*
 INCLUDE INDEXSPACE PAYROLL.*IX
 EXCLUDE INDEXSPACE PAYROLL.TMPIX*
COPY LIST PAYROLL …

Example 4: Defining a list of partitions and nonpartitioned table spaces

The following LISTDEF statement defines a list that includes one entry for each partition of the qualifying
partitioned table spaces and one entry for each qualifying nonpartitioned table space. The list is named
EXAMPLE4. The table spaces must satisfy the PAY*.* name pattern.

LISTDEF EXAMPLE4 INCLUDE TABLESPACE PAY*.* PARTLEVEL

Assume that three table spaces qualify. Of these table spaces, two are partitioned table spaces
(PAY2.DEPTA and PAY2.DEPTF) that each have three partitions and one is a nonpartitioned table space
(PAY1.COMP). In this case, the EXAMPLE4 list includes the following items:

• PAY2.DEPTA partition 1
• PAY2.DEPTA partition 2
• PAY2.DEPTA partition 3
• PAY2.DEPTF partition 1
• PAY2.DEPTF partition 2
• PAY2.DEPTF partition 3
• PAY1.COMP

If you specified PARTLEVEL(2) instead of PARTLEVEL, the EXAMPLE4 list includes the following items:

• PAY2.DEPTA partition 2
• PAY2.DEPTF partition 2
• PAY1.COMP

If you specified PARTLEVEL(0) instead of PARTLEVEL, the EXAMPLE4 list includes only PAY1.COMP.

Example 5: Defining a list of COPY YES indexes

The following control statement defines a list (EXAMPLE5) that includes related index spaces from the
referenced list (EXAMPLE4) that were defined or altered to COPY YES.

LISTDEF EXAMPLE5 INCLUDE LIST EXAMPLE4 INDEXSPACES COPY YES

Example 6: Defining a list that includes all table space partitions except for one

The following control statement defines a list (EXAMPLE6) that includes all partitions of table space X,
except for partition 12. The INCLUDE clause adds an entry for each partition, and the EXCLUDE clause
removes the entry for partition 12.

LISTDEF EXAMPLE6 INCLUDE TABLESPACE X PARTLEVEL
 EXCLUDE TABLESPACE X PARTLEVEL(12)

Chapter 18. LISTDEF 217

If the PARTLEVEL keyword is not specified in both clauses, as in the following two sample statements, the
INCLUDE and EXCLUDE items do not intersect. For example, in the following statement, table space X is
included in the list in its entirety, not at the partition level. Therefore, partition 12 cannot be excluded.

LISTDEF EXAMPLE6 INCLUDE TABLESPACE X
 EXCLUDE TABLESPACE X PARTLEVEL(12)

In the following sample statement, the list includes only partition 12 of table space X, so table space X in
its entirety cannot be excluded.

LISTDEF EXAMPLE6 INCLUDE TABLESPACE X PARTLEVEL(12)
 EXCLUDE TABLESPACE X

Example 7: Defining a LISTDEF library and referencing a list in a QUIESCE job

In this example, the first two LISTDEF control statements define the NAME1 and NAME2 lists. The NAME1
list is stored in a sequential data set (JULTU103.TCASE.DATA2). The NAME2 list is stored in a member
of a partitioned data set (JULTU103.TCASE.DATA3(MEM1)). These output data sets are identified by the
SYSUT2 DD statements (in the JCL for the CREATE1 and CREATE2 jobs).

The LISTLIB DD statement (in the JCL for the QUIESCE job) defines a LISTDEF library. When you define
a LISTDEF library, you give a name to a group of data sets that contain LISTDEF statements. In this case,
the library is to include the following data sets:

• The sequential data set JULTU103.TCASE.DATA2 (which includes the NAME1 list)
• The MEM1 member of the partitioned data set JULTU103.TCASE.DATA3 (which includes the NAME2

list).

When you define such a library, you can later reference a group of LISTDEF statements with a single
reference.

The OPTIONS utility statement in this example specifies that the library that is identified by the LISTLIB
DD statement is to be used as the default LISTDEF definition library. This declaration means that for any
referenced lists, Db2 is to first search SYSIN for the list definition. If Db2 does not find the list definition in
SYSIN, it is to search any data sets that are included in the LISTLIB LISTDEF library.

The last LISTDEF statement defines the NAME3 list. This list includes all objects in the NAME1 and
NAME2 lists, except for three table spaces (TSLT032B, TSLT031B, TSLT032C). Because the NAME1 and
NAME2 lists are not included in SYSIN, Db2 searches the default LISTDEF library (LISTLIB) to find them.

Finally, the QUIESCE utility control statement specifies this list of objects (NAME3) for which Db2 is to
establish a quiesce point.

//CREATE1 JOB 'USER=NAME',CLASS=A,...
//*--
//* Create an input data set.
//*--
//LOAD1 EXEC PGM=IEBGENER
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY
//SYSUT2 DD DSN=JULTU103.TCASE.DATA2,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)
//SYSUT1 DD *
 LISTDEF NAME1 INCLUDE TABLESPACE DBLT0301.TLLT031A
 INCLUDE TABLESPACE DBLT0301.TSLT031B
/*
//CREATE2 JOB 'USER=NAME',CLASS=A,...
//*--
//* Create an input data set.
//*--
//CRECNTL EXEC PGM=IEFBR14
//CNTL DD DSN=JULTU103.TCASE.DATA3,UNIT=SYSDA,
// VOL=SER=SCR03,
// SPACE=(TRK,(2,2,2)),DCB=(DSORG=PO,
// LRECL=80,RECFM=FB,BLKSIZE=4560),

218 Db2 12 for z/OS: Utility Guide and Reference

// DISP=(NEW,CATLG,CATLG)
/*
//*--
//* Create member of input data set.
//*--
//FILLCNTL EXEC PGM=IEBUPDTE
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=JULTU103.TCASE.DATA3,DISP=OLD
//SYSUT2 DD DSN=JULTU103.TCASE.DATA3,DISP=OLD
//SYSIN DD DATA
./ ADD NAME=MEM1
 LISTDEF NAME2 INCLUDE TABLESPACE DBLT0302.TLLT032A
 INCLUDE TABLESPACE DBLT0302.TSLT032B
 INCLUDE TABLESPACE DBLT0302.TPLT032C
./ ENDUP
/*

//QUIESCE JOB 'USER=NAME',CLASS=A,...
//***
//* QUIESCE LISTDEF DD LILSTDEF data sets
//***
//STEP1 EXEC DSNUPROC,UID='JULTU103.QUIESC2',
// UTPROC='',SYSTEM='SSTR'
//LISTLIB DD DSN=JULTU103.TCASE.DATA2,DISP=SHR
// DD DSN=JULTU103.TCASE.DATA3(MEM1),DISP=SHR
//SYSIN DD *
 OPTIONS LISTDEFDD LISTLIB
 LISTDEF NAME3 INCLUDE LIST NAME1
 INCLUDE LIST NAME2
 EXCLUDE TABLESPACE DBLT0302.TSLT032B
 EXCLUDE TABLESPACE DBLT0301.TSLT031B
 EXCLUDE TABLESPACE DBLT0302.TPLT032C
 QUIESCE LIST NAME3
/*

Example 8: Defining a list that includes related objects

The following LISTDEF control statement defines a list (EXAMPLE8) that includes table space
DBLT0101.TPLT011C and all objects that are referentially related to it. Only base table spaces are
included in the list. The subsequent RECOVER utility control statement specifies that all objects in the
EXAMPLE8 list are to be recovered.

//STEP2 EXEC DSNUPROC,UID='JULTU101.RECOVE5',
// UTPROC='',SYSTEM='SSTR'
//SYSIN DD *
 LISTDEF EXAMPLE8 INCLUDE TABLESPACE DBLT0101.TPLT011C RI BASE
 RECOVER LIST EXAMPLE8
/*

Example 9: Defining a list of cloned data

The following control statement indicates that the INCLUDE expression is to return only the names of the
following objects:

• Clone tables
• Table spaces that contain clone tables
• Indexes on clone tables
• Index spaces that contain indexes on clone tables

LISTDEF REORG_TBSP INCLUDE TABLESPACE DB42240*.T*
 CLONED YES
 EXCLUDE TABLESPACE DB42240*.TL4224L*
 EXCLUDE TABLESPACE DB42240*.TL4224B*
 EXCLUDE TABLESPACE DB42240*.TL4224C*
 EXCLUDE TABLESPACE DB42240*.TL4224D*
 EXCLUDE TABLESPACE DB42240*.TL4224E*
 EXCLUDE TABLESPACE DB42240*.TL4224F*
 EXCLUDE TABLESPACE DB422401.TSHR5702

Chapter 18. LISTDEF 219

Example 10: Defining a list that includes archive objects

The following LISTDEF statement defines a list with the name LISTALL that includes all related table
spaces, including related archive table spaces.

LISTDEF LISTALL
 INCLUDE TABLESPACES TABLESPACE DB516A01.TU516A01 RI ALL
 INCLUDE TABLESPACES TABLESPACE DB516A01.TU516A01 RI ALL ARCHIVE

The first INCLUDE clause specifies that all base, LOB, and XML table spaces that are referentially related
to the table space DB516A01.TU516A01 are to be included in the list. The second INCLUDE clause
specifies that all archive table spaces that are related to table space DB516A01.TU516A01 are to be
included in the list.

220 Db2 12 for z/OS: Utility Guide and Reference

Chapter 19. LOAD
Use the LOAD online utility to load one or more tables of a table space. The LOAD utility loads records into
the tables and builds or extends any indexes that are defined on them.

If the table space already contains data, you can choose whether you want to add the new data to the
existing data or replace the existing data.

The loaded data is processed by any edit or validation routine that is associated with the table, and any
field procedure that is associated with any column of the table. The LOAD utility ignores and does not
enforce informational referential constraints.

To avoid the cost of running the RUNSTATS utility afterward, you can also specify the STATISTICS option
collect inline statistics when you run the LOAD utility.

You can use the LOAD utility in conjunction with z/OS DFSMS data set encryption with the REPLACE option
to encrypt or decrypt table spaces or indexes that use Db2-managed data sets. The LOAD utility accepts
encrypted input data sets.

Output

LOAD DATA generates one or more of the following forms of output:

• A loaded table space or partition.
• A discard file of rejected records.
• A summary report of errors that were encountered during processing; this report is generated only if you

specify ENFORCE CONSTRAINTS or if the LOAD utility involves unique indexes.

The output can be encrypted if a key label is defined for the output data set.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorizations:

• Ownership of the table
• LOAD privilege for the database
• STATS privilege for the database is required if STATISTICS keyword is specified
• DBADM or DBCTRL authority for the database. If the database is implicitly created, these privileges

must be on the implicitly created database or on DSNDB04.
• DATAACCESS authority
• SYSCTRL or SYSADM authority

The LOAD utility operates on a table space level, so you must have authority for all tables in the table
space when you perform LOAD.

To run LOAD STATISTICS, the privilege set must include STATS authority on the database. To run LOAD
STATISTICS REPORT YES, the privilege set must also include the SELECT privilege on the tables required.

If either the FLASHCOPY YES or FLASHCOPY CONSISTENT option is specified, the user ID that invokes
the LOAD utility must have the authority to execute the DFSMSdss COPY command.

If you use RACF access control with multilevel security and the LOAD utility is to process a table space
that contains a table that has multilevel security with row-level granularity, you must be identified
to RACF and have an accessible valid security label. You must also meet the following authorization
requirements:

© Copyright IBM Corp. 1983, 2024 221

• To replace an entire table space with LOAD REPLACE, you must have the write-down privilege unless
write-down rules are not in effect.

• You must have the write-down privilege to specify values for the security label columns, unless write-
down rules are not in effect. If these rules are in effect and you do not have write-down privilege, Db2
assigns your security label as the value for the security label column for the rows that you are loading.

To run LOAD on an encrypted data set, you must be authorized to use the key label for that data set.

Restrictions on running LOAD
• LOAD with REPLACE cannot be run on a table space during the period after RECOVER is run to a point

in time before materialization of pending definition changes and before REORG is run to complete the
point-in-time recovery process.

Running LOAD when there are pending column alterations
When the LOAD utility is run on a table that has pending column alterations, the LOAD utility does not
materialize the pending changes. All data records that the LOAD utility inserts have the data format that
was in effect before the column alterations were made.

Execution phases of LOAD

The LOAD utility operates in the following phases:

UTILINIT
Performs initialization.

RELOAD
Loads record types and writes temporary file records for indexes and foreign keys. RELOAD makes
one pass through the sequential input data set. Check constraints are checked for each row. Internal
commits provide commit points at which to restart in case operation should halt in this phase.

RELOAD creates inline copies if you specified the COPYDDN or RECOVERYDDN keywords.

A subtask is started at the beginning of the RELOAD phase to sort the keys. The sort subtask initializes
and waits for the main RELOAD phase to pass its keys to SORT. RELOAD loads the data, extracts the
keys, and passes them in memory for sorting. At the end of the RELOAD phase, the last key is passed
to SORT, and record sorting completes.

Note that load partition parallelism starts subtasks. PREFORMAT for table spaces occurs at the end of
the RELOAD phase.

SORT
Sorts temporary file records before creating indexes or validating referential constraints, if indexes or
foreign keys exist. The SORT phase is skipped if all the following conditions apply for the data that is
processed during the RELOAD phase:

• Each table has no more than one key.
• All keys are the same type (index key only, indexed foreign key, or foreign key only).
• The data that is being loaded or reloaded is in key order (if a key exists). If the key is an index key

only and the index is a data-partitioned secondary index, the data is considered to be in order if
the data is grouped by partition and ordered within partition by key value. If the key in question
is an indexed foreign key and the index is a data-partitioned secondary index, the data is never
considered to be in order.

• The data that is being loaded or reloaded is grouped by table, and each input record is loaded into
one table only.

SORT passes the sorted keys in memory to the BUILD phase, which builds the indexes.

222 Db2 12 for z/OS: Utility Guide and Reference

BUILD
Creates indexes from temporary file records for all indexes that are defined on the loaded tables.
Build also detects duplicate keys. PREFORMAT for indexes occurs at the end of the BUILD phase.

SORTBLD
Performs all activities that normally occur in both the SORT and BUILD phases, if you specify a parallel
index build.

INDEXVAL
Corrects unique index violations or index evaluation errors from the information in SYSERR, if any
exist.

ENFORCE
Checks referential constraints, except informational referential constraints, and corrects violations.
Information about violations of referential constraints is stored in SYSERR.

DISCARD
Copies records that cause errors from the input data set to the discard data set.

REPORT
Generates a summary report, if you specified ENFORCE CONSTRAINT or if load index validation is
performed. The report is sent to SYSPRINT.

SWITCH
Switches access to shadow copy of table space or partition. This phase occurs if you specify LOAD
REPLACE SHRLEVEL REFERENCE.

LOGAPPLY
Identifies the most recent checkpoint for each member. All objects that are being copied are updated
to the same log point to prepare for backout processing.

If FLASHCOPY CONSISTENT is specified, Db2 applies the updates to the FlashCopy image copy to
ensure that copy includes all activity up to the point of consistency.

LOGCSR
Calls log apply do the current status rebuild (CSR).

If FLASHCOPY CONSISTENT is specified, the utility reads the logs during this phase. The utility uses
the logs to identify the uncommitted work that needs to be backed out of the image copy.

LOGUNDO
Backs out uncommitted work from the image copy.

If FLASHCOPY CONSISTENT is specified, the utility backs out uncommitted work from the FlashCopy
image copy to make the image copy consistent.

UTILTERM
Performs cleanup.

Related concepts
Multilevel security (Managing Security)
Related tasks
Maintaining Db2 database statistics (Db2 Performance)
Reducing the cost of collecting statistics (Db2 Performance)

Syntax and options of the LOAD control statement
The LOAD utility control statement, with its multiple options, defines the function that the utility job
performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Chapter 19. LOAD 223

https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_mls.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_maintaincatalogstatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_improverunstatsperformance.html

Syntax diagram
Note: The syntax diagram shows the supported order for specifying options in the LOAD utility statement.
Although specifying options in a different order might work, alternative specifications are not supported
by IBM.

LOAD
DATA INDDN SYSREC

INDDN ddname

INDDN (

,

ddname)

INCURSOR cursor-name

PREFORMAT

COPYDICTIONARY
1

integet

PRESORTED NO

PRESORTED YES

PARALLEL

( num-subtasks)

PRESORT

ROWFORMAT RRF

ROWFORMAT BRF

RBALRSN_CONVERSION EXTENDED

RBALRSN_CONVERSION NONE

resume-spec flashcopy-spec

KEEPDICTIONARY REUSE

LOG YES

LOG NO

NOCOPYPEND

workddn-spec

SORTKEYS

SORTKEYS NO

integer

format-spec

FLOAT(S390)

FLOAT(IEEE)

EBCDIC

ASCII

UNICODE
CCSID (

,

integer)

NOSUBS

ENFORCE CONSTRAINTS
1

ENFORCE NO NOCHECKPEND

ERRDDN SYSERR

ERRDDN ddname

MAPDDN SYSMAP

MAPDDN ddname

DISCARDDN SYSDISC

DISCARDDN ddname

DISCARDS 0

DISCARDS integer

BACKOUT NO

BACKOUT
YES SORTDEVT device-type

SORTNUM integer

CONTINUEIF( start

: end

)= X' byte-string '

' character-string '

ignore-spec decfloat-spec override-spec

drain-spec

INDEXDEFER NONE

INDEXDEFER NPI

ALL NONUNIQUE

IMPLICIT_TZ ' timezone-string '

UPDMAXASSIGNEDVAL YES

UPDMAXASSIGNEDVAL NO

DEFINEAUX NO

DEFINEAUX YES

FORCE NONE

FORCE READERS

ALL

KEEP_EMPTY_PAGES YES

KEEP_EMPTY_PAGES NO

INTO-TABLE-spec
2

224 Db2 12 for z/OS: Utility Guide and Reference

resume-spec

RESUME NO
3

SHRLEVEL NONE

SHRLEVEL REFERENCE
4 REPLACE

copy-spec

statistics-spec

RESUME YES

SHRLEVEL NONE copy-spec

SHRLEVEL CHANGE

copy-spec

COPYDDN

(SYSCOPY)

( ddname1

, ddname2

)

(, ddname2)

RECOVERYDDN( ddname3

, ddname4

)

flashcopy-spec
FLASHCOPY NO

FLASHCOPY YES

CONSISTENT FCCOPYDDN( template-name)

statistics-spec

STATISTICS stat-table-spec stat-index-spec
REPORT NO

REPORT YES

UPDATE ALL

UPDATE ACCESSPATH

SPACE

NONE

STATCLGMEMSRT integer

INVALIDATECACHE NO

INVALIDATECACHE YES HISTORY ALL

ACCESSPATH

SPACE

NONE

FORCEROLLUP YES

NO

stat-table-spec

Chapter 19. LOAD 225

TABLE(ALL)

SAMPLE integer USE PROFILE

TABLE( table-name) table-stats-spec

table-stats-spec

SAMPLE integer

COLUMN ALL

COLUMN (

,

column-name)

,

COLGROUP (

,

column-name) colgroup-stats-spec

USE PROFILE

colgroup-stats-spec

FREQVAL

COUNT integer
5

MOST

BOTH

LEAST

HISTOGRAM

NUMQUANTILES 100

NUMQUANTILES integer

stat-index-spec
INDEX(ALL)

correlation-stats-spec

INDEX (

,

index-name correlation-stats-spec)

correlation-stats-spec

226 Db2 12 for z/OS: Utility Guide and Reference

KEYCARD
6

FREQVAL NUMCOLS 1 COUNT 10

FREQVAL NUMCOLS integer

COUNT integer
5

MOST

BOTH

LEAST

HISTOGRAM

NUMCOLS 1 NUMQUANTILES 100

NUMCOLS integer

NUMQUANTILES 100

NUMQUANTILES integer

workddn-spec
WORKDDN(SYSUT1,SORTOUT)

WORKDDN ( ddname1 , ddname2)

( ddname1
,SORTOUT

)

(
SYSUT1

, ddname2)

format-spec

FORMAT UNLOAD

SQL/DS

INTERNAL

DELIMITED

COLDEL ' , '

COLDEL coldel

CHARDEL ' " '

CHARDEL chardel

DECPT ' . '

DECPT decpt

SPANNED YES

NO

ignore-spec
IGNORE (WHEN

PART

CONV

VALPROC

IDERROR

DUPKEY

)

decfloat-spec

Chapter 19. LOAD 227

DECFLOAT_ROUNDMODE ROUND_CEILING

ROUND_DOWN

ROUND_FLOOR

ROUND_HALF_DOWN

ROUND_HALF_EVEN

ROUND_HALF_UP

ROUND_UP

override-spec

OVERRIDE (

,

SYSTEMPERIOD

IDENTITY

TRANSID

NONDETERMINISTIC

ROWCHANGE

)
7

drain-spec
DRAIN_WAIT IRLMRWT-value

DRAIN_WAIT integer

RETRY UTIMOUT-value

RETRY integer

RETRY_DELAY calculated-default

RETRY_DELAY integer

SWITCHTIME NONE

SWITCHTIME timestamp

labeled-duration-expression

labeled-duration-expression

228 Db2 12 for z/OS: Utility Guide and Reference

CURRENT_DATE

CURRENT_TIMESTAMP

WITH TIME ZONE

 +
 -

constant YEAR

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

Notes:
1 If you specify SHRLEVEL REFERENCE, ENFORCE NO is used.
2 For the syntax diagram and the option descriptions of the INTO-TABLE specification, see “INTO-TABLE-
spec” on page 256.
3 The RESUME or REPLACE value in the INTO TABLE clause overrides the default value for LOAD RESUME.
4 SHRLEVEL REFERENCE requires that REPLACE be specified, either at the table-space level or in an INTO
TABLE PART clause.
5 When the COUNT keyword is not specified, the utility automatically determines the count value and collects
the most frequently occurring values.
6 The KEYCARD option is deprecated. The KEYCARD functionality is now built into the default execution of the
inline statistics for indexes and cannot be disabled.
7 Alternate syntax: The following syntax is still accepted: PERIODOVERRIDE instead of
OVERRIDE(SYSTEMPERIOD), TRANSIDOVERRIDE instead of OVERRIDE(TRANSID), IDENTITYOVERRIDE
instead of OVERRIDE(IDENTITY). However, the keywords PERIODOVERRIDE, TRANSIDOVERRIDE, and
IDENTITYOVERRIDE are deprecated.

Option descriptions
DATA

Specifies that data is to be loaded. This keyword is optional and is used for clarity only.
INDDN ddname

Specifies the input data set or data sets.

ddname is the name of a DD statement from the job step or the name of a template in the utility input
stream. The default value is SYSREC.

If multiple ddname values are specified, those data sets are dynamically concatenated as input
to LOAD. You can specify a maximum of 1000 ddname values. You cannot specify the same DD
statement from the job step more than once.

Chapter 19. LOAD 229

If you are using DRDA fast load, ddname must be SYSCLIEN.

The record format for an input data set must be fixed-length or variable-length. The data set must be
a sequential data set that is readable by the basic sequential access method (BSAM).

If the input file is an HFS or zFS file, use a template with the PATH option.

Related information:

“Syntax and options of the TEMPLATE control statement” on page 751

INCURSOR cursor-name
Specifies that the input data set is to be the result table of a SELECT statement, as defined by a cursor.
You must declare the cursor before it is used by LOAD. Use the EXEC SQL utility to define the cursor.

cursor-name is the name of the cursor. This name cannot be longer than eight characters. The
specified cursor can be used with the Db2® family cross-loader function, which enables you to load
data from any DRDA-compliant remote server.

Restrictions:

• You cannot load data into the same table on which you defined the cursor.
• You cannot load data into the parent table in an RI relationship by using a cursor that is defined on a

dependent table.
• You cannot specify field specifications or use discard processing with the INCURSOR option.
• You cannot specify INCURSOR with the following options

– SHRLEVEL CHANGE
– NOSUBS
– FORMAT UNLOAD
– FORMAT SQL/DS
– FORMAT INTERNAL
– CONTINUEIF
– WHEN
– SPANNED YES

Recommendation: Do not specify a cursor on a table within the same table space as the table that
you are loading. If you cannot avoid this situation, disable SQL parallelism by specifying the following
EXEC SQL statement:

EXEC SQL
SET CURRENT DEGREE = '1' ;
ENDEXEC

Disabling parallelism in this case helps avoid contention between claims and drains.

Related information:

Chapter 17, “EXEC SQL,” on page 195
“Loading data by using the cross-loader function” on page 311

PREFORMAT
Specifies that the remaining pages are preformatted up to the high-allocated RBA in the table space
and index spaces that are associated with the table that is specified in table-name. The preformatting
occurs after the data has been loaded and the indexes are built.

PREFORMAT can operate on an entire table space and its index spaces, or on a partition of a
partitioned table space and on the corresponding partitions of partitioned indexes, if any exist.
Specifying LOAD PREFORMAT (rather than PART integer PREFORMAT) tells LOAD to serialize at the
table space level, which can inhibit concurrent processing of separate partitions. If you want to
serialize at the partition level, specify PART integer PREFORMAT.

230 Db2 12 for z/OS: Utility Guide and Reference

The PREFORMAT keyword also applies to LOB table spaces and auxiliary indexes that are associated
with the base table or partitions that LOAD serialized. XML objects are not preformatted.

COPYDICTIONARY integer
Allows the LOAD utility to copy an existing compression dictionary from a partition to other partitions
of a partitioned table space. LOAD copies the current compression dictionary from the partition whose
partition number is integer, and uses that compression dictionary to compress the input data for
partitions that are being replaced. The default value of integer is 1.

COPYDICTIONARY provides a method for copying a compression dictionary to an empty partition. The
partition that is being copied must have a valid compression dictionary.

COPYDICTIONARY causes LOAD to copy the compression dictionary only to partitions that are defined
with compression.

Use of the COPYDICTIONARY keyword has these restrictions:

• COPYDICTIONARY can be used only when the target of the LOAD statement is a partitioned (non-
UTS) or partition-by-range table space.

• PART integer REPLACE must also be specified in the LOAD statement.
• RESUME YES cannot be specified with COPYDICTIONARY.
• KEEPDICTIONARY cannot also be specified in the LOAD statement.

PRESORTED
Specifies whether the input data set has already been sorted in clustering key order. If the input data
set is in clustering key order, the LOAD utility can execute the RELOAD and BUILD phases in parallel,
and can skip the sorting of the clustering index.
NO

Specifies that the input data set has not already been sorted. The LOAD utility must sort the
clustering index.

YES
Specifies that the input data set has already been sorted. The LOAD utility does not sort the
clustering index, and executes the RELOAD and BUILD phases in parallel.

The following requirements must be satisfied when PRESORTED YES is specified:

• All data sets that are needed for parallel index build need to be available.
• For partitioned table spaces with a clustering partitioned index, the presorted order of the data

rows must be:

1. By partition number
2. By key ordering of clustering index within each partition

• For partitioned table spaces with a clustering nonpartitioned index, or nonpartitioned table
space with a single table, the presorted order of the data rows must be by key ordering of the
clustering index.

• For simple and segmented (non-UTS) table spaces:

– The presorted order of the data rows must be by key ordering of the clustering index within
the table.

– The LOAD statement can contain only one INTO TABLE clause.

Restrictions:

• Under the following conditions, LOAD issues a warning message, and continues with processing
as if PRESORTED NO were specified:

– When SHRLEVEL CHANGE is also specified
– When partition parallelism is used
– When the target tables have no indexes
– When SORTKEYS NO is specified

Chapter 19. LOAD 231

– When PRESORT is also specified
• Only LOAD with REPLACE and with PRESORTED YES can be restarted in the RELOAD phase. If

LOAD with RESUME and PRESORTED YES is restarted in the RELOAD phase, utility processing
abnormally terminates, and LOAD issues an error message.

• If PRESORTED YES is specified, and LOAD determines that the input data set is not sorted in
clustering key order, LOAD tolerates the keys that are not in order. However, for the clustering
index, inline statistics are not collected and real-time statistics are invalidated. LOAD issues a
warning message.

PARALLEL or PARALLEL num-subtasks
Specifies the maximum number of subtasks that LOAD can process in parallel. By using parallel
subtasks, the utility can potentially reduce the elapsed time of the load operation.

If you are loading from a single input data set, PARALLEL enables additional data parallelism.

num-subtasks must be an integer between 0 and 32767, inclusive.

Recommendation: Specify PARALLEL(0) or PARALLEL.

If you specify the PARALLEL keyword without a value, the default value is PARALLEL(0).

The total possible number of subtasks for a particular LOAD job depends on the following factors:

• the number of data partitions to be loaded
• the number of indexes on the table to be loaded
• whether inline statistics are gathered
• whether the LOAD statement specifies a single input data set for the entire job or one input data set

per partition. (If you specify INDDN with multiple ddname values, LOAD considers that specification
to be a single input data set for the purposes of calculating subtasks.)

LOAD calculates the optimal number of these subtasks to process in parallel based on memory
constraints and the number of available processors.

LOAD uses the value of PARALLEL as follows:

• If you specify PARALLEL(0) or PARALLEL: LOAD uses the value that it calculated for the optimal
number of parallel subtasks.

• If you specify PARALLEL(1): The utility loads the data with the minimal amount of parallel subtasks
that are needed for the load operation.

• If you specify a value for PARALLEL other than 0 or 1: If the value is less than the calculated
optimal number of parallel subtasks, LOAD uses the specified value or the minimum number of
required parallel subtasks. If the value is greater than the calculated optimal number of parallel
subtasks, LOAD limits the number of parallel subtasks to the optimal number.

PARALLEL overrides the value of the PARAMDEG_UTIL subsystem parameter.

Recommendation: If you specify PARALLEL and SHRLEVEL CHANGE, set the LOCKSIZE attribute of
the table space to ROW to minimize contention on the parallel subtasks.

PARALLEL is ignored in the following situations:

• A single input data set is specified, and the LOAD statement includes any of the following options:

– SPANNED YES
– INCURSOR
– PRESORTED
– FORMAT INTERNAL
– FORMAT SQL/DS

• The table space to be loaded is a partition-by-growth table space, and the LOAD statement includes
the SHRLEVEL NONE option.

232 Db2 12 for z/OS: Utility Guide and Reference

• The table to be loaded has XML columns and is in a simple or segmented (non-UTS) table space,
and the LOAD statement includes the SHRLEVEL CHANGE option.

• The table to be loaded has LOB or XML columns, and the LOAD statement includes the SHRLEVEL
NONE option.

Related information:

MAX UTILS PARALLELISM field (PARAMDEG_UTIL subsystem parameter) (Db2 Installation and
Migration)
Specifying the size of locks for a table space (Db2 Performance)
“Improving LOAD performance” on page 314

PRESORT
Specifies that input records are to be sorted in clustering order before loading them into the target
table space. Existing rows in the table space are not affected.

For LOAD to presort the data, a clustering index is required. The clustering index can be implicitly
or explicitly created. Otherwise, if a clustering index does not exist, PRESORT is ignored. In the case
where a table space contains multiple tables and not all of those tables have a clustering index, all
input records are sorted. However, for any of these tables without a clustering index, the order of the
records after they are loaded might not be consistent with the order in the input data set.

Presort processing passes records in-memory and does not require a secondary data set to hold the
records.

If you specify PRESORT, you must also specify SORTDEVT, so that all necessary sort data sets are
dynamically allocated. The names for these sort data sets are described in “Data sets that LOAD uses”
on page 285.

You cannot specify PRESORT with any of the following options or objects:

• A table with LOB or XML columns
• A table space with a clone relationship
• A hash-organized table space
• FORMAT SPANNED
• FORMAT UNLOAD
• FORMAT SQL/DS
• FORMAT SPANNED YES

If you specify PRESORT with PRESORTED YES, PRESORTED YES is ignored.

LOAD ignores PRESORT in the following situations:

• If BACKOUT is specified
• If the utility is unable to determine the file size, such as when using the cross-loader function or

loading from tape. In these cases, specify NUMRECS or SORTKEYS to indicate the file size.

ROWFORMAT
Specifies the output row format in the affected table space or partition. This keyword has no effect on
LOB, catalog, directory, XML, or universal (UTS) table spaces participating in a CLONE relationship.

Important: ROWFORMAT is deprecated in Db2 12 for z/OS, meaning that its use is discouraged.
Although this keyword remains supported, support is likely to be removed eventually. See Deprecated
function in Db2 12 (Db2 for z/OS What's New?).

BRF
Specifies that the table space or partition being reorganized or replaced will be converted to or
remain in basic row format.

RRF
Specifies that the table space or partition being reorganized or replaced will be converted to or
remain in reorder row format.

Chapter 19. LOAD 233

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_paramdegutil.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_paramdegutil.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_uselocksizeclause.html
https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_deprecated.html
https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_deprecated.html

RBALRSN_CONVERSION
Specifies the RBA or LRSN format of the target object after the completion of the LOAD utility.

Important: RBALRSN_CONVERSION is deprecated, meaning that its use is discouraged. Although this
keyword remains supported, support is likely to be removed eventually. The utility fails if BASIC is
specified, or if NONE is specified for an object in the 6-byte format.

If you specify RBALRSN_CONVERSION, you must also specify the REPLACE keyword.

EXTENDED
Specifies that if an object is found in basic 6-byte format, it is converted to 10-byte extended
format.

EXTENDED is the default value.

NONE
Specifies that no conversion is performed.

The utility fails if RBALRSN_CONVERSION NONE is specified on a table space that is in basic
6-byte format.

If a CLONE relationship exists, the page set conversion cannot be performed. For clone relationships,
you must drop the clone table, convert the base table to extended 10-byte format, and then re-create
the clone table.

LOAD REPLACE of a base table space, when converting page format to extended, does not convert
versioned XML table spaces that are associated with that base table space.

RESUME
Indicates whether records are to be loaded into an empty or non-empty table space. For
nonsegmented table spaces, space is not reused for rows that have been marked as deleted or for
rows of dropped tables.

Important: Specifying LOAD RESUME (rather than PART integer RESUME) tells LOAD to serialize on
the entire table space, which can inhibit concurrent processing of separate partitions. If you want to
process other partitions concurrently, specify PART integer RESUME.

NO
Loads records into an empty table space. If the table space is not empty, and you have not used
REPLACE, a message is issued and the utility job step terminates with a job step condition code of
8.

For nonsegmented table spaces that contain deleted rows or rows of dropped tables, using the
REPLACE keyword provides increased efficiency.

The default value is NO, unless you override it with PART integer RESUME YES.

YES
Loads records into a non-empty table space. If the table space is empty, a warning message is
issued, but the table space is loaded. Loading begins at the current end of data in the table space.
Space is not reused for rows that are marked as deleted or for rows of dropped tables.

RESUME YES is not valid with SHRLEVEL REFERENCE.

LOAD RESUME YES SHRLEVEL CHANGE activates the before triggers and after triggers for each
row that is loaded.

If LOAD RESUME YES SHRLEVEL NONE is specified with COPYDDN or RECOVERYDDN, an inline
image copy will be created during LOAD processing. The inline image copy will be a full copy for
the table space. If individual partitions are specified using INTO TABLE PART, the image copy and
SYSCOPY records will only include those partitions.

BACKOUT
Specifies whether to delete all rows loaded by the current LOAD operation if any record would leave
the object unavailable. YES is the default value if the BACKOUT keyword is specified alone. However,
no BACKOUT processing occurs unless a non-zero DISCARDS value is specified and the number of
discarded records exceeds the DISCARDS value.

234 Db2 12 for z/OS: Utility Guide and Reference

BACKOUT YES is supported only with RESUME YES and SHRLEVEL NONE; you cannot specify
REPLACE or RESUME NO at the table space level or in any INTO TABLE PART clauses. You also cannot
specify INCURSOR with BACKOUT YES.

YES
Specifies that all rows loaded by the current LOAD operation are deleted if any input record would
leave the object unavailable. The table space is available at the completion of the LOAD. YES is the
default when BACKOUT is specified.

NO
Specifies that updates made by LOAD are not be rolled back if an error record is found. This
behavior is the default when the BACKOUT keyword is not specified.

SHRLEVEL
Specifies the extent to which applications can concurrently access the table space or partition during
the LOAD utility job. The following parameter values are listed in order of increasing extent of allowed
concurrent access.
NONE

Specifies that applications have no concurrent access to the table space or partition.
REFERENCE

Specifies that applications can concurrently read from the table space or partition into which
LOAD is loading data, except for the duration of the SWITCH phase.

LOAD REPLACE SHRLEVEL REFERENCE specifies that data is reloaded into a shadow copy of the
target objects, and LOAD switches the future access of an application from the original copy to
the shadow copy in the SWITCH phase. This option is not supported on table spaces with clone
relationship, or on target table defined with LOB or XML column.

SHRLEVEL REFERENCE requires that REPLACE be specified, either at the table-space level or in an
INTO TABLE PART clause.

If you specify SHRLEVEL REFERENCE, the ENFORCE NO option is used.

If a LOAD REPLACE SHRLEVEL REFERENCE job fails to acquire the necessary drain, the utility
terminates with return code 8.

CHANGE
Specifies that applications can concurrently read from and write to the table space or partition
into which LOAD is loading data for the majority of the LOAD duration.

A LOAD SHRLEVEL CHANGE job functions like a mass INSERT. Whereas a regular LOAD job drains
the entire table space, LOAD SHRLEVEL CHANGE functions like an INSERT statement and uses
claims when it accesses an object.

If you specify SHRLEVEL CHANGE, you cannot specify any of the following parameters:

• INCURSOR
• RESUME NO
• REPLACE
• KEEPDICTIONARY
• LOG NO
• ENFORCE NO
• STATISTICS
• COPYDDN
• RECOVERYDDN
• MAPDDN
• PREFORMAT
• REUSE
• PART integer REPLACE

Chapter 19. LOAD 235

If you are loading individual partitions and specify SHRLEVEL CHANGE, RESUME YES must also be
specified. You can either specify RESUME YES on the individual PART clauses or inherit it from the
main LOAD statement.

LOAD RESUME YES SHRLEVEL CHANGE does not perform the SORT, BUILD, SORTBLD, INDEXVAL,
or ENFORCE phases, and the compatibility and concurrency considerations differ.

Normally, a LOAD RESUME YES job loads the records at the end of the already existing records.
However, for a LOAD RESUME YES job with the SHRLEVEL CHANGE option, the utility tries to insert
the new records in available free space as close to the clustering order as possible. This LOAD job
does not create any additional free pages. If you insert many records, these records are likely to
be stored out of clustering order. In this case, you should run the REORG TABLESPACE utility after
the LOAD utility loads the records.

Recommendation: If the LOAD utility loads many records, run RUNSTATS SHRLEVEL CHANGE
UPDATE SPACE and then a conditional REORG.

When an identity column exists in the table that is being loaded, performance can be improved by
specifying the CACHE attribute for the identity column.

Lock escalation is disabled on XML table spaces for LOAD RESUME YES SHRLEVEL CHANGE.

Log records that Db2 creates during LOAD RESUME YES SHRLEVEL CHANGE can be used by Db2
DataPropagator, if the tables that are being loaded are defined with DATA CAPTURE CHANGES.

LOAD jobs with the SHRLEVEL CHANGE option do not insert any records into SYSIBM.SYSCOPY.

Before and after row triggers are activated only for SHRLEVEL CHANGE. Statement triggers for
each row are also activated for LOAD RESUME YES SHRLEVEL CHANGE.

REPLACE
Indicates whether the table space and all its indexes need to be reset to empty before records are
loaded. With this option, the newly loaded rows replace all existing rows of all tables in the table
space, not just those of the table that you are loading. ForDb2 STOGROUP-defined data sets, the
data set is deleted and redefined with this option, unless you also specified the REUSE option. You
must have LOAD authority for all tables in the table space where you perform LOAD REPLACE. If you
attempt a LOAD REPLACE without this authority, you get an error message.

You cannot use REPLACE with the PART integer REPLACE option of INTO TABLE; you must either
replace an entire table space by using the REPLACE option or replace a single partition by using the
PART integer REPLACE option of INTO TABLE.

Specifying LOAD REPLACE (rather than PART integer REPLACE) tells LOAD to serialize at the table
space level. If you want to serialize at the partition level, specify PART integer REPLACE. See the
information about specifying REPLACE at the partition level under the keyword descriptions for INTO
TABLE.

Restrictions:

• LOAD REPLACE is not allowed on a table that is defined with data versioning.
• LOAD REPLACE is not allowed on a table space after RECOVER was run on that table space to a point

in time before pending definition changes were materialized. Before running LOAD REPLACE, you
need to run REORG on the entire table space to complete the point-in-time recovery process.

• LOAD REPLACE is not allowed on an archive-enabled table. (LOAD REPLACE is allowed on the table
space that contains the archive table.)

“Replacing data with LOAD” on page 296

COPYDDN (ddname1,ddname2)

Specifies the DD statements for the primary (ddname1) and backup (ddname2) copy data sets for the
image copy.

236 Db2 12 for z/OS: Utility Guide and Reference

ddname is a DD name or a TEMPLATE name specification from a previous TEMPLATE control
statement. If utility processing detects that the specified name is both a DD name in the current
job step and a TEMPLATE name, the utility uses the DD name. The default value is SYSCOPY for the
primary copy. No default exists for the backup copy.

You can specify COPYDDN with REPLACE or with RESUME YES SHRLEVEL NONE:

• If COPYDDN is specified with REPLACE, a full image copy data set (SHRLEVEL REFERENCE) is
created for the table or partitions that are specified when LOAD executes. The table space or
partition for which an image copy is produced is not placed in COPY-pending status.

• If COPYDDN is specified with RESUME YES SHRLEVEL NONE, an inline image copy is created during
LOAD processing. The inline image copy will be a full copy for the table space. If individual partitions
are specified using INTO TABLE PART, the image copy and SYSCOPY records include only those
partitions. If COPYDDN is specified at the table space level, it cannot be specified at the INTO TABLE
PART level.

When the ENFORCE or INDEXVAL phases are not executed, image copies that are taken during LOAD
REPLACE are not recommended for use with RECOVER TOCOPY, because these image copies might
contain unique index violations, referential constraint violations, or index evaluation errors.

If you specify COPYDDN at the table space level and also specify at least one INTO TABLE PART
clause, a sequential inline copy will be taken that includes only pages of the partitions that are
specified in the LOAD statement. The LOAD operation is serialized at the partition level so that
concurrent LOAD jobs can run against other partitions within the same table space. Additionally, any
global copy options, such as the specified tape drive, apply to all partition-level copies.

If you specify COPYDDN when loading a table with XML data, an inline copy is taken only of the base
table space, not the XML table space.

If you specify COPYDDN when loading a table with LOB columns, Db2 does not create a copy of any
index, LOB table space, or XML table space. You must perform these tasks separately.

RECOVERYDDN (ddname3,ddname4)

Specifies the DD statements for the primary (ddname3) and backup (ddname4) copy data sets for the
image copy at the recovery site.

ddname is a DD name or a TEMPLATE name specification from a previous TEMPLATE control
statement. If utility processing detects that the specified name is both a DD name in the current
job step and a TEMPLATE name, the utility uses the DD name.

You can specify RECOVERYDDN with REPLACE or with RESUME YES SHRLEVEL NONE. If
RECOVERYDDN is specified at the table space level, it cannot be specified at the INTO TABLE PART
level.

You cannot have duplicate image copy data sets.

The restrictions and requirements that are listed in the description of COPYDDN also apply to
RECOVERYDDN.

FLASHCOPY
Specifies whether FlashCopy technology is used to create a copy of the object. Valid values are YES,
NO, or CONSISTENT. When FlashCopy is used, a separate data set is created for each partition or
piece of the object.

Specify YES or CONSISTENT only if the Db2 data sets are on FlashCopy Version 2 disk volumes.

The FlashCopy specifications on the utility control statement override any specifications for FlashCopy
that are defined by using the Db2 subsystem parameters. If the FlashCopy subsystem parameters
specify the use of FlashCopy as the default behavior of this utility, the FLASHCOPY option can be
omitted from the utility control statement.

Chapter 19. LOAD 237

Important: If the input data set is less than one cylinder, FlashCopy technology might not be used
for copying the objects regardless of the FLASHCOPY settings. The copy is performed by IDCAMS if
FlashCopy is not used.

NO
Specifies that no FlashCopy is made. NO is the default value for FLASHCOPY.

YES
Specifies that FlashCopy technology is used to copy the object.

Important: Under the following circumstances, the COPY utility might not use FlashCopy even
though YES is specified:

• FlashCopy Version 2 disk volumes are not available
• The source tracks are already the target of a FlashCopy operation
• The target tracks are the source of a FlashCopy operation
• The maximum number of relationships for the copy is exceeded

In the event that FlashCopy is not used, the LOAD utility uses traditional I/O methods to copy the
object, which can result in longer than expected execution time.

CONSISTENT
When SHRLEVEL CHANGE is specified, specifies that FlashCopy technology is used to copy the
object and that any uncommitted work included in the copy is backed out of the copy to make the
copy consistent. If SHRLEVEL NONE is specified, the image copy is already consistent and you do
not need to specify CONSISTENT.

A consistent FlashCopy image copy can by used for recovery without also requiring a sequential
format image copy.

Specifying FLASHCOPY CONSISTENT requires additional time and system resources during utility
processing, because the utility must read the logs and apply the changes to the image copy.
Similarly, recovering from a consistent FlashCopy image copy also requires additional time and
system resources to read the logs and reapply work that was previously backed out.

Restriction: CONSISTENT cannot be specified when copying objects that have been defined with
the NOT LOGGED attribute. If CONSISTENT is specified for an object that is defined with the NOT
LOGGED attribute, the utility does not make a copy of the object and issues message DSNU076I
with return code 8.

Related information:

“FlashCopy image copies” on page 144
“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on page 42

FCCOPYDDN
Specifies the template to be used to create the FlashCopy image copy data set names. If a value is not
specified for FCCOPYDDN on the LOAD control statement when FlashCopy is used, the value specified
on the FCCOPYDDN subsystem parameter determines the template to be used.
(template-name)

The data set names for the FlashCopy image copy are allocated according to the template
specification. For table space or index space level FlashCopy image copies, because a data set
is allocated for each partition or piece, ensure that the data set naming convention in the template
specification is unique enough. Use the &DSNUM variable, which resolves to a partition number or
piece number at execution time.

STATISTICS
Specifies the gathering of statistics for a table space, index, or both; the statistics are stored in the
Db2 catalog.

238 Db2 12 for z/OS: Utility Guide and Reference

If you specify the STATISTICS keyword with no other statistics-spec or correlation-stats-spec options,
the utility gathers only table space statistics. Statistics are collected on a base table space, but not on
a LOB table space or XML table space.

Restrictions:

• If you specify STATISTICS for encrypted data, Db2 might not provide useful statistics on this data.
• You cannot specify STATISTICS if the named table is a table clone.

All tables identified by the STATISTICS TABLE keyword must belong to the table space of the specified
table or tables in the INTO TABLE option of the LOAD utility control statement.

TABLE
Specifies the table for which column information is to be gathered.

Do not specify STATISTICS TABLE table-name with the LIST keyword. Instead, specify STATISTICS
TABLE (ALL).

(ALL)
Specifies that information is to be gathered for all columns of all tables in the table space.

(table-name)
Specifies the tables for which column information is to be gathered. If you omit the qualifier, the
user identifier for the utility job is used. Enclose the table name in quotation marks if the name
contains a blank.

If you specify more than one table, you must repeat the TABLE option. Multiple TABLE options
must be specified entirely before or after any INDEX keyword that may also be specified. For
example, the INDEX keyword may not be specified between any two TABLE keywords.

SAMPLE integer
Indicates the percentage of rows to be sampled when collecting statistics on non-leading-indexed
columns of an index or non-indexed columns. You can specify any value from 1 through 100.

The default value is 25. The SAMPLE option is not allowed for LOB table spaces.

USE PROFILE
Specifies a stored statistics profile that is used to gather statistics for a table. The statistics profile is
created using the SET PROFILE option and is updated using the UPDATE PROFILE option.

The column, column group, and index specifications are not allowed as part of the control statement,
but are used when stored in the statistics profile.

If no profile exists for the specified table, default statistics are collected:

• When a table name is not specified, TABLE ALL INDEX ALL is used for the profile specification.
• When a table name is specified, COLUMN ALL INDEX ALL is used for the profile specification.

When you specify USE PROFILE, the profile options are included in SYSPRINT in message
DSNU1376I.

FL 507 Additionally, Db2 deletes existing statistics that are not included in the profile. All frequency,
keycard, and histogram statistics that are not part of the profile are deleted from the catalog. These
statistics are deleted for only the specified table or partition. Statistics are not deleted from catalog
history tables. If you specify UPDATE NONE or UPDATE SPACE, no statistics are deleted.

Related information:

Statistics profiles (Db2 Performance)
Creating statistics profiles (Db2 Performance)
“Statistics profile syntax” on page 720

COLUMN
Specifies columns for which column information is to be gathered.

You can specify this option only if you specify a particular table for which statistics are to be gathered
(TABLE (table-name)). If you specify particular tables and do not specify the COLUMN option, the

Chapter 19. LOAD 239

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_runstatsprofiles.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_setrunstatsprofiles.html

default, COLUMN(ALL), is used. If you do not specify a particular table when using the TABLE option,
you cannot specify the COLUMN option; however, COLUMN(ALL) is assumed.
(ALL)

Specifies that statistics are to be gathered for all columns in the table.
(column-name, …)

Specifies the columns for which statistics are to be gathered.

You can specify a list of column names; the maximum is 10. If you specify more than one column,
separate each name with a comma.

INDEX
Specifies indexes for which information is to be gathered. Column information is gathered for the first
column of the index. All the indexes must be associated with the same table space, which must be the
table space that is specified in the TABLESPACE option.

Do not specify STATISTICS INDEX index-name with the LIST keyword. Instead, specify STATISTICS
INDEX (ALL).

(ALL)
Specifies that the column information is to be gathered for all indexes that are defined on tables
that are contained in the table space.

(index-name)
Specifies the indexes for which information is to be gathered. Enclose the index name in quotation
marks if the name contains a blank.

COLGROUP (column-name, ...)
Indicates that the specified set of columns are treated as a group. This option enables inline statistics
to collect a cardinality value on the specified column group. Inline statistics ignores COLGROUP when
processing XML table spaces and indexes.

When you specify the COLGROUP keyword, inline statistics collects correlation statistics for the
specified column group. If you want inline statistics to also collect distribution statistics, specify the
FREQVAL option with COLGROUP.

(column-name, ...) specifies the names of the columns that are part of the column group.

When you define a column group on a single column, you can potentially improve RUNSTATS
performance by specifying the STATCLGMEMSRT option or changing the value of the STATCLGSRT
subsystem parameter. You can use these options to avoid column group sorts by external sort
programs.

To specify more than one column group, repeat the COLGROUP option.

Restriction: The length of the COLGROUP value cannot exceed the maximum length of the COLVALUE
column in the SYSIBM.SYSCOLDIST catalog table.

Related information:

STATISTICS COLGROUP DATA SORT STG LIMIT field (STATCLGSRT subsystem parameter) (Db2
Installation and Migration)

FREQVAL
Indicates, when specified with the COLGROUP option, that frequency statistics are also to be gathered
for the specified group of columns. (COLGROUP indicates that cardinality statistics are gathered.) One
group of statistics is gathered for each column. You must specify COUNT integer with COLGROUP
FREQVAL. The utility ignores FREQVAL MOST/LEAST/BOTH when processing XML table spaces .
COUNT integer

Indicates the number of frequently occurring values to be collected from the specified column
group. For example, COUNT 20 means that Db2 collects 20 frequently occurring values from the
column group. When the COUNT keyword is not specified, the utility automatically determines
the count value and collects the most frequently occurring values. Specifying a value of 1000 or
more can increase the prepare time for some SQL statements. Additionally, specifying a very large

240 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statclgsrt.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statclgsrt.html

COUNT value will use a large amount of storage, which can cause storage constraints during utility
execution on partitioned objects with hundreds of partitions.
MOST

Indicates that the utility is to collect the most frequently occurring values for the specified set
of columns when COLGROUP is specified.

BOTH
Indicates that the utility is to collect the most and the least frequently occurring values for the
specified set of columns when COLGROUP is specified.

LEAST
Indicates that the utility is to collect the least frequently occurring values for the specified set
of columns when COLGROUP is specified.

HISTOGRAM
Indicates, when specified with the COLGROUP option, that histogram statistics are to be gathered
for the specified group of columns. Inline statistics ignore HISTOGRAM when processing XML table
spaces and indexes.

Histogram statistics that you collect through inline statistics are not the same as histogram statistics
that you collect through RUNSTATS. Histogram statistics that you collect with inline statistics are only
rough estimates. To obtain more exact statistics, use RUNSTATS.

NUMQUANTILES integer
Indicates how many quantiles that the utility collects. The integer value must be greater than or equal
to one. The number of quantiles that you specify must never exceed the total number of distinct
values in the column or the column group. The maximum number of quantiles is 100.

When the NUMQUANTILES keyword is omitted, NUMQUANTILES takes a default value of 100. Based
on the number of records in the table, the number of quantiles is readjusted down to an optimal
number.

KEYCARD
The KEYCARD option is deprecated in the utility control statement and no longer needs to be specified
to collect cardinality statistics on the values in the key columns of an index.

When the STATISTICS and INDEX options are specified, the utility always collects all of the distinct
values in all of the 1 to n key column combinations in an index.n is the number of columns in the
index. With the deprecation of KEYCARD, this functionality cannot be disabled.

The utility tolerates the specification of the KEYCARD option. The utility does not issue any messages
if the control statement includes or excludes the KEYCARD option when STATISTICS and INDEX are
specified.

FREQVAL
Controls the collection of frequent-value statistics.If you specify FREQVAL, it must be followed by the
NUMCOLS keyword.
NUMCOLS

Indicates the number of key columns that are to be concatenated together when collecting
frequent values from the specified index. Specifying '3' means that frequent values are to be
collected on the concatenation of the first three key columns. The default value is 1, which means
that Db2 collects frequent values on the first key column of the index.

COUNT
Indicates the number of frequent values that are to be collected. Specifying '15' means that
Db2 collects 15 frequent values from the specified key columns. If the COUNT keyword is not
specified, Db2 collects statistics for an automatically determined number of frequently occurring
values.

HISTOGRAM
Indicates that histogram statistics are requested for the specified index.

Chapter 19. LOAD 241

NUMCOLS
The number of key columns that are to be concatenated when collecting histogram statistics from
the specified index.

NUMQUANTILES
The integer values that follows NUMQUANTILES indicates the number quantiles are requested.
The integer value must be greater than or equal to 1.

Histogram statistics can be collected only on keys with the same order if the specified key columns for
histogram statistics are of mixed order, a DSNU633I warning message is issued.

Related information:

Histogram statistics (Db2 Performance)
DSNU633I (Db2 Messages)

REPORT
Specifies whether a set of messages is to be generated to report the collected statistics.
NO

Indicates that the set of messages is not to be sent as output to SYSPRINT.
YES

Indicates that the set of messages is to be sent as output to SYSPRINT. The generated
messages are dependent on the combination of keywords (such as TABLESPACE, INDEX, TABLE,
and COLUMN) that are specified with the RUNSTATS utility. However, these messages are not
dependent on the specification of the UPDATE option. REPORT YES always generates a report of
SPACE and ACCESSPATH statistics.

UPDATE
Indicates whether the collected statistics are to be inserted into the catalog tables. UPDATE also
allows you to select statistics that are used for access path selection or statistics that are used by
database administrators.
ALL

Indicates that all collected statistics are to be updated in the catalog.
ACCESSPATH

Indicates that only the catalog table columns that provide statistics that are used for access path
selection are to be updated.

SPACE
Indicates that only the catalog table columns that provide statistics to help database
administrators assess the status of a particular table space or index are to be updated.

NONE
Indicates that no catalog tables are to be updated with the collected statistics. This option is valid
only when REPORT YES is specified.

STATCLGMEMSRT integer
Specifies the amount of memory that the utility can use for sorting records when collecting statistics
on a single column that is defined with the COLGROUP option. Use STATCLGMEMSRT to avoid column
group sorts by an external sort program, which can negatively affect the performance of statistics
collection.

integer specifies the number of megabytes of memory space that the utility can use for an in-memory
sort. If the amount of space that is needed for the sort exceeds the integer value, the utility invokes a
sort program. If you specify 0, the utility automatically invokes a sort program.

The amount of space that is needed for the column group sort depends on the following factors:

• The number of column groups for which the utility is collecting statistics
• The length of the single-column column group
• The number of distinct values in the column (cardinality)

The value of STATCLGMEMSRT overrides the value of the STATCLGSRT subsystem parameter.

242 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_histogramstatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu633i.html

Related information:

STATISTICS COLGROUP DATA SORT STG LIMIT field (STATCLGSRT subsystem parameter) (Db2
Installation and Migration)

INVALIDATECACHE
Indicates whether statements in the dynamic statement cache are invalidated as a result of the inline
statistics collection. This option does not prevent the utility from invalidating cached statements for
other reasons.
YES

Statements in the dynamic cache are invalidated for the objects that are specified in the job
statement.

NO
Statements in the dynamic cache are not invalidated by the collection of inline statistics for the
objects that are specified in the job statement. However, cached statements might be invalidated
by the utility for reasons other than the inline statistics, such as when the utility resolves objects in
restricted states or applies pending ALTER operations.

HISTORY
Specifies that all catalog table inserts or updates to the catalog history tables are to be recorded.

The default value is the value that is specified in the STATISTICS HISTORY field on panel DSNTIP6.

ALL
Indicates that all collected statistics are to be updated in the catalog history tables.

ACCESSPATH
Indicates that only the catalog history table columns that provide statistics that are used for
access path selection are to be updated.

SPACE
Indicates that only space-related catalog statistics are to be updated in catalog history tables.

NONE
Indicates that no catalog history tables are to be updated with the collected statistics.

FORCEROLLUP
Specifies whether aggregation or rollup of statistics is to take place when RUNSTATS is executed even
if statistics have not been gathered on some partitions; for example, partitions have not had any data
loaded. Aggregate statistics are used by the optimizer to select the best access path.
YES

Indicates that forced aggregation or rollup processing is to be done, even though some partitions
might not contain data.

NO
Indicates that aggregation or rollup is to be done only if data is available for all partitions.

If data is not available for all partitions, DSNU623I message is issued if the installation value for
STATISTICS ROLLUP on panel DSNTIP6 is set to NO.

KEEPDICTIONARY
Prevents the LOAD utility from building a new compression dictionary. LOAD retains the current
compression dictionary and uses it for compressing the input data. This option eliminates the cost
that is associated with building a new dictionary.

The KEEPDICTIONARY keyword is ignored for XML table spaces. If you specify REPLACE, any existing
dictionary for the XML table space or partition is deleted. If you do not specify REPLACE, any existing
dictionary for the XML table space or partition is saved.

Db2 ignores the KEEPDICTIONARY option during execution of a REORG or LOAD REPLACE that
changes the table space from basic row format to reordered row format.

This keyword is valid only if the table space that is being loaded is defined with compression.

If the table space or partition is empty, Db2 performs one of these actions:

Chapter 19. LOAD 243

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statclgsrt.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statclgsrt.html

• Db2 builds a dictionary if a compression dictionary does not exist, but only if the table space is not a
simple table space.

• Db2 keeps the dictionary if a compression dictionary exists.

If RESUME NO and REPLACE are specified when the table space or partition is not empty, Db2
performs the same actions as it does when the table space or partition is empty.

If the table space or partition is not empty and RESUME YES is specified, Db2 performs one of these
actions:

• Db2 does not build a dictionary if a compression dictionary does not exist.
• Db2 keeps the dictionary if a compression dictionary exists.

Note: You must use KEEPDICTIONARY to ensure that the compression dictionary is maintained.

Related information:

“Compressing data by using the LOAD utility ” on page 309

REUSE
Specifies (when used with REPLACE) that LOAD is to logically reset and reuse Db2-managed data
sets without deleting and redefining them. If you do not specify REUSE, Db2 deletes and redefines
Db2-managed data sets to reset them.

REUSE must be accompanied by REPLACE to do the logical reset for all data sets. However, if you
specify REUSE for the table space and REPLACE only at the partition level, only the replaced partitions
are logically reset.

If a data set has multiple extents, the extents are not released if you specify the REUSE parameter.

LOG
Indicates whether logging occurs during the RELOAD phase of the load process for LOAD SHRLEVEL
NONE and LOAD RESUME YES SHRLEVEL CHANGE execution. For LOAD RESUME YES SHRLEVEL
REFERENCE, and LOAD REPLACE SHRLEVEL REFERENCE, LOG NO always applies.
YES

Specifies normal logging during the load process. All records that are loaded are logged. If the
table space has the NOT LOGGED attribute, Db2 does the LOAD with no logging.

NO
Specifies no logging of data during the load process. If the table space has the LOGGED attribute,
the NO option sets the COPY-pending restriction against the table space or partition that the
loaded table resides in. No table or partition in the table space can be updated by SQL until the
restriction is removed. For ways to remove the restriction, see “Resetting COPY-pending status”
on page 333.

If you load a single partition of a partitioned table space and the table space has a secondary
index, some logging might occur during the build phase as Db2 logs any changes to the index
structure. This logging allows recoverability of the secondary index in case an abend occurs, and it
also allows concurrency.

Db2 treats table spaces that were created as NOT LOGGED as if you specified LOG NO. If you
specify LOG NO without specifying COPYDDN, the base table space is placed in COPY-pending
status. If XML columns are nullable and not loaded, only the base table space is placed in
COPY-pending status.

A LOB table space affects logging while Db2 loads a LOB column regardless of whether the LOB
table space was defined with LOG YES or LOG NO.

NOCOPYPEND
Specifies that LOAD is not to set the table space in the COPY-pending status, even though LOG
NO was specified. A NOCOPYPEND specification does not turn on or change any informational
COPY-pending (ICOPY) status for indexes. A NOCOPYPEND specification will not turn off any
COPY-pending status that was set prior to the LOAD. Normal completion of a LOAD LOG NO
NOCOPYPEND job returns a 0 code if no other errors or warnings exist.

244 Db2 12 for z/OS: Utility Guide and Reference

Db2 ignores a NOCOPYPEND specification if you also specified COPYDDN to make a local-
site inline image copy during the LOAD. If the table space has the NOT LOGGED attribute,
NOCOPYPEND is ignored.

Attention: Specify the NOCOPYPEND option only if the data in the table space can be
easily re-created by another LOAD job if the data is lost. If you do not take an image
copy following the LOAD, you cannot recover the table space by using the RECOVER
utility, and you might lose data.

WORKDDN (ddname1,ddname2)
Specifies the DD statements for the temporary work file for sort input and sort output. Temporary
work files for sort input and output are required if the LOAD involves tables with indexes.

ddname1 is the DD name for the temporary work file for sort input. The default value is SYSUT1.

ddname2 is the DD name for the temporary work file for sort output. The default value is SORTOUT.

The WORKDDN keyword specifies either a DD name or a TEMPLATE name specification from a
previous TEMPLATE control statement. If utility processing detects that the specified name is both
a DD name in the current job step and a TEMPLATE name, the utility uses the DD name. For more
information about TEMPLATE specifications, see Chapter 34, “TEMPLATE,” on page 751.

SORTKEYS
Specifies that index keys are to be sorted in parallel during the RELOAD and SORTBLD phase to
improve performance. This action is the default behavior if LOAD can estimate the input file size with
at least two or more indexes being built and SORTKEYS NO is not specified.
integer

Specifies an integer to provide an estimate of the number of index keys that are to be sorted.
Integer must be a positive integer between 0 and 562 949 953 421 311.

NO
Indicates that the default SORTKEYS behavior is to be turned off.

For sequential data sets on disk, LOAD attempts to compute the number of records being processed
based on the input data set size for SORTKEYS processing when neither SORTKEYS n nor NUMRECS
n are specified. If SORTKEYS n or NUMRECS n is specified, LOAD uses the provided value as the
estimated number of records to be processed.

If the NUMRECS keyword is specified at the table level in the same LOAD statement, you cannot
specify an integer value on the SORTKEYS keyword. To turn off parallel sorts, you can specify
SORTKEYS NO when the NUMRECS keyword is specified.

When SORTKEYS is specified, LOAD attempts to do a parallel index build when it can estimate the
amount of data or keys to be sorted. In the case of a single index case, LOAD tries to pipe the keys by
running the index sort concurrent to reload processing.

When SORTKEYS is not specified and LOAD cannot determine a valid estimate based on NUMRECS
specification, then, in the case of a single index, LOAD does not use parallel index build or key piping
but relies on a separate SORT and BUILD phase to process the index keys.

Related information:

“Improving LOAD performance” on page 314

FORMAT
Identifies the format of the input record. If you use FORMAT UNLOAD, FORMAT INTERNAL, or
FORMAT SQL/DS, it uniquely determines the format of the input, and no field specifications are
allowed in an INTO TABLE option.

If you omit FORMAT, the format of the input data is determined by the rules for field specifications.If
you specify FORMAT DELIMITED, the format of the input data is determined by the rules that are
described in Appendix G, “Delimited file format,” on page 1061.

Chapter 19. LOAD 245

UNLOAD
Specifies that the input record format is compatible with the Db2 unload format. (The Db2 unload
format is the result of REORG with the UNLOAD ONLY option.)

Input records that were unloaded by the REORG utility are loaded into the tables from which
they were unloaded, if an INTO TABLE option specifies each table. Do not add columns or change
column definitions of tables between the time you run REORG UNLOAD ONLY and LOAD FORMAT
UNLOAD.

Any WHEN clause on the LOAD FORMAT UNLOAD statement is ignored; Db2 reloads the records
into the same tables from which they were unloaded. Not allowing a WHEN clause with the
FORMAT UNLOAD clause ensures that the input records are loaded into the proper tables. Input
records that cannot be loaded are discarded.

If the DCB RECFM parameter is specified on the DD statement for the input data set, and the data
set format has not been modified since the REORG UNLOAD (ONLY) operation, the record format
must be variable (RECFM=V).

SQL/DS
Specifies that the input record format is compatible with the SQL/DS unload format. The data
type of a column in the table that is to be loaded must be the same as the data type of the
corresponding column in the SQL/DS table.

If the SQL/DS input contains rows for more than one table, the WHEN clause of the INTO TABLE
option indicates which input records are to be loaded into which Db2 table.

LOAD cannot load SQL/DS strings that are longer than the Db2 limit.

SQL/DS data that has been unloaded to disk under DB2 Server for VSE & VM resides in a simulated
z/OS-type data set with a record format of VBS. Consider this format when transferring the data
to another system that is to be loaded into a Db2 table (for example, the DB2 Server for VSE &
VM. FILEDEF must define it as a z/OS-type data set). Processing the data set as a standard CMS
file puts the SQL/DS record type field at the wrong offset within the records; LOAD is unable to
recognize them as valid SQL/DS input.

INTERNAL
Specifies that the input record format is in Db2 internal format. Db2 internal format is the format
that is produced by running UNLOAD with the FORMAT INTERNAL option.

Attention: FORMAT INTERNAL is a performance option that bypasses all data validity
checks. Incorrect use might result in serious problems, including data overlays and Db2
abnormal terminations. Those problems might occur during LOAD processing or when the
target table is accessed after it is loaded.

When FORMAT INTERNAL is specified:

• LOAD ignores any field specifications in the LOAD control statement.
• LOAD does no data conversion.

Restrictions:

• The definition of the table from which the input data was unloaded must match the definition of
the table into which the data is loaded exactly. If a column of the table into which data is loaded
has a field procedure, the corresponding column in the table from which the data was unloaded
must also have that field procedure.

• The input data must be in decompressed format.
• LOAD can load only one table at a time when FORMAT INTERNAL is specified.
• LOAD does not populate LOB or XML columns when FORMAT INTERNAL is specified. LOAD puts

the base table space in advisory CHECK-pending status.
• FORMAT INTERNAL cannot be specified with any of the following options:

– ASCII
– CCSID

246 Db2 12 for z/OS: Utility Guide and Reference

– CONTINUEIF
– DECFLOAT_ROUNDMODE
– EBCDIC
– FLOAT
– OVERRIDE(IDENTITY)
– IGNOREFIELDS
– INCURSOR
– NOSUBS
– SHRLEVEL CHANGE
– UNICODE
– WHEN

DELIMITED
Specifies that the input data file is in a delimited format. When data is in a delimited format, all
fields in the input data set are character strings or external numeric values. In addition, each
column in a delimited file is separated from the next column by a column delimiter character.

For each of the delimiter types that you can specify, you must ensure that the delimiter character
is specified in the code page of the source data. The delimiter character can be specified as either
a character or hexadecimal constant. For example, to specify '#' as the delimiter, you can specify
either COLDEL '#' or COLDEL X'23'. If the utility statement is coded in a character type that is
different from the input file, such as a utility statement that is coded in EBCDIC and input data that
is in Unicode, you should specify the delimiter character in the utility statement as a hexadecimal
constant, or the result can be unpredictable.

You cannot specify the same character for more than one type of delimiter (COLDEL, CHARDEL,
and DECPT). If the input data includes external date, time, and timestamp formats, the separators
cannot use the same character that is used for a delimiter. For more information about delimiter
restrictions, see “Loading delimited files” on page 304.

Unicode input data for FORMAT DELIMITED must be UTF-8, CCSID 1208.

If you specify the FORMAT DELIMITED option, you cannot use any of the following options:

• CONTINUEIF
• INCURSOR
• Multiple INTO TABLE statements
• WHEN
• CCSID in a field specification

Also, LOAD ignores any specified POSITION statements within the LOAD utility control statement.

For more information about using delimited output and delimiter restrictions, see “Loading
delimited files” on page 304. For more information about delimited files see Appendix G,
“Delimited file format,” on page 1061.

COLDEL coldel
Specifies the column delimiter that is used in the input file. The default value is a comma (,).
For most ASCII and UTF-8 data, this value is X'2C', and for most EBCDIC data, this value is a
X'6B'.

CHARDEL chardel
Specifies the character string delimiter that is used in the input file. The default value is a
double quotation mark (“). For most ASCII and UTF-8 data, this value is X'22', and for most
EBCDIC data, this value is X'7F'.

To delimit character strings that contain the character string delimiter, repeat the character
string delimiter where it is used in the character string. LOAD interprets any pair of character
delimiters that are found between the enclosing character delimiters as a single character. For

Chapter 19. LOAD 247

example, the phrase “what a ““nice warm”” day” is interpreted as what a “nice
warm” day. The LOAD utility recognizes these character delimiter pairs for only CHAR,
VARCHAR, and CLOB fields.

Character string delimiters are required only when the string contains the CHARDEL character.
However, you can put the character string delimiters around other character strings. Data
that has been unloaded in delimited format by the UNLOAD utility includes character string
delimiters around all character strings.

DECPTdecpt
Specifies the decimal point character that is used in the input file. The default value is a period
(.). For most ASCII and UTF-8 data, this value is X'2E', and for most EBCDIC data, this value is
X'4B'.

Note: If you use an application defaults load module (either DSNHDECP, which is the default, or
a user-specified application defaults load module), ensure that the specified decimal value is the
same as the decimal value that is used in the input data. You must specify the decimal value to
match the decimal value that is used in the input data.

SPANNED
Indicates whether records are to be loaded from a VBS data set in spanned record format.
YES

Indicates that the LOAD utility is to load data from spanned records.

The input data set must be in spanned record format and all LOB and XML data must be at the
end of the record.

You must provide a field specification list with all LOB and XML fields at the end of the record.
For LOB and XML columns, specify POSITION(*).

If you specify FORMAT SPANNED YES, do not reference LOB or XML data in the field-selection-
criterion of a WHEN clause.

You cannot specify the INCURSOR option with SPANNED YES.

If you specify FORMAT SPANNED YES, the LOAD utility does not use parallel processing.

NO
Indicates that the LOAD utility is not to load data in spanned record format.

Related information:

“Unloading data in spanned record format” on page 817

FLOAT
Specifies that LOAD is to expect the designated format for floating point numbers.
(S390)

Specifies that LOAD is to expect that floating point numbers are provided in System/390®

hexadecimal floating point (HFP) format. (S390) is the format that Db2 stores floating point
numbers in. It is also the default value if you do not explicitly specify the FLOAT keyword.

(IEEE)
Specifies that LOAD is to expect that floating point numbers are provided in IEEE binary floating
point (BFP) format.

When you specify FLOAT(IEEE), Db2 converts the BFP data to HFP format as the data is being
loaded into the Db2 table. If a conversion error occurs while Db2 is converting from BFP to HFP,
Db2 places the record in the discard file.

FLOAT(IEEE) is mutually exclusive with any specification of the FORMAT keyword. If you specify
both FLOAT(IEEE) and FORMAT, Db2 issues message DSNU070I.

BFP format is sometimes called IEEE floating point.

EBCDIC
Specifies that the input data file is EBCDIC. The default is EBCDIC.

248 Db2 12 for z/OS: Utility Guide and Reference

ASCII
Specifies that the input data file is ASCII. Numeric, date, time, and timestamp internal formats are not
affected by the ASCII option.

UNICODE
Specifies that the input data file is Unicode. The UNICODE option does not affect the numeric internal
formats.

CCSID
Specifies up to three coded character set identifiers (CCSIDs) for the input file. The first value
specifies the CCSID for SBCS data that is found in the input file, the second value specifies the CCSID
for mixed DBCS data, and the third value specifies the CCSID for DBCS data. If any of these values
is specified as 0 or omitted, the CCSID of the corresponding data type in the input file is assumed to
be the same as the installation default CCSID. If the input data is EBCDIC, the omitted CCSIDs are
assumed to be the EBCDIC CCSIDs that are specified at installation, and if the input data is ASCII, the
omitted CCSIDs are assumed to be the ASCII CCSIDs that are specified at installation. If the CCSIDs
of the input data file do not match the CCSIDs of the table that is being loaded, the input data is
converted to the table CCSIDs before being loaded.

integer is any valid CCSID specification.

If the input data is Unicode, the default CCSID values are the Unicode CCSIDs that are specified at
system installation.

NOSUBS
Specifies that LOAD is not to accept substitution characters in a string.

Place a substitution character in a string when that string is being converted from ASCII to EBCDIC, or
when the string is being converted from one CCSID to another. For example, this substitution occurs
when a character (sometimes referred to as a code point) that exists in the source CCSID (code page)
does not exist in the target CCSID (code page).

When you specify the NOSUBS option and the LOAD utility determines that a substitution character
has been placed in a string as a result of a conversion, it performs one of the following actions:

• If discard processing is active: Db2 issues message DSNU310I and places the record in the
discard file.

• If discard processing is not active: Db2 issues message DSNU334I, and the utility abnormally
terminates.

ENFORCE
Specifies whether LOAD is to enforce check constraints and referential constraints, except
informational referential constraints, which are not enforced.
CONSTRAINTS

Indicates that constraints are to be enforced. If LOAD detects a violation, it deletes the errant row
and issues a message to identify it. If you specify this option and referential constraints exist, sort
input and sort output data sets must be defined.

You cannot specify ENFORCE CONSTRAINTS with SHRLEVEL REFERENCE.

NO
Indicates that constraints are not to be enforced. This option places the target table space in the
CHECK-pending status if at least one referential constraint or check constraint is defined for the
table.

NOCHECKPEND
Specifies that LOAD does not set the target table space in the CHECK-pending status if at least
one referential constraint or check constraint is defined for the table. This option applies only when
ENFORCE NO is specified or enforced by the LOAD utility. A NOCHECKPEND specification does not
remove any CHECK-pending status that was set prior to the LOAD.

Chapter 19. LOAD 249

ERRDDN ddname
Specifies the DD statement for a work data set that is being used during error processing. Information
about errors that are encountered during processing is stored in this data set. A SYSERR data set is
required if you request discard processing.

ddname is the DD name.

The default value is SYSERR.

The ERRDDN keyword specifies either a DD name or a TEMPLATE name specification from a previous
TEMPLATE control statement. If utility processing detects that the specified name is both a DD name
in the current job step and a TEMPLATE name, the utility uses the DD name. For more information
about TEMPLATE specifications, see Chapter 34, “TEMPLATE,” on page 751.

MAPDDN ddname
Specifies the DD statement for a work data set that is to be used during error processing. The work
data set is used to correlate the identifier of a table row with the input record that caused an error. A
SYSMAP data set is required if you specify ENFORCE CONSTRAINTS and the tables have a referential
relationship, or if you request discard processing when loading one or more tables that contain unique
indexes or extended indexes.

ddname is the DD name.

The default value is SYSMAP.

The MAPDDN keyword specifies either a DD name or a TEMPLATE name specification from a previous
TEMPLATE control statement. If utility processing detects that the specified name is both a DD name
in the current job step and a TEMPLATE name, the utility uses the DD name. For more information
about TEMPLATE specifications, see Chapter 34, “TEMPLATE,” on page 751.

DISCARDDN ddname
Specifies a DD name or a template name for a discard data set that is to hold copies of records that
are not loaded (for example, if they contain conversion errors). The discard data set also holds copies
of records that are loaded and then removed (because of unique index errors, referential or check
constraint violations, or index evaluation errors). Flag input records for discarding during RELOAD,
INDEXVAL, and ENFORCE phases. However, the discard data set is not written until the DISCARD
phase when the flagged records are copied from the input data set to the discard data set. The discard
data set must be a sequential data set that can be written to by BSAM, with the same record format,
record length, and block size as the input data set.

ddname is the DD name.

The default value is SYSDISC.

If you omit the DISCARDDN option, the utility application program saves discarded records only if a
SYSDISC DD statement is in the JCL input.

The DISCARDDN keyword is not supported if you use a BatchPipes® file as an input to LOAD, using
INDDN name for TEMPLATE SUBSYS.

DISCARDS integer
Specifies the maximum number of source records that are to be written on the discard data set.
integer can range 0 - 2147483647. If the discard maximum is reached, LOAD abnormally terminates,
the discard data set is empty, and you cannot see which records were discarded. You can either
restart the job with a larger limit, or terminate the utility.

DISCARDS 0 specifies that you do not want to set a maximum value. The entire input data set can be
discarded.

The default value is 0.

LOAD task parallelism: If a discard maximum is specified, that limit applies separately to each LOAD
task running on a target system.

250 Db2 12 for z/OS: Utility Guide and Reference

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically allocated by the external
sort program. You can specify any disk device type that is acceptable to the DYNALLOC parameter
of the SORT or OPTION options for the sort program. Tape devices are not supported by the sort
program.

If you omit SORTDEVT and a sort is required, you must provide the DD statements that the sort
application program needs for the temporary data sets.

A TEMPLATE specification does not dynamically allocate sort work data sets. The SORTDEVT keyword
controls dynamic allocation of these data sets.

SORTNUM integer
Specifies the number of temporary data sets that are to be dynamically allocated by the sort
application program.

integer is the number of temporary data sets that can range from 2 to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and omit SORTNUM, no value is
passed to the sort program. In this case, the sort program uses its own default.

You need at least two sort work data sets for each sort. The SORTNUM value applies to each sort
invocation in the utility. For example, if three indexes, SORTKEYS is specified, there are no constraints
that limit parallelism, and SORTNUM is specified as 8, a total of 24 sort work data sets are allocated
for a job.

Each sort work data set consumes both above-the-line and below-the-line virtual storage, so if you
specify a value for SORTNUM that is too high, the utility might decrease the degree of parallelism
due to virtual storage constraints, and possibly decreasing the degree down to one, meaning no
parallelism.

Important: The SORTNUM keyword is ignored if the IGNSORTN subsystem parameter is set to YES.

CONTINUEIF
Indicates that you want to be able to treat each input record as a portion of a larger record. After
CONTINUEIF, write a condition in one of the following forms:

(start:end) = X'byte-string'
(start:end) = 'character-string'

If the condition is true in any record, the next record is concatenated with it before loading takes
place. You can concatenate any number of records into a larger record, up to a maximum size of
32767 bytes.

Character-string constants should be specified in LOAD utility control statements in the character set
that matches the input data record. Specify EBCDIC constants in the LOAD control statement if your
data is in EBCDIC and specify UNICODE constants if your data is in UNICODE. You may also code
the CONTINUEIF condition using the hexadecimal form. For example, use (1:1)=X'31' rather than
(1:1)='1'.
(start:end)

Specifies column numbers in the input record; the first column of the record is column 1. The two
numbers tell the starting and ending columns of a continuation field in the input record.

Other field position specifications (such as those for WHEN, POSITION, or NULLIF) refer to the
field position within the final assembled load record, not within the input record.

The continuation field is removed from the input record and is not part of the final load record.

If you omit :end, Db2 assumes that the length of the continuation field is the length of the byte
string or character string. If you use :end, and the length of the resulting continuation field is
not the same as the length of the byte string or character string, the shorter string is padded.
Character strings are padded with blanks. Hexadecimal strings are padded with zeros.

Chapter 19. LOAD 251

X'byte-string'
Specifies a string of hexadecimal characters. This byte-string value in the continuation field
indicates that the next input record is a continuation of the current load record. Records with this
byte-string value are concatenated until the value in the continuation field changes. For example,
the following CONTINUEIF specification indicates that for any input records that have a value of
X'FF'in column 72, LOAD is to concatenate that record with the next input record.

CONTINUEIF (72) = X'FF'

'character-string'
Specifies a string of characters that has the same effect as X'byte-string'. For example, the
following CONTINUEIF specification indicates that for any input records that have the string CC in
columns 99 and 100, LOAD is to concatenate that record with the next input record.

CONTINUEIF (99:100) = 'CC'

IGNORE
Specifies that the LOAD utility ignores records that it rejects for the specified reasons. If discarding
is specified, no ignored rows are loaded or written to the DISCARD data set. If discarding is not
specified, ignored records do not cause the LOAD utility to terminate.

Use the record count messages in the Utility output to determine the number of records ignored.

WHEN
Specifies that records that do not satisfy the WHEN clause are ignored.

PART
Specifies that records that do not satisfy any partition being loaded are ignored.

CONV
Specifies that records that cause a conversion error are ignored.

VALPROC
Specifies that records that fail a validation procedure are ignored.

IDERROR
Specifies that records that have an identity column value that is out of range are ignored.

DUPKEY
Specifies that records that cause a duplicate key error are ignored.

Use the record count messages in the Utility output to determine the number of records ignored.

DECFLOAT_ROUNDMODE
Specifies the rounding mode to use when DECFLOATs are manipulated. The following rounding modes
are supported:
ROUND_CEILING

Round toward +infinity. The discarded digits are removed if they are all zero or if the sign is
negative. Otherwise, the result coefficient should be incremented by 1 (rounded up).

ROUND_DOWN
Round toward 0 (truncation). The discarded digits are ignored.

ROUND_FLOOR
Round toward -infinity. The discarded digits are removed if they are all zero or positive. Otherwise,
the sign is negative and the result coefficient should be incremented by 1 (rounded up).

ROUND_HALF_DOWN
Round to the nearest number. If equidistant, round down. If the discarded digits are greater than
0.5, the result coefficient should be incremented by 1 (rounded up). The discarded digits are
ignored if they are 0.5 or less.

ROUND_HALF_EVEN
Round to the nearest number. If equidistant, round so that the final digit is even. If the discarded
digits are greater than .05, the result coefficient should be incremented by 1 (rounded up). The
discarded digits are ignored if they are less than 0.5. If the result coefficient is .05 and the

252 Db2 12 for z/OS: Utility Guide and Reference

rightmost digit is even, the result coefficient is not altered. If the result coefficient is .05 and the
rightmost digit is odd, the result coefficient should be incremented by 1 (rounded up).

ROUND_HALF_UP
Round to nearest. If equidistant, round up. If the discarded digits are greater than or equal to 0.5,
the result coefficient should be incremented by 1 (rounded up). Otherwise the discarded digits are
ignored.

ROUND_UP
Round away from 0. If all of the discarded digits are 0, the result is unchanged. Otherwise, the
result coefficient should be incremented by 1 (rounded up).

If you do not specify DECFLOAT_ROUNDMODE, the LOAD statement uses the DFPDEFDM value in the
application defaults load module as the default value. The application defaults load module is either
DSNHDECP, which is the default, or a user-specified application defaults load module.

OVERRIDE
Allows unloaded data to be reloaded into the specified types of GENERATED ALWAYS columns.
SYSTEMPERIOD

Allows unloaded data to be reloaded into a GENERATED ALWAYS row-begin or row-end column.
Row-begin and row-end columns are intended to be used in the definition of a system period, but
the period does not need to exist when the SYSTEMPERIOD keyword is specified.

If you specify OVERRIDE(SYSTEMPERIOD) and include input field specifications in the LOAD
statement, both the row-begin and row-end columns that can be used to define a system period
must be specified. In the specification for these columns, the NULLIF and DEFAULTIF options are
not allowed.

IDENTITY
Allows unloaded data to be reloaded into a GENERATED ALWAYS identity column.

If you specify OVERRIDE(IDENTITY) and include input field specifications in the LOAD statement,
the identity column must be specified. In the specification for this column, the NULLIF and
DEFAULTIF options are not allowed.

Specify OVERRIDE(IDENTITY) when you want to run LOAD with the INTO TABLE PART clause and
a generated identity column is part of the partitioning index. (The generated identity column can
be defined as GENERATED ALWAYS or GENERATED BY DEFAULT.)

TRANSID
Allows unloaded data to be reloaded into a GENERATED ALWAYS column that is defined as a
transaction-start-ID column.

NONDETERMINISTIC
Allows unloaded data to be reloaded into a GENERATED ALWAYS column that is defined by a
non-deterministic expression.

ROWCHANGE
Allows data to be loaded into a row change timestamp column that is defined as GENERATED
ALWAYS.

Specify OVERRIDE(ROWCHANGE) when you are loading a table with data that was previously
unloaded and you want to preserve the timestamps in that data.

Restriction: You cannot specify ROWCHANGE with the following options:

• NULLIF
• DEFAULTIF
• FORMAT INTERNAL

DRAIN_WAIT integer
Specifies the number of seconds that the utility waits when draining the table space or index. The
specified time is the aggregate time for objects that are to be reorganized. This value overrides the
values that are specified by IRLMRWT and UTIMOUT subsystem parameters. Valid values for integer

Chapter 19. LOAD 253

are from 0 to 1800. If the keyword is omitted or if a value of 0 is specified, the utility uses the value of
the IRLMRWT subsystem parameter.

RETRY integer
Specifies the maximum number of retries that LOAD is to attempt to drain. integer is value 0 - 255.

The default value is the value of the UTIMOUT subsystem parameter.

RETRY_DELAY integer
Specifies the minimum duration, in seconds, between retries. integer is a value 1 - 1800.

If you do not specify RETRY_DELAY, LOAD uses the smaller of the following two values:

• DRAIN_WAIT value × RETRY value
• DRAIN_WAIT value × 10

SWITCHTIME
Specifies the time for the drain all in the SWITCH phase to begin. The final result and all of the
time stamp calculations of SWITCHTIME are in TIMESTAMP(6). This keyword requires SHRLEVEL
REFERENCE. If specified, LOAD sits in the beginning of SWITCH phase and does not attempt to
quiesce application access until the specified SWITCHTIME is met.
NONE

Does not specify a time for the drain in the SWITCH phase to begin. This option is the default
behavior.

timestamp
Specifies the time that the drain in the SWITCH phase is to begin. This time must not have already
occurred when LOAD is run.

labeled-duration-expression
Calculates the time for the drain in the SWITCH phase is to begin. The calculation is based on
either CURRENT TIMESTAMP or CURRENT DATE. You can add or subtract one or more constant
values to specify the switch time. This switch time must not have already occurred when LOAD
is run. CURRENT TIMESTAMP and CURRENT DATE are evaluated a single time when the LOAD
statement is first processed. If a list of objects is specified, the same value applies for all objects
in the list.
CURRENT_DATE

Specifies that the deadline is to be calculated based on the CURRENT DATE.
CURRENT_TIMESTAMP

Specifies that the deadline is to be calculated based on the CURRENT TIMESTAMP.
WITH TIME ZONE

Specifies that the CURRENT TIMESTAMP is compared with the time zone column. The time
stamp precision of the special register CURRENT TIMESTAMP should be the same as the
column time stamp precision. Otherwise, the default time stamp precision is used. The
time zone of CURRENT TIMESTAMP is the value of special register CURRENT TIMEZONE.
The comparison is done by comparing the Coordinated Universal Time portion of the time
stamp.

constant
Indicates a unit of time and is followed by one of the seven duration keywords:
YEARS, MONTHS, DAYS, HOURS, MINUTES, SECONDS, or MICROSECONDS. The singular
forms of these words are also accepted: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
MICROSECOND.

IMPLICIT_TZ
Specifies the implicit time zone to use when the timestamp value that is being loaded does not
contain a time zone, and the data type of the target column is TIMESTAMP WITH TIME ZONE.
'timezone-string'

Specifies the implicit time zone value. The time zone is the difference (in hours and minutes)
between local time and UTC. The range of the hour component is -12 to 14, and the minute

254 Db2 12 for z/OS: Utility Guide and Reference

component is 00 to 59. The time zone is specified in the form ±th:tm, with values ranging from
-12:59 to +14:00.

If you do not specify the IMPLICIT_TZ option, LOAD uses the value from the IMPLICIT_TIMEZONE
DECP value. For more information about this DECP value, see IMPLICIT TIME ZONE field
(IMPLICIT_TIMEZONE DECP value) (Db2 Installation and Migration).

UPDMAXASSIGNEDVAL
Specifies whether LOAD updates the MAXASSIGNEDVAL column in SYSIBM.SYSSEQUENCES for
identity columns.
YES

Specifies that LOAD updates the MAXASSIGNEDVAL column when the loaded value for the identity
column is greater or smaller than the current value of the MAXASSIGNEDVAL column, depending
on whether ascending or descending sequencing is in use. YES is the default value.

NO
Specifies that LOAD does not update the MAXASSIGNEDVAL column regardless of the value of the
loaded identity column.

Related information:

“Effects of running LOAD” on page 337

DEFINEAUX
Specifies whether LOAD is to define all target auxiliary objects with the DEFINE NO attribute,
regardless of whether data is to be loaded into these objects.

DEFINEAUX is applicable only when REPLACE and SHRLEVEL NONE are also specified.

NO
Specifies that LOAD takes no special action to define the target auxiliary objects. These objects
are defined as needed when LOAD inserts data into them. NO is the default behavior.

YES
Specifies that LOAD defines all target LOB and XML objects and their indexes at the start of the
utility execution. The underlying data sets are physically allocated for these objects regardless of
whether data is loaded into these objects during the utility execution.

If LOAD DEFINEAUX YES is executed against a partition-by-growth (PBG) table space, and the utility
loads enough data to cause a new partition to be added, the newly created LOB table space and
auxiliary index are also defined by LOAD, regardless of whether those auxiliary objects have the
DEFINE NO attribute.

FORCE
Specifies the action to be taken when the utility drains the table space.
NONE

No action is taken. LOAD waits for the claimers to commit during drain processing. If the drain
fails, LOAD will timeout or retry. NONE is the default behavior.

READERS
Read claimers are canceled when LOAD requests DRAIN ALL on the last drain retry.

ALL
Both read and write claimers are canceled when LOAD requests DRAIN ALL or DRAIN WRITERS on
the last drain retry.

When LOAD FORCE cancels threads, it performs an internal cancel operation that is similar to the
cancel operation that is done by the CANCEL THREAD command.

If you specify SHRLEVEL CHANGE with FORCE, FORCE is ignored. This option is not applicable to
LOAD SHRLEVEL CHANGE operations.

If you specify SHRLEVEL NONE with FORCE READERS or FORCE ALL, the blocking claimers are
canceled during the only drain processing that is done at the start of the utility. In this case, drain retry
processing does not occur.

Chapter 19. LOAD 255

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_implicittimezone.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_implicittimezone.html

KEEP_EMPTY_PAGES
Specifies whether the LOAD utility keeps the empty index leaf pages of the nonpartitioned secondary
indexes (NPSIs) when keys are deleted from the logical partitions.

This option is applicable to only LOAD SHRLEVEL NONE PART REPLACE utility executions and does not
affect any partitioned indexes.

YES
Specifies that the LOAD utility keeps the empty index leaf pages of the nonpartitioned secondary
indexes. This option helps improve LOAD utility performance and allows new index keys inserted
by LOAD or later applications to reuse the kept empty index leaf pages.

The default value is YES.

NO
Specifies that the LOAD utility removes the empty NPSI leaf pages created when keys are deleted
from the logical partitions being replaced. This option enables space reclamation on the NPSIs but
can increase the performance cost of LOAD utility execution.

INTO-TABLE-spec

The INTO-TABLE-spec control statement, with its multiple options, defines the function that the utility job
performs. More than one table or partition for each table space can be loaded with a single invocation of
the LOAD utility. At least one INTO TABLE statement is required for each table that is to be loaded. Each
INTO TABLE statement:

• Identifies the table that is to be loaded
• Describes fields within the input record
• Defines the format of the input data set

All tables that are specified by INTO TABLE statements must belong to the same table space.

If the data is already in UNLOAD or SQL/DS format, and FORMAT UNLOAD or FORMAT SQL/DS is used on
the LOAD statement, no field specifications are allowed.

When loading XML or LOB columns from a VBS data set, the LOB and XML values need to be at the end of
the record as specified by a field specification list.

Recommendation: The field specification should be the last specification in each INTO TABLE clause.

INTO-TABLE-spec

INTO TABLE table-name
IGNOREFIELDS NO

IGNOREFIELDS YES

PART integer

PREFORMAT

INTO-TABLE-resume-spec
INDDN SYSREC

INDDN ddname

INDDN (

,

 ddname)

DISCARDDN ddname

INCURSOR cursor-name

NUMRECS integer WHEN SQL/DS='  table-name '

field selection criterion

(

,

field specification)

INTO-TABLE-resume-spec

256 Db2 12 for z/OS: Utility Guide and Reference

RESUME NO
1

REPLACE

REUSE

copy-spec

RESUME YES copy-spec

KEEPDICTIONARY

field selection criterion
field-name

( start

: end

)

= X' byte-string '

' character-string '

G' graphic-string '

N' graphic-string '

field specification

Chapter 19. LOAD 257

field-name spec

CHAR

BIT( length) strip-spec

CCSID 1208 strip-spec

MIXED strip-spec

BLOBF

PRESERVE WHITESPACE BINARYXML

CLOBF

MIXED PRESERVE WHITESPACE CCSID 1208

DBCLOBF

PRESERVE WHITESPACE CCSID 1200

VARCHAR

BIT

CCSID 1208

MIXED

BLOBF

PRESERVE WHITESPACE BINARYXML

CLOBF

MIXED PRESERVE WHITESPACE CCSID 1208

DBCLOBF

PRESERVE WHITESPACE CCSID 1200

strip-spec

GRAPHIC

EXTERNAL ( length)

strip-spec

CCSID 1200

VARGRAPHIC strip-spec

CCSID 1200

SMALLINT

INTEGER

EXTERNAL

( length)

BIGINT

BINARY

( length)

strip-spec

VARBINARY

BINARY VARYING

strip-spec

decimal-spec

FLOAT

EXTERNAL ( length)

DATE DATE_P

EXTERNAL

(length

date-format

)

TIME EXTERNAL

(length

time-format

)

TIMESTAMP EXTERNAL

(length

timestamp-format

)

TIMESTAMP-WITH-TIME-ZONE EXTERNAL

( length)

ROWID

BLOB

CLOB

MIXED

CCSID 1208

DBCLOB

CCSID 1200

DECFLOAT

(34)

(16)

EXTERNAL

( length)

XML

PRESERVE WHITESPACE BINARYXML

NULLIF field selection criterion

DEFAULTIF defaultif condition

field-name spec

258 Db2 12 for z/OS: Utility Guide and Reference

field-name

POSITION( start

: end

)

CONSTANTIF field selection criterion

CONSTANT(' string '

X' hex-string '

integer

CURRENT DATE

CURRENT TIME

CURRENT TIMESTAMP

NULL

)

strip-spec

STRIP
BOTH

TRAILING

LEADING
' strip-char '

2

X' strip-char '

TRUNCATE

decimal-spec

DECIMAL
PACKED

ZONED

EXTERNAL

( length
,0

, scale

)

defaultif condition
CONV_ERROR

field-name

( start

: end

)

=

<>

X' byte-string '

' character-string '

G' graphic-string '

N' graphic-string '

Notes:
1 The value specified in the INTO TABLE clause for RESUME or REPLACE overrides the default value for LOAD
RESUME.
2 If you specify GRAPHIC, BINARY, VARBINARY, or VARGRAPHIC, you cannot specify 'strip-char'; you can
specify only X'strip-char'.

Option descriptions for INTO TABLE

table-name
Specifies the name of the table that is to be loaded. The table must be described in the catalog.

The table must not be a catalog table or a system-maintained materialized query table.

If the table name is not qualified by a schema name, the authorization ID of the invoker of the utility
job step is used as the schema qualifier of the table name. Enclose the table name in quotation marks
if the name contains a blank.

Data from every LOAD record in the data set is loaded into the specified table unless:

Chapter 19. LOAD 259

• A WHEN clause is used, and the data does not match the field selection criterion.
• The FORMAT UNLOAD option is used on the LOAD statement, and the data comes from a table that

is not specified in an INTO TABLE statement.
• A certain partition is specified, and the data does not belong to that partition.
• Data conversion errors occur.
• Any errors occur that are not generated by data conversion.

IGNOREFIELDS
Indicates whether LOAD is to skip fields in the input data set that do not correspond to
columns in the target table. Examples of fields that do not correspond to table columns are
the DSN_NULL_IND_nnnnn, DSN_ROWID, DSN_IDENTITY, and DSN_RCTIMESTAMP fields that are
generated by the REORG utility.
NO

Specifies that the LOAD process is not to skip any fields.
YES

Specifies that LOAD is to skip fields in the input data set that do not correspond to columns in the
target table.

Specifying YES can be useful if each input record contains a variable-length field, followed by
some variable-length data that you do not want to load and then some data that you want to
load. Because of the variable-length field, you cannot use the POSITION keyword to skip over the
variable-length data that you do not want to load. By specifying IGNOREFIELDS, you can give a
field specification for the variable-length data that you do not want to load; and by giving it a name
that is not one of the table column names, LOAD skips the field without loading it.

Use this option with care, because it also causes fields to be skipped if you intend to load a
column but have misspelled the name.

NUMRECS
Indicates the number of input records for the specified table or table partition.
integer

A positive integer that is used as an estimate of the number of complete input records that are to
be loaded into the specified table. The specified number refers to fully assembled input records
when CONTINUEIF is used.

Use the NUMRECS keyword for multi-table table spaces to indicate the number of input records that
will be loaded into each of the tables or table partitions.

Specifying the number of records improves the sizing of the sort work data sets that the utility
requires when indexes are built in parallel. If the LOAD utility underestimates the size of the sort work
data sets, the execution of the LOAD utility could fail.

You can also use the NUMRECS keyword when the input data set is located on tape or if only a fraction
of the input records will be loaded.

If an integer value is specified on the SORTKEYS keyword at the table-space level, the NUMRECS
keyword cannot be specified in the same LOAD statement.

If multiple tables or partitions are loaded in the same LOAD statement, the NUMRECS keyword must
be specified either for all of the tables or partitions or for none of the tables or partitions.

PART integer
Specifies that data is to be loaded into a partition of a partitioned table space. This option is valid only
for partitioned table spaces, not including partition-by-growth table spaces.

integer is the physical partition number for the partition into which records are to be loaded. The same
partition number cannot be specified more than once if partition parallelism has been requested. Any
data that is outside the range of the specified partition is not loaded. The maximum is 4096.

LOAD INTO PART integer is not allowed if:

260 Db2 12 for z/OS: Utility Guide and Reference

• An identity column is part of the partitioning index, unless OVERRIDE(IDENTITY) is specified for the
identity column GENERATED ALWAYS

• A row ID is part of the partitioning index
• The table space is partition-by-growth

For nonpartitioned secondary indexes, LOAD PART:

• Does not set the page set REBUILD-pending (PSRBD) status
• Does not consider PCTFREE or FREEPAGE attributes when inserting keys

Related information:

“Loading partitions” on page 300

PREFORMAT
Specifies that the remaining pages are to be preformatted up to the high-allocated RBA in the
partition and its corresponding partitioning index space. The preformatting occurs after the data is
loaded and the indexes are built.

INDEXDEFER
Specifies whether index builds are done during the BUILD phase of LOAD, or are deferred until
REBUILD INDEX is run manually. Deferring index builds is a way to improve LOAD performance,
especially for LOAD with PART. If indexes are not built during LOAD, LOAD places the affected indexes
in a REBUILD-pending state.
NONE

Specifies that indexes are built during the BUILD phase of LOAD.
ALL

Specifies that no indexes are built as part of a BUILD phase of the LOAD utility. Index builds
are deferred until REBUILD INDEX is run manually. ALL is valid only if SHRLEVEL NONE is also
specified.

NPI
Specifies that building of nonpartitioned indexes is not done as part of a BUILD phase of the LOAD
utility. Nonpartitioned index builds are deferred until REBUILD INDEX is run manually. NPI is valid
only if SHRLEVEL NONE is also specified.

NONUNIQUE
Specifies that building of only nonunique indexes is deferred. NONUNIQUE is valid only if ALL or
NPI is also specified. If NONUNIQUE is not specified, building of unique and nonunique indexes is
deferred. If unique indexes are defined on the tables that are being loaded, specify NONUNIQUE
unless the data really is unique. REBUILD INDEX does not resolve duplicate keys for unique
indexes.

When INDEXDEFER ALL or INDEXDEFER NPI is specified:

• If ENFORCE CONSTRAINTS is also specified, building of indexed foreign keys is not deferred.
• If RESUME is also specified, building of indexes that were created with DEFINE NO and are

still undefined is not deferred. Building of undefined indexes is deferred only when REPLACE is
specified.

Any LOAD REPLACE SHRLEVEL REFERENCE PART execution results in the default of INDEXDEFER
NPI, with the affected part-level non-partitioning index placed in RBDP status on successful LOAD
completion. NONUNIQUE is ignored if specified.

RESUME
Specifies whether records are to be loaded into an empty or non-empty partition. For nonsegmented
table spaces, space is not reused for rows that have been marked as deleted or by rows of dropped
tables is not reused. If the RESUME option is specified at the table space level, the RESUME option is
not allowed in the PART clause.

Chapter 19. LOAD 261

If you want the RESUME option to apply to the entire table space, use the LOAD RESUME option.
If you want the RESUME option to apply to a particular partition, specify it by using PART integer
RESUME.

NO
Loads records into an empty partition. If the partition is not empty, and you have not used
REPLACE, a message is issued, and the utility job step terminates with a job step condition code of
8.

For non-segmented table spaces that contains deleted rows or rows of dropped tables, using the
REPLACE keyword provides increased efficiency.

YES
Loads records into a non-empty partition. If the partition is empty, a warning message is issued,
but the partition is loaded.

If COPYDDN or RECOVERYDDN is specified with RESUME YES, an inline image copy will be created
for the specified partition during processing of the LOAD statement. The image copy is created at
the table space level and is a full image copy for each partition that is specified by INTO TABLE
PART. If COPYDDN or RECOVERYDDN was specified on the table space level, it cannot be specified
at the INTO TABLE PART level.

REPLACE
Indicates that you want to replace only the contents of the partition that is cited by the PART option,
rather than the entire table space.

You cannot use LOAD REPLACE with the PART integer REPLACE option of INTO TABLE. If you specify
the REPLACE option, you must either replace an entire table space, using LOAD REPLACE, or a single
partition, using the PART integer REPLACE option of INTO TABLE. You can, however, use PART integer
REPLACE with LOAD RESUME YES.

REUSE
Specifies, when used with the REPLACE option, that LOAD should logically reset and reuse Db2-
managed data sets without deleting and redefining them. If you do not specify REUSE, Db2 deletes
and redefines Db2-managed data sets to reset them.

If you specify REUSE with REPLACE on the PART specification (and not for LOAD at the table space
level), only the specified partitions are logically reset. If you specify REUSE for the table space and
REPLACE for the partition, data sets for the replaced parts are logically reset.

KEEPDICTIONARY
Specifies that the LOAD utility is not to build a new dictionary. LOAD retains the current dictionary and
uses it for compressing the input data. This option eliminates the cost that is associated with building
a new dictionary.

This keyword is valid only if a dictionary exists and the partition that is being loaded is defined with
compression.

If the partition is defined with compression, but no dictionary exists, one is built and a warning
message is issued.

INDDN ddname
Specifies the input data set or data sets for the partition.

ddname is the name of a DD statement from the job step or the name of a template in the utility input
stream. The default value is SYSREC.

If multiple ddname values are specified, those data sets are dynamically concatenated as input
to LOAD. You can specify a maximum of 1000 ddname values. You cannot specify the same DD
statement from the job step more than once.

The record format for an input data set must be fixed-length or variable-length. The data set must be
a sequential data set that is readable by the basic sequential access method (BSAM).

262 Db2 12 for z/OS: Utility Guide and Reference

When loading LOB data by using file reference variables, the input data set should include the names
of the files that contain the LOB column values. Each file can be either a sequential file, PDS member,
PDSE member, or separate HFS file.

If you specify INDDN in one INTO TABLE PART clause, you must specify INDDN in all other INTO
TABLE PART clauses in that LOAD statement.

Providing input data sets at the partition level (by specifying multiple INTO TABLE PART INDDN
clauses) enables LOAD partition parallelism, which can significantly improve performance. When one
or more nonpartitioned secondary indexes exist on the table space, loading all partitions in a single
job with partition parallelism is recommended instead of running concurrent separate jobs.

The field specifications apply separately to each input file. Therefore, if multiple INTO TABLE PART
INDDN clauses are used, field specifications are required for each one.

DISCARDDN ddname
Specifies the DD statement for a discard data set for the partition. The discard data set holds copies of
records that are not loaded (for example, if they contain conversion errors). The discard data set also
holds copies of records that were loaded and then removed (due to unique index errors, or referential
or check constraint violations).

If DISCARDS n is specified in the LOAD statement and LOAD partition parallelism is enabled,
specifying DISCARDDN in an INTO TABLE PART clause is recommended. See “Loading partitions”
on page 300.

Flag input records for discarding during the RELOAD, INDEXVAL, and ENFORCE phases. However, the
utility does not write the discard data set until the DISCARD phase when the utility copies the flagged
records from the input data set to the discard data set.

The discard data set must be a sequential data set, and it must be write-accessible by BSAM, with the
same record format, record length, and block size as the input data set.

The ddname is the name of the discard data set. DISCARDDN can be a template name.

If you omit the DISCARDDN option, LOAD does not save discarded records.

INCURSOR cursor-name
Specifies the cursor for the input data set. You must declare the cursor before it is used by the LOAD
utility. Use the EXEC SQL utility control statement to define the cursor. You cannot load data into the
same table on which you defined the cursor.

The specified cursor can be used as part of the Db2 family cross loader function, which enables you to
load data from any DRDA-compliant remote server. For more information about using the cross loader
function, see “Loading data by using the cross-loader function” on page 311.

cursor-name is the cursor name. Cursor names that are specified with the LOAD utility cannot be
longer than eight characters.

You cannot use the INCURSOR option with the following options:

• SHRLEVEL CHANGE
• NOSUBS
• FORMAT UNLOAD
• FORMAT SQL/DS
• CONTINUEIF
• WHEN
• SPANNED YES

In addition, you cannot specify field specifications with the INCURSOR option.

WHEN
Indicates which records in the input data set are to be loaded. If no WHEN clause is specified (and if
FORMAT UNLOAD was not used in the LOAD statement), all records in the input data set are loaded

Chapter 19. LOAD 263

into the specified tables or partitions. (Data that is beyond the range of the specified partition is not
loaded.)

The option following WHEN describes a condition; input records that satisfy the condition are loaded.
Input records that do not satisfy any WHEN clause of any INTO TABLE statement are written to the
discard data set, if one is being used and the IGNORE(WHEN) option is not specified.

Character-string constants should be specified in LOAD utility control statements in the character
set that matches the input data record. Specify EBCDIC constants in the LOAD control statement if
your data is in EBCDIC and specify UNICODE constants if your data is in UNICODE. You may also
code the WHEN condition using the hexadecimal form. For example, use (1:1)=X'31' rather than
(1:1)='1'.
SQL/DS='table-name'

Is valid only when the FORMAT SQL/DS option is used on the LOAD statement.

table-name is the name of a table that has been unloaded into the unload data set. The table
name after INTO TABLE tells which Db2 table the SQL/DS table is loaded into. Enclose the table
name in quotation marks if the name contains a blank.

If no WHEN clause is specified, input records from every SQL/DS table are loaded into the table
that is specified after INTO TABLE.

field-selection-criterion
Describes a field and a character constant. Only those records in which the field contains the
specified constant are to be loaded into the table that is specified after INTO TABLE.

A field in a selection criterion must:

• Contain a character or graphic string. No data type conversions are performed when the
contents of the field in the input record are compared to a string constant.

• Start at the same byte offset in each assembled input record. If any record contains varying-
length strings, which are stored with length fields, that precede the selection field, they must be
padded so that the start of the selection field is always at the same offset.

The field and the constant do not need to be the same length. If they are not, the shorter of
the two is padded before a comparison is made. Character and graphic strings are padded with
blanks. Hexadecimal strings are padded with zeros.

field-name
Specifies the name of a field that is defined by a field-specification. If field-name is used, the
start and end positions of the field are given by the POSITION option of the field specification.

(start:end)
Identifies column numbers in the assembled load record; the first column of the record is
column 1. The two numbers indicate the starting and ending columns of a selection field in the
load record.

If :end is not used, the field is assumed to have the same length as the constant.

X'byte-string'
Identifies the constant as a string of hexadecimal characters. For example, the following
WHEN clause specifies that a record is to be loaded if it has the value X'FFFF' in columns 33
through 34.

WHEN (33:34) = X'FFFF'

'character-string'
Identifies the constant as a string of characters. For example, the following WHEN clause
specifies that a record is to be loaded if the field DEPTNO has the value D11.

WHEN DEPTNO = 'D11'

If the field uses a specific external date, time, or timestamp format, the field specification
must use a character string that matches the specified format.

264 Db2 12 for z/OS: Utility Guide and Reference

G'graphic-string'
Identifies the constant as a string of double-byte characters. For example, the following WHEN
clause specifies that a record is to be loaded if it has the specified value in columns 33 through
36.

WHEN (33:36) = G'<**>'

In this example, < is the shift-out character,* is a double-byte character, and > is the shift-in
character.

If the first or last byte of the input data is a shift-out character, it is ignored in the comparison.
Specify G as an uppercase character.

N'graphic-string'
Identifies the constant as a string of double-byte characters. N and G are synonymous for
specifying graphic string constants. Specify N as an uppercase character.

(field-specification, …)
Describes the location, format, and null value identifier of the data that is to be loaded.

If no field specifications are used:

• The fields in the input records are assumed to be in the same order as in the Db2 table.
• The formats are set by the FORMAT option on the LOAD statement, if that option is used.
• Fixed strings in the input are assumed to be of fixed maximum length. VARCHAR and VARGRAPHIC
fields must contain a valid 2-byte binary length field preceding the data; no intervening gaps are
allowed between the VARCHAR or VARGRAPHIC fields and the field that follows.

• BINARY fields are assumed to be of fixed maximum length.
• VARBINARY fields must contain a valid 2-byte binary length field preceding the data.
• ROWID fields are varying length, and must contain a valid 2-byte binary length field preceding the

data; no intervening gaps are allowed between ROWID fields and the fields that follow.
• LOB fields are varying length, and require a valid 4-byte binary length field preceding the data; no

intervening gaps are allowed between them and the LOB fields that follow.
• Numeric data is assumed to be in the appropriate internal Db2 number representation.
• The NULLIF or DEFAULTIF options cannot be used.

If any field specification is used for an input table, a field specification must exist for each field of the
table that does not have a default value. Any field in the table with no corresponding field specification
is loaded with its default value.

If any column in the output table does not have a field specification and is defined as NOT NULL, with
no default, the utility job step is terminated.

Identity columns or row change timestamp columns can appear in the field specification only if you
defined them with the GENERATED BY DEFAULT attribute.

If you are loading application or system temporal data and you include field specifications, you must
specify both the start and end time column fields.

field-name
Specifies the name of a field, which can be a name of your choice. If the field is to be loaded, the name
must be the name of a column in the table that is named after INTO TABLE unless IGNOREFIELDS is
specified. You can use the field name as a vehicle to specify the range of incoming data. See Example
4: Loading data of different data types for an example of loading selected records into an empty table
space.

The starting location of the field is given by the POSITION option. If POSITION is not used, the
starting location is one column after the end of the previous field.

LOAD determines the length of the field in one of the following ways, in the order listed:

Chapter 19. LOAD 265

1. If the field has data type VARCHAR, VARGRAPHIC, VARBINARY, ROWID, or XML the length
is assumed to be contained in a 2-byte binary field that precedes the data. For VARCHAR,
VARBINARY, and XML fields, the length is in bytes; for VARGRAPHIC fields, the length field
identifies the number of double-byte characters.

If the field has data type CLOB, BLOB, or DBCLOB, the length is assumed to be contained in a
4-byte binary field that precedes the data. For BLOB and CLOB fields, the length is in bytes; for
DBCLOB fields, the length field identifies the number of double-byte characters.

2. If :end is used in the POSITION option, the length is calculated from start and end. In that
case, any length attribute after the CHAR, GRAPHIC, INTEGER, DECIMAL, FLOAT, or DECFLOAT
specifications is ignored.

3. The length attribute on the CHAR, GRAPHIC, INTEGER, DECIMAL, FLOAT, or DECFLOAT
specifications is used as the length.

4. The length is taken from the Db2 field description in the table definition, or it is assigned a
default value according to the data type. For DATE and TIME fields, the length is defined during
installation. For variable-length fields, the length is defined from the column in the Db2 table
definition, excluding the null indicator byte, if it is present. The following table shows the default
length, in bytes, for each data type.

Table 26. Default length of each data type (in bytes)

Data type Default length in bytes

BIGINT 8

BINARY Length that is used in column definition

BLOB Varying

CHARACTER Length that is used in column definition

CLOB Varying

DATE 10 (or installation default)

DBCLOB Varying

DECFLOAT(16) 8

DECFLOAT(34) 16

DECIMAL EXTERNAL Decimal precision for output columns that are decimal,
otherwise the length that is used in column definition

DECIMAL PACKED Length that is used in column definition

DECIMAL ZONED Decimal precision for output columns that are decimal,
otherwise the length that is used in column definition

FLOAT (single precision) 4

FLOAT (double precision) 8

GRAPHIC 2 multiplied by (length that is used in column definition)

INTEGER 4

MIXED Mixed DBCS data

ROWID Varying

SMALLINT 2

TIME 8 (or installation default)

TIMESTAMP 26

266 Db2 12 for z/OS: Utility Guide and Reference

Table 26. Default length of each data type (in bytes) (continued)

Data type Default length in bytes

VARBINARY Varying

VARCHAR Varying

VARGRAPHIC Varying

XML Varying

TIMESTAMP WITH TIME ZONE 33

If a data type is not given for a field, its data type is assumed to be the same as that of the column into
which it is loaded, as given in the Db2 table definition.

POSITION(start:end)
Indicates where a field is in the assembled load record.

start and end are the locations of the first and last columns of the field; the first column of the record
is column 1. The option can be omitted.

Column locations can be specified as:

• An integer n, meaning an actual column number
• *, meaning one column after the end of the previous field
• *+n, where n is an integer, meaning n columns after the location that is specified by *

Do not enclose the entire POSITION option specification in parentheses; enclose only the start:end
description in parentheses. Valid and invalid specifications are shown in the following table.

Table 27. Example of valid and invalid POSITION specifications

Valid Invalid

POSITION (10:20) (POSITION (10:20))

CONSTANTIF field-selection-criterion
Describes a condition that causes the Db2 column to be loaded with a constant value. You can write
the field-selection-criterion with the same options as described for field-selection-criterion. If the
contents of the CONSTANTIF field match the provided character constant, the field that is specified in
field-specification is loaded with the value specified in the CONSTANT keyword.

If the CONSTANTIF field is defined by the name of a VARCHAR or VARGRAPHIC field, Db2takes the
length of the field from the 2-byte binary field that appears before the data portion of the VARCHAR or
VARGRAPHIC field.

Character-string constants should be specified in LOAD utility control statements in the character set
that matches the input data record. Specify EBCDIC constants in the LOAD control statement if your
data is in EBCDIC and specify UNICODE constants if your data is in UNICODE. You may also code the
CONSTANTIF condition using the hexadecimal form. For example, if the input data is in EBCDIC and
the control statement is in UTF-8, use (1:1)=X'31' in the condition rather than (1:1)='1'.

CONSTANT(...)
Specifies that the column that matches the field name should be loaded with a constant value.
The field name that is associated with the CONSTANT keyword must match a column name of the
specified table. The length and type of the CONSTANT field is derived from the specified value and
must be valid for the target column.

For a CONSTANT field, no other field specification options are allowed. A CONSTANT field cannot be
specified for LOB or XML columns.

Chapter 19. LOAD 267

If a record is discarded because of an invalid value specified with the CONSTANT keyword, the record
in the discard data set reflects the original record from SYSREC, not the record as loaded with the
constant value(s).

'string'
Specifies the character string that is to be inserted in the target column. If the specified string is in
the form 'string', it is assumed to be in the encoding scheme of SYSIN even if the encoding scheme
of SYSREC is not the same. Conversion might be applied before inserting the string into the target
column.

X'hex-string'
Specifies the hexadecimal value that is to be inserted in the target column. The hexadecimal value
must be specified in the format X'hex-string'.

integer
Specifies the integer that is to be inserted into the target column. Valid values are between
-2147483648 and 2147483647.

CURRENT DATE
Specifies that the current date is to be inserted into the target column.

CURRENT TIME
Specifies that the current time is to be inserted into the target column.

CURRENT TIMESTAMP
Specifies that the current timestamp is to be inserted into the target column.

NULL
Specifies that the target column should be set to NULL. The target column must be nullable.

To provide a constant value for GRAPHIC or VARGRAPHIC, use CHAR or VARCHAR with the 'string' or
X'hex-string' literal.

Example: DEPTNO POSITION(3) VARCHAR CONSTANT('403')

Data types in a field specification: The data type of the field can be specified by any of the keywords that
follow. Except for graphic fields, length is the length in bytes of the input field.

All numbers that are designated EXTERNAL are in the same format in the input records.

When CCSID is specified, LOAD supports the following input field formats:

Table 28. Supported source to target field CSSID formats

Source CCSID Target CCSID

ASCII EBCDIC UNICODE

EBCDIC table
with a UNICODE
column

ASCII Yes Yes Yes No

EBCDIC Yes Yes Yes Yes

UNICODE Yes Yes Yes No

EBCDIC table
with a UNICODE
column

No Yes1 Yes Yes

Table notes:

1. Might require that the EBCDIC CCSID field on installation panel DSNTIPF be set to use graphic.

CHAR(length)
Specifies a fixed-length character string. If you do not specifylength, the length of the string is
determined from the POSITION specification. If you do not specifylength or POSITION, LOAD uses the

268 Db2 12 for z/OS: Utility Guide and Reference

default length for CHAR, which is determined from the length of the column in the table. You can also
specify CHARACTER and CHARACTER(length).

When you specify CHAR as the type for the file name for CLOBF, BLOBF, or DBCLOBF, you must also
provide the length so that the LOAD utility can determine the correct file name. Otherwise message
DSNU338I will be issued for an invalid column specification.

BIT
Specifies that the input field contains BIT data. If BIT is specified, LOAD bypasses any CCSID
conversions for the input data. If the target column has the BIT data type attribute, LOAD
bypasses any code page translation for the input data.

CCSID 1208
Specifies that the input field contains data in CCSID 1208 (UTF-8). If data conversion occurs,
CCSID 1208 is used for the input data.

MIXED
Specifies that the input field contains mixed SBCS and DBCS data. If MIXED is specified, any
required CCSID conversions use the mixed CCSID for the input data. If MIXED is not specified, any
such conversions use the SBCS CCSID for the input data.

BLOBF
Indicates that the input field contains the name of a BLOB file which is going to be loaded to a
specified BLOB/XML column.

BINARYXML Specifies that the XML document to be loaded using file reference variables is in
Extensible Dynamic Binary XML Db2 Client/Server Binary XML Format (binary XML) format.

CLOBF
Indicates that the input field contains the name of a CLOB file which is going to be loaded to a
specified CLOB/XML column.
CCSID 1208

Specifies that the input field contains data in CCSID 1208 (UTF-8). If data conversion occurs,
CCSID 1208 is used for the input data.

DBCLOBF
Indicates that the input field contains the name of a DBCLOBF file which is going to be loaded to a
specified DBCLOB/XML column.
CCSID 1200

Specifies that the data in the CLOB input file is in CCSID 1200 (UTF-16). If data conversion
occurs, CCSID 1200 is used for the input data.

PRESERVE WHITESPACE
Specifies that the white space in the XML column is preserved. The default is not to preserve the
white space.

STRIP
Specifies that LOAD is to remove zeros (the default) or the specified characters from the
beginning, the end, or both ends of the data. LOAD pads the CHAR field, so that it fills the rest of
the column.

LOAD applies the strip operation before performing any character code conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar function.

BOTH
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
beginning and end of the data.

TRAILING
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
end of the data.

Chapter 19. LOAD 269

LEADING
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
beginning of the data.

'strip-char'
Specifies a single-byte or double-byte character that LOAD is to strip from the data.

Specify this character value in EBCDIC. Depending on the input encoding scheme, LOAD
applies SBCS CCSID conversion to the strip-char value before it is used in the strip operation.

If the subtype of the column to be loaded is BIT or you want to specify a strip-char value in an
encoding scheme other than EBCDIC, use the hexadecimal form (X'strip-char'). LOAD does not
perform any CCSID conversion if the hexadecimal form is used.

X'strip-char'
Specifies in hexadecimal form a single-byte or double-byte character that LOAD is to strip
from the data. For single-byte characters, specify this value in the form X'hh', where hh is two
hexadecimal characters. For double-byte characters, specify this value in the form X'hhhh',
where hhhh is four hexadecimal characters.

Use the hexadecimal form to specify a character in an encoding scheme other than EBCDIC.
When you specify the character value in hexadecimal form, LOAD does not perform any CCSID
conversion.

If you specify a strip character in the hexadecimal format, you must specify the character in
the input encoding scheme.

TRUNCATE
Indicates that LOAD is to truncate the input character string from the right if the string does not fit
in the target column. LOAD performs the truncation operation after any CCSID translation.

If the input data is BIT data, LOAD truncates the data at a byte boundary. If the input data is SBCS
or MIXED data, LOAD truncates the data at a character boundary. (Double-byte characters are not
split.) If a MIXED field is truncated to fit a column, the truncated string can be shorter than the
specified column size. In this case, blanks in the output CCSID are padded to the right. If MIXED
data is in EBCDIC, truncation preserves the SO (shift-out) and SI (shift-in) characters around a
DBCS string.

VARCHAR
Specifies a character field of varying length. The length in bytes must be specified in a 2-byte binary
field preceding the data. (The length does not include the 2-byte field itself.) The length field must
start in the column that is specified as start in the POSITION option. If :end is used, it is ignored.
BIT

Specifies that the input field contains BIT data. If BIT is specified, LOAD bypasses any CCSID
conversions for the input data. If the target column has the BIT data type attribute, LOAD
bypasses any code page translation for the input data.

MIXED
Specifies that the input field contains mixed DBCS data. If MIXED is specified, any required
CCSID conversions use the mixed CCSID for the input data. If MIXED is not specified, any such
conversions use the SBCS CCSID for the input data.

CCSID 1208
Specifies that the data in the CLOB input file is in CCSID 1208 (UTF-8). If data conversion occurs,
CCSID 1208 is used for the input data.

BLOBF
Indicates that the input field contains the name of a BLOB file which is going to be loaded to a
specified BLOB/XML column.

BINARYXML Specifies that the XML document to be loaded using file reference variables is in
binary XML format.

270 Db2 12 for z/OS: Utility Guide and Reference

CLOBF
Indicates that the input field contains the name of a CLOB file which is going to be loaded to a
specified CLOB/XML column.
CCSID 1208

Specifies that the data in the CLOB input file is in CCSID 1208 (UTF-8). If data conversion
occurs, CCSID 1208 is used for the input data.

DBCLOBF
Indicates that the input field contains the name of a DBCLOBF file which is going to be loaded to a
specified DBCLOB/XML column.
CCSID 1200

Specifies that the data in the CLOB input file is in CCSID 1200 (UTF-16). If data conversion
occurs, CCSID 1200 is used for the input data.

PRESERVE WHITESPACE
Specifies that the white space in the XML column is preserved. The default is not to preserve the
white space.

STRIP
Specifies that LOAD is to remove zeros (the default) or the specified characters from the
beginning, the end, or both ends of the data. LOAD adjusts the VARCHAR length field to the length
of the stripped data.

LOAD applies the strip operation before performing any character code conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar function.

BOTH
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
beginning and end of the data.

TRAILING
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
end of the data.

LEADING
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
beginning of the data.

'strip-char'
Specifies a single-byte or double-byte character that LOAD is to strip from the data.

Specify this character value in EBCDIC. Depending on the input encoding scheme, LOAD
applies SBCS CCSID conversion to the strip-charvalue before it is used in the strip operation.

If the subtype of the column to be loaded is BIT or you want to specify a strip-char value in an
encoding scheme other than EBCDIC, use the hexadecimal form (X'strip-char'). LOAD does not
perform any CCSID conversion if the hexadecimal form is used.

X'strip-char'
Specifies in hexadecimal form a single-byte or double-byte character that LOAD is to strip
from the data. For single-byte characters, specify this value in the form X'hh', where hh is two
hexadecimal characters. For double-byte characters, specify this value in the form X'hhhh',
where hhhh is four hexadecimal characters.

Use the hexadecimal form to specify a character in an encoding scheme other than EBCDIC.
When you specify the character value in hexadecimal form, LOAD does not perform any CCSID
conversion.

If you specify a strip character in the hexadecimal format, you must specify the character in
the input encoding scheme.

TRUNCATE
Indicates that LOAD is to truncate the input character string from the right if the string does not fit
in the target column. LOAD performs the truncation operation after any CCSID translation.

Chapter 19. LOAD 271

If the input data is BIT data, LOAD truncates the data at a byte boundary. If the input data
is character type data, LOAD truncates the data at a character boundary. If a mixed-character
type data is truncated to fit a column of fixed size, the truncated string can be shorter than the
specified column size. In this case, blanks in the output CCSID are padded to the right.

GRAPHIC(length)
Specifies a fixed-length graphic type. You can specify both start and end for the field specification.

If you use GRAPHIC, the input data must not contain shift characters. start and end must indicate the
starting and ending positions of the data itself.

length is the number of double-byte characters. The length of the field in bytes is twice the value of
length. If you do not specify length, the number of double-byte characters is determined from the
POSITION specification. If you do not specify length or POSITION, LOAD uses the default length for
GRAPHIC, which is determined from the length of the column in the table.

For example, let *** represent three double-byte characters. Then, to describe ***, specify either
POSITION(1:6) GRAPHIC or POSITION(1) GRAPHIC(3). A GRAPHIC field that is described in
this way cannot be specified in a field selection criterion.

STRIP
Specifies that LOAD is to remove zeros (the default) or the specified characters from the
beginning, the end, or both ends of the data.

LOAD applies the strip operation before performing any character code conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar function.

BOTH
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
beginning and end of the data.

TRAILING
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
end of the data.

LEADING
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
beginning of the data.

X'strip-char'
Specifies the hexadecimal form of the double-byte character that LOAD is to strip from the
data. Specify this value in the form X'hhhh', where hhhh is four hexadecimal characters.

You must specify the character in the input encoding scheme.

TRUNCATE
Indicates that LOAD is to truncate the input character string from the right if the string does not fit
in the target column. LOAD performs the truncation operation after any CCSID translation.

LOAD truncates the data at a character boundary. Double-byte characters are not split.

CCSID 1200
Specifies that the data in the CLOB input file is in CCSID 1200 (UTF-16). If data conversion occurs,
CCSID 1200 is used for the input data.

GRAPHIC EXTERNAL(length)
Specifies a fixed-length field of the graphic type with the external format. You can specify both start
and end for the field specification.

If you use GRAPHIC EXTERNAL, the input data must contain a shift-out character in the starting
position, and a shift-in character in the ending position. Other than the shift characters, this field must
have an even number of bytes. The first byte of any pair must not be a shift character.

length is the number of double-byte characters. length for GRAPHIC EXTERNAL does not include the
number of bytes that are represented by shift characters. The length of the field in bytes is twice the
value of length. If you do not specify length, the number of double-byte characters is determined from

272 Db2 12 for z/OS: Utility Guide and Reference

the POSITION specification. If you do not specify length or POSITION, LOAD uses the default length
for GRAPHIC, which is determined from the length of the column in the table.

For example, let *** represent three double-byte characters, and let < and > represent shift-out and
shift-in characters. Then, to describe <***>, specify either POSITION(1:8) GRAPHIC EXTERNAL or
POSITION(1) GRAPHIC EXTERNAL(3).

STRIP
Specifies that LOAD is to remove zeros (the default) or the specified characters from the
beginning, the end, or both ends of the data.

LOAD applies the strip operation before performing any character code conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar function.

BOTH
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
beginning and end of the data.

TRAILING
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
end of the data.

LEADING
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
beginning of the data.

X'strip-char'
Specifies the hexadecimal form of the double-byte character that LOAD is to strip from the
data. Specify this value in the form X'hhhh', where hhhh is four hexadecimal characters.

You must specify the character in the input encoding scheme.

TRUNCATE
Indicates that LOAD is to truncate the input character string from the right if the string does not fit
in the target column. LOAD performs the truncation operation after any CCSID translation.

LOAD truncates the data at a character boundary. Double-byte characters are not split.

VARGRAPHIC
Identifies a graphic field of varying length. The length, in double-byte characters, must be specified
in a 2-byte binary field preceding the data. (The length does not include the 2-byte field itself.) The
length field must start in the column that is specified as start in the POSITION option. :end, if used, is
ignored.

VARGRAPHIC input data must not contain shift characters.

STRIP
Specifies that LOAD is to remove zeros (the default) or the specified characters from the
beginning, the end, or both ends of the data. LOAD adjusts the VARGRAPHIC length field to the
length of the stripped data (the number of DBCS characters).

LOAD applies the strip operation before performing any character code conversion or padding.

The effect of the STRIP option is the same as the SQL STRIP scalar function.

BOTH
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
beginning and end of the data.

TRAILING
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
end of the data.

LEADING
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
beginning of the data.

Chapter 19. LOAD 273

X'strip-char'
Specifies the hexadecimal form of the double-byte character that LOAD is to strip from the
data. Specify this value in the form X'hhhh', where hhhh is four hexadecimal characters.

You must specify the character in the input encoding scheme.

TRUNCATE
Indicates that LOAD is to truncate the input character string from the right if the string does not fit
in the target column. LOAD performs the truncation operation after any CCSID translation.

LOAD truncates the data at a character boundary. Double-byte characters are not split.

CCSID 1200
Specifies that the data in the CLOB input file is in CCSID 1200 (UTF-16). If data conversion occurs,
CCSID 1200 is used for the input data.

SMALLINT
Specifies a 2-byte binary number. Negative numbers are in two's complement notation.

INTEGER
pecifies a 4-byte binary number. Negative numbers are in two's complement notation. You can also
specify INT.

INTEGER EXTERNAL(length)
A string of characters that represent a number. The format is that of an SQL numeric constant. If you
do not specify length, the length of the string is determined from the POSITION specification. If you do
not specify length or POSITION, LOAD uses the default length for INTEGER, which is 4 bytes. You can
also specify INT EXTERNAL.

BIGINT
Specifies an 8-byte binary number. Negative numbers are in two's complement notation.

BINARY(length)
Specifies a fixed-length binary string. If you do not specify length, the length of the string is
determined from the POSITION specification. If you do not specify length or POSITION, LOAD uses
the default length for BINARY, which is determined from the length of the column in the table. The
default for X'strip-char' is hexadecimal zero (X'00'). No data conversion is applied to the field.
STRIP

Specifies that LOAD is to remove binary zeros (the default) or the specified X'strip-char' from the
beginning, the end, or both ends of the data. LOAD pads the BINARY field, so that it fills the rest of
the column.

The effect of the STRIP option is the same as the SQL STRIP scalar function.

BOTH
Indicates that LOAD is to remove occurrences of binary zeros or the specified strip character
from the beginning and end of the data.

TRAILING
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
end of the data.

LEADING
Indicates that LOAD is to remove occurrences of blank or the specified strip character from the
beginning of the data.

X'strip-char'
Specifies, in hexadecimal form, a single-byte or double-byte character that LOAD is to strip
from the data. For single-byte characters, specify this value in the form X'hh', where hh is two
hexadecimal characters.

TRUNCATE
Indicates that LOAD is to truncate the input character string from the right if the string does not fit
in the target column.

LOAD truncates the data at a character boundary.

274 Db2 12 for z/OS: Utility Guide and Reference

VARBINARY
Specifies a varying length binary string. The length in bytes must be specified in a 2-byte binary field
preceding the data (the length does not include the 2-byte field itself). The length field must start in
the column that is specified as start in the POSITION option. If :end is used, it is ignored. The default
for X'strip-char' is hexadecimal zero (X'00'). No data conversion is applied to the field.
STRIP

Specifies that LOAD is to remove binary zeros (the default) or the specified characters from the
beginning, the end, or both ends of the data. LOAD pads the VARBINARY field, so that it fills the
rest of the column.

The effect of the STRIP option is the same as the SQL STRIP scalar function.

BOTH
Indicates that LOAD is to remove occurrences of binary zeros or the specified strip character
from the beginning and end of the data.

TRAILING
Indicates that LOAD is to remove occurrences of binary zeros or the specified strip character
from the end of the data.

LEADING
Indicates that LOAD is to remove occurrences of binary zeros or the specified strip character
from the beginning of the data.

X'strip-char'
Specifies, in hexadecimal form, a single-byte character that LOAD is to strip from the data.
For single-byte characters, specify this value in the form X'hh', where hh is two hexadecimal
characters.

TRUNCATE
Indicates that LOAD is to truncate the input character string from the right if the string does not fit
in the target column.

LOAD truncates the data at a character boundary.

DECIMAL PACKED
Specifies a number of the form ddd...ds, where d is a decimal digit that is represented by four bits,
and s is a 4-bit sign value. The plus sign (+) is represented by A, C, E, or F, and the minus sign (-) is
represented by B or D. The maximum number of ds is the same as the maximum number of digits that
are allowed in the SQL definition. You can also specify DECIMAL, DEC, or DEC PACKED.

DECIMAL ZONED
Specifies a number in the form znznzn...z/sn, where z, n, and s have the following values:
n

A decimal digit represented by the right 4 bits of a byte (called the numeric bits)
z

That digit's zone, represented by the left 4 bits
s

The right-most byte of the decimal operand; s can be treated as a zone or as the sign value for that
digit

The plus sign (+) is represented by A, C, E, or F, and the minus sign (-) is represented by B or D. The
maximum number of zns is the same as the maximum number of digits that are allowed in the SQL
definition. You can also specify DEC ZONED.

DECIMAL EXTERNAL(length,scale)
Specifies a string of characters that represent a number. The format is that of an SQL numeric
constant.
length

Overall length of the input field, in bytes. If you do not specify length, the length of the input field
is determined from the POSITION specification. If you do not specify length or POSITION, LOAD
uses the default length for DECIMAL EXTERNAL, which is determined by using decimal precision.

Chapter 19. LOAD 275

scale
Specifies the number of digits to the right of the decimal point. scale must be an integer greater
than or equal to 0, and it can be greater than length. The default value is 0.

If scale is greater than length, or if the number of provided digits is less than the specified scale, the
input number is padded on the left with zeros until the decimal point position is reached. If scale
is greater than the target scale, the source scale locates the implied decimal position. All fractional
digits greater than the target scale are truncated. If scale is specified and the target column has a data
type of small integer or integer, the decimal portion of the input number is ignored. If a decimal point
is present, its position overrides the field specification of scale.

FLOAT(length)
Specifies either a 64-bit floating-point number or a 32-bit floating-point number. If length is between
1 and 21 inclusive, the number is 32 bits in the s390 (HFP) format:
Bit 0

Represents a sign (0 for plus and 1 for minus)
Bits 1-7

Represent an exponent
Bits 8-31

Represent a mantissa

If length is between 1 and 24 inclusive, the number is 32 bits in the IEEE (BFP) format:

Bit 0
Represents a sign (0 for plus and 1 for minus)

Bits 1-8
Represent an exponent

Bits 9-31
Represent a mantissa

If length is not specified, or is between 22 and 53 inclusive, the number is 64 bits in the s390 (HFP)
format:

Bit 0
Represents a sign (0 for plus and 1 for minus)

Bits 1-7
Represent an exponent

Bits 8-63
Represent a mantissa.

If length is not specified, or is between 25 and 53 inclusive, the number is 64 bits in the IEEE (BFP)
format:

Bit 0
Represents a sign (0 for “plus”, and 1 for “minus”)

Bits 1-11
Represent an exponent

Bits 12-63
Represent a mantissa.

You can also specify REAL for single-precision floating-point numbers and DOUBLE PRECISION for
double-precision floating-point numbers.

FLOAT EXTERNAL(length)
Specifies a string of characters that represent a number. The format is that of an SQL floating-point
constant.

A specification of FLOAT(IEEE) or FLOAT(S390) does not apply for this format (string of characters) of
floating-point numbers.

276 Db2 12 for z/OS: Utility Guide and Reference

If you do not specify length, the length of the string is determined from the POSITION specification. If
you do not specify length or POSITION, LOAD uses the default length for FLOAT, which is 4 bytes for
single precision and 8 bytes for double precision.

DATE DATE_P
Specifies a packed decimal representation of a date. The date value must be 3 bytes in length and in
the DATE_P format (X'YYDDDs' where YY is the year, DDD is the day, and s is the sign).

DATE EXTERNAL
Specifies a character string representation of a date. You can specify a length or a specific date
format.
(length)

The length, if unspecified, is the specified length on the LOCAL DATA LENGTH installation option,
or, if none was provided, the default is 10 bytes. If you specify a length, it must be within the range
of 8 - 254 bytes.

If a date format is not specified, dates can be in any of the following formats. You can omit leading
zeros for month and day. You can include trailing blanks, but no leading blanks are allowed.

• dd.mm.yyyy
• mm/dd/yyyy
• yyyy-mm-dd
• Any local format that was defined when Db2 was installed

(date-format)
The format of the date representation, as shown in the following table.

Table 29. Values for date-format

date-format value Format Length

DATE_A mm-dd-yyyy “1” on page 278 10 bytes

DATE_B mm-dd-yy “1” on page 278, “2” on
page 278

8 bytes

DATE_C yyyy-mm-dd “1” on page 278 10 bytes

DATE_D yy-mm-dd “1” on page 278, “2” on
page 278

8 bytes

DATE_E dd-mm-yyyy “1” on page 278 10 bytes

DATE_F dd-mm-yy “1” on page 278, “2” on
page 278

8 bytes

DATE_G yyyy-ddd “1” on page 278 8 bytes

DATE_H yy-ddd “1” on page 278, “2” on page
278

6 bytes

DATE_I mmddyyyy 8 bytes

DATE_J mmddyy “2” on page 278 6 bytes

DATE_K yyyymmdd 8 bytes

DATE_L yymmdd “2” on page 278 6 bytes

DATE_M ddmmyyyy 8 bytes

DATE_N ddmmyy “2” on page 278 6 bytes

DATE_O yyyyddd 7 bytes

DATE_P yyddd “2” on page 278 5 bytes

Chapter 19. LOAD 277

If a date format is specified for a field that is used in a field specification, the field specification
must also use the specified date format.

Notes:

1. If the format includes separators, the separator can be any single-byte character that can
be converted to a single-byte EBCDIC character. However, if the input file has a delimited
format, you cannot specify the same character that is used for a delimiter, including the
COLDEL, CHARDEL, and DECPT delimiters. For more information about delimiter restrictions,
see “Loading delimited files” on page 304.

2. If a two-digit year is specified, it is expanded to a four-digit year. If the two-digit year is less
than the sum of the two-digit current year plus 50, then the current century is used in the
four-digit year. For example, assume that the current year is 2017. If the two-digit year is 67,
1967 is used. However, if the two-digit year is 66, 2066 is used.

TIME EXTERNAL
Specifies a character string representation of a time. You can specify a length or a specific time
format.
(length)

The length, if unspecified, is the specified length on the LOCAL TIME LENGTH installation option,
or, if none was provided, the default is 8 bytes. If you specify a length, it must be within the range
of 4 - 254 bytes.

If a format is not specified, times can be in any of the following formats:

• hh.mm.ss
• hh:mm AM
• hh:mm PM
• hh:mm:ss
• Any local format that was defined when Db2 was installed

You can omit the mm portion of the hh:mm AM and hh:mm PM formats if mm is equal to 00. For
example, 5 PM is a valid time, and can be used instead of 5:00 PM.

(time-format)
The specific format of the time representation, as shown in the following table.

Table 30. Values for time-format

time-format value Format Length

TIME_A hh.mm.ss “1” on page 278 8 bytes

TIME_B hh.mm “1” on page 278 5 bytes

TIME_C hh.mm AM or hh.mm PM “1” on
page 278

8 bytes

TIME_D hhmmss 6 bytes

TIME_E hhmm 4 bytes

If a time format is specified for a field that is used in a field specification, the field specification
must also use the specified time format.

Note:

1. If the format includes separators, the separator can be any single-byte character that can be
converted to a single-byte EBCDIC character.

TIMESTAMP EXTERNAL
Specifies a character string representation of a time. You can specify a length or a specific timestamp
format.

278 Db2 12 for z/OS: Utility Guide and Reference

(length)
The default for length is 26 bytes. If you specify a length, it must be within the range of 19 - 32
bytes.

If a timestamp format is not specified, timestamps can be in any of the following formats. nnnnnn
represents the number of microseconds, and can be 0 - 12 digits. You can omit leading zeros from
the month, day, or hour parts of the timestamp; you can omit trailing zeros from the microseconds
part of the timestamp.

• yyyy-mm-dd-hh.mm.ss
• yyyy-mm-dd-hh.mm.ss.nnnnnn
• yyyy-mm-dd hh:mm:ss.nnnnnn

(timestamp-format)
The format of the timestamp representation, as shown in the following table.

Table 31. Values for timestamp-format

timestamp-format value Format Length

TIMESTAMP_A yyyy-mm-dd-hh.mm.ss “1” on
page 279

19 bytes

TIMESTAMP_B yyyy-mm-dd-
hh.mm.ss.nnnnnn “1” on page 279

26 bytes

TIMESTAMP_C yyyymmddhhmmss 14 bytes

TIMESTAMP_D yymmddhhmmss “2” on page 279 12 bytes

TIMESTAMP_E yyyymmddhhmmssnnnnnn 20 bytes

TIMESTAMP_F yymmddhhmmssnnnnnn “2” on
page 279

18 bytes

If a timestamp format is specified for a field that is used in a field specification, the field
specification must also use the specified timestamp format.

Notes:

1. If the format includes separators, the separator can be any single-byte character that can be
converted to a single-byte EBCDIC character.

2. If a two-digit year is specified, it is expanded to a four-digit year. If the two-digit year is less than
the sum of the two-digit current year plus 50, then the current century is used in the four-digit
year. For example, assume that the current year is 2017. If the two-digit year is 67, 1967 is used.
However, if the two-digit year is 66, 2066 is used.

TIMESTAMP WITH TIME ZONE EXTERNAL(length)
Specifies a character string representation of a timestamp with time zone. The default for length is 33
bytes. If you specify a length, it must be within the range of 26 to 39 bytes.

Timestamp with time zone can be in any of the following formats. nnnnnn represents the number of
digits in the fractional seconds, and can be 0 - 12 digits. You can omit leading zeros from the month,
day, or hour parts of the timestamp; you can omit trailing zeros from the fractional seconds part of the
timestamp.

• yyyy-mm-dd-hh.mm.ss.nnnnnn±th:tm
• yyyy-mm-dd-hh.mm.ss.nnnnnn ±th:tm
• yyyy-mm-dd hh:mm:ss.nnnnnn±th:tm
• yyyy-mm-dd hh:mm:ss.nnnnnn ±th:tm

Chapter 19. LOAD 279

ROWID
Specifies a row ID. The input data must be a valid value for a row ID; Db2 does not perform any
conversions.

A field specification for a row ID column is not allowed if the row ID column was created with the
GENERATED ALWAYS option.

If the row ID column is part of the partitioning key, LOAD INTO TABLE PART is not allowed; specify
LOAD INTO TABLE instead.

BLOB
Specifies a BLOB field. You must specify the length in bytes in a 4-byte binary field that precedes the
data. (The length does not include the 4-byte field itself.) The length field must start in the column
that is specified as start in the POSITION option. If :end is used, it is ignored.

CLOB
Specifies a CLOB field. You must specify the length in bytes in a 4-byte binary field that precedes the
data. (The length does not include the 4-byte field itself.) The length field must start in the column
that is specified as start in the POSITION option. If :end is used, it is ignored.
MIXED

Specifies that the input field contains mixed SBCS and DBCS data. If MIXED is specified, any
required CCSID conversions use the mixed CCSID for the input data; if MIXED is not specified, any
such conversions use the SBCS CCSID for the input data.

CCSID 1208
Specifies that the data in the CLOB input file is in CCSID 1208 (UTF-8). If data conversion occurs,
CCSID 1208 is used for the input data.

DBCLOB
Specifies a DBCLOB field. You must specify the length in double-byte characters in a 4-byte binary
field that precedes the data. (The length does not include the 4-byte field itself.) The length field must
start in the column that is specified as start in the POSITION option. If :end is used, it is ignored.
CCSID 1200

Specifies that the data in the CLOB input file is in CCSID 1200 (UTF-16). If data conversion occurs,
CCSID 1200 is used for the input data.

DECFLOAT (length)
Specifies either a 128-bit decimal floating-point number or a 64-bit decimal floating-point number.
The value of the length must be either 16 or 34. If the length is 16, the number is in 64 bit decimal
floating-point number format. If the length is 34, the number is in 128 bit decimal floating-point
format. If the length is not specified, the number is in 128 bit decimal floating-point format.

DECFLOAT EXTERNAL (length)
Specifies a string of characters that represent a number. The format is an SQL numeric constant. If
you do not specify a length, the length of the string is determined from the POSITION specification. If
you do not specify a length or POSITION, LOAD uses the default length for DECFLOAT.

XML
Specifies the input field type is XML. Field type XML can only be loaded to a XML column. Specify
XML when loading the XML value directly from the input record. If the format of the input record is in
nondelimited, you must specify a 2 byte length field precedes the actual data value.

BINARYXML Specifies that the XML document to be loaded using the file reference variables is in
binary XML format.

PRESERVE WHITESPACE
Specifies that the white space in the XML column is preserved. The default is not to preserve the white
space.

DEFAULTIF defaultif-condition

Specifies that the field (identified in the field-specification) is to be loaded with the default column
value if the specified condition is true.

280 Db2 12 for z/OS: Utility Guide and Reference

defaultif-condition

The condition that is evaluated. For each field, you can specify only one condition.

Within this condition, specify any character-string constants in the same character set as the
input data record. For example, specify EBCDIC constants if your data is in EBCDIC and specify
UNICODE constants if your data is in UNICODE. You can also code the DEFAULTIF condition using
the hexadecimal form. For example, if the input data is in EBCDIC and the control statement is in
UTF-8, use (1:1)=X'31' in the condition rather than (1:1)='1'.

If you use DEFAULTIF with the ROWID keyword, and the condition is met, the column is loaded
with a value that Db2 generates.

You cannot specify DEFAULTIF for XML columns.

CONV_ERROR

Specifies that the condition is a conversion error. If a conversion error occurs, the default value
is loaded.

field-name

The name of the field to be compared with a constant value. You must specify the name of a
field that is defined in the field-specification. If field-name is used, the start and end positions
of the field are given by the POSITION option of the field specification.

The field that you specify must meet all of the following requirements:

• Contain a character or graphic string. No data type conversions are performed when the
contents of the field in the input record are compared to a string constant.

• Start at the same byte offset in each assembled input record. If any record contains varying-
length strings, which are stored with length fields, that precede the selection field, they must
be padded so that the start of the selection field is always at the same offset.

The field and the constant do not need to be the same length. If they are not, the shorter of
the two is padded before a comparison is made. Character and graphic strings are padded with
blanks. Hexadecimal strings are padded with zeros.

If this field is a VARCHAR or VARGRAPHIC field, Db2 takes the length of the field from the
2-byte binary field before the data portion of the VARCHAR or VARGRAPHIC field.

= <>
Specifies the type of comparison between the field (field-name or start:end) and constant
(X'byte-string', 'character-string', G'graphic-string', or N'graphic-string').
=

Equal to
<>

Not equal to
(start:end)

Identifies column numbers in the assembled load record to use for the comparison in the
DEFAULTIF condition. The first column of the record is column 1. The two numbers indicate
the starting and ending columns of a selection field in the load record.

If end is not used, the field is assumed to have the same length as the constant.

X'byte-string'
A string of hexadecimal characters. For example, the following condition specifies that the
default value is to be loaded if the record has the value X'FFFF' in columns 33 through 34.

(33:34) = X'FFFF'

Chapter 19. LOAD 281

'character-string'
A string of characters. For example, the following clause specifies that the default value is to
be loaded if the field DEPTNO has the value D11.

DEPTNO = 'D11'

If the field uses a specific external date, time, or timestamp format, the field specification
must use a character string that matches the specified format.

G'graphic-string'
A string of double-byte characters. For example, the following clause specifies that the default
is to be loaded if the record has the specified value in columns 33 through 36.

(33:36) = G'<**>'

In this example, < is the shift-out character, * is a double-byte character, and > is the shift-in
character.

If the first or last byte of the input data is a shift-out character, it is ignored in the comparison.
Specify G as an uppercase character.

N'graphic-string'
A string of double-byte characters. N and G are synonymous for specifying graphic string
constants. Specify N as an uppercase character.

NULLIF field-selection-criterion
Describes a condition that causes the Db2 column to be loaded with NULL. You can write the
field-selection-criterion with the same options as described under field-selection-criterion. If the
contents of the NULLIF field match the provided character constant, the field that is specified in
field-specification is loaded with NULL.

If the NULLIF field is defined by the name of a VARCHAR or VARGRAPHIC field, Db2 takes the length
of the field from the 2-byte binary field that appears before the data portion of the VARCHAR or
VARGRAPHIC field.

To load a null value into a BLOBF, CLOBF, or DBCLOBF field, use a null input file name.

Character-string constants should be specified in LOAD utility control statements in the character set
that matches the input data record. Specify EBCDIC constants in the LOAD control statement if your
data is in EBCDIC and specify UNICODE constants if your data is in UNICODE. You may also code the
NULLIF condition using the hexadecimal form. For example, if the input data is in EBCDIC and the
control statement is in UTF-8, use (1:1)=X'31' in the condition rather than (1:1)='1'.

The fact that a field in the output table is loaded with NULL does not change the format or function
of the corresponding field in the input record. The input field can still be used in a field selection
criterion. For example, assume that a LOAD statement has the following field specification:

(FIELD1 POSITION(*) CHAR(4)
 FIELD2 POSITION(*) CHAR(3) NULLIF(FIELD1='SKIP')
 FIELD3 POSITION(*) CHAR(5))

Assume also that LOAD is to process the following source record:

SKIP FLD03

In this example, the record is loaded as follows:

FIELD1
Has the value 'SKIP'.

FIELD2
Is NULL (not ' ' as in the source record).

FIELD3
Has the value 'FLD03'.

282 Db2 12 for z/OS: Utility Guide and Reference

You cannot use the NULLIF parameter with the ROWID keyword because row ID columns cannot be
null.

Field selection criterion

Describes a condition that causes the Db2 column to be loaded with NULL or with its default value.

Related concepts
Constants (Db2 SQL)
Related tasks
“Preparing Db2 internal format input records that are not generated by UNLOAD for LOAD” on page 294
Before you load records that are in Db2 internal format, but are not generated by the UNLOAD utility, you
need to modify the input records.
Related reference
STRIP (Db2 SQL)
EDITPROCs and VALIDPROCs for handling basic and reordered row formats (Db2 Administration Guide)
“TEMPLATE” on page 751
The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the
data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.
Related information
Converting basic row format table spaces with edit and validation routines to reordered row format (Db2
Administration Guide)
Db2 Sort for z/OS
DFSORT Application Programming Guide

Before running LOAD
Certain activities might be required before you run the LOAD utility, depending on your situation.

You cannot run the LOAD utility on the DSNDB01 or DSNDB06 databases, except to add rows to the
following catalog tables:

• SYSSTRINGS
• MODESELECT
• LUMODES
• LULIST
• USERNAMES
• LUNAMES
• LOCATIONS
• IPNAMES

If you are using LOAD for a partition-by-growth table space, you can load data only at the table space
level, not at the partition level.

Preprocessing input data

No sorting of the data rows occurs during LOAD processing. Rows are loaded in the physical sequence in
which they are found.

Recommendation: Sort your input records in clustering sequence before loading the data.

You should also:

Chapter 19. LOAD 283

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_constantsintro.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_strip.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_procs4rfmttype.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_convertrowformattable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_convertrowformattable.html
https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm

• Ensure that no duplicate keys exist for unique indexes.
• Correct check constraint violations and referential constraint violations in the input data set.
• Ensure that any input data that is provided for a security label column is a valid security label. Security

label columns are defined with the AS SECURITY LABEL clause. These columns are used for multilevel
security with row-level granularity.

When loading data into a segmented (non-UTS) table space, sort your data by table to ensure that the
data is loaded in the best physical organization.

Loading data by using a cursor

Before you can load data by using a cursor, also known as cross-loading, you need to bind the DSNUT121
package at each location from which you plan to load data. A local package for DSNUT121 is bound by
installation job DSNTIJSG when you install or migrate to a new version of Db2 for z/OS.

The following example statement binds the DSNUT121 package at a remote location:

BIND PACKAGE(location.DSNUT121)
 MEMBER(DSNUGSQL) -
 ACTION(ADD) ISOLATION(CS) ENCODING(EBCDIC) -
 VALIDATE(BIND) CURRENTDATA(NO) -
 LIBRARY('prefix.SDSNDBRM')

You can improve the performance of cross-loading from a remote Db2 11 subsystem in new-function
mode, or a later version of Db2, to a local Db2 12 subsystem by binding the DSNUTIL and DSNUT121
packages again on the local and remote subsystems with the DBPROTOCOL(DRDACBF) option. However,
be aware that if you bind DSNUTIL with this option, you cannot use the EXEC SQL utility to issue remote
dynamic SQL statements that modify data; you can use EXEC SQL only to declare a cursor, which can then
be used by LOAD to make updates.

The following example statements bind the DSNUTIL and DSNUT121 packages on the local subsystem,
and bind the DSNUT121 package on the remote subsystem:

BIND PACKAGE(DSNUTIL) MEMBER(DSNUGSQL) -
 ACTION(ADD) ISOLATION(CS) ENCODING(EBCDIC) -
 VALIDATE(BIND) CURRENTDATA(NO) -
 DBPROTOCOL(DRDACBF) -
 LIBRARY('prefix.SDSNDBRM')
BIND PACKAGE(DSNUT121) MEMBER(DSNUGSQL) -
 ACTION(ADD) ISOLATION(CS) ENCODING(EBCDIC) -
 VALIDATE(BIND) CURRENTDATA(NO) -
 DBPROTOCOL(DRDACBF) -
 LIBRARY('prefix.SDSNDBRM')
BIND PACKAGE(location.DSNUT121) MEMBER(DSNUGSQL) -
 ACTION(ADD) ISOLATION(CS) ENCODING(EBCDIC) -
 VALIDATE(BIND) CURRENTDATA(NO) -
 DBPROTOCOL(DRDACBF) -
 LIBRARY('prefix.SDSNDBRM')

Running LOAD on a table with a spatial index
You cannot run the LOAD utility to load data into a table on which a spatial index is defined. You need to
drop the spatial index, run LOAD on the table, and then create the spatial index again.

Related concepts
Multilevel security (Managing Security)

284 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_mls.html

Data sets that LOAD uses
The LOAD utility requires certain data sets depending on the options that you specify. Include statements
in your JCL for each data set that is needed. Alternatively, for some of these data sets, you can use the
TEMPLATE utility to dynamically allocate them.

Table 32. Data sets that LOAD uses

Data set

Default DD
name

LOAD option to
specify a
different DD
name or
template name Description Required?

In-stream data set SYSIN None An input data stream
that contains the utility
control statement.

Yes

Output data set SYSPRINT None An output data set for
utility messages.

Yes

Input data set SYSREC INDDN An input data set that
contains the data that is
to be loaded.

You can specify more
than one input data set
with the INDDN option.

Yes

The only LOAD situation
where this data set is not
required is if you choose to
use a cursor instead. In this
case, specify the INCURSOR
option.

Error data set SYSERR ERRDDN A work data set for error
processing.

Yes

Discard data set SYSDISC DISCARDDN A work data set that
contains copies of
records that are not
loaded.

If the input data set
is on tape, and you
use a template for the
discard data set, include
the SPACE parameter
in the TEMPLATE utility
control statement.

If you omit the DD
statement for this data
set, LOAD creates the
data set with the same
record format, record
length, and block size as
the input data set.

Yes

Sort message data
set

UTPRINT None An output data set that
contains messages from
the sort program. These
messages are usually
routed to SYSOUT or
DUMMY.

Yes

Chapter 19. LOAD 285

Table 32. Data sets that LOAD uses (continued)

Data set

Default DD
name

LOAD option to
specify a
different DD
name or
template name Description Required?

Copy data sets SYSCOPY COPYDDN and
RECOVERYDDN

One to four output data
sets that contain image
copy data sets.

Required for inline copies.

FlashCopy image
copies

None FCCOPYDDN A VSAM data set for the
output FlashCopy image
copy of each partition or
piece.

Required for inline
FlashCopy image copies
(FLASHCOPY YES or
FLASHCOPY CONSISTENT is
specified).

Sort message data
set

RNPRINnn None An output data set that
contains messages from
the sort program. These
messages are usually
routed to SYSOUT or
DUMMY.

nn is a number from
01 to the number of
parallel subtasks.

Required when collecting
distribution statistics for
column groups (COLGROUP
and FREQVAL are specified).

Sort message data
set

STPRIN01 None An output data set that
contains messages from
the sort program. These
messages are usually
routed to SYSOUT or
DUMMY.

LOAD dynamically
allocates the STPRIN01
data set if UTPRINT is
allocated to SYSOUT.

Required when collecting
distribution statistics for
column groups (COLGROUP
and FREQVAL are specified)
or when statistics are being
collected on at least one
data-partitioned secondary
index.

Mapping data set SYSMAP MAPDDN A work data set for
mapping the identifier
of a table row to the
input record that caused
an error.

Required for the following
situations:

• If referential
constraints exist and
ENFORCE(CONSTRAINTS)
is specified. (This option is
the default.)

• For discard processing
when loading one or more
tables that have unique
indexes.

286 Db2 12 for z/OS: Utility Guide and Reference

Table 32. Data sets that LOAD uses (continued)

Data set

Default DD
name

LOAD option to
specify a
different DD
name or
template name Description Required?

Sort input data set SYSUT1 WORKDDN A temporary work data
set for sort input.

If the input data
set is on tape, and
you use a templates
for the SYSUT1 data
set, include the
SPACE parameter in
the TEMPLATE utility
control statements.

Required for any of the
following situations:

• Referential constraints
exist and
ENFORCE(CONSTRAINTS)
is specified or accepted as
the default.

• Indexes exist.
• DISCARDS is specified and

ddname1 is specified for
WORKDDN

Sort output data
set“3” on page 288

SORTOUT WORKDDN A temporary work data
set for sort output.

Required for any of the
following situations:

• Referential constraints
exist and
ENFORCE(CONSTRAINTS)
is specified or accepted as
the default.

• Indexes exist.
• DISCARDS is specified and

ddname2 is specified for
WORKDDN

Sort work data
sets“1” on page 288, “2”
on page 288, “3” on page
288

SWnnWKmm or
SORTWKnn

None Temporary data sets for
sort input and output
when sorting keys.

If index build
parallelism is used, the
DD names have the
form SWnnWKmm. If
index build parallelism
is not used, the DD
names have the form
SORTWKnn.

Required if any indexes are
to be built or if a sort
is required for processing
errors.

Sort work data
sets“1” on page 288, “2”
on page 288, “3” on page
288

ST01WKnn None Temporary data sets for
sort input and output
when collecting inline
statistics on at least
one data-partitioned
secondary index or
when the COLGROUP
option is specified.

Required when collecting
inline statistics on at
least one data-partitioned
secondary index.

Chapter 19. LOAD 287

Table 32. Data sets that LOAD uses (continued)

Data set

Default DD
name

LOAD option to
specify a
different DD
name or
template name Description Required?

Sort work data
sets“1” on page 288, “2”
on page 288, “3” on page
288

RNmmWKnn None Temporary data sets
for sort input and
output when collecting
distribution statistics for
column groups.

The DD names have
the form RNmmWKnn,
where mm is the
subtask number, and nn
is a sequence number
for the data set that
is allocated for that
subtask.

Required when collecting
inline statistics on at
least one data-partitioned
secondary index.

Sort work data
sets“1” on page 288, “2”
on page 288, “3” on page
288

SORTWK01 None Temporary data sets
for sort input and
output when collecting
frequency statistics.

Required when collecting
frequency statistics.

Note:

1. If the DYNALLOC parm of the sort program is not turned on, you need to allocate the data set. Otherwise,
the sort program dynamically allocates the temporary data set.

2. Recommendation: Use dynamic allocation by specifying the SORTDEVT option in the LOAD statement so
that you do not have to write and maintain these DD statements.

3. Tape devices are not supported for work data sets that are used for sort purposes.

Defining work data sets

Use the formulas and instructions in The following table to calculate the size of work data sets for LOAD.
Each row in the table lists the DD name that is used to identify the data set and either formulas or
instructions that you should use to determine the size of the data set. The key for the formulas is located
at the bottom of the table.

288 Db2 12 for z/OS: Utility Guide and Reference

Table 33. Size of work data sets for LOAD jobs

Work data set Size

SORTOUT

• Simple table space:

max(k,e)

• Partitioned or segmented (non-UTS) table space:

max(k,e,m)

If you specify an estimate of the number of keys with the SORTKEYS option:

max(f,e) for a simple table space
max(f,e,m) for a partitioned or segmented (non-UTS) table space

ST01WKnn 2 ×(maximum record length × numcols × (count + 2) × number of indexes)

SYSDISC Same size as input data set

SYSERR e

SYSMAP

• Simple table space for discard processing:

m
• Partitioned or segmented (non-UTS) table space without discard processing:

max(m,e)

SYSUT1

• Simple table space:

max(k,e)
• Partitioned or segmented (non-UTS) table space:

max(k,e,m)

If you specify an estimate of the number of keys with the SORTKEYS option:

max(f,e) for a simple table space
max(f,e,m) for a partitioned or segmented (non-UTS) table space

Chapter 19. LOAD 289

Table 33. Size of work data sets for LOAD jobs (continued)

Work data set Size

Note:
variable

meaning
k

Key calculation
f

Foreign key calculation
m

Map calculation
e

Error calculation
max()

Maximum value of the specified calculations
numcols

Number of key columns to concatenate when you collect frequent values from the specified index
count

Number of frequent values that Db2 is to collect
maximum record length

Maximum record length of the SYSCOLDISTSTATS record that is processed when collecting
frequency statistics (You can obtain this value from the RECLENGTH column in SYSTABLES.)

• Calculating the key: k

If a mix of data-partitioned secondary indexes and nonpartitioned indexes exists on the table that is
being loaded or a foreign key exists that is exactly indexed by a data-partitioned secondary index, use
this formula:

max(longest index key + 17, longest foreign key + 17) * (number of extracted keys)

Otherwise, use this formula:

max(longest index key + 15, longest foreign key + 15) * (number of extracted keys)

For nonpadded indexes, the length of the longest key means the maximum possible length of a key
with all varying-length columns padded to their maximum lengths, plus 2 bytes for each varying-length
column.

• Calculating the number of extracted keys:

1. Count 1 for each index.
2. Count 1 for each foreign key that is not exactly indexed (that is, where foreign key and index

definitions do not correspond identically).
3. For each foreign key that is exactly indexed (that is, where foreign key and index definitions

correspond identically):

a. Count 0 for the first relationship in which the foreign key participates if the index is not a
data-partitioned secondary index. Count 1 if the index is a data-partitioned secondary index.

b. Count 1 for subsequent relationships in which the foreign key participates (if any).
4. Multiply count by the number of rows that are to be loaded.

• Calculating the foreign key: f

290 Db2 12 for z/OS: Utility Guide and Reference

If a mix of data-partitioned secondary indexes and nonpartitioned indexes exists on the table that is
being loaded or a foreign key exists that is exactly indexed by a data-partitioned secondary index, use
this formula:

max(longest foreign key + 17) * (number of extracted keys)

Otherwise, use this formula:

max(longest foreign key + 15) * (number of extracted keys)

• Calculating the map: m

The data set must be large enough to accommodate one map entry (length = 23bytes) per table row
that is produced by the LOAD job.

• Calculating the error: e

The data set must be large enough to accommodate one error entry (length = 568 bytes) per defect that
is detected by LOAD (for example, conversion errors, unique index violations, violations of referential
constraints).

• Calculating the number of possible defects:

– For discard processing, if the discard limit is specified, the number of possible defects is equal to the
discard limit.

If the discard limit is the maximum, calculate the number of possible defects by using the following
formula:

number of input records +
(number of unique indexes * number of extracted keys) +
(number of relationships * number of extracted foreign keys)

– For nondiscard processing, the data set is not required.

Allocating twice the space that is used by the input data sets is usually adequate for the sort work data
sets. Two or three large SORTWKnn data sets are preferable to several small ones.

Sort work data sets cannot span volumes. Smaller volumes require more sort work data sets to sort the
same amount of data; therefore, large volume sizes can reduce the number of needed sort work data sets.
It is recommended that at least 1.2 times the amount of data to be sorted be provided in sort work data
sets on disk.

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.
Related reference
“Syntax and options of the TEMPLATE control statement” on page 751
The TEMPLATE utility control statement, with its multiple options, defines the function that the utility job
performs.
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Chapter 19. LOAD 291

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

Concurrency and compatibility for LOAD
Depending on the specified LOAD utility options and the target object, certain processes and utilities can
run at the same time as LOAD.

Claims and drains
The following table lists any claims or drains that the utility acquires and any restrictive states that are set
on the target object.

Table 34. Claim classes of LOAD operations

Target

LOAD
SHRLEVEL
NONE

LOAD PART
SHRLEVEL
NONE

LOAD
SHRLEVEL
CHANGE

LOAD PART
SHRLEVEL
CHANGE

Table space, index, or physical
partition of a table space or
index space

DA/UTUT DA/UTUT CW/UTRW CW/UTRW

Nonpartitioned secondary index1 DA/UTUT DR CW/UTRW CW/UTRW

Data-partitioned secondary
index2

DA/UTUT DA/UTUT CW/UTRW CW/UTRW

Index logical partition3 None DA/UTUT None CW/UTRW

Primary index (with ENFORCE
option only)

DW/UTRO DW/UTRO CR/UTRW CR/UTRW

RI dependents CHKP (NO) CHKP (NO) CHKP (NO) CHKP (NO)

Legend:

• CHKP (NO): Concurrently running applications do not see CHECK-pending status after commit.
• CR: Claim the read claim class.
• CW: Claim the write claim class.
• DA: Drain all claim classes, no concurrent SQL access.
• DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers.
• DW: Drain the write claim class, concurrent access for SQL readers.
• UTUT: Utility restrictive state, exclusive control.
• UTRO: Utility restrictive state, read-only access allowed.
• UTRW: Utility restrictive state, read/write access allowed.
• None: Object is not affected by this utility.

Note:

1. Includes the document ID indexes and node ID indexes over non-partitioned XML table spaces and
XML indexes.

2. Includes document ID indexes and node ID indexes over partitioned XML table spaces.
3. Includes logical partitions of an XML index over partitioned table spaces.
4. For nonpartitioned secondary indexes, LOAD PART drains only the logical partition.

Compatibility
Db2 treats individual data and index partitions as distinct target objects. Utilities that operate on different
partitions of the same table space or index space are compatible.

292 Db2 12 for z/OS: Utility Guide and Reference

The following table shows whether other utilities are compatible with LOAD and can run concurrently on
the same target object. The target object can be a table space, an index space, or a partition of a table
space or index space.

Table 35. Compatibility of LOAD with other utilities

Action LOAD SHRLEVEL NONE LOAD SHRLEVEL CHANGE

BACKUP SYSTEM Yes Yes

CHECK DATA DELETE NO No No

CHECK DATA DELETE YES No No

CHECK INDEX No No

CHECK LOB No No

COPY INDEXSPACE SHRLEVEL CHANGE No Yes

COPY INDEXSPACE SHRLEVEL
REFERENCE

No No

COPY TABLESPACE SHRLEVEL CHANGE No Yes

COPY TABLESPACE SHRLEVEL REFERENCE No No

COPYTOCOPY Yes Yes

DIAGNOSE Yes Yes

LOAD SHRLEVEL CHANGE No Yes

LOAD SHRLEVEL NONE No No

MERGECOPY Yes Yes

MODIFY RECOVERY Yes Yes

MODIFY STATISTICS No Yes

QUIESCE No No

REBUILD INDEX No No

RECOVER (no options) No No

RECOVER ERROR RANGE No No

RECOVER TOCOPY or TORBA No No

REORG INDEX No No

REORG TABLESPACE SHRLEVEL CHANGE No No1

REORG TABLESPACE UNLOAD CONTINUE
or PAUSE

No No

REORG TABLESPACE UNLOAD ONLY or
EXTERNAL

No No

REPAIR DUMP or VERIFY No No

REPAIR LOCATE KEY or RID DELETE or
REPLACE

No No

REPAIR LOCATE TABLESPACE PAGE
REPLACE

No No

REPORT Yes No

Chapter 19. LOAD 293

Table 35. Compatibility of LOAD with other utilities (continued)

Action LOAD SHRLEVEL NONE LOAD SHRLEVEL CHANGE

RESTORE SYSTEM No No

RUNSTATS INDEX SHRLEVEL CHANGE No Yes

RUNSTATS INDEX SHRLEVEL REFERENCE No No

RUNSTATS TABLESPACE SHRLEVEL
CHANGE

No Yes

RUNSTATS TABLESPACE SHRLEVEL
REFERENCE

No No

STOSPACE Yes Yes

UNLOAD No Yes

Notes:

1. REORG SHRLEVEL CHANGE is compatible with LOAD RESUME YES SHRLEVEL CHANGE. However,
REORG still requires exclusive control of the target objects in the last iteration in the LOG phase and
in the SWITCH phase. Because LOAD RESUME YES SHRLEVEL CHANGE holds a write claim against the
target objects for the entire duration of the utility, REORG cannot break in to complete processing until
the concurrent LOAD utility completes.

SQL operations and other online utilities on the same target partition are incompatible.

Related concepts
Claims and drains (Db2 Performance)

Preparing Db2 internal format input records that are not generated by
UNLOAD for LOAD

Before you load records that are in Db2 internal format, but are not generated by the UNLOAD utility, you
need to modify the input records.

About this task
For LOAD input records that are in Db2 internal format, the seventh bit of the first byte in each record
needs to indicate whether the record is in basic row format or reordered row format. A value of 0 in the
seventh bit of the first byte indicates that the record is in basic row format. A value of 1 indicates that the
record is in reordered row format.

Procedure
If your input records are in Db2 internal format, and you did not use UNLOAD with FORMAT INTERNAL to
generate the input data, you need to set the seventh bit of the first byte of each record to indicate the row
format of the record.

To avoid extra row format conversions that degrade performance, ensure that input data rows are in the
row format of the target table space or partition.

Related reference
“Syntax and options of the LOAD control statement” on page 223

294 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_claimsdrans4concurrency.html

The LOAD utility control statement, with its multiple options, defines the function that the utility job
performs.

When to use SORTKEYS NO
The SORTKEYS value determines when you can restart a LOAD job on a table space that has LOB columns.

• The default value for SORTKEYS is SORTKEYS 0. If you plan to load a table that has LOB columns
using LOAD RESUME YES SHRLEVEL NONE, and you might need to restart the LOAD job with
RESTART(CURRENT), you must specify SORTKEYS NO.

• The point at which you can restart LOAD REPLACE SHRLEVEL NONE on a table that has no LOB columns
depends on whether you specify SORTKEYS NO:

– If you specify SORTKEYS NO, you can restart with RESTART(CURRENT).
– If you do not specify SORTKEYS NO, you can restart only with RESTART(PHASE)

Loading variable-length data
You can load variable-length data by using the LOAD utility.

Procedure
Include a 2-byte binary length field before each field of variable-length data. The value in that field
depends on the data type of the column into which you load the data. Use:

• The number of single-byte characters if the data type is VARCHAR
• The number of double-byte characters if the data type is VARGRAPHIC

For example, assume that you have a variable-length column that contains X'42C142C142C2', which
might be interpreted as either six single-byte characters or three double-byte characters. With the two-
byte length field, use:

• X'0006'X'42C142C142C2' to signify six single-byte characters in a VARCHAR column
• X'0003'X'42C142C142C2' to signify three double-byte characters in a VARGRAPHIC column

How LOAD orders loaded records
The LOAD utility loads records into a table space in the order in which they appear in the input stream. It
does not sort the input stream, and it does not insert records in sequence with existing records, even if a
clustering index exists.

To achieve clustering when loading an empty table or replacing data, sort the input stream. When adding
data to a clustered table, consider reorganizing the table after running LOAD.

Because rows with duplicate key values for unique indexes fail to be loaded, any records that are
dependent on such rows either:

• Fail to be loaded because they would cause referential integrity violations (if you specify ENFORCE
CONSTRAINTS)

• Are loaded without regard to referential integrity violations (if you specify ENFORCE NO)

As a result, violations of referential integrity might occur. Such violations can be detected by LOAD
(without the ENFORCE(NO) option) or by CHECK DATA.

Chapter 19. LOAD 295

Replacing data with LOAD
You can use the LOAD utility to replace data in a table space that has one or more tables.

Procedure
Specify the REPLACE option in the LOAD utility control statement.

This option specifies that all data in the table space is to be replaced. Alternatively, you can load new
records into a table space without deleting the existing rows by using the RESUME option.

When you specify LOAD REPLACE, determine what other LOAD options to specify depending on the
following implications:

How data sets are processed
Db2 processes data sets depending on the LOAD options that you specify. If you run LOAD REPLACE
without the REUSE option, data sets that are not user-managed are deleted before the LOAD utility
runs. The LOAD utility defines a new data set with a control interval that matches the page size.

How row format is affected
When you run LOAD REPLACE with the ROWFORMAT RRF option on a table space or partition that is
in basic row format, LOAD converts the table space or partition to the reordered row format. If the
ROWFORMAT BRF option is specified, existing basic row format table spaces are not converted to
reordered row format. If the clause EDITPROC or VALIDPROC is used in a table space or partition,
the table space or partition remains in basic format after the LOAD REPLACE. For table spaces that
contain some partitions in basic row format and some partitions in reordered row format, LOAD
REPLACE converts the partitions that are in basic row format to reordered row format.

Important: ROWFORMAT is deprecated in Db2 12 for z/OS, meaning that its use is discouraged.
Although this keyword remains supported, support is likely to be removed eventually. See Deprecated
function in Db2 12 (Db2 for z/OS What's New?).

How logging is handled
The LOAD REPLACE or PART REPLACE with LOG YES option logs only the reset and not each deleted
row. To see what rows are being deleted, use the SQL DELETE statement.

Running LOAD REPLACE has the following effects on restrictive states:

REORG-pending
If an object is in REORG-pending status, you can run LOAD REPLACE on the entire table space, which
resets REORG-pending status. You can also run LOAD PART REPLACE or RESUME on any partitions
that are not in REORG-pending status. In this situation, no other LOAD operations are allowed.

Advisory REORG-pending
If an object is in advisory REORG-pending status (AREO*), you can run LOAD REPLACE on the entire
table space, which resets advisory REORG-pending status (AREO*). The exception is pending limit
key changes. LOAD REPLACE does not materialize those changes or reset advisory REORG-pending
status (AREOR). In that case, you must run the REORG TABLESPACE utility. Then, you can run LOAD
REPLACE. (You can continue to use LOAD REPLACE to materialize immediate alter limit key changes,
which are indicated by REORG-pending status (REORP) instead of advisory REORG-pending status
(AREOR). Immediate alter limit key changes occur for a partitioned table space with index-controlled
partitioning.

REBUILD-pending
If an object is in REBUILD-pending status, you can run LOAD REPLACE on the entire table space,
which resets REBUILD-pending status. You can also run LOAD PART REPLACE or RESUME on any
partitions. If these partitions are in REBUILD-pending status, a LOAD PART REPLACE or RESUME
resets that status.

Advisory REBUILD-pending
If an object is in advisory REBUILD-pending status, you can run LOAD REPLACE on the entire table
space, which resets advisory REBUILD-pending status.

296 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_deprecated.html
https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_deprecated.html

REFRESH-pending
If a user-defined table space is in REFRESH-pending (REFP) status, you can replace the data by using
LOAD REPLACE.

Examples
Example of replacing one table in a single-table table space

The following control statement specifies that LOAD is to replace one table in a single-table table
space.

LOAD DATA
 REPLACE
 INTO TABLE DSN8C10.DEPT
 (DEPTNO POSITION (1) CHAR(3),
 DEPTNAME POSITION (5) VARCHAR,
 MGRNO POSITION (37) CHAR(6),
 ADMRDEPT POSITION (44) CHAR(3),
 LOCATION POSITION (48) CHAR(16))
 ENFORCE NO

Example of replacing one table in a multiple-table table space
LOAD works on an entire table space. Therefore, be careful when using LOAD REPLACE on a table
space with multiple tables. To replace all rows in a multiple-table table space, you must work with one
table at a time by using the RESUME YES option on all but the first table. For example, if you have two
tables in a table space, take the following steps:

1. Use LOAD REPLACE on the first table as shown in the following control statement. This option
removes data from the table space and replaces just the data for the first table.

LOAD DATA CONTINUEIF(72:72)='X'
 REPLACE
 INTO DSN8C10.TOPTVAL
 (MAJSYS POSITION (2) CHAR(1),
 ACTION POSITION (4) CHAR(1),
 OBJECT POSITION (6) CHAR(2),
 SRCHCRIT POSITION (9) CHAR(2),
 SCRTYPE POSITION (12) CHAR(1),
 HEADTXT POSITION (80) CHAR(50),
 SELTXT POSITION (159) CHAR(50),
 INFOTXT POSITION (238) CHAR(71),
 HELPTXT POSITION (317) CHAR(71),
 PFKTXT POSITION (396) CHAR(71),
 DSPINDEX POSITION (475) CHAR(2))

2. Use LOAD with RESUME YES on the second table as shown in the control statement in the
following example. This option adds the records for the second table without deleting the data
in the first table.

LOAD DATA CONTINUEIF(72:72)='X'
 RESUME YES
 INTO DSN8C10.TDSPTXT
 (DSPINDEX POSITION (2) CHAR(2),
 LINENO POSITION (6) CHAR(2),
 DSPLINE POSITION (80) CHAR(79))

If you want to replace just one table in a multiple-table table space, delete all rows in the table,
and then use LOAD with RESUME YES. For example, assume that you want to replace all the data in
DSN8C10.TDSPTXT without changing any data in DSN8C10.TOPTVAL. In this case, take the following
steps:

1. Delete all the rows from DSN8C10.TDSPTXT by using the following SQL DELETE statement:

EXEC SQL
 DELETE FROM DSN8C10.TDSPTXT
ENDEXEC

Tip: The mass delete works most quickly on a segmented (non-UTS) table space.
2. Use the LOAD job that is shown in the following figure to replace the rows in that table.

Chapter 19. LOAD 297

LOAD DATA CONTINUEIF(72:72)='X'
 RESUME YES
 INTO DSN8C10.TDSPTXT
 (DSPINDEX POSITION (2) CHAR(2),
 LINENO POSITION (6) CHAR(2),
 DSPLINE POSITION (80) CHAR(79))

Related reference
“Syntax and options of the LOAD control statement” on page 223
The LOAD utility control statement, with its multiple options, defines the function that the utility job
performs.
“REORG TABLESPACE” on page 523
The REORG TABLESPACE online utility reorganizes a table space, partition, or range of partitions to
reclaim fragmented space and improve access performance. You can also run REORG TABLESPACE to
materialize pending definition changes.
“Advisory or restrictive states” on page 975
To control access and help ensure data integrity, Db2 can set a restrictive or nonrestrictive (advisory)
status on certain objects. However, you can take steps to correct each status.

Loading tables with special column types by using generated LOAD
statements

When you run the UNLOAD utility or the REORG utility with the UNLOAD EXTERNAL or DISCARD option,
Db2 generates a LOAD statement for the unloaded data. You can then use this LOAD statement to load the
unloaded data into any table that has a compatible format.

About this task
However, because the following types of columns can contain generated values, they need special
consideration:

• ROWID columns
• Identity columns
• Row change timestamp columns
• Row-begin and row-end columns
• Transaction-start-ID columns
• Generated expression columns

For these table column types, the generated LOAD statement contains dummy fields. The following table
lists those dummy fields.

Source table column type Dummy fields in the generated LOAD statement

ROWID with GENERATED ALWAYS DSN_ROWID

Identity column with GENERATED ALWAYS DSN_IDENTITY

Row change timestamp column with GENERATED
ALWAYS

DSN_RCTIMESTAMP

Row-begin and row-end columns DSN_ROWBEGIN and DSN_ROWEND

Transaction-start-ID columns DSN_TRANSACTIONSTID

Generated expression columns DSN_column-name (where column-name is the
name of the column)

298 Db2 12 for z/OS: Utility Guide and Reference

Procedure
To load tables with special column types by using generated LOAD statements
1. Make sure that the target table has a compatible format for the data that you want load.
2. Decide whether you want to include the data for the columns with special column types when you load

the unloaded data.
3. If you do not want to load data for the columns with special column types, make sure that the column

is defined in the target table as GENERATED ALWAYS.

The IGNOREFIELDS keyword in the generated LOAD statement causes Db2 to skip the dummy fields
when it loads the data into a table.

4. If you want to load data for the columns with special column types, take the following actions:
Option Description

For ROWID,
identity, or
row change
timestamp
columns:

• In the target table, define the ROWID, identity, or row change timestamp
column as GENERATED BY DEFAULT. Alternatively, for a row change
timestamp column, you can define the column as GENERATED ALWAYS in
the target table and add the OVERRIDE(ROWCHANGE) option to the LOAD
statement.

• In the generated LOAD control statement, remove the IGNOREFIELDS
keyword and change the dummy field names to the corresponding column
names in the target table.

For row-begin
and row-end
columns:

• In the target table, define the columns as GENERATED ALWAYS.
• Make the following changes to the generated LOAD control statement:

– Specify the OVERRIDE(SYSTEMPERIOD) option.
– Remove the IGNOREFIELDS keyword.
– Change the dummy field names to the corresponding column names in the

target table.

For transaction-
start-ID columns:

• In the target table, define transaction-start-ID columns as GENERATED
ALWAYS

• Make the following changes to the generated LOAD control statement:

– Specify the OVERRIDE(TRANSID) option.
– Remove the IGNOREFIELDS keyword.
– Change the dummy field names to the corresponding column names in the

target table.

For generated
expression
columns:

Make the following changes to the generated LOAD control statement:

• Specify the OVERRIDE(NONDETERMINISTIC) option.
• Remove the IGNOREFIELDS keyword.
• Change the dummy field names to the corresponding column names in the

target table.

5. Issue the LOAD utility control statement.

Related concepts
“LOAD statements that are generated by UNLOAD” on page 830
The UNLOAD utility can generate one or more LOAD utility statements that you can later use to load
the unloaded data into either the original table or different tables. The generated LOAD statements are
written to the data set that is specified by the PUNCHDDN option. By default, that data set is SYSPUNCH.
Related reference
“Syntax and options of the LOAD control statement” on page 223

Chapter 19. LOAD 299

The LOAD utility control statement, with its multiple options, defines the function that the utility job
performs.
“Syntax and options of the UNLOAD control statement ” on page 781
The UNLOAD utility control statement, with its multiple options, defines the function that the utility job
performs.
CREATE TABLE (Db2 SQL)

Adding more data to a table or partition
You might want to use the LOAD utility to add data to a table or partition, rather than replacing existing
data.

The RESUME keyword specifies whether data is to be loaded into an empty or a non-empty table space.
RESUME NO loads records into an empty table space. RESUME YES loads records into a non-empty table
space.

If RESUME NO is specified and the target table is not empty, no data is loaded.

If RESUME YES is specified and the target table is empty, data is loaded.

LOAD always adds rows to the end of the existing rows, but index entries are placed in key sequence.

Deleting all the data in a table space
You can use the LOAD utility to efficiently clean out a table space. You can delete all of the data, but retain
the structure, including any views and privileges.

Procedure
Submit a LOAD job with the following specifications:

• Specify the REPLACE option in the utility control statement. LOAD REPLACE redefines the table space,
but retains all views and privileges that are associated with a table space or table.

• Specify the appropriate LOG value in the utility control statement. If you want this job to be recoverable,
specify LOG YES. Otherwise, specify LOG NO so that no rows are logged.

• Specify the input data set in the JCL as DD DUMMY. Such a data set indicates that no rows are to be
loaded.

LOAD REPLACE replaces all tables in the table space.

Related reference
“Syntax and options of the LOAD control statement” on page 223
The LOAD utility control statement, with its multiple options, defines the function that the utility job
performs.
“Data sets that LOAD uses” on page 285
The LOAD utility requires certain data sets depending on the options that you specify. Include statements
in your JCL for each data set that is needed. Alternatively, for some of these data sets, you can use the
TEMPLATE utility to dynamically allocate them.

Loading partitions
You can use the LOAD utility to load one or more partitions of a partitioned table space. To improve
performance when loading more than one partition, consider enabling partition parallelism.

About this task
Partition parallelism can reduce the elapsed time that is required for loading large amounts of data into
partitioned table spaces.

300 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html

If you are loading a partitioned table space that is created with DEFINE NO, the load operation might
take longer. If a partitioned table space is created with DEFINE NO, all partitions are also implicitly
defined with DEFINE NO. The first data row that is inserted by the LOAD utility defines all data sets in
the partitioned table space. If this process takes a long time, expect timeouts on the database descriptor
(DBD).

Restriction: You cannot load data at the partition level of a partition-by-growth table space.

Procedure
To load partitions:
• If you want to load only certain partitions of a partitioned table, use the PART clause of the INTO

TABLE option. If you omit the PART clause, the entire table is loaded.

Restriction: The following restrictions exist for identity columns:

– When index-based partitioning is used, LOAD INTO TABLE PART integer is not allowed if an identity
column is part of the partitioning index.

– When table-based partitioning is used, LOAD INTO TABLE PART integer is not allowed if an identity
column is used in a partitioning clause of the CREATE TABLE or ALTER TABLE statement.

To override these restrictions, specify the OVERRIDE(IDENTITY) option in the LOAD statement.
• If you want partitions to be processed in parallel, take one of the following actions:

– If you have a single input data set and the partitioned table space is partitioned (non-UTS) or
partition-by-range , specify the PARALLEL keyword. This keyword enables LOAD to use multiple
parallel subtasks. When determining the degree of parallelism to specify on the PARALLEL keyword,
consider that a high degree of parallelism can result in increased processor time.

Recommendation: Specify PARALLEL(0) or PARALLEL without a number so that Db2 can determine
the optimal degree of parallelism.

– If one or more nonpartitioned secondary indexes exists on the partitioned table space, and you have
a separate input data set for each partition, use load partition parallelism. Partition parallelism loads
all partitions in a single job. To invoke partition parallelism, for each partition that you want to load,
specify the INTO TABLE PART clause with one of the following keywords:

- INDDN
- INCURSOR
- DISCARDDN if DISCARDS n is specified

If the table space is created with DEFINE NO, specifying SHRLEVEL CHANGE on your LOAD
statement and enabling partition parallelism is equivalent to concurrent, independent insert jobs.
For example, in a large partitioned table space that is created with DEFINE NO, the LOAD utility
starts three tasks. The first task tries to insert the first row, which causes an update to the DBD. The
other two tasks time out while they wait to access the DBD. The first task holds the lock on the DBD
while the data sets are defined for the table space.

– If the only indexes are the partitioned indexes, use multiple jobs to run LOAD concurrently against
separate partitions. This method also requires that you have a separate input data set for each
partition.

• If you use the INTO TABLE PART clause, take the following actions as appropriate:

– If you specify the REPLACE or RESUME options, specify them separately by partition. If you specify
these options before the INTO TABLE PART clause, LOAD serializes the load operation for the entire
table space and does not process the partitions concurrently.

– To load columns in an order that is different than the order of the columns in the CREATE TABLE
statement, code field specifications for each INTO TABLE PART clause.

– Make sure that you specify the LOAD options in the appropriate place in the utility statement. Some
LOAD options, such as INDDN, DISCARDDN, RESUME, and REPLACE, can have a different scope
depending on their placement in the LOAD statement. For example, if you specify INDDN before

Chapter 19. LOAD 301

INTO TABLE, the specified input data set is used to load the entire table. However, if you specify
INDDN after INTO TABLE, in a PART clause, the specified input data set is used to load only the
specified partition.

• If you want Db2 to save copies of records that are not loaded, use the DISCARDDN option to specify a
discard data set as follows:

– If you want a single discard data set for all partitions, specify DISCARDDN before INTO TABLE. If
you use a template for this data set, and the TEMPLATE utility statement contains the variable $PA.
or $PART., that variable is substituted with 0 or the partition number in the first INTO TABLE PART
clause.

– If you want one discard data set for a partition, specify DISCARDDN in an INTO TABLE PART clause.
If you use a template for this data set, and the TEMPLATE utility statement contains the variable
$PA. or $PART., that variable is substituted with the partition number. If you specify DISCARDDN in
more than one INTO TABLE PART clause, you must ensure that the data set names are unique. One
way to ensure unique names is to use templates and the variable $PA. or $PART. in the TEMPLATE
statement.

Examples
Example of loading certain records into certain partitions

The control statement in the following example specifies that Db2 is to load data into the first and
second partitions of the employee table. Records with '0' in column 1 replace the contents of partition
1; records with '1' in column 1 are added to partition 2; all other records are ignored. This example
control statement, which is simplified to illustrate the point, does not list field specifications for all
columns of the table.

LOAD DATA CONTINUEIF(72:72)='X'
 INTO TABLE DSN8C10.EMP PART 1 REPLACE WHEN (1) = '0'
 (EMPNO POSITION (1:6) CHAR(6),
 FIRSTNME POSITION (7:18) CHAR(12),
 ...
)
 INTO TABLE DSN8C10.EMP PART 2 RESUME YES WHEN (1) = '1'
 (EMPNO POSITION (1:6) CHAR(6),
 FIRSTNME POSITION (7:18) CHAR(12),
...
)

Example of loading partitions from separate input data sets
The following example LOAD statements specify that partitions 1 and 2 of the EMP table are to
be loaded from the EMPLDS1 and EMPLDS2 data sets. This example assumes that your data is in
separate input data sets and already sorted by partition. Therefore, you do not need to use the WHEN
clause of INTO TABLE. Placing the RESUME YES option before the PART option inhibits concurrent
partition processing. If you want LOAD to process other partitions concurrently, specify the RESUME
option after the PART option.

LOAD DATA INDDN EMPLDS1 CONTINUEIF(72:72)='X'
 RESUME YES
 INTO TABLE DSN8C10.EMP REPLACE PART 1

LOAD DATA INDDN EMPLDS2 CONTINUEIF(72:72)='X'
 RESUME YES
 INTO TABLE DSN8C10.EMP REPLACE PART 2

Example of loading partitions independently
In the following example, partition 1 and partition 2 are loaded concurrently.

LOAD DATA INDDN SYSREC LOG NO
 INTO TABLE DSN8C10.EMP PART 1 REPLACE

LOAD DATA INDDN SYSREC2 LOG NO
 INTO TABLE DSN8C10.EMP PART 2 REPLACE

302 Db2 12 for z/OS: Utility Guide and Reference

Example of specifying separate discard data sets for each partition
If you specify multiple discard data sets, you must ensure that the data set names are unique. In the
following example, the LOAD statement specifies that two discard data sets are to be allocated, one
for each partition. Those discard data sets both use the DT template. The TEMPLATE statement for DT
includes the &PA. variable (partition number) to ensure that the data set name is different for each
partition.

TEMPLATE DT UNIT(SYSDA)
 DSN(JUOSU339.&TS..P&PA..DISCARD)
 SPACE(50,10) TRK
LOAD DATA
 INTO TABLE DSN8B10.EMP PART 1 INDDN D1 DISCARDDN(DT) REPLACE NO RESUME
 INTO TABLE DSN8B10.EMP PART 2 INDDN D2 DISCARDDN(DT) REPLACE NO RESUME

Related reference
“Syntax and options of the LOAD control statement” on page 223
The LOAD utility control statement, with its multiple options, defines the function that the utility job
performs.
“Syntax and options of the TEMPLATE control statement” on page 751
The TEMPLATE utility control statement, with its multiple options, defines the function that the utility job
performs.

Loading partition-by-growth table spaces
For partition-by-growth table spaces, the LOAD utility supports loading data only at the table space level,
and not at the partition level. If you need additional partitions during the LOAD process and the maximum
number of partitions for the table space is not yet reached, the LOAD utility triggers the process to add
additional partitions. If the maximum number of partitions is reached, the LOAD utility fails.

Restriction: You cannot use parallelism for LOAD processing for partition-by-growth table spaces.

Related concepts
Partition-by-growth table spaces (Introduction to Db2 for z/OS)

Loading data containing XML columns
You can load data containing XML columns with one of two methods.

About this task
• The XML column can be loaded from the input record. XML column value can be placed in the INPUT

record with or without any other any other loading column values. The input record can be in delimited
or non-delimited format. For a non-delimited format, the XML column is treated like a variable character
with a 2-byte length preceding the XML value. For a delimited format there are no length bytes present.
If the input record is in spanned record format, specify the FORMAT SPANNED YES option.

• The XML column can be loaded from a separate file whether the XML column length is less than 32K or
not.

Procedure
To load data into a base table that has XML columns:
1. Create input data sets to ensure that you use the appropriate format:

• If you use delimited format, specify XML data in the input data set as delimited character strings,
separated by the column delimiter.

• If you do not use delimited format, specify the XML input field length in a 2-byte binary field
preceding the data.

2. Create a LOAD utility control statement.

Chapter 19. LOAD 303

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_partitionbygrowthtablespaces.html

• To load XML directly from input record, specify XML as the input field type. XML is the only
acceptable field type and data type conversion is not supported. Do not specify DEFAULTIF.

• To load XML from a file, specify CHAR or VARCHAR along with either BLOBF, CLOBF or DBCLOBF to
indicate that the input column contains a filename from which a BLOBF, CLOBF or DBCLOBF is to be
loaded to the XML column.

3. Submit the utility control statement.

Results
When you load XML documents into a table, and the XML value cannot be cast to the type that you
specified when you created the index, the value is ignored without any warnings or errors, and the
document is inserted into the table.

When you insert XML documents into a table with XML indexes that are of type DECFLOAT, the values
might be rounded when they are inserted. If the index is unique, the rounding might cause duplicates
even if the original values are not exactly the same.

Db2 does not compress an XML table space during the LOAD process. If the XML table space is defined
with compression, the XML table space is compressed during REORG.

Loading delimited files
You can load a delimited file by using the FORMAT DELIMITED option. A delimited file contains cell values
that are separated by delimiters. Delimiters are predefined characters that separate data. The column
delimiter separates one column value from the next. Character string delimiters identify the beginning and
end of a single cell value and are required only if the cell value contains the column delimiter.

Recommendation: If a delimited file is to be transferred to or from an operating system other than
z/OS or between Db2 for z/OS systems that use different EBCDIC or ASCII CCSIDs, use Unicode as the
encoding scheme for the delimited file. Using Unicode avoids possible CCSID translation problems.

You are responsible for ensuring that the data in the file does not include the chosen delimiters. If the
delimiters are part of the file's data, unexpected errors can occur.

Restrictions: The following restrictions apply to the use of delimiters:

• You cannot specify the same character for more than one type of delimiter (COLDEL, CHARDEL, and
DECPT).

• If the input data set contains external date, time, or timestamp formats that use separators, the
separators cannot be the same character that is specified for a delimiter.

• You cannot specify a character constant for a delimiter if the utility control statement is not coded in the
same encoding scheme as the input file. For example, the utility control statement is coded in Unicode,
and the input data is coded in EBCDIC.

• You should use the hexadecimal representation for non-default delimiters if the utility control
statement is coded in a different encoding scheme than the input file. For example, the utility control
statement is coded in Unicode, and the input file is coded in EBCDIC. In this case, if you do not use the
hexadecimal representation for the non-default delimiters, the results can be unpredictable.

• You do not need to specify the POSITION keyword when you specify the DELIMITED option. The utility
ignores the POSITION keyword when you also specify DELIMITED. The utility overrides field data type
specifications according to the specifications of the delimited format. (For example, length values for
CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, CLOB, DBCLOB, and BLOB data are the delimited lengths of
each field in the input data set, and the utility expects all numeric types in external format.)

• You cannot specify a binary 0 (zero) for any delimiter.
• You cannot specify the default decimal point as a string character delimiter (CHARDEL) or a column

string delimiter (COLDEL).
• You cannot specify shift-in and shift-out characters for EBCDIC MBCS data.
• You cannot specify the pipe character (|) for DBCS data.

304 Db2 12 for z/OS: Utility Guide and Reference

• You cannot specify the semicolon character (x'5E') as a delimiter character for COlDEL.
• You must enclose all space values with CHARDEL if you want to load the character string into a

target column that is defined with NOT NULL and without the default value. If a character string is
not enclosed by CHARDEL, the utility skips the leading and trailing space characters. If the characters
between two column delimiters are all space values, the field is set to null and cannot be loaded into a
column.

The following table lists the default hexadecimal values for the delimiter characters based on encoding
scheme.

Table 36. Default delimiter values for different encoding schemes

Character EBCDIC SBCS
EBCDIC DBCS/
MBCS

ASCII/Unicode
SBCS

ASCII/Unicode
MBCS

Character string
delimiter

X'7F' X'7F' X'22' X'22'

Decimal point
character

X'4B' X'4B' X'2E' X'2E'

Column delimiter X'6B' X'6B' X'2C' X'2C'

In most EBCDIC code pages, the hexadecimal values that are specified in the previous table are a double
quotation mark(") for the character string delimiter, a period(.) for the decimal point character, and a
comma(,) for the column delimiter.

The following table lists the maximum allowable hexadecimal values for any delimiter character based on
the encoding scheme.

Table 37. Maximum delimiter values for different encoding schemes

Encoding scheme Maximum allowable value

EBCDIC SBCS None

EBCDIC DBCS/MBCS X'3F'

(X'7F', X'4B', X'6B' are also allowed.)

ASCII/Unicode SBCS None

ASCII/Unicode MBCS X'7F'

The following table identifies the acceptable data type forms for the delimited file format that the LOAD
and UNLOAD utilities use.

Table 38. Acceptable data type forms for delimited files

Data type
Acceptable form for loading a
delimited file

Form that is created by
unloading a delimited file

CHAR, VARCHAR A delimited or non-delimited
character string

Character data that is enclosed
by character delimiters. For
VARCHAR, length bytes do not
precede the data in the string.

Chapter 19. LOAD 305

Table 38. Acceptable data type forms for delimited files (continued)

Data type
Acceptable form for loading a
delimited file

Form that is created by
unloading a delimited file

GRAPHIC (any type)4 A delimited or non-delimited
character stream

Data that is unloaded as a
delimited character string. For
VARGRAPHIC, length bytes do
not precede the data in the string.

INTEGER (any type)1 A stream of characters that
represents a number in
EXTERNAL format

Numeric data in external format.

DECIMAL (any type) 2 A character string that represents
a number in EXTERNAL format

A string of characters that
represents a number.

DECFLOAT EXTERNAL A character string that represents A SQL numeric constant.

FLOAT 3 A representation of a number in
the range -7.2E+75 to 7.2E+75
in EXTERNAL format

A string of characters that
represents a number in floating-
point notation.

BINARY, VARBINARY A delimited or non-delimited
character string

Character data that is enclosed
by character delimiters. Length
bytes do not precede the data in
the string.

BLOB, CLOB A delimited or non-delimited
character string

Character data that is enclosed
by character delimiters. Length
bytes do not precede the data in
the string.

DBCLOB A delimited or non-delimited
character string

Character data that is enclosed
by character delimiters. Length
bytes do not precede the data in
the string.

DATE A delimited or non-delimited
character string that contains a
date value in EXTERNAL format

Character string representation of
a date.

TIME A delimited or non-delimited
character string that contains a
time value in EXTERNAL format

Character string representation of
a time.

TIMESTAMP A delimited or non-delimited
character string that contains a
timestamp value in EXTERNAL
format

Character string representation of
a timestamp.

TIMESTAMP WITH TIME ZONE A delimited or non-delimited
character string that contains a
timestamp with time zone value
in EXTERNAL format

Character string representation of
a timestamp with time zone.

306 Db2 12 for z/OS: Utility Guide and Reference

Table 38. Acceptable data type forms for delimited files (continued)

Data type
Acceptable form for loading a
delimited file

Form that is created by
unloading a delimited file

Note:

1. Field specifications of INTEGER or SMALLINT are treated as INTEGER EXTERNAL.
2. Field specifications of DECIMAL, DECIMAL PACKED, or DECIMAL ZONED are treated as DECIMAL

EXTERNAL.
3. Field specifications of FLOAT, REAL, or DOUBLE are treated as FLOAT EXTERNAL.
4. EBCID graphic data must be enclosed in shift-out and shift-in characters.

Related concepts
“Unloading delimited files” on page 826
You can use the DELIMITED option to specify that UNLOAD is to produce an output file in delimited
format. All fields in the output data set are either in character string or numeric external format. Each
column is separated from the next by a column delimiter, and character strings are marked by character
string delimiters.
Related reference
“Delimited file format” on page 1061
A delimited file is a sequential file with column delimiters. Each delimited file is a stream of records, which
consists of fields that are ordered by column.

Loading data with referential constraints
LOAD does not load a table with an incomplete definition; if the table has a primary key, the unique
index on that key must exist. If any table that is to be loaded has an incomplete definition, the LOAD job
terminates.

LOAD requires access to the primary indexes on the parent tables of any loaded tables. For simple,
segmented, and partitioned table spaces, it drains all writers from the parent table's primary indexes.
Other users cannot make changes to the parent tables that result in an update to their own primary
indexes. Concurrent inserts and deletes on the parent tables are blocked, but updates are allowed for
columns that are not defined as part of the primary index.

By default, LOAD enforces referential constraints, except informational referential constraints, which
LOAD ignores. By enforcing referential constraints, LOAD provides you with several possibilities for error:

• Records that are to be loaded might have duplicate values of a primary key.
• Records that are to be loaded might have invalid foreign-key values, which are not values of the primary

key of the corresponding parent table.
• The loaded table might lack primary key values that are values of foreign keys in dependent tables.

The next few paragraphs describe how Db2 signals each of those errors and the means it provides for
correcting them.

Duplicate values of a primary key

A primary index must be a unique index and must exist if the table definition is complete. Therefore, when
you load a parent table, you build at least its primary index. You need an error data set, and probably also
a map data set and a discard data set.

Invalid foreign key values:

Chapter 19. LOAD 307

A dependent table has the constraint that the values of its foreign keys must be values of the primary
keys of corresponding parent tables. By default, LOAD enforces that constraint in much the same way
as it enforces the uniqueness of key values in a unique index. First, it loads all records to the table.
Subsequently, LOAD checks the validity of the records with respect to the constraints, identifies any
invalid record by an error message, and deletes the record from the table. You can choose to copy this
record to a discard data set. Again you need at least an error data set, and probably also a map data set
and a discard data set.

If a record fails to load because it violates a referential constraint, any of its dependent records in the
same job also fail. For example, suppose that the sample project table and project activity tables belong
to the same table space, that you load them both in the same job, and that some input record for the
project table has an invalid department number. Then, that record fails to be loaded and does not appear
in the loaded table; the summary report identifies it as causing a primary error.

However the project table has a primary key, the project number. In this case, the record that is rejected
by LOAD defines a project number, and any row in the project activity table that refers to the rejected
number is also rejected. The summary report identifies those as causing secondary errors. If you use a
discard data set, records for both types of errors are copied to it.

Missing primary key values

The deletion of invalid records does not cascade to other dependent tables that are already in place.
Suppose now that the project and project activity tables exist in separate table spaces, and that they
are both currently populated and possess referential integrity. In addition, suppose that the data in the
project table is now to be replaced (using LOAD REPLACE) and that the replacement data for some
department was inadvertently not supplied in the input data. Rows that reference that department
number might already exist in the project activity table. LOAD, therefore, automatically places the table
space that contains the project activity table (and all table spaces that contain dependent tables of any
table that is being replaced) into CHECK-pending status.

The CHECK-pending status indicates that the referential integrity of the table space is in doubt; it might
contain rows that violate a referential constraint. Db2 places severe restrictions on the use of a table
space in CHECK-pending status; typically, you run the CHECK DATA utility to reset this status.

Consequences of ENFORCE NO

If you use the ENFORCE NO option, you tell LOAD not to enforce referential constraints. Sometimes
you have good reasons for doing that, but the result is that the loaded table space might violate the
constraints. Hence, LOAD places the loaded table space in CHECK-pending status. If you use REPLACE,
all table spaces that contain any dependent tables of the tables that were loaded are also placed in
CHECK-pending status. You must reset the status of each table before you can use any of the table
spaces.

Related concepts
“CHECK-pending status after running LOAD” on page 334
The LOAD utility places a table space in CHECK-pending (CHKP) status if its referential integrity is in doubt
or its check constraints are violated.

Referential constraint violations
The referential integrity checking in LOAD can delete only incorrect dependent rows, which were input to
LOAD. In some circumstances, it is possible to correct referential integrity violations without deleting the
dependent rows.

For example, the violations might occur because parent rows do not exist. In this case, correcting the
parent tables is better than deleting the dependent rows. In this case, ENFORCE NO is more appropriate
than ENFORCE CONSTRAINTS. After you correct the parent table, you can use CHECK DATA to reset the
CHECK-pending status.

308 Db2 12 for z/OS: Utility Guide and Reference

LOAD ENFORCE CONSTRAINTS is not equivalent to CHECK DATA. LOAD ENFORCE CONSTRAINTS deletes
any rows that cause referential constraint violations. CHECK DATA detects violations and optionally
deletes such rows. CHECK DATA checks a complete referential structure, although LOAD checks only the
rows that are being loaded.

When loading referential structures with ENFORCE CONSTRAINTS, you should load tables before
dependent tables.

Compressing data by using the LOAD utility
FL 509 You can use LOAD to compress data in a table space or partition that is defined with compression.
Defined with compression means that the table space or partition was defined with COMPRESS YES,
COMPRESS YES FIXEDLENGTH or COMPRESS YES HUFFMAN.

LOAD builds a compression dictionary. After the dictionary is built, the data is compressed as it is loaded.
If a compression dictionary already exists, you can specify that LOAD not build a new one. Alternatively,
you can run the REORG TABLESPACE utility to compress your data.

Before you begin
Your table space or partition in a partitioned table space must be defined with compression before you
can compress the data by using LOAD.

Introductory concepts

The effect of data compression on performance (Introduction to Db2 for z/OS)

About this task
LOAD creates a compression dictionary while records are loaded. The data is not compressed until the
dictionary is built. To save processing costs, the initial LOAD does not go back to compress the records
that were used to build the dictionary. After the dictionary is built, the rest of the data is compressed as it
is loaded.

The number of records that are required to build a dictionary depends on the frequency of patterns in the
data. For large data sets, a small percentage of the total number of rows is used to build the dictionary.
For the best compression results, build a new dictionary whenever you load the data. If a table has DATA
CAPTURE CHANGES active, any previously existing dictionary is written to the log.

For partition-by-growth table spaces, the utility builds one dictionary and the same dictionary page is
populated through all partitions.

For XML table spaces that are defined with compression, compression does not occur until the first time
that the REORG TABLESPACE utility is run on that table space.

Procedure
To compress data by using the LOAD utility:
• If a compression dictionary does not already exist or you want to build a new one, specify the

REPLACE, RESUME NO, or RESUME YES options in the LOAD statement as follows:

REPLACE
For simple table spaces, you must specify LOAD REPLACE to build new compression dictionaries.
If you specify RESUME YES or RESUME NO for a simple table space, LOAD keeps the existing
dictionary if one exists. Alternatively, you can run REORG TABLESPACE.

RESUME NO
If you specify RESUME NO, the table space must be empty.

RESUME YES
If you specify RESUME YES and SHRLEVEL NONE is explicitly or implicitly specified, LOAD builds a
dictionary if the table space is empty. If you specify RESUME YES SHRLEVEL CHANGE, LOAD builds

Chapter 19. LOAD 309

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_datacompressionandperformance.html

a dictionary when the amount of data in the table space reaches a threshold that is determined by
Db2.

• If you want to use an existing compression dictionary to compress the data, specify the
KEEPDICTIONARY option in the LOAD statement.

Alternatively, you can run REORG TABLESPACE with the KEEPDICTIONARY option to compress the
data. REORG TABLESPACE with KEEPDICTIONARY is efficient, because the data is not decompressed
in the process. However, REORG TABLESPACE with KEEPDICTIONARY does not generate a
compression report. To get that information, run RUNSTATS to update the catalog statistics and then
query the catalog columns yourself.

One advantage of reusing an existing compression dictionary is that you can eliminate the utility
processing time of building the dictionary. Consider specifying KEEPDICTIONARY in the LOAD
statement in the following situations:

– If you are satisfied with the compression that is obtained from an existing dictionary.
– If the last dictionary was built by REORG TABLESPACE. The REORG TABLESPACE sampling method

can yield more representative dictionaries than LOAD and can thus result in a better compression.
– If the data is not changed significantly since the last dictionary was built.

You can also specify KEEPDICTIONARY for specific partitions of a partitioned table space. In this case,
each partition has its own dictionary.

The following example LOAD statement reuses an existing compression dictionary:

LOAD DATA
 REPLACE KEEPDICTIONARY
 INTO TABLE DSN8C10.DEPT
 (DEPTNO POSITION (1) CHAR(3),
 DEPTNAME POSITION (5) VARCHAR,
 MGRNO POSITION (37) CHAR(6),
 ADMRDEPT POSITION (44) CHAR(3),
 LOCATION POSITION (48) CHAR(16))
 ENFORCE NO

• If you want to copy another compression dictionary from an existing partition into another empty
partition, specify the COPYDICTIONARY option in the LOAD statement and use a dummy input data
set.
In this case, the data that is inserted into the partition is compressed.

Results
FL 509After LOAD SHRLEVEL REFERENCE or SHRLEVEL NONE completes successfully, the utility updates
the COMPRESS_USED column of the SYSTABLEPART catalog table with the type of the compression
dictionary that was used on each target page set. LOAD does not update COMPRESS_USED for XML table
spaces.

What to do next
For XML table spaces, run REORG TABLESPACE on the table space.

Related tasks
Compressing your data (Db2 Performance)
Using Huffman compression to compress your data (Db2 Performance)
Related reference
“RUNSTATS” on page 699
The RUNSTATS online utility gathers summary information about the characteristics of data in table
spaces, indexes, and partitions. Db2 records these statistics in the Db2 catalog and uses them to select
access paths to data during the bind process.
“REORG TABLESPACE” on page 523

310 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdataperf.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdatahuffman.html

The REORG TABLESPACE online utility reorganizes a table space, partition, or range of partitions to
reclaim fragmented space and improve access performance. You can also run REORG TABLESPACE to
materialize pending definition changes.

Loading data by using the cross-loader function
The LOAD utility can directly load the output of a dynamic SQL SELECT statement into a table. The
dynamic SQL statement can be executed on data at a local server or at any remote server that complies
with DRDA. This functionality is called the Db2 family cross-loader function.

Before you begin
Ensure that you have met the requirements listed under “Loading data by using a cursor” on page 284

About this task
This function enables you to use a single LOAD job to transfer data from one location to another location
or from one table to another table at the same location. Your input for this cross-loader function can come
from other sources besides Db2 for z/OS; you can use IBM Information Integrator Federation feature for
access to data from sources as diverse as Oracle and Sybase, as well as the entire Db2 family of database
servers.

Note: If a table that uses row or column access control security is either the data source or a load
target for the cross-loader function, the data is subject to the rules defined in the corresponding row
permissions or column masks. The CONTROL column in SYSIBM.SYSTABLES indicates whether row or
column access control is activated for a table.

Procedure
To load data by using the cross-loader function:
1. Declare a cursor by using the EXEC SQL utility. Within the cursor definition, specify a SELECT statement

that identifies the result table that you want to use as the input data for the LOAD job.
Use the following rules when writing the SELECT statement:

• The column names in the SELECT statement must be identical to the column names in the table that
is being loaded. You can use the AS clause in the SELECT list to change the column names that are
returned by the SELECT statement so that they match the column names in the target table.

• The columns in the SELECT list do not need to be in the same order as the columns in the target
table.

• The SELECT statement needs to refer to any remote tables by their three-part name.
• Although you do not need to specify casting functions for any distinct types in the input data or target

table, you might need to add casting functions to any additional WHERE clauses in the SQL.
2. Specify the cursor name with the INCURSOR option in the LOAD statement.

You can use the same cursor to load multiple tables.

Results
When you submit the LOAD job, Db2 parses the SELECT statement in the cursor definition and checks for
errors. If the statement is invalid, the LOAD utility issues an error message and identifies the condition
that prevented the execution. If the statement syntax is valid but an error occurs during execution, the
LOAD utility also issues an error message. The utility terminates when it encounters an error. If you
specify a data-change-table-reference in the from-clause of the cursor, the changes to the source might
be committed even though the load fails.

If no errors occur, the utility loads the result table that is identified by the cursor into the specified target
table according to the following rules:

• LOAD matches the columns in the input data to columns in the target table by name, not by sequence.

Chapter 19. LOAD 311

• If the number of columns in the cursor is less than the number of columns in the table that is being
loaded, Db2 loads the missing columns with their default values. If the missing columns are defined as
NOT NULL without defaults, the LOAD job fails.

• If a source column is defined as NULLABLE and the corresponding target column is defined as NOT
NULL without defaults, the LOAD job fails.

• If you specify IGNOREFIELDS YES, LOAD skips any columns in the input data that do not exist in the
target table.

• If the data types in the target table do not match the data types in the cursor, Db2 tries to convert the
data as much as possible. If the conversion fails, the LOAD job fails. You might be able to avoid these
conversion errors by using SQL conversion functions in the SELECT statement of the cursor declaration.

• If the encoding scheme of the input data is different from the encoding scheme of the target table, Db2
converts the encoding schemes automatically. Make sure that the length definition in the target table is
able to fit the converted data.

• If the target table has GENERATED ALWAYS columns and you try to load data into them, the LOAD job
fails. To avoid this situation, either do not specify these columns in the SELECT statement for the cursor
or specify in the LOAD statement that you want to override these columns.

Also, although you do not need to specify casting functions for any distinct types in the input data or
target table, you might need to add casting functions to any additional WHERE clauses in the SQL.

Related concepts
“Before running LOAD” on page 283
Certain activities might be required before you run the LOAD utility, depending on your situation.
Related reference
“Sample LOAD control statements” on page 339
Use the sample control statements as models for developing your own LOAD control statements.
SYSTABLES catalog table (Db2 SQL)

Taking an inline COPY with LOAD
An inline copy is an image copy that is taken during utility processing for a utility other than the COPY
utility. For example, during LOAD execution, you can create a full image copy data set.

About this task
The advantage of taking an inline copy is that the table space is not left in COPY-pending status regardless
of which LOG option was specified for the utility. Thus, data availability is increased.

Procedure
Use the COPYDDN and RECOVERYDDN options as follows:

• You can specify up to two primary copies (with COPYDDN) and two secondary copies (with
RECOVERYDDN).

• With COPYDDN and RECOVERYDDN, you can specify LOAD REPLACE or LOAD RESUME YES SHRLEVEL
NONE. If you specify RESUME NO but not REPLACE, an error message is issued and LOAD terminates.

The requested inline copies are produced during the RELOAD phase of LOAD processing.

If you take an inline image copy of a table that has LOB columns, Db2 makes a copy of the base table
space, but does not copy the LOB table spaces.

The SYSCOPY record that is produced by an inline copy contains ICTYPE=F and SHRLEVEL=R. The value
of the STYPE column depends on how the image copy was produced:

• R if the image copy was produced by LOAD REPLACE LOG(YES)
• S if the image copy was produced by LOAD REPLACE LOG(NO)

312 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsystablestable.html

• Y if the image copy was produced by LOAD RESUME LOG(NO)
• Z if the image copy was produced by LOAD RESUME LOG(YES)

The data set that is produced by the inline copy is logically equivalent to a full image copy with SHRLEVEL
REFERENCE, but the data within the data set differs in the following ways:

• Data pages might be out of sequence and some might be repeated. If pages are repeated, the last one is
always the correct copy.

• Space map pages are out of sequence and might be repeated.
• If the compression dictionary is rebuilt with LOAD, the set of dictionary pages occurs twice in the data

set, with the second set being the correct one.

The total number of duplicate pages is small, with a negligible effect on the required space for the data
set.

Depending on where the resume-spec is specified (at the partition level or table space level), the resulting
image copy might be a partial image copy. If you specify COPYDDN or RECOVERYDDN at the table space
level and also specify at least one INTO TABLE PART clause, the resulting inline image copy includes only
pages of the partitions that are specified in the LOAD statement.

Related tasks
“Replacing data with LOAD” on page 296
You can use the LOAD utility to replace data in a table space that has one or more tables.
Related reference
“COPY-pending status” on page 979
COPY-pending (COPY) restrictive status indicates that the affected object must be copied.
SYSCOPY catalog table (Db2 SQL)

Creating a FlashCopy image copy with LOAD
As part of LOAD processing, you can use FlashCopy technology to take image copies. This method is
potentially faster than the traditional Db2 utility methods for creating inline copies and thus reduces the
time that data is unavailable. FlashCopy image copies can also potentially reduce the time that is required
for recovery operations.

About this task
LOAD can also create one to four additional inline image copies by using the traditional methods.
Traditional inline image copies are output to a non-VSAM sequential format data set. For more
information about creating traditional inline copies, see “Taking an inline COPY with LOAD” on page 312.

Procedure
Specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT) in the LOAD utility control statement.

Specify FLASHCOPY(CONSISTENT) if you specify SHRLEVEL CHANGE and want to ensure that the image
copy is consistent for recovery purposes. Otherwise, specify FLASHCOPY(YES). Also, be aware that if you
specify CONSISTENT rather than YES, the process of creating an image copy could take longer.

Restriction: You cannot specify CONSISTENT when copying objects that have been defined with the NOT
LOGGED attribute.

As an alternative to specifying FLASHCOPY in the LOAD statement, you can set the FLASHCOPY_LOAD
subsystem parameter to YES, which specifies that LOAD is to use FLASHCOPY(YES) by default. The value
that you specify for the FLASHCOPY option in the LOAD statement always overrides the value for the
FLASHCOPY_LOAD subsystem parameter.

Optionally, you can also specify FCCOPYDDN in the LOAD statement. Use this option to specify a template
for the FlashCopy image copy. If you do not specify the FCCOPYDDN option in the LOAD statement, the
utility uses the value from the FCCOPYDDN subsystem parameter.

Chapter 19. LOAD 313

https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsyscopytable.html

Restriction: The data sets that you specify for the FlashCopy image copy must be on FlashCopy Version 2
disk volumes.

When you specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT), LOAD uses FlashCopy technology to
create a copy of the table space after the data is loaded. If you also requested one or more inline copies
in the LOAD statement (by specifying REPLACE and COPYDDN or RECOVERYDDN), the utility also creates
those copies. LOAD does not use the FlashCopy image copy to create those traditional inline copies.

Any indexes that are defined with the COPY YES attribute are also copied with FlashCopy technology.

The FlashCopy image copy fails if the FlashCopy Version 2 disk volumes are not available or if any of the
other FlashCopy operational restrictions exist. For a list of those operational restrictions, see “FlashCopy
image copies” on page 144.

If the FlashCopy copy fails for the target object or auxiliary object and the LOAD statement includes LOG
NO but not NOCOPYPEND, the table space is set to COPY-pending status.

Related concepts
“FlashCopy image copies” on page 144
FlashCopy image copies can reduce both the time that data is unavailable during the copy operation and
the time that is required for backup and recovery operations. Certain Db2 utilities can create these copies
by invoking the FlashCopy function that is provided by z/OS DFSMS and the IBM TotalStorage Enterprise
Storage Server (ESS) storage subsystems.
Related reference
DEFAULT TEMPLATE field (FCCOPYDDN subsystem parameter) (Db2 Installation and Migration)
LOAD field (FLASHCOPY_LOAD subsystem parameter) (Db2 Installation and Migration)

Improving LOAD performance
Depending on the data, target object, and available resources, you can take certain actions that might
improve the performance of the LOAD utility. For example, you can preprocess the input data or specify a
particular LOAD option.

About this task
Be aware that the performance of LOAD on a table that is organized by hash is likely to be slower. The
reason is that the rows are loaded according to the hash key rather than sequentially on the pages.

Procedure
To improve LOAD performance, complete one or more of the following recommended actions as
appropriate:
• Load numeric data in internal format.

DB2 internal format is the format that is produced by running UNLOAD with the FORMATINTERNAL
option.

• If you specify LOAD REPLACE, specify LOG NO with COPYDDN or RECOVERYDDN to create an inline
copy.

• Preprocess input data:

Do any preprocessing of the input data, as described in “Before running LOAD” on page 283.
• Presort the input data:

To ensure that the input data is in the optimal order, specify the PRESORT option. Alternatively, you
can presort the data manually as follows:

– Sort the data in cluster order to avoid needing to reorganize it after loading.
– If you are loading a single table that has, at most, one foreign key or one index key, sort the data

in key sequence. (An index over a foreign key is allowed.) If the key is an index key, sort the data

314 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_fccopyddn.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopyload.html

in either ascending or descending order, depending on how the index was defined. If the key is a
foreign key, sort the data in ascending order. Null key values are treated as "high" values.

– If you are loading more than one table, choose one of the following methods:

- Load each table separately. If you use this method, you can follow the rules that are listed in the
preceding bullet for loading single tables.

- Use the WHEN clause under each INTO TABLE option on your LOAD statement to group your input
data by table.

Within each table, sort the data in key sequence.

If you presort the data manually, specify the PRESORTED YES option in the LOAD statement.
• Avoid conversions:

– If possible, avoid data conversion, such as from integer to decimal or from decimal to floating-point.
– Avoid CCSID and encoding scheme conversions, if possible, by loading data that has the same

CCSID as the target table. If you specify a CCSID or encoding scheme option that does not match
that of the table that is being loaded, CCSID conversions can occur.

Related information:

Situations in which character conversion occurs (Db2 Internationalization Guide)
• Avoid LOB and XML materialization: To eliminate the need to load large LOBs or XML documents into

virtual storage while LOAD is running, use file reference variables for the following data:

– For XML data that is greater than 32 KB in size.
– For large LOB data in a row with only 1 LOB. (Large LOBs are usually considered to be 2 MB or

greater in size.)

In these cases, LOAD does not materialize LOB or XML data into memory.
• Use parallelism:

Enable LOAD to use parallelism when possible to reduce the elapsed time for loading large amounts of
data. To enable parallelism, take one of the following actions:

– If the table space is simple, segmented (non-UTS), partitioned (non-UTS), or partition-by-range and
all of the data to be loaded is in a single data set, specify the PARALLEL keyword. This keyword
enables LOAD to use multiple parallel subtasks. When you determine the degree of parallelism to
specify on the PARALLEL keyword, consider that a high degree of parallelism can result in increased
processor time. The recommended value is to specify PARALLEL(0) or PARALLEL without a number
so that Db2 can determine the optimal degree of parallelism.

– If the table space is partitioned and one or more nonpartitioned secondary indexes exist, and you
have a separate input data set for each partition, use partition parallelism. Partition parallelism
loads all partitions in a single job. To invoke partition parallelism, specify the INTO TABLE PART
clause with an INDDN specification for each partition.

Alternatively, if you cannot enable parallelism, use multiple jobs to run LOAD concurrently against
separate partitions. This method also requires that you have a separate input data set for each
partition.

If you enable parallelism, allocate extra resources as needed and tune your system to avoid
significant performance degradation. Specifically, to benefit from parallel operations when you use
LOAD SHRLEVEL CHANGE or parallel inserts, especially when secondary indexes are used, take the
following actions:

– Use a larger buffer pool to improve the buffer pool hit ratio.
– Define a higher deferred-write threshold to reduce the number of pages that are written to disk,

which reduces the I/O time and contention.
– Define a larger checkpoint interval to reduce the number of pages that are written to disk, which

reduces the I/O time and contention.

Chapter 19. LOAD 315

https://www.ibm.com/docs/SSEPEK_12.0.0/char/src/tpc/db2z_situationcharconv.html

– Use ESS Parallel Access Volume (PAV) to support multiple concurrent I/Os to the same volume that
contains secondary index data sets.

– Use secondary index pieces to support multiple concurrent secondary index I/Os.

To fully maximize parallel tasks when loading from a single input data set, specify the PARALLEL
keyword explicitly. If loading from a single input data set and PARALLEL is not specified, the
PARAMDEG_UTIL subsystem parameter restricts the degree of parallelism for only parallel index build.

• Use SORTKEYS:
The SORTKEYS option improves performance of the index key sort. With SORTKEYS, index keys are
passed in memory rather than written to work files. Avoiding this I/O to the work files improves
LOAD performance. LOAD with SORTKEYS also reduces disk space requirements for the SYSUT1 and
SORTOUT data sets, especially if you provide an estimate of the number of keys to sort. The SORTKEYS
option reduces the elapsed time from the start of the RELOAD phase to the end of the BUILD phase.

To estimate the number of keys to sort:

1. Count 1 for each index.
2. Count 1 for each foreign key where the foreign key and index definitions are not identical.
3. For each foreign key where the foreign key and index definitions are identical:

a. Count 0 for the first relationship in which the foreign key participates.
b. Count 1 for subsequent relationships in which the foreign key participates (if any).

4. Multiply the count by the number of rows to be loaded.

If more than one table is being loaded, repeat the preceding steps for each table, and sum the results.
• Build the indexes in parallel:

You can reduce the elapsed time of a LOAD job for a table space or partition with more than one
defined index by having LOAD build the indexes in parallel. See “Building indexes in parallel for LOAD”
on page 320.

• Specify PREFORMAT:
PREFORMAT eliminates the need for Db2 to preformat new pages in a table space during execution
time.

Db2 preformatting sometimes causes a delay, which can affect the performance or execution-time
consistency of applications that do many inserts or LOAD jobs with SHRLEVEL CHANGE. When these
delays occur and you can predict the table size for a business processing cycle, consider using LOAD
PREFORMAT or REORG PREFORMAT. This technique is valuable only when Db2 preformatting causes
a measurable delay with processing or causes inconsistent application elapsed times for INSERT
operations or LOAD RESUME YES SHRLEVEL CHANGE jobs.

Recommendation: Assess performance before and after you use LOAD PREFORMAT or REORG
PREFORMAT to quantify its value in your environment.

Using PREFORMAT might eliminate execution-time delays but adds setup time before the application's
execution. The cost of this improvement is an increase in the LOAD or REORG time, because the utility
must preformat all pages between the data that is loaded or reorganized and the high-allocated RBA.
The additional LOAD or REORG time that is required depends on the amount of disk space that is being
preformatted. When this preformatted space is used and Db2 needs to extend the table space, normal
data set extending and preformatting occurs.

Consider using preformatting for LOAD SHRLEVEL CHANGE or INSERT processing in the following
situations:

– For tables on which many inserts are done and that receive a predictable amount of data. In this
case, all of the required space can be preallocated before the application's execution.

– For a table that acts as a repository for work items that come into a system and that are later used
for a backend task that processes the work items.

316 Db2 12 for z/OS: Utility Guide and Reference

– For table spaces that start out empty and are populated by many inserts before any query access is
run against the table space.

LOAD PREFORMAT or REORG PREFORMAT is not recommended for tables that have a high ratio of
reads to inserts if the reads result in table space scans. In this case, preformatting of a table space
that contains a table that is used for query processing can cause table space scans to read extra empty
pages. This extra reading can extend the elapsed time for these queries.

Mixing inserts and nonindexed queries against a preformatted table space might have a negative
impact on the query performance without providing a compensating improvement in the insert
performance. Typically, PREFORMAT yields the best results where a high ratio of inserts to read
operations exists.

Also, consider the following implications of PREFORMAT on your data sets:

– For user-managed data sets, Db2 does not delete and reallocate them during utility processing. The
size of the data set does not shrink back to the original data set allocation size but either remains
the same or increases in size if more space or data is added. This characteristic has implications
when LOAD or REORG PREFORMAT is used because of the preformatting that is done for all free
pages between the high-used RBA (or page) to the high-allocated RBA. This preformatting includes
secondary extents that have been allocated.

– For Db2-managed data sets, Db2 deletes and reallocates them if you specify REPLACE on the LOAD
or REORG job. This behavior results in the data sets being resized to their original allocation size.
They remain that size if the data that is being reloaded does not fill the primary allocation and force
a secondary allocation. Therefore, LOAD PREFORMAT or REORG PREFORMAT with Db2-managed
data causes at least the full primary allocation amount of a data set to be preformatted after the
data is reloaded into the table space.

– For both user-managed and Db2-managed data sets, if the data set goes into secondary extents
during utility processing, the high-allocated RBA becomes the end of the secondary extent. That
value becomes the high value for preformatting.

Related reference
“Syntax and options of the LOAD control statement” on page 223
The LOAD utility control statement, with its multiple options, defines the function that the utility job
performs.

Conversion of input data
The LOAD utility converts data between compatible data types. The source type is used for user-defined
distinct types.

The tables shown below identify the compatibility of data types for assignments and comparisons. Y
indicates that the data types are compatible. N indicates that the data types are not compatible. D
indicates the defaults that are used when you do not specify the input data type in a field specification of
the INTO TABLE statement.

The following table shows the compatibility of numeric data types.

Table 39. Compatibility of converting numeric data types.

Input data types Output data types

SMALLINT BIGINT INTEGER DECIMAL FLOAT DECFLOAT

SMALLINT D Y Y Y Y Y

BIGINT Y D Y Y Y Y

INTEGER Y Y D Y Y Y

DECIMAL Y Y Y D Y1 Y1

FLOAT Y Y Y Y D Y

Chapter 19. LOAD 317

Table 39. Compatibility of converting numeric data types. (continued)

Input data types Output data types

SMALLINT BIGINT INTEGER DECIMAL FLOAT DECFLOAT

DECFLOAT Y Y Y Y Y D

Notes:

1. Loading a DECFLOAT or FLOAT column from a DECIMAL PACKED input field can produce unpredictable
results. Instead, use the DECIMAL EXTERNAL format for the input field.

The following table shows the compatibility of character data types.

Table 40. Compatibility of converting character data types.

Input data types Output data types

BLOB CHAR VAR-
CHAR

CLOB GRAPHIC VAR-
GRAPHIC

DBCLOB ROWID BINARY VAR-
BINARY

CHAR Y D Y Y Y1 Y1 Y1 Y Y Y

CHAR MIXED Y D Y Y Y1 Y1 Y1 N Y Y

VARCHAR Y Y D Y Y1 Y1 Y1 Y Y Y

VARCHAR MIXED Y Y D Y Y1 Y1 Y1 N Y Y

GRAPHIC N Y1 Y1 Y1 D Y Y N N N

VAR-GRAPHIC N Y1 Y1 Y1 Y D Y N N N

ROWID N N N N N N N D N N

BINARY Y N N N N N N N D Y

VAR-BINARY Y N N N N N N N Y D

Notes:

1. Conversion applies when either the input data or the target table is Unicode.

The following table shows the compatibility of time data types.

Table 41. Compatibility of converting time data types.

Input data types Output data types

DATE TIME TIMESTAMP TIMESTAMP WITH
TIME ZONE

DATE EXTERNAL D N N N

TIME EXTERNAL N D N N

TIMESTAMP EXTERNAL Y Y D Y1

TIMESTAMP WITH TIME ZONE
EXTERNAL

Y Y Y D

Notes:

1. If the data type of the target column is TIMESTAMP WITH TIME ZONE and the timestamp value
that is being loaded does not contain a time zone, the LOAD utility uses the value that you
specify for the IMPLICIT_TZ option. If you do not specify this option, Db2 uses the value from the
IMPLICIT_TIMEZONE DECP value.

Input fields with data types CHAR, CHAR MIXED, CLOB, DBCLOB, VARCHAR, VARCHAR MIXED, GRAPHIC,
GRAPHIC EXTERNAL, and VARGRAPHIC are converted from the CCSIDs of the input file to the CCSIDs of
the table space when they do not match. For example:

• You specify the ASCII or UNICODE option for the input data, and the table space is EBCDIC.
• You specify the EBCDIC or UNICODE option, and the table space is ASCII.
• You specify the ASCII or EBCDIC option, and the table space is Unicode.

318 Db2 12 for z/OS: Utility Guide and Reference

• The CCSID option is specified, and the CCSIDs of the input data are not the same as the CCSIDs of the
table space.

CLOB, BLOB, and DBCLOB input field types cannot be converted to any other field type.

Conversion errors cause LOAD:

• To abend, if no discard data set is provided or if the discard limit is exceeded.
• To map the input record for subsequent discarding and continue (if a discard data set is provided)

Truncation of the decimal part of numeric data is not considered a conversion error.

Related reference
IMPLICIT TIME ZONE field (IMPLICIT_TIMEZONE DECP value) (Db2 Installation and Migration)

Specifying input fields
You can specify input fields in the LOAD utility control statement.

Procedure
Take one of the following actions:

• Specify the length of VARCHAR, BLOB, CLOB, DBCLOB, ROWID, VARBINARY, TIMESTAMP, and
TIMESTAMP WITH TIME ZONE data in the input file.

• Explicitly define all input field specifications.
• Use DECIMAL EXTERNAL(length,scale) in full.
• Specify decimal points explicitly in the input file.

Specifying the TRUNCATE and STRIP options
You can load certain fields that are longer than the length of target column by truncating the data. Db2
truncates the data only when you explicitly specify the TRUNCATE option.

You can specify TRUNCATE with the CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, BINARY, and VARBINARY
data type options. LOAD first applies any CCSID conversion, and then truncates the data. The TRUNCATE
option of the LOAD utility truncates string data, and it has a different purpose than the SQL TRUNCATE
scalar function.

You can also remove a specified character from the beginning, end, or both ends of the data by specifying
the STRIP option. This option is valid only with the CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, BINARY,
and VARBINARY data type options. If you specify both the TRUNCATE and STRIP options, LOAD performs
the strip operation first. For example, if you specify both TRUNCATE and STRIP for a field that is to be
loaded into a VARCHAR(5) column, LOAD alters the character strings as shown in the following table. In
this table, an underscore represents a character that is to be stripped.

Table 42. Results of specifying both TRUNCATE and STRIP for data that is to be loaded into a VARCHAR(5)
column.

Specified STRIP option Input string String after strip
operation

String that is loaded

STRIP BOTH
‘_ABCDEFG_' ‘ABCDEFG' ‘ABCDE'

STRIP LEADING ‘_ABC_' ‘ABC_' ‘ABC_'

STRIP TRAILING ‘_ABC_DEF_' ‘_ABC_DEF' ‘_ABC_'

Chapter 19. LOAD 319

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_implicittimezone.html

How LOAD builds indexes while loading data
LOAD builds all the indexes that are defined for any table that is being loaded unless INDEXDEFER is
specified or used by default. If INDEXDEFER is used, the specified indexes (ALL, NPI, or NONUNIQUE) are
not built and placed in RBDP status.

If LOAD REPLACE SHRLEVEL REFERENCE PART is specified, INDEXDEFER NPI is used by default. In
this case, the affected part-level non-partitioning index is placedin RBDP status on successful LOAD
completion.

At the same time the indexes are being built, LOAD checks for duplicate values of any unique index key. If
LOAD finds any duplicate values, the behavior depends on the SHRLEVEL value:

• For SHRLEVEL NONE or SHRLEVEL REFERENCE, none of the corresponding rows are loaded. When
LOAD checks for key violations, key comparisons are done on adjacent keys before inserting into the
table. If a duplicate key violation is found, all keys and their associated records involved in the violation
are discarded. The exception is index keys that are defined with BUSINESS_TIME WITHOUT OVERLAPS.
In this case, violation checking is done after the initial keys are inserted into the index and can involve
two or more non-adjacent keys. Therefore, only the latter keys and records that cause the overlap
violations are discarded.

• For SHRLEVEL CHANGE, the first record is inserted and subsequent records in violation are rejected.

Error messages identify the input records that produce duplicates; optionally, the records are copied to a
discard data set. At the end of the job, a summary report lists all errors that are found.

For unique indexes, any two null values are assumed to be equal, unless the index was created with the
UNIQUE WHERE NOT NULL clause. In that case, if the key is a single column, it can contain any number of
null values, although its other values must be unique.

Neither the loaded table nor its indexes contain any of the records that might have produced an error.
Using the error messages, you can identify faulty input records, correct them, and load them again. If you
use a discard data set, you can correct the records there and add them to the table with LOAD RESUME.

Related information
“ INDEXDEFER ” on page 261

Building indexes in parallel for LOAD
Parallel index build reduces the elapsed time for a LOAD job by sorting the index keys and rebuilding
multiple indexes in parallel, rather than sequentially. Optimally, a pair of subtasks process each index; one
subtask sorts extracted keys while the other subtask builds the index.

LOAD begins building each index as soon as the corresponding sort produces its first sorted record.

LOAD uses parallel index build if all of the following conditions are true:

• At least one index needs to be built.
• The LOAD utility statement specifies a non-zero estimate of the number of keys on the SORTKEYS

option.

The degree of parallelism is restricted according to the number of indexes, system resources, and the
specification of the PARAMDEG_UTIL subsystem parameter and PARALLEL keyword.

You can either allow the utility to dynamically allocate the data sets that the SORT phase needs, or
provide the necessary data sets yourself. Select one of the following methods to allocate sort work and
message data sets:

Method 1: LOAD determines the optimal number of sort work and message data sets.

1. Specify the SORTDEVT keyword in the utility statement.
2. Allow dynamic allocation of sort work data sets by not supplying SORTWKnn DD statements in the

LOAD utility JCL.
3. Allocate UTPRINT to SYSOUT.

320 Db2 12 for z/OS: Utility Guide and Reference

Method 2: You control allocation of sort work data sets, while LOAD allocates message data sets.

1. Provide DD statements with DD names in the form SWnnWKmm. The first of these DD statements must
be SW01WK01.

2. Allocate UTPRINT to SYSOUT.

Method 3: You have the most control over rebuild processing; you must specify both sort work and
message data sets.

1. Provide DD statements with DD names in the form SWnnWKmm. The first of these DD statements must
be SW01WK01.

2. Provide DD statements with DD names in the form UTPRINnn.

Using this method does not eliminate the requirement for a UTPRINT DD card.

Data sets used
If you select Method 2 or 3 in the preceding information, use the following information to define the
necessary data sets.

Each sort subtask must have its own group of sort work data sets and its own print message data set.
Possible reasons to allocate data sets in the utility job JCL rather than using dynamic allocation are:

• To control the size and placement of the data sets
• To minimize device contention
• To optimally use free disk space
• To limit the number of utility subtasks that are used to build indexes

The DD names SWnnWKmm define the sort work data sets that are used during utility processing. nn
identifies the subtask pair, and mm identifies one or more data sets that are to be used by that subtask
pair. For example:

SW01WK01
The first sort work data set that is used by the subtask as it builds the first index.

SW01WK02
The second sort work data set that is used by the subtask as it builds the first index.

SW02WK01
The first sort work data set that is used by the subtask as it builds the second index.

SW02WK02
The second sort work data set that is used by the subtask as it builds the second index.

The DD names UTPRINnn define the sort work message data sets that are used by the utility subtask
pairs. nn identifies the subtask pair.

Every time you invoke LOAD, new UTPRINnn data sets are dynamically allocated. LOAD does not reuse
UTPRINnn data sets from previous job steps. This behavior might cause the available JES2 job queue
elements to be consumed more quickly than expected.

Determining the number of sort subtasks
The maximum number of utility subtask pairs that are started for parallel index build is equal to the
number of indexes that are to be built.

LOAD determines the number of subtask pairs according to the following guidelines:

• The number of subtask pairs equals the number of sort work data set groups that are allocated.
• The number of subtask pairs equals the number of message data sets that are allocated.
• If you allocate both sort work and message data set groups, the number of subtask pairs equals the

smallest number of data sets that are allocated.

Chapter 19. LOAD 321

Allocation of sort subtasks
The LOAD utility attempts to assign one sort subtask pair for each index that is to be built. If the LOAD
utility cannot start enough subtasks to build one index per subtask pair, it allocates any excess indexes
across the pairs (in the order that the indexes were created), so that one or more subtask pairs might
build more than one index.

During parallel index build processing, LOAD assigns all foreign keys to the first utility subtask pair.
Remaining indexes are then distributed among the remaining subtask pairs according to the creation date
of the index. If a table space does not participate in any relationships, LOAD distributes all indexes among
the subtask pairs according to the index creation date, assigning the first created index to the first subtask
pair.

Refer to the following table for conceptual information about subtask pairing when the number of indexes
(seven indexes) exceeds the available number of subtask pairs (five subtask pairs).

Table 43. LOAD subtask pairing for a relational table space

Subtask pair Assigned index

SW01WKmm Foreign keys, fifth created index

SW02WKmm First created index, sixth created index

SW03WKmm Second created index, seventh created index

SW04WKmm Third created index

SW05WKmm Fourth created index

Estimating the sort work file size
If you choose to provide the data sets, you need to know the size and number of keys in all of the indexes
that are being processed by the subtask in order to calculate each sort work file size. After you determine
which indexes are assigned to which subtask pairs, use one of the following formulas to calculate the
required space:

• If the indexes being processed include a mixture of data-partitioned secondary indexes and
nonpartitioned indexes, use the following formula:

2 * (longest index key + 17) * (number of extracted keys)

• Otherwise, if only one type of index is being built, use the following formula:

2 * (longest index key + 15) * (number of extracted keys)

longest index key
The length of the longest key that is to be processed by the subtask. For the first subtask pair for
LOAD, compare the length of the longest key and the length of the longest foreign key, and use
the larger value. For nonpadded indexes, longest index key means the maximum possible length
of a key with all varying-length columns, padded to their maximum lengths, plus 2 bytes for each
varying-length column.

number of extracted keys
The number of keys from all indexes that are to be sorted and that the subtask is to process.

Related concepts
“Parallel index building for REORG TABLESPACE” on page 602
Parallel index building reduces the elapsed time for a REORG TABLESPACE job by sorting the index
keys and rebuilding multiple indexes in parallel, rather than sequentially. Optimally, a pair of subtasks
processes each index; one subtask sorts extracted keys, whereas the other subtask builds the index.
Related tasks
“Improving LOAD performance” on page 314

322 Db2 12 for z/OS: Utility Guide and Reference

Depending on the data, target object, and available resources, you can take certain actions that might
improve the performance of the LOAD utility. For example, you can preprocess the input data or specify a
particular LOAD option.

How LOAD leaves free space
When it loads data into a nonsegmented table space, the LOAD utility leaves one free page after reaching
the FREEPAGE limit. This free page is added regardless of whether the loaded records belong to the same
or different tables.

When loading into a segmented (non-UTS) table space, LOAD leaves free pages, and free space on
each page, in accordance with the current values of the FREEPAGE and PCTFREE parameters. (You can
set those values with the CREATE TABLESPACE, ALTER TABLESPACE, CREATE INDEX, or ALTER INDEX
statements.) LOAD leaves one free page after reaching the FREEPAGE limit for each table in the table
space.

For XML table spaces, FREEPAGE and PCTFREE are not processed until the first REORG.

Loading with RECOVER-pending or REBUILD-pending status
You cannot load records by specifying RESUME YES if any partition of a table space is in RECOVER-
pending (RECP) status. In addition, you cannot load records if any index on the table that is being loaded
is in the REBUILD-pending state RBDP, PSRBD, or RBDP*.

If you are replacing a partition, these preceding restrictions are relaxed; the partition that is being
replaced can be in RECP status, and its corresponding index partition can be in the RBDP, PSRBD, or
RBDP* status. However, all secondary indexes must not be in the page set REBUILD-pending (PSRBD)
status, and KEEPDICTIONARY must not have been specified on active compressed partitions.

Related reference
“RECOVER-pending status” on page 983
RECOVER-pending (RECP) restrictive status indicates that a table space, table space partition, index
space, or index on an auxiliary table is broken and must be recovered.
“REBUILD-pending status” on page 982
A REBUILD-pending restrictive status indicates that the affected index or index partition is broken and
must be rebuilt from the data.

Exit procedures
Any field procedure that is associated with a column of a table that is being loaded is executed to encode
the data before it is loaded. The field procedures for all columns are executed before any edit or validation
procedure for the row.

Any field specification that describes the data is checked before a field procedure is executed. That is, the
field specification must describe the data as it appears in the input record.

Loading ROWID and row change timestamp columns
ROWID columns and row change timestamp columns can be designated as input fields for the LOAD
utility.

ROWID columns
For a ROWID column that is defined as GENERATED ALWAYS, Db2 always generates a row ID.

For a ROWID column that is defined as GENERATED BY DEFAULT, the LOAD utility can load input data into
this column. The input field must be specified as a ROWID. No conversions are allowed. The input data
for a ROWID column must be a unique, valid value for a row ID. If the value of the row is not unique, a
duplicate key violation occurs, and the load operation fails. In this case, you need to discard the duplicate
value and re-run the LOAD job with a new unique value, or allow Db2 to generate the value of the row ID.

Chapter 19. LOAD 323

If you specify the ROWID option, you can also optionally specify the DEFAULTIF option. If the specified
condition is met, the column is loaded with a value that is generated by Db2. You cannot use the NULLIF
option with the ROWID keyword, because ROWID columns cannot be null.

If the ROWID column is part of the partitioning key, you can not specify the PART option.

Row change timestamp columns
For a row change timestamp column that is defined as GENERATED BY DEFAULT, the LOAD utility can load
input data into this column.

For a row change timestamp column that is defined as GENERATED ALWAYS, the LOAD utility can load
input data into this column only if you specify the OVERRIDE(ROWCHANGE) option. Otherwise, do not
include this column in the field specification list or specify the IGNOREFIELDS YES option to indicate that
you want LOAD to ignore this column and Db2 to generate the timestamp value.

Related reference
“Syntax and options of the LOAD control statement” on page 223
The LOAD utility control statement, with its multiple options, defines the function that the utility job
performs.

Loading a LOB column
LOB columns are treated by the LOAD utility as varying-length data. The length value for a LOB column
must be 4 bytes.

Procedure
Take one of the following actions:

• Load the LOB value directly from the input data set: To load a LOB value directly from the input data
set:

a. In the input data set, include the LOB value preceded by a 4-byte binary field that contains the
length of the LOB.

b. Specify CLOB, BLOB, or DBCLOB in the field specification portion of the LOAD statement. These
options indicate that the field in the input data set is a LOB value. For example, to load a CLOB
into the RESUME column, specify something like RESUME POSITION(7) CLOB. This specification
indicates that position 7 of the input data set contains the length of the CLOB followed by the CLOB
value that is to be loaded into the RESUME column.

c. If the input record is in spanned record format, specify FORMAT SPANNED YES and specify the LOB
fields at the end of the field specification list.

• Load the LOB value from a file that is listed in the input data set: When you load a LOB value from a
file, the LOB value can be greater than 32 KB. To load a LOB value from a file:

a. In the input data set, specify the names of the files that contain the LOB values. Each file can be
either a PDS, PDSE, or an HFS file.

b. Specify either BLOBF, CLOBF, or DBCLOBF in the field specification portion of the LOAD statement.
For example, to load a LOB into the RESUME column of a table, specify something like RESUME
POSITION(7) VARCHAR CLOBF. This specification indicates that position 7 of the input data set
contains the name of a file from which a varying-length CLOB is to be loaded into the RESUME
column.

c. To insert an empty LOB value into a LOB column, specify one of the following items in the LOAD
statement:

– A blank file name for CHAR CLOBF, CHAR BLOBF, or CHAR DBCLOBF
– A blank file name for VARCHAR CLOBF, VARCHAR BLOBF, or VARCHAR DBCLOBF
– A file name with length 0 for VARCHAR CLOBF, VARCHAR BLOBF, or VARCHAR DBCLOB

324 Db2 12 for z/OS: Utility Guide and Reference

Each of these items tell the LOAD utility that the LOB is empty, and the LOAD utility does insert it
into the auxiliary table space. LOAD uses a column indicator to indicate that the LOB is empty.

This step assumes that the LOB is not NULL.
• Load data from another table: To transfer data from one location to another location or from one

table to another table at the same location, use a cursor. This method of loading data is called the
cross-loader function.

When you use the cross-loader function, the LOB value can be greater than 32 KB. For this method,
Db2 uses a separate buffer for LOB data and therefore stores only 8 bytes per LOB column. The sum of
the lengths of the non-LOB columns plus the sum of 8 bytes per LOB column cannot exceed 32 KB.

Related tasks
“Loading data by using the cross-loader function” on page 311
The LOAD utility can directly load the output of a dynamic SQL SELECT statement into a table. The
dynamic SQL statement can be executed on data at a local server or at any remote server that complies
with DRDA. This functionality is called the Db2 family cross-loader function.

LOAD LOG on a LOB table space
A LOB table space that is defined with LOG YES or LOG NO affects logging during the load of a LOB
column.

The following table shows the logging output and LOB table space effect, if any.

Table 44. LOAD LOG and REORG LOG impact for a LOB table space

LOAD LOG/ REORG
LOG keyword

LOB table space
LOG attribute What is logged

LOB table space
status after utility
completes

LOG YES LOG YES Control information and LOB data No pending status

LOG YES LOG NO Control information No pending status

LOG NO LOG YES Nothing COPY-Pending1

LOG NO LOG NO Nothing COPY-Pending1

Note:

1. REORG LOG NO of a LOB table space requires SHRLEVEL REFERENCE, which requires that an inline copy be
taken during the REORG. This means that you never set COPY-pending for REORG of LOB table spaces under
any circumstances

Loading an XML column
XML columns are treated by the LOAD utility as varying-length data. The length value for an XML column
must be 2 bytes.

About this task
LOAD performance can be improved if the input data is in binary XML format.

Procedure
Use one of the following approaches:

• Load the XML value directly from the input data set: To load an XML value directly from the input
data set:

Chapter 19. LOAD 325

a. In the input data set, include the XML value preceded by a 2-byte binary field that contains the
length of the XML column.

b. When loading directly from an input record, you must specify XML as the input field type. This is the
only acceptable input field type for loading XML column from input record. For example, to load a
data into the RESUME column which is XML, specify something like RESUME POSITION(7) XML.
This specification indicates that position 7 of the input data set contains the length of the XML
followed by the XML value that is to be loaded into the RESUME column.

If the input data is in Extensible Dynamic Binary XML Db2 Client/Server Binary XML Format (binary
XML format), you need to specify XML BINARYXML as the input field type.

c. If the input record is in spanned record format, specify FORMAT SPANNED YES and specify the XML
fields at the end of the field specification list.

• Load the XML value from a file that is listed in the input data set: When you load an XML value from
a file, the XML value can be greater than 32 KB. To load an XML value from a file:

a. In the input data set, specify the name of the file that contains the value to be loaded to the XML
column. The file name can be a PDS, PDSE or a HFS file.

b. Specify either BLOBF, CLOBF, or DBCLOBF in the field specification portion of the LOAD statement.
For example, to load a CLOB file into an XML column RESUME, specify something like RESUME
POSITION(7) VARCHAR CLOBF. This specification indicates that position 7 of the input data set
contains the name of a file from which a varying-length CLOB is to be loaded into the RESUME
column.

If the input data is in binary XML format, you need to specify BLOBF BINARYXML in the field
specification.

c. When data loaded into an XML column that has an XML type modifier, LOAD validates the input data
according to the XML schema that is specified in the type modifier. If LOAD detects a violation, it
deletes the row and issues a message to identify the violation.

Related concepts
Best practices for XML performance in Db2 (Db2 Performance)

LOAD LOG on an XML table space
An XML table space that is defined with LOG YES or LOG NO affects logging during the load of an XML
column.

The following table shows the logging output and XML table space effect, if any.

Table 45. LOAD LOG impact for an XML table space

LOAD LOG keyword
XML table space
LOG attribute What is logged

XML table space
status after utility
completes

LOG YES LOG YES Data No pending status

LOG YES LOG NO Nothing No pending status

LOG NO LOG YES Nothing COPY-Pending

LOG NO LOG NO Nothing ICOPY-Pending

326 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_bestpractice4xmlperf.html

Running LOAD RESUME YES SHRLEVEL CHANGE without logging
If you run the LOAD utility with the RESUME YES SHRLEVEL CHANGE options, you can improve the
performance by limiting the logging that is done by Db2 during the LOAD operation.

Procedure
To run LOAD RESUME YES SHRLEVEL CHANGE without logging:
1. Alter the table space to NOT LOGGED.
2. Run the LOAD job with the RESUME YES SHRLEVEL CHANGE options.

If the LOAD job fails, you cannot restart it, because the target is a NOT LOGGED table space. Instead
terminate the job, recover the data from a previous image copy, and rerun the LOAD job.

3. Alter the table space back to LOGGED.
4. Take an image copy of the table space.

Related concepts
The NOT LOGGED attribute (Db2 Administration Guide)
Related tasks
Changing the logging attribute (Db2 Administration Guide)
Related reference
ALTER TABLESPACE (Db2 SQL)

Collecting inline statistics while loading a table
If you do not specify LOAD RESUME YES, you can use the STATISTICS keyword to gather inline statistics.
In most cases, using the STATISTICS keyword eliminates the need to run RUNSTATS after loading a
table space.However, if you perform a LOAD PART operation, you should run RUNSTATS INDEX on the
nonpartitioned secondary indexes to update the catalog data about these indexes.

Procedure
To collect statistics while loading a table:
1. Use the STATISTICS option to collect statistics so that the Db2 catalog statistics contain information

about the newly loaded data:
Option Description

Collecting inline
statistics for
discarded rows

If you specify the DISCARDDN option when you collect inline statics and a
row is found with check constraint errors or conversion errors, the row is
not loaded into the table. However, the LOAD utility collects inline statistics
before it identifies the rows to discard. As a general rule, if the number of
discarded rows is larger than 20 percent of the total number of rows in the
table, , run the RUNSTATS utility separately on the table after running LOAD.

Collecting inline
statistics for
data partitioned
secondary indexes

To collect inline statistics on data partitioned secondary indexes, you must
allocate sort work data sets.

If you perform a LOAD operation on a base table that contains an XML column, Db2 does not collect
inline statistics for the related XML table space or its indexes.

Recording these new statistics enables Db2 to select SQL paths with accurate information.
2. Rebind any application plans that depend on the loaded tables to update the path selection of any

embedded SQL statements.

Chapter 19. LOAD 327

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_notloggedattribute.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_setloggingattribute.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html

What to do next
To collect statistics on the loaded table, you might need to invoke the RUNSTATS utility after the LOAD
utility processing has completed.

Related tasks
Maintaining Db2 database statistics (Db2 Performance)
Reducing the cost of collecting statistics (Db2 Performance)
Collecting statistics by using Db2 utilities (Db2 Performance)
Related reference
“Data sets that LOAD uses” on page 285
The LOAD utility requires certain data sets depending on the options that you specify. Include statements
in your JCL for each data set that is needed. Alternatively, for some of these data sets, you can use the
TEMPLATE utility to dynamically allocate them.
“LOAD” on page 221
Use the LOAD online utility to load one or more tables of a table space. The LOAD utility loads records into
the tables and builds or extends any indexes that are defined on them.

Termination of LOAD
The effects of terminating a LOAD utility job depends on the phase the utility was in when it was
terminated.

If you terminate LOAD by using the TERM UTILITY command during the reload phase, the records are
not erased. The table space remains in RECOVER-pending status, and indexes remain in the REBUILD-
pending status.

If you terminate LOAD by using the TERM UTILITY command during the sort or build phases, the indexes
that are not yet built remain in the REBUILD-pending status.

If you terminate a LOAD SHRLEVEL CHANGE, uncommitted records are rolled back, but committed
records remain in the table. The table space is not in RECOVER-pending status, and the indexes are not in
REBUILD-pending status.

If the LOAD job terminates during the RELOAD, SORT, BUILD, or SORTBLD phases, both RESTART and
RESTART(PHASE) phases restart from the beginning of the RELOAD phase. However, restart of LOAD
RESUME YES or LOAD PART RESUME YES in the BUILD or SORTBLD phase results in message DSNU257I.

If the LOAD job terminates during the DISCARD phase, a message is issued to indicate that the LOAD job
was terminated, an RC=8 is issued, and discard processing completes.

If a LOAD REPLACE SHRLEVEL REFERENCE job fails to acquire the necessary drain, the utility terminates
with return code 8.

The following table lists the LOAD phases and their effects on any pending states when the utility is
terminated in a particular phase.

Table 46. LOAD phases and their effects on pending states when terminated.

Phase Effect on pending status

Reload • Places table spaces in RECOVER-pending status, and then resets the status if
there are no unique indexes.

• Places indexes in REBUILD-pending status.
• Places table spaces in COPY-pending status if there are no unique indexes.
• Places table spaces in CHECK-pending status.

328 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_maintaincatalogstatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_improverunstatsperformance.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_collectstatsutilities.html

Table 46. LOAD phases and their effects on pending states when terminated. (continued)

Phase Effect on pending status

Build • Resets REBUILD-pending status for non-unique indexes.
• Resets RECOVER-pending status for table spaces with unique indexes, if no

INDEXVAL phase is needed.
• Places table spaces in COPY-pending status.

Indexval • Resets REBUILD-pending status for unique indexes.
• Resets RECOVER-pending status for table spaces with unique indexes.
• Places table spaces in COPY-pending status.

Enforce • Resets CHECK-pending status for table spaces.

Restart of LOAD
You can restart a LOAD utility job.

You can restart the job either at its last commit point (RESTART(CURRENT)) or at the beginning of the
phase during which operation ceased (RESTART(PHASE)). LOAD output messages identify the completed
phases. Use the DISPLAY command to identify the specific phase during which operation stopped.

By default, Db2 uses RESTART(CURRENT), except if LOAD is restarting during the UTILINIT phase or the
UTILTERM phase. In both of these situations, Db2 uses RESTART(PHASE) by default. You can override the
default RESTART values by using the RESTART parameter.

Restrictions: The following restrictions apply to restarting LOAD jobs:

• If LOAD abnormally terminates or a system failure occurs while LOAD is in the UTILTERM phase, you
must restart with RESTART(PHASE).

• If you restart a LOAD job with the RESUME YES and SORTKEYS NO options for a table that has LOB
columns, you must use RESTART(CURRENT).

• If you use RESTART(PHASE) to restart a LOAD job that specified RESUME NO, the LOB table spaces and
indexes on auxiliary tables are reset.

• For a table that has LOB columns, you cannot restart a LOAD job that uses the INCURSOR option.
• If you restart a LOAD job that uses the STATISTICS keyword, inline statistics collection does not occur.

To update catalog statistics, run the RUNSTATS utility after the restarted LOAD job completes.
• If you are using a BatchPipes file, you cannot restart the LOAD utility. If the application that populates

the BatchPipes file terminates, you need to terminate the job where LOAD is running. If the LOAD utility
was invoked from a stored procedure, you also need to terminate the WLM application environment of
the LOAD utility that reads the BatchPipes file. After you terminate the job, terminate the LOAD utility by
using the Db2 TERM UTILITY command, and then you can resubmit the LOAD job.

• You cannot restart LOAD with RESUME and with PRESORTED YES in the RELOAD phase. If you do so,
utility processing abnormally terminates, and LOAD issues an error message. You must:

– Terminate LOAD
– Recover the table space that is being loaded
– Recover all indexes on the table space that are in the REBUILD-pending state

• If the LOAD statement includes the PARALLEL option with a value other than 1, you cannot use
RESTART(CURRENT); RESTART(PHASE) is used instead.

The following table provides information about restarting LOAD, depending on the phase that LOAD was
in when the job stopped. The TYPE column distinguishes between the effects of specifying RESTART or
RESTART(PHASE). Additional phase restrictions are explained in the notes.

Chapter 19. LOAD 329

Table 47. LOAD restart information

Phase Type of RESTART Required data sets Notes

RELOAD CURRENT SYSREC and SYSUT1 SYSMAP and
SYSERR

1, 2, 10, 12

PHASE SYSREC 3, 10, 11, 12

SORT CURRENT SYSUT1 4, 10, 12

PHASE SYSUT1 10, 12

BUILD CURRENT SORTOUT 4, 5, 10, 12

PHASE SORTOUT 5, 10, 12

SORTBLD CURRENT SYSUT1 and SORTOUT 5, 6, 10, 12

PHASE SYSUT1 and SORTOUT 5, 6, 10, 12

INDEXVAL CURRENT SYSERR or SYSUT1 2

PHASE SYSERR or SYSUT1 2

ENFORCE CURRENT SORTOUT and SYSUT1 7

PHASE SORTOUT and SYSUT1 7

DISCARD CURRENT SYSMAP and SYSERR SORTOUT and
SYSUT1

7, 8

PHASE SYSMAP and SYSERR SORTOUT and
SYSUT1

7, 8

REPORT CURRENT SYSERR or SORTOUT SYSMAP and
SYSERR

7, 9

PHASE SYSERR or SORTOUT SYSMAP and
SYSERR

7, 9

330 Db2 12 for z/OS: Utility Guide and Reference

Table 47. LOAD restart information (continued)

Phase Type of RESTART Required data sets Notes

Note:

1. SYSMAP and SYSERR data sets might not be required for all LOAD jobs.
2. If the SYSERR data set is not required and not provided, LOAD uses SYSUT1 as a work data set to

contain error information.
3. You must not restart during the RELOAD phase if you specified SYSREC DD *. This statement

prevents internal commits from being taken, and RESTART performs like RESTART(PHASE), except
without data back out. Also, you must not restart if your SYSREC input consists of multiple
concatenated data sets.

4. The utility can be restarted with either RESTART or RESTART(PHASE). However, because this phase
does not take checkpoints, RESTART is always re-executed from the beginning of the phase.

5. A LOAD RESUME YES job cannot be restarted in the BUILD or SORTBLD phase.
6. Use RESTART or RESTART(PHASE) to restart at the beginning of the RELOAD phase.
7. This utility can be restarted with either RESTART or RESTART(PHASE). However, the utility can be

re-executed from the last internal checkpoint. This behavior is dependent on the data sets that are
used and whether any input data sets were rewritten.

8. The SYSUT1 data set is required if the target table space is segmented or partitioned.
9. If a report is required and this LOAD job does not specify discard processing, SYSMAP is required to

complete the report phase.
10. Any job that finished abnormally in the RELOAD, SORT, BUILD, or SORTBUILD phase and has

SORTKEYS enabled restarts from the beginning of the RELOAD phase. (A job that has SORTKEYS
enabled means that in the LOAD statement, SORTKEYS was either explicitly specified with a valid
value or implicitly specified as the default. In other words, SORTKEYS NO was not specified.)

11. LOAD with RESUME and with PRESORTED YES cannot be restarted in the RELOAD phase.
12. You cannot restart a LOAD job with the PRESORT option unless the SORTBLD phase completed.

Related tasks
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.
“Restarting a utility after the output data set is full” on page 50
If a utility job terminates with an out-of-space condition on the output data set, you might need to restart
the job at the last commit point.
Related reference
-DISPLAY UTILITY (Db2) (Db2 Commands)

After running LOAD
After you run the LOAD utility, you might need take additional actions to make sure your objects are
consistent and not in restricted status.

Chapter 19. LOAD 331

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displayutility.html

Copying the loaded table space or partition
If you ran the LOAD utility with the LOG YES option, consider taking a full image copy of the table space
or partition that you loaded. Such a copy might reduce the processing time of subsequent recovery
operations.

About this task
If you took primary and backup inline copies during the load operation, you do not need to take full image
copies of the table space or partition after LOAD completes. However, you might need to take images
copies of indexes.

Procedure
Use the COPY utility to create a full image copy.
If you specified the RESUME NO option or the REPLACE option for LOAD, take two or more full image
copies.

Related concepts
“Full image copies” on page 140
You can make full image copies of a variety of data objects. Data objects include table spaces, table space
partitions, data sets of nonpartitioned table spaces, index spaces, and index space partitions.
Related tasks
“Taking an inline COPY with LOAD” on page 312
An inline copy is an image copy that is taken during utility processing for a utility other than the COPY
utility. For example, during LOAD execution, you can create a full image copy data set.
Related reference
“COPY” on page 123
The COPY online utility creates copies of certain objects. These copies, called image copies, can later be
used for recovery.

Resetting restricted status after running the LOAD utility
The LOAD utility can place a table space or an index space into a restricted status. Several types of
restricted status are possible.

Before you begin
You can issue the following command to discover which spaces are in a restricted status:

-DISPLAY DATABASE (*) SPACENAM (*) RESTRICT

About this task
Your use of a table space in restricted status is severely limited. In general, you cannot access the data
through SQL. You can only drop the table space or one of its tables, or perform some operation that resets
the status.

Related reference
“Advisory or restrictive states” on page 975
To control access and help ensure data integrity, Db2 can set a restrictive or nonrestrictive (advisory)
status on certain objects. However, you can take steps to correct each status.
-DISPLAY DATABASE (Db2) (Db2 Commands)

332 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displaydatabase.html

Resetting COPY-pending status
If you load with LOG NO and do not take an inline copy, LOAD places a table space in the COPY-pending
status. Immediately after that operation, Db2 cannot recover the table space (although you can, by
loading it again).

Prepare for recovery, and turn off the restriction, by making a full image copy using SHRLEVEL
REFERENCE. (If you end the copy job before it is finished, the table space is still in COPY-pending status.)

You can also remove the restriction by using one of these operations:

• LOAD REPLACE LOG YES
• LOAD REPLACE LOG NO with an inline copy
• REORG LOG YES
• REORG LOG NO with an inline copy
• REPAIR SET with NOCOPYPEND

If you use LOG YES and do not make an image copy of the table space, subsequent recovery operations
are possible but take longer than if you had made an image copy.

A table space that is in COPY-pending status can be read without restriction; however, it cannot be
updated.

Related reference
“COPY-pending status” on page 979
COPY-pending (COPY) restrictive status indicates that the affected object must be copied.

REBUILD-pending and RECOVER-pending status after LOAD
LOAD sets index spaces to REBUILD-pending status when a REBUILD job ends before the INDEXVAL
phase is complete.

LOAD places all the index spaces for a table space in the REBUILD-pending status if you end the job (by
using the TERM UTILITY command) before it completes the INDEXVAL phase. Db2 places the table space
in RECOVER-pending status if you end the job before the job completes the RELOAD phase.

Resetting the RECOVER-pending status depends on when the utility terminated:

• If the data is intact and you have a full image copy of the affected indexes, you can recover the indexes
using the RECOVER INDEX utility. Run the DISPLAY DATABASE command and examine the output. Data
is intact when the output indicates that the indexes are in REBUILD-pending status and the table space
is not in RECOVER-pending status. If you do not have an image copy available, you must rebuild the
entire index by using the REBUILD INDEX utility. However, for partitioning indexes and for secondary
indexes that are in REBUILD-pending (RBDP) status, you can use the PART option of REBUILD INDEX to
rebuild separate partitions of the index.

• If the data is not intact, you can either load the table again or recover it to a prior point of consistency.
Run the DISPLAY DATABASE command and examine the output. The recovery puts the table space into
COPY-pending status and places all indexes in REBUILD-pending status.

Related reference
“REBUILD-pending status” on page 982
A REBUILD-pending restrictive status indicates that the affected index or index partition is broken and
must be rebuilt from the data.
“RECOVER-pending status” on page 983

Chapter 19. LOAD 333

RECOVER-pending (RECP) restrictive status indicates that a table space, table space partition, index
space, or index on an auxiliary table is broken and must be recovered.

CHECK-pending status after running LOAD
The LOAD utility places a table space in CHECK-pending (CHKP) status if its referential integrity is in doubt
or its check constraints are violated.

To reset this status, run the CHECK DATA utility, which locates invalid data and, optionally, removes it. If
CHECK DATA removes the invalid data, the remaining data satisfies all check and referential constraints
and therefore, the CHECK-pending restriction is removed.

Although CHECK DATA is usually the preferred method for resetting CHECK-pending status, you can also
reset this status by using any of the following operations:

• Drop tables that contain invalid rows.
• Replace the data in the table space by using LOAD REPLACE and enforcing check and referential

constraints.
• Recover all members of the table space that were set to a prior quiesce point.
• Use the REPAIR utility with the SET STATEMENT and NOCHECKPEND option.

Example of CHKP status after LOAD REPLACE
Suppose that you replace the contents of the sample project table (PROJ) by using LOAD with the
REPLACE option. You also specify that LOAD is to enforce the table's referential and table check
constraints. When the LOAD job completes, the project table contains only valid records and is not in
CHECK-pending status. However, its dependent table, the project activity table (PROJACT), is placed in
CHECK-pending status. Some of its rows might have project numbers that no longer exist in the project
table. (If the project table had any other dependents, they also would be in CHECK-pending status.)

In this case, run CHECK DATA against the table space that contains the project activity table to reset
the status. When you run CHECK DATA, ensure that all related table spaces are available. Related table
spaces means all table spaces that contain either parent tables or dependent tables of any table in the
table space that is being checked.

Also, in the CHECK DATA statement, consider the value that you specify for the DELETE option as follows:

YES
DELETE YES deletes invalid records and resets the status, but it is not the default value. If you specify
DELETE YES, you use another table that is called an exception table to receive copies of the invalid
records. For example, if table Y is the exception table for table X, name it with the following clause in
the CHECK DATA statement:

FOR EXCEPTION IN X USE Y

Deletes by CHECK DATA are not subject to any of the SQL delete rules; they cascade without restraint
to the lowest-level descendant. Therefore, if you use DELETE YES, you must name an exception table
for every descendant of every table in every table space that is being checked.

NO
Use DELETE NO, the default value, to quickly determine the size of the problem. If many rows are
affected, you can choose to correct the problem by reloading the data rather than using CHECK DATA
to correct the current situation.

Example: In the following example, CHECK DATA is to be run against the table space that contains
the project activity table (PROJACT). Assume that the exception tables DSN8C10.EPROJACT and
DSN8C10.EEPA exist.

CHECK DATA TABLESPACE DSN8D12A.PROJACT
 DELETE YES
 FOR EXCEPTION IN DSN8C10.PROJACT USE DSN8C10.EPROJACT
 IN DSN8C10.EMPPROJACT USE DSN8C10.EEPA

334 Db2 12 for z/OS: Utility Guide and Reference

 SORTDEVT SYSDA
 SORTNUM 4

If the statement does not name error or work data sets, the JCL for the job must contain DD statements
similar to the following DD statements:

//SYSERR DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSUT1 DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//UTPRINT DD SYSOUT=A

Example of CHKP status after LOAD RESUME
Suppose that you want to add records to both the sample project (PROJ) and project activity (PROJACT)
tables by using LOAD with the RESUME option. Furthermore, you want to run both jobs at the same time,
which you can do because the tables belong to separate table spaces. When you load the project activity
table, you must use the ENFORCE NO option in the LOAD statement because you cannot assume that the
parent project table is already loaded.

After the two jobs are complete, the table spaces are in the following states:

• If you enforced constraints when loading the project table, the table space is not in CHECK-pending
status.

• Because you did not enforce constraints on the project activity table, the table space is in CHECK-
pending status.

• Because you used LOAD RESUME (not LOAD REPLACE) when loading the project activity table, its
dependents (the employee-to-project-activity table) are not in CHECK-pending status. That is, the LOAD
operation did not delete any parent rows from the project activity table, and therefore cannot violate the
referential integrity of its dependent.

Therefore, you should run CHECK DATA on the project activity table. If you specify DELETE YES, you
need an exception table for PROJACT and an exception table for EMPPROJACT, which is dependent on
PROJACT.

To speed CHECK DATA processing, specify the SCOPE PENDING option to limit the checking.

Db2 records the identifier of the first row of the table that might violate referential or table check
constraints. For partitioned table spaces, that identifier is in SYSIBM.SYSTABLEPART; for nonpartitioned
table spaces, that identifier is in SYSIBM.SYSTABLES.

Example: In the following example, CHECK DATA is to be run against the table space that contains the
project activity table after LOAD RESUME:

CHECK DATA TABLESPACE DSN8D12A.PROJACT
 SCOPE PENDING
 DELETE YES
 FOR EXCEPTION IN DSN8C10.PROJACT USE DSN8C10.EPROJACT
 IN DSN8C10.EMPPROJACT USE DSN8C10.EEPA
 SORTDEVT SYSDA
 SORTNUM 4

As before, the JCL for the job needs DD statements to define the error and sort data sets.

Related reference
“CHECK-pending status” on page 977
CHECK-pending (CHKP) restrictive status indicates that an object might be in an inconsistent state and
must be checked.
“Syntax and options of the CHECK DATA control statement” on page 72
The CHECK DATA utility control statement, with its multiple options, defines the function that the utility
job performs.
“Exception tables for the CHECK DATA utility” on page 88

Chapter 19. LOAD 335

An exception table is a user-created table that duplicates the definition of a dependent table. The CHECK
DATA utility checks the number of columns in the dependent table. The CHECK DATA utility also copies
the deleted rows from the dependent table to the exception table.
“Data sets that CHECK DATA uses” on page 82
The CHECK DATA utility uses a number of data sets during its operation.
Project table (Introduction to Db2 for z/OS)
Project activity table (Introduction to Db2 for z/OS)

Running CHECK INDEX after loading a table that has indexes
The CHECK INDEX utility tests whether an index is consistent with the data it indexes and issues error
messages if it finds an inconsistency.

About this task
If you have any reason to doubt the accuracy of an index (for example, if the result of an SQL SELECT
COUNT statement is inconsistent with RUNSTATS output) you might want to check the index.

Procedure
Invoke the CHECK INDEX utility.
You might also want to invoke the CHECK INDEX utility after any LOAD operation that shows some
abnormal condition in its execution, or even run it periodically to verify the accuracy of important indexes.

What to do next
To rebuild an index that is inconsistent with its data, Invoke the REBUILD INDEX utility.
Related reference
“CHECK INDEX” on page 97
The CHECK INDEX online utility tests whether indexes are consistent with the data that they index, and it
issues warning messages when it finds an inconsistency.
“REBUILD INDEX” on page 399
The REBUILD INDEX online utility reconstructs indexes or index partitions from the table that they
reference.
“RUNSTATS” on page 699
The RUNSTATS online utility gathers summary information about the characteristics of data in table
spaces, indexes, and partitions. Db2 records these statistics in the Db2 catalog and uses them to select
access paths to data during the bind process.
COUNT (Db2 SQL)

Recovering data after a failed LOAD job
If a LOAD utility job fails, you can recover the data to a point in time before the LOAD job ran.

About this task
When you specify LOG YES in the LOAD utility control statement, Db2 inserts a record into the
SYSIBM.SYSCOPY catalog table at the beginning of the RELOAD phase of LOAD processing. Db2 uses
this SYSCOPY record to help facilitate recovery in case of failure. However, because of this SYSCOPY
record, if the LOAD LOG YES job fails, recover to the point in time before the LOAD job was run. Although
you can recover the data to the current state, the results are unpredictable.

Procedure
To recover a failed LOAD job, take one of the following actions:

336 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesprojectmain.html
https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_sampletablesprojectactivity.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_bif_count.html

• If the LOAD statement included the LOG YES option, recover the data to a point in time before
the LOAD job ran. You can use the RECOVER utility with the TORBA option or another point-in-time
recovery option.

• If the LOAD statement included the LOG NO option, recover the data to the point in time before the
LOAD job ran or to the current state.

Related concepts
“Point-in-time recovery” on page 462
Recovering data to a prior time is called a point-in-time recovery. You can recover objects to a particular
RBA, LRSN, or image copy. You can do this type of recovery by using the RECOVER utility point-in-time
recovery options. These options are TOCOPY, TOLOGPOINT, TOLASTCOPY, TORBA, and TOLASTFULLCOPY.
Options for restoring data to a prior point in time (Db2 Administration Guide)
Related reference
SYSCOPY catalog table (Db2 SQL)

Reorganization of an auxiliary index after LOAD
Indexes on the auxiliary tables are not built during the BUILD phase. Instead, LOB values are inserted (not
loaded) into auxiliary tables during the RELOAD phase as each row is loaded into the base table. Each
index on the auxiliary table is also updated as part of the insert operation.

Because the LOAD utility inserts keys into an auxiliary index, free space within the index might be
consumed and index page splits might occur. Consider reorganizing an index on the auxiliary table after
LOAD completes to introduce free space into the index for future inserts and loads.

Effects of running LOAD
The effects of running LOAD can be different, depending on your situation. Running the LOAD utility can
have effects on index version numbers, control intervals, and table spaces that are defined with the NOT
LOGGED attribute.

The effect of LOAD on MAXASSIGNEDVAL for identity columns

The last assigned value for an identity column is tracked in the MAXASSIGNEDVAL column in
SYSIBM.SYSSEQUENCES. This value is used to determine the next value of the identity column. When you
load tables that have identity columns, by default the LOAD utility updates the value in MAXASSIGNEDVAL
as needed.

If the value of the identify column is generated by Db2, LOAD updates MAXASSIGNEDVAL with the
last assigned value. If you provide the value of the identity column for the LOAD operation and the
column is defined as GENERATED BY DEFAULT or OVERRIDE(IDENTITY) is specified, the utility updates
MAXASSIGNEDVAL based upon the values of the input data. If you do not want LOAD to update
MAXASSIGNEDVAL, specify UPDMAXASSIGNEDVAL NO in the LOAD statement.

Related information:

Identity columns (Db2 Administration Guide)
SYSSEQUENCES catalog table (Db2 SQL)

The effect of LOAD on index version numbers

Db2 stores the range of used index version numbers in the OLDEST_VERSION and CURRENT_VERSION
columns of the following catalog tables:

• SYSIBM.SYSINDEXES
• SYSIBM.SYSINDEXPART

Chapter 19. LOAD 337

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_restoretotimeoptions.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsyscopytable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/apsg/src/tpc/db2z_identitycols.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsyssequencestable.html

The OLDEST_VERSION column contains the oldest used version number, and the CURRENT_VERSION
column contains the current version number.

When you run LOAD with the REPLACE option, the utility updates this range of used version numbers for
indexes that are defined with the COPY NO attribute. LOAD REPLACE sets the OLDEST_VERSION column
to the current version number, which indicates that only one version is active; Db2 can then reuse all of
the other version numbers.

Recycling of version numbers is required when all of the version numbers are being used. All version
numbers are being used when one of the following situations is true:

• The value in the CURRENT_VERSION column is less than the value in the OLDEST_VERSION column.
• The value in the CURRENT_VERSION column is 15, and the value in the OLDEST_VERSION column is 0

or 1.

You can also run REBUILD INDEX, REORG INDEX, or REORG TABLESPACE to recycle version numbers
for indexes that are defined with the COPY NO attribute. To recycle version numbers for indexes that are
defined with the COPY YES attribute or for table spaces, run MODIFY RECOVERY.

The effect of LOAD on table space version numbers
When you run LOAD REPLACE or LOAD RESUME NO, the table space is reset to a single
version. Db2 sets the OLDEST_VERSION column value to the CURRENT_VERSION column value in
SYSIBM.SYSTABLESPACE. For each table that is in version 0 format, a system pages is inserted in the
table space.

For LOAD REPLACE or LOAD RESUME NO, if a system page is missing for a table in the table space, the
utility adds a system page for the current version of the table.

For LOAD RESUME YES, if a system page is missing for a table that is in version 0 format, the utility adds a
system page for version 0 of the table.

The effect of LOAD REPLACE on the control interval

When you run a LOAD job with the REPLACE option but without the REUSE option and the data set that
contains the data is Db2-managed, Db2 deletes this data set before the LOAD and redefines a new data
set with a control interval that matches the page size.

The effect of LOAD on table spaces defined with NOT LOGGED attribute

The following table shows the effect of LOAD table spaces defined with the NOT LOGGED attribute

Table 48. LOAD parameters

LOAD REORG LOG
keyword

Table space logging
attribute Table space type What is logged

Table space
status after utility
completes

LOG YES NOT LOGGED Non-LOB LOG YES changes to
LOG NO

No pending status or
ICOPY-pending1

LOG YES NOT LOGGED LOB control information No pending status

LOG NO NOT LOGGED Non-LOB nothing No pending status or
ICOPY-pending1

LOG NO NOT LOGGED LOB nothing No pending status

338 Db2 12 for z/OS: Utility Guide and Reference

Table 48. LOAD parameters (continued)

LOAD REORG LOG
keyword

Table space logging
attribute Table space type What is logged

Table space
status after utility
completes

Note:

1. The table space is set to ICOPY-pending status if the records are discarded and no pending status if the
records are not discarded.

Related concepts
Table space versions (Db2 Administration Guide)

Sample LOAD control statements
Use the sample control statements as models for developing your own LOAD control statements.

Specifying field positions

The following LOAD statement specifies that the utility is to load the records from the data set that is
defined by the SYSREC DD statement into table DSN8810.DEPT. SYSREC is the default input data set.

Each POSITION clause specifies the location of a field in the input record. In this example, LOAD accepts
the input and interprets it as follows:

• The first 3 bytes of each record are loaded into the DEPTNO column of the table.
• The next 36 bytes, including trailing blanks, are loaded into the DEPTNAME column.

If this input column were defined as VARCHAR(36), the input data would need to contain a 2-byte
binary length field preceding the data. This binary field would begin at position 4.

• The next three fields are loaded into columns that are defined as CHAR(6), CHAR(3), and CHAR(16).

The RESUME YES clause specifies that the table space does not need to be empty; new records are added
to the end of the table.

LOAD DATA
 RESUME YES
 INTO TABLE DSN8C10.DEPT
 (DEPTNO POSITION (1:3) CHAR(3),
 DEPTNAME POSITION (4:39) CHAR(36),
 MGRNO POSITION (40:45) CHAR(6),
 ADMRDEPT POSITION (46:48) CHAR(3),
 LOCATION POSITION (49:64) CHAR(16))

The following example shows the input to the preceding LOAD job.

A00SPIFFY COMPUTER SERVICE DIV. 000010A00USIBMSTODB21
B01PLANNING 000020A00USIBMSTODB21
C01INFORMATION CENTER 000030A00USIBMSTODB21
D01DEVELOPMENT CENTER A00USIBMSTODB21

The following table shows the result of executing the statement SELECT * FROM DSN8C10.DEPT after the
preceding input records are loaded.

Table 49. Data that is loaded into a table

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

A00 SPIFFY COMPUTER
SERVICE DIV.

000010 A00 USIBMSTODB21

B01 PLANNING 000020 A00 USIBMSTODB21

Chapter 19. LOAD 339

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_tablespaceversions.html

Table 49. Data that is loaded into a table (continued)

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

C01 INFORMATION
CENTER

000030 A00 USIBMSTODB21

D01 DEVELOPMENT
CENTER

A00 USIBMSTODB21

Replacing data in a given partition

The following control statement specifies that data from the data set that is defined by the SYSREC DD
statement is to be loaded into the first partition of table DSN8810.DEPT. The default input data set is
SYSREC. The REPLACE option indicates that the input data is to replace only the specified partition. If the
REPLACE option was specified before the PART option, REPLACE would indicate that entire table space is
to be replaced, and the data is to be loaded into the specified partition. Note that the keyword DATA does
not need to be specified.

LOAD
 INTO TABLE DSN8C10.DEPT PART 1 REPLACE

Loading selected records into multiple tables

The following LOAD statement specifies that the utility is to load certain data from the EMPLDS input data
set into tables DSN8C10.EMP, SMITH.EMPEMPL, and DSN8810.DEPT. The input data set is identified by
the INDDN option. The WHEN clauses indicate which records are to be loaded into each table. For the
EMP and DEPT tables, the utility is to load only records that begin with the string LKA. For the EMPEMPL
table, the utility is to load only records that begin with the string ABC. The RESUME YES option indicates
that the table space does not need to be empty for the LOAD job to proceed. The new rows are added to
the end of the tables. This example assumes that the first two tables being loaded have exactly the same
format, and that the input data matches that format; therefore, no field specifications are needed for
those two INTO TABLE clauses. The third table has a different format, so field specifications are required
and are supplied in the example.

The three tables being loaded each contain a different number of records. To improve the sizing of the
sort work data sets that the LOAD utility requires, the number of records being loaded into each table is
specified on the NUMRECS keyword for each table.

The POSITION clauses specify the location of the fields in the input data for the DEPT table. For each
source record that is to be loaded into the DEPT table:

• The characters in positions 7 - 9 are loaded into the DEPTNO column.
• The characters in positions 10 - 35 are loaded into the DEPTNAME column.
• The characters in positions 36 - 41 are loaded into the MGRNO column.
• The characters in positions 42 - 44 are loaded into the ADMRDEPT column.

LOAD DATA INDDN EMPLDS
 RESUME YES
 INTO TABLE DSN8C10.EMP
 NUMRECS 100000
 WHEN (1:3)='LKA'
 INTO TABLE SMITH.EMPEMPL
 NUMRECS 100
 WHEN (1:3)='ABC'
 INTO TABLE DSN8C10.DEPT
 NUMRECS 500
 WHEN (1:3)='LKA'
 (DEPTNO POSITION (7:9) CHAR,
 DEPTNAME POSITION (10:35) CHAR,

340 Db2 12 for z/OS: Utility Guide and Reference

 MGRNO POSITION (36:41) CHAR,
 ADMRDEPT POSITION (42:44) CHAR)

Loading data of different data types

The following LOAD statement specifies that the utility is to load data from the SYSRECPJ input data set
into table DSN8C10.PROJ. The input data set is identified by the INDDN option. Assume that the table
space that contains table DSN8C10.PROJ is currently empty.

For each input record, data is loaded into the specified columns (that is, PROJNO, PROJNAME, DEPTNO,
and so on) to form a table row. Any other PROJ columns that are not specified in the LOAD control
statement are set to the default value.

The POSITION clauses define the starting positions of the fields in the input data set. The ending
positions of the fields in the input data set are implicitly defined either by the length specification of
the data type (CHAR length) or the length specification of the external numeric data type (LENGTH).

The numeric data that is represented in SQL constant format (EXTERNAL format) is converted to the
correct internal format by the LOAD process and placed in the indicated column names. The two dates
(PRSTDATE and PRENDATE) are assumed to be represented by eight digits and two separator characters,
as in the USA format (for example, 11/15/2006). The length of the date fields is given as 10 explicitly,
although in many cases, the default is the same value.

LOAD DATA INDDN(SYSRECPJ)
 INTO TABLE DSN8C10.PROJ
 (PROJNO POSITION (1) CHAR(6),
 PROJNAME POSITION (8) CHAR(22),
 DEPTNO POSITION (31) CHAR(3),
 RESPEMP POSITION (35) CHAR(6),
 PRSTAFF POSITION (42) DECIMAL EXTERNAL(5),
 PRSTDATE POSITION (48) DATE EXTERNAL(10),
 PRENDATE POSITION (59) DATE EXTERNAL(10),
 MAJPROJ POSITION (70) CHAR(6))

Loading data in delimited file format

The control statement specifies that data in delimited format is to be loaded into the specified columns
(FILENO, DATE1, TIME1, and TIMESTMP) in table TBQB0103. The FORMAT DELIMITED option indicates
that the data is in delimited format. The data is to be loaded from the SYSREC data set, which is the
default.

The COLDEL option indicates that the column delimiter is a comma (,). The CHARDEL option indicates that
the character string delimiter is a double quotation mark ("). The DECPT option indicates that the decimal
point character is a period (.). You are not required to explicitly specify these particular characters,
because they are all defaults.

//*
//STEP3 EXEC DSNUPROC,UID='JUQBU101.LOAD2',TIME=1440,
// UTPROC='',
// SYSTEM='SSTR'
//SYSERR DD DSN=JUQBU101.LOAD2.STEP3.SYSERR,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSDISC DD DSN=JUQBU101.LOAD2.STEP3.SYSDISC,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSMAP DD DSN=JUQBU101.LOAD2.STEP3.SYSMAP,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//SYSUT1 DD DSN=JUQBU101.LOAD2.STEP3.SYSUT1,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)
//UTPRINT DD SYSOUT=*
//SORTOUT DD DSN=JUQBU101.LOAD2.STEP3.SORTOUT,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4096,(20,20),,,ROUND)

Chapter 19. LOAD 341

//SYSIN DD *
 LOAD DATA
 FORMAT DELIMITED COLDEL ',' CHARDEL '"' DECPT '.'
 INTO TABLE TBQB0103
 (FILENO CHAR,
 DATE1 DATE EXTERNAL,
 TIME1 TIME EXTERNAL,
 TIMESTMP TIMESTAMP EXTERNAL)
 /*
//SYSREC DD *
 "001", 2000-02-16, 00.00.00, 2000-02-16-00.00.00.0000
 "002", 2001-04-17, 06.30.00, 2001-04-17-06.30.00.2000
 "003", 2002-06-18, 12.30.59, 2002-06-18-12.30.59.4000
 "004", 1991-08-19, 18.59.30, 1991-08-19-18.59.30.8000
 "005", 2000-12-20, 24.00.00, 2000-12-20-24.00.00.0000
 /*

Concatenating multiple input records

The following LOAD statement specifies that data from the SYSRECOV input data set is to be loaded
into table DSN8C10.TOPTVAL. The input data set is identified by the INDDN option. The table space that
contains the TOPTVAL table is currently empty.

Some of the data that is to be loaded into a single row spans more than one input record. In this situation,
an X in column 72 indicates that the input record contains fields that are to be loaded into the same
row as the fields in the next input record. In the LOAD control statement, CONTINUEIF(72:72)='X'
indicates that LOAD is to concatenate any input records that have an X in column 72 with the next record
before loading the data.

For each assembled input record (that is, after the concatenation), fields are loaded into the
DSN8C10.TOPTVAL table columns (that is, MAJSYS, ACTION, OBJECT …, DSPINDEX) to form a table
row. Any columns that are not specified in the LOAD control statement are set to the default value.

The POSITION clauses define the starting positions of the fields in the assembled input records. Starting
positions are numbered from the first column of the internally assembled input record, not from the start
of the input records in the sequential data set. The ending positions of the fields are implicitly defined by
the length specification of the data type (CHAR length).

No conversions are required to load the input character strings into their designated columns, which are
also defined to be fixed-length character strings. However, because columns INFOTXT, HELPTXT, and
PFKTXT are defined as 79 characters in length and the strings that are being loaded are 71 characters in
length, those strings are padded with blanks as they are loaded.

LOAD DATA INDDN(SYSRECOV) CONTINUEIF(72:72)='X'
 INTO TABLE DSN8C10.TOPTVAL
 (MAJSYS POSITION (2) CHAR(1),
 ACTION POSITION (4) CHAR(1),
 OBJECT POSITION (6) CHAR(2),
 SRCHCRIT POSITION (9) CHAR(2),
 SCRTYPE POSITION (12) CHAR(1),
 HEADTXT POSITION (80) CHAR(50),
 SELTXT POSITION (159) CHAR(50),
 INFOTXT POSITION (238) CHAR(71),
 HELPTXT POSITION (317) CHAR(71),
 PFKTXT POSITION (396) CHAR(71),
 DSPINDEX POSITION (475) CHAR(2))

Loading null values

The following LOAD statement specifies that data from the SYSRECST data set is to be loaded into the
specified columns in table SYSIBM.SYSSTRINGS. The input data set is identified by the INDDN option.
The NULLIF option for the ERRORBYTE and SUBBYTE columns specifies that if the input field contains a
blank, LOAD is to place a null value in the indicated column for that particular row. The DEFAULTIF option
for the TRANSTAB column indicates that the utility is to load the default value for this column if the input

342 Db2 12 for z/OS: Utility Guide and Reference

field value is GG. The CONTINUEIF option indicates that LOAD is to concatenate any input records that
have an X in column 80 with the next record before loading the data.

LOAD DATA INDDN(SYSRECST) CONTINUEIF(80:80)='X' RESUME(YES)
 INTO TABLE SYSIBM.SYSSTRINGS
 (INCCSID POSITION(1) INTEGER EXTERNAL(5),
 OUTCCSID POSITION(7) INTEGER EXTERNAL(5),
 TRANSTYPE POSITION(13) CHAR(2),
 ERRORBYTE POSITION(16) CHAR(1) NULLIF(ERRORBYTE=' '),
 SUBBYTE POSITION(18) CHAR(1) NULLIF(SUBBYTE=' '),
 TRANSPROC POSITION(20) CHAR(8),
 IBMREQD POSITION(29) CHAR(1),
 TRANSTAB POSITION(31) CHAR(256) DEFAULTIF(TRANSTYPE='GG'))

Enforcing referential constraints when loading data

The following LOAD statement specifies that data from the SYSREC input data set is to be loaded into
table DSN8C10.PROJ. The default input data set is SYSREC. The table space that contains the PROJ table
is not empty. RESUME YES indicates that the records are to be added to the end of the table.

The ENFORCE CONSTRAINTS option indicates that LOAD is to enforce referential constraints on the data
that is being added. This option is also the default. All violations are reported in the output. All records
causing these violations are not loaded and placed in the SYSDISC data set, which is the default data set
for discarded records.

The CONTINUEIF option indicates that before loading the data LOAD is to concatenate any input records
that have an X in column 72 with the next record.

LOAD DATA INDDN(SYSREC) CONTINUEIF(72:72)='X'
 RESUME YES
 ENFORCE CONSTRAINTS
 INTO TABLE DSN8C10.PROJ
 (PROJNO POSITION (1) CHAR (6),
 PROJNAME POSITION (8) VARCHAR,
 DEPTNO POSITION (33) CHAR (3),
 RESPEMP POSITION (37) CHAR (6),
 PRSTAFF POSITION (44) DECIMAL EXTERNAL (5),
 PRSTDATE POSITION (50) DATE EXTERNAL,
 PRENDATE POSITION (61) DATE EXTERNAL,
 MAJPROJ POSITION (80) CHAR (6) NULLIF(MAJPROJ=' '))

Loading data without enforcing referential constraints

The following LOAD statement specifies that data from the SYSRECAC input data set is to be loaded into
table DSN8810.ACT. The INDDN option identifies the input data set.

ENFORCE NO indicates that the LOAD utility is not to enforce referential constraints and places the table
in CHECK-pending status. Use this option if you are loading data into several tables that are related in
such a way that the referential constraints cannot be checked until all tables are loaded. For example, a
column in table A depends on a column in table B; a column in table B depends on a column in table C;
and a column in table C depends on a column in table A.

The POSITION clauses define the starting positions of the fields in the input data set. The ending
positions of the fields in the input data set are implicitly defined by the length specification of the data
type (CHAR length). In this case, the characters in positions 1 through 3 are loaded into the ACTNO
column, the characters in positions 5 through 10 are loaded into the ACTKWD column, and the characters
in position 13 onward are loaded into the ACTDESC column. Because the ACTDESC column is of type
VARCHAR, the input data needs to contain a 2-byte binary field that contains the length of the character
field. This binary field begins at position 13.

//STEP1 EXEC DSNUPROC,UID='IUIQU2UB.LOAD',
// UTPROC='',
// SYSTEM='DSN'
//SYSRECAC DD DSN=IUIQU2UB.LOAD.DATA,DISP=SHR,VOL=SER=SCR03,

Chapter 19. LOAD 343

// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSUT1 DD DSN=IUIQU2UB.LOAD.STEP1.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=IUIQU2UB.LOAD.STEP1.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
LOAD DATA INDDN(SYSRECAC) RESUME YES
 INTO TABLE DSN8C10.ACT
 (ACTNO POSITION(1) INTEGER EXTERNAL(3),
 ACTKWD POSITION(5) CHAR(6),
 ACTDESC POSITION(13) VARCHAR)
 ENFORCE NO
//*

Loading data and using a parallel index build

The following LOAD statement specifies that data from the SYSREC input data set is to be loaded into
table DSN8810.DEPT. Assume that 22,000 rows need to be loaded into table DSN8C10.DEPT, which has
three indexes. In this example, the SORTKEYS option is used to improve performance by forcing a parallel
index build. The SORTKEYS option specifies 66,000 as an estimate of the number keys to sort in parallel
during the SORTBLD phase. (This estimate was computed by using the calculation that is described in
“Improving LOAD performance” on page 314.) Because more than one index needs to be built, LOAD
builds the indexes in parallel.

The SORTDEVT and SORTNUM keywords specify that the sort program is to dynamically allocate the
required data sets. If sufficient virtual storage resources are available, one utility subtask pair is started to
build each index. This example does not require UTPRINnn DD statements because it uses DSNUPROC to
invoke utility processing, which includes a DD statement that allocates UTPRINT to SYSOUT.

The CONTINUEIF option indicates that, before loading the data, LOAD is to concatenate any input records
that have a plus sign (+) in column 79 and a plus sign (+) in column 80 with the next record.

//SAMPJOB JOB …
//STEP1 EXEC DSNUPROC,UID='SAMPJOB.LOAD',UTPROC='',SYSTEM='DSN'
//SORTOUT DD DSN=SAMPJOB.LOAD.STEP1.SORTOUT,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SYSUT1 DD DSN=SAMPJOB.LOAD.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SYSERR DD DSN=SAMPJOB.LOAD.STEP1.SYSERR,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(2000,(20,20),,,ROUND)
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)
//SYSMAP DD DSN=SAMPJOB.LOAD.STEP1.SYSMAP,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(2000,(20,20),,,ROUND),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)
//SYSREC DSN=SAMPJOB.TEMP.DATA,DISP=SHR,UNIT=SYSDA
//SYSIN DD *
LOAD DATA REPLACE INDDN SYSREC CONTINUEIF(79:80)='++'
 SORTKEYS 66000 SORTDEVT SYSDA SORTNUM 3
 INTO TABLE DSN8C10.DEPT
/*

Creating inline copies using the REPLACE option

The following LOAD statement specifies that the utility is to load data from the SYSREC data set into the
specified columns of table ADMF001.TB0S3902.

COPYDDN(COPYT1) indicates that LOAD is to create inline copies and write the primary image copy to
the data set that is defined by the COPYT1 template. This template is defined in one of the preceding
TEMPLATE control statements.

To create an inline copy, you can specify the REPLACE option, which indicates that any data in the table
space is to be replaced.

344 Db2 12 for z/OS: Utility Guide and Reference

CONTINUEIF(79:80)='++' indicates that, before loading the data, LOAD is to concatenate any input
records that have a plus sign (+) in column 79 and a plus sign (+) in column 80 with the next record.

The ERRDDN(ERRDDN) and MAPDDN(MAP) options indicate that information about errors is to be written
to the data sets that are defined by the ERRDDN and MAP templates. DISCARDDN(DISCARD) specifies
that discarded records (those that violate referential constraints) are to be written to the data set that is
defined by the DISCARD template. WORKDDN(UT1,OUT) specifies the temporary work files for sort input
and output; LOAD is to use the data set that is defined by the UT1 template for sort input and the data set
that is defined by the OUT template for sort output.

//STEP1 EXEC DSNUPROC,UID='JUOSU339.LOAD1',TIME=1440,
// UTPROC='',
// SYSTEM='SSTR'
//SYSREC DD DSN=CUST.FM.CINT135.DATA,DISP=SHR,VOL=SER=FORDMD,
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
 TEMPLATE ERRDDN UNIT(SYSDA)
 DSN(JUOSU339.T&TI..&ST..ERRDDN)
 SPACE(50,10) TRK
 TEMPLATE UT1 UNIT(SYSDA)
 DSN(JUOSU339.T&TI..&ST..SYSUT1)
 SPACE(50,10) TRK
 TEMPLATE OUT UNIT(SYSDA)
 DSN(JUOSU339.T&TI..&ST..SYSOUT)
 SPACE(50,10) TRK
 TEMPLATE MAP UNIT(SYSDA)
 DSN(JUOSU339.T&TI..&ST..SYSMAP)
 SPACE(50,10) TRK
 TEMPLATE DISCARD UNIT(SYSDA)
 DSN(JUOSU339.T&TI..&ST..DISCARD)
 SPACE(50,10) TRK
 TEMPLATE COPYT1
 UNIT(SYSDA)
 DSN(JUOSU339.COPY1.STEP1.&SN..COPY&LR.&PB.)
 DISP(MOD,CATLG,CATLG)
 SPACE(60,30) TRK
 LOAD DATA INDDN SYSREC REPLACE
 CONTINUEIF(79:80)='++'
 COPYDDN(COPYT1)
 ERRDDN(ERRDDN)
 WORKDDN(UT1,OUT)
 MAPDDN(MAP)
 DISCARDDN(DISCARD)
 INTO TABLE
 ADMF001.TBOS3902
 (ID_PARTITION POSITION(1) CHAR(1),
 CD_PLANT POSITION(2) CHAR(5),
 NO_PART_BASE POSITION(7) CHAR(9),
 NO_PART_PREFIX POSITION(16) CHAR(7),
 NO_PART_SUFFIX POSITION(23) CHAR(8),
 NO_PART_CONTROL POSITION(31) CHAR(3),
 DT_TRANS_EFFECTIVE POSITION(34) DATE EXTERNAL(10),
 CD_INV_TRANSACTION POSITION(44) CHAR(3),
 TS_PROCESS POSITION(47) TIMESTAMP EXTERNAL(26),
 QT_INV_TRANSACTION POSITION(73) INTEGER,
 CD_UNIT_MEAS_USAGE POSITION(77) CHAR(2),
 CD_USER_ID POSITION(79) CHAR(7),
 NO_DEPT POSITION(86) CHAR(4),
 NO_WORK_CENTER POSITION(90) CHAR(6))
/*

Creating inline copies while serializing at the partition level

To create an inline image copy while serializing at the partition level, issue LOAD with COPYDDN (or
RECOVERYDDN) at the statement level while specifying resume-spec at the INTO TABLE PART level, as
shown in the following example. The resulting inline copy includes pages only for partitions that are
specified in the statement.

TEMPLATE SCPY DISP(NEW,CATLG,CATLG)
DSN MYHLQ.&DB..&TS..P&PA.

LOAD DATA SHRLEVEL NONE

Chapter 19. LOAD 345

FORMAT DELIMITED COPYDDN(SCPY)
INTO TABLE MY.TABLEA PART 1 RESUME YES
INDDN SREC1
(“ID” POSITION(*) INTEGER
,“NAME” POSITION(*) VARCHAR
)
INTO TABLE MY.TABLEA PART 2 RESUME YES
INDDN SREC2
(“ID” POSITION(*) INTEGER
,“NAME” POSITION(*) VARCHAR
)
/*

Collecting statistics

This example is similar to the previous example, except that the STATISTICS option and other related
options have been added so that during the LOAD job, Db2 also gathers statistics for the table space.
Gathering these statistics eliminates the need to run the RUNSTATS utility after completing the LOAD
operation.

The TABLE, COLUMN, and INDEX options specify that information is to be gathered for columns
QT_INV_TRANSACTION, NO_DEPT, NO_PART_PREFIX, DT_TRANS_EFFECTIVE and index ID0S3902 for
table TB0S3902. SAMPLE 53 indicates that LOAD is to sample 53% of the rows when gathering statistics
on non-leading-indexed columns of an index or non-indexed columns. For the index, statistics on all of
the distinct values in all of the key column combinations are collected by default. FREQVAL NUMCOLS 4
COUNT 20 indicates that 20 frequent values are to be collected on the concatenation of the first four key
columns.

REPORT YES indicates that the statistics are to be sent to SYSPRINT as output. UPDATE ALL and HISTORY
ALL indicate that all collected statistics are to be updated in the catalog and catalog history tables.

//STEP1 EXEC DSNUPROC,UID='JUOSU339.LOAD1',TIME=1440,
// UTPROC='',
// SYSTEM='SSTR'
//SYSREC DD DSN=CUST.FM.CINT135.DATA,DISP=SHR,VOL=SER=FORDMD,
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
 TEMPLATE ERRDDN UNIT(SYSDA)
 DSN(JUOSU339.T&TI..&ST..ERRDDN)
 SPACE(50,10) TRK
 TEMPLATE UT1 UNIT(SYSDA)
 DSN(JUOSU339.T&TI..&ST..SYSUT1)
 SPACE(50,10) TRK
 TEMPLATE OUT UNIT(SYSDA)
 DSN(JUOSU339.T&TI..&ST..SYSOUT)
 SPACE(50,10) TRK
 TEMPLATE MAP UNIT(SYSDA)
 DSN(JUOSU339.T&TI..&ST..SYSMAP)
 SPACE(50,10) TRK
 TEMPLATE DISCARD UNIT(SYSDA)
 DSN(JUOSU339.T&TI..&ST..DISCARD)
 SPACE(50,10) TRK
 TEMPLATE COPYT1
 UNIT(SYSDA)
 DSN(JUOSU339.COPY1.STEP1.&SN..COPY&LR.&PB.)
 DISP(MOD,CATLG,CATLG)
 SPACE(60,30) TRK
 LOAD DATA INDDN SYSREC REPLACE
 CONTINUEIF(79:80)='++'
 COPYDDN(COPYT1)
 STATISTICS
 TABLE (TBOS3902) SAMPLE 53
 COLUMN (QT_INV_TRANSACTION,
 NO_DEPT,
 NO_PART_PREFIX,
 DT_TRANS_EFFECTIVE)
 INDEX (IDOS3902
 FREQVAL NUMCOLS 4 COUNT 20)
 REPORT YES UPDATE ALL HISTORY ALL
 ERRDDN(ERRDDN)
 WORKDDN(UT1,OUT)
 MAPDDN(MAP)
 DISCARDDN(DISCARD)

346 Db2 12 for z/OS: Utility Guide and Reference

 INTO TABLE
 ADMF001.TBOS3902
 (ID_PARTITION POSITION(1) CHAR(1),
 CD_PLANT POSITION(2) CHAR(5),
 NO_PART_BASE POSITION(7) CHAR(9),
 NO_PART_PREFIX POSITION(16) CHAR(7),
 NO_PART_SUFFIX POSITION(23) CHAR(8),
 NO_PART_CONTROL POSITION(31) CHAR(3),
 DT_TRANS_EFFECTIVE POSITION(34) DATE EXTERNAL(10),
 CD_INV_TRANSACTION POSITION(44) CHAR(3),
 TS_PROCESS POSITION(47) TIMESTAMP EXTERNAL(26),
 QT_INV_TRANSACTION POSITION(73) INTEGER,
 CD_UNIT_MEAS_USAGE POSITION(77) CHAR(2),
 CD_USER_ID POSITION(79) CHAR(7),
 NO_DEPT POSITION(86) CHAR(4),
 NO_WORK_CENTER POSITION(90) CHAR(6))
/*

Loading Unicode data

The following control statement specifies that Unicode data from the REC1 input data set is to be loaded
into table ADMF001.TBMG0301. The UNICODE option specifies the type of input data. Only data that
satisfies the condition that is specified in the WHEN clause is to be loaded. The CCSID option specifies the
three coded character set identifiers for the input file: one for SBCS data, one for mixed data, and one for
DBCS data. LOG YES indicates that logging is to occur during the LOAD job.

LOAD DATA INDDN REC1 LOG YES REPLACE
 UNICODE CCSID(00367,01208,01200)
 INTO TABLE "ADMF001 "."TBMG0301"
 WHEN(00004:00005 = X'0003')

Loading data from multiple input data sets by using partition parallelism

The following LOAD statement contains a series of INTO TABLE statements that specify which data is to
be loaded into which partitions of table DBA01.TBLX3303. For each INTO TABLE statement:

• Data is to be loaded into the partition that is identified by the PART option. For example, the first INTO
TABLE statement specifies that data is to be loaded into the first partition of table DBA01.TBLX3303.

• Data is to be loaded from the data set that is identified by the INDDN option. For example, the data from
the PART1 data set is to be loaded into the first partition.

• Any discarded rows are to be written to the data set that is specified by the DISCARDDN option. For
example, rows that are discarded during the loading of data from the PART1 data set are written to the
DISC1 data set.

• The data is loaded into the specified columns (EMPNO, LASTNAME, and SALARY).

LOAD uses partition parallelism to load the data into these partitions.

The TEMPLATE utility control statement defines the data set naming convention for the data set that is to
be dynamically allocated during the following LOAD job. The name of the template is ERR3. The ERRDDN
option in the LOAD statement specifies that any errors are to be written to the data set that is defined by
this ERR3 template.

 TEMPLATE ERR3
 DSN &UT..&JO..&ST..ERR3&MO.&DAY.
 UNIT SYSDA DISP(NEW,CATLG,CATLG)
 LOAD DATA
 REPLACE
 ERRDDN ERR3
 INTO TABLE DBA01.TBLX3303
 PART 1
 INDDN PART1
 DISCARDDN DISC1
 (EMPNO POSITION(1) CHAR(6),
 LASTNAME POSITION(8) VARCHAR(15),
 SALARY POSITION(25) DECIMAL(9,2))

Chapter 19. LOAD 347

 .
 .
 .
 INTO TABLE DBA01.TBLX3303
 PART 5
 INDDN PART5
 DISCARDDN DISC5
 (EMPNO POSITION(1) CHAR(6),
 LASTNAME POSITION(8) VARCHAR(15),
 SALARY POSITION(25) DECIMAL(9,2))
/*

Loading data from another table in the same system by using a declared cursor

The following LOAD control statement specifies that all rows that are identified by cursor C1 are to be
loaded into table MYEMP. The INCURSOR option is used to specify cursor C1, which is defined in the EXEC
SQL utility control statement. Cursor C1 points to the rows that are returned by executing the statement
SELECT * FROM DSN8810.EMP. In this example, the column names in table DSN8810.EMP are the same
as the column names in table MYEMP. Note that the cursor cannot be defined on the same table into
which Db2 is to load the data.

EXEC SQL
 DECLARE C1 CURSOR FOR SELECT * FROM DSN8810.EMP
ENDEXEC
LOAD DATA
INCURSOR(C1)
REPLACE
INTO TABLE MYEMP
STATISTICS

Loading data partitions in parallel from a remote site by using a declared cursor

The following LOAD statement specifies that for each specified partition of table MYEMPP, the rows that
are identified by the specified cursor are to be loaded. In each INTO TABLE statement, the PART option
specifies the partition number, and the INCURSOR option specifies the cursor. For example, the rows that
are identified by cursor C1 are to be loaded into the first partition. The data for each partition is loaded in
parallel.

Each cursor is defined in a separate EXEC SQL utility control statement and points to the rows that are
returned by executing the specified SELECT statement. These SELECT statement are being executed on a
table at a remote server, so the three-part name is used to identify the table. In this example, the column
names in table CHICAGO.DSN8810.EMP are the same as the column names in table MYEMPP.

The four partitions being loaded each contain a different number of records. To improve the sizing of the
sort work data sets that the LOAD utility requires, the number of records being loaded into each partition
is specified on the NUMRECS keyword for each table.

EXEC SQL
 DECLARE C1 CURSOR FOR SELECT * FROM CHICAGO.DSN8810.EMP
 WHERE EMPNO <= '099999'
ENDEXEC
EXEC SQL
 DECLARE C2 CURSOR FOR SELECT * FROM CHICAGO.DSN8810.EMP
 WHERE EMPNO > '099999' AND EMPNO <= '199999'
ENDEXEC
EXEC SQL
 DECLARE C3 CURSOR FOR SELECT * FROM CHICAGO.DSN8810.EMP
 WHERE EMPNO > '199999' AND EMPNO <= '299999'
ENDEXEC
EXEC SQL
 DECLARE C4 CURSOR FOR SELECT * FROM CHICAGO.DSN8810.EMP
 WHERE EMPNO > '299999' AND EMPNO <= '999999'
ENDEXEC
LOAD DATA
 INTO TABLE MYEMPP PART 1 REPLACE INCURSOR(C1) NUMRECS 10000
 INTO TABLE MYEMPP PART 2 REPLACE INCURSOR(C2) NUMRECS 50000

348 Db2 12 for z/OS: Utility Guide and Reference

 INTO TABLE MYEMPP PART 3 REPLACE INCURSOR(C3) NUMRECS 100000
 INTO TABLE MYEMPP PART 4 REPLACE INCURSOR(C4) NUMRECS 50000

Loading LOB data from a file

The following LOAD statement specifies that data from 000130DSN!10.SDSNIVPD(DSN8R130) is to be
loaded into the MY_EMP_PHOTO_RESUME table. The characters in positions 1 through 6 are loaded into
the EMPNO column, and the characters starting from position 7 are to be loaded into the RESUME column.
CLOBF indicates that the characters in position 7 are the name of a file from which a CLOB is to be loaded.

REPLACE indicates that the new data will replace any existing data. Although no logging is to be done,
as indicated by the LOG NO option, the table space is not to be set in CHECK-pending state, because
NOCOPYPEND is specified.

SORTKEYS 1 indicates that one index key is to be sorted.

//***
//* LOAD LOB from file
//***
//LOADIT EXEC DSNUPROC,UID='LOADIT',TIME=1440,
// UTPROC='',
// SYSTEM='DSN'
//SYSREC DD*
000130DSN!10.SDSNIVPD(DSN8R130)
//SYSUT1 DD DSN=SYSADM.LOAD.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=SYSADM.LOAD.SORTOUT,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
 LOAD DATA
 REPLACE LOG NO NOCOPYPEND
 SORTKEYS 1
 INTO TABLE MY_EMP_PHOTO_RESUME
 (EMPNO POSITION(1:6) CHAR(6),
 RESUME POSITION(7:31) CHAR CLOBF)

Loading with parallel subtasks
The following LOAD statement specifies that the utility is to use multiple parallel subtasks, as indicated
by the PARALLEL keyword. Because no value is specified with the PARALLEL keyword, Db2 determines
the optimal degree of parallelism. This use of parallelism can potentially reduce the elapsed time that is
required for loading large amounts of data.

LOAD DATA
PARALLEL
RESUME YES
SHRLEVEL NONE
INDDN INPUT1
EBCDIC
CONTINUEIF(80:80)='-'
INTO TABLE SCTX1300.TB_HISTORY_PART
(HISTORY_DAILY POSITION(1:11) INT EXTERNAL,
 HISTORY_ROWNUM POSITION(13:23) INT EXTERNAL,
 HISTORY_CUSTOMER_ID POSITION(25:35) INT EXTERNAL,
 HISTORY_CUSTOMER_ACCOUNT_ID POSITION(37:50) DECIMAL EXTERNAL,
 HISTORY_CUSTOMER_DISTRICT_ID POSITION(52:53) CHAR,
 HISTORY_CUSTOMER_WAREHOUSE_ID POSITION(55:64) CHAR,
 HISTORY_DISTRICT_ID POSITION(66:67) CHAR,
 HISTORY_TRANSACTION_ID POSITION(69:70) CHAR,
 HISTORY_WAREHOUSE_ID POSITION(72:81) CHAR,
 HISTORY_DATE POSITION(83:108) TIMESTAMP EXTERNAL,
 HISTORY_AMOUNT POSITION(110:126) DECIMAL EXTERNAL,
 HISTORY_STATUS POSITION(128:144) VARCHAR,
 HISTORY_DATA POSITION(3874:3899) VARCHAR)

Preserving timestamp values when loading row change timestamp columns that are defined as
GENERATED ALWAYS

Chapter 19. LOAD 349

Suppose that you unloaded data from a table with a row change timestamp column and subsequently
want to reload the data into a table that is defined as follows:

CREATE TABLE MYDB.MYTB
(TYPE CHAR(1) NOT NULL,
CHANGE TIMESTAMP(6) WITHOUT TIME ZONE NOT NULL GENERATED ALWAYS
FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
)
IN MYDB.MYTS;

Notice that the row change timestamp column is defined as GENERATED ALWAYS. If you want to
preserve the timestamp values in the unload data set when you load the data into this table, specify
the OVERRIDE(ROWCHANGE) option as shown in the following example LOAD statement:

LOAD DATA INDDN SYSREC OVERRIDE(ROWCHANGE)
INTO TABLE
"MYDB"."MYTB"
NUMRECS 10
("TYPE"
POSITION(00001:00001) CHAR(1)
"CHANGE"
POSITION(00004:00029) TIMESTAMP EXTERNAL(26)
)

Loading multiple input data sets

The following LOAD job loads data from three input data sets that are defined by templates TSREC1,
TSREC2, and TSREC3. These data sets are dynamically concatenated, and then the data is loaded into the
table.

TEMPLATE SU1 DISP(MOD,CATLG,CATLG) DSN 'E44753.&DB..&SN..&UQ..SU1'
TEMPLATE CPY DISP(MOD,CATLG,CATLG) DSN 'E44753.&DB..&SN..&UQ..SCO'
TEMPLATE SO1 DISP(MOD,CATLG,CATLG) DSN 'E44753.&DB..&SN..&UQ..SO1'
TEMPLATE ERR DISP(MOD,CATLG,CATLG) DSN 'E44753.&DB..&SN..&UQ..ERR'
TEMPLATE MAP DISP(MOD,CATLG,CATLG) DSN 'E44753.&DB..&SN..&UQ..MAP'
TEMPLATE DSC DISP(MOD,CATLG,CATLG) DSN 'E44753.&DB..&SN..&UQ..SDI'
TEMPLATE TSREC1 DSN('E44753.DB1.TS1.P00001.SYSREC')
TEMPLATE TSREC2 DSN(‘E44753.DB1.TS1.P00002.SYSREC')
TEMPLATE TSREC3 DSN('E44753.DB1.TS1.P00003.SYSREC')

LOAD DATA INDDN (TSREC1,TSREC2,TSREC3)
RESUME YES LOG YES
SORTDEVT SYSDA SORTNUM 99
WORKDDN(SU1,SO1) ERRDDN(ERR) DISCARDDN(DSC)
INTO TABLE TI01AN.OIGT0055
WHEN(00001:00002) = X'0003'
NUMRECS 8534

Loading multiple input data sets into partitions

The following LOAD job loads data from several input data sets into each partition. For example, the input
data sets that are defined by templates TSREC1 and TSREC4 are loaded into partition 1.

TEMPLATE SU1 DISP(MOD,CATLG,CATLG) DSN 'E44753.&DB..&SN..&UQ..SU1'
TEMPLATE CPY DISP(MOD,CATLG,CATLG) DSN 'E44753.&DB..&SN..&UQ..SCO'
TEMPLATE SO1 DISP(MOD,CATLG,CATLG) DSN 'E44753.&DB..&SN..&UQ..SO1'
TEMPLATE ERR DISP(MOD,CATLG,CATLG) DSN 'E44753.&DB..&SN..&UQ..ERR'
TEMPLATE MAP DISP(MOD,CATLG,CATLG) DSN 'E44753.&DB..&SN..&UQ..MAP'
TEMPLATE DSC1 DISP(MOD,CATLG,CATLG) DSN 'E44753.&DB..&SN..&UQ..SDI1'
TEMPLATE DSC2 DISP(MOD,CATLG,CATLG) DSN 'E44753.&DB..&SN..&UQ..SDI2'
TEMPLATE DSC3 DISP(MOD,CATLG,CATLG) DSN 'E44753.&DB..&SN..&UQ..SDI3'
TEMPLATE TSREC1 DSN('E44753.DBE44753.TSE44753.P00001.SYSREC')
TEMPLATE TSREC2 DSN('E44753.DBE44753.TSE44753.P00002.SYSREC')
TEMPLATE TSREC3 DSN('E44753.DBE44753.TSE44753.P00003.SYSREC')
TEMPLATE TSREC4 DSN('E44753.DBE44753.T2E44753.P00001.SYSREC')
TEMPLATE TSREC5 DSN('E44753.DBE44753.T2E44753.P00002.SYSREC')
TEMPLATE TSREC6 DSN('E44753.DBE44753.T2E44753.P00003.SYSREC')

350 Db2 12 for z/OS: Utility Guide and Reference

LOAD DATA
 RESUME YES LOG YES
 SORTDEVT SYSDA SORTNUM 99
 WORKDDN(SU1,SO1) ERRDDN(ERR)
 INTO TABLE TBE44753 PART 1 INDDN (TSREC1,TSREC4) DISCARDDN(DSC1)
 NUMRECS 600
 (C1 POSITION(00004:00007) INTEGER NULLIF(00003)=X'FF')
 INTO TABLE TBE44753 PART 2 INDDN (TSREC2,TSREC5) DISCARDDN(DSC2)
 NUMRECS 600
 (C1 POSITION(00004:00007) INTEGER NULLIF(00003)=X'FF')
 INTO TABLE TBE44753 PART 3 INDDN (TSREC3,TSREC6) DISCARDDN(DSC3)
 NUMRECS 600
 (C1 POSITION(00004:00007) INTEGER NULLIF(00003)=X'FF')

Defining DEFINE NO auxiliary objects at the start of utility execution

In the following LOAD statement, DEFINEAUX YES specifies that any target auxiliary objects with the
DEFINE NO attribute are to be defined at the start of LOAD execution, regardless of whether these objects
are populated by LOAD.

LOAD INDDN SYSREC RESUME NO REPLACE DEFINEAUX YES
INTO TABLE MYEMP

Loading default values for columns

In the following LOAD statement, the INTO TABLE clause contains two DEFAULTIF specifications to
indicate when the default column value is to be loaded. For column C1, the default value is to be loaded if
the input value is blank. For column C2, the default value is to be loaded if the input value is not blank. For
column C3®, the default value is to be loaded if the value in position 5 is not blank.

LOAD DATA INDDN SYSREC
 FORMAT DELIMITED COLDEL ',' CHARDEL '"' DECPT '.'
 EBCDIC CCSID(00037,00000,00000)
 INTO TABLE SYSADM.TB1
 IGNOREFIELDS YES
 (C1 POSITION(*) DEFAULTIF(C1= '')
 , PARTNO POSITION(*)
 , C2 POSITION(*) DEFAULTIF(C2<>'')
 , C3 POSITION(*) DEFAULTIF((5:5) <> '')
)

Similarly, the DEFAULTIF specifications in the following example indicate that if a conversion error occurs
when loading a value into columns C1 or C2, the default column value is loaded instead.

LOAD DATA INDDN SYSREC
 FORMAT DELIMITED COLDEL ',' CHARDEL '"' DECPT '.'
 EBCDIC CCSID(00037,00000,00000)
 INTO TABLE SYSADM.TB1
 IGNOREFIELDS YES
 (C1 POSITION(*) DEFAULTIF(CONV_ERROR)
 ,C2 POSITION(*) DEFAULTIF(CONV_ERROR)
)

Related information
Db2 Sort for z/OS
DFSORT Application Programming Guide

Chapter 19. LOAD 351

https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm

352 Db2 12 for z/OS: Utility Guide and Reference

Chapter 20. MERGECOPY
The MERGECOPY online utility merges copies or inline copies that other utilities produce. The COPY and
COPYTOCOPY utilities produce image copies, and the LOAD and REORG utilities produce inline copies.

The utility can merge several incremental copies of a table space to make one incremental copy. It can
also merge incremental copies with a full image copy to make a new full image copy. You cannot run
MERGECOPY on concurrent copies or FlashCopy image copies.

MERGECOPY operates on the image copy data sets of a table space, and not on the table space itself.

If you are creating copies in a JES3 environment, ensure that sufficient units are available to mount the
required image copies. In a JES3 environment, if the number of image copies that are to be restored
exceeds the number of available online and offline units, and if the MERGECOPY job successfully allocates
all available units, the job waits for more units to become available.

Output

Output from the MERGECOPY utility consists of one of the following types of copies:

• A new single incremental image copy
• A new full image copy

You can create the new image copy for the local or recovery site.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• IMAGCOPY privilege for the database
• DBADM, DBCTRL, or DBMAINT authority for the database. If the object on which the utility operates is

in an implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• DATAACCESS authority
• SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute MERGECOPY, but only on a table space in the
DSNDB01 or DSNDB06 database.

Restrictions on running MERGECOPY

• MERGECOPY cannot merge image copies into a single incremental image copy for the other site, that is:

– At local sites, you cannot use RECOVERYDDN with NEWCOPY NO.
– At recovery sites, you cannot use COPYDDN with NEWCOPY NO.

• When none of the keywords NEWCOPY, COPYDDN, or RECOVERYDDN is specified, the default,
NEWCOPY NO COPYDDN(SYSCOPY), is valid for the local site only.

• You cannot run MERGECOPY on concurrent copies.
• You cannot run the MERGECOPY utility on the DSNDB01.DBD01, DSNDB01.SYSUTILX,

DSNDB06.SYSTSCPY, or DSNDB01.SYSDBDXA table spaces, because you cannot make incremental
copies of those table spaces.

© Copyright IBM Corp. 1983, 2024 353

• MERGECOPY cannot be run on a table space during the period after RECOVER is run to a point in
time before materialization of pending definition changes and before REORG is run to complete the
point-in-time recovery process.

Execution phases of MERGECOPY

The MERGECOPY utility operates in these phases:

Phase
Description

UTILINIT
Performs initialization

MERGECOP
Merges incremental copies

UTILTERM
Performs cleanup

Syntax and options of the MERGECOPY control statement
The MERGECOPY utility control statement, with its multiple options, defines the function that the utility
job performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, you can use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram
MERGECOPY

LIST listdef-name

TABLESPACE

database-name .

table-space-name
DSNUM ALL

DSNUM integer

CLONE

WORKDDN SYSUT1

WORKDDN ddname

NEWCOPY NO COPYDDN SYSCOPY

COPYDDN( ddname1

, ddname2

)

COPYDDN(,  ddname2)

RECOVERYDDN( ddname3

, ddname4

)

NEWCOPY YES
COPYDDN SYSCOPY

COPYDDN( ddname1

, ddname2

)

COPYDDN(,  ddname2)

RECOVERYDDN( ddname3

, ddname4

)

Option descriptions

354 Db2 12 for z/OS: Utility Guide and Reference

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name that contains only table spaces. You
can specify one LIST keyword per MERGECOPY control statement. Do not specify LIST with the
TABLESPACE keyword. MERGECOPY is invoked once for each table space in the list. This utility will
only process clone data if the CLONE keyword is specified. The use of CLONED YES on the LISTDEF
statement is not sufficient.

The partitions or partition ranges can be specified in a list.

TABLESPACE database-name.table-space-name
Specifies the table space that is to be copied, and, optionally, the database to which it belongs.
database-name

The name of the database that the table space belongs to. The default value is DSNDB04.
table-space-name

The name of the table space whose incremental image copies are to be merged.

You cannot run the MERGECOPY utility on the DSNDB01.DBD01, DSNDB01.SYSUTILX,
DSNDB06.SYSTSCPY, or DSNDB01.SYSDBDXA table spaces, because you cannot make incremental
copies of those table spaces. Because MERGECOPY does not directly access the table space whose
copies it is merging, it does not interfere with concurrent access to that table space.

DSNUM
Identifies the table space or a partition or data set within the table space that is to be merged. DSNUM
is optional.
ALL

Merges the entire table space.
integer

Is the number of a partition or data set that is to be merged. The maximum is 4096.

For a partitioned table space, the integer is its physical partition number.

For a nonpartitioned table space, find the integer at the end of the data set name as cataloged in
the VSAM catalog. The data set name has the following format, where y is either I or J, z is either 1
or 2, and nnn is the data set integer:

catname.DSNDBx.dbname.tsname.y000z.Annn

You cannot specify DSNUM and LIST in the same MERGECOPY control statement. Use PARTLEVEL
on the LISTDEF instead. If image copies were taken by data set (rather than by table space),
MERGECOPY must use the copies by data set.

CLONE
Indicates that MERGECOPY is to process only image copy data sets that were taken against clone
objects. This utility will only process clone data if the CLONE keyword is specified. The use of CLONED
YES on the LISTDEF statement is not sufficient.

WORKDDN ddname
Specifies a DD statement for a temporary data set or template, which is to be used for intermediate
merged output. WORKDDN is optional.

ddname is the DD name. The default value is SYSUT1.

Use the WORKDDN option if you are not able to allocate enough data sets to execute MERGECOPY; in
that case, a temporary data set is used to hold intermediate output. If you omit the WORKDDN option,
you might find that only some of the image copy data sets are merged. When MERGECOPY has ended,
a message is issued that tells the number of data sets that exist and the number of data sets that have
been merged. To continue the merge, repeat MERGECOPY with a new output data set.

NEWCOPY
Specifies whether incremental image copies are to be merged with the full image copy. NEWCOPY is
optional.

Chapter 20. MERGECOPY 355

NO
Merges incremental image copies into a single incremental image copy but does not merge them
with the full image copy.

YES
Merges all incremental image copies with the full image copy to form a new full image copy.

COPYDDN (ddname1,ddname2)
Specifies the DD statements for the output image copy data sets at the local site. ddname1 is the
primary output image copy data set. ddname2 is the backup output image copy data set. COPYDDN is
optional.

The default value is COPYDDN(SYSCOPY), where SYSCOPY identifies the primary data set.

The COPYDDN keyword specifies either a DD name or a TEMPLATE name specification from a previous
TEMPLATE control statement. If utility processing detects that the specified name is both a DD name
in the current job step and a TEMPLATE name, the utility uses the DD name.

RECOVERYDDN (ddname3,ddname4)
Specifies the DD statements for the output image copy data sets at the recovery site. You can have
a maximum of two output data sets; the outputs are identical. ddname3 is the primary output image
copy data set. ddname4 is the backup output image copy data set. RECOVERYDDN is optional. No
default value exists for RECOVERYDDN.

The RECOVERYDDN keyword specifies either a DD name or a TEMPLATE name specification from a
previous TEMPLATE control statement. If utility processing detects that the specified name is both a
DD name in the current job step and a TEMPLATE name, the utility uses the DD name.

Related reference
“TEMPLATE” on page 751
The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the
data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.
“LISTDEF” on page 199
The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.

Data sets that MERGECOPY uses
The MERGECOPY utility uses a number of data sets during its operation.

The following table lists the data sets that MERGECOPY uses. The table lists the DD name that is used
to identify the data set, a description of the data set, and an indication of whether it is required. Include
statements in your JCL for each required data set and any optional data sets that you want to use.

Table 50. Data sets that MERGECOPY uses

Data set Description Required?

SYSIN Input data set that contains the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

Image copy data set Image copy data set that contains the resulting
image copy. Specify its DD name with the
COPYDDN option of the utility control statement.
The default DD name is SYSCOPY.

Yes

356 Db2 12 for z/OS: Utility Guide and Reference

Table 50. Data sets that MERGECOPY uses (continued)

Data set Description Required?

Work data set A temporary data set that is used for intermediate
merged output. Specify its DD name with the
WORKDDN option of the utility control statement.
The default DD name is SYSUT1.

Yes

Input data sets Image copy data sets that you can preallocate. You
define the DD names.

No

Table space
Object whose copies are to be merged.

The following object is named in the utility control statement and does not require a DD statement in the
JCL:

Data sets
The input data sets for the merge operation are dynamically allocated. To merge incremental copies,
allocate in the JCL a work data set (WORKDDN) and up to two new copy data sets (COPYDDN) for the
utility job. You can allocate the data sets to tape or disk. If you allocate them to tape, you need an
additional tape drive for each data set.

With the COPYDDN option of MERGECOPY, you can specify the DD names for the output data sets. The
option has the format COPYDDN (ddname1,ddname2), where ddname1 is the DD name for the primary
output data set in the system that currently runs Db2, and ddname2 is the DD name for the backup output
data set in the system that currently runs Db2. The default for ddname1 is SYSCOPY.

The RECOVERYDDN option of MERGECOPY lets you specify the output image copy data sets at the
recovery site. The option has the format RECOVERYDDN (ddname3, ddname4), where ddname3 is the
DD name for the primary output image copy data set at the recovery site, and ddname4 is the DD name for
the backup output data set at the recovery site.

Defining the work data set
The work data set should be at least equal in size to the largest input image copy data set that is being
merged. Use the same DCB attributes that are used for the image copy data sets.

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.

Concurrency and compatibility for MERGECOPY
The MERGECOPY utility has certain concurrency and compatibility characteristics associated with it.

Db2 treats individual data and index partitions as distinct target objects. Utilities that operate on different
partitions of the same table space or index space are compatible.

The following table lists any claims or drains that the utility acquires and any restrictive states that are set
on the target object.

Table 51. Claim classes of MERGECOPY operations.

Target MERGECOPY

Table space or partition UTRW

Chapter 20. MERGECOPY 357

Table 51. Claim classes of MERGECOPY operations. (continued)

Target MERGECOPY

Legend:

UTRW - Utility restrictive state - read-write access allowed.

MERGECOPY can run concurrently with any utility on the same target object.

The target object can be a table space or partition.

Full or incremental image copy
When you use the MERGECOPY utility to merge copies, you can choose whether you want to create an
incremental image copy or a full image copy. In general, creating a new full image copy is recommended.

Creating a full image copy with MERGECOPY has the following advantages:

• A new full image copy creates a new recovery point.
• The additional time that it takes to create a new full image copy does not have any adverse effect on the

access to the table space. The only concurrency implication is the access to SYSIBM.SYSCOPY.
• The range of log records that need to be applied by the RECOVER utility is the same for both the new full

image copy and the merged incremental image copy.
• If the copies are on tape, only one tape drive is required for image copies during recovery.

If you want MERGECOPY to create a new full image copy, specify NEWCOPY YES. The utility inserts an
entry for the new full image copy into the SYSIBM.SYSCOPY catalog table.

Otherwise, if you do not specify NEWCOPY or specify NEWCOPY NO, MERGECOPY creates an incremental
image copy. The utility deletes all SYSCOPY records of the incremental image copies that have been
merged and replaces them with an entry for the new incremental image copy.

Regardless of what you specify for NEWCOPY, if any of the input data sets might not be allocated or you
did not specify a temporary work data set (WORKDDN), the utility performs a partial merge.

Recommendation: Use MERGECOPY NEWCOPY YES immediately after each incremental image copy.
When you use this option, dates become a valid criterion for deletion of image copy data sets and archive
logs. A minimum number of tape drives are allocated for MERGECOPY and RECOVER execution.

If you merge an inline copy with incremental copies, the result is a full inline copy. The data set is logically
equivalent to a full image copy, but the data within the data set differs in some respects.

How MERGECOPY determines which input copy to use
The MERGECOPY utility uses as input the image copies that match the current site.

If MERGECOPY is running at the local site, the local site image copies are chosen as the input to be
merged. If MERGECOPY is running at the recovery site, the recovery site image copies are chosen as the
input to be merged.

MERGECOPY does not accept a FlashCopy image copy as input.

Using MERGECOPY with individual data sets
Use MERGECOPY on copies of an entire table space, on individual data sets, or on partitions. However,
MERGECOPY can only merge incremental copies of the same type. That is, you cannot merge incremental

358 Db2 12 for z/OS: Utility Guide and Reference

copies of an entire table space with incremental copies of individual data sets to form new incremental
copies.

About this task
The attempt to mix the two types of incremental copies results in the following messages:

DSNU460I DSNUBCLO - IMAGE COPIES INCONSISTENT.
 MERGECOPY REQUEST REJECTED
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE,
 HIGHEST RETURN CODE=4

With the NEWCOPY YES option, however, you can merge a full image copy of a table space with
incremental copies of the table space and of individual data sets to make a new full image copy of
the table space.

If the image copy data sets that you want to merge reside tape, refer to “How the RECOVER utility retains
tape mounts” on page 473 for general information about specifying the appropriate parameters on the DD
statements.

Using MERGECOPY or COPY
COPY and MERGECOPY can create a full image copy. COPY is required after a LOAD or REORG with LOG
NO unless an inline copy is created. However, in other cases an incremental image copy followed by
MERGECOPY is a valid alternative.

Avoiding MERGECOPY LOG RBA inconsistencies
MERGECOPY does not use information that was logged between the time of the most recent image copy
and the time when MERGECOPY was run. Therefore, you cannot safely delete all log records that were
created before you ran MERGECOPY.

About this task
You can safely delete all log records if you run MODIFY RECOVERY and specify the date when
MERGECOPY was run as the value of DATE.

Procedure
1.

To delete all log information that is included in a copy that MERGECOPY makes:
2. Find the record of the copy in the catalog table SYSIBM.SYSCOPY by selecting database name, table

space name, and date (columns DBNAME, TSNAME, and TIMESTAMP).
3. Column START_RBA contains the RBA of the last image copy that MERGECOPY used. Find the record of

the image copy that has the same value of START_RBA.
4. In that record, find the date in column TIMESTAMP. You can use MODIFY RECOVERY to delete all

copies and log records for the table space that were made before that date.

Results
RECOVER uses the LOG RBA of image copies to determine the starting point in the log that is needed
for recovery. Normally, a timestamp directly corresponds to a LOG RBA. Because of this, and because
MODIFY uses dates to clean up recovery history, you might decide to use dates to delete old archive log
tapes. This decision might cause a problem if you use MERGECOPY. MERGECOPY inserts the LOG RBA of
the last incremental image copy into the SYSCOPY row that is created for the new image copy. The date
that is recorded in the TIMESTAMP column of SYSCOPY row is the date that MERGECOPY was executed.

Chapter 20. MERGECOPY 359

Termination or restart of MERGECOPY
You can terminate and restart the MERGECOPY utility.

You can terminate the a MERGECOPY utility job using the TERM UTILITY command.

You can restart MERGECOPY but by default, MERGECOPY restarts at the beginning of the current phase.
You can also restart MERGECOPY from the last commit point after receiving an out-of-space condition.

Related tasks
“Terminating an online utility” on page 44
You can terminate the execution of an active utility or release the resources that are associated with a
stopped utility.
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.
“Restarting a utility after the output data set is full” on page 50
If a utility job terminates with an out-of-space condition on the output data set, you might need to restart
the job at the last commit point.

Sample MERGECOPY control statements
Use the sample control statements as models for developing your own MERGECOPY control statements.

Example 1: Creating a merged incremental copy

The control statement in this example specifies that the MERGECOPY utility is to merge incremental
image copies from table space DSN8S12C into a single incremental image copy. The NEWCOPY NO option
indicates that these incremental copies are not to be merged with the full image copy. The COPYDDN
option specifies that the output image copies are to be written to the data sets that are defined by the
COPY1 and COPY2 DD statements.

//STEP1 EXEC DSNUPROC,UID='IUJMU107.MERGE1',
// UTPROC='',SYSTEM='DSN'
//COPY1 DD DSN=IUJMU107.MERGE1.STEP1.COPY1,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//COPY2 DD DSN=IUJMU107.MERGE1.STEP1.COPY2,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSUT1 DD DSN=IUJMU107.MERGE1.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
MERGECOPY TABLESPACE DSN8D12P.DSN8S12C
 COPYDDN (COPY1,COPY2)
 NEWCOPY NO

Example 2: Creating merged incremental copies and using template switching

Each MERGECOPY control statement in the following example specifies that MERGECOPY is to merge
incremental image copies from the specified table space into a single incremental image copy for that
table space. For each control statement, the COPYDDN option specifies that the output image copies are
to be written to data sets that are defined by the T1 template. The T1 template has specified the LIMIT
option. This means that the output image copies are to be written to DASD, if the output image copy size is
less than 5 MB. If the limit is exceeded, template switching from template T1 to template T5 takes place
and the output image copies are to be written to TAPE. This template is defined in the TEMPLATE utility
control statement.

//STEP1 EXEC DSNUPROC,UID='JULTU224.MERGE',
// UTPROC='',

360 Db2 12 for z/OS: Utility Guide and Reference

// SYSTEM='SSTR'
//SYSUT1 DD DSN=JULTU224.MERGE.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
 TEMPLATE T1 UNIT(SYSDA) SPACE CYL
 DSN(T1.&SN..T&TI..COPY&IC.&LOCREM.)
 LIMIT(5 MB,T5)
 TEMPLATE T5 UNIT(3BO)
 DSN(T5.&SN..T&TI..COPY&IC.&LOCREM.)
 MERGECOPY TABLESPACE DBLT2401.TPLT2401 DSNUM ALL NEWCOPY NO
 COPYDDN(T1)
 MERGECOPY TABLESPACE DBLT2401.TLLT24A1 DSNUM ALL NEWCOPY NO
 COPYDDN(T1)
 MERGECOPY TABLESPACE DBLT2401.TLLT24A2 DSNUM ALL NEWCOPY NO
 COPYDDN(T1)
 MERGECOPY TABLESPACE DBLT2401.TLLT24A3 DSNUM ALL NEWCOPY NO
 COPYDDN(T1)
 MERGECOPY TABLESPACE DBLT2401.TLLT24A4 DSNUM ALL NEWCOPY NO
 COPYDDN(T1)

Example 3: Creating a merged full image copy

The following MERGECOPY statement example specifies that the utility is to merge all incremental image
copies with the full image copy from table space DSN8S12C to create a new full image copy.

//STEP1 EXEC DSNUPROC,UID='IUJMU107.MERGE2',
// UTPROC='',SYSTEM='DSN'
//COPY1 DD DSN=IUJMU107.MERGE2.STEP1.COPY1,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//COPY2 DD DSN=IUJMU107.MERGE2.STEP1.COPY2,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSUT1 DD DSN=IUJMU107.MERGE2.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
MERGECOPY TABLESPACE DSN8D12P.DSN8S12C
 COPYDDN (COPY1,COPY2)
 NEWCOPY YES

Example 4: Using MERGECOPY with CLONE keyword

The following control statement specifies that MERGECOPY is to process only image copy data sets that
were taken against clone objects.

MERGECOPY TABLESPACE DBIQUD01.TPIQUD01 DSNUM ALL CLONE NEWCOPY YES
 COPYDDN(COPYTB1)

Related reference
“TEMPLATE” on page 751
The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the
data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.

Chapter 20. MERGECOPY 361

362 Db2 12 for z/OS: Utility Guide and Reference

Chapter 21. MODIFY RECOVERY
Run the MODIFY RECOVERY utility regularly to remove outdated information from SYSIBM.SYSCOPY and
SYSIBM.SYSLGRNX. These tables, particularly SYSIBM.SYSLGRNX, can become very large and take up a
considerable amount of space. By deleting outdated information from these tables, you can help improve
the performance of processes that access data from these tables.

MODIFY RECOVERY deletes records from the following tables:

• SYSIBM.SYSCOPY catalog table
• SYSIBM.SYSOBDS catalog table
• SYSIBM.SYSLGRNX directory table

The utility also deletes entries from the DBD.

You specify the criteria for deleting these records in the MODIFY RECOVERY statement. You can delete
records based on age or a specific date. Alternatively, you can specify that you want to keep a specified
number of the most recent records.

MODIFY RECOVERY can delete records for an entire table space, partition, or data set. For all indexes that
were defined with the COPY YES attribute on the target table space, the utility automatically deletes the
SYSCOPY and SYSLGRNX records that meet the specified criteria.

You can also use MODIFY RECOVERY to recycle Db2 version numbers for reuse.

Restriction: If a table space is in REORG-pending (REORP) status because a RECOVER job was run to
recover the data to a point in time before the materialization of pending definition changes, you cannot
run MODIFY RECOVERY on that table space. You must run a REORG TABLESPACE job to complete the
point-in-time recovery process before you run MODIFY RECOVERY.

SYSIBM.SYSCOPY and SYSIBM.SYSLGRNX do not contain records for DSNDB06.SYSTSCPY,
DSNDB01.SYSUTILX, DSNDB01.DBD01, or DSNDB01.SYSDBDXA. If you run MODIFY RECOVERY on these
table spaces, no SYSCOPY or SYSLGRNX records are deleted.

Output

In addition to deleting catalog and directory records and entries from the DBD, MODIFY RECOVERY can
also affect the following items:

Image copy data sets
If you specify the DELETEDS option, MODIFY RECOVERY deletes the image copy data sets that
correspond to the deleted SYSCOPY records. Image copy data sets with an expiration date are deleted
even if unexpired.

SYSIBM.SYSCOPY records

In most cases, MODIFY RECOVERY inserts a row into SYSIBM.SYSCOPY to record the RBA or LRSN of
the most recently deleted SYSCOPY or SYSLGRNX record. That row has ICTYPE='M' and STYPE='R'. If
MODIFY RECOVERY is run at the table space level, this row is inserted for each partition of the table
space and any partitioned indexes with the COPY YES attribute that the utility processes.

MODIFY RECOVERY does not insert this row in SYSCOPY when no SYSLGRNX rows are deleted or
when the only SYSCOPY rows that were deleted are rows with the following values:

• ICTYPE='F' and STYPE is blank (full image copy)
• ICTYPE='F' and STYPE='C' (concurrent copy of the "I" instance)
• ICTYPE='F' and STYPE='J' (concurrent copy of the "J" instance)
• ICTYPE='I' (incremental image copy)
• ICTYPE='Q' (quiesce point)

© Copyright IBM Corp. 1983, 2024 363

COPY-pending status

If MODIFY RECOVERY deletes at least one SYSCOPY record, and the target table space or partition is
not recoverable from remaining SYSCOPY records or from system-level backups, the target object is
placed in COPY-pending status.The exception is if the NOCOPYPEND option is specified. In this case,
the object is not placed in COPY-pending status, and the job completes with a return code of 0 if no
other errors or warnings exist.

Version numbers

For table spaces and indexes that are defined with COPY YES, MODIFY RECOVERY updates the
OLDEST_VERSION column of the following catalog tables:

• SYSIBM.SYSTABLESPACE
• SYSIBM.SYSTABLEPART
• SYSIBM.SYSINDEXES
• SYSIBM.SYSINDEXPART

When MODIFY RECOVERY deletes all of the SYSCOPY records that contain an OLDEST_VERSION value
of 0 for a table space, MODIFY RECOVERY deletes the corresponding rows for that table space from
SYSIBM.SYSOBDS. The reason is because point-in-time recovery for the table space is no longer
possible.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• IMAGCOPY privilege for the database
• System DBADM authority
• DBADM authority
• SYSCTRL or SYSADM authority
• DBADM, DBCTRL, or DBMAINT authority for the database

If the object on which the utility operates is in an implicitly created database, DBADM authority on the
implicitly created database or DSNDB04 is required.

An ID with installation SYSOPR authority can also execute MODIFY RECOVERY, but only on a table space
in the DSNDB01 or DSNDB06 database.

Execution phases of MODIFY RECOVERY

The MODIFY RECOVERY utility operates in these phases:

UTILINIT
Initialization and setup.

MODIFY
Records are deleted.

DELETEDS
When the DELETEDS option is specified, cataloged image copy data sets are deleted.

UTILTERM
Cleanup.

Syntax diagram

364 Db2 12 for z/OS: Utility Guide and Reference

MODIFY RECOVERY LIST listdef-name

TABLESPACE
DSNDB04.

database-name .

table-space-name

DSNUM ALL

DSNUM integer CLONE

DELETE

AGE integer

(*)

DATE integer

(*)

FLASHCOPY ONLY

RETAIN LAST ( integer)

FLASHCOPY ONLY

LOGLIMIT

GDGLIMIT

LAST ( integer)

LOGLIMIT

DELETEDS NOCOPYPEND

Option descriptions
LIST listdef-name

Specifies the name of a LISTDEF list. This list must contain only table spaces or table space partitions.
MODIFY RECOVERY processes each object in the list.

Related information:

“Referencing LISTDEF lists in other utility jobs” on page 213

TABLESPACE
Specifies the table space for which records are to be deleted.
database-name.table-space-name

The name of the database and table space. The default value for database-name is DSNDB04.
DSNUM integer

Identifies a single partition or data set for which records are to be deleted.
integer

The number of the partition or data set.

For a partitioned table space, specify the physical partition number. The maximum is 4096.

For a nonpartitioned table space, use the data set integer at the end of the data set name as
cataloged in the VSAM catalog. The data set name has the following format:

catname.DSNDBx.dbname.tsname.y000z.Annn

where y is either I or J, z is either a 1 or 2, and nnn is the data set integer.

If you specify DSNUM integer, MODIFY RECOVERY does not delete any partition SYSCOPY records
that have an RBA that is greater than that of the earliest point to which the entire table space

Chapter 21. MODIFY RECOVERY 365

could be recovered. (That point might indicate a full image copy, a LOAD operation with LOG YES
or a REORG operation with LOG YES.)

If the partition that you specify is in PRO restricted status, the RETAIN value is set to LAST(2).

If you specify DSNUM integer for a partitioned table space, MODIFY RECOVERY also deletes
SYSCOPY records for all partitioned index spaces and updates the version numbers in the
SYSIBM.SYSINDEXES catalog table. Db2 does not perform these functions for the nonpartitioned
indexes.

ALL
Records are deleted for the entire data set and table space. The default value is ALL.

If image copies are taken by partition or data set and you specify DSNUM ALL, the table space is
placed in COPY-pending status if a full image copy of the entire table space does not exist.

If DSNUM ALL is implicitly or explicitly specified for a table space that has a partition in PRO
restricted status, MODIFY RECOVERY fails.

CLONE
Indicates that MODIFY RECOVERY is to delete SYSCOPY and SYSLGRNX records for only clone
objects. If CLONE is not specified, only records for the base objects are deleted.

If you want MODIFY RECOVERY to process clone objects in a LISTDEF list, specify CLONE in the
MODIFY RECOVERY statement. (The CLONED YES option in the LISTDEF statement only specifies
whether to include clone objects in list; it has no effect on whether MODIFY RECOVERY processes
those objects.)

DELETE
Indicates that records are to be deleted.
AGE integer

Deletes all SYSCOPY and SYSLGRNX records that are older than the specified number of days.
integer

The number of days. The value can range from 0 to 32767. Records that are created today are
of age 0 and cannot be deleted by this option.

(*)
Deletes all records, regardless of their age.

DATE integer
Deletes all SYSCOPY and SYSLGRNX records that were written before the specified date.
integer

The date. Specify this value in eight- or six-character format: yyyymmdd or yymmdd, where
yyyy or yy is the year, mm is the month, and dd is the day.

If you specify a six-character date, Db2 checks the system clock and converts the date to the
most recent, previous eight-character equivalent.

(*)
Deletes all records, regardless of the date on which they were written.

SYSLGRNX records that meet the specified deletion criteria are deleted even if no SYSCOPY records
are deleted. One exception exists: in a non-data sharing environment, if no SYSLGRNX records
were created in DB2 9 new-function mode or later and no SYSCOPY records are deleted, MODIFY
RECOVERY does not deletes SYSLGRNX records, even if they fit the deletion criteria.

FLASHCOPY ONLY
Indicates that records for only FlashCopy image copies are to be deleted. The utility deletes
SYSIBM.SYSCOPY records for FlashCopy image copies according to the options that are specified
in the DELETE or RETAIN clause.

SYSCOPY records for a FlashCopy image copy are deleted only if an equivalent sequential image copy
exists. An equivalent sequential image copy is a copy that was created from the FlashCopy image copy
by the COPY or COPYTOCOPY utility. It has the same START_RBA, PIT_RBA, and DSVOLSER column

366 Db2 12 for z/OS: Utility Guide and Reference

values in its SYSIBM.SYSCOPY record as the FlashCopy image copy. Records for the FlashCopy
image copy are not deleted if uncommitted work was backed out of a FlashCopy image copy with
consistency and the equivalent sequential image copy is not cataloged.

When FLASHCOPY ONLY is specified, MODIFY RECOVERY does not delete SYSIBM.SYSLGRNX and
SYSIBM.SYSOBDS records or update DBD entries and data versions. Additionally, the utility does not
insert a SYSIBM.SYSCOPY record with ICTYPE=M and STYPE=R, because the recoverability of the
object is not affected.

Related information:

“Backing up data efficiently by using FlashCopy image copies” on page 148

RETAIN
Indicates that certain records are to be retained. Older records are deleted.
LAST (integer)

Specifies the number of recent records to retain in SYSIBM.SYSCOPY.
LOGLIMIT

Deletes records that are older than the oldest archive log timestamp. For data sharing, this value is
the oldest archive log timestamp across all the members.

The utility determines the oldest archive log timestamp by querying the BSDS. If the BSDS is
not available for one of the members and the corresponding member is quiesced, this BSDS is
ignored.

If you use a replication product that reads Db2 log records, consider using the RETAIN LOGLIMIT
option to ensure that the version information for table spaces and indexes is retained with the
same duration as the logs.

GDGLIMIT
If the most recent record in SYSIBM.SYSCOPY refers to a generation data set (GDS), GDGLIMIT
specifies that the utility is to consider only those records that reference the same GDG and retain
as many as it can without exceeding the GDG limit value.

Db2 does not consider other GDGs that are referenced by SYSIBM.SYSCOPY records. The records
that reference other GDGs are deleted in accordance with the deletion date.

LAST (integer)
If the most recent record in SYSIBM.SYSCOPY does not refer to a GDS, LAST specifies the
number of recent records to retain in SYSIBM.SYSCOPY.

LOGLIMIT
If the most recent record in SYSIBM.SYSCOPY does not refer to a GDS, LOGLIMIT deletes
records that are older than the oldest archive log timestamp.

When you specify RETAIN, the utility determines a cleanup date by checking SYSCOPY records.
The utility considers only local primary full image copies (ICTYPE=F and ICBACKUP=blank) with the
specified DSNUM value. The utility determines a date, not a complete timestamp. As a result, more
copies might be kept than are specified by RETAIN. For example, if you specify RETAIN LAST (2) and
the most recent five copies have been taken on the same day, all five copies remain in SYSCOPY.

DELETEDS
Specifies that cataloged image copy data sets are to be deleted when the corresponding SYSCOPY
records are deleted. Image copy data sets with an expiration date are deleted even if unexpired.

The following data sets are deleted:

• Cataloged image copy data sets that reside on disk or that have been migrated to tape by
DFSMShsm

• Cataloged sequential image copies, including inline image copies
• FlashCopy image copies
• Sequential image copies that are generation data sets (GDS) in a generation data group (GDG)

Chapter 21. MODIFY RECOVERY 367

NOCOPYPEND
Specifies that the table space is not to be placed in COPY-pending status if MODIFY RECOVERY
deletes all image copy records from SYSIBM.SYSCOPY.

NOCOPYPEND does not remove any COPY-pending status that was set prior to the MODIFY
RECOVERY utility being run. NOCOPYPEND also does not set informational COPY-pending (ICOPY)
status for indexes.

Specify NOCOPYPEND only if the data in the table space can be easily re-created if the data is lost. If
an image copy is not taken after MODIFY RECOVERY is run, the table space cannot be recovered by
using the RECOVER utility and data might be lost.

Before running MODIFY RECOVERY

Before you run MODIFY RECOVERY, complete the following actions:

• Make sure that DSNDB01.SYSLGRNX is not in a restrictive state. Because MODIFY RECOVERY updates
DSNDB01.SYSLGRNX, any restrictive status on this table space might cause the utility to abend.

A prior MODIFY RECOVERY run on DSNDB01.SYSLGRNX could inadvertently lead to this situation.
For example, if all recovery information was deleted by the specified age or date criteria,
DSNDB01.SYSLGRNX is set to COPY-pending status.

• Reset RECOVER-pending status for any table spaces on which you plan to run MODIFY RECOVERY. You
cannot run MODIFY RECOVERY on a table space that is in RECOVER-pending status.

• Recommendation: If you plan to use MODIFY RECOVERY to delete SYSCOPY records, first run the
REPORT utility with the RECOVERY option. This utility reports all SYSCOPY records for the object at the
specified site. Looking at this report first helps you avoid deleting the wrong records.

• Recommendation: To improve the performance of MODIFY RECOVERY and reduce contention on
SYSLGRNX, run the REORG TABLESPACE utility on DSNDB01.SYSLGRNX on a regular basis.

Related information:

Appendix B, “Advisory or restrictive states,” on page 975
“Syntax and options of the REPORT control statement” on page 664
“REPORT output” on page 669
“Syntax and options of the REORG TABLESPACE control statement” on page 526

Data sets that MODIFY RECOVERY uses

MODIFY RECOVERY always requires the following two data sets:

Table 52. Data sets that MODIFY RECOVERY uses

Data set Default DD
name

Description

In-stream data SYSIN An input data stream that contains the utility control
statement.

Output data set SYSPRINT An output data set for utility messages.

Concurrency and compatibility for MODIFY RECOVERY

During processing, MODIFY RECOVERY sets the claim class of the target table space or partition to UTRW
(Utility restrictive state - Read-write access allowed).

MODIFY RECOVERY can run concurrently with any utility on the same target object.

368 Db2 12 for z/OS: Utility Guide and Reference

Termination or restart of MODIFY RECOVERY

You can use the TERM UTILITY command to terminate MODIFY RECOVERY in any phase without any
integrity exposure.

You can restart a MODIFY RECOVERY utility job, but it starts from the beginning again.

Related information:

“Terminating an online utility” on page 44
“Restarting an online utility” on page 46

How MODIFY RECOVERY deletes rows
You can use the MODIFY RECOVERY utility to delete specific rows from Db2 catalog and directory tables
in certain conditions.

Deletion of SYSLGRNX and SYSCOPY rows for a single partition or the entire table
space

You can use the MODIFY RECOVERY utility to delete rows from the SYSIBM.SYSLGRNX directory table
and SYSIBM.SYSCOPY catalog table. Use the DSNUM option to specify whether to delete rows for a single
partition or for the entire table space. The DSNUM value that you specify (ALL or integer) depends on the
type of image copies that exist for the table space.

Use the following guidelines to determine whether to use DSNUM ALL or DSNUM integer:

• If image copies exist at only the partition level, use DSNUM integer.
• If image copies exist at only the data set level for a nonpartitioned table space, use DSNUM ALL. If

DSNUM integer is used, SYSLGRNX records are not deleted.
• If image copies exist at only the table space or index space level, use DSNUM ALL.
• If image copies exist at both the partition level and the table space or index space level, use DSNUM

ALL.

Restriction: In this case, if you use DSNUM integer, MODIFY RECOVERY does not delete any SYSCOPY
or SYSLGRNX records that are newer than the oldest recoverable point at the table space or index space
level.

• If image copies exist at both the data set level and the table space level for a nonpartitioned table
space, use DSNUM ALL.

Restriction: In this case, if you use DSNUM integer, MODIFY RECOVERY does not delete any SYSCOPY
or SYSLGRNX records that are newer than the oldest recoverable point at the table space level.

• If image copies exist at the table space level and the table space is subsequently converted from
a nonpartitioned table space to a partitioned table space, use DSNUM ALL. For example, you would
use DSNUM ALL if image copies exist on a simple table space or on a single-table segmented (non-
universal) table space, but that table space is subsequently converted to a partition-by-growth universal
table space.

Restriction: In this case, if you use DSNUM integer, MODIFY RECOVERY does not delete any SYSCOPY
or SYSLGRNX records that are newer than the oldest recoverable point before table space conversion.

The preceding guidelines pertain to all image copies, regardless of how they were created, including those
copies that were created by COPY, COPYTOCOPY, LOAD, REORG TABLESPACE, or MERGECOPY.

If MODIFY RECOVERY deletes SYSCOPY or SYSLGRNX rows that affect recovery, it inserts a row into
SYSCOPY with the following values:

• ICTYPE='M'
• STYPE='R'

Chapter 21. MODIFY RECOVERY 369

• A START_RBA value that is equal to the START_RBA value of the SYSCOPY or SYSLGRNX row that was
most recently deleted

However, suppose that MODIFY RECOVERY deletes SYSCOPY rows with an ICTYPE value of 'F', 'I' or 'Q'
but does not delete any SYSLGRNX rows. In this case, MODIFY RECOVERY does not insert rows into
SYSCOPY with the values ICTYPE='M', STYPE='R'.

Deletion of SYSLGRNX rows when no SYSCOPY rows exist
Use the AGE or DATE options when you want to delete SYSLGRNX rows and no SYSCOPY rows meet the
deletion criteria. The SYSLGRNX rows are deleted based on the AGE or DATE specified. The RECOVER
utility uses this information to determine whether it has all of the necessary information for the recovery
of objects.

Deletion of recovery rows for indexes

When MODIFY RECOVERY processes a table space, the utility deletes SYSCOPY and SYSLGRNX rows that
meet the AGE and DATE criteria for related indexes with the COPY YES attribute.

Deletion of all image copy entries

You can use MODIFY RECOVERY to delete all image copy entries for a table space or data set. In this case,
MODIFY RECOVERY places the object in COPY-pending (COPY) restrictive status and issues message
DSNU572I. If the NOCOPYPEND keyword is specified on MODIFY RECOVERY, the COPY-pending status is
not set.

Deletion of SYSOBDS entries
MODIFY RECOVERY removes entries that the database manager inserts in the SYSOBDS catalog table
during the materialization of pending definition changes.

When MODIFY RECOVERY is run on an entire table space, MODIFY RECOVERY removes the SYSOBDS
entries after deletion of the last image copy that contains version 0 data rows or keys for the table space
or associated indexes.

Related tasks
Materializing pending definition changes (Db2 Administration Guide)
Related reference
SYSLGRNX table (Db2 SQL)
SYSCOPY catalog table (Db2 SQL)
“COPY-pending status” on page 979
COPY-pending (COPY) restrictive status indicates that the affected object must be copied.
Related information
DSNU572I (Db2 Messages)

Reclaiming space in the DBD
You can reclaim space in the DBD when you drop a table by using the MODIFY RECOVERY utility.

Procedure
To reclaim space in the DBD when you drop a table:
1. Commit the drop.
2. Run the REORG utility.
3. Run the COPY utility to make a full image copy of the table space.

370 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_materializingdefchanges.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sysibmsyslgrnxtable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsyscopytable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu572i.html

4. Run the MODIFY RECOVERY utility with the DELETE or RETAIN option to delete all previous image
copies.

Improving REORG performance after adding a column
After you add a column to a table space, you can take certain steps to improve performance.

About this task
After a column is added to a table space, the next REORG utility job of that table space creates default
values for the new column, as follows:

• During its UNLOAD phase, the REORG job creates default values by converting all fields in each row to
the external Db2 format.

• During the RELOAD phase, the REORG job then converts the default values to the internal Db2 format.

This REORG processing, referred to as a compression cycle, occurs on each subsequent run of the REORG
utility on this table space. You can improve performance by avoiding the compression cycle each time that
the REORG job runs on the table space.

Procedure
To improve performance after adding a column to a table space:
1. Run the REORG utility on the table space.
2. Run the COPY utility to make a full image copy of the table space.
3. Run MODIFY RECOVERY with the DELETE or RETAIN option to delete all previous image copies.

MODIFY RECOVERY changes the status of the column that is added after using the ALTER statement
only if SYSCOPY rows need to be deleted.

The effect of MODIFY RECOVERY on version numbers
When you run MODIFY RECOVERY, the utility updates the range of used version numbers for table spaces
and for indexes that are defined with the COPY YES attribute.

MODIFY RECOVERY updates the OLDEST_VERSION column of the appropriate catalog table or tables with
the version number of the oldest version that has not yet been applied to the entire object.

If a SYSCOPY record is deleted that has an OLDEST_VERSION number that equals the
CURRENT_VERSION number of the table space or index, MODIFY RECOVERY updates the
OLDEST_VERSION number in the appropriate catalog table or tables with the CURRENT_VERSION
number.

Db2 can reuse any version numbers that are not in the range that is set by the values in the
OLDEST_VERSION and CURRENT_VERSION columns.

Db2 stores the range of used version numbers in the OLDEST_VERSION and CURRENT_VERSION columns
of one or more of the following catalog tables, depending on the object:

• SYSIBM.SYSTABLESPACE
• SYSIBM.SYSTABLEPART
• SYSIBM.SYSINDEXES
• SYSIBM.SYSINDEXPART

The OLDEST_VERSION column contains the oldest used version number, and the CURRENT_VERSION
column contains the current version number.

Recycling of version numbers is required when all of the version numbers are being used. All version
numbers are being used when one of the following situations is true:

Chapter 21. MODIFY RECOVERY 371

• The value in the CURRENT_VERSION column is one less than the value in the OLDEST_VERSION
column.

• The value in the CURRENT_VERSION column is 255 for table spaces or 15 for indexes, and the value in
the OLDEST_VERSION column is 0 or 1.

To recycle version numbers for indexes that are defined with the COPY NO attribute, run LOAD REPLACE,
REBUILD INDEX, REORG INDEX, or REORG TABLESPACE.

Related concepts
Table space versions (Db2 Administration Guide)

Sample MODIFY RECOVERY control statements
Use the sample control statements as models for developing your own MODIFY RECOVERY control
statements.

Example 1: Deleting SYSCOPY and SYSLGRNX records that are over a certain age

The following control statement specifies that the MODIFY RECOVERY utility is to delete all SYSCOPY and
SYSLGRNX records that are older than 90 days for table space DSN8D81A.DSN8S81E.

//STEP1 EXEC DSNUPROC,UID='IUIQU2UD.MODRCV1',
// UTPROC='',SYSTEM='DSN'
//SYSIN DD *
MODIFY RECOVERY TABLESPACE DSN8D12A.DSN8S12E DELETE AGE(90)
/*

Example 2: Deleting SYSCOPY and SYSLGRNX records that are older than a certain date

The following control statement specifies that MODIFY RECOVERY is to delete all SYSCOPY and
SYSLGRNX records that were written before 10 September 2002.

MODIFY RECOVERY TABLESPACE DSN8D12A.DSN8S12D DELETE DATE(20020910)

Example 3: Deleting SYSCOPY records for partitions

The following control statements specifies that MODIFY RECOVERY is to delete the following SYSCOPY
records for table space TU5AP053:

• Any records in partition 2 that are older than 5 days
• Any records in partition 3 that were written before 9 October 2006

//STEP2 EXEC DSNUPROC,UID='FUN5U053.STEP2',UTPROC='',SYSTEM='SSTR'
//SYSIN DD *

 MODIFY RECOVERY TABLESPACE TU5AP053
 DSNUM 2
 DELETE AGE(5)

 MODIFY RECOVERY TABLESPACE TU5AP053
 DSNUM 3
 DELETE DATE(061009)
/*

Example 4: Deleting all SYSCOPY records for objects in a list and viewing the results

372 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_tablespaceversions.html

In the following example job, the LISTDEF utility control statements define three lists (L1, L2, L3).
The first group of REPORT utility control statements then specify that the utility is to report recovery
information for the objects in these lists. Next, the MODIFY RECOVERY control statement specifies that
the utility is to delete all SYSCOPY records for the objects in the L1 list. Finally, the second group of
REPORT control statements specify that the utility is to report the recovery information for the same three
lists. In this second report, no information will be reported for the objects in the L1 list because all of the
SYSCOPY records have been deleted.

//STEP4 EXEC DSNUPROC,UID='JULTU224.RCV1',
// UTPROC='',SYSTEM='SSTR'
//SYSIN DD *
 LISTDEF L1 INCLUDE TABLESPACE DBLT2401.T*
 LISTDEF L2 INCLUDE INDEXSPACE DBLT2401.I*
 LISTDEF L3 INCLUDE INDEX
IXLT2402
 REPORT RECOVERY TABLESPACE LIST L1
 REPORT RECOVERY INDEXSPACE LIST L2
 REPORT RECOVERY INDEX LIST
L3
 MODIFY RECOVERY LIST L1
 DELETE DATE(*)

 REPORT RECOVERY TABLESPACE LIST L1
 REPORT RECOVERY INDEXSPACE LIST L2
 REPORT RECOVERY INDEX LIST L3
/*

Related information:

Chapter 18, “LISTDEF,” on page 199
Chapter 30, “REPORT,” on page 663

Example 5: Retaining SYSCOPY and SYSLGRNX records of a GDG

The following control statement specifies that MODIFY RECOVERY is to retain as many recent records in
SYSIBM.SYSCOPY as defined in the GDG limit.

MODIFY RECOVERY TABLESPACE DBKQBL01.TPKQBL01 RETAIN GDGLIMIT

Example 6: Retaining SYSCOPY and SYSLGRNX records

The following control statement specifies that MODIFY RECOVERY is to retain 4 recent records in
SYSIBM.SYSCOPY.

MODIFY RECOVERY TABLESPACE DBKQBL01.TPKQBL01 RETAIN LAST (4)

Example 7: Deleting SYSCOPY and SYSLGRNX records for clone objects

The following control statement specifies that MODIFY RECOVERY is to delete SYSCOPY records and
SYSLGRNX records for only clone objects.

MODIFY RECOVERY TABLESPACE DBKQBL01.TPKQBL01
 CLONE
 DELETE AGE(*)

Example 8: Deleting only FlashCopy image copies

Chapter 21. MODIFY RECOVERY 373

The following control statement specifies that MODIFY RECOVERY is to delete information and data sets
for FlashCopy image copies that were taken before 25 November 2018.

MODIFY RECOVERY TABLESPACE DBFLSH.TSFLSH DSNUM(3)
 DELETE DATE 20181125
 FLASHCOPY ONLY DELETEDS

374 Db2 12 for z/OS: Utility Guide and Reference

Chapter 22. MODIFY STATISTICS
The MODIFY STATISTICS online utility deletes unwanted statistics history records from the corresponding
catalog tables. You can remove statistics history records that were written before a specific date, or you
can remove records of a specific age. You can delete records for an entire table space, index space, or
index.

Run MODIFY STATISTICS regularly to clear outdated information from the statistics history catalog tables.
By deleting outdated information from those tables, you can improve performance for processes that
access data from those tables.

Restriction: MODIFY STATISTICS does not delete statistics history records for clone tables because
statistics are not collected for these tables.

Output

MODIFY STATISTICS deletes rows from the following catalog tables:

• SYSIBM.SYSCOLDIST_HIST
• SYSIBM.SYSCOLUMNS_HIST
• SYSIBM.SYSINDEXES_HIST
• SYSIBM.SYSINDEXPART_HIST
• SYSIBM.SYSINDEXSTATS_HIST
• SYSIBM.SYSLOBSTATS_HIST
• SYSIBM.SYSTABLEPART_HIST
• SYSIBM.SYSTABSTATS_HIST
• SYSIBM.SYSTABLES_HIST
• SYSKEYTARGETS_HIST
• SYSKEYTGTDIST_HIST

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• STATS privilege for the database to run MODIFY STATISTICS.
• DBADM, DBCTRL, or DBMAINT authority for the database. If the object on which the utility operates is

in an implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• SQLADM authority.
• System DBADM authority.
• SYSCTRL or SYSADM authority.

A user ID with installation SYSOPR authority can also execute MODIFY STATISTICS, but only on a table
space in the DSNDB01 or DSNDB06 database.

Execution phases of MODIFY STATISTICS

The MODIFY STATISTICS utility operates in these phases:

Phase
Description

© Copyright IBM Corp. 1983, 2024 375

UTILINIT
Performs initialization and setup

MODIFYS
Deletes records

UTILTERM
Performs cleanup

Syntax and options of the MODIFY STATISTICS control statement
The MODIFY STATISTICS utility control statement, with its multiple options, defines the function that the
utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram
MODIFY STATISTICS LIST listdef-name

1

TABLESPACE

database-name .

table-space-name

INDEXSPACE

database-name .

index-space-name

INDEX

creator-id .

index-name

DELETE ALL

ACCESSPATH

SPACE

AGE ( integer)

(*)

DATE ( integer)

(*)

Notes:
1 You cannot specify a LISTDEF list that contains the PARTLEVEL keyword.

Option descriptions

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. You cannot repeat the LIST keyword or
specify it with TABLESPACE, INDEXSPACE, or INDEX.

The list can contain index spaces, table spaces, or both. The list cannot contain the PARTLEVEL
keyword. MODIFY STATISTICS is invoked once for each object in the list.

TABLESPACE database-name.table-space-name
Specifies the database and the table space for which catalog history records are to be deleted.
database-name

Specifies the name of the database to which the table space belongs. database-name is optional.

The default value is DSNDB04.

table-space-name
Specifies the name of the table space for which statistics are to be deleted.

376 Db2 12 for z/OS: Utility Guide and Reference

INDEXSPACE database-name.index-space-name
Specifies the qualified name of the index space for which catalog history information is to be deleted.
The utility lists the name in the SYSIBM.SYSINDEXES table.
database-name

Optionally specifies the name of the database to which the index space belongs.

The default value is DSNDB04.

index-space-name
Specifies the name of the index space for which the statistics are to be deleted.

INDEX creator-id.index-name
Specifies the index for which catalog history information is to be deleted.
creator-id

Optionally specifies the creator of the index.

The default value is DSNDB04.

index-name
Specifies the name of the index for which the statistics are to be deleted. Enclose the index name
in quotation marks if the name contains a blank.

DELETE
Indicates that records are to be deleted.
ALL

Deletes all statistics history rows that are related to the specified object from all catalog history
tables.

Rows from the following history tables are deleted only when you specify DELETE ALL:

• SYSTABLES_HIST
• SYSTABSTATS_HIST
• SYSINDEXES_HIST
• SYSINDEXSTATS_HIST
• SYSKEYTARGETS_HIST

ACCESSPATH
Deletes all access-path statistics history rows that are related to the specified object from the
following history tables:

• SYSIBM.SYSCOLDIST_HIST
• SYSIBM.SYSCOLUMNS_HIST
• SYSKEYTGTDIST_HIST

SPACE
Deletes all space-tuning statistics history rows that are related to the specified object from the
following history tables:

• SYSIBM.SYSINDEXPART_HIST
• SYSIBM.SYSTABLEPART_HIST
• SYSIBM.SYSLOBSTATS_HIST

AGE (integer)
Deletes all statistics history rows that are related to the specified object and that are older than a
specified number of days.
(integer)

Specifies the number of days in a range 0 - 32 767. This option cannot delete records that are
created today (age 0).

(*)
Deletes all records, regardless of their age.

Chapter 22. MODIFY STATISTICS 377

DATE (integer)
Deletes all statistics history rows that were written before a specified date.
(integer)

Specifies the date in an eight-character format. Specify a year (yyyy), month (mm), and day (dd) in
the form yyyymmdd.

(*)
Deletes all records, regardless of the date on which they were written.

Data sets that MODIFY STATISTICS uses
The MODIFY STATISTICS utility uses a number of data sets during its operation.

The following table lists the data sets that MODIFY STATISTICS uses. The table lists the DD name that
is used to identify the data set, a description of the data set, and an indication of whether it is required.
Include statements in your JCL for each required data set and any optional data sets that you want to use.

Table 53. Data sets that MODIFY STATISTICS uses

Data set Description Required?

SYSIN Input data set that contains the utility control
statement

Yes

SYSPRINT Output data set for messages Yes

The following object is named in the utility control statement and does not require a DD statement in the
JCL:

Table space or index space
Object for which records are to be deleted.

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.

Concurrency and compatibility for MODIFY STATISTICS
The MODIFY STATISTICS utility has certain concurrency and compatibility characteristics associated with
it.

Db2 treats individual data and index partitions as distinct target objects. Utilities that operate on different
partitions of the same table space or index space are compatible.

The following table lists any claims or drains that the utility acquires and any restrictive states that are set
on the target object.

Table 54. Claim classes of MODIFY STATISTICS operations.

Target MODIFY STATISTICS

Table space, index, or index space UTRW

Legend:

UTRW - Utility restrictive state - read-write access allowed.

378 Db2 12 for z/OS: Utility Guide and Reference

Guidelines for deciding which statistics history rows to delete
After analyzing trends by using the relevant historical catalog information and possibly taking actions
based on this information, consider deleting all or part of the statistics history catalog rows.

Deleting outdated information from the statistics history catalog tables can improve performance for
processes that access data from those tables. You also make available the space in the catalog. Then, the
next time you update the relevant statistics by using RUNSTATS TABLESPACE, REBUILD INDEX, or REORG
INDEX, Db2 repopulates the statistics history catalog tables with more recent historical data. Examining
this data lets you determine the efficacy of any adjustments that you made as a result of your previous
analysis.

Be aware that when you manually insert, update, or delete catalog information, Db2 does not store the
historical information for those operations in the historical catalog tables.

Deletion of specific statistics history rows
The MODIFY STATISTICS utility lets you delete some or all statistics history rows for a table space, an
index space, or an index.

You can choose to delete only the statistics rows that relate to access path selection by specifying
the ACCESSPATH option. Alternatively, you can delete the rows that relate to space statistics
by using the SPACE option. To delete rows in all statistics history catalog tables, including the
SYSIBM.SYSTABLES_HIST catalog table, you must specify the DELETE ALL option in the utility control
statement.

To delete statistics from the RUNSTATS history tables, you can either use the MODIFY STATISTICS utility
or issue SQL DELETE statements. The MODIFY STATISTICS utility simplifies the purging of old statistics
without requiring you to write the SQL DELETE statements. You can also delete rows that meet the age
and date criteria by specifying the corresponding keywords (AGE and DATE) for a particular object.

To avoid time outs when you delete historical statistics with MODIFY STATISTICS, you should increase the
LOCKMAX parameter for DSNDB06.SYSHIST with ALTER TABLESPACE.

Termination or restart of MODIFY STATISTICS
You can terminate and restart the MODIFY STATISTICS utility.

You can use the TERM UTILITY command to terminate the MODIFY STATISTICS utility in any phase.

You can restart a MODIFY STATISTICS utility job, but it starts from the beginning again.

Related tasks
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.

Sample MODIFY STATISTICS control statements
Use the sample control statements as models for developing your own MODIFY STATISTICS control
statements.

Example 1: Deleting SYSIBM.SYSTABLES_HIST records by age

The following control statement specifies that the MODIFY STATISTICS utility is delete all statistics
history records for table space DSN8D81A.DSN8S81E that are older than 60 days.

//STEP1 EXEC DSNUPROC,UID='IUIQU2UD.MODSTAT1',
// UTPROC='',SYSTEM='DSN'
//SYSIN DD *

Chapter 22. MODIFY STATISTICS 379

 MODIFY STATISTICS TABLESPACE DSN8D12A.DSN8S12E
 DELETE ALL
 AGE 60
/*

Example 2: Deleting access path records for all objects in a list

The following MODIFY STATISTICS control statement specifies that the utility is to delete access-path
statistics history rows that were created before 17 April 2000 for objects in the specified list. The list, M1,
is defined in the preceding LISTDEF control statement and includes table spaces DB0E1501.TL0E1501
and DSN8D81A.DSN8S81E.

//STEP9 EXEC DSNUPROC,UID='JUOEU115.MDFYL9',
// UTPROC='',
// SYSTEM='SSTR'
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

 LISTDEF M1 INCLUDE TABLESPACE DBOE1501.TLOE1501
 INCLUDE TABLESPACE DSN8D81A.DSN8S81E
 MODIFY STATISTICS LIST M1
 DELETE ACCESSPATH DATE(20000417)
/*

Example 3: Deleting space-tuning statistics records for an index by age

The following control statement specifies that MODIFY STATISTICS is to delete space-tuning statistics
records for index ADMF001.IXOE15S1 that are older than one day.

//STEP9 EXEC DSNUPROC,UID='JUOEU115.MOFYS9',
// UTPROC='',
// SYSTEM='SSTR'
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

 MODIFY STATISTICS INDEX ADMF001.IXOE15S1
 DELETE SPACE AGE 1
/*

Example 4: Deleting all statistics history records for an index space

The following control statement specifies that MODIFY STATISTICS is to delete all statistics history
records for index space DBOE1501.IUOE1501. Note that the deleted records are not limited by date
because (*) is specified.

//STEP8 EXEC DSNUPROC,UID='JUOEU115.MDFYL8',
// UTPROC='',
// SYSTEM='SSTR'
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 MODIFY STATISTICS INDEXSPACE DBOE1501.IUOE1501
 DELETE ALL DATE (*)
/*

380 Db2 12 for z/OS: Utility Guide and Reference

Chapter 23. OPTIONS
The OPTIONS online utility control statement specifies processing options that are applicable across
many utility executions in a job step.

By specifying various options, you can:

• Preview utility control statements
• Preview LISTDEF or TEMPLATE definitions
• Override library names for LISTDEF lists or TEMPLATE definitions
• Specify how to handle errors during list processing
• Alter the return code for warning messages
• Restore all default options

You can repeat an OPTIONS control statement within the SYSIN DD statement. If you repeat the control
statement, it entirely replaces any prior OPTIONS control statement.

Output

The OPTIONS control statement sets the specified processing options for the duration of the job step, or
until replaced by another OPTIONS control statement within the same job step.

Authorization required

The OPTIONS control statement performs setup for subsequent control statements. The OPTIONS
statement itself requires no privileges to execute.

Execution phases of OPTIONS

The OPTIONS control statement executes entirely in the UTILINIT phase, in which it performs setup for
the subsequent utility.

Syntax and options of the OPTIONS control statement
The OPTIONS utility control statement, with its multiple options, defines the function that the utility job
performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram
OPTIONS processing-options-spec

OFF

KEY key-value

processing-options-spec

© Copyright IBM Corp. 1983, 2024 381

PREVIEW LISTDEFDD ddname TEMPLATEDD ddname

FILSZ integer event-spec

event-spec

EVENT (

ITEMERROR,HALT

ITEMERROR,SKIP ,

WARNING,RC4

WARNING, RC0

RC8

)

Option descriptions

PREVIEW
Specifies that the utility control statements that follow are to run in PREVIEW mode. The utility checks
for syntax errors in all utility control statements, but normal utility execution does not take place. If
the syntax is valid, the utility expands all LISTDEF lists and TEMPLATE DSNs that appear in SYSIN and
prints results to the SYSPRINT data set.

PREVIEW evaluates and expands all LISTDEF statements into an actual list of table spaces or index
spaces. It evaluates TEMPLATE DSNs and uses variable substitution for actual data set names when
possible. It also expands lists from the SYSLISTD DD and TEMPLATE DSNs from the SYSTEMPL DD
that a utility invocation references.

A definitive preview of TEMPLATE DSN values is not always possible. Substitution values for some
variables, such as &DATE., &TIME., &SEQ. and &PART., can change at execution time. In some cases,
PREVIEW generates approximate data set names. The OPTIONS utility substitutes unknown character
variables with the character string "UNKNOWN" and unknown integer variables with zeroes.

Instead of OPTIONS PREVIEW, you can use a JCL PARM to activate preview processing. Although the
two functions are identical, use JCL PARM to preview an existing set of utility control statements. Use
the OPTION PREVIEW control statement when you invoke Db2 utilities through a stored procedure.

The JCL PARM is specified as the third JCL PARM of DSNUTILB and on the UTPROC variable of
DSNUPROC, as shown in the following JCL:

//STEP1 EXEC DSNUPROC,UID='JULTU106.RECOVE1',
// UTPROC='PREVIEW',SYSTEM='SSTR'

The PARM value PREVIEW causes the utility control statements in that job step to be processed for
preview only. The LISTDEF and TEMPLATE control statements are expanded, but the utility does not
execute.

OPTIONS PREVIEW is identical to the PREVIEW JCL parameter, except that you can specify a
subsequent OPTIONS statement to turn off the preview for OPTIONS PREVIEW. Absence of the
PREVIEW keyword in the OPTION control statement turns off preview processing, but it does not
override the PREVIEW JCL parameter, which, if specified, remains in effect for the entire job step.

LISTDEFDD ddname
Specifies the ddname of the LISTDEF definition library. A LISTDEF library is a data set that contains
only LISTDEF utility control statements. This data set is processed only when a referenced LIST is not
found in SYSIN.

The default value is SYSLISTD.

382 Db2 12 for z/OS: Utility Guide and Reference

TEMPLATEDD ddname
Specifies the ddname of the TEMPLATE definition library. A TEMPLATE library is a data set that
contains only TEMPLATE utility control statements. This data set is processed only when a referenced
name does not exist in the job step as a DD name and is not found in SYSIN as a TEMPLATE name.

The default value is SYSTEMPL.

FILSZ integer
Specifies a file size in megabytes and overrides the file size for the sort program when sort work data
sets are allocated by the utility. Only use this keyword under the direction of IBM Support.

EVENT
Specifies one or more pairs of utility processing events and the matching action for the event. Not all
actions are valid for all events.

The parentheses and commas in the EVENT operand are currently optional but they may be required
in a future release.

ITEMERROR

Specifies how utility processing is to handle errors during list processing. Specifically, this keyword
indicates the effect on processing in response to return code 8. By default, utility processing stops
(HALT). The ITEMERROR event does not include abnormal terminations (abends).

Note that for the QUIESCE utility, the indexes for the table spaces in the list, if any, are considered as
list items for the purposes of the ITEMERROR event. ITEMERROR affects how errors are handled on
both the table spaces and the indexes.

HALT
Specifies that the utility is to stop after the event.

SKIP
Ignores the event and skips the list item. Processing continues with the next item in the list.

SKIP applies only during the processing of a valid list. SKIP does not apply if a utility detects that a
list is not valid for the utility that is invoked. In that case, the list is rejected with an error message
and the processing of the list is not initiated.

If any of the items in a list is skipped, the utility produces a return code of 8, which terminates the
job step. The following code shows an OPTIONS statement with the SKIP option:

 OPTIONS EVENT (ITEMERROR, SKIP)
 COPY LISTA
 COPY LISTB

If LISTA contains ten objects and one object produces a return code 8 during the COPY, the other
nine objects in the list are copied successfully. The job step ends with a return code 8 and COPY
LISTB is not executed.

WARNING
Specifies a response to the return code message event.

Use WARNING to alter the return code for warning messages. You can alter the return code from
message DSNU010I with this option. If you alter the message return code, message DSNU1024I is
issued to document the new return code.

Action choices are as follows:

RC0
Lowers the final return code of a single utility invocation that ends in a return code 4 to a return
code of 0. Use RC0 to force a return code of 0 for warning messages.

Use this option only when return code 4 is expected, is acceptable, and other mechanisms are in
place to validate the results of a utility execution.

Chapter 23. OPTIONS 383

RC4
Specifies that return codes for warning messages are to remain unchanged. Use RC4 to override a
previous OPTIONS WARNING specification in the same job step.

RC8
Raises the final return code of a single utility invocation that ends in a return code 4 to a return
code of 8. Use RC8 to force a return code of 8 for warning messages. The return code of 8 causes
the job step to terminate and subsequent utility control statements are not executed.

OFF
Specifies that all default options are to be restored. OPTIONS OFF does not override the PREVIEW JCL
parameter, which, if specified, remains in effect for the entire job step. You cannot specify any other
OPTIONS keywords with OPTIONS OFF.

OPTIONS OFF is equivalent to OPTIONS LISTDEFDD SYSLISTD TEMPLATEDD SYSTEMPL EVENT
(ITEMERROR, HALT, WARNING, RC4).

KEY
Specifies an option that you should use only when you are instructed by IBM Support. OPTIONS KEY is
followed by a single operand that IBM Support provides when needed.

Related information
Db2 Sort for z/OS
DFSORT Application Programming Guide

Concurrency and compatibility for OPTIONS
The OPTIONS utility has certain concurrency and compatibility characteristics associated with it.

OPTIONS is a utility control statement that you can use to set up an environment for another utility
to follow. The OPTIONS statement is stored until a specific utility references the statement. When
referenced by another utility, the list is expanded. At that time, the concurrency and compatibility
restrictions of that utility apply, with the additional restriction that the catalog tables that are necessary to
expand the list must be available for read-only access.

Executing statements in preview mode
You can execute utility control statements in preview mode. The utility checks for syntax errors in all
utility control statements, but normal utility execution does not occur.

About this task
Statistics profiles can be previewed using the PREVIEW option. Under normal execution, statistics profiles
are stored in the SYSIBM.SYSTABLES_PROFILES catalog table. When executing RUNSTATS with the
PREVIEW option, Db2 only prints the statistics profile for each table to SYSPRINT and normal utility
execution does not take place.

Please note that the profile text is displayed prior to parsing for syntactical errors.

The contents of the profile is displayed using DSNU1376I.

Procedure
Specify the PREVIEW option in the OPTIONS control statement.
Control statements are previewed for use with LISTDEF lists and TEMPLATE definitions but the specified
options are not actually executed.

Related reference
“RUNSTATS TABLESPACE syntax and options” on page 701

384 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm

RUNSTATS TABLESPACE utility control statements define operations completed by RUNSTATS utility jobs.

Specifying LISTDEF and TEMPLATE libraries
You can override the names of the optional library data sets.

Procedure
Specify the LISTDEFDD option and the TEMPLATEDD option in the OPTIONS control statement to override
the names of the optional library data sets.

Related tasks
“Creating LISTDEF libraries” on page 213
When Db2 encounters a reference to a list, Db2 first searches SYSIN. If Db2 does not find the definition of
the referenced list, Db2 searches the specified LISTDEF library.
Related reference
“LISTDEF” on page 199
The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.

Overriding standard utility processing behavior
You can alter settings for warning return codes and error handling during list processing.

Procedure
Specify the EVENT option in the OPTIONS control statement.

Termination or restart of OPTIONS
You can terminate and restart the OPTIONS utility.

You can terminate an OPTIONS utility job by using the TERM UTILITY command if you submitted the job
or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart an OPTIONS utility job, but it starts from the beginning again. If you are restarting this
utility as part of a larger job in which OPTIONS completed successfully, but a later utility failed, do not
change the OPTIONS utility control statement, if possible. If you must change the OPTIONS utility control
statement, use caution; any changes can cause the restart processing to fail. For example, if you specify a
valid OPTIONS statement in the initial invocation, and then on restart, specify OPTIONS PREVIEW, the job
fails.

Related tasks
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.

Sample OPTIONS control statements
Use the sample control statements as models for developing your own OPTIONS control statements.

Example 1: Checking control statement syntax and previewing lists and TEMPLATE data set names

The following OPTIONS statement specifies that the subsequent utility control statements are to run in
PREVIEW mode. In PREVIEW mode, Db2 checks for syntax errors in all utility control statements, but
normal utility execution does not take place. If the syntax is valid, Db2 expands the CPYLIST list and

Chapter 23. OPTIONS 385

the data set names in the COPYLOC and COPYREM TEMPLATE utility control statements and prints these
results to the SYSPRINT data set.

OPTIONS PREVIEW
TEMPLATE COPYLOC UNIT(SYSDA)
 DSN(&DB..&TS..D&JDATE..&STEPNAME..COPY&IC.&LOCREM.&PB.)
 DISP(NEW,CATLG,CATLG) SPACE(200,20) TRK
 VOLUMES(SCR03)
TEMPLATE COPYREM UNIT(SYSDA)
 DSN(&DB..&TS..&UT..T&TIME..COPY&IC.&LOCREM.&PB.)
 DISP(NEW,CATLG,CATLG) SPACE(100,10) TRK
LISTDEF CPYLIST INCLUDE TABLESPACES DATABASE DBLT0701
COPY LIST CPYLIST FULL YES
 COPYDDN(COPYLOC,COPYLOC)
 RECOVERYDDN(COPYREM,COPYREM)
 SHRLEVEL REFERENCE

Example 2: Specifying LISTDEF and TEMPLATE definition libraries

In the following example, the OPTIONS control statements specify the DD names of the LISTDEF
definition libraries and the TEMPLATE definition libraries.

The first OPTIONS statement specifies that the LISTDEF definition library is identified by the V1LIST
DD statement and the TEMPLATE definition library is identified by the V1TEMPL DD statement. These
definition libraries apply to the subsequent COPY utility control statement. Therefore, if Db2 does not
find the PAYTBSP list in SYSIN, it searches the V1LIST library, and if Db2 does not find the PAYTEMP1
template in SYSIN, it searches the V1TEMP library.

The second OPTIONS statement is similar to the first, but it identifies different libraries and applies to
the second COPY control statement. This second COPY control statement looks similar to the first COPY
job. However, this statement processes a different list and uses a different template. Whereas the first
COPY job uses the PAYTBSP list from the V1LIST library, the second COPY job uses the PAYTBSP list from
the V2LIST library. Also, the first COPY job uses the PAYTEMP1 template from the V1TEMPL library, the
second COPY job uses the PAYTEMP1 template from the V2TEMPL library.

OPTIONS LISTDEFDD V1LIST TEMPLATEDD V1TEMPL
COPY LIST PAYTBSP COPYDDN(PAYTEMP1,PAYTEMP1)

OPTIONS LISTDEFDD V2LIST TEMPLATEDD V2TEMPL
COPY LIST PAYTBSP COPYDDN(PAYTEMP1,PAYTEMP1)

Example 3: Forcing a return code 0

In the following example, the first OPTIONS control statement forces a return code of 0 for the
subsequent MODIFY RECOVERY utility control statement. Ordinarily, this statement ends with a return
code of 4 because it specifies that Db2 is to delete all SYSCOPY and SYSLGRNX records for table space
A.B. The second OPTIONS control statement restores the default options, so that no return codes will be
overridden for the second MODIFY RECOVERY control statement.

OPTIONS EVENT(WARNING,RC0)
MODIFY RECOVERY TABLESPACE A.B DELETE AGE(*)
OPTIONS OFF
MODIFY RECOVERY TABLESPACE C.D DELETE AGE(30)

Example 4: Checking syntax and skipping errors while processing list objects

In the following control statement, the first OPTIONS utility control statement specifies that the
subsequent utility control statements are to run in PREVIEW mode. In PREVIEW mode, Db2 checks
for syntax errors in all utility control statements, but normal utility execution does not take place. If the

386 Db2 12 for z/OS: Utility Guide and Reference

syntax is valid, Db2 expands the three lists (LIST1_LISTDEF, LIST2_LISTDEF, and LIST3_LISTDEF) and
prints these results to the SYSPRINT data set.

The second OPTIONS control statement specifies how Db2 is to handle return codes of 8 in any
subsequent utility statements that process a valid list. If processing of a list item produces return code 8,
Db2 skips that item, and continues to process the rest of the items in the list, but Db2 does not process
the next utility control statement. Instead, the job ends with return code 8.

 OPTIONS PREVIEW
 LISTDEF COPY1_LISTDEF
 INCLUDE TABLESPACES TABLESPACE DSNDB01.SPT01
 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSGPAUT
 INCLUDE TABLESPACES TABLESPACE DBA91302.T?A9132*
 LISTDEF COPY2_LISTDEF
 INCLUDE TABLESPACES TABLESPACE DBA91303.TLA9133A
 INCLUDE TABLESPACES TABLESPACE DBA91303.TSA9133B
 INCLUDE TABLESPACES TABLESPACE DBA91303.TPA9133C
 INCLUDE TABLESPACES TABLESPACE DBA91304.TLA9134A
 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSUSER
 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSSTATS
 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSDDF
 LISTDEF COPY3_LISTDEF
 INCLUDE TABLESPACES TABLESPACE DBA91304.TSA9134B
 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSHIST
 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSGRTNS
 INCLUDE TABLESPACES TABLESPACE DSNDB06.SYSJAVA
 INCLUDE TABLESPACES TABLESPACE DBA91304.TPA9134C
 OPTIONS EVENT(ITEMERROR,SKIP)
 TEMPLATE TMP1 UNIT(SYSDA) DISP(MOD,CATLG,CATLG)
 VOLUMES(SCR03)
 DSN(DH109013.&TS..COPY&ICTYPE.&LOCREM.&PRIBAC.)
 COPY LIST COPY1_LISTDEF SHRLEVEL REFERENCE
 COPYDDN (TMP1)
 RECOVERYDDN (TMP1)
 FULL YES
 COPY LIST COPY2_LISTDEF SHRLEVEL REFERENCE
 COPYDDN (TMP1,TMP1)
 FULL YES
 COPY LIST COPY3_LISTDEF SHRLEVEL REFERENCE
 COPYDDN (TMP1,TMP1)
 RECOVERYDDN (TMP1,TMP1)
 FULL YES

Chapter 23. OPTIONS 387

388 Db2 12 for z/OS: Utility Guide and Reference

Chapter 24. QUIESCE
The QUIESCE utility establishes a quiesce point for a table space, partition, table space set, or list of table
spaces and table space sets. A quiesce point is a point at which data is consistent across these objects.
You can later recover a table space to its quiesce point by using the RECOVER utility.

Output
When you request that the QUIESCE utility take a quiesce point, the quiesce point is the current log RBA
or log record sequence number (LRSN). QUIESCE then records the quiesce point in the SYSIBM.SYSCOPY
catalog table.

A quiesce point is not essential when you plan for point-in-time recoveries. The RECOVER utility can
recover data to a prior point-in-time with consistency without a quiesce point. The utility can recover
objects with transactional consistency, which means that the objects contain only data that has been
committed. However, recovering objects to a quiesce point can be faster because no work must be backed
out. You might also want to establish quiesce points for related sets of objects if you need to plan for a
point-in-time recovery for the entire set.

Related information:

“Point-in-time recovery” on page 462
“Common quiesce points” on page 395

With the WRITE(YES) option, QUIESCE writes changed pages for the table spaces and their indexes from
the Db2 buffer pool to disk. The catalog table SYSCOPY records the current RBA and the timestamp
of the quiesce point. A row with ICTYPE='Q' is inserted into SYSIBM.SYSCOPY for each table space
that is quiesced. Db2 also inserts a SYSCOPY row with ICTYPE='Q' for any indexes (defined with the
COPY YES attribute) over a table space that is being quiesced. (Table spaces DSNDB06.SYSTSCPY,
DSNDB01.DBD01, DSNDB01.SYSUTILX, and DSNDB01.SYSDBDXA are an exception; their information is
written to the log.)

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• IMAGCOPY privilege for the database
• DBADM, DBCTRL, or DBMAINT authority for the database. If the object on which the utility operates is

in an implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• System DBADM authority
• SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute QUIESCE, but only on a table space in the
DSNDB01 or DSNDB06 database.

You can specify DSNDB01.SYSUTILX, but you cannot include it in a list with other table spaces to be
quiesced. Recovery to the current catalog and directory table spaces is preferred and recommended.
However, if you want a point-in-time recovery of the catalog and directory table spaces, a separate
quiesce of DSNDB06.SYSTSCPY is required after a quiesce of the other catalog and directory table
spaces.

Execution phases of QUIESCE

© Copyright IBM Corp. 1983, 2024 389

The QUIESCE utility operates in these phases:

Phase
Description

UTILINIT
Initialization and setup

QUIESCE
Determining the quiesce point and updating the catalog

UTILTERM
Cleanup

Syntax and options of the QUIESCE control statement
The QUIESCE utility control statement, with its multiple options, defines the function that the utility job
performs.

You can create a control statement with the ISPF/PDF edit function. After you create the statement, save
it in a sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram
QUIESCE

LIST listdef-name

TABLESPACE

database-name .

table-space-name

PART integer

TABLESPACESET

TABLESPACE database-name .

table-space-name

CLONE

WRITE YES

WRITE NO

Option descriptions

The purpose of most of the QUIESCE control statement options is to specify which objects to quiesce.
You can specify as many objects in your QUIESCE job as allowed by available memory in the batch
address space and in the Db2 DBM1 address space. If you specify a table space more than once, utility
processing continues, and the table space is quiesced only once. QUIESCE issues return code 4 and
warning message DSNU533I to alert you of the duplication.

Use the following options to specify which objects to quiesce:

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name that contains only table spaces. The
utility allows one LIST keyword for each QUIESCE control statement. Do not specify LIST with
the TABLESPACE or TABLESPACESET keyword. QUIESCE is invoked once for the entire list. For the
QUIESCE utility, the related index spaces are considered to be list items for the purposes of OPTIONS
ITEMERROR processing. You can alter the utility behavior during processing of related indexes with
the OPTIONS ITEMERROR statement. This utility processes clone data only if the CLONE keyword is
specified. The use of CLONED YES on the LISTDEF statement is not sufficient.

The partitions or partition ranges can be specified in a list.

390 Db2 12 for z/OS: Utility Guide and Reference

TABLESPACE database-name.table-space-name
For QUIESCE TABLESPACE, specifies the table space that is to be quiesced.

For QUIESCE TABLESPACESET, specifies a table space in the table space set that is to be quiesced.
For QUIESCE TABLESPACESET, the TABLESPACE keyword is optional.
database-name

Optionally specifies the name of the database to which the table space belongs.

The default value is DSNDB04.

table-space-name

Specifies the name of the table space that is to be quiesced. You can specify DSNDB01.SYSUTILX,
but do not include that name in a list with other table spaces that are to be quiesced. If a
point-in-time recovery is planned for the catalog and directory, DSNDB06.SYSTSCPY must be
quiesced separately after all other catalog and directory table spaces.

All table spaces that are involved in a versioning relationship are quiesced when QUIESCE is run
on either the system-period temporal table or the history table space. Auxiliary LOB and XML table
spaces on both system-period temporal table spaces and history table spaces are included.

PART integer
Identifies a partition that is to be quiesced.

integer is the physical partition number. It must be in the range from 1 to the number of partitions that
are defined for the table space. The maximum is 4096.

If you specify the same table space twice in a list and use PART n in one specification and PART m in
the other specification, each partition is quiesced once.

TABLESPACESET
Indicates that all of the referentially related table spaces in the table space set are to be quiesced. For
the purposes of the QUIESCE utility, a table space set includes the following sets of objects:

• A group of table spaces that are related through referential constraints
• A base table space with all of its LOB table spaces
• A base table space with all of its XML table spaces
• A table space with a system-period temporal table and the table space with the related history table
• A table space that includes an archive-enabled table and the table space that contains the

associated archive table

Each table space set that you specify is expanded into a list of these related table spaces.

Related information:

“Common quiesce points” on page 395
Archive-enabled tables and archive tables (Introduction to Db2 for z/OS)

CLONE
Indicates that QUIESCE is to create a quiesce point for only the specified clone table space. This
utility processes clone data only if the CLONE keyword is specified. The use of CLONED YES on the
LISTDEF statement is not sufficient.

Use the following option to control the behavior of QUIESCE:

WRITE
Specifies whether the changed pages from the table spaces and index spaces are to be written to
disk.
YES

Establishes a quiesce point and writes the changed pages from the table spaces and index spaces
to disk.

Chapter 24. QUIESCE 391

https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html

NO
Establishes a quiesce point but does not write the changed pages from the table spaces and index
spaces to disk.

Table spaces with the NOT LOGGED attribute are not quiesced.

Before running QUIESCE
Certain activities might be required before you run the QUIESCE utility, depending on your situation.

You cannot run QUIESCE on a table space that is in COPY-pending, CHECK-pending, RECOVER-pending,
or auxiliary CHECK-pending status.

Related concepts
“Resetting COPY-pending status” on page 333
If you load with LOG NO and do not take an inline copy, LOAD places a table space in the COPY-pending
status. Immediately after that operation, Db2 cannot recover the table space (although you can, by
loading it again).
“REBUILD-pending and RECOVER-pending status after LOAD” on page 333
LOAD sets index spaces to REBUILD-pending status when a REBUILD job ends before the INDEXVAL
phase is complete.
Related tasks
“Resetting CHECK-pending status” on page 91
If a table space has a status of CHECK-pending (CHKP), you can remove this status by correcting the error
and running the CHECK DATA utility.
Related reference
“Advisory or restrictive states” on page 975
To control access and help ensure data integrity, Db2 can set a restrictive or nonrestrictive (advisory)
status on certain objects. However, you can take steps to correct each status.

Data sets that QUIESCE uses
The QUIESCE utility uses a number of data sets during its operation.

The following table lists the data sets that QUIESCE uses. The table lists the DD name that is used to
identify the data set, a description of the data set, and an indication of whether it is required. Include
statements in your JCL for each required data set and any optional data sets that you want to use.

Table 55. Data sets that QUIESCE uses

Data set Description Required?

SYSIN Input data set that contains the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

The following object is named in the utility control statement and does not require a DD statement in the
JCL:

Table space
Object that is to be quiesced. (If you want to quiesce only one partition of a table space, you must use
the PART option in the control statement.)

Related concepts
“Data sets that online utilities use” on page 18

392 Db2 12 for z/OS: Utility Guide and Reference

Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.

Concurrency and compatibility for QUIESCE
The QUIESCE utility has certain concurrency and compatibility characteristics associated with it.

Db2 treats individual data and index partitions as distinct target objects. Utilities that operate on different
partitions of the same table space or index space are compatible.

Claims
The following table lists any claims or drains that the utility acquires and any restrictive states that are set
on the target object.

Table 56. Claim classes of QUIESCE operations.

Target WRITE YES WRITE NO

Table space or partition DW/UTRO DW/UTRO

Partitioning index, data-partitioned secondary
index, or partition

DW/UTRO

Nonpartitioned secondary index DW/UTRO

Legend:

• DW - Drain the write claim class - concurrent access for SQL readers
• UTRO - Utility restrictive state - read-only access allowed

Compatibility
The following table shows which utilities can run concurrently with QUIESCE on the same target object.
The target object can be a table space, an index space, or a partition of a table space or index space. If
compatibility depends on particular options of a utility, that information is also documented in the table.
QUIESCE does not set a utility restrictive state if the target object is DSNDB01.SYSUTILX.

Table 57. Compatibility of QUIESCE with other utilities

Action
Compatible with
QUIESCE?

CHECK DATA DELETE NO Yes

CHECK DATA DELETE YES No

CHECK INDEX Yes

CHECK LOB Yes

COPY INDEXSPACE SHRLEVEL CHANGE No

COPY INDEXSPACE SHRLEVEL REFERENCE Yes

COPY TABLESPACE SHRLEVEL CHANGE No

COPY TABLESPACE SHRLEVEL REFERENCE Yes

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

Chapter 24. QUIESCE 393

Table 57. Compatibility of QUIESCE with other utilities (continued)

Action
Compatible with
QUIESCE?

MODIFY Yes

QUIESCE Yes

REBUILD INDEX No

RECOVER INDEX No

RECOVER TABLESPACE No

REORG INDEX No

REORG TABLESPACE UNLOAD CONTINUE or PAUSE No

REORG TABLESPACE UNLOAD ONLY or EXTERNAL Yes

REPAIR DELETE or REPLACE No

REPAIR DUMP or VERIFY Yes

REPORT Yes

RUNSTATS Yes

STOSPACE Yes

UNLOAD Yes

To run the QUIESCE utility on DSNDB01.SYSUTILX, ensure that QUIESCE is the only utility in the job step.

QUIESCE on SYSUTILX is an exclusive job; such a job can interrupt another job between job steps,
possibly causing the interrupted job to time out.

Use of QUIESCE on catalog and directory objects
Running the QUIESCE utility on the catalog and directory table spaces makes these objects unavailable
for any updates during the utility execution. Therefore, this action can have a severe, adverse impact on
your system's availability. Running QUIESCE on the catalog and directory table spaces is not necessary
to prepare for point-in-time recovery. The RECOVER utility can recover data to a point in time with
consistency without a quiesce point.

If system availability is not a concern or you have planned for it, and you want a quiesce point on
the catalog and directory table spaces, run QUIESCE on these table spaces. Adhere to the following
requirements:

• You can quiesce DSNDB01.SYSUTILX, but DSNDB01.SYSUTILX must be the only table space in the
QUIESCE utility control statement.

• A separate QUIESCE control statement for DSNDB06.SYSTSCPY is required after you quiesce the other
catalog and directory table spaces. This separate quiesce is needed to ensure that a subsequent point-
in-time recovery of DSNDB06.SYSTSCPY recovers all of the SYSCOPY records for QUIESCE operations
for the other catalog and directory objects.

Related concepts
“Point-in-time recovery” on page 462

394 Db2 12 for z/OS: Utility Guide and Reference

Recovering data to a prior time is called a point-in-time recovery. You can recover objects to a particular
RBA, LRSN, or image copy. You can do this type of recovery by using the RECOVER utility point-in-time
recovery options. These options are TOCOPY, TOLOGPOINT, TOLASTCOPY, TORBA, and TOLASTFULLCOPY.

Common quiesce points
A common quiesce point is a point at which data is consistent across related table spaces as a result of
running the QUIESCE utility. Although establishing such a quiesce point is not required for point-in-time
recoveries, doing so can improve recovery time and ensure consistency for sets of related objects.

A quiesce point is not essential for point-in-time recoveries. Additional methods exist for ensuring that
objects are recovered to a consistent state, without any uncommitted data. You can recover objects to
any RBA or LRSN by using the TORBA or TOLOGPOINT options on the RECOVER utility statement. In this
case, RECOVER automatically handles any uncommitted units of work to ensure that the data is left in a
consistent state. You can also recover to an image copy that was taken with SHRLEVEL REFERENCE. This
image copy serves as a point of consistency.

However, recovering objects to a quiesce point can be faster than recovering to any RBA or LRSN, because
no work has to be backed out. Also, you might want to establish quiesce points for related sets of objects
if you need to plan for point-in-time recovery for the entire set. For point-in-time recoveries, all objects in
a table space set need to be recovered to the same point in time.

To obtain a common quiesce point for related table spaces, use the QUIESCE utility with the
TABLESPACESET option. For the purposes of the QUIESCE utility, a table space set includes the following
sets for objects:

• A group of table spaces that have a referential relationship
• A base table space with all of its LOB table spaces
• A base table space with all of its XML table spaces
• A table space with a system-period temporal table and the table space with the related history table
• A table space that includes an archive-enabled table and the table space that contains the associated

archive table

If you use QUIESCE TABLESPACE instead and do not include every member of the table space set, you
might have problems when you run RECOVER on table spaces in the set. RECOVER checks if a complete
table space set is recovered to a single point in time. If the complete table space set is not recovered to a
single point in time, RECOVER places all dependent table spaces in CHECK-pending (CHKP) status.

When you use QUIESCE WRITE YES on a table space, the utility records the quiesce point in
SYSIBM.SYSCOPY. QUIESCE inserts a SYSCOPY row that specifies ICTYPE='Q' for each related index
that is defined with COPY=YES.

Related concepts
“Point-in-time recovery” on page 462
Recovering data to a prior time is called a point-in-time recovery. You can recover objects to a particular
RBA, LRSN, or image copy. You can do this type of recovery by using the RECOVER utility point-in-time
recovery options. These options are TOCOPY, TOLOGPOINT, TOLASTCOPY, TORBA, and TOLASTFULLCOPY.
Archive-enabled tables and archive tables (Introduction to Db2 for z/OS)
Related reference
“Syntax and options of the QUIESCE control statement” on page 390
The QUIESCE utility control statement, with its multiple options, defines the function that the utility job
performs.
“CHECK-pending status” on page 977
CHECK-pending (CHKP) restrictive status indicates that an object might be in an inconsistent state and
must be checked.
SYSCOPY catalog table (Db2 SQL)

Chapter 24. QUIESCE 395

https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsyscopytable.html

Running QUIESCE on a table space in pending status
When you run QUIESCE on a table space in a pending status, the output will contain various messages.

If you run QUIESCE on a table space in COPY-pending, CHECK-pending, or RECOVER-pending status, it
terminates with messages that are similar to those messages shown in the following example:

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = R92341Q
DSNU050I DSNUGUTC - QUIESCE TABLESPACE UTQPD22A.UTQPS22D
 TABLESPACE UTQPD22A.UTQPS22E
 TABLESPACE UTQPD22A.EMPPROJA
DSNU471I % DSNUQUIA COPY PENDING ON TABLESPACE UTQPD22A.EMPPROJA PROHIBITS
 PROCESSING
DSNU012I DSNUGBAC - UTILITY EXECUTION TERMINATED, HIGHEST RETURN CODE=8

When you run QUIESCE on a table space or index space that is in COPY-pending, CHECK-pending, or
RECOVER-pending status, you might also receive one or more of the following messages:

DSNU202I csect RECOVER PENDING ON TABLESPACE... PROHIBITS PROCESSING
DSNU203I csect RECOVER PENDING ON INDEX ... PROHIBITS PROCESSING
DSNU204I csect PAGESET REBUILD PENDING ON INDEX ... PROHIBITS PROCESSING
DSNU208I csect GROUP BUFFER POOL RECOVER PENDING ON INDEX ... PROHIBITS PROCESSING
DSNU209I csect RESTART PENDING ON ... PROHIBITS PROCESSING
DSNU210I csect INFORMATIONAL COPY PENDING ON INDEX ... PROHIBITS PROCESSING
DSNU211I csect CHECK PENDING ON ... PROHIBITS PROCESSING
DSNU214I csect REBUILD PENDING ON INDEX ... PROHIBITS PROCESSING
DSNU215I csect REFRESH PENDING ON ... PROHIBITS PROCESSING
DSNU471I csect COPY PENDING ON TABLESPACE ... PROHIBITS PROCESSING
DSNU568I csect INDEX ... IS IN INFORMATIONAL COPY PENDING

Reasons why QUIESCE fails to write to disk
The QUIESCE utility attempts to write pages of each table space to disk. Any of the following conditions
can cause this write to fail:

• The table space has a write error range.
• The table space has deferred restart pending.
• An I/O error occurs.

If any of the preceding conditions occur, QUIESCE terminates with a return code of 4 and issues a
DSNU473I warning message.

Related information
DSNU473I (Db2 Messages)

Termination and restart of QUIESCE
You can terminate and restart the QUIESCE utility.

If you use TERM UTILITY to terminate QUIESCE when it is active, QUIESCE releases the drain locks on
table spaces. If QUIESCE is stopped, the drain locks have already been released.

You can restart a QUIESCE utility job, but it starts from the beginning again.

QUIESCE specifies whether the changed pages from the table spaces and index spaces are to be written
to disk. The default option, YES establishes a quiesce point and writes the changed pages from the
table spaces and index spaces to disk. The NO option establishes a quiesce point, but does not write
the changed pages from the table spaces and index spaces to disk. QUIESCE is not performed on table
spaces with the NOT LOGGED attribute.

Related tasks
“Restarting an online utility” on page 46

396 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu473i.html

If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.

Sample QUIESCE control statements
Use the sample control statements as models for developing your own QUIESCE control statements.

Example 1: Establishing a quiesce point for three table spaces

The following control statement specifies that the QUIESCE utility is to establish a quiesce point for table
spaces DSN8D81A.DSN8S81D, DSN8D81A.DSN8S81E, and DSN8D81A.DSN8S81P.

//STEP1 EXEC DSNUPROC,UID='IUIQU2UD.QUIESC2',
// UTPROC='',SYSTEM='DSN'
//SYSIN DD *
QUIESCE TABLESPACE DSN8D12A.DSN8S12D
 TABLESPACE DSN8D12A.DSN8S12E
 TABLESPACE DSN8D12A.DSN8S12P
//*

The following example shows the output that the preceding command produces.

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I DSNUGUTC - QUIESCE TABLESPACE DSN8D81A.DSN8S81D
 TABLESPACE DSN8D81A.DSN8S81E
 TABLESPACE DSN8D81A.DSN8S81P
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81D
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81E
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81P
DSNU474I = DSNUQUIA - QUIESCE AT RBA 000004E43B78 AND AT LRSN 000004E43B78
DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:02
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 2: Establishing a quiesce point for a list of objects

In the following example, the QUIESCE control statement uses a list to specify that the QUIESCE utility is
to establish a quiesce point for the same table spaces as in example 1. The list is defined in the LISTDEF
utility control statement.

//STEP1 EXEC DSNUPROC,UID='IUIQU2UD.QUIESC2',
// UTPROC='',SYSTEM='DSN'
//SYSIN DD *
//DSNUPROC.SYSIN DD *
LISTDEF QUIESCELIST INCLUDE TABLESPACE DSN8D81A.DSN8S81D
 INCLUDE TABLESPACE DSN8D81A.DSN8S81E
 INCLUDE TABLESPACE DSN8D81A.DSN8S81P
QUIESCE LIST QUIESCELIST
//*

The following example shows the output that the preceding command produces.

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I DSNUGUTC - LISTDEF QUIESCELIST INCLUDE TABLESPACE DSN8D81A.DSN8S81D
INCLUDE TABLESPACE DSN8D81A.DSN8S81E
INCLUDE TABLESPACE DSN8D81A.DSN8S81P
DSNU1035I DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
0DSNU050I DSNUGUTC - QUIESCE LIST QUIESCELIST
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81D
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81E
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81P
DSNU474I = DSNUQUIA - QUIESCE AT RBA 000004E56419 AND AT LRSN 000004E56419
DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:00
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Chapter 24. QUIESCE 397

Example 3: Establishing a quiesce point for a table space set.

The following control statement specifies that QUIESCE is to establish a quiesce point for the indicated
table space set. In this example, the table space set includes table space DSN8D81A.DSN8S81D and
all table spaces that are referentially related to it. Run REPORT TABLESPACESET to obtain a list of table
spaces that are referentially related.

QUIESCE TABLESPACESET TABLESPACE DSN8D12A.DSN8S12D

The following example shows the output that the preceding command produces.

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TSLQ.STEP1
DSNU050I DSNUGUTC - QUIESCE TABLESPACESET TABLESPACE DSN8D12A.DSN8S12D
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACESET DSN8D12A.DSN8S12D
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D12A.DSN8S12D
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D12A.DSN8S12E
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D12A.PROJ
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D12A.ACT
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D12A.PROJACT
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D12A.EMPPROJA
DSNU477I - DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D12A.DSN8S1D
DSNU474I - DSNUQUIA - QUIESCE AT RBA 000000052708 AND AT LRSN 000000052708
DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:25
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 4: Establishing a quiesce point without writing the changed pages to disk

In the following example, the control statement specifies that the QUIESCE utility is to establish a quiesce
point for table space DSN8D81A.DSN8S81D, without writing the changed pages to disk. (The default is to
write the changed pages to disk.) In this example, a quiesce point is established for COPY YES indexes,
but not for COPY NO indexes. Note that QUIESCE jobs with the WRITE YES option, which is the default,
process both COPY YES indexes and COPY NO indexes. For both QUIESCE WRITE YES jobs and QUIESCE
WRITE NO jobs, the utility inserts a row in SYSIBM.SYSCOPY for each COPY YES index.

//STEP1 EXEC DSNUPROC,UID='IUIQU2UD.QUIESC2',
// UTPROC='',SYSTEM='DSN'
//SYSIN DD *
//DSNUPROC.SYSIN DD *
QUIESCE TABLESPACE DSN8D81A.DSN8S81D WRITE NO
//*

The preceding command produces the output that is shown in the following example. Notice that the
COPY YES index EMPNOI is placed in informational COPY-pending (ICOPY) status:

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = TEMP
DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I DSNUGUTC - QUIESCE TABLESPACE DSN8D81A.DSN8S81D WRITE NO
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR TABLESPACE DSN8D81A.DSN8S81D
DSNU477I = DSNUQUIA - QUIESCE SUCCESSFUL FOR INDEXSPACE DSN8D81A.EMPNOI
DSNU474I = DSNUQUIA - QUIESCE AT RBA 000004E892A3 AND AT LRSN 000004E892A3
DSNU568I = DSNUGSRX - INDEX ADMF001.EMPNOI IS IN INFORMATIONAL COPY PENDING
DSNU475I DSNUQUIB - QUIESCE UTILITY COMPLETE, ELAPSED TIME= 00:00:00
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 5: Establishing a quiesce point for a clone table space

The following control statement specifies that the QUIESCE utility is to establish a quiesce point for the
specified clone table space and its indexes, and write the changes to disk.

QUIESCE TABLESPACE DBJM0901.TPJM0901 WRITE YES CLONE

398 Db2 12 for z/OS: Utility Guide and Reference

Chapter 25. REBUILD INDEX
The REBUILD INDEX online utility reconstructs indexes or index partitions from the table that they
reference.

During the rebuild process, the REBUILD INDEX utility can also create a FlashCopy image copy of the
indexes being rebuilt.

To avoid the cost of running the RUNSTATS utility afterward, you can also specify the STATISTICS option
to collect inline statistics when you run the REBUILD INDEX utility.

You can use REBUILD INDEX in conjunction with z/OS DFSMS data set encryption to encrypt or decrypt
indexes. REBUILD INDEX always allocates new Db2-managed data sets unless the REUSE option is
specified.

Restriction: REBUILD INDEX SHRLEVEL CHANGE should only be used to fix a broken or restricted index,
to build an index after DEFER, or to support or unencrypt previously encrypted data sets. You should not
use the REBUILD INDEX SHRLEVEL CHANGE utility to move an index to different volumes; instead you
should use the online REORG utility. REBUILD INDEX SHRLEVEL CHANGE on a unique index will not allow
the INSERT option, the DELETE option, or updates that affect the unique index.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• RECOVERDB privilege for the database
• STATS privilege for the database is required if the STATISTICS keyword is specified.
• DBADM or DBCTRL authority for the database. If the object on which the utility operates is in an

implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• DATAACCESS authority
• System DBADM authority
• SYSCTRL or SYSADM authority

If either the FLASHCOPY YES or FLASHCOPY CONSISTENT option is specified, the user ID that invokes
the REBUILD INDEX utility must have the authority to execute the DFSMSdss COPY command.

To run REBUILD INDEX STATISTICS REPORT YES, you must use a privilege set that includes the SELECT
privilege on the catalog tables.

Execution phases of REBUILD INDEX

The REBUILD INDEX utility operates in the following phases:

UTILINIT
Performs initialization and setup.

UNLOAD
Unloads index entries.

SORT
Sorts unloaded index entries.

BUILD
Builds indexes.

SORTBLD
Sorts and builds a table space for parallel index build processing.

© Copyright IBM Corp. 1983, 2024 399

LOG
Processes log iteratively. Used only if you specify SHRLEVEL CHANGE.

UTILTERM
Performs cleanup.

Related tasks
Collecting statistics by using Db2 utilities (Db2 Performance)
Reducing the cost of collecting statistics (Db2 Performance)

Syntax and options of the REBUILD INDEX control statement
The REBUILD INDEX utility control statement, with its multiple options, defines the function that the
utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram
REBUILD

INDEX (

,

creatorid . index-name
1

PART integer

)

(ALL) table-space-spec

LIST listdef-name

INDEXSPACE (

,

database-name .

index-space-name

PART integer

)

(ALL) table-space-spec

LIST listdef-name

SHRLEVEL REFERENCE

SHRLEVEL CHANGE change-spec

drain-spec

CLONE

SCOPE ALL

SCOPE PENDING REUSE SORTDEVT device-type

SORTNUM integer stats-spec

FLASHCOPY NO

FLASHCOPY YES

CONSISTENT FCCOPYDDN( template-name)

PARALLEL(0)

PARALLEL( num-subtasks)

RBALRSN_CONVERSION EXTENDED

RBALRSN_CONVERSION NONE

table-space-spec

400 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_collectstatsutilities.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_improverunstatsperformance.html

TABLESPACE

database-name .

table-space-name

PART integer

change-spec
MAXRO IRLMRWT-value

MAXRO integer

DEFER

LONGLOG CONTINUE

LONGLOG TERM

DRAIN

DELAY 1200

DELAY integer

drain-spec
DRAIN_WAIT IRLMRWT-value

DRAIN_WAIT integer

RETRY UTIMOUT-value

RETRY integer

RETRY_DELAY calculated-default

RETRY_DELAY integer

stats-spec

STATISTICS
REPORT NO

REPORT YES

correlation-stats-spec

UPDATE ALL

UPDATE ACCESSPATH

SPACE

NONE

INVALIDATECACHE NO

INVALIDATECACHE YES

HISTORY ALL

ACCESSPATH

SPACE

NONE

FORCEROLLUP YES

NO

correlation-stats-spec

Chapter 25. REBUILD INDEX 401

KEYCARD
2

FREQVAL NUMCOLS 1 COUNT 10

FREQVAL NUMCOLS integer

COUNT integer
3

MOST

BOTH

LEAST

HISTOGRAM

NUMCOLS 1 NUMQUANTILES 100

NUMCOLS integer

NUMQUANTILES 100

NUMQUANTILES integer

Notes:
1 All listed indexes must reside in the same table space.
2 The KEYCARD option is deprecated. The functionality previously controlled by KEYCARD is incorporated into
the default processing of inline statistics during the execution of REBUILD INDEX STATISTICS and cannot be
disabled.
3 When the COUNT keyword is not specified, the utility automatically determines the count value and collects
the most frequently occurring values.

Option descriptions

INDEX creator-id.index-name
Indicates the qualified name of the index to be rebuilt. Use the form creator-id.index-name to specify
the name.
creator-id

Specifies the creator of the index. This qualifier is optional. If you omit the qualifier creator-id, Db2
uses the user identifier for the utility job.

index-name
Specifies the qualified name of the index that is to be rebuilt. For an index, you can specify either
an index name or an index space name. Enclose the index name in quotation marks if the name
contains a blank.

To rebuild multiple indexes, separate each index name with a comma. All listed indexes must reside in
the same table space. If more than one index is listed and the TABLESPACE keyword is not specified,
Db2 locates the first valid index name that is cited and determines the table space in which that index
resides. That table space is used as the target table space for all other valid index names that are
listed.

INDEXSPACE database-name.index-space-name
Specifies the qualified name of the index space that is obtained from the SYSIBM.SYSINDEXES table.
database-name

Specifies the name of the database that is associated with the index. This qualifier is optional.

402 Db2 12 for z/OS: Utility Guide and Reference

index-space-name
Specifies the qualified name of the index space to copy. For an index, you can specify either an
index name or an index space name.

If you specify more than one index space, they must all be defined on the same table space.

For an index, you can specify either an index name or an index space name.

(ALL)
Specifies that all indexes in the table space that is referred to by the TABLESPACE keyword are to be
rebuilt. If you specify ALL, only indexes on the base table are included.

TABLESPACE database-name.table-space-name
Specifies the table space from which all indexes are to be rebuilt.
database-name

Identifies the database to which the table space belongs.

The default value is DSNDB04.

table-space-name
Identifies the table space from which all indexes are to be rebuilt.

PART integer

Specifies the physical partition of a partitioning index or a data-partitioned secondary index in a
partitioned table that is to be rebuilt. When the target of the REBUILD operation is a nonpartitioned
secondary index, the utility reconstructs logical partitions. If any of the following situations are true
for a nonpartitioned index, you cannot rebuild individual logical partitions:

• the index was created with DEFER YES
• the index must be completely rebuilt (This situation is likely in a disaster recovery scenario)
• the index is in page set REBUILD-pending (PSRBD) status

For these cases, you must rebuild the entire index.

integer is the physical partition number. It must be in the range from 1 to the number of partitions that
are defined for the table space. The maximum is 4096.

You cannot specify PART with the LIST keyword. Use LISTDEF PARTLEVEL for partitioning or data-
partitioned secondary indexes. The PARTLEVEL keyword is ignored for nonpartitioned secondary
indexes; if it is specified, the entire index will be rebuilt.

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. The utility allows one LIST keyword
for each REBUILD INDEX control statement. The list must contain either all index spaces or all table
spaces. For a table space list, REBUILD is invoked once per table space. For an index space list,
Db2 groups indexes by their related table space and executes the rebuild once per table space. This
utility will only process clone data if the CLONE keyword is specified. The use of CLONED YES on the
LISTDEF utility control statement is not sufficient.

The partitions or partition ranges for partitioning or data-partitioned secondary indexes can be
specified in a list. Logical partitions for nonpartitioned secondary indexes cannot be specified in a
list.

SHRLEVEL
Indicates the type of access that is to be allowed for the index, table space, or partition that is to be
checked during REBUILD INDEX processing.
REFERENCE

Specifies that applications can read from but cannot write to the table space or partition that
REBUILD accesses. Applications cannot read or write from the index REBUILD is building.

Chapter 25. REBUILD INDEX 403

CHANGE
Specifies that applications can read from and write to the table space or partition. The index is
placed in RBDP and can be avoided by dynamic SQL. CHANGE is invalid for indexes over XML
tables.

Do not specify SHRLEVEL CHANGE for an index on a NOT LOGGED table space.

Restriction:

• SHRLEVEL CHANGE is not well suited for unique indexes and concurrent DML because the index
is placed in RBDP while being built. Inserts and updates of the index will fail with a resource
unavailable (-904) because uniqueness checking cannot be done while the index is in RBDP.

• SHRLEVEL CHANGE is not allowed on not logged tables, XML indexes, or spatial indexes.

MAXRO
Specifies the maximum amount of time for the last iteration of log processing. During that iteration,
applications have read-only access.

The actual execution time of the last iteration might exceed the specified value for MAXRO.

integer
integer is the number of seconds. Specifying a small positive value reduces the length of the
period of read-only access, but it might increase the elapsed time for REBUILD INDEX to
complete. If you specify a huge positive value, the second iteration of log processing is probably
the last iteration.

The default value is the value of the lock timeout subsystem parameter IRLMRWT.

LONGLOG
Specifies the action that Db2 is to perform, after sending a message to the console, if the number of
records that the next iteration of logging is to process is not sufficiently lower than the number that
the previous iterations processed. This situation means that the reading of the log by the REBUILD
INDEX utility is not being done at the same time as the writing of the application log.
CONTINUE

Specifies that until the time on the JOB statement expires, Db2 is to continue performing
reorganization, including iterations of log processing, if the estimated time to perform an iteration
exceeds the time that is specified for MAXRO.

TERM
Specifies that Db2 is to terminate the reorganization after the delay that is specified by the DELAY
parameter.

DRAIN
Specifies that Db2 is to drain the write claim class after the delay that is specified by the DELAY
parameter. This action forces the final iteration of log processing to occur.

DELAY integer
Specifies the minimum integer between the time that REBUILD send the LONGLOG message to the
console and the time that REBUILD performs the action the LONGLOG parameter specifies.

The integer specifies the number of seconds.

The default value is 1200.

DRAIN_WAIT
Specifies the number of seconds that REBUILD INDEX is to wait when draining the table space or
index. The specified time is the aggregate time for objects that are to be checked. This value overrides
the values that are specified by the IRLMRWT and UTIMOUT subsystem parameters.

integer can be any integer from 0 to 1800. If you do not specify DRAIN_WAIT or specify a value of 0,
the utility uses the value of the lock timeout subsystem parameter IRLMRWT.

RETRY integer
Specifies the maximum number of retries that REBUILD INDEX is to attempt.

404 Db2 12 for z/OS: Utility Guide and Reference

integer can be any integer from 0 to 255. If you do not specify RETRY, REBUILD INDEX uses the value
of the utility multiplier system parameter UTIMOUT.

Specifying RETRY can increase processing costs and result in multiple or extended periods during
which the specified index, table space, or partition is in read-only access.

RETRY_DELAY integer
Specifies the minimum duration, in seconds, between retries. integer can be any integer from 1 to
1800.

If you do not specify RETRY_DELAY, REBUILD INDEX uses the DRAIN_WAIT value × RETRY value.

CLONE
Indicates that REBUILD INDEX is to reconstruct only the specified indexes that are on clone tables.
This utility will only process clone data if the CLONE keyword is specified. The use of CLONED YES
on the LISTDEF statement is not sufficient. If you specify CLONE, you cannot specify STATISTICS.
Statistics are not collected for clone objects.

SCOPE
Indicates the scope of the rebuild organization of the specified index or indexes.
ALL

Indicates that you want the specified index or indexes to be rebuilt.
PENDING

Indicates that you want the specified index or indexes with one or more partitions in REBUILD-
pending (RBDP), REBUILD-pending star (RBDP*), page set REBUILD-pending (PSRBD), RECOVER-
pending (RECP), or advisory REORG-pending (AREO*) state to be rebuilt.

REUSE
Specifies that REBUILD should logically reset and reuse Db2-managed data sets without deleting and
redefining them. If you do not specify REUSE, Db2 deletes and redefines Db2-managed data sets to
reset them.

If you are rebuilding the index because of a media failure, do not specify REUSE.

If a data set has multiple extents, the extents are not released if you use the REUSE parameter.

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically allocated by the sort
program. For device-type, you can specify any disk device that is valid on the DYNALLOC parameter
of the SORT or OPTION options for the sort program. Tape devices are not supported by the sort
program.

device-type is the device type.

A TEMPLATE specification does not dynamically allocate sort work data sets. The SORTDEVT keyword
controls dynamic allocation of these data sets.

SORTNUM integer
Specifies the number of temporary data sets that are to be dynamically allocated by the sort program.
If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and omit SORTNUM, no value is
passed to the sort program; the sort program uses its own default.

integer is the number of temporary data sets that can range from 2 to 255.

You need at least two sort work data sets for each sort. The SORTNUM value applies to each sort
invocation in the utility. For example, if there are three indexes, SORTKEYS is specified, there are no
constraints limiting parallelism, and SORTNUM is specified as 8, then a total of 24 sort work data sets
will be allocated for a job.

Each sort work data set consumes both above the line and below the line virtual storage, so if you
specify too high a value for SORTNUM, the utility may decrease the degree of parallelism due to virtual
storage constraints, and possibly decreasing the degree down to one, meaning no parallelism.

Important: The SORTNUM keyword is ignored if the IGNSORTN subsystem parameter is set to YES.

Chapter 25. REBUILD INDEX 405

STATISTICS
Specifies that index statistics are to be collected.

If you specify the STATISTICS and UPDATE options, statistics are stored in the Db2 catalog. You
cannot collect inline statistics for indexes on the catalog and directory tables.

Restriction:

• If you specify STATISTICS for encrypted data, Db2 might not provide useful statistics on this data.
• You cannot specify STATISTICS for a clone index.

REPORT
Indicates whether a set of messages to report the collected statistics is to be generated.
NO

Indicates that the set of messages is not to be sent as output to SYSPRINT.
YES

Indicates that the set of messages is to be sent as output to SYSPRINT. The generated messages
are dependent on the combination of keywords (such as TABLESPACE, INDEX, TABLE, and
COLUMN) that you specify with the RUNSTATS utility. However, these messages are not dependent
on the specification of the UPDATE option. REPORT YES always generates a report of SPACE and
ACCESSPATH statistics.

KEYCARD
The KEYCARD option is deprecated in the utility control statement and no longer needs to be specified
to collect cardinality statistics on the values in the key columns of an index.

When the STATISTICS option is specified, the utility automatically collects all of the distinct values in
all of the 1 to n key column combinations for the indexes being rebuilt.n is the number of columns in
the index. With the deprecation of KEYCARD, this functionality cannot be disabled.

The utility tolerates the specification of the KEYCARD option. The utility does not issue any messages
if the control statement includes or excludes the KEYCARD option when STATISTICS is specified.

FREQVAL
Controls the collection of frequent-value statistics. If you specify FREQVAL, it must be followed by the
NUMCOLS keyword.
NUMCOLS

Indicates the number of key columns that are to be concatenated when collecting frequent values
from the specified index. If you specify 3, the utility collects frequent values on the concatenation
of the first three key columns.

The default value is 1, which means that Db2 is to collect frequent values only on the first key
column of the index.

COUNT
Indicates the number of frequent values that are to be collected. If you specify 15, the utility
collects 15 frequent values from the specified key columns.

When the COUNT keyword is not specified, the utility automatically determines the count value
and collects the most frequently occurring values.

MOST
Indicates that the utility is to collect the most frequently occurring values for the specified set of
columns when COLGROUP is specified.

BOTH
Indicates that the utility is to collect the most and the least frequently occurring values for the
specified set of columns when COLGROUP is specified.

LEAST
Indicates that the utility is to collect the least frequently occurring values for the specified set of
columns when COLGROUP is specified.

406 Db2 12 for z/OS: Utility Guide and Reference

HISTOGRAM
Indicates that histogram statistics are requested for the specified index.
NUMCOLS

The number of key columns that are to be concatenated when collecting histogram statistics from
the specified index.

NUMQUANTILES
The integer values that follows NUMQUANTILES indicates the number quantiles are requested.
The integer value must be greater than or equal to 1.

Histogram statistics can be collected only on keys with the same order. If the specified key columns
for histogram statistics are of mixed or random order, a DSNU633I warning message is issued.

Histogram statistics that you collect through REBUILD INDEX are not the same as histogram statistics
that you collect through RUNSTATS. Histogram statistics that you collect with REBUILD INDEX are
only rough estimates. To obtain more exact statistics, use RUNSTATS.

Related information:

Histogram statistics (Db2 Performance)
DSNU633I (Db2 Messages)

UPDATE
Indicates whether the collected statistics are to be inserted into the catalog tables. UPDATE also
allows you to select statistics that are used for access path selection or statistics that are used by
database administrators.
ALL

Indicates that all collected statistics are to be updated in the catalog.
ACCESSPATH

Indicates that the only catalog table columns that are to be updated are those that provide
statistics that are used for access path selection.

SPACE
Indicates that the only catalog table columns that are to be updated are those that provide
statistics to help the database administrator assess the status of a particular table space or index.

NONE
Indicates that catalog tables are not to be updated with the collected statistics. This option is valid
only when REPORT YES is specified.

INVALIDATECACHE
Indicates whether statements in the dynamic statement cache are invalidated as a result of the inline
statistics collection. This option does not prevent the utility from invalidating cached statements for
other reasons.
YES

Statements in the dynamic cache are invalidated for the objects that are specified in the job
statement.

NO
Statements in the dynamic cache are not invalidated by the collection of inline statistics for the
objects that are specified in the job statement. However, cached statements might be invalidated
by the utility for reasons other than the inline statistics, such as when the utility resolves objects in
restricted states or applies pending ALTER operations.

HISTORY
Records all catalog table inserts or updates to the catalog history tables.

The default is supplied by the value that is specified in STATISTICS HISTORY on panel DSNTIP6.

ALL
Indicates that all collected statistics are to be updated in the catalog history tables.

Chapter 25. REBUILD INDEX 407

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_histogramstatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu633i.html

ACCESSPATH
Indicates that the only catalog history table columns that are to be updated are those that provide
statistics that are used for access path selection.

SPACE
Indicates that only space-related catalog statistics are to be updated in catalog history tables.

NONE
Indicates that catalog history tables are not to be updated with the collected statistics.

FORCEROLLUP
Specifies whether aggregation or rollup of statistics is to take place when you execute RUNSTATS even
if some indexes or index partitions are empty. This keyword enables the optimizer to select the best
access path.

The following options are available for the FORCEROLLUP keyword:

YES
Indicates that forced aggregation or rollup processing is to be done, even though some indexes or
index partitions might not contain data.

NO
Indicates that aggregation or rollup is to be done only if data is available for all indexes or index
partitions.

If data is not available, the utility issues DSNU623I message if you have set the installation value for
STATISTICS ROLLUP on panel DSNTIP6 to NO.

FLASHCOPY
Specifies whether FlashCopy technology is used to create a copy of the object. Valid values are YES,
NO, or CONSISTENT. When FlashCopy is used, a separate data set is created for each partition or
piece of the object.

The FlashCopy specifications on the utility control statement override any specifications for FlashCopy
that are defined by using the Db2 subsystem parameters. If the FlashCopy subsystem parameters
specify the use of FlashCopy as the default behavior of this utility, the FLASHCOPY option can be
omitted from the utility control statement.

Important: If the input data set is less than one cylinder, FlashCopy technology might not be used
for copying the objects regardless of the FLASHCOPY settings. The copy is performed by IDCAMS if
FlashCopy is not used.

NO
Specifies that no FlashCopy is made. NO is the default value for FLASHCOPY.

YES
Specifies that FlashCopy technology is used to copy the object.

Specify YES only if the Db2 data sets are on FlashCopy Version 2 disk volumes.

Important: Under the following circumstances, the REBUILD INDEX utility might not use
FlashCopy even though YES is specified:

• FlashCopy Version 2 disk volumes are not available
• The source tracks are already the target of a FlashCopy operation
• The target tracks are the source of a FlashCopy operation
• The maximum number of relationships for the copy is exceeded

In the event that FlashCopy is not used, the REBUILD INDEX utility uses traditional I/O methods
to copy the object, which can result in longer than expected execution time.

CONSISTENT
Specifies that FlashCopy technology is used to copy the object. Because the copies created by the
REBUILD INDEX utility are already consistent, the utility treats a specification of CONSISTENT the
same as a specification of YES.

408 Db2 12 for z/OS: Utility Guide and Reference

Related information:

“FlashCopy image copies” on page 144
“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on page 42

PARALLEL num-subtasks
Specifies the maximum number of subtasks that are to be started in parallel to rebuild indexes. If the
PARALLEL keyword is omitted, the maximum number of subtasks is limited by either the number of
partitions being unloaded or the number of indexes built.

REBUILD INDEX typically allocates subtasks in groups of two or three, so the actual number of
subtasks that are started might be less than the number specified on PARALLEL.

The specified number of subtasks for PARALLEL always overrides the specification of the
PARAMDEG_UTIL subsystem parameter, so PARALLEL can be smaller or larger than the value of
PARAMDEG_UTIL.

num-subtasks
Specifies the maximum number of subtasks and must be an integer between 0 and 32767,
inclusive. If the specified value for num-subtasks is greater than 32767, the REBUILD INDEX
statement fails. If 0 or no value is specified for num-subtasks, the REBUILD INDEX utility uses the
optimal number of parallel subtasks. If the specified value for num-subtasks is greater than the
calculated optimal number, the REBUILD INDEX utility limits the number of parallel subtasks to
the optimal number with applied constraints.

RBALRSN_CONVERSION
Specifies the RBA or LRSN format of the target object after the completion of the REBUILD INDEX
utility.

Important: RBALRSN_CONVERSION is deprecated, meaning that its use is discouraged. Although this
keyword remains supported, support is likely to be removed eventually. The utility fails if BASIC is
specified, or if NONE is specified for an object in the 6-byte format.

EXTENDED
Specifies that if an object is found in basic 6-byte format, it is converted to 10-byte extended
format.

EXTENDED is the default value.

NONE
Specifies that no conversion is performed.

The utility fails if RBALRSN_CONVERSION NONE is specified on a table space that is in basic
6-byte format.

If a CLONE relationship exists, the page set conversion cannot be performed. For clone relationships,
you must drop the clone table, convert the base table to extended 10-byte format, and then re-create
the clone table.

REBUILD of a node ID index, when converting the page format to extended, does not convert
versioned XML table spaces that are associated with that base table space.

Specify RBALRSN_CONVERSION NONE during Disaster Recovery scenarios to avoid page set format
conversions, which would complicate the recovery, especially when you rebuild indexes over the
catalog and directory table spaces.

FCCOPYDDN
Specifies the template to be used to create the FlashCopy image copy data set names. If a value is
not specified for FCCOPYDDN on the REBUILD INDEX control statement when FlashCopy is used, the
value specified on the FCCOPYDDN subsystem parameter determines the template to be used.
(template-name)

The data set names for the FlashCopy image copy are allocated according to the template
specification. For table space or index space level FlashCopy image copies, because a data set
is allocated for each partition or piece, ensure that the data set naming convention in the template

Chapter 25. REBUILD INDEX 409

specification is unique enough. Use the &DSNUM variable, which resolves to a partition number or
piece number at execution time.

Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Before running REBUILD INDEX
Certain activities might be required before you run the REBUILD INDEX utility, depending on your
situation.

Because the data that Db2 needs to build an index is in the table space on which the index is based, you
do not need image copies of indexes. To rebuild the index, you do not need to recover the table space,
unless it is also damaged. You do not need to rebuild an index merely because you have recovered the
table space on which it is based.

If you recover a table space to a prior point in time and do not recover all the indexes to the same point in
time, you must rebuild all of the indexes.

Some logging might occur if both of the following conditions are true:

• The index is a nonpartitioning index.
• The index is being concurrently accessed either by SQL on a different partition of the same table space

or by a utility that is run on a different partition of the same table space.

Running REBUILD INDEX when the index has a VARBINARY column.
If you run REBUILD INDEX against an index with the following characteristics, REBUILD INDEX fails:

• The index was created on a VARBINARY column or a column with a distinct type that is based on a
VARBINARY data type.

• The index column has the DESC attribute.

To fix the problem, alter the column data type to BINARY, and then run REBUILD INDEX.

Data sets that REBUILD INDEX uses
The REBUILD INDEX utility uses a number of data sets during its operation.

The following table lists the data sets that REBUILD INDEX uses. The table lists the DD name that is used
to identify the data set, a description of the data set, and an indication of whether it is required. Include
statements in your JCL for each required data set and any optional data sets that you want to use.

Table 58. Data sets that REBUILD INDEX uses

Data set Description Required?

SYSIN Input data set that contains the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

STPRIN01 A data set that contains messages from the sort
program (usually, SYSOUT or DUMMY). This data
set is used when statistics are collected on at least
one data-partitioned secondary index.

No“1” on page 411

Work data sets Temporary data sets for sort input and output when
sorting keys. If index build parallelism is used, the
DD names have the form SWnnWKmm. If index
build parallelism is not used, the DD names have
the form SORTWKnn.

Yes

410 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

Table 58. Data sets that REBUILD INDEX uses (continued)

Data set Description Required?

Sort work data sets Temporary data sets for sort input and output
when collecting inline statistics on at least one
data-partitioned secondary index. The DD names
have the form ST01WKnn.

No“2” on page 411,
“3” on page 411,“4”
on page 411

UTPRINT A data set that contains messages from the sort
program (usually, SYSOUT or DUMMY).

Yes

FlashCopy image copy data sets For copies of the entire index space, a separate
VSAM data set for each partition or piece that is
contained in the index space. For partition-level
or piece-level copies, a VSAM data set for each
partition or piece that is being copied.

No“5” on page 411

Note:

1. STPRIN01 is required if statistics are being collected on at least one data-partitioned secondary
index, but REBUILD INDEX dynamically allocates the STPRIN01 data set if UTPRINT is allocated to
SYSOUT.

2. Required when collecting inline statistics on at least one data-partitioned secondary index.
3. If the DYNALLOC parm of the SORT program is not turned on, you need to allocate the data set.

Otherwise, the sort program dynamically allocates the temporary data set.
4. It is recommended that you use dynamic allocation by specifying SORTDEVT in the utility statement

because dynamic allocation reduces the maintenance required of the utility job JCL.
5. Required if you specify the FLASHCOPY YES

The following object is named in the utility control statement and does not require a DD statement in the
JCL:

Table space
Object whose indexes are to be rebuilt.

Calculating the size of the SORTWKnn data set

To calculate the approximate size (in bytes) of the SORTWKnn data set, use the following formula:

2 x (longest index key + c) x (number of extracted keys)

longest index key
The length of the longest index key that is to be processed by the subtask.

If the index is of varying length, the longest key is the maximum possible length of a key with all
varying-length columns that are padded to their maximum length, plus 2 bytes for each varying-length
column in the index. For example, if an index with 3 columns (A, B, and C) has length values of
CHAR(8) for A, VARCHAR(128) for B, and VARCHAR(50) for C, the longest key is calculated as follows:

8 + 128 + 50 + 2 + 2 = 190

c
A value as follows:

• 14 if the indexes that are being rebuilt are a mix of data-partitioned secondary indexes and
nonpartitioned indexes

• 12 if the indexes that are being rebuilt are partitioned, or if none of them are data-partitioned
secondary indexes.

Chapter 25. REBUILD INDEX 411

number of keys
The number of keys from all indexes that the subtask sorts and processes.

Using two or three large SORTWKnn data sets are preferable to several small ones.

Calculating the size of the ST01WKnn data set
To calculate the approximate size (in bytes) of the ST01WKnn data set, use the following formula:

2 ×(maximum record length × numcols × (count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length
Maximum record length of the SYSCOLDISTSTATS record that is processed when collecting frequency
statistics (You can obtain this value from the RECLENGTH column in SYSTABLES.)

numcols
Number of key columns to concatenate when you collect frequent values from the specified index.

count
Number of frequent values that Db2 is to collect.

Sort work data sets cannot span volumes. Smaller volumes require more sort work data sets to sort the
same amount of data; therefore, large volume sizes can reduce the number of needed sort work data sets.
When you allocate sort work data sets on disk, the recommended amount of space to allow provides at
least 1.2 times the amount of data that is to be sorted.

Tape devices are not supported for sort work data sets.

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Concurrency and compatibility for REBUILD INDEX
The REBUILD INDEX utility has certain concurrency and compatibility characteristics associated with it.

Db2 treats individual data and index partitions as distinct target objects. Utilities that operate on different
partitions of the same table space or index space are compatible.

REBUILD INDEX SHRLEVEL CHANGE jobs cannot be run to rebuild indexes on the same table space
concurrently. As an alternative, REBUILD INDEX can build indexes in parallel by specifying multiple
indexes in a single utility statement. Concurrency for rebuilding indexes in different table space is still
allowed, as is the concurrency in rebuilding different partitions of an index in a partitioned table space.

Restriction: REBUILD INDEX SHRLEVEL CHANGE should only be used to fix a broken or restricted index,
or to build an index after DEFER. You should not use the REBUILD INDEX SHRLEVEL CHANGE utility to
move an index to different volumes; instead you should use the online REORG utility. REBUILD INDEX
SHRLEVEL CHANGE on a unique index will not allow the INSERT option, the DELETE option, or updates
that affect the unique index.

Claims
The following table lists any claims or drains that the utility acquires and any restrictive states that are set
on the target object.

412 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

Table 59. Claim classes of REBUILD INDEX operations.

Target

REBUILD INDEX
SHRLEVEL
REFERENCE

REBUILD INDEX
PART SHRLEVEL
REFERENCE

REBUILD INDEX
SHRLEVEL
CHANGE

Table space or partition DW/UTRO DW/UTRO CR/UTRW

Partitioning index, data-partitioned
secondary index, or physical partition1

DA/UTUT DA/UTUT CR/UTRW

Nonpartitioned secondary index2 DA/UTUT DR CR/UTRW

Logical partition of an index3 N/A DA/UTUT CR/UTRW

Legend:

• CR - Claim the read claim class
• DA - Drain all claim classes; no concurrent SQL access
• DW - Drain the write claim class; concurrent access for SQL readers
• DR - Drains the repeatable-read claim class
• N/A - Not applicable
• UTUT - Utility restrictive state; exclusive control
• UTRO - Utility restrictive state; read-only access allowed
• UTRW - Utility restrictive state; read and write access allowed

Note:

1. Includes document ID indexes and node ID indexes over partitioned XML table spaces
2. Includes document ID indexes and node ID indexes over nonpartitioned XML table spaces and XML

indexes
3. Includes logical partitions of an XML index over partitioned XML table spaces

Compatibility
The following table shows which utilities can run concurrently with REBUILD INDEX on the same target
object. The target object can be an index space or a partition of an index space. If compatibility depends
on particular options of a utility, that information is also shown. REBUILD INDEX does not set a utility
restrictive state if the target object is DSNDB01.SYSUTILX.

Table 60. Compatibility of REBUILD INDEX with other utilities

Action REBUILD INDEX

CHECK DATA No

CHECK INDEX No

CHECK LOB Yes

COPY INDEX No

COPY TABLESPACE SHRLEVEL CHANGE No

COPY TABLESPACE SHRLEVEL REFERENCE Yes

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

Chapter 25. REBUILD INDEX 413

Table 60. Compatibility of REBUILD INDEX with other utilities (continued)

Action REBUILD INDEX

MODIFY Yes

QUIESCE No

REBUILD INDEX No

RECOVER INDEX No

RECOVER TABLESPACE No

REORG INDEX No

REORG TABLESPACE UNLOAD CONTINUE or PAUSE No

REORG TABLESPACE UNLOAD ONLY or EXTERNAL with cluster index No

REORG TABLESPACE UNLOAD ONLY or EXTERNAL without cluster index Yes

REPAIR LOCATE by KEY No

REPAIR LOCATE by RID DELETE or REPLACE No

REPAIR LOCATE by RID DUMP or VERIFY Yes

REPAIR LOCATE INDEX PAGE DUMP or VERIFY No

REPAIR LOCATE TABLESPACE or INDEX PAGE REPLACE No

REPAIR LOCATE TABLESPACE PAGE DUMP or VERIFY Yes

REPORT Yes

RUNSTATS INDEX No

RUNSTATS TABLESPACE Yes

STOSPACE Yes

UNLOAD Yes

To run REBUILD INDEX on SYSIBM.DSNLUX01 or SYSIBM.DSNLUX02, ensure that REBUILD INDEX is the
only utility in the job step and the only utility that is running in the Db2 subsystem. Unloading a base table
that has LOB columns is not compatible with REBUILD INDEX.

Access with REBUILD INDEX SHRLEVEL
You can specify the level of access that you have to your data when running the REBUILD INDEX utility by
using the SHRLEVEL option of REBUILD INDEX.

Before target indexes are built, they are first drained (DRAIN ALL), then placed in RBDP. The indexes are
shown in UTRW states.

For rebuilding an index or a partition of an index, the SHRLEVEL option lets you choose the data access
level that you have during the rebuild:

Log processing with SHRLEVEL CHANGE
When you specify SHRLEVEL CHANGE, Db2 processes the log. This step executes iteratively. The first
iteration processes the log records that accumulated during the previous iteration. The iterations continue
until one of these conditions is met:

• Db2 estimates that the time to perform the log processing in the next iteration will be less than or equal
to the time that is specified by MAXRO. If this condition is met, the next iteration is the last.

414 Db2 12 for z/OS: Utility Guide and Reference

• The number of log records that the next iteration will process is not sufficiently lower than the number
of log records that were processed in the previous iteration. If this condition is met but the first two
conditions are not, Db2 sends message DSNU377I to the console. Db2 continues log processing for the
length of time that is specified by DELAY and then performs the action specified by LONGLOG.

Operator actions

LONGLOG specifies the action that Db2 is to perform if log processing is not occurring quickly enough.
If the operator does not respond to the console message DSNU377I, the LONGLOG option automatically
goes into effect. You can take one of the following actions:

• Execute the TERM UTILITY command to terminate the rebuild process.

Db2 does not take the action specified in the LONGLOG phrase if any one of these events occurs before
the delay expires:

• A TERM UTILITY command is issued.
• Db2 estimates that the time to perform the next iteration is likely to be less than or equal to the time
specified on the MAXRO keyword.

• REBUILD terminates for any reason (including the deadline).

Rebuilding index partitions
The REBUILD INDEX utility can rebuild one or more partitions of a partitioned index by extracting the keys
from the data rows of the table on which they are based.

When you specify the PART option, one or more partitions from a partitioning index or a data-partitioned
secondary index can be rebuilt. However, for nonpartitioned indexes, you cannot rebuild individual logical
partitions in certain situations.

If any of the following situations are true for a nonpartitioned index, you cannot rebuild individual logical
partitions:

• the index was created with DEFER YES
• the index must be completely rebuilt (This situation is likely in a disaster recovery scenario)
• the index is in page set REBUILD-pending (PSRBD) status

For these cases, you must rebuild the entire index.

Rebuilding indexes on partition-by-growth table spaces
The REBUILD INDEX Utility might reset more partitions than it repopulates. Any excess partitions will be
empty after the REBUILD process.

How to improve performance when rebuilding index partitions
You can improve the performance of the REBUILD INDEX utility by taking certain actions.

If you use the PART option to rebuild only a single partition of an index, the utility does not need to scan
the entire table space.

To rebuild several indexes (including data-partitioned secondary indexes) at the same time and reduce
recovery time, use parallel index rebuild, or submit multiple index jobs.

When rebuilding nonpartitioned secondary indexes and partitions of partitioned indexes, this type of
parallel processing on the same table space decreases the size of the sort data set, as well as the total
time that is required to sort all the keys.

When you run the REBUILD INDEX utility concurrently on separate partitions of a partitioned index
(either partitioning or secondary), the sum of the processor time is approximately the time for a single

Chapter 25. REBUILD INDEX 415

REBUILD INDEX job to run against the entire index. For partitioning indexes, the elapsed time for running
concurrent REBUILD INDEX jobs is a fraction of the elapsed time for running a single REBUILD INDEX job
against an entire index.

When to use SHRLEVEL CHANGE:

Schedule REBUILD with SHRLEVEL CHANGE when the rate of writing is low and transactions are short.
Avoid scheduling REBUILD with SHRLEVEL CHANGE when low-tolerance applications are executing.

When to use DRAIN_WAIT:

The DRAIN_WAIT option provides improved control over the time online REBUILD waits for drains. Also,
because the DRAIN_WAIT is the aggregate time that online REBUILD is to wait to perform a drain on a
table space and associated indexes, the length of drains is more predictable than it is when each partition
and index has its own individual waiting-time limit.

By specifying a short delay time (less than the system timeout value, IRLMRWT), you can reduce the
impact on applications by reducing timeouts. You can use the RETRY option to give opportunities for the
online REBUILD INDEX utility to complete successfully. If you do not want to use RETRY processing, you
can still use DRAIN_WAIT to set a specific and more consistent limit on the length of drains.

RETRY allows an online REBUILD that is unable to drain the objects that it requires to try again after a set
period (RETRY_DELAY). Objects will remain in their original state if the drain fails in the LOG phase.

Because application SQL statements can queue behind any unsuccessful drain that the online REBUILD
has tried, define a reasonable delay before you retry to allow this work to complete; the default is lock
timeout subsystem parameter IRLMRWT.

When the default DRAIN WRITERS is used with SHRLEVEL CHANGE and RETRY, multiple read-only log
iterations can occur. Because online REBUILD can have to do more work when RETRY is specified,
multiple or extended periods of restricted access might occur. Applications that run with REBUILD must
perform frequent commits. During the interval between retries, the utility is still active; consequently,
other utility activity against the table space and indexes is restricted.

Recommendation: Run online REBUILD during light periods of activity on the table space or index.

Related concepts
“Rebuilding multiple indexes” on page 416
When you process both node ID indexes and XML indexes together, they are processed sequentially. First
the node ID index is processed and then the XML index.

Rebuilding multiple indexes
When you process both node ID indexes and XML indexes together, they are processed sequentially. First
the node ID index is processed and then the XML index.

Building indexes in parallel

Parallel index build reduces the elapsed time for a REBUILD INDEX job by sorting the index keys and
rebuilding multiple indexes or index partitions in parallel, rather than sequentially. Optimally, a pair of
subtasks processes each index; one subtask sorts extracted keys, while the other subtask builds the
index. REBUILD INDEX begins building each index as soon as the corresponding sort generates its first
sorted record. If you specify STATISTICS, a third subtask collects the sorted keys and updates the catalog
table in parallel.

The subtasks that are used for the parallel REBUILD INDEX processing use Db2 connections. If you
receive message DSNU397I that indicates that the REBUILD INDEX utility is constrained, increase the
number of concurrent connections by using the MAX BATCH CONNECT parameter on panel DSNTIPE.

416 Db2 12 for z/OS: Utility Guide and Reference

The greatest elapsed processing-time improvements result from parallel rebuilding for:

• Multiple indexes on a table space
• A partitioning index or a data-partitioned secondary index on all partitions of a partitioned table space
• A nonpartitioned secondary index on a partitioned table space

The following figure shows the flow of a REBUILD INDEX job with a parallel index build. The same
flow applies whether you rebuild a data-partitioned secondary index or a partitioning index. Db2 starts
multiple subtasks to unload the entire partitioned table space. Subtasks then sort index keys and build
the partitioning index in parallel. If you specify STATISTICS, additional subtasks collect the sorted keys
and update the catalog table in parallel, eliminating the need for a second scan of the index by a separate
RUNSTATS job.

Figure 9. How a partitioning index is rebuilt during a parallel index build

The following figure shows the flow of a REBUILD INDEX job with a parallel index build. Db2 starts
multiple subtasks to unload all partitions of a partitioned table space and to sort index keys in parallel.
The keys are then merged and passed to the build subtask, which builds the nonpartitioned secondary
index. If you specify STATISTICS, a separate subtask collects the sorted keys and updates the catalog
table.

Figure 10. How a nonpartitioned secondary index is rebuilt during a parallel index build

When parallel index build is used:
REBUILD INDEX always sorts the index keys and builds them in parallel for partitioned table spaces
unless constrained by available memory, sort work files, or UTPRINnn file allocations.

Chapter 25. REBUILD INDEX 417

Sort work data sets for parallel index build:
You can either allow the utility to dynamically allocate the data sets that SORT needs, or provide the
necessary data sets yourself. Select one of the following methods to allocate sort work data sets and
message data sets:
Method 1:

REBUILD INDEX determines the optimal number of sort work data sets and message data sets.

1. Specify the SORTDEVT keyword in the utility statement.
2. Allow dynamic allocation of sort work data sets by not supplying SORTWKnn DD statements in

the REBUILD INDEX utility JCL.
3. Allocate UTPRINT to SYSOUT.

Method 2:
You control allocation of sort work data sets, and REBUILD INDEX allocates message data sets.

1. Provide DD statements with DD names in the form SWnnWKmm. The first of these DD
statements must be SW01WK01.

2. Allocate UTPRINT to SYSOUT.

Method 3:
You have the most control over rebuild processing; you must specify both sort work data sets and
message data sets.

1. Provide DD statements with DD names in the form SWnnWKmm. The first of these DD
statements must be SW01WK01.

2. Provide DD statements with DD names in the form UTPRINnn.

Data sets that are used
If you select Method 2 or 3, define the necessary data sets by using the following information.

Each sort subtask must have its own group of sort work data sets and its own print message data set.
In addition, you need to allocate the merge message data set when you build a single nonpartitioned
secondary index on a partitioned table space.

Possible reasons to allocate data sets in the utility job JCL rather than using dynamic allocation are to:

• Control the size and placement of the data sets
• Minimize device contention
• Optimally use free disk space
• Limit the number of utility subtasks that are used to build indexes

The DD names SWnnWKmm define the sort work data sets that are used during utility processing. nn
identifies the subtask pair, and mm identifies one or more data sets that are to be used by that subtask
pair. For example:
SW01WK01

Is the first sort work data set that is used by the subtask that builds the first index.
SW01WK02

Is the second sort work data set that is used by the subtask that builds the first index.
SW02WK01

Is the first sort work data set that is used by the subtask that builds the second index.
SW02WK02

Is the second sort work data set that is used by the subtask that builds the second index.

The DD names UTPRINnn define the sort work message data sets that are used by the utility subtask
pairs. nn identifies the subtask pair.

418 Db2 12 for z/OS: Utility Guide and Reference

Every time you invoke REBUILD INDEX, new UTPRINnn data sets are dynamically allocated. REBUILD
INDEX does not reuse UTPRINnn data sets from previous job steps. This behavior might cause the
available JES2 job queue elements to be consumed more quickly than expected.

If you allocate the UTPRINT DD statement to SYSOUT in the job statement, the sort message data sets
and the merge message data set, if required, are dynamically allocated. If you want the sort message data
sets, merge message data sets, or both, allocated to a disk or tape data set rather than to SYSOUT, you
must supply the UTPRINnn or the UTMERG01 DD statements (or both) in the utility JCL. If you do not
allocate the UTPRINT DD statement to SYSOUT, and you do not supply a UTMERG01 DD statement in the
job statement, partitions are not unloaded in parallel.

Determining the number of sort subtasks

The maximum number of utility subtasks that are started for parallel index build equals:

• For a simple table space, segmented (non-UTS) table space, or simple partition of a partitioned table
space, the number of indexes that are to be built

• For a single index that is being built on a partitioned table space, the number of partitions that are to be
unloaded

REBUILD INDEX determines the number of subtasks according to the following guidelines:

• The number of subtasks equals the number of allocated sort work data set groups.
• The number of subtasks equals the number of allocated message data sets.
• If you allocate both sort work data sets and message data set groups, the number of subtasks equals

the smallest number of allocated data sets.

Allocation of sort subtasks
REBUILD INDEX attempts to assign one sort subtask for each index that is to be built. If REBUILD INDEX
cannot start enough subtasks to build one index per subtask, it allocates any excess indexes across the
pairs (in the order that the indexes were created), so that one or more subtasks might build more than one
index.

Estimating the size of the sort work data sets for inline statistics
If you run REBUILD INDEX with the STATISTICS option and distribution statistics are gathered on a
data-partitioned secondary index, additional data sets are needed for the statistics aggregate sort. If you
choose to provide the data sets, you need to know the size and number of keys that are present in all
of the indexes or index partitions that are being processed by the subtask in order to calculate each sort
work file size. When you determine which indexes or index partitions are assigned to which subtask pairs,
use the following formula to calculate the required space.

2 ×(maximum record length × numcols × (count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length
Maximum record length of the SYSCOLDISTSTATS record that is processed when collecting frequency
statistics (You can obtain this value from the RECLENGTH column in SYSTABLES.)

numcols
Number of key columns to concatenate when you collect frequent values from the specified index.

count
Number of frequent values that Db2 is to collect.

Overriding dynamic sort work data set allocation

Chapter 25. REBUILD INDEX 419

Db2 estimates how many records are to be sorted. This information is used for dynamic allocation of sort
work space. Sort work space is allocated by Db2 or by the sort program that is used.

If the table space contains rows with VARCHAR columns, Db2 might not be able to accurately estimate
the number of records. If the estimated number of records is too high, if the requested sort work space
is not available, or if the estimated number of records is too low, which causes the sort to overflow, the
utility might fail and cause an abend.

Recommendation: To enable Db2 to calculate a more accurate estimate:

• For a table space that is partitioned (non-universal), run RUNSTATS UPDATE ALL before REORG.
• For any other type of table space, run RUNSTATS UPDATE SPACE before REORG.

When you run RUNSTATS with SHRLEVEL REFERENCE, real-time statistics values are also updated.

You can override the dynamic allocation of sort work space in one of the following ways:

• Allocate the sort work data sets with SORTWKnn DD statements in your JCL.
• If the number of keys for the affected index in column TOTALENTRIES of table

SYSIBM.SYSINDEXSPACESTATS is not available or is significantly incorrect, you can update the value to
a more appropriate value using an SQL UPDATE statement. When REBUILD INDEX on the affected index
completes, TOTALENTRIES is set to the number of keys for the affected index.

• If the number of rows in the associated table space in column TOTALROWS of table
SYSIBM.SYSTABLESPACESTATS is not available or is significantly incorrect, you can update the value
to a more appropriate value using an SQL UPDATE statement. The next time that REORG is run,
TOTALROWS is set to the number of rows in the associated table space.

Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Rebuilding critical catalog indexes
For information about how to rebuild critical catalog indexes, see the information about recovering catalog
and directory objects.
Related tasks
“Recovering catalog and directory objects” on page 452
If you need to recover the catalog and directory, you must recover them before you recover user table
spaces. Also, you must recover catalog and directory objects in a specific order.

Recoverability of a rebuilt index
When you successfully rebuild an index that was defined with COPY YES, utility processing inserts a
SYSCOPY row with ICTYPE='B' for each rebuilt index. Rebuilt indexes are also placed in informational
COPY-pending status, which indicates that you should make a copy of the index.

Recommendation: If you have FlashCopy capability, create a FlashCopy image copy during the REBUILD
INDEX. Alternatively, after the index is rebuilt, make a sequential full image copy of the index to create a
recovery point. Both copy methods reset the ICOPY status of the rebuilt index.

Creating a FlashCopy image copy with REBUILD INDEX
As part of REBUILD INDEX processing, you can use FlashCopy technology to quickly take image copies of
the target objects.

About this task
Restriction: You cannot create FlashCopy image copies of indexes that are defined with the COPY NO
attribute.

420 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

Procedure
Specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT) in the REBUILD INDEX utility control statement.
Alternatively, you can set the FLASHCOPY_REBUILD_INDEX subsystem parameter to YES, which specifies
that REBUILD INDEX is to use FLASHCOPY(YES) by default. The value that you specify for the FLASHCOPY
option in the REBUILD INDEX statement always overrides the value for the FLASHCOPY_REBUILD_INDEX
subsystem parameter.

Optionally, you can also specify FCCOPYDDN in the REBUILD INDEX statement. Use this option to specify
a template for the FlashCopy image copy. If you do not specify the FCCOPYDDN option in the REBUILD
INDEX statement, the utility uses the value from the FCCOPYDDN subsystem parameter.

Restriction: The data sets that you specify for the FlashCopy image copy must be on FlashCopy Version 2
disk volumes.

When you specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT), REBUILD INDEX uses FlashCopy
technology to create a consistent copy of the target objects.

The FlashCopy image copy fails if the FlashCopy Version 2 disk volumes are not available or if any of the
other FlashCopy operational restrictions exist. For a list of those operational restrictions, see “FlashCopy
image copies” on page 144.

Related concepts
“FlashCopy image copies” on page 144
FlashCopy image copies can reduce both the time that data is unavailable during the copy operation and
the time that is required for backup and recovery operations. Certain Db2 utilities can create these copies
by invoking the FlashCopy function that is provided by z/OS DFSMS and the IBM TotalStorage Enterprise
Storage Server (ESS) storage subsystems.
Related reference
DEFAULT TEMPLATE field (FCCOPYDDN subsystem parameter) (Db2 Installation and Migration)
REBUILD INDEX field (FLASHCOPY_REBUILD_INDEX subsystem parameter) (Db2 Installation and
Migration)

Termination or restart of REBUILD INDEX
You can terminate and restart the REBUILD INDEX utility.

You can terminate REBUILD INDEX by using the TERM UTILITY command. If you terminate a REBUILD
INDEX job, the index space is placed in the REBUILD-pending status and is unavailable until it is
successfully rebuilt.

By default, Db2 uses RESTART(PHASE) when restarting REBUILD INDEX jobs. The job starts again from
the beginning.

If you restart a job that uses the STATISTICS keyword, inline statistics collection does not occur. To
update catalog statistics, run the RUNSTATS utility after the restarted REBUILD INDEX job completes.

Related tasks
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.

The effect of REBUILD INDEX on index version numbers
Db2 stores the range of used index version numbers in the OLDEST_VERSION and CURRENT_VERSION
columns of the SYSIBM.SYSINDEXES and SYSIBM.SYSINDEXPART catalog tables.

The OLDEST_VERSION column contains the oldest used version number, and the CURRENT_VERSION
column contains the current version number.

Chapter 25. REBUILD INDEX 421

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_fccopyddn.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopyrebuildindex.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopyrebuildindex.html

When you run REBUILD INDEX, the utility updates this range of used version numbers for indexes that are
defined with the COPY NO attribute. REBUILD INDEX sets the OLDEST_VERSION column to the current
version number, which indicates that only one version is active; Db2 can then reuse all of the other version
numbers.

Recycling of version numbers is required when all of the version numbers are being used. All version
numbers are being used when one of the following situations is true:

• The value in the CURRENT_VERSION column is one less than the value in the OLDEST_VERSION column
• The value in the CURRENT_VERSION column is 15, and the value in the OLDEST_VERSION column is 0

or 1.

You can also run LOAD REPLACE, REORG INDEX, or REORG TABLESPACE to recycle version numbers for
indexes that are defined with the COPY NO attribute. To recycle version numbers for indexes that are
defined with the COPY YES attribute or for table spaces, run MODIFY RECOVERY.

Related concepts
Table space versions (Db2 Administration Guide)

Sample REBUILD INDEX control statements
Use the sample control statements as models for developing your own REBUILD INDEX control
statements.

Example 1: Rebuilding an index

The following control statement specifies that the REBUILD INDEX utility is to rebuild the
DSN8C10.XDEPT1 index.

//STEP1 EXEC DSNUPROC,UID='IUIQU2UT.RBLD1',TIME=1440,
// UTPROC='',
// SYSTEM='DSN'
//SYSREC DD DSN=IUIQU2UT.RBLD1.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(8000,(20,20),,,ROUND)
//SYSIN DD *
REBUILD INDEX (DSN8C10.XDEPT1)
/*

Example 2: Rebuilding index partitions

The following control statement specifies that REBUILD INDEX is to rebuild partitions 2 and 3 of the
DSN8C10.XEMP1 index. The partition numbers are indicated by the PART option.

REBUILD INDEX (DSN8C10.XEMP1 PART 2, DSN8C10.XEMP1 PART 3)

Example 3: Rebuilding multiple partitions of a partitioning or secondary index

The following control statement specifies that REBUILD INDEX is to rebuild partitions 2 and 3 of the
DSN8C10.XEMP1 index. The partition numbers are indicated by the PART option. The SORTDEVT and
SORTNUM keywords indicate that the utility is to use dynamic data set and message set allocation.
Parallelism is used by default.

If sufficient virtual storage resources are available, Db2 starts one pair of utility sort subtasks for each
partition. This example does not require UTPRINnn DD statements because it uses DSNUPROC to invoke
utility processing. DSNUPROC includes a DD statement that allocates UTPRINT to SYSOUT.

//SAMPJOB JOB …
//STEP1 EXEC DSNUPROC,UID='SAMPJOB.RBINDEX',UTPROC='',SYSTEM='DSN'
//SYSIN DD *
REBUILD INDEX (DSN8C10.XEMP1 PART 2, DSN8C10.XEMP1 PART 3)
 SORTDEVT SYSWK

422 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_tablespaceversions.html

 SORTNUM 4
/*

Example 4: Rebuilding all partitions of a partitioning index

The following REBUILD INDEX statement specifies that the utility is to rebuild all index partitions of the
DSN8C10.XEMP1 partitioning index. Parallelism is used by default. For this example, REBUILD INDEX
allocates sort work data sets in two groups, which limits the number of utility subtask pairs to two.
This example does not require UTPRINnn DD statements because it uses DSNUPROC to invoke utility
processing. DSNUPROC includes a DD statement that allocates UTPRINT to SYSOUT.

//SAMPJOB JOB …
//STEP1 EXEC DSNUPROC,UID='SAMPJOB.RCVINDEX',UTPROC='',SYSTEM='DSN'
//* First group of sort work data sets for parallel index rebuild
//SW01WK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW01WK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW01WK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//* Second group of sort work data sets for parallel index rebuild
//SW02WK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW02WK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW02WK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SYSIN DD *
 REBUILD INDEX (DSN8C10.XEMP1)
/*

Example 5: Rebuilding all indexes of a table space

The following control statement specifies that REBUILD INDEX is to rebuild all indexes for table space
DSN8D12A.DSN8S12E. The SORTDEVT and SORTNUM keywords indicate that the utility is to use dynamic
data set and message set allocation. Parallelism is used by default.

If sufficient virtual storage resources are available, Db2 starts one utility sort subtask to build the
partitioning index and another utility sort subtask to build the nonpartitioning index. This example does
not require UTPRINnn DD statements because it uses DSNUPROC to invoke utility processing. DSNUPROC
includes a DD statement that allocates UTPRINT to SYSOUT.

//SAMPJOB JOB …
//STEP1 EXEC DSNUPROC,UID='SAMPJOB.RCVINDEX',UTPROC='',SYSTEM='DSN'
//SYSIN DD *
REBUILD INDEX (ALL) TABLESPACE DSN8D12A.DSN8S12E
 SORTDEVT SYSWK
 SORTNUM 4
/*

Example 6: Rebuilding indexes only if they are in a restrictive state and gathering inline statistics

The following REBUILD INDEX statement specifies that the utility is to rebuild partition 9 of index
ID0S482D if it is in REBUILD-pending (RBDP), RECOVER-pending (RECP), or advisory REORG-pending
(AREO*) state. This condition that the index be in a certain restrictive state is indicated by the SCOPE
PENDING option. The STATISTICS FORCEROLLUP YES option indicates that the utility is to collect inline
statistics on the index partition that it is rebuilding and to force aggregation of those statistics.

//STEP6 EXEC DSNUPROC,UID='JUOSU248.CHK6',
// UTPROC='',
// SYSTEM='SSTR'
//UTPRINT DD SYSOUT=*
//SYSREC DD DSN=JUOSU248.CHKIXPX.STEP6.SYSREC,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSCOPY DD DSN=JUOSU248.CHKIXPX.STEP6.SYSCOPY,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=JUOSU248.CHKIXPX.STEP6.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

Chapter 25. REBUILD INDEX 423

//SYSIN DD *
 REBUILD INDEX (IDOS482D PART 9)
 STATISTICS FORCEROLLUP YES
 SCOPE PENDING
/*

Example 7: Rebuilding indexes with SHRLEVEL CHANGE.

The following control statement specifies that during the rebuild, applications can read from and write to
ADMF001.IUKQAI01.

REBUILD INDEX (ADMF001.IUKQAI01)
 SHRLEVEL CHANGE

Example 8: Rebuilding indexes that are on clone tables

The following control statement specifies that REBUILD INDEX is to reconstruct only the specified
indexes that are on clone tables.

REBUILD INDEX (ADMF001.IUKQAI01)
 CLONE

424 Db2 12 for z/OS: Utility Guide and Reference

Chapter 26. RECOVER
The RECOVER utility recovers data to the current state or to a previous point in time by restoring a copy
and then applying log records. The RECOVER utility can also recover data to a previous point in time by
backing out committed work.

The largest unit of data recovery is the table space or index; the smallest is the page. You can recover
a single object or a list of objects. The RECOVER utility recovers an entire table space, index, a partition
or data set, pages within an error range, or a single page. You can recover data from sequential image
copies of an object, a FlashCopy image copy of an object, a system-level backup, or the log. Point-in-time
recovery with consistency automatically detects the uncommitted transactions that are running at the
recover point in time and rolls back their changes on the recovered objects. After recovery, objects will be
left in their transactionally consistent state.

You can use the RECOVER utility in conjunction with z/OS DFSMS data set encryption to encrypt or
decrypt table spaces or indexes.

Output

Output from RECOVER consists of recovered data (a table space, index, partition or data set, error range,
or page within a table space).

Authorization required

To run this utility, you must use a privilege set that includes one of the following authorities:

• RECOVERDB privilege for the database
• DBADM or DBCTRL authority for the database. If the object on which the utility operates is in an

implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• System DBADM authority
• DATAACCESS authority
• SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also run RECOVER, but only on a table space in the
DSNDB01 or DSNDB06 database.

Authorization required for redirected recovery
If you are using redirected recovery (the RECOVER utility with the FROM option), certain authorizations
are required for both source and target objects.

Target objects: You must use a privilege set that includes one of the following authorities on the target
objects:

• RECOVERDB privilege for the database
• DBADM or DBCTRL authority for the database. If the object on which the utility operates is in an

implicitly created database, DBADM authority on DSNDB04 or the implicitly created database is
required.

• System DBADM authority
• DATAACCESS authority
• SYSCTRL or SYSADM authority

© Copyright IBM Corp. 1983, 2024 425

Source objects: You must use a privilege set that includes one of the following authorities on the source
objects:

• Ownership of the base table
• UNLOAD privilege on the base table
• DBADM authority for the database. If the object on which the utility operates is in an implicitly created

database, DBADM authority on DSNDB04 or the implicitly created database is required.
• DATAACCESS authority
• SYSADM authority

Additionally, when multilevel security is used on source objects, consider defining the same security on
target objects.

Restrictions on running RECOVER

The following restrictions apply to the general use of the RECOVER utility. Additional restrictions apply to
point-in-time recoveries and are documented in “Restrictions for point-in-time recoveries” on page 464.

• RECOVER cannot recover a table space or index that is defined to use a storage group that is defined
with mixed specific and nonspecific volume IDs. If you specify such a table space or index, the job
terminates and you receive error message DSNU419I.

• RECOVER cannot recover an index that was altered to PADDED or NOT PADDED. Instead, you need to
rebuild the index.

• Partition level recovery is required when the recovery base is an inline copy that was created by a
REORG that pruned partitions.

Execution phases of RECOVER

The RECOVER utility operates in these phases:

Phase
Description

UTILINIT
Performs initialization and setup.

RESTORE
Locates and merges any appropriate sequential image copies and restores the table space to a
backup level; processes a list of objects in parallel if you specify the PARALLEL keyword.

RESTORER
If you specify the PARALLEL keyword, reads and merges the sequential image copies.

RESTOREW
If you specify the PARALLEL keyword, writes the pages to the object.

PRELOGC
Preliminary LOGCSR phase. Determines uncommitted work that was backed out when the recovery
base for an object is a FlashCopy image copy with consistency.

PRELOGA
Preliminary LOGAPPLY phase. Applies the uncommitted work up to the point of consistency for the
object with a FlashCopy image copy with consistency recovery base.

LOGAPPLY
Applies any outstanding log changes to the object that is restored from the previous phase or step. If a
recover job fails in the middle of the LOGAPPLY phase, it can be restarted from last commit point.

LOGCSR
Analyzes log records and constructs information about inflight, indoubt, inabort, and postponed abort
units of recovery. This phase is executed if either the TORBA and TOLOGPOINT option was specified.

426 Db2 12 for z/OS: Utility Guide and Reference

If a recover job fails in the middle of the LOGCSR phase, it can be restarted from the beginning of
the LOGCSR phase. Db2 members that finished the LOGCSR phase before the RECOVER job failure go
through the LOGCSR phase again.

For BACKOUT YES processing, LOGCSR analyzes log records and constructs information about
committed and canceled units of recovery.

LOGUNDO
Rolls back any uncommitted changes that the active units of recovery made to the recovered objects.
This phase is executed if either the TORBA and TOLOGPOINT option was specified. If you need to
restart the recover job after it enters into the LOGUNDO phase, objects that were not changed by URs
that were active during the recover to point in time will be marked as finished and no need for further
processing.

For BACKOUT YES processing, the LOGUNDO phase backs out committed changes from the current
state of the object to the prior point in time specified. In addition, any uncommitted changes at the
point in time specified are rolled back.

TRANSLAT
Translates the object identifiers (OBIDs) in the recovered data during redirected recovery. The source
OBIDs in the pages of the target objects are changed to the target OBIDs.

UTILTERM
Performs cleanup.

Syntax and options of the RECOVER control statement
The RECOVER utility control statement, with its multiple options, defines the function that the utility job
performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram
RECOVER LIST listdef-name

object-spec dsnum-spec

list-options-spec

recover-options-spec

recover-from-multi-spec

recover-from-spec

object-spec PAGE page-number

CONTINUE

CLONE
1 LOCALSITE

RECOVERYSITE

LOGRANGES YES

LOGRANGES NO
2

object-spec

Chapter 26. RECOVER 427

TABLESPACE

database-name .

table-space-name

INDEXSPACE

database-name .

index-space-name

INDEX

creator-id .

index-name

list-options-spec
BACKOUT NO

BACKOUT
YES

3

TORBA X'byte-string'
VERIFYSET YES

VERIFYSET NO

ENFORCE YES

ENFORCE NO

SCOPE UPDATED

SCOPE ALL

TOLOGPOINT X'byte-string'
VERIFYSET YES

VERIFYSET NO

ENFORCE YES

ENFORCE NO

SCOPE UPDATED

SCOPE ALL

non-LOGONLY-options-spec

LOGONLY

non-LOGONLY-options-spec

REUSE CURRENTCOPYONLY
4

PARALLEL

( num-objects) TAPEUNITS( num-tape-units)

RESTOREBEFORE X'byte-string'

FROMDUMP
4

DUMPCLASS( dcl)

FLASHCOPY_PPRCP NO

PMNO

PMPREF

PMREQ

ALTERNATE_CP( copy-pool)
4

recover-options-spec

428 Db2 12 for z/OS: Utility Guide and Reference

object-spec dsnum-spec

TOCOPY data-set

image-copy-spec

tocopy-options-spec

TOLASTCOPY tocopy-options-spec

TOLASTFULLCOPY tocopy-options-spec

ERROR RANGE

recover-from-multi-spec

TABLESPACE

database-name .

table-space-name dsnum-spec FROM

database-name .

table-space-name dsnum-spec

INDEXSPACE

database-name .

index-space-name dsnum-spec FROM

database-name .

index-space-name dsnum-spec

INDEX

creator-id .

index-name dsnum-spec FROM

creator-id .

index-name dsnum-spec

VERIFYSET YES

VERIFYSET NO

ENFORCE YES

ENFORCE NO

TORBA X' byte-string '

TOLOGPOINT X' byte-string '

non-LOGONLY-options-spec

LOGONLY

recover-from-spec
TABLESPACE

database-name .

table-space-name dsnum-spec FROM

database-name .

table-space-name dsnum-spec

INDEXSPACE

database-name .

index-space-name dsnum-spec FROM

database-name .

index-space-name dsnum-spec

INDEX

creator-id .

index-name dsnum-spec FROM

creator-id .

index-name dsnum-spec

TOCOPY data-set

image-copy-spec

tocopy-options-spec

TOLASTCOPY tocopy-options-spec

TOLASTFULLCOPY tocopy-options-spec

dsnum-spec
DSNUM ALL

DSNUM integer
5

tocopy-options-spec

REUSE CURRENTCOPYONLY

ENFORCE YES

ENFORCE NO

NOSYSCOPY

INLCOPY

FCCOPY

FLASHCOPY_PPRCP NO

PMNO

PMPREF

PMREQ

image-copy-spec

Chapter 26. RECOVER 429

TOVOLUME CATALOG

vol-ser

TOSEQNO integer

Notes:
1 CLONE is not allowed with recover-from-multi-spec or recover-from-spec.
2 Use the LOGRANGES NO option only at the direction of IBM Support. This option can cause the LOGAPPLY
phase to run much longer and, in some cases, apply log records that should not be applied.
3 If you specify BACKOUT YES, any options in non-LOGONLY-options-spec are ignored.
4 CURRENTCOPYONLY, FROMDUMP, and ALTERNATE_CP are not allowed with recover-from-multi-spec or
recover-from-spec.
5 DSNUM integer is not valid for nonpartitioned indexes unless the data set that is specified for TOCOPY is a
FlashCopy image copy.

Option descriptions

You can specify a list of objects by repeating the TABLESPACE, INDEX, or INDEXSPACE keywords. If you
use a list of objects, the valid keywords are: DSNUM, TORBA, TOLOGPOINT, LOGONLY, PARALLEL, and
either LOCALSITE or RECOVERYSITE.

The options TOCOPY, TOLASTCOPY, TOLASTFULLCOPY, TORBA and TOLOGPOINT are all referred to as
point-in-time recovery options.

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. The utility allows one LIST keyword for
each control statement of RECOVER. The list can contain a mixture of table spaces and index spaces.
RECOVER is invoked once for the entire list.

This utility does not support lists that specify more than 32,000 objects. Partitions of table spaces or
index spaces that are included by the PARTLEVEL keyword count as separate objects.

This utility only processes clone data if the CLONE keyword is specified. The use of CLONED YES on
the LISTDEF statement is not sufficient.

The partitions or partition ranges can be specified in a list.

TABLESPACE database-name.table-space-name
Specifies the table space (and optionally, the database to which it belongs) that is to be recovered.

You can specify a list of table spaces by repeating the TABLESPACE keyword. You can recover an
individual catalog or directory table space in a list with its IBM-defined indexes.
database-name

Is the name of the database to which the table space belongs.

The default value is DSNDB04.

table-space-name
Is the name of the table space that is to be recovered.

INDEXSPACE database-name.index-space-name
Specifies the index space that is to be recovered.
database-name

Specifies the name of the database to which the index space belongs.

The default value is DSNDB04.

index-space-name
Specifies the name of the index space that is to be recovered.

430 Db2 12 for z/OS: Utility Guide and Reference

INDEX creator-id.index-name
Specifies the index in the index space that is to be recovered. The RECOVER utility can recover only
indexes that were defined with the COPY YES attribute and subsequently copied.
creator-id

Optionally specifies the creator of the index.

The default value is the user identifier for the utility.

index-name
Specifies the name of the index in the index space that is to be recovered. Enclose the index name
in quotation marks if the name contains a blank.

DSNUM
Identifies a partition within a partitioned table space or a partitioned index, or identifies a data set
within a nonpartitioned table space that is to be recovered. Alternatively, the option can recover the
entire table space or index space.

You cannot specify a logical partition of a nonpartitioned index. You cannot specify a single data set
of a nonpartitioned index unless the data set that is specified for TOCOPY is a FlashCopy image copy.
However, to ensure consistency, all data sets of a nonpartitioned index should be recovered to the
same point in time.

ALL
Specifies that the entire table space or index space is to be recovered.

integer
Specifies the number of the partition or data set that is to be recovered. The maximum value is
4096.

For a partitioned table space or index space:
The integer is its physical partition number.

For a nonpartitioned table space:

Find the integer at the end of the data set name. The data set name has the following format:

catname.DSNDBx.dbname.tsname.y000z.Annn

catname
Is the VSAM catalog name or alias.

x
Is C or D.

dbname
Is the database name.

tsname
Is the table space name.

y
Is I or J.

z
Is 1 or 2.

nnn
Is the data set integer.

FROM
Indicates a redirected recovery. Use the following format:

target-object FROM source-object

target-object
The target object. This object must already be defined. Identify this object by using the
TABLESPACE, INDEXSPACE, or INDEX options as indicated in the syntax diagram.

Chapter 26. RECOVER 431

source-object
The source object. Identify this object by using the format indicated in the syntax diagram.

Source and target objects must reside in the same Db2 subsystem or data sharing group. Source
and target objects can reside in different databases. Source and target objects must be one of the
following types:

• Universal table space (UTS)
• Index space or index over a UTS
• XML UTS with a base table that resides in a UTS
• Auxiliary index space or index over an XML UTS with a base table that resides in a UTS
• LOB table space with a base table that resides in a UTS
• Auxiliary index space or index over a LOB table space with a base table that resides in a UTS

Restriction: Catalog objects, directory objects, objects with clone relationships, and hash-organized
table spaces are not supported as source or target objects.

The current characteristics and attributes of the source and target objects, such as page size, data set
size, and table definitions, must be the same.

Redirected recovery has the following restrictions on specifying the same object multiple times:

• A source object cannot also be a target object, even in a different object pair (or FROM
specification). This restriction applies even if the partitions and pieces do not overlap.

• An object cannot be listed more than once as a target object.
• An object cannot be listed more than once as a source object.

When redirected recovery of an entire nonpartitioned index (NPI) is needed from a specific (source)
FlashCopy image copy, do not use TOCOPY with a list of pieces, as this specification is not allowed.
Instead, request a space-level redirected recovery with DSNUM ALL (the default) and specify
TOLOPOINT with the RBA or LRSN value from the SYSIBM.SYSCOPY.PIT_RBA column. For FlashCopy
image copies with consistency, this RBA or LRSN is the point of consistency. For FlashCopy image
copies without consistency, this RBA or LRSN is the point after creation of the FlashCopy image
copies.

Related information:

“Running a redirected recovery” on page 474

PAGE page-number
Specifies a particular page that is to be recovered. You cannot specify this option if you are recovering
from a concurrent copy, FlashCopy image copy or system-level backup.

page-number is the number of the page, in either decimal or hexadecimal notation. For example, both
999 and X'3E7' represent the same page. PAGE is invalid with the LIST specification.
CONTINUE

Specifies that the recovery process is to continue. Use this option only if an error causes RECOVER
to terminate during reconstruction of a page. In this case, the page is marked as "broken". After
you repair the page, you can use the CONTINUE option to recover the page, starting from the point
of failure in the recovery log.

Contact IBM Support before you run the RECOVER utility with the PAGE CONTINUE keywords.

TORBA X'byte-string'
Specifies, in a non-data-sharing environment, a point on the log to which RECOVER is to recover.
Specify an RBA value. The recovery process ends with the last log record whose relative byte address
(RBA) is not greater than X'byte-string'. If X'byte-string' is the RBA of the first byte of a log record, that
record is included in the recovery.

The RBA is a string of up to 20 hexadecimal characters, which represent the 6-byte RBA format or the
extended 10-byte RBA format. Values are padded on the left with zeros if needed. Any 6-byte values

432 Db2 12 for z/OS: Utility Guide and Reference

are immediately converted to 10-byte format. All further RECOVER processing uses the 10-byte
format.

In a data sharing environment, use TORBA only when you want to recover to a point before the
originating member joined the data sharing group. If you specify an RBA after this point, the recovery
fails.

For a NOT LOGGED table space, the value must be a recoverable point.

Uncommitted work by units of recovery that are active at the specified RBA are backed out by
RECOVER so that each object is left in a consistent state.

TOLOGPOINT X'byte-string'
Specifies a point on the log to which RECOVER is to recover. Specify either an RBA or an LRSN value.

The RBA or LRSN is a string of 12 or 20 hexadecimal characters, which represent the 6-byte
RBA format or the extended 10-byte RBA format. In a data-sharing environment, a 6-byte
LRSN value must be greater than X'00FFFFFFFFFF' and a 10-byte value must be greater than
X'0000FFFFFFFFFFFFFFFF'.

For a NOT LOGGED table space, the value must be a recoverable point.

Uncommitted work by units of recovery that are active at the specified LRSN or RBA will be backed out
by RECOVER, leaving each object in a consistent state.

REUSE
Specifies that RECOVER is to logically reset and reuse Db2-managed data sets without deleting and
redefining them. If you do not specify REUSE, Db2 deletes and redefines Db2-managed data sets to
reset them.

If you are recovering an object because of a media failure, do not specify REUSE.

If a data set has multiple extents, the extents are not released if you use the REUSE parameter.

CURRENTCOPYONLY
Specifies that RECOVER is to improve the performance of restoring concurrent copies (copies that
were made by the COPY utility with the CONCURRENT option) by using only the most recent primary
copy for each object in the list.

When you specify CURRENTCOPYONLY for a concurrent copy, RECOVER builds a DFSMSdss RESTORE
command for each group of objects that is associated with a concurrent copy data set name. If the
RESTORE fails, RECOVER does not automatically use the next most recent copy or the backup copy,
and the object fails. If you specify DSNUM ALL with CURRENTCOPYONLY and one partition fails during
the restore process, the entire utility job on that object fails.

If you specify CURRENTCOPYONLY and the most recent primary copy of the object to be recovered is
not a concurrent copy, Db2 ignores this keyword.

For objects in the recovery list whose recovery base is a system-backup, the default is
CURRENTCOPYONLY.

PARALLEL

Specifies the maximum number of objects in the list that are to be restored in parallel from image
copies on disk or tape. RECOVER attempts to retain tape mounts for tapes that contain stacked image
copies when the PARALLEL keyword is specified. In addition, to maximize performance, RECOVER
determines the order in which objects are to be restored. PARALLEL also specifies the maximum
number of objects in the list that are to be restored in parallel from system-level backups that have
been dumped to tape. The processing may be limited by DFSMShsm.

If you specify TAPEUNITS with PARALLEL, you control the number of tape drives that are dynamically
allocated for the recovery function. The total number of tape drives that are allocated for the
RECOVER job is the number of dynamically allocated tape drives, which is determined as follows:

• The specified value for TAPEUNITS.

Chapter 26. RECOVER 433

• The value that is determined by the RECOVER utility if you omit the TAPEUNITS keyword. The
number of tape drives that RECOVER attempts to allocate is determined by the object in the list that
requires the most tape drives.

If you omit PARALLEL, one object is recovered at a time.

If you specify PARALLEL, you cannot specify TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY.

(num-objects)
Specifies the number of objects in the list that are to be processed in parallel. If storage
constraints are encountered, you can adjust this value to a smaller value.

If you specify 0 or do not specify TAPEUNITS keyword, RECOVER determines the optimal number
of objects to process in parallel.

TAPEUNITS
Specifies the number of tape drives that the utility should dynamically allocate to restore sequential
image copies for the list of objects that are to be processed in parallel.

If you omit this keyword or specify TAPEUNITS(0), the utility determines the number of tape drives
to allocate for the recovery function and the default is set to the minimum number of tape drives
necessary for processing one object at a time to avoid monopolizing tape resources. For example, if
all of the objects in the list requires only the full image copy to be restored, TAPEUNITS is set to 1.
However, if one of the objects in the list has a full image copy plus two incremental copies to restore,
TAPEUNITS is set to 3.

The TAPEUNITS option does not apply to recovery from system-level backups. In this case,
DFSMShsm determines the number of tape drives that are used for the recovery.

(num-tape-units)
Specifies the number of tape drives to allocate. Specify a TAPEUNITS value that is the maximum
RECOVER can consume. RECOVER TAPEUNITS has a max value of 32767.

RESTOREBEFORE X'byte-string'
Specifies that RECOVER is to search for an image copy, concurrent copy, or system-level backup (if
yes has been specified for the SYSTEM_LEVEL_BACKUPS subsystem parameter) with an RBA or LRSN
value earlier than the specified X'byte-string' value to use in the RESTORE phase.

The RBA or LRSN is a string of 12 or 20 hexadecimal characters, which represent the 6-byte RBA
format or the extended 10-byte RBA format. Any 10-byte values are immediately converted to
6-byte format. All further RECOVER processing is performed with the 6-byte format.In a data-sharing
environment, a 6-byte LRSN value must be greater than X'00FFFFFFFFFF' and a 10-byte value must
be greater than X'0000FFFFFFFFFFFFFFFF'.

To avoid specific image copies, concurrent copies, or system-level backups with matching or more
recent RBA or LRSN values in START_RBA, the RECOVER utility applies the log records and restores
the object to its current state or the specified TORBA or TOLOGPOINT value. The RESTOREBEFORE
value is compared with the RBA or LRSN value in the START_RBA column in the SYSIBM.SYSCOPY
record for those copies. For system-level backups, the RESTOREBEFORE value is compared with the
data complete LRSN.

If you specify a TORBA or TOLOGPOINT value with the RESTOREBEFORE option, the RBA or LRSN
value for RESTOREBEFORE must be lower than the specified TORBA OR TOLOGPOINT value. If you
specify RESTOREBEFORE, you cannot specify TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY.

FROMDUMP
Specifies that only dumps of the database copy pool are used for the restore of the data sets.
DUMPCLASS (dcl)

Indicates the DFSMShsm dump class to use to restore the data sets.
The FROMDUMP and DUMPCLASS options that you specify for the RECOVER utility override the
RESTORE/RECOVER and DUMP CLASS NAME installation options that you specify on installation panel
DSNTIP6.

434 Db2 12 for z/OS: Utility Guide and Reference

FLASHCOPY_PPRCP
Specifies the behavior for DFSMShsm or DFSMSdss FlashCopy requests when both of the following
conditions are true:

• The Db2 production volumes are primary volumes in a Metro Mirror (Peer-to-Peer Remote Copy or
PPRC) relationship.

• The recovery base is a system-level backup or FlashCopy image copy.

If the FLASHCOPY_PPRCP option is not specified, the value of the FLASHCOPY_PPRC subsystem
parameter is used as the default.

NO
FlashCopy is not allowed to move data from the system-level backup or FlashCopy image copy
to the Db2 production volumes. The primary volumes in PPRC pairs are not allowed to become
FlashCopy targets.

PMNO
PMNO means "Preserve Mirror No". PMNO specifies the following behavior:

• The Db2 production volumes can be FlashCopy target volumes.
• PPRC pairs are allowed to go into duplex pending status when the FlashCopy image copy or any

data sets from the system-level backup are restored.

PMPREF
PMPREF means "Preserve Mirror Preferred". PMPREF specifies the following behavior:

• The Db2 production volumes can be FlashCopy target volumes.
• The preferred behavior is that the volume pairs not go into duplex pending status when the

FlashCopy image copy or any data sets from the system-level backup are restored.

PMREQ
PMREQ means "Preserve Mirror Required". PMREQ specifies the following behavior:

• The Db2 production volumes can be FlashCopy target volumes.
• The mirror must be preserved, and the volume pairs must not go into a duplex pending status

when the FlashCopy image copy or any data sets from the system-level backup are restored.

Related information:

FLASHCOPY PPRC field (FLASHCOPY_PPRC subsystem parameter) (Db2 Installation and
Migration)
FlashCopy to PPRC primary (DFSMS Advanced Copy Services)
Preserve Mirror FlashCopy (z/OS DFSMSdss Storage Administration)

ALTERNATE_CP
Indicates which system-level backups RECOVER can use. RECOVER is to consider only those system-
level backups that are associated with the specified copy pool.

If the ALTERNATE_CP option is omitted from the utility control statement, all system-level backups
are candidates for a recovery base. RECOVER uses the most recent system-level backup before the
recovery point.

(copy-pool)
A string value to be used for the copy pool name. This value can be up to 14 characters. RECOVER
uses the following copy pool names:

• DSN$copy-pool$DB for the database copy pool
• DSN$copy-pool$LG for the log copy pool

Related information:

“Copy pools” on page 57
Defining Copy Pools (DFSMSdfp Storage Administration)
Defining a copy pool backup storage group (DFSMSdfp Storage Administration)

Chapter 26. RECOVER 435

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopypprc.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopypprc.html
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.antg000/fc2pprc.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.adru000/flcpprmir.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idas200/defcopy.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idas200/defcpbsg.htm

LOGONLY
Specifies that the target objects are to be recovered from their existing data sets by applying only log
records to the data sets. Db2 applies all log records that were written after a point that is recorded in
the data set itself.

To recover an index space by using RECOVER LOGONLY, you must define the index space with the
COPY YES attribute.

Use the LOGONLY option when the data sets of the target objects have already been restored to a
point of consistency by another process offline, such as DFSMSdss concurrent copy.

LOGONLY is not allowed on a table space or index space with the NOT LOGGED attribute.

TOCOPY data-set
Specifies the particular image copy data set that Db2 is to use as a source for recovery.

data-set is the name of the data set.

If the data set is a full image copy, it is the only data set that is used in the recovery. If it is
an incremental image copy, RECOVER also uses the previous full image copy and any intervening
incremental image copies.

If you specify the data set as the local backup copy, Db2 first tries to allocate the FlashCopy image
copy or local primary copy. If the FlashCopy image copy or local primary copy is unavailable, Db2 uses
the local backup copy.

If you use TOCOPY or TORBA to recover a single data set of a nonpartitioned table space, Db2 issues
message DSNU520I to warn that the table space can become inconsistent following the RECOVER
job. This point-in-time recovery can cause compressed data to exist without a dictionary or can even
overwrite the data set that contains the current dictionary.

If you use TOCOPY with a particular partition or data set (identified with DSNUM), the image copy
must be for the same partition or data set, or for the whole table space or index space. If you use
TOCOPY with DSNUM ALL, the image copy must be for DSNUM ALL. You cannot specify TOCOPY with a
LIST specification. If the image copy is a Flash Copy image copy data set, and the object is partitioned,
you must specify the number of the partition that is to be recovered on the DSNUM parameter.

If the image copy data set is a z/OS generation data set, supply a fully qualified data set name,
including the absolute generation and version number. If the NOSYSCOPY option is specified, you can
specify a generation data set with a relative generation number.

If the image copy data set is not a generation data set and more than one image copy data set with
the same data set name exists, use one of the following options to identify the data set exactly:

NOSYSCOPY
Specifies that the full image copy data set is not registered in the SYSIBM.SYSCOPY catalog table.
RECOVER will not verify the image copy.

You can specify a generation data set with a relative generation number. For example, you can specify
'DSNC000.DBPAY.TSPAY.FULL(0)'.

Restriction: Concurrent image copies are not supported.

INLCOPY
The specified data set is an inline image copy that was created by a REORG or LOAD REPLACE job;
therefore, the data set might have duplicated and out-of-order pages.

FCCOPY
The specified data set is a FlashCopy image copy that was created by a COPY, REORG
TABLESPACE, REORG INDEX, LOAD, or REBUILD INDEX job with the FLASHCOPY YES or
CONSISTENT options.

TOVOLUME
Identifies the image copy data set.

436 Db2 12 for z/OS: Utility Guide and Reference

CATALOG
Indicates that the data set is cataloged. Use this option only for an image copy that was created as
a cataloged data set. (Its volume serial is not recorded in SYSIBM.SYSCOPY.)

RECOVER refers to the SYSIBM.SYSCOPY catalog table during execution. If you use TOVOLUME
CATALOG, the data set must be cataloged. If you remove the data set from the catalog after
creating it, you must catalog the data set again to make it consistent with the record for this copy
that appears in SYSIBM.SYSCOPY.

vol-ser
Identifies the data set by an alphanumeric volume serial identifier of its first volume. Use this
option only for an image copy that was created as a noncataloged data set. Specify the first vol-ser
in the SYSCOPY record to locate a data set that is stored on multiple tape volumes.
TOSEQNO integer

Identifies the image copy data set by its file sequence number. integer is the file sequence
number.

TOLASTCOPY
Specifies that RECOVER is to restore the object to the last image copy that was taken. If the last image
copy is a full image copy, it is restored to the object. If the last image copy is an incremental image
copy, the most recent full copy along with any incremental copies are restored to the object.
If the image copy is a Flash Copy image copy data set, and the object is partitioned, you must specify
the number of the partition that is to be recovered on the DSNUM parameter.

TOLASTFULLCOPY
Specifies that the RECOVER utility is to restore the object to the last full image copy that was taken.
Any incremental image copies that were taken after the full image copy are not restored to the object.
If the image copy is a Flash Copy image copy data set, and the object is partitioned, you must specify
the number of the partition that is to be recovered on the DSNUM parameter.

ERROR RANGE
Specifies that all pages within the range of reported I/O errors are to be recovered. Recovering
an error range is useful when the range is small, relative to the object that contains it; otherwise,
recovering the entire object is preferred. You cannot specify this option if you are recovering from a
concurrent copy, FlashCopy image copy or system-level backup.

In some situations, recovery using the ERROR RANGE option is not possible, such as when a sufficient
quantity of alternate tracks cannot be obtained for all bad records within the error range. You can use
the IBM Device Support Facility, ICKDSF service utility to determine whether this situation exists. In
such a situation, redefine the error data set at a different location on the volume or on a different
volume, and then run the RECOVER utility without the ERROR RANGE option.

You cannot specify ERROR RANGE with a LIST specification.

VERIFYSET
Specifies whether RECOVER verifies that all related objects that are required for a point-in-time
recovery are included in the RECOVER statement.
YES

The recovery set is verified. VERIFYSET YES is the default.
NO

The recovery set is not verified. By specifying VERIFYSET NO, you can break up a point-in-time
recovery into multiple jobs or avoid recovering objects that have changed since the selected
recovery point.

VERIFYSET applies to point-in-time recoveries of base objects and the following related objects:

• LOB objects
• XML objects
• History objects
• Archive objects

Chapter 26. RECOVER 437

For redirected recovery, VERIFYSET applies to the target objects.

The VERIFYSET option does not apply to point-in-time recoveries of catalog and directory objects.
VERIFYSET NO behavior is always in effect for point-in-time recoveries of catalog and directory
objects.

Related information:

Archive-enabled tables and archive tables (Introduction to Db2 for z/OS)

ENFORCE
Specifies whether the CHKP and ACHKP pending states are set for a point-in-time recovery when only
a subset of the related objects (BASE, LOB, XML, and RI) are recovered to a point in time.
YES

CHKP and ACHKP are set when these conditions occur.

For catalog and directory objects, ENFORCE YES is the default and cannot be overridden.

NO
CHKP and ACHKP are not set.

For redirected recovery, ENFORCE applies to the target objects.

SCOPE
Indicates which objects in the specified LISTDEF list are to be recovered. The SCOPE option applies
only when the TORBA option or the TOLOGPOINT option is specified.
UPDATED

Indicates that only those objects that have changed since the specified recovery point are
recovered. Objects in the list that have not changed since the recovery point are not processed by
the RECOVER utility. The following objects are exceptions:

• Indexes in information COPY-pending status
• Table spaces in COPY-pending status
• Any objects in RECOVER-pending status

Those objects are recovered even if they have not changed since the specified recovery point.

The SCOPE UPDATED option can potentially improve recovery time, because RECOVER does not
waste time processing objects that have not changed and therefore do not need to be recovered.

If you run RECOVER SCOPE UPDATED at the table-space level and any partition has changed since
the recovery point, the entire table space is recovered.

SCOPE UPDATED is the default value.

ALL
All objects in the list are recovered.

For example, if an object has not been updated, but the underlying page set has an I/O error, you
can specify SCOPE ALL so that the object is recovered.

CLONE
Indicates that RECOVER is to recover only clone table data in the specified table spaces, index spaces
or indexes that contain indexes on clone tables. This utility will only process clone data if the CLONE
keyword is specified. The use of CLONED YES on the LISTDEF statement is not sufficient.

LOCALSITE
Specifies that RECOVER is to use image copies from the local site. If you specify neither LOCALSITE
or RECOVERYSITE, RECOVER uses image copies from the current site of invocation. (The current site
is identified on the installation panel DSNTIPO under SITE TYPE and in the macro DSN6SPRM under
SITETYP.)

RECOVERYSITE
Specifies that RECOVER is to use image copies from the recovery site. If you specify neither
LOCALSITE or RECOVERYSITE, RECOVER uses image copies from the current site of invocation.

438 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html

(The current site is identified on the installation panel DSNTIPO under SITE TYPE and in the macro
DSN6SPRM under SITETYP.)

LOGRANGES YES
Specifies that RECOVER should use SYSLGRNX information for the LOGAPPLY phase. This option is the
default.

LOGRANGES NO
Specifies that RECOVER should not use SYSLGRNX information for the LOGAPPLY phase. Use this
option only under the direction of IBM Support.

This option can cause RECOVER to run much longer. In a data sharing environment this option can
result in the merging of all logs from all members that were created since the last image copy.

This option can also cause RECOVER to apply logs that should not be applied. For example, assume
that you take an image copy of a table space and then run REORG LOG YES on the same table
space. Assume also that the REORG utility abends and you then issue the TERM UTILITY command
for the REORG job. The SYSLGRNX records that are associated with the REORG job are deleted, so a
RECOVER job with the LOGRANGES YES option (the default) skips the log records from the REORG job.
However, if you run RECOVER LOGRANGES NO, the utility applies these log records.

BACKOUT
Specifies whether a log-only backout is to be used to recover objects to a prior point in time. A log-
only backout might decrease the amount of time that an object is unavailable during a point-in-time
recovery if the specified recovery point is relatively recent.
NO

Specifies that backout processing is not to be used.

BACKOUT NO is the default behavior.

YES
Specifies that RECOVER is to use the log to back out changes that were made since the recovery
point. (The recovery point is specified by the TOLOGPOINT or TORBA options.) The changes are
backed out from the current state of the object. No image copy is restored. Any uncommitted work
at the specified recovery point is backed out so that the objects are transactionally consistent.

If you specify BACKOUT YES, the recovery point must be within the most recent Db2 system
checkpoints that are recorded in the BSDS for each member. Otherwise, the recovery cannot
proceed and returns an error.

If you specify the BACKOUT keyword without YES or NO, YES is the default. (If you do not specify
the BACKOUT keyword, BACKOUT NO is the default.)

Related information:

“Point-in-time recovery” on page 462

Before running RECOVER
Certain activities might be required before you run the RECOVER utility, depending on your situation.

If the table space or index space to be recovered is associated with a storage group, Db2 deletes and
redefines the necessary data sets. If the STOGROUP has been altered to remove the volume on which
the table space or index space is located, RECOVER places the data set on another volume of the storage
group.

If you are using Flash Copy image copies, before you start the RECOVER utility confirm that the image
copies are available in disk storage. If any of the required Flash Copy image copies have been migrated to
tape, issue the DFSMShsm RECALL command to restore the image copies from tape to DASD.

Recovering data and indexes
You do not always need to recover both the data and indexes. If you recover the table space or index
space to a current RBA or LRSN, any referentially related objects do not need to be recovered. If you plan

Chapter 26. RECOVER 439

to recover a damaged object to a point in time, use a consistent point in time for all of its referentially
related objects, including related LOB and XML table spaces, for optimal performance. You must rebuild
the indexes from the data if one of the following conditions is true:

• The table space is recovered to a point in time.
• An index is damaged.
• An index is in REBUILD-pending status.
• No image copy of the index is available.

If you need to recover both the data and the indexes, and no image copies of the indexes are available:

1. Use RECOVER TABLESPACE to recover the data.
2. Run REBUILD INDEX on any related indexes to rebuild them from the data.

If you have image copies of both the table spaces and the indexes, you can recover both sets of objects in
the same RECOVER utility statement. The objects are recovered from the image copies and logs.

Data sets that RECOVER uses
The RECOVER utility uses a number of data sets during its operation.

The following table lists the data sets that RECOVER uses. The table lists the DD name that is used to
identify the data set, a description of the data set, and an indication of whether it is required. Include
statements in your JCL for each required data set and any optional data sets that you want to use.

Table 61. Data sets that RECOVER uses

Data set Description Required?

SYSIN Input data set that contains the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

auth-id.job-name.HSM A temporary data set that is automatically
allocated by the utility and deleted when the utility
completes

Yes

The following objects are named in the utility control statement and do not require DD statements in the
JCL:

Table space, index space, or index
Object that is to be recovered. If you want to recover less than an entire table space:

• Use the DSNUM option to recover a partition or data set.
• Use the PAGE option to recover a single page.
• Use the ERROR RANGE option to recover a range of pages with I/O errors.

Image copy data set
Copy that RECOVER is to restore. Db2 accesses this information through the Db2 catalog.

System-level backups
The RECOVER utility chooses the most recent backup (a sequential image copy, a concurrent copy, a
FlashCopy image copy, or a system-level backup) to restore based on the recovery point for the table
spaces or indexes (with the COPY YES attribute) being recovered.

Related concepts
“Before running RESTORE SYSTEM” on page 692
Certain activities might be required before you run the RESTORE SYSTEM utility, depending on your
situation.
“How the RECOVER utility retains tape mounts” on page 473

440 Db2 12 for z/OS: Utility Guide and Reference

The RECOVER utility can automatically retain the tape volumes for the input image copies when a list of
objects is being recovered.
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.
Related tasks
“Recovering with a system-level backup” on page 444
You can take system-level backups by using the BACKUP SYSTEM utility. In some cases, the RECOVER
utility can use a system-level backup of the database copy pool as a recovery base.

Concurrency and compatibility for RECOVER
The RECOVER utility has certain concurrency and compatibility characteristics associated with it.

Db2 treats individual data and index partitions as distinct target objects. Utilities that operate on different
partitions of the same table space or index space are compatible. However, if a nonpartitioned secondary
index exists on a partitioned table space, utilities that operate on different partitions of a table space can
be incompatible because of contention on the nonpartitioned secondary index.

Claims
The following table lists any claims or drains that the utility acquires and any restrictive states that are set
on the target object.

Table 62. Claim classes of RECOVER operations.

Target
RECOVER
(no option)

RECOVER
TOCOPY,
TORBA, or
TOLOGPOI
NT

RECOVER
PART
TOCOPY,
TORBA, or
TOLOGPOI
NT

RECOVER
ERROR-
RANGE

Redirected
recovery-
source
objects

Redirected
recovery-
target
objects

Table space or
partition

DA/UTUT DA/UTUT DA/UTUT DA/UTUT
CW/UTRW1

none/UTRW DA/UTUT

Partitioning index,
data-partitioned
secondary index, or
physical partition2

DA/UTUT DA/UTUT DA/UTUT DA/UTUT
CW/UTRW1

NA NA

Nonpartitioned
secondary index3

DA/UTUT DA/UTUT DA/UTUT DA/UTUT
CW/UTRW1

NA NA

RI dependents none CHKP (YES) CHKP (YES) none none CHKP (YES)

Chapter 26. RECOVER 441

Table 62. Claim classes of RECOVER operations. (continued)

Target
RECOVER
(no option)

RECOVER
TOCOPY,
TORBA, or
TOLOGPOI
NT

RECOVER
PART
TOCOPY,
TORBA, or
TOLOGPOI
NT

RECOVER
ERROR-
RANGE

Redirected
recovery-
source
objects

Redirected
recovery-
target
objects

Legend:

• CHKP (YES): Concurrently running applications enter CHECK-pending after commit
• CW: Claim the write claim class
• DA: Drain all claim classes, no concurrent SQL access
• DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers
• RI: Referential integrity
• UTRW: Utility restrictive state, read-write access allowed
• UTUT: Utility restrictive state, exclusive control
• none: Object is not affected by this utility

Note:

1. During the UTILINIT phase, the claim and restrictive states change from DA/UTUT to CW/UTRW.
2. Includes document ID indexes and node ID indexes over nonpartitioned XML table spaces and XML

indexes.
3. Includes document ID indexes and node ID indexes over partitioned XML table spaces.

RECOVER does not set a utility restrictive state if the target object is DSNDB01.SYSUTILX.

Compatibility
The following table shows which utilities can run concurrently with RECOVER on the same target object.
The target object can be a table space, an index space, or a partition of a table space or index space. If
compatibility depends on particular options of a utility, that information is also documented in the table.
For redirected recovery, the information in this table pertains to the target object.

Table 63. Compatibility of RECOVER with other utilities

Action
Compatible with
RECOVER (no option)?

Compatible with
RECOVER TOCOPY,
TORBA, or
TOLOGPOINT?

Compatible with
RECOVER ERROR-
RANGE?

CHECK DATA No No No

CHECK INDEX No No No

CHECK LOB No No No

COPY INDEXSPACE No No No

COPY TABLESPACE No No No

COPYTOCOPY Yes Yes Yes

DIAGNOSE Yes Yes Yes

LOAD No No No

MERGECOPY Yes Yes Yes

442 Db2 12 for z/OS: Utility Guide and Reference

Table 63. Compatibility of RECOVER with other utilities (continued)

Action
Compatible with
RECOVER (no option)?

Compatible with
RECOVER TOCOPY,
TORBA, or
TOLOGPOINT?

Compatible with
RECOVER ERROR-
RANGE?

MODIFY RECOVERY Yes Yes Yes

MODIFY STATISTICS No No No

QUIESCE No No No

REBUILD INDEX No No No

REORG INDEX2 Yes No Yes

REORG TABLESPACE1 No No No

REPAIR LOCATE INDEX Yes No Yes

REPAIR LOCATE TABLESPACE No No No

REPORT Yes Yes Yes

RUNSTATS INDEX No No No

RUNSTATS TABLESPACE No No No

STOSPACE Yes Yes Yes

UNLOAD No No No

Notes for redirected recovery:

All utilities are compatible on the source object when redirected recovery from a source object is running,
with the following exceptions:

1. Redirected recovery from a source object is compatible with REORG TABLESPACE of the source object
except for the following REORG operations:

• REORG TABLESPACE SHRLEVEL CHANGE or REFERENCE operations that materialize pending ALTER
operations. In the case of indexes, a redirected recovery from a source index is not compatible with a
REORG TABLESPACE operation that materializes pending ALTER operations on the underlying source
table space.

• REORG TABLESPACE with the REBALANCE option on a partition-by-range (PBR) table space
• REORG TABLESPACE on a partition-by-growth (PBG) table space when all of the following situations

are true:

– DROP_PART YES is specified or DROP_PART NO is specified while the REORG_DROP_PBG_PARTS
subsystem parameter is set to ENABLE.

– The table space has a MAXPARTITIONS value that is greater than one.
– FASTSWITCH YES is specified.
– The table is not defined with DATA CAPTURE CHANGES.

2. Redirected recovery from a source object is compatible with REORG INDEX of the source object except
for REORG INDEX SHRLEVEL CHANGE or REFERENCE jobs that materialize pending ALTER operations.

To run on DSNDB01.SYSUTILX, RECOVER must be the only utility in the job step and the only utility
running in the Db2 subsystem.

RECOVER on any catalog or directory table space is an exclusive job; such a job can interrupt another job
between job steps, possibly causing the interrupted job to time out.

Chapter 26. RECOVER 443

Recovering with a system-level backup
You can take system-level backups by using the BACKUP SYSTEM utility. In some cases, the RECOVER
utility can use a system-level backup of the database copy pool as a recovery base.

Procedure
Specify YES for the SYSTEM_LEVEL_BACKUPS installation option on installation panel DSNTIP6.

The RECOVER utility chooses the most recent backup to restore. The backup can be:

• A sequential format image copy
• A VSAM FlashCopy® image copy
• A concurrent copy
• A system-level backup

The choice of which backup is to be restored is based on the recovery point for the table spaces or
indexes that are being recovered. (For an index to be recovered in this way, the COPY YES attribute must
be specified.) However, several exceptions for using a system-level backup exist.

Exceptions:

If any of the following utilities were run since the system-level backup that was chosen as the recovery
base, the use of the system-level backup by the RECOVER utility is prohibited:

• REORG TABLESPACE
• REORG INDEX
• REBUILD INDEX
• LOAD REPLACE
• RECOVER from image copy or concurrent copy

In these cases, the recovery terminates with message DSNU1528I and return code 8.

Note: The RECOVER utility can use a system-level backup, even if the REBUILD INDEX, RECOVER,
REORG, and LOAD utilities ran after the system-level backup was created. The RECOVER utility can use
system-level backups, even if a data set has moved since the backup was created.

For a partition-by-growth table space, a point-in-time recovery is not allowed if the recovery period
includes REORG TABLESPACE deleting empty partitions. REORG TABLESPACE can delete the highest
numbered partitions if they are empty and the REORG_DROP_PBG_PARTS subsystem parameter is set to
ENABLE or if the DROP_PART YES keyword is specified.

The RECOVER utility invokes DFSMShsm to restore the data sets for the object from the system-level
backup of the database copy pool. The user ID that invokes the RECOVER utility must have the authority
to execute the DFSMShsm FRRECOV command.

Related information
FRRECOV command: Requesting a fast replication recovery (z/OS DFSMShsm Storage Administration
Reference)

How to determine which system-level backups Db2 recovers
Db2 recovers different system level backups, depending on your situation.

To determine which system-level backups will be recovered:

• If you specify YES in the RESTORE/RECOVER FROM DUMP field on installation panel DSNTIP6 or you
specify the FROMDUMP option in the RECOVER utility statement, Db2 uses only the dumps on tape of
the database copy pool.

444 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.arcf000/frre1.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.arcf000/frre1.htm

• If you specify a dump class name in the DUMP CLASS NAME field on installation panel DSNTIP6 or
you specify the DUMPCLASS option in the RECOVER utility statement, Db2 uses dumps on tape of the
database copy pool to restore the data sets from the DFSMshsm dump class.

• If you do not specify a dump class name in the DUMP CLASS NAME field on installation panel DSNTIP6,
or you do not specify the DUMPCLASS option in the RECOVER utility statement, RESTORE SYSTEM
issues the DFSMShsm LIST COPYPOOL command and uses the first dump class listed in the output.

If FROMDUMP was not specified on the RECOVER utility statement or on installation panel DSNTIP6, the
system-level backup on disk is used. If the system-level backup does not reside on disk, an error message
is issued. If FROMDUMP was specified either on the RECOVER utility statement or on installation panel
DSNTIP6, then the dumped copy of the system-level backup on tape is used.

Determining which recovery base Db2 uses
The recovery base is the copy that the RECOVER utility starts with when recovering an object. RECOVER
then applies logs as needed.

Procedure
Run the REPORT utility with the RECOVERY option. Review the output to determine whether the objects to
be recovered have any of the following items:

• Sequential image copies
• Concurrent copies
• FlashCopy image copies
• a utility LOG YES event

If you take system-level backups and the value of the SYSTEM_LEVEL_BACKUPS subsystem parameter is
YES, also look at your system-level backup information in the BSDS to determine the recovery base.

Related concepts
“REPORT output” on page 669
The output from the REPORT utility depends on whether the TABLESPACESET or RECOVERY option is
specified.
“How to determine which system-level backups Db2 recovers” on page 444
Db2 recovers different system level backups, depending on your situation.
Related reference
SYSTEM-LEVEL BACKUPS field (SYSTEM_LEVEL_BACKUPS subsystem parameter) (Db2 Installation and
Migration)

Determining whether the system-level backups reside on disk or
tape

Restoring data sets for objects in the database copy pool that are to be recovered from a system-level
backup on disk occurs virtually instantaneously. Restoring data sets for objects that are to be recovered
from a system-level backup on tape volumes takes much longer.

Procedure
To determine whether the system-level backups of the database copy pool reside on the disk or tape:
1. Run the DFSMShsm LIST COPYPOOL command with the ALLVOLS option.
2. Run the DSNJU004 utility output. For data sharing, run the DSNJU004 utility output on each member.
3. Review the output from the DFSMShsm LIST COPYPOOL command with the ALLVOLS option.
4. Review the Db2 system-level backup information in the DSNJU004 utility output.

Chapter 26. RECOVER 445

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_systemlevelbackups.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_systemlevelbackups.html

Results
If the system-level backup that was chosen as the recovery base for the database copy pool no longer
resides on DASD and the FROMDUMP option has not been specified, the recovery of the object will fail.
You can specify the RECOVER FROMDUMP option, or specify it on installation panel DSNTIP6, to direct
the utility to use the system-level backup that was dumped to tape. You can also use the RECOVER
RESTOREBEFORE option to direct the utility to use a recovery base prior to the system-level backup.

Related reference
“DSNJU004 (print log map)” on page 873
The DSNJU004 (print log map) stand-alone utility generates a variety of information that can be useful in
backup and recovery situations.

Recovering a table space or index space
Each table space that is involved is unavailable for most other applications until recovery is complete. If
you make image copies by table space, you can recover the entire table space, or you can recover a data
set or partition from the table space. If you make image copies separately by partition or data set, you
must recover at the data set or partition level.

If image copies are taken at the data set level, RECOVER must be run at the data set level.

If you took FlashCopy image copies at the table space level (by specifying the DSNUM ALL option
in the COPY statement), you do not have to recover all of the data sets individually. Even though
SYSIBM.SYSCOPY contains records for each partition or piece of the FlashCopy image copy data set,
you can recover the entire table space as one object in the RECOVER statement. This recovery is possible,
because SYSIBM.SYSCOPY also contains a record to indicate that the FlashCopy image copy was taken at
the table space level. Alternatively, you can recover each of the data sets individually.

If image copies are taken at the partition level and you want to recover the whole table space, index
space, or index, recover all of the partitions in one or more RECOVER utility invocations. A LISTDEF list
with PARTLEVEL n may be used to specify all partitions or a subset of partitions.

If image copies are taken at the data set level for nonpartitioned objects, recover all of the data sets by
using the DSNUM n option in the RECOVER statement to identify each data set.

When image copies are taken at the data set or partition level and recovery is attempted at the table
space, index space or index level with the DSNUM ALL option or by using a LISTDEF list without the
PARTLEVEL option, Db2 returns error message DSNU512I.

The following RECOVER statement specifies that the utility is to recover table space DSN8S12D in
database DSN8D12A:

RECOVER TABLESPACE DSN8D12A.DSN8S12D

To recover multiple table spaces, create a list of table spaces that are to be recovered; repeat the
TABLESPACE keyword before each specified table space. The following RECOVER statement specifies that
the utility is to recover partition 2 of the partitioned table space DSN8D12A.DSN8S12E, and recover the
table space DSN8D12A.DSN8S12D to the quiesce point (RBA X'000007425468').

RECOVER TABLESPACE DSN8D12A.DSN8S12E DSNUM 2
 TABLESPACE DSN8D12A.DSN8S12D
 TORBA X'000007425468'

The following example shows the RECOVER statement for recovering four data sets in database
DSN8D12A, table space DSN8S12E:

RECOVER PARALLEL (4)
 TABLESPACE DSN8D12A.DSN8S12E DSNUM 1
 TABLESPACE DSN8D12A.DSN8S12E DSNUM 2
 TABLESPACE DSN8D12A.DSN8S12E DSNUM 3
 TABLESPACE DSN8D12A.DSN8S12E DSNUM 4

446 Db2 12 for z/OS: Utility Guide and Reference

Each of the 4 partitions will be restored in parallel. You can also schedule the recovery of these data sets
to run in four separate jobs.

If a table space or data set is in the COPY-pending status, recovering it might not be possible.

Related concepts
“Resetting COPY-pending status” on page 333
If you load with LOG NO and do not take an inline copy, LOAD places a table space in the COPY-pending
status. Immediately after that operation, Db2 cannot recover the table space (although you can, by
loading it again).

Recovering a list of objects
You can recover table spaces, table space partitions, pieces of a nonpartitioned table space, index spaces,
index space partitions, and indexes.

When you recover an object to a prior point in time, you should recover a set of referentially related
table spaces together to avoid putting any of the table spaces in CHECK-pending status. Use REPORT
TABLESPACESET to obtain a table space listing.

Objects that are to be restored from a system-level backup are restored by the main task for the RECOVER
utility by invoking DFSMShsm. Objects that are to be restored from a FlashCopy image copy are restored
by invoking DFSMShsm.

Each object can have a different base from which to recover: system-level backup, image copy, concurrent
copy, or FlashCopy image copy.

RECOVER does not place dependent table spaces that are related by informational referential constraints
into CHECK-pending status.

The RECOVER utility merges incremental copies serially and dynamically. As a result, recovery of a table
space list with numerous incremental copies can be time-consuming and operator-intensive.

If referential integrity violations are not an issue, you can run a separate job to recover each table space.

When you specify the PARALLEL keyword, Db2 supports parallelism during the RESTORE phase and
performs recovery as follows:

• During initialization and setup (the UTILINIT recover phase), the utility locates the full and incremental
copy information for each object in the list from SYSIBM.SYSCOPY.

• The utility sorts the list of objects for recovery into lists to be processed in parallel according to the
number of tape volumes, file sequence numbers, and sizes of each image copy.

• The number of objects that can be restored in parallel depends on the maximum number of available
tape devices and on how many tape devices the utility requires for the incremental and full image copy
data sets. You can control the number of objects that are to be processed in parallel on the PARALLEL
keyword. You can control the number of dynamically allocated tape drives on the TAPEUNITS keyword,
which is specified with the PARALLEL keyword.

• If an object in the list requires a Db2 concurrent copy, the utility sorts the object in its own list and
processes the list in the main task, while the objects in the other sorted lists are restored in parallel. If
the concurrent copies that are to be restored are on tape volumes, the utility uses one tape device and
counts it toward the maximum value that is specified for TAPEUNITS.

• If objects in the list require a system-level backup that was dumped to tape as its recovery base (that
is, the FROMDUMP option was specified), the RECOVER utility will invoke DFSMShsm to restore the
data sets for the objects in parallel. In this case, the degree of parallelism cannot exceed the maximum
number of tasks that can be started by the RECOVER utility. DFSMShsm restores the data sets in parallel
based on its installation options.

Chapter 26. RECOVER 447

Recovering a data set or partition
You can use the RECOVER utility to recover individual partitions and data sets. The phases for data set
recovery are the same as for table space recovery.

About this task
RECOVER can use a space level image copy, data set (partition or piece) level image copy, or system-level
backups to recover individual partitions and data sets.

Restriction: RECOVER does not support recovery of the following data sets and partitions:

• A single data set for nonpartitioned secondary indexes
• A logical partition of a nonpartitioned secondary index

Procedure
To recover a data set or partition for a table space, index space, or index,
• Use a LISTDEF list with PARTLEVEL n or use the RECOVER DSNUM n option.

Related reference
“Syntax and options of the LISTDEF control statement” on page 199
The LISTDEF utility control statement, with its multiple options, defines a list of table spaces, index
spaces, or both on which other utilities can operate.
Related information
DSNU512I (Db2 Messages)

Recovery with incremental copies
The RECOVER utility attempts to use all incremental image copies that were taken since the last full copy.

RECOVER tries to merge all of these incremental image copies into one copy. To do this merging, all of
these copies must be available at the same time. In some cases, this requirement can strain your system
resources, for example, by demanding more tape units than are available. However, even if all of these
copies cannot be made available at the same time, the utility still uses whichever incremental image
copies it can.

Recommendation: If your system resources might be strained by making all required incremental image
copies available, consider running MERGECOPY regularly to merge incremental image copies into one
copy.

During recovery, the utility dynamically allocates the full image copy and then attempts to dynamically
allocate all required incremental image copy data sets. If RECOVER successfully allocates every
incremental copy, recovery proceeds to merge pages to table spaces and apply the log. If a point is
reached where an incremental copy cannot be allocated, RECOVER notes the log RBA or LRSN of the last
successfully allocated data set. RECOVER stops trying to allocate any more incremental image copy data
sets and merges only those data sets that have already been allocated. RECOVER then applies the log
from the noted RBA or LRSN, and ignores the incremental image copies that were not allocated.

Recovering with FlashCopy image copies
Recovering from a FlashCopy image copy is potentially faster than recovering from a traditional
image copy. If an appropriate FlashCopy image copy is available, the RECOVER utility can use it to
instantaneously restore an image copy.

About this task
Consider the following information when planning for recovery with FlashCopy image copies:

448 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu512i.html

• Create both FlashCopy image copies and traditional sequential image copies to provide a complete
recovery base for media failures.

• Creating and recovering from a consistent FlashCopy image copy can consume more processing
resources than creating and recovering from a FlashCopy image copy that was not guaranteed to be
consistent. To recover from a consistent FlashCopy image copy, the RECOVER utility must read the logs
to apply changes that were made to the recovered object after the point of consistency. Some of those
changes are likely to be work that was previously backed out and must be reapplied, because the work
was uncommitted at the time the FlashCopy image copy was created. (In this case, recovery requires
more analysis of the logs during the PRELOGC phase. The preliminary log apply phase, PRELOGA, and
the other log phases also require more analysis.) The START_RBA value in the SYSCOPY record of the
FlashCopy image copy indicates the low RBA or LRSN of the logs that are needed for processing by
RECOVER.

• Recovering with FlashCopy image copies could prevent a subsequent BACKUP SYSTEM utility job on the
same data from completing successfully if the FlashCopy relationship is still outstanding.

This limitation exists because of the characteristics of FlashCopy relationships. When the RECOVER
utility uses fast replication to restore a FlashCopy image copy, it establishes a FlashCopy relationship.
This relationship is between the FlashCopy image copy data set (the FlashCopy source) and the
underlying data sets for the table space or index space (the FlashCopy target). Cascading FlashCopy
relationships, where a data set or extent is both a FlashCopy target and a source, is not supported by
the hardware.

BACKUP SYSTEM also uses FlashCopy technology. Therefore, any of the FlashCopy targets from the
RECOVER operation (those underlying data sets for the table space or index space) cannot also be used
as a source for BACKUP SYSTEM while the FlashCopy relationship from RECOVER still exists.

If you plan to use BACKUP SYSTEM, use the REC_FASTREPLICATION subsystem parameter as
described in step 1 to control whether the RECOVER utility should use FlashCopy to restore FlashCopy
image copies.

• If the FlashCopy image copy has been migrated or deleted, RECOVER uses the equivalent sequential
image copies (created from the FlashCopy image copy) if any exist. Otherwise, the next most recent
eligible recovery base is used.

Procedure
To recover with FlashCopy image copies:
1. Ensure that the REC_FASTREPLICATION subsystem parameter is set to PREFERRED or REQUIRED.

If this subsystem parameter is set to PREFERRED, RECOVER attempts to use fast replication
(FlashCopy) to restore the FlashCopy image copy. Fast replication is not used if the underlying data
sets for the table space or index space are already in a FlashCopy relationship due to the BACKUP
SYSTEM utility or to the COPY utility. In this case, traditional I/O methods are used instead of fast
replication to restore the FlashCopy image copy.

If this subsystem parameter is set to REQUIRED, RECOVER must use fast replication to restore the
FlashCopy image copy. If fast replication cannot be used, the recovery of the object fails. For example,
the recovery could fail if the BACKUP SYSTEM utility has established a FlashCopy relationship with the
production volume.

Restriction: If the RECOVER utility establishes a FlashCopy relationship to restore a FlashCopy image
copy and the BACKUP SYSTEM utility is started, the creation of the system-level backup might fail. The
reason for the failure is because cascading FlashCopy relationships are not supported.

Otherwise, if this subsystem parameter is set to NONE, RECOVER restores the FlashCopy image copy
using traditional I/O methods. Use this option if you use BACKUP SYSTEM and you do not want
recovery from FlashCopy image copies to interfere with the creation of system-level backups.

2. Specify an appropriate RECOVER utility control statement.
You do not need to specify any extra options in the RECOVER statement to indicate that you want
FlashCopy image copies to be used. The RECOVER utility uses FlashCopy image copies if available.

Chapter 26. RECOVER 449

However, if you specify that RECOVER is to use a specific FlashCopy image copy (by specifying
TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY), specify the DSNUM option with the appropriate data
set or partition number for the FlashCopy image copy that you want to use.

If you took FlashCopy image copies at the table space level (by specifying the DSNUM ALL option in the
COPY statement), you do not have to recover all of the data sets individually. You can recover the entire
table space as one object in the RECOVER statement. Alternatively, you can recover each of the data
sets individually.

Related concepts
“FlashCopy image copies” on page 144
FlashCopy image copies can reduce both the time that data is unavailable during the copy operation and
the time that is required for backup and recovery operations. Certain Db2 utilities can create these copies
by invoking the FlashCopy function that is provided by z/OS DFSMS and the IBM TotalStorage Enterprise
Storage Server (ESS) storage subsystems.
“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on page 42
You can use subsystem parameters to control whether utilities that invoke DFSMSdss COPY use
FlashCopy technology.
Encrypted FlashCopy image copies, copies made with DFSMSdss concurrent copy, and system-level
backups (Managing Security)
Related reference
FAST RESTORE field (REC_FASTREPLICATION subsystem parameter) (Db2 Installation and Migration)

Recovering a page
Using RECOVER PAGE enables you to recover data on a page that is damaged.

In some situations, you can determine (usually from an error message) which page of an object has been
damaged. You can use the PAGE option to recover a single page. You can use the CONTINUE option to
continue recovering a page that was damaged during the LOGAPPLY phase of a RECOVER operation.

Suppose that you start RECOVER for table space TSPACE1. During processing, message DSNI012I
informs you of a problem that damages page number 5. RECOVER completes, but the damaged page,
number 5, is in a stopped state and is not recovered. When RECOVER ends, message DSNU501I informs
you that page 5 is damaged.

To repair the damaged page:

1. Use the DUMP option of the REPAIR utility to view the contents of the damaged page. Determine what
change should have been made by the applicable log record, and apply it by using the REPLACE option
of REPAIR. Use the RESET option to turn off the inconsistent-data indicator.

Attention: Be extremely careful when using the REPAIR utility to replace data. Using REPAIR to
change data to invalid values can produce unpredictable results, particularly when you change
page header information. Improper use of REPAIR can result in damaged data, or in some
cases, system failure.

2. Resubmit the RECOVER utility job by specifying TABLESPACE(TSPACE1) PAGE(5) CONTINUE. The
RECOVER utility finishes recovering the damaged page by applying the log records that remain after
the one that caused the problem.

If more than one page is damaged during RECOVER, perform the preceding steps for each damaged page.

Recovering an error range
By using the ERROR RANGE option of RECOVER, you can repair pages with reported I/O errors. Db2
maintains a page error range for I/O errors for each data set; pages within the range cannot be accessed.
The DISPLAY DATABASE command displays the range.

When recovering an error range, RECOVER:

450 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_backupencryptedfcic.html
https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_backupencryptedfcic.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_recfastreplication.html

1. Locates, allocates, and applies image copies.
2. Applies changes from the log.

The following RECOVER statement specifies that the utility is to recover any current error range problems
for table space TS1:

RECOVER TABLESPACE DB1.TS1 ERROR RANGE

Recovering an error range is useful when the range is small, relative to the object containing it; otherwise,
recovering the entire object is preferable.

Message DSNU086I indicates that I/O errors were detected on a table space and that you need to
recover it. Before you attempt to use the ERROR RANGE option of RECOVER, you should run the ICKDSF
service utility to correct the disk error. If an I/O error is detected during RECOVER processing, Db2 issues
message DSNU538I to identify the affected target tracks are involved. The message provides enough
information to run ICKDSF correctly.

In some situations, which are announced by error messages, recovery of only an error range is not
possible. In such a situation, recovering the entire object is preferable.

During the recovery of the entire table space or index space, Db2 might still encounter I/O errors that
indicate Db2 is still using a bad volume. For user-defined data sets, you should use Access Method
Services to delete the data sets and redefine them with the same name on a new volume. If you use Db2
storage groups, you can remove the bad volume from the storage group by using ALTER STOGROUP. If you
use DFSMS storage groups, you should also remove the bad volume from the DFSMS storage group.

Effect on RECOVER of the NOT LOGGED or LOGGED table space
attributes

You can recover NOT LOGGED table spaces to any recoverable point.

Recoverable points are established when you take one of the following actions:

• Alter a table space from LOGGED to NOT LOGGED. If a base table space is altered to NOT LOGGED and
its associated LOB table spaces already have the NOT LOGGED attribute, the ALTER to NOT LOGGED is
not a recoverable point.

• Take an image copy from a NOT LOGGED table space.
• When a table has the NOT LOGGED attribute, and an ALTER TABLE with the ADD PARTITION clause is

executed.
• When insertion of data into a partition-by-growth table space causes Db2 to add a new partition.

To recover a set of objects with LOB relationships, you should run RECOVER with the TOLOGPOINT option
to identify a common recoverable point for all objects. For a non-LOB table space, or a LOB table space
with a base table space that has the NOT LOGGED attribute, the logging attribute of the table space must
meet these following conditions:

• For recovery to the current point in time, the current value of the logging attribute of the object must
match the logging attribute at the most current recoverable point.

• For recovery to a prior point in time, the current value of the logging attribute of the object must match
the logging attribute at the time that is specified by TOLOGPOINT, TORBA, TOCOPY, TOLASTCOPY, or
TOLASTFULLCOPY

Recovering with a data set copy that is not made by Db2
You can restore a data set to a point of consistency by using a data set copy that was not made by the
COPY utility.

After recovery to the point of consistency, if you choose to continue and recover to the current point in
time, you do not want RECOVER to begin processing by restoring the data set from a Db2 image copy.
Therefore, use the LOGONLY option of RECOVER, which causes RECOVER to skip the RESTORE phase and

Chapter 26. RECOVER 451

apply the log records only, starting from the first log record that was written after the data set was backed
up.

Because the data sets are restored offline without Db2 involvement, RECOVER LOGONLY checks that the
data set identifiers match those that are in the Db2 catalog. If the identifiers do not match, message
DSNU548I is issued, and the job terminates with return code 8.

You can use the LOGONLY option on a list of objects.

To ensure that no other transactions can access Db2 objects between the time that you restore a data set
and the time that you run RECOVER LOGONLY, follow these steps:

1. Stop the Db2 objects that are being recovered by issuing the following command:

-STOP DATABASE(database-name) SPACENAM(space-name)

2. Restore all Db2 data sets that are being recovered.
3. Start the Db2 objects that are being recovered by issuing the following command:

-START DATABASE(database-name) SPACENAM(space-name) ACCESS(UT)

4. Run the RECOVER utility without the TORBA or TOLOGPOINT parameters and with the LOGONLY
parameter to recover the Db2 data sets to the current point in time and to perform forward recovery
using Db2 logs. If you want to recover the Db2 data sets to a prior point in time, run the RECOVER
utility with either TORBA or TOLOGPOINT, and with the LOGONLY parameters.

5. If you did not recover related indexes in the same RECOVER control statement, rebuild all indexes on
the recovered object.

6. Issue the following command to allow access to the recovered object if the recovery completes
successfully:

-START DATABASE(database-name) SPACENAM(space-name) ACCESS(RW)

With the LOGONLY option, when recovering a single piece of a multi-piece linear page set, RECOVER
opens the first piece of the page set. If the data set is migrated by DFSMShsm, the data set is recalled by
DFSMShsm. Without LOGONLY, no data set recall is requested.

Backing up a single piece of a multi-piece linear page set is not recommended. This action can cause a
data integrity problem if the backup is used to restore the data set at a later time.

Recovering catalog and directory objects
If you need to recover the catalog and directory, you must recover them before you recover user table
spaces. Also, you must recover catalog and directory objects in a specific order.

Before you begin
Before you can recover catalog and directory objects, you must meet the following requirements:

• Converting page sets to or from extended 10-byte format during REBUILD INDEX on catalog and
directory indexes complicates recovery and might cause failures. To avoid these failures, convert your
catalog and directory indexes to extended 10-byte format before you might need to recover your
catalog and directory objects.

• Recovering and rebuilding catalog and directory objects requires installation SYSADM or installation
SYSOPR authority.

• If you are performing a recovery at a remote site, start the remote Db2 for z/OS subsystem
with ACCESS(MAINT) specified on the START DB2 command and with DEFER ALL specified in the
DSNZPARM load module. (See installation panels DSNTIPS and DSNTIPO3.) If Db2 is not started with
ACCESS(MAINT), resource unavailable conditions on the real-time statistics (RTS) catalog indexes might
occur during REBUILD INDEX(ALL) for the catalog and directory indexes.

452 Db2 12 for z/OS: Utility Guide and Reference

• If the logging environment requires adding or restoring active logs, restoring archive logs, or performing
any action that affects the log inventory in the BSDS, you need to recover the BSDS before catalog and
directory objects. To copy active log data sets, use the Access Method Services REPRO function.

A full recovery of the catalog and directory is recommended. However, if you need to do a point-time-
recovery, be aware of the implications associated with doing point-in-time recovery of the catalog,
directory, and user objects. See “Point-in-time recovery of the catalog, directory, and all user objects”
on page 458.

About this task
The following table spaces do not have entries in SYSIBM.SYSLGRNX. The indexes that are associated
with these table spaces also do not have entries in SYSIBM.SYSLGRNX, even if they were defined with
COPY YES. These objects are assumed to be open from the point of their last image copy, so the RECOVER
utility processes the log from that point forward.

• DSNDB01.SYSUTILX
• DSNDB01.DBD01
• DSNDB01.SYSLGRNX
• DSNDB06.SYSTSCPY
• DSNDB01.SYSDBDXA

Requirement: You must recover the catalog and directory objects in the order that is specified in this
task. If you are recovering any subset of the objects in the list, start with the object that is listed first and
continue in the order of the list. For example, if you need to recover SYSLGRNX, SYSUTILX, and SYSUSER,
recover SYSUTILX first, then SYSLGRNX, and then SYSUSER. You do not need to recover all of the objects;
only recover those objects that require recovery.

General guidelines: Use the following general guidelines for all of the steps in this task:

• If you copy your catalog or directory indexes, use the RECOVER utility to recover your indexes.
Otherwise, use the REBUILD INDEX utility to rebuild those indexes.

• For all catalog and directory table spaces, you can list the IBM-defined indexes that have the COPY YES
attribute in the same RECOVER utility statement.

• Recovery of the items in the list can be done concurrently or included in the same job step. However, the
following restrictions apply:

– When you recover the following table spaces or indexes, the job step in which the RECOVER
statement appears must not contain any other utility statements. No other utilities can run while
the RECOVER utility is running.

- DSNDB01.SYSUTILX
- All indexes on SYSUTILX
- DSNDB01.DBD01

– When you recover the following table spaces, no other utilities can run while the RECOVER utility is
running. Other utility statements can exist in the same job step.

- DSNDB06.SYSTSCPY
- DSNDB01.SYSLGRNX

Procedure
To recover catalog and directory objects:

1. Recover DSNDB01.SYSUTILX.
2. Run REBUILD INDEX(ALL) on DSNDB01.SYSUTILX.
3. Recover DSNDB01.DBD01.
4. Run REBUILD INDEX(ALL) on DSNDB01.DBD01.

Chapter 26. RECOVER 453

5. Recover DSNDB01.SYSDBDXA.
6. Run REBUILD INDEX(ALL) on DSNDB01.SYSDBDXA.
7. Recover DSNDB06.SYSTSCPY.

8. Run REBUILD INDEX(ALL) on DSNDB06.SYSTSCPY.

9. Recover DSNDB01.SYSLGRNX.
10. Run REBUILD INDEX(ALL) on DSNDB01.SYSLGRNX.
11. Recover DSNDB06.SYSTSSTG and DSNDB06.SYSTSVOL.
12. Run REBUILD INDEX(ALL) on DSNDB06.SYSTSSTG and DSNDB06.SYSTSVOL.
13. Recover all of the remaining catalog and directory table spaces in a single RECOVER utility statement

with the PARALLEL option.

The remaining catalog and directory table spaces include the following tables spaces:

• The directory table spaces in DSNDB01:

– SCT02
– SPT01
– SYSSPUXA
– SYSSPUXB

• The catalog table spaces that are listed in the following table:

454 Db2 12 for z/OS: Utility Guide and Reference

Table 64. Remaining catalog table spaces to recover after new function is activated

Remaining catalog table spaces to recover after new function is activated

SYSALTER
SYSCONTX
SYSDDF
SYSEBCDC
SYSGPAUT
SYSGRTNS
SYSHIST
SYSJAUXA
SYSJAUXB
SYSJAVA
SYSPLUXA
SYSPLUXB
SYSROLES
SYSSEQ
SYSSEQ2
SYSSTATS
SYSTARG
SYSTSADT
SYSTSASC
SYSTSATS
SYSTSATW
SYSTSATX
SYSTSAUX
SYSTSCHX
SYSTSCKD
SYSTSCKS
SYSTSCOL
SYSTSCON
SYSTSCTD
SYSTSCTL

SYSTSCTR
SYSTSDAT
SYSTSDBA
SYSTSDBR
SYSTSDBU
SYSTSDEP
SYSTSDQD
SYSTSDQE
SYSTSDQH
SYSTSDQO
SYSTSDQS
SYSTSDQT
SYSTSDQY
SYSTSENV
SYSTSFAU
SYSTSFLD
SYSTSFOR
SYSTSICO
SYSTSIPT
SYSTSISH1

SYSTSISS
SYSTSIXC
SYSTSIXR
SYSTSIXS
SYSTSIXT
SYSTSTSH1

SYSTSKEY
SYSTSKYC
SYSTSLVH
SYSTSOBX

SYSTSPDO
SYSTSPDT
SYSTSPEN
SYSTSPHX
SYSTSPKA
SYSTSPKC
SYSTSPKD
SYSTSPKG
SYSTSPKL
SYSTSPKS
SYSTSPKX
SYSTSPKY
SYSTSPLA
SYSTSPLD
SYSTSPLN
SYSTSPLY
SYSTSPRH
SYSTSPRM
SYSTSPTX
SYSTSPVR
SYSTSQRA
SYSTSQRE
SYSTSQRO
SYSTSQRP
SYSTSQRS
SYSTSQRY
SYSTSRAU
SYSTSREL
SYSTSROU
SYSTSSCM

SYSTSSES
SYSTSSFB
SYSTSSNL
SYSTSSNX
SYSTSSRG
SYSTSSTA
SYSTSSTM
SYSTSSXL
SYSTSSYN
SYSTSTAB
SYSTSTAU
SYSTSTBC
SYSTSTPF
SYSTSTPT
SYSTSTRG
SYSTSTRT
SYSTSTSP
SYSTSTSS
SYSTSUNI
SYSTSVAD
SYSTSVAR
SYSTSVAT
SYSTSVAU
SYSTSVEW
SYSTSVTR
SYSTSVWD
SYSTSVWT
SYSTSXTM
SYSTSXTS
SYSUSER
SYSXML

Note:
1

If versioning is not defined in the database, SYSTSISH and SYSTSTSH do not need to be
recovered.

14. Run REBUILD INDEX(ALL) on DSNDB06.SYSTSISS and DSNDB06.SYSTSTSS.

15. Run REBUILD INDEX(ALL) on DSNDB06.SYSTSTSP, DSNDB06.SYSTSTPT, and DSNDB06.SYSTSTAB.

Execute the following utility statements to rebuild the IBM-defined and any user-defined indexes on
the table spaces:

 REBUILD INDEX (ALL) TABLESPACE DSNDB06.SYSTSTSP
 RBALRSN_CONVERSION NONE
 REBUILD INDEX (ALL) TABLESPACE DSNDB06.SYSTSTPT
 RBALRSN_CONVERSION NONE
 REBUILD INDEX (ALL) TABLESPACE DSNDB06.SYSTSTAB
 RBALRSN_CONVERSION NONE

16. Rebuild all of the remaining catalog and directory indexes using REBUILD INDEX(ALL) for each table
space recovered in step “13” on page 454. Rebuild all user-defined indexes on the catalog that have
not been rebuilt or recovered yet.

Chapter 26. RECOVER 455

Results
Messages that you might receive:

DSNT500I
An ID with a granted authority receives message DSNT500I RESOURCE UNAVAILABLE while trying
to recover a table space in the catalog or directory if certain table spaces in the following list are
unavailable:

• DSNDB06.SYSTSFAU
• DSNDB06.SYSTSCOL
• DSNDB06.SYSTSTSP
• DSNDB06.SYSTSTPT
• DSNDB06.SYSTSTAB
• DSNDB06.SYSTSIXS
• DSNDB06.SYSTSIXT
• DSNDB06.SYSTSIXR
• DSNDB06.SYSTSIPT
• DSNDB06.SYSTSREL
• DSNDB06.SYSTSFOR
• DSNDB06.SYSTSSYN
• DSNDB06.SYSTSFLD
• DSNDB06.SYSTSTAU
• DSNDB06.SYSTSKEY
• DSNDB06.SYSUSER

If you receive message DSNT500I, you must take one of the following actions:

• Make these table spaces available.
• Run the RECOVER utility on the catalog or directory by using an authorization ID that has the

installation SYSADM or installation SYSOPR authority.

DSNT501I
If certain table spaces in DSNDB06 are unavailable when an ID with a granted authority tries to
rebuild indexes in the catalog or directory, Db2 issues message DSNT501I.

What to do next
After you recover the Db2 catalog and directory, perform the following actions:

• After a point-in-time recovery on the catalog and directory, run the CHECK DATA utility on the objects to
ensure consistency.

• Recover XML scheme repository objects. Although the XML schema repository database, DSNXSR, is
not part of the Db2 catalog, you need to recover all table spaces in the DSNXSR database and rebuild
all indexes on those table spaces immediately after you recover the Db2 catalog. If you perform a
point-in-time recovery of the catalog, you need to recover objects in the DSNXSR database to the same
point in time.

Related concepts
Management of the bootstrap data set (Db2 Administration Guide)
Related reference
Db2 catalog tables (Db2 SQL)
Db2 directory tables (Db2 SQL)
Administrative authorities (Managing Security)
-START DB2(Db2) (Db2 Commands)

456 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnt500i.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnt501i.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_bsdsmanagement.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_catalogtablesintro.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_directorytablesintro.html
https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_adminauthorities.html
https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_startdb2.html

DSNTIPO3: Default startup modules panel (Db2 Installation and Migration)
DSNTIPS: Databases and spaces to start automatically panel (Db2 Installation and Migration)
“Syntax and options of the CHECK DATA control statement” on page 72
The CHECK DATA utility control statement, with its multiple options, defines the function that the utility
job performs.
“Syntax and options of the OPTIONS control statement” on page 381
The OPTIONS utility control statement, with its multiple options, defines the function that the utility job
performs.
“Syntax and options of the REBUILD INDEX control statement” on page 400
The REBUILD INDEX utility control statement, with its multiple options, defines the function that the
utility job performs.
“Syntax and options of the RECOVER control statement” on page 427
The RECOVER utility control statement, with its multiple options, defines the function that the utility job
performs.
Related information
REPRO command (DFSMS Access Method Services for Catalogs)

Objects that contain recovery information
To recover one object, the RECOVER utility must obtain information about it from another object.
Therefore, dependencies exist between catalog and directory objects, and you must recover them in a
specific order.

The following table lists the objects from which RECOVER must obtain information.

Table 65. Objects that the RECOVER utility accesses

Object name Reason for access by RECOVER

DSNDB01.SYSUTILX Utility restart information. The object is not
accessed when it is recovered; a RECOVER job
for this object is not restartable, and no other
commands can be in the same job step. SYSCOPY
information for SYSUTILX is obtained from the log.

You can use REPORT RECOVERY to obtain
SYSCOPY information for DSNDB01.SYSUTILX.

DSNDB01.DBD01, DSNDB01.SYSDBDXA Descriptors for the catalog database (DSNDB06),
the work file database (DSNDB07), and user
databases. A RECOVER job for this object is not
restartable, and no other commands can be in the
same job step. SYSCOPY information for DBD01
and SYSDBDXA is obtained from the log.

You can use REPORT RECOVERY to obtain
SYSCOPY information for DSNDB01.DBD01 and
DSNDB01.SYSDBDXA.

DSNDB06.SYSTSCPY Locations of image copy data sets. This table space
contains the SYSIBM.SYSCOPY table. SYSCOPY
information for SYSTSCPY itself is obtained from
the log.

You can use REPORT RECOVERY to obtain
SYSCOPY information for DSNDB06.SYSTSCPY.

DSNDB01.SYSLGRNX The RBA or LRSN of the first log record after the
most recent copy.

Chapter 26. RECOVER 457

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntipo3.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntips.html
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idai200/repro.htm

Table 65. Objects that the RECOVER utility accesses (continued)

Object name Reason for access by RECOVER

DSNDB06.SYSTSDBA, DSNDB06.SYSTSDBU,
DSNDB06.SYSUSER

Verification that the authorization ID is authorized
to run RECOVER.

From several of the following table spaces
inDSNDB06:

• SYSTSFAU
• SYSTSCOL
• SYSTSTSP
• SYSTSTPT
• SYSTSTAB
• SYSTSIXS
• SYSTSIXT
• SYSTSIXR
• SYSTSIPT
• SYSTSREL
• SYSTSFOR
• SYSTSSYN
• SYSTSFLD
• SYSTSTAU
• SYSTSKEY

Information about table spaces that are to be
recovered.

Related concepts
“REPORT output” on page 669
The output from the REPORT utility depends on whether the TABLESPACESET or RECOVERY option is
specified.
Related reference
“Syntax and options of the REPORT control statement” on page 664
The REPORT utility control statement, with its multiple options, defines the function that the utility job
performs.

Point-in-time recovery of the catalog, directory, and all user objects
Full recovery of the catalog and directory table spaces and indexes is strongly recommended. However, in
some situations, you might need to do a point-in-time recovery. In this case, you should understand the
implications and plan for this type of recovery.

When you recover the Db2 catalog, directory, and all user objects, consider the entire catalog and
directory, including all table spaces and index spaces, to be one logical unit. Recover all objects in the
catalog, directory, and all user objects to the same point of consistency. If you plan to do a point-in-time
recovery of the catalog, directory, and all user objects, a separate quiesce of the DSNDB06.SYSTSCPY
table space is required after a quiesce of the other catalog and directory table spaces.

A point-in-time recovery on catalog and directory objects bypasses the checking for the following items:

• A complete referential integrity (RI) set. If the complete RI set is not recovered together, CHKP is not
set on the dependents.

• A complete base and LOB set. If base and LOB objects are not recovered together, ACHKP or CHKP is
not set.

458 Db2 12 for z/OS: Utility Guide and Reference

Recommendation: Before you recover the Db2 catalog, directory, and all user objects to a prior point
in time, shut down the Db2 subsystem cleanly and then restart the subsystem in ACCESS(MAINT)
mode. Recover the catalog and directory objects to the point in time. You can use sample queries
and documentation, which are provided in DSNTESQ in the SDSNSAMP sample library, to check the
consistency of the catalog.

If you perform a point-in-time recovery on catalog and directory table spaces, the indexes are placed
in RBDP (rebuild-pending) status. Use the CHECK INDEX utility to determine whether an index is
inconsistent with the data that it indexes. You can use the REBUILD INDEX utility to rebuild the indexes.
Alternatively, you can use the RECOVER utility to recover catalog and directory indexes if the index was
defined with the COPY YES attribute and if you have a full index image copy.

Related concepts
“Point-in-time recovery” on page 462
Recovering data to a prior time is called a point-in-time recovery. You can recover objects to a particular
RBA, LRSN, or image copy. You can do this type of recovery by using the RECOVER utility point-in-time
recovery options. These options are TOCOPY, TOLOGPOINT, TOLASTCOPY, TORBA, and TOLASTFULLCOPY.
Related reference
-START DB2(Db2) (Db2 Commands)
“Syntax and options of the CHECK INDEX control statement” on page 98
The CHECK INDEX utility control statement, with its multiple options, defines the function that the utility
job performs.
“Syntax and options of the REBUILD INDEX control statement” on page 400
The REBUILD INDEX utility control statement, with its multiple options, defines the function that the
utility job performs.
“Syntax and options of the RECOVER control statement” on page 427
The RECOVER utility control statement, with its multiple options, defines the function that the utility job
performs.
“Advisory or restrictive states” on page 975
To control access and help ensure data integrity, Db2 can set a restrictive or nonrestrictive (advisory)
status on certain objects. However, you can take steps to correct each status.
SYSLGRNX table (Db2 SQL)
Related information
“When to run REORG on the catalog and directory” on page 592

Creating a point of consistency for catalog and directory objects
Full recovery of the catalog and directory table spaces and indexes is strongly recommended. However,
if you need to plan for point-in-time recovery of the catalog and directory, you should create a point of
consistency for the catalog and directory.

Procedure
To create a point of consistency for catalog and directory objects:
1. Quiesce all catalog and directory table spaces, except for DSNDB06.SYSTSCPY and

DSNDB01.SYSUTILX.

You can use the LISTDEF utility to group these table spaces into a single list and then specify that list
in the QUIESCE statement.

2. Quiesce DSNDB06.SYSTSCPY.

Recommendation: Quiesce DSNDB06.SYSTSCPY in a separate utility statement. When you recover
DSNDB06.SYSTSCPY to its own quiesce point, it contains the SYSCOPY records with ICTYPE = 'Q'
(quiesce) for the other catalog and directory table spaces.

3. Quiesce DSNDB01.SYSUTILX in a separate job step.

Chapter 26. RECOVER 459

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_startdb2.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sysibmsyslgrnxtable.html

What to do next
Later, if you need to recover to a point in time, recover DSNDB06.SYSTSCPY and DSNDB01.SYSUTILX to
their own quiesce points, and recover other catalog and directory table spaces to their common quiesce
point. The catalog and directory objects must be recovered in the prescribed order for your version of Db2
for z/OS.

Related tasks
“Recovering catalog and directory objects” on page 452
If you need to recover the catalog and directory, you must recover them before you recover user table
spaces. Also, you must recover catalog and directory objects in a specific order.
Related reference
Db2 catalog tables (Db2 SQL)
Db2 directory tables (Db2 SQL)
“Syntax and options of the QUIESCE control statement” on page 390
The QUIESCE utility control statement, with its multiple options, defines the function that the utility job
performs.
SYSCOPY catalog table (Db2 SQL)
SYSUTILX table (Db2 SQL)
“LISTDEF” on page 199
The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.

Reinitializing DSNDB01.SYSUTILX
You need to reinitialize the DSNDB01.SYSUTILX directory table space if you cannot successfully execute
the DISPLAY UTILITY and TERMINATE UTILITY commands. In this case, DSNDB01.SYSUTILX is damaged
and you cannot recover DSNDB01.SYSUTILX, because errors occur in the LOGAPPLY phase.

About this task
Because DSNDB01.SYSUTILX contains information about active and outstanding utilities, the process of
reinitializing this table space involves determining which objects have a utility in progress and resolving
any pending states to make the object available for access.

Procedure
If DSNDB01.SYSUTILX must be reinitialized, use the following procedure with caution:
1. Issue the -DIS DB(*) SPACENAM(*) RESTRICT command and analyze the output. Write down the

following items:

• All of the objects with a utility in progress (The objects in UTUT, UTRO, or UTRW status have utilities
in progress.)

• Any pending states for these objects (RECP, CHKP, and COPY are examples of pending states.
2. Run the following utility statement to reset the SYSUTILX table space:

CATMAINT UPDATE UTILX RESET
Initialize SYSUTILX and its indexes.

3. Issue the -START DB(dbname) ACCESS(UT) command for each database that has objects with a utility
in progress.

4. Issue the -START DB(dbname)SPACENAM(spname) ACCESS(FORCE) command on each object with a
utility in progress. This action clears all utilities that are in progress or in pending states. (Any pending
states are cleared, but you still need to resolve the pending states as directed in the next step.)

5. Resolve the pending states for each object by running the appropriate utility. For example, if an object
was in the RECP status, run the RECOVER utility.

6. Issue -START DB(dbname) ACCESS(RW) for each database.

460 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_catalogtablesintro.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_directorytablesintro.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsyscopytable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sysibmsysutilxtable.html

Related reference
“Advisory or restrictive states” on page 975
To control access and help ensure data integrity, Db2 can set a restrictive or nonrestrictive (advisory)
status on certain objects. However, you can take steps to correct each status.

Recovering a table space that contains LOB or XML data
The RECOVER utility can set the auxiliary warning status for a LOB table space or XML table space if it
finds at least one invalid LOB or XML column.

Db2 marks a LOB or XML column invalid if all of the following conditions are true:

• The LOB table space or XML table space was defined with the LOG(NO) attribute.
• The LOB table space or XML table space was recovered.
• The LOB or XML was updated since the last image copy.

The status of an object that is related to a LOB or XML table space can change due to a recovery
operation, depending on the type of recovery that is performed. If all of the following objects for all LOB or
XML columns are recovered in a single RECOVER utility statement to the present point in time, no pending
status exists:

• Base table space
• Index on the auxiliary table
• LOB table space
• XML table space

The RECOVER utility verifies that all related objects that are required to perform a point-in-time recovery
are included in the RECOVER control statement. The VERIFYSET keyword enables you to control whether
a point-in-time recovery requires all base, LOB, XML, and history objects in a set. You can choose to break
up point-in-time recoveries into multiple jobs with VERIFYSET NO.

Related reference
“Advisory or restrictive states” on page 975
To control access and help ensure data integrity, Db2 can set a restrictive or nonrestrictive (advisory)
status on certain objects. However, you can take steps to correct each status.

Recovering a table space that contains clone objects
The recovery guidelines and considerations for a cloned table space or cloned index are the same as for a
base table space or base index except in the point-in-time recovery case.

For an object currently involved in cloning, or one that was previously involved in cloning, a point-in-time
recovery cannot be done to a time the precedes the most recent EXCHANGE statement. The time of the
most recent EXCHANGE for a table space can be determined by querying SYSIBM.COPY for the table
space to be recovered where ICTYPE = 'A' and STYPE = 'E'.

When an EXCHANGE is done, two rows will be written to SYSIBM.SYSCOPY for the table space being
processed: one for the base object and one for the clone object. These rows are differentiated by
the SYSCOPY.INSTANCE column value: one will have INSTANCE=1 and the other INSTANCE=2. These
SYSIBM.SYSCOPY rows do not indicate base or clone. The SYSIBM.SYSTABLESPACE catalog table
contains an INSTANCE column that indicates the instance number of the current base objects. The
SYSTABLESPACE.INSTANCE column value can be used to determine which SYSIBM.SYSCOPY row is for a
base object and which is for a clone object.

Chapter 26. RECOVER 461

Point-in-time recovery
Recovering data to a prior time is called a point-in-time recovery. You can recover objects to a particular
RBA, LRSN, or image copy. You can do this type of recovery by using the RECOVER utility point-in-time
recovery options. These options are TOCOPY, TOLOGPOINT, TOLASTCOPY, TORBA, and TOLASTFULLCOPY.

You can recover objects to any RBA or LRSN by using TORBA or TOLOGPOINT. You can recover objects to
a previous image copy by using TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY.

For media recovery or disaster recovery at a remote site with TOLOGPOINT or TORBA, also specify SCOPE
ALL.

When you recover objects to an RBA or LRSN, the RBA or LRSN does not have to be a consistent point in
time. The RECOVER utility automatically handles any uncommitted units of work and the data is left in a
consistent state.

When you recover objects to an image copy, whether the image copy is a consistent point in time depends
on the type of image copy. An image copy that was taken with SHRLEVEL REFERENCE is a point of
consistency. An image copy that was taken with SHRLEVEL CHANGE is not an explicit point of consistency.

Another explicit point of consistency is a quiesce point, which is a point at which data is consistent as a
result of running the Db2 QUIESCE utility.

Recoveries to a consistent point in time are the most efficient because no uncommitted units of work
need to be backed out.

Recommendation: If you use the RECOVER utility to recover data to an image copy by specifying
TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY, specify a copy that was made with the SHRLEVEL
REFERENCE option.

To achieve consistency when you want to recover to a copy that was taken with SHRLEVEL CHANGE,
specify a recovery point immediately after the copy completed. To find this point, locate a record for the
SHRLEVEL CHANGE copy in SYSIBM.SYSCOPY and use the value in the PIT_RBA column. Specify that
recovery point by using the TORBA or TOLOGPOINT options in the RECOVER statement.

You do not need to take a full image copy after you recover data to a point in time, except in the case of
fallback recovery. Db2 records the RBAs or LRSNs that are associated with the point-in-time recovery in
the SYSIBM.SYSCOPY catalog table to allow future recover operations to skip the unwanted range of log
records.

Important: After a point-in-time recovery, you cannot recover with any log records that were flagged as
unwanted during the point-in-time recovery. Any subsequent recover operations continue to ignore those
unwanted log records. For example, if you tried to run a subsequent RECOVER LOGONLY job immediately
after the point-in-time-recovery, the utility will not find any log records to apply. Also, if you tried to run a
subsequent full recovery to the current state, the utility will ignore the unwanted range of log records that
was skipped by the point-in-time recovery.

If you specify the TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY option to recover data to a point in time,
RECOVER puts any associated index spaces in REBUILD-pending status. If you specify the TOLOGPOINT
or TORBA option to recover data to a point in time, RECOVER puts any associated index spaces in
REBUILD-pending status if the indexes are not recovered in the same RECOVER statement as their
corresponding table space. The reason is that a point-in-time recovery of only the table space leaves data
in a consistent state and indexes in an inconsistent state.

You can remove the REBUILD-pending state in one of the following ways:

• Run REBUILD INDEX on the indexes.
• Run RECOVER to a point in time on the indexes. If you do that, Db2 sets the CHECK-pending state on

the indexes, because the table space was not recovered in the same RECOVER utility statement as the
indexes.

If you use a point-in-time recovery option to recover a single data set of a nonpartitioned table space, Db2
issues message DSNU520I to warn that the table space can become inconsistent following the RECOVER

462 Db2 12 for z/OS: Utility Guide and Reference

job. This point-in-time recovery can cause compressed data to exist without a dictionary or can even
overwrite the data set that contains the current dictionary.

If you use the point-in-time recovery option to recover a partition-by-growth table space that has an
image copy with fewer partitions than the current table space, any excess partitions (partitions that are
currently defined but not in the image copy) are empty after the RECOVER processing.

If a table space or partition in reordered row format is recovered to a point in time when the table
space or partition was in basic row format, the table space or partition reverts to basic row format after
RECOVER processing. Similarly, if a table space or partition in basic row format is recovered to a point in
time when the table space or partition was in reordered row format, the table space or partition revert to
reordered row format after RECOVER processing.

After recovering a set of table spaces to a point in time, you can use CHECK DATA to check for
inconsistencies.

If you use the RECOVER utility to recover a table space set to a point-in-time, you must ensure that you
recover the entire set of table spaces to the same point in time. If you do not include every member
of the set, or if you do not recover the entire set to the same point in time, RECOVER sets the auxiliary
CHECK-pending status on for all table spaces in the set.

You can also use point-in-time recovery and the point-in-time recovery options to recover all user-defined
table spaces and indexes that are in refresh-pending status (REFP).

Recommendation: After running any point-in-time recoveries, run REORG TABLESPACE and REBUILD
INDEX to set the real-time statistics. For more information about the effect of point-in-time recoveries on
real-time statistics, see “Effects of running RECOVER” on page 481.

Requirement: To use system-level backups as a recovery base, DFSMShsm must be at z/OS 1.8 or higher.

Backing out work to a point-in-time

The RECOVER utility can recover your data to a point in time by backing out committed work from the
current state of the data. To recover data by backing out, specify BACKOUT YES on the RECOVER control
statement.

In some circumstances, recovering to a point in time by backing out work can be faster than recovering to
a point in time by restoring a copy of the data and applying the logs forward.

When the RECOVER utility performs a point-in-time recovery by backing out committed work, the
recovery is a point-in-time recovery with consistency, because any work that was uncommitted at the
point in time to which the data is being recovered is also backed out. When the recovery is complete, the
data is left in a transaction consistent state.

Restrictions: You cannot perform a backout recovery to the following points in time:

• A point in time that is earlier than the timestamp of the latest SQL ALTER record in SYSIBM.SYSCOPY for
the object being recovered.

• A point-in-time that is earlier than the completion time of a previous backout recovery.
• A point-in-time before a utility that inserts SYSCOPY records was run, unless the utility is COPY or

COPYTOCOPY.
• A point-in-time before REORG TABLESPACE with the LOG(YES) option was run on the table space.

Before running the RECOVERY utility with the BACKOUT YES option, run the REPORT utility with the
RECOVER option on the object being recovered to identify events that might prevent you from recovering
the object by backing out work to a given point in time.

Recovery considerations after rebalancing partitions with REORG
For partitioned table spaces, image copies that were taken before a REORG job that materialized limit
key changes are not usable for recovering to a current RBA or LRSN. Avoid recovering a partitioned table

Chapter 26. RECOVER 463

space to a point-in-time that is after the REORG-pending or advisory REORG-pending status was set but
before the REORG that redistributed data records. To determine an appropriate point in time:

1. Run REPORT RECOVERY.
2. Select an image copy for which the recovery point is a point after the REORG that redistributed data

records.

Suppose that you run the REORG utility to turn off a REORG-pending status, and then recover to a point in
time before that REORG job. In this case,Db2 sets restrictive statuses on all partitions that you specified
in the REORG job, as follows:

• Sets REORG-pending (and possibly CHECK-pending) on for the data partitions
• Sets REBUILD-pending on for the associated index partitions
• Sets REBUILD-pending on for the associated logical partitions of nonpartitioned secondary indexes

To create a new consistent recovery point, take one of the following actions immediately after an ALTER
INDEX, ALTER TABLE, or REORG REBALANCE operation that changes partition boundaries:

• Run REORG with the COPYDDN and SHRLEVEL NONE options.
• Take a full image copy immediately after REORG completes.

Using offline copies to recover after rebalancing partitions
To recover data after a REORG job redistributes the data among partitions, use RECOVER LOGONLY. If
you perform a point-in-time recovery, you must keep the offline copies synchronized with the SYSCOPY
records. Therefore, do not use the MODIFY RECOVERY utility to delete any SYSCOPY records with an
ICTYPE column value of 'A' because these records might be needed during the recovery. Delete these
SYSCOPY records only when you are sure that you no longer need to use the offline copies that were
taken before the REORG that performed the rebalancing.

Restrictions for point-in-time recoveries
The following restrictions apply to point-in-time recoveries:

• You can take system-level backups with the BACKUP SYSTEM utility. However, if any of the following
utilities were run since the system-level backup that was chosen as the recovery base, then the use of
the system-level backup is prohibited for object level recoveries to a prior point in time:

– REORG TABLESPACE
– REORG INDEX
– REBUILD INDEX
– LOAD REPLACE
– RECOVER from image copy or concurrent copy

This restriction does not apply if you are using z/OS V1R11.0 or later and you set up DFSMShsm to
capture catalog information.

• RECOVER cannot recover an index to a point in time if pending definition changes on that object were
materialized by the REORG utility after that point in time.

• You cannot use RECOVER to a point in time on an index to reset the REBUILD-pending state unless the
index is in the REBUILD-pending state because the associated table space was recovered to a point in
time, and no pending definition change is involved.

• RECOVER cannot recover a partition-by-growth table space to a point-in-time before REORG
TABLESPACE removed empty, trailing partitions.

• RECOVER cannot recover an XML table space to a point-in-time before the REORG utility that changed
the format from basic to extended format.

• The following restrictions apply to recovery to a point in time that is before materialization of pending
definition changes:

464 Db2 12 for z/OS: Utility Guide and Reference

– The target object must be a partition-by-growth table space, a partition-by-range table space, a LOB
table space, or an XML table space.

– For most types of pending changes, the target object must be an entire table space. This restriction
does not apply for pending changes to partition limit keys or column definition changes.

– The table space cannot be recovered with VERIFYSET NO. If VERIFYSET NO is specified, RECOVER
uses VERIFYSET YES instead.

– The RECOVER statement cannot specify TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY if the source
for recovery is an image copy that was taken with the SHRLEVEL CHANGE option.

– The target table space cannot contain a clone table.

If a clone table exists in the table space, but no data exchange occurred, you can drop the clone
table, and then perform the point-in-time recovery. If data exchange occurred, you cannot perform
the point-in-time recovery.

– The pending definition change cannot be:

- A change to the table space type (with an ALTER TABLESPACE statement)
- A change to hash organization (with an ALTER TABLE statement and an ALTER ORGANIZATION

clause)
- A change to drop a column (with an ALTER TABLE statement and a DROP COLUMN clause)
- A change to insert a partition between existing partitions (with an ALTER TABLE statement and an

ADD PARTITION clause to add a partition)
- FL 508 A MOVE TABLE operation (an ALTER TABLESPACE statement with the MOVE TABLE clause).

This restriction applies to only the source table space. You can recover the target table space to
a point in time that is before the materialization of a MOVE TABLE operation, but the result is an
empty table space.

– You cannot run RECOVER jobs that recover the table space to a different point in until you run
the REORG utility to resolve the REORG-pending (REORP) state on the table space. However, this
restriction does not apply for the pending definition changes to limit keys of partitions or column
definitions.

• For an object currently involved in cloning, or one that was previously involved in cloning, a point-in-
time recovery cannot be done to a time the precedes the most recent EXCHANGE statement.

Actions that can affect recovery status

When you perform the following actions before you recover a table space, the recovery status is affected
as described:

• If you alter a table to rotate a partition (with an ALTER TABLE statement and a ROTATE PARTITION
clause):

– You can recover the partition to the current time.
– You can recover the partition to a point in time after the alter. The utility can use a recovery base, (for

example, a full image copy, a REORG LOG YES operation, or a LOAD REPLACE LOG YES operation) that
occurred before the alter.

– You cannot recover the partition to a point in time before the alter; the recover fails with
MSGDSNU556I and RC8.

• If you change partition boundaries (with an ALTER TABLE statement and an ALTER PARTITION clause or
with a REORG REBALANCE utility control statement):

– You can recover the partition to the current time if a recovery base (for example, a full image copy, a
REORG LOG YES operation, or a LOAD REPLACE LOG YES operation) exists.

– You can recover the partition to a point in time after the change.
– You can recover the partitions that are affected by the boundary change to a point in time before

the materialization of those changes by the REORG TABLESPACE utility. However, after the RECOVER

Chapter 26. RECOVER 465

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html

utility completes successfully, the affected partitions with the limit key changes are placed in REORG-
pending (REORP) status. You then need to run REORG TABLESPACE to correctly redistribute the data
according to the previous limit key values.

• If you alter a table to add a partition (with an ALTER TABLE statement and an ADD PARTITION clause):

– You can recover the partition to the current time.
– You can recover the partition to a point in time after the alter.
– You can recover the partition to a point in time before the alter; RECOVER resets the partition to be

empty.
• If you add a column (with an ALTER TABLE statement and an ADD COLUMN clause), you cannot recover

a table space to a point in time between the time that you alter the table to add a column and the time
that you take either of the following actions:

– Drop the default value (with an ALTER TABLE statement and an ALTER COLUMN clause that specifies
DROP DEFAULT)

– Alter the default value (with an ALTER TABLE statement and an ALTER COLUMN clause that specifies
SET DEFAULT)

• If you convert a table to support multiple XML versions (with a REORG TABLESPACE utility control
statement):

– You cannot recover the associated table space to a point in time before the table was converted.
– You cannot recover any indexes for that table to a point in time before the table was converted.

• If you alter the organization of your table space to hash organization (with an ALTER TABLE statement
and an ALTER ORGANIZATION clause):

– You can recover the table space to the current time.
– You can recover the table space to a point in time before or after the alter.
– You can recover the table space to a point in time before or after the REORG that materialized the

hash organization. RECOVER places the table space in AREOR status if the table space was recovered
to a point before the REORG.

• If you alter the size of the hash space in your table space (with an ALTER TABLE statement and an
ALTER ORGANIZATION clause):

– You can recover the table space to the current time.
– You can recover the table space to a point in time before or after the alter.
– You can recover the table space to a point in time before or after the REORG that materialized the

change in hash space size.
• If you drop the hash organization (with an ALTER TABLE statement and a DROP ORGANIZATION clause):

– You can recover the table space to the current time.
– You can recover the table space to a point in time after the alter.
– You cannot recover the table space to a point in time before the alter.

• If you execute pending definition changes, you cannot perform a point-in-time recovery until you have
either materialized the pending definition changes (with a REORG TABLESPACE or REORG INDEX utility
control statement) or dropped those changes (with an ALTER TABLESPACE statement and a DROP
PENDING CHANGES clause).

Examples: Changing the following characteristics results in pending definition changes:

– The segment size (with an ALTER TABLESPACE statement and a SEGSIZE clause)
– The data set size (with an ALTER TABLESPACE statement and a DSSIZE clause)
– The buffer pool page size (with an ALTER TABLESPACE statement and a BUFFERPOOL clause)
– The MEMBER CLUSTER attribute (with an ALTER TABLESPACE statement and a MEMBER CLUSTER

clause)
– The table space type (with an ALTER TABLESPACE statement)

466 Db2 12 for z/OS: Utility Guide and Reference

– The limit key values (with an ALTER TABLE statement and an ALTER PARTITION clause)
• If you perform any of the following SQL operations on a table in a segmented (non-UTS) table space or

universal table space, you cannot back out the changes (with a RECOVER utility control statement and a
BACKOUT YES clause):

– DELETE without a WHERE clause (mass DELETE)
– TRUNCATE TABLE
– DROP TABLE
– ALTER TABLE with a ROTATE PARTITION clause

If you perform any of the previously indicated actions on tables in a base table space that has indexes or
auxiliary objects (LOB tables spaces or XML table spaces), this restriction also applies to those indexes
or auxiliary objects.

• FL 508 If you move a table to another table space (by using the ALTER TABLESPACE statement with the
MOVE TABLE clause):

– You can recover the target table space and the source table space to the current time.
– You can recover the target table space and the source table space to a point in time after the alter

was materialized.
– You can recover the target table space to a point in time before the alter was materialized, but the

result is an empty table space. You cannot recover the source table space to a point in time before
the alter was materialized.

• If you ran a redirected recovery, the target object cannot be recovered to a point in time prior to the
redirected recovery. This restriction also applies to the unrecovered partitions of a target partitioned
index when a redirected recovery was run on a subset of index partitions.

When you perform the following actions before you recover an index to a prior point in time or to the
current time, the recovery status is affected as described:

• If you alter the data type of a column to a numeric data type (with an ALTER TABLE statement and an
ALTER COLUMN clause specifying the new data type), you cannot recover the index until you take a full
image copy of the index. However, the index can be rebuilt.

• If you alter an index to NOT PADDED or PADDED (with an ALTER INDEX statement and a NOT PADDED
or PADDED clause), you cannot recover the index until you take a full image copy of the index. However,
the index can be rebuilt.

• If you regenerate an index (with an ALTER INDEX statement and a REGENERATE clause), you cannot
recover the index or index space to a point in time prior to the time that it was regenerated. Instead,
rebuild the index by using the REBUILD INDEX utility.

• If you alter an index such that Db2 creates a new version of the index, you cannot recover the index to a
point in time prior to the first ALTER INDEX statement that created a new version of that index.

Planning for point-in-time recovery
Recovering to a point in time that is a point of consistency (QUIESCE or SHRLEVEL REFERENCE set) is
desirable because there will be no uncommitted work to back out.

When making copies of a single object, use SHRLEVEL REFERENCE to establish consistent points for
TOCOPY, TOLASTCOPY, or TOLASTFULLCOPY recovery. Copies that are made with SHRLEVEL CHANGE do
not copy data at a single instant because changes can occur as the copy is made. A subsequent RECOVER
TOCOPY operation can produce inconsistent data. Instead use RECOVER with the TOLOGPOINT option to
identify a point after the SHRLEVEL CHANGE copy and any uncommitted units of work will be backed out.

When copying a list of objects, use SHRLEVEL REFERENCE. If a subsequent recovery to a point in
time is necessary, you can use a single RECOVER utility statement to list all of the objects, along with
TOLOGPOINT to identify the common RBA or LRSN value. If you use SHRLEVEL CHANGE to copy a list of
objects, you should follow it with a QUIESCE of the objects.

Chapter 26. RECOVER 467

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html

To improve the performance of the recovery, take a full image copy of the table space or set of table
spaces, and then quiesce them by using the QUIESCE utility. This action enables RECOVER TORBA or
TOLOGPOINT to recover the table spaces to the quiesce point with minimal use of the log.

Authorization: Restrict use of the point-in-time recovery options to personnel with a thorough knowledge
of the Db2 recovery environment.

Ensuring consistency

You can use RECOVER TORBA, RECOVER TOLOGPOINT, and RECOVER TOCOPY to recover one of the
following single objects:

• Partition of a partitioned table space
• Partition of a partitioning index space
• Data set of a simple table space

For any of the previously listed objects, restore all data sets to the same level; otherwise, the data
becomes inconsistent.

If possible, specify a table space and all of its indexes (or a set of table spaces and all related indexes)
in the same RECOVER utility statement, and specify TOLOGPOINT or TORBA to identify a QUIESCE point.
This action avoids placing indexes in the CHECK-pending or REBUILD-pending status. If the TOLOGPOINT
is not a common QUIESCE point for all objects, use the following procedure:

1. RECOVER table spaces to the value for TOLOGPOINT (either an RBA or LRSN).
2. Use concurrent REBUILD INDEX jobs to recover the indexes over each table space.

This procedure ensures that the table spaces and indexes are synchronized, and it eliminates the need to
run the CHECK INDEX utility.

If you cannot specify TOLOGPOINT or TORBA to identify a QUIESCE point, you can specify any point in
time, and Db2 will leave the data in a consistent state. The RECOVER utility automatically handles any
uncommitted units of work and leaves the data in a consistent state when TORBA or TOLOGPOINT is
specified.

When using RECOVER with the TORBA or TOLOGPOINT option, ensure that all of the objects that are
changed by the active units of recovery at the recovery point are recovered to the same point-in-time so
that they are synchronized:

• Db2 rolls back changes made to units of recovery that are inflight, inabort, postponed abort, or indoubt
during the recovery point-in-time.

• Db2 does not roll back changes made to units of recovery that are INCOMMIT during the recovery
point-in-time.

• Db2 rolls back only changes to objects in the RECOVER statement.

Avoiding CHECK-pending status

Db2 sets CHECK-pending status in the following point-in-time-recovery situations:

• You recover at least one member of a table space set to a prior point in time, but you do not recover
all members of the table space set to the same quiesce point. In this case, all dependent table spaces
that are recovered are placed in CHECK-pending status with the scope of the whole table space. All
dependent table spaces of the recovered table spaces are placed in CHECK-pending status with the
scope of the specific dependent tables.

• The RECOVER statement contains the TORBA option or TOLOGPOINT option and recovers all members
of a table space set to the same point in time. However, referential constraints were defined in one of
those table spaces after that point in time. In this case, the CHECK-pending status is set for the table
space that contains the table with the referential constraint.

468 Db2 12 for z/OS: Utility Guide and Reference

• The RECOVER statement contains the TORBA option or TOLOGPOINT option and recovers one or more
indexes to a previous point in time. However, the same RECOVER statement does not recover the
related table space. In this case, Db2 sets the CHECK-pending status for the indexes.

RECOVER does not place dependent table spaces that are related by informational referential constraints
into CHECK-pending status.

To avoid setting CHECK-pending status, take the following actions:

• When you recover tables that are involved in a referential constraint, recover all of the table spaces that
are involved in the constraint.

• Recover all dependent objects to the same point in time.
• Do not add table check constraints or referential constraints after the point in time to which you want to

recover.
• Recover indexes and the related table space to the same point in time (preferably a quiesce point)

or COPY SHRLEVEL REFERENCE point. RECOVER processing resets the CHECK-pending status for all
indexes in the same RECOVER statement.

Related information:

Recovery of table space sets (Db2 Administration Guide)
“CHECK-pending status” on page 977

Compressed data

FL 509 After a point-in-time recovery completes successfully, RECOVER updates the COMPRESS_USED
column of the SYSTABLEPART catalog table with the type of the compression dictionary that is currently in
effect for each target page set..

Use caution when recovering a portion of a table space or partition (for example, one data set) to a prior
point in time. If the data set that is being recovered has been compressed with a different dictionary, you
can no longer read the data.

Recovery to a point in time before materialization of pending definition changes
You can recover a partition-by-growth table space, a partition-by-range table space, a LOB table space,
or an XML table space to a point in time before a REORG job was run to materialize pending definition
changes.

Restriction: For a list of restrictions on recovery to a point in time before materialization of pending
definition changes, see Chapter 26, “RECOVER,” on page 425.

Before you run RECOVER to a point in time that is before materialization of pending definition changes,
run REPORT RECOVERY to obtain:

• The recovery history from the SYSIBM.SYSCOPY catalog table
• The log ranges from the SYSIBM.SYSLGRNX directory table

After you run RECOVER to a point in time that is before materialization of pending definition changes, the
target table space is put in the REORG-pending state. You must run REORG on the entire table space to
remove the REORG-pending state and complete the recovery process.

Related concepts
“How the RECOVER utility performs fallback recovery” on page 473
The RECOVER utility attempts to use the latest primary copy data set as a starting point for recovery. If
the latest primary copy data set is not available, RECOVER attempts to use the backup copy data set, if
one is available.
Recovery of data to a prior point in time (Db2 Administration Guide)
Related tasks
Compressing your data (Db2 Performance)

Chapter 26. RECOVER 469

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_recovertablespacesets.html
https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_recovertopriopoint.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdataperf.html

Materializing pending definition changes (Db2 Administration Guide)
“Reviewing CHECK INDEX output” on page 109
CHECK INDEX indicates whether a table space and its indexes are inconsistent, but it does not correct
any such inconsistencies. If CHECK INDEX detects inconsistencies, you should analyze the output to
determine the problem and then correct the inconsistency.
Related reference
“Advisory or restrictive states” on page 975
To control access and help ensure data integrity, Db2 can set a restrictive or nonrestrictive (advisory)
status on certain objects. However, you can take steps to correct each status.
“REBUILD-pending status” on page 982
A REBUILD-pending restrictive status indicates that the affected index or index partition is broken and
must be rebuilt from the data.
“Syntax and options of the RECOVER control statement” on page 427
The RECOVER utility control statement, with its multiple options, defines the function that the utility job
performs.
“REORG-pending status” on page 985
REORG-pending status indicates that an object either must or should be reorganized.

Avoiding specific image copy data sets during a recovery
You might accidentally lose an image copy, or you might want to avoid a specific image copy data set.
Because the corresponding row is still present in SYSIBM.SYSCOPY, the RECOVER utility always attempts
to allocate the data set.

Use the RESTOREBEFORE option and specify the RBA or LRSN of the image copy, concurrent copy, or
system-level backup that you want to avoid, and RECOVER will search for an older recovery base. The
RECOVER utility then applies log records to restore the object to its current state or the specified TORBA
or TOLOGPOINT value.

Image copy on tape
If the image copy is on tape, messages IEF233D and IEF455D request the tape for RECOVER, as shown in
the following example:

 IEF233D M BAB,COPY ,,R92341QJ,DSNUPROC,
 OR RESPOND TO IEF455D MESSAGE
*42 IEF455D MOUNT COPY ON BAB FOR R92341QJ,DSNUPROC OR REPLY 'NO'
 R 42,NO
 IEF234E K BAB,COPY ,PVT,R92341QJ,DSNUPROC

By replying NO, you can initiate the fallback to the previous image copy. RECOVER responds with
messages DSNU030I and DSNU508I, as shown in the following example:

DSNU030I csect-name - UNABLE TO ALLOCATE R92341Q.UTQPS001.FCOPY010
 RC=4, CODE=X'04840000'
DSNU508I csect-name - IN FALLBACK PROCESSING TO PRIOR FULL IMAGE COPY

Reason code X'0484' means that the request was denied by the operator.

Image copy on disk:
If the image copy is on disk, you can delete or rename the image copy data set before RECOVER starts
executing. RECOVER issues messages DSNU030I and DSNU508I, as shown in the following example:

DSNU030I csect-name - UNABLE TO ALLOCATE R92341Q.UTQPS001.FCOPY010,
 RC=4, CODE=X'17080000'
DSNU508I csect-name - IN FALLBACK PROCESSING TO PRIOR FULL IMAGE COPY

Reason code X'1708' means that the ICF catalog entry cannot be found.

470 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_materializingdefchanges.html

How to improve RECOVER performance
You can improve the performance of the RECOVER utility by taking certain actions.

To improve recovery time, consider recovering to a quiesce point or SHRLEVEL REFERENCE copy instead
of recovering to any point in time. The following factors impact performance when you recover to a non
quiesce point:

• The duration of the units of recovery that were active at the recovery point.
• The number of Db2 members that have active units of recovery to roll back.

Use MERGECOPY to merge your table space image copies before recovering the table space. If you do
not merge your image copies, RECOVER automatically merges them. If RECOVER cannot allocate all the
incremental image copy data sets when it merges the image copies, RECOVER uses the log instead.

Include a list of table spaces and indexes in your RECOVER utility statement to apply logs in a single scan
of the logs.

If you use RECOVER TOCOPY for full image copies, you can improve performance by using data
compression. The improvement is proportional to the degree of compression.

Consider specifying the PARALLEL keyword to restore image copies from disk or tape to a list of objects in
parallel.

If you are recovering concurrent copies, consider specifying the CURRENTCOPYONLY option to improve
performance. When you specify this option, RECOVER can issue one DFSMSdss RESTORE command for
multiple objects. The utility issues one RESTORE command for each group of objects that is associated
with the concurrent copy data set. If you do not use the CURRENTCOPYONLY keyword, RECOVER issues
one RESTORE command for each object.

If you are recovering an object from a system-level backup, RECOVER invokes DFSMShsm, which controls
parallelism. If the system-level backup resides on disk, the RECOVER utility passes the object to
DFSMShsm before processing the objects to be restored from image copies or concurrent copies. If
the system-level backup resides on tape, the RECOVER utility processes the objects to be restored from
system-level backups, image copies, and concurrent copies at the same time.

Recovery from a FlashCopy image copy with consistency or from a sequential image copy with
consistency might take longer due to the additional processing required to read the logs and apply any
changes made after the point of consistency.

Optimizing the LOGAPPLY phase
The time that is required to recover a table space depends also on the time that is required to read and
apply log data. You can take several steps to optimize the process. If possible, Db2 reads the required log
records from the active log to provide the best performance.

Any log records that are not found in the active logs are read from the archive log data sets, which are
dynamically allocated to satisfy the requests. The type of storage that is used for archive log data sets is a
significant factor in the performance. Consider the following actions to improve performance:

• RECOVER a list of objects in one utility statement to take only a single pass of the log.
• Keep archive logs on disk to provide the best possible performance.
• Control archive logs data sets by using DFSMShsm to provide the next best performance. Db2 optimizes

recall of the data sets. After the data set is recalled, Db2 reads it from disk.
• If the archive log must be read from tape, Db2 optimizes access by means of ready-to-process and

look-ahead mount requests. Db2 also permits delaying the deallocation of a tape drive if subsequent
RECOVER jobs require the same archive log tape. Those methods are described in more detail in the
subsequent paragraphs.

The BSDS contains information about which log data sets to use and where they reside. You must keep
the BSDS information current. If the archive log data sets are cataloged, the ICF catalog indicates where
to allocate the required data set.

Chapter 26. RECOVER 471

DFSMShsm data sets

The recall of the first DFSMShsm archive log data set starts automatically when the LOGAPPLY phase
starts. When the recall is complete and the first log record is read, the recall for the next archive log data
set starts. This process is known as look-ahead recalling. Its purpose is to recall the next data set while it
reads the preceding one.

When a recall is complete, the data set is available to all RECOVER jobs that require it. Reading proceeds
in parallel.

Non-DFSMShsm tape data sets
Db2 reports on the console all tape volumes that are required for the entire job. The report distinguishes
two types of volumes:

• Any volume that is not marked with an asterisk (*) is required for the for the job to complete. Obtain
these volumes from the tape library as soon as possible.

• Any volume that is marked with an asterisk (*) contains data that is also contained in one of the active
log data sets. The volume might or might not be required.

As tapes are mounted and read, Db2 makes two types of mount requests:

• Ready-to-process: The current job needs this tape immediately. As soon as the tape is loaded, Db2
allocates and opens it.

• Look-ahead: This is the next tape volume that is required by the current job. Responding to this request
enables Db2 to allocate and open the data set before it is needed, thus reducing overall elapsed time for
the job.

You can dynamically change the maximum number of input tape units that are used to read the archive
log by specifying the COUNT option of the SET ARCHIVE command. For example, use the following
command to assign 10 tape units to your Db2 subsystem:

-SET ARCHIVE COUNT (10)

The DISPLAY ARCHIVE READ command shows the currently mounted tape volumes and their statuses.

Delayed deallocation
Db2 can delay deallocating the tape units used to read the archive logs. This is useful when several
RECOVER utility statements run in parallel. By delaying deallocation, Db2 can re-read the same volume on
the same tape unit for different RECOVER jobs, without taking time to allocate it again.

You can dynamically change the amount of time that Db2 delays deallocation by using the TIME option of
the SET ARCHIVE command. For example, to specify a 60 minute delay, issue the following command:

-SET ARCHIVE TIME(60)

In a data sharing environment, you might want to specify zero (0) to avoid having one member hold onto a
data set that another member needs for recovery.

Performance summary
1. Achieve the best performance by allocating archive logs on disk.
2. Consider staging cataloged tape data sets to disk before allocation by the log read process.
3. If the data sets are read from tape, set both the COUNT and the TIME values to the maximum

allowable values within the system constraints.

472 Db2 12 for z/OS: Utility Guide and Reference

Recovering image copies in a JES3 environment
You can recover sequential or concurrent image copies in a JES3 environment.

Procedure
Ensure that sufficient units are available to mount the required image copies.
In a JES3 environment, if the number of image copies that need to be restored exceeds the number of
available online and offline units, and the RECOVER job successfully allocates all available units, the job
waits for more units to become available.

How the RECOVER utility performs fallback recovery
The RECOVER utility attempts to use the latest primary copy data set as a starting point for recovery. If
the latest primary copy data set is not available, RECOVER attempts to use the backup copy data set, if
one is available.

If neither image copy is usable, RECOVER attempts to fall back to a previous recovery point. If the
previous recovery point is a full image copy, the RECOVER utility uses the full image copy, any incremental
image copies, and the log to recover. If a previous REORG LOG YES or LOAD REPLACE LOG YES was
done, RECOVER attempts to recover from the log and applies any changes that occurred between the
two image copies. If good full image copies are not available, and no previous REORG LOG YES or LOAD
REPLACE LOG YES jobs were run, the RECOVER utility terminates. The RECOVER utility will not fall back to
a system-level backup.

If one of the following actions occurs, the index remains untouched, and utility processing terminates with
return code 8:

• RECOVER processes an index for which no full copy exists.
• The copy cannot be used because of utility activity that occurred on the index or on its underlying table

space,

If you always make multiple image copies, RECOVER should seldom fall back to an earlier point. Instead,
RECOVER relies on the backup copy data set if the primary copy data set is unusable.

In a JES3 environment, you can do a fallback recovery by issuing a JES3 cancel,s command at the time
the allocation mount message is issued. This action might be necessary if a volume is not available or if
you do not want the given volume.

RECOVER does not perform parallel processing for objects that are in backup or fallback recovery.
Instead, the utility performs nonparallel image copy allocation processing of the objects. RECOVER defers
the processing of objects that require backup or fallback processing until all other objects are recovered,
at which time the utility processes the objects one at a time.

Related concepts
“Preparing for recovery by using the COPY utility” on page 156
To prepare for recovery, you can use the COPY utility to create copies and establish points of recovery.

How the RECOVER utility retains tape mounts
The RECOVER utility can automatically retain the tape volumes for the input image copies when a list of
objects is being recovered.

For input image copies (for the objects being recovered) that are stacked on one or more tape volumes,
you do not need to code JCL DD statements to retain the tape volumes on the tape drive. Instead, you
can use the PARALLEL and TAPEUNITS keywords. The PARALLEL keyword directs the RECOVER utility
to process the objects in parallel. The objects will be sorted based on how the input image copies are
stacked on tape to maximize efficiency during the RESTORE phase by retaining the tape volumes on
the tape drive and by restoring the input image copies in the right order (by ascending file sequence
numbers). The TAPEUNITS keyword will limit the number of tape units (or drives) that the RECOVER utility
will use during the RESTORE phase. In special cases, RECOVER cannot retain all of the tape volumes, so

Chapter 26. RECOVER 473

the tape volumes may be demounted and deallocated even if the PARALLEL and TAPEUNITS keywords
are specified.

Avoiding damaged media
When a media error is detected, Db2 prints a message that indicates the extent of the damage. If an
entire volume is bad and storage groups are being used, you must remove the bad volume first. If you
don't remove the volume the RECOVER utility might re-access the damaged media.

Procedure
To avoid damaged media:
1. Use ALTER STOGROUP to remove the bad volume and add another volume. If your data sets are

managed by DFSMS storage group, then you need to also remove the bad volume from the DFSMS
storage group.

2. Run the RECOVER utility for all objects on that volume.

What to do next
If the RECOVER utility cannot complete because of severe errors that are caused by the damaged media,
you might need to use Access Method Services (IDCAMS) with the NOSCRATCH option to delete the
cluster for the table space or index. If the table space or index is defined by using STOGROUP, the
RECOVER utility automatically redefines the cluster. For user-defined table spaces or indexes, you must
redefine the cluster before invoking the RECOVER utility.

Related tasks
Altering Db2 storage groups (Db2 Administration Guide)
Related reference
ALTER STOGROUP (Db2 SQL)

Running a redirected recovery
A redirected recovery is when the RECOVER utility redirects the recovery of an object (the source) to
another object (the target). Specifically, the target table space, index space, or index is recovered by using
image copies and log records of the associated source object. The data or index keys in the source object
and the applications on the source object are unaffected by the recovery.

Redirected recoveries are useful for testing recovery procedures and data analysis. By running a
redirected recovery, you can verify that the recovery procedure is valid and determine an estimated
time for the recovery. You can also determine whether recovering indexes from image copies is faster
than rebuilding the indexes. Additionally, you can use redirected recovery to generate production data
at specific points in time with consistency. All of these tasks can be performed without impacting data
availability.

Before you begin
Before you can run a redirected recovery, take the following actions:

• If you plan to run redirected recovery on a table space, ensure that PTFs for PI86880 and PI88940
have been applied and the REORG TABLESPACE utility has been run on the source table spaces since
those PTFs were applied. These actions ensure that the source table spaces have the necessary self-
describing schema information that is needed for redirected recovery.

• Ensure that the source objects are recoverable.

In general, events on source objects that affect recovery have the same effect on a redirected recovery
to target objects. Conversely, events on target objects that normally restrict recovery are ignored during
redirected recovery. For a list of actions that affect recoverability, see “Actions that can affect recovery
status” on page 465.

474 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_alterstoragegroups.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_alterstogroup.html

To determine if any events occurred that could affect recovery, run the REPORT utility with the
RECOVERY option on the source object and analyze the output.

About this task
You can run redirected recovery to the current state or to a previous point in time. In both cases,
redirected recovery leaves objects in a transactionally consistent state.

Restriction: Redirected recovery to a point in time before REORG materialized the following pending
definition changes on the source objects is not allowed:

• SEGSIZE
• DSSIZE (for a partition-by-range table space with absolute page numbers)
• BUFFERPOOL
• MEMBER CLUSTER

For example, suppose the following operations were run on a source object:

1. ALTER TABLESPACE BUFFERPOOL (This operation is a pending definition change to the page size.)
2. REORG TABLESPACE (The utility materialized the change.)

Redirected recovery from the source object to a point in time prior to step 2 is not allowed.

You can run redirected recovery on multiple table spaces, index spaces, or indexes at the space level or
the partition level. Piece level (data set level) recovery for LOB table spaces is also supported.

LISTDEF lists are not supported, because association of the source and target objects must be done
explicitly for each object pair.

Recommendation: Although redirected recovery is allowed for partitions and pieces, recover all of the
partitions or pieces when possible. If partitions of an object are recovered in different jobs, they should all
be recovered to the same recovery point.

During a redirected recovery, the source objects are available to applications for read and write access.
However, the target objects are placed in the exclusive utility state, UTUT, and are not available for read or
write access.

If the table in a target table space contains an identity column or an XML column or columns, the
MAXASSIGNEDVAL column value in SYSIBM.SYSSEQUENCES is set to the MAXASSIGNEDVAL value in the
corresponding row in SYSIBM.SYSSEQUENCES for the source.

Real-time statistics information for the target objects will be invalidated by redirected recovery.

The restore of sequential image copies and FlashCopy image copies to target objects is supported. For
restore of a FlashCopy image copy using FlashCopy during redirected recovery, the target object and
the FlashCopy image copy must reside in the same ESS (Enterprise Storage Server) subsystem. If z/OS
determines that FlashCopy cannot be used, the FlashCopy image copy is restored using traditional I/O
methods when the REC_FASTREPLICATION subsystem parameter is set to PREFERRED or NONE. If
FlashCopy cannot be used and REC_FASTREPLICATION is set to REQUIRED, the restore of the FlashCopy
image copy fails. For more information about considerations when using FlashCopy image copies, see
“FlashCopy image copies” on page 144 and “Recovering with FlashCopy image copies” on page 448.

Restore of concurrent copies and system-level backups is not supported; these types of backups are
ignored by redirected recovery.

Restriction: After you run a redirected recovery, a real recovery (FROM is not specified) of the target
objects to a point in time prior to the redirected recovery is not allowed.

You can run multiple redirected recoveries on target objects either to the current state or to a point in
time. These recoveries are supported, because the image copies and log records from the source objects
are used to recover the target objects each time.

Chapter 26. RECOVER 475

Procedure
To run a redirected recovery:
1. Create the target objects with the same attributes as the source objects.

The characteristics listed in the following table must be the same in the current definition of the source
and target objects.

Notes for redirected recovery on indexes:

• The characteristics and definition of the underlying table space for the index at the target must
match the underlying table space for the index at the source. Additionally, the characteristics and
definition of the target and source table columns in the index key must be the same. The number of
columns in the target and source table can differ if a column that is not indexed was added to the
target or source table.

• When an index space or index is specified for redirected recovery, both index space and index
attributes are checked.

• RECOVER checks the characteristics and definitions at the following levels in the given order: table
space, index space and index. When a difference is found, one or more error messages are issued,
and checking does not proceed to the next level. Therefore, all errors might not be detected after an
error is found.

Table 66. Characteristics that must match in the source and target objects for redirected recovery

Object type Characteristics that must match in the source
and target

Table space • Type and organization: partition-by-growth
(PBG), partition-by-range (PBR), partition-by-
range with relative page numbering (PBR RPN),
LOB, or XML

• Page size
• Data set size (DSSIZE)
• SEGSIZE, if not a LOB table space
• MEMBER CLUSTER
• CCSID encoding scheme triplet (for SBCS,

DBCS, and MIXED)
• For a PBR or PBR RPN:

– Logical to physical partition mapping if the
source has rotated or added partitions

– Partition boundary limit keys
– Number of partitions

• For PBG:

– The MAXPARTITIONS value for the target
must be equal to or greater than source

– For table space level recovery (DSNUM ALL),
the number of active partitions for the target
must be equal to or greater than source

– For partition level recovery (DSNUM n), the
physical partition must exist.

476 Db2 12 for z/OS: Utility Guide and Reference

Table 66. Characteristics that must match in the source and target objects for redirected recovery
(continued)

Object type Characteristics that must match in the source
and target

Index space • Type and organization: nonpartitioned index
(NPI), partitioned index (PI), data partitioned
secondary index (DPSI), or partitioned RPN
index

• Page size
• Data set size (DSSIZE)
• COMPRESS
• For PI, DPSI, or PI on PBR RPN:

– Partition boundary limit keys for index-
controlled or table-controlled partitioning

– Logical to physical partition mapping if the
underlying source PBR table space has
rotated or added partitions

– For index space level recovery (DSNUM ALL),
the number of partitions must match.

– For partition level recovery (DSNUM n), the
physical partition must exist.

Table • Existence of the table (either created or not yet
created)

• Columns:

– Number of columns
– Data type, length, precision, scale, subtype
– Inline length of LOB columns
– XML indicator length
– Column CCSID encoding scheme
– Default value
– VARCHAR maximum length
– Generated column definition

Column names can differ.
• Limit key values for partition boundaries for

table-controlled partitioning (PBR)
• CCSID encoding scheme

Chapter 26. RECOVER 477

Table 66. Characteristics that must match in the source and target objects for redirected recovery
(continued)

Object type Characteristics that must match in the source
and target

Index • Key:

– Number of key columns
– Order of key columns
– ASC, DESC, RANDOM ordering attributes

• RID size
• The underlying table must have same
definition. (See the preceding list of table
characteristics.)

• Limit key values for partition boundaries
• UNIQUE or UNIQUE WHERE NOT NULL
• BUSINESS_TIME WITHOUT OVERLAPS
• INCLUDE COLUMNS
• PADDED or NOT PADDED
• INCLUDE NULL KEYS or EXCLUDE NULL KEYS
• Data type for extended indexes (such as XML

indexes and indexes on expressions)

When creating target objects, consider the following tips and recommendations:

• You can use a tool to generate the DDL for the source object and then modify the DDL to create the
target object.

• You can use the CREATE TABLE statement with the LIKE clause to create a target table with the
same columns (names and definitions) as the source table. However, the newly created table does
not inherit other characteristics of the source table, such as the partitioning scheme and auxiliary
relationships.

• For target tables that contain XML columns, the XML table spaces are created implicitly by Db2 with
the same characteristics and attributes as the base table space.

• When creating a new target partition-by-growth (PBG) table space, specify the same
MAXPARTITIONS value as the source table space and specify NUMPARTS n, where n is the number
of currently active partitions for the source. (Although specifying the same MAXPARTITIONS value is
recommended, it is not required.)

When redirected recovery is executed, both source and target objects must exist and be defined,
meaning that the underlying VSAM linear data sets must exist. For the underlying linear data sets for
the target table spaces or index spaces, the VSAM attributes, such as EA, compressed, and KEYLABEL,
should be the same as the corresponding source objects.

2. Optional: If you do not want to use RECOVER to restore the backups, restore the chosen backups to
the target objects by using DSN1COPY or another method.

If you use DSN1COPY to restore the backup, do not use the RESET option. This option sets the starting
point for log apply that RECOVER LOGONLY uses within the page set to zero. You also do not need
to specify the translate OBID option, OBIDXLAT, because redirected recovery translates the source
OBIDs to the target OBIDs in target objects after the log records have been applied.

3. Run RECOVER with the FROM option.

For details on the syntax requirements and restrictions, see “Syntax and options of the RECOVER
control statement” on page 427.

478 Db2 12 for z/OS: Utility Guide and Reference

For an example of a RECOVER statement with the FROM option, see “Example 12: Performing a
redirected recovery to the current state” on page 485.

Add OPTIONS EVENT (ITEMERROR, SKIP) before the RECOVER statement to skip errors with
mismatched characteristics.

Specify the following additional RECOVER options as needed:

LOGONLY
Specify this option only if you restored the data by using DSN1COPY or another method. When
you specify LOGONLY, RECOVER applies only the log records for the source objects to the target
objects.

TOLOGPOINT, TORBA, TOCOPY, TOLASTCOPY, or TOLASTFULL COPY
Use one of these options to identify the recovery point if you want to do a point-in-time recovery.

VERIFYSET NO
Specify this option if you need to recover only the auxiliary target objects or only the base table
space in LOB, XML, history, or archive relationships for target objects.

ENFORCE NO
Specify this option in the following situations:

• You need to recover only the base table space in referential integrity (RI) relationships for target
objects. Specifying this option avoids CHECK-pending status on dependent table spaces.

• You need to recover only the base table space in LOB or XML auxiliary relationships for target
objects. Specifying this option avoids auxiliary CHECK-pending status on the base table spaces.

Recovery point: After you submit the RECOVER job, DSNU1569I reports the recovery point for the
redirected recovery, even if you are recovering to the current state. For redirected recovery to the
current state, the recovery point is the current Db2 log point (RBA or LRSN) after RECOVER has set
the UTRW (utility restrictive state, read-write access allowed) status on the source objects during
initialization.

After redirected recovery completes, the following restrictive states are set:

• Target table spaces are placed in COPY-pending status.
• Target index spaces are placed in informational COPY-pending status.
• If indexes were not recovered at the same time as the corresponding table spaces, they are placed in

REBUILD-pending status.
• If not all partitions of an index space were recovered, the unrecovered partitions are placed in

REBUILD-pending status.
• Indexes that are recovered without the corresponding table spaces are placed in CHECK-pending

status. Run the CHECK INDEX utility to verify that the indexes are consistent with the table spaces.
• For referential integrity (RI) relationships, if the entire set of related objects is not specified for

redirected recovery within one RECOVER statement, CHECK-pending status is set on dependent
table spaces when one of the following situations is true:

– The table space is a target without a parent.
– The parent table is a target without its dependents.

Recommendation: If related target objects were recovered to different recovery points in separate
jobs with VERIFYSET NO and ENFORCE NO, use the CHECK DATA, CHECK INDEX, and CHECK LOB
utilities to check the data before accessing it.

If the redirected recovery fails, it cannot be restarted. You must terminate the utility with the TERM
UTIL command.

4. Run REPAIR CATALOG on the target table spaces, except for LOB or XML table spaces.

You must complete this step before the data is accessed or copied or the indexes are rebuilt.

REPAIR CATALOG rectifies data version information in the Db2 catalog.

Chapter 26. RECOVER 479

This step is not necessary for target index spaces, because the version information for indexes is
rectified during the redirected recovery.

5. If recoverability of the target objects is needed, create a new recovery base for the target objects.
Because redirected recovery places target objects in COPY-pending status and informational COPY-
pending status, a real recovery (FROM is not specified) of target objects is not allowed until a new
recovery base is created. A recovery base can be a full image copy, a REORG LOG YES operation, a
LOAD REPLACE LOG YES operation, or a system-level backup. Target objects can be recovered by using
a real recovery (without the FROM specification) only to the current state or to a point in time after the
redirected recovery.

6. If the target indexes are in REBUILD-pending status and are needed, rebuild them by using the
REBUILD INDEX utility.

What to do next
After you run redirected recovery, you can calculate the estimated recovery time by using the formulas in
"Estimate recovery time using redirected recovery" in Tips for maximizing data availability during backup
and recovery (Db2 Administration Guide).

Termination or restart of RECOVER
You can terminate and restart the RECOVER utility.

Termination
Terminating a RECOVER job with the TERM UTILITY command leaves the table space that is being
recovered in RECOVER-pending status, and the index space that is being recovered in the REBUILD-
pending status. If you recover a table space to a previous point in time, its indexes are left in the
REBUILD-pending status. The data or index is unavailable until the object is successfully recovered or
rebuilt. If the utility fails in the LOGAPPLY, LOGCSR, or LOGUNDO phases, fix the problem that caused the
job to stop and restart the job rather than terminate the job. For the rest of objects in the recover job,
the RECOVER utility restores the original image copy and repeats the LOGAPPLY, LOGCSR, and LOGUNDO
process again for this subset of objects. All the objects being recovered in one recover job will be available
to the application at the end of the RECOVER utility, even if some of the objects do not have any active
URs operating on them and therefore no rollback is needed for these objects.

If the RECOVER utility fails during a redirected recovery and is subsequently terminated with the
TERM UTIL command, the source objects are left in read-write status. The target objects are placed
in RECOVER-pending (RECP), REBUILD-pending (RBDP), or logical page list (LPL) status. If a subset of
index partitions was specified, the unrecovered index partitions are placed in REBUILD-pending status.

If a redirected recovery on indexes updates the current version of target indexes and is then terminated
with the TERM UTILITY command, a SYSCOPY record is inserted for each affected target index. A
subsequent real recovery (FROM is not specified) on the target index and any of its partitions (including
partitions that are not included in the redirected recovery) is prohibited. Because real recovery on the
target index is prohibited, you can take one of the following actions to resolve the RECOVER-pending or
REBUILD-pending status:

• Run another redirected recovery.
• Run the REBUILD INDEX utility.
• Run the REORG TABLESPACE utility with the SORTDATA option.
• Run the LOAD utility with the REPLACE option.

Restart
You can restart RECOVER from the last commit point (RESTART(CURRENT)) or the beginning of the phase
(RESTART(PHASE)). By default, Db2 uses RESTART(CURRENT).

If you attempt to recover multiple objects by using a single RECOVER statement and the utility fails in:

480 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_maxavailabilityduringrecovery.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_maxavailabilityduringrecovery.html

• The RESTORE phase: All objects in the process of being restored are placed in the RECOVER-pending or
REBUILD-pending status. The status of the remaining objects is unchanged.

• The LOGAPPLY phase: All objects that are specified in the RECOVER statement are placed in the
RECOVER-pending or REBUILD-pending status.

In both cases, you must identify and fix the causes of the failure before performing a current restart.

If RECOVER fails in the LOGCSR phase and you restart the utility, the utility restart behavior is
RESTART(PHASE).

If RECOVER fails in the LOGUNDO phase and you restart the utility, the utility repeats the RESTORE,
LOGAPPLY, LOGCSR, and LOGUNDO phases for only those objects that had active units of recovery that
needed to be handled and that did not complete undo processing prior to the failure.

If a redirected recovery fails, you cannot restart RECOVER. Instead, terminate the utility with the -TERM
UTIL command.

Related tasks
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.

Effects of running RECOVER
The effects of running the RECOVER utility vary depending on your situation.

RECOVER without the REUSE option
When you run the RECOVER utility without the REUSE option and the data set that contains that data
is Db2-managed, Db2 deletes this data set before recovery. Then, Db2 redefines a new data set with a
control interval that matches the page size.

Recovering objects to a previous point in time
If you use the RECOVER utility to recover objects to a previous point in time, the counter columns in the
real-time statistics tables might not be valid. Therefore, after any point-in-time recoveries, you must run
the following utilities:

• REORG TABLESPACE to reestablish real-time statistic values for table spaces
• REBUILD INDEX to reestablish real-time statistic values for indexes

These actions do not apply if you recover objects to the current state. When you recover objects to the
current state, the counter columns in the real-time statistics tables are still valid. Db2 does not modify
them.

Cases when indexes are placed in REBUILD-pending status

When you use the RECOVER utility to recover indexes, an index might be left in REBUILD-pending status.
In these rare cases, you must rebuild the index by running the REBUILD INDEX utility.

Indexes are left in REBUILD-pending status, if:

• An index with the COPY YES attribute has gone through the two-pass group buffer pool recovery
pending (GRECP) or logical page list (LPL) recovery, and the RECOVER utility needs to apply the logs that
are processed by the two-pass LPL or GRECP recovery

• Or the indexes are still in GRECP or LPL status, and the compensation log records are written before the
physical undo logs

Chapter 26. RECOVER 481

Redirected recovery
When you run a redirected recovery (by specifying the FROM option), the utility sets certain restrictive
states. For details, see “Running a redirected recovery” on page 474.

Sample RECOVER control statements
Use the sample control statements as models for developing your own RECOVER control statements.

Example 1: Recovering a table space

The following control statement specifies that the RECOVER utility is to recover table space
DSN8D12A.DSN8S12D to the current point in time.

RECOVER TABLESPACE DSN8D12A.DSN8S12D

Example 2: Recovering a table space partition

The following control statement specifies that the RECOVER utility is to recover the second partition of
table space DSN8D12A.DSN8S12D. The partition number is indicated by the DSNUM option.

RECOVER TABLESPACE DSN8D12A.DSN8S12D DSNUM 2

Example 3: Recovering a table space partition to the last image copy that was taken

The following control statement specifies that the RECOVER utility is to recover the first partition of table
space DSN8D12A.DSN8S12D to the last image copy that was taken. If the last image copy that was
taken is a full image copy, this full image copy is restored. If the last image copy that was taken is an
incremental image copy, the most recent full image copy, along with any incremental image copies, are
restored.

RECOVER TABLESPACE DSN8D12A.DSN8S12D DSNUM 1 TOLASTCOPY

Example 4: Recovering table spaces to a point in time

The following control statement specifies that the RECOVER utility is to recover the second partition of
table space DSN8D12A.DSN8S12E and all of table space DSN8D12A.DSN8S12D to the indicated quiesce
point (LRSN X'00000551BE7D'). The quiesce point is indicated by the TOLOGPOINT option. The value for
this option can be either an LRSN or an RBA.

RECOVER TABLESPACE DSN8D12A.DSN8S12E DSNUM 2
 TABLESPACE DSN8D12A.DSN8S12D
 TOLOGPOINT X'00000551BE7D'

Example 5: Recovering an index to the last full image copy that was taken without deleting and
redefining the data sets

482 Db2 12 for z/OS: Utility Guide and Reference

The following control statement specifies that the RECOVER utility is to recover index
ADMF001.IADH082P to the last full image copy. The REUSE option specifies that Db2 is to logically
reset and reuse Db2-managed data sets without deleting and redefining them.

RECOVER INDEX ADMF001.IADH082P REUSE TOLASTFULLCOPY

Example 6: Recovering from concurrent copies

The following RECOVER statement specifies that the utility is to recover all of the objects that are included
in the RCVR4_LIST. This list is defined by the preceding LISTDEF utility control statement. Because the
most recent primary copy for all of these objects is a concurrent copy, CURRENTCOPYONLY option in
the RECOVER statement improves the performance of restoring these concurrent copies. The LOCALSITE
option indicates that RECOVER is to use image copies at the local site.

//STEP1 EXEC DSNUPROC,UID='JUOLU210.RCVR4',
// UTPROC='',
// SYSTEM='SSTR'
//UTPRINT DD SYSOUT=*
//SYSUT1 DD DSN=JUOLU210.RCVR4.STEP1.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=JUOLU210.RCVR4.STEP1.SORTOUT,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *

 LISTDEF RCVR4_LIST
 INCLUDE TABLESPACES TABLESPACE DBOL1002.TSOL1002
 INCLUDE TABLESPACES TABLESPACE DBOL1003.TPOL1003 PARTLEVEL 3
 INCLUDE TABLESPACES TABLESPACE DBOL1003.TPOL1003 PARTLEVEL 6
 INCLUDE TABLESPACES TABLESPACE DBOL1003.TPOL1004 PARTLEVEL 5
 INCLUDE TABLESPACES TABLESPACE DBOL1003.TPOL1004 PARTLEVEL 9
 INCLUDE INDEXSPACES INDEXSPACE DBOL1003.IPOL1051 PARTLEVEL 22
 INCLUDE INDEXSPACES INDEXSPACE DBOL1003.IPOL1061 PARTLEVEL 10
 INCLUDE INDEXSPACES INDEXSPACE DBOL1003.IXOL1062

 RECOVER LIST RCVR4_LIST
 LOCALSITE
 CURRENTCOPYONLY
 /*

Example 7: Recovering a list of objects on different tape devices in parallel

The following RECOVER statement specifies that the utility is to recover the list of table spaces. Full image
copies and incremental image copies of the eight table spaces are stacked on four different tape volumes.
The utility sorts the list of objects and, if possible, recovers two objects at a time in parallel. This number
of objects is specified by the PARALLEL option. The TAPEUNITS option specifies that up to four tape drives
are to be dynamically allocated.

//RECOVER EXEC DSNUPROC,SYSTEM='DSN'
//SYSIN DD *
RECOVER PARALLEL(2) TAPEUNITS(4)
TABLESPACE DB1.TS8
TABLESPACE DB1.TS7
TABLESPACE DB1.TS6
TABLESPACE DB1.TS5
TABLESPACE DB1.TS4
TABLESPACE DB1.TS3
TABLESPACE DB1.TS2
TABLESPACE DB1.TS1

Example 8: Recovering a list of objects to a point in time

Chapter 26. RECOVER 483

The following RECOVER control statement specifies that the RECOVER utility is to recover the specified
list of objects to a common point in time (LRSN X'00000551BE7D'). The LISTDEF control statement
defines which objects are to be included in the list. These objects are logically consistent after successful
completion of this RECOVER job. The PARALLEL option indicates that RECOVER is to restore four objects
at a time in parallel. If any of the image copies are on tape (either stacked or not stacked), RECOVER
determines the number of tape drives to use to optimize the process. Any uncommitted work for all of the
objects at the specified RBA are backed out by the recover operation to a point in time with consistency.

LISTDEF RCVRLIST INCLUDE TABLESPACE DSN8D81A.DSN8S81D
 INCLUDE INDEX DSN8810.XDEPT1
 INCLUDE INDEX DSN8810.XDEPT2
 INCLUDE INDEX DSN8810.XDEPT3
 INCLUDE TABLESPACE DSN8D81A.DSN8S81E
 INCLUDE INDEX DSN8810.XEMP1
 INCLUDE INDEX DSN8810.XEMP2
RECOVER LIST RCVRLIST TOLOGPOINT X'00000551BE7D' PARALLEL(4)

Example 9: Recovering an image copy

The following control statement specifies that RECOVER is to search for an image copy with an RBA
or LRSN value earlier than the specified X'00000551BE7D' value to use in the RESTORE phase. Only
specified dumps of the database copy pool are used for the restore of the data sets.

RECOVER LIST RCVRLIST RESTOREBEFORE X'00000551BE7D' PARALLEL(4)
 FROMDUMP DUMPCLASS(dcname)

Example 10: Recovering clone table data

The following control statement specifies that the RECOVER utility is to recover only clone table data
in DBA90601.TLX9061A and recover the data to the last image copy that was taken. The REUSE option
specifies that RECOVER is to logically reset and reuse DB2-managed data sets without deleting and
redefining them.

RECOVER TABLESPACE DBA90601.TLX9061A REUSE TOLASTCOPY
 CLONE

Example 11: Recovering from a system-level backup from an alternate copy pool

The following RECOVER control statement specifies that only those system-level backups that are
associated with the specified copy pool are candidates for a recovery base. The copy pool is specified
by the ALTERNATE_CP option.

 LISTDEF RCVLIST INCLUDE TABLESPACE DSNDB06.SYSTSCPY
 RECOVER LIST RCVLIST PARALLEL ALTERNATE_CP(ALTERNATE1)

In this example, RECOVER can use system-level backups that are associated with the following copy
pools:

• DSN$ALTERNATE1$DB for the database copy pool
• DSN$ALTERNATE1$LG for the log copy pool

The following output from this utility job shows that RECOVER chose to use a system-level backup and
also indicates the particular system-level backup that was used:

DSNU1520I 220 14:07:40.78 DSNUCBRT - THE RECOVERY BASE FOR TABLESPACE DSNDB06.SYSTSCPY
 IS THE SYSTEM LEVEL BACKUP
 WITH DATE = 20140808, TIME 095319, AND TOKEN X'C4C2F2C1CD931537CA6A07E40000A5140114'

484 Db2 12 for z/OS: Utility Guide and Reference

Example 12: Performing a redirected recovery to the current state

The following control statement specifies that the RECOVER utility is to perform a redirected recovery at
the space level to the current state. Assume that image copies were created with DSNUM ALL. The PROD*
objects are recovered to the TEST* objects.

RECOVER
TABLESPACE TESTDB1.TESTTS1 FROM PRODDB1.PRODTS1
INDEXSPACE TESTDB1.TESTIS1 FROM PRODDB1.PRODIS1
PARALLEL 2

Example 13: Performing a redirected recovery on a set of related objects

The following control statement specifies that the RECOVER utility is to perform a redirected recovery at
the partition level to a point in time. Assume that image copies were created with DSNUM ALL or DSNUM
n. The list of objects includes the base table space partitions, its related LOB table spaces, its related XML
partitions, related RI dependent objects, and related indexes.

RECOVER
 TABLESPACE TESTDB1.TESTTS2 DSNUM 1 FROM PRODDB3.PRODTS1 DSNUM 1
 TABLESPACE TESTDB1.TESTTS2 DSNUM 2 FROM PRODDB3.PRODTS1 DSNUM 2
 TABLESPACE TESTDB1.TESTTS2 DSNUM 3 FROM PRODDB3.PRODTS1 DSNUM 3
 TABLESPACE TESTDB1.TESTTS2 DSNUM 4 FROM PRODDB3.PRODTS1 DSNUM 4
 INDEXSPACE TESTDB1.TESTIS2 DSNUM 1 FROM PRODDB3.PRODIS1 DSNUM 1
 INDEXSPACE TESTDB1.TESTIS2 DSNUM 2 FROM PRODDB3.PRODIS1 DSNUM 2
 INDEXSPACE TESTDB1.TESTIS2 DSNUM 3 FROM PRODDB3.PRODIS1 DSNUM 3
 INDEXSPACE TESTDB1.TESTIS2 DSNUM 4 FROM PRODDB3.PRODIS1 DSNUM 4
 TABLESPACE TESTDB1.TESTLOBA DSNUM ALL FROM PRODDB3.PRODLOBA DSNUM ALL
 INDEXSPACE TESTDB1.ILOBAIXA DSNUM ALL FROM PRODDB3.ILOBAIXA DSNUM ALL
 TABLESPACE TESTDB1.TESTLOBB DSNUM ALL FROM PRODDB3.PRODLOBB DSNUM ALL
 INDEXSPACE TESTDB1.ILOBAIXB DSNUM ALL FROM PRODDB3.ILOBAIXB DSNUM ALL
 TABLESPACE TESTDB1.TESTLOBC DSNUM ALL FROM PRODDB3.PRODLOBC DSNUM ALL
 INDEXSPACE TESTDB1.ILOBAIXC DSNUM ALL FROM PRODDB3.ILOBAIXC DSNUM ALL
 TABLESPACE TESTDB1.TESTLOBD DSNUM ALL FROM PRODDB3.PRODLOBD DSNUM ALL
 INDEXSPACE TESTDB1.ILOBAIXD DSNUM ALL FROM PRODDB3.ILOBAIXD DSNUM ALL
 TABLESPACE TESTDB1.TESTXML2 DSNUM 1 FROM PRODDB3.PRODXML1 DSNUM 1
 TABLESPACE TESTDB1.TESTXML2 DSNUM 2 FROM PRODDB3.PRODXML1 DSNUM 2
 TABLESPACE TESTDB1.TESTXML2 DSNUM 3 FROM PRODDB3.PRODXML1 DSNUM 3
 TABLESPACE TESTDB1.TESTXML2 DSNUM 4 FROM PRODDB3.PRODXML1 DSNUM 4
 INDEXSPACE TESTDB1.IRNODEID DSNUM 1 FROM PRODDB3.IRNODEID DSNUM 1
 INDEXSPACE TESTDB1.IRNODEID DSNUM 2 FROM PRODDB3.IRNODEID DSNUM 2
 INDEXSPACE TESTDB1.IRNODEID DSNUM 3 FROM PRODDB3.IRNODEID DSNUM 3
 INDEXSPACE TESTDB1.IRNODEID DSNUM 4 FROM PRODDB3.IRNODEID DSNUM 4
 INDEXSPACE TESTDB1.XMLIX DSNUM 1 FROM PRODDB3.XMLIX DSNUM 1
 INDEXSPACE TESTDB1.XMLIX DSNUM 2 FROM PRODDB3.XMLIX DSNUM 2
 INDEXSPACE TESTDB1.XMLIX DSNUM 3 FROM PRODDB3.XMLIX DSNUM 3
 INDEXSPACE TESTDB1.XMLIX DSNUM 4 FROM PRODDB3.XMLIX DSNUM 4
 TABLESPACE TESTDB1.TESTDEP2 DSNUM ALL FROM PRODDB3.PRODDEP1 DSNUM ALL
 INDEXSPACE TESTDB1.DEPIX2 DSNUM ALL FROM PRODDB3.DEPIX1 DSNUM ALL
TOLOGPOINT X’lrsn-value’ PARALLEL 4

Example 14: Performing a redirected recovery for recovery time estimation of the base table space

The following control statement specifies that the RECOVER utility is to perform a redirected recovery at
the partition level for the base table space. Assume that image copies were created with DSNUM ALL or
DSNUM n. Because this redirected recovery is for recovery time estimation for the base table space only,
VERIFYSET NO and ENFORCE NO are specified:

RECOVER
 TABLESPACE TESTDB1.TESTTS2 DSNUM 1 FROM PRODDB3.PRODTS1 DSNUM 1
 TABLESPACE TESTDB1.TESTTS2 DSNUM 2 FROM PRODDB3.PRODTS1 DSNUM 2
 TABLESPACE TESTDB1.TESTTS2 DSNUM 3 FROM PRODDB3.PRODTS1 DSNUM 3
 TABLESPACE TESTDB1.TESTTS2 DSNUM 4 FROM PRODDB3.PRODTS1 DSNUM 4
 PARALLEL 4 VERIFYSET NO ENFORCE NO

Chapter 26. RECOVER 485

486 Db2 12 for z/OS: Utility Guide and Reference

Chapter 27. REORG INDEX
The REORG INDEX online utility reorganizes an index space to improve access performance and reclaim
fragmented space. You can specify the degree of access to your data during reorganization, and you can
collect inline statistics by using the STATISTICS keyword.

You can determine when to run REORG INDEX by using the LEAFDISTLIMIT catalog query option. If you
specify the REPORTONLY option, REORG INDEX produces a report that indicates whether a REORG is
recommended; in this case, a REORG is not performed. These options are not available for indexes on the
directory.

To avoid the cost of running the RUNSTATS utility afterward, you can also specify the STATISTICS option
to collect inline statistics when you run the REORG INDEX utility.

You can use the REORG INDEX utility in conjunction with z/OS DFSMS data set encryption to encrypt or
decrypt indexes. REORG INDEX always allocates new Db2-managed data sets unless the REUSE option is
specified.

Output

The following list summarizes REORG INDEX output:

REORG INDEX
Reorganizes the entire index (all parts if partitioning).

REORG INDEX PART n
Reorganizes PART n of a partitioning index or of a data-partitioned secondary index

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• REORG privilege for the database
• DBADM or DBCTRL authority for the database. If the object on which the utility operates is in an

implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• DATAACCESS authority
• SYSCTRL authority
• SYSADM authority

To execute this utility on an index space in the catalog or directory, you must use a privilege set that
includes one of the following authorities:

• REORG privilege for the DSNDB06 (catalog) database
• DBADM or DBCTRL authority for the DSNDB06 (catalog) database.
• Installation SYSOPR authority
• SYSCTRL authority
• SYSADM or Installation SYSADM authority
• STATS privilege for the database is required if STATISTICS keyword is specified.

While trying to reorganize an index space in the catalog or directory, a user with authority other than
installation SYSADM or installation SYSOPR might receive the following message:

DSNT500I "resource unavailable"

© Copyright IBM Corp. 1983, 2024 487

This message is issued when the DSNDB06.SYSTSDBA, DSNDB06.SYSTSDBU, or DSNDB06.SYSUSER
catalog table space or one of the indexes is unavailable. If this problem occurs, run the REORG INDEX
utility again, using an authorization ID with the installation SYSADM or installation SYSOPR authority.

An ID with installation SYSOPR authority can also execute REORG INDEX, but only on an index in the
DSNDB06 database.

If either the FLASHCOPY YES or FLASHCOPY CONSISTENT option is specified, the user ID that invokes
the REORG INDEX utility must have the authority to execute the DFSMSdss COPY command.

To run REORG INDEX STATISTICS REPORT YES, ensure that the privilege set includes the SELECT
privilege on the catalog tables and on the tables for which statistics are to be gathered.

Execution phases of REORG INDEX

The REORG INDEX utility operates in these phases:

UTILINIT
Performs initialization and setup

UNLOAD
Unloads index space and writes keys to a sequential data set.

BUILD
Builds indexes. Updates index statistics.

LOG
Processes log iteratively. Used only if you specify SHRLEVEL CHANGE.

SWITCH
Switches access between original and new copy of index space or partition. Used only if you specify
SHRLEVEL REFERENCE or CHANGE.

UTILTERM
Performs cleanup. For Db2-managed data sets and either SHRLEVEL CHANGE or SHRLEVEL
REFERENCE, the utility deletes the original copy of the table space or index space.

Related tasks
Maintaining data organization (Db2 Performance)
Collecting statistics by using Db2 utilities (Db2 Performance)
Reducing the cost of collecting statistics (Db2 Performance)

Syntax and options of the REORG INDEX control statement
The REORG INDEX utility control statement, with its multiple options, defines the function that the utility
job performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

488 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_reorgindextablespaces.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_collectstatsutilities.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_improverunstatsperformance.html

Syntax diagram
REORG INDEX LIST listdef-name

index-name-spec REUSE CLONE

SHRLEVEL NONE

SHRLEVEL REFERENCE deadline-spec drain-spec

SHRLEVEL CHANGE deadline-spec drain-spec change-spec

FASTSWITCH YES

FASTSWITCH NO

FORCE NONE

FORCE READERS

ALL

LEAFDISTLIMIT

integer REPORTONLY

UNLOAD CONTINUE

UNLOAD PAUSE
1

ONLY

stats-spec

2

SORTDEVT device-type SORTNUM integer

WORKDDN(SYSUT1)

WORKDDN( ddname) PREFORMAT

FLASHCOPY NO

FLASHCOPY YES

CONSISTENT FCCOPYDDN( template-name)

RBALRSN_CONVERSION EXTENDED

RBALRSN_CONVERSION NONE NOSYSUT1

PARALLEL 0

PARALLEL num-subtasks

index-name-spec
INDEX

creator-id .

index-name

INDEXSPACE

database-name .

index-space-name

PART integer

deadline-spec

Chapter 27. REORG INDEX 489

DEADLINE NONE

DEADLINE timestamp

labeled-duration-expression

labeled-duration-expression
CURRENT_DATE

CURRENT_TIMESTAMP

WITH TIME ZONE

 +
 -

constant YEAR

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

drain-spec
DRAIN_WAIT IRLMRWT-value

DRAIN_WAIT integer

RETRY UTIMOUT-value

RETRY integer

RETRY_DELAY calculated-default

RETRY_DELAY integer

TIMEOUT TERM

TIMEOUT ABEND

change-spec

490 Db2 12 for z/OS: Utility Guide and Reference

MAXRO RETRY_DELAY-default-value

MAXRO integer

DEFER

DRAIN ALL

DRAIN WRITERS

LONGLOG CONTINUE

LONGLOG TERM

DRAIN

DELAY 1200

DELAY integer

LOGRANGES YES

LOGRANGES NO

LASTLOG YES

LASTLOG NO

SWITCHTIME NONE

SWITCHTIME timestamp

labeled-duration-expression

NEWMAXRO NONE

NEWMAXRO integer

stats-spec

STATISTICS
REPORT NO

REPORT YES

correlation-stats-spec

UPDATE ALL

UPDATE ACCESSPATH

SPACE

NONE

INVALIDATECACHE NO

INVALIDATECACHE YES

HISTORY ALL

ACCESSPATH

SPACE

NONE

FORCEROLLUP YES

NO

correlation-stats-spec

Chapter 27. REORG INDEX 491

KEYCARD
3

FREQVAL NUMCOLS 1 COUNT 10

FREQVAL NUMCOLS integer

COUNT integer
4

MOST

BOTH

LEAST

HISTOGRAM

NUMCOLS 1 NUMQUANTILES 100

NUMCOLS integer

NUMQUANTILES 100

NUMQUANTILES integer

Notes:
1 You cannot use UNLOAD PAUSE with the LIST option.
2 You cannot specify any options in stats-spec with the UNLOAD ONLY option.
3 The KEYCARD option is deprecated. The functionality previously controlled by KEYCARD is incorporated into
the default processing of inline statistics during the execution of REBUILD INDEX STATISTICS and cannot be
disabled.
4 When the COUNT keyword is not specified, the utility automatically determines the count value and collects
the most frequently occurring values.

Option descriptions

INDEX creator-id.index-name
Specifies an index that is to be reorganized.

creator-id. specifies the creator of the index and is optional. If you omit the qualifier creator ID, Db2
uses the user identifier for the utility job. index-name is the qualified name of the index to copy. For
an index, you can specify either an index name or an index space name. Enclose the index name in
quotation marks if the name contains a blank.

INDEXSPACE database-name.index-space-name
Specifies the qualified name of the index space that is obtained from the SYSIBM.SYSINDEXES table.

database-name specifies the name of the database that is associated with the index and is optional.

The default value is DSNDB04.

index-space-name specifies the qualified name of the index space that is to be reorganized; the name
is obtained from the SYSIBM.SYSINDEXES table.

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. The INDEX keyword is required to
differentiate this REORG INDEX LIST from REORG TABLESPACE LIST. The utility allows one LIST
keyword for each control statement of REORG INDEX. The list must not contain any table spaces.
REORG INDEX is invoked once for each item in the list. This utility will only process clone data if the
CLONE keyword is specified. The use of CLONED YES on the LISTDEF statement is not sufficient.

492 Db2 12 for z/OS: Utility Guide and Reference

Do not specify STATISTICS INDEX index-name with REORG INDEX LIST. If you want to collect inline
statistics for a list of indexes, just specify STATISTICS.

You cannot specify DSNUM and PART with LIST on any utility.

The partitions or partition ranges can be specified in a list.

PART integer
Identifies a partition that is to be reorganized. You can reorganize a single partition of a partitioning
index. You cannot specify PART with LIST. integer is the physical partition number. It must be in the
range from 1 to the number of partitions that are defined for the partitioning index. The maximum
value is 4096.

integer designates a single partition.

If you omit the PART keyword, the entire index is reorganized.

REUSE
When used with SHRLEVEL NONE, specifies that REORG is to logically reset and reuse DB2-managed
data sets without deleting and redefining them. If you do not specify REUSE and SHRLEVEL NONE,
Db2 deletes and redefines Db2-managed data sets to reset them.

If a data set has multiple extents and you use the REUSE parameter, the extents are not released.

If you specify SHRLEVEL REFERENCE or CHANGE with REUSE, REUSE does not apply

CLONE
Indicates that REORG INDEX is to reorganize only the specified index spaces and indexes that are
defined on clone tables. This utility will only process clone data if the CLONE keyword is specified. The
use of CLONED YES on the LISTDEF statement is not sufficient.

SHRLEVEL
Specifies the method for performing the reorganization. The parameter following SHRLEVEL indicates
the type of access that is to be allowed during the RELOAD phase of REORG.
NONE

Specifies that reorganization is to operate by unloading from the area that is being reorganized
(while applications can read but cannot write to the area), building into that area (while
applications have no access), and then allowing read-write access again.

If you specify NONE (explicitly or by default), you cannot specify the following parameters:

• MAXRO
• LONGLOG
• DELAY
• DEADLINE
• DRAIN_WAIT
• RETRY
• RETRY_DELAY

REFERENCE
Specifies that reorganization is to operate as follows:

• Unload from the area that is being reorganized while applications can read but cannot write to
the area.

• Build into a shadow copy of that area while applications can read but cannot write to the original
copy.

• Switch the future access of the applications from the original copy to the shadow copy by
exchanging the names of the data sets, and then allowing read-write access again.

If you specify REFERENCE, you cannot specify the following parameters:

• UNLOAD (Reorganization with REFERENCE always performs UNLOAD CONTINUE.)

Chapter 27. REORG INDEX 493

• MAXRO
• LONGLOG
• DELAY

CHANGE
Specifies that reorganization is to operate as follows:

• Unload from the area that is being reorganized while applications can read and write to the area.
• Build into a shadow copy of that area while applications can read and write to the original copy.
• Apply the log of the original copy to the shadow copy while applications can read and usually

write to the original copy.
• Switch the future access of the applications from the original copy to the shadow copy by

exchanging the names of the data sets, and then allowing read-write access again.

If you specify CHANGE, you cannot specify the UNLOAD parameter. Reorganization with CHANGE
always performs UNLOAD CONTINUE.

SHRLEVEL CHANGE cannot be specified if the table space has the NOT LOGGED attribute.

DEADLINE
Specifies the deadline for the SWITCH phase to begin. If Db2 estimates that the SWITCH phase does
not begin by the deadline, Db2 issues the messages that the DISPLAY UTILITY command issues and
then terminates reorganization.

The final result and all the timestamp calculation of DEADLINE will be in TIMESTAMP(6).

NONE
Specifies that no deadline exists by which the switch phase of log processing must begin.

timestamp
Specifies the deadline for the switch phase of log processing to begin. This deadline must not have
already occurred when REORG is executed.

labeled-duration-expression
Calculates the deadline for the switch phase of log processing to begin. The calculation is based
on either CURRENT TIMESTAMP or CURRENT DATE. You can add or subtract one or more constant
values to specify the deadline. This deadline must not have already occurred when REORG is
executed. CURRENT TIMESTAMP and CURRENT DATE are evaluated once, when the REORG
statement is first processed. If a list of objects is specified, the same value will be in effect for all
objects in the list.
CURRENT_DATE

Specifies that the deadline is to be calculated based on the CURRENT DATE.
CURRENT_TIMESTAMP

Specifies that the deadline is to be calculated based on the CURRENT TIMESTAMP.
WITH TIME ZONE

Specifies that the CURRENT TIMESTAMP is compared with the time zone column. The
timestamp precision of the special register CURRENT TIMESTAMP should be the same as
the column timestamp precision. Otherwise the default timestamp precision is used. The
time zone of CURRENT TIMESTAMP is the value of special register CURRENT TIMEZONE. The
comparison is done by comparing the UTC portion of the timestamp.

constant
Indicates a unit of time and is followed by one of the seven duration keywords: YEARS,
MONTHS, DAYS, HOURS, MINUTES, SECONDS, or MICROSECONDS. The singular form of these
words is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MICROSECOND.

If REORG SHRLEVEL REFERENCE or SHRLEVEL CHANGE terminates because of a DEADLINE
specification, Db2 issues message DSNU374I with reason code 2 but does not set a restrictive status.

494 Db2 12 for z/OS: Utility Guide and Reference

DRAIN_WAIT integer
Specifies the number of seconds that the utility waits when draining for SQL statements (inserts,
updates, deletes, and selects). The specified time is the aggregate time for all partitions of the index
that is to be reorganized. This value overrides the values specified by IRLMRWT and UTIMOUT, for
these SQL statements only. For operations like commands, the IRLMRWT and UTIMOUT values are
used. Valid values for integer are from 0 to 1800. If the keyword is omitted or if a value of 0 is
specified, the utility uses the value of the lock timeout system parameter IRLMRWT.

RETRY integer
Specifies the maximum number of retries that REORG is to attempt. Valid values for integer are from 0
to 255.

Specifying RETRY can lead to increased processing costs and can result in multiple or extended
periods of read-only access.

The default value is the value of the UTIMOUT subsystem parameter.

RETRY_DELAY integer
Specifies the minimum duration, in seconds, between retries. Valid values for integer are from 1 to
1800.

If you do not specify RETRY_DELAY, REORG INDEX uses the smaller of the following two values:

• DRAIN_WAIT value × RETRY value
• DRAIN_WAIT value × 10

MAXRO integer
Specifies the maximum amount of time for the last iteration of log processing. During that iteration,
applications have read-only access.

The actual execution time of the last iteration might exceed the specified MAXRO value.

The ALTER UTILITY command can change the value of MAXRO.

The default value is the RETRY_DELAY default value.

integer
integer is the number of seconds. Specifying a small positive value reduces the length of the
period of read-only access, but it might increase the elapsed time for REORG to complete. If you
specify a huge positive value, the second iteration of log processing is probably the last iteration.

The default value is 300 seconds.

DEFER
Specifies that the iterations of log processing with read-write access can continue indefinitely.
REORG never begins the final iteration with read-only access, unless you change the MAXRO value
by using the ALTER UTILITY command.

If you specify DEFER, you should also specify LONGLOG CONTINUE.

If you specify DEFER, and Db2 determines that the actual time for an iteration and the estimated
time for the next iteration are both less than 5 seconds, Db2 adds a 5-second pause to the next
iteration. This pause reduces consumption of processor time. The first time this situation occurs
for a given execution of REORG, Db2 sends message DSNU362I to the console. The message
states that the number of log records that must be processed is small and that the pause occurs.
To change the MAXRO value and thus cause REORG to finish, execute the ALTER UTILITY
command. Db2 adds the pause whenever the situation occurs; however, Db2 sends the message
only if 30 minutes have elapsed since the last message was sent for a given execution of REORG.

DRAIN
Specifies drain behavior at the end of the log phase after the MAXRO threshold is reached and when
the last iteration of the log is to be applied.
WRITERS

Specifies that Db2 drains only the writers during the log phase after the MAXRO threshold is
reached and then issues DRAIN ALL on entering the switch phase.

Chapter 27. REORG INDEX 495

ALL
Specifies the current default action, in which Db2 is to drain all readers and writers during the log
phase, after the MAXRO threshold is reached.

Consider specifying DRAIN ALL if the following conditions are both true:

• SQL update activity is high during the log phase.
• The default behavior results in a large number of -911 SQL error messages.

LONGLOG
Specifies the action that Db2 is to perform, after sending a message to the console, if the number of
records that the next iteration of log process is to process is not sufficiently lower than the number
that the previous iterations processed. This situation means that REORG INDEX is not reading the
application log quickly enough to keep pace with the writing of the application log.
CONTINUE

Specifies that until the time on the JOB statement expires, Db2 is to continue performing
reorganization, including iterations of log processing, if the estimated time to perform an iteration
exceeds the time that is specified with MAXRO.

A value of DEFER for MAXRO and a value of CONTINUE for LONGLOG together mean that REORG
INDEX is to continue allowing access to the original copy of the area that is being reorganized and
does not switch to the shadow copy. The user can execute the ALTER UTILITY command with a
large value for MAXRO when the switching is wanted.

TERM
Specifies that Db2 is to terminate reorganization after the delay specified by the DELAY parameter.

DRAIN
Specifies that Db2 is to drain the write claim class after the delay that is specified by the DELAY
parameter. This action forces the final iteration of log processing to occur.

DELAY integer
Specifies the minimum interval between the time that REORG sends the LONGLOG message to the
console and the time REORG that performs the action that is specified by the LONGLOG parameter.

integer is the number of seconds.

The default value is 1200.

TIMEOUT
Specifies the action that is to be taken if the REORG INDEX utility gets a timeout condition while trying
to drain objects in either the log or switch phases.
TERM

Indicates that Db2 is to behave as follows if you specify the TERM option and a time out condition
occurs:

1. Db2 issues an implicit TERM UTILITY command, causing the utility to end with a return code
8.

2. Db2 issues the DSNU590I and DSNU170I messages.
3. Db2 leaves the objects in a RW state.

ABEND
Indicates that if a timeout condition occurs, Db2 is to leave the objects in a UTRO or UTUT state.

LOGRANGES
Specifies whether REORG is to use SYSLGRNX information for the LOG phase.
YES

REORG uses SYSLGRNX information for the LOG phase whenever possible. This option is the
default behavior.

NO
REORG does not use SYSLGRNX information for the LOG phase. This option can cause REORG to
run much longer. In a data sharing environment this option can result in the merging of all logs

496 Db2 12 for z/OS: Utility Guide and Reference

from all members. This option is feasible when there is a known integrity issue with SYSLGRNX
entries and performance problems in accessing SYSLGRNX for log read determination.

LASTLOG
Specifies whether REORG SHRLEVEL CHANGE is to apply any log records during the final log iteration
in the LOG phase.

Specifying LASTLOG NO can help reduce outage time by avoiding the costly sub processes (such
as page sets force write) that occur in the final log iteration; however, LASTLOG NO might cause
REORG to not complete if it cannot find the required period of time without concurrent DML activities.
LASTLOG NO requires the DRAIN ALL option to be in effect.

LASTLOG is ignored for REORG executions without SHRLEVEL CHANGE processing.

YES
Specifies that REORG is to perform one final round of log apply processing after draining all claim
classes (DRAIN ALL). Specifying YES ensures that REORG proceeds to the SWITCH phase after
completing the final round of log apply processing in the LOG phase.

YES is the default value.

NO
Specifies that REORG is not to apply any log records in the final log iteration. When existing criteria
is met for REORG to "break in" (gain control of objects), REORG firsts drains all claim classes and
then processes the logs from the end of the last log iteration to current. If any log records of the
target objects are found in this final log iteration, REORG dedrains the target objects and reverts
this final log iteration back to a normal log iteration. When REORG "breaks in" again in a future log
iteration, the utility repeats this cycle of drain all, log read, and dedrain until it can complete the
final log iteration with no log records to apply. The reversion back to a normal log iteration due
to the presence of logs counts as a drain failure for RETRY consideration; therefore a high RETRY
value is recommended to lessen the impact of the repeating "break in" attempts.

SWITCHTIME
Specifies the time for the final log iteration of the LOG phase to begin. The final result and all of the
time stamp calculations of SWITCHTIME are in TIMESTAMP(6). This keyword can be specified with
the MAXRO keyword. If MAXRO DEFER is not specified, REORG enters the final log iteration of the LOG
phase before the specified SWITCHTIME value if the specified or defaulted MAXRO criteria is met.
When MAXRO DEFER is specified, REORG does not attempt to enterto the final log iteration until the
specified SWITCHTIME is met or affected by an external ALTER UTILITY command in the changing of
its MAXRO value.
NONE

Does not specify a time for the final log iteration of the LOG phase. This option is the default
behavior.

timestamp
Specifies the time that the final log iteration of the LOG phase is to begin. This time must not have
already occurred when REORG is run.

labeled-duration-expression
Calculates the time for the final log iteration of LOG phase is to begin. The calculation is based on
either CURRENT TIMESTAMP or CURRENT DATE. You can add or subtract one or more constant
values to specify the switch time. This switch time must not have already occurred when REORG is
run. CURRENT TIMESTAMP and CURRENT DATE are evaluated once, when the REORG statement
is first processed. If a list of objects is specified, the same value is in effect for all objects in the
list.
CURRENT_DATE

Specifies that the deadline is to be calculated based on the CURRENT DATE.
CURRENT_TIMESTAMP

Specifies that the deadline is to be calculated based on the CURRENT TIMESTAMP.

Chapter 27. REORG INDEX 497

WITH TIME ZONE
Specifies that the CURRENT TIMESTAMP is compared with the time zone column. The time
stamp precision of the special register CURRENT TIMESTAMP should be the same as the
column time stamp precision. Otherwise, the default time stamp precision is used. The time
zone of CURRENT TIMESTAMP is the value of special register CURRENT TIMEZONE. The
comparison is done by comparing the Coordinated Universal Time portion of the time stamp.

constant
Indicates a unit of time and is followed by one of the seven duration keywords: YEARS,
MONTHS, DAYS, HOURS, MINUTES, SECONDS, or MICROSECONDS. The singular form of these
words is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MICROSECOND.

NEWMAXRO
Specifies the maximum amount of time for the last log iteration after SWITCHTIME is met. The
SWITCHTIME keyword must also be specified. This value overrides the existing MAXRO parameter
that is specified. The default is NONE.
NONE

Specifies that when the specified SWITCHTIME is met, REORG proceeds to the last log iteration
without taking log processing time in to consideration. Specifying NONE results in REORG entering
the last log iteration almost immediately at or after the specified SWITCHTIME. This option is the
default.

integer
integer is the number of seconds. Specifying a small positive value reduces the length of the
period of read-only access, but it might increase the elapsed time for REORG to complete.
Specifying a large positive value probably ensures that REORG will enter the last log iteration
almost immediately at or after the specified SWITCHTIME.

FORCE
Specifies the action to be taken when the utility is draining the table space.

When REORG FORCE is canceling the threads, it performs a soft cancel similar to the cancel that the
CANCEL THREAD does.

NONE
Specifies that no action is taken when REORG performs drain. The REORG utility waits for the
claimers to commit. The utility will timeout or restart when the drain fails, as determined by
existing conditions.

READERS
Specifies that read claimers are canceled when REORG is requesting a drain all on the last RETRY
processing.

ALL
specifies that both read and write claimers are canceled when REORG is requesting a drain all or
drain writers on the last RETRY processing.

FASTSWITCH
Specifies which switch methodology is to be used for a reorganization.
YES

Enables the SWITCH phase to use the FASTSWITCH methodology. This option is not allowed for
the catalog (DSNDB06) or directory (DSNDB01).

NO
Causes the SWITCH phase to use IDCAMS RENAME.

LEAFDISTLIMIT integer

The LEAFDISTLIMIT option is deprecated, and the alternative is running DSNACCOX.

Specifies that the value for integer is to be compared to the LEAFDIST value for the specified
partitions of the specified index in SYSIBM.SYSINDEXPART. If any LEAFDIST value exceeds the
specified LEAFDISTLIMIT value, REORG is performed or, if you specify REPORTONLY, recommended.

The default value is 200.

498 Db2 12 for z/OS: Utility Guide and Reference

Because a node ID index , auxiliary index, hash index, or XML index has a LEAFDIST value of -2,
REORG is not performed for any of those indexes when LEAFDISTLIMIT is specified.

REPORTONLY

The REPORTONLY option is deprecated, and the alternative is running DSNACCOX.

Specifies that REORG is only to be recommended, not performed. REORG produces a report with one
of the following return codes:
1

No limit met; no REORG performed or recommended.
2

REORG performed or recommended.
UNLOAD

Specifies whether the utility job is to continue processing or terminate after the data is unloaded.
CONTINUE

Specifies that, after the data has been unloaded, the utility is to continue processing.
PAUSE

The UNLOAD PAUSE option has been deprecated. If you need to stop the utility after the keys are
unloaded, use DIAGNOSE in combination with the REORG utility to stop the process (pause).

Specifies that, after the data has been unloaded, processing is to end. The utility stops and the
RELOAD status is stored in SYSIBM.SYSUTIL so that processing can be restarted with RELOAD
RESTART(PHASE).

This option is useful if you want to redefine data sets during reorganization. For example, with a
user-defined data set, you can:

• Run REORG with the UNLOAD PAUSE option.
• Redefine the data set using Access Method Services.
• Restart REORG by resubmitting the previous job and specifying RESTART(PHASE).

If no records are unloaded during an UNLOAD PAUSE, when REORG is restarted, the RELOAD and
BUILD phases are bypassed.

You cannot use UNLOAD PAUSE if you specify the LIST option.

ONLY

The UNLOAD ONLY option has been deprecated. If you need to unload the keys, use DIAGNOSE
in combination with the REORG utility to stop the process after the keys are unloaded, and TERM
UTIL to terminate the utility.

Specifies that, after the data has been unloaded, the utility job ends and the status in
SYSIBM.SYSUTIL that corresponds to this utility ID is removed.

STATISTICS
Specifies that statistics for the index are to be collected; the statistics are either reported or stored in
the Db2 catalog. You cannot collect inline statistics for indexes on the catalog and directory tables.

Restrictions:

• If you specify STATISTICS for encrypted data, Db2 might not provide useful information on this data.
• You cannot specify STATISTICS for clone objects.

If pending definition changes are materialized during REORG INDEX with SHRLEVEL REFERENCE or
SHRLEVEL CHANGE, index statistics are collected and updated in the Db2 catalog by default.

If the STATISTICS keyword was not specified in the REORG INDEX with SHRLEVEL REFERENCE or
CHANGE statement when pending definition changes are materialized, the following keywords are run
by default: STATISTICS UPDATE ALL HISTORY ALL. If you also specify the STATISTICS keyword in

Chapter 27. REORG INDEX 499

the REORG INDEX with the SHRLEVEL REFERENCE or SHRLEVEL CHANGE statement when pending
definition changes are materialized, the options specified overwrite the default options.

Recommendation: Some partition statistics can become obsolete due to the materialization of
pending definition changes. The partition statistics that can become obsolete are COLGROUP
statistics, statistics for key column values in indexes, HISTOGRAM statistics, frequency statistics with
NUMCOLS > 1, and statistics for extended indexes where applicable. Run the RUNSTATS utility to
collect the partition statistics again.

REPORT
Indicates whether a set of messages to report the collected statistics is to be generated.
NO

Indicates that the set of messages is not to be sent as output to SYSPRINT.
YES

Indicates that the set of messages is to be sent as output to SYSPRINT. The generated messages
are dependent on the combination of keywords (such as TABLESPACE, INDEX, TABLE, and
COLUMN) that you specify with the RUNSTATS utility. However, these messages are not dependent
on the specification of the UPDATE option. REPORT YES always generates a report of SPACE and
ACCESSPATH statistics.

KEYCARD
The KEYCARD option is deprecated in the utility control statement and no longer needs to be specified
to collect cardinality statistics on the values in the key columns of an index.

When the STATISTICS option is specified, the utility automatically collects all of the distinct values in
all of the 1 to n key column combinations for the indexes being rebuilt.n is the number of columns in
the index. With the deprecation of KEYCARD, this functionality cannot be disabled.

The utility tolerates the specification of the KEYCARD option. The utility does not issue any messages
if the control statement includes or excludes the KEYCARD option when STATISTICS is specified.

FREQVAL
Controls the collection of frequent-value statistics. If you specify FREQVAL, it must be followed by the
NUMCOLS keyword.
NUMCOLS

Indicates the number of key columns that are to be concatenated when collecting frequent values
from the specified index. If you specify 3, the utility collects frequent values on the concatenation
of the first three key columns.

The default value is 1, which means that Db2 is to collect frequent values only on the first key
column of the index.

COUNT
Indicates the number of frequent values that are to be collected. If you specify 15, the utility
collects 15 frequent values from the specified key columns.

When the COUNT keyword is not specified, the utility automatically determines the count value
and collects the most frequently occurring values.

MOST
Indicates that the utility is to collect the most frequently occurring values for the specified set of
columns when COLGROUP is specified.

BOTH
Indicates that the utility is to collect the most and the least frequently occurring values for the
specified set of columns when COLGROUP is specified.

LEAST
Indicates that the utility is to collect the least frequently occurring values for the specified set of
columns when COLGROUP is specified.

500 Db2 12 for z/OS: Utility Guide and Reference

HISTOGRAM
Indicates that histogram statistics are requested for the specified index.
NUMCOLS

The number of key columns that are to be concatenated when collecting histogram statistics from
the specified index.

NUMQUANTILES
The integer values that follows NUMQUANTILES indicates the number quantiles are requested.
The integer value must be greater than or equal to 1.

Histogram statistics can be collected only on keys with the same order. If the specified key columns
for histogram statistics are of mixed or random order, a DSNU633I warning message is issued.

Histogram statistics that you collect through REBUILD INDEX are not the same as histogram statistics
that you collect through RUNSTATS. Histogram statistics that you collect with REBUILD INDEX are
only rough estimates. To obtain more exact statistics, use RUNSTATS.

Related information:

Histogram statistics (Db2 Performance)
DSNU633I (Db2 Messages)

UPDATE
Indicates whether the collected statistics are to be inserted into the catalog tables. UPDATE also
allows you to select statistics that are used for access path selection or statistics that are used by
database administrators.
ALL

Indicates that all collected statistics are to be updated in the catalog.
ACCESSPATH

Indicates that the only catalog table columns that are to be updated are those that provide
statistics that are used for access path selection.

SPACE
Indicates that the only catalog table columns that are to be updated are those that provide
statistics to help the database administrator assess the status of a particular table space or index.

NONE
Indicates that catalog tables are not to be updated with the collected statistics. This option is valid
only when REPORT YES is specified.

INVALIDATECACHE
Indicates whether statements in the dynamic statement cache are invalidated as a result of the inline
statistics collection. This option does not prevent the utility from invalidating cached statements for
other reasons.
YES

Statements in the dynamic cache are invalidated for the objects that are specified in the job
statement.

NO
Statements in the dynamic cache are not invalidated by the collection of inline statistics for the
objects that are specified in the job statement. However, cached statements might be invalidated
by the utility for reasons other than the inline statistics, such as when the utility resolves objects in
restricted states or applies pending ALTER operations.

HISTORY
Records all catalog table inserts or updates to the catalog history tables.

The default is supplied by the value that is specified in STATISTICS HISTORY on panel DSNTIP6.

ALL
Indicates that all collected statistics are to be updated in the catalog history tables.

Chapter 27. REORG INDEX 501

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_histogramstatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu633i.html

ACCESSPATH
Indicates that the only catalog history table columns that are to be updated are those that provide
statistics that are used for access path selection.

SPACE
Indicates that only space-related catalog statistics are to be updated in catalog history tables.

NONE
Indicates that catalog history tables are not to be updated with the collected statistics.

FORCEROLLUP
Specifies whether aggregation or rollup of statistics is to take place when you execute RUNSTATS even
if some indexes or index partitions are empty. This keyword enables the optimizer to select the best
access path.

The following options are available for the FORCEROLLUP keyword:

YES
Indicates that forced aggregation or rollup processing is to be done, even though some indexes or
index partitions might not contain data.

NO
Indicates that aggregation or rollup is to be done only if data is available for all indexes or index
partitions.

If data is not available, the utility issues DSNU623I message if you have set the installation value for
STATISTICS ROLLUP on panel DSNTIP6 to NO.

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically allocated by the external
sort program. For device-type, specify any disk device that is valid on the DYNALLOC parameter of the
SORT or OPTION options for the sort program. Tape devices are not supported by the sort program.

SORTNUM integer
Specifies the number of temporary data sets that are to be dynamically allocated when collecting
statistics for a data-partitioned secondary index. If you omit SORTDEVT, SORTNUM is ignored. If you
use SORTDEVT and omit SORTNUM, no value is passed to the sort program; the sort program uses its
own default.

integer is the number of temporary data sets that can range from 2 to 255.

REORG INDEX does not sort index keys. Only one sort can be performed, and that is if inline statistics
are being collected for a DPSI.

Important: The SORTNUM keyword is ignored if the IGNSORTN subsystem parameter is set to YES.

WORKDDN(ddname)
ddname specifies the DD statement for the unload data set.
ddname

Is the DD name of the temporary work file for build input.

The default value is SYSUT1.

The WORKDDN keyword specifies either a DD name or a TEMPLATE name from a previous
TEMPLATE control statement. If utility processing detects that the specified name is both a DD
name in the current job step and a TEMPLATE name, the utility uses DD name.

Even though WORKDDN is an optional keyword, a DD statement for the unload output data set is
required in the JCL. If you do not specify WORKDDN, or if you specify it without ddname, the JCL must
have a DD statement with the name SYSUT1. If ddname is given, you must provide a DD statement or
TEMPLATE that matches the DD name.

PREFORMAT
Specifies that the remaining pages are to be preformatted up to the high-allocated RBA in the index
space. The preformatting occurs after the index is built.

PREFORMAT can operate on an entire index space, or on a partition of a partitioned index space.

502 Db2 12 for z/OS: Utility Guide and Reference

PREFORMAT is ignored if you specify UNLOAD ONLY.

FLASHCOPY
Specifies whether FlashCopy technology is used to create a copy of the object. Valid values are YES,
NO, or CONSISTENT. When FlashCopy is used, a separate data set is created for each partition or
piece of the object.

The FlashCopy specifications on the utility control statement override any specifications for FlashCopy
that are defined by using the Db2 subsystem parameters. If the FlashCopy subsystem parameters
specify the use of FlashCopy as the default behavior of this utility, the FLASHCOPY option can be
omitted from the utility control statement.

Important: If the input data set is less than one cylinder, FlashCopy technology might not be used
for copying the objects regardless of the FLASHCOPY settings. The copy is performed by IDCAMS if
FlashCopy is not used.

NO
Specifies that no FlashCopy is made. NO is the default value for FLASHCOPY.

YES
Specifies that FlashCopy technology is used to copy the object.

Specify YES only if the Db2 data sets are on FlashCopy Version 2 disk volumes.

Important: Under the following circumstances, the REORG INDEX utility might not use FlashCopy
even though YES is specified:

• FlashCopy Version 2 disk volumes are not available
• The source tracks are already the target of a FlashCopy operation
• The target tracks are the source of a FlashCopy operation
• The maximum number of relationships for the copy is exceeded

In the event that FlashCopy is not used, the REORG INDEX utility uses traditional I/O methods to
copy the object, which can result in longer than expected execution time.

If SHRLEVEL REFERENCE or SHRLEVEL CHANGE is specified when the copy operation is forced
to use traditional I/O methods, an even longer outage might occur, because the FlashCopy image
copies are created during the SWITCH phase of utility execution.

A warning is issued if any FlashCopy errors are encountered during REORG INDEX processing.

Related information:

“FlashCopy image copies” on page 144
“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on page 42

CONSISTENT
Specifies that FlashCopy technology is used to copy the object. Because the copies created by the
REORG INDEX utility are already consistent, the utility treats a specification of CONSISTENT the
same as a specification of YES.

FCCOPYDDN
Specifies the template to be used to create the FlashCopy image copy data set names. If a value is not
specified for FCCOPYDDN on the REORG INDEX control statement when FlashCopy is used, the value
specified on the FCCOPYDDN subsystem parameter determines the template to be used.
(template-name)

The data set names for the FlashCopy image copy are allocated according to the template
specification. For table space or index space level FlashCopy image copies, because a data set
is allocated for each partition or piece, ensure that the data set naming convention in the template
specification is unique enough. Use the &DSNUM variable, which resolves to a partition number or
piece number at execution time.

RBALRSN_CONVERSION
Specifies the RBA or LRSN format of the target object after the completion of the REORG utility.

Chapter 27. REORG INDEX 503

Important: RBALRSN_CONVERSION is deprecated, meaning that its use is discouraged. Although this
keyword remains supported, support is likely to be removed eventually. The utility fails if BASIC is
specified, or if NONE is specified for an object in the 6-byte format.

EXTENDED
Specifies that if an object is found in basic 6-byte format, it is converted to 10-byte extended
format.

EXTENDED is the default value.

NONE
Specifies that no conversion is performed.

The utility fails if RBALRSN_CONVERSION NONE is specified on a table space that is in basic
6-byte format.

If a CLONE relationship exists, the page set conversion cannot be performed. For clone relationships,
you must drop the clone table, convert the base table to extended 10-byte format, and then re-create
the clone table.

NOSYSUT1
Specifies that REORG INDEX is not to use a work data set (SYSUT1 by default) to hold the unloaded
index keys. Instead, the utility passes the unloaded keys in memory as input to the index build for this
process. Avoiding usage of the work data set can improve performance.

Specifying NOSYSUT1 also enables REORG INDEX to use parallel subtasks to unload and build the
index keys as part of its internal processing. The utility can unload and build the index keys using
parallel subtasks concurrently and operate on different physical partitions of the target partitioned
index (PI or DPSI) with parallel tasks. REORG INDEX determines the optimal degree of parallelism
based on available system resources at run time. The utility starts at least one index unload task
and one index build task. If desired, you can limit the degree of parallelism by specifying PARALLEL
num-subtasks.

The NOSYSUT1 option is ignored if SHRLEVEL NONE is specified or used by default.

If NOSYSUT1 is specified and an error occurs when unloading or building the index keys, you must
perform a phase restart of the utility from the beginning of the UNLOAD phase. This requirement
applies only when SHRLEVEL REFERENCE is specified; REORG INDEX with SHRLEVEL CHANGE is not
restartable until the SWITCH phase.

PARALLEL num-subtasks
Specifies the maximum number of subtasks that are to be started in parallel to reorganize the index.
If the PARALLEL keyword is omitted, the maximum number of subtasks is limited by the number of
indexes or index partitions that are being reorganized. PARALLEL is ignored if REORG INDEX cannot
use subtask parallelism for its internal processing.

The value of num-subtasks must be an integer between 0 and 32767, inclusive. If the specified
value for num-subtasks is greater than 32767, REORG INDEX fails. If 0 or no value is specified for
num-subtasks, REORG INDEX uses the optimal number of parallel subtasks. If the specified value
for num-subtasks is greater than the calculated optimal number, REORG INDEX limits the number of
parallel subtasks to the optimal number with applied constraints.

The specified number of subtasks for PARALLEL always overrides the specification of the
PARAMDEG_UTIL subsystem parameter. Therefore, the value of PARALLEL can be smaller or larger
than the value of PARAMDEG_UTIL.

Related tasks
“Improving LOAD performance” on page 314
Depending on the data, target object, and available resources, you can take certain actions that might
improve the performance of the LOAD utility. For example, you can preprocess the input data or specify a
particular LOAD option.
Related reference
“TEMPLATE” on page 751

504 Db2 12 for z/OS: Utility Guide and Reference

The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the
data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.
“LISTDEF” on page 199
The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Before running REORG INDEX
Certain activities might be required before you run the REORG INDEX utility, depending on your situation.

Region size

The recommended minimum region size is 4096 KB.

Restart-pending status and SHRLEVEL CHANGE

If you specify SHRLEVEL CHANGE, REORG drains the write claim class near the end of REORG processing.
In a data sharing environment, if a data sharing member fails and that member has restart-pending status
for a target page set, the drain can fail. You must postpone running REORG with SHRLEVEL CHANGE
until all restart-pending statuses have been removed. You can use the DISPLAY GROUP command to
determine whether a member's status is FAILED. You can use the DISPLAY DATABASE command with the
LOCKS option to determine if locks are held.

Data sharing considerations for REORG

You must not execute REORG on an object if another Db2 subsystem holds retained locks on the object
or has long-running noncommitting applications that use the object. You can use the DISPLAY GROUP
command to determine whether a member's status is "FAILED." You can use the DISPLAY DATABASE
command with the LOCKS option to determine if locks are held.

Fallback recovery considerations

Successful REORG INDEX processing inserts a SYSCOPY row with ICTYPE='W' for an index that was
defined with COPY YES. REORG also places a reorganized index in informational COPY-pending status.
You should take a full image copy of the index after the REORG job completes to create a valid point of
recovery.

RECOVER-pending and REBUILD-pending status

You cannot reorganize an index if any partition of the index is in the RECOVER-pending (RECP) status or
in one of the following REBUILD-pending restrictive states: RBDP, PSRBD, or RBDP*. Similarly, you cannot
reorganize a single index partition if it is in one of those states (RECP, RBDP, PSRBD, or RBDP*).

CHECK-pending status

You cannot reorganize an index when the data is in the CHECK-pending status.

Chapter 27. REORG INDEX 505

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

Running REORG INDEX when the index has a VARBINARY column
If you run REORG INDEX against an index with the following characteristics, REORG INDEX fails:

• The index was created on a VARBINARY column or a column with a distinct type that is based on a
VARBINARY data type.

• The index column has the DESC attribute.

To fix the problem, alter the column data type to BINARY, and then rebuild the index.

Related reference
“RECOVER-pending status” on page 983
RECOVER-pending (RECP) restrictive status indicates that a table space, table space partition, index
space, or index on an auxiliary table is broken and must be recovered.
“REBUILD-pending status” on page 982
A REBUILD-pending restrictive status indicates that the affected index or index partition is broken and
must be rebuilt from the data.
“CHECK DATA” on page 71
The CHECK DATA online utility checks table spaces for violations of referential and table check
constraints. This utility also checks for consistency between a base table space and the corresponding
LOB or XML table spaces.

Data sets that REORG INDEX uses
The REORG INDEX utility uses a number of data sets during its operation.

The following table lists the data sets that REORG uses. The table lists the DD name that is used to
identify the data set, a description of the data set, and an indication of whether it is required. Include
statements in your JCL for each required data set and any optional data sets that you want to use.

Table 67. Data sets that REORG INDEX uses

Data set Description Required?

SYSIN Input data set that contain the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

STPRIN01 A data set that contains messages from the sort
program (usually, SYSOUT or DUMMY). This data
set is used when statistics are collected on at least
one data-partitioned secondary index.

No“1” on page 507

Work data set A temporary data set for unload output and build
input. Specify the DD or template name with the
WORKDDN option of the utility control statement.
The default DD name is SYSUT1.

Yes

Sort work data sets Temporary data sets for sort input and output
when collecting inline statistics on at least one
data-partitioned secondary index. The DD names
have the form ST01WKnn.

No“2” on page 507,
“3” on page 507,“4”
on page 507

UTPRINT A data set that contains messages from the sort
program (usually, SYSOUT or DUMMY).

Yes

FlashCopy image copy data sets For copies of the entire index space, a separate
VSAM data set for each partition or piece that is
contained in the index space. For partition-level
or piece-level copies, a VSAM data set for each
partition or piece that is being copied.

No“5” on page 507

506 Db2 12 for z/OS: Utility Guide and Reference

Table 67. Data sets that REORG INDEX uses (continued)

Data set Description Required?

Note:

1. STPRIN01 is required if statistics are being collected on at least one data-partitioned secondary
index, but REORG INDEX dynamically allocates the STPRIN01 data set if UTPRINT is allocated to
SYSOUT.

2. Required when collecting inline statistics on at least one data-partitioned secondary index.
3. If the DYNALLOC parm of the SORT program is not turned on, you need to allocate the data set.

Otherwise, the sort program dynamically allocates the temporary data set.
4. It is recommended that you use dynamic allocation by specifying SORTDEVT in the utility statement

because dynamic allocation reduces the maintenance required of the utility job JCL.
5. Required if you specify the FLASHCOPY YES

The following objects are named in the utility control statement and do not require DD statements in the
JCL:
Index

Object to be reorganized.

Calculating the size of the work data sets
When reorganizing an index space, you need a non-DB2 sequential work data set. That data set is
identified by the DD statement that is named in the WORKDDN option. During the UNLOAD phase, the
index keys and the data pointers are unloaded to the work data set. This data set is used to build the
index. It is required only during the execution of REORG.

Use the following formula to calculate the approximate size (in bytes) of the WORKDDN data set SYSUT1:

size = number of keys x (key length + 10)

Calculating the size of the sort work data sets for the inline statistics frequency sort
for data-partitioned secondary indexes
When collecting inline statistics on at least one data-partitioned secondary index, REORG INDEX uses
temporary data sets for sort input and output. To calculate the approximate size (in bytes) of these data
sets (with DD names ST01WKnn), use the following formula:

2 ×(maximum record length × numcols × (count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length
Maximum record length of the SYSCOLDISTSTATS record that is processed when collecting frequency
statistics (You can obtain this value from the RECLENGTH column in SYSTABLES.)

numcols
Number of key columns to concatenate when you collect frequent values from the specified index.

count
Number of frequent values that Db2 is to collect.

Sort work data sets cannot span volumes. Smaller volumes require more sort work data sets to sort the
same amount of data; therefore, large volume sizes can reduce the number of needed sort work data sets.
When you allocate sort work data sets on disk, the recommended amount of space to allow provides at
least 1.2 times the amount of data that is to be sorted.

Tape devices are not supported for sort work data sets.

Chapter 27. REORG INDEX 507

Changing data set definitions
If the index space is defined by storage groups, space allocation is handled by Db2 and data set
definitions cannot be altered during the reorganization process. Db2 deletes and redefines the necessary
data sets to reorganize the object.

For REORG with SHRLEVEL REFERENCE or CHANGE, you can use the ALTER STOGROUP command to
change the characteristics of a Db2-managed data set. You can effectively change the characteristics
of a user-managed data set by specifying the new characteristics when creating the shadow data
set. In particular, placing the original and shadow data sets on different disk volumes might reduce
contention and thus improve the performance of REORG and the performance of applications during
REORG execution.

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Shadow data sets for REORG INDEX
When you execute the REORG INDEX utility with SHRLEVEL REFERENCE or SHRLEVEL CHANGE, the utility
uses shadow data sets.

For user-managed data sets, you must preallocate the shadow data sets before you execute REORG
INDEX with SHRLEVEL REFERENCE or SHRLEVEL CHANGE. If an index or partitioned index resides in
Db2-managed data sets and shadow data sets do not already exist when you execute REORG INDEX, Db2
creates the shadow data sets. At the end of REORG processing, the Db2-managed shadow data sets are
deleted. You can create the shadows ahead of time for Db2-managed data sets.

Shadow data set names
Each shadow data set must have the following name:

catname.DSNDBx.dbname.psname.y000z.Lnnn

In the preceding name, the variables have the following meanings:

variable
meaning

catname
The VSAM catalog name or alias

x
C or D

dbname
Database name

psname
Table space name or index name

y
I or J

z
1 or 2

Lnnn
Partition identifier. Use one of the following values:

• A001 through A999 for partitions 1 through 999

508 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

• B000 through B999 for partitions 1000 through 1999
• C000 through C999 for partitions 2000 through 2999
• D000 through D999 for partitions 3000 through 3999
• E000 through E996 for partitions 4000 through 4096

To determine the names of existing data sets, execute one of the following queries against the
SYSTABLEPART or SYSINDEXPART catalog tables:

SELECT DBNAME, TSNAME, IPREFIX
 FROM SYSIBM.SYSTABLEPART
 WHERE DBNAME = 'dbname'
 AND TSNAME = 'psname';

SELECT DBNAME, IXNAME, IPREFIX
 FROM SYSIBM.SYSINDEXES X, SYSIBM.SYSINDEXPART Y
 WHERE X.NAME = Y.IXNAME
 AND X.CREATOR = Y.IXCREATOR
 AND X.DBNAME = 'dbname'
 AND X.INDEXSPACE = 'psname';

Defining shadow data sets
Consider the following actions when you preallocate the data sets:

• Allocate the shadow data sets according to the rules for user-managed data sets.
• Define the shadow data sets as LINEAR.
• Use SHAREOPTIONS(3,3).
• Define the shadow data sets as EA-enabled if the original table space or index space is EA-enabled.
• Allocate the shadow data sets on the volumes that are defined in the storage group for the original table

space or index space.

If you specify a secondary space quantity, Db2 does not use it. Instead, Db2 uses the SECQTY value for
the table space or index space.

Recommendation: Use the MODEL option, which causes the new shadow data set to be created like the
original data set. This method is shown in the following example:

DEFINE CLUSTER +
 (NAME('catname.DSNDBC.dbname.psname.x0001.L001') +
 MODEL('catname.DSNDBC.dbname.psname.y0001.L001')) +
 DATA +
 (NAME('catname.DSNDBD.dbname.psname.x0001.L001') +
 MODEL('catname.DSNDBD.dbname.psname.y0001.L001'))

Creating shadow data sets for indexes
Db2 treats preallocated shadow data sets as Db2-managed data sets.

When you preallocate shadow data sets for indexes, create the data sets as follows:

• Create shadow data sets for the partition of the table space and the corresponding partition in each
partitioning index and data-partitioned secondary index.

• Create a shadow data set for logical partitions of nonpartitioned secondary indexes.

Use the same naming scheme for these index data sets as you use for other data sets that are associated
with the base index, except use J0001 instead of I0001.

Chapter 27. REORG INDEX 509

Estimating the size of shadow data sets
If you do not change the value of FREEPAGE or PCTFREE, the amount of space that is required for a
shadow data set is approximately comparable to the amount of space that is required for the original data
set.

Concurrency and compatibility for REORG INDEX
The REORG INDEX utility has certain concurrency and compatibility characteristics associated with it.

Db2 treats individual index partitions as distinct target objects. Utilities that operate on different
partitions of the same index space are compatible.

Claims
The following table lists any claims or drains that the utility acquires and any restrictive states that are set
on the target object. The target is an index or partition.

Table 68. Claim classes of REORG INDEX operations

Phase
REORG INDEX SHRLEVEL
NONE

REORG INDEX
SHRLEVEL
REFERENCE

REORG INDEX SHRLEVEL
CHANGE

UNLOAD DW/UTRO DW/UTRO CR/UTRW

BUILD DA/UTUT none none

Last iteration of LOG n/a DA/UTUT1 DW/UTRO

SWITCH n/a DA/UTUT DA/UTUT

Legend:

• CR: Claim the read claim class.
• DA: Drain all claim classes, no concurrent SQL access.
• DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers.
• DW: Drain the write claim class, concurrent access for SQL readers.
• UTRO: Utility restrictive state, read only access allowed.
• UTUT: Utility restrictive state, exclusive control.
• none: Any claim, drain, or restrictive state for this object does not change in this phase.

Note:

1. Applicable if you specified DRAIN ALL.

Compatibility
The following table shows which utilities can run concurrently with REORG INDEX on the same target
object. The target object can be an index space or a partition. If compatibility depends on particular
options of a utility, that is also shown. REORG INDEX does not set a utility restrictive state if the target
object is an index on DSNDB01.SYSUTILX.

Table 69. Compatibility of REORG INDEX with other utilities

Action
REORG INDEX SHRLEVEL NONE,
REFERENCE, or CHANGE

CHECK DATA No

CHECK INDEX No

510 Db2 12 for z/OS: Utility Guide and Reference

Table 69. Compatibility of REORG INDEX with other utilities (continued)

Action
REORG INDEX SHRLEVEL NONE,
REFERENCE, or CHANGE

CHECK LOB Yes

COPY INDEXSPACE No

COPY TABLESPACE Yes

DIAGNOSE Yes

LOAD No

MERGECOPY Yes

MODIFY Yes

QUIESCE No

REBUILD INDEX No

RECOVER INDEX No

RECOVER INDEXSPACE No

RECOVER TABLESPACE (with no options) Yes

RECOVER TABLESPACE ERROR RANGE Yes

RECOVER TABLESPACE TOCOPY or TORBA No

REORG INDEX SHRLEVEL NONE, REFERENCE, or CHANGE No

REORG TABLESPACE SHRLEVEL NONE UNLOAD CONTINUE or
PAUSE, REORG SHRLEVEL REFERENCE, or REORG SHRLEVEL
CHANGE

No

REORG TABLESPACE SHRLEVEL NONE UNLOAD ONLY or
EXTERNAL with cluster index

No

REORG TABLESPACE SHRLEVEL NONE UNLOAD ONLY or
EXTERNAL without cluster index

Yes

REPAIR LOCATE INDEX PAGE REPLACE No

REPAIR LOCATE KEY No

REPAIR LOCATE RID DELETE No

REPAIR LOCATE RID DUMP, VERIFY, or REPLACE Yes

REPAIR LOCATE TABLESPACE PAGE REPLACE Yes

REPORT Yes

RUNSTATS INDEX No

RUNSTATS TABLESPACE Yes

STOSPACE Yes

UNLOAD Yes

To run on SYSIBM.DSNLUX01 or SYSIBM.DSNLUX02, REORG INDEX must be the only utility in the job step
and the only utility that is running in the Db2 subsystem.

Chapter 27. REORG INDEX 511

Determining which indexes require reorganization
Reorganizing indexes might improve performance. To determine which indexes to reorganize to potentially
gain such a performance improvement, you can analyze certain data in the Db2 catalog. You can then
reorganize these indexes by using the REORG INDEX utility.

Procedure
To determine which indexes require reorganization:
1. Issue the following SQL statement to identify user-created indexes and Db2 catalog indexes to

consider reorganizing with the REORG INDEX utility:

EXEC SQL
SELECT IXNAME, IXCREATOR
FROM SYSIBM.SYSINDEXPART
WHERE LEAFDIST > 200
ENDEXEC

Using a LEAFDIST value of more than 200 as an indicator of a disorganized index is merely a rough
guideline for general cases. This guidance is not absolute. In some cases, 200 is an acceptable value
for LEAFDIST. For example, with FREEPAGE 0 and index page splitting, the LEAFDIST value can climb
sharply. In this case, a LEAFDIST value that exceeds 200 can be acceptable.

2. Issue the following SQL statement to determine the average distance (multiplied by 100) between
successive leaf pages during sequential access of the index.

EXEC SQL
SELECT LEAFDIST
FROM SYSIBM.SYSINDEXPART
WHERE IXCREATOR = 'index_creator_name'
AND IXNAME = 'index_name'
ENDEXEC

An increase in the LEAFDIST value over time probably indicates that the index needs to be
reorganized. The optimal value of the LEAFDIST catalog column is zero. However, immediately after
you run the REORG and RUNSTATS utilities, LEAFDIST might be greater than zero as a result of empty
pages for FREEPAGE and non-leaf pages.

Using the LEAFDISTLIMIT and REPORTONLY options to determine
when reorganization is needed

You can determine when to run REORG for indexes by using the LEAFDISTLIMIT and REPORTONLY
options.

About this task

Procedure
To determine when reorganization is needed:
1. Run the REORG INDEX utility and specify the LEAFDISTLIMIT option and the REPORTONLY option.

REORG produces a report with one of the following return codes; but a REORG is not performed.
1

No limit met; no REORG performed or recommended.

512 Db2 12 for z/OS: Utility Guide and Reference

2
REORG performed or recommended.

2. Optional: Alternatively, information from the SYSINDEXPART catalog table can tell you which indexes
qualify for reorganization.

Related tasks
Maintaining data organization (Db2 Performance)
Determining when to reorganize indexes (Db2 Performance)
Related reference
SYSINDEXPART catalog table (Db2 SQL)

Access with REORG INDEX SHRLEVEL
You can specify the level of access that you have to your data by using the SHRLEVEL option.

For reorganizing an index or a partition of an index, the SHRLEVEL option lets you choose the level of
access that you have to your data during reorganization:

• REORG with SHRLEVEL NONE, the default, reloads the reorganized data into the original area that is
being reorganized. Applications have read-only access during unloading and no access during reloading.
SHRLEVEL NONE is the only access level that resets REORG-pending status.

• REORG with SHRLEVEL REFERENCE reloads the reorganized data into a new (shadow) copy of the area
that is being reorganized. Near the end of reorganization, Db2 switches applications' future access from
the original to the shadow copy. For SHRLEVEL REFERENCE, applications have read-only access during
unloading and reloading, and a brief period of no access during switching.

• REORG with SHRLEVEL CHANGE reloads the reorganized data into a shadow copy of the area that is
being reorganized. Applications can read from and write to the original area, and Db2 records the writing
in the log. Db2 then reads the log and applies it to the shadow copy to bring the shadow copy up to
date. This step executes iteratively, with each iteration processing a sequence of log records. Near the
end of reorganization, Db2 switches applications' future access from the original to the shadow copy.
Applications have read-write access during unloading and reloading, a brief period of read-only access
during the last iteration of log processing, and a brief period of no access during switching.

Log processing with SHRLEVEL CHANGE
When you specify SHRLEVEL CHANGE, Db2 processes the log to update the shadow copy. This step
executes iteratively. The first iteration processes the log records that accumulated during the previous
iteration. The iterations continue until one of these conditions is met:

• Db2 estimates that the time to perform the log processing in the next iteration will be less than or equal
to the time that is specified by MAXRO. If this condition is met, the next iteration is the last.

• Db2 estimates that the switch phase will not start by the deadline specified by DEADLINE. If this
condition is met, Db2 terminates reorganization.

• The number of log records that the next iteration will process is not sufficiently lower than the number
of log records that were processed in the previous iteration. If this condition is met but the first two
conditions are not, Db2 sends message DSNU377I to the console. Db2 continues log processing for the
length of time that is specified by DELAY and then performs the action specified by LONGLOG.

Operator actions

LONGLOG specifies the action that Db2 is to perform if log processing is not occurring quickly enough.
If the operator does not respond to the console message DSNU377I, the LONGLOG option automatically
goes into effect. You can take one of the following actions:

• Execute the START DATABASE(db) SPACENAM(ts)... ACCESS(RO) command and the QUIESCE utility
to drain the write claim class. Db2 performs the last iteration, if MAXRO is not DEFER. After the

Chapter 27. REORG INDEX 513

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_reorgindextablespaces.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_reorgindexes.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsysindexparttable.html

QUIESCE, you should also execute the ALTER UTILITY command, even if you do not change any
REORG parameters.

• Execute the START DATABASE(db) SPACENAM(ts)... ACCESS(RO) command and the QUIESCE utility to
drain the write claim class. Then, after reorganization has made some progress, execute the START
DATABASE(db) SPACENAM(ts)... ACCESS(RW) command. This action increases the likelihood that log
processing can improve. After the QUIESCE, you should also execute the ALTER UTILITY command,
even if you do not change any REORG parameters.

• Execute the ALTER UTILITY command to change the value of MAXRO. Changing it to a huge positive
value, such as 9999999, causes the next iteration to be the last iteration.

• Execute the ALTER UTILITY command to change the value of LONGLOG.
• Execute the TERM UTILITY command to terminate reorganization.
• Adjust the amount of buffer space that is allocated to reorganization and to applications. This

adjustment can increase the likelihood that log processing improve after adjusting the space, you
should also execute the ALTER UTILITY command, even if you do not change any REORG parameters.

• Adjust the scheduling priorities of reorganization and applications. This adjustment can increase the
likelihood that log processing improve. After adjusting the priorities, you should also execute the ALTER
UTILITY command, even if you do not change any REORG parameters.

Db2 does not take the action specified in the LONGLOG phrase if any one of these events occurs before
the delay expires:

• An ALTER UTILITY command is issued.
• A TERM UTILITY command is issued.
• Db2 estimates that the time to perform the next iteration is likely to be less than or equal to the time
specified on the MAXRO keyword.

• REORG terminates for any reason (including the deadline).

When REORG INDEX is used with SHRLEVEL REFERENCE or SHRLEVEL CHANGE, pending definition
changes are materialized for pending alterations on the index. Pending changes are not materialized
for pending alterations on the table space. If pending alterations are involved only on the index, advisory-
REORG pending status (AREOR) is reset from the index. If REORG INDEX with SHRLEVEL REFERENCE or
SHRLEVEL CHANGE is run at the partition level, pending definition changes are not materialized.

REORG INDEX with SHRLEVEL NONE proceeds without materializing pending definition changes if there
were any on the index being reorganized.

Index statistics are collected and updated in the Db2 catalog when pending definition changes are
materialized during REORG INDEX with SHRLEVEL REFERENCE or SHRLEVEL CHANGE.

Creating a FlashCopy image copy with REORG INDEX
As part of REORG INDEX processing, you can use FlashCopy technology to quickly take image copies of
the target objects.

About this task
Restriction: You cannot create FlashCopy image copies of indexes that are defined with the COPY NO
attribute.

Procedure
Specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT) in the REORG INDEX utility control statement.
Alternatively, you can set the FLASHCOPY_REORG_INDEX subsystem parameter to YES, which specifies
that REORG INDEX is to use FLASHCOPY(YES) by default. The value that you specify for the FLASHCOPY
option in the REORG INDEX statement always overrides the value for the FLASHCOPY_REORG_INDEX
subsystem parameter.

514 Db2 12 for z/OS: Utility Guide and Reference

Optionally, you can also specify FCCOPYDDN in the REORG INDEX statement. Use this option to specify a
template for the FlashCopy image copy. If you do not specify the FCCOPYDDN option in the REORG INDEX
statement, the utility uses the value from the FCCOPYDDN subsystem parameter.

Restriction: The data sets that you specify for the FlashCopy image copy must be on FlashCopy Version 2
disk volumes.

When you specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT), REORG INDEX uses FlashCopy
technology to create a consistent copy of the target objects.

The FlashCopy image copy fails if the FlashCopy Version 2 disk volumes are not available or if any of the
other FlashCopy operational restrictions exist. For a list of those operational restrictions, see “FlashCopy
image copies” on page 144.

Related concepts
“FlashCopy image copies” on page 144
FlashCopy image copies can reduce both the time that data is unavailable during the copy operation and
the time that is required for backup and recovery operations. Certain Db2 utilities can create these copies
by invoking the FlashCopy function that is provided by z/OS DFSMS and the IBM TotalStorage Enterprise
Storage Server (ESS) storage subsystems.
Related reference
DEFAULT TEMPLATE field (FCCOPYDDN subsystem parameter) (Db2 Installation and Migration)
REORG INDEX field (FLASHCOPY_REORG_INDEX subsystem parameter) (Db2 Installation and Migration)

Temporarily interrupting REORG
You can temporarily pause REORG.

If you specify UNLOAD PAUSE, REORG pauses after unloading the index space into the work data set. The
job completes with return code 4. You can restart REORG by using the phase restart or current restart.
The REORG statement must not be altered.

The SYSIBM.SYSUTIL record for the REORG INDEX utility remains in "stopped" status until REORG is
restarted or terminated.

While REORG is interrupted by PAUSE, you can re-define the table space attributes for user defined
table spaces. PAUSE is not required for STOGROUP-defined table spaces. Attribute changes are done
automatically by a REORG following an ALTER INDEX.

Improving performance with REORG INDEX
You can improve the performance of the REORG INDEX utility by taking certain actions.

About this task
Recommendation: Run online REORG during light periods of activity on the table space or index.

Procedure
To improve REORG performance:
• Run REORG concurrently on separate partitions of a partitioned index space.

The processor time for running REORG INDEX on partitions of a partitioned index is approximately the
same as the time for running a single REORG index job. The elapsed time is a fraction of the time for
running a single REORG job on the entire index.

• Schedule REORG with SHRLEVEL CHANGE when the rate of writing is low and transactions are short.
Avoid scheduling REORG with SHRLEVEL CHANGE when low-tolerance applications are executing.

• Run REORG with DRAIN_WAIT.

Chapter 27. REORG INDEX 515

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_fccopyddn.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopyreorgindex.html

The DRAIN_WAIT option provides improved control over the time online REORG waits for drains. Also,
because the DRAIN_WAIT is the aggregate time that online REORG is to wait to perform a drain on
a table space and associated indexes, the length of drains is more predictable than it is when each
partition and index has its own individual waiting-time limit.

By specifying a short delay time (less than the system timeout value, IRLMRWT), you can reduce the
impact on applications by reducing timeouts. You can use the RETRY option to provide opportunities
for the online REORG INDEX utility to complete successfully. If you do not want to use RETRY
processing, you can still use DRAIN_WAIT to set a specific and more consistent limit on the length
of drains.

RETRY allows an online REORG that is unable to drain the objects it requires to try again after a set
period (RETRY_DELAY). If the drain fails in the SWITCH phase, the objects remain in their original state
(read-only mode for SHRLEVEL REFERENCE or read-write mode for SHRLEVEL CHANGE). Likewise,
objects will remain in their original state if the drain fails in the LOG phase.

Because application SQL statements can queue behind any unsuccessful drain that the online REORG
has tried, define a reasonable delay before you try again to allow this work to complete; the default is 5
minutes.

When the default DRAIN WRITERS is used with SHRLEVEL CHANGE and RETRY, multiple read-only
log iterations can occur. Because online REORG can have to do more work when RETRY is specified,
multiple or extended periods of restricted access might occur. Applications that run with REORG must
perform frequent commits. During the interval between retries, the utility is still active; consequently,
other utility activity against the table space and indexes is restricted.

Termination of REORG INDEX
You can terminate the REORG INDEX utility.

If you terminate REORG with the TERM UTILITY command during the UNLOAD phase, objects have not
yet been changed, and you can rerun the job.

If you terminate REORG with the TERM UTILITY command during the build phase, the behavior depends
on the SHRLEVEL option:

• For SHRLEVEL NONE, the index is left in RECOVER-pending status. After you recover the index, rerun the
REORG job.

• For SHRLEVEL REFERENCE or CHANGE, the index keys are reloaded into a shadow index, so the original
index has not been affected by REORG. You can rerun the job.

If you terminate REORG with the TERM UTILITY command during the log phase, the index keys are
reloaded into a shadow index, so the original index has not been affected by REORG. You can rerun the
job.

If you terminate REORG with the TERM UTILITY command during the switch phase, all data sets that
were renamed to their shadow counterparts are renamed back, so the objects are left in their original
state. You can rerun the job. If a problem occurs in renaming to the original data sets, the objects are left
in RECOVER-pending status. You must recover the index.

The REORG-pending status is not reset until the UTILTERM execution phase. If the REORG INDEX utility
abnormally terminates or is terminated, the objects are left in RECOVER-pending status.

The following table lists any restrictive states that are set based on the phase in which REORG INDEX
terminated.

Table 70. Restrictive states set based on the phase in which REORG INDEX terminated

Phase Effect on restrictive status

UNLOAD No effect.

516 Db2 12 for z/OS: Utility Guide and Reference

Table 70. Restrictive states set based on the phase in which REORG INDEX terminated (continued)

Phase Effect on restrictive status

BUILD Sets REBUILD-pending (RBDP) status at the beginning of the build phase, and
resets RBDP at the end of the phase. SHRLEVEL NONE places an index that was
defined with the COPY YES attribute in RECOVER pending (RECP) status.

LOG No effect.

SWITCH Under certain conditions, if TERM UTILITY is issued, it must complete
successfully; otherwise, objects might be placed in RECP status or RBDP status.
For SHRLEVEL REFERENCE or CHANGE, sets the RECP status if the index was
defined with the COPY YES attribute at the beginning of the switch phase, and
resets RECP at the end of the phase. If the index was defined with COPY NO, this
phase sets the index in RBDP status at the beginning of the phase, and resets RBDP
at the end of the phase.

Related reference
“Advisory or restrictive states” on page 975
To control access and help ensure data integrity, Db2 can set a restrictive or nonrestrictive (advisory)
status on certain objects. However, you can take steps to correct each status.

Restart of REORG INDEX
You can restart a REORG INDEX utility job.

If you restart REORG in the outlined phase, it re-executes from the beginning of the phase. Db2 always
uses RESTART(PHASE) by default unless you restart the job in the UNLOAD phase. In this case, Db2 uses
RESTART(CURRENT) by default.

If REORG abnormally terminates or a system failure occurs while it is in the UTILTERM phase, you must
restart the job with RESTART(PHASE).

The following table provides information about restarting REORG INDEX. For each phase of REORG and
for each type of REORG INDEX (with SHRLEVEL NONE, with SHRLEVEL REFERENCE, and with SHRLEVEL
CHANGE), the table indicates the types of restart that are allowed (CURRENT and PHASE). None indicates
that no restart is allowed. The "Data sets required" column lists the data sets that must exist to perform
the specified type of restart in the specified phase.

Table 71. REORG INDEX utility restart information

Phase

Type of restart
allowed for
SHRLEVEL NONE

Type of
restart allowed
for SHRLEVEL
REFERENCE

Type of restart
allowed for
SHRLEVEL CHANGE Data sets required Notes

UNLOAD CURRENT, PHASE CURRENT, PHASE None SYSUT1

BUILD CURRENT, PHASE CURRENT, PHASE None SYSUT1 1

LOG Phase does not
occur

Phase does not
occur

None None

SWITCH Phase does not
occur

CURRENT, PHASE CURRENT, PHASE originals and shadows 1

Note:

1. You can restart the utility with either RESTART or RESTART(PHASE). However, because this phase does not
take checkpoints, RESTART always re-executes from the beginning of the phase.

Chapter 27. REORG INDEX 517

If you restart a REORG STATISTICS job that was stopped in the BUILD phase by using RESTART CURRENT,
inline statistics collection does not occur. To update catalog statistics, run the RUNSTATS utility after
the restarted job completes. Restarting a REORG STATISTICS job with RESTART(PHASE) is conditional
after executing UNLOAD PAUSE. To determine if catalog table statistics are to be updated when you
restart a REORG STATISTICS job, see the following table. This table lists whether or not statistics are
updated based on the execution phase and whether the job is restarted with RESTART(CURRENT) or
RESTART(PHASE).

Table 72. Whether statistics are updated when REORG INDEX STATISTICS jobs are restarted in certain phases

Phase RESTART CURRENT RESTART PHASE

UTILINIT No Yes

UNLOAD No Yes

BUILD No Yes

Related tasks
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.
“Restarting a utility after the output data set is full” on page 50
If a utility job terminates with an out-of-space condition on the output data set, you might need to restart
the job at the last commit point.

Review of REORG INDEX output
The output from REORG INDEX consists of a reorganized index or index partition.

The following table summarizes the results of REORG INDEX based upon what you specified.

Table 73. Summary of the results of REORG INDEX

Specification Results

REORG INDEX Entire index (all partitions of a partitioned index)

REORG INDEX PART n Part n of partitioned index

When reorganizing an index, REORG leaves free pages and free space on each page in accordance with
the current values of the FREEPAGE and PCTFREE parameters. (You can set those values by using the
CREATE INDEX or ALTER INDEX statement.) REORG leaves one free page after reaching the FREEPAGE
limit for each table in the index space.

Catalog updates: REORG INDEX updates SYSINDEXPART OLDEST_VERSION and SYSINDEXES
OLDEST_VERSION (if applicable).

Effect of REORG INDEX on index version numbers
Db2 stores the range of used index version numbers in the OLDEST_VERSION and CURRENT_VERSION
columns of the SYSIBM.SYSINDEXES and SYSIBM.SYSINDEXPART catalog tables.

The OLDEST_VERSION column contains the oldest used version number, and the CURRENT_VERSION
column contains the current version number.

When you run REORG INDEX, the utility updates this range of used version numbers for indexes that
are defined with the COPY NO attribute. REORG INDEX sets the OLDEST_VERSION column to the current
version number, which indicates that only one version is in use; Db2 can then reuse all of the other version
numbers.

518 Db2 12 for z/OS: Utility Guide and Reference

Recycling of version numbers is required when all of the version numbers are being used. All version
numbers are being used when one of the following situations is true:

• The value in the CURRENT_VERSION column is one less than the value in the OLDEST_VERSION
column.

• The value in the CURRENT_VERSION column is 15 and the value in the OLDEST_VERSION column is 0 or
1.

You can also run LOAD REPLACE, REBUILD INDEX, or REORG TABLESPACE to recycle version numbers
for indexes that are defined with the COPY NO attribute. To recycle version numbers for indexes that are
defined with the COPY YES attribute or for table spaces, run MODIFY RECOVERY.

Related concepts
Table space versions (Db2 Administration Guide)

Sample REORG INDEX control statements
Use the sample control statements as models for developing your own REORG INDEX control statements.

Example 1: Reorganizing an index

The following control statement specifies that the REORG INDEX utility is to reorganize index XMSGTXT1.
The UNLOAD PAUSE option indicates that after the data has been unloaded, the utility is to stop.
Processing can be restarted in the RELOAD phase. This option is useful if you want to redefine data
sets during reorganization.

REORG INDEX DSN8C10.XMSGTXT1
 UNLOAD PAUSE

Example 2: Collecting inline statistics while reorganizing an index.

The following control statement specifies that REORG INDEX is to collect statistics for index XEMPL1
while reorganizing that index. The SHRLEVEL REFERENCE option indicates that during this processing,
only read access is allowed on the areas that are being reorganized.

REORG INDEX DSN8C10.XEMPL1
 SHRLEVEL REFERENCE STATISTICS

Example 3: Updating access path statistics in the catalog and catalog history tables while
reorganizing an index

The following control statement specifies that while reorganizing index IU0E0801, REORG INDEX is to
collect statistics and update access path statistics in the catalog and catalog history tables. The utility is
also to send any output, including space and access path statistics, to SYSPRINT.

REORG INDEX IUOE0801
 STATISTICS
 REPORT YES
 UPDATE ACCESSPATH
 HISTORY ACCESSPATH

Example 4: Reorganizing a list of indexes

In the following example, the OPTIONS statement specifies that the subsequent TEMPLATE and LISTDEF
utility control statements are to run in PREVIEW mode. If the syntax of these statements is correct, Db2

Chapter 27. REORG INDEX 519

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_tablespaceversions.html

expands the REORG_INDX list and the data set names in the SREC, SUT1, and SOUT templates and prints
these results to the SYSPRINT data set. The second OPTIONS control statement turns off the PREVIEW
mode, and the subsequent REORG INDEX job runs normally.

The REORG INDEX statement specifies that the utility is to reorganize the indexes that are included in
the REORG_INDX list. The SHRLEVEL CHANGE option indicates that during this processing, read and write
access is allowed on the areas that are being reorganized, with the exception of a 100-second period
during the last iteration of log processing. During this time, which is specified by the MAXRO option,
applications have read-only access. The WORKDDN option indicates that REORG INDEX is to use the data
set that is defined by the SUT1 template. If the SWITCH phase does not begin by the deadline that is
specified on the DEADLINE option, processing terminates.

//STEP2 EXEC DSNUPROC,UID='HUHRU257.REORGI',TIME=1440,
// UTPROC='',
// SYSTEM='SSTR',DB2LEV=DB2A
//SYSIN DD *
 OPTIONS PREVIEW
 TEMPLATE SREC
 UNIT(SYSDA) DISP(NEW,CATLG,CATLG)
 DSN(HUHRU257.REORG.&ST..SREC)
 TEMPLATE SUT1
 UNIT(SYSDA) DISP(NEW,DELETE,CATLG)
 DSN(HUHRU257.REORG.&ST..SUT1)
 TEMPLATE SOUT
 UNIT(SYSDA) DISP(NEW,DELETE,CATLG)
 DSN(HUHRU257.REORG.&ST..SOUT)
 LISTDEF REORG_INDX INCLUDE INDEX ADMF001.IPHR5701
 INCLUDE INDEX ADMF001.IXHR570*
 OPTIONS OFF
 REORG INDEX LIST REORG_INDX
 PREFORMAT
 SHRLEVEL CHANGE
 DEADLINE 2010-2-4-23.10.12
 MAXRO 100
 WORKDDN (SUT1)
/*

Example 5: Creating a FlashCopy image copy with REORG INDEX

The following REORG INDEX control statement reorganizes the index spaces associated with table space
DSN8S81E and creates a FlashCopy image copy of the index.

//SYSADMA JOB (ACCOUNT),'NAME',NOTIFY=&SYSUID
//*
//UTIL EXEC DSNUPROC,SYSTEM=VA1A,UID='TEMP',UTPROC=''
//DSNUPROC.SYSREC DD DSN=SYSOPS.DSNAME,
// DISP=(NEW,DELETE),
// SPACE=(CYL,(20,20),RLSE),
// UNIT=SYSDA,VOL=SER=SCR03
//DSNUPROC.SYSUT1 DD DSN=SYSOPS.SYSUT1,
// DISP=(NEW,DELETE,DELETE),
// SPACE=(CYL,(9,90),RLSE),
// UNIT=SYSDA,VOL=SER=SCR03
//DSNUPROC.SYSIN DD *
LISTDEF COPY_LIST INCLUDE INDEXSPACES TABLESPACE DSN8D81A.DSN8S81E PARTLEVEL ALL
TEMPLATE SCOPY UNIT(SYSDA) DISP(NEW,CATLG,DELETE)
DSN(DSNT1.&DB..&TS..CPY1.D&TIME.)
TEMPLATE FCOPY UNIT(SYSDA) DISP(NEW,CATLG,DELETE)
DSN(DSNFC.&DB..&TS..P&PA..D&TIME.)
REORG INDEX LIST COPY_LIST SHRLEVEL REFERENCE FLASHCOPY YES
FCCOPYDDN(FCOPY) COPYDDN(SCOPY)

Example 6: Reorganizing clone indexes

520 Db2 12 for z/OS: Utility Guide and Reference

The following control statement specifies that REORG INDEX is to reorganize only the specified index
spaces that contain indexes on clone tables. The SHRLEVEL CHANGE option indicates that during this
processing, applications can read and write to the area.

REORG INDEX ADMF001.IPJM0901 SHRLEVEL CHANGE CLONE

Chapter 27. REORG INDEX 521

522 Db2 12 for z/OS: Utility Guide and Reference

Chapter 28. REORG TABLESPACE
The REORG TABLESPACE online utility reorganizes a table space, partition, or range of partitions to
reclaim fragmented space and improve access performance. You can also run REORG TABLESPACE to
materialize pending definition changes.

You can use the DSNACCOX stored procedure to get recommendations on when to run REORG
TABLESPACE.

To avoid the cost of running the RUNSTATS utility after running REORG TABLESPACE, you can request that
REORG collect inline statistics by specifying the STATISTICS option.

You can run REORG TABLESPACE on the table spaces in the Db2 catalog database (DSNDB06) and on
some table spaces in the directory database (DSNDB01). You cannot run REORG TABLESPACE on any
table space in the DSNDB07 database.

Do not execute REORG on an object if another member holds retained locks on the object or has long-
running non-committing applications that use the object. You can use the DISPLAY GROUP command to
determine whether a member status is failed. You can use the DISPLAY DATABASE command with the
LOCKS option to determine whether locks are held.

If you issue REORG TABLESPACE with the INITCDDS YES option, REORG does not reorganize the table
space. REORG copies the existing compression dictionaries for a table space that is defined with DATA
CAPTURE CHANGES into the compression dictionary data set (CDDS). This option applies only to a data
sharing group in a GDPS® Continuous Availability with zero data loss (GDPS Continuous Availability with
zero data loss) environment.

You can use the REORG TABLESPACE utility in conjunction with z/OS DFSMS data set encryption to
encrypt or decrypt table spaces and indexes. REORG TABLESPACE always allocates new Db2-managed
data sets unless the REUSE option is specified.

Output

The following table summaries the results of REORG TABLESPACE according to the type of REORG
specified.

Table 74. Summary of REORG TABLESPACE output

Type of REORG specified Results

REORG TABLESPACE Reorganizes all data and all indexes.

REORG TABLESPACE PART n Reorganizes data for PART n of the table space and PART n of all
partitioned indexes.

REORG TABLESPACE PART n:m Reorganizes data for PART n through PART m of the table space
and PART n through PART m of all partitioned indexes.

Note: When SCOPE PENDING is also specified, the REORG TABLESPACE utility reorganizes the specified
table space only if it is in REORG-pending or advisory REORG-pending status. For a partitioned table
space, REORG TABLESPACE SCOPE PENDING reorganizes only the partitions that are in REORG-pending
or advisory REORG-pending status.

FL 509 If the table space or partition is defined with compression, the data is compressed when it is
reloaded. If you specify the KEEPDICTIONARY option of REORG, the current dictionary is used; otherwise
a new dictionary is built. If a table has DATA CAPTURE CHANGES active, any previously existing dictionary
is written to the log. After REORG completes successfully, the utility updates the COMPRESS_USED
column of the SYSTABLEPART catalog table with the type of the compression dictionary that was used on
each target page set.

© Copyright IBM Corp. 1983, 2024 523

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html

REORG TABLESPACE materializes pending limit key changes if you specify SHRLEVEL REFERENCE or
CHANGE.

Authorization required

To execute this utility on a user table space, you must use a privilege set that includes one of the following
authorities:

• REORG privilege for the database
• DBADM or DBCTRL authority for the database. If the object on which the utility operates is in an

implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• SYSCTRL authority
• SYSADM authority
• DATAACCESS authority

To execute this utility on a table space in the catalog or directory, you must use a privilege set that
includes one of the following authorities:

• REORG privilege for the DSNDB06 (catalog) database
• DBADM or DBCTRL authority for the DSNDB06 (catalog) database
• Installation SYSOPR authority
• SYSCTRL authority
• SYSADM or Installation SYSADM authority
• STATS privilege for the database is required if STATISTICS keyword is specified.

If you specify REORG TABLESPACE SHRLEVEL CHANGE and you create a mapping table, you must use a
privilege set that includes DELETE, INSERT, and UPDATE privileges on the mapping table.

If either the FLASHCOPY YES or FLASHCOPY CONSISTENT option is specified, the user ID that invokes
the REORG TABLESPACE utility must have the authority to execute the DFSMSdss COPY command.

To run REORG TABLESPACE STATISTICS REPORT YES, you must use a privilege set that includes the
SELECT privilege on the catalog tables and tables for which statistics are to be gathered.

An authority other than installation SYSADM or installation SYSOPR can receive message DSNT500I
resource unavailable, while trying to reorganize a table space in the catalog or directory. This
message can be issued when the DSNDB06.SYSDBAUT or DSNDB06.SYSUSER catalog table space or one
of the indexes is unavailable. If this problem occurs, run the REORG TABLESPACE utility again using an
authorization ID with the installation SYSADM or installation SYSOPR authority.

If you use RACF access control with multilevel security and REORG TABLESPACE is to process a table
space that contains a table that has multilevel security with row-level granularity, you must be identified
to RACF and have an accessible valid security label. You must also meet the following authorization
requirements: .

• For REORG statements that include the UNLOAD EXTERNAL option, each row is unloaded only if your
security label dominates the data security label. If your security label does not dominate the data
security label, the row is not unloaded, but Db2 does not issue an error message.

• For REORG statements that include the DISCARD option, qualifying rows are discarded only if one of the
following situations are true:

– Write-down rules are in effect, you have write-down privilege, and your security label dominates the
data's security label.

– Write-down rules are not in effect and your security label dominates the data's security label.
– Your security label is equivalent to the data security label.

524 Db2 12 for z/OS: Utility Guide and Reference

Execution phases of REORG TABLESPACE

The REORG TABLESPACE utility operates in these phases:

UTILINIT
Performs initialization and setup.

UNLOAD
Unloads the table space and sorts data if a clustering index exists and the utility job does not include
the SORTDATA NO options. For SORTDATA processing, if you specify NOSYSREC, the utility passes
rows in memory to the RELOAD phase; otherwise, it writes them to a sequential data set.

Nonpartitioned indexes are processed in one of two ways:

• If PART SHRLEVEL REFERENCE or PART SHRLEVEL CHANGE is specified, during UNLOAD one or
more subtasks unload nonpartitioned indexes and build shadow nonpartitioned indexes.

• If PART SHRLEVEL REFERENCE or CHANGE is specified and SORTNPSI YES or AUTO is specified or
subsystem parameter REORG_PART_SORT_NPSI is enabled, during UNLOAD one or more subtasks
processes nonpartitioned secondary index keys from parts that are not within the scope of the
REORG. These keys are routed to a sort process to be sorted with the keys from parts within the
scope of the REORG. The shadow index is built from this sorted set of keys.

RELOAD
Reloads data from the sequential data set into the table space and creates full image copies if you
specify COPYDDN, RECOVERYDDN, SHRLEVEL REFERENCE, or SHRLEVEL CHANGE. A subtask sorts
the index keys. The utility also updates table and table space statistics.

SORT
Sorts index keys. The sorted keys are passed in memory to the BUILD phase.

BUILD
Builds indexes and updates index statistics.

SORTBLD
If parallel index build occurs, all activities that normally occur in both the SORT and BUILD phases
occur in the SORTBLD phase instead.

LOG
Processes the log iteratively and appends changed pages to the full image copies. This phase occurs
only if you specify SHRLEVEL CHANGE or SHRLEVEL REFERENCE PART x.

SWITCH
Switches access to shadow copy of table space or partition. This phase occurs only if you specify
SHRLEVEL REFERENCE or CHANGE.

UTILTERM
Performs cleanup.

Execution phases of REORG TABLESPACE on a LOB table space

The REORG TABLESPACE utility operates in these phases when you run it on a LOB table space:

Phase
Description

UTILINIT
Performs initialization and setup.

REORGLOB

For SHRLEVEL REFERENCE, the utility unloads LOBs to a shadow data set. RECOVER-pending is not
set on the LOB table space. Any error during this phase leaves he original data set intact.

SWITCH
Switches access to shadow copy of table space or partition.

Chapter 28. REORG TABLESPACE 525

UTILTERM
Performs cleanup.

You cannot restart REORG TABLESPACE on a LOB table space in the REORGLOB phase. Before executing
REORG TABLESPACE SHRLEVEL NONE on a LOB table space that is defined with LOG NO, you should take
a full image copy to ensure recoverability. For SHRLEVEL REFERENCE, an inline image copy is required to
ensure recoverability.

Related tasks
Maintaining data organization (Db2 Performance)
Collecting statistics by using Db2 utilities (Db2 Performance)
Reducing the cost of collecting statistics (Db2 Performance)

Syntax and options of the REORG TABLESPACE control statement
The REORG TABLESPACE utility control statement, with its multiple options, defines the function that the
utility job performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement. Some of these
options are not valid for LOB table spaces. For a list of those options, see “Reorganization of a LOB table
space” on page 607.

526 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_reorgindextablespaces.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_collectstatsutilities.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_improverunstatsperformance.html

Syntax diagram
REORG TABLESPACE

LIST listdef-name

LISTPARTS n

database-name .

table-space-name

PART (

,

integer

integer1: integer2

)

CLONE REUSE

SCOPE ALL

SCOPE PENDING

REBALANCE
SORTCLUSTER NO

SORTCLUSTER YES

LOG YES

LOG NO

DROP_PART REORG_DROP_PBG_PARTS-value

DROP_PART NO

YES

SORTDATA

SORTDATA NO
RECLUSTER YES

RECLUSTER NO

NOSYSREC

copy-spec
AUTOESTSPACE YES

AUTOESTSPACE NO

SHRLEVEL NONE

SHRLEVEL-REFERENCE-spec

SHRLEVEL-CHANGE-spec

FASTSWITCH YES

FASTSWITCH NO

AUX NO

AUX YES

FORCE NONE

FORCE READERS

ALL

SORTNPSI REORG_PART_SORT_NPSI-value

SORTNPSI AUTO

YES

NO

offposlimit-spec

UNLOAD CONTINUE

UNLOAD PAUSE
1 KEEPDICTIONARY statistics-spec

UNLOAD ONLY

unload-external-spec

PUNCHDDN SYSPUNCH

PUNCHDDN ddname

DISCARDDN SYSDISC

DISCARDDN ddname

UNLDDN SYSREC

UNLDDN ddname sort-spec PREFORMAT

ROWFORMAT RRF

ROWFORMAT BRF

RBALRSN_CONVERSION EXTENDED

RBALRSN_CONVERSION NONE

discard-spec

PARALLEL 0

PARALLEL( num-subtasks)

INITCDDS-spec

NOCHECKPEND

copy-spec

Chapter 28. REORG TABLESPACE 527

COPYDDN(SYSCOPY)
2 3

COPYDDN(ddname1

, ddname2

, ddname2

)

RECOVERYDDN( ddname3

, ddname4

)

ICLIMIT_DASD 0

ICLIMIT_DASD num-dasd

ICLIMIT_TAPE 0

ICLIMIT_TAPE num-tape

FLASHCOPY NO

FLASHCOPY YES

CONSISTENT FCCOPYDDN( template-name)

SHRLEVEL-REFERENCE-spec

SHRLEVEL REFERENCE deadline-spec drain-spec

change-spec

4

SHRLEVEL-CHANGE-spec
SHRLEVEL CHANGE deadline-spec drain-spec change-spec map-spec

deadline-spec
DEADLINE NONE

DEADLINE timestamp

labeled-duration-expression

labeled-duration-expression

528 Db2 12 for z/OS: Utility Guide and Reference

CURRENT_DATE

CURRENT_TIMESTAMP

WITH TIME ZONE

 +
 -

constant YEAR

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

drain-spec
DRAIN_WAIT IRLMRWT- value

DRAIN_WAIT integer

RETRY UTIMOUT-value

RETRY integer

RETRY_DELAY calculated-default

RETRY_DELAY integer

TIMEOUT TERM

TIMEOUT ABEND

LOGRANGES YES

LOGRANGES NO

DRAIN_ALLPARTS NO

DRAIN_ALLPARTS YES

SWITCHTIME NONE

SWITCHTIME timestamp

labeled-duration-expression

NEWMAXRO NONE

NEWMAXRO integer

change-spec

Chapter 28. REORG TABLESPACE 529

5
MAXRO RETRY_DELAY-default-value

MAXRO integer

DEFER

DRAIN ALL

DRAIN WRITERS

LONGLOG CONTINUE

LONGLOG TERM

DRAIN

DELAY 1200

DELAY integer

LASTLOG YES

LASTLOG NO

map-spec

MAPPINGTABLE table-name

MAPPINGDATABASE database-name

offposlimit-spec

OFFPOSLIMIT
10

integer

INDREFLIMIT
10

integer REPORTONLY

unload-external-spec

UNLOAD EXTERNAL
NOPAD YES

NOPAD NO

FROM-TABLE-spec

FROM-TABLE-spec
FROM TABLE table-name

WHEN (selection-condition-spec)

selection-condition-spec

predicate

selection condition AND

OR

predicate

selection condition

predicate
basic predicate

BETWEEN predicate

IN predicate

LIKE predicate

NULL predicate

basic predicate

530 Db2 12 for z/OS: Utility Guide and Reference

column-name =

 <>

 >

 <

 >=

 <=

6
constant

labeled-duration-expression

BETWEEN predicate
column-name

NOT

BETWEEN constant

labeled-duration-expression

AND

constant

labeled-duration-expression

IN predicate

column-name

NOT

IN (

,

constant)

LIKE predicate
column-name

NOT

LIKE string-constant

ESCAPE string-constant

NULL predicate
column-name IS

NOT

NULL

statistics-spec

STATISTICS stat-table-spec

stat-index-spec

REPORT NO

REPORT YES

UPDATE ALL

UPDATE ACCESSPATH

SPACE

NONE

STATCLGMEMSRT integer

INVALIDATECACHE NO

INVALIDATECACHE YES HISTORY ALL

ACCESSPATH

SPACE

NONE

FORCEROLLUP YES

NO

stat-table-spec

Chapter 28. REORG TABLESPACE 531

TABLE(ALL)

SAMPLE integer USE PROFILE

TABLE( table-name)

table-stats-spec

table-stats-spec

SAMPLE integer

COLUMN ALL

COLUMN (

,

column-name)

,

COLGROUP (

,

column-name) colgroup-stats-spec

USE PROFILE

colgroup-stats-spec

FREQVAL
COUNT 10 MOST

COUNT integer
7

MOST

BOTH

LEAST

HISTOGRAM

NUMQUANTILES 100

NUMQUANTILES integer

stat-index-spec
INDEX(ALL)

correlation-stats-spec

INDEX (

,

index-name correlation-stats-spec)

correlation-stats-spec

532 Db2 12 for z/OS: Utility Guide and Reference

KEYCARD
8

FREQVAL NUMCOLS 1 COUNT 10

FREQVAL NUMCOLS integer

COUNT integer
9

MOST

BOTH

LEAST

HISTOGRAM

NUMCOLS 1 NUMQUANTILES 100

NUMCOLS integer

NUMQUANTILES 100

NUMQUANTILES integer

sort-spec

SORTDEVT device-type SORTNUM integer

discard-spec

DISCARD
NOPAD YES

NOPAD NO

FROM-TABLE-spec

INITCDDS-spec
INITCDDS NO

INITCCDS YES

SEARCHTIME (NONE

timestamp

labeled-duration-expression

)

Notes:
1 You cannot use UNLOAD PAUSE with the LIST option.
2 COPYDDN(SYSCOPY) is not the default if you specify SHRLEVEL NONE, and no partitions are in REORG-
pending status.
3 Either COPYDDN or FCCOPYDDN can be specified, or they can both be specified. At least one of these
options must be specified for SHRLEVEL NONE when a partition is in REORG-pending status, or for SHRLEVEL
CHANGE OR SHRLEVEL REFERENCE. If you specify FCCOPYDDN, but do not specify COPYDDN or a SYSCOPY
DD statement or TEMPLATE specification, for SYSCOPY, only a FlashCopy image copy is taken.
4 For SHRLEVEL REFERENCE, the change-spec options are ignored. The exception is a partition-level REORG
operation on a partitioned table space that has a non-partitioned index. In that case, the change-spec options
are not ignored.
5 For SHRLEVEL REFERENCE, the change-spec options are ignored. The exception is a partition-level REORG
operation on a partitioned table space that has a non-partitioned index. In that case, the change-spec options
are not ignored.

Chapter 28. REORG TABLESPACE 533

6 The following forms of the comparison operators are also supported in basic and quantified predicates: !=, !
<, and !>. For details, see comparison operators.
7 When the COUNT keyword is not specified, the utility automatically determines the count value and collects
the most frequently occurring values.
8 The KEYCARD option is deprecated. The KEYCARD functionality is now built into the default execution of the
inline statistics for indexes and cannot be disabled.
9 When the COUNT keyword is not specified, the utility automatically determines the count value and collects
the most frequently occurring values.

Option descriptions

TABLESPACE database-name.table-space-name
Specifies the table space (and, optionally, the database to which it belongs) that is to be reorganized.

If you reorganize a table space, its indexes are also reorganized.
database-name

Is the name of the database to which the table space belongs. The name cannot be DSNDB07.

The default value is DSNDB04.

table-space-name
Is the name of the table space that is to be reorganized. The name cannot be SYSUTILX if the
specified database name is DSNDB01.

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. The utility allows one LIST keyword for
each control statement of REORG TABLESPACE. The list must contain only table spaces.

Do not specify FROM TABLE, STATISTICS TABLE table-name, or STATISTICS INDEX index-name
with REORG TABLESPACE LIST. If you want to collect inline statistics for a list of table spaces,
specify STATISTICS TABLE (ALL). If you want to collect inline statistics for a list of indexes, specify
STATISTICS INDEX (ALL). Do not specify PART with LIST.

REORG TABLESPACE is invoked once for each item in the list. This utility will only process clone data if
the CLONE keyword is specified. The use of CLONED YES on the LISTDEF statement is not sufficient.

The partitions or partition ranges can be specified in a list.

LISTPARTS n
Specifies the maximum number of data partitions to be reorganized in a single REORG on a LISTDEF
that contains PARTLEVEL list items.
n

Specifies an integer that represents the maximum number of data partitions to be reorganized at
once. Valid value is greater than 0. If LISTPARTS is not specified, the default value is the setting of
the REORG_LIST_PROCESSING subsystem parameter.

PARALLEL(num-subtasks)

Specifies the maximum number of subtasks that are to be started in parallel to reorganize a table
space. If the PARALLEL keyword is omitted, the maximum number of subtasks is limited by either the
number of partitions that are being unloaded or the number of indexes that are built.

The value of num-subtasks must be an integer between 0 and 32767, inclusive. If the specified value
for num-subtasks is greater than 32767, the REORG TABLESPACE statement fails. If 0 or no value
is specified for num-subtasks, the REORG TABLESPACE utility uses the optimal number of parallel
subtasks. If the specified value for num-subtasks is greater than the calculated optimal number, the
REORG TABLESPACE utility limits the number of parallel subtasks to the optimal number with applied
constraints.

534 Db2 12 for z/OS: Utility Guide and Reference

The specified number of subtasks for PARALLEL always overrides the specification of the
PARAMDEG_UTIL subsystem parameter, so PARALLEL can be smaller or larger than the value of
PARAMDEG_UTIL.

REORG TABLESPACE uses sophisticated algorithms to allocate subtasks for unloading partitions,
reloading partitions, building indexes, applying log changes, and gathering statistics. As a result, the
number of subtasks that are started might be less than the number specified on PARALLEL.

INITCDDS
Specifies whether REORG TABLESPACE copies the existing compression dictionaries for a table space
that is defined with DATA CAPTURE CHANGES into the compression dictionary data set (CDDS),
instead of reorganizing the table space. This option applies only to a data sharing group in a
GDPS Continuous Availability with zero data loss (GDPS Continuous Availability with zero data loss)
environment.
NO

Specifies that REORG TABLESPACE performs normal REORG processing.
YES

Specifies that REORG TABLESPACE populates the CDDS, and does not reorganize the table space.
Specify YES only when the tables in the table space are defined with DATA CAPTURE CHANGES,
the table space is in a data sharing group, and the data sharing group is part of a GDPS Continuous
Availability with zero data loss environment.
SEARCHTIME

Specifies the timestamp that REORG TABLESPACE uses to determine which expansion
dictionary to use to populate the CDDS. If the expansion dictionary that the target page
set is currently using has an LRSN value that is later than the SEARCHTIME value, REORG
searches for the prior expansion dictionary in the Db2 log and in SYSCOPY information. If a
prior expansion dictionary exists, REORG copies that dictionary into the CDDS.

timestamp or the result of evaluation of labeled-duration-expression must be a TIMESTAMP(6)
value.

NONE
Specifies that REORG populates the CDDS from the expansion dictionary that the target
page set is currently using.

timestamp
Specifies a TIMESTAMP(6) constant that determines which expansion dictionary to use to
populate the CDDS.

labeled-duration-expression
Evaluates to a TIMESTAMP(6) constant that determines which expansion dictionary to
use to populate the CDDS. The calculation is based on either CURRENT TIMESTAMP or
CURRENT DATE. You can add or subtract one or more constant values to or from the
CURRENT TIMESTAMP or CURRENT DATE value. The expression must not evaluate to a
timestamp that occurs after REORG is run. CURRENT TIMESTAMP and CURRENT DATE
are evaluated once, when the REORG statement is first processed. If a list of objects is
specified, the same value is in effect for all objects in the list.
CURRENT_DATE

Specifies that the expansion dictionary timestamp is to be calculated based on the
CURRENT DATE.

CURRENT_TIMESTAMP
Specifies that the expansion dictionary timestamp is to be calculated based on the
CURRENT TIMESTAMP.
WITH TIME ZONE

Specifies that the CURRENT TIMESTAMP value includes a time zone. The
timestamp precision of the special register CURRENT TIMESTAMP must be the
same as the precision of the timestamp equivalent of the LRSN value for the
expansion dictionary. Otherwise the default timestamp precision is used. The
time zone of CURRENT TIMESTAMP is the value of special register CURRENT

Chapter 28. REORG TABLESPACE 535

TIMEZONE. The comparison is done by comparing the UTC portion of the
timestamps.

constant
Indicates a unit of time and is followed by one of the seven duration keywords: YEARS,
MONTHS, DAYS, HOURS, MINUTES, SECONDS, or MICROSECONDS. The singular form
of these words is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
MICROSECOND.

CLONE
Indicates that REORG TABLESPACE is to reorganize only clone tables from the specified table spaces.
This utility will only process clone data if the CLONE keyword is specified. The use of CLONED YES on
the LISTDEF statement is not sufficient. Base tables in the specified table spaces are not reorganized.
If you specify CLONE, you cannot specify STATISTICS. Statistics are not collected for clone tables.

REUSE
When used with SHRLEVEL NONE, specifies that REORG is to logically reset and reuse Db2-managed
data sets without deleting and redefining them. If you do not specify REUSE and SHRLEVEL NONE,
Db2 deletes and redefines Db2-managed data sets to reset them.

If a data set has multiple extents, the extents are not released if you use the REUSE parameter.

REUSE does not apply if you also specify SHRLEVEL REFERENCE or CHANGE.

SCOPE
Indicates the scope of the reorganization of the specified table space or of one or more specified
partitions.
ALL

Indicates that you want the specified table space or one or more partitions to be reorganized. The
default is ALL.

PENDING
Indicates that you want the specified table space or one or more partitions to be reorganized only
if they are in REORG-pending (REORP, AREO*, or AREOR) status.

PART(integer)
PART(integer1:integer2)
PART(integer,…integer,…integer1:integer2,…integer1:integer2)

Identifies the set of partitions that are to be reorganized. The set of partitions must be enclosed in
parentheses.

You can reorganize:

• One or more single partitions
• One or more ranges of partitions
• A combination of one or more single partitions and one or more ranges of partitions

The partitions do not need to be consecutive.

integer, integer1, and integer2 are physical partition numbers. Each partition number must be in the
range from 1 to the number of partitions that are defined for the table space or partitioning index. The
maximum is 4096.

integer
Designates a single partition.

integer1:integer2
Designates a range of existing table space partitions. You can specify the range in any order. For
example, you can specify (100:199) or (199:100). In either case, partitions 100 through 199 are
reorganized. If integer1 is equal to integer2, only that one partition is reorganized. For example, if
you specify (5:5), only partition 5 is reorganized.

If you omit the PART keyword, the entire table space is reorganized.

536 Db2 12 for z/OS: Utility Guide and Reference

If you specify the PART keyword for a LOB table space, Db2 issues an error message, and utility
processing terminates with return code 8.

If you specify a partition range and the high or low partitions in the list are in a REORG-pending
state, the adjacent partition that is outside the specified range must not be in REORG-pending state;
otherwise, the utility terminates with an error.

Restriction: You cannot run concurrent REORG TABLESPACE SHRLEVEL CHANGE PART integer on
the same table space with one or more non-partitioned indexes defined in it. Instead of submitting
multiple jobs, you can merge the jobs into one job by specifying all the target partitions in the same
REORG job.

REBALANCE
Specifies that REORG TABLESPACE is to set new partition boundaries so that rows are evenly
distributed across the reorganized partitions. If the columns that are used in defining the partition
boundaries have many duplicate values within the data rows, even balancing is not always possible.
Specify REBALANCE for more than one partition; if you specify a single partition for rebalancing,
REORG TABLESPACE ignores the specification.

A REORG REBALANCE operation that builds compression dictionaries builds a single dictionary using
data rows from all target partitions in the UNLOAD phase. REORG then loads that dictionary into all
target data partitions and uses it to compress the data in the RELOAD phase.

You can specify REBALANCE with SHRLEVEL NONE, SHRLEVEL CHANGE, or SHRLEVEL REFERENCE.
You must specify SHRLEVEL REFERENCE or SHRLEVEL CHANGE if the base table space has an
associated auxiliary LOB table space. In this case, you must also specify AUX YES, which is the
default value if you specify REBALANCE. When REBALANCE is specified with SHRLEVEL REFERENCE
or SHRLEVEL CHANGE, pending definition changes for conversion of a partitioned table space to a
partition-by-range table space are not materialized.

REBALANCE cannot be specified with SCOPE PENDING.

Restrictions: REBALANCE cannot be specified for the following objects:

• Partition-by-growth table spaces
• Base tables with XML columns
• XML table spaces
• An object that is involved in a clone relationship. (Because the base and clone tables share catalog

information, REBALANCE can change the partition boundaries of the target table.)
• Table spaces with pending alter limit key changes

When you specify REBALANCE, you must create an inline copy by performing one of the following
actions:

• Provide a SYSCOPY DD statement in the JCL.
• Use the TEMPLATE utility to dynamically allocate the SYSCOPY data set.
• Specify a DD name with the COPYDDN option in the REORG control statement and specify either a

corresponding DD statement or TEMPLATE statement.

At completion, Db2 invalidates packages and the dynamic cache.

SORTCLUSTER
Determines whether REBALANCE is to attempt to sort the data records into clustering order. This
option is ignored if no clustering index exists in the table, or when the limit key columns are identical
to or are a superset of the clustering index columns.
NO

Specifies that the data records are not to be explicitly sorted into clustering order. This option is
the default behavior.

If SORTCLUSTER NO is explicitly specified, REORG-pending advisory (AREO*) status is not set
on the affected data partitions upon REORG REBALANCE completion. If SORTCLUSTER NO is not

Chapter 28. REORG TABLESPACE 537

explicitly specified and instead accepted by default, AREO* status can still be set on the affected
partitions.

YES
Specifies that the data records are to be explicitly sorted into clustering order as needed.

LOG
Specifies whether records are to be logged during the RELOAD phase of REORG SHRLEVEL NONE. If
the records are not logged, the table space is recoverable only after an image copy is taken. An image
copy is taken during the REORG execution if COPYDDN, FCCOPYDDN, RECOVERYDDN, SHRLEVEL
REFERENCE, or SHRLEVEL CHANGE is specified.
YES

Specifies that log records are to be taken during the RELOAD phase. This option is not allowed for
any table space in DSNDB01 or DSNDB06, or if the SHRLEVEL REFERENCE or CHANGE option is
specified.

The default value is YES if SHRLEVEL NONE is specified explicitly or by default. If SHRLEVEL NONE
is specified but the table space has the NOT LOGGED attribute, Db2 processes LOAD with LOG NO.

NO
Specifies that records are not to be logged. This option is the default and required if the SHRLEVEL
REFERENCE or CHANGE option is specified. LOG NO puts the table space in COPY-pending status
when REORG is executed remotely and RECOVERYDDN is not specified.

DROP_PART
Specifies whether the REORG TABLESPACE utility will delete the highest numbered partitions in a
partition-by-growth table space, if they are empty, when the entire table space is being reorganized.

The DROP_PART keyword has no effect when REORG is run on the following table spaces:

• LOB table spaces
• Table spaces that are not defined as partition-by-growth
• Partition-by-growth table spaces that are defined with a MAXPARTITONS value of 1
• Partition-by-growth table spaces that contain tables that are defined with DATA CAPTURE CHANGES
• Hash partition-by-growth table spaces

When DROP_PART is not specified, the behavior of the REORG utility is based on the value of the
REORG_DROP_PBG_PARTS subsystem parameter.

NO
Specifies that the REORG TABLESPACE utility will not delete any of the highest numbered
partitions in a partition-by-growth table space, if they are empty, on successful completion.

YES
Specifies that the REORG TABLESPACE utility will delete the highest numbered partitions in a
partition-by-growth table space, if they are empty, on successful completion.

When AUX YES is specified or defaulted with DROP_PART YES and empty partitions are deleted
during the reorganization of the base table space, the LOB table spaces for those partitions are
also deleted.

When DROP_PART YES is specified for a table space that is not a partition-by-growth table space,
or when the REORG TABLESPACE is specified on a partition level, DROP_PART YES is ignored and
an information message is returned.

If FASTSWITCH NO is specified, the DROP_PART keyword has no effect.

SORTDATA or SORTDATA NO
SORTDATA specifies that the data is to be unloaded by a table space scan, and sorted in clustering
order.

The default value is SORTDATA, unless you specify UNLOAD ONLY or UNLOAD EXTERNAL. If you
specify one of these options, the default is SORTDATA NO.

538 Db2 12 for z/OS: Utility Guide and Reference

SORTDATA NO specifies that, when possible, the data is to be unloaded in the order of the clustering
index. Specify SORTDATA NO if one of the following conditions is true:

• The data is in or near perfect clustering order, and the REORG utility is used to reclaim space from
dropped tables.

• The amount of data is very large, and an insufficient amount of disk space is available for sorting.

For a partitioned table space, REORG does not unload the records by way of the clustering index
when the clustering index is not partitioning. The data records must be unloaded by partition order
first. In addition, when REORG unload or reload partition parallelism is used, or when REORG is run
on a partition-by-growth table space, REORG always performs a table space scan to unload the data
records, when the clustering index is not used.

Related information:

Clustering indexes (Introduction to Db2 for z/OS)

RECLUSTER
Specifies whether data records are to be reclustered by unloading them by way of the clustering
index.

RECLUSTER NO is always enforced in the following situations:

• for SHRLEVEL CHANGE processing
• when the clustering index has the EXCLUDE NULL KEYS attribute
• for a PBG table space
• when parallelism is used in the REORG operation

YES
Data records are to be reclustered and to be unloaded by the clustering index if one exists. This
option is the default behavior.

NO
Data records are not to be reclustered and are not unloaded by way of the clustering index.

NOSYSREC
Specifies that REORG TABLESPACE is not to use an unload data set. The utility uses the output of
sorting as the input to reload but does not use an unload data set for this process.

Omitting the unload data set can improve performance. However, when you omit the unload data set
by specifying NOSYSREC, the following limitations exist for restarting the utility:

• If an error occurs during reloading, you must restart the utility at the beginning of the UNLOAD
phase. (If you do not specify NOSYSREC, you can start the utility at the RELOAD phase.)

• If you specify SHRLEVEL NONE and an error occurs during reloading, you must first run the
RECOVER utility with the most recent image copy.

If you specify SHRLEVEL NONE with NOSYSREC, create an image copy before you run REORG
TABLESPACE.

You cannot specify NOSYSREC if any of the following conditions is true:

• No data will be sorted during the REORG TABLESPACE job. Examples: SORTDATA NO is specified, or
no index is defined on the data that is being reorganized.

• UNLOAD PAUSE is specified.
• UNLOAD ONLY is specified.

COPYDDN (ddname1,ddname2)
Specifies the DD statements for the primary (ddname1) and backup (ddname2) copy data sets for the
image copy.

ddname1 and ddname2 are the DD names.

Chapter 28. REORG TABLESPACE 539

https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_clusteringindexes.html

The default value is SYSCOPY for the primary copy. A full image copy data set is created when REORG
executes. This copy is called an inline copy. The table space does not remain in COPY-pending status
regardless of which LOG option you specify.

When an inline copy is performed, Db2 writes a record with ICTYPE='F' in the SYSIBM.SYSCOPY
catalog table. The name of the inline copy data set is listed in that record. If an inline copy is
performed when REORG is run on a range of partitions, Db2 writes a record with ICTYPE='F' for each
partition. The inline copy data set name is the same in all of those records.

If you specify SHRLEVEL NONE (explicitly or by default) for REORG, and COPYDDN is not specified, an
image copy is not created at the local site.

COPYDDN(SYSCOPY) is assumed, and a DD statement for SYSCOPY is required if either of the
following conditions are true:

• You specify REORG SHRLEVEL REFERENCE or CHANGE, and you do not specify COPYDDN.
• A table space or partition is in REORG-pending (REORP) status.
• You specify REBALANCE.

The COPYDDN keyword specifies either a DD name or a template name from a previous TEMPLATE
utility statement. If utility processing detects that the specified name is both a DD name in the
current job step and a TEMPLATE name, the utility uses the DD name. If the template name uses the
&PA. or &PART. variable, REORG allocates a separate copy data set for each partition that is being
reorganized.

REORG can take inline copies of XML table spaces.

RECOVERYDDN (ddname3,ddname4)
Specifies the DD statements for the primary (ddname3) and backup (ddname4) copy data sets for the
image copy at the recovery site.

ddname3 and ddname4are the DD names.

You cannot have duplicate image copy data sets. The same rules apply for RECOVERYDDN as for
COPYDDN.

The RECOVERYDDN keyword specifies either a DD name or a template name from a previous
TEMPLATE utility statement. If utility processing detects that the specified name is both a DD name in
the current job step and a TEMPLATE name, the utility uses the DD name. If the template name uses
the &PA. or &PART. variable, REORG allocates a separate copy data set for each partition that is being
reorganized.

REORG SHRLEVEL REFERENCE of a LOB table space supports inline copies, but REORG SHRLEVEL
NONE does not.

ICLIMIT_DASD num-dasd
Specifies the maximum number of sequential image copies that REORG TABLESPACE can allocate to
DASD. Valid values for num-dasd are from 0 to 32767. A value of 0 indicates no limit for the number of
DASD image copies that REORG can allocate.

The value specified for ICLIMIT_DASD overrides the value of the REORG_IC_LIMIT_DASD subsystem
parameter.

ICLIMIT_TAPE num-tape
Specifies the maximum number of sequential image copies that REORG TABLESPACE can allocate to
tape. Valid values for num-tape are from 0 to 32767. A value of 0 indicates no limit for the number of
tape image copies that REORG can allocate.

The value specified for ICLIMIT_TAPE overrides the value of the REORG_IC_LIMIT_TAPE subsystem
parameter.

FLASHCOPY
Specifies whether FlashCopy technology is used to create a copy of the object. Valid values are YES,
NO, or CONSISTENT. When FlashCopy is used, a separate data set is created for each partition or
piece of the object.

540 Db2 12 for z/OS: Utility Guide and Reference

The FlashCopy specifications on the utility control statement override any specifications for FlashCopy
that are defined by using the Db2 subsystem parameters. If the FlashCopy subsystem parameters
specify the use of FlashCopy as the default behavior of this utility, the FLASHCOPY option can be
omitted from the utility control statement.

Important: If the input data set is less than one cylinder, FlashCopy technology might not be used
for copying the objects regardless of the FLASHCOPY settings. The copy is performed by IDCAMS if
FlashCopy is not used.

NO
Specifies that no FlashCopy is made. NO is the default value for FLASHCOPY.

YES
Specifies that FlashCopy technology is used to copy the object.

Specify YES only if the Db2 data sets are on FlashCopy Version 2 disk volumes.

Important: Under the following circumstances, the REORG TABLESPACE utility might not use
FlashCopy even though YES is specified:

• FlashCopy Version 2 disk volumes are not available
• The source tracks are already the target of a FlashCopy operation
• The target tracks are the source of a FlashCopy operation
• The maximum number of relationships for the copy is exceeded

If FlashCopy is requested but not used, REORG TABLESPACE fails with return code 8 when REORG
is specified with SHRLEVEL REFERENCE or SHRLEVEL CHANGE. Object that are the target of the
reorganization are left in the same read/write status as if the REORG TABLESPACE was never run.

If SHRLEVEL REFERENCE or SHRLEVEL CHANGE is not specified and FlashCopy is requested
but not used, REORG TABLESPACE completes with return code 8. If no sequential inline copy is
requested on the same job, the objects are left in COPY-pending status.

CONSISTENT
Specifies that FlashCopy technology is used to copy the object. Because the copies created by the
REORG TABLESPACE utility are already consistent, the utility treats a specification of CONSISTENT
the same as a specification of YES.

Related information:

“FlashCopy image copies” on page 144
“Subsystem parameters for refining DFSMSdss COPY operation with utilities” on page 42

FCCOPYDDN
Specifies the template to be used to create the FlashCopy image copy data set names. If a value is not
specified for FCCOPYDDN on the REORG TABLESPACE control statement when FlashCopy is used, the
value specified on the FCCOPYDDN subsystem parameter determines the template to be used.
(template-name)

The data set names for the FlashCopy image copy are allocated according to the template
specification. For table space or index space level FlashCopy image copies, because a data set
is allocated for each partition or piece, ensure that the data set naming convention in the template
specification is unique enough. Use the &DSNUM variable, which resolves to a partition number or
piece number at execution time.

AUTOESTSPACE
Specifies that REORG automatically calculates and formats the size of the fixed hash space for
hash-organized table spaces. The use of AUTOESTSPACE YES might reduce the number of rows in the
overflow area.
YES

Specifies that Db2 uses real-time statistics (RTS) values to adjust the size of the hash space. User-
specified HASH SPACE values stored in the SYSIBM.SYSTABLESPACE and SYSIBM.SYSTABLEPART
catalog tables are not changed. YES is the default value for AUTOESTSPACE.

Chapter 28. REORG TABLESPACE 541

NO
Specifies that Db2 uses the HASH SPACE value specified for CREATE TABLE or ALTER TABLE.
These values are stored in the SYSIBM.SYSTABLESPACE and SYSIBM.SYSTABLEPART catalog
tables.

SHRLEVEL
Specifies the method that is to be used for the reorganization. The parameter that follows SHRLEVEL
indicates the type of access that is to be allowed during the RELOAD phase of REORG.
NONE

Specifies that reorganization is to operate as follows:

• Unloading from the area that is being reorganized (while applications can read but cannot write
to the area)

• Reloading into that area (while applications have no access), and then allowing read/write
access again

If you specify NONE (explicitly or by default), you cannot specify the following parameters:

• MAPPINGTABLE
• MAXRO
• LONGLOG
• DELAY
• DEADLINE
• DRAIN_WAIT
• RETRY
• RETRY_DELAY

Restrictions:

• If you specify UNLOAD PAUSE or UNLOAD ONLY, you cannot specify NOSYSREC. SHRLEVEL
NONE cannot be specified for tables that are defined with ORGANIZE BY HASH.

• You cannot specify SHRLEVEL NONE in a REORG TABLESPACE control statement that completes
the process of recovery to a point in time prior to the materialization of pending definition
changes.

When SHRLEVEL NONE is specified, pending definition changes are not materialized and any
associated restrictive states are not reset. For example, pending limit key changes are not
materialized and the associated advisory REORG-pending status is not reset. (Immediate alter
limit key changes can be materialized by REORG SHRLEVEL NONE.)

SHRLEVEL NONE is not supported when REORG is run against a LOB table space.

REFERENCE
Specifies that reorganization is to operate as follows:

• Unloading from the area that is being reorganized (while applications can read but cannot write
to the area)

• Reloading into a shadow copy of that area (while applications can read but cannot write to the
original copy)

• Switching the future access of an application from the original copy to the shadow copy by
exchanging the names of the data sets, and then allowing read/write access again

If you specify SHRLEVEL REFERENCE and FASTSWITCH NO:

• Pending definition changes are not materialized.
• The REORG_DROP_PBG_PARTS subsystem parameter or the DROP_PART option has no effect.

If REORG_DROP_PBG_PARTS is set to ENABLE or if DROP_PART is set to YES, empty trailing
partitions are not removed.

542 Db2 12 for z/OS: Utility Guide and Reference

If you specify REFERENCE for a LOB table space, you must take an inline copy during the
reorganization.

If you specify REFERENCE, you cannot specify the following parameters:

• LOG. Reorganization with REFERENCE always creates an image copy and always refrains from
logging records during reloading.

• UNLOAD PAUSE, UNLOAD ONLY, or UNLOAD EXTERNAL. Reorganization with REFERENCE always
uses UNLOAD CONTINUE, which is the default value. (You can explicitly specify UNLOAD
CONTINUE or none of the UNLOAD options, but you cannot specify UNLOAD PAUSE, UNLOAD
ONLY, or UNLOAD EXTERNAL.)

• MAPPINGTABLE.

Specifying REORG TABLESPACE PART SHRLEVEL REFERENCE with the REORG_PART_SORT_NPSI
subsystem parameter enabled might require larger sort work data sets because of the increased
number of keys sorted for nonpartitioned secondary indexes.

Specifying SHRLEVEL REFERENCE or CHANGE on an entire XML partitioned table space converts
the XML table space to extended 10-byte format if one of the following is true:

• The UTILITY OBJECT CONVERSION subsystem parameter is set to EXTENDED or NOBASIC.
• The RBALRSN_CONVERSION EXTENDED keywords are specified.

Restriction: You cannot specify SHRLEVEL REFERENCE when REORG TABLESPACE with PART is
run on a NOT LOGGED table space on which nonpartitioned indexes are defined.

CHANGE
Specifies that reorganization is to operate as follows:

• Unloading from the area that is being reorganized (while applications can read and write to the
area)

• Reloading into a shadow copy of that area (while applications have read/write access to the
original copy of the area)

• Applying the log of the original copy to the shadow copy (while applications can read and usually
write to the original copy)

• Switching the future access of an application from the original copy to the shadow copy by
exchanging the names of the data sets, and then allowing read/write access again

If you specify SHRLEVEL CHANGE and FASTSWITCH NO:

• Pending definition changes are not materialized.
• The REORG_DROP_PBG_PARTS subsystem parameter or the DROP_PART option has no effect.

If REORG_DROP_PBG_PARTS is set to ENABLE or if DROP_PART is set to YES, empty trailing
partitions are not removed.

If you specify CHANGE, you cannot specify the following parameters:

• LOG. Reorganization with CHANGE always creates an image copy and always refrains from
logging records during reloading.

• UNLOAD PAUSE, UNLOAD ONLY, or UNLOAD EXTERNAL. Reorganization with CHANGE always
uses UNLOAD CONTINUE, which is the default value. (You can explicitly specify UNLOAD
CONTINUE or none of the UNLOAD options, but you cannot specify UNLOAD PAUSE, UNLOAD
ONLY, or UNLOAD EXTERNAL.)

Performing REORG TABLESPACE PART SHRLEVEL CHANGE with the REORG_PART_SORT_NPSI
subsystem parameter enabled might require larger sort work data sets because of the increased
number of keys sorted for nonpartitioned secondary indexes.

Specifying SHRLEVEL REFERENCE or CHANGE on an entire XML partitioned table space converts
the XML table space to extended 10-byte format if one of the following is true:

• The UTILITY OBJECT CONVERSION subsystem parameter is set to EXTENDED or NOBASIC.

Chapter 28. REORG TABLESPACE 543

• The RBALRSN_CONVERSION EXTENDED keywords are specified.

If you specify SHRLEVEL CHANGE and do not specify KEEPDICTIONARY when you run REORG
TABLESPACE on the source group in a GDPS Continuous Availability with zero data loss
environment, Db2 inserts a decompression dictionary into the CDDS during the switch phase.

Restrictions:

• You cannot specify SHRLEVEL CHANGE if the table space has the NOT LOGGED attribute, unless
the table space is a LOB table space.

• If you specify SHRLEVEL CHANGE in a REORG TABLESPACE control statement that completes
the process of recovery to a point in time prior to the materialization of pending definition
changes, REORG issues a message, and uses SHRLEVEL REFERENCE.

DEADLINE
Specifies the deadline for the SWITCH phase to begin. If Db2 estimates that the SWITCH phase will
not begin by the deadline, Db2 issues the messages that the DISPLAY UTILITY command would
issue and then terminates the reorganization.

The final result and all the timestamp calculation of DEADLINE will be in TIMESTAMP(6).

If REORG SHRLEVEL REFERENCE or SHRLEVEL CHANGE terminates because of a DEADLINE
specification, Db2 issues message DSNU374I with reason code 2 but does not set a restrictive status.

NONE
Specifies that a deadline by which the SWITCH phase of log processing must begin does not exist.

timestamp
Specifies the deadline for the SWITCH phase of log processing to begin. This deadline must not
have already occurred when REORG is executed.

labeled-duration-expression
Calculates the deadline for the SWITCH phase of log processing to begin. The calculation is
based on either CURRENT TIMESTAMP or CURRENT DATE. You can add or subtract one or more
constant values to specify the deadline. This deadline must not have already occurred when
REORG is executed. CURRENT TIMESTAMP and CURRENT DATE are evaluated once, when the
REORG statement is first processed. If a list of objects is specified, the same value will be in effect
for all objects in the list.
CURRENT_DATE

Specifies that the deadline is to be calculated based on the CURRENT DATE.
CURRENT_TIMESTAMP

Specifies that the deadline is to be calculated based on the CURRENT TIMESTAMP.
WITH TIME ZONE

Specifies that the CURRENT TIMESTAMP is compared with the time zone column. The
timestamp precision of the special register CURRENT TIMESTAMP should be the same as
the column timestamp precision. Otherwise the default timestamp precision is used. The
time zone of CURRENT TIMESTAMP is the value of special register CURRENT TIMEZONE. The
comparison is done by comparing the UTC portion of the timestamp.

constant
Indicates a unit of time and is followed by one of the seven duration keywords: YEARS,
MONTHS, DAYS, HOURS, MINUTES, SECONDS, or MICROSECONDS. The singular form of these
words is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MICROSECOND.

DRAIN_WAIT integer
Specifies the number of seconds that the utility waits when draining the table space or index. The
specified time is the aggregate time for objects that are to be reorganized. This value overrides the
values that are specified by IRLMRWT and UTIMOUT. Valid values for integer are from 0 to 1800. If the
keyword is omitted or if a value of 0 is specified, the utility uses the value of the lock timeout system
parameter IRLMRWT.

544 Db2 12 for z/OS: Utility Guide and Reference

RETRY integer
Specifies the maximum number of retries that REORG is to attempt. Valid values for integer are from 0
to 255.

Specifying RETRY can lead to increased processing costs and can result in multiple or extended
periods of read-only access. For example, when you specify RETRY and SHRLEVEL CHANGE, the size
of the copy that is taken by REORG might increase.

The default value is the value of the UTIMOUT subsystem parameter.

RETRY_DELAY integer
Specifies the minimum duration, in seconds, between retries. Valid values for integer are from 1 to
1800.

If you do not specify RETRY_DELAY, REORG TABLESPACE uses the smaller of the following two
values:

• DRAIN_WAIT value × RETRY value
• DRAIN_WAIT value × 10

MAPPINGTABLE table-name
Specifies the name of the mapping table that REORG TABLESPACE is to use to map between the
RIDs of data records in the original copy of the area and the corresponding RIDs in the shadow
copy. Enclose the table name in quotation marks if the name contains a blank. If a mapping table is
required, and one is not specified, REORG will create it.

MAPPINGDATABASE database-name
Specifies the database in which REORG implicitly creates the mapping table and index objects.
This keyword overrides the subsystem parameter value in REORG_MAPPING_DATABASE. The value
cannot be DSNDB01, DSNDB06, DSNDB07, implicit database, and work file or temporary database.

MAXRO integer
Specifies the maximum amount of time for the last iteration of log processing. During that iteration,
applications have read-only access. MAXRO is a log phase parameter. If MAXRO is specified when a
log phase is not needed, an error message is issued.

The actual execution time of the last iteration might exceed the specified value for MAXRO.

The ALTER UTILITY command can change the value of MAXRO.

The default value is the RETRY_DELAY default value.

integer
integer is the number of seconds. Specifying a small positive value reduces the length of the
period of read-only access, but it might increase the elapsed time for REORG to complete. If you
specify a huge positive value, the second iteration of log processing is probably the last iteration.

DEFER
Specifies that the iterations of log processing with read-write access can continue indefinitely.
REORG never begins the final iteration with read-only access, unless you change the MAXRO value
with ALTER UTILITY.

If you specify DEFER, you should also specify LONGLOG CONTINUE.

If you specify DEFER, and Db2 determines that the actual time for an iteration and the estimated
time for the next iteration are both less than 5 seconds, Db2 adds a 5 second pause to the next
iteration. This pause reduces consumption of processor time. The first time this situation occurs
for a given execution of REORG, Db2 sends message DSNU362I to the console. The message
states that the number of log records that must be processed is small and that the pause occurs.
To change the MAXRO value and thus cause REORG to finish, execute the ALTER UTILITY
command. Db2 adds the pause whenever the situation occurs; however, Db2 sends the message
only if 30 minutes have elapsed since the last message was sent for a given execution of REORG.

Chapter 28. REORG TABLESPACE 545

DRAIN
Specifies drain behavior at the end of the log phase after the MAXRO threshold is reached and when
the last iteration of the log is to be applied. DRAIN is a log phase parameter. If DRAIN is specified
when a log phase is not needed, an error message is issued.
WRITERS

Specifies that Db2 drains only the writers during the log phase after the MAXRO threshold is
reached and then issues DRAIN ALL on entering the switch phase.

ALL
Specifies the current default action, in which Db2 is to drain all readers and writers during the log
phase, after the MAXRO threshold is reached.

Consider specifying DRAIN ALL if the following conditions are both true:

• SQL update activity is high during the log phase.
• The default behavior results in a large number of -911 SQL error messages.

Related information:

“Claim classes that REORG TABLESPACE drains” on page 583

LONGLOG
Specifies the action that Db2 is to perform, after sending a message to the console, if the number
of records that the next iteration of logging is to process is not sufficiently lower than the number
that the previous iterations processed. This situation means that the reading of the log by the REORG
TABLESPACE utility is not being done at the same time as the writing of the application log. LONGLOG
is a log phase parameter. If LONGLOG is specified when a log phase is not needed, an error message is
issued.
CONTINUE

Specifies that until the time on the JOB statement expires, Db2 is to continue performing
reorganization, including iterations of log processing, if the estimated time to perform an iteration
exceeds the time that is specified for MAXRO.

A value of DEFER for MAXRO and a value of CONTINUE for LONGLOG together mean that REORG is
to continue allowing access to the original copy of the area that is being reorganized and does not
switch to the shadow copy. The user can execute the ALTER UTILITY command with a large value
for MAXRO to initiate switching.

TERM
Specifies that Db2 is to terminate the reorganization after the delay that is specified by the DELAY
parameter.

DRAIN
Specifies that Db2 is to drain the write claim class after the delay that is specified by the DELAY
parameter. This action forces the final iteration of log processing to occur. DRAIN is a log phase
parameter. If DRAIN is specified when a log phase is not needed, an error message is issued.

DELAY integer
Specifies the minimum interval between the time that REORG sends the LONGLOG message to the
console and the time that REORG performs the action that is specified by the LONGLOG parameter.
DELAY is a log phase parameter. If DELAY is specified when a log phase is not needed, an error
message is issued.

integer is the number of seconds.

The default value is 1200.

LASTLOG
Specifies whether REORG SHRLEVEL CHANGE is to apply any log records during the final log iteration
in the LOG phase.

Specifying LASTLOG NO can help reduce outage time by avoiding the costly sub processes (such
as page sets force write) that occur in the final log iteration; however, LASTLOG NO might cause

546 Db2 12 for z/OS: Utility Guide and Reference

REORG to not complete if it cannot find the required period of time without concurrent DML activities.
LASTLOG NO requires the DRAIN ALL option to be in effect.

LASTLOG is ignored for REORG executions without SHRLEVEL CHANGE processing.

YES
Specifies that REORG is to perform one final round of log apply processing after draining all claim
classes (DRAIN ALL). Specifying YES ensures that REORG proceeds to the SWITCH phase after
completing the final round of log apply processing in the LOG phase.

YES is the default value.

NO
Specifies that REORG is not to apply any log records in the final log iteration. When existing criteria
is met for REORG to "break in" (gain control of objects), REORG firsts drains all claim classes and
then processes the logs from the end of the last log iteration to current. If any log records of the
target objects are found in this final log iteration, REORG dedrains the target objects and reverts
this final log iteration back to a normal log iteration. When REORG "breaks in" again in a future log
iteration, the utility repeats this cycle of drain all, log read, and dedrain until it can complete the
final log iteration with no log records to apply. The reversion back to a normal log iteration due
to the presence of logs counts as a drain failure for RETRY consideration; therefore a high RETRY
value is recommended to lessen the impact of the repeating "break in" attempts.

TIMEOUT
Specifies the action that is to be taken if the REORG utility gets a timeout condition while trying to
drain an object in either the log or switch phases.
TERM

Indicates that Db2 is to behave as follows if you specify the TERM option and a timeout condition
occurs:

1. Db2 issues an implicit TERM UTILITY command, causing the utility to end with a return code 8.
2. Db2 issues the DSNU590I and DSNU170I messages.
3. Db2 leaves the object in a read-write state.

ABEND
Indicates that, if a timeout condition occurs, Db2 takes one of the following actions:

• If DRAIN ALL is specified, Db2 leaves the object in a UTRW state.
• If DRAIN WRITERS is specified or used by default:

– If the failure occurs when there is a write drain lock on the object, Db2 leaves the object in a
UTRW state.

– If the failure occurs when there is a read drain lock on the object, Db2 leaves the object in a
UTRO state.

LOGRANGES
Specifies whether REORG is to use SYSLGRNX information for the LOG phase.
YES

REORG uses SYSLGRNX information for the LOG phase whenever possible. This option is the
default behavior.

NO
REORG does not use SYSLGRNX information for the LOG phase. This option can cause REORG to
run much longer. In a data sharing environment this option can result in the merging of all logs
from all members. This option is feasible when there is a known integrity issue with SYSLGRNX
entries and performance problems in accessing SYSLGRNX for log read determination.

DRAIN_ALLPARTS
Specifies the action to take during a part level REORG TABLESPACE SHRLEVEL REFERENCE or
CHANGE when a nonpartitioned secondary index is defined on a partitioned table space.

Chapter 28. REORG TABLESPACE 547

NO
REORG drains the target data partitions serially followed by the nonpartitioned secondary indexes.
This option is the default behavior.

YES
REORG obtains the table space level drain on the entire partitioned table space first, before
draining the target data partitions and the indexes. This option can provide relief by eliminating
drain timeout or deadlocks caused by the reverse order of object-draining by REORG and object-
claiming by DML statements.

SWITCHTIME
Specifies the time for the final log iteration of the LOG phase to begin. The final result and all of the
time stamp calculations of SWITCHTIME are in TIMESTAMP(6). This keyword can be specified with
the MAXRO keyword. If MAXRO DEFER is not specified, REORG enters the final log iteration of the LOG
phase before the specified SWITCHTIME value if the specified or defaulted MAXRO criteria is met.
When MAXRO DEFER is specified, REORG does not attempt to enterto the final log iteration until the
specified SWITCHTIME is met or affected by an external ALTER UTILITY command in the changing of
its MAXRO value.
NONE

Does not specify a time for the final log iteration of the LOG phase. This option is the default
behavior.

timestamp
Specifies the time that the final log iteration of the LOG phase is to begin. This time must not have
already occurred when REORG is run.

labeled-duration-expression
Calculates the time for the final log iteration of LOG phase is to begin. The calculation is based on
either CURRENT TIMESTAMP or CURRENT DATE. You can add or subtract one or more constant
values to specify the switch time. This switch time must not have already occurred when REORG is
run. CURRENT TIMESTAMP and CURRENT DATE are evaluated once, when the REORG statement
is first processed. If a list of objects is specified, the same value is in effect for all objects in the
list.
CURRENT_DATE

Specifies that the deadline is to be calculated based on the CURRENT DATE.
CURRENT_TIMESTAMP

Specifies that the deadline is to be calculated based on the CURRENT TIMESTAMP.
WITH TIME ZONE

Specifies that the CURRENT TIMESTAMP is compared with the time zone column. The time
stamp precision of the special register CURRENT TIMESTAMP should be the same as the
column time stamp precision. Otherwise, the default time stamp precision is used. The time
zone of CURRENT TIMESTAMP is the value of special register CURRENT TIMEZONE. The
comparison is done by comparing the Coordinated Universal Time portion of the time stamp.

constant
Indicates a unit of time and is followed by one of the seven duration keywords: YEARS,
MONTHS, DAYS, HOURS, MINUTES, SECONDS, or MICROSECONDS. The singular form of these
words is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MICROSECOND.

NEWMAXRO
Specifies the maximum amount of time for the last log iteration after SWITCHTIME is met. The
SWITCHTIME keyword must also be specified. This value overrides the existing MAXRO parameter
that is specified. The default is NONE.
NONE

Specifies that when the specified SWITCHTIME is met, REORG proceeds to the last log iteration
without taking log processing time in to consideration. Specifying NONE will result in REORG
entering the last log iteration almost immediately at or after the specified SWITCHTIME. This
option is the default.

548 Db2 12 for z/OS: Utility Guide and Reference

integer
integer is the number of seconds. Specifying a small positive value reduces the length of the
period of read-only access, but it might increase the elapsed time for REORG to complete.
Specifying a large positive value probably ensures that REORG will enter the last log iteration
almost immediately at or after the specified SWITCHTIME.

FORCE
Specifies the action to be taken when the utility is draining the table space.

When REORG FORCE is canceling the threads, it performs a soft cancel similar to the cancel that the
CANCEL THREAD does.

NONE
Specifies that no action is taken when REORG performs drain. The REORG utility waits for the
claimers to commit. The utility will timeout or restart when the drain fails, as determined by
existing conditions.

READERS
Specifies that read claimers are canceled when REORG is requesting a drain all on the last RETRY
processing.

ALL
Specifies that both read and write claimers are canceled when REORG is requesting a drain all or
drain writers on the last RETRY processing.

SORTNPSI
Specifies when REORG TABLESPACE PART is to sort all keys of a non-partitioned secondary index
(NPSI). The benefit of sorting all NPSI keys increases as the ratio of data that is reorganized to total
data in the table space increases. However, sorting index keys can add processing overhead for the
utility.

This keyword is ignored for a REORG operation that is not partition-level or without NPSIs. The default
value is the value of subsystem parameter REORG_PART_SORT_NPSI.

AUTO
The utility determines whether to sort all NPSI keys or only keys in the scope of the REORG
operation.

The decision is based on many factors, including a projection of the estimated elapsed time
and CPU performance savings of sorting all NPSI keys being processed. However, the actual
performance varies depending on the specific scenario, and CPU and elapsed time reductions are
not always guaranteed.

YES
All NPSI keys are sorted.

NO
Only NPSI keys that are in the scope of the REORG operation are sorted.

When STATISTICS INDEX is specified and either SORTNPSI AUTO is specified or the
REORG_PART_SORT_NPSI subsystem parameter is set to AUTO, REORG TABLESPACE PART can
collect statistics for a NPSI. However, in some of these cases, REORG does not collect statistics.

AUX
Specifies that the LOB table spaces associated with the partitions of a partitioned table space being
reorganized by the REORG utility are also reorganized.
NO

Indicates that a reorganization is performed on the base table space, but the associated LOB table
spaces are not reorganized.

If the AUX keyword is omitted, AUX NO is the default unless one or more of the cases described in
AUX YES are true.

Chapter 28. REORG TABLESPACE 549

AUX NO is ignored when the target table space has pending definition changes to convert it from
a simple or segmented (non-UTS) table space to a partition-by-growth table space. In this case,
AUX YES is in effect.

LOG NO cannot be specified for a REORG operation that completes recovery to a point in time
before pending definition changes were materialized, if there were pending definition changes on
the base table space and on the LOB table space. REORG must be run on the LOB table space first,
and then run on the base table space. When REORG is run on the base table space, AUX YES is in
effect.

For a table with LOB columns that are affected by pending alter limit keys, a REORG job with AUX
NO does not materialize the limit key changes. In this case, you need to specify AUX YES for those
changes to be materialized.

YES
Indicates that LOB table spaces associated with the base partitioned table space are reorganized
when the base table space is reorganized. Partitions of the associated table spaces are also
reorganized.

If the AUX keyword is omitted, in the following cases, AUX YES is the default:

• REORG TABLESPACE of a partition-by-growth base table space with one or more LOB columns,
where the table space has a MAXPARTITIONS value that is greater than one.

• REORG TABLESPACE SHRLEVEL REFERENCE REBALANCE of a partitioned base table space with
one or more LOB columns.

• REORG TABLESPACE is run against directory table space SPT01, and SPT01 is in the REORP or
AREOR state. In this case, AUX YES is always used.

• REORG TABLESPACE of a partitioned base table space with one or more LOB columns where
one or more partition ranges are in REORG pending state because an ALTER TABLE PARTITION
command has been issued to change the partition key boundaries.

• REORG TABLESPACE DISCARD of a table in a partitioned table space with one or more LOB
columns.

When AUX YES is implicitly or explicitly specified, and the COPYDDN parameter specifies a
TEMPLATE utility control statement with the &SN. or &TS. variables without substring notation
on them, REORG takes the following actions for the LOB table spaces:

• Creates inline image copies
• Resets COPY-pending status

When AUX YES is implicitly or explicitly specified and templates are specified, make sure that
those templates generate unique data set names for the auxiliary table spaces that are being
reorganized. Make sure that you account for auxiliary table spaces that are included in any
specified LISTDEF lists.

When AUX YES is implicitly or explicitly specified, and FlashCopy image copies are taken as part of
REORG, REORG produces image copies for all of the LOB table spaces that are being reorganized.

REORG AUX YES does not materialize pending alters on the LOB table spaces and its indexes and
thus does not reset the AREOR status on these objects. You must run a separate REORG on the
LOB table space to materialize these pending definition changes.

Restrictions: When REORG with AUX YES is run on a partition-by-growth table space with LOB
columns, the following restrictions apply:

• If you specify that REORG is to create inline copies and use a template for the copies, do not use
the STACK YES option for the template. If you do so, REORG fails, because the base and auxiliary
table spaces cannot be stacked on the same tape volume. If you need to use a template with the
STACK YES option, specify AUX NO on the REORG statement and then reorganize and copy the
auxiliary table spaces separately.

550 Db2 12 for z/OS: Utility Guide and Reference

FASTSWITCH
Specifies which switch methodology is to be used for a given reorganization.
YES

Enables the SWITCH phase to use the FASTSWITCH methodology. This option is not allowed for
the catalog (DSNDB06) or directory (DSNDB01).

NO
Causes the SWITCH phase to use IDCAMS RENAME.

When FASTSWITCH NO is specified with SHRLEVEL REFERENCE or SHRLEVEL CHANGE, pending
definition changes are not materialized.

OFFPOSLIMIT integer

The OFFPOSLIMIT option is deprecated, and the alternative is running DSNACCOX.

Indicates that the specified value is to be compared to the value that Db2 calculates for the explicit
clustering indexes of every table in the specified partitions that are in SYSIBM.SYSINDEXPART. The
calculation is computed as follows:

(NEAROFFPOSF + FAROFFPOSF) × 100 / CARDF

Alternatively, Db2 checks the values in SYSINDEXPART for a single nonpartitioned table space, or for
each partition if you specified an entire partitioned table space as the target object. If at least one
calculated value exceeds the OFFPOSLIMIT value, REORG is performed or recommended. This option
is valid for non-LOB table spaces only.

integer is the value that is to be compared and can range from 0 to 65535.

The default value is 10.

INDREFLIMIT integer

The INDREFLIMIT option is deprecated, and the alternative is running DSNACCOX.

Indicates that the specified value is to be compared to the value that Db2 calculates for the specified
partitions in SYSIBM.SYSTABLEPART for the specified table space. The calculation is computed as
follows:

(NEARINDREF + FARINDREF) × 100 / CARDF

Alternatively, Db2 checks the values in SYSTABLEPART for a single nonpartitioned table space, or for
each partition if you specified an entire partitioned table space as the target object. If at least one
calculated value exceeds the calculated value exceeds the INDREFLIMIT value, REORG is performed
or recommended. This option is valid for non-LOB table spaces only.

integer is the value that is to be compared and can range from 0 to 65535.

The default value is 10.

REPORTONLY

The REPORTONLY option is deprecated, and the alternative is running DSNACCOX.

Specifies that REORG is only to be recommended, not performed. REORG produces a report with one
of the following return codes:
1

No limit met; no REORG is to be performed or recommended.
2

REORG is to be performed or recommended.

Chapter 28. REORG TABLESPACE 551

UNLOAD
Specifies whether the utility job is to continue processing or end after the data is unloaded. Unless
you specify UNLOAD EXTERNAL, data can be reloaded only into the same table and table space (as
defined in the Db2 catalog) on the same subsystem. (This does not preclude VSAM redefinition during
UNLOAD PAUSE.)

You must specify UNLOAD ONLY for the data set to be in a format that is compatible with the FORMAT
UNLOAD option of LOAD. However, with LOAD, you can load the data only into the same object from
which it is unloaded.

This option is valid for non-LOB table spaces only.

You must specify UNLOAD EXTERNAL for the data set to be in a format that is usable by LOAD without
the FORMAT UNLOAD option. With UNLOAD EXTERNAL, you can load the data into any table with
compatible columns in any table space on any Db2 subsystem.
CONTINUE

Specifies that, after the data has been unloaded, the utility is to continue processing. An edit
routine can be called to decode a previously encoded data row if an index key requires extraction
from that row.

If you specify DISCARD, rows are decompressed and edit routines are decoded. If you also specify
DISCARD to a file, rows are decoded by field procedure, and the following columns are converted
to Db2 external format:

• SMALLINT
• INTEGER
• FLOAT
• DECIMAL
• TIME
• TIMESTAMP

Otherwise, edit routines or field procedures are bypassed on both the UNLOAD and RELOAD
phases for table spaces. Validation procedures are not invoked during either phase.

PAUSE

The UNLOAD PAUSE option is deprecated, and the alternative is running the UNLOAD utility.

Specifies that, after the data has been unloaded, processing is to end. The utility stops and the
RELOAD status is stored in SYSIBM.SYSUTIL so that processing can be restarted with RELOAD
RESTART(PHASE).

This option is useful if you want to redefine data sets during reorganization. For example, with a
user-defined data set, you can:

• Run REORG with the UNLOAD PAUSE option.
• Redefine the data set by using Access Method Services.
• Restart REORG by resubmitting the previous job and specifying RESTART(PHASE).

However, you cannot use UNLOAD PAUSE if you specify the LIST option.

ONLY

The UNLOAD ONLY option is deprecated, and the alternative is running the UNLOAD utility.

Specifies that, after the data has been unloaded, the utility job ends and the status that
corresponds to this utility ID is removed from SYSIBM.SYSUTIL.

If you specify UNLOAD ONLY with REORG TABLESPACE, any edit routine or field procedure is
executed during record retrieval in the unload phase.

This option is not allowed for any table space in DSNDB01 or DSNDB06.

The DISCARD and WHEN options are not allowed with UNLOAD ONLY.

552 Db2 12 for z/OS: Utility Guide and Reference

EXTERNAL

The UNLOAD EXTERNAL option is deprecated, and the alternative is running the UNLOAD utility.

Specifies that, after the data has been unloaded, the utility job is to end and the status that
corresponds to this utility ID is removed.

The UNLOAD utility has more functions. If you specify UNLOAD EXTERNAL with REORG
TABLESPACE, rows are decompressed, edit routines are decoded, field procedures are decoded,
and SMALLINT, INTEGER, FLOAT, DECIMAL, DATE, TIME, and TIMESTAMP columns are converted
to Db2 external format. Validation procedures are not invoked.

Do not specify the EXTERNAL keyword for:

• Table spaces in DSNDB01 or DSNDB06
• Base tables with XML columns
• XML table spaces

The DISCARD option is not allowed with UNLOAD EXTERNAL.

NOPAD

Specifies whether the variable-length columns in the unloaded or discarded records are to occupy the
actual data length without additional padding. The unloaded records can have varying lengths.

YES
Specifies that the variable-length columns are to have no additional padding.

The default value of NOPAD is set by the REORG_TS_NOPAD_DEFAULT subsystem parameter,
which has a default value of YES.

Related information:

REORG TS NOPAD DEFAULT (REORG_TS_NOPAD_DEFAULT subsystem parameter)

NO
Specifies that REORG processing pads variable-length columns in the unloaded or discarded
records to their maximum length; the unloaded or discarded records have equal lengths for each
table.

You can specify the NOPAD option only with UNLOAD EXTERNAL or with UNLOAD DISCARD.

Although the LOAD utility processes records with variable-length columns that were unloaded or
discarded with the NOPAD option, these records cannot be processed by applications that process
only fields that are in fixed positions.

For the generated LOAD statement to provide a NULLIF condition for fields that are not in a fixed
position, Db2 generates an input field definition with a name in the form of DSN_NULL_IND_nnnnn,
where nnnnn is the number of the associated column.

The following example shows a LOAD statement that was generated for the EMPsample table:

LOAD DATA INDDN SYSREC LOG NO RESUME YES
 EBCDIC CCSID(00500,00000,00000)
 INTO TABLE "DSN8C10 "."EMP "
 WHEN(00004:00005 = X'0012')
 ("EMPNO " POSITION(00007:00012) CHAR(006)
 , "FIRSTNME " POSITION(00013) VARCHAR
 , "MIDINIT " POSITION(*) CHAR(001)
 , "LASTNAME " POSITION(*) VARCHAR
 , DSN_NULL_IND_00005 POSITION(*) CHAR(1)
 , "WORKDEPT " POSITION(*) CHAR(003)
 NULLIF(DSN_NULL_IND_00005)=X'FF'
 , DSN_NULL_IND_00006 POSITION(*) CHAR(1)
 , "PHONENO " POSITION(*) CHAR(004)
 NULLIF(DSN_NULL_IND_00006)=X'FF'
 , DSN_NULL_IND_00007 POSITION(*) CHAR(1)
 , "HIREDATE " POSITION(*) DATE EXTERNAL
 NULLIF(DSN_NULL_IND_00007)=X'FF'
 , DSN_NULL_IND_00008 POSITION(*) CHAR(1)
 , "JOB " POSITION(*) CHAR(008)

Chapter 28. REORG TABLESPACE 553

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_reorgtsnopaddefault.html

 NULLIF(DSN_NULL_IND_00008)=X'FF'
 , DSN_NULL_IND_00009 POSITION(*) CHAR(1)
 , "EDLEVEL " POSITION(*) SMALLINT
 NULLIF(DSN_NULL_IND_00009)=X'FF'
 , DSN_NULL_IND_00010 POSITION(*) CHAR(1)
 , "SEX " POSITION(*) CHAR(001)
 NULLIF(DSN_NULL_IND_00010)=X'FF'
 , DSN_NULL_IND_00011 POSITION(*) CHAR(1)
 , "BIRTHDATE " POSITION(*) DATE EXTERNAL
 NULLIF(DSN_NULL_IND_00011)=X'FF'
 , DSN_NULL_IND_00012 POSITION(*) CHAR(1)
 , "SALARY " POSITION(*) DECIMAL
 NULLIF(DSN_NULL_IND_00012)=X'FF'
 , DSN_NULL_IND_00013 POSITION(*) CHAR(1)
 , "BONUS " POSITION(*) DECIMAL
 NULLIF(DSN_NULL_IND_00013)=X'FF'
 , DSN_NULL_IND_00014 POSITION(*) CHAR(1)
 , "COMM " POSITION(*) DECIMAL
 NULLIF(DSN_NULL_IND_00014)=X'FF'
)

FROM TABLE
Specifies the tables that are to be reorganized. The table space that is specified in REORG
TABLESPACE can store more than one table. All tables that are specified by FROM TABLE statements
must be unique. All tables are unloaded for UNLOAD EXTERNAL, and all tables might be subject to
DISCARD. If you specify UNLOAD EXTERNAL and want to limit which tables and rows are unloaded,
specify FROM TABLE with the WHEN option. If you specify DISCARD, you must qualify the rows that
you want to discard by specifying FROM TABLE with the WHEN option.

Do not specify FROM TABLE with REORG TABLESPACE LIST.

table-name
Specifies the name of the table that is to be qualified by the following WHEN clause. The table
must be described in the catalog and must not be a catalog table.

If the table name is not qualified by a schema name, the authorization ID of the person who
invokes the utility job step is used as the schema qualifier of the table name. Enclose the table
name in quotation marks if the name contains a blank.

WHEN
Indicates which records in the table space are to be unloaded (for UNLOAD EXTERNAL) or discarded
(for DISCARD). If you do not specify a WHEN clause for a table in the table space, all of the records are
unloaded (for UNLOAD EXTERNAL), or none of the records is discarded (for DISCARD).

The option following WHEN describes the conditions for UNLOAD or DISCARD of records from a table
and must be enclosed in parentheses.

selection condition
Specifies a condition that is true, false, or unknown about a specific row. When the condition is
true, the row qualifies for UNLOAD or DISCARD. When the condition is false or unknown, the row
does not qualify.

A selection condition consists of at least one predicate and any logical operators (AND, OR, NOT).
The result of a selection condition is derived by applying the specified logical operators to the
result of each specified predicate. If logical operators are not specified, the result of the selection
condition is the result of the specified predicate.

Selection conditions within parentheses are evaluated first. If the order of evaluation is not
specified by parentheses, AND is applied before OR.

If the control statement is in the same encoding scheme as the input data, you can code character
constants in the control statement. Otherwise, if the control statement is not in the same encoding
scheme as the input data, you must code the condition with hexadecimal constants.

If the wildcard character '%' is used, the hexadecimal value of the wildcard character must be in
EBCDIC. For example, in the following statement, x'41' means 'A' in UNICODE and ASCII and
x'6C' means '%' in EBCDIC: COL1 LIKE X'416C'.

554 Db2 12 for z/OS: Utility Guide and Reference

If the target table is ASCII, any character constants must be specified in hexadecimal. For
example, if the table space is in EBCDIC and the control statement is in UTF-8, use (1:1)=X'F1' in
the condition rather than (1:1)='1'.

Restriction: REORG TABLESPACE cannot filter rows based on column-level encrypted data.

predicate
A predicate specifies a condition that is true, false, or unknown about a given row or group.
basic predicate

Specifies the comparison of a column with a constant. If the value of the column is null, the
result of the predicate is unknown. Otherwise, the result of the predicate is true or false.
Predicate

Is true if and only if
column-name = constant

The column is equal to the constant or labeled duration expression.
column-name < > constant

The column is not equal to the constant or labeled duration expression.
column-name > constant

The column is greater than the constant or labeled duration expression.
column-name < constant

The column is less than the constant or labeled duration expression.
column-name > = constant

The column is greater than or equal to the constant or labeled duration expression.
column-name < = constant

The column is less than or equal to the constant or labeled duration expression.

Comparison operators: The following forms of the comparison operators are also supported
in basic and quantified predicates: !=, !<, and !>, where ! means not. In addition, in code pages
437, 819, and 850, the forms ¬=, ¬<, and ¬> are supported. All these product-specific forms
of the comparison operators are intended only to support existing REORG statements that use
these operators and are not recommended for use in new REORG statements.

A not sign (¬), or the character that must be used in its place in certain countries, can cause
parsing errors in statements that are passed from one DBMS to another. The problem occurs
if the statement undergoes character conversion with certain combinations of source and
target CCSIDs. To avoid this problem, substitute an equivalent operator for any operator that
includes a not sign. For example, substitute '< >' for '¬=', '<=' for '¬>', and '>=' for '¬<'.

BETWEEN predicate
Indicates whether a given value is between two other given values that are specified in
ascending order. Each of the predicate's two forms (BETWEEN and NOT BETWEEN) has an
equivalent search condition, as shown in the following table. If relevant, the table also shows
any equivalent predicates.

Table 75. BETWEEN predicates and their equivalent search conditions

Predicate Equivalent predicate Equivalent search condition

column BETWEEN value1
AND value2 None (column >= value1 AND

column <= value2)

column NOT BETWEEN
value1 AND value2

NOT(column BETWEEN value1
AND value2)

(column < value1 OR column >
value2)

Note: The values can be constants or labeled duration expressions.

Chapter 28. REORG TABLESPACE 555

For example, the following predicate is true for any row when salary is greater than or equal to
10 000 and less than or equal to 20 000:

SALARY BETWEEN 10000 AND 20000

labeled-duration-expression
Specifies an expression that begins with the following special register values:

• CURRENT DATE (CURRENT_DATE is acceptable.)
• CURRENT TIMESTAMP (CURRENT_TIMESTAMP is acceptable.)

Optionally, the expression contains the arithmetic operations of addition or subtraction,
expressed by a number followed by one of the seven duration keywords:

• YEARS (or YEAR)
• MONTHS (or MONTH)
• DAYS (or DAY)
• HOURS (or HOUR)
• MINUTES (or MINUTE)
• SECONDS (or SECOND)
• MICROSECONDS (or MICROSECOND)

Utilities evaluate a labeled-duration-expression as a timestamp and implicitly perform a
conversion to a date if the comparison is with a date column.

Incrementing and decrementing CURRENT DATE: The result of adding a duration to a date,
or of subtracting a duration from a date, is itself a date. (For the purposes of this operation,
a month denotes the equivalent of a calendar page. Adding months to a date, then, is like
turning the pages of a calendar, starting with the page on which the date appears.) The result
must fall between the dates January 1, 0001 and December 31, 9999 inclusive.

The following table describes the effects of adding and subtracting years, months, days, and
other dates.

Table 76. Effects of adding durations to and subtracting durations from CURRENT DATE

Value that is added or
subtracted

Effect

Years Adding or subtracting a duration of years affects only the year
portion of the date. The month is unchanged, as is the day unless
the result would be February 29 of a non-leap-year. In this case,
the day portion of the result is set to 28.

Months Adding or subtracting a duration of months affects only months
and, if necessary, years. The day portion of the date is unchanged
unless that day does not exist in the resulting month. (September
31, for example). In this case the day is set to the last day of the
month.

Adding a month to a date gives the same day one month later
unless that day does not exist in the later month. In that case,
the day in the result is set to the last day of the later month.
For example, January 28 plus one month gives February 28; one
month added to January 29, 30, or 31 results in either February 28
or, for a leap year, February 29. If one or more months is added to
a given date and then the same number of months is subtracted
from the result, the final date is not necessarily the same as the
original date.

556 Db2 12 for z/OS: Utility Guide and Reference

Table 76. Effects of adding durations to and subtracting durations from CURRENT DATE
(continued)

Value that is added or
subtracted

Effect

Days Adding or subtracting a duration of days affects the day portion of
the date, and potentially the month and year.

Dates When a positive date duration is added to a date, or a negative
date duration is subtracted from a date, the date is incremented by
the specified number of years, months, and days.

When a positive date duration is subtracted from a date, or a
negative date duration is added to a date, the date is decremented
by the specified number of days, months, and years.

The order in which labeled date durations are added to and subtracted from dates can affect
the results. When you add labeled date durations to a date, specify them in the order of YEARS
+ MONTHS + DAYS. When you subtract labeled date durations from a date, specify them in the
order of DAYS - MONTHS - YEARS. For example, to add one year and one day to a date, specify
the following code:

CURRENT DATE + 1 YEAR + 1 DAY

To subtract one year, one month, and one day from a date, specify the following code:

CURRENT DATE - 1 DAY - 1 MONTH - 1 YEAR

Incrementing and decrementing timestamps: The result of adding a duration to a
timestamp, or of subtracting a duration from a timestamp, is itself a timestamp. Date
and time arithmetic is performed as previously defined, except that an overflow or
underflow of hours is carried into the date part of the result, which must be within
the range of valid dates. For example, if the current date is January 15 and the
current time is 20:00, CURRENT_TIMESTAMP+8 HOURS yields January 16, 04:00. Likewise,
CURRENT_TIMESTAMP-22 HOURS yields January 14, 22:00.

IN predicate
Specifies that a value is to be compared with a set of values. In the IN predicate, the second
operand is a set of one or more values that are specified by constants. Each of the predicate's
two forms (IN and NOT IN) has an equivalent search condition, as shown in the following
table.

Table 77. IN predicates and their equivalent search conditions

Predicate Equivalent search condition

value1 IN (value1, value2,…, valuen) (value1 = value2 OR … OR value1 = valuen)

value1 NOT IN (value1, value2,…, valuen) value1 ¬= value2 AND … AND value1 ¬= valuen)

Note: The values can be constants or labeled duration expressions.

For example, the following predicate is true for any row with an employee in department D11,
B01, or C01:

WORKDEPT IN ('D11', 'B01', 'C01')

Specifying too many values in the IN predicate can significantly degrade utility performance.
The exact number can vary; however, in general, specifying 2500 or more values can start
impacting performance.

Chapter 28. REORG TABLESPACE 557

LIKE predicate
Qualifies strings that have a certain pattern. Specify the pattern by using a string in which the
underscore and percent sign characters can be used as wildcard characters. The underscore
character (_) represents a single, arbitrary character. The percent sign (%) represents a string
of zero or more arbitrary characters.

In this description, let x denote the column that is to be tested and y denote the pattern in the
string constant.

The following rules apply to predicates of the form "x LIKE y…". If NOT is specified, the result
is reversed.

• When x or y is null, the result of the predicate is unknown.
• When y is empty and x is not empty, the result of the predicate is false.
• When x is empty and y is not empty, the result of the predicate is false unless y consists only

of one or more percent signs.
• When x and y are both empty, the result of the predicate is true.
• When x and y are both not null, the result of the predicate is true if x matches the pattern in y

and false if x does not match the pattern in y.

The pattern string and the string that is to be tested must be of the same type; that is, both
x and y must be character strings, or both x and y must be graphic strings. When x and y are
graphic strings, a character is a DBCS character. When x and y are character strings and x is
not mixed data, a character is an SBCS character, and y is interpreted as SBCS data regardless
of is subtype.

Within the pattern, a percent sign (%) or underscore character (_) can represent the literal
occurrence of a percent sign or underscore character. To have a literal meaning, each
character must be preceded by an escape character.

The ESCAPE clause designates a single character. You can use that character, and only that
character, multiple times within the pattern as an escape character. When the ESCAPE clause
is omitted, no character serves as an escape character and percent signs and underscores in
the pattern can only be used to represent arbitrary characters; they cannot represent their
literal occurrences.

The following rules apply to the use of the ESCAPE clause:

• The ESCAPE clause cannot be used if x is mixed data.
• If x is a character string, the data type of the string constant must be character string. If x is

a graphic string, the data type of the string constant must be graphic string. In both cases,
the length of the string constant must be 1.

• The pattern must not contain the escape character except when followed by the escape
character, '%', or '_'. For example, if '+' is the escape character, any occurrences of '+' other
than '++', '+_', or '+%' in the pattern is an error.

When that pattern does not include escape characters, a simple description of its meaning is:

• The underscore character (_) represents a single, arbitrary character.
• The percent sign (%) represents a string of zero or more arbitrary characters.
• Any other character represents a single occurrence of itself.

Strings and patterns:

The string y is interpreted as a sequence of the minimum number of substring specifiers,
such that each character of y is part of exactly one substring specifier. A substring specifier
is an underscore, a percent sign, or any non-empty sequence of characters other than an
underscore or percent sign.

The string x matches the pattern y if a partitioning of x into substrings exists, such that:

558 Db2 12 for z/OS: Utility Guide and Reference

• A substring of x is a sequence of zero or more contiguous characters, and each character of x
is part of exactly one substring.

• If the nth substring specifier is an underscore, the nth substring of x is any single character.
• If the nth substring specifier is a percent sign, the nth substring of x is any sequence of zero

or more characters.
• If the nth substring specifier is neither an underscore nor a percent sign, the nth substring of

x is equal to that substring specifier and has the same length as that substring specifier.
• The number of substrings of x is the same as the number of substring specifiers.

When escape characters are present in the pattern string, an underscore, percent sign, or
escape character represents a single occurrence of itself if and only if it is preceded by an odd
number of successive escape characters.

The way a pattern is matched to evaluate the LIKE predicate depends on whether blanks
at the end of fixed length strings are significant, or if the blanks are ignored. When the
LIKE_BLANK_INSIGNIFICANT subsystem parameter is enabled, the LIKE predicate can
produce different results.

Mixed-data patterns:

If x is mixed data, the pattern is assumed to be mixed data, and its special characters are
interpreted as follows:

• A single-byte underscore refers to one single-byte character; a double-byte underscore
refers to one double-byte character.

• A percent sign, either single-byte or double-byte, refers to any number of characters of any
type, either single-byte or double-byte.

• Redundant shift bytes in x or y are ignored.

Related information:

LIKE predicate (Db2 SQL)

NULL predicate
Specifies a test for null values.

If the value of the column is null, the result is true. If the value is not null, the result is false. If
NOT is specified, the result is reversed.

KEEPDICTIONARY
Prevents REORG TABLESPACE from building a new compression dictionary when unloading the rows.
The REORG utility builds the compression dictionary during the UNLOAD process. This dictionary is
then used during the RELOAD phase to compress the data.

The efficiency of REORG increases with the KEEPDICTIONARY option for the following reasons:

• The processing cost of building the compression dictionary is eliminated.
• Existing compressed rows do not need to be compressed again.
• Existing compressed rows do not need to be expanded, unless indexes require it or SORTDATA is

used.

KEEPDICTIONARY is valid only if a compression dictionary exists and the table space or partition that
is being reorganized is defined with compression. If a dictionary does not exist, one is built, a warning
message is issued, and all the records are compressed.

Possible reasons for not specifying KEEPDICTIONARY are:

• If the data has changed significantly since the last dictionary was built, rebuilding the dictionary
might save a significant amount of space.

• If the current dictionary was built either by the LOAD utility or automatically by Db2 based on
records that have been inserted over time, rebuilding the dictionary by using REORG might produce
a better compression dictionary.

Chapter 28. REORG TABLESPACE 559

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_likepredicate.html

In the following situations, KEEPDICTIONARY is ignored and REORG always builds a new compression
dictionary:

• If the data is being converted from basic row format to reordered row format
• If REORG is materializing a pending alter of the buffer pool
• If a partition that is being reorganized is in REORG-pending status
• FL 508 If REORG is materializing a pending MOVE TABLE operation

Messages DSNU234I and DSNU244I, which show compression statistics, are not issued when you
specify REORG UNLOAD CONTINUE KEEPDICTIONARY or REORG UNLOAD PAUSE KEEPDICTIONARY.

Note: You must use KEEPDICTIONARY to ensure that the compression dictionary is maintained.

Related information:

“Compressing data by using the LOAD utility ” on page 309

STATISTICS
Specifies that statistics for the table space or associated index, or both, are to be gathered; the
statistics are reported or stored in the Db2 catalog. If statistics are collected with the default options,
only the statistics for the table space are updated.

If you specify a table space partition or a range of partitions along with the STATISTICS keyword, Db2
collects statistics only for the specified table space partitions. This option is valid for non-LOB table
spaces only.

If you specify a base table space with the STATISTICS keyword, Db2 does not gather statistics for the
related XML table space or its indexes.

When SORTNPSI AUTO or SORTNPSI YES is specified, or when the REORG_PART_SORT_NPSI
subsystem parameter is set to AUTO or YES, REORG TABLESPACE PART can collect statistics for a
non-partitioned secondary index when the STATISTICS INDEX keywords are also specified. However,
in some of these cases, REORG does not collect statistics. This situation occurs if REORG chooses not
to sort all of the nonpartitioned index keys, because the amount of data to reorganize or the sizes of
objects exceeded internal thresholds.

Restrictions:

• If you specify STATISTICS for encrypted data, Db2 might not provide useful statistics on this data.
• You cannot specify STATISTICS if you specify the CLONE keyword.

When pending definition changes are materialized during REORG TABLESPACE with SHRLEVEL
REFERENCE or CHANGE, statistics for both a table space and its associated indexes are collected
and updated in the Db2 catalog. In this case, if the STATISTICS keyword is not specified in the REORG
TABLESPACE statement, the following keywords are used by default:

• STATISTICS TABLE ALL
• INDEX ALL
• UPDATE ALL
• HISTORY ALL

For more information about materializing pending definition changes during REORG, see
“Reorganization with pending definition changes” on page 609.

Recommendation: Partition statistics can become obsolete. The partition statistics that can be
obsolete are COLGROUP statistics, statistics for key column values in indexes, HISTOGRAM statistics,
frequency statistics with NUMCOLS > 1, and statistics for extended indexes where applicable. Run the
RUNSTATS utility to collect the partition statistics again.

All tables identified by the STATISTICS TABLE keyword must belong to the table space that is
specified in the TABLESPACE option.

560 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html

TABLE
Specifies the table for which column information is to be gathered.

Do not specify STATISTICS TABLE table-name with the LIST keyword. Instead, specify STATISTICS
TABLE (ALL).

(ALL)
Specifies that information is to be gathered for all columns of all tables in the table space.

When REORG TABLESPACE STATISTICS TABLE ALL INDEX ALL is specified, all the statistics for the
table space, table, and indexes are collected at both the partition level and the aggregate level.

(table-name)
Specifies the tables for which column information is to be gathered. If you omit the qualifier, the
user identifier for the utility job is used. Enclose the table name in quotation marks if the name
contains a blank.

If you specify more than one table, you must repeat the TABLE option. Multiple TABLE options
must be specified entirely before or after any INDEX keyword that may also be specified. For
example, the INDEX keyword may not be specified between any two TABLE keywords.

SAMPLE integer
Indicates the percentage of rows to be sampled when collecting statistics on non-leading-indexed
columns of an index or non-indexed columns. You can specify any value from 1 through 100.

The default value is 25. The SAMPLE option is not allowed for LOB table spaces.

USE PROFILE
Specifies a stored statistics profile that is used to gather statistics for a table. The statistics profile is
created using the SET PROFILE option and is updated using the UPDATE PROFILE option.

The column, column group, and index specifications are not allowed as part of the control statement,
but are used when stored in the statistics profile.

If no profile exists for the specified table, default statistics are collected:

• When a table name is not specified, TABLE ALL INDEX ALL is used for the profile specification.
• When a table name is specified, COLUMN ALL INDEX ALL is used for the profile specification.

When you specify USE PROFILE, the profile options are included in SYSPRINT in message
DSNU1376I.

FL 507 Additionally, Db2 deletes existing statistics that are not included in the profile. All frequency,
keycard, and histogram statistics that are not part of the profile are deleted from the catalog. These
statistics are deleted for only the specified table or partition. Statistics are not deleted from catalog
history tables. If you specify UPDATE NONE or UPDATE SPACE, no statistics are deleted.

Related information:

Statistics profiles (Db2 Performance)
Creating statistics profiles (Db2 Performance)
“Statistics profile syntax” on page 720

COLUMN
Specifies columns for which column information is to be gathered.

You can specify this option only if you specify a particular table for which statistics are to be gathered
(TABLE (table-name)). If you specify particular tables and do not specify the COLUMN option, the
default, COLUMN(ALL), is used. If you do not specify a particular table when using the TABLE option,
you cannot specify the COLUMN option; however, COLUMN(ALL) is assumed.
(ALL)

Specifies that statistics are to be gathered for all columns in the table.
(column-name, …)

Specifies the columns for which statistics are to be gathered.

Chapter 28. REORG TABLESPACE 561

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_runstatsprofiles.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_setrunstatsprofiles.html

You can specify a list of column names; the maximum is 10. If you specify more than one column,
separate each name with a comma.

INDEX
Specifies indexes for which information is to be gathered. Column information is gathered for the first
column of the index. All the indexes must be associated with the same table space, which must be the
table space that is specified in the TABLESPACE option.

Do not specify STATISTICS INDEX index-name with the LIST keyword. Instead, specify STATISTICS
INDEX (ALL).

(ALL)
Specifies that the column information is to be gathered for all indexes that are defined on tables
that are contained in the table space.

When REORG TABLESPACE STATISTICS TABLE ALL INDEX ALL is specified, all the statistics for the
table space, table, and indexes are collected at both the partition level and the aggregate level.

(index-name)
Specifies the indexes for which information is to be gathered. Enclose the index name in quotation
marks if the name contains a blank.

COLGROUP (column-name, ...)
Indicates that the specified set of columns are treated as a group. This option enables inline statistics
to collect a cardinality value on the specified column group. Inline statistics ignores COLGROUP when
processing XML table spaces and indexes.

When you specify the COLGROUP keyword, inline statistics collects correlation statistics for the
specified column group. If you want inline statistics to also collect distribution statistics, specify the
FREQVAL option with COLGROUP.

(column-name, ...) specifies the names of the columns that are part of the column group.

When you define a column group on a single column, you can potentially improve RUNSTATS
performance by specifying the STATCLGMEMSRT option or changing the value of the STATCLGSRT
subsystem parameter. You can use these options to avoid column group sorts by external sort
programs.

To specify more than one column group, repeat the COLGROUP option.

Restriction: The length of the COLGROUP value cannot exceed the maximum length of the COLVALUE
column in the SYSIBM.SYSCOLDIST catalog table.

Related information:

STATISTICS COLGROUP DATA SORT STG LIMIT field (STATCLGSRT subsystem parameter) (Db2
Installation and Migration)

FREQVAL
Indicates, when specified with the COLGROUP option, that frequency statistics are also to be gathered
for the specified group of columns. (COLGROUP indicates that cardinality statistics are gathered.) One
group of statistics is gathered for each column. You must specify COUNT integer with COLGROUP
FREQVAL. The utility ignores FREQVAL MOST/LEAST/BOTH when processing XML table spaces .
COUNT integer

Indicates the number of frequently occurring values to be collected from the specified column
group. For example, COUNT 20 means that Db2 collects 20 frequently occurring values from the
column group. When the COUNT keyword is not specified, the utility automatically determines
the count value and collects the most frequently occurring values. Specifying a value of 1000 or
more can increase the prepare time for some SQL statements. Additionally, specifying a very large
COUNT value will use a large amount of storage, which can cause storage constraints during utility
execution on partitioned objects with hundreds of partitions.
MOST

Indicates that the utility is to collect the most frequently occurring values for the specified set
of columns when COLGROUP is specified.

562 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statclgsrt.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statclgsrt.html

BOTH
Indicates that the utility is to collect the most and the least frequently occurring values for the
specified set of columns when COLGROUP is specified.

LEAST
Indicates that the utility is to collect the least frequently occurring values for the specified set
of columns when COLGROUP is specified.

HISTOGRAM
Indicates, when specified with the COLGROUP option, that histogram statistics are to be gathered
for the specified group of columns. Inline statistics ignore HISTOGRAM when processing XML table
spaces and indexes.

Histogram statistics that you collect through inline statistics are not the same as histogram statistics
that you collect through RUNSTATS. Histogram statistics that you collect with inline statistics are only
rough estimates. To obtain more exact statistics, use RUNSTATS.

NUMQUANTILES integer
Indicates how many quantiles that the utility collects. The integer value must be greater than or equal
to one. The number of quantiles that you specify must never exceed the total number of distinct
values in the column or the column group. The maximum number of quantiles is 100.

When the NUMQUANTILES keyword is omitted, NUMQUANTILES takes a default value of 100. Based
on the number of records in the table, the number of quantiles is readjusted down to an optimal
number.

KEYCARD
The KEYCARD option is deprecated in the utility control statement and no longer needs to be specified
to collect cardinality statistics on the values in the key columns of an index.

When the STATISTICS and INDEX options are specified, the utility always collects all of the distinct
values in all of the 1 to n key column combinations in an index.n is the number of columns in the
index. With the deprecation of KEYCARD, this functionality cannot be disabled.

The utility tolerates the specification of the KEYCARD option. The utility does not issue any messages
if the control statement includes or excludes the KEYCARD option when STATISTICS and INDEX are
specified.

FREQVAL
Controls the collection of frequent-value statistics.If you specify FREQVAL, it must be followed by the
NUMCOLS keyword.
NUMCOLS

Indicates the number of key columns that are to be concatenated together when collecting
frequent values from the specified index. Specifying '3' means that frequent values are to be
collected on the concatenation of the first three key columns. The default value is 1, which means
that Db2 collects frequent values on the first key column of the index.

COUNT
Indicates the number of frequent values that are to be collected. Specifying '15' means that
Db2 collects 15 frequent values from the specified key columns. If the COUNT keyword is not
specified, Db2 collects statistics for an automatically determined number of frequently occurring
values.

HISTOGRAM
Indicates that histogram statistics are requested for the specified index.
NUMCOLS

The number of key columns that are to be concatenated when collecting histogram statistics from
the specified index.

NUMQUANTILES
The integer values that follows NUMQUANTILES indicates the number quantiles are requested.
The integer value must be greater than or equal to 1.

Chapter 28. REORG TABLESPACE 563

Histogram statistics can be collected only on keys with the same order if the specified key columns for
histogram statistics are of mixed order, a DSNU633I warning message is issued.

Related information:

Histogram statistics (Db2 Performance)
DSNU633I (Db2 Messages)

REPORT
Specifies whether a set of messages is to be generated to report the collected statistics.
NO

Indicates that the set of messages is not to be sent as output to SYSPRINT.
YES

Indicates that the set of messages is to be sent as output to SYSPRINT. The generated
messages are dependent on the combination of keywords (such as TABLESPACE, INDEX, TABLE,
and COLUMN) that are specified with the RUNSTATS utility. However, these messages are not
dependent on the specification of the UPDATE option. REPORT YES always generates a report of
SPACE and ACCESSPATH statistics.

UPDATE
Indicates whether the collected statistics are to be inserted into the catalog tables. UPDATE also
allows you to select statistics that are used for access path selection or statistics that are used by
database administrators.
ALL

Indicates that all collected statistics are to be updated in the catalog.
ACCESSPATH

Indicates that only the catalog table columns that provide statistics that are used for access path
selection are to be updated.

SPACE
Indicates that only the catalog table columns that provide statistics to help database
administrators assess the status of a particular table space or index are to be updated.

NONE
Indicates that no catalog tables are to be updated with the collected statistics. This option is valid
only when REPORT YES is specified.

STATCLGMEMSRT integer
Specifies the amount of memory that the utility can use for sorting records when collecting statistics
on a single column that is defined with the COLGROUP option. Use STATCLGMEMSRT to avoid column
group sorts by an external sort program, which can negatively affect the performance of statistics
collection.

integer specifies the number of megabytes of memory space that the utility can use for an in-memory
sort. If the amount of space that is needed for the sort exceeds the integer value, the utility invokes a
sort program. If you specify 0, the utility automatically invokes a sort program.

The amount of space that is needed for the column group sort depends on the following factors:

• The number of column groups for which the utility is collecting statistics
• The length of the single-column column group
• The number of distinct values in the column (cardinality)

The value of STATCLGMEMSRT overrides the value of the STATCLGSRT subsystem parameter.

Related information:

STATISTICS COLGROUP DATA SORT STG LIMIT field (STATCLGSRT subsystem parameter) (Db2
Installation and Migration)

564 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_histogramstatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu633i.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statclgsrt.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statclgsrt.html

INVALIDATECACHE
Indicates whether statements in the dynamic statement cache are invalidated as a result of the inline
statistics collection. This option does not prevent the utility from invalidating cached statements for
other reasons.
YES

Statements in the dynamic cache are invalidated for the objects that are specified in the job
statement.

NO
Statements in the dynamic cache are not invalidated by the collection of inline statistics for the
objects that are specified in the job statement. However, cached statements might be invalidated
by the utility for reasons other than the inline statistics, such as when the utility resolves objects in
restricted states or applies pending ALTER operations.

HISTORY
Specifies that all catalog table inserts or updates to the catalog history tables are to be recorded.

The default value is the value that is specified in the STATISTICS HISTORY field on panel DSNTIP6.

ALL
Indicates that all collected statistics are to be updated in the catalog history tables.

ACCESSPATH
Indicates that only the catalog history table columns that provide statistics that are used for
access path selection are to be updated.

SPACE
Indicates that only space-related catalog statistics are to be updated in catalog history tables.

NONE
Indicates that no catalog history tables are to be updated with the collected statistics.

FORCEROLLUP
Specifies whether aggregation or rollup of statistics is to take place when RUNSTATS is executed even
if statistics have not been gathered on some partitions; for example, partitions have not had any data
loaded. Aggregate statistics are used by the optimizer to select the best access path.
YES

Indicates that forced aggregation or rollup processing is to be done, even though some partitions
might not contain data.

NO
Indicates that aggregation or rollup is to be done only if data is available for all partitions.

If data is not available for all partitions, DSNU623I message is issued if the installation value for
STATISTICS ROLLUP on panel DSNTIP6 is set to NO.

PUNCHDDN ddname
Specifies the DD statement for a data set that is to receive the LOAD utility control statements that
are generated by REORG TABLESPACE UNLOAD EXTERNAL or REORG TABLESPACE DISCARD FROM
TABLE … WHEN.

ddname is the DD name.

The default value is SYSPUNCH.

PUNCHDDN is required if the limit key of the last partition of a partitioned table space has been
reduced.

PUNCHDDN is not valid for LOB table spaces.

The PUNCHDDN keyword specifies either a DD name or a TEMPLATE name specification from a
previous TEMPLATE control statement. If utility processing detects that the specified name is both a
DD name in the current job step and a TEMPLATE name, the utility uses the DD name.

Chapter 28. REORG TABLESPACE 565

DISCARDDN ddname
Specifies the DD statement for a discard data set, which contains copies of records that meet the
DISCARD FROM TABLE … WHEN specification.

ddname is the DD name.

If you omit the DISCARDDN option, the utility saves discarded records only if a SYSDISC DD statement
is in the JCL input.

The default value is SYSDISC.

The DISCARDDN keyword specifies either a DD name or a TEMPLATE name specification from a
previous TEMPLATE control statement. If utility processing detects that the specified name is both a
DD name in the current job step and a TEMPLATE name, the utility uses the DD name.

UNLDDN ddname
Specifies the name of the unload data set.

ddname is the DD name of the unload data set.

The default value is SYSREC.

The UNLDDN keyword specifies either a DD name or a TEMPLATE name specification from a previous
TEMPLATE control statement. If utility processing detects that the specified name is both a DD name
in the current job step and a TEMPLATE name, the utility uses the DD name.

SORTDEVT device-type
Specifies the device type for temporary data sets that are to be dynamically allocated by the external
sort program.

device-type is the device type. You can specify any disk device that is acceptable to the DYNALLOC
parameter of the SORT or OPTION control statement for the sort program. Tape devices are not
supported by the sort program.

If you omit SORTDEVT and require a sort of the index keys, you must provide the DD statements that
the sort program needs for the temporary data sets.

SORTDEVT is ignored for the catalog and directory table spaces that are listed in “Reorganizing the
catalog and directory” on page 592.

SORTDEVT cannot be used for LOB table spaces.

The utility does not allow a TEMPLATE specification to dynamically allocate sort work data sets. The
SORTDEVT keyword controls dynamic allocation of these data sets.

SORTNUM integer
Specifies the number of temporary data sets that are to be dynamically allocated for all sorts that
REORG performs.

integer is the number of temporary data sets that can range from 2 to 255.

If you omit SORTDEVT, SORTNUM is ignored. If you use SORTDEVT and omit SORTNUM, no value is
passed to the sort program. The sort program uses its own SORTNUM default value.

You need at least two sort work data sets for each sort. The SORTNUM value applies to each sort
invocation in the utility. For example, a total of 24 sort work data sets would be allocated for a job, if
the following criteria is true:

• There are three indexes.
• There are no constraints limiting parallelism.
• SORTNUM is specified as 8.

Each sort work data set consumes both above the line and below the line virtual storage. Therefore, if
you specify a value for SORTNUM that is too high, the utility might decrease the degree of parallelism
due to virtual storage constraints, and possibly decrease the degree down to one, which would mean
no parallelism.

566 Db2 12 for z/OS: Utility Guide and Reference

Important: The SORTNUM keyword is ignored if the IGNSORTN subsystem parameter is set to YES.

SORTNUM is ignored for the catalog and directory table spaces listed in “Reorganizing the catalog and
directory” on page 592.

PREFORMAT
Specifies that the remaining pages are to be preformatted up to the high-allocated RBA in the
table space and index spaces that are associated with the table space or partitions that are being
reorganized. The preformatting occurs after the data is loaded and the indexes are built.

PREFORMAT can operate on an entire table space and its index spaces, or on a partition of a
partitioned table space and its corresponding partitioning index space. When AUX YES is specified
or accepted as the default, the LOB table spaces and auxiliary indexes that are associated with the
base partitions that are being reorganized are also preformatted at the end of the RELOAD phase.

PREFORMAT is ignored if you specify UNLOAD ONLY or UNLOAD EXTERNAL.

ROWFORMAT
Specifies the output row format in the affected table space or partition. This keyword has no effect on
LOB, catalog, directory, XML table spaces, and Universal table spaces that are participating in a CLONE
relationship.

Important: ROWFORMAT is deprecated in Db2 12 for z/OS, meaning that its use is discouraged.
Although this keyword remains supported, support is likely to be removed eventually. See Deprecated
function in Db2 12 (Db2 for z/OS What's New?).

BRF
Specifies that the table space or partition that is being reorganized or replaced are to be converted
to or remain in basic row format.

RRF
Specifies that the table space or partition that is being reorganized or replaced are to be converted
to or remain in reordered row format.

RBALRSN_CONVERSION
Specifies the RBA or LRSN format of the target object after the completion of the REORG utility.

Important: RBALRSN_CONVERSION is deprecated, meaning that its use is discouraged. Although this
keyword remains supported, support is likely to be removed eventually. The utility fails if BASIC is
specified, or if NONE is specified for an object in the 6-byte format.

EXTENDED
Specifies that if an object is found in basic 6-byte format, it is converted to 10-byte extended
format.

EXTENDED is the default value.

NONE
Specifies that no conversion is performed.

The utility fails if RBALRSN_CONVERSION NONE is specified on a table space that is in basic
6-byte format.

If a CLONE relationship exists, the page set conversion cannot be performed. For clone relationships,
you must drop the clone table, convert the base table to extended 10-byte format, and then re-create
the clone table.

If AUX YES is also specified, the LOB table spaces and auxiliary indexes are also converted.

Indexes that are rebuilt during REORG TABLESPACE are converted to the same RBA or LRSN format
as the indexed table space. REORG TABLESPACE at the PART level converts corresponding partitions
of partitioned indexes. Non partitioned indexes are converted if SHRLEVEL CHANGE or REFERENCE is
also specified, or if the entire table space is reorganized with SHRLEVEL NONE.

If the 6-byte RBA or LRSN limit has been reached, you might be unable to perform the first insert or
load into an XML table space that has XML versioning and that was created with DEFINE NO and basic

Chapter 28. REORG TABLESPACE 567

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_deprecated.html
https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_deprecated.html

6-byte page format. You can run REORG TABLESPACE on the DEFINE NO XML table space to convert
its definition to extended 10-byte page format. The REORG must be done on the entire table space.

DISCARD
Specifies that records that meet the specified WHEN conditions are to be discarded during REORG
TABLESPACE UNLOAD CONTINUE or UNLOAD PAUSE. If you specify DISCARDDN or a SYSDISC DD
statement in the JCL, discarded records are saved in the associated data set. Otherwise, the utility
discards records without saving them in a data set.

You can specify any SHRLEVEL option with DISCARD. However, if you specify SHRLEVEL CHANGE,
modifications that are made during the reorganization to data rows that match the discard criteria are
not permitted. In this case, REORG TABLESPACE terminates with an error.

If you specify DISCARD, rows are decompressed and edit routines are decoded. If you also specify
DISCARD to a file, rows are decoded by field procedure, and the following columns are converted to
Db2 external format:

• SMALLINT
• INTEGER
• FLOAT
• DECIMAL
• TIME
• TIMESTAMP

Otherwise, edit routines or field procedures are bypassed on both the UNLOAD and RELOAD phases
for table spaces. Validation procedures are not invoked during either phase.

Restrictions: Do not specify DISCARD if any of the following conditions are true:

• The REORG TABLESPACE statement includes the UNLOAD EXTERNAL or UNLOAD ONLY option.
• The table space to be reorganized is any of the following objects:

– A base table with XML columns
– An XML table space
– A base table with LOB columns if the records to be discarded are more than 32 KB and you want

to save them in a data set.
– A system-period temporal table space

If you specify DISCARD and the table space to be reorganized contains a table that is involved in a
referential integrity set, any affected referentially related objects are placed in CHECK-pending status.
After the REORG operation, you need to run CHECK DATA on any of these objects that were placed in
this restrictive status.

If you specify DISCARD on a table with LOB columns and the table space is a non-partitioned non-UTS
table space, the LOB data is not deleted by REORG. If AUX YES is specified, warning message
DSNU124I is returned; if AUX NO is specified or accepted as the default, no warning message
is reported. In such cases, you need to identify orphaned LOB data by running CHECK DATA and
manually delete it by using REPAIR LOCATE ROWID VERSION DELETE.

NOCHECKPEND
Specifies that when REORG discards records from a parent table in at least one referential
integrity relationship, the utility does not set CHECK-pending status on the dependent table spaces.
NOCHECKPEND applies only when REORG discards records from a parent table; otherwise, this option
is ignored. NOCHECKPEND does not remove any CHECK-pending status that was set before the
REORG operation.

Related tasks
Compressing your data (Db2 Performance)
Related reference
-CANCEL THREAD (Db2) (Db2 Commands)

568 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdataperf.html
https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_cancelthread.html

“LISTDEF” on page 199
The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.
“TEMPLATE” on page 751
The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the
data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Before running REORG TABLESPACE
Certain activities might be required before you run the REORG TABLESPACE utility, depending on your
situation.

Catalog and directory table spaces

Before you run REORG on a catalog or directory table space, you must take an image copy. For the
DSNDB06.SYSTSCPY catalog table space and the DSNDB01.DBD01 and DSNDB01.SYSDBDXA directory
table spaces, REORG scans logs to verify that an image copy is available. If the scan of the logs does not
find an image copy, Db2 requests archive logs.

Region size

The recommended minimum region size is 4096 KB. Region sizes greater than 32 MB enable increased
parallelism for index builds. Data unload and reload parallelism can also benefit from a greater region size
value.

Mapping tables

If you run REORG TABLESPACE with SHRLEVEL CHANGE, the utility uses a mapping table to store the
source and target RID for each row. REORG can implicitly create this mapping table. Alternatively, you can
create it yourself.

To specify the database where REORG creates the mapping table, use the MAPPINGDATABASE keyword.
If you do not specify a database, REORG uses the value of the REORG_MAPPING_DATABASE subsystem
parameter.

If you create the mapping table yourself, follow these guidelines:

• The table space that contains the mapping table must be segmented or partition-by-growth and cannot
be the table space to be reorganized.

To create a segmented (non-UTS) table space for the mapping table, use a CREATE TABLESPACE
statement similar to the following statement:

CREATE TABLESPACE table-space-name SEGSIZE integer

To create a partition-by-growth table space for the mapping table, use a CREATE TABLESPACE
statement similar to the following statement:

CREATE TABLESPACE table-space-name MAXPARTITIONS integer

Chapter 28. REORG TABLESPACE 569

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

• The mapping table and index can be defined with SQL statements similar to the following statements,
substituting other column names as needed:

CREATE TABLE table-name1
 (TYPE CHAR(1) NOT NULL,
 ORID CHAR(7) NOT NULL,
 NRID CHAR(11) NOT NULL,
 LRSN CHAR(10) NOT NULL)
IN database-name.table-space-name1;

CREATE UNIQUE INDEX index-name1 ON table-name1
 (ORID, TYPE, NRID, LRSN);

You must specify the NRID column as CHAR(11), even though the RIDs are 7 bytes long.

These SQL statements can be used in after Db2 12 function level 500 is activated. After Db2 12 function
level 500 or higher is activated, if you create a mapping table with different column specifications
and try to specify it in a REORG TABLESPACE statement, the utility does not use it. Instead, REORG
TABLESPACE implicitly creates a mapping table in the same database as the mapping table that you
specified.

• The size of the table space for the mapping table can be as small as one track. Use the following formula
to estimate the minimum number of bytes to allocate for the index on the mapping table:

1.1 * Number-of-rows-in-table-space * 35

• You must have DELETE, INSERT, and UPDATE authorization on the mapping table.
• To ensure that multiple REORG jobs do not attempt to use the same mapping table concurrently,

consider using the utility ID as the name of the mapping table. Because utility IDs must be unique,
this naming convention ensures that the mapping tables are not used by two REORG jobs that run
concurrently.

If you run REORG jobs concurrently, each REORG job must have a separate mapping table. The mapping
tables do not need to reside in separate table spaces. If more than one REORG job tries to access the
same mapping table at the same time, one of the REORG jobs fails.(You can run more than one REORG
SHRLEVEL CHANGE job concurrently on separate table spaces. You can also run more than one REORG
SHRLEVEL CHANGE job concurrently on different partitions of the same table space, but only if the table
space does not have any nonpartitioned secondary indexes.)

The REORG utility removes all rows from the mapping table when the utility completes.

Restart-pending status and SHRLEVEL CHANGE

If you specify SHRLEVEL CHANGE, REORG drains the write claim class near the end of REORG processing.
In a data sharing environment, if a data sharing member fails and that member has restart-pending status
for a target page set, the drain can fail. You must postpone running REORG with SHRLEVEL CHANGE
until all restart-pending statuses are removed. You can use the DISPLAY GROUP command to determine
whether a member's status is failed. You can use the DISPLAY DATABASE command with the LOCKS
option to determine if locks are held.

RECOVER-pending and REBUILD-pending status

You cannot reorganize a table space if any partition or range of partitions of the partitioned table space
is in the RECOVER-pending status. Similarly, you cannot reorganize a single table space partition if any of
the following conditions are true:

• The partition is in the RECOVER-pending status.
• The corresponding partitioning index is in the REBUILD-pending or RECOVER-pending status, and the

data is unloaded by the cluster index method.

570 Db2 12 for z/OS: Utility Guide and Reference

• The specified partition or partitions are a subset of a range of partitions that are in REORG-pending
status; you must reorganize the entire range to reset the restrictive status.

The only RECOVER-pending restrictive state is:

RECP
The table space, index space, or partition of a table space or index space is in a RECOVER-pending
status. A single logical partition in RECP does not restrict access to other logical partitions that are not
in RECP. You can reset RECP by recovering only the single logical partition.

The three REBUILD-pending restrictive states are:

RBDP
REBUILD-pending status is set on a physical or logical index partition. The individual physical or
logical partition is inaccessible and must be rebuilt by using the REBUILD INDEX utility.

PSRBD
Page set REBUILD-pending status is set for nonpartitioning indexes. The entire index space is
inaccessible and must be rebuilt by using the REBUILD utility.

RBDP*
A REBUILD-pending status that is set only on logical partitions of nonpartitioning indexes. The entire
index is inaccessible, but it is made available again when the affected partitions are rebuilt by using
the REBUILD INDEX utility.

CHECK-pending status

If a table space is in both REORG-pending and CHECK-pending status (or auxiliary CHECK-pending
status), run REORG first, and then run CHECK DATA to clear the respective states. Otherwise, if a table
space is not in REORG-pending status, you cannot reorganize a table space or range of partitions if the
table space or any partition in the range is in CHECK-pending status until the CHECK-pending status is
removed.

REORG-pending status

You must allocate a discard data set (SYSDISC) or specify the DISCARDDN option if the last partition of
the table space is in REORG-pending status.

Fallback recovery considerations

If RECOVER cannot use the latest image copy or copies as a starting point for the recovery, it attempts to
use previous copies; if that attempt fails, RECOVER restores the data from the log.

However, if you use REORG SHRLEVEL NONE LOG NO, RECOVER cannot restore data from the log past the
point at which the object was last reorganized successfully. Therefore, you must take an image copy after
running REORG with LOG NO to establish a level of fallback recovery.

Recommendation:

Immediately following an ALTER INDEX operation that modifies key values, create a new recovery point
by taking one of the following actions:

• Run REORG and specify COPYDDN and SHRLEVEL NONE.
• Take a full image copy immediately after REORG completes.

If you performed a REORG to reset REORG-pending status (REORP), you should also take an inline image
copy or run the COPY utility. Image copies that are taken prior to resetting the REORG-pending status
cannot be used for recovery to the current RBA or LRSN.

Successful REORG LOG NO processing inserts a row into SYSIBM.SYSCOPY with ICTYPE=W for each index
that was defined with COPY YES. REORG also places a reorganized index in informational COPY-pending

Chapter 28. REORG TABLESPACE 571

(ICOPY) status. You should take a full image copy of the index after the REORG job completes to create a
valid point of recovery.

Restrictions when running REORG TABLESPACE on encrypted data

If you plan to run REORG TABLESPACE on column-level encrypted data, do not use the WHEN statement
to filter the encrypted fields; REORG TABLESPACE cannot filter rows based on encrypted columns.

Restriction when using REBALANCE and duplicate partitioning key values exist

A REORG REBALANCE might distribute rows among the partitions that are being rebalanced in such a way
that one or more partitions do not have any rows. This situation occurs when many rows with duplicate
partitioning key values exist, and not enough unique values exist to enable REORG to distribute them over
all of the partitions.

Restriction for unload parallelism when using REBALANCE
If you specify REORG REBALANCE, you cannot use unload parallelism.

Restrictions for XML table spaces with XML versioning
To REORG an XML table space, with XML versioning, that is in basic 6-byte page format, and that has
tables with 8-byte time stamp columns, to extended 10-byte page format, you must REORG the entire
table space. It cannot be done at the part level.

Restriction when running REORG TABLESPACE SHRLEVEL CHANGE with an
expression-based index
If you run REORG SHRLEVEL CHANGE against a table space, and that table space includes a table that has
an index that invokes the JSON_VAL built-in function or a spatial index, the REORG operation is not allow
to run.

Restriction when physical partition numbers do not match logical partition numbers
A REORG REBALANCE might not be possible if the logical and physical partition numbers for the specified
table space do not match. This situation can be created by a series of ALTER ROTATEs and ALTER ADD
PARTs.

For example, assume that you create a table space with three partitions. The following table shows the
mapping that exists between the physical and logical partition numbers.

Table 78. Mapping of physical and logical partition numbers when a table space with three partitions is
created.

Logical partition number Physical partition number

1 1

2 2

3 3

Then, assume that you request the following series of actions:

1. ALTER ROTATE FIRST TO LAST

The new mapping of partition numbers is shown in the following table.

572 Db2 12 for z/OS: Utility Guide and Reference

Table 79. Mapping of physical and logical partition numbers after ALTER ROTATE FIRST TO LAST.

Logical partition number Physical partition number

1 2

2 3

3 1

2. ALTER ADD PART

The new mapping of partition numbers is shown in the following table.

Table 80. Mapping of physical and logical partition numbers after ALTER ADD PART.

Logical partition number Physical partition number

1 2

2 3

3 1

4 4

3. ALTER ROTATE FIRST TO LAST

The new mapping of partition numbers is shown in the following table.

Table 81. Mapping of physical and logical partition numbers after second ALTER ROTATE FIRST TO
LAST.

Logical partition number Physical partition number

1 3

2 1

3 4

4 2

Assume that you then try to execute a REORG TABLESPACE REBALANCE PART 1:2. This statement
requests a reorganization and rebalancing of physical partitions 1 and 2. Note that physical partition 1
is logical partition 2, and physical partition 2 is logical partition 4. Thus, the utility is processing logical
partitions 2 and 4. If during the course of rebalancing, the utility needs to move keys from logical partition
2 to logical partition 3, the job fails, because logical partition 3 is not within the specified physical
partition range.

Reorganizing a table space with an index that has a VARBINARY column
If you run REORG against a table space, and that table space includes a table that has an index with the
following characteristics, REORG fails:

• The index was created on a VARBINARY column or a column with a distinct type that is based on a
VARBINARY data type.

• The index column has the DESC attribute.

To fix the problem, drop the index, or alter the column data type to BINARY, and then rebuild the index

Potential result of running REORG with many striped inline copy data sets
If a REORG job runs with a large number of striped inline copy data sets, Db2 might not have enough
storage for the REORG job to complete successfully. The amount of storage that is needed varies from one

Chapter 28. REORG TABLESPACE 573

job execution to another; therefore, you might have a problem one time and not the next time. Be aware
that an ABEND878 can be the result of too many striped inline copy data sets.

Recommendation: If a large number of partitions are being reorganized with striped inline copy data sets
and the ABEND878 occurs, divide the REORG job into multiple jobs, each of which handles a subset of
the total number of partition ranges. You can also divide the REORG job in this way to avoid the abend
altogether.

Related concepts
Job DSNTEJ1 (Db2 Installation and Migration)
Related reference
“CHECK-pending status” on page 977
CHECK-pending (CHKP) restrictive status indicates that an object might be in an inconsistent state and
must be checked.
“REBUILD-pending status” on page 982
A REBUILD-pending restrictive status indicates that the affected index or index partition is broken and
must be rebuilt from the data.
“RECOVER-pending status” on page 983
RECOVER-pending (RECP) restrictive status indicates that a table space, table space partition, index
space, or index on an auxiliary table is broken and must be recovered.

Data sets that REORG TABLESPACE uses
The REORG TABLESPACE utility uses a number of data sets during its operation.

The following table describes the data sets that REORG TABLESPACE uses. The table lists the DD name
that is used to identify the data set, a description of the data set, and an indication of whether it is
required. Include statements in your JCL for each required data set, and any optional data sets that you
want to use.

Table 82. Data sets that REORG TABLESPACE uses

Data set Description Required?

RNPRINnn A data set that contains messages from the sort
program (usually SYSOUT or DUMMY). This data set
is used when distribution statistics are collected
for column groups. nn is a number from 01 to the
number of parallel subtasks.

No“1” on page 576

SYSIN Input data set that contains the utility control
statement.

Yes

SYSUT1 A temporary data set for sort input. No

SYSPRINT Output data set for messages. Yes

STPRIN01 A data set that contains messages from the sort
program (usually, SYSOUT or DUMMY).

This data set is used when statistics are collected
on at least one data-partitioned secondary index,
or when COLGROUP and FREQVAL keywords are
specified.

Yes “1” on page
576, “2” on page
576, “14” on page
576

SYSDISC Data set that contains discarded records from
REORG DISCARD. The default DD name is
SYSDISC.

No“4” on page 576

574 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_dsntej1.html

Table 82. Data sets that REORG TABLESPACE uses (continued)

Data set Description Required?

SYSPUNCH Data set that contains a LOAD statement that is
generated by REORG, which loads records that
REORG DISCARD or REORG UNLOAD EXTERNAL
wrote to the DISCARD or UNLOAD data sets. The
default DD name is SYSPUNCH.

No“5” on page 576

UTPRINT A data set that contains messages from the sort
program (usually, SYSOUT or DUMMY).

Yes

Unload data set Data set that contains the unloaded data that is
to be reloaded during the RELOAD phase. Specify
its DD or template name with the UNLDDN option
or with the RECDSN field on the DB2I Utilities
panel. The data set must be a sequential data set
that is readable by BSAM. The default DD name is
SYSREC.

The unload data set must be large enough to
contain all the unloaded records from all the tables
in the target table space.

If at least one table in the table space does not
have an index, REORG cannot use the SORTDATA
method with SHRLEVEL CHANGE. As a result, you
must unload the data in the SYSREC data set.

Yes“6” on page
576

Sequential copies From one to four output data sets that are
to contain the image copies. Specify their DD
or template names with the COPYDDN and
RECOVERYDDN options of the utility control
statement.

No“7” on page 576

FlashCopy image copies For table space or index space level copies, a VSAM
data set for the output FlashCopy image copy of
each partition or piece.

For a partition level or piece level copy, a VSAM
data set for the output FlashCopy image copy of the
partition or piece.

No“13” on page
576

Work data sets Temporary data sets for sort input and output. The
DD names have the form DATAWKnn.

No“8” on page 576

Work data sets Temporary data sets for sort input and output when
sorting keys, or for sorting data when SORTDATA
is specified but NOSYSREC is not. If index build
parallelism is used, the DD names have the form
SWnnWKmm. If index build parallelism is not used,
the DD names have the form SORTWKnn

Yes“9” on page
576

Sort work data sets Temporary data sets for sort input and output
when collecting inline statistics on at least one
data-partitioned secondary index, or when the
COLGROUP option or the COLGROUP and FREQVAL
options are specified. The DD names have the form
ST01WKnn.

No“3” on page 576,
“10” on page 576,
“11” on page 576

Chapter 28. REORG TABLESPACE 575

Table 82. Data sets that REORG TABLESPACE uses (continued)

Data set Description Required?

Sort work data sets Temporary data sets for unload parallelism. The DD
names have the form DAnnWKmm.

Yes“11” on page
576

Sort work data sets Temporary data sets for sort input and output when
collecting distribution statistics for column groups.

The DD names have the form RNmmWKnn, where
mm is the subtask number, and nn is a sequence
number for the data set allocated per task.

No“1” on page 576,
“10” on page 576,
“11” on page 576

Sort work data sets Temporary data sets for sort input and output when
collecting frequency statistics.

The DD names have the form SORTWK01.

No“10” on page
576,“11” on page
576

Print data sets Data sets for unload parallelism. The DD names
have the form DTPRINnn.

Every time you invoke REORG TABLESPACE, new
DTPRINnn data sets are dynamically allocated.
REORG TABLESPACE does not reuse DTPRINnn
data sets from previous job steps. This behavior
might cause the available JES2 job queue elements
to be consumed more quickly than expected.

Yes“11” on page
576,“12” on page
576

Note:

1. Required when collecting distribution statistics for column groups
2. STPRIN01 is required if statistics are being collected on at least one data-partitioned secondary

index, but REORG TABLESPACE dynamically allocates the STPRIN01 data set if UTPRINT is
allocated to SYSOUT.

3. Required when collecting inline statistics on at least one data-partitioned secondary index.
4. Required if you specify DISCARDDN
5. Required you specify PUNCHDDN
6. Required unless NOSYSREC or SHRLEVEL CHANGE is specified.
7. Required if a partition is in REORG-pending status or REBALANCE, COPYDDN, RECOVERYDDN,

SHRLEVEL REFERENCE, or SHRLEVEL CHANGE is specified.
8. Required if NOSYSREC or SHRLEVEL CHANGE is specified, but SORTDEVT is not specified.
9. Required if any indexes exist and SORTDEVT is not specified.

10. If the DYNALLOC parm of the SORT program is not turned on, you need to allocate the data set.
Otherwise, the sort program dynamically allocates the temporary data set.

11. If you specify the SORTDEVT keyword, the data sets are dynamically allocated. It is recommended
that you use dynamic allocation by specifying SORTDEVT in the utility statement because dynamic
allocation reduces the maintenance required of the utility job JCL.

12. If UTPRINT is allocated to SYSOUT, the data sets are dynamically allocated.
13. Required if you specify either FLASHCOPY YES or FLASHCOPY CONSISTENT.
14. Required when the COLGROUP and FREQVAL options are specified.

The following objects are named in the utility control statement and do not require DD statements in the
JCL:

Table space
Object that is to be reorganized.

576 Db2 12 for z/OS: Utility Guide and Reference

Calculating the size of the unload data set

The required size for the unload data set varies depending on the options that you use for REORG.

1. If you use REORG with UNLOAD PAUSE or CONTINUE and you specify KEEPDICTIONARY (assuming
that a compression dictionary already exists), the size of the unload data set, in bytes, is the VSAM
high-allocated RBA for the table space. You can obtain the high-allocated RBA from the associated
VSAM catalog.

For SHRLEVEL CHANGE, also add the result of the following calculation (in bytes) to the VSAM high-
used RBA:

number of records * 11

2. If you use REORG with UNLOAD ONLY, UNLOAD PAUSE, or CONTINUE and you do not specify
KEEPDICTIONARY, you can calculate the size of the unload data set, in bytes, by using the following
formula:

maximum row length * number of rows

The maximum row length is the row length, including the 6-byte record prefix, plus the length of
the longest clustering key. If multiple tables exist in the table space, use the following formula to
determine the maximum row length:

Sum over all tables ((row length + (2 * number of VARBIN
 columns)) * number of rows)

For SHRLEVEL CHANGE, also add the result of the following formula to the preceding result:

(23 * ((NEARINDREF + FARINDREF) * 1.1))

In the preceding formula:
NEARINDREF

Is the value that is obtained from the NEARINDREF column of the SYSIBM.SYSTABLEPART
catalog table. The accuracy of the data set size calculation depends on recent information in the
SYSTABLEPART catalog table.

FARINDREF
Is the value that is obtained from the FARINDREF column of the SYSIBM.SYSTABLEPART catalog
table.

3. If you have variable-length fields, the calculation in step “2” on page 577 might result in excessive
space. Use the average uncompressed row length, multiplied by the number of rows.

4. If you use REORG with UNLOAD PAUSE or CONTINUE with the DISCARD option, and the table has
variable length fields, use the maximum row length in the calculation. The DISCARD option without the
NOPAD option pads the variable length fields.

For certain table spaces in the catalog and directory, the unload data set for the table spaces have a
different format. The calculation for the size of this data set is as follows:

data set size in bytes = (28 + longrow) * numrows

In the preceding formula:

longrow
Is the length of the longest row in the table space.

numrows
Is the number of rows in the data set.

The length of the row is calculated as follows:

Sum of column lengths + 4 bytes for each link

Chapter 28. REORG TABLESPACE 577

The length of the column is calculated as follows:

Maximum length of the column + 1 (if nullable) + 2 (if varying length)

Calculating the size of the sort work data sets

Using two or three large SORTWKnn data sets is preferable to using several small ones. If adequate space
is not available, you cannot run REORG.

Sort work data sets cannot span volumes. Smaller volumes require more sort work data sets to sort the
same amount of data; therefore, large volume sizes can reduce the number of sort work data sets that are
needed.

When you allocate sort work data sets on disk, allocate at least 1.2 times the amount of space that is used
by the data that is to be sorted.

Allocating twice the space that is used by the unload data sets is usually adequate for the sort work
data sets. For compressed data, if the data needs to be uncompressed for processing, allocate additional
sort space. Use the compression ratio of the existing data to calculate the additional sort space that is
required. Some examples of when the compressed data needs to be uncompressed include, but are not
limited to:

• UNLOAD PAUSE without KEEPDICTIONARY
• UNLOAD CONTINUE without KEEPDICTIONARY
• Discard processing
• After schema changes, such as ALTER ADD COLUMN
• When AUX YES processing is in effect

Tape devices are not supported for sort work data sets.

Specifying a destination for sort program messages

The REORG utility job step must contain a UTPRINT DD statement that defines a destination for messages
that are issued by the sort program during the SORT phase of REORG. DB2I, the %DSNU CLIST command,
and the DSNUPROC procedure use the following default DD statement:

//UTPRINT DD SYSOUT=A

Calculating the size of the statistics sort work data sets:
To calculate the approximate size (in bytes) of the ST01WKnn data set, use the following formula:

2 ×(maximum record length × numcols × (count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length
Maximum record length of the SYSCOLDISTSTATS record that is processed when collecting frequency
statistics (You can obtain this value from the RECLENGTH column in SYSTABLES.)

numcols
Number of key columns to concatenate when you collect frequent values from the specified index.

count
Number of frequent values that Db2 is to collect.

Related concepts
“Reorganizing the catalog and directory” on page 592

578 Db2 12 for z/OS: Utility Guide and Reference

You can run REORG TABLESPACE on the table spaces in the catalog database (DSNDB06) and on the
SCT02, SPT01, DBD01, SYSLGRNX, SYSDBDXA, SYSSPUXA, and SYSSPUXB table spaces in the directory
database (DSNDB01).
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Shadow data sets for REORG TABLESPACE
When you execute the REORG utility with SHRLEVEL REFERENCE or SHRLEVEL CHANGE, the utility uses
shadow data sets.

For user-managed data sets, you must preallocate the shadow data sets before you execute REORG
with SHRLEVEL REFERENCE or SHRLEVEL CHANGE. If a table space, partition, or index resides in Db2-
managed data sets and shadow data sets do not already exist when you execute REORG, Db2 creates the
shadow data sets. At the end of REORG processing, the Db2-managed shadow data sets are deleted.

Shadow data set names
Each shadow data set must have the following name:

catname.DSNDBx.dbname.psname.y000z.Lnnn

In the preceding name, the variables have the following meanings:

variable
meaning

catname
The VSAM catalog name or alias

x
C or D

dbname
Database name

psname
Table space name or index name

y
I or J

z
1 or 2

Lnnn
Partition identifier. Use one of the following values:

• A001 through A999 for partitions 1 through 999
• B000 through B999 for partitions 1000 through 1999
• C000 through C999 for partitions 2000 through 2999
• D000 through D999 for partitions 3000 through 3999
• E000 through E996 for partitions 4000 through 4096

To determine the names of existing data sets, execute one of the following queries against the
SYSTABLEPART or SYSINDEXPART catalog tables:

SELECT DBNAME, TSNAME, IPREFIX
 FROM SYSIBM.SYSTABLEPART

Chapter 28. REORG TABLESPACE 579

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

 WHERE DBNAME = 'dbname'
 AND TSNAME = 'psname';

SELECT DBNAME, IXNAME, IPREFIX
 FROM SYSIBM.SYSINDEXES X, SYSIBM.SYSINDEXPART Y
 WHERE X.NAME = Y.IXNAME
 AND X.CREATOR = Y.IXCREATOR
 AND X.DBNAME = 'dbname'
 AND X.INDEXSPACE = 'psname';

For a partitioned table space, Db2 returns rows from which you select the row for the partitions that you
want to reorganize.

For example, assume that you have a ten-partition table space and you want to determine a naming
convention for the data set in order to successfully execute the REORG utility with the SHRLEVEL CHANGE
PART 2:6 options. The following queries of the Db2 catalog tables SYSTABLEPART and SYSINDEXPART
provide the required information:

SELECT DBNAME, TSNAME, PARTITION, IPREFIX FROM SYSIBM.SYSTABLEPART
 WHERE DBNAME = 'DBDV0701' AND TSNAME = 'TPDV0701'
 ORDER BY PARTITION;
SELECT IXNAME, PARTITION, IPREFIX FROM SYSIBM.SYSINDEXPART
 WHERE IXNAME = 'IXDV0701
 ORDER BY PARTITION;

The preceding queries produce the information that is shown in the following table.

The following table shows the results from the first query.

Table 83. Query results from the first preceding query

DBNAME TSNAME PARTITION IPREFIX

DBDV0701 TPDV0701 1 I

DBDV0701 TPDV0701 4 I

DBDV0701 TPDV0701 3 J

DBDV0701 TPDV0701 2 I

DBDV0701 TPDV0701 5 J

DBDV0701 TPDV0701 6 J

DBDV0701 TPDV0701 7 I

DBDV0701 TPDV0701 8 I

DBDV0701 TPDV0701 9 I

DBDV0701 TPDV0701 10 I

The following table shows the results from the second query.

Table 84. Query results from the second preceding query

IXNAME PARTITION IPREFIX

IXDV0701 10 I

IXDV0701 9 I

580 Db2 12 for z/OS: Utility Guide and Reference

Table 84. Query results from the second preceding query (continued)

IXNAME PARTITION IPREFIX

IXDV0701 8 I

IXDV0701 7 I

IXDV0701 6 J

IXDV0701 5 J

IXDV0701 4 I

IXDV0701 3 J

IXDV0701 2 I

IXDV0701 1 I

To execute REORG SHRLEVEL CHANGE PART 2:6, you need to preallocate the following shadow objects.
The naming convention for these objects use information from the query results that are shown in the
previous tables.

vcatnam.DSNDBC.DBDV0701.TPDV0701.J0001.A002
vcatnam.DSNDBC.DBDV0701.TPDV0701.I0001.A003
vcatnam.DSNDBC.DBDV0701.TPDV0701.J0001.A004
vcatnam.DSNDBC.DBDV0701.TPDV0701.I0001.A005
vcatnam.DSNDBC.DBDV0701.TPDV0701.I0001.A006
vcatnam.DSNDBC.DBDV0701.IXDV0701.J0001.A002
vcatnam.DSNDBC.DBDV0701.IXDV0701.I0001.A003
vcatnam.DSNDBC.DBDV0701.IXDV0701.J0001.A004
vcatnam.DSNDBC.DBDV0701.IXDV0701.I0001.A005
vcatnam.DSNDBC.DBDV0701.IXDV0701.I0001.A006

Defining shadow data sets
Consider the following actions when you preallocate the data sets:

• Allocate the shadow data sets according to the rules for user-managed data sets.
• Define the shadow data sets as LINEAR.
• Use SHAREOPTIONS(3,3).
• Define the shadow data sets as EA-enabled if the original table space or index space is EA-enabled.
• Allocate the shadow data sets on the volumes that are defined in the storage group for the original table

space or index space.

If you specify a secondary space quantity, Db2 does not use it. Instead, Db2 uses the SECQTY value for
the table space or index space.

Recommendation: Use the MODEL option, which causes the new shadow data set to be created like the
original data set. This method is shown in the following example:

DEFINE CLUSTER +
 (NAME('catname.DSNDBC.dbname.psname.x0001.L001') +
 MODEL('catname.DSNDBC.dbname.psname.y0001.L001')) +
 DATA +
 (NAME('catname.DSNDBD.dbname.psname.x0001.L001') +
 MODEL('catname.DSNDBD.dbname.psname.y0001.L001'))

Creating shadow data sets for indexes:
When you preallocate data sets for indexes, create the shadow data sets as follows:

• Create shadow data sets for the partition of the table space and the corresponding partition in each
partitioning index and data-partitioned secondary index.

Chapter 28. REORG TABLESPACE 581

• Create a shadow data set for each nonpartitioned secondary index.

Use the same naming scheme for these index data sets as you use for other data sets that are associated
with the base index, except use J0001 instead of I0001. For more information about this naming scheme,
see the information about the shadow data set naming convention at the beginning of this topic.

Estimating the size of shadow data sets
If you have not changed the value of FREEPAGE or PCTFREE, the amount of required space for a shadow
data set is comparable to the amount of required space for the original data set.

Preallocating shadow data sets for REORG PART
By creating the shadow data sets before executing REORG PART, even for Db2-managed data sets,
you prevent possible over-allocation of the disk space during REORG processing. When reorganizing a
partition, you must create the shadow data sets for the partition of the table space and for the partition
of the partitioning index. In addition, before executing REORG PART with SHRLEVEL REFERENCE or
SHRLEVEL CHANGE on partition mmm of a partitioned table space, you must create a shadow data set
for each nonpartitioning index that resides in user-defined data sets. Each shadow data set is to be used
for a copy of the index and must be as large as the entire original nonpartitioned index. The name for this
shadow data set has the form catname.DSNDBx.dbname.psname.y0mmm.Annn.

Shadow data sets when materializing a MOVE TABLE operation
FL 508 If REORG is materializing a pending MOVE TABLE operation (ALTER TABLESPACE with the MOVE
TABLE clause), the utility allocates shadow data sets for all of the following objects:

• The source nonpartitioned table space
• The target partition-by-growth table space
• Indexes on all tables in the reorganized table spaces, regardless of whether the table is being moved

Shadow data sets are not allocated for any LOB or XML table spaces.

Concurrency and compatibility for REORG TABLESPACE
The REORG TABLESPACE utility has certain concurrency and compatibility characteristics associated with
it.

Db2 treats individual data and index partitions, and individual logical partitions of nonpartitioning indexes
as distinct target objects. Utilities that operate on different partitions of the same table space or
index space are compatible. However, REORG SHRLEVEL CHANGE or REFERENCE on a partition or
range of partitions rebuild entire nonpartitioned indexes; therefore, two REORG SHRLEVEL CHANGE or
REFERENCE PART jobs on different partitions of the same table space are not compatible.

Restriction: You cannot run concurrent REORG TABLESPACE SHRLEVEL CHANGE PART integer on the
same table space. Instead of submitting multiple jobs, you can merge the jobs into one job and specify
a range using REORG TABLESPACE SHRLEVEL CHANGE PART integer1:integer2, or specify REORG
TABLESPACE SHRLEVEL CHANGE SCOPE PENDING if multiple partitions are in a REORG-pending state.

This information includes a series of tables that show which claim classes REORG drains and any
restrictive state that the utility sets on the target object.

For nonpartitioned indexes, if you specify SHRLEVEL NONE, REORG PART:

• Drains only the logical partition (and the repeatable read class for the entire index)
• Does not set the page set REBUILD-pending status (PSRCP)
• Does not use PCTFREE or FREEPAGE attributes when inserting keys

582 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html

Claim classes that REORG TABLESPACE drains
For SHRLEVEL NONE, the following table lists any claims or drains that the utility acquires and any
restrictive states that are set on the target object. For each column, the table indicates the claim or
drain that is acquired and the restrictive state that is set in the corresponding phase. UNLOAD CONTINUE
and UNLOAD PAUSE, unlike UNLOAD ONLY, include the RELOAD phase and thus include the drains and
restrictive states of that phase.

Table 85. Claim classes of REORG TABLESPACE SHRLEVEL NONE operations

Target
UNLOAD phase of
REORG

RELOAD phase
of REORG if
UNLOAD CONTINUE
or PAUSE

UNLOAD phase of
REORG PART

RELOAD phase of
REORG PART if
UNLOAD CONTINUE
or PAUSE

Table space,
partition, or a range
of partitions of a
table space

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Partitioning index,
data-partitioned
secondary index, or
partition of either
type of index1

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Nonpartitioned
index2

DW/UTRO DA/UTUT None DR

Logical partition
of nonpartitioning
index3

None None DW/UTRO DA/UTUT

Legend:

• DA: Drain all claim classes, no concurrent SQL access.
• DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers.
• DW: Drain the write claim class, concurrent access for SQL readers.
• UTUT: Utility restrictive state, exclusive control.
• UTRO: Utility restrictive state, read-only access allowed.
• None: Any claim, drain, or restrictive state for this object does not change in this phase.

Notes:

1. Includes document ID indexes and node ID indexes over partitioned XML table spaces.
2. Includes document ID indexes and node ID indexes over nonpartitioned XML table spaces and XML indexes.
3. Includes logical partitions of an XML index over partitioned XML table spaces.

For SHRLEVEL REFERENCE, the following table lists any claims or drains that the utility acquires and any
restrictive states that are set on the target object. For each column, the table indicates the claim or drain
that is acquired and the restrictive state that is set in the corresponding phase.

Chapter 28. REORG TABLESPACE 583

Table 86. Claim classes of REORG TABLESPACE SHRLEVEL REFERENCE operations

Target
UNLOAD phase of
REORG

SWITCH phase of
REORG

UNLOAD phase of
REORG PART

SWITCH phase of
REORG PART

Table space or
partition of table
space

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Partitioning index,
data-partitioned
secondary index, or
partition of either1

DW/UTRO DA/UTUT DW/UTRO DA/UTUT

Nonpartitioned
secondary index2

DW/UTRO DA/UTUT CR/UTRW DA/UTUT

Logical partition
of nonpartitioning
index3

None None DW/UTRO DA/UTUT

Legend:

• CR: Claim read, concurrent access for SQL writers and readers
• DA: Drain all claim classes, no concurrent SQL access.
• DW: Drain the write claim class, concurrent access for SQL readers.
• UTUT: Utility restrictive state, exclusive control.
• UTRO: Utility restrictive state, read-only access allowed.
• UTRW: Utility restrictive state, read-write access allowed.
• None: Any claim, drain, or restrictive state for this object does not change in this phase.

Notes:

1. Includes document ID indexes and node ID indexes over partitioned XML table spaces.
2. Includes document ID indexes and node ID indexes over nonpartitioned XML table spaces and XML indexes.
3. Includes logical partitions of an XML index over partitioned XML table spaces.

For REORG with SHRLEVEL CHANGE, the following table lists any claims or drains that the utility acquires
and any restrictive states that are set on the target object.

Table 87. Claim classes of REORG TABLESPACE SHRLEVEL CHANGE operations

Target UNLOAD phase
Last iteration of LOG
phase SWITCH phase

Table space 2 CR/UTRW DW/UTRO or DA/UTUT1 DA/UTUT

Index CR/UTRW DW/UTRO or DA/UTUT1 DA/UTUT

Partition of table space 2 CR/UTRW DW/UTRO or DA/UTUT1 DA/UTUT

Partition of partitioned
index

CR/UTRW DW/UTRO or DA/UTUT1 DA/UTUT

Non-partitioned index CR/UTRW DW/UTRO or DA/UTUT1 DA/UTUT

584 Db2 12 for z/OS: Utility Guide and Reference

Table 87. Claim classes of REORG TABLESPACE SHRLEVEL CHANGE operations (continued)

Target UNLOAD phase
Last iteration of LOG
phase SWITCH phase

Legend:

• CR: Claim the read claim class.
• DA: Drain all claim classes, no concurrent SQL access.
• DDR: Dedrain the read claim class, no concurrent access for SQL repeatable readers.
• DR: Drain the repeatable read class, no concurrent access for SQL repeatable readers.
• DW: Drain the write claim class, concurrent access for SQL readers.
• UTUT: Utility restrictive state, exclusive control.
• UTRO: Utility restrictive state, read-only access allowed.
• UTRW: Utility restrictive state, read-write access allowed.
• None: Any claim, drain, or restrictive state for this object does not change in this phase.

Notes:

1. DA/UTUT applies if you specify DRAIN ALL.
2. REORG TABLESPACE SHRLEVEL CHANGE needs to enable full logging on the target page sets in the

UTILINIT phase before any records are unloaded for proper log apply processing. This process requires
quiescing all existing claimers on the target table space or partition objects so concurrent DML recognizes
the full logging attribute. This process does not block new claimers from running on the target objects. The
quiesce honors the default or specified DRAIN_WAIT duration. If REORG is unable to quiesce all existing
claimers due to non-committing claimers, the utility considers this condition a drain failure and either fails
or performs retry processing as specified by the RETRY parameter (or its default value).

Compatibility of REORG TABLESPACE with other utilities
The following table shows which utilities can run concurrently with REORG on the same target object.
The target object can be a table space, an index space, or a partition of a table space or index space. If
compatibility depends on particular options of a utility, that information is also shown.

Table 88. Compatibility of REORG TABLESPACE with other utilities

Action

REORG SHRLEVEL
NONE UNLOAD
CONTINUE or PAUSE,
REORG SHRLEVEL
REFERENCE, or
REORG SHRLEVEL
CHANGE

REORG SHRLEVEL
NONE UNLOAD ONLY
without clustering
index

REORG SHRLEVEL
NONE UNLOAD ONLY
with clustering index

CATMAINT No No No

CHECK DATA No No No

CHECK INDEX No Yes Yes

CHECK LOB No No No

COPY INDEXSPACE No Yes Yes

COPY TABLESPACE No Yes Yes

COPYTOCOPY Yes Yes Yes

DIAGNOSE Yes Yes Yes

Chapter 28. REORG TABLESPACE 585

Table 88. Compatibility of REORG TABLESPACE with other utilities (continued)

Action

REORG SHRLEVEL
NONE UNLOAD
CONTINUE or PAUSE,
REORG SHRLEVEL
REFERENCE, or
REORG SHRLEVEL
CHANGE

REORG SHRLEVEL
NONE UNLOAD ONLY
without clustering
index

REORG SHRLEVEL
NONE UNLOAD ONLY
with clustering index

LOAD No1 No No

MERGECOPY Yes Yes Yes

MODIFY RECOVERY Yes Yes Yes

MODIFY STATISTICS Yes Yes Yes

QUIESCE No Yes Yes

REBUILD INDEX No Yes No

RECOVER INDEX No Yes No

RECOVER INDEXSPACE No No No

RECOVER TABLESPACE No No No

REORG INDEX No Yes No

REORG TABLESPACE SHRLEVEL
NONE UNLOAD CONTINUE
or PAUSE, REORG SHRLEVEL
REFERENCE, or REORG SHRLEVEL
CHANGE

No No No

REORG TABLESPACE SHRLEVEL
NONE UNLOAD ONLY or EXTERNAL

No Yes Yes

REPAIR DUMP or VERIFY No Yes Yes

REPAIR LOCATE KEY or RID DELETE
or REPLACE

No No No

REPAIR LOCATE INDEX PAGE
REPLACE

No Yes No

REPAIR LOCATE TABLESPACE PAGE
REPLACE

No No No

REPORT Yes Yes Yes

RUNSTATS No Yes Yes

STOSPACE No Yes Yes

UNLOAD No Yes Yes

Notes:

1. REORG SHRLEVEL CHANGE is compatible with LOAD RESUME YES SHRLEVEL CHANGE. However,
REORG still requires exclusive control of the target objects in the last iteration in the LOG phase and
in the SWITCH phase. Because LOAD RESUME YES SHRLEVEL CHANGE holds a write claim against the
target objects for the entire duration of the utility, REORG cannot break in to complete processing until
the concurrent LOAD utility completes.

The following table shows which Db2 operations can be affected when reorganizing catalog table spaces.

586 Db2 12 for z/OS: Utility Guide and Reference

Table 89. Db2 operations that are affected by reorganizing catalog table spaces

Catalog table space Actions that might not run concurrently

Any table space except SYSTSCPY, SYSTSCHX,
SYSTSCKD, SYSTSSRG, and SYSTSCKS

CREATE, ALTER, and DROP statements

SYSTSCPY“1” on page 587, SYSTSFAU, SYSTSCOL,
SYSTSTSP, SYSTSTPT, SYSTSTAB, SYSTSIXS,
SYSTSIXT, SYSTSIXR, SYSTSIPT, SYSTSREL,
SYSTSFOR, SYSTSSYN, SYSTSFLD, SYSTSTAU,
SYSTSDBA, SYSTSDBU, SYSTSKEY, SYSTSDBA,
SYSTSDBU, SYSSTATS, SYSUSER, SYSHIST

Utilities

SYSTSFAU, SYSTSCOL, SYSTSTSP, SYSTSTPT,
SYSTSTAB, SYSTSIXS, SYSTSIXT, SYSTSIXR,
SYSTSIPT, SYSTSREL, SYSTSFOR, SYSTSSYN,
SYSTSFLD, SYSTSTAU, SYSTSDBA, SYSTSDBU,
SYSTSKEY, SYSTSDBA, SYSTSDBU, SYSGPAUT,
SYSTSPKL, SYSTSPLY, SYSTSPKG, SYSTSPKS,
SYSTSPKX, SYSTSPVR, SYSTSPKY, SYSTSPKD,
SYSTSPKA, SYSTSPLN, SYSTSPLA, SYSTSDBR,
SYSTSPLD, SYSTSSTM, SYSUSER

GRANT and REVOKE statements

SYSTSFAU, SYSTSCOL, SYSTSTSP, SYSTSTPT,
SYSTSTAB, SYSTSIXS, SYSTSIXT, SYSTSIXR,
SYSTSIPT, SYSTSREL, SYSTSFOR, SYSTSSYN,
SYSTSFLD, SYSTSTAU, SYSTSDBA, SYSTSDBU,
SYSTSKEY, SYSTSDBA, SYSTSDBU, SYSGPAUT,
SYSTSPKL, SYSTSPLY, SYSTSPKG, SYSTSPKS,
SYSTSPKX, SYSTSPVR, SYSTSPKY, SYSTSPKD,
SYSTSPKA, SYSTSPLN, SYSTSPLA, SYSTSDBR,
SYSTSPLD, SYSTSSTM, SYSSTATS, SYSUSER,
SYSTSVEW, SYSTSVWT, SYSTSVTR, SYSTSVWD

BIND and FREE commands

Notes:

1. Most utilities that register their execution in SYSTSCPY can run concurrently with REORG SHRLEVEL
CHANGE of SYSTSCPY.

Determining whether an object requires reorganization
You must reorganize an object if it is in the REORG-pending (REORP) restrictive status. Also, consider
reorganizing an object if it is in an advisory REORG-pending status (AREO* or AREOR) or if analysis shows
that reorganization might improve performance. Use the REORG INDEX or REORG TABLESPACE utility to
reorganize the object.

About this task
Recommendation: Run the RUNSTATS utility if the statistics are not current. If the object should
also be reorganized, run REORG with STATISTICS and take inline copies. If you run REORG PART and
nonpartitioning indexes exist, subsequently run RUNSTATS for each nonpartitioning index.

Procedure
To determine whether an object requires reorganization, use any of the following approaches:
• Reorganize table spaces or partitions that are in REORG-pending status. Use the DISPLAY DATABASE

RESTRICT command to display those table spaces and partitions that require reorganization.

Chapter 28. REORG TABLESPACE 587

• Run the REORG TABLESPACE utility and specify the OFFPOSLIMIT and INDREFLIMIT catalog query
options with the REPORTONLY option.
REORG produces a report with one of the following return codes, but the object is not reorganized.
1

No limit met; no reorganization is performed or recommended.
2

A reorganization is performed or recommended.
• Use the SYSTABLEPART and SYSINDEXPART catalog tables to find which table spaces and indexes

qualify for reorganization.
The information in these catalog tables can also be used to determine when the Db2 catalog table
spaces require reorganization.

Information from the SYSTABLEPART catalog table can also indicate how well disk space is being used.
If you want to find the number of varying-length rows that were relocated to other pages because of an
update, run RUNSTATS, and then issue the following statement:

SELECT CARD, NEARINDREF, FARINDREF
 FROM SYSIBM.SYSTABLEPART
 WHERE DBNAME = 'XXX'
 AND TSNAME = 'YYY';

A large number (relative to previous values that you received) for FARINDREF indicates that I/O
activity on the table space is high. If you find that this number increases over a time, you probably
need to reorganize the table space to improve performance. You probably also need to increase
PCTFREE or FREEPAGE for the table space with the ALTER TABLESPACE statement.

The following statement returns the percentage of unused space in nonsegmented table space YYY.
In nonsegmented table spaces, the space that is used by dropped tables is not reclaimed until you
reorganize the table space.

SELECT PERCDROP
 FROM SYSIBM.SYSTABLEPART
 WHERE DBNAME = 'XXX'
 AND TSNAME = 'YYY';

Issue the following statement to determine whether the rows of a table are stored in the same order as
the entries of its clustering index:

SELECT NEAROFFPOSF, FAROFFPOSF
 FROM SYSIBM.SYSINDEXPART
 WHERE IXCREATOR = 'index_creator_name'
 AND IXNAME = 'index_name';

Several indicators are available to signal a time for reorganizing table spaces. A large value for
FAROFFPOSF might indicate that clustering is deteriorating. In this case, reorganize the table space to
improve query performance.

A large value for NEAROFFPOSF might indicate also that reorganization might improve performance.
However, in general NEAROFFPOSF is not as critical a factor as FAROFFPOSF.

What to do next
For any table, the REORG utility repositions rows into the sequence of the key of the clustering index that
is defined on that table.

588 Db2 12 for z/OS: Utility Guide and Reference

For nonclustering indexes, the statistical information that is recorded by RUNSTATS in SYSINDEXES
and SYSINDEXPART might be even worse after the clustering index is used to reorganize the data.
This situation applies only to the CLUSTERING and CLUSTERED columns in SYSINDEXES and to the
NEAROFFPOS and FAROFFPOS columns in SYSINDEXPART.

Related tasks
Maintaining data organization and statistics (Db2 Performance)
Related reference
“RUNSTATS” on page 699
The RUNSTATS online utility gathers summary information about the characteristics of data in table
spaces, indexes, and partitions. Db2 records these statistics in the Db2 catalog and uses them to select
access paths to data during the bind process.
SYSINDEXES catalog table (Db2 SQL)
SYSINDEXPART catalog table (Db2 SQL)
“REORG-pending status” on page 985
REORG-pending status indicates that an object either must or should be reorganized.
Related information
SYSTABLEPART catalog table (Db2 SQL)

Access with REORG TABLESPACE SHRLEVEL
You can specify the level of access that you have to your data by using the SHRLEVEL option.

For reorganizing a table space, or a partition of a table space, the SHRLEVEL option lets you choose the
level of access that you have to your data during reorganization.

• REORG with SHRLEVEL NONE, the default, reloads the reorganized data into the original area that
is being reorganized. Applications have read-only access during unloading and no access during
reloading. For data-partitioned secondary indexes, the option rebuilds the index parts during the BUILD
phase. (Rebuilding these indexes does not create contention between parallel REORG PART jobs.) For
nonpartitioned secondary indexes, the option corrects the indexes.

• REORG with SHRLEVEL REFERENCE reloads the reorganized data into a new (shadow) copy of the
area that is being reorganized. Near the end of reorganization, Db2 switches the future access of the
application from the original data to the shadow copy. For SHRLEVEL REFERENCE, applications have
read-only access during unloading and reloading, and a brief period of no access during switching.

• REORG with SHRLEVEL CHANGE reloads the reorganized data into a shadow copy of the area that is
being reorganized. For REORG TABLESPACE SHRLEVEL CHANGE, a mapping table correlates RIDs in
the original copy of the table space or partition with RIDs in the shadow copy. Applications can read
from and write to the original area, and Db2 records the writing in the log. Db2 then reads the log and
applies it to the shadow copy to bring the shadow copy up to date. This step executes iteratively, with
each iteration processing a sequence of log records. Near the end of reorganization, Db2 switches the
future access of the application from the original data to the shadow copy. Applications have read-write
access during unloading and reloading, a brief period of read-only access during the last iteration of log
processing, and a brief period of no access during switching.

• REORG TABLESPACE SHRLEVEL CHANGE and COPY SHRLEVEL CHANGE are compatible and can run
concurrently except during the period when exclusive control is needed to drain claimers of a target
table space.

Restriction:

– COPY with the FLASHCOPY CONSISTENT option is not compatible with REORG.
– If REORG has drained the claimers of a table space or table space partition and a COPY utility

is submitted to access the same object, the COPY utility terminates with a message that it is not
compatible.

– If COPY and REORG are accessing the same table space or table space partitions, REORG cannot
drain claimers until COPY completes. The REORG DRAIN options determine the actions taken.

Chapter 28. REORG TABLESPACE 589

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_maintainstatsdataorg.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsysindexestable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsysindexparttable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsystableparttable.html

– If COPY and REORG are accessing the same table space or table space partitions and COPY abends,
restart of the COPY is not allowed if REORG completes.

• REORG TABLESPACE with SHRLEVEL REFERENCE or SHRLEVEL CHANGE materializes pending definition
changes for partitions, table spaces and indexes if pending alterations are involved. Advisory-REORG
pending status (AREOR) is reset for the partitions, table spaces and indexes. REORG TABLESPACE
with SHRLEVEL REFERENCE or SHRLEVEL CHANGE at the partition level does not materialize pending
definition changes at the table space level. REORG TABLESPACE with SHRLEVEL REFERENCE or
SHRLEVEL CHANGE at the partition level on the affected partitions materializes pending definition
changes at the partition level.

REORG TABLESPACE with SHRLEVEL NONE proceeds without materializing pending definition changes
if there were any on the object being reorganized.

When pending definition changes are materialized during REORG TABLESPACE with SHRLEVEL
REFERENCE or SHRLEVEL CHANGE, statistics for both table space and associated indexes are collected
and updated in the Db2 catalog.

• REORG TABLESPACE with SHRLEVEL REFERENCE or SHRLEVEL CHANGE drops empty partitions from a
partition-by-growth table space in either of the following cases:

– The REORG_DROP_PBG_PARTS subsystem parameter is set to ENABLE, and the DROP_PART NO
keyword is not specified on the REORG TABLESPACE statement.

– The DROP_PART YES keyword is specified on the REORG TABLESPACE statement.

In either of the preceding cases, during the UTILTERM phase, REORG cancels all claimers in order to
drop the empty partitions, regardless of the value specified for the FORCE keyword.

• REORG TABLESPACE with the SHRLEVEL REFERENCE and REBALANCE options does not materialize
pending definition changes for conversion of a partitioned table space to partition-by-range table space.

• REORG TABLESPACE with SHRLEVEL REFERENCE or SHRLEVEL CHANGE and the FASTSWITCH NO
option does not materialize pending definition changes.

• When REORG TABLESPACE with SHRLEVEL REFERENCE or SHRLEVEL CHANGE is run with the AUX
YES option on an entire base table space of one of the following types, the pending changes that are
associated with the base table space are materialized, but the pending changes that are associated with
the LOB table spaces are not materialized.

– Simple table space
– Segmented (non-UTS) table space
– partition-by-range table space
– partition-by-growth table space

• When REORG TABLESPACE with SHRLEVEL REFERENCE or SHRLEVEL CHANGE is run with the AUX YES
option on a subset of partitions of a partitioned table base table space, neither the pending changes
that are associated with the base table space nor the pending changes that are associated with the LOB
table spaces are materialized

• If large amounts of data are deleted from a partition-by-growth table space, including XML table spaces,
run the REORG TABLESPACE utility with SHRLEVEL REFERENCE or SHRLEVEL CHANGE on the entire
table space to reclaim physical space from the partition-by-growth table space.

• After RECOVER is run to recover a table space to a point in time before the materialization of pending
definition changes, the entire table space or affected partitions are placed in REORG-pending (REORP)
status. REORG TABLESPACE with SHRLEVEL REFERENCE must be run on the entire table space
or affected partitions to remove REORG-pending status and to complete the point-in-time recovery
process.

Related information:

REORG DROP PBG PARTS field (REORG_DROP_PBG_PARTS subsystem parameter) (Db2 Installation
and Migration)

590 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_reorgdroppbgparts.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_reorgdroppbgparts.html

Log processing with SHRLEVEL REFERENCE PART for nonpartitioned indexes or
SHRLEVEL CHANGE:
When you specify SHRLEVEL REFERENCE PART for nonpartitioned indexes or SHRLEVEL CHANGE, Db2
processes the log to update the shadow copy. This step executes iteratively. The first iteration processes
the log records that accumulated during the previous iteration. The iterations continue until one of these
conditions is met:

• Db2 estimates that the time to perform the log processing in the next iteration will be less than or equal
to the time that is specified for MAXRO. If this condition is met, the next iteration is the last iteration.

• Db2 estimates that the SWITCH phase will not start by the deadline that is specified for DEADLINE. If
this condition is met, Db2 terminates reorganization.

• The number of log records that the next iteration is to process is not sufficiently lower than the number
of log records that were processed in the previous iteration. If this condition is met but the first two
conditions are not met, Db2 sends message DSNU377I to the console. Db2 continues log processing
for the length of time that is specified for DELAY and then performs the action that is specified for
LONGLOG.

Operator actions

LONGLOG specifies the action that Db2 performs if the pace of processing log records between iterations
is slow. If no action is taken after message DSNU377I is sent to the console, the LONGLOG option
automatically goes into effect. Some examples of possible actions that you can take:

• Execute the START DATABASE(database) SPACENAM(tablespace) ... ACCESS(RO) command and the
QUIESCE utility to drain the write claim class. Db2 performs the last iteration, if MAXRO is not DEFER.
After the QUIESCE, you should also execute the ALTER UTILITY command, even if you do not change
any REORG parameters.

• Execute the START DATABASE(database) SPACENAM(tablespace) ... ACCESS(RO) command and the
QUIESCE utility to drain the write claim class. Then, after reorganization makes some progress, execute
the START DATABASE(database) SPACENAM(tablespace) ... ACCESS(RW) command. This increases the
likelihood that processing of log records between iterations can continue at an acceptable rate. After
the QUIESCE, you should also execute the ALTER UTILITY command, even if you do not change any
REORG parameters.

• Execute the ALTER UTILITY command to change the value of MAXRO. Changing it to a huge positive
value, such as 9999999, causes the next iteration to be the last iteration.

• Execute the ALTER UTILITY command to change the value of LONGLOG.
• Execute the TERM UTILITY command to terminate reorganization.
• Adjust the amount of buffer space that is allocated to reorganization and to applications. This

adjustment can increase the likelihood that processing of log records between iterations can continue
at an acceptable rate. After adjusting the space, you should also execute the ALTER UTILITY command,
even if you do not change any REORG parameters.

• Adjust the scheduling priorities of reorganization and applications. This adjustment can increase the
likelihood that processing of log records between iterations can continue at an acceptable rate. After
adjusting the priorities, you should also execute the ALTER UTILITY command, even if you do not
change any REORG parameters.

Db2 does not take the action specified in the LONGLOG phrase if any one of these events occurs before
the delay expires:

• An ALTER UTILITY command is issued.
• A TERM UTILITY command is issued.
• Db2 estimates that the time to perform the next iteration is likely to be less than or equal to the time
specified on the MAXRO keyword.

• REORG terminates for any reason (including the deadline).

Chapter 28. REORG TABLESPACE 591

Related concepts
“Before running REORG TABLESPACE” on page 569
Certain activities might be required before you run the REORG TABLESPACE utility, depending on your
situation.

Unloading without reloading
REORG can unload data without continuing and without creating a SYSIBM.SYSUTIL record after the job
ends.

If you specify UNLOAD ONLY, REORG unloads data from the table space and then ends. You can reload
the data at a later date with the LOAD utility, specifying FORMAT UNLOAD.

Between unloading and reloading, you can add a validation routine to a table. During reloading, all the
rows are checked by the validation procedure.

Do not use REORG UNLOAD ONLY to propagate data. When you specify the UNLOAD ONLY option, REORG
unloads only the data that physically resides in the base table space; LOB and XML columns are not
unloaded. For purposes of data propagation, you should use UNLOAD or REORG UNLOAD EXTERNAL
instead.

REORG UNLOAD ONLY and REORG UNLOAD EXTERNAL cannot be used to unload inline LOBs.

Reclaiming space from dropped tables
Reorganization omits tables that were previously dropped, reclaiming the space that they acquired. For
partition-by-growth table spaces, you cannot use REORG to reclaim the space.
Related tasks
“Reclaiming space in the DBD” on page 370
You can reclaim space in the DBD when you drop a table by using the MODIFY RECOVERY utility.

Reorganizing the catalog and directory
You can run REORG TABLESPACE on the table spaces in the catalog database (DSNDB06) and on the
SCT02, SPT01, DBD01, SYSLGRNX, SYSDBDXA, SYSSPUXA, and SYSSPUXB table spaces in the directory
database (DSNDB01).

Important:

You must take a full image copy before and after reorganizing any catalog or directory object. Otherwise,
you cannot recover any catalog or directory objects without the full image copies. When you reorganize
the DSNDB06.SYSTSCPY table space with the LOG NO option and omit the COPYDDN option, Db2 places
the table space in COPY-pending status. Take a full image copy of the table space to remove the COPY-
pending status before continuing to reorganize the catalog or directory table spaces.

Running REORG LOG NO COPYDDN avoids the COPY-pending status, because an inline copy is taken
during the REORG.

The FASTSWITCH YES option is ignored for catalog and directory objects.

When to run REORG on the catalog and directory
You do not need to run REORG TABLESPACE on the catalog and directory table spaces as often as you do
on user table spaces. RUNSTATS collects statistics about user table spaces, which you use to determine
whether a REORG is necessary. You can use the same statistics to determine whether a REORG is needed
for catalog and directory table spaces. However, Db2 does not generate statistics for certain items in the
directory, such as the SYSLGRNX table space and its corresponding indexes DSNLLX01 and DSNLLX02.

Reorganize the whole catalog before a catalog migration or once every couple of years. For best results,
also run the REORG TABLESPACE utility for any altered Db2 catalog objects that a CATMAINT utility job

592 Db2 12 for z/OS: Utility Guide and Reference

places in REORG-pending (AREO*) advisory status. Reorganizing the catalog is useful for reducing the size
of the catalog table spaces. To improve query performance, reorganize the indexes on the catalog tables.

When statistical information indicates that you need to reorganize any of the catalog table spaces that are
listed in the following table, you should also reorganize the corresponding directory table space. If the
inline LOB length has changed, you should also reorganize any associated LOB directory table spaces.

Table 90. Catalog table spaces and their corresponding directory table spaces

Catalog table space Corresponding directory table space Associated LOB directory table
spaces

DSNDB06.SYSTSFAU
DSNDB06.SYSTSCOL
DSNDB06.SYSTSFLD
DSNDB06.SYSTSFOR
DSNDB06.SYSTSIXS
DSNDB06.SYSTSIPT
DSNDB06.SYSTSKEY
DSNDB06.SYSTSREL
DSNDB06.SYSTSSYN
DSNDB06.SYSTSTAU
DSNDB06.SYSTSTPT
DSNDB06.SYSTSTAB
DSNDB06.SYSTSTSP

DSNDB01.DBD01 DSNDB01.SYSDBDXA

DSNDB06.SYSTSDBR
DSNDB06.SYSTSPLN
DSNDB06.SYSTSPLA
DSNDB06.SYSTSPLD
DSNDB06.SYSTSSTM

DSNDB01.SCT02 None

DSNDB06.SYSTSPKG
DSNDB06.SYSTSPKA
DSNDB06.SYSTSPKD
DSNDB06.SYSTSPKL
DSNDB06.SYSTSPKS
DSNDB06.SYSTSPLY

DSNDB01.SPT01 DSNDB01.SYSSPUXA
DSNDB01.SYSSPUXB

Associated directory table spaces
When certain catalog table spaces are reorganized, you should also reorganize the associated directory
table space. The associated directory table spaces are listed in the previous table.

Limitations for reorganizing the catalog and directory
• You cannot reorganize DSNDB01.SYSUTILX.
• If SHRLEVEL NONE is specified, the UNLOAD ONLY or UNLOAD EXTERNAL and LOG YES options are

not allowed for catalog and directory table spaces. However, LOG YES is required if SHRLEVEL NONE
is specified for the catalog LOB table spaces. If SHRLEVEL REFERENCE is specified, LOG NO must be
specified.

• The SORTDEVT and SORTNUM options are ignored for the following catalog and directory table spaces:

– DSNDB06.SYSTSFAU
– DSNDB06.SYSTSCOL

Chapter 28. REORG TABLESPACE 593

– DSNDB06.SYSTSFLD
– DSNDB06.SYSTSFOR
– DSNDB06.SYSTSIXS
– DSNDB06.SYSTSIPT
– DSNDB06.SYSTSKEY
– DSNDB06.SYSTSREL
– DSNDB06.SYSTSSYN
– DSNDB06.SYSTSTAU
– DSNDB06.SYSTSTPT
– DSNDB06.SYSTSTAB
– DSNDB06.SYSTSTSP
– DSNDB06.SYSTSDBA
– DSNDB06.SYSTSDBU
– DSNDB06.SYSTSSTG
– DSNDB06.SYSTSVOL
– DSNDB06.SYSTSDBR
– DSNDB06.SYSTSPLN
– DSNDB06.SYSTSPLA
– DSNDB06.SYSTSPLD
– DSNDB06.SYSTSSTM
– DSNDB06.SYSTSVWD
– DSNDB06.SYSTSVEW
– DSNDB01.DBD01
– Any LOB table spaces, such as DSNDB01.SYSDBDXA (For more information about restricted REORG

options for LOB table spaces, see “Reorganization of a LOB table space” on page 607.)

The COPYDDN and RECOVERYDDN options are valid for the preceding catalog and directory tables if
SHRLEVEL REFERENCE is also specified.

• REORG TABLESPACE with STATISTICS cannot collect inline statistics on the following catalog and
directory table spaces:

– DSNDB06.SYSTSFAU
– DSNDB06.SYSTSCOL
– DSNDB06.SYSTSFLD
– DSNDB06.SYSTSFOR
– DSNDB06.SYSTSIXS
– DSNDB06.SYSTSIPT
– DSNDB06.SYSTSKEY
– DSNDB06.SYSTSREL
– DSNDB06.SYSTSSYN
– DSNDB06.SYSTSTAU
– DSNDB06.SYSTSTPT
– DSNDB06.SYSTSTAB
– DSNDB06.SYSTSTSP
– DSNDB06.SYSTSDBA
– DSNDB06.SYSTSDBU

594 Db2 12 for z/OS: Utility Guide and Reference

– DSNDB06.SYSTSSTG
– DSNDB06.SYSTSVOL
– DSNDB06.SYSTSDBR
– DSNDB06.SYSTSPLN
– DSNDB06.SYSTSPLA
– DSNDB06.SYSTSPLD
– DSNDB06.SYSTSSTM
– DSNDB06.SYSTSVWD
– DSNDB06.SYSTSVEW
– DSNDB06.SYSSTATS
– DSNDB06.SYSHIST
– DSNDB01.DBD01
– Any LOB table spaces, such as DSNDB01.SYSDBDXA (For more information about restricted REORG

options for LOB table spaces, see “Reorganization of a LOB table space” on page 607.)

Phases for reorganizing the catalog and directory
REORG TABLESPACE processes certain catalog and directory table spaces differently from other table
spaces; it does not execute the BUILD and SORT phases for the following table spaces:

• DSNDB06.SYSTSFAU
• DSNDB06.SYSTSCOL
• DSNDB06.SYSTSFLD
• DSNDB06.SYSTSFOR
• DSNDB06.SYSTSIXS
• DSNDB06.SYSTSIPT
• DSNDB06.SYSTSKEY
• DSNDB06.SYSTSREL
• DSNDB06.SYSTSSYN
• DSNDB06.SYSTSTAU
• DSNDB06.SYSTSTPT
• DSNDB06.SYSTSTAB
• DSNDB06.SYSTSTSP
• DSNDB06.SYSTSDBA
• DSNDB06.SYSTSDBU
• DSNDB06.SYSTSSTG
• DSNDB06.SYSTSVOL
• DSNDB06.SYSTSDBR
• DSNDB06.SYSTSPLN
• DSNDB06.SYSTSPLA
• DSNDB06.SYSTSPLD
• DSNDB06.SYSTSSTM
• DSNDB06.SYSTSVWD
• DSNDB06.SYSTSVEW
• DSNDB01.DBD01

Chapter 28. REORG TABLESPACE 595

For these table spaces, REORG TABLESPACE reloads the indexes (in addition to the table space) during
the RELOAD phase, rather than storing the index keys in a work data set for sorting.

For all other catalog and directory table spaces, Db2 uses index build parallelism.

Changing data set definitions
If the table space is defined by storage groups, Db2 allocates space, and you cannot alter data set
definitions while a REORG job is in process. Db2 deletes and redefines the necessary data sets to
reorganize the object.

About this task
For REORG with SHRLEVEL REFERENCE or CHANGE, you can use the ALTER STOGROUP command to
change the characteristics of a Db2-managed data set. To change the characteristics of a user-managed
data set, specify the new characteristics when you create the shadow data set. For example, placing
the original and shadow data sets on different disk volumes might reduce contention and improve the
performance of REORG and the performance of applications during REORG execution.

Related reference
“Shadow data sets for REORG TABLESPACE” on page 579
When you execute the REORG utility with SHRLEVEL REFERENCE or SHRLEVEL CHANGE, the utility uses
shadow data sets.

Temporarily interrupting REORG
You can temporarily pause REORG TABLESPACE.

If you specify UNLOAD PAUSE, REORG pauses after unloading the table space into the unload data set.
You cannot use NOSYSREC and PAUSE. The job completes with return code 4. You can restart REORG by
using the phase restart or current restart. Do not alter the REORG statement.

The REORG utility remains in stopped status until REORG is restarted or terminated.

While REORG is interrupted by PAUSE, you can redefine the table space attributes for user-defined
table spaces. PAUSE is not required for STOGROUP-defined table spaces. Attribute changes are done
automatically by a REORG following an ALTER TABLESPACE.

How to override dynamic sort work data set allocation
Db2 estimates how many records are to be sorted. This information is used for dynamic allocation of sort
work space. Sort work space is allocated by Db2 or by the sort program that is used.

If the table space contains rows with VARCHAR columns, Db2 might not be able to accurately estimate
the number of records. If the estimated number of records is too high, if the requested sort work space
is not available, or if the estimated number of records is too low, which causes the sort to overflow, the
utility might fail and cause an abend.

Recommendation:

To enable Db2 to calculate a more accurate estimate, run RUNSTATS UPDATE ALL before REORG. To
update RTS statistics in the RTS catalog tables, also specify SHRLEVEL REFERENCE when executing
RUNSTATS.

You can override the dynamic allocation of sort work space in one of the following ways:

• Allocate the sort work data sets with SORTWKnn DD statements in your JCL. The first of these DD
statements must be SORTWK01.

• If the number of rows in the affected table space in column TOTALROWS of table
SYSIBM.SYSTABLESPACESTATS is not available or is significantly incorrect, you can update the value
to a more appropriate value using an SQL UPDATE statement. When REORG on the affected table space
completes, TOTALROWS is set to the number of rows in the associated table space.

596 Db2 12 for z/OS: Utility Guide and Reference

• If the number of keys for an associated index in column TOTALENTRIES of table
SYSIBM.SYSINDEXSPACESTATS is not available or is significantly incorrect, you can update the value to
a more appropriate value using an SQL UPDATE statement. The next time that REBUILD INDEX is run,
TOTALENTRIES is set to the number of keys for the affected index.

Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Redistributing data across partitions by using REORG
When data becomes skewed across partitions performance can be slower. You can correct the problem by
redistributing the data more evenly across partitions. One way to redistribute the data is to let the REORG
TABLESPACE utility determine any limit key changes and redistribute the data accordingly.

About this task
Alternatively, you can explicitly specify limit key values. If you want to specify your own limit key values,
follow the instructions in Changing the boundary between partitions (Db2 Administration Guide).

Procedure
To redistribute data across partitions by using REORG:
• Run the REORG TABLESPACE utility with the REBALANCE option.

REBALANCE specifies that you want Db2 to determine the limit key changes for the partitioned table
space and redistribute the data accordingly. The data remains available.

Restriction: REBALANCE is not allowed in any of the following situations:

– With the SCOPE PENDING option
– For partitioned-by-growth table spaces
– For table spaces with pending limit key changes

See the description of REBALANCE in the description of the REORG TABLESPACE syntax for a complete
list of restrictions.

If the table has a clustering index that does not match the partitioning key, you must run REORG
TABLESPACE twice. Running REORG twice ensures that the data is rebalanced and all rows are in
clustering order. The first utility execution rebalances the data and the second utility execution sorts
the data.

For example, assume that you have a table space that was created with the following SQL:

--
 SQL to create a table and index with
 separate columns for partitioning
 and clustering
--
 CREATE TABLESPACE TS IN DB
 USING STOGROUP SG
 NUMPARTS 4 BUFFERPOOL BP0;
 CREATE TABLE TB (C01 CHAR(5) NOT NULL,
 C02 CHAR(5) NOT NULL,
 C03 CHAR(5) NOT NULL)
 IN DB.TS
 PARTITION BY (C01)
 (PART 1 VALUES ('00001'),
 PART 2 VALUES ('00002'),
 PART 3 VALUES ('00003'),
 PART 4 VALUES ('00004'));
 CREATE INDEX IX ON TB(C02) CLUSTER;

Chapter 28. REORG TABLESPACE 597

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_changepartitionboundary.html

To rebalance the data across the four partitions, use the following REORG TABLESPACE control
statement:

REORG TABLESPACE DB.TS REBALANCE

After this utility job completes, the table space is placed in advisory REORG-pending (AREO*) status
to indicate that a subsequent reorganization is recommended to ensure that the rows are in clustering
order. For this subsequent reorganization, use the following REORG TABLESPACE control statement:

REORG TABLESPACE DB.TS

Related reference
“Syntax and options of the REORG TABLESPACE control statement” on page 526
The REORG TABLESPACE utility control statement, with its multiple options, defines the function that the
utility job performs.
“Advisory or restrictive states” on page 975
To control access and help ensure data integrity, Db2 can set a restrictive or nonrestrictive (advisory)
status on certain objects. However, you can take steps to correct each status.

How partitions can be unloaded and reloaded in parallel
In some situations, the REORG utility attempts to unload and reload partitions in parallel. In other
situations, parallel unloading and reloading does not occur.

REORG attempts to unload and reload table space partitions in parallel in the following situations:

• If you specify the NOSYSREC keyword.
• If the NOSYSREC keyword is defaulted like it is for SHRLEVEL CHANGE
• If you specify the UNLDDN keyword with a template name, where the template's data set name pattern

includes a partition number.

REORG does not attempt to unload and reload table space partitions in parallel in the following situations:

• If the DATAWKnn DD statements are coded in the JCL.
• If you do not specify the SORTDEVT keyword.
• If the UTPRINT data set is not allocated to SYSOUT.
• If you specify the REBALANCE keyword.
• If rows might move from one partition to another as a result of alter limit keys or partition-by-growth

table space.
• If you specify the UNLDDN keyword with a template name and specify UNIT(TAPE) STACK(YES).).
• When the number of subtasks that are started in parallel exceeds the value of the PARALLEL option or

the PARAMDEG_UTIL subsystem parameter.

How to use inline copy with REORG TABLESPACE
You can create a full image copy data set (SHRLEVEL REFERENCE) during REORG TABLESPACE execution.

The new copy is an inline copy. The advantage to using an inline copy is that the table space is not left in
COPY-pending status, regardless of which LOG option is specified for the utility. Thus, data availability is
increased. You must take an inline copy when you specify the REBALANCE option.

To create an inline copy, use the COPYDDN and RECOVERYDDN keywords. You can specify up to two
primary copies and two secondary copies. Inline copies are produced during the RELOAD phase of REORG
processing.

You can specify a template name for COPYDDN or RECOVERYDDN. If that template uses the &PA. or
&PART. variable, REORG allocates as many copy data sets as the number of partitions that are being
reorganized.

598 Db2 12 for z/OS: Utility Guide and Reference

The SYSCOPY record that is produced by an inline copy contains ICTYPE=F, SHRLEVEL=R. The STYPE
column contains an X if the image copy was produced by REORG TABLESPACE LOG(YES), and a W if the
image copy was produced by REORG TABLESPACE LOG(NO). The data set that is produced by the inline
copy is logically equivalent to a full image copy with SHRLEVEL REFERENCE, but the data within the data
set differs in some respects:

• Data pages might be out of sequence and some might be repeated. If pages are repeated, the last one is
always the correct copy.

• Space map pages are out of sequence and might be repeated

The total number of duplicate pages is small, with a negligible effect on the amount of space that
is required for the data set. One exception to this guideline is the case of running REORG SHRLEVEL
CHANGE, in which the number of duplicate pages varies with the number of records that are applied
during the LOG phase.

Related reference
“TEMPLATE” on page 751
The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the
data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.

Creating a FlashCopy image copy with REORG TABLESPACE
As part of REORG TABLESPACE processing, you can use FlashCopy technology to take image copies. This
method is potentially faster than the traditional Db2 utility methods for creating inline copies and thus
reduces the time that data is unavailable. FlashCopy image copies can also potentially reduce the time
that is required for recovery operations.

About this task
REORG TABLESPACE can also create one to four additional inline image copies by using the traditional
methods. Traditional inline image copies are output to a non-VSAM sequential format data set. For more
information about traditional inline copies, see “How to use inline copy with REORG TABLESPACE” on
page 598.

Restriction: You cannot create FlashCopy image copies if you specify UNLOAD ONLY or UNLOAD
EXTERNAL in the REORG TABLESPACE utility control statement.

Procedure
Specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT) in the REORG TABLESPACE utility control
statement.
Alternatively, you can set the FLASHCOPY_REORG_TS subsystem parameter to YES, which specifies that
REORG TABLESPACE is to use FLASHCOPY(YES) by default. The value that you specify for the FLASHCOPY
option in the REORG TABLESPACE statement always overrides the value for the FLASHCOPY_REORG_TS
subsystem parameter.

Optionally, you can also specify FCCOPYDDN in the REORG TABLESPACE statement. Use this option to
specify a template for the FlashCopy image copy. If you do not specify the FCCOPYDDN option in the
REORG TABLESPACE statement, the utility uses the value from the FCCOPYDDN subsystem parameter.

Restriction: The data sets that you specify for the FlashCopy image copy must be on FlashCopy Version 2
disk volumes.

When you specify FLASHCOPY(YES) or FLASHCOPY(CONSISTENT), REORG TABLESPACE uses FlashCopy
technology to create a consistent copy of the target objects. If you also requested one or more traditional
inline copies in the REORG TABLESPACE statement (by specifying COPYDDN or RECOVERYDDN), the
utility also creates those copies. REORG TABLESPACE does not use the FlashCopy image copy to create
those traditional inline copies.

Chapter 28. REORG TABLESPACE 599

When you request a FlashCopy image copy, but you do not specify the COPYDDN option in the REORG
TABLESPACE statement, and you do not include a SYSCOPY DD statement or a TEMPLATE statement with
a SYSCOPY data set specification, REORG TABLESPACE does not create an inline image copy as well as
a FlashCopy image copy. The table space is not placed in the COPY-pending state. However, when you
request a FlashCopy image copy, and you do not specify the COPYDDN option in a REORG TABLESPACE
statement, but you include a SYSCOPY DD statement or a TEMPLATE statement with a SYSCOPY data set
specification, REORG TABLESPACE creates an inline image copy as well as a FlashCopy image copy.

Important: You should request a sequential image copy as well as a FlashCopy image copy when either of
the following conditions are true:

• Your environment and system setup for FlashCopy image copies is not yet stable and predictable. If
the FlashCopy process fails during the SWITCH phase, COPY-pending status is set if a sequential image
copy is not taken.

• You want the FlashCopy image copy for fast local recovery, but require a sequential image copy to be
shipped to a remote site for disaster recovery.

Related objects are copied if one of the following conditions is true:

• You specified REBALANCE in the REORG TABLESPACE statement.
• The partitioning key has changed since the last time the table space was reorganized
• The base table space is a partition-by-growth table space.

Failures occur in the following situations:

• The FlashCopy image copy fails if the FlashCopy Version 2 disk volumes are not available or if any
of the other FlashCopy operational restrictions exist. For a list of those operational restrictions, see
“FlashCopy image copies” on page 144.

• REORG TABLESPACE terminates if the FlashCopy image copy for the target table space fails, you
specified SHRLEVEL REFERENCE or SHRLEVEL CHANGE, and inline copies were not taken. (If the
FlashCopy image copy fails and you specified SHRLEVEL REFERENCE or SHRLEVEL CHANGE, but inline
copies were taken, the utility continues.)

Related concepts
“FlashCopy image copies” on page 144
FlashCopy image copies can reduce both the time that data is unavailable during the copy operation and
the time that is required for backup and recovery operations. Certain Db2 utilities can create these copies
by invoking the FlashCopy function that is provided by z/OS DFSMS and the IBM TotalStorage Enterprise
Storage Server (ESS) storage subsystems.
Related reference
DEFAULT TEMPLATE field (FCCOPYDDN subsystem parameter) (Db2 Installation and Migration)
REORG TABLESPACE field (FLASHCOPY_REORG_TS subsystem parameter) (Db2 Installation and
Migration)

Improving REORG TABLESPACE performance
You can improve the performance of the REORG TABLESPACE utility by taking certain actions.

About this task
Recommendation: Run online REORG during light periods of activity on the table space or index.

Procedure
To improve REORG TABLESPACE performance:
• Run REORG concurrently on separate partitions of a partitioned table space if no nonpartitioned

indexes exist.

600 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_fccopyddn.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopyreorgts.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopyreorgts.html

When you run REORG on partitions of a partitioned table space, the sum of each job's processor
usage is greater than for a single REORG job on the entire table space. However, the elapsed time of
reorganizing the entire table in parallel can be significantly less than it would be for a single REORG
job.

• Use parallel index build for table spaces or partitions that have more than one defined index.
• Specify NOSYSREC on your REORG statement.
• If you are not using NOSYSREC, use an UNLDDN template to enable unload parallelism.
• If you are using 3990 caching, and you have the nonpartitioning indexes on RAMAC, consider

specifying YES on the UTILITY CACHE OPTION field of installation panel DSNTIPE.

This option allows Db2 to use sequential prestaging when reading data from RAMAC for the following
utilities:

– LOAD PART integer RESUME
– REORG TABLESPACE PART

For LOAD PART and REORG TABLESPACE PART utility jobs, prefetch reads remain in the cache longer,
which can lead to possible improvements in the performance of subsequent writes.

For REORG with SHRLEVEL CHANGE or SHRLEVEL REFERENCE, use inline statistics only if you
can afford the additional cost of collecting statistics inline. Collecting statistics inline makes it
unnecessary to run another RUNSTATS job after the REORG job. However, collecting statistics inline
might substantially increase the length of time that the REORG job runs.

• Schedule REORG with SHRLEVEL CHANGE when the rate of writing is low and transactions are short.
Avoid scheduling REORG with SHRLEVEL CHANGE when critical applications are executing.

Under certain circumstances, the log records that REORG SHRLEVEL CHANGE uses contain additional
information, as if DATA CAPTURE CHANGES were used. Generation of the additional information can
slow applications and increase consumption of log space. The additional information is generated for
all the tables in the table space if at least one table satisfies all these conditions:

– The table has undergone ALTER TABLE ADD column.
– The table does not use DATA CAPTURE CHANGES.
– One of these conditions is true:

- The area that is being reorganized uses data compression.
- The area is a partitioned table space, and at least one partition uses data compression.

• Run REORG with DRAIN_WAIT.

The DRAIN_WAIT option gives you greater control over the time that online REORG is to wait for
drains. Also because the DRAIN_WAIT is the aggregate time that online REORG is to wait to perform
a drain on a table space and associated indexes, the length of drains is more predictable than if each
partition and index has its own individual waiting time limit.

By specifying a short delay time (less than the system timeout value, IRLMRWT), you can reduce
the impact on applications by reducing timeouts. You can use the RETRY option to provide more
opportunities for the online REORG to complete successfully. If you do not want to use RETRY
processing, you can still use DRAIN_WAIT to set a specific and more consistent limit on the length
of drains.

RETRY allows an online REORG that is unable to drain the objects that it requires so that Db2 can try
again after a set period (RETRY_DELAY). During the RETRY_DELAY period, all the objects are available
for read-write access in the case of SHRLEVEL CHANGE. For SHRLEVEL REFERENCE, the objects
remain with the access that existed prior to the attempted drain (that is if the drain fails in the UNLOAD
phase the object remains in read-write access; if the drain fails in the SWITCH phase, objects remain in
read-only access).

Chapter 28. REORG TABLESPACE 601

Because application SQL statements can queue behind any unsuccessful drain that the online REORG
has tried, define a reasonable delay before you try again to allow this work to complete; the default is 5
minutes.

When you specify DRAIN WRITERS (the default) with SHRLEVEL CHANGE and RETRY, multiple read-
only log iterations can occur. Generally, online REORG might need to do more work when RETRY is
specified, and this might result in multiple or extended periods of restricted access. Applications that
run alongside online REORG need to perform frequent commits. During the interval between retries,
the utility is still active, and consequently other utility activity against the table space and indexes is
restricted.

• Run the REORG TABLESPACE utility with the PART SHRLEVEL REFERENCE or PART SHRLEVEL CHANGE
option specified and the SORTNPSI YES or SORTNPSI AUTO option specified or subsystem parameter
REORG_PART_SORT_NPSI enabled.
When you run REORG TABLESPACE with these options, REORG TABLESPACE sorts all keys of the
nonpartitioned secondary indexes and builds the shadow index from the sorted keys.

Parallel index building for REORG TABLESPACE
Parallel index building reduces the elapsed time for a REORG TABLESPACE job by sorting the index
keys and rebuilding multiple indexes in parallel, rather than sequentially. Optimally, a pair of subtasks
processes each index; one subtask sorts extracted keys, whereas the other subtask builds the index.

REORG TABLESPACE begins building each index as soon as the corresponding sort emits its first sorted
record. The following figure shows the flow of a REORG TABLESPACE job that uses a parallel index build.
Db2 starts multiple subtasks to sort index keys and build indexes in parallel. If you specify STATISTICS,
additional subtasks collect the sorted keys and update the catalog table in parallel, eliminating the need
for a second scan of the index by a separate RUNSTATS job.

Figure 11. How indexes are built during a parallel index build

REORG TABLESPACE uses parallel index build if more than one index needs to be built (including the
mapping index for SHRLEVEL CHANGE). You can either let the utility dynamically allocate the data sets
that SORT needs for this parallel index build or provide the necessary data sets yourself. The number of
subtasks must be less than or equal to the number that is specified by the PARALLEL option. If you do
not specify the PARALLEL option, the PARAMDEG_UTIL subsystem parameter determines the maximum
degree of parallelism for the utility.

Select one of the following methods to allocate sort work and message data sets:

Method 1:

REORG TABLESPACE determines the optimal number of sort work data sets and message data sets.

1. Specify the SORTDEVT keyword in the utility statement.

602 Db2 12 for z/OS: Utility Guide and Reference

2. Allow dynamic allocation of sort work data sets by not supplying SORTWKnn DD statements in the
REORG TABLESPACE utility JCL.

3. Allocate UTPRINT to SYSOUT.

Method 2:

Control allocation of sort work data sets, while REORG TABLESPACE allocates message data sets.

1. Provide DD statements with DD names in the form SWnnWKmm. The first of these DD statements must
be SW01WK01.

2. Allocate UTPRINT to SYSOUT.

Method 3:

Exercise the most control over rebuild processing; specify both sort work data sets and message data
sets.

1. Provide DD statements with DD names in the form SWnnWKmm. The first of these DD statements must
be SW01WK01.

2. Provide DD statements with DD names in the form UTPRINnn.

Data sets used
If you select Method 2 or 3 in the preceding information, define the necessary data sets by using the
following information.

Each sort subtask must have its own group of sort work data sets and its own print message data set.
Possible reasons to allocate data sets in the utility job JCL rather than using dynamic allocation are:

• To control the size and placement of the data sets
• To minimize device contention
• To optimally use free disk space
• To limit the number of utility subtasks that are used to build indexes

The DD name SWnnWKmm defines the sort work data sets that are used during utility processing. nn
identifies the subtask pair, and mm identifies one or more data sets that are to be used by that subtask
pair. For example:

SW01WK01
Is the first sort work data set that is used by the subtask that builds the first index.

SW01WK02
Is the second sort work data set that is used by the subtask that builds the first index.

SW02WK01
Is the first sort work data set that is used by the subtask that builds the second index.

SW02WK02
Is the second sort work data set that is used by the subtask that builds the second index.

The DD name UTPRINnn defines the sort work message data sets that are used by the utility subtask
pairs. nn identifies the subtask pair.

Every time you invoke REORG TABLESPACE, new UTPRINnn data sets are dynamically allocated. REORG
TABLESPACE does not reuse UTPRINnn data sets from previous job steps. This behavior might cause the
available JES2 job queue elements to be consumed more quickly than expected.

Number of sort subtasks

The maximum number of utility subtask pairs that are started for parallel index build is equal to the
number of indexes that need to be built.

REORG TABLESPACE determines the number of subtask pairs according to the following guidelines:

Chapter 28. REORG TABLESPACE 603

• The number of subtask pairs equals the number of allocated sort work data set groups.
• The number of subtask pairs equals the number of allocated message data sets.
• If you allocate both sort work data sets and message data set groups, the number of subtask pairs

equals the smallest number of allocated data sets.

Allocation of sort subtasks

REORG TABLESPACE attempts to assign one sort subtask pair for each index that is to be built. If REORG
TABLESPACE cannot start enough subtasks to build one index per subtask pair, it allocates any excess
indexes across the pairs; therefore one or more subtask pairs might build more than one index.

During parallel index build processing, REORG distributes all indexes among the subtask pairs according
to the index creation date, assigning the first created index to the first subtask pair. For SHRLEVEL
CHANGE, the mapping index is assigned last.

Estimating the sort work file size

If you choose to provide the data sets, you need to know the size and number of keys that are present
in all of the indexes that are being processed by the subtask in order to calculate each sort work file
size. After you determine which indexes are assigned to which subtask pairs, use the following formula to
calculate the required space:

2 * (longest index key + c) * (number of extracted keys)

longest key
The length of the longest index key that is to be processed by the subtask. If the index is of varying
length, the longest key is the maximum possible length of a key with all varying-length columns
that are padded to their maximum length, plus 2 bytes for each varying-length column in the index.
For example, if an index with three columns (A, B, and C) has length values of CHAR(8) for A,
VARCHAR(128) for B, and VARCHAR(50) for C, the longest key is calculated as follows:

8 + 128 + 50 + 2 + 2 = 190

For SHRLEVEL CHANGE, the mapping index key length is 21.
c

A value as follows:

• 14 if the indexes that are being rebuilt are a mix of data-partitioned secondary indexes and
nonpartitioned indexes

• 12 if the indexes that are being rebuilt are partitioned, or if none of them are data-partitioned
secondary indexes.

number of extracted keys
The number of keys from all indexes that need to be sorted and that are to be processed by the
subtask.

When you calculate the sort work data set size, do not count keys that are not sorted. Keys are not sorted
when both of the following conditions are true:

• SORTDATA is in effect for REORG TABLESPACE, and the keys belong to a partitioning, clustering index.
• The table space is a partitioned table space, and data partitions are not being unloaded and reloaded in

parallel.

The space estimation formula might indicate that 0 bytes are required, because the only index that is
processed is the partitioning, clustering index. In this case, if you allocate your own groups of sort work
data sets, you still need to allocate sort work data sets, but you can use a minimal allocation, such as 1
track.

604 Db2 12 for z/OS: Utility Guide and Reference

Related tasks
“Improving LOAD performance” on page 314
Depending on the data, target object, and available resources, you can take certain actions that might
improve the performance of the LOAD utility. For example, you can preprocess the input data or specify a
particular LOAD option.

How Db2 unloads data
Db2 unloads data by table space scan with sort, table space scan, or clustering index.

Db2 unloads data by one of three methods:

• Table space scan with sort: If at least one table space has an index, Db2 uses a table space scan with a
sort.

• Table space scan: Db2 uses a table space scan for simple table spaces that contain more than one
table, or that contain one table but do not have an index.

• Clustering index: Db2 uses this option for simple table spaces that contain one table and have an index,
and for tables in a segmented (non-UTS) table space that have an index.

Failure during the RELOAD phase
Failure during the RELOAD phase (after the data is unloaded and data sets are deleted, but before the
data is reloaded) results in an unusable table space.

If the error is on the table space data:

• If you have defined data sets, you can allocate new data sets.
• If STOGROUP has defined data sets, you can alter the new table space to change the primary and

secondary quantities.
• If you allocate new data sets, alter the table space, or add volumes to the storage group, restart the

REORG job at the beginning of the phase. Otherwise, you can restart either at the last commit point or at
the beginning of the phase.

If the error is on the unloaded data, or if you used the NOSYSREC option, terminate REORG by using the
TERM UTILITY command. Then recover the table space, using RECOVER, and run the REORG job again.

Reorganization of partitioned table spaces
If you reorganize a single partition or a range of partitions, all indexes of the table space are affected.
Depending on how disorganized the nonpartitioning indexes are, you might want to reorganize them.

Related tasks
“Determining which indexes require reorganization” on page 512
Reorganizing indexes might improve performance. To determine which indexes to reorganize to potentially
gain such a performance improvement, you can analyze certain data in the Db2 catalog. You can then
reorganize these indexes by using the REORG INDEX utility.

Reorganization of partition-by-growth table spaces
When you run the REORG TABLESPACE utility on a partition-by-growth table space, the utility condenses
the data into the fewest partitions possible. If necessary, the utility adds partitions, if possible.

If you reorganize a partition-by-growth table space that does not contain LOB columns, REORG
TABLESPACE condenses the data into the minimum number of required partitions. Because the utility
cannot reclaim physical space, the excess partitions are empty. If the data needs additional space and the
maximum number of partitions has not been reached, REORG TABLESPACE adds additional partitions. If
the maximum number of partitions has been reached, the utility fails.

Chapter 28. REORG TABLESPACE 605

If the partition-by-growth table space contains LOB columns, REORG TABLESPACE minimizes partitions
by eliminating existing holes, but does not move the data from one partition to another.

If you specify REORG TABLESPACE PART for a partition-by-growth table space and the data does not fit
back into its partition, Db2 creates a new partition. The exception is if the table space has already reached
its maximum number of partitions. In this case, Db2 cannot create a new partition, and the utility fails.
(Sometimes data does not fit back into its partition if the amount of free space changes during the REORG
operation.)

In the following situations, the addition of new partitions might lead to the failure of REORG TABLESPACE
because of a lack of disk space:

• When REORG TABLESPACE is run against a subset of the partitions in a partition-by-growth table space
• When REORG TABLESPACE AUX NO is run against a partition-by-growth table space in which a table

contains LOB columns

For these situations only, you can alleviate space problems by taking one of the following actions:

• Execute ALTER TABLESPACE on the table space to change PCTFREE and FREEPAGE to 0. This action is
the preferred solution.

• Instead of running REORG TABLESPACE against a subset of the partitions in a partition-by-growth table
space, run REORG on the entire table space.

REORG parallelism does not apply to partition-by-growth table spaces. This restriction ensures that
REORG TABLESPACE is able to condense the data into the minimum number of required partitions,

If a compression dictionary exists, the compression dictionary is copied to all partitions even if the
partition is empty.

Related tasks
Reserving free space for table spaces (Db2 Performance)
Related reference
“REORG TABLESPACE” on page 523
The REORG TABLESPACE online utility reorganizes a table space, partition, or range of partitions to
reclaim fragmented space and improve access performance. You can also run REORG TABLESPACE to
materialize pending definition changes.
ALTER TABLESPACE (Db2 SQL)

Reorganization of segmented (non-UTS) table spaces
The REORG TABLESPACE utility reorganizes segmented (non-UTS) table spaces.

If the target table space is segmented, REORG unloads and reloads by table.

If an index exists on a table in a segmented (non-UTS) table space, that table is unloaded in clustering
sequence. If NO index exists, the table is unloaded in physical row and segment order.

For segmented (non-UTS) table spaces, REORG does not normally need to reclaim space from dropped
tables. Space that is freed by dropping tables in a segmented (non-UTS) table space is immediately
available if the table space can be accessed when DROP TABLE is executed. If the table space cannot be
accessed when DROP TABLE is executed (for example, the disk device is offline), Db2 removes the table
from the catalog, but does not delete all table rows. In this case, the space for the dropped table is not
available until REORG reclaims it.

After you run REORG, the segments for each table are contiguous.

606 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_reservefreespacetable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html

Comparison of the numbers of loaded and unloaded records
At the end of the RELOAD phase, REORG compares the number of records that were actually loaded to the
number of records that were unloaded.

If the counts do not match, the resulting actions depend on the UNLOAD option that you specified on the
original job:

• If you specify UNLOAD PAUSE, REORG sets return code 4 and continues processing the job.
• If you specify UNLOAD CONTINUE, Db2 issues an error message and abnormally terminates the job. The

table space or partition remains in RECOVER-pending status.

Reorganization of a LOB table space
Run the REORG TABLESPACE utility on a LOB table space to help increase the effectiveness of prefetch
processing. When you run REORG on a LOB table space, the utility removes embedded free space,
attempts to make LOB pages contiguous, and reclaims physical space.

You can reorganize a LOB table space separately from the base table space or you can reorganize the base
and LOB table spaces together. To reorganize them together, specify the base table space name in the
REORG statement and the AUX YES option. For restrictions, see AUX YES.

To reorganize a LOB table space separately from the base table space, specify the LOB table space name
in the REORG statement. REORG unloads LOBs to a shadow data set and reclaims any physical space.

For LOB table spaces, certain REORG statement options are not applicable, including the following
options:

• AUTOESTSPACE
• AUX YES
• DISCARD
• DISCARDDN
• INDREFLIMIT
• NOPAD
• NOSYSREC
• OFFPOSLIMIT
• PART
• PREFORMAT
• PUNCHDDN
• REBALANCE
• REPORTONLY
• REUSE
• ROWFORMAT
• SAMPLE
• SHRLEVEL NONE
• SORTDATA
• SORTDEVT
• STATISTICS
• UNLOAD ONLY
• UNLOAD EXTERNAL
• UNLOAD PAUSE
• KEEPDICTIONARY

Chapter 28. REORG TABLESPACE 607

When you reorganize a LOB table space, you cannot specify SHRLEVEL NONE. You must specify SHRLEVEL
REFERENCE or CHANGE. You must also specify LOG NO and take an inline image copy.

REORG SHRLEVEL CHANGE processes a LOB table space the same as REORG SHRLEVEL REFERENCE
except that the mapping table is ignored. REORG SHRLEVEL CHANGE uses shadow data sets and includes
a LOG phase.

Reorganization of a compressed LOB table space
Unlike data compression for a base table space, no compression dictionary is built for a compressed LOB
table space. If you specify the KEEPDICTIONARY option in the REORG statement for a LOB table space,
that option is ignored.

Materializing COMPRESS NO to COMPRESS YES
If you use REORG TABLESPACE to materialize a pending alter that changes uncompressed LOB data
to compressed LOB data, the original LOB data is unloaded in its uncompressed format. Db2 attempts
to compress the LOB data by using the zEDC hardware before inserting the LOB data into the shadow
page set.

Some LOB data does not compress well. (When the length of the compressed format is greater than or
equal to the length of the uncompressed format, the data has an inferior compression ratio.) If the LOB
data does not compress well, it is inserted in its uncompressed format. Therefore, a LOB table space
that is specified to use compression could have uncompressed LOB data.

Materializing COMPRESS YES to COMPRESS NO
If you use REORG TABLESPACE to materialize a pending alter that changes compressed LOB data to
uncompressed LOB data, REORG uncompresses the LOB data before it is inserted into the shadow
page set.

COMPRESS attribute is not changed
If the compression attribute of the LOB table space is not changed, REORG reorganizes the data with
minimal decompression or re-compression.

For a LOB table space that is defined with COMPRESS NO, REORG decompresses any compressed LOB
data before inserting it into the shadow page set. This action ensures that after a successful REORG,
only uncompressed LOB data remains in the table space.

For a LOB table space that is defined with COMPRESS YES, REORG unloads and copies the
compressed LOB data into the shadow data set. For any uncompressed LOB data that does not have
an inferior compression ratio, REORG attempts to compress the LOB data.

The following factors can affect whether REORG needs to decompress and re-compress all LOB data
in a compressed LOB table space:

• REORG AUX YES is run on the base table to materialize a change to the INLINE LENGTH value of the
LOB column.

• REORG is run on a LOB table space with pending page size changes.

Reorganization of an XML table space
Reorganizing an XML table space is a separate task from reorganizing the base table space.

When you specify the name of the base table space in the REORG statement, Db2 reorganizes only that
table space and not any related XML objects. If you want Db2 to reorganize the XML objects, you must
specify those object names. When you specify that you want XML table spaces to be reorganized, you
must also specify the WORKDDN keyword and provide the specified temporary work file. The default is
SYSUT1.

When you run REORG on an XML table space that supports XML versions, REORG discards rows for
versions of an XML document that are no longer needed.

For XML table spaces and base table spaces with XML columns, you cannot specify the following options
in the REORG statement:

608 Db2 12 for z/OS: Utility Guide and Reference

• DISCARD
• REBALANCE
• UNLOAD EXTERNAL

In the following example, the REORG statement specifies that Db2 is reorganizing table space BASETS01
and XML table spaces XML1TS01 and XML2TS01. During this reorganization Db2 is to take an inline copy
of the base table space and gather statistics for all three table spaces.

//STEP1 EXEC DSNUPROC,UID='HUHRU252.REORG1',TIME=1440,
// UTPROC='',
// SYSTEM='DSN',DB2LEV=DB2A
//SYSREC DD DSN=HUHRU252.REORG1.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSCOPY1 DD DSN=HUHRU252.REORG1.STEP1.SYSCOPY1,
// DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(4000,(20,20),,,ROUND)
//SYSUT1 DD DSN=IUJLU101.REORG.STEP1.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSUT2 DD DSN=IUJLU101.REORG.STEP1.SYSUT2,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)

//SYSIN DD *
REORG TABLESPACE DBHR5201.BASETS01
 SHRLEVEL CHANGE MAPPINGTABLE MAP1
 COPYDDN(SYSCOPY1)
 STATISTICS TABLE(ALL)
 INDEX(ALL)
REORG TABLESPACE DBHR5201.XML1TS01
 SHRLEVEL CHANGE MAPPINGTABLE MAP2
 STATISTICS TABLE(ALL)
 INDEX(ALL)
 WORKDDN(SYSUT1)
REORG TABLESPACE DBHR5201.XML2TS01
 SHRLEVEL CHANGE MAPPINGTABLE MAP3
 STATISTICS TABLE(ALL)
 INDEX(ALL)
 WORKDDN(SYSUT2)

/*

Reorganization with pending definition changes
A REORG utility operation that materializes pending definition changes is equivalent to a data definition
change that happens during an online transaction. REORG requires the same type of serialization that any
data definition change requires in addition to the existing draining serialization it performs on the target
object. Therefore, to avoid possible application outages, try to run REORG at a time when the data is not
heavily accessed, which allows for the data definition change to be materialized.

To materialize a pending definition change by running REORG, specify SHRLEVEL REFERENCE or CHANGE
and do not specify FASTSWITCH NO.

A REORG operation that materializes definition changes enables you to alter certain objects without
significantly impacting availability. The data is unavailable for only a short time. This short time of
unavailability happens during any REORG SHRLEVEL CHANGE operation.

However, a REORG operation that materializes pending definition changes does have a cost. REORG
begins serialization with the concurrent application during the last log iteration in the LOG phase and
changes schema definitions during the SWITCH phase. During this time, plans, packages, and the dynamic
statement cache are quiesced and invalidated, and statistics and dynamic SQL are blocked. As a result,
the DRAIN ALL behavior that REORG performs when it does not materialize pending definition changes
is not sufficient. For example, assume that an agent sees a segmented (non-UTS) table space and claims
and waits for REORG to release the drain. At the same time, REORG materializes the pending definition
change and changes the table space from segmented to partition-by-growth. If REORG does not block
the agent before its claim, after REORG releases the drain, the agent continues to access the table space
with the attributes that it had before REORG ran. This situation can result in unpredictable behaviors.
Application lock timeout errors are possible, because REORG was unable to acquire the locks on either
the SYSIBM.SYSTABLESPACE record or on the plans or packages. The IRLM lock timeout value applies for

Chapter 28. REORG TABLESPACE 609

these locks. REORG can hold these locks for longer than the IRLMRWT threshold because it must acquire
multiple locks. (When REORG is not materializing definition changes, it needs only a single drain lock.) The
value of the DRAIN_WAIT utility option does not apply to these lock timeouts.

Materialization of pending column alterations
The only way to materialize pending column alterations is to run REORG TABLESPACE with the SHRLEVEL
REFERENCE or SHRLEVEL CHANGE option on the entire table space.

After the activation of function level 500 or higher, REORG TABLESPACE converts any rows that are in
basic row format to reordered row format.

When REORG is run with the DISCARD option, discarded rows have the materialized format, with the
column attributes that were specified in the pending alterations.

Materialization of MOVE TABLE operations
FL 508 When you run REORG TABLESPACE to materialize one or more MOVE TABLE operations (an ALTER
TABLESPACE statement with the MOVE TABLE clause), only those packages that are dependent on the
moved tables are invalidated. Additionally, REORG does not collect any statistics for either the source or
target table space. Existing statistics for affected tables and indexes remain unchanged.

When running REORG to materialize MOVE TABLE operations, use following guidance and restrictions
when specifying REORG options:

• If you specify COPYDDN or RECOVERYDDN, you must specify a template with the &TS. or &SN. variables
and without the STACK YES option. This specification ensures that the data sets are dynamically
allocated for multiple table spaces at run time.

• If you specify FLASHCOPY YES, you must ensure that the volumes that are defined for the source and
target table spaces are set up for FlashCopy execution. If a FlashCopy image copy is the only recovery
base requested and its creation fails during the REORG SWITCH phase for any object, the entire REORG
fails without materializing any pending definition changes.

• You cannot specify AUX YES.
• KEEPDICTIONARY is ignored. REORG always constructs new compression dictionaries for both the

source and target table spaces. If sufficient data is not available to build a new compression dictionary
for any of the table spaces, those table spaces will not have compression dictionaries when REORG
completes. If sufficient data is not available to build a compression dictionary for the moved table, the
data will remain uncompressed until the next dictionary build.

• STATISTICS is ignored.
• If you specify DISCARD, the generated LOAD utility statements are based on the source table space.

(These statements are generated in the data set that is specified by PUNCHDDN.) Before you run
these LOAD statements, you must modify the statements for any tables that were moved to partition-
by-growth table spaces.

Any specified REORG options apply to all source and target table spaces. For example, if you specify
PREFORMAT, both the source and target table spaces that are involved in the move are preformatted. If
the materializing REORG is enforcing reordered row format or extended page format, the utility enforces
that attribute for all base table spaces that are involved in the REORG operation. The only exception is
when the target table spaces remain undefined (with the DEFINE NO attribute). In this case, the definition
of the target table space is not modified other than its association with the moved table.

If the table that is moved to a new table space remains empty after the REORG operation, the target table
space also remains undefined (DEFINE NO) when REORG completes successfully.

If REORG fails before committing changes in the SWITCH phase, the target partition-by-growth table
spaces remain with the DEFINE NO attribute but without data definition changes. The shadow data sets
that were allocated for these undefined objects are deleted by REORG or by the TERM UTIL command.

Related concepts
“Access with REORG TABLESPACE SHRLEVEL” on page 589

610 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html

You can specify the level of access that you have to your data by using the SHRLEVEL option.
Related tasks
Materializing pending definition changes (Db2 Administration Guide)
Related reference
RESOURCE TIMEOUT field (IRLMRWT subsystem parameter) (Db2 Installation and Migration)

Compression after materialization of inline LOB changes
The REORG TABLESPACE utility can be run on a base table space to materialize the conversion of an
auxiliary LOB table space to an inline LOB. However, if the object is defined with compression, the result of
the reorganization can be little or no row compression in some of the partitions.

Introductory concepts

The effect of data compression on performance (Introduction to Db2 for z/OS)

To achieve better compression, run REORG TABLESPACE a second time on the table space that contains
the inline LOB to build a new compression dictionary and attempt better compression.

Termination of REORG TABLESPACE
You can terminate the REORG TABLESPACE utility.

If you terminate REORG TABLESPACE with the TERM UTILITY command during the UNLOAD phase,
objects have not yet been changed, and you can rerun the job.

If you terminate REORG TABLESPACE with the TERM UTILITY command during the RELOAD phase, the
behavior depends on the SHRLEVEL option:

• For SHRLEVEL NONE, the data records are not erased. The table space and indexes remain in RECOVER-
pending status. After you recover the table space, rerun the REORG job.

• For SHRLEVEL REFERENCE or CHANGE, the data records are reloaded into shadow objects, so the
original objects have not been affected by REORG. You can rerun the job.

If you terminate REORG with the TERM UTILITY command during the SORT, BUILD, or LOG phases, the
behavior depends on the SHRLEVEL option:

• For SHRLEVEL NONE, the indexes that are not yet built remain in RECOVER-pending status. You can run
REORG with the SORTDATA option, or you can run REBUILD INDEX to rebuild those indexes.

• For SHRLEVEL REFERENCE or CHANGE, the records are reloaded into shadow objects, so the original
objects have not been affected by REORG. You can rerun the job.

If you terminate a stopped REORG utility with the TERM UTILITY command during the SWITCH phase,
the following conditions apply:

• All data sets that were renamed to their shadow counterparts are renamed to their original names, so
that the objects remain in their original state, and you can rerun the job.

• If a problem occurs in renaming the data sets to the original names, the objects remain in RECOVER-
pending status, and you cannot rerun the job.

If the SWITCH phase does not complete, the image copy that REORG created is not available for use by
the RECOVER utility. If you terminate an active REORG utility during the SWITCH phase with the TERM
UTILITY command, during the rename process, the renaming occurs, and the SWITCH phase completes.
The image copy that REORG created is available for use by the RECOVER utility.

The REORG-pending status is not reset until the UTILTERM execution phase. If the REORG utility
abnormally terminates or is terminated, the objects remain in REORG-pending status and RECOVER-
pending status, depending on the phase in which the failure occurred.

The following table lists the restrictive states that REORG TABLESPACE sets according to the phase in
which the utility terminated.

Chapter 28. REORG TABLESPACE 611

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_materializingdefchanges.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_irlmrwt.html
https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_datacompressionandperformance.html

Table 91. Restrictive states that REORG TABLESPACE sets.

Phase Effect on restrictive status

UNLOAD No effect.

RELOAD SHRLEVEL NONE:

• Places table space in RECOVER-pending status at the beginning of the phase and
resets the status at the end of the phase.

• Places indexes in RECOVER-pending status.
• Places the table space in COPY-pending status. If COPYDDN is specified and

SORTKEYS is ignored, the COPY-pending status is reset at the end of the phase.
SORTKEYS is ignored for several catalog and directory table spaces

SHRLEVEL REFERENCE or CHANGE has no effect.

SORT No effect.

BUILD SHRLEVEL NONE resets RECOVER-pending status for indexes and, if the utility
job includes both COPYDDN and SORTKEYS, resets COPY-pending status for table
spaces at the end of the phase. SHRLEVEL REFERENCE or CHANGE has no effect.

SORTBLD No effect during the sort portion of the SORTBLD phase. During the build portion of
the SORTBLD phase, the effect is the same as for the BUILD phase.

LOG No effect.

SWITCH No effect. Under certain conditions, if TERM UTILITY is issued, it must complete
successfully; otherwise, objects might be placed in RECOVER-pending status.

Recovering a failed REORG job

If you terminate REORG SHRLEVEL NONE in the RELOAD phase, all SYSLGRNX records associated with
the reorganization are deleted. Use the RECOVER TABLESPACE utility to recover to the current point in
time. This action recovers the table space to its state before the failed reorganization.

Related concepts
“Reorganizing the catalog and directory” on page 592
You can run REORG TABLESPACE on the table spaces in the catalog database (DSNDB06) and on the
SCT02, SPT01, DBD01, SYSLGRNX, SYSDBDXA, SYSSPUXA, and SYSSPUXB table spaces in the directory
database (DSNDB01).
Related tasks
“Terminating an online utility” on page 44
You can terminate the execution of an active utility or release the resources that are associated with a
stopped utility.
Related reference
“Advisory or restrictive states” on page 975
To control access and help ensure data integrity, Db2 can set a restrictive or nonrestrictive (advisory)
status on certain objects. However, you can take steps to correct each status.

Restart of REORG TABLESPACE
You can restart a REORG TABLESPACE utility job.

By default, Db2 uses RESTART(CURRENT) when restarting REORG TABLESPACE jobs, with the following
exceptions:

• Jobs that are restarted in the SORT, BUILD, or SWITCH phase use RESTART(PHASE) by default.

612 Db2 12 for z/OS: Utility Guide and Reference

• Jobs with the SORTKEYS option that are restarted in the RELOAD, SORT, BUILD, or SORTBLD phase
always restart from the beginning of the RELOAD phase.

• Jobs with the SHRLEVEL REFERENCE, NOSYSREC, and SORTDATA options use RESTART(PHASE) to
restart at the beginning of the UNLOAD phase.

• Jobs with unload parallelism for REORG TABLESPACE SHRLEVEL NONE use RESTART(PHASE) to restart
at the beginning of the UNLOAD and RELOAD phases.

• Jobs that reorganize LOB table spaces use RESTART(PHASE).

If you restart a REORG job of one or more of the catalog or directory table spaces in the preceding list, you
cannot use RESTART(CURRENT).

If you restart REORG in the UTILINIT phase, it re-executes from the beginning of the phase. If REORG
abnormally terminates or system failure occurs while it is in the UTILTERM phase, you must restart the job
with RESTART(PHASE).

The following table provides information about restarting REORG TABLESPACE, depending on the phase
that REORG was in when the job stopped. For each phase of REORG and for each type of REORG
TABLESPACE (with SHRLEVEL NONE, with SHRLEVEL REFERENCE, and with SHRLEVEL CHANGE), the
following table indicates the types of restarts that are allowed (CURRENT and PHASE). A value of None
indicates that no restart is allowed. The "Data Sets Required" column lists the data sets that must exist to
perform the specified type of restart in the specified phase.

Table 92. REORG TABLESPACE utility restart information for SHRLEVEL NONE, REFERENCE, and CHANGE

Phase

Type of
restart
allowed for
SHRLEVEL
NONE

Type of
restart
allowed for
SHRLEVEL
REFERENCE

Type of
restart
allowed for
SHRLEVEL
CHANGE Required data sets Notes

UNLOAD CURRENT,
PHASE

CURRENT,
PHASE6

None SYSREC 7

RELOAD CURRENT,
PHASE

CURRENT,
PHASE6

None SYSREC 1, 2, 7

SORT CURRENT,
PHASE

CURRENT,
PHASE6

None None 2, 3, 7

BUILD CURRENT,
PHASE

CURRENT,
PHASE6

None None 2, 3, 4, 7

SORTBLD CURRENT,
PHASE

CURRENT,
PHASE6

None None 2, 7

LOG Phase does
not occur

Phase does
not occur6

None None 7

SWITCH Phase does
not occur

CURRENT,
PHASE

CURRENT,
PHASE

Originals and shadows 3, 5, 7

Chapter 28. REORG TABLESPACE 613

Table 92. REORG TABLESPACE utility restart information for SHRLEVEL NONE, REFERENCE, and CHANGE
(continued)

Phase

Type of
restart
allowed for
SHRLEVEL
NONE

Type of
restart
allowed for
SHRLEVEL
REFERENCE

Type of
restart
allowed for
SHRLEVEL
CHANGE Required data sets Notes

Note:

1. For None, if you specify NOSYSREC, restart is not possible, and you must execute the RECOVER
TABLESPACE utility for the table space or partition. For REFERENCE, if the REORG job includes both
SORTDATA and NOSYSREC, RESTART or RESTART(PHASE) restarts at the beginning of the UNLOAD phase.

2. If you specify SHRLEVEL NONE or SHRLEVEL REFERENCE, and the job includes the SORTKEYS option, use
RESTART or RESTART(PHASE) to restart at the beginning of the RELOAD phase.

3. You can restart the utility with RESTART or RESTART(PHASE). However, because this phase does not take
checkpoints, RESTART restarts from the beginning of the phase.

4. If you specify the PART option with REORG TABLESPACE, you cannot restart the utility at the beginning of
the BUILD phase if any nonpartitioning index is in a page set REBUILD-pending (PSRBD) status.

5. If you specify REORG TABLESPACE SHRLEVEL REFERENCE PART with one or more nonpartitioned indexes,
restart is allowed only in the SWITCH phase.

6. For REORG TABLESPACE with SHRLEVEL REFERENCE and PART, if a nonpartitioned index is defined on the
table space, REORG TABLESPACE cannot be restarted before the SWITCH phase.

7. FL 508 For a REORG TABLESPACE job (SHRLEVEL REFERENCE or CHANGE) that materializes a pending
MOVE TABLE operation (an ALTER TABLESPACE statement with the MOVE TABLE clause), the utility is not
restartable except in the UTILTERM phase. Alternatively, you can terminate and resubmit the job.

If you restart a REORG STATISTICS job by using RESTART CURRENT, inline statistics are not collected. To
update catalog statistics, run the RUNSTATS utility after the restarted job completes. Restarting a REORG
STATISTICS job with RESTART(PHASE) is conditional after executing UNLOAD PAUSE. To determine if
catalog table statistics are going to be updated, see the following table. This table shows whether or not
statistics are updated for REORG STATISTICS jobs according to the phase in which the job terminated and
the restart value that was used.

Table 93. Statistics collection for REORG TABLESPACE utility phase restart

Phase CURRENT PHASE

UTILINIT NO YES

UNLOAD NO YES

RELOAD NO YES

SORT NO NO

BUILD NO YES

SORTBLD NO YES

Related tasks
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.
“Restarting a utility after the output data set is full” on page 50

614 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html

If a utility job terminates with an out-of-space condition on the output data set, you might need to restart
the job at the last commit point.

Review of REORG TABLESPACE output
The output from the REORG TABLESPACE utility consists of a reorganized table space, partition, or a range
of partitions.

The following table summarizes the effect of REORG on a table space partition and on the corresponding
index partition.

Table 94. Summary of the results of REORG TABLESPACE according to the type of specification.

Specification Results

REORG TABLESPACE All data + entire partitioning index + all nonpartitioning indexes

REORG TABLESPACE
PART n

Data for PART n + PART n of the partitioning index + index entries for PART n
in all nonpartitioning indexes

REORG TABLESPACE
PART n1:n2

Data for PART n1 through n2 + PART n1 through n2 of the partitioning index +
index entries for those partitions in all nonpartitioning indexes

REORG TABLESPACE
SCOPE PENDING

Specified table space or partitions that are in REORG-pending status.

REORG SHRLEVEL
CHANGE PART and
SHRLEVEL REFERENCE
PART

Unloads and builds entire NPIs, so that the NPI is largely reorganized even
though only a part of the data is actually reorganized.

When reorganizing a segmented (non-UTS) table space, REORG leaves free pages and free space on each
page in accordance with the current values of the FREEPAGE and PCTFREE parameters. (You can set
those values by using the CREATE TABLESPACE, ALTER TABLESPACE, CREATE INDEX, or ALTER INDEX
statements). REORG leaves one free page after reaching the FREEPAGE limit for each table in the table
space. When reorganizing a nonsegmented table space, REORG leaves one free page after reaching the
FREEPAGE limit, regardless of whether the loaded records belong to the same or different tables.

After running REORG TABLESPACE
Certain activities might be required after you run the REORG TABLESPACE utility, depending on your
situation.

After a reorganization is complete, perform the following actions:

• If you have used LOG YES, consider taking an image copy of the reorganized table space or partition to:

– Provide a full image copy for recovery. This action prevents the need to process the log records that
are written during reorganization.

– Permit making incremental image copies later.

You might not need to take an image copy of a table space for which all the following statements are
true:

– The table space is relatively small.
– The table space is used only in read-only applications.
– The table space can be easily loaded again in the event of failure.

In addition, you do not need to take an image copy if you used COPYDDN or FCCOPYDDN to take an
inline image copy when you ran REORG.

• Use the RUNSTATS utility on the table space and its indexes if inline statistics were not collected, so
that the Db2 catalog statistics take into account the newly reorganized data, and SQL paths can be

Chapter 28. REORG TABLESPACE 615

selected with accurate information. You need to run RUNSTATS on nonpartitioning indexes only if you
reorganized a subset of the partitions.

• If you use REORG TABLESPACE SHRLEVEL CHANGE with a mapping table, you can drop the mapping
table and its index.

• If you use SHRLEVEL REFERENCE or CHANGE, and a table space, partition, or index resides in user-
managed data sets, you can delete the user-managed shadow data sets.

• If you specify DISCARD on a REORG of a table that is involved in a referential integrity set, you need
to run CHECK DATA for any affected referentially related objects that were placed in CHECK-pending
status.

Related reference
“COPY” on page 123
The COPY online utility creates copies of certain objects. These copies, called image copies, can later be
used for recovery.

Effects of running REORG TABLESPACE
Running the REORG TABLESPACE utility can have effects on version numbers and the version of the data,
control intervals, row formats, and table spaces that are defined with the NOT LOGGED attribute.

The effect of REORG TABLESPACE on table space versions

Db2 stores the range of used version numbers in the OLDEST_VERSION and CURRENT_VERSION columns
of one or more of the following catalog tables, depending on the object:

• SYSIBM.SYSTABLESPACE
• SYSIBM.SYSTABLESPART
• SYSIBM.SYSINDEXES
• SYSIBM.SYSINDEXPART

The OLDEST_VERSION column contains the oldest used version number, and the CURRENT_VERSION
column contains the current version number.

When you run REORG TABLESPACE, the utility sets all of the rows in the table or partition to the format of
the current object version. The utility also updates the range of used version numbers for indexes that are
defined with the COPY NO attribute. REORG TABLESPACE sets the OLDEST_VERSION column equal to the
CURRENT_VERSION column in the appropriate catalog row. These updated values indicate that only one
version is active. Db2 can then reuse all of the other version numbers.

Recycling of version numbers is required when all of the version numbers are being used. All version
numbers are being used when one of the following situations is true:

• The value in the CURRENT_VERSION column is one less than the value in the OLDEST_VERSION
column.

• The value in the CURRENT_VERSION column is 255 for table spaces or 15 for indexes, and the value in
the OLDEST_VERSION column is 0 or 1.

When REORG TABLESPACE runs, if a system page is missing for a table that is in version 0 format, the
utility adds a system page for version 0 of the table. When REORG TABLESPACE runs on a partitioned
table space that is at version 0, the utility adds missing version 0 system pages to each partition.

You can also run LOAD REPLACE, REBUILD INDEX, or REORG INDEX to recycle version numbers for
indexes that are defined with the COPY NO attribute. To recycle version numbers for indexes that are
defined with the COPY YES attribute or for table spaces, run MODIFY RECOVERY.

616 Db2 12 for z/OS: Utility Guide and Reference

The effect of REORG TABLESPACE on the control interval

When you run REORG TABLESPACE without the REUSE option and the target data set is managed by Db2,
Db2 deletes this data set before REORG processing begins. Db2 then redefines a new data set with a
control interval that matches the page size.

The effect of REORG TABLESPACE on row format

When you run REORG with the ROWFORMAT RRF option on a table space or partition that is in basic row
format, REORG converts that table space or partition to reordered row format. If the ROWFORMAT BRF
option is specified, existing basic row format table spaces are not converted to reordered row format. If
there is a table in the table space with an EDITPROC or VALIDPROC, the table space or partition remains
in basic row format after the REORG.

Important: ROWFORMAT is deprecated in Db2 12 for z/OS, meaning that its use is discouraged. Although
this keyword remains supported, support is likely to be removed eventually. See Deprecated function in
Db2 12 (Db2 for z/OS What's New?).

If you run REORG on a catalog or directory table space, the catalog or directory table space remains in
basic row format.

You can run REORG TABLESPACE on table spaces that contain some partitions in basic row format and
some partitions in reordered row format. In this case, the utility converts the partitions that are in basic
row format to reordered row format.

REORG TABLESPACE converts a undefined table space to reordered row format if both of the following
conditions are true:

• ROWFORMAT RRF is explicitly specified.
• The specified target is an entire undefined table space in basic row format.

In this case, Db2 updates the row format definition in the catalog and directory. No data sets are defined
for the table space.

The effect of REORG on table spaces that are defined with NOT LOGGED attribute

The following table shows the effect of REORG on table spaces that are defined with the NOT LOGGED
attribute.

Table 95. REORG parameters

LOAD REORG LOG
keyword

Table space logging
attribute Table space type What is logged

Table space
status after utility
completes

LOG YES NOT LOGGED Non-LOB LOG YES changes to
LOG NO

No pending status or
ICOPY-pending1

LOG YES NOT LOGGED LOB control information No pending status

LOG NO NOT LOGGED Non-LOB nothing No pending status or
ICOPY-pending1

LOG NO NOT LOGGED LOB nothing No pending status

Note:

1. The table space is set to ICOPY-pending status if the records are discarded and no pending status is the
records are not discarded.

Chapter 28. REORG TABLESPACE 617

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_deprecated.html
https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_deprecated.html

Related tasks
Removing in-use table space versions (Db2 Administration Guide)

Sample REORG TABLESPACE control statements
Use the sample control statements as models for developing your own REORG TABLESPACE control
statements.

Example 1: Reorganizing a table space.

The following control statement specifies that the REORG TABLESPACE utility is to reorganize table space
DSN8S12D in database DSN8D12A.

REORG TABLESPACE DSN8D12A.DSN8S12D

Example 2: Reorganizing a table space and specifying the unload data set

The following REORG TABLESPACE statement specifies that the utility is to reorganize table space
DSN8D81A.DSN8S81D. The DD name for the unload data set is UNLD, as specified by the UNLDDN option.

//STEP1 EXEC DSNUPROC,UID='IUJLU101.REORG',
// UTPROC='',
// SYSTEM='DSN'
//UTPRINT DD SYSOUT=*
//UNLD DD DSN=IUJLU101.REORG.STEP1.UNLD,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTWK01 DD DSN=IUJLU101.REORG.STEP1.SORTWK01,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTWK02 DD DSN=IUJLU101.REORG.STEP1.SORTWK02,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
REORG TABLESPACE (DSN8D12A.DSN8S12D)
 UNLDDN (UNLD)
//*

Example 3: Reorganizing a table space partition

The following control statement specifies that REORG TABLESPACE is to reorganize partition 3 of table
space DSN8D12A.DSN8S12E. The SORTDEVT option indicates the device type for the temporary data
sets that are to be dynamically allocated by the sort program.

REORG TABLESPACE DSN8D12A.DSN8S12E
 PART 3
 SORTDEVT SYSDA

Example 4: Reorganizing a table and using parallel index build

The following REORG TABLESPACE statement specifies that the utility is to reorganize table space
DSNDB04.DSN8S81D and to use a parallel index build to rebuild the indexes. The indexes are built in
parallel, because more than one index needs to be built and the job allocates the data sets that the sort
program needs. Note that you no longer need to specify SORTKEYS; it is the default.

The job allocates the sort work data sets in two groups, which limits the number of pairs of utility
subtasks to two. This example does not require UTPRINnn DD statements because it uses DSNUPROC to
invoke utility processing. DSNUPROC includes a DD statement that allocates UTPRINT to SYSOUT.

618 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_recycleversions.html

LOG NO specifies that records are not to be logged during the RELOAD phase. This option puts the table
space in COPY-pending status.

//SAMPJOB JOB …
//STEP1 EXEC DSNUPROC,UID='SAMPJOB.REORG',UTPROC='',SYSTEM='DSN'
//SYSREC DD DSN=SAMPJOB.REORG.STEP1.SYSREC,DISP=(NEW,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//* First group of sort work data sets for parallel index build
//SW01WK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW01WK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW01WK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//* Second group of sort work data sets for parallel index build
//SW02WK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW02WK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SW02WK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//* Sort work data sets for use by SORTDATA
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND)
//SYSIN DD *
REORG TABLESPACE DSNDB04.DSN8S12D LOG NO
/*

Example 5: Reorganizing a table while allowing read-write access

The following control statement specifies that REORG TABLESPACE is to reorganize table space
DSNDB04.DSN8S81E and to use a parallel index build to rebuild the indexes. The sort program
dynamically allocates sort work data sets. This example does not require UTPRINnn DD statements
because it uses DSNUPROC to invoke utility processing. DSNUPROC includes a DD statement that
allocates UTPRINT to SYSOUT. The SORTDEVT option indicates the device type for the temporary data
sets that are to be dynamically allocated by the sort program. The SHRLEVEL CHANGE option specifies
that while the table is being reorganized, users have read-write access. The name of the mapping table
is DSN8MAP. This table is used to map the RIDs of data records in the original copy of the area to the
corresponding RIDs in the shadow copy.

//SAMPJOB JOB …
//STEP1 EXEC DSNUPROC,UID='SAMPJOB.REORG',UTPROC='',SYSTEM='DSN'
//SYSCOPY DD UNIT=SYSDA,SPACE=(CYL,(10,20),,,ROUND),
// DSN=SAMPJOB,COPY,DISP=(NEW,CATLG,CATLG)
//SYSIN DD *
REORG TABLESPACE DSNDB04.DSN8S12E LOG NO SORTDEVT SYSDA SORTNUM 4
 SHRLEVEL CHANGE MAPPINGTABLE DSN8MAP
/*

Example 6: Specifying a deadline for the SWITCH phase while reorganizing a table

The following control statement specifies that REORG TABLESPACE is to reorganize table space
DSN8D81A.DSN8S12D. The DEADLINE option indicates that the deadline for start of the SWITCH phase
is eight hours from the start of the REORG job. The COPYDDN and RECOVERYDDN options indicate that
the utility is to take an image copy of the table space. Db2 is to write the primary image copy at the local
site to a data set that is defined by the MYCOPY1 DD statement and to write the primary image copy
at the recovery site to a data set that is defined by the MYCOPY2 DD statement. SHRLEVEL REFERENCE
indicates that access is restricted during reorganization.

REORG TABLESPACE DSN8D12A.DSN8S12D COPYDDN(MYCOPY1)
 RECOVERYDDN(MYCOPY2) SHRLEVEL REFERENCE
 DEADLINE CURRENT TIMESTAMP + 8 HOURS

Example 7: Setting a deadline for a REORG TABLESPACE job

Chapter 28. REORG TABLESPACE 619

The following control statement specifies that REORG TABLESPACE is to reorganize table space
DSN8D12A.DSN8S12D. The DEADLINE option indicates that the deadline for the start of the
SWITCH phase is eight hours from the start of the REORG job. The name of the mapping table is
DSN8810.MAP_TBL. The maximum amount of time for log processing in the read-only (last) iteration of
log processing is 240 seconds, as indicated by the MAXRO option. If Db2 is not reading the log quickly
enough after the applications write to the log, Db2 drains the write claim class after sending the LONGLOG
message to the operator. That draining takes place at least 900 seconds after the LONGLOG message
is sent, as indicated by the DELAY option. Db2 is also to take inline image copies for the local site and
recovery site, as indicated by the COPYDDN and RECOVERYDDN options.

REORG TABLESPACE DSN8D12A.DSN8S12D COPYDDN(MYCOPY1)
 RECOVERYDDN(MYCOPY2) SHRLEVEL CHANGE
 DEADLINE CURRENT TIMESTAMP + 8 HOURS
 MAPPINGTABLE DSN8C10.MAP_TBL MAXRO 240 LONGLOG DRAIN DELAY 900

Example 8: Reorganizing a range of table space partitions

The following control statement specifies that REORG TABLESPACE is to reorganize partitions 3 through 5
of table space DSN8D12A.DSN8S12E. The SORTDEVT option indicates the device type for the temporary
data sets that are to be dynamically allocated by the sort program. The SHRLEVEL NONE option indicates
that while the data is being unloaded, applications can read but can't write. While the data is being
reloaded, applications can have read-write access. SHRLEVEL NONE is the default. The COPYDDN option
indicates that the utility is to take an image copy of the table space and to write the primary image copy to
the data set that is defined by the SYSCOPY DD statement.

REORG TABLESPACE DSN8D12A.DSN8S12E
 PART 3:5
 SORTDEVT SYSDA
 SHRLEVEL NONE
 COPYDDN SYSCOPY

Example 9: Reorganizing a partition and updating the statistics

The following control statement specifies that REORG TABLESPACE is to reorganize partition 3 of table
space DSN8D12A. DSN8S12E. The STATISTICS option indicates that the utility is also to update statistics
in the catalog for that partition. Note that the STATISTICS option is not valid for LOB table spaces.

REORG TABLESPACE DSN8D12A.DSN8S12E
 STATISTICS PART 3

Example 10: Reorganizing a table space and reporting table space and index statistics

The following control statement specifies that REORG TABLESPACE is to reorganize table space
DSN8D12A.DSN8S12E. The SORTDATA option indicates that the data is to be unloaded and sorted in
clustering order. This option is the default and does not need to be specified. The STATISTICS, TABLE,
INDEX, and REPORT YES options indicate that the utility is also to report catalog statistics for all tables in
the table space and for all indexes that are defined on those tables. The FREQVAL, NUMCOLS, and COUNT
options indicate that Db2 is to collect 10 frequent values on the first key column of the index. UPDATE
NONE indicates that the catalog tables are not to be updated. This option requires that REPORT YES also
be specified. Because both STATISTICS and INDEX are specified, the utility also collects statistics on the
values in the key columns of indexes.

REORG TABLESPACE DSN8D12A.DSN8S12E SORTDATA STATISTICS
 TABLE(ALL)
 INDEX(ALL) FREQVAL NUMCOLS 1
 COUNT 10 REPORT YES UPDATE NONE

620 Db2 12 for z/OS: Utility Guide and Reference

Example 11: Determining whether a table space should be reorganized

The following REORG TABLESPACE statement specifies that the utility is to report if the OFFPOSLIMIT and
INDREFLIMIT values for partition 11 of table space DBHR5201.TPHR5201 exceed the specified values
(11 for OFFPOSLIMIT and 15 for INDREFLIMIT).

//STEP1 EXEC DSNUPROC,UID='HUHRU252.REORG2',TIME=1440,
// UTPROC='',
// SYSTEM='DSN'
//SYSREC DD DSN=HUHRU252.REORG2.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSCOPY DD DSN=HUHRU252.REORG2.STEP1.SYSCOPY,DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
// SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
REORG TABLESPACE DBHR5201.TPHR5201 PART 11
 NOSYSREC
 REPORTONLY
 SHRLEVEL CHANGE MAPPINGTABLE ADMF001.MAP1
 COPYDDN (SYSCOPY)
 OFFPOSLIMIT 11 INDREFLIMIT 15
/*

On successful completion, Db2 returns output that is similar to the following sample output. This sample
output shows that the limits have been met.

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = HUHRU252.REORG2
DSNU1044I DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I DSNUGUTC - REORG TABLESPACE DBHR5201.TPHR5201 PART 11 NOSYSREC REPORTONLY SHRLEVEL CHANGE
MAPPINGTABLE ADMF001.MAP1 COPYDDN(SYSCOPY) OFFPOSLIMIT 11 INDREFLIMIT 15
DSNU286I = DSNURLIM - REORG TABLESPACE DBHR5201.TPHR5201 OFFPOSLIMIT SYSINDEXPART ROWS
* CREATOR.IXNAME : ADMF001.IPHR5201
 CREATOR.TBNAME : ADMF001.TBHR5201
 PART: 1 CARDF: 6.758E+03 FAROFFPOSF: 2.892E+03 NEAROFFPOSF: 8.18E+02 STATSTIME:
2003-04-11
13.32.06
DSNU287I = DSNURLIM - REORG TABLESPACE DBHR5201.TPHR5201 INDREFLIMIT SYSTABLEPART
ROWS
 DBNAME .TSNAME PART CARD FARINDREF NEARINDREF STATSTIME
 DBHR5201.TPHR5201 1 6758 0 0 2003-04-11-13.32.06

DSNU289I = DSNURLIM - REORG LIMITS HAVE BEEN MET
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 12: Conditionally reorganizing a table space

The following example RUNSTATS statement specifies that the utility is to update space statistics in the
catalog for table space DBHR5201.TPHR5201. This RUNSTATS job ensures that the space statistics for
this table space are current. The subsequent REORG TABLESPACE control statement specifies that if any
of the values for OFFPOSLIMIT or INDREFLIMIT exceed 9, the utility is to reorganize the table space.

//**
//* COMMENT: UPDATE STATISTICS
//**
//STEP1 EXEC DSNUPROC,UID='HUHRU252.REORG1',TIME=1440,
// UTPROC='',
// SYSTEM='DSN'
//SYSREC DD DSN=HUHRU252.REORG1.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
// SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
RUNSTATS TABLESPACE DBHR5201.TPHR5201
 UPDATE SPACE
/*
//**
//* COMMENT: REORG THE TABLESPACE
//**
//STEP2 EXEC DSNUPROC,UID='HUHRU252.REORG1',TIME=1440,
// UTPROC='',
// SYSTEM='DSN'

Chapter 28. REORG TABLESPACE 621

//SYSREC DD DSN=HUHRU252.REORG1.STEP1.SYSREC,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSCOPY1 DD DSN=HUHRU252.REORG1.STEP1.SYSCOPY1,
// DISP=(MOD,CATLG,CATLG),UNIT=SYSDA,
// SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
REORG TABLESPACE DBHR5201.TPHR5201
 SHRLEVEL CHANGE MAPPINGTABLE MAP1
 COPYDDN(SYSCOPY1)
 OFFPOSLIMIT 9 INDREFLIMIT 9
/*

On successful completion, Db2 returns output for the REORG TABLESPACE job that is similar to the output
in the following sample output.

DSNU050I DSNUGUTC - REORG TABLESPACE DBHR5201.TPHR5201 SHRLEVEL CHANGE MAPPINGTABLE
MAP1 COPYDDN(SYSCOPY1)
OFFPOSLIMIT 9 INDREFLIMIT 9
DSNU286I = DSNURLIM - REORG TABLESPACE DBHR5201.TPHR5201 OFFPOSLIMIT SYSINDEXPART ROWS
* CREATOR.IXNAME : ADMF001.IPHR5201
CREATOR.TBNAME : ADMF001.TBHR5201
 PART: 1 CARDF: 3.6E+01 FAROFFPOSF: 0.0E0 NEAROFFPOSF: 1.2E+01
STATSTIME: 2002-05-28-16.22.18
 CREATOR.IXNAME : ADMF001.IPHR5201
 CREATOR.TBNAME : ADMF001.TBHR5201
 PART: 2 CARDF: 5.0E+00 FAROFFPOSF: 0.0E0 NEAROFFPOSF: 0.0E0
STATSTIME: 2002-05-28-16.22.18
...
* CREATOR.IXNAME : ADMF001.IPHR5201
 CREATOR.TBNAME : ADMF001.TBHR5201
 PART: 11 CARDF: 6.758E+03 FAROFFPOSF: 2.892E+03 NEAROFFPOSF: 8.18E+02
STATSTIME: 2002-05-28-16.22.18
DSNU287I = DSNURLIM - REORG TABLESPACE DBHR5201.TPHR5201 INDREFLIMIT SYSTABLEPART ROWS
 DBNAME .TSNAME PART CARD FARINDREF NEARINDREF STATSTIME
 DBHR5201.TPHR5201 1 36 0 0 2002-05-28-16.22.18
 DBHR5201.TPHR5201 2 5 0 0 2002-05-28-16.22.18
 DBHR5201.TPHR5201 3 54 0 0 2002-05-28-16.22.18
 DBHR5201.TPHR5201 4 30 0 0 2002-05-28-16.22.18
 DBHR5201.TPHR5201 5 21 0 0 2002-05-28-16.22.18
 DBHR5201.TPHR5201 6 5 0 0 2002-05-28-16.22.18
 DBHR5201.TPHR5201 7 4 0 0 2002-05-28-16.22.18
 DBHR5201.TPHR5201 8 35 0 0 2002-05-28-16.22.18
 DBHR5201.TPHR5201 9 25 0 0 2002-05-28-16.22.18
 DBHR5201.TPHR5201 10 1 0 0 2002-05-28-16.22.18
 DBHR5201.TPHR5201 11 6758 0 0 2002-05-28-16.22.18
DSNU289I = DSNURLIM - REORG LIMITS HAVE BEEN MET
DSNU290I = DSNURLIM - REORG WILL BE PERFORMED
DSNU252I DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=6985 FOR
TABLESPACE DBHR5201.TPHR5201
DSNU250I DSNUGSRT - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:01
DSNU304I = DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=6985 FOR TABLE
ADMF001.TBHR5201
DSNU302I DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=6985
DSNU300I DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:29
DSNU042I DSNUGSOR - SORT PHASE STATISTICS -
 NUMBER OF RECORDS=34925
 ELAPSED TIME=00:00:00

DSNU348I = DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=36 FOR INDEX ADMF001.IPHR5201 PART 1
DSNU348I = DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=5 FOR INDEX ADMF001.IPHR5201 PART 2
...
DSNU349I = DSNURBXA - BUILD PHASE STATISTICS - NUMBER OF KEYS=6985 FOR INDEX ADMF001.IUHR5210
DSNU258I DSNURBXD - BUILD PHASE STATISTICS - NUMBER OF INDEXES=5
DSNU259I DSNURBXD - BUILD PHASE COMPLETE, ELAPSED TIME=00:00:18
DSNU386I DSNURLGD - LOG PHASE STATISTICS. NUMBER OF ITERATIONS = 1, NUMBER OF LOG
RECORDS = 194
DSNU385I DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:01:10
DSNU400I DSNURBID - COPY PROCESSED FOR TABLESPACE DBHR5201.TPHR5201
 NUMBER OF PAGES=1073
 AVERAGE PERCENT FREE SPACE PER PAGE = 14.72
 PERCENT OF CHANGED PAGES =100.00
 ELAPSED TIME=00:01:58
DSNU387I DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:01:05
DSNU428I DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DBHR5201.TPHR5201

Example 13: Reorganizing a table space after waiting for SQL statements to complete.

622 Db2 12 for z/OS: Utility Guide and Reference

The following REORG TABLESPACE statement specifies that the utility is to reorganize the table space
in the REORG_TBSP list, which is defined in the preceding LISTDEF utility control statement. Before
reorganizing the table space, REORG TABLESPACE is to wait for 30 seconds for SQL statements to finish
adding or changing data. This interval is indicated by the DRAIN_WAIT option. If the SQL statements do
not finish, the utility is to try again up to four times, as indicated by the RETRY option. The utility is to wait
10 seconds between retries, as indicated by the RETRY_DELAY option.

The TEMPLATE utility control statements define the data set characteristics for the data sets that are
to be dynamically allocated during the REORG TABLESPACE job. The OPTIONS utility control statement
indicates that the TEMPLATE statements and LISTDEF statement are to run in PREVIEW mode.

//STEP1 EXEC DSNUPROC,UID='HUHRU257.REORG',TIME=1440,
// UTPROC='',
// SYSTEM='DSN'
//UTPRINT DD SYSOUT=*
//SYSIN DD *
 OPTIONS PREVIEW
 TEMPLATE CPYTMP UNIT(SYSDA)
 DSN(HUHRU257.REORG.T&TI..SYSCOPY1)
 TEMPLATE SREC
 UNIT(SYSDA) DISP(NEW,CATLG,CATLG)
 DSN(HUHRU257.REORG.&ST..SREC)
 TEMPLATE SDISC
 UNIT(SYSDA) DISP(NEW,CATLG,CATLG)
 DSN(HUHRU257.REORG.&ST..SDISC)
 TEMPLATE SPUNCH
 UNIT(SYSDA) DISP(NEW,CATLG,CATLG)
 DSN(HUHRU257.REORG.&ST..SPUNCH)
 LISTDEF REORG_TBSP INCLUDE TABLESPACE DBHR5701.TPHR5701
 OPTIONS OFF
 REORG TABLESPACE LIST REORG_TBSP
 DRAIN_WAIT 30 RETRY 4 RETRY_DELAY 10
 STATISTICS
 TABLE (ALL) SAMPLE 60
 INDEX (ALL FREQVAL NUMCOLS 2 COUNT 15)
 SHRLEVEL CHANGE MAPPINGTABLE MAP5702
 LONGLOG DRAIN MAXRO DEFER DELAY 30
 COPYDDN (CPYTMP)
 SORTDEVT SYSDA SORTNUM 8
 PUNCHDDN SPUNCH
 DISCARDDN SDISC
 UNLDDN SREC

On successful completion, Db2 returns output similar to the output in the following sample output.

DSNU000I 280 14:54:37.27 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = HUHRU257.REORG
DSNU1044I 280 14:54:37.43 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 280 14:54:37.45 DSNUGUTC - OPTIONS PREVIEW
DSNU1000I 280 14:54:37.45 DSNUZODR - PROCESSING CONTROL STATEMENTS IN PREVIEW MODE
DSNU1035I 280 14:54:37.45 DSNUZODR - OPTIONS STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.45 DSNUGUTC - TEMPLATE CPYTMP UNIT(SYSDA) DSN(HUHRU257.REORG.STEP12.SYSCOPY1)
DSNU1035I 280 14:54:37.45 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.46 DSNUGUTC - TEMPLATE SREC UNIT(SYSDA) DISP(NEW, CATLG, CATLG) DSN(
HUHRU257.REORG.&ST..SREC)
DSNU1035I 280 14:54:37.46 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.46 DSNUGUTC - TEMPLATE SDISC UNIT(SYSDA) DISP(NEW, CATLG, CATLG) DSN(
HUHRU257.REORG.&ST..SDISC)
DSNU1035I 280 14:54:37.46 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.46 DSNUGUTC - TEMPLATE SPUNCH UNIT(SYSDA) DISP(NEW, CATLG, CATLG) DSN(
HUHRU257.REORG.&ST..SPUNCH)
DSNU1035I 280 14:54:37.46 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.46 DSNUGUTC - TEMPLATE SUT1 UNIT(SYSDA) DISP(NEW, DELETE, CATLG) DSN(
HUHRU257.REORG.&ST..SUT1)
DSNU1035I 280 14:54:37.46 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.46 DSNUGUTC - TEMPLATE SOUT UNIT(SYSDA) DISP(NEW, DELETE, CATLG) DSN(
HUHRU257.REORG.&ST..SOUT)
DSNU1035I 280 14:54:37.46 DSNUJTDR - TEMPLATE STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.46 DSNUGUTC - LISTDEF REORG_TBSP INCLUDE TABLESPACE DBHR5701.TPHR5701
DSNU1035I 280 14:54:37.47 DSNUILDR - LISTDEF STATEMENT PROCESSED SUCCESSFULLY
DSNU1020I @ 280 14:54:37.47 DSNUILSA - EXPANDING LISTDEF REORG_TBSP
DSNU1021I @ 280 14:54:37.47 DSNUILSA - PROCESSING INCLUDE CLAUSE TABLESPACE DBHR5701.TPHR5701
DSNU1022I @ 280 14:54:37.47 DSNUILSA - CLAUSE IDENTIFIES 1 OBJECTS
DSNU1023I @ 280 14:54:37.47 DSNUILSA - LISTDEF REORG_TBSP CONTAINS 1 OBJECTS
DSNU1010I 280 14:54:37.47 DSNUGPVV - LISTDEF REORG_TBSP EXPANDS TO THE FOLLOWING OBJECTS:
 LISTDEF REORG_TBSP -- 00000001 OBJECTS
 INCLUDE TABLESPACE DBHR5701.TPHR5701

Chapter 28. REORG TABLESPACE 623

DSNU050I 280 14:54:37.47 DSNUGUTC - OPTIONS OFF
DSNU1035I 280 14:54:37.47 DSNUZODR - OPTIONS STATEMENT PROCESSED SUCCESSFULLY
DSNU050I 280 14:54:37.47 DSNUGUTC - REORG TABLESPACE LIST REORG_TBSP SHRLEVEL CHANGE MAPPINGTABLE
MAP5702
LONGLOG DRAIN MAXRO DEFER DELAY 30 DRAIN_WAIT 30 RETRY 4 RETRY_DELAY 10 COPYDDN(CPYTMP) SORTKEYS
SORTDEVT SYSDA
SORTNUM 8 PUNCHDDN SPUNCH DISCARDDN SDISC UNLDDN SREC WORKDDN(SUT1, SOUT) STATISTICS TABLE(ALL) SAMPLE
60 INDEX(ALL
 KEYCARD FREQVAL NUMCOLS 2 COUNT 15)
DSNU1033I 280 14:54:37.48 DSNUGULM - PROCESSING LIST ITEM: TABLESPACE DBHR5701.TPHR5701
DSNU1038I 280 14:54:42.97 DSNUGDYN - DATASET ALLOCATED. TEMPLATE=CPYTMP
 DDNAME=SYS00001
 DSN=HUHRU257.REORG.STEP12.SYSCOPY1
DSNU397I 280 14:54:43.01 DSNURPCT - NUMBER OF TASKS CONSTRAINED BY VIRTUAL STORAGE
DSNU397I 280 14:54:43.01 DSNURPCT - NUMBER OF TASKS CONSTRAINED BY CPUS
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR
TABLESPACE
DBHR5701.TPHR5701 PART 1
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR
TABLESPACE
DBHR5701.TPHR5701 PART 2
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR
TABLESPACE
DBHR5701.TPHR5701 PART 3
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR
TABLESPACE
DBHR5701.TPHR5701 PART 4
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR
TABLESPACE
DBHR5701.TPHR5701 PART 5
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR
TABLESPACE
DBHR5701.TPHR5701 PART 6
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR
TABLESPACE
DBHR5701.TPHR5701 PART 7
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR
TABLESPACE
DBHR5701.TPHR5701 PART 8
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR
TABLESPACE
DBHR5701.TPHR5701 PART 9
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=0 FOR
TABLESPACE
DBHR5701.TPHR5701 PART 10
DSNU251I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=2520 FOR
TABLESPACE
DBHR5701.TPHR5701 PART 11
DSNU252I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE STATISTICS - NUMBER OF RECORDS UNLOADED=2520 FOR
TABLESPACE
DBHR5701.TPHR5701
DSNU250I 280 14:54:43.40 DSNUGSRT - UNLOAD PHASE COMPLETE, ELAPSED TIME=00:00:00
DSNU395I 280 14:54:43.95 DSNURPIB - INDEXES WILL BE BUILT IN PARALLEL, NUMBER OF TASKS = 6
DSNU397I 280 14:54:43.95 DSNURPIB - NUMBER OF TASKS CONSTRAINED BY VIRTUAL STORAGE
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE
ADMF001.TBHR5701 PART=1
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE
ADMF001.TBHR5701 PART=2
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE
ADMF001.TBHR5701 PART=3
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE
ADMF001.TBHR5701 PART=4
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE
ADMF001.TBHR5701 PART=5
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE
ADMF001.TBHR5701 PART=6
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE
ADMF001.TBHR5701 PART=7
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE
ADMF001.TBHR5701 PART=8
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE
ADMF001.TBHR5701 PART=9
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=0 FOR TABLE
ADMF001.TBHR5701
PART=10
DSNU303I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=2520 FOR TABLE
ADMF001.TBHR5701
PART=11
DSNU304I @ 280 14:55:42.47 DSNURWT - (RE)LOAD PHASE STATISTICS - NUMBER OF RECORDS=2520 FOR TABLE
ADMF001.TBHR5701
DSNU302I 280 14:55:42.48 DSNURILD - (RE)LOAD PHASE STATISTICS - NUMBER OF INPUT RECORDS PROCESSED=2520
DSNU300I 280 14:55:42.48 DSNURILD - (RE)LOAD PHASE COMPLETE, ELAPSED TIME=00:00:59

624 Db2 12 for z/OS: Utility Guide and Reference

DSNU394I @ 280 14:55:42.69 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=2520 FOR INDEX
ADMF001.IXHR5702
DSNU394I @ 280 14:55:42.77 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=2520 FOR INDEX
ADMF001.IXHR5704
DSNU394I @ 280 14:55:42.83 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=2520 FOR INDEX
ADMF001.IXHR5706
DSNU393I @ 280 14:55:42.63 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=2520 FOR INDEX
ADMF001.IPHR5701 PART
11
DSNU394I @ 280 14:55:42.73 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=2520 FOR INDEX
ADMF001.IUHR5710
DSNU394I @ 280 14:55:42.82 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=2520 FOR INDEX
ADMF001.IXHR5703
DSNU394I @ 280 14:55:42.94 DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=2520 FOR INDEX
ADMF001.IXHR5705
DSNU391I 280 14:55:43.15 DSNURPTB - SORTBLD PHASE STATISTICS. NUMBER OF INDEXES = 7
DSNU392I 280 14:55:43.15 DSNURPTB - SORTBLD PHASE COMPLETE, ELAPSED TIME = 00:00:00
DSNU386I 280 14:57:33.94 DSNURLGD - LOG PHASE STATISTICS. NUMBER OF ITERATIONS = 23, NUMBER OF LOG
RECORDS = 0
DSNU385I 280 14:57:33.94 DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:01:50
DSNU400I 280 14:57:33.95 DSNURBID - COPY PROCESSED FOR TABLESPACE DBHR5701.TPHR5701
 NUMBER OF PAGES=394
 AVERAGE PERCENT FREE SPACE PER PAGE = 13.70
 PERCENT OF CHANGED PAGES =100.00
 ELAPSED TIME=00:02:50
DSNU387I 280 14:57:35.53 DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:01
DSNU428I 280 14:57:35.54 DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DBHR5701.TPHR5701
DSNU610I @ 280 14:57:36.78 DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR DBHR5701.TPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:36.78 DSNUSUPT - SYSTABSTATS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:36.85 DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:36.85 DSNUSUTB - SYSTABLES CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:36.92 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:36.93 DSNUSUTS - SYSTABLESPACE CATALOG UPDATE FOR DBHR5701.TPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.42 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.44 DSNUSUPI - SYSINDEXSTATS CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.45 DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.45 DSNUSUPD - SYSCOLDISTSTATS CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.46 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL
DSNU610I @ 280 14:57:37.46 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL
DSNU610I @ 280 14:57:37.47 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL
SNU610I @ 280 14:57:37.47 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL
DSNU610I @ 280 14:57:37.48 DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL
DSNU610I @ 280 14:57:37.48 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.48 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.54 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL
DSNU610I @ 280 14:57:37.54 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL
DSNU610I @ 280 14:57:37.57 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL
DSNU610I @ 280 14:57:37.57 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL
DSNU610I @ 280 14:57:37.60 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL
DSNU610I @ 280 14:57:37.60 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL
DSNU610I @ 280 14:57:37.63 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL
DSNU610I @ 280 14:57:37.63 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL
DSNU610I @ 280 14:57:37.66 DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL
DSNU610I @ 280 14:57:37.66 DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL
DSNU610I @ 280 14:57:37.71 DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I @ 280 14:57:37.71 DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL
DSNU610I @ 280 14:57:37.72 DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL
DSNU610I @ 280 14:57:37.72 DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL
DSNU610I @ 280 14:57:37.73 DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL
DSNU610I @ 280 14:57:37.74 DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL
DSNU620I @ 280 14:57:37.74 DSNUSEOF - RUNSTATS CATALOG TIMESTAMP = 2010-10-07-14.54.43.844498
DSNU010I 280 14:57:42.23 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

DSNU394I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IXHR5706
DSNU394I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IXHR5705
DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL
DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL
DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5702 SUCCESSFUL
 DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL
DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL
DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5705 SUCCESSFUL
DSNU620I = DSNURDRI - RUNSTATS CATALOG TIMESTAMP = 2002-08-05-16.25.21.292235
DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL
DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL
DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5703 SUCCESSFUL
DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL
DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL
DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL

Chapter 28. REORG TABLESPACE 625

DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5706 SUCCESSFUL
DSNU620I = DSNURDRI - RUNSTATS CATALOG TIMESTAMP = 2002-08-05-16.25.22.288665
DSNU393I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IPHR5701 PART 11
DSNU394I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IPHR5701
DSNU394I = DSNURBXA - SORTBLD PHASE STATISTICS - NUMBER OF KEYS=331 FOR INDEX ADMF001.IXHR5704
DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I = DSNUSUPI - SYSINDEXSTATS CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I = DSNUSUPD - SYSCOLDISTSTATS CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I = DSNUSUPC - SYSCOLSTATS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IPHR5701 SUCCESSFUL
DSNU610I = DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL
DSNU610I = DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL
DSNU610I = DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR ADMF001.TBHR5701 SUCCESSFUL
DSNU610I = DSNUSUCD - SYSCOLDIST CATALOG UPDATE FOR ADMF001.IXHR5704 SUCCESSFUL
DSNU620I = DSNURDRI - RUNSTATS CATALOG TIMESTAMP = 2002-08-05-16.25.20.886803
DSNU391I DSNURPTB - SORTBLD PHASE STATISTICS. NUMBER OF INDEXES = 7
DSNU392I DSNURPTB - SORTBLD PHASE COMPLETE, ELAPSED TIME = 00:00:04
DSNU377I = DSNURLOG - IN REORG WITH SHRLEVEL CHANGE, THE LOG IS
BECOMING LONG, MEMBER= , UTILID=HUHRU257.REORG
DSNU377I = DSNURLOG - IN REORG WITH SHRLEVEL CHANGE, THE LOG IS
BECOMING LONG, MEMBER= , UTILID=HUHRU257.REORG
...
DSNU377I = DSNURLOG - IN REORG WITH SHRLEVEL CHANGE, THE LOG IS
BECOMING LONG, MEMBER= , UTILID=HUHRU257.REORG
DSNU1122I = DSNURLOG - JOB T3161108 PERFORMING REORG
WITH UTILID HUHRU257.REORG UNABLE TO DRAIN DBHR5701.TPHR5701.
RETRY 1 OF 4 WILL BE ATTEMPTED IN 10 SECONDS
 DSNU1122I = DSNURLOG - JOB T3161108 PERFORMING REORG
 WITH UTILID HUHRU257.REORG UNABLE TO DRAIN DBHR5701.TPHR5701.
RETRY 2 OF 4 WILL BE ATTEMPTED IN 10 SECONDS
DSNU386I DSNURLGD - LOG PHASE STATISTICS. NUMBER OF ITERATIONS = 32, NUMBER OF LOG RECORDS = 2288
DSNU385I DSNURLGD - LOG PHASE COMPLETE, ELAPSED TIME = 00:03:43
DSNU400I DSNURBID - COPY PROCESSED FOR TABLESPACE DBHR5701.TPHR5701
 NUMBER OF PAGES=377
 AVERAGE PERCENT FREE SPACE PER PAGE = 5.42
 PERCENT OF CHANGED PAGES =100.00
 ELAPSED TIME=00:04:02
DSNU387I DSNURSWT - SWITCH PHASE COMPLETE, ELAPSED TIME = 00:00:02
DSNU428I DSNURSWT - DB2 IMAGE COPY SUCCESSFUL FOR TABLESPACE DBHR5701.TPHR5701
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN
CODE=0

Example 14: Using a mapping table

In the following example, a mapping table and mapping table index are created. Then, a REORG
TABLESPACE job uses the mapping table, and finally the mapping table is dropped. Some parts of this job
use the EXEC SQL utility to execute dynamic SQL statements.

The first EXEC SQL control statement contains the SQL statements that create a mapping table that is
named MYMAPPING_TABLE. The second EXEC SQL control statement contains the SQL statements that
create mapping index MYMAPPING_INDEX on the table MYMAPPING_TABLE.

The REORG TABLESPACE control statement then specifies that the REORG TABLESPACE utility is to
reorganize table space DSN8D81P.DSN8S81C and to use mapping table MYMAPPING_TABLE.

Finally, the third EXEC SQL statement contains the SQL statements that drop MYMAPPING_TABLE.

EXEC SQL
 CREATE TABLE MYMAPPING_TABLE
 (TYPE CHAR(01) NOT NULL,
 SOURCE_RID CHAR(07) NOT NULL,

 TARGET_XRID CHAR(11) NOT NULL,

 LRSN CHAR(10) NOT NULL)

 IN DSN8D81P.DSN8S81Q
 CCSID EBCDIC
ENDEXEC

626 Db2 12 for z/OS: Utility Guide and Reference

EXEC SQL
 CREATE UNIQUE INDEX MYMAPPING_INDEX
 ON MYMAPPING_TABLE
 (SOURCE_RID ASC,
 TYPE,
 TARGET_XRID,
 LRSN)
 USING STOGROUP DSN8G710
 PRIQTY 120 SECQTY 20
 ERASE NO
 BUFFERPOOL BP0
 CLOSE NO
ENDEXEC
REORG TABLESPACE DSN8D81P.DSN8S81C
 COPYDDN(COPYDDN)
 SHRLEVEL CHANGE
 DEADLINE CURRENT_TIMESTAMP+8 HOURS
 MAPPINGTABLE MYMAPPING_TABLE
 MAXRO 240 LONGLOG DRAIN DELAY 900
 SORTDEVT SYSDA SORTNUM 4
 STATISTICS TABLE(ALL)
 INDEX(ALL)
EXEC SQL
 DROP TABLE MYMAPPING_TABLE
ENDEXEC

Example 15: Discarding records from one table while reorganizing a table space

The following REORG TABLESPACE statement specifies that the utility is to reorganize table space
DSN8D51A.DSN8S51E. During reorganization, records in table DSN8510.EMP are discarded if they have
the value D11 in the WORKDEPT field. This discard criteria is specified in the WHEN clause that follows
the DISCARD option. Because a SYSDISC DD statement is included in the JCL, any discarded rows are to
be written to the data set that is identified by this DD statement.

The COPYDDN option specifies that during the REORG, Db2 is also to take an inline copy of the table
space. This image copy is to be written to the data set that is identified by the SYSCOPY DD statement.

//REORGDIS EXEC DSNUPROC,TIME=1440,
 // UTPROC='',
 // SYSTEM='DSN',UID='REORGDIS.EMP'
 //SYSREC DD DISP=(NEW,CATLG,CATLG),
 // DSN=SYSADM.REORGDIS.SYSREC,
 // UNIT=SYSDA,SPACE=(TRK,(15,15))
 //SYSDISC DD DISP=(NEW,CATLG,CATLG),
 // DSN=SYSADM.REORGDIS.SYSDISC,
 // UNIT=SYSDA,SPACE=(TRK,(15,15))
 //SYSPUNCH DD DISP=(NEW,CATLG,CATLG),
 // DSN=SYSADM.REORGDIS.SYSPUNCH,
 // UNIT=SYSDA,SPACE=(TRK,(15,15))
 //SYSCOPY DD DISP=(NEW,CATLG,CATLG),
 // UNIT=SYSDA,SPACE=(TRK,(30,30)),
 // DSN=SYSADM.DSN8D51A.DSN8S51E.COPY
 //SYSIN DD *
 REORG TABLESPACE
 DSN8D81A.DSN8S81E
 DISCARD
 FROM TABLE DSN8810.EMP
 WHEN (WORKDEPT = 'D11')
 SHRLEVEL NONE COPYDDN SYSCOPY

Example 16: Discarding records from multiple tables while reorganizing a table space

The following REORG TABLESPACE statement specifies that the utility is to reorganize table space
DBKC0501.TLKC0501. During reorganization, the following records are discarded:

• Records in table TBKC0501 that have a value in the QT_INV_TRANSACTION column that is less than or
equal to 700, and a value in the NO_DEPT column that is equal to X'33303230'.

Chapter 28. REORG TABLESPACE 627

• Records in table TBKC0502 that have a value in the NO_WORK_CENTER column that is equal to either
X'333031303120' or X'333032303620'.

This discard criteria is specified with the DISCARD option. Any discarded rows are to be written to the
SYSDISC data set, as specified by the DISCARDDN option.

//STEP1 EXEC DSNUPROC,UID='IUKCU105.REORG2',
// UTPROC='',
// SYSTEM='SSTR'
//UTPRINT DD SYSOUT=*
//SYSDISC DD DSN=IUKCU105.REORG2.STEP1.SYSDISC,
// DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(2000,(20,20),,,ROUND),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2400)
//SYSREC DD DSN=IUKCU105.REORG2.STEP1.SYSREC,
// DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSCOPY DD DSN=IUKCU105.REORG2.STEP1.SYSCOPY,
// DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//LOADSTMT DD DSN=IUKCU105.REORG2.STEP1.SYSPUNCH,
// DISP=(MOD,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
 REORG TABLESPACE DBKC0501.TLKC0501 SHRLEVEL REFERENCE
 PUNCHDDN LOADSTMT DISCARDDN SYSDISC
 UNLOAD CONTINUE
 DISCARD
 FROM TABLE TBKC0501
 WHEN (QT_INV_TRANSACTION <= 700 AND
 NO_DEPT = X'33303230')
 FROM TABLE TBKC0502
 WHEN (NO_WORK_CENTER = X'333031303120' OR
 NO_WORK_CENTER = X'333032303620')
/*

Example 17: Reorganizing only those partitions that are in REORG-pending status

The following REORG TABLESPACE statement specifies that the utility is to reorganize only those
partitions of table space DBKQAA01.TPKQAA01 that are in the range from 2 to 10 and are in REORG-
pending status.

//STEP1 EXEC DSNUPROC,UID='JUKQU1AA.REORG6',
// UTPROC='',SYSTEM='SSTR'
//SYSREC DD DSN=JUKQU1AA.REORG6.STEP1.SYSREC,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSCOPY DD DSN=JUKQU1AA.REORG6.STEP1.SYSCOPY,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSUT1 DD DSN=JUKQU1AA.REORG6.STEP1.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=JUKQU1AA.REORG6.STEP1.SORTOUT,
// DISP=(MOD,DELETE,CATLG),UNIT=SYSDA,
// SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
 REORG TABLESPACE DBKQAA01.TPKQAA01 SCOPE PENDING PART 2:10
/*

Example 18: Creating a FlashCopy image copy with REORG TABLESPACE

The following REORG TABLESPACE utility control statement reorganizes table space DSN8SA1D and
creates a FlashCopy image copy.

//SYSADMA JOB (ACCOUNT),'NAME',NOTIFY=&SYSUID
//*
//UTIL EXEC DSNUPROC,SYSTEM=VA1A,UID='TEMP',UTPROC=''
//DSNUPROC.SYSREC DD DSN=SYSOPS.DSNAME,

628 Db2 12 for z/OS: Utility Guide and Reference

// DISP=(NEW,DELETE),
// SPACE=(CYL,(20,20),RLSE),
// UNIT=SYSDA,VOL=SER=SCR03
//DSNUPROC.SYSUT1 DD DSN=SYSOPS.SYSUT1,
// DISP=(NEW,DELETE,DELETE),
// SPACE=(CYL,(9,90),RLSE),
// UNIT=SYSDA,VOL=SER=SCR03
//DSNUPROC.SYSIN DD *
LISTDEF COPY_LIST INCLUDE TABLESPACE DSN8DA1A.DSN8SA1D
TEMPLATE SCOPY UNIT(SYSDA) DISP(NEW,CATLG,DELETE)
DSN(DSNT1.&DB..&TS..CPY1.D&TIME.)
TEMPLATE FCOPY UNIT(SYSDA) DISP(NEW,CATLG,DELETE)
DSN(DSNFC.&DB..&TS..P&PA..D&TIME.)
REORG TABLESPACE LIST COPY_LIST SHRLEVEL REFERENCE FLASHCOPY YES
FCCOPYDDN(FCOPY) COPYDDN(SCOPY)

Example 19: Reorganizing only clone tables

The REORG TABLESPACE control statement indicates that REORG TABLESPACE is to reorganize only clone
tables from the specified table spaces.

REORG TABLESPACE DBKQBS01.TPKQBS01 CLONE

Related reference
CREATE INDEX (Db2 SQL)
CREATE TABLE (Db2 SQL)
DROP (Db2 SQL)
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Chapter 28. REORG TABLESPACE 629

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_drop.html
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

630 Db2 12 for z/OS: Utility Guide and Reference

Chapter 29. REPAIR
The REPAIR online utility repairs data. The data can be your own data or data that you would not normally
access, such as space map pages and index entries.

You use REPAIR to replace invalid data with valid data. Be extremely careful when using REPAIR.
Improper use can damage the data even further.

You can use the REPAIR utility to:

• Test database definitions (DBDs)
• Repair DBDs
• Reset a pending status on a table space or index
• Verify the contents of data areas in table spaces and indexes
• Replace the contents of data areas in table spaces and indexes
• Delete a single row from a table space
• Produce a hexadecimal dump of an area in a table space or index
• Delete an entire LOB from a LOB table space
• Dump LOB pages
• Rebuild object descriptors (OBDs) for a LOB table space
• Manage version numbers
• Turn on or off Persistent Read Only (PRO) restricted status for table space partitions
• Check for and fix any inconsistencies between the information in the catalog and the data.
• Update the CURRENT_VERSION or OLDEST_VERSION column of the SYSIBM.SYSTABLESPACE table

when the data in the table space is at a different versions from the versions that are recorded in the
catalog.

• Insert missing system pages for table spaces or tables that are in version 0 format.
• Update the version numbers in the VERSION column of the SYSIBM.SYSTABLES catalog table for all

tables in the table space that are at version 0 to the same version number as in the CURRENT_VERSION
column in SYSIBM.SYSTABLESPACE.

Output

The output from the REPAIR utility can consist of one or more modified pages in the specified Db2 table
space or index and a dump of the contents.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• REPAIR privilege for the database
• DBADM or DBCTRL authority for the database. If the object on which the utility operates is in an

implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• DATAACCESS authority
• SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute REPAIR, but only on a table space in the
DSNDB01 or DSNDB06 database.

© Copyright IBM Corp. 1983, 2024 631

To execute REPAIR with the DBD option, you must use a privilege set that includes SYSADM, SYSCTRL, or
installation SYSOPR authority.

REPAIR should be used only by a person that is knowledgeable in Db2 and your data. Grant REPAIR
authorization only to the appropriate people.

Execution phases of REPAIR

The phases for REPAIR are:

Phase
Description

UTILINIT
Performs initialization

REPAIR
Repairs data

UTILTERM
Performs cleanup

Syntax and options of the REPAIR control statement
The REPAIR utility control statement, with its multiple options, defines the function that the utility job
performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

REPAIR syntax diagram

REPAIR
OBJECT LOG YES

LOG NO

locate block

set statement

dbd statement

level-id statement

catalog statement

system-pages statement

write-log statement

CLONE

locate block
LOCATE locate-table-space-spec

locate-index-spec

LOB-table-space-spec

XML-table-space-spec

locate-table-space-spec

632 Db2 12 for z/OS: Utility Guide and Reference

TABLESPACE

database-name .

table-space-name

RID X' byte-string ' verify statement

replace statement

dump statement

DELETE

DATAONLY

PAGE X' byte-string '

PART integer

PAGE integer

KEY literal INDEX index-name

verify statement

replace statement

dump statement

DELETE

SHRLEVEL CHANGE

locate-index-spec
INDEX index-name

INDEXSPACE index-space-name PART integer

PAGE

integer

X' byte-string '

verify statement

replace statement

dump statement

DELETE

SHRLEVEL CHANGE

LOB-table-space-spec
TABLESPACE

database-name .

table-space-name ROWID X' byte-string '

VERSION X' byte-string ' DELETE

dump statement

XML-table-space-spec
TABLESPACE

database-name .

xml-table-space-name DOCID X' byte-string '

DELETE

verify statement

VERIFY
OFFSET 0

OFFSET integer

X' byte-string '

DATA X' byte-string '

' character-string '

Chapter 29. REPAIR 633

replace statement
REPLACE RESET

OFFSET 0

OFFSET integer

X' byte-string '

DATA X' byte-string '

' character-string '

delete statement
DELETE

DATAONLY

dump statement
DUMP

OFFSET 0

OFFSET integer

X' byte-string '

LENGTH X' byte-string '

integer

PAGES X' byte-string '

integer

*

MAP

pages

DATA

pages

set statement
SET

TABLESPACE

database-name .

table-space-name

PART integer NOCOPYPEND

NORCVRPEND

NOCHECKPEND

NOAUXWARN

NOAUXCHKP

NOAREORPENDSTAR

NOAREORPEND

PRO

NOPRO

INDEX ( index-name

PART integer

)

(ALL) TABLESPACE

database-name .

table-space-name

INDEXSPACE (

database-name .

 index-space-name

PART integer

)

(ALL) TABLESPACE

database-name .

table-space-name

NOCOPYPEND

NORCVRPEND

NORBDPEND

NOCHECKPEND

NOAREORPENDSTAR

NOAREORPEND

RBDPEND

PSRBDPEND

dbd statement
DBD

DROP DATABASE database-name DBID X' dbid '

TEST

DIAGNOSE

REBUILD

DATABASE database-name

OUTDDN ddname

634 Db2 12 for z/OS: Utility Guide and Reference

level-id statement
LEVELID TABLESPACE

database-name .

table-space-name

INDEX

creator-id .

index-name

INDEXSPACE

database-name .

index-space-name

PART integer

catalog statement
CATALOG TABLESPACE

database-name .

table-space-name

INDEX

creator-id .

index-name

INDEXSPACE

database-name .

index-space-name

TEST

system-pages statement
INSERTVERSIONPAGES

SETCURRENTVERSION

TABLESPACE

database-name .

table-space-name

SHRLEVEL CHANGE
1

write-log statement
WRITELOG TABLESPACE

database-name .

table-space-name TYPE X'4400'

SUBTYPE X'0083' TEXT X' byte-string '

Notes:
1 SHRLEVEL CHANGE is not valid if SETCURRENTVERSION is specified

REPAIR option descriptions

OBJECT
Indicates that an object is to be repaired. This keyword is optional.

LOG
Indicates whether the changes that REPAIR makes are to be logged. If the changes are to be logged,
they are applied again if the data is recovered.
YES

Indicates that the changes are to be logged.

REPAIR LOG YES cannot override the LOG NO attribute of a table space.

Chapter 29. REPAIR 635

NO
Indicates that the changes are not to be logged. You cannot use this option with a DELETE or
WRITELOG statement.

REPAIR LOG NO can override the LOG YES attribute of a table space.

TABLESPACE database-name.table-space-name
Specifies the table space (and, optionally, the database to which it belongs) whose level identifier is to
be reset (if you specify LEVELID) or whose version identifier is to be updated (if you specify CATALOG).
database-name

The name of the database to which the table space belongs.

The default value is DSNDB04.

table-space-name
The name of the table space.

INDEX
Specifies the index whose level identifier is to be reset (if you specify LEVELID) or whose version
identifier is to be updated (if you specify CATALOG).
creator-id

The creator of the index. Specifying this qualifier is optional.
index-name

The name of the index. Enclose the index name in quotation marks if the name contains a blank.
You can specify either INDEX or INDEXSPACE to identify an index. To specify multiple indexes, repeat
the keyword.

INDEXSPACE
Specifies the index space for the index whose level identifier is to be reset (if you specify LEVELID)
or whose version identifier is to be updated (if you specify CATALOG). You can obtain the index
space name for an index from the SYSIBM.SYSINDEXES catalog table. The index space name must be
qualified.
database-name

The name of the database to which the index space belongs.
index-space-name

The name of the index space.
You can specify either INDEX or INDEXSPACE to identify an index. To specify multiple indexes, repeat
the keyword.

PART
Identifies a partition of the table space or index (including a partition of a data-partitioned secondary
index).

integer is the physical partition number. It must be in the range from 1 to the number of partitions that
are defined for the table space.

CLONE
Indicates that REPAIR is to process only the specified objects that are table spaces that contain clone
tables, indexes on clone tables, or index spaces that contain indexes on clone tables.

If you specify CLONE, you cannot specify CATALOG, WRITELOG, or INSERTVERSIONPAGES. Clones
cannot be created for tables with active versions.

If you specify SET with CLONE, the status is changed for only the specified table spaces and their
indexes. The CLONE keyword applies to all SET statements and LOCATE statements within the same
REPAIR utility control statement.

LOCATE block

636 Db2 12 for z/OS: Utility Guide and Reference

A LOCATE block is a set of statements, each with its own options, that begins with a LOCATE statement
and ends with the next LOCATE or SET statement, or with the end of the job. You can include more than
one LOCATE block in a REPAIR utility statement.

In any LOCATE block, you can use VERIFY, REPLACE, or DUMP as often as you like; you can use DELETE
only once.

LOCATE block: LOCATE TABLESPACE statement option descriptions

The LOCATE TABLESPACE statement locates data that is to be repaired within a table space.

One LOCATE statement is required for each unit of data that is to be repaired. Several LOCATE statements
can appear after each REPAIR statement.

If a REPAIR statement is followed by more than one LOCATE statement, all processing that is caused by
VERIFY, REPLACE, and DUMP statements is committed before the next LOCATE statement is processed.
TABLESPACE

Specifies the base table space or XML table space (and, optionally, the database to which it belongs)
in which data is to be located for repair.
database-name

The name of the database to which the base table space or XML table space belongs. This is
optional.

table-space-name
The name of the base table space that contains the data to be repaired.

xml-table-space-name
The name of the XML table space that contains the data to be repaired.

PAGE
Specifies the relative or absolute page number within the table space, partitioned table space, or
index that is to be operated on. The first page, in either case, is 0 (zero). For a table space with
absolute page numbering, you can specify a PAGE keyword with a relative or absolute page number.
For a table space with relative page numbering, you must specify a PART keyword and a PAGE
keyword with a relative page number.
integer

integer is a decimal number from one to six digits in length. Decimal values for PAGE are
supported only for table spaces with relative page numbering.

X'byte-string'
Specifies that the data of interest is an entire page. Use X'byte-string' for only absolute page
numbers, in which case the partition number is embedded in the page.

The specified offsets in byte-string and in subsequent statements are relative to the beginning of
the page. The first byte of the page is at offset 0.

byte-string is a hexadecimal value from one to eight characters in length. You do not need to enter
leading zeros. Enclose the byte-string between apostrophes, and precede it with X.

PART integer
Specifies the partition that contains the page that is to be located. Part is valid only for partitioned
table spaces, and must be specified for partitioned table spaces with relative page numbering.

integer is the number of the partition.

If you specify PART, you must specify an integer value for PAGE.

RID X'byte-string'
Specifies that the data that is to be located is a single row. The specified offsets in byte-string and in
subsequent statements are relative to the beginning of the row. The first byte of the stored row prefix
is at offset 0.

Chapter 29. REPAIR 637

byte-string can be a hexadecimal value from one to eight characters in length. You do not need to
enter leading zeros. Enclose the byte string between apostrophes, and precede it with an X.

KEY literal
Specifies that the data that is to be located is a single row, identified by literal. The specified offsets in
subsequent statements are relative to the beginning of the row. The first byte of the stored row prefix
is at offset 0.

literal is any SQL constant that can be compared with the key values of the named index.

Character constants that are specified within the LOCATE KEY option cannot be specified as ASCII or
Unicode character strings. No conversion of the values is performed. To use this option when the table
space is ASCII or Unicode, you should specify the values as hexadecimal constants.

If more than one row has the value literal in the key column, REPAIR returns a list of record identifiers
(RIDs) for records with that key value, but does not perform any other operations (verify, replace,
delete, or dump) until the next LOCATE TABLESPACE statement is encountered. To repair the proper
data, write a LOCATE TABLESPACE statement that selects the row that you want, using the RID option,
the PAGE option, or a different KEY and INDEX option. Then, execute REPAIR again.

SHRLEVEL
Indicates the type of access that is to be allowed for the index, table space, or partition that is to be
repaired during REPAIR processing.

If you do not specify SHRLEVEL and you do specify DUMP or VERIFY, applications can read but not
write the area.

If you do not specify SHRLEVEL and you do specify DELETE or REPLACE, applications cannot read or
write the area.

CHANGE
Specifies that applications can read and write during the VERIFY, REPLACE, DELETE, and DUMP
operation.

ROWID X'byte-string'
Specifies that the data that is to be located is a LOB in a LOB table space.

byte-string is the row ID that identifies the LOB column.

Use the ROWID keyword to repair an orphaned LOB row. You can find the ROWID in the output from
the CHECK LOB utility. If you specify the ROWID keyword, the specified table space must be a LOB
table space.

VERSION X'byte-string'
Specifies that the data that is to be located is a LOB in a LOB table space.

byte-string is the version number that identifies the version of the LOB column.

Use the VERSION keyword to repair an orphaned LOB column. You can find the VERSION number in
the output of the CHECK LOB utility or an out-of-synch LOB that is reported by the CHECK DATA utility.
If you specify the VERSION keyword, the specified table space must be a LOB table space.

LOCATE block: LOCATE INDEX statement and LOCATE INDEXSPACE statement
option descriptions

The LOCATE INDEX (or INDEXSPACE) statement locates data that is to be repaired within an index. You
can specify indexes by either their index name or their index space name.

One LOCATE statement is required for each unit of data that is to be repaired. Multiple LOCATE
statements can appear after each REPAIR statement.

If a REPAIR statement is followed by multiple LOCATE statements, all processing that is caused by
VERIFY, REPLACE, and DUMP statements is committed before the next LOCATE statement is processed.

638 Db2 12 for z/OS: Utility Guide and Reference

INDEX index-name
Specifies a particular index that is to be used to find the row that contains the key. When you are
locating an index by key, the index that you specify must be a single-column index.

index-name is the qualified or unqualified name of the index. If you omit the qualifier creator ID,
the user identifier for the utility job is used. Enclose the index name in quotation marks if the name
contains a blank.

INDEXSPACE index-space-name
Specifies the index space for a particular index that is to be used to find the row that contains the key.
Look in the SYSIBM.SYSINDEXES catalog table to find the index space name for an index. When you
are locating an index by key, the index that you specify must be a single-column index.

index-space-name is the qualified name of the index space, in the form database-name.index-space-
name.

PAGE integer
Specifies the relative page number within the index space that is to be operated on. The first page is 0
(zero).
integer

integer is a decimal number from one to six digits in length.
X'byte-string'

Specifies that the data of interest is an entire page. The specified offsets in byte-string and in
subsequent statements are relative to the beginning of the page. The first byte of the page is at
offset 0.

byte-string is a hexadecimal value from one to eight characters in length. You do not need to enter
leading zeros. Enclose the byte-string between apostrophes, and precede it with X.

PART integer
Specifies the partition number of the partitioning index that contains the page that is to be located.
The PART keyword is valid only for indexes of partitioned table spaces.

integer is the number of the partitioning index.

LOCATE block: VERIFY statement

The VERIFY statement tests whether a particular data area contains a specified value. Depending on the
outcome of this test, the REPAIR utility performs the following actions:

• If the data area does contain the value, subsequent operations in the same LOCATE block are allowed to
proceed.

• If any data area does not contain its specified value, all subsequent operations in the same LOCATE
block are inhibited.

LOCATE block: VERIFY statement option descriptions
OFFSET

Locates the data that is to be tested by a relative byte address (RBA) within the row or page.
integer

Identifies the offset as an integer.

The default value is 0, the first byte of the area that is identified by the previous LOCATE
statement.

X'byte-string'
Identifies the offset as one to four hexadecimal characters. You do not need to enter leading
zeros. Enclose the byte string between apostrophes, and precede it with X.

DATA
Specifies what data must be present at the current location before a change is made.

Chapter 29. REPAIR 639

Character constants that are specified within the VERIFY DATA option cannot be specified as ASCII or
Unicode character strings. No conversion of the values is performed. To use this option when the table
space is ASCII or Unicode, you should specify the values as hexadecimal constants.
X'byte-string'

Specifies an even number, from 2 to 32, of hexadecimal characters that must be present. You do
not need to enter leading zeros. Enclose the byte string between apostrophes, and precede it with
X.

'character-string'
Specifies any character string that must be present.

LOCATE block: REPLACE statement

The REPLACE statement replaces data at a particular location. The statement is contained within a
LOCATE block. If any VERIFY statement within that block finds a data area that does not contain its
specified data, the REPLACE operation is inhibited.

LOCATE block: REPLACE statement option descriptions
RESET

Specifies that the inconsistent data indicator is to be reset. A page for which this indicator is on is
considered in error, and the indicator must be reset before you can access the page. Numbers of
pages with inconsistent data are reported at the time that they are encountered.

The option also resets the PGCOMB flag bit in the first byte of the page to agree with the bit code in
the last byte of the page.

OFFSET
Indicates where data is to be replaced by a relative byte address (RBA) within the row or page. Only
one OFFSET and one DATA specification are acted on for each REPLACE statement.
integer

Specifies the offset as an integer.

The default value is 0, the first byte of the area that is identified by the previous LOCATE
statement.

X'byte-string'
Specifies the offset as one to four hexadecimal characters. You do not need to enter leading zeros.
Enclose the byte string between apostrophes, and precede it with X.

DATA
Specifies the new data that is to be entered. Only one OFFSET and one DATA specification are acted
on for each REPLACE statement.

Important: Do not run REPAIR with the REPLACE, OFFSET, and DATA options on a compressed table
space.

Character constants that are specified within the VERIFY DATA option cannot be specified as ASCII or
Unicode character strings. The values are not converted. To use this option when the table space is
ASCII or Unicode, specify the values as hexadecimal constants.
X'byte-string'

Specifies an even number, from 2 to 32, of hexadecimal characters that are to replace the current
data. You do not need to enter leading zeros. Enclose the byte string between apostrophes, and
precede it with X.

'character-string'
Specifies any character string that is to replace the current data.

LOCATE block: DELETE statement

640 Db2 12 for z/OS: Utility Guide and Reference

The DELETE statement deletes a single row of data that has been located by a RID or KEY option. The
statement is contained within a LOCATE block. If any VERIFY statement within that block finds a data area
that does not contain its specified data, the DELETE operation is inhibited.

The DELETE statement operates without regard for referential constraints. If you delete a parent row, its
dependent rows remain unchanged in the table space.

In any LOCATE block, you can include no more than one DELETE option.

If you have coded any of the following options, you cannot use DELETE:

• The LOG NO option on the REPAIR statement
• A LOCATE INDEX statement to begin the LOCATE block
• The PAGE option on the LOCATE TABLESPACE statement in the same LOCATE block
• A REPLACE statement for the same row of data

When you specify LOCATE ROWID for a LOB table space, the LOB that is specified by ROWID is deleted
with its index entry. All pages that are occupied by the LOB are converted to free space. The DELETE
statement does not remove any reference to the deleted LOB from the base table space.

When you specify LOCATE DOCID for an XML table space, the XML document that is specified by DOCID is
deleted with its NodeID index entries. All rows that are occupied by the XML document are deleted from
the XML table space. The DELETE statement does not remove any reference to the deleted XML document
from the base table space. The LOCATE DOCID statement is generated by CHECK DATA SHRLEVEL
CHANGE in order to remove corrupted XML documents from the XML table space.

REPAIR DELETE can delete the following data rows when the specified conditions exists:

• A compressed row without an index defined on the table
• A compressed row with an index defined on the table and a valid dictionary exists to decompress the

row
• A compressed or uncompressed data row that is missing an index entry
• A compressed row with an index defined on the table, but the dictionary is invalid
• An uncompressed row without an index
• An uncompressed row with valid Index

LOCATE block: DELETE statement option descriptions
DATAONLY

Specifies that REPAIR should delete only the data record that is specified by the LOCATE RID
statement. Any associated indexes, LOB columns, XML columns, or referential integrity constraints
are not deleted.

You can specify the DATAONLY option only when REPAIR locates a single row by using a RID. You
cannot specify DATAONLY for XML table spaces.

If the table has indexes or LOB or XML columns, ensure that after you run the DELETE DATAONLY
statement, the data is consistent with the other associated objects.

LOCATE block: DUMP statement

The DUMP statement produces a hexadecimal dump of data that is identified by offset and length. DUMP
statements have no effect on VERIFY or REPLACE operations.

When you specify LOCATE ROWID for a LOB table space, one or more map or data pages of the LOB are
dumped. The DUMP statement dumps all of the LOB column pages if you do not specify either the MAP or
DATA keyword.

Chapter 29. REPAIR 641

LOCATE block: DUMP statement option descriptions
OFFSET

Optionally, locates the data that is to be dumped by a relative byte address (RBA) within the row or
page.
integer

Specifies the offset as an integer.

The default value is 0, the first byte of the row or page.

X'byte-string'
Specifies the offset as one to four hexadecimal characters. You do not need to enter leading zeros.
Enclose the byte string between apostrophes, and precede it with X.

LENGTH
Optionally, specifies the number of bytes of data that are to be dumped. If you omit both LENGTH and
PAGE, the dump begins at the specified OFFSET and continues to the end of the row or page.

If you specify a number of bytes (with LENGTH) and a number of pages (with PAGE), the dump
contains the same relative bytes from each page. That is, from each page you see the same number of
bytes, beginning at the same offset.
X'byte-string'

Specifies one to four hexadecimal characters. You do not need to enter leading zeros. Enclose the
byte string between apostrophes, and precede it with X.

integer
Specifies the length as an integer.

PAGES
Optionally, specifies a number of pages that are to be dumped. You can use this option only if you
used PAGE in the preceding LOCATE TABLESPACE control statement.
X'byte-string'

Specifies one to four hexadecimal characters. You do not need to enter leading zeros. Enclose the
byte string between apostrophes, and precede it with X.

integer
Specifies the number of pages as an integer.

*
Specifies that all pages from the starting point to the end of the table space or partition are to be
dumped.

MAP pages
Specifies that only the LOB map pages are to be dumped.

pages specifies the number of LOB map pages that are to be dumped. If you do not specify pages, all
LOB map pages of the LOB that is specified by ROWID and version are dumped.

DATA pages
Specifies that only the LOB data pages are to be dumped.

pages specifies the number of LOB data pages that are to be dumped. If you do not specify pages, all
LOB data pages of the LOB that is specified by ROWID and version are dumped.

SET statement

The SET TABLESPACE statement resets the COPY-pending, RECOVER-pending, CHECK-pending, auxiliary
warning (AUXW), auxiliary CHECK-pending (ACHKP), and advisory REORG-pending (AREO* and AREOR)
statuses for a table space or data set. The SET TABLESPACE statement also turns on and off Persistent
Read Only (PRO) restricted status for a table space partition. The SET INDEX statement resets
the informational COPY-pending (ICOPY), RECOVER-pending, REBUILD-pending, CHECK-pending , and
advisory REORG-pending (AREO* and AREOR) statuses for an index.

642 Db2 12 for z/OS: Utility Guide and Reference

If you do not specify a status to reset, REPAIR takes no action.

SET statement option descriptions

SET TABLESPACE database-name.table-space-name
Specifies the table space (and, optionally, the database to which it belongs) whose pending status is
to be reset.
database-name

The name of the database to which the table space belongs.

The default value is DSNDB04.

table-space-name
The name of the table space.

SET INDEX
Specifies the index whose RECOVER-pending, CHECK-pending, REBUILD-pending, or informational
COPY-pending status is to be reset.
(index-name)

The index that is to be processed. Enclose the index name in quotation marks if the name contains
a blank.

(ALL)
Specifies that all indexes in the table space will be processed.

You can also repair all indexes by specifying INDEX(ALL) followed by a table-space-spec.

SET INDEXSPACE
Specifies the index space for the index whose RECOVER-pending, CHECK-pending, REBUILD-pending,
or informational COPY-pending status is to be reset.
(database-name.index-space-name)

The index space that is to be processed.
(ALL)

Specifies that all indexes in the table space will be processed.
PART integer

Specifies a particular partition whose COPY-pending, or RECOVER-pending status is to be reset. If you
do not specify PART, REPAIR resets the pending status of the entire table space or index.

integer is the number of the partition and must be in the range from one to the number of partitions
that are defined for the object.

You can specify PART for NOCHECKPEND on a table space, and for NORCVRPEND on indexes.

The PART keyword is not valid for a LOB table space or an index on the auxiliary table.

The PART keyword is not valid when NOAREORPEND is specified because the AREOR state can only
be reset for the entire table space or index space.

NOCOPYPEND
Specifies that the COPY-pending status of the specified table space, or the informational COPY-
pending (ICOPY) status of the specified index is to be reset.

NORCVRPEND
Specifies that the RECOVER-pending (RECP) status of the specified table space or index is to be reset.

NORBDPEND
Specifies that the REBUILD-pending (RBDP) status, the page set REBUILD-pending status (PSRBDP),
or the RBDP* status of the specified index is to be reset.

NOCHECKPEND
Specifies that the CHECK-pending (CHKP) status of the specified table space or index is to be reset.

Chapter 29. REPAIR 643

NOAUXWARN
Specifies that the auxiliary warning (AUXW) status of the specified table space is to be reset. The
specified table space must be a base table space or a LOB table space.

NOAUXCHKP
Specifies that the auxiliary CHECK-pending (ACHKP) status of the specified table space is to be reset.
The specified table space must be a base table space.

NOAREORPENDSTAR
Resets the advisory REORG-pending (AREO*) status of the specified table space or index.

NOAREORPEND
Resets the advisory REORG-pending (AREOR) status of the specified table space or index.

PRO
Turns on Persistent Read Only (PRO) restricted status for a table space partition. The PART keyword is
required for this option.

NOPRO
Turns off Persistent Read Only (PRO) restricted status for a table space partition. The PART keyword is
required for this option.

RBDPEND
Specifies that the REBUILD-pending (RBDP) status is to be set on the specified index.

PSRBDPEND
Specifies that the PAGE SET REBUILD-pending (PSRBDP) status is to be set on the specified index.

DBD statement

Use the DBD statement to perform one or more of the following actions:

• Compare the database definition (DBD) in the Db2 catalog with its definition in the Db2 directory
• Rebuild a database definition in the directory by using the information, including LOB information, in the

Db2 catalog
• Drop an inconsistent database definition from the Db2 catalog and the Db2 directory

For more information about how to use the DBD statement to perform these actions, see “Repairing
DBDs” on page 655.

DBD statement option descriptions
DROP

Specifies that the named database is to be dropped from both the Db2 catalog and the Db2 directory.
When you specify this option, Db2 also drops databases that contain tables that have been created
with RESTRICT ON DROP. Use this keyword if the SQL DROP DATABASE statement fails because the
description of the database is not in both the Db2 catalog and the Db2 directory. If you cannot use the
ALTER command to remove the with RESTRICT ON DROP option on tables in a database that is badly
damaged and you need to drop the database, you can use this keyword to drop the database.

Attention: Use the DROP option with extreme care. Using DROP can cause additional damage
to your data. For more assistance, you can contact IBM Software Support.

DATABASE database-name
Specifies the target database.

database-name is the name of the target database, which cannot be DSNDB01 (the Db2 directory) or
DSNDB06 (the Db2 catalog).

If you use REBUILD, database-name cannot be DSNDB07 (the work file database).

If you use DROP, database-name cannot be DSNDB04 (the default database).

DBID X'dbid'
Specifies the database descriptor identifier for the target database.

644 Db2 12 for z/OS: Utility Guide and Reference

dbid is the database descriptor identifier.

TEST
Specifies that a DBD is to be built from information in the Db2 catalog and is to be compared with
the DBD in the Db2 directory. If you specify TEST, Db2 reports significant differences between the two
DBDs.

If the condition code is 0, the DBD in the Db2 directory is consistent with the information in the Db2
catalog.

If the condition code is not 0, then the information in the Db2 catalog and the DBD in the Db2
directory might be inconsistent. Run REPAIR DBD with the DIAGNOSE option to gather information
that is necessary for resolving any possible inconsistency.

DIAGNOSE
Specifies that information that is necessary for resolving an inconsistent database definition is to be
generated. Like the TEST option, DIAGNOSE builds a DBD that is based on the information in the Db2
catalog and compares it with the DBD in the Db2 directory. In addition, Db2 reports any differences
between the two DBDs, and produces hexadecimal dumps of the inconsistent DBDs.

If the condition code is 0, the information in the Db2 catalog and the DBD in the Db2 directory is
consistent.

If the condition code is 8, the information in the Db2 catalog and the DBD in the Db2 directory might
be inconsistent.

For further assistance in resolving any inconsistencies, you can contact IBM Support.

REBUILD
Specifies that the DBD that is associated with the specified database is to be rebuilt from the
information in the Db2 catalog.

Attention: Use the REBUILD option with extreme care, as you can cause more damage to your
data. For more assistance, you can contact IBM Software Support.

OUTDDN ddname
Specifies the DD statement for an optional output data set. This data set contains copies of the Db2
catalog records that are used to rebuild the DBD.

ddname is the name of the DD statement.

LEVELID statement

Use the LEVELID statement to accept a down-level page set by changing its level ID. You cannot run
REPAIR with any other REPAIR utility control statement.

Important: Accepting the use of a down-level data set might cause data inconsistencies. Problems with
inconsistent data that result from resetting the level identifier are the responsibility of the user.

LEVELID statement option descriptions
LEVELID

Indicates that the level identifier of the named table space, table space partition, index, or index
space partition is to be reset to a new identifier. Use LEVELID to accept the use of a down-level data
set. You cannot specify multiple LEVELID keywords in the same REPAIR control statement.

You cannot use LEVELID with a table space, table space partition, index, or index space partition that
has outstanding indoubt log records or pages in the logical page list (LPL).

TABLESPACE database-name.table-space-name
Specifies the table space whose level identifier is to be reset.
database-name

The name of the database to which the table space belongs.

Chapter 29. REPAIR 645

The default value is DSNDB04.

table-space-name
The name of the table space.

INDEX
Specifies the index whose level identifier is to be reset.
creator-id

The creator of the index. Specifying this qualifier is optional.
index-name

The name of the index. Enclose the index name in quotation marks if the name contains a blank.
You can specify either INDEX or INDEXSPACE to identify an index. To specify multiple indexes, repeat
the keyword.

INDEXSPACE
Specifies the index space for the index whose level identifier is to be reset. You can obtain the index
space name for an index from the SYSIBM.SYSINDEXES catalog table. The index space name must be
qualified.
database-name

The name of the database to which the index space belongs.
index-space-name

The name of the index space.
PART

Identifies a partition of the table space or index (including a partition of a data-partitioned secondary
index).

integer is the physical partition number. It must be in the range from 1 to the number of partitions that
are defined for the table space.

CATALOG statement

Use the CATALOG statement to check and correct inconsistencies between the catalog and a table space
or index after DSN1COPY is used to create a copy of the object in a different Db2 subsystem from the
subsystem on which the original table space resides.

When you specify REPAIR CATALOG TABLESPACE, the utility performs the following actions:

• Compares the following information in the catalog with the data and changes the values in the catalog
to match the data if needed:

– Row format (Row format can be either reordered row format or basic row format.)
– RBA format (RBA format can be either 6-byte format or 10-byte format.)
– Data version information
– Hash space value
– For a partition-by-range table space, the type of page numbering (absolute or relative)
– FL 509 Compression algorithm used

• Compares the following information in the catalog with the data, and if the information in the catalog is
different from the data, REPAIR determines whether conversion from the page set format to the catalog
format is supported. Supported conversions are any conversions that can be performed through ALTER
TABLE SET DATA TYPE. If the conversion is supported, REPAIR increments the table space version in
the catalog. This action causes the column data in the page set to be converted to the data type and
length in the catalog definition the next time that the data is accessed. If conversion is not supported,
an error is issued.

– Column data types
– Column lengths

646 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html

– Number of columns

For this case, the number of the columns in the catalog definition of the table must be greater than
the number of columns in the page set. All columns in the page set must have types and lengths that
can be converted to the types and lengths of columns in the catalog.

• Validates the following information:

For these items, if the information in the catalog is different from the data, REPAIR CATALOG does not
correct the information in the catalog. Instead, REPAIR fails and reports the mismatched information in
a message. To correct the mismatched information, take the action that is documented for the message
that you receive.

– DBID, PSID, and OBID
– Table space type
– SEGSIZE
– PAGESIZE
– Table definition
– Whether the system page exists in the page set
– Whether a table version number wrapped from 255 to 1
– Whether a table is marked as dropped in the database descriptor, but is still defined in the catalog
– The number of columns in the catalog definition of a table is fewer than the number of the columns in

the page set
• Updates the CURRENT_VERSION or OLDEST_VERSION column of the SYSIBM.SYSTABLESPACE table

when the data in the table space is at different versions from the versions that are recorded in the
catalog.

REPAIR CATALOG does not check limit key values.

REPAIR CATALOG does not make any corrections for indexes. If REPAIR or you made corrections to the
data or catalog as a result of running REPAIR CATALOG, rebuild any indexes on the target tables.

CATALOG statement option descriptions
CATALOG

Specifies that REPAIR is to validate information in the catalog for the specified object.

You cannot specify CATALOG for LOB or XML table spaces.

TABLESPACE database-name.table-space-name
Specifies the table space for which catalog information is to be validated.
database-name

The name of the database to which the table space belongs.

The default value is DSNDB04.

table-space-name
The name of the table space.

INDEX
Specifies the index for which catalog information is to be validated.
creator-id

The creator of the index. Specifying this qualifier is optional.
index-name

The name of the index. Enclose the index name in quotation marks if the name contains a blank.
You can specify either INDEX or INDEXSPACE to identify an index. To specify multiple indexes, repeat
the keyword.

Chapter 29. REPAIR 647

INDEXSPACE
Specifies the index space for the index whose catalog information is to be validated. You can obtain
the index space name for an index from the SYSIBM.SYSINDEXES catalog table. The index space
name must be qualified.
database-name

The name of the database to which the index space belongs.
index-space-name

The name of the index space.
TEST

Indicates that REPAIR is not to correct any mismatched information. The utility checks all of the same
information that it checks when you specify REPAIR CATALOG. However, any information differences
between the data and catalog are only reported in messages. The utility does not take any corrective
actions.

System pages statement

Use the system pages statement to insert missing system pages into the specified table space for tables
that are in version 0 format. Insertion of system pages in version 0 format ensures that a table space or
table is self-describing. That is, Db2 requires no catalog or directory information to determine the format
of the table space or tables in the table space. Specification of this option is important for read-only
objects that might be moved or copied to other Db2 subsystems.

Before running the system pages statement, run REPAIR CATALOG TEST to determine whether system
pages need to be inserted. If REPAIR CATALOG TEST returns the message MISSING SYSTEM PAGE IN
PAGESET, the system pages statement needs to be run.

The system pages statement cannot run on a table space that was the target of DSN1COPY, because
REPAIR cannot determine whether the format of the data matches its format in the Db2 catalog.

System pages statement option descriptions
INSERTVERSIONPAGES

Indicates that REPAIR inserts missing system pages into the table space for tables that are in version
0 format.

SETCURRENTVERSION
Indicates that REPAIR takes the following actions:

• Inserts missing system pages for table spaces or tables in the table space that are in version 0
format.

• Updates the version numbers in the VERSION column of the SYSIBM.SYSTABLES catalog table
for all tables in the table space that are at version 0 to the same version number as in the
CURRENT_VERSION column in SYSIBM.SYSTABLESPACE.

After running REPAIR with INSERTVERSIONPAGES and SETCURRENTVERSION, run REORG
TABLESPACE to update the data rows to the current table space version. Then run MODIFY
RECOVERY to remove old versions.

TABLESPACE database-name.table-space-name
Specifies the table space whose version information is to be updated.
database-name

The database to which the table space belongs.

The default value is DSNDB04.

table-space-name
The name of the table space.

648 Db2 12 for z/OS: Utility Guide and Reference

SHRLEVEL CHANGE
Indicates the type of access that is to be allowed for the table space into which system pages are
inserted.

If you do not specify SHRLEVEL CHANGE, applications can read but not write in the table space.

If you specify SHRLEVEL CHANGE, you cannot specify SETCURRENTVERSION.

WRITELOG statement

Use the WRITELOG statement to write a Db2 log record.

WRITELOG statement option descriptions
TABLESPACE database-name.table-space-name

Specifies the table space whose log record is to be written.
database-name

The database to which the table space belongs. The default value is DSNDB04.
table-space-name

The name of the table space.
TYPE X'4400'

Specifies that a diagnostic log record is to be written.
SUBTYPE X'0083'

Specifies that the add or alter column diagnostic log record (SCHEMA ALTER DIAGNOSTIC LOG
RECORD as documented in DSNDQJ00) is to be written.

Related information:

Interpreting data change log records (Db2 Administration Guide)

TEXT X'byte-string'
Specifies the content of the log record to be written.

Related tasks
“Copying tables from one subsystem to another” on page 929
You can copy tables from one subsystem to another by using the DSN1COPY utility. When you copy these
tables, ensure that the object metadata on the target subsystem matches the object metadata on the
source subsystem. Object metadata includes items such as the number of columns, column type, table
space type, and version information.
Related reference
ALTER TABLE (Db2 SQL)

Before running REPAIR
Certain activities might be required before you run the REPAIR utility, depending on your situation.

Attention: Be extremely careful when using the REPAIR utility to replace data. Changing data to
invalid values by using REPLACE might produce unpredictable results, particularly when changing
page header information. Improper use of REPAIR can result in damaged data, or in some cases,
system failure.

Making a copy of the table space
Before starting to use REPAIR to change data, ensure that you have a copy (full image copy or DSN1COPY
generated copy) of the affected table space to enable fallback.

Chapter 29. REPAIR 649

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_datachangelog.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertable.html

Restoring damaged indexes
Because REPAIR can access index data only by referring to a page and an offset within the page,
identifying and correcting a problem can be difficult. Use REBUILD INDEX or RECOVER INDEX to restore
damaged index data.

Running REPAIR on encrypted data

Do not run REPAIR on encrypted data. REPAIR does not decrypt the data. The utility reads the data in its
encrypted form and then manipulates the data without decrypting it.

Data sets that REPAIR uses
The REPAIR utility uses a number of data sets during its operation.

The following table lists the data sets that REPAIR uses. The table lists the DD name that is used to
identify the data set, a description of the data set, and an indication of whether it is required. Include
statements in your JCL for each required data set and any optional data sets that you want to use.

Table 96. Data sets that REPAIR uses

Data set Data set Required?

SYSIN Input data set that contains the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

Optional output data set Data set that contains copies of the Db2 catalog
records that are used to rebuild the DBD. You
define the DD name.

No

The following objects are named in the utility control statement and do not require a DD statement in the
JCL:
Table space or index

Object that is to be repaired.

Calculating output data set size

Use the following formula to estimate the size of the output data set:

SPACE = (4096,(n,n))

In this formula, n = the total number of Db2 catalog records that relate to the database on which REPAIR
DBD is being executed.

You can calculate an estimate for n by summing the results of SELECT COUNT(*) from the following
catalog tables, for catalog table rows whose database name matches the name of the database on which
REPAIR DBD is being executed.

• SYSCOLAUTH
• SYSCOLUMNS
• SYSFIELDS
• SYSFOREIGNKEYS
• SYSINDEXES
• SYSINDEXPART
• SYSKEYS

650 Db2 12 for z/OS: Utility Guide and Reference

• SYSRELS
• SYSSYNONYMS
• SYSTABAUTH
• SYSTABLEPART
• SYSTABLES
• SYSTABLESPACE

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.

Concurrency and compatibility for REPAIR
The REPAIR utility has certain concurrency and compatibility characteristics associated with it.

Db2 treats individual data and index partitions as distinct target objects. Utilities that operate on different
partitions of the same table space or index space are compatible.

Claims
The following table lists any claims or drains that the utility acquires and any restrictive states that are set
on the target object.

Table 97. Claim classes of REPAIR operations

Action Table space or partition Index or partition

REPAIR LOCATE KEY DUMP or VERIFY DW/UTRO DW/UTRO

REPAIR LOCATE KEY DELETE or REPLACE DA/UTUT DA/UTUT

REPAIR LOCATE RID DUMP or VERIFY DW/UTRO None

REPAIR LOCATE RID DELETE DA/UTUT DA/UTUT

REPAIR LOCATE RID REPLACE DA/UTUT None

REPAIR LOCATE TABLESPACE DUMP or VERIFY DW/UTRO None

REPAIR LOCATE TABLESPACE REPLACE DA/UTUT None

REPAIR LOCATE INDEX PAGE DUMP or VERIFY None DW/UTRO

REPAIR LOCATE INDEX PAGE DELETE None DA/UTUT

Legend:

• DA - Drain all claim classes - no concurrent SQL access.
• DW - Drain the write claim class - concurrent access for SQL readers.
• UTUT - Utility restrictive state - exclusive control.
• UTRO - Utility restrictive state - read-only access allowed.
• None - Object is not affected by this utility.

REPAIR does not set a utility restrictive state if the target object is DSNDB01.SYSUTILX.

Chapter 29. REPAIR 651

Compatibility
The following tables show which utilities can run concurrently with REPAIR on the same target object.
The target object can be a table space, an index space, or a partition of a table space or index space. If
compatibility depends on particular options of a utility, that information is also shown in the table.

Note that REPAIR SHRLEVEL CHANGE obtains an exclusive mass delete lock on a segmented (non-UTS)
table space, which prevents execution of any application for which both of the following conditions are
true:

• The application is bound with ISO(UR).
• The application issues a statement (such as a SELECT) that acquires a mass delete lock on that table

space.

The following table shows which utilities can run concurrently with REPAIR LOCATE by KEY or RID.

Table 98. Utility compatibility with REPAIR, LOCATE by KEY or RID

Utility DUMP or VERIFY DELETE or REPLACE

CHECK DATA No No

CHECK INDEX Yes No

CHECK LOB Yes No

COPY INDEXSPACE Yes No

COPY TABLESPACE Yes No

DIAGNOSE Yes Yes

LOAD No No

MERGECOPY Yes Yes

MODIFY Yes Yes

QUIESCE Yes No

REBUILD INDEX No No

RECOVER INDEX 1 No No

RECOVER TABLESPACE No No

REORG INDEX 2 No No

REORG TABLESPACE UNLOAD CONTINUE
or PAUSE

No No

REORG TABLESPACE UNLOAD ONLY or
EXTERNAL

Yes No

REPAIR DELETE or REPLACE 3 No No

REPAIR DUMP or VERIFY Yes No

REPORT Yes Yes

RUNSTATS INDEX SHRLEVEL CHANGE Yes Yes

RUNSTATS INDEX SHRLEVEL REFERENCE Yes No

RUNSTATS TABLESPACE Yes No

STOSPACE Yes Yes

UNLOAD Yes No

652 Db2 12 for z/OS: Utility Guide and Reference

Table 98. Utility compatibility with REPAIR, LOCATE by KEY or RID (continued)

Utility DUMP or VERIFY DELETE or REPLACE

Notes:

1. REORG INDEX is compatible with LOCATE by RID, DUMP, VERIFY, or REPLACE.
2. RECOVER INDEX is compatible with LOCATE by RID, DUMP, or VERIFY.
3. REPAIR LOCATE INDEX PAGE REPLACE is compatible with LOCATE by RID or REPLACE.

The following table shows which utilities can run concurrently with REPAIR LOCATE by PAGE.

Table 99. Utility compatibility with REPAIR, LOCATE by PAGE

Utility or action
TABLESPACE
DUMP or VERIFY

TABLESPACE
REPLACE

INDEX DUMP or
VERIFY INDEX REPLACE

SQL read Yes No Yes No

SQL write No No No No

CHECK DATA No No No No

CHECK INDEX Yes No Yes No

CHECK LOB Yes No Yes No

COPY INDEXSPACE Yes Yes Yes No

COPY TABLESPACE Yes No Yes No

DIAGNOSE Yes Yes Yes Yes

LOAD No No No No

MERGECOPY Yes Yes Yes Yes

MODIFY Yes Yes Yes Yes

QUIESCE Yes No Yes No

REBUILD INDEX Yes No No N/A

RECOVER INDEX Yes No No No

RECOVER TABLESPACE (with
no option)

No No Yes Yes

RECOVER TABLESPACE
ERROR RANGE

No No Yes Yes

RECOVER TABLESPACE
TOCOPY or TORBA

No No No No

REORG INDEX Yes Yes No No

REORG TABLESPACE
UNLOAD CONTINUE or
PAUSE

No No No No

REORG TABLESPACE
UNLOAD ONLY or EXTERNAL

Yes No Yes Yes

REPAIR DELETE or REPLACE No No No No

REPAIR DUMP or VERIFY1 Yes No Yes No

Chapter 29. REPAIR 653

Table 99. Utility compatibility with REPAIR, LOCATE by PAGE (continued)

Utility or action
TABLESPACE
DUMP or VERIFY

TABLESPACE
REPLACE

INDEX DUMP or
VERIFY INDEX REPLACE

REPORT Yes Yes Yes Yes

RUNSTATS INDEX Yes Yes Yes No

RUNSTATS TABLESPACE Yes No Yes Yes

STOSPACE Yes Yes Yes Yes

UNLOAD Yes No Yes Yes

Note:

1. REPAIR LOCATE INDEX PAGE REPLACE is compatible with LOCATE TABLESPACE PAGE.

Resetting table space status
In most cases, resetting restrictive states on table spaces by using methods other than the REPAIR utility
is preferable.

Generally, resetting COPY-pending status by taking a full image copy is preferable to using REPAIR. This
preference is because RECOVER cannot be executed successfully until an image copy has been made.

Resetting RECOVER-pending status by running RECOVER or LOAD is preferable to using REPAIR.
This preference is because RECOVER uses Db2-controlled recovery information, whereas REPAIR SET
TABLESPACE or INDEX resets the RECOVER-pending status without considering the recoverability of the
table space. Recoverability issues include the availability of image copies, rows in SYSIBM.SYSCOPY, and
log data sets.

For CHECK-pending status, verifying and possibly correcting referential integrity constraints by running
CHECK DATA is recommended. CHECK DATA performs a complete check of all referential integrity
constraints of the table space set, whereas with REPAIR, you are responsible for checking all the
referential integrity constraints violations. To reset the CHECK-pending status for a LOB table space,
see “Resetting CHECK-pending status for a LOB table space” on page 120.

Related reference
“COPY-pending status” on page 979
COPY-pending (COPY) restrictive status indicates that the affected object must be copied.
“RECOVER-pending status” on page 983
RECOVER-pending (RECP) restrictive status indicates that a table space, table space partition, index
space, or index on an auxiliary table is broken and must be recovered.
“CHECK-pending status” on page 977
CHECK-pending (CHKP) restrictive status indicates that an object might be in an inconsistent state and
must be checked.

Resetting index space status
In most cases, resetting restrictive states on index spaces by using methods other than the REPAIR utility
is preferable.

For informational COPY-pending status, running COPY INDEXSPACE to reset the status is preferable to
using the REPAIR utility.

For REBUILD-pending status, consider using the REBUILD INDEX or RECOVER INDEX utility rather than
running REPAIR SET INDEX NORBDPEND. RECOVER uses Db2-controlled recovery information, whereas
REPAIR SET INDEX resets the REBUILD-pending status without considering the recoverability of the
index. Recoverability issues include the availability of image copies, rows in SYSIBM.SYSCOPY, and log
data sets.

654 Db2 12 for z/OS: Utility Guide and Reference

Related reference
“Informational COPY-pending status” on page 981
Informational COPY-pending (ICOPY) advisory status indicates that the affected object should be copied.
“REBUILD-pending status” on page 982
A REBUILD-pending restrictive status indicates that the affected index or index partition is broken and
must be rebuilt from the data.

Repairing a damaged page
You can use the REPAIR utility to repair a damaged page.

Procedure
To repair a damaged page:
1. Execute REPAIR with the LOG YES option and the DUMP control statement, specifying the pages that

you suspect are damaged.
Then, verify that the dump you received contains the pages that you want.

2. If you know which page is damaged and you can see how to resolve the error, repair the page and
reset the "inconsistent data" indicator. Run REPAIR with the REPLACE RESET DATA control statement.
Document your actions in case you need to undo anything later.

3. If you determine that the page is not really damaged, but merely has the "inconsistent data" indicator
on, reset the indicator by running REPAIR with the REPLACE RESET control statement.

Repairing DBDs
You can check and repair database definitions (DBDs) in the catalog and directory by using the REPAIR
utility with the DBD statement.

About this task
You can use REPAIR DBD on declared temporary tables, which must be created in a database that is
defined with the AS TEMP clause. No other Db2 utilities can be used on a declared temporary table, its
indexes, or its table spaces.

Procedure
To repair DBDs:
1. Run REPAIR DBD with the TEST option to determine whether the information in the Db2 catalog is

consistent with the DBD in the Db2 directory.

REPAIR DBD TEST obtains environment information, such as the character that is used for the decimal
point, from the application defaults load module that is used by the subsystem. The application
defaults load module is either the default load module DSNHDECP or a user-specified application
defaults load module.

If the return code is not 0, inconsistencies exist.
2. If inconsistencies exist, run REPAIR DBD with the DIAGNOSE and OUTDDN options to produce

diagnostic information.

REPAIR DBD DIAGNOSE obtains environment information, such as the character that is used for the
decimal point, from the application defaults load module that is used by the subsystem.

Contact IBM Support for assistance in analyzing this information.
3. If IBM Support instructs you to do so, replace the existing DBD by running REPAIR DBD with the

REBUILD option.

Chapter 29. REPAIR 655

Attention: Do not use the REBUILD option if you suspect that information in the catalog is
causing the inconsistency. REBUILD uses information in the catalog to rebuild the DBD; if the
catalog is incorrect, the rebuilt DBD cannot be correct.

REPAIR DBD REBUILD obtains environment information, such as the character that is used for the
decimal point, from the DSNHDECP module for the subsystem.

Db2 starts the database for access by utilities only. After successful completion of the REPAIR utility,
the database continues to be started for utility access only.

When REPAIR DBD REBUILD is running, an S-lock is acquired for the appropriate catalog tables. If the
S-lock fails, REPAIR DBD fails.

Db2 reads each table space in the database during the REBUILD process to gather information. If
the data sets for the table spaces do not exist or are not accessible to Db2, the utility abnormally
terminates.

4. If you suspect an inconsistency in the DBD of the work file database, consider issuing the DROP
DATABASE SQL statement or running REPAIR DBD DROP. Then re-create the database.

Attention: Use REPAIR DBD DROP with extreme care. Using DROP can cause additional
damage to your data. For more assistance, contact IBM Support.

If you receive errors when you drop the work file database, contact IBM Support for assistance.
5. If you ran REPAIR DBD REBUILD, the database is started for utility-only access, and you must

restart the database for read/write access manually by issuing the START DATABASE (database-name)
ACCESS(RW) command.

6. Rebind any trigger packages that were invalidated.

When you run REPAIR DBD REBUILD on a database, Db2 invalidates packages for any triggers that are
defined on tables in that database. To find those triggers, use the following query:

SELECT T.NAME, T.SCHEMA FROM
SYSIBM.SYSTRIGGERS T,SYSIBM.SYSDATABASE D
WHERE T.DBID= D.DBID AND D.NAME = ' your database name here'

After you run REPAIR DBD REBUILD, you must rebind those trigger packages. The Db2 release on
which you rebind the trigger packages must be the same as the Db2 release on which you ran REPAIR
DBD REBUILD.

Related reference
“Syntax and options of the REPAIR control statement” on page 632
The REPAIR utility control statement, with its multiple options, defines the function that the utility job
performs.
DROP (Db2 SQL)
-START DATABASE (Db2) (Db2 Commands)
-STOP DATABASE (Db2) (Db2 Commands)

Locating rows by key
If you use LOCATE TABLESPACE KEY, a number of rows might satisfy the condition. In this case, REPAIR
returns only the RIDs of the rows and does not perform any VERIFY, REPLACE, DELETE, or DUMP actions
which might be coded in that LOCATE block.

You can use the RID option of LOCATE TABLESPACE to identify a specific row. Examples of the messages
that are issued are shown in the following example:

DSNU658I - DSNUCBRL - MULTIPLE RECORDS FOUND WITH SPECIFIED KEY
DSNU660I - DSNUCBRL - POSSIBLE RID - X00000100B'
DSNU660I - DSNUCBRL - POSSIBLE RID - X000000C18'
DSNU660I - DSNUCBRL - POSSIBLE RID - X000000916'
DSNU660I - DSNUCBRL - POSSIBLE RID - X000000513'
DSNU650I - DSNUCBRP - DUMP

656 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_drop.html
https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_startdatabase.html
https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_stopdatabase.html

DSNU012I DSNUGBAC - UTILITY EXECUTION TERMINATED,
 HIGHEST RETURN CODE=8

Multiple-column indexes
The KEY option supports only single-column indexes. The following message is issued if you try to locate
a row by using a multiple-column index.

DSNUCBRK - INDEX USED HAS MULTIPLE-FIELD KEY

Using VERIFY with REPLACE and DELETE operations
If any data area does not contain the value that is required by a VERIFY statement, all REPLACE and
DELETE operations in the same locate block are inhibited. VERIFY and REPLACE statements that follow
the next LOCATE statement are not affected.

Repairing critical catalog table spaces and indexes
An ID with a granted authority receives message DSNT500I RESOURCE UNAVAILABLE, while trying to
repair a table space or index in the catalog or directory if table space DSNDB06.SYSUSER is unavailable.

About this task
If you get this message, you must either make these table spaces available or run the REPAIR utility on
the catalog or directory by using an authorization ID with the installation SYSADM or installation SYSOPR
authority.

Related information
DSNT500I (Db2 Messages)

Checking for missing system pages
You can use the REPAIR utility to check for and insert missing system pages into a table space.

Procedure
1. Run REPAIR CATALOG TEST to check for missing system pages for tables.

If a table space has any missing system pages, message DSNU667I is issued, with this additional
information: MISSING SYSTEM PAGE IN THE PAGE SET.

2. Run the following query to identify the tables in a table space that are in version 0 format and have not
been altered.

SELECT NAME, DBID, OBID
 FROM SYSIBM.SYSTABLES
 WHERE VERSION = 0
 AND ALTEREDTS = CREATEDTS
 AND DBNAME = database-name
 AND TSNAME = table-space-name

3. Use the results of steps “1” on page 657 and “2” on page 657 to determine the table spaces that are
in version 0 format and have missing system pages.

4. For any table space that has any missing system pages for tables that are in version 0 format, run
REPAIR INSERTVERSIONPAGES SETCURRENTVERSION to insert system pages into the table space
that contains those tables. Tables that are in version 0 format have had no version-changing alter
operations.

REPAIR INSERTVERSIONPAGES SETCURRENTVERSION performs the following actions:

• Inserts missing system pages for tables that are in version 0 format into the table space.

Chapter 29. REPAIR 657

https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnt500i.html

• Updates the version numbers in the VERSION column of the SYSIBM.SYSTABLES catalog table
for all tables in the table space that are at version 0 to the same version number as in the
CURRENT_VERSION column in SYSIBM.SYSTABLESPACE.

Termination or restart of REPAIR
You can terminate the REPAIR utility, but you cannot restart the REPAIR utility.

You can terminate a REPAIR job with the TERM UTILITY command.

REPAIR cannot be restarted. If you attempt to restart REPAIR, you receive message DSNU181I, which
states that the utility cannot be restarted. You must terminate the job with the TERM UTILITY command,
and rerun REPAIR from the beginning.

Related reference
-TERM UTILITY (Db2) (Db2 Commands)

Review of REPAIR output
The output from the REPAIR utility can consist of any modified pages in the specified Db2 table space or
index. Alternatively, the REPAIR utility can produce a complete dump of the content of the table space.

Error messages
At each LOCATE statement, the last data page and the new page that are being located are checked for a
few common errors, and messages are issued.

Data checks
Although REPAIR enables you to manipulate both user and Db2 data by bypassing SQL, it does perform
some checking of data. For example, if REPAIR tries to write a page with the wrong page number, Db2
abnormally terminates with a 04E code and reason code C200B0. If the page is broken because the
broken page bit is on or the incomplete page flag is set, REPAIR issues the following message:

DSNU670I + DSNUCBRP - PAGE X'000004' IS A BROKEN PAGE

After running REPAIR
Certain activities might be required after you run the REPAIR utility, depending on your situation.

CHECK-pending status

You are responsible for violations of referential constraints that are a result of running REPAIR. These
violations cause the target table space to be placed in the CHECK-pending status.

After running REPAIR DBD REBUILD
Make sure that you rebind any invalidated trigger packages. See the information about repairing DBDs.

Related tasks
“Repairing DBDs” on page 655
You can check and repair database definitions (DBDs) in the catalog and directory by using the REPAIR
utility with the DBD statement.
Related reference
“CHECK DATA” on page 71

658 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_termutility.html

The CHECK DATA online utility checks table spaces for violations of referential and table check
constraints. This utility also checks for consistency between a base table space and the corresponding
LOB or XML table spaces.

Sample REPAIR control statements
Use the sample control statements as models for developing your own REPAIR control statements.

Example: Replacing damaged data and verifying replacement

The following control statement specifies that the REPAIR utility is to perform the following actions:

• Repair the specified page of table space DSN8D81A.DSN8S81D, as indicated by the LOCATE clause.
• Verify that, at the specified offset (50), the damaged data (0A00) is found, as indicated by the VERIFY

clause.
• Replace the damaged data with the data that you want (0D11), as indicated by the REPLACE clause.
• Initiate a dump beginning at offset 50, for 4 bytes, as indicated by the DUMP clause. You can use the

generated dump to verify the replacement.

//STEP1 EXEC DSNUPROC,UID='IUIQU1UH',UTPROC='',SYSTEM='DSN'
//SYSIN DD *
REPAIR OBJECT
 LOCATE TABLESPACE DSN8D12A.DSN8S12D PAGE X'02'
 VERIFY OFFSET 50 DATA X'0A00'
 REPLACE OFFSET 50 DATA X'0D11'
 DUMP OFFSET 50 LENGTH 4

Example: Removing a nonindexed row that is found by REORG

When reorganizing table space DSNDB04.TS1, assume that you received the following message:

DSNU3401 DSNURBXA - ERROR LOADING INDEX, DUPLICATE KEY
 INDEX = EMPINDEX
 TABLE = EMP
 RID OF INDEXED ROW = X'0000000201'
 RID OF NONINDEXED ROW = X'0000000503'

To resolve this error condition, submit the following control statement, which specifies that REPAIR is to
delete the nonindexed row and log the change. (The LOG keyword is not required; the change is logged by
default.) The RID option identifies the row that REPAIR is to delete.

REPAIR
 LOCATE TABLESPACE DSNDB04.TS1 RID (X'0000000503')
 DELETE

Example: Reporting whether catalog and directory DBDs differ

The following control statement specifies that REPAIR is to compare the DBD for DSN8D2AP in the
catalog with the DBD for DSN8D2AP in the directory.

REPAIR DBD TEST DATABASE DSN8D2AP

If the condition code is 0, the DBDs are consistent. If the condition code is not 0, the DBDs might be
inconsistent. In this case, run REPAIR DBD with the DIAGNOSE option, as shown in example 4, to find out
more detailed information about any inconsistencies.

Chapter 29. REPAIR 659

Example: Reporting differences between catalog and directory DBDs

The following control statement specifies that the REPAIR utility is to report information about the
inconsistencies between the catalog and directory DBDs for DSN8D2AP. Run this job after you run a
REPAIR job with the TEST option (as shown in example 3), and the condition code is not 0. In this
example, SYSREC is the output data set, as indicated by the OUTDDN option.

REPAIR DBD DIAGNOSE DATABASE DSN8D2AP OUTDDN SYSREC

Example: Resetting restrictive states

The following REPAIR statement specifies that the utility is to reset the following restrictive states for the
indicated objects:

• For all indexes on table spaces DBNI1601.TSNI1601 and DBNI1601.TSNI1602, reset RBDP, PSRBDP,
or RBDP* status.

• For partition 1 of table space DBNI1601.TSNI1601 and partition 4 of table space DBNI1601.TSNI1602,
reset ACHKP status.

• For partitions 1 and 4 of table space DBNI1601.TSNI1601, reset CHKP status.

//STEP3 EXEC DSNUPROC,UID='JUNIU116.RECV1',
// UTPROC='',SYSTEM='SSTR'
//SYSIN DD *
 REPAIR OBJECT
 SET INDEX (ALL) TABLESPACE DBNI1601.TSNI1601 NORBDPEND
 SET INDEX (ALL) TABLESPACE DBNI1601.TSNI1602 NORBDPEND
 SET TABLESPACE DBNI1601.TSNI1601 PART 1 NOAUXCHKP
 SET TABLESPACE DBNI1601.TSNI1602 PART 4 NOAUXCHKP
 SET TABLESPACE DBNI1601.TSNI1602 PART 1 NOCHECKPEND
 SET TABLESPACE DBNI1601.TSNI1602 PART 4 NOCHECKPEND
/*

Example: Repairing a table space with clones

The control statement specifies that REPAIR is to reset the auxiliary CHECK-pending (ACHKP) status of
the specified table space and process only the specified objects that are table spaces that contain clone
tables, indexes on clone tables, or index spaces that contain indexes on clone tables.

REPAIR
 SET TABLESPACE DBKQDB01.TPKQDB01
 NOAUXCHKP CLONE

Example: Checking for incorrect information in the catalog

Assume that you ran the DSN1COPY utility and want to make sure that you did not introduce any data
integrity errors. Db2 automatically detects any data and catalog inconsistencies the first time that the
data set is physically open after being populated by DSN1COPY. However, if you want to proactively check
for these inconsistencies, you can use REPAIR. In this case, suppose that one of the affected table spaces
is DBNAMET01.TSNAMET01. Issue the following REPAIR statement:

REPAIR CATALOG TABLESPACE DBNAMET01.TSNAMET01 TEST

This utility control statement specifies that REPAIR is to check for any inconsistencies between the data
and catalog. If any inconsistencies are found, Db2 returns messages for them but does not correct them.

If you want REPAIR to correct the catalog when possible, issue the statement without the TEST option, as
follows:

660 Db2 12 for z/OS: Utility Guide and Reference

REPAIR CATALOG TABLESPACE DBNAMET01.TSNAMET01

For more information about which inconsistencies are automatically corrected and which are reported
through messages, see the description of CATALOG in “Syntax and options of the REPAIR control
statement” on page 632

Example: Writing a log record

The following utility statement specifies that REPAIR is to write an “add or alter column” diagnostic log
record with the value that is passed in the TEXT option:

REPAIR WRITELOG TABLESPACE DB1.TS1 TYPE(X'4400') SUBTYPE(X'0083')
TEXT(X'00011E000200120000000000000000000000')

The following highlighted parts of the TEXT value have the following meanings:

Value Meaning

TEXT(X'00011E000200120000000000000000000000') 011E is the DBID

TEXT(X'00011E000200120000000000000000000000') 0002 is the PSID

TEXT(X'00011E000200120000000000000000000000') 0012 is the length of the log record

You can determine the DBID and PSID values by querying the SYSIBM.SYSTABLESPACE catalog table. For
example:

SELECT SUBSTR(DBNAME,1,8),SUBSTR(NAME,1,10),
 HEX(DBID),
 HEX(PSID)
 FROM
SYSIBM.SYSTABLESPACE

 WHERE
 DBNAME = 'DB1';

The output from the REPAIR utility shows the LRSN of the log record:

DSNU3335I -DB2A 165 12:39:11.45 DSNUCBWL - REPAIR WRITELOG SUCCESSFUL LRSN/RBA:
00D645E15BA022855200

Chapter 29. REPAIR 661

662 Db2 12 for z/OS: Utility Guide and Reference

Chapter 30. REPORT
The REPORT utility provides information about table spaces, tables, and indexes. You can use REPORT to
find the names of related table spaces, such as referentially related table spaces and LOB table spaces.
You can also use REPORT to find information that is necessary for recovery.

Output

The output from REPORT with the TABLESPACESET option consists of the names of all table spaces in
the table space set that you specify. It also lists all tables in the table spaces and all tables that are
dependent on those tables.

The output from REPORT with the RECOVERY option consists of the following items:

• The recovery history from the SYSIBM.SYSCOPY catalog table
• Log ranges from the SYSIBM.SYSLGRNX directory table
• Volume serial numbers where archive log data sets from the BSDS exist.
• Information about any indexes on the table space that are in the informational COPY-pending (ICOPY)

status (This information affects the recoverability of an index.)
• Information about any system-level backup copies that you can use for recovery if the BACKUP SYSTEM

utility is used on your system

If you use system-level backup copies as the base for object-level recoveries of individual table spaces
or index spaces, the REPORT output also lists the system-level backup copies. These copies are listed in
the SYSCOPY ROWS AND SYSTEM-LEVEL BACKUPS section of the report.

If REPORT TABLESPACESET or REPORT RECOVERY is specified and the base objects have been cloned,
information for both base and clone objects are included in the output.

In a data sharing environment, the REPORT output provides:

• The RBA of when Db2 was migrated to Db2 12
• The high and low RBA values of the migrated member
• A list of any SYSLGRNX records from before data sharing was enabled that cannot be used to recover to

any point in time after data sharing was enabled
• For SYSCOPY, the member from which the image copy was deleted
• Information about system-level backup copies that are retrieved from the bootstrap data sets of each

member in the data sharing group
• The status of deactivated members, and of destroyed members whose member IDs have not been

reclaimed

Authorization required:

To execute this utility, you must use a privilege set that includes one of the following authorities:

• RECOVERDB privilege for the database
• DBADM or DBCTRL authority for the database. If the object on which the utility operates is in an

implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• System DBADM authority
• DATAACCESS authority
• SYSCTRL or SYSADM authority

© Copyright IBM Corp. 1983, 2024 663

Any of the following IDs can run the REPORT utility on any table space in DSNDB01 (the directory) or
DSNDB06 (the catalog)

• An ID with DBCTRL or DBADM authority over database DSNDB06
• Any ID with installation SYSOPR, SYSCTRL, or SYSADM authority.

Execution phases of REPORT

The REPORT utility operates in these phases:

Phase
Description

UTILINIT
Performs initialization

REPORT
Collects information

UTILTERM
Performs cleanup

Related concepts
“Preparing for recovery by using the COPY utility” on page 156
To prepare for recovery, you can use the COPY utility to create copies and establish points of recovery.
Related tasks
Deleting data sharing members (Db2 Data Sharing Planning and Administration)
Restoring deactivated data sharing members (Db2 Data Sharing Planning and Administration)
Related reference
“Informational COPY-pending status” on page 981
Informational COPY-pending (ICOPY) advisory status indicates that the affected object should be copied.

Syntax and options of the REPORT control statement
The REPORT utility control statement, with its multiple options, defines the function that the utility job
performs.

You can create a control statement with the ISPF/PDF edit function. After you create it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram
REPORT

RECOVERY TABLESPACE LIST listdef-name

table-space-name-spec

INDEX NONE

INDEX ALL

index-list-spec

info-options-spec

TABLESPACESET

TABLESPACE

table-space-name-spec

SHOWDSNS

SHOWKEYLABEL

table-space-name-spec

database-name .

table-space-name

index-list-spec

664 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/dshare/src/tpc/db2z_deletingdsmembers.html
https://www.ibm.com/docs/SSEPEK_12.0.0/dshare/src/tpc/db2z_restoringdsmembers.html

INDEXSPACE

database-name .

index-space-name

LIST listdef-name

INDEX

creator-id .

index-name

LIST listdef-name

info-options-spec
DSNUM ALL

DSNUM integer CURRENT SUMMARY LOCALSITE

RECOVERYSITE

ARCHLOG 1

ARCHLOG 2

ALL

Option descriptions

RECOVERY
Indicates that recovery information for the specified table space or index is to be reported.

You can request recovery information for the local site, the recovery site, or both by using the
LOCALSITE and RECOVERSITE options. If you request recovery information about the catalog and
directory, specify the CURRENT option to avoid unnecessary mounting of archive tapes.

Recommendation: For image copies of partitioned table spaces that are taken with the DSNUM ALL
option, run REPORT RECOVERY DSNUM ALL. If you run REPORT RECOVERY DSNUM ALL CURRENT,
Db2 reports extra historical information that dates back to the last full image copy that was taken for
the entire table space.

For a description of the information that REPORT RECOVERY provides, see “REPORT output” on page
669.

TABLESPACE database-name.table-space-name
For REPORT RECOVERY, specifies the table space (and, optionally, the database to which it belongs)
that is being reported.

For REPORT TABLESPACESET, specifies a table space (and, optionally, the database to which it
belongs) in the table space set.
database-name

Optionally specifies the database to which the table space belongs.
table-space-name

Specifies the table space.
LISTlistdef-name

Specifies the name of a previously defined LISTDEF list name. The utility allows one LIST keyword
for each control statement of REPORT. The list must contain only table spaces. Do not specify LIST
with the TABLESPACE…table-space-name specification. The TABLESPACE keyword is required to
validate the contents of the list. REPORT RECOVERY TABLESPACE is invoked once per item in the
list.

Chapter 30. REPORT 665

SHOWDSNS
Specifies that the VSAM data set names for each table space or index space are to be included
in the TABLESPACESET report. Data set names for base objects are shown in the section titled
TABLESPACE SET REPORT. Data set names for CLONE objects are shown in the section titled
CLONE TABLESPACE SET REPORT. The later report is only prepared if the base objects have been
cloned.

In certain situations, the following labels are shown in place of data set names:

• A "NOT DEFINED" label is displayed for DEFINE NO objects until data is inserted or loaded into
the objects.

• A "NOT AVAILABLE" label is displayed when a data set is concurrently being deleted, renamed,
or reset by another task. The label is displayed until the concurrent task completes and the data
set is available again.

INDEXSPACE database-name.index-space-name
Specifies the index space that is being reported.

database-name
Optionally specifies the database to which the index space belongs.

index-space-name
Specifies the index space name for the index that is being reported.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name. The utility allows one LIST keyword
for each control statement of REPORT. The list must contain only index spaces. Do not specify
LIST with the INDEXSPACE index-space-name specification. The INDEXSPACE keyword is required
in order to validate the contents of the list. REPORT RECOVERY INDEXSPACE is invoked once for
each item in the list.

INDEX creator-id.index-name
Specifies the index in the index space that is being reported.
creator-id

Optionally specifies the creator of the index.
index-name

Specifies the index name that is to be reported. Enclose the index name in quotation marks if the
name contains a blank.

LIST listdef-name

Specifies the name of a previously defined LISTDEF list name. The utility allows one LIST keyword
for each control statement of REPORT. The list must contain only index spaces. Do not specify
LIST with the INDEX…index-name specification. The INDEX keyword is required to validate the
contents of the list. REPORT RECOVERY INDEX is invoked once for each item in the list.

The partitions or partition ranges can be specified in a list.

The following REPORT keywords are optional:

INDEX NONE
Specifies that recovery information for index spaces that are associated with the specified table
space is not to be reported.

INDEX ALL
Specifies that recovery information for index spaces that are associated with the specified table
space is to be reported.

DSNUM
Identifies a partition or data set for which information is to be reported. Alternatively, DSNUM
specifies that information is to be reported for the entire table space or index space.

666 Db2 12 for z/OS: Utility Guide and Reference

ALL
Specifies that information is to be reported for the entire table space or index space.

integer
Is the number of a partition or data set for which information is to be reported. The maximum
is 4096.

For a partitioned table space or partitioned index space, the integer is its physical partition
number.

For a nonpartitioned table space, find the integer at the end of the data set name, as cataloged
in the VSAM catalog. The data set name has the following format:

catname.DSNDBx.dbname.tsname.y0001.Annn

In this format:

catname
Is the VSAM catalog name or alias.

x
Is C or D.

dbname
Is the database name.

tsname
Is the table space name.

y
Is I or J.

nnn
Is the data set integer.

CURRENT
Specifies that only the SYSCOPY entries that were written after the last recovery point of the table
space are to be reported. The last recovery point is the last full image copy, LOAD REPLACE LOG
YES image copy, or REORG LOG YES image copy. If you specify DSNUM ALL, the last recovery point
is a full image copy that was taken for the entire table space or index space. If you specify the
CURRENT option, but the last recovery point does not exist on the active log, Db2 prompts you to
mount archive tapes until this point is found.

CURRENT also reports only the SYSLGRNX rows and archive log volumes that were created after
the last incremental image copy entry. If no incremental image copies were created, only the
SYSLGRNX rows and archive log volumes that were created after the last recovery point are
reported.

If you do not specify CURRENT or if no last recovery point exists, all SYSCOPY and SYSLGRNX
entries for that table space or index space are reported. The report includes entries on archive
logs. If you do not specify CURRENT, the entries that were written after the last recovery point are
marked with an asterisk (*) in the report.

SUMMARY
Specifies that only a summary of volume serial numbers is to be reported. It reports the following
volume serial numbers:

• Where the archive log data sets from the BSDS exist
• Where the image copy data sets from SYSCOPY exist

If you do not specify SUMMARY, recovery information is reported, in addition to the summary of
volume serial numbers.

LOCALSITE
Specifies that all SYSCOPY records that were copied from a local site system are to be reported.

Chapter 30. REPORT 667

RECOVERYSITE
Specifies that all SYSCOPY records that were copied from the recovery site system are to be
reported.

ARCHLOG
Specifies which archive log data sets are to be reported.
1

Reports archive log data set 1 only.
2

Reports archive log data set 2 only.
[ALL]

Reports both archive log data sets 1 and 2.
TABLESPACESET

Indicates that the names of all table spaces in the table space set and the names of all indexes on
those tables are to be reported.

For more information about table space sets, see the description of the TABLESPACESET option of
the QUIESCE utility.

Related information:

“Syntax and options of the QUIESCE control statement” on page 390

FL 502 SHOWKEYLABEL
Specifies that the key label is shown for encrypted VSAM data sets for each table space or index space
in the TABLESPACESET report.

Related reference
“LISTDEF” on page 199
The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.

Data sets that REPORT uses
The REPORT utility uses a number of data sets during its operation.

The following table lists the data sets that REPORT uses. The table lists the DD name that is used to
identify the data set, a description of the data set, and an indication of whether it is required. Include
statements in your JCL for each required data set and any optional data sets that you want to use.

Table 100. Data sets that REPORT uses

Data set Description Required?

SYSIN Input data set that contains the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

The following object is named in the utility control statement and does not require a DD statement in the
JCL:
Table space

Object that is to be reported.

Related concepts
“Data sets that online utilities use” on page 18

668 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.

Concurrency and compatibility for REPORT
The REPORT utility has certain concurrency and compatibility characteristics associated with it.

REPORT does not set a utility restrictive state on the target table space or partition.

REPORT can run concurrently on the same target object with any utility or SQL operation.

Running REPORT on the catalog and directory
REPORT RECOVERY shows the image copies for those table spaces that are not
included in SYSIBM.SYSCOPY: DSNDB01.SYSUTILX, DSNDB01.DBD01, DSNDB06.SYSTSCPY, and
DSNDB01.SYSDBDXA.

When you run REPORT RECOVERY on one of these table spaces, specify the CURRENT option to avoid
unnecessarily mounting archive tapes. If you do not specify CURRENT, Db2 searches for and reports
all SYSCOPY records in the log, including those records on archive tapes. If you specify CURRENT, Db2
prompts you to mount archive tapes only if the last recovery point does not exist on the active log. You are
prompted to mount tapes until the last recovery point is found.

You can use REPORT TABLESPACESET on the Db2 catalog and directory table spaces.

Termination or restart of REPORT
You can terminate and restart the REPORT utility.

You can terminate a REPORT utility job with the TERM UTILITY command if you have submitted the job
or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a REPORT utility job, but it starts from the beginning again.

Related tasks
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.

REPORT output
The output from the REPORT utility depends on whether the TABLESPACESET or RECOVERY option is
specified.

For the TABLESPACESET option, the output consists of the names of all table spaces in the specified table
space set. For the RECOVERY option, the output includes information about the image copy data sets and
archive log data set that might be required during the recovery.

REPORT TABLESPACESET output
The output from REPORT TABLESPACESET consists of the names of all table spaces in the table space set
that you specify. It also identifies all tables in the table spaces and all tables that are dependent on those
tables, including LOB and XML tables, history tables, and archive tables.

Example of REPORT TABLESPACESET output
The statement REPORT TABLESPACESET TABLESPACE DSN8DB1A.DSN8S81D generates the output
that is shown in the following figure. For the purposes of this example, an XML column was added to
the sample table DSN8B10.DEPT.

DSNU000I 270 14:18:14.71 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = REP94
DSNU1044I 270 14:18:14.91 DSNUGTIS - PROCESSING SYSIN AS EBCDIC

Chapter 30. REPORT 669

DSNU050I 270 14:18:14.92 DSNUGUTC - REPORT TABLESPACESET TABLESPACE DSN8DC1A.DSN8SC1D
DSNU587I) 270 14:18:14.94 DSNUPSET - REPORT TABLESPACE SET WITH TABLESPACE DSN8DC1A.DSN8SC1D

TABLESPACE SET REPORT:

TABLESPACE : DSN8DC1A.DSN8SC1D
 TABLE : DSN8C10.DEPT
 INDEXSPACE : DSN8DC1A.XDEPT1
 INDEX : DSN8C10.XDEPT11
 INDEXSPACE : DSN8DC1A.XDEPT2
 INDEX : DSN8c10.XDEPT22
 INDEXSPACE : DSN8DC1A.XDEPT3
 INDEX : DSN8C10.XDEPT33
 INDEXSPACE : DSN8DC1A.IRDOCIDD
 INDEX : DSN8C10.I_DOCIDDEPT
 DEP TABLE : DSN8C10.DEPT
 DSN8C10.EMP
 DSN8C10.PROJ

TABLESPACE : DSN8DC1A.DSN8SC1E
 TABLE : DSN8C10.EMP
 INDEXSPACE : DSN8DC1A.XEMP1
 INDEX : DSN8C10.XEMP11
 INDEXSPACE : DSN8DC1A.XEMP2
 INDEX : DSN8C10.XEMP22
 DEP TABLE : DSN8C10.DEPT
 DSN8C10.EMPPROJACT
 DSN8C10.PROJ

TABLESPACE : DSN8DC1A.DSN8SC1P
 TABLE : DSN8C10.ACT
 INDEXSPACE : DSN8DC1A.XACT1
 INDEX : DSN8C10.XACT11
 INDEXSPACE : DSN8DC1A.XACT2
 INDEX : DSN8C10.XACT22
 DEP TABLE : DSN8C10.PROJACT

 TABLE : DSN8C10.EMPPROJACT
 INDEXSPACE : DSN8DC1A.XEMPPROJ
 INDEX : DSN8C10.XEMPPROJACT1
 INDEXSPACE : DSN8DC1A.XEMP1AQJ
 INDEX : DSN8C10.XEMPPROJACT2

 TABLE : DSN8C10.PROJ
 INDEXSPACE : DSN8DC1A.XPROJ1
 INDEX : DSN8C10.XPROJ11
 INDEXSPACE : DSN8DC1A.XPROJ2
 INDEX : DSN8C10.XPROJ22
 DEP TABLE : DSN8C10.PROJ
 DSN8C10.PROJACT

 TABLE : DSN8C10.PROJACT
 INDEXSPACE : DSN8DC1A.XPROJAC1
 INDEX : DSN8C10.XPROJAC11
 DEP TABLE : DSN8C10.EMPPROJACT

XML TABLESPACE SET REPORT:

TABLESPACE : DSN8DC1A.DSN8SC1D

 BASE TABLE : DSN8C10.DEPT
 COLUMN : XML1
 XML TABLESPACE : DSN8DC1A.XDEP0000
 XML TABLE : DSN8C10.XDEPT
 XML NODEID INDEXSPACE: DSN8DC1A.IRNODEID
 XML NODEID INDEX : DSN8C10.I_NODEIDXDEPT

DSNU580I 270 14:18:14.94 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I 270 14:18:14.97 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example of REPORT TABLESPACESET output for tables spaces that are included in versioning
relationships

The output from REPORT TABLESPACESET identifies versioning relationships in the system-period
temporal table space or history table space. The report also includes the related auxiliary LOB and
XML table spaces on both the system-period temporal table space and history table spaces.

TABLESPACE : DBSOL11.TS001L11

670 Db2 12 for z/OS: Utility Guide and Reference

 TABLE : ADMF001.TBWSOL11
 INDEXSPACE : DBSOL11.IRDOCIDT
 INDEX : ADMF001.I_DOCIDTBWSOL11

LOB TABLESPACE SET REPORT:

TABLESPACE : DBSOL11.TS001L11

 BASE TABLE : ADMF001.TBWSOL11
 COLUMN : BLOB1
 LOB TABLESPACE : DBSOL11.TLWB1L11
 AUX TABLE : ADMF001.TBAWLOBB1L11
 AUX INDEXSPACE : DBSOL11.IXDLB1L1
 AUX INDEX : ADMF001.IXDLB1L1

TABLESPACE : DBSOL11.TS001L11
 BASE TABLE : ADMF001.TBWSOL11
 COLUMN : XML1
 XML TABLESPACE : DBSOL11.XTBW0000
 XML TABLE : ADMF001.XTBWSOL11
 XML NODEID INDEXSPACE : DBSOL11.IRNODEID
 XML NODEID INDEX : ADMF001.I_NODEIDXTBWSOL11
 XML INDEXSPACE : DBSOL11.IXW11SOL
 XML INDEX : ADMF001.IXW11SOL11
 XML INDEXSPACE : DBSOL11.IXW12SOL
 XML INDEX : ADMF001.IXW12SOL11
 XML INDEXSPACE : DBSOL11.IXW13SOL
 XML INDEX : ADMF001.IXW13SOL11
 XML INDEXSPACE : DBSOL11.IXW14SOL
 XML INDEX : ADMF001.IXW14SOL11

HISTORY TABLESPACE SET REPORT:

 BASE TABLE : ADMF001.TBWSOL11
 HISTORY TABLESPACE : DBSOL11.HTS001L11
 HISTORY TABLE : ADMF001.HTBWSOL11
 HISTORY INDEXSPACE : DBSOL11.HIRDOCIDT
 HISTORY INDEX : ADMF001.HI_DOCIDTBWSOL11

HISTORY LOB TABLESPACE SET REPORT:

 HISTORY TABLESPACE : DBSOL11.HTS001L11

 BASE TABLE : ADMF001.TBWSOL11
 COLUMN : BLOB1
 HISTORY LOB TABLESPACE : DBSOL11.HTLWB1L11
 AUX TABLE : ADMF001.HTBAWLOBB1L11
 AUX INDEXSPACE : DBSOL11.HIXDLB1L1
 AUX INDEX : ADMF001.HIXDLB1L1

HISTORY XML TABLESPACE SET REPORT:

 HISTORY TABLESPACE : DBSOL11.HTS001L11

 BASE TABLE : ADMF001.TBWSOL11
 COLUMN : XML1
 HISTORY XML TABLESPACE : DBSOL11.HXTBW0000
 XML TABLE : ADMF001.HXTBWSOL11
 XML NODEID INDEXSPACE : DBSOL11.HIRNODEID
 XML NODEID INDEX : ADMF001.HI_NODEIDXTBWSOL11
 XML INDEXSPACE : DBSOL11.HIXW11SOL
 XML INDEX : ADMF001.HIXW11SOL11
 XML INDEXSPACE : DBSOL11.HIXW12SOL
 XML INDEX : ADMF001.HIXW12SOL11
 XML INDEXSPACE : DBSOL11.HIXW13SOL
 XML INDEX : ADMF001.HIXW13SOL11
 XML INDEXSPACE : DBSOL11.HHIXW14SOL
 XML INDEX : ADMF001.HIXW14SOL11

Example of REPORT TABLESPACESET output for tables spaces that are included in archive
relationships

The following portion of output from REPORT TABLESPACESET shows related archive objects.

...
ARCHIVE TABLESPACE SET
REPORT:

Chapter 30. REPORT 671

TABLESPACE :
DB516803.TU516806

 ARCHIVE TABLE :
SC516801.TB_STOCK_PBR_ARCH

 AR_ENABLED TABLE :
SC516801.TB_STOCK_PART

 INDEXSPACE :
DB516803.IX01RARC

 INDEX :
SC516801.IX01_ARCH_STOCK_PBR

 INDEXSPACE :
DB516803.IU01RARC

 INDEX :
SC516801.IU01_ARCH_STOCK_PBR

 INDEXSPACE :
DB516803.IX02RARC

 INDEX :
SC516801.IX02_ARCH_STOCK_PBRT

TABLESPACE :
DB516807.TU516808

 ARCHIVE TABLE :
SC516801.TB_ORDERLINE_PBR_ARCH

 AR_ENABLED TABLE :
SC516801.TB_ORDERLINE_PBG

 INDEXSPACE :
DB516807.IU01RARC

 INDEX :
SC516801.IU01_ARCH_ORDERLINE_PBR

 INDEXSPACE :
DB516807.IRDO1JOL

 INDEX :
SC516801.I_DOCIDTB_ORDERLINE_PBR_A

 INDEXSPACE :
DB516807.IX01RARC

 INDEX :
SC516801.IX01_ARCH_ORDERLINE_PBR

 INDEXSPACE :
DB516807.IX02RARC

 INDEX : SC516801.IX02_ARCH_ORDERLINE_PBR

Related information:

Archive-enabled tables and archive tables (Introduction to Db2 for z/OS)

Example of REPORT TABLESPACESET output for table spaces with a key label
The following REPORT statement specifies that the utility is to provide key label information for table
space DBF07307.TAF07382.

REPORT TABLESPACESET TABLESPACE DBF07303.TAF07305 SHOWDSNS
SHOWKEYLABEL

672 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html

The following example shows the REPORT output:

TABLESPACE : DBF07303.TPF07305
 PART: 0001 DSN : DB2SMS.DSNDBC.DBF07303.TPF07305.I0001.A001
 KEY LABEL : DB2KEYLABEL1
 PART: 0002 DSN : DB2SMS.DSNDBC.DBF07303.TPF07305.I0001.A002
 PART: 0003 DSN : DB2SMS.DSNDBC.DBF07303.TPF07305.I0001.A003
 KEY LABEL : DB2KEYLABEL1
 PART: 0004 DSN : DB2SMS.DSNDBC.DBF07303.TPF07305.I0001.A004
 KEY LABEL : DB2KEYLABEL1
 PART: 0005 DSN : DB2SMS.DSNDBC.DBF07303.TPF07305.I0001.A005
 KEY LABEL : DB2KEYLABEL1
 TABLE : SCF07301.TB_STOCK_PART
 INDEXSPACE : DBF07303.IX01RSTO
 PART: 0001 DSN : DB2SMS.DSNDBC.DBF07303.IX01RSTO.I0001.A001
 KEY LABEL : DB2KEYLABEL1
 PART: 0002 DSN : DB2SMS.DSNDBC.DBF07303.IX01RSTO.I0001.A002
 PART: 0003 DSN : DB2SMS.DSNDBC.DBF07303.IX01RSTO.I0001.A003
 KEY LABEL : DB2KEYLABEL1
 PART: 0004 DSN : DB2SMS.DSNDBC.DBF07303.IX01RSTO.I0001.A004
 KEY LABEL : DB2KEYLABEL1
 PART: 0005 DSN : DB2SMS.DSNDBC.DBF07303.IX01RSTO.I0001.A005
 KEY LABEL : DB2KEYLABEL1
 INDEX : SCF07301.IX01_STOCK_PART
 INDEXSPACE : DBF07303.IU01RSTO
 DSN : DB2SMS.DSNDBC.DBF07303.IU01RSTO.I0001.A001
 INDEX : SCF07301.IU01_STOCK_PART
 INDEXSPACE : DBF07303.IX02RSTO
 DSN : DB2SMS.DSNDBC.DBF07303.IX02RSTO.I0001.A001
 INDEX : SCF07301.IX02_STOCK_PART

Related information:

Archive-enabled tables and archive tables (Introduction to Db2 for z/OS)

REPORT RECOVERY output
REPORT RECOVERY displays all information about the image copy data sets and archive log data sets
that might be required during the recovery. Specifically, REPORT RECOVERY displays the following
information, each in a separate section:

• Recovery information from the SYSIBM.SYSCOPY catalog table, including the history of the following
utilities: QUIESCE, COPY, LOAD, REORG, and RECOVER with the TOCOPY, TOLOGPOINT, or TORBA
option.

For each image copy entry, the output includes the following information:

– The device type
– Whether the copy is the primary or backup copy for the local site or the recovery site.

If the SYSTEM_LEVEL_BACKUPS subsystem parameter is set to YES, your Db2 for z/OS subsystem is
configured to support object-level recoveries from system-level backups. In this case, the output also
includes information about any system-level backup copies that can be used to recover an individual
table space or index space. This information is included at the end of the report in a section that begins
with the following message:

DSNU598I - csect-name REPORT RECOVERY SYSTEM-LEVEL BACKUPS

For each system-level backup, you can use the listed location name to determine the copy pool that is
associated with it.

If the DSVOLSER column of SYSIBM.SYSCOPY is blank, REPORT RECOVERY does not display volume
serial numbers for image copy data sets.

• Log ranges of the table space or index space from the SYSIBM.SYSLGRNX directory.
• Information from archive log data sets ARCHLOG1, ARCHLOG2, or both, from the bootstrap data set.

Chapter 30. REPORT 673

https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_archivetables.html

If REPORT has no data to display for one or more of these sections, the corresponding sections of the
report contain the following message:

DSNU588I - NO DATA TO BE REPORTED

Information about SYSIBM.SYSCOPY rows
Several columns in the SYSIBM.SYSCOPY catalog table contain values that can be useful in
interpreting the REPORT utility output. Specifically, the combination of ICTYPE, STYPE, and TTYPE
column values define the event that the SYSIBM.SYSCOPY row represents. For information about the
meaning of these column values, see SYSIBM.SYSCOPY table.

Certain events can prohibit point-in-time recoveries. For information, see Point-in-time recovery.

You can use REPORT RECOVERY output to determine the recovery status of your objects. REPORT
uses the following delimiters around the ICTYPE value to indicate certain entries:
* *

REPORT uses asterisks to denote any non-image copy entries in the SYSIBM.SYSCOPY catalog
table. For example, an entry that is added by the QUIESCE utility is marked with asterisks in the
REPORT output.

#
REPORT uses number signs to denote any entries in the SYSIBM.SYSCOPY catalog table that were
created before any ALTER operations were materialized. For SYSIBM.SYSCOPY entries that were
inserted during the materialization of the pending definition changes, REPORT uses asterisks to
denote them as non-COPY entries.

< >
REPORT uses the less than symbol and greater than symbol to denote an image copy that was
made before table space partitions were rebalanced.

()
REPORT uses parentheses to denote an image copy that was made before a LOG(NO) event. For
image copies of indexes, the LOG(NO) event might have occurred on its underlying table space.

Information about SYSIBM.SYSLGRNX rows and archive logs
REPORT uses an asterisk (*) to identify SYSIBM.SYSLGRNX rows and archive log entries after the
last recovery base and to indicate which logs are needed for a full recovery to the currrent time. (A
recovery base includes an image copy or a LOAD REPLACE LOG YES or REORG LOG YES utility event.)
In the REPORT output, the asterisk is displayed to the right of the entries. If you specify the CURRENT
option, only the SYSIBM.SYSLGRNX rows and the archive log entries after the last recovery base are
reported, and the asterisk is not included in the report.

Related reference
SYSCOPY catalog table (Db2 SQL)
SYSLGRNX table (Db2 SQL)
“Syntax and options of the REPORT control statement” on page 664
The REPORT utility control statement, with its multiple options, defines the function that the utility job
performs.

Sample REPORT control statements
Use the sample control statements as models for developing your own REPORT control statements.

Example 1: Reporting recovery information for a table space

The following control statement specifies that the REPORT utility is to provide recovery information for
table space DSN8D81A.DSN8S81E.

//REPORT EXEC DSNUPROC,SYSTEM=V91A,UID='REP97'
//SYSIN DD *

674 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsyscopytable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsyscopytable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sysibmsyslgrnxtable.html

REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E
/*

The preceding statement produces output similar to the following output:

DSNU000I 270 13:00:51.35 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = REP97
DSNU1044I 270 13:00:51.58 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 270 13:00:51.60 DSNUGUTC - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E
DSNU581I) 270 13:00:51.60 DSNUPREC - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E
DSNU593I) 270 13:00:51.61 DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:
 MINIMUM RBA: 000000000000
 MAXIMUM RBA: FFFFFFFFFFFF
 MIGRATING RBA: 000000000000
DSNU582I) 270 13:00:51.61 DSNUPPCP - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E SYSCOPY ROWS
TIMESTAMP = 2006-09-27-11.40.56.074739, IC TYPE = *C*, SHR LVL = , DSNUM = 0000,
 START LRSN =00003697A903
DEV TYPE = , IC BACK = , STYPE = L, FILE SEQ = 0000,
 PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000,
 LOGGED = Y, TTYPE =
JOBNAME = , AUTHID = , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,
 INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.38.341008, IC TYPE = *Z*, SHR LVL = , DSNUM = 0004,
 START LRSN =000036C8EA3E
DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,
 PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0004,
 LOGGED = Y, TTYPE =
JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,
 INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.38.341008, IC TYPE = *Z*, SHR LVL = , DSNUM = 0001,
 START LRSN =000036C8EA3E
DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,
 PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0001,
 LOGGED = Y, TTYPE =
JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,
 INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.38.341008, IC TYPE = *Z*, SHR LVL = , DSNUM = 0002,
 START LRSN =000036C8EA3E
DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,
 PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0002,
 LOGGED = Y, TTYPE =
JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,
 INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.38.341008, IC TYPE = *Z*, SHR LVL = , DSNUM = 0003,
 START LRSN =000036C8EA3E
DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,
 PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0003,
 LOGGED = Y, TTYPE =
JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,
 INSTANCE = 01, RELCREATED = M

. . .

DSNU586I) 270 13:00:51.61 DSNUPSUM - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E SUMMARY
DSNU588I) 270 13:00:51.61 DSNUPSUM - NO DATA TO BE REPORTED

DSNU583I) 270 13:00:51.61 DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR TABLESPACE
DSN8D91A.DSN8S91E
 UCDATE UCTIME START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID
 092706 11405634 00003697B82E 0000369855C3 BF7840C34BF3 BF7840C44D81 0001 0000

Chapter 30. REPORT 675

 092706 11405670 00003697E223 0000369855C3 BF7840C3A2F9 BF7840C44E27 0002 0000
 092706 11405707 000036980BC3 0000369855C3 BF7840C3FF60 BF7840C44E92 0003 0000
 092706 11405732 000036983674 0000369855C3 BF7840C43C57 BF7840C44F03 0004 0000
 092706 11410155 0000369E31B6 000036ADE99C BF7840C8436A BF7840D832E3 0001 0000
 092706 11410156 0000369E3ABB 000036A03DB6 BF7840C84546 BF7840D83495 0002 0000
 092706 11410156 0000369E3E51 000036A0E15C BF7840C84683 BF7840D8359B 0003 0000
 092706 11410159 0000369E4224 000036A5F932 BF7840C84CAA BF7840D83704 0004 0000
 092706 11413835 000036C98000 000036D0B672 BF7840EB5CF9 BF7840EBF7A3 0001 0000
 092706 11413845 000036CA937C 000036D0B9B6 BF7840EB7562 BF7840EC0150 0002 0000
 092706 11413861 000036CC1F1B 000036D0BC2A BF7840EB9B43 BF7840EC0983 0004 0000
 092706 11422002 000036FC9A0B 000036FCBA50 BF7841131913 BF7841131F84 0003 0000
 092706 11422074 000036FCEB37 000036FD2000 BF784113C93E BF784113E333 0003 0000
 092706 11422688 00003701A7B0 000037029A20 BF784119A438 BF78411B9857 0003 0000
 092706 11423828 000037091000 0000370930BF BF784124848C BF7841248A06 0005 0000
 092706 11424418 0000370DC5B7 0000370E625D BF78412A23C8 BF78412A5DC6 0001 0000
 092706 11424419 0000370DE4FC 0000370E63B9 BF78412A2786 BF78412A6101 0002 0000
 092706 11424421 0000370E0405 0000370E6515 BF78412A2A82 BF78412A6191 0003 0000
 092706 11424427 0000370E230E 0000370E6671 BF78412A39CD BF78412A6210 0004 0000
 092706 11424428 0000370E4254 0000370E74C2 BF78412A3CFD BF78412A630C 0005 0000
 092706 11424782 0000370F3DF8 0000371086F8 BF78412D9C67 BF78412DFDE7 0001 0000
 092706 11424787 0000370F41BA 0000371089A8 BF78412DA8F9 BF78412E02FB 0002 0000
 092706 11424791 0000370F44E6 000037108C1C BF78412DB256 BF78412E0B57 0003 0000
 092706 11424794 0000370F4812 000037108E90 BF78412DBAC1 BF78412E106B 0004 0000
 092706 11424798 0000370F4B3E 00003710919C BF78412DC398 BF78412E14AE 0005 0000
 092706 11424871 000037111E5F 00003711222E BF78412E7581 BF78412E7A75 0001 0000
 092706 11424880 000037112516 00003711287E BF78412E8CD5 BF78412E910F 0002 0000
 092706 11424886 000037112B66 000037112ECE BF78412E9A46 BF78412E9EF3 0003 0000
 092706 11424893 0000371131D0 000037113538 BF78412EAAFB BF78412EAF6F 0004 0000
 092706 11424898 000037113820 000037113B88 BF78412EB8A5 BF78412EC1C4 0005 0000

DSNU584I) 270 13:00:51.61 DSNUPPBS - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E ARCHLOG1 BSDS VOLUMES
DSNU588I) 270 13:00:51.61 DSNUPPBS - NO DATA TO BE REPORTED

DSNU586I) 270 13:00:51.61 DSNUPSUM - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E SUMMARY
DSNU588I) 270 13:00:51.61 DSNUPSUM - NO DATA TO BE REPORTED
DSNU589I) 270 13:00:51.61 DSNUPREC - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E COMPLETE

DSNU580I 270 13:00:51.61 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I 270 13:00:51.62 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 2: Reporting information for table spaces with LOB columns

The following control statement specifies that REPORT is to provide a list of all table spaces that are
related to TABLESPACE DSN8D91L.DSN8S91B, which contains a table with three LOB columns. The
output includes a separate section titled LOB TABLESPACE SET REPORT showing a list of related LOB
table spaces and their tables, indexes, and index spaces. The base table and column to which each LOB
object is related is also shown.

REPORT TABLESPACESET TABLESPACE DSN8D91L.DSN8S91B

The preceding statement produces output similar to the following output:

DSNU000I 277 11:19:09.40 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = REP98
DSNU1044I 277 11:19:09.59 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 277 11:19:09.59 DSNUGUTC - REPORT TABLESPACESET TABLESPACE DSN8D91L.DSN8S91B
DSNU587I) 277 11:19:09.62 DSNUPSET - REPORT TABLESPACE SET WITH TABLESPACE DSN8D91L.DSN8S91B

TABLESPACE SET REPORT:

TABLESPACE : DSN8D91L.DSN8S91B
 TABLE : DSN8910.EMP_PHOTO_RESUME
 INDEXSPACE : DSN8D91L.XEMPRPHO
 INDEX : DSN8910.XEMP_PHOTO_RESUME

LOB TABLESPACE SET REPORT:

TABLESPACE : DSN8D91L.DSN8S91B

 BASE TABLE : DSN8910.EMP_PHOTO_RESUME
 COLUMN : PSEG_PHOTO
 LOB TABLESPACE : DSN8D91L.DSN8S91L
 AUX TABLE : DSN8910.AUX_PSEG_PHOTO
 AUX INDEXSPACE : DSN8D91L.XAUXRPSE

676 Db2 12 for z/OS: Utility Guide and Reference

 AUX INDEX : DSN8910.XAUX_PSEG_PHOTO
 COLUMN : BMP_PHOTO
 LOB TABLESPACE : DSN8D91L.DSN8S91M
 AUX TABLE : DSN8910.AUX_BMP_PHOTO
 AUX INDEXSPACE : DSN8D91L.XAUXRBMP
 AUX INDEX : DSN8910.XAUX_BMP_PHOTO
 COLUMN : RESUME
 LOB TABLESPACE : DSN8D91L.DSN8S91N
 AUX TABLE : DSN8910.AUX_EMP_RESUME
 AUX INDEXSPACE : DSN8D91L.XAUXREMP
 AUX INDEX : DSN8910.XAUX_EMP_RESUME

DSNU580I 277 11:19:09.62 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I 277 11:19:09.62 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 3: Reporting recovery information for a partition of a partitioned table space

The following control statement specifies that REPORT is to provide recovery information for partition 4 of
table space DSN8D91A.DSN8S91E. The partition number is indicated by the DSNUM option.

REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E DSNUM 4

The preceding statement produces output similar to the following output:

DSNU000I 271 18:15:27.26 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = REP99
DSNU1044I 271 18:15:27.55 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 271 18:15:27.55 DSNUGUTC - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E DSNUM 4
DSNU581I) 271 18:15:27.62 DSNUPREC - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E
DSNU593I) 271 18:15:27.66 DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:
 MINIMUM RBA: 000000000000
 MAXIMUM RBA: FFFFFFFFFFFF
 MIGRATING RBA: 000000000000
DSNU582I) 271 18:15:27.66 DSNUPPCP - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E SYSCOPY ROWS
TIMESTAMP = 2006-09-27-11.40.56.074739, IC TYPE = *C*, SHR LVL = , DSNUM = 0000,
 START LRSN =00003697A903
DEV TYPE = , IC BACK = , STYPE = L, FILE SEQ = 0000,
 PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0000, LOGICAL PART = 0000,
 LOGGED = Y, TTYPE =
JOBNAME = , AUTHID = , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,
 INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.38.341008, IC TYPE = *Z*, SHR LVL = , DSNUM = 0004,
 START LRSN =000036C8EA3E
DEV TYPE = , IC BACK = , STYPE = , FILE SEQ = 0000,
 PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0004,
 LOGGED = Y, TTYPE =
JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,
 INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.51.120054, IC TYPE = *Q*, SHR LVL = , DSNUM = 0000,
 START LRSN =000036E2BA9E
DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = 0000,
 PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0000,
 LOGGED = Y, TTYPE =
JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,
 INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.53.524797, IC TYPE = *F*, SHR LVL = R, DSNUM = 0000,
 START LRSN =000036E883E4
DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 0000,
 PIT LRSN = 000000000000
LOW DSNUM = 0001, HIGH DSNUM = 0004, OLDEST VERSION = 0000, LOGICAL PART = 0000,
 LOGGED = Y, TTYPE =
JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = 5.7E+01
NPAGESF = 6.7E+01 , CPAGESF = 5.7E+01
DSNAME = DB2V91A.SYSCOPY.DSN8D91A.DSN8S91E , MEMBER NAME = ,

Chapter 30. REPORT 677

 INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.41.55.631749, IC TYPE = *Q*, SHR LVL = , DSNUM = 0000,
 START LRSN =000036EA809A
DEV TYPE = , IC BACK = , STYPE = W, FILE SEQ = 0000,
 PIT LRSN = 000000000000
LOW DSNUM = 0000, HIGH DSNUM = 0000, OLDEST VERSION = 0001, LOGICAL PART = 0000,
 LOGGED = Y, TTYPE =
JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,
 INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.42.48.167991, IC TYPE = *X*, SHR LVL = , DSNUM = 0000,
 START LRSN =0000370CA39B
DEV TYPE = , IC BACK = , STYPE = A, FILE SEQ = 0000,
 PIT LRSN = 000000000000
LOW DSNUM = 0001, HIGH DSNUM = 0005, OLDEST VERSION = 0000, LOGICAL PART = 0000,
 LOGGED = Y, TTYPE =
JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = -1.0E+00
NPAGESF = -1.0E+00 , CPAGESF = -1.0E+00
DSNAME = DSN8D91A.DSN8S91E , MEMBER NAME = ,
 INSTANCE = 01, RELCREATED = M

TIMESTAMP = 2006-09-27-11.42.49.027488, IC TYPE = F , SHR LVL = R, DSNUM = 0000,
 START LRSN =000037113E08
DEV TYPE = 3390 , IC BACK = , STYPE = X, FILE SEQ = 0000,
 PIT LRSN = 000000000000
LOW DSNUM = 0001, HIGH DSNUM = 0005, OLDEST VERSION = 0000, LOGICAL PART = 0000,
 LOGGED = Y, TTYPE =
JOBNAME = DSNTEJ1 , AUTHID = SYSADM , COPYPAGESF = 2.0E+01
NPAGESF = 1.6E+01 , CPAGESF = 1.6E+01
DSNAME = DB2V91A.DSN8D91A.DSN8S91E.REORGCPY , MEMBER NAME = ,
 INSTANCE = 01, RELCREATED = M

DSNU586I) 271 18:15:27.66 DSNUPSUM - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E SUMMARY
DSNU588I) 271 18:15:27.66 DSNUPSUM - NO DATA TO BE REPORTED

DSNU583I) 271 18:15:27.66 DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR TABLESPACE
DSN8D91A.DSN8S91E
 UCDATE UCTIME START RBA STOP RBA START LRSN STOP LRSN PARTITION MEMBER ID
 092706 11405732 000036983674 0000369855C3 BF7840C43C57 BF7840C44F03 0004 0000
 092706 11410159 0000369E4224 000036A5F932 BF7840C84CAA BF7840D83704 0004 0000
 092706 11413861 000036CC1F1B 000036D0BC2A BF7840EB9B43 BF7840EC0983 0004 0000
 092706 11424427 0000370E230E 0000370E6671 BF78412A39CD BF78412A6210 0004 0000
 092706 11424794 0000370F4812 000037108E90 BF78412DBAC1 BF78412E106B 0004 0000
 092706 11424893 0000371131D0 000037113538 BF78412EAAFB BF78412EAF6F 0004 0000

DSNU584I) 271 18:15:27.66 DSNUPPBS - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E ARCHLOG1 BSDS VOLUMES
DSNU588I) 271 18:15:27.66 DSNUPPBS - NO DATA TO BE REPORTED

DSNU586I) 271 18:15:27.66 DSNUPSUM - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E SUMMARY
DSNU588I) 271 18:15:27.66 DSNUPSUM - NO DATA TO BE REPORTED
DSNU589I) 271 18:15:27.66 DSNUPREC - REPORT RECOVERY TABLESPACE DSN8D91A.DSN8S91E COMPLETE

DSNU580I 271 18:15:27.66 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I 271 18:15:27.67 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 4: Reporting recovery information for an index

The following REPORT statement specifies that the utility is to provide recovery information for index
DSN8810.XDEPT1.

//REP101 EXEC DSNUPROC,SYSTEM=V91A,UID='REP101'
//SYSIN DD *
REPORT RECOVERY INDEX DSN8910.XDEPT1
/*

The preceding statement produces output similar to the following output:

DSNU000I 270 13:51:08.82 DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = REP101
DSNU1044I 270 13:51:09.04 DSNUGTIS - PROCESSING SYSIN AS EBCDIC
DSNU050I 270 13:51:09.04 DSNUGUTC - REPORT RECOVERY INDEX DSN8910.XDEPT1
DSNU581I) 270 13:51:09.05 DSNUPREC - REPORT RECOVERY INDEX DSN8910.XDEPT1

678 Db2 12 for z/OS: Utility Guide and Reference

DSNU593I) 270 13:51:09.05 DSNUPREC - REPORT RECOVERY ENVIRONMENT RECORD:
 MINIMUM RBA: 000000000000
 MAXIMUM RBA: FFFFFFFFFFFF
 MIGRATING RBA: 000000000000
DSNU582I) 270 13:51:09.05 DSNUPPCP - REPORT RECOVERY INDEX DSN8910.XDEPT1 SYSCOPY ROWS
TIMESTAMP = 2006-09-27-13.50.30.627880, IC TYPE = F , SHR LVL = R, DSNUM = 0000,
 START LRSN =00003726ADE3
DEV TYPE = 3390 , IC BACK = , STYPE = , FILE SEQ = 0000,
 PIT LRSN = 000000000000
LOW DSNUM = 0001, HIGH DSNUM = 0001, OLDEST VERSION = 0000, LOGICAL PART = 0000,
 LOGGED = Y, TTYPE =
JOBNAME = REP101 , AUTHID = SYSADM , COPYPAGESF = 5.0E+00
NPAGESF = 5.0E+00 , CPAGESF = 0.0E0
DSNAME = DSN8D91A.XDEPT1.D2006270.T205030 , MEMBER NAME = ,
 INSTANCE = 01, RELCREATED = M

DSNU586I) 270 13:51:09.05 DSNUPSUM - REPORT RECOVERY INDEX DSN8910.XDEPT1 SUMMARY
DSNU588I) 270 13:51:09.05 DSNUPSUM - NO DATA TO BE REPORTED

DSNU583I) 270 13:51:09.05 DSNUPPLR - SYSLGRNX ROWS FROM REPORT RECOVERY FOR INDEX DSN8910.XDEPT1
DSNU588I) 270 13:51:09.05 DSNUPPLR - NO DATA TO BE REPORTED

DSNU584I) 270 13:51:09.05 DSNUPPBS - REPORT RECOVERY INDEX DSN8910.XDEPT1 ARCHLOG1 BSDS VOLUMES
DSNU588I) 270 13:51:09.05 DSNUPPBS - NO DATA TO BE REPORTED

DSNU586I) 270 13:51:09.05 DSNUPSUM - REPORT RECOVERY INDEX DSN8910.XDEPT1 SUMMARY
DSNU588I) 270 13:51:09.05 DSNUPSUM - NO DATA TO BE REPORTED
DSNU589I) 270 13:51:09.05 DSNUPREC - REPORT RECOVERY INDEX DSN8910.XDEPT1 COMPLETE

DSNU580I 270 13:51:09.05 DSNUPORT - REPORT UTILITY COMPLETE - ELAPSED TIME=00:00:00
DSNU010I 270 13:51:09.06 DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Example 5: Reporting table space set information with XML columns

The following utility control statement specifies that REPORT is to list all objects that are related to the
base table space.

REPORT TABLESPACESET TABLESPACE DBKQAN01.TPKQAN01

In this example, the base table includes two XML columns. The following output for this REPORT
statement lists the objects that were implicitly created to store data for those XML columns.

TABLESPACE SET REPORT:

TABLESPACE : DBKQAN01.TPKQAN01
 TABLE : ADMF001.TBKQAN01
 INDEXSPACE : DBKQAN01.IPKQAN11
 INDEX : ADMF001.IPKQAN111
 INDEXSPACE : DBKQAN01.IRDOCIDT
 INDEX : ADMF001.I_DOCIDTBKQAN01
 INDEXSPACE : DBKQAN01.IXKQAN12
 INDEX : ADMF001.IXKQAN122

XML TABLESPACE SET REPORT:

TABLESPACE : DBKQAN01.TPKQAN01

 BASE TABLE : ADMF001.TBKQAN01
 COLUMN : XML1
 XML TABLESPACE : DBKQAN01.XTBK0000
 XML TABLE : ADMF001.XTBKQAN01
 XML NODEID INDEXSPACE: DBKQAN01.IRNODEID
 XML NODEID INDEX : ADMF001.I_NODEIDXTBKQAN01
 XML INDEXSPACE : DBKQAN01.XVIXLC11
 XML INDEX : ADMF001.XVIXLC11
 COLUMN : XML2
 XML TABLESPACE : DBKQAN01.XTBK0001
 XML TABLE : ADMF001.XTBKQAN01000
 XML NODEID INDEXSPACE: DBKQAN01.IRNO1MH2
 XML NODEID INDEX : ADMF001.I_NODEIDXTBKQAN01000
 XML INDEXSPACE : DBKQAN01.XVIXLC12
 XML INDEX : ADMF001.XVIXLC12

Chapter 30. REPORT 679

Example 6: Reporting versioning relationships for system-period temporal table spaces

The following utility control statement specifies that REPORT is to list all objects that are related to the
base table space.

REPORT TABLESPACESET TABLESPACE DBSOL11.TS001L11

The following report shows the objects that are involved in versioning relationships. The report also
includes related auxiliary LOB and XML table spaces on both the system-period temporal table space and
the history table spaces.

TABLESPACE SET REPORT:

TABLESPACE : DBSOL11.TS001L11
 TABLE : ADMF001.TBWSOL11
 INDEXSPACE : DBSOL11.IRDOCIDT
 INDEX : ADMF001.I_DOCIDTBWSOL11

LOB TABLESPACE SET REPORT:

TABLESPACE : DBSOL11.TS001L11
 BASE TABLE : ADMF001.TBWSOL11
 COLUMN : BLOB1
 LOB TABLESPACE : DBSOL11.TLWB1L11
 AUX TABLE : ADMF001.TBAWLOBB1L11
 AUX INDEXSPACE : DBSOL11.IXDLB1L1
 AUX INDEX : ADMF001.IXDLB1L1

XML TABLESPACE SET REPORT:

TABLESPACE : DBSOL11.TS001L11
 BASE TABLE : ADMF001.TBWSOL11
 COLUMN : XML1
 XML TABLESPACE : DBSOL11.XTBW0000
 XML TABLE : ADMF001.XTBWSOL11
 XML NODEID INDEXSPACE : DBSOL11.IRNODEID
 XML NODEID INDEX : ADMF001.I_NODEIDXTBWSOL11
 XML INDEXSPACE : DBSOL11.IXW11SOL
 XML INDEX : ADMF001.IXW11SOL11
 XML INDEXSPACE : DBSOL11.IXW12SOL
 XML INDEX : ADMF001.IXW12SOL11
 XML INDEXSPACE : DBSOL11.IXW13SOL
 XML INDEX : ADMF001.IXW13SOL11
 XML INDEXSPACE : DBSOL11.IXW14SOL
 XML INDEX : ADMF001.IXW14SOL11

HISTORY TABLESPACE SET REPORT:

BASE TABLE : ADMF001.TBWSOL11
 HISTORY TABLESPACE : DBSOL11.HTS001L11
 HISTORY TABLE : ADMF001.HTBWSOL11
 HISTORY INDEXSPACE : DBSOL11.HIRDOCIDT
 HISTORY INDEX : ADMF001.HI_DOCIDTBWSOL11

HISTORY LOB TABLESPACE SET REPORT:

HISTORY TABLESPACE : DBSOL11.HTS001L11

 BASE TABLE : ADMF001.TBWSOL11
 COLUMN : BLOB1
 HISTORY LOB TABLESPACE : DBSOL11.HTLWB1L11
 AUX TABLE : ADMF001.HTBAWLOBB1L11
 AUX INDEXSPACE : DBSOL11.HIXDLB1L1
 AUX INDEX : ADMF001.HIXDLB1L1

HISTORY XML TABLESPACE SET REPORT:

HISTORY TABLESPACE : DBSOL11.HTS001L11

 BASE TABLE : ADMF001.TBWSOL11
 COLUMN : XML1
 HISTORY XML TABLESPACE : DBSOL11.HXTBW0000
 XML TABLE : ADMF001.HXTBWSOL11
 XML NODEID INDEXSPACE : DBSOL11.HIRNODEID
 XML NODEID INDEX : ADMF001.HI_NODEIDXTBWSOL11
 XML INDEXSPACE : DBSOL11.HIXW11SOL

680 Db2 12 for z/OS: Utility Guide and Reference

 XML INDEX : ADMF001.HIXW11SOL11
 XML INDEXSPACE : DBSOL11.HIXW12SOL
 XML INDEX : ADMF001.HIXW12SOL11
 XML INDEXSPACE : DBSOL11.HIXW13SOL
 XML INDEX : ADMF001.HIXW13SOL11
 XML INDEXSPACE : DBSOL11.HHIXW14SOL
 XML INDEX : ADMF001.HIXW14SOL11

Example 7: Reporting related archive tables

This example uses the following tables:

TB_WAREHOUSE_SEG
An application-period temporal table.

TB_DISTRICT_SEG
A regular table that has a referential constraint that is dependent on table TB_WAREHOUSE_SEG.

TB_STOCK_PART
An archive-enabled table that has a referential constraint that is dependent on table
TB_WAREHOUSE_SEG.

TB_ORDER_PBR
A system-period temporal table that has a referential constraint that is dependent on table
TB_DISTRICT_SEG.

TB_ORDERLINE_PBG
An archive-enabled table that has referential constraints that are dependent on tables
TB_STOCK_PART and TB_ORDER_PBR.

These tables were created by the following SQL:

* ---
* Table: SC516801.TB_WAREHOUSE_SEG
* Unique Index: SC516801.IU01_WAREHOUSE_SEG
* Index: SC516801.IX01_WAREHOUSE_SEG
* SC516801.IX02_WAREHOUSE_SEG
* SC516801.IX03_WAREHOUSE_SEG
* Index on Exp: SC516801.IX04_WAREHOUSE_SEG
* View: SC516801.VW_WAREHOUSE_SEG
* ---
CREATE TABLE SC516801.TB_WAREHOUSE_SEG
 (WAREHOUSE_CREATE_XML1 XML,
 WAREHOUSE_ID CHAR(10) NOT NULL WITH DEFAULT
 CONSTRAINT CNST_WAREHOUSEID
 CHECK (WAREHOUSE_ID IN('0000000001','0000000002','0000000003',
 '0000000004','0000000005','0000000006',
 '0000000007','0000000008','0000000009',
 '0000000010')),
 WAREHOUSE_NAME CHAR(10) NOT NULL WITH DEFAULT,
 WAREHOUSE_STREET_1 VARCHAR(40) NOT NULL WITH DEFAULT,
 WAREHOUSE_STREET_2 VARCHAR(40) FIELDPROC FPCVD4,
 WAREHOUSE_CITY VARCHAR(20) NOT NULL WITH DEFAULT,
 WAREHOUSE_STATE CHAR(2) NOT NULL WITH DEFAULT,
 WAREHOUSE_ZIP CHAR(9) NOT NULL
 DEFAULT '000000000',
 WAREHOUSE_TAX DECIMAL(5,4) NOT NULL WITH DEFAULT,
 WAREHOUSE_YTD SC516801.US_DOLLAR NOT NULL WITH DEFAULT,
 WAREHOUSE_CREATE_BIGINT1 BIGINT NOT NULL WITH DEFAULT,
 WAREHOUSE_CREATE_BINARY1 BINARY(101) NOT NULL WITH DEFAULT,
 WAREHOUSE_CREATE_VARBINARY1 VARBINARY(500) NOT NULL WITH DEFAULT,
 WAREHOUSE_CREATE_DECFLOAT1 DECFLOAT(34) NOT NULL WITH DEFAULT,
 BUS_START DATE NOT NULL ,
 BUS_END DATE NOT NULL ,
 PERIOD BUSINESS_TIME(BUS_START,BUS_END) ,
 PRIMARY KEY(WAREHOUSE_ID)
)
 IN DB516801.TS516801;
COMMIT;
...
* ---
* Table: SC516801.TB_DISTRICT_SEG
* Unique Index: SC516801.IU01_DISTRICT_SEG
* Index: SC516801.IX01_DISTRICT_SEG

Chapter 30. REPORT 681

* Index on Exp: SC516801.IX02_DISTRICT_SEG
* View: SC516801.VW_DISTRICT_SEG
* LOB table space: TA516801
* Auxiliary Table: SC516801.TX01_CLOB1_DISTRICT_SEG
* Auxiliary Index: SC516801.IA_CLOB1_DISTRICT_SEG
* ---
CREATE TABLE SC516801.TB_DISTRICT_SEG
 (DISTRICT_ID CHAR(2) NOT NULL WITH DEFAULT
 CONSTRAINT CNST_DISTRICTID
 CHECK (DISTRICT_ID IN('01','02','03','04','05',
 '06','07','08','09','10')),
 DISTRICT_WAREHOUSE_ID CHAR(10) NOT NULL WITH DEFAULT,
 DISTRICT_NAME CHAR(20) NOT NULL WITH DEFAULT,
 DISTRICT_TAX DECIMAL(5,4) NOT NULL WITH DEFAULT,
 DISTRICT_YTD SC516801.US_DOLLAR NOT NULL WITH DEFAULT,
 DISTRICT_NEXT_ORDER_ID INTEGER NOT NULL WITH DEFAULT,
 DISTRICT_STATE CHAR(2) NOT NULL WITH DEFAULT,
 DISTRICT_ZIP CHAR(9) NOT NULL WITH DEFAULT,
 DISTRICT_STREET_1 VARCHAR(40) NOT NULL WITH DEFAULT,
 DISTRICT_STREET_2 VARCHAR(40) ,
 DISTRICT_CITY VARCHAR(20) NOT NULL WITH DEFAULT,
 DISTRICT_CREATE_BIGINT1 BIGINT NOT NULL WITH DEFAULT,
 DISTRICT_CREATE_BINARY1 BINARY(25) NOT NULL WITH DEFAULT,
 DISTRICT_CREATE_DECFLOAT1 DECFLOAT(16) NOT NULL WITH DEFAULT,
 DISTRICT_CREATE_CLOB1 CLOB(2K) NOT NULL WITH DEFAULT,
 PRIMARY KEY (DISTRICT_WAREHOUSE_ID, DISTRICT_ID),
 FOREIGN KEY (DISTRICT_WAREHOUSE_ID)
 REFERENCES SC516801.TB_WAREHOUSE_SEG(WAREHOUSE_ID)
 ON DELETE CASCADE)
 IN DB516801.TS516801;
COMMIT;
...
* ---
* Table: SC516801.TB_STOCK_PART
* Unique Index: SC516801.IU01_STOCK_PART
* Index: SC516801.IX01_STOCK_PART
* Index on Exp: SC516801.IX02_STOCK_PART
* View: SC516801.VW_STOCK_PART
* ---
CREATE TABLE SC516801.TB_STOCK_PART
 (STOCK_ITEM_ID CHAR(6) NOT NULL WITH DEFAULT,
 STOCK_WAREHOUSE_ID CHAR(10) NOT NULL WITH DEFAULT,
 STOCK_QUANTITY INTEGER NOT NULL WITH DEFAULT,
 STOCK_YTD INTEGER NOT NULL WITH DEFAULT,
 STOCK_ORDER_CNT SMALLINT NOT NULL WITH DEFAULT,
 STOCK_REMOTE_CNT SMALLINT NOT NULL WITH DEFAULT,
 STOCK_DISTRICT_01 CHAR(24) NOT NULL WITH DEFAULT,
 STOCK_DISTRICT_02 CHAR(24) NOT NULL WITH DEFAULT,
 STOCK_DISTRICT_03 CHAR(24) NOT NULL WITH DEFAULT,
 STOCK_DISTRICT_04 CHAR(24) NOT NULL WITH DEFAULT,
 STOCK_DISTRICT_05 CHAR(24) NOT NULL WITH DEFAULT,
 STOCK_DISTRICT_06 CHAR(24) NOT NULL WITH DEFAULT,
 STOCK_DISTRICT_07 CHAR(24) NOT NULL WITH DEFAULT,
 STOCK_DISTRICT_08 CHAR(24) NOT NULL WITH DEFAULT,
 STOCK_DISTRICT_09 CHAR(24) NOT NULL WITH DEFAULT,
 STOCK_DISTRICT_10 CHAR(24) NOT NULL WITH DEFAULT,
 STOCK_DATA CHAR(50) ,
 STOCK_CREATE_BIGINT1 BIGINT NOT NULL WITH DEFAULT,
 STOCK_CREATE_BINARY1 BINARY(50) NOT NULL WITH DEFAULT,
 STOCK_CREATE_VARBINARY1 VARBINARY(1000) NOT NULL WITH DEFAULT,
 STOCK_CREATE_DECFLOAT1 DECFLOAT(34) NOT NULL WITH DEFAULT,
 STOCK_CREATE_RCT1 TIMESTAMP NOT NULL
 GENERATED BY DEFAULT FOR EACH ROW ON UPDATE
 AS ROW CHANGE TIMESTAMP IMPLICITLY HIDDEN,
 SYS_START TIMESTAMP(12) NOT NULL WITH DEFAULT ,
 SYS_END TIMESTAMP(12) NOT NULL WITH DEFAULT ,
 TRANS_ID TIMESTAMP(12) NOT NULL WITH DEFAULT ,
 PRIMARY KEY (STOCK_WAREHOUSE_ID, STOCK_ITEM_ID),
 FOREIGN KEY (STOCK_WAREHOUSE_ID)
 REFERENCES SC516801.TB_WAREHOUSE_SEG(WAREHOUSE_ID)
 ON DELETE CASCADE
)
 PARTITION BY (STOCK_WAREHOUSE_ID,STOCK_ITEM_ID)
 (PARTITION 1 ENDING ('0000000002','999999') ,
 PARTITION 2 ENDING ('0000000004','999999') ,
 PARTITION 3 ENDING ('0000000006','999999') ,
 PARTITION 4 ENDING ('0000000008','999999') ,
 PARTITION 5 ENDING ('0000000011','999999'))
 IN DB516803.TP516805;
COMMIT;
...
 ALTER TABLE TB_STOCK_PART

682 Db2 12 for z/OS: Utility Guide and Reference

 ENABLE ARCHIVE USE TB_STOCK_PBR_ARCH;
...
* ---
* Table: SC516801.TB_ORDER_PBR
* UNIQUE INDEX: SC516801.IU01_ORDER_PBR
* SC516801.IU02_ORDER_PBR
* SC516801.IU03_ORDER_PBR
* SC516801.IU04_ORDER_PBR
* Index on Exp: SC516801.IU05_ORDER_PBR
* Index: SC516801.IX01_ORDER_PBR
* SC516801.IX02_ORDER_PBR
* View: SC516801.VW_ORDER_PBR
* ---
CREATE TABLE SC516801.TB_ORDER_PBR
 (ORDER_ID INTEGER NOT NULL WITH DEFAULT,
 ORDER_DISTRICT_ID CHAR(2) NOT NULL WITH DEFAULT,
 ORDER_WAREHOUSE_ID CHAR(10) NOT NULL WITH DEFAULT,
 ORDER_CUSTOMER_ID INTEGER GENERATED BY DEFAULT
 AS IDENTITY (START WITH 1,INCREMENT BY 1) UNIQUE,
 ORDER_CARRIER_ID CHAR(2),
 ORDER_ORDERLINE_COUNT SMALLINT NOT NULL WITH DEFAULT,
 ORDER_ALL_LOCAL SMALLINT NOT NULL WITH DEFAULT,
 ORDER_ENTRY_DATE TIMESTAMP NOT NULL WITH DEFAULT
 '2008-02-01-01.59.59.000000',
 ORDER_ESTIMATE_DATE DATE DEFAULT '2008-01-01',
 ORDER_ESTIMATE_TIME TIME DEFAULT '01.59.59',
 ORDER_SHIP_DATE DATE NOT NULL DEFAULT '2008-01-01',
 ORDER_SHIP_TIME TIME NOT NULL DEFAULT '01.59.59',
 ORDER_CREATE_VARBINARY1 VARBINARY(500) NOT NULL WITH DEFAULT,
 ORDER_CREATE_BIGINT1 BIGINT NOT NULL WITH DEFAULT,
 ORDER_CREATE_BINARY1 BINARY(80) NOT NULL WITH DEFAULT,
 ORDER_CREATE_DECFLOAT1 DECFLOAT(34) NOT NULL WITH DEFAULT
 IMPLICITLY HIDDEN,
 ORDER_CREATE_CLOB1 CLOB(2K) NOT NULL WITH DEFAULT,
 ORDER_CREATE_BLOB1 BLOB(2K) NOT NULL WITH DEFAULT,
 ORDER_CREATE_XML XML ,
 ORDER_CREATE_RCT1 TIMESTAMP NOT NULL
 GENERATED ALWAYS FOR EACH ROW ON UPDATE
 AS ROW CHANGE TIMESTAMP
 IMPLICITLY HIDDEN,
 SYS_START TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN ,
 SYS_END TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END ,
 TRANS_ID TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,
 PERIOD SYSTEM_TIME(SYS_START, SYS_END) ,
 PRIMARY KEY (ORDER_WAREHOUSE_ID,
 ORDER_DISTRICT_ID,
 ORDER_ID),
 FOREIGN KEY (ORDER_WAREHOUSE_ID,
 ORDER_DISTRICT_ID)
 REFERENCES SC516801.TB_DISTRICT_SEG(DISTRICT_WAREHOUSE_ID,
 DISTRICT_ID)
 ON DELETE CASCADE)
 PARTITION BY (ORDER_ID ASC)
 (PARTITION 1 ENDING AT (03000) INCLUSIVE,
 PARTITION 2 ENDING (06000) INCLUSIVE,
 PARTITION 3 ENDING (2147483647) INCLUSIVE)
 IN DB516803.TU516803;
...
ALTER TABLE SC516801.TB_ORDER_PBR
 ADD VERSIONING USE HISTORY TABLE SC516801.TB_ORDER_SEG_HIST;
...
* ---
* Table: SC516801.TB_ORDERLINE_PBG bi-temporal table
* Unique Index: SC516801.IU01_ORDERLINE_PBG
* Index: SC516801.IX01_ORDERLINE_PBG
* Index on Exp: SC516801.IX02_ORDERLINE_PBG
* View: SC516801.VW_ORDERLINE_PBG
*---
CREATE TABLE SC516801.TB_ORDERLINE_PBG
 (ORDERLINE_CREATE_XML1 XML,
 ORDERLINE_CREATE_LOB CLOB(2K) ,
 ORDERLINE_ORDER_ID INTEGER NOT NULL WITH DEFAULT,
 ORDERLINE_DISTRICT_ID CHAR(2) NOT NULL WITH DEFAULT,
 ORDERLINE_WAREHOUSE_ID CHAR(10) NOT NULL WITH DEFAULT,
 ORDERLINE_CATEGORY SMALLINT NOT NULL WITH DEFAULT,
 ORDERLINE_BARCODE1 DOUBLE,
 ORDERLINE_BARCODE2 REAL,
 ORDERLINE_BARCODE3 DOUBLE NOT NULL WITH DEFAULT,
 ORDERLINE_BARCODE4 REAL NOT NULL WITH DEFAULT,
 ORDERLINE_HASH_ENTRY1 CHAR(50) FOR BIT DATA NOT NULL
 WITH DEFAULT X'C1',
 ORDERLINE_HASH_ENTRY2 CHAR(50) FOR BIT DATA,

Chapter 30. REPORT 683

 ORDERLINE_UPC01 VARCHAR(100) FOR BIT DATA,
 ORDERLINE_UPC02 VARCHAR(100) FOR BIT DATA NOT NULL
 DEFAULT '<>' ,
 ORDERLINE_REMARKS VARCHAR(255) DEFAULT NULL,
 ORDERLINE_ITEM_ID CHAR(6) NOT NULL WITH DEFAULT,
 ORDERLINE_SUPPLY_WAREHOUSE_ID CHAR(10) NOT NULL WITH DEFAULT,
 ORDERLINE_DELIVERY_DATE TIMESTAMP,
 ORDERLINE_QUANTITY INTEGER NOT NULL WITH DEFAULT,
 ORDERLINE_AMOUNT US_DOLLAR NOT NULL WITH DEFAULT,
 ORDERLINE_DISTRICT_INFO CHAR(24) NOT NULL WITH DEFAULT,
 ORDERLINE_CREATE_DECFLOAT1 DECFLOAT(16) NOT NULL WITH DEFAULT,
 ORDERLINE_CREATE_VARBINARY1 VARBINARY(500) NOT NULL WITH DEFAULT,
 ORDERLINE_CREATE_BIGINT1 BIGINT NOT NULL WITH DEFAULT,
 ORDERLINE_CREATE_BINARY1 BINARY(30) NOT NULL WITH DEFAULT,
 SYS_START TIMESTAMP(12) NOT NULL WITH DEFAULT ,
 SYS_END TIMESTAMP(12) NOT NULL WITH DEFAULT ,
 TRANS_ID TIMESTAMP(12) ,
 BUS_START TIMESTAMP(6) NOT NULL ,
 BUS_END TIMESTAMP(6) NOT NULL ,
 CONSTRAINT PK#TB_ORDERLINE_DISTRICT_ID#ORDER_ID#CATEGORY
 PRIMARY KEY (ORDERLINE_WAREHOUSE_ID,
 ORDERLINE_DISTRICT_ID,
 ORDERLINE_ORDER_ID,
 ORDERLINE_CATEGORY),
 CONSTRAINT FK#TB_ORDER#WAREHOUSE_ID#DISTRICT_ID#ORDER_ID#CASCADE
 FOREIGN KEY (ORDERLINE_WAREHOUSE_ID,
 ORDERLINE_DISTRICT_ID,
 ORDERLINE_ORDER_ID)
 REFERENCES SC516801.TB_ORDER_PBR
 (ORDER_WAREHOUSE_ID,
 ORDER_DISTRICT_ID,
 ORDER_ID)
 ON DELETE CASCADE,
 CONSTRAINT FK#TB_STOCK_WAREHOUSE_ID#STOCK_ITEM_ID#CASCADE
 FOREIGN KEY (ORDERLINE_SUPPLY_WAREHOUSE_ID,
 ORDERLINE_ITEM_ID)
 REFERENCES SC516801.TB_STOCK_PART
 (STOCK_WAREHOUSE_ID,
 STOCK_ITEM_ID)
 ON DELETE CASCADE)
 IN DB516807.TG516807
 APPEND YES;
...
ALTER TABLE SC516801.TB_ORDERLINE_PBG
 ENABLE ARCHIVE USE SC516801.TB_ORDERLINE_PBR_ARCH;

The following utility control statement specifies that REPORT is to list all objects that are related to table
space TS516801, which contains tables TB_DISTRICT_SEG and TB_WAREHOUSE_SEG.

REPORT TABLESPACESET TABLESPACE DB516801.TS516801

The resulting output lists referentially related objects, related LOB and XML tables, and related history
and archive tables:

TABLESPACE SET REPORT:

TABLESPACE : DB516801.TS516801
 TABLE : SC516801.TB_DISTRICT_SEG
 INDEXSPACE : DB516801.IU01RDIS
 INDEX : SC516801.IU01_DISTRICT_SEG
 INDEXSPACE : DB516801.IX01RDIS
 INDEX : SC516801.IX01_DISTRICT_SEG
 INDEXSPACE : DB516801.IX02RDIS
 INDEX : SC516801.IX02_DISTRICT_SEG
 DEP TABLE : SC516801.TB_ORDER_PBR

 TABLE : SC516801.TB_WAREHOUSE_SEG
 INDEXSPACE : DB516801.IU01RWAR
 INDEX : SC516801.IU01_WAREHOUSE_SEG
 INDEXSPACE : DB516801.IRDOCIDT
 INDEX : SC516801.I_DOCIDTB_WAREHOUSE_SEG
 INDEXSPACE : DB516801.IX01RWAR
 INDEX : SC516801.IX01_WAREHOUSE_SEG
 INDEXSPACE : DB516801.IX02RWAR
 INDEX : SC516801.IX02_WAREHOUSE_SEG
 INDEXSPACE : DB516801.IX03RWAR
 INDEX : SC516801.IX03_WAREHOUSE_SEG
 INDEXSPACE : DB516801.IX04RWAR

684 Db2 12 for z/OS: Utility Guide and Reference

 INDEX : SC516801.IX04_WAREHOUSE_SEG
 DEP TABLE : SC516801.TB_DISTRICT_SEG
 SC516801.TB_STOCK_PART

TABLESPACE : DB516803.TP516805
 TABLE : SC516801.TB_STOCK_PART
 INDEXSPACE : DB516803.IX01RSTO
 INDEX : SC516801.IX01_STOCK_PART
 INDEXSPACE : DB516803.IU01RSTO
 INDEX : SC516801.IU01_STOCK_PART
 INDEXSPACE : DB516803.IX02RSTO
 INDEX : SC516801.IX02_STOCK_PART
 DEP TABLE : SC516801.TB_ORDERLINE_PBG

TABLESPACE : DB516803.TU516803
 TABLE : SC516801.TB_ORDER_PBR
 INDEXSPACE : DB516803.IU01RORD
 INDEX : SC516801.IU01_ORDER_PBR
 INDEXSPACE : DB516803.IRDOCIDT
 INDEX : SC516801.I_DOCIDTB_ORDER_PBR
 INDEXSPACE : DB516803.IU02RORD
 INDEX : SC516801.IU02_ORDER_PBR
 INDEXSPACE : DB516803.IU03RORD
 INDEX : SC516801.IU03_ORDER_PBR
 INDEXSPACE : DB516803.IU04RORD
 INDEX : SC516801.IU04_ORDER_PBR
 INDEXSPACE : DB516803.IX01RORD
 INDEX : SC516801.IX01_ORDER_PBR
 INDEXSPACE : DB516803.IX02RORD
 INDEX : SC516801.IX02_ORDER_PBR
 INDEXSPACE : DB516803.IU05RORD
 INDEX : SC516801.IU05_ORDER_PBR
 DEP TABLE : SC516801.TB_ORDERLINE_PBG

TABLESPACE : DB516807.TG516807
 TABLE : SC516801.TB_ORDERLINE_PBG
 INDEXSPACE : DB516807.IU01RORD
 INDEX : SC516801.IU01_ORDERLINE_PBG
 INDEXSPACE : DB516807.IRDOCIDT
 INDEX : SC516801.I_DOCIDTB_ORDERLINE_PBG
 INDEXSPACE : DB516807.IX01RORD
 INDEX : SC516801.IX01_ORDERLINE_PBG
 INDEXSPACE : DB516807.IX02RORD
 INDEX : SC516801.IX02_ORDERLINE_PBG

LOB TABLESPACE SET REPORT:

TABLESPACE : DB516801.TS516801

 BASE TABLE : SC516801.TB_DISTRICT_SEG
 COLUMN : DISTRICT_CREATE_CLOB1
 LOB TABLESPACE : DB516801.TA516801
 AUX TABLE : SC516801.TX01_CLOB1_DISTRICT_SEG
 AUX INDEXSPACE : DB516801.IARCLOB1
 AUX INDEX : SC516801.IA_CLOB1_DISTRICT_SEG

TABLESPACE : DB516803.TU516803

 BASE TABLE : SC516801.TB_ORDER_PBR
 PART: 0001 COLUMN : ORDER_CREATE_CLOB1
 LOB TABLESPACE : DB516803.TA516831
 AUX TABLE : SC516801.TX31_CLOB_ORDER_PBR
 AUX INDEXSPACE : DB516803.IA31RCLO
 AUX INDEX : SC516801.IA31_CLOB_ORDER_PBR
 PART: 0002 COLUMN : ORDER_CREATE_CLOB1
 LOB TABLESPACE : DB516803.TA516832
 AUX TABLE : SC516801.TX32_CLOB_ORDER_PBR
 AUX INDEXSPACE : DB516803.IA32RCLO
 AUX INDEX : SC516801.IA32_CLOB_ORDER_PBR
 PART: 0003 COLUMN : ORDER_CREATE_CLOB1
 LOB TABLESPACE : DB516803.TA516833
 AUX TABLE : SC516801.TX33_CLOB_ORDER_PBR
 AUX INDEXSPACE : DB516803.IA33RCLO
 AUX INDEX : SC516801.IA33_CLOB_ORDER_PBR
 PART: 0001 COLUMN : ORDER_CREATE_BLOB1
 LOB TABLESPACE : DB516803.TA516834
 AUX TABLE : SC516801.TX31_BLOB_ORDER_PBR
 AUX INDEXSPACE : DB516803.IA31RBLO
 AUX INDEX : SC516801.IA31_BLOB_ORDER_PBR
 PART: 0002 COLUMN : ORDER_CREATE_BLOB1
 LOB TABLESPACE : DB516803.TA516835

Chapter 30. REPORT 685

 AUX TABLE : SC516801.TX32_BLOB_ORDER_PBR
 AUX INDEXSPACE : DB516803.IA32RBLO
 AUX INDEX : SC516801.IA32_BLOB_ORDER_PBR
 PART: 0003 COLUMN : ORDER_CREATE_BLOB1
 LOB TABLESPACE : DB516803.TA516836
 AUX TABLE : SC516801.TX33_BLOB_ORDER_PBR
 AUX INDEXSPACE : DB516803.IA33RBLO
 AUX INDEX : SC516801.IA33_BLOB_ORDER_PBR

TABLESPACE : DB516807.TG516807

 BASE TABLE : SC516801.TB_ORDERLINE_PBG
 PART: 0001 COLUMN : ORDERLINE_CREATE_LOB
 LOB TABLESPACE : DB516807.TA516871
 AUX TABLE : SC516801.TX71_CLOB1_ORDERLINE_PBG
 AUX INDEXSPACE : DB516807.IA71RCLO
 AUX INDEX : SC516801.IA71_CLOB1_ORDERLINE_PBG

XML TABLESPACE SET REPORT:

TABLESPACE : DB516801.TS516801

 BASE TABLE : SC516801.TB_WAREHOUSE_SEG
 COLUMN : WAREHOUSE_CREATE_XML1
 XML TABLESPACE : DB516801.XTBR0000
 XML TABLE : SC516801.XTB_WAREHOUSE_SEG
 XML NODEID INDEXSPACE: DB516801.IRNODEID
 XML NODEID INDEX : SC516801.I_NODEIDXTB_WAREHOUSE_SEG

TABLESPACE : DB516803.TU516803

 BASE TABLE : SC516801.TB_ORDER_PBR
 COLUMN : ORDER_CREATE_XML
 XML TABLESPACE : DB516803.XTBR0000
 XML TABLE : SC516801.XTB_ORDER_PBR
 XML NODEID INDEXSPACE: DB516803.IRNODEID
 XML NODEID INDEX : SC516801.I_NODEIDXTB_ORDER_PBR

TABLESPACE : DB516807.TG516807

 BASE TABLE : SC516801.TB_ORDERLINE_PBG
 COLUMN : ORDERLINE_CREATE_XML1
 XML TABLESPACE : DB516807.XTBR0000
 XML TABLE : SC516801.XTB_ORDERLINE_PBG
 XML NODEID INDEXSPACE: DB516807.IRNODEID
 XML NODEID INDEX : SC516801.I_NODEIDXTB_ORDERLINE_PBG

HISTORY TABLESPACE SET REPORT:

TABLESPACE : DB516804.TS516804
 HISTORY TABLE : SC516801.TB_ORDER_SEG_HIST
 TEMPORAL TABLE : SC516801.TB_ORDER_PBR
 INDEXSPACE : DB516804.IU01RORD
 INDEX : SC516801.IU01_ORDER_SEG_HIST
 INDEXSPACE : DB516804.IRDOCIDT
 INDEX : SC516801.I_DOCIDTB_ORDER_SEG_HIST
 INDEXSPACE : DB516804.IU02RORD
 INDEX : SC516801.IU02_ORDER_SEG_HIST
 INDEXSPACE : DB516804.IU03RORD
 INDEX : SC516801.IU03_ORDER_SEG_HIST
 INDEXSPACE : DB516804.IU04RORD
 INDEX : SC516801.IU04_ORDER_SEG_HIST
 INDEXSPACE : DB516804.IX01RORD
 INDEX : SC516801.IX01_ORDER_SEG_HIST
 INDEXSPACE : DB516804.IX02RORD
 INDEX : SC516801.IX02_ORDER_SEG_HIST
 INDEXSPACE : DB516804.IU05RORD
 INDEX : SC516801.IU05_ORDER_SEG_HIST

HISTORY LOB TABLESPACE SET REPORT:

TABLESPACE : DB516804.TS516804

 BASE TABLE : SC516801.TB_ORDER_SEG_HIST
 COLUMN : ORDER_CREATE_CLOB1
 LOB TABLESPACE : DB516804.TA516841
 AUX TABLE : SC516801.TX41_CLOB_ORDER_SEG_HIST
 AUX INDEXSPACE : DB516804.IA41RCLO

686 Db2 12 for z/OS: Utility Guide and Reference

 AUX INDEX : SC516801.IA41_CLOB_ORDER_SEG_HIST
 COLUMN : ORDER_CREATE_BLOB1
 LOB TABLESPACE : DB516804.TA516842
 AUX TABLE : SC516801.TX42_BLOB_ORDER_SEG_HIST
 AUX INDEXSPACE : DB516804.IA42RBLO
 AUX INDEX : SC516801.IA42_BLOB_ORDER_SEG_HIST

HISTORY XML TABLESPACE SET REPORT:

TABLESPACE : DB516804.TS516804

 BASE TABLE : SC516801.TB_ORDER_SEG_HIST
 COLUMN : ORDER_CREATE_XML
 XML TABLESPACE : DB516804.XTBR0000
 XML TABLE : SC516801.XTB_ORDER_SEG_HIST
 XML NODEID INDEXSPACE: DB516804.IRNODEID
 XML NODEID INDEX : SC516801.I_NODEIDXTB_ORDER_SEG_HIST

ARCHIVE TABLESPACE SET REPORT:

TABLESPACE : DB516803.TU516806
 ARCHIVE TABLE : SC516801.TB_STOCK_PBR_ARCH
 AR_ENABLED TABLE : SC516801.TB_STOCK_PART
 INDEXSPACE : DB516803.IX01RARC
 INDEX : SC516801.IX01_ARCH_STOCK_PBR
 INDEXSPACE : DB516803.IU01RARC
 INDEX : SC516801.IU01_ARCH_STOCK_PBR
 INDEXSPACE : DB516803.IX02RARC
 INDEX : SC516801.IX02_ARCH_STOCK_PBRT

TABLESPACE : DB516807.TU516808
 ARCHIVE TABLE : SC516801.TB_ORDERLINE_PBR_ARCH
 AR_ENABLED TABLE : SC516801.TB_ORDERLINE_PBG
 INDEXSPACE : DB516807.IU01RARC
 INDEX : SC516801.IU01_ARCH_ORDERLINE_PBR
 INDEXSPACE : DB516807.IRDO1JOL
 INDEX : SC516801.I_DOCIDTB_ORDERLINE_PBR_A
 INDEXSPACE : DB516807.IX01RARC
 INDEX : SC516801.IX01_ARCH_ORDERLINE_PBR
 INDEXSPACE : DB516807.IX02RARC
 INDEX : SC516801.IX02_ARCH_ORDERLINE_PBR

ARCHIVE LOB TABLESPACE SET REPORT:

TABLESPACE : DB516807.TU516808

 BASE TABLE : SC516801.TB_ORDERLINE_PBR_ARCH
 PART: 0001 COLUMN : ORDERLINE_CREATE_LOB
 LOB TABLESPACE : DB516807.TA516881
 AUX TABLE : SC516801.TX81_CLOB1_ORDERLINE_PBR_ARCH
 AUX INDEXSPACE : DB516807.IA81RCLO
 AUX INDEX : SC516801.IA81_CLOB1_ORDERLINE_PBR_ARCH
 PART: 0002 COLUMN : ORDERLINE_CREATE_LOB
 LOB TABLESPACE : DB516807.TA516882
 AUX TABLE : SC516801.TX82_CLOB1_ORDERLINE_PBR_ARCH
 AUX INDEXSPACE : DB516807.IA82RCLO
 AUX INDEX : SC516801.IA82_CLOB1_ORDERLINE_PBR_ARCH
 PART: 0003 COLUMN : ORDERLINE_CREATE_LOB
 LOB TABLESPACE : DB516807.TA516883
 AUX TABLE : SC516801.TX83_CLOB1_ORDERLINE_PBR_ARCH
 AUX INDEXSPACE : DB516807.IA83RCLO
 AUX INDEX : SC516801.IA83_CLOB1_ORDERLINE_PBR_ARCH

ARCHIVE XML TABLESPACE SET REPORT:

TABLESPACE : DB516807.TU516808

 BASE TABLE : SC516801.TB_ORDERLINE_PBR_ARCH
 COLUMN : ORDERLINE_CREATE_XML1
 XML TABLESPACE : DB516807.XTBR0001
 XML TABLE : SC516801.XTB_ORDERLINE_PBR_A
 XML NODEID INDEXSPACE: DB516807.IRNO1LJL
 XML NODEID INDEX : SC516801.I_NODEIDXTB_ORDERLINE_PBR_

Chapter 30. REPORT 687

FL 502 Example 8: Reporting key label information for a table space

The following REPORT statement specifies that the utility is to provide key label information for table
space DBF07307.TAF07382.

REPORT TABLESPACESET TABLESPACE DBF07303.TAF07305 SHOWDSNS
SHOWKEYLABEL

The following example shows the REPORT output:

TABLESPACE SET REPORT:

TABLESPACE : DBF07303.TPF07305
 PART: 0001 DSN : DB2SMS.DSNDBC.DBF07303.TPF07305.I0001.A001
 KEY LABEL : DB2KEYLABEL1
 PART: 0002 DSN : DB2SMS.DSNDBC.DBF07303.TPF07305.I0001.A002
 PART: 0003 DSN : DB2SMS.DSNDBC.DBF07303.TPF07305.I0001.A003
 KEY LABEL : DB2KEYLABEL1
 PART: 0004 DSN : DB2SMS.DSNDBC.DBF07303.TPF07305.I0001.A004
 KEY LABEL : DB2KEYLABEL1
 PART: 0005 DSN : DB2SMS.DSNDBC.DBF07303.TPF07305.I0001.A005
 KEY LABEL : DB2KEYLABEL1
 TABLE : SCF07301.TB_STOCK_PART
 INDEXSPACE : DBF07303.IX01RSTO
 PART: 0001 DSN : DB2SMS.DSNDBC.DBF07303.IX01RSTO.I0001.A001
 KEY LABEL : DB2KEYLABEL1
 PART: 0002 DSN : DB2SMS.DSNDBC.DBF07303.IX01RSTO.I0001.A002
 PART: 0003 DSN : DB2SMS.DSNDBC.DBF07303.IX01RSTO.I0001.A003
 KEY LABEL : DB2KEYLABEL1
 PART: 0004 DSN : DB2SMS.DSNDBC.DBF07303.IX01RSTO.I0001.A004
 KEY LABEL : DB2KEYLABEL1
 PART: 0005 DSN : DB2SMS.DSNDBC.DBF07303.IX01RSTO.I0001.A005
 KEY LABEL : DB2KEYLABEL1
 INDEX : SCF07301.IX01_STOCK_PART
 INDEXSPACE : DBF07303.IU01RSTO
 DSN : DB2SMS.DSNDBC.DBF07303.IU01RSTO.I0001.A001
 INDEX : SCF07301.IU01_STOCK_PART
 INDEXSPACE : DBF07303.IX02RSTO
 DSN : DB2SMS.DSNDBC.DBF07303.IX02RSTO.I0001.A001
 INDEX : SCF07301.IX02_STOCK_PART

688 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m502.html

Chapter 31. RESTORE SYSTEM
The RESTORE SYSTEM online utility invokes z/OS DFSMShsm to recover a Db2 subsystem or a data
sharing group to a previous point in time. To perform the recovery, the utility uses data that is copied by
the BACKUP SYSTEM utility.

Requirement: All data sets that are recovered with RESTORE SYSTEM must be SMS-managed.

The RESTORE SYSTEM utility can be run from any member in a data sharing group, even one that is
normally quiesced when any backups are taken. Any member in the data sharing group that is active at or
beyond the log truncation point must be restarted, and its logs are truncated to the SYSPITR LRSN point.

You can specify the SYSPITR LRSN point in the CRESTART control statement of the DSNJU003 (Change
Log Inventory) utility. Any data sharing group member that is normally quiesced at the time the backups
are taken and is not active at or beyond the log truncation point does not need to be restarted.

By default, RESTORE SYSTEM recovers the data from the database copy pool during the RESTORE phase
and then applies logs to the point in time at which the existing logs were truncated during the LOGAPPLY
phase. The RESTORE utility never restores logs from the log copy pool.

Restriction: RESTORE SYSTEM does not restore logs; the utility only applies the logs. If you specified
BACKUP SYSTEM FULL to create copies of both the data and the logs, you can restore the logs by another
method.

Output:

Output for RESTORE SYSTEM is the recovered copy of the data volume or volumes.

Authorization required

To run this utility, you must use a privilege set that includes installation SYSADM authority.

Execution phases of RESTORE SYSTEM

The RESTORE SYSTEM utility operates in the following phases:

Phase
Description

UTILINIT
Performs initialization and setup

RESTORE
Locates and restores the volume copies if the LOGONLY option is not specified

LOGAPPLY
Applies the outstanding log changes to the database

UTILTERM
Performs cleanup

Related concepts
Point-in-time recovery with system-level backups (Db2 Administration Guide)
Related reference
“BACKUP SYSTEM” on page 53
The online BACKUP SYSTEM utility invokes z/OS DFSMShsm to copy the volumes on which the Db2 data
and log information resides. These system-level backups can be taken for either a Db2 subsystem or data

© Copyright IBM Corp. 1983, 2024 689

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_recovertotimeusingbackupsystem.html

sharing group. You can later run the RESTORE SYSTEM utility to recover the subsystem or data sharing
group.

Syntax and options of the RESTORE SYSTEM control statement
The RESTORE SYSTEM utility control statement, with its multiple options, defines the function that the
utility job performs.

Use the ISPF/PDF edit function to create a control statement and to save it in a sequential or partitioned
data set. When you create the JCL for running the job, use the SYSIN DD statement to specify the name of
the data set that contains the utility control statement.

When you specify RESTORE SYSTEM, you can specify only the following statements in the same step:

• DIAGNOSE
• OPTIONS PREVIEW
• OPTIONS OFF
• OPTIONS KEY
• OPTIONS EVENT WARNING

In addition, RESTORE SYSTEM must be the last statement in SYSIN.

Syntax diagram
RESTORE SYSTEM

non-LOGONLY spec

LOGONLY

SWITCH VCAT

SYSVALUEDDN( ddname)

non-LOGONLY spec

ALTERNATE_CP( copy-pool) RESTOREBEFORE X'byte-string'

FROMDUMP

DUMPCLASS( dcl) RSA(' key-label ') TAPEUNITS

( num-tape-units)

FLASHCOPY_PPRCP NO

PMNO

PMPREF

PMREQ

Option descriptions

LOGONLY
Specifies that the database volumes have already been restored, so the RESTORE phase is skipped.
Use this option when the database volumes have already been restored outside of Db2. If the
subsystem is at a tracker site, you must specify the LOGONLY option.
SWITCH VCAT

Indicates that the integrated catalog facility (ICF) alias (VCAT) names are to be substituted with
those names that are provided when the log is processed. Every VCAT encountered in the log must

690 Db2 12 for z/OS: Utility Guide and Reference

be specified in the SYSVALUEDDN data set. This option might be used in the process of cloning a
Db2 subsystem.
SYSVALUEDDN ('ddname')

Specifies that the DD statement for the control statements specifying the integrated catalog
facility (ICF) (VCAT) aliases used when processing log records.ddname can be up to 8
characters, and must start with an alphabetic or national character (for example: @, $, or
#).

The default value is SYSVALUEDDN(SYSVALUE), where SYSVALUE identifies the primary data
set.

ALTERNATE_CP
Indicates which system-level backups RESTORE SYSTEM can use. RESTORE SYSTEM is to consider
only those system-level backups with the specified copy pool.

If the ALTERNATE_CP option is omitted from the utility control statement, all system-level backups
are candidates for a restore base.

Of the qualifying system-level backups, RESTORE SYSTEM uses the most recent one before the
recovery point. If the utility encounters problems with that system-level backup, the utility fails.

(copy-pool)
A string value to be used for the copy pool name. This value can be up to 14 characters. RESTORE
SYSTEM uses the following copy pool names:

• DSN$copy-pool$DB for the database copy pool
• DSN$copy-pool$LG for the log copy pool

Related information:

“Copy pools” on page 57
Defining Copy Pools (DFSMSdfp Storage Administration)
Defining a copy pool backup storage group (DFSMSdfp Storage Administration)

RESTOREBEFORE
Limits the system-level backups that RESTORE SYSTEM can use as the recovery base to those
backups that were taken before the specified RBA or LRSN. RESTORE SYSTEM is to use the most
recent system-level backup before the specified RBA or LRSN.

Use RESTOREBEFORE to avoid the use of the more recent system-level backups.

X'byte-string'
An RBA in a non-data sharing environment or an LRSN in a data sharing environment.

FROMDUMP
Indicates that you want to dump only the database copy pool to tape during the restore.
DUMPCLASS (dcl)

Indicates what DFSMShsm dump class to use for the restore.
RSA ('key-label')

Specifies that the key-label value in the utility control statement is passed to DFSMShsm to
override the key-label value that would normally be used to read dump tapes. key-label can be up
to 64 characters, and must start with an alphabetic or national character (for example: @, $, or #).
key-label must be enclosed in single quotation marks.

The FROMDUMP and DUMPCLASS options that you specify for the RESTORE SYSTEM utility override
the RESTORE_ RECOVER_FROMDUMP and UTILS_DUMP_CLASS_NAME subsystem parameter values.

TAPEUNITS
Specifies the limit on the number of tape drives that the utility dynamically allocates during the
restore of the database copy pool from dumps on tape.

The default is the option that you specified for subsystem parameter RESTORE_TAPEUNITS. If no
default is specified, then the RESTORE SYSTEM utility tries to use all of the tape drives in your system.

Chapter 31. RESTORE SYSTEM 691

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idas200/defcopy.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idas200/defcpbsg.htm

The TAPEUNITS option does not apply and is ignored when the z/OS level is Version 1 Release 12 or
later.

(num-tape-units)
Specifies the maximum number of tape drives to allocate. If you specify zero, or you do not
specify a value, the utility determines the optimal number of tape units to use. RESTORE SYSTEM
TAPEUNITS has a maximum value of 255.

FLASHCOPY_PPRCP
Specifies the behavior for DFSMShsm FlashCopy requests when the Db2 production volumes are
primary volumes in a Metro Mirror (Peer-to-Peer Remote Copy or PPRC) relationship.
NO

FlashCopy is not allowed to move data from the system-level backup to the Db2 production
volumes. The primary volumes in PPRC pairs are not allowed to become FlashCopy targets.

PMNO
PMNO means "Preserve Mirror No". PMNO specifies the following behavior:

• The Db2 production volumes can be FlashCopy target volumes.
• PPRC pairs are allowed to go into duplex pending status when the system-level backup is

restored.

PMPREF
PMPREF means "Preserve Mirror Preferred". PMPREF specifies the following behavior:

• The Db2 production volumes can be FlashCopy target volumes.
• The preferred behavior is that the volume pairs not go into duplex pending status when the

system-level backup is restored.

PMREQ
PMREQ means "Preserve Mirror Required". PMREQ specifies the following behavior:

• The Db2 production volumes can be FlashCopy target volumes.
• The mirror must be preserved, and the volume pairs must not go into a duplex pending status

when the system-level backup is restored.

Related information:

FLASHCOPY PPRC field (FLASHCOPY_PPRC subsystem parameter) (Db2 Installation and
Migration)
FlashCopy to PPRC primary (DFSMS Advanced Copy Services)
Preserve Mirror FlashCopy (z/OS DFSMSdss Storage Administration)

Related tasks
Recovering from disasters by using a tracker site (Db2 Administration Guide)

Before running RESTORE SYSTEM
Certain activities might be required before you run the RESTORE SYSTEM utility, depending on your
situation.

Complete the following steps prior to running RESTORE SYSTEM:

1. Stop Db2. If data sharing, stop all Db2 members in the group.
2. Run DSNJU003 (Change Log Inventory) to create a Db2 conditional restart record with the CRESTART

SYSPITR option. Specify the log truncation point with the SYSPITR option that corresponds to the point
in time to which the system is to be recovered.

For data sharing, specify an LRSN value. For non data sharing, specify an RBA value.

If you restored the log copy pool and the active log data sets are stripped or the log copy pool is for a
data sharing environment, you must specify the data complete LRSN during the conditional restart in
the following scenarios:

692 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopypprc.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_flashcopypprc.html
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.antg000/fc2pprc.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.adru000/flcpprmir.htm
https://www.ibm.com/docs/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverdisastertrackersite.html

• You are cloning a Db2 system by using a system-level backup as the source. In this case,
conditionally restart Db2 with an ENDRBA or ENDLRSN that is equal to the data complete LRSN
of the system-level backup.

• You are performing a system-level point-in-time recovery. In this case, conditionally restart Db2 with
the log truncation point equal to or less than the data complete LRSN of the system-level backup.
Use the data complete LRSN as the CRESTART ENDRBA, ENDLRSN, or SYSPITR log truncation point.

You can determine the data complete LRSN from the following places:

• Message DSNU1614I, which is generated when BACKUP SYSTEM completes successfully
• The report generated by the print log map utility (DSNJU004)

3. Start Db2. When the Db2 restart processing for the conditional restart with the SYSPITR option
completes, Db2 enters system RECOVER-pending and access maintenance mode. During system
RECOVER-pending mode, you can run only the RESTORE SYSTEM utility.

4. Ensure that all data sharing members that were active at the SYSPITR log truncation point (or
restarted after this point) have been restarted with the same SYSPITR LRSN value. You can stop the
other members of the data group (with MODE(QUIESCE)) after the SYSPITR restart.

5. Ensure that the ICF catalogs for the Db2 data are not active and are not allocated. The ICF catalog for
the data must be on a separate volume than the ICF catalog for the logs. The command to unallocate
the catalog is F CATALOG,UNALLOCATE(catalog-name). Alternatively, if you add the ICF catalog
names to the database copy pool definition by altering the copy pools, the catalog is unallocated by
HSM before doing the restore.

Related information:

Altering copy pools (DFSMSdfp Storage Administration)

How to determine which system-level backups Db2 restores
If you do not specify the RESTOREBEFORE option, RESTORE SYSTEM uses the most recent system-level
backup of the database copy pool that Db2 took before the SYSPITR log truncation point. If RESTORE
SYSTEM encounters either of the following problems with the most recent system-level backup the utility
fails:

• The most recent system-level backup before the recovery point is not registered in the DFSMShsm
repository.

• An error is returned by DFSMShsm during the restore of the production volumes.

If you specify the RESTOREBEFORE option, RESTORE SYSTEM uses the most recent system-level backup
before the specified RBA or LRSN. You can use the RESTOREBEFORE option to specify an older system-
level backup if the most recent one caused the utility to fail.

To determine whether the system level backup will be restored from disk or from tape:

• If FROMDUMP was not specified and the system-level backup resides on disk, Db2 uses it for the
restore.

• If you specify YES in the RESTORE/RECOVER FROM DUMP field on installation panel DSNTIP6 or you
specify the FROMDUMP option in the RESTORE utility statement, restore uses only the dumps on tape of
the database copy pool.

• If you specify a dump class name on the DUMP CLASS NAME field on installation panel DSNTIP6 or you
specify the DUMPCLASS option in the RESTORE utility statement, Db2 restores the database copy pool
from the DFSMshsm dump class.

• If you do not specify a dump class name in the DUMP CLASS NAME field on installation panel DSNTIP6
or you do not specify the DUMPCLASS option in the RESTORE utility statement, RESTORE SYSTEM
issues the DFSMShsm LIST COPYPOOL command and uses the first dump class listed in the output.

The RESTORE SYSTEM utility invokes DFSMShsm to restore the database copy pool volumes from a
system-level backup on tape.

Chapter 31. RESTORE SYSTEM 693

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idas200/altcp.htm

How to determine if RESTORE SYSTEM uses parallelism when restoring from tapes
Parallelism occurs if the dumps of the volumes in the database copy pool reside on different tape
volumes. The degree of parallelism is limited by:

• The TAPEUNITS option, which limits the number of tape units that the utility can allocate.
• The number of distinct tape volumes that the dump resides on.

Determining whether the system-level backups reside on disk or tape
Restoring each volume in the database copy pool from a fast replication copy on the disk occurs virtually
instantaneously. Restoring the database copy pool from dumps on tape volumes takes much longer.

To determine whether the system-level backups of the database copy pool reside on the disk or tape:

1. Run the DFSMShsm LIST COPYPOOL command with the ALLVOLS option.
2. Run the DSNJU004 utility output. For data sharing, run the DSNJU004 utility output on each member.
3. Review the output from the DFSMShsm LIST COPYPOOL command with the ALLVOLS option.
4. Review the Db2 system-level backup information in the DSNJU004 utility output.

If the system-level backup chosen as the recovery base for the database copy pool no longer resides on
DASD and the FROMDUMP option has not been specified, then the RESTORE SYSTEM utility will fail. You
can then specify the RESTORE SYSTEM FROMDUMP option, or specify it on installation panel DSNTIP6, to
direct the utility to use the system-level backup that was dumped to tape.

While running RESTORE SYSTEM
Specific considerations apply while RESTORE SYSTEM is running.

Data sets that RESTORE SYSTEM uses

The following table lists the data sets that RESTORE SYSTEM uses. The table lists the DD name that is
used to identify the data set, a description of the data set, and whether it is required. Include statements
in your JCL for each required data set.

Table 101. Data sets that RESTORE SYSTEM uses

Data set Description Required?

SYSIN An input data set that contains the utility control
statement

Yes

SYSPRINT An output data set for messages Yes

auth-id.job-name.HSM A temporary data set that is automatically
allocated by the utility and deleted when the utility
completes

Yes

VCAT alias values data set An input data set that contains the values of
the integrated catalog facility (ICF) alias (VCAT)
names to be switched while processing. Specify
its DD name with the SYSVALUEDDN option of the
utility control statement. The default DD name is
SYSVALUE.

No

VCAT alias values data set
Defines a set of records which contain integrated catalog facility (ICF) catalog (VCAT) alias names.

Each record must contain a pair of (VCAT) alias names separated by only a comma. Blank characters
are not allowed between each name. Each name is a valid z/OS alias of up to eight characters and

694 Db2 12 for z/OS: Utility Guide and Reference

composed of uppercase alphabetic, numeric, or national characters. The first (VCAT) alias name is the
name used when the system level backup was created. The second (VCAT) alias name is the current
name after any renaming. All aliases encountered in the log must be specified, even if the VCAT alias
is the same as when the system level backup was created. Sample data follows:

VCAT1,VCAT2
VCAT5,Z1234567
DSNC000,DSNC000

To obtain the names, keep a list of previously existing to current name mappings when renaming an
integrated catalog facility (ICF) catalog (VCAT) alias.

HSM and DFDSS messages in SYSPRINT

If the HSM_MSGDS_HLQ subsystem parameter is set to the same high-level qualifier that is specified
in the MESSAGEDATASET parameter of the HSM SETSYS command, the SYSPRINT data set contains
diagnostic messages that are generated by HSM and DFDSS. The HSM messages are bracketed by
the DSNU421I and DSNU422I messages. The name of the HSM message is displayed in the utility
SYSPRINT.

Concurrency and compatibility for RESTORE SYSTEM

While RESTORE SYSTEM is running, no other utilities can run.

Using DISPLAY UTILITY with RESTORE SYSTEM

You can use the DISPLAY UTILITY command with RESTORE SYSTEM.

To use the DISPLAY UTILITY command for RESTORE SYSTEM on a data sharing group, you must issue the
command from the member on which the RESTORE SYSTEM utility is invoked.

Termination and restart of RESTORE SYSTEM

You can terminate and restart the RESTORE SYSTEM utility.

You cannot terminate RESTORE SYSTEM by using the TERM UTILITY command.

You can restart RESTORE SYSTEM at the beginning of a phase or at the current system checkpoint. A
current system checkpoint occurs during the LOGAPPLY phase after log records are processed. By default,
RESTORE SYSTEM restarts at the current system checkpoint.

When you restart RESTORE SYSTEM for a data sharing group, the member on which the restart is issued
must be the same member on which the original RESTORE SYSTEM was issued.

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.
Related tasks
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.
Related reference
-DISPLAY UTILITY (Db2) (Db2 Commands)

Chapter 31. RESTORE SYSTEM 695

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displayutility.html

After running RESTORE SYSTEM
After you run the RESTORE SYSTEM utility, you must complete some cleanup actions, including resolving
any restrictive states that were set by the utility.

Effects of running RESTORE SYSTEM

RESTORE SYSTEM might leave objects in one of the following restrictive states:

RECOVER-pending status
A table space or partition is placed in RECOVER-pending status if any of the following events occurred
after the point in the log where RESTORE SYSTEM begins log apply processing:

• A NOT LOGGED table space was updated
• A LOG NO utility event occurred on the table space or partition

The log point where log apply processing begins is listed in the DSNJU004 utility output as the RBLP
value, or recovery base log point. See “System-level backup information” on page 886.

REBUILD-pending status
An index is placed in REBUILD-pending status in any of the of the following situations:

• The index has gone through the two-pass group buffer pool RECOVER-pending (GRECP) or logical
page list (LPL) recovery earlier.

• The index is in GRECP or LPL status, and the compensation log records are written before the
physical undo logs.

• A LOG NO utility event occurred on the index after the point in the log where RESTORE SYSTEM
begins log apply processing.

Related information:

“RECOVER-pending status” on page 983
“REBUILD-pending status” on page 982

After running RESTORE SYSTEM

Complete the following steps after running RESTORE SYSTEM:

1. Stop and start each Db2 subsystem or member to remove it from access maintenance mode.
2. Use the DISPLAY UTIL command to see if any utilities are running. If other utilities are running, use the

TERM UTIL command to end them.
3. Use the RECOVER utility to recover all objects in RECOVER-pending (RECP) or REBUILD-pending

(RBDP) status, or use the REBUILD INDEX utility to rebuild objects. If a CREATE TABLESPACE, CREATE
INDEX, or data set extension has failed, you can also recover or rebuild any objects in the logical page
list (LPL).

Sample RESTORE SYSTEM control statements
Use the sample control statements as models for developing your own RESTORE SYSTEM utility control
statements.

The RESTORE SYSTEM utility uses data that is copied by the BACKUP SYSTEM utility.

Example 1: Recovering a backup system

696 Db2 12 for z/OS: Utility Guide and Reference

The following control statement specifies that RESTORE SYSTEM is to recover a Db2 subsystem or a data
sharing group to a previous point in time by restoring volume copies and applying any outstanding log
changes.

//STEP1 EXEC DSNUPROC,TIME=1440,
// UTPROC='',
// SYSTEM='DSN'
//SYSIN DD *
 RESTORE SYSTEM
/*

Example 2: Recovering a backup system after the database volumes have already been restored

The LOGONLY keyword in the following control statement indicates that RESTORE SYSTEM is to apply any
outstanding log changes to the database. The utility is not to restore the volume copies. In this example,
the database volumes were restored outside of Db2. RESTORE SYSTEM applies log changes; it never
restores the log copy pool.

//STEP1 EXEC DSNUPROC,TIME=1440,
// UTPROC='',
// SYSTEM='DSN'
//SYSIN DD *
 RESTORE SYSTEM LOGONLY
/*

Example 3: Recovering a dump on tape of the database copy pool

The following control statement specifies that the RESTORE SYSTEM utility is to consider for restore only
dumps on tape of the database copy pool. During the restore, the utility dynamically allocates a maximum
of four tape units.

//SYSOPRB JOB (ACCOUNT),'NAME',CLASS=K
//UTIL EXEC DSNUPROC,SYSTEM=V91A,UID='TEMB',UTPROC=''
//*
//*
//DSNUPROC.SYSUT1 DD DSN=SYSOPR.SYSUT1,
// DISP=(MOD,DELETE,CATLG),
// SPACE=(16384,(20,20),,,ROUND),
// UNIT=SYSDA
//DSNUPROC.SYSIN DD *
 RESTORE SYSTEM FROMDUMP TAPEUNITS 4
//

Example 4: Recovering a backup system after the database volumes have already been restored and
VCAT aliases renamed

The LOGONLY keyword in the following control statement indicates that RESTORE SYSTEM is to apply
any outstanding log changes to the database. The utility is not to restore the volume copies. In this
example, the database volumes were restored outside of Db2. RESTORE SYSTEM applies log changes; it
never restores the log copy pool. The SWITCH VCAT SYSVALUEDDN(SYSVALUE) keywords indicate that
the SYSVALUE DD name data set contains a list of pairs of integrated catalog facility (ICF) (VCAT) aliases.
The first (VCAT) alias is the name when the backup was created and the second (VCAT) alias is the name
after any renaming is complete. The (VCAT) alias DSNC000 is specified as both the first and second alias
since it was not renamed and might be encountered in the log.

//STEP1 EXEC DSNUPROC,TIME=1440,
// UTPROC='',
// SYSTEM='DSN'
//SYSIN DD *
 RESTORE SYSTEM LOGONLY SWITCH VCAT SYSVALUEDDN(SYSVALUE)

Chapter 31. RESTORE SYSTEM 697

/*
//SYSVALUE DD *
VCAT1,VCAT2
VCAT5,Z1234567
DSNC000,DSNC000
/*

Example 5: Recovering from an alternate copy pool

The following control statement specifies that RESTORE SYSTEM is to consider for restore only those
system-level backups that are associated with the specified alternate copy pool.

 RESTORE SYSTEM ALTERNATE_CP(ALTERNATE1)

When you run this utility, the output messages show that the utility uses the copy pool name
DSN$ALTERNATE1$DB:

DSNU050I 220 10:09:53.61 DSNUGUTC - RESTORE SYSTEM ALTERNATE_CP(ALTERNATE1)
DSNU1606I 220 10:09:53.61 DSNUVBRD - RESTORE SYSTEM UTILITY STARTING,
 COPYPOOL = DSN$ALTERNATE1$DB
 TOKEN = X'C4C2F2C1CD931537CA6A07E40000A5140114'.

RESTORE SYSTEM generated this name based on the ALTERNATE_CP value in the utility statement and
the DB2 convention for copy pool names.

Related information:

“Copy pools” on page 57

Example 6: Recovering from an older system-level backup

The following control statement specifies that RESTORE SYSTEM is to consider for restore only those
system-level backups that were taken before the specified RBA or LRSN. In this case, RESTORE SYSTEM
uses the most recent system-level backup before X'000000000000A5D6498A'.

RESTORE SYSTEM RESTOREBEFORE X'000000000000A5D6498A'

Related concepts
Point-in-time recovery with system-level backups (Db2 Administration Guide)
Related reference
“Syntax and options of the RESTORE SYSTEM control statement” on page 690
The RESTORE SYSTEM utility control statement, with its multiple options, defines the function that the
utility job performs.
“BACKUP SYSTEM” on page 53
The online BACKUP SYSTEM utility invokes z/OS DFSMShsm to copy the volumes on which the Db2 data
and log information resides. These system-level backups can be taken for either a Db2 subsystem or data
sharing group. You can later run the RESTORE SYSTEM utility to recover the subsystem or data sharing
group.

698 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_recovertotimeusingbackupsystem.html

Chapter 32. RUNSTATS
The RUNSTATS online utility gathers summary information about the characteristics of data in table
spaces, indexes, and partitions. Db2 records these statistics in the Db2 catalog and uses them to select
access paths to data during the bind process.

You can use these statistics to evaluate the database design and determine when table spaces or indexes
must be reorganized. To obtain the updated statistics, you can query the catalog tables.

The two formats for the RUNSTATS utility are RUNSTATS TABLESPACE and RUNSTATS INDEX. RUNSTATS
TABLESPACE gathers statistics on a table space and, optionally, on tables, indexes or columns; RUNSTATS
INDEX gathers statistics only on indexes. RUNSTATS does not collect statistics for clone tables or index
spaces.

RUNSTATS can collect statistics on any single column or set of columns. RUNSTATS collects the following
types of distribution statistics:

Frequency
The percentage of rows in the table that contain a value for a column or combination of values for a
set of columns.

Cardinality
The number of distinct values in the column or set of columns.

When you run RUNSTATS TABLESPACE, you can use the COLGROUP option to collect frequency and
cardinality statistics on any column group. You can also collect frequency and cardinality statistics on
any single column. When you run RUNSTATS INDEX, you can collect frequency statistics on the leading
column of an index and multi-column frequency and cardinality statistics on the leading concatenated
columns of an index.

When you run RUNSTATS TABLESPACE, you can use the HISTOGRAM option, with the COLGROUP option,
to indicate that histogram statistics are to be gathered for the specified group of columns. RUNSTATS
TABLESPACE does not collect histogram statistics for LOB table spaces or XML table spaces. When you
run RUNSTATS INDEX, histogram statistics can only be collected on the prefix columns with the same
order. Key columns with a mixed order are not allowed for histogram statistics. RUNSTATS INDEX does
not collect histogram statistics for XML node ID indexes or XML indexes.

Restriction: You cannot run RUNSTATS on directory objects.

Before running RUNSTATS

Use caution when running RUNSTATS after any user has manually updated the statistic columns in the
catalog. RUNSTATS replaces any values that the user changed.

Important: Use care when issuing SQL statements or using tools to update statistics values in catalog
tables. If such updates introduce invalid data, unpredictable results can occur, including abends for
RUNSTATS and other utilities. If such problems occur, you can run the RUNSTATS utility and collect
statistics at the table space level to resolve the problems, in most cases.

If you plan to use another utility to load or reorganize the same data, consider collecting inline statistics
with that utility to avoid the cost of running the RUNSTATS utility separately.

Restriction: RUNSTATS might not provide useful statistics on encrypted data.

Data sets that RUNSTATS uses
See “Data sets that RUNSTATS uses” on page 722.

© Copyright IBM Corp. 1983, 2024 699

Concurrency and compatibility for RUNSTATS
See “Concurrency and compatibility for RUNSTATS” on page 724.

RUNSTATS syntax
RUNSTATS uses different statistics depending on the target objects. For syntax diagrams and options
descriptions for RUNSTATS, see:

• “RUNSTATS TABLESPACE syntax and options” on page 701
• “RUNSTATS INDEX syntax and options” on page 714
• “Statistics profile syntax” on page 720

Output

RUNSTATS updates the Db2 catalog with table space or index space statistics, prints a report, or both. For
more information, see “Review of RUNSTATS output” on page 731

Important: Use care when issuing SQL statements or using tools to update statistics values in catalog
tables. If such updates introduce invalid data, unpredictable results can occur, including abends for
RUNSTATS and other utilities. If such problems occur, you can run the RUNSTATS utility and collect
statistics at the table space level to resolve the problems, in most cases.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• STATS privilege for the database
• DBADM, DBCTRL, or DBMAINT authority for the database. If the object on which the utility operates is

in an implicitly created database, DBADM authority on the implicitly created database or DSNDB04 is
required.

• System DBADM authority
• SQLADM authority
• SYSCTRL or SYSADM authority

An ID with installation SYSOPR authority can also execute the RUNSTATS utility, but only on a table space
in the DSNDB06 database.

To use RUNSTATS with the REPORT YES option, you must have the SELECT privilege on the reported
tables. RUNSTATS does not report values from tables that the user is not authorized to see.

To gather statistics on a LOB table space, you must have SYSADM or DBADM authority for the LOB table
space.

Execution phases of RUNSTATS

The RUNSTATS utility operates in the following phases:

1. The UTILINIT phase performance initialization.
2. The RUNSTATS phase scans table space or index and updates catalog. If you specify COLGROUP,

RUNSTATS also performs a subtask that sorts one or more column group's data. If you specify
FREQVAL with COLGROUP or are collecting frequency statistics for data-partitioned secondary
indexes, RUNSTATS also performs a subtask that sorts the partition-level frequency data.

3. The UTILITERM phase cleans up.

700 Db2 12 for z/OS: Utility Guide and Reference

Termination or restart of RUNSTATS

You can terminate RUNSTATS with the TERM UTILITY command. You can restart a RUNSTATS utility job,
but it starts from the beginning again.

After running RUNSTATS
After running RUNSTATS with the UPDATE ACCESSPATH, UPDATE SPACE, or the UPDATE ALL options,
rebind any application plans that use the tables or indexes so that they use the new statistics.

Related concepts
Statistics profiles (Db2 Performance)
Related tasks
Maintaining Db2 database statistics (Db2 Performance)
Automating statistics maintenance (Db2 Performance)
Invalidating statements in the dynamic statement cache (Db2 Performance)

RUNSTATS TABLESPACE syntax and options
RUNSTATS TABLESPACE utility control statements define operations completed by RUNSTATS utility jobs.

You can create a control statement with the ISPF/PDF edit function. After you create it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

The following syntax and descriptions apply to RUNSTATS TABLESPACE control statements, including
use of the INDEX keyword. For the syntax and options of RUNSTATS INDEX control statements, see
“RUNSTATS INDEX syntax and options” on page 714.

RUNSTATS TABLESPACE syntax diagram

RUNSTATS TABLESPACE LIST listdef-name

table-space-spec

INVALIDATECACHE NO

INVALIDATECACHE YES

statistics-spec

RESET ACCESSPATH

HISTORY ACCESSPATH

table-space-spec

database-name .

 table-space-name

PART integer
FORCEROLLUP NO

FORCEROLLUP YES

statistics-spec

Chapter 32. RUNSTATS 701

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_runstatsprofiles.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_maintaincatalogstatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_automatestatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_invalidatestatementscache.html

TABLE

(ALL)

all-tables-spec

,

TABLE
1

( table-name) named-tables-spec

INDEX
2

(ALL) correlation-stats-spec

INDEX (*)
3

correlation-stats-spec

INDEX (

,

index-name

PART integer

correlation-stats-spec)

STATCLGMEMSRT integer

SHRLEVEL CHANGE REGISTER YES

SHRLEVEL CHANGE
REGISTER NO

4

SHRLEVEL REFERENCE

REPORT NO

REPORT YES

UPDATE ALL

UPDATE ACCESSPATH

SPACE

NONE

history-spec

SORTDEVT device-type

all-tables-spec

sample-spec use-profile-spec

DELETE PROFILE

named-tables-spec

sample-spec
5

column-spec

colgroup-spec

use-profile-spec

column-spec

colgroup-spec set-profile-spec
6

DELETE PROFILE
6

sample-spec

702 Db2 12 for z/OS: Utility Guide and Reference

SAMPLE
25

integer

TABLESAMPLE SYSTEM
AUTO

numeric-literal

NONE
7

REPEATABLE integer

use-profile-spec

USE PROFILE
8 9

INCLUDE NPI

(NPI)

column-spec
COLUMN (ALL)

COLUMN (

,

column-name
10

)

SORTNUM integer

colgroup-spec

COLGROUP (

,

column-name) colgroup-stats-spec

colgroup-stats-spec

FREQVAL

COUNT integer
11

MOST

BOTH

LEAST

HISTOGRAM

NUMQUANTILES 100

NUMQUANTILES integer

correlation-stats-spec

Chapter 32. RUNSTATS 703

KEYCARD
12

FREQVAL NUMCOLS 1 COUNT 10 MOST

FREQVAL NUMCOLS integer

COUNT integer
11

MOST

BOTH

LEAST

HISTOGRAM

NUMCOLS 1 NUMQUANTILES 100

NUMCOLS integer
13

NUMQUANTILES 100

NUMQUANTILES integer

set-profile-spec
SET PROFILE

FROM EXISTING STATS
14

UPDATE PROFILE

history-spec

HISTORY NONE
15

HISTORY ALL

ACCESSPATH

SPACE

Notes:
1 The TABLE keyword is not valid for a LOB table space.
2 You cannot specify INDEX if either USE PROFILE or DELETE PROFILE option is also specified.
3 INDEX(*) is an internal representation of INDEX(ALL) that Db2 uses only in the context of RUNSTATS
profiles, and is not valid when specified in any RUNSTATS control statement. When you specify the
INDEX(ALL) option in a RUNSTATS control statement that creates a profile, Db2 uses INDEX(*) in the
PROFILE_TEXT column of the SYSIBM.SYSTABLES_PROFILES catalog table. However, you must specify
INDEX(*) instead of INDEX(ALL)) if you modify the profile by updating the value of the PROFILE_TEXT column
directly.
4 REGISTER NO is ignored for index processing.
5 The TABLESAMPLE keyword is valid only for universal table spaces (UTS). Dropped tables are included in
this count until REORG, COPY, and MODIFY RECOVERY are run.
6 If one type of PROFILE function is specified on one TABLE clause the same type of PROFILE function must
be specified on all TABLE clauses.
7 If you specify TABLESAMPLE SYSTEM NONE to override the STATPGSAMP subsystem parameter, you can
specify the SAMPLE option. Otherwise, SAMPLE is not allowed to be specified with TABLESAMPLE.

704 Db2 12 for z/OS: Utility Guide and Reference

8 When USE PROFILE is specified with the TABLE (ALL) keywords and no profile exists for a target table,
TABLE ALL INDEX ALL is used for the profile specification.
9 When USE PROFILE is specified and no profile exists for a target table, COLUMN ALL INDEX ALL is used for
the profile specification.
10 The same column name must not be specified more than once. If all columns are listed in the COLUMN
option, RUNSTAT will treat it as is, and does not replace it with the COLUMN(ALL) option. Users have to state
explicitly if they want the COLUMN(ALL) option.
11 When the COUNT keyword is not specified, the utility automatically determines the count value and
collects the most frequently occurring values.
12 The KEYCARD option is deprecated. The KEYCARD functionality is now built into the normal execution of
the RUNSTATS INDEX utility and cannot be disabled.
13 If the target is an XML index, histogram and frequency statistics are collected on the first key column of the
XML index only, regardless of the NUMCOLS value.
14 The FROM EXISTING STATS clause is not valid if a column-spec, colgroup-spec, or INDEX keyword has
been specified
15 You can change the default HISTORY value by modifying the STATISTICS HISTORY subsystem parameter.
By default, this value is NONE.

RUNSTATS TABLESPACE option descriptions

TABLESPACE database-name.table-space-name
Specifies the table space (and, optionally, the database to which it belongs) on which table space and
table statistics are to be gathered. This keyword must not identify a table space in DSNDB01 or work
file databases, which consist of DSNDB07 objects and user-defined work file objects.
LIST listdef-name

Specifies the name of a previously defined LISTDEF list name. You can specify one LIST
keyword for each RUNSTATS control statement. When you specify this keyword with RUNSTATS
TABLESPACE, the list must contain only table spaces. Do not specify LIST with keywords from
the TABLE…(table-name) specification. Instead, specify LIST with TABLE (ALL). Likewise, do not
specify LIST with keywords from the INDEX…(index-name) specification. You cannot specify index
names with a list. Use INDEX(ALL) instead.

If you specify LIST, you cannot specify the PART option. Instead, use the PARTLEVEL option on
the LISTDEF statement. The TABLESPACE keyword is required to validate the contents of the list.
RUNSTATS TABLESPACE is invoked once for each item in the list.

The partitions or partition ranges can be specified in a list.

database-name
Identifies the name of the database to which the table space belongs.

The default value is DSNDB04.

table-space-name
Identifies the name of the table space on which statistics are to be gathered.

If the table space that is specified by the TABLESPACE keyword is a LOB table space, you can specify
only the following additional keywords: SHRLEVEL REFERENCE or CHANGE, REPORT YES or NO, and
UPDATE ALL or NONE.

PART integer
Identifies a table space partition on which statistics are to be collected.

integer is the physical partition number. It must be in the range from 1 to the number of partitions that
are defined for the table space. The maximum is 4096.

You cannot specify PART with LIST.

Chapter 32. RUNSTATS 705

TABLE
Specifies the table on which column statistics are to be gathered. All tables must belong to the table
space that is specified in the TABLESPACE option.

You cannot specify the TABLE option for a LOB table space. However, you can specify the TABLE
option with the LIST option, even if the specified list includes LOB table spaces. In this case, the
TABLE keyword applies to only the non-LOB table spaces and is ignored for the LOB table spaces.

(ALL)
Specifies that column statistics are to be gathered on all columns of all tables in the table space.
The parentheses around ALL are optional.

The TABLE option value cannot specify a LOB table. However, if TABLE(ALL) is specified, and one
or more of the tables in the table space have a LOB column, no error is issued for the LOB tables.
RUNSTATS gathers table and column statistics only for the non-LOB tables.

(table-name)
Specifies the tables on which column statistics are to be gathered. If you omit the qualifier,
RUNSTATS uses the user identifier for the utility job as the qualifier. Enclose the table name in
quotation marks if the name contains a blank.

If you specify more than one table, you must repeat the TABLE option. Multiple TABLE options
must be specified entirely before or after any INDEX keyword is specified. For example, the INDEX
keyword cannot be specified between any two TABLE keywords.

SAMPLE integer
Indicates the percentage of rows that RUNSTATS is to sample when collecting statistics on non-
leading-indexed columns of an index or non-indexed columns. You can specify any value from 1
through 100.

The default value is 25.

When a low SAMPLE value is specified, inaccuracies in sampling can result in inaccurate statistics and
thus bad access paths. The smaller the sample, the more potential for inaccuracy, which can affect
access paths.

You cannot specify SAMPLE for LOB table spaces.

If the STATPGSAMP subsystem parameter is set to SYSTEM or YES and the target table space is a
universal table space, SAMPLE is ignored. Instead, RUNSTATS uses TABLESAMPLE SYSTEM AUTO.

USE PROFILE
Specifies that a stored statistics profile is to be used to gather statistics for a table. The statistics
profile is created by using the SET PROFILE option and is updated by using the UPDATE PROFILE
option. If the STATFDBK_PROFILE subsystem parameter is set to YES, statistics profiles are updated
automatically for recommendations that are generated during query optimization.

The column, column group, and index specifications are not allowed as part of the control statement,
but are used when stored in the statistics profile.

If no profile exists for the specified table, default statistics are collected:

• When a table name is not specified, TABLE ALL INDEX ALL is used for the profile specification.
• When a table name is specified, COLUMN ALL INDEX ALL is used for the profile specification.

When you specify USE PROFILE, the profile options are included in SYSPRINT in message
DSNU1376I.

FL 507 Additionally, Db2 deletes existing statistics that are not included in the profile. All frequency,
keycard, and histogram statistics that are not part of the profile are deleted from the catalog. These
statistics are deleted for only the specified table or partition. Statistics are not deleted from catalog
history tables. If you specify UPDATE NONE or UPDATE SPACE, no statistics are deleted.

INCLUDE NPI or INCLUDE (NPI)
Specifies that statistics are to be collected on the non-partitioned indexes that listed in the profile
for the table. The INCLUDE NPI clause is not valid if the PART keyword is not specified at the

706 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m507.html

RUNSTATS TABLESPACE level. You must specify the INCLUDE and NPI keywords together. The
parentheses around NPI are optional.

DELETE PROFILE
Specifies that the existing RUNSTATS profile for the table is to be deleted from the
SYSIBM.SYSTABLES_PROFILES catalog table.

Column, column group, and index specifications are not allowed as part of the control statement when
the DELETE PROFILE option is used. No statistics are collected when you specify this option in the
RUNSTATS control statement.

TABLESAMPLE SYSTEM
Allows RUNSTATS to collect statistics on a sample of the data pages from the table.

If the STATPGSAMP subsystem parameter is set to SYSTEM or YES and the target table space is a
universal table space, TABLESAMPLE SYSTEM AUTO is the default behavior for RUNSTATS. You do not
need to specify this option on the RUNSTATS statement. The exception is if you want a specific sample
size other than AUTO. In this case, specify a value for TABLESAMPLE SYSTEM; that value overrides the
STATPGSAMP specification.

System sampling considers each page individually, including that page with probability P/100 (where
P is the value of numeric-literal) and excluding it with probability 1-P/100. Unless the optional
REPEATABLE clause is specified, each execution of RUNSTATS usually yields a different such
sample of the table. The size of the sample is controlled by the integer parameter in parentheses,
representing an approximate percentage P of the table to be returned. Only a percentage of the
data pages as specified through the numeric-literal parameter is retrieved and used for the statistics
collection. This keyword is valid only for universal table spaces (UTS).

If you run RUNSTATS with the TABLESAMPLE SYSTEM AUTO keywords for an entire partitioned table
space, and the number of rows in each partition varies greatly, a partition that contains rows on very
few pages can be skipped. In such cases, a DSNU1375I message indicates each partition that is not
sampled. It is best to run RUNSTATS again with the SAMPLE keyword at the partition level for each
such partition.

If TABLESAMPLE is specified for segmented (non-UTS), partitioned (non-UTS), or LOB table spaces,
page sampling is not done. Instead, all pages are scanned to collect statistics.

numeric-literal
Specifies the size of the sample to be obtained, as a percentage P. This value must be a positive
number that is less than or equal to 100 and greater than 0. For example, a value of 0.01
represents one one-hundredth of a percent, such that 1 row in 10,000 would be sampled, on
average. A value greater than 100, zero, or a value less than zero is treated by Db2 as an error. The
smallest allowable positive number for this option is 0.01 percent.

Depending on table space size and sampling rate that is used, it is possible that a partition is not
included in the sample. In this case, RUNSTATS does not collect statistics for this partition, and
might report warnings or errors for aggregate statistics.

When numeric-literal is specified, and real-time statistics are not available, Db2 issues message
DSNU3343I.

AUTO
When "AUTO" is specified, RUNSTATS determines a sampling rate based on the size of the table
when RUNSTATS runs. The larger the table the smaller the sampling rate. The threshold for
sampling is when the table has more than 500,000 rows; otherwise all pages are read. The same
threshold is applicable for TABLESPACE sampling with PART option specified. The number of rows
is obtained from the real-time statistics report.

When AUTO is specified, and real-time statistics are not available, RUNSTATS sets the sampling
rate to 100.

NONE
Specifies that RUNSTATS is not to use system sampling. You can specify TABLESAMPLE SYSTEM
NONE to override the value of the STATPGSAMP subsystem parameter for a particular RUNSTATS

Chapter 32. RUNSTATS 707

job. If you specify TABLESAMPLE SYSTEM NONE to override STATPGSAMP, you can specify the
SAMPLE option. Otherwise, SAMPLE is not allowed to be specified with TABLESAMPLE.

REPEATABLE integer
Adding the REPEATABLE clause to the TABLESAMPLE clause ensures that repeated executions
of RUNSTATS return the same sample. The integer parameter is a non-negative integer that
represents the seed to be used in sampling. Passing a negative seed results in an error
(DSNU048I). The sample set might still vary between repeatable RUNSTATS invocations.
Variations can occur if activity against the table results in changes to the table data since the
last time TABLESAMPLE REPEATABLE was run.

SET PROFILE
Specifies that RUNSTATS generates a RUNSTATS profile for the specified table from the options
that are specified in the current RUNSTATS invocation. RUNSTATS stores the profile in the
SYSIBM.SYSTABLES_PROFILES catalog table. No statistics are collected when you specify this option
in the RUNSTATS control statement. For more information about the options that you can specify in a
profile, and the syntax for specifying the options, see: “Statistics profile syntax” on page 720.

FROM EXISTING STATS
Specifies that RUNSTATS generate a statistics profile with options that are based on analysis of the
statistics that currently exist for the specified table. This option can be specified only with the SET
PROFILE option. The keywords used in the generated profile do not necessarily match those used to
collect the statistics previously.

UPDATE PROFILE
Specifies that RUNSTATS updates an existing statistics profile in the SYSIBM.SYSTABLES_PROFILES
catalog table with the options specified in the current RUNSTATS control statement. No statistics
are collected when you specify this option in the RUNSTATS control statement. If the column or
COLGROUP specification already exists in the profile, the new specification replaces the existing one.

COLUMN
Specifies columns on which column statistics are to be gathered.

You can specify this option only if you specify a particular table on which statistics are to be gathered.
(Use the TABLE (table-name) option to specify a particular table.) If you specify particular tables and
do not specify the COLUMN option, RUNSTATS uses the default, COLUMN(ALL). If you do not specify a
particular table with the TABLE option, you cannot specify the COLUMN option; however, in this case,
COLUMN(ALL) is assumed.
(ALL)

Specifies that statistics are to be gathered on all columns in the table.

The COLUMN (ALL) option is not allowed for LOB table spaces.

(column-name, …)
Specifies the columns on which statistics are to be gathered. You can specify a list of column
names. If you specify more than one column, separate each name with a comma.

The more columns that you specify, the longer the job takes to complete.

COLGROUP (column-name, …)
Indicates that the specified set of columns are to be treated as a group. This option enables
RUNSTATS to collect a cardinality value on the specified column group. RUNSTATS TABLESPACE
ignores COLGROUP when processing XML table spaces and indexes.

When you specify the COLGROUP keyword, RUNSTATS collects correlation statistics for the specified
column group. If you want RUNSTATS to also collect distribution statistics, specify the FREQVAL
option with COLGROUP.

(column-name, …) specifies the names of the columns that are part of the column group.

When you define a column group on a single column, you can potentially improve RUNSTATS
performance by specifying the STATCLGMEMSRT option or changing the value of the STATCLGSRT
subsystem parameter. You can use these options to avoid the external data sort that is used for
column group processing.

708 Db2 12 for z/OS: Utility Guide and Reference

To specify more than one column group, repeat the COLGROUP option.

Restrictions:

• The length of a COLGROUP value cannot exceed the maximum length of the COLVALUE column in
the SYSIBM.SYSCOLDIST catalog table.

• A RUNSTATS control statement can contain a maximum of 255 COLGROUP specifications.

Related information:

STATISTICS COLGROUP DATA SORT STG LIMIT field (STATCLGSRT subsystem parameter) (Db2
Installation and Migration)

FREQVAL
Indicates, when specified with the COLGROUP option, that frequency statistics are also to be
gathered for the specified group of columns. (COLGROUP indicates that cardinality statistics are to
be gathered.) One group of statistics is gathered for each column. RUNSTATS TABLESPACE ignores
FREQVAL MOST, FREQVAL LEAST, or FREQVAL BOTH when it processes XML table spaces and XML
NODEID indexes.
COUNT integer

Specifies how many frequently occurring values are collected from the specified column group.
You must specify a value for integer. If the COUNT keyword is not specified, the RUNSTATS utility
automatically determines the value and collects the most frequently occurring values.

It is best to specify a COUNT value that is not greater than the value of COLCARDF minus one,
for the column group. For most situations, 10 is usually a reasonable value. Greater COUNT
values might be needed to detect skewed data, especially in high cardinality cases. However,
avoid values greater than 100 in most cases. Specifying a value of 1000 or more can increase
the prepare time for some SQL statements. Additionally, specifying a very large COUNT value will
use a large amount of storage, which can cause storage constraints during utility execution on
partitioned objects with hundreds of partitions.

MOST
Indicates that the utility collects the most frequently occurring values for the specified set of
columns when COLGROUP is specified. For example, FREQVAL COUNT 10 MOST means that the
10 most frequently occurring values are collected.

BOTH
Indicates that the utility collects the most and the least frequently occurring values for the
specified set of columns when COLGROUP is specified. If COUNT is n, the utility collects the n
least frequently occurring values and the n most frequently occurring values.

LEAST
Indicates that the utility collects the least frequently occurring values for the specified set of
columns when COLGROUP is specified.

HISTOGRAM
Indicates, when specified with the COLGROUP (see colgroup-stats-spec) option of RUNSTATS
TABLESPACE, that histogram statistics are to be gathered for the specified group of columns.
RUNSTATS TABLESPACE ignores HISTOGRAM when processing XML table spaces and XML NODEID
indexes.
NUMQUANTILES integer

Indicates the number of quantiles that the utility collects. The integer value must be greater than
or equal to one. The number of quantiles that you specify should never exceed the total number
of distinct values in the column or the column group. The maximum number of quantiles that is
allowed is 100.

When the NUMQUANTILES keyword is omitted, NUMQUANTILES takes a default value of 100.
Based on the number of records in the table, the number of quantiles is readjusted down to an
optimal number.

Chapter 32. RUNSTATS 709

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statclgsrt.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statclgsrt.html

INDEX
Specifies indexes on which statistics are to be gathered. RUNSTATS gathers column statistics for the
first column of the index, and depending on the options that you specify, possibly additional index
columns. All the indexes must be associated with the same table space, which must be the table
space that is specified in the TABLESPACE option.

INDEX can be used on auxiliary tables to gather statistics on an index.

(ALL)
Specifies that column statistics are to be gathered for all indexes that are defined on tables that
are contained in the table space.

(*)
Specifies that statistics are to be gathered for all indexes that are defined on the specified table.

(index-name, …)
Specifies the indexes for which statistics are to be gathered. You can specify a list of index names.
If you specify more than one index, separate each name with a comma. Enclose the index name in
quotation marks if the name contains a blank.

PART integer
Identifies an index partition on which statistics are to be collected.

integer is the number of the partition.

KEYCARD
The KEYCARD option is deprecated in the RUNSTATS TABLESPACE control statement and no longer
needs to be specified to collect statistics on the values in the key columns of an index if INDEX is
specified.

The RUNSTATS utility automatically collects all of the distinct values in all of the 1 to n intermediate
key column combinations for the specified indexes, where n is the number of columns in the index.
For example, suppose that you have an index defined on three columns: A, B, and C. RUNSTATS
collects cardinality statistics for column A, column set A and B, and column set A, B, and C. With the
deprecation of KEYCARD, this functionality cannot be disabled.

The RUNSTATS utility tolerates the specification of the KEYCARD option. The utility does not issue any
messages if the control statement includes or excludes the KEYCARD option when INDEX is specified.

FREQVAL
Controls, when specified with the INDEX option, the collection of frequent-value statistics. If you
specify FREQVAL with INDEX, this keyword must be followed by the NUMCOLS keyword.
NUMCOLS integer

Indicates the number of columns in the index for which RUNSTATS collects frequently occurring
values. integer can be a number between 1 and the number of indexed columns. If you specify a
number greater than the number of indexed columns, RUNSTATS uses the number of columns in
the index.

For example, suppose that you have an index defined on three columns: A, B, and C. If you specify
NUMCOLS 1, Db2 collects frequently occurring values for column A. If you specify NUMCOLS 2,
Db2 collects frequently occurring values for the column set A and B. If you specify NUMCOLS 3,
Db2 collect frequently occurring values for the column set A, B, and C.

The default value is 1, which means that RUNSTATS collects frequently occurring values on the
first key column of the index.

If the target is an XML index, histogram and frequency statistics are collected for the first key
column of the XML index only, regardless of the NUMCOLS value.

COUNT integer
Indicates the number of frequently occurring values that are to be collected from the specified key
columns. For example, specifying 15 means that RUNSTATS is to collect 15 frequently occurring
values from the specified key columns.

710 Db2 12 for z/OS: Utility Guide and Reference

If the COUNT keyword is not specified, the RUNSTATS utility automatically determines the value
and collects the most frequently occurring values.

HISTOGRAM
Indicates, when specified with the INDEX option (correlation-stats-spec) for RUNSTATS TABLE SPACE,
that histogram statistics are to be gathered for the specified key columns. Histogram statistics can be
collected only on the prefix columns with the same order. Key columns for histogram statistics with a
mixed order are not allowed.

When RUNSTATS collects histogram statistics for partition table spaces, it aggregates them into
SYSCOLDIST.

NUMQUANTILES integer

Indicates how many quantiles that the utility is to collect. The integer value must be greater than
or equal to one. The number of quantiles that you specify should never exceed the total number of
distinct values in the key columns specified. The maximum number of quantiles that is allowed is
100.

When the NUMQUANTILES keyword is omitted, NUMQUANTILES takes a default value of 100.
Based on the number of keys in the index, the number of quantiles is readjusted down to an
optimal number.

STATCLGMEMSRT integer
Specifies the amount of memory that the utility can use for sorting records when collecting statistics
on a single column that is defined with the COLGROUP option. Use STATCLGMEMSRT to avoid column
group sorts by an external sort program, which can negatively affect the performance of RUNSTATS.

integer specifies the number of megabytes of memory space that the utility can use for an in-memory
sort. If the amount of space that is needed for the sort exceeds the integer value, the utility invokes a
sort program. If you specify 0, the utility automatically invokes a sort program.

The amount of space that is needed for the column group sort depends on the following factors:

• The number of column groups for which RUNSTATS is collecting statistics
• The length of the single-column column group
• The number of distinct values in the column (cardinality)

The value of STATCLGMEMSRT overrides the value of the STATCLGSRT subsystem parameter.

Related information:

STATISTICS COLGROUP DATA SORT STG LIMIT field (STATCLGSRT subsystem parameter) (Db2
Installation and Migration)

SHRLEVEL
Indicates whether other programs that access the table space while RUNSTATS is running must use
read-only access or can change the table space.
CHANGE

Allows other programs to change the table space or index. With SHRLEVEL CHANGE, RUNSTATS
might collect statistics on uncommitted data.

REFERENCE
Allows only read-only access by other programs.

REGISTER
Specifies whether, when SHRLEVEL CHANGE behavior is in effect, pages that are read by the
RUNSTATS utility in a data sharing environment are registered with the coupling facility.
NO

Indicates that pages that are read by the RUNSTATS utility are not registered with the coupling
facility. This option reduces data sharing overhead. However, because REGISTER NO is valid
only with SHRLEVEL CHANGE, and SHRLEVEL CHANGE implies ISOLATION UR, when you set
REGISTER NO, RUNSTATS might collect statistics on uncommitted data.

Chapter 32. RUNSTATS 711

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statclgsrt.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statclgsrt.html

If the INDEX keyword is specified, Db2 ignores the REGISTER NO keyword for the index portion of
the utility processing.

YES
Indicates that pages that are read by the RUNSTATS utility are registered with the coupling facility.

REPORT
Specifies whether RUNSTATS is to generate a set of messages that report the collected statistics.
NO

Indicates that RUNSTATS is not to generate the set of messages.
YES

Indicates that the set of messages is to be sent as output to SYSPRINT. The messages that
RUNSTATS generates depend on the combination of keywords in the utility control statement.
However, these messages do not depend on the value of the UPDATE option. REPORT YES always
generates a report of space and access path statistics.

UPDATE
Indicates which collected statistics are to be inserted into the catalog tables.
ALL

Indicates that all collected statistics are to be updated in the catalog.
ACCESSPATH

Indicates that Db2 is to update the catalog with only those statistics that are used for access path
selection.

SPACE
Indicates that Db2 is to update the catalog with only space-related statistics.

NONE
Indicates that no catalog tables are to be updated with the collected statistics. When you specify
UPDATE NONE REPORT NO, RUNSTATS invalidates statements in the dynamic statement cache
without collecting statistics, updating catalogs tables, or generating reports.

INVALIDATECACHE
Indicates whether the dynamic statement cache are invalidated.
YES

Statements in the dynamic cache are invalidated for the objects that are specified in the job
statement.

NO
Statements in the dynamic cache are not invalidated for the objects specified in the job statement.

The default value is NO, with the following exceptions:

• For RUNSTATS LIST REPORT NO UPDATE NONE, the default value is YES, and INVALIDATECACHE
NO is not supported.

• If the RESET ACCESSPATH keyword is specified, the default value is YES, and INVALIDATECACHE
NO is not supported.

HISTORY
Indicates which statistics are to be recorded in the catalog history tables. The value that you specify
for HISTORY does not depend on the value that you specify for UPDATE.

The default is the value of the STATISTICS HISTORY subsystem parameter on the DSNTIPO
installation panel. By default, this parameter value is NONE.

ALL
Indicates that all collected statistics are to be updated in the catalog history tables.

ACCESSPATH
Indicates that Db2 is to update the catalog history tables with only those statistics that are used
for access path selection.

712 Db2 12 for z/OS: Utility Guide and Reference

SPACE
Indicates that Db2 is to update the catalog history tables with only space-related statistics.

NONE
Indicates that no catalog history tables are to be updated with the collected statistics.

SORTDEVT
Specifies the device type that the sort program uses to dynamically allocate the sort work data sets
that are required.
device-type

Specifies any disk device type that is acceptable for the DYNALLOC parameter of the SORT
or OPTIONS option of the external sort program. Tape devices are not supported by the sort
program.

If all of the following conditions are true, SORTDEVT defaults to SYSALLDA and the temporary data
sets are dynamically allocated:

• You omit SORTDEVT.
• A sort is required.
• You did not provide the DD statements that the sort program requires for the temporary data sets

If you specify SORTDEVT and omit SORTNUM, no value is passed to the sort program; the sort
program uses its own default.

SORTNUM
Specifies the number of required sort work data sets that the sort program is to allocate.

integer is the number of temporary data sets that can range from 2 to 255.

You need at least two sort work data sets for each sort. The SORTNUM value applies to each sort
invocation in the utility. For example, suppose RUNSTATS is being run on three indexes, SORTKEYS is
specified, no constraints limit parallelism, and SORTNUM is specified as 8. In this case, a total of 24
sort work data sets are allocated for a job.

Each sort work data set uses both above the line and below the line virtual storage. Therefore, if
you specify too high a value for SORTNUM, the utility might decrease the degree of parallelism due
to virtual storage constraints, and possibly decrease the degree down to one, which means that no
parallelism is used.

Important: The SORTNUM keyword is ignored if the IGNSORTN subsystem parameter is set to YES.

FORCEROLLUP
Specifies whether aggregation or roll up of statistics is to occur even if statistics were not gathered on
some partitions. This option enables the optimizer to select the best access path.
YES

Indicates that forced aggregation or rollup processing is to be done, even though some partitions
might not contain data.

NO
Indicates that aggregation or rollup is to be done only if data is available for all partitions.

If the value for STATISTICS ROLLUP on panel DSNTIPO is NO and data is not available for all
partitions, Db2 issues message DSNU623I.

RESET ACCESSPATH
Resets access path statistics for all tables in the specified table space and related indexes. Real-time
statistics and space statistics in the catalog for the target objects are not reset. For a complete list
of the statistics that are reset or deleted when you specify this option, see: “Resetting access path
statistics” on page 736.

Important: You cannot recover previous values after the RUNSTATS utility is invoked with the RESET
ACCESSPATH option, unless a statistics history is maintained. Specifying the HISTORY_ACCESSPATH
option only records when the access path statistics were reset, and does not provide a method for

Chapter 32. RUNSTATS 713

recovering the previous values. For more information about how to maintain a statistics history, see
“Collecting statistics history” on page 728.

Statements that refer to the objects for which statistics are reset are invalidated in the dynamic
statement cache.

This option cannot be specified for LOB table spaces.

When this RESET ACCESSPATH is used, other keywords that specify the specific statistics to be
collected within the table space cannot be specified.

HISTORY ACCESSPATH
Inserts rows into the following tables for each object for which the access path statistics are reset
when the RESET ACCESSPATH option is specified:

• SYSIBM.SYSTABLES_HIST for tables.
• SYSIBM.SYSINDEXES_HIST for indexes.

Related tasks
Automating statistics maintenance (Db2 Performance)
Related reference
“LISTDEF” on page 199
The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.
STATISTICS PROFILE FEEDBACK field (STATFDBK_PROFILE subsystem parameter) (Db2 Installation and
Migration)
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

RUNSTATS INDEX syntax and options
RUNSTATS INDEX utility control statements define the operations completed by RUNSTATS utility jobs.

You can create a control statement with the ISPF/PDF edit function. After you create it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

The following syntax and descriptions apply to RUNSTATS INDEX control statements. For the syntax
and options of RUNSTATS TABLESPACE control statements, including use of the INDEX keyword, see
“RUNSTATS TABLESPACE syntax and options” on page 701.

RUNSTATS INDEX syntax diagram

714 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_automatestatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statfdbkprofile.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statfdbkprofile.html
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

RUNSTATS INDEX

LIST listdef-name correlation-stats-spec:

(

,

index-name

PART integer

correlation-stats-spec:)

(ALL) TABLESPACE

database-name .

tablespace-name correlation-stats-spec:

SHRLEVEL CHANGE REGISTER YES
1

SHRLEVEL REFERENCE

REPORT NO

REPORT YES

UPDATE ALL

UPDATE ACCESSPATH

SPACE

NONE

SORTDEVT device-type

SORTNUM integer

HISTORY NONE
2

HISTORY ALL

ACCESSPATH

SPACE

FORCEROLLUP NO

FORCEROLLUP YES

INVALIDATECACHE NO

INVALIDATECACHE YES

correlation-stats-spec:

KEYCARD
3

FREQVAL NUMCOLS 1 COUNT 10 MOST

FREQVAL NUMCOLS integer

COUNT integer
4

MOST

BOTH

LEAST

HISTOGRAM

NUMCOLS 1 NUMQUANTILES 100

NUMCOLS integer

NUMQUANTILES 100

NUMQUANTILES integer

Notes:

Chapter 32. RUNSTATS 715

1 REGISTER NO is also accepted, but Db2 issues DSNU124I and uses REGISTER YES for RUNSTATS INDEX.
2 You can change the default HISTORY value by modifying the STATISTICS HISTORY subsystem parameter.
By default, this value is NONE.
3 The KEYCARD option is deprecated. The KEYCARD functionality is now built into the normal execution of the
RUNSTATS INDEX utility and cannot be disabled.
4 When the COUNT keyword is not specified, the utility automatically determines the count value and collects
the most frequently occurring values.

RUNSTATS INDEX option descriptions

INDEX
Specifies the indexes on which statistics are to be gathered. Column statistics are gathered on the first
column of the index. All of the indexes must be associated with the same table space.

LIST listdef-name
Specifies the name of a previously defined LISTDEF list name. You can specify one LIST keyword
for each RUNSTATS control statement. When you specify LIST with RUNSTATS INDEX, the list
must contain only index spaces. Do not specify LIST with keywords from the INDEX…(index-name)
specification; except for the correlation-stats-spec.

RUNSTATS groups indexes by their related table space. RUNSTATS INDEX is invoked once per table
space. The INDEX keyword is required to validate the contents of the LIST.

(index-name, …)
Specifies the indexes on which statistics are to be gathered. You can specify a list of index names.
If you specify more than one index, separate each name with a comma. Enclose the index name in
quotation marks if the name contains a blank.
PART integer

Identifies the index partition on which statistics are to be collected.

integer is the number of the partition.

(ALL)
Specifies that statistics are to be gathered on all indexes that are defined on all tables in the specified
table space.

TABLESPACE
Identifies the table space and, optionally, the database to which it belongs, for which index statistics
are to be gathered.
database-name

The name of the database to which the table space belongs.

The default value is DSNDB04.

tablespace-name
The name of the table space for which index statistics are to be gathered.

KEYCARD
The KEYCARD option is deprecated in the RUNSTATS INDEX control statement and no longer needs to
be specified to collect statistics on the values in the key columns of an index.

Except when processing XML NODEID or XML values indexes, the RUNSTATS utility automatically
collects all of the distinct values in all of the 1 to n key column combinations for the specified indexes,
where n is the number of columns in the index. For example, suppose that you have an index defined
on three columns: A, B, and C. RUNSTATS collects cardinality statistics for column A, column set A
and B, and column set A, B, and C. With the deprecation of KEYCARD, this functionality cannot be
disabled.

The RUNSTATS utility tolerates the specification of the KEYCARD option. The utility does not issue any
messages if the control statement includes or excludes the KEYCARD option when INDEX is specified.

716 Db2 12 for z/OS: Utility Guide and Reference

FREQVAL
Controls, when specified with the INDEX option, the collection of frequent-value statistics. If you
specify FREQVAL with INDEX, this keyword must be followed by the NUMCOLS keyword. RUNSTATS
INDEX ignores FREQVAL MOST/LEAST/BOTH when processing XML NODEID indexes.
NUMCOLS integer

Indicates the number of columns in the index for which RUNSTATS is to collect frequently
occurring values. integer can be a number between 1 and the number of indexed columns. If
you specify a number greater than the number of indexed columns, RUNSTATS uses the number of
columns in the index.

For example, suppose that you have an index defined on three columns: A, B, and C. If you specify
NUMCOLS 1, Db2 collects frequently occurring values for column A. If you specify NUMCOLS 2,
Db2 collects frequently occurring values for the column set A and B. If you specify NUMCOLS 3,
Db2 collects frequently occurring values for the column set A, B, and C.

The default value is 1, which means that RUNSTATS is to collect frequently occurring values on the
first key column of the index.

COUNT integer
Indicates the number of frequently occurring values that are to be collected from the specified key
columns. For example, specifying 15 means that RUNSTATS is to collect 15 frequently occurring
values from the specified key columns.

If the COUNT keyword is not specified, the RUNSTATS utility automatically determines the value
and collects the most frequently occurring values.

MOST
Indicates that the utility is to collect the most frequently occurring values for the specified set of
key columns when FREQVAL NUMCOLS COUNT MOST keywords are specified.

LEAST
Indicates that the utility is to collect the least frequently occurring values for the specified set of
key columns when FREQVAL NUMCOLS COUNT LEAST keywords are specified.

BOTH
Indicates that the utility is to collect the most and the least frequently occurring values for the
specified set of key columns when FREQVAL NUMCOLS COUNT BOTH keywords are specified.

HISTOGRAM
Indicates, when specified with the INDEX option (see correlation-stats-spec) for RUNSTATS INDEX,
that histogram statistics are to be gathered for the specified key columns. Histogram statistics can be
collected only on the prefix columns with the same order. Key columns for histogram statistics with a
mixed order are not allowed.

When RUNSTATS collects histogram statistics for partitioned indexes, it aggregates them into
SYSCOLDIST. RUNSTATS INDEX ignores the HISTOGRAM keyword when processing XML NODEID
indexes.

NUMQUANTILES integer
Indicates how many quantiles that the utility is to collect. The integer value must be greater than
or equal to one. The number of quantiles that you specify should never exceed the total number of
distinct values in the specified key columns. The maximum number of quantiles is 100.

When the NUMQUANTILES keyword is omitted, NUMQUANTILES takes a default value of 100.
Based on the number of keys in the index, the number of quantiles is readjusted down to an
optimal number.

SHRLEVEL
Indicates whether other programs that access the table space while RUNSTATS is running must use
read-only access or can change the table space.
CHANGE

Allows other programs to change the table space or index. With SHRLEVEL CHANGE, RUNSTATS
might collect statistics on uncommitted data.

Chapter 32. RUNSTATS 717

REFERENCE
Allows only read-only access by other programs.

REGISTER YES
Specifies that when SHRLEVEL CHANGE behavior is in effect, pages that are read by the RUNSTATS
utility in a data sharing environment are registered with the coupling facility. REGISTER YES is always
used for RUNSTATS INDEX. If you specify REGISTER NO, Db2 issues message DSNU124I and uses
REGISTER YES instead.

REPORT
Specifies whether RUNSTATS is to generate a set of messages that report the collected statistics.
NO

Indicates that RUNSTATS is not to generate the set of messages.
YES

Indicates that the set of messages is to be sent as output to SYSPRINT. The messages that
RUNSTATS generates depend on the combination of keywords in the utility control statement.
However, these messages do not depend on the value of the UPDATE option. REPORT YES always
generates a report of space and access path statistics.

UPDATE
Indicates which collected statistics are to be inserted into the catalog tables.
ALL

Indicates that all collected statistics are to be updated in the catalog.
ACCESSPATH

Indicates that Db2 is to update the catalog with only those statistics that are used for access path
selection.

SPACE
Indicates that Db2 is to update the catalog with only space-related statistics.

NONE
Indicates that no catalog tables are to be updated with the collected statistics.

Running RUNSTATS always invalidates the dynamic cache. However, when you specify UPDATE
NONE REPORT NO, RUNSTATS invalidates statements in the dynamic statement cache without
collecting statistics, updating catalogs tables, or generating reports.

SORTDEVT
Specifies the device type that the external sort program uses to dynamically allocate the sort work
data sets that are required.
device-type

Specifies any disk device type that is acceptable for the DYNALLOC parameter of the SORT or
OPTIONS option of the external sort program.

If all of the following conditions are true, SORTDEVT defaults to SYSALLDA and the temporary data
sets are dynamically allocated:

• You omit SORTDEVT.
• A sort is required.
• You did not provide the DD statements that the sort program requires for the temporary data sets

If you specify SORTDEVT and omit SORTNUM, no value is passed to the sort program; the sort
program uses its own default.

SORTNUM
Specifies the number of required sort work data sets that the sort program is to allocate.

integer is the number of temporary data sets that can range from 2 to 255.

You need at least two sort work data sets for each sort. The SORTNUM value applies to each sort
invocation in the utility. For example, suppose that RUNSTATS is running on three indexes, SORTKEYS

718 Db2 12 for z/OS: Utility Guide and Reference

is specified, no constraints limit parallelism, and SORTNUM is specified as 8. In thise case, a total of
24 sort work data sets are allocated for a job.

Each sort work data set uses both above the line and below the line virtual storage. Therefore, if
you specify too high a value for SORTNUM, the utility might decrease the degree of parallelism due
to virtual storage constraints, and possibly decrease the degree down to one, which means that no
parallelism is used.

HISTORY
Indicates which statistics are to be recorded in the catalog history tables. The value that you specify
for HISTORY does not depend on the value that you specify for UPDATE.

The default is the value of the STATISTICS HISTORY subsystem parameter on the DSNTIPO
installation panel. By default, this parameter value is NONE.

ALL
Indicates that all collected statistics are to be updated in the catalog history tables.

ACCESSPATH
Indicates that Db2 is to update the catalog history tables with only those statistics that are used
for access path selection.

SPACE
Indicates that Db2 is to update the catalog history tables with only space-related statistics.

NONE
Indicates that no catalog history tables are to be updated with the collected statistics.

FORCEROLLUP
Specifies whether aggregation or rollup of statistics is to occur even if statistics were not gathered on
some partitions. This option enables the optimizer to select the best access path.
YES

Indicates that forced aggregation or rollup processing is to be done, even though some partitions
might not contain data.

NO
Indicates that aggregation or rollup is to be done only if data is available for all partitions.

If the value for STATISTICS ROLLUP on panel DSNTIPO is NO and data is not available for all
partitions, Db2 issues message DSNU623I.

INVALIDATECACHE
Indicates whether the dynamic statement cache is invalidated.
YES

Statements in the dynamic cache are invalidated for the objects that are specified in the job
statement.

NO
Statements in the dynamic cache are not invalidated for the objects specified in the job statement.

The default value is NO, with the following exceptions:

• For RUNSTATS LIST REPORT NO UPDATE NONE, the default value is YES.
• If the RESET ACCESSPATH keyword is specified, the default value is YES, and INVALIDATECACHE

NO is not supported.

Related tasks
Automating statistics maintenance (Db2 Performance)
Related reference
“LISTDEF” on page 199
The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.
STATISTICS PROFILE FEEDBACK field (STATFDBK_PROFILE subsystem parameter) (Db2 Installation and
Migration)

Chapter 32. RUNSTATS 719

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_automatestatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statfdbkprofile.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statfdbkprofile.html

Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Statistics profile syntax
The options of a statistics profile are stored within the PROFILE_TEXT column of the
SYSTABLES_PROFILES catalog table.

You can specify the following statistics collection options in a statistics profile:

• COLUMN
• COLGROUP
• FREQVAL
• COUNT (MOST, LEAST or BOTH)
• INDEX
• KEYCARD
• NUMCOLS
• HISTOGRAM
• NUMQUANTILES

The profile contains the default values for any options that are not specified.

When you update an existing profile that contains a partitioned index, the PART keyword must be
specified on all index specifications for that index, or omitted from the index specification for that
index. Statistics profile processing enforces this requirement. Any profile modifications done through SQL
statements must follow the same restriction, or error messages result when the profile is used.

For a given partitioned index:

• Any new index specifications without the PART keyword replace all index specifications in the profile
regardless of the PART keyword specification.

• Any new index specification with the PART keyword replaces only the existing index specification with
the same PART specified, or a specification without the PART keyword.

The PROFILE functions cannot be executed when there are syntax errors in the statistics profile. Syntax
errors can be corrected using RUNSTATS UPDATE PROFILE or SQL UPDATE, or by deleting the profile with
RUNSTATS DELETE PROFILE or SQL DELETE.

The following diagrams show the options that you can specify for statistics profiles. For context, see
“RUNSTATS TABLESPACE syntax and options” on page 701 and “RUNSTATS INDEX syntax and options”
on page 714.

column-spec
COLUMN (ALL)

COLUMN (

,

column-name
1

)

SORTNUM integer

colgroup-spec

COLGROUP (

,

column-name) colgroup-stats-spec

index-spec

720 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

INDEX
2

(ALL) correlation-stats-spec

INDEX (*)
3

correlation-stats-spec

INDEX (

,

index-name

PART integer

correlation-stats-spec)

colgroup-stats-spec

FREQVAL

COUNT integer
4

MOST

BOTH

LEAST

HISTOGRAM

NUMQUANTILES 100

NUMQUANTILES integer

correlation-stats-spec

KEYCARD
5

FREQVAL NUMCOLS 1 COUNT 10 MOST

FREQVAL NUMCOLS integer

COUNT integer
4

MOST

BOTH

LEAST

HISTOGRAM

NUMCOLS 1 NUMQUANTILES 100

NUMCOLS integer
6

NUMQUANTILES 100

NUMQUANTILES integer

Notes:
1 The same column name must not be specified more than once. If all columns are listed in the COLUMN
option, RUNSTAT will treat it as is, and does not replace it with the COLUMN(ALL) option. Users have to state
explicitly if they want the COLUMN(ALL) option.
2 You cannot specify INDEX if either USE PROFILE or DELETE PROFILE option is also specified.
3 INDEX(*) is an internal representation of INDEX(ALL) that Db2 uses only in the context of RUNSTATS
profiles, and is not valid when specified in any RUNSTATS control statement. When you specify the

Chapter 32. RUNSTATS 721

INDEX(ALL) option in a RUNSTATS control statement that creates a profile, Db2 uses INDEX(*) in the
PROFILE_TEXT column of the SYSIBM.SYSTABLES_PROFILES catalog table. However, you must specify
INDEX(*) instead of INDEX(ALL)) if you modify the profile by updating the value of the PROFILE_TEXT column
directly.
4 When the COUNT keyword is not specified, the utility automatically determines the count value and collects
the most frequently occurring values.
5 The KEYCARD option is deprecated. The KEYCARD functionality is now built into the normal execution of the
RUNSTATS INDEX utility and cannot be disabled.
6 If the target is an XML index, histogram and frequency statistics are collected on the first key column of the
XML index only, regardless of the NUMCOLS value.

Statistics profile options
Statistics profile options have the same meanings as they do when specified directly in a RUNSTATS utility
control statement. For more information, see “RUNSTATS TABLESPACE syntax and options” on page 701.

Related tasks
Automating statistics maintenance (Db2 Performance)
Maintaining Db2 database statistics (Db2 Performance)
Updating statistics profiles (Db2 Performance)

Data sets that RUNSTATS uses
The RUNSTATS utility uses a number of data sets during its operation.

The following table lists the data sets that RUNSTATS uses. The table lists the DD name that is used to
identify the data set, a description of the data set, and an indication of whether it is required. Include
statements in your JCL for each required data set and any optional data sets that you want to use.

Table 102. Data sets that RUNSTATS uses

Data set Description Required?

SYSIN Input data set that contains the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

RNPRIN01 A data set that contains messages from the
sort program (usually, SYSOUT or DUMMY). This
data set is used when distribution statistics are
collected for column groups.

No“1” on page 723

STPRIN01 A data set that contains messages from the
sort program (usually, SYSOUT or DUMMY). This
data set is used when frequency statistics are
collected on data-partitioned secondary indexes, or
when TABLESPACE TABLE COLGROUP FREQVAL is
specified.

Yes“1” on page
723,“2” on page
723,“5” on page
723

Sort work data sets“6” on page 723 Temporary data sets for sort input and output when
collecting statistics on at least one data-partitioned
secondary index. This data set is used when the
COLGROUP option is specified or the COLGROUP
and FREQVAL options are specified. The DD names
have the form ST01WKnn.

No“3” on page 723,
“4” on page 723

Sort work data sets“6” on page 723 Temporary data sets for sort input and output when
collecting distribution statistics for column groups.
The DD names have the form STATWK01.

No“1” on page 723,
“4” on page 723

722 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_automatestatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_maintaincatalogstatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_updaterunstatsprofiles.html

Table 102. Data sets that RUNSTATS uses (continued)

Data set Description Required?

Sort work data sets“6” on page 723 Temporary data sets for sort input and output when
collecting frequency statistics. The DD names have
the form SORTWK01 and ST02WKnn.

No“4” on page 723

Note:

1. Required when collecting distribution statistics for column groups.
2. STPRIN01 is required if statistics are being collected on at least one data-partitioned secondary

index, but RUNSTATS dynamically allocates the STPRIN01 data set if UTPRINT is allocated to
SYSOUT.

3. Required when collecting statistics on at least one data-partitioned secondary index.
4. If the DYNALLOC parm of the SORT program is not turned on, you need to allocate the data set.

Otherwise, the sort program dynamically allocates the temporary data set.
5. Required when the COLGROUP with FREQVAL options are specified.
6. It is recommended that you use dynamic allocation by specifying SORTDEVT in the utility statement

because dynamic allocation reduces the maintenance required of the utility job JCL.

The following objects are named in the utility control statement and do not require DD statements in the
JCL:
Table space or index

Object that is to be scanned.

Calculating the size of the sort work data sets
Depending on the type of statistics that RUNSTATS collects, the utility uses the ST01WKnn data sets, the
SORTWK01 data set, both types of data sets, or neither.

The ST01WKnn data sets are used when collecting statistics on at least one data-partitioned secondary
index. To calculate the approximate size (in bytes) of the ST01WKnn data set, use the following formula:

2 ×(maximum record length × numcols × (count + 2) × number of indexes)

The variables in the preceding formula have the following values:

maximum record length
Maximum record length of the SYSCOLDISTSTATS record that is processed when collecting frequency
statistics (You can obtain this value from the RECLENGTH column in SYSTABLES.)

numcols
Number of key columns to concatenate when you collect frequent values from the specified index.

count
Number of frequent values that RUNSTATS is to collect.

The SORTWK01 data set is used when collecting distribution statistics. To calculate the approximate size
(in bytes) of the SORTWK01 data set, use the following formula:

(longest_record_length + prefix) × sum from 1 to N (#colgroupsn × #rows - n)

The variables in the preceding formula have the following values:

N
Number of tables for which distribution statistics are collected

#colgroupsn
Number of column groups that are specified for the nth table

#rows
Number of rows for the nth table

Chapter 32. RUNSTATS 723

The ST02WKnn data sets are used when collecting frequency statistics on at least one COLGROUP. To
calculate the approximate size (in bytes) of the ST02WKnn data set, use the following formula:

2 ×(maximum record length × (count + 2) × number of parts)

The variables in the preceding formula have the following values:

maximum record length
Maximum record length of the SYSCOLDISTSTATS record that is processed when collecting frequency
statistics (You can obtain this value from the RECLENGTH column in SYSTABLES.)

count
Number of frequent values that RUNSTATS is to collect.

Sort work data sets cannot span volumes. Smaller volumes require more sort work data sets to sort the
same amount of data; therefore, large volume sizes can reduce the number of needed sort work data sets.
When you allocate sort work data sets on disk, the recommended amount of space to allow provides at
least 1.2 times the amount of data that is to be sorted.

Tape devices are not supported for sort work data sets.

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Concurrency and compatibility for RUNSTATS
The RUNSTATS utility has certain concurrency and compatibility characteristics associated with it.

Db2 treats individual data and index partitions as distinct target objects. Utilities operating on different
partitions of the same table space or index space are compatible.

Claims
The following table lists any claims or drains that the utility acquires and any restrictive states that are set
on the target object.

Table 103. Claim classes of RUNSTATS operations

Target

RUNSTATS
TABLESPACE
SHRLEVEL
REFERENCE

RUNSTATS
TABLESPACE
SHRLEVEL
CHANGE

RUNSTATS
INDEX SHRLEVEL
REFERENCE

RUNSTATS
INDEX SHRLEVEL
CHANGE

Table space or
partition

DW/UTRO CR/UTRW1 None None

Index or partition None None DW/UTRO CR/UTRW

724 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos

Table 103. Claim classes of RUNSTATS operations (continued)

Target

RUNSTATS
TABLESPACE
SHRLEVEL
REFERENCE

RUNSTATS
TABLESPACE
SHRLEVEL
CHANGE

RUNSTATS
INDEX SHRLEVEL
REFERENCE

RUNSTATS
INDEX SHRLEVEL
CHANGE

Legend:

• DW - Drain the write claim class - concurrent access for SQL readers.
• CR - Claim the read claim class.
• UTRO - Utility restrictive state - read-only access allowed.
• UTRW - Utility restrictive state - read-write access allowed.
• None - Object is not affected by this utility.

Note:

1. If the target object is a segmented (non-UTS) table space, SHRLEVEL CHANGE does not allow you to
concurrently execute an SQL searched DELETE without the WHERE clause.

Compatibility
The following table shows which utilities can run concurrently with RUNSTATS on the same target object.
The target object can be a table space, an index space, or a partition of a table space or index space. If
compatibility depends on particular options of a utility, that information is also shown in the table.

Table 104. Compatibility of RUNSTATS with other utilities

Utility

RUNSTATS
TABLESPACE
SHRLEVEL
REFERENCE

RUNSTATS
TABLESPACE
SHRLEVEL
CHANGE

RUNSTATS
INDEX
SHRLEVEL
REFERENCE

RUNSTATS
INDEX
SHRLEVEL
CHANGE

CHECK DATA DELETE NO Yes Yes Yes Yes

CHECK DATA DELETE YES No No No No

CHECK INDEX Yes Yes Yes Yes

CHECK LOB Yes Yes Yes Yes

COPY INDEXSPACE Yes Yes Yes Yes

COPY TABLESPACE Yes Yes Yes Yes

DIAGNOSE Yes Yes Yes Yes

LOAD No No No No

LOAD SHRLEVEL CHANGE No Yes No Yes

MERGECOPY Yes Yes Yes Yes

MODIFY RECOVERY Yes Yes Yes Yes

QUIESCE Yes Yes Yes Yes

REBUILD INDEX Yes Yes No No

RECOVER ERROR RANGE No No Yes Yes

RECOVER INDEX Yes Yes No No

Chapter 32. RUNSTATS 725

Table 104. Compatibility of RUNSTATS with other utilities (continued)

Utility

RUNSTATS
TABLESPACE
SHRLEVEL
REFERENCE

RUNSTATS
TABLESPACE
SHRLEVEL
CHANGE

RUNSTATS
INDEX
SHRLEVEL
REFERENCE

RUNSTATS
INDEX
SHRLEVEL
CHANGE

RECOVER INDEX TOCOPY or
TOLOGPOINT

No No No No

RECOVER TABLESPACE (no
options)

No No Yes Yes

RECOVER TABLESPACE TOCOPY or
TORBA

No No No No

REORG INDEX Yes Yes No No

REORG TABLESPACE UNLOAD
CONTINUE or PAUSE

No No No No

REORG TABLESPACE UNLOAD
ONLY or EXTERNAL

Yes Yes Yes Yes

REPAIR DUMP or VERIFY Yes Yes Yes Yes

REPAIR LOCATE INDEX PAGE
REPLACE

Yes Yes No No

REPAIR LOCATE KEY or RID
DELETE or REPLACE

No No No Yes

REPAIR LOCATE TABLESPACE
PAGE REPLACE

No No Yes Yes

REPORT Yes Yes Yes Yes

RUNSTATS Yes Yes Yes Yes

STOSPACE Yes Yes Yes Yes

UNLOAD Yes Yes Yes Yes

Collecting distribution statistics for column groups
When RUNSTATS collects distribution statistics for columns groups, the utility invokes a sort program to
sort the distribution statistics. This sort requires its own work data set. The DD name is STATWK01.

About this task
You can let this data set be dynamically allocated through the sort program, or you can allocate the data
set through a DD statement in the job JCL.

If you need to control the size or placement of the data sets, use the JCL statements to allocate
STATWK01.

If the column group contains one column, you can potentially improve RUNSTATS performance by
specifying the STATCLGMEMSRT option or changing the value of the STATCLGSRT subsystem parameter.
You can use these options to avoid the external data sort that is used for column group processing.

Procedure
To collect distribution statistics for column groups:

726 Db2 12 for z/OS: Utility Guide and Reference

• To let the work data set be dynamically allocated, remove the STATWK01 DD statements from the job
and allocate the UTPRINT statement to SYSOUT.

• To let the sort program dynamically allocate this data set, specify the SORTDEV option in the
RUNSTATS utility control statement.

Related reference
“Data sets that RUNSTATS uses” on page 722
The RUNSTATS utility uses a number of data sets during its operation.
STATISTICS COLGROUP DATA SORT STG LIMIT field (STATCLGSRT subsystem parameter) (Db2
Installation and Migration)
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Updating statistics for a partitioned table space
You can run RUNSTATS on one or more single partitions of one or more table spaces or indexes (including
data-partitioned secondary indexes). When you run the utility on a single partition of an object, RUNSTATS
uses the resulting partition-level statistics to update the aggregate statistics for the entire object.

For partition-by-growth table spaces, RUNSTATS waits to drain the table space or index if necessary. If
the object does not drain, RUNSTATS continues trying to drain the object. However, RUNSTATS does not
have its own options to control this drain behavior as some other utilities do. (Other utilities have the
DRAIN_WAIT and RETRY options). Instead, RUNSTATS uses the IRLMRWT subsystem parameter value for
the drain wait time and the UTIMOUT subsystem parameter value for the retry value. If RUNSTATS finds
these values to be excessive, it uses a lower value.

Related reference
RESOURCE TIMEOUT field (IRLMRWT subsystem parameter) (Db2 Installation and Migration)
UTILITY TIMEOUT field (UTIMOUT subsystem parameter) (Db2 Installation and Migration)

Collection of statistics on the Db2 catalog and directory
You can use the RUNSTATS utility to gather statistics for the Db2 catalog. Db2 uses the collected statistics
on the catalog to determine the access path for user queries of the catalog. You cannot run RUNSTATS on
any Db2 directory objects.

The following sample shows part of the output from a RUNSTATS job on a catalog table space and its
indexes:

DSNU000I DSNUGUTC - OUTPUT START FOR UTILITY, UTILID = DSNTEX
DSNU050I DSNUGUTC - RUNSTATS TABLESPACE DSNDB06.SYSDBASE INDEX(ALL)
DSNU610I # DSNUSUTP - SYSTABLEPART CATALOG UPDATE FOR DSNDB06.SYSDBASE SUCCESSFUL
DSNU610I # DSNUSUTS - SYSTABLESPACE CATALOG UPDATE FOR DSNDB06.SYSDBASE SUCCESSFUL
DSNU610I # DSNUSUTB - SYSTABLES CATALOG UPDATE FOR SYSIBM.SYSTABLESPACE SUCCESSFUL

DSNU610I # DSNUSUTB - SYSTABLES CATALOG UPDATE FOR SYSIBM.SYSSYNONYMS SUCCESSFUL
DSNU610I # DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR SYSIBM.DSNDSX01 SUCCESSFUL
DSNU610I # DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR SYSIBM.DSNDSX01 SUCCESSFUL
DSNU610I # DSNUSUCO - SYSCOLUMNS CATALOG UPDATE FOR SYSIBM.DSNDSX01 SUCCESSFUL
DSNU610I # DSNUSUFL - SYSFIELDS CATALOG UPDATE FOR SYSIBM.DSNDSX01 SUCCESSFUL

DSNU610I # DSNUSUIX - SYSINDEXES CATALOG UPDATE FOR SYSIBM.DSNDYX01 SUCCESSFUL
DSNU610I # DSNUSUIP - SYSINDEXPART CATALOG UPDATE FOR SYSIBM.DSNDYX01 SUCCESSFUL
DSNU610I # DSNUSUCO - SYSCOLUMN CATALOG UPDATE FOR SYSIBM.DSNDYX01 SUCCESSFUL
DSNU610I # DSNUSUFL - SYSFIELDS CATALOG UPDATE FOR SYSIBM.DSNDYX01 SUCCESSFUL
DSNU010I DSNUGBAC - UTILITY EXECUTION COMPLETE, HIGHEST RETURN CODE=0

Chapter 32. RUNSTATS 727

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statclgsrt.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_statclgsrt.html
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_irlmrwt.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_utimout.html

Collecting frequency statistics for data-partitioned secondary
indexes

When RUNSTATS collects frequency statistics on at least one data-partitioned secondary index, the utility
invokes a sort program to sort the statistics. This sort requires temporary sort work data sets. The DD
name is ST01WKnn.

About this task

You can let the ST01WKnn data sets be dynamically allocated through the SORT program or allocate the
data sets through DD statements in the job JCL. If you need to control the size or placement of the data
sets, use the JCL statements to allocate ST01WKnn.

Procedure
To collect frequency statistics for data-partitioned secondary indexes:
• To let the sort work data sets be dynamically allocated, remove the ST01WKnn DD statements from

the job and allocate the UTPRINT statement to SYSOUT.
• To let the SORT program dynamically allocate these data sets, specify the SORTDEV option in the

RUNSTATS utility control statement to specify the device type for the temporary data sets. Optionally,
you can also use the SORTNUM option to specify the number of temporary data sets to use.

Related reference
“Data sets that RUNSTATS uses” on page 722
The RUNSTATS utility uses a number of data sets during its operation.
Related information
DFSORT Application Programming Guide
Db2 Sort for z/OS

Collecting statistics history
You can collect statistics history by using the RUNSTATS utility.

Procedure
Specify the HISTORY option in the RUNSTATS utility control statement.
When you specify HISTORY with a value other than NONE, RUNSTATS updates the catalog history tables
with the access path statistics, space statistics, or both, depending on the parameter that you specify with
HISTORY. The HISTORY option does not update the main catalog statistics that Db2 uses to select access
paths. You can use the HISTORY option to monitor how statistics change over time without updating the
main catalog statistics that Db2 uses to select access paths.

Related tasks
Collecting history statistics (Db2 Performance)
Related reference
History statistics (Db2 Performance)
“RUNSTATS” on page 699
The RUNSTATS online utility gathers summary information about the characteristics of data in table
spaces, indexes, and partitions. Db2 records these statistics in the Db2 catalog and uses them to select
access paths to data during the bind process.
STATISTICS HISTORY field (STATHIST subsystem parameter) (Db2 Installation and Migration)

728 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.icea100/abstract.htm
https://www.ibm.com/docs/en/db2-sort-for-zos
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_collecthistorystatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_historystatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_stathist.html

Collection of statistics on LOB table spaces
You can specify that RUNSTATS is to collect space statistics on a LOB table space. You can use these
statistics to determine when the LOB table space should be reorganized. No statistics on the LOB table
space affect access path selection.

Collection of statistics on XML objects
You can use separate RUNSTATS control statements to collect statistics on XML table spaces, or on their
associated base table spaces.

You can specify that RUNSTATS collects space statistics on an XML table space. You can use those
statistics to determine when the XML table space must be reorganized. Statistics that are collected on the
XML table space also affect access path selection.

The following tables shows statistics values that are collected for the implicitly created XML DOCID
columns. The

Table 105. Statistics that are collected on the XML DOCID column.

Catalog Table
Name Column Name Meaning

SYSCOLSTATS COLCARD The number of distinct values in the XML column. This value is set
to -2 for other types of XML objects.

SYSCOLSTATS HIGHKEY The highest value of the column. This value is set to blanks for
other types of XML objects.

SYSCOLSTATS HIGH2KEY The second highest value of the column. This value is set to blanks
for other types of XML objects.

SYSCOLSTATS LOW2KEY The second lowest value of the column. This value is set to blanks
for other types of XML objects.

SYSCOLSTATS LOWKEY The lowest value of the column. This value is set to blanks for
other types of XML objects.

SYSCOLUMNS COLCARDF Estimated number of distinct values in the column. This value is
set to -2 for other types of XML objects.

SYSCOLUMNS HIGH2KEY Second highest value in the column. This value is set to blanks for
other types of XML objects.

SYSCOLUMNS LOW2KEY Second lowest value in the column. This value is set to blanks for
other types of XML objects.

The following table shows that statistics values that are collected when RUNSTATS is run for XML indexes:

Table 106. Statistics that RUNSTATS collects for XML indexes

Catalog Table
Name Column Name Meaning

SYSINDEXES FIRSTKEYCARDF The number of unique key values in the index.

SYSINDEXES FULLKEYCARDF The total number of key entries in the index.

SYSINDEXES FIRSTKEYCARDF The number of documents in the XML column. This value is collected
only for implicitly created node ID indexes.

SYSINDEXES CLUSTERRATIOF This value is set to -2.

SYSKEYTARGETS HIGH2KEY For KEYSEQ=1, the second-highest key value.

Chapter 32. RUNSTATS 729

Table 106. Statistics that RUNSTATS collects for XML indexes (continued)

Catalog Table
Name Column Name Meaning

SYSKEYTARGETS LOW2KEY For KEYSEQ=1, the second-lowest key value.

SYSKEYTARGETS CARDF The number of unique DOCID values in the index.

SYSKEYTARGETS KEYCARDF This value is set to -2.

You can also specify that RUNSTATS collects frequency and histogram statistics for the key values of XML
indexes. For example, each of the following example RUNTSTATS control statements specifies that Db2
collects frequency and histogram statistics for XML indexes:

RUNSTATS
 INDEX(ALL) FREQVAL NUMCOLS 1 COUNT 10 MOST
 HISTOGRAM NUMCOLS 1 NUMQUANTITLES 5

RUNSTATS
 INDEX (xml-index-name)
FREQVAL NUMCOLS 1 COUNT 10 MOST
 HISTOGRAM NUMCOLS 1 NUMQUANTITLES 5

LISTDEF MYLIST1 INCLUDE TABLESPACES DATABASE MYDB1

RUNSTATS TABLESPACE LIST MYLIST1 TABLE(ALL) INDEX(ALL)
 FREQVAL NUMCOLS 1 COUNT 10 MOST
 HISTOGRAM NUMCOLS 1 NUMQUANTILES 5

RUNSTATS collects the following frequency statistics for XML indexes:

Table 107. Frequency statistics that RUNSTATS collects for XML indexes

Catalog Table
Name Column Name Meaning

SYSKEYTGTDIS
T

KEYVALUE The frequently occurring value in the distribution ("most frequent" means
the key appear the largest percentage in XML value index).

SYSKEYTGTDIS
T

FREQUENCYF The percentage of index entries that contain the value that is identified in
the KEYVALUE column.

SYSINDEXES TYPE The type of statistic. 'F' for frequent value

RUNSTATS collects the following histogram statistics for XML indexes:

Table 108. Histogram statistics that RUNSTATS collects for XML indexes

Catalog Table
Name Column Name Meaning

SYSKEYTGTDIS
T

CARDF The number of distinct values in the
column group of the interval that

is identified by the value of the
QUANTILENO column

.

SYSKEYTGTDIS
T

FREQUENCYF The percentage of index entries that contain the value that is identified by
the value of the KEYVALUE column.

SYSKEYTGTDIS
T

HIGHVALUE The high bound of the interval.

SYSKEYTGTDIS
T

LOWVALUE The low bound of the interval.

730 Db2 12 for z/OS: Utility Guide and Reference

Table 108. Histogram statistics that RUNSTATS collects for XML indexes (continued)

Catalog Table
Name Column Name Meaning

SYSKEYTGTDIS
T

TYPE The type of statistic. 'H' for histogram statistics.

SYSKEYTGTDIS
T

QUANTILENO The ordinary sequence number of the quantile in the whole consecutive
value range from low to high.

XML indexes are related to XML tables, and not to the associated base tables. If you specify a base table
space and an XML index in the same RUNSTATS control statement, Db2 generates an error. When you run
RUNSTATS against a base table, RUNSTATS collects statistics only for indexes on the base table, including
the document ID index.

Related concepts
Filter factor estimation for the XMLEXISTS predicate (Db2 Performance)
Storage structure for XML data (Db2 Programming for XML)
XML data indexing (Db2 Programming for XML)
XML data and query performance (Db2 Performance)
Best practices for XML performance in Db2 (Db2 Performance)
Related information
DSNU1354I (Db2 Messages)

Review of RUNSTATS output
The RUNSTATS utility updates columns in the catalog tables. When you specify REPORT YES, the
RUNSTATS utility also generates a report of the statistics that it gathered.

The following table shows the statistics that RUNSTATS updates in the catalog tables depending on the
value of the UPDATE option, the value of the HISTORY option, and the source of the statistics (table space,
partition, index or LOB table space).

Table 109. Catalog tables that RUNSTATS updates

Keyword UPDATE option
HISTORY option Catalog table that RUNSTATS

updates

TABLESPACE UPDATE ALL HISTORY ALL 4 SYSTABLESPACE
SYSTABLEPART1

SYSTABLEPART_HIST1
SYSTABLES1

SYSTABLES_HIST1
SYSTABSTATS1,2

SYSTABSTATS_HIST1,2

SYSLOBSTATS3
SYSLOBSTATS_HIST3

TABLESPACE UPDATE ALL HISTORY ACCESSPATH SYSTABLESPACE
SYSTABLES1

SYSTABLES_HIST1
SYSTABSTATS1,2

SYSTABSTATS_HIST1,2

Chapter 32. RUNSTATS 731

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_filterfactor4xmlexists.html
https://www.ibm.com/docs/SSEPEK_12.0.0/xml/src/tpc/db2z_xmlstoragestruct.html
https://www.ibm.com/docs/SSEPEK_12.0.0/xml/src/tpc/db2z_indexxml.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_codequeryxmldata.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_bestpractice4xmlperf.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu1354i.html

Table 109. Catalog tables that RUNSTATS updates (continued)

Keyword UPDATE option
HISTORY option Catalog table that RUNSTATS

updates

TABLESPACE UPDATE ALL HISTORY SPACE SYSTABLEPART1
SYSTABLEPART_HIST1

SYSLOBSTATS3

SYSLOBSTATS_HIST3

TABLESPACE UPDATE ACCESSPATH2 HISTORY ALL 4 SYSTABLESPACE
SYSTABLES
SYSTABLES_HIST
SYSTABSTATS2

SYSTABSTATS_HIST2

TABLESPACE UPDATE ACCESSPATH2 HISTORY ACCESSPATH SYSTABLESPACE
SYSTABLES
SYSTABLES_HIST
SYSTABSTATS2

SYSTABSTATS_HIST2

TABLESPACE UPDATE ACCESSPATH2 HISTORY SPACE none

TABLESPACE UPDATE SPACE2 HISTORY ALL 4 SYSTABLEPART
SYSTABLEPART_HIST
SYSLOBSTATS3
SYSLOBSTATS_HIST3
SYSTABLES
SYSTABLES_HIST

TABLESPACE UPDATE SPACE2 HISTORY ACCESSPATH none

TABLESPACE UPDATE SPACE2 HISTORY SPACE SYSTABLEPART
SYSTABLEPART_HIST
SYSLOBSTATS3
SYSLOBSTATS_HIST3
SYSTABLES SYSTABLES_HIST

TABLE UPDATE ALL HISTORY ALL 4 SYSCOLUMNS
SYSCOLSTATS2

TABLE UPDATE ALL HISTORY ACCESSPATH SYSCOLUMNS
SYSCOLSTATS2

TABLE UPDATE ALL HISTORY SPACE none

TABLE UPDATE ACCESSPATH HISTORY ALL 4 SYSCOLUMNS
SYSCOLSTATS2

TABLE UPDATE ACCESSPATH HISTORY ACCESSPATH SYSCOLUMNS
SYSCOLSTATS2

TABLE UPDATE ACCESSPATH HISTORY SPACE none

732 Db2 12 for z/OS: Utility Guide and Reference

Table 109. Catalog tables that RUNSTATS updates (continued)

Keyword UPDATE option
HISTORY option Catalog table that RUNSTATS

updates

INDEX UPDATE ALL HISTORY ALL 4 SYSCOLUMNS
SYSCOLUMNS_HIST
SYSCOLDIST
SYSCOLDIST_HIST
SYSCOLDISTSTATS2
SYSCOLSTATS2
SYSINDEXES
SYSINDEXES _HIST
SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXSTATS2

INDEX UPDATE ALL HISTORY ACCESSPATH SYSCOLUMNS
SYSCOLUMNS_HIST
SYSCOLDIST
SYSCOLDIST_HIST
SYSCOLDISTSTATS2

SYSCOLSTATS2
SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXSTATS2

INDEX UPDATE ALL HISTORY SPACE SYSINDEXES
SYSINDEXES_HIST

INDEX UPDATE ACCESSPATH HISTORY ALL 4 SYSCOLUMNS
 SYSCOLUMNS_HIST
SYSCOLDIST
SYSCOLDIST_HIST
SYSCOLDISTSTATS2
SYSCOLSTATS
SYSINDEXES
SYSINDEXES _HIST
SYSINDEXSTATS2

INDEX UPDATE ACCESSPATH HISTORY ACCESSPATH SYSCOLUMNS
SYSCOLUMNS_HIST
SYSCOLDIST
SYSCOLDIST_HIST
SYSCOLDISTSTATS2
SYSCOLSTATS
SYSINDEXES
SYSINDEXES _HIST
SYSINDEXSTATS2

INDEX UPDATE ACCESSPATH HISTORY SPACE SYSINDEXES
SYSINDEXES_HIST

Chapter 32. RUNSTATS 733

Table 109. Catalog tables that RUNSTATS updates (continued)

Keyword UPDATE option
HISTORY option Catalog table that RUNSTATS

updates

INDEX UPDATE SPACE HISTORY ALL 4 SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXES5

SYSINDEXES_HIST5

INDEX UPDATE SPACE HISTORY ACCESSPATH none

INDEX UPDATE SPACE HISTORY SPACE SYSINDEXPART
SYSINDEXES5

INDEX6 UPDATE ALL HISTORY ALL4
SYSKEYTARGETS
SYSKEYTARGETS_HIST
SYSKEYTARGETSTATS2

SYSKEYTGTDISTSTATS2

SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXSTATS2

SYSINDEXSTATS_HIST2

SYSINDEXES
SYSINDEXES_HIST
SYSKEYTGTDIST
SYSKEYTGTDIST_HIST

INDEX6 UPDATE ALL HISTORY ACCESSPATH SYSKEYTARGETS
SYSKEYTARGETS_HIST
SYSKEYTARGETSTATS2

SYSKEYTGTDISTSTATS2

SYSINDEXPART
SYSINDEXSTATS2

SYSINDEXSTATS_HIST2

SYSINDEXES
SYSINDEXES_HIST
SYSKEYTGTDIST
SYSKEYTGTDIST_HIST

INDEX6 UPDATE ALL HISTORY SPACE SYSKEYTARGETS
SYSKEYTARGETSTATS2

SYSKEYTGTDISTSTATS2

SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXSTATS2

SYSINDEXES
SYSINDEXES_HIST
SYSKEYTGTDIST

734 Db2 12 for z/OS: Utility Guide and Reference

Table 109. Catalog tables that RUNSTATS updates (continued)

Keyword UPDATE option
HISTORY option Catalog table that RUNSTATS

updates

INDEX6 UPDATE ACCESSPATH HISTORY ALL4
SYSKEYTARGETS
SYSKEYTARGETS_HIST
SYSKEYTARGETSTATS2

SYSKEYTGTDISTSTATS2

SYSINDEXPART
SYSINDEXSTATS2

SYSINDEXSTATS_HIST2

SYSINDEXES
SYSINDEXES_HIST
SYSKEYTGTDIST
SYSKEYTGTDIST_HIST

INDEX6 UPDATE ACCESSPATH HISTORY ACCESSPATH SYSKEYTARGETS
SYSKEYTARGETS_HIST
SYSKEYTARGETSTATS2

SYSKEYTGTDISTSTATS2

SYSINDEXPART
SYSINDEXSTATS2

SYSINDEXSTATS_HIST2

SYSINDEXES
SYSINDEXES_HIST
SYSKEYTGTDIST
SYSKEYTGTDIST_HIST

INDEX6 UPDATE ACCESSPATH HISTORY SPACE SYSKEYTARGETS
SYSKEYTARGETSTATS2

SYSKEYTGTDISTSTATS2

SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXSTATS2

SYSINDEXES
SYSINDEXES_HIST
SYSKEYTGTDIST

INDEX6 UPDATE SPACE HISTORY ALL4
SYSKEYTARGETS_HIST
SYSINDEXPART
SYSINDEXSTATS_HIST2

SYSINDEXES
SYSINDEXES_HIST
SYSKEYTGTDIST_HIST

INDEX6 UPDATE SPACE HISTORY ACCESSPATH SYSINDEXPART
SYSINDEXES
SYSINDEXES_HIST

INDEX6 UPDATE SPACE HISTORY SPACE SYSINDEXPART
SYSINDEXPART_HIST
SYSINDEXES
SYSINDEXES_HIST

Chapter 32. RUNSTATS 735

Table 109. Catalog tables that RUNSTATS updates (continued)

Keyword UPDATE option
HISTORY option Catalog table that RUNSTATS

updates

Note:

1. Not applicable if the specified table space is a LOB table space.
2. Only updated for partitioned objects. When you run RUNSTATS against single partitions of an object,

RUNSTATS uses the partition-level statistics to update the aggregate statistics for the entire object. These
partition-level statistics are contained in the following catalog tables:

• SYSCOLSTATS
• SYSCOLDISTSTATS
• SYSTABSTATS
• SYSINDEXSTATS

3. Applicable only when the specified table space is a LOB table space.
4. When HISTORY NONE is specified, none of the catalog history tables are updated.
5. Only the SPACEF and STATSTIME columns are updated.
6. Applicable only when the target object is an expression-based index.

RUNSTATS sets the following columns to -1 for universal table spaces and table spaces that are defined
as LARGE:

• CARD in SYSTABLES
• CARD in SYSINDEXPART
• FAROFFPOS in SYSINDEXPART
• NEAROFFPOS in SYSINDEXPART
• FIRSTKEYCARD in SYSINDEXES
• FULLKEYCARD in SYSINDEXES

FL 509 Additionally, after RUNSTATS TABLESPACE completes successfully, the utility updates the
COMPRESS_USED column of the SYSTABLEPART catalog table with the type of the compression dictionary
that is in effect on each target page set.

Related reference
Statistics used for access path selection (Db2 Performance)
Db2 catalog tables (Db2 SQL)

Resetting access path statistics
You can use the RUNSTATS utility to remove old and out-of-date access path statistics for Db2 objects.

About this task
When the RUNSTATS utility is invoked over a period of time, statistics are collected incrementally for
target objects. The combination of many changes to target objects and many RUNSTATS invocations,
perhaps with different options, might result in some previously collected statistics becoming outdated.
Such out-of-date statistics might cause Db2 to choose inefficient access paths for SQL statements. One
solution is to invoke the RUNSTATS utility again to refresh the statistics. However, the task of formulating
RUNSTATS invocations to solve the problem might prove difficult because of the complicated nature of the
many previous RUNSTATS invocations.

Such stale statistics can also increase your statistics collection costs, especially after migration to Db2 12,
if their collection becomes standardized in a statistics profile that is based on existing statistics. For more
information see Cleaning stale or unneeded Db2 catalog statistics (Db2 Performance).

736 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m509.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_statistics4accesspathselection.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_catalogtablesintro.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_cleanstalestatistics.html

When the situation occur, you can invoke the RUNSTATS utility to reset the access path statistics for
all tables and indexes in a specified table space. When you reset the statistics, the default values are
used. No statistics are gathered or reported. Space statistics and real-time statistics are not reset for the
specified objects. After your reset access path statistics, the previous values cannot be recovered if no
statistics history is available.

Procedure
Invoke the RUNSTATS utility, and specify the following options:
a) Specify the RESET ACCESSPATH option.
b) Optional: Specify the HISTORY ACCESSPATH option to record that the access path statistics were reset

in rows in the SYSIBM.SYSTABLES_HIST and SYSIBM.SYSINDEXES_HIST statistics tables.
This option only records that the reset occurred and does not save the access path statistics values
that are reset.

For example, you might issue the following utility control statement:

RUNSTATS TABLESPACE db-name.ts-name RESET ACCESSPATH

Statistics are not collected. Instead, the RUNSTATS utility resets the access path statistics.

Results
Certain catalog table rows are updated with default values, and rows are deleted from other catalog
tables. All updated rows in the catalog tables contain the same timestamp value. Real-time statistics and
space for the specified object are not reset. However, the dynamic statement cache is invalidated.

The following statistics are reset to the specified values:
SYSIBM.SYSTABLESPACE

The following values are changed:

Column Changed value

NACTIVE -1

NACTIVEF -1

STATSTIME The TIMESTAMP value for the reset operation

SYSIBM.SYSCOLUMNS
The following values are changed:

Column Changed value

COLCARD -1

COLCARDF -1

HIGH2KEY Zero-length blank

LOW2KEY Zero-length blank

STATSTIME The TIMESTAMP value for the reset operation

STATS_FORMAT Blank

SYSIBM.SYSTABLES
The following values are changed:

Column Changed value

CARD -1

Chapter 32. RUNSTATS 737

Column Changed value

CARDF -1

NPAGES -1

NPAGESF -1

PCTPAGES -1

PCTROWCOMP -1

STATSTIME The TIMESTAMP value for the reset operation

SYSIBM.SYSINDEXES
The following values are changed:

Column Changed value

CLUSTERED 'N'

NLEAF -1

NLEVELS -1

FIRSTKEYCARD -1

FULLKEYCARD -1

FIRSTKEYCARDF -1

FULLKEYCARDF -1

CLUSTERRATIO 0

CLSUTERRATIOF 0

DATAREPEATFACTORF -1

STATSTIME The TIMESTAMP value for the reset operation

SYSIBM.SYSKEYTARGETS
The following values are changed:

Column Changed value

CARDF -1

HIGH2KEY Zero-length blank

LOW2KEY Zero-length blank

STATSTIME TIMESTAMP

STATS_FORMAT Blank

Applicable rows are deleted from the following catalog tables for the specified objects:

• SYSIBM.SYSTABSTATS
• SYSIBM.SYSCOLSTATS
• SYSIBM.SYSINDEXSTATS
• SYSIBM.SYSCOLDIST
• SYSIBM.SYSCOLDISTSTATS
• SYSIBM.SYSKEYTARGETSTATS
• SYSIBM.SYSKEYTGTDIST

738 Db2 12 for z/OS: Utility Guide and Reference

• SYSIBM.SYSKEYTGTDISTSTATS

What to do next
After resetting the access path statistics objects, collect your standard statistics for those objects. For
more information, see Collecting statistics by using Db2 utilities (Db2 Performance).

Related tasks
Maintaining Db2 database statistics (Db2 Performance)
Improving filter factors by collecting cardinality and frequency statistics (Db2 Performance)
Collecting history statistics (Db2 Performance)
Related reference
Statistics used for access path selection (Db2 Performance)

Sample RUNSTATS control statements
Use the sample control statements as models for developing your own RUNSTATS control statements.

Example 1: Updating catalog statistics for a table space while allowing changes

The following control statement specifies that the RUNSTATS utility is to update the catalog with statistics
for table space DSN8D81A.DSN8S12E and all of its associated tables and indexes. When updating the
table statistics, RUNSTATS is to sample 25% of the rows. Although SHRLEVEL CHANGE is not specified,
by default Db2 permits other processes to make changes to the table space while the RUNSTATS utility is
executing.

//STEP1 EXEC DSNUPROC,UID='IUJQU225.RUNSTA',TIME=1440,
// UTPROC='',
// SYSTEM='DSN'
//UTPRINT DD SYSOUT=*
//SYSIN DD *
RUNSTATS TABLESPACE DSN8D12A.DSN8S12E
 TABLE(ALL) SAMPLE 25
 INDEX(ALL)

Example 2: Updating index statistics

The following control statement specifies that RUNSTATS is to update the catalog statistics for index
DSN8810.XEMPL1.

RUNSTATS INDEX (DSN8C10.XEMPL1)

Example 3: Updating index statistics while prohibiting updates

The following control statement specifies that RUNSTATS is to update the catalog statistics for indexes
XEMPL1 and XEMPL2. Db2 does not permit other processes to change the table space that is associated
with XEMPL1 and XEMPL2 (table space DSN8S12E) while this utility is executing. This restricted access is
the default behavior.

RUNSTATS INDEX (DSN8C10.XEMPL1,DSN8C10.XEMPL2)

Example 4: Updating statistics for columns in several tables

Chapter 32. RUNSTATS 739

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_collectstatsutilities.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_maintaincatalogstatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_filterfactorcatalogstats.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_collecthistorystatistics.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_statistics4accesspathselection.html

The following control statement specifies that RUNSTATS is to update the catalog statistics for the
following columns in table space DSN8D12P.DSN8S12C:

• All columns in the TCONA and TOPTVAL tables
• The LINENO and DSPLINE columns in the TDSPTXT table

RUNSTATS TABLESPACE(DSN8D12P.DSN8S12C)
 TABLE (TCONA)
 TABLE (TOPTVAL) COLUMN(ALL)
 TABLE (TDSPTXT) COLUMN(LINENO,DSPLINE)

Example 5: Updating all statistics for a table space

The following control statement specifies that RUNSTATS is to update all catalog statistics (table space,
tables, columns, and indexes) for table space DSN8D81P.DSN8S81C.

RUNSTATS TABLESPACE(DSN8D12P.DSN8S12C) TABLE INDEX

Example 6: Updating statistics that are used for access path selection and generating a report

The following control statement specifies that RUNSTATS is to update the catalog with only the statistics
that are collected for access path selection. The utility is to report all statistics for the table space and
route the report to SYSPRINT.

RUNSTATS TABLESPACE DSN8D12A.DSN8S12E
 REPORT YES
 UPDATE ACCESSPATH

Example 7: Updating all statistics and generating a report

The following control statement specifies that RUNSTATS is to update the catalog with all statistics
(access path and space) for table space DSN8D81A.DSN8S81E. The utility is also to report the collected
statistics and route the report to SYSPRINT.

RUNSTATS TABLESPACE DSN8D12A.DSN8S12E
 REPORT YES
 UPDATE ALL

Example 8: Reporting statistics without updating the catalog

The following control statement specifies that RUNSTATS is to collect statistics for table space
DSN8D81A.DSN8S81E and route the report to SYSPRINT. The utility is not to update the catalog with
the collected statistics.

RUNSTATS TABLESPACE DSN8D12A.DSN8S12E
 REPORT YES
 UPDATE NONE

Example 9: Updating statistics for a partition

740 Db2 12 for z/OS: Utility Guide and Reference

The following control statement specifies that RUNSTATS is to update the statistics for the first partition of
table space DSN8D81A.DSN8S81E and the first partition of the DSN8810.XEMP1 index.

RUNSTATS TABLESPACE DSN8D12A.DSN8S12E PART 1 INDEX(DSN8C10.XEMP1 PART 1)

Example 10: Updating catalog and history tables and reporting all statistics

The following control statement specifies that RUNSTATS is to update the catalog tables and history
catalog tables with all statistics for table space DB0E0101.TL0E0101 (including related indexes and
columns). The utility is to report the collected statistics and route the statistics to SYSPRINT.

RUNSTATS TABLESPACE DBOE0101.TLOE0101
 INDEX
 TABLE
 REPORT YES
 UPDATE ALL
 HISTORY ALL

Example 11: Updating statistics on frequently occurring values

Assume that the SYSADM.IXNP1 index is defined on four columns: NP1, NP2, NP3, and NP4. The
following control statement specifies that RUNSTATS is to update the statistics for index SYSADM.IXNPI.

The RUNSTATS utility collects cardinality statistics for column NP1, column set NP1 and NP2, and column
set NP1, NP2, and NP3, and column set NP1, NP2, NP3, and NP4. The FREQVAL option and its associated
parameters indicate that RUNSTATS is also to collect the 5 most frequently occurring values on column
NP1 (the first key column of the index), and the 10 most frequently occurring values on the column set
NP1 and NP2 (the first two key columns of the index). The utility is to report the collected statistics and
route the statistics to SYSPRINT.

RUNSTATS INDEX (SYSADM.IXNPI)
 FREQVAL NUMCOLS 1 COUNT 5
 FREQVAL NUMCOLS 2 COUNT 10
 REPORT YES

Example 12: Updating distribution statistics for a group of specified columns in a table

The following control statement specifies that RUNSTATS is to update statistics for the columns
EMPLEVEL, EMPGRADE, and EMPSALARY in table DSN8810.DEPT (in table space DSN8D81A.DSN8S81E).
The statement uses the COLGROUP keyword to group these columns. RUNSTATS is to collect the
cardinality of this column group and store the cardinality in the SYSCOLDIST catalog table.

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E
TABLE(DSN8810.DEPT)
COLGROUP (EMPLEVEL,EMPGRADE,EMPSALARY)

Example 13: Updating distribution statistics for specific columns and retrieving the most frequently
occurring values

The following control statement specifies that RUNSTATS is to update statistics for the columns
EMPLEVEL, EMPGRADE, and EMPSALARY in table DSN8810.DEPT. The FREQVAL and COUNT options

Chapter 32. RUNSTATS 741

indicate that RUNSTATS is to collect the 10 most frequently occurring values for each column. The values
are to be stored in the SYSCOLDIST and SYSCOLDISTSTATS catalog tables.

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E
TABLE(DSN8810.DEPT)
COLGROUP(EMPLEVEL,EMPGRADE,EMPSALARY) FREQVAL COUNT 10

Example 14: Updating distribution statistics for specific columns in a table and retrieving the least
frequently occurring values

The following control statement specifies that RUNSTATS is to update statistics for the columns
EMPLEVEL, EMPGRADE, and EMPSALARY in table DSN8810.DEPT. The FREQVAL and COUNT options
indicate that RUNSTATS is to collect the 15 least frequently occurring values for each column. The values
are to be stored in the SYSCOLDIST and SYSCOLDISTSTATS catalog tables.

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E
TABLE(DSN8810.DEPT)
COLGROUP(EMPLEVEL,EMPGRADE,EMPSALARY) FREQVAL COUNT 15 LEAST

Example 15: Updating distribution statistics for specific columns in a table space and retrieving the
most and least frequently occurring values

The following control statement specifies that RUNSTATS is to update statistics for the columns
EMPLEVEL, EMPGRADE, and EMPSALARY in table DSN8810.DEPT. The FREQVAL and COUNT options
indicate that RUNSTATS is to collect the 10 most frequently occurring values for each column and the 10
least frequently occurring values for each column. The values are to be stored in the SYSCOLDIST and
SYSCOLDISTSTATS catalog tables.

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E
TABLE(DSN8810.DEPT)
COLGROUP(EMPLEVEL,EMPGRADE,EMPSALARY) FREQVAL COUNT 10 BOTH

Example 16: Updating statistics for an index and retrieving the most and least frequently occurring
values

The following control statement specifies that RUNSTATS is to collect the 10 most frequently occurring
values and the 10 least frequently occurring values for the first key column of index ADMF001.IXMA0101.
By default, the utility collects all the distinct values in all the key column combinations. A set of messages
is sent to SYSPRINT and all collected statistics are updated in the catalog.

RUNSTATS INDEX(ADMF001.IXMA0101)
FREQVAL NUMCOLS 1 COUNT 10 BOTH
REPORT YES UPDATE ALL

Example 17: Invalidating statements in the dynamic statement cache for a table space without
generating report statistics.

The following control statement specifies that RUNSTATS is to invalidate statements in the dynamic
statement cache for table space DSN8D81A.DSN8S81E. However, RUNSTATS is not to collect or report
statistics or update the catalog.

RUNSTATS TABLESPACE DSN8D81A.DSN8S81E
REPORT NO
UPDATE NONE

742 Db2 12 for z/OS: Utility Guide and Reference

Example 18: RUNSTATS HISTOGRAM job statement.

The following control statement specifies that RUNSTATS is to gather histogram statistics for the specified
key columns. Histogram statistics can only be collected on the prefix columns with the same order.

RUNSTATS TABLESPACE RVTDB01.RVTTS01
INDEX ALL
HISTOGRAM NUMCOLS 2 NUMQUANTILES 5
SHRLEVEL(CHANGE)
UPDATE ALL
REPORT YES

Chapter 32. RUNSTATS 743

744 Db2 12 for z/OS: Utility Guide and Reference

Chapter 33. STOSPACE
The STOSPACE online utility updates Db2 catalog columns that indicate how much space is allocated for
storage groups and related table spaces and indexes.

For user-defined spaces, STOSPACE does not record any statistics.

Output

The output from STOSPACE consists of updated values in the columns and tables in the following list.
In each case, an amount of space is given in kilobytes (KB). If the value is too large to fit in the SPACE
column, the SPACEF column is updated.

• SPACE in SYSIBM.SYSINDEXES shows the amount of space that is allocated to indexes. If the index is
not defined using STOGROUP, or if STOSPACE has not been executed, the value is zero.

• SPACE in SYSIBM.SYSTABLESPACE shows the amount of space that is allocated to table spaces. If the
table space is not defined using STOGROUP, or if STOSPACE has not been executed, the value is zero.

• SPACE in SYSIBM.SYSINDEXPART shows the amount of space that is allocated to index partitions. If the
partition is not defined using STOGROUP, or if STOSPACE has not been executed, the value is zero.

• SPACE in SYSIBM.SYSTABLEPART shows the amount of space that is allocated to table partitions. If the
partition is not defined using STOGROUP, or if STOSPACE has not been executed, the value is zero.

• SPACE in SYSIBM.SYSSTOGROUP shows the amount of space that is allocated to storage groups.
• STATSTIME in SYSIBM.SYSSTOGROUP shows the timestamp for the time at which STOSPACE was last

executed.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• STOSPACE privilege
• SYSCTRL or SYSADM authority

Execution phases of STOSPACE

The STOSPACE utility operates in these phases:

Phase
Description

UTILINIT
Performs initialization

STOSPACE
Gathers space information and updates catalog

UTILTERM
Performs cleanup

© Copyright IBM Corp. 1983, 2024 745

Syntax and options of the STOSPACE control statement
The STOSPACE utility control statement, with its multiple options, defines the function that the utility job
performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram

STOSPACE STOGROUP(

,

stogroup-name

*

)

Option descriptions

STOGROUP
Identifies the storage groups that are to be processed.
(stogroup-name, …)

Specifies the name of a storage group. You can use a list of from one to 255 storage group names.
Separate items in the list by commas, and enclose them in parentheses.

*
Indicates that all storage groups are to be processed.

Data sets that STOSPACE uses
The STOSPACE utility uses a number of data sets during its operation.

The following table lists the data sets that STOSPACE uses. The table lists the DD name that is used to
identify the data set, a description of the data set, and an indication of whether it is required. Include
statements in your JCL for each required data set and any optional data sets that you want to use.

Table 110. Data sets that STOSPACE uses

Data set Description Required?

SYSIN Input data set that contains the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

The following object is named in the utility control statement and does not require a DD statement in the
JCL:

Storage group
Object that is to be reported.

Related concepts
“Data sets that online utilities use” on page 18
Every online utility requires an input data set with the utility control statement. Some utilities require
additional data sets.

Concurrency and compatibility for STOSPACE
The STOSPACE utility has certain concurrency and compatibility characteristics associated with it.

STOSPACE does not set a utility restrictive state on the target object.

746 Db2 12 for z/OS: Utility Guide and Reference

STOSPACE can run concurrently with any utility on the same target object. However, because STOSPACE
updates the catalog, concurrent STOSPACE utility jobs or other concurrent applications that update the
catalog might cause timeouts and deadlocks.

You can use the STOSPACE utility on storage groups that have objects within temporary databases.

How STOSPACE ensures availability of objects it STOSPACE
requires

For each specified storage group, STOSPACE looks at the SYSIBM.SYSTABLESPACE and
SYSIBM.SYSINDEXES catalog tables to determine which objects belong to that storage group.

For each object, the amount of allocated space is determined from an appropriate VSAM catalog. Hence
the table spaces and indexes do not need to be available to Db2 when STOSPACE is running; only the Db2
catalog and appropriate VSAM catalogs are required. However, to gain access to the VSAM catalog, the
utility must have available to it the database definition (DBD) for the objects that are involved. This access
requires that the appropriate database, table spaces, and index spaces not be in the stopped state.

Obtaining statistical information with STOSPACE
When Db2 storage groups are used in the creation of table spaces and indexes, Db2 defines the data sets
for them. The STOSPACE utility permits a site to monitor the disk space that is allocated for the storage
group.

About this task
The following table lists statistical information that the STOSPACE utility records and that is useful for
making space allocation decisions.

Table 111. Db2 catalog data that STOSPACE collects

Catalog table Column name Column description

SYSTABLESPACE SPACEF Number of kilobytes of storage that are allocated to
the table space

SYSTABLEPART SPACEF Number of kilobytes of storage that are allocated to
the table space partition

SYSINDEXES SPACEF Number of kilobytes of storage that are allocated to
the index

SYSINDEXPART SPACEF Number of kilobytes of storage that are allocated to
the index partition

SYSSTOGROUP SPACEF Number of kilobytes of storage that are allocated to
the storage group

SYSSTOGROUP STATSTIME Time when STOSPACE was last run on a particular
storage group

STOSPACE does not accumulate information for more than one storage group. If a partitioned table space
or index space has partitions in more than one storage group, the information in the catalog about that
space comes from only the group for which STOSPACE was run.

When you run the STOSPACE utility, the SPACEF column of the catalog represents the high-allocated RBA
of the VSAM linear data set. Use the value in the SPACEF column to project space requirements for table
spaces, table space partitions, index spaces, and index space partitions over time. Use the output from

Chapter 33. STOSPACE 747

the Access Method Services LISTCAT command to determine which table spaces and index spaces have
allocated secondary extents. When you find these, increase the primary quantity value for the data set,
and run the REORG utility.

Procedure
• For information about space utilization in the DSN8S12E table space in the DSN8D12A database:

a) Run the STOSPACE utility
b) Execute the following SQL statement:

EXEC SQL
 SELECT SPACE
 FROM SYSIBM.SYSTABLESPACE
 WHERE NAME = 'DSN8S12E
 AND DBNAME = 'DSN8D12A'
ENDEXEC

Alternatively, you can use TSO to look at data set and pack descriptions.
• To update SYSIBM.SYSSTOGROUP for storage group DSN8G120, as well as SYSIBM.SYSTABLESPACE

and SYSIBM.SYSINDEXES, for every table space and index that belongs to DSN8G120, use the
following utility control statement:

STOSPACE STOGROUP DSN8G120

Analysis of the values in a SPACE or SPACEF column
The value in a SPACE or SPACEF column represents total allocated space, not only the space that is
allocated on the current list of volumes in the storage groups. If the value is too large to fit in the SPACE
column, the SPACEF column is used.

You can delete volumes from a storage group even though space on those volumes is still allocated to Db2
table spaces or indexes. Deletion of a volume from a storage group prevents future allocations; it does not
withdraw a current allocation.

Termination or restart of STOSPACE
You can terminate and restart the STOSPACE utility.

You can terminate a STOSPACE utility job with the TERM UTILITY command if you have submitted the
job or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a STOSPACE utility job, but it starts from the beginning again.

Related tasks
“Restarting an online utility” on page 46
If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.

Sample STOSPACE control statement
Use the sample control statements as models for developing your own STOSPACE control statements.

Example 1: Updating catalog SPACE columns for a particular storage group

748 Db2 12 for z/OS: Utility Guide and Reference

The following control statement specifies that the STOSPACE utility is to update the catalog SPACE or
SPACEF columns for storage group DSN8G120 and any related table spaces and indexes.

//STEP1 EXEC DSNUPROC,UID='FUAUU330.STOSPCE',
// UTPROC='',
// SYSTEM='DSN'
//SYSIN DD *
STOSPACE STOGROUP DSN8G120
//*

Example 2: Specifying a storage group name that contains spaces

If the name of the storage group that you want STOSPACE to process contains spaces, enclose the entire
storage group name in single quotation marks. Parentheses are optional. The following statements are
correct ways to specify a storage group with the name THIS IS STOGROUP.1.ON.E:

STOSPACE STOGROUP('THIS IS STOGROUP.1.ONE')

STOSPACE STOGROUP 'THIS IS STOGROUP.1.ONE'

Example 3: Updating catalog SPACE columns for all storage groups

The following control statement specifies that the STOSPACE utility is to update the catalog SPACE or
SPACEF columns for all storage groups.

STOSPACE STOGROUP *

Example 4: Updating catalog SPACE columns for several storage groups

The following control statement specifies that the STOSPACE utility is to update the catalog SPACE or
SPACEF columns for storage groups DSN8G120 and DSN8G81U.

STOSPACE STOGROUP(DSN8G810, DSN8G81U)

Chapter 33. STOSPACE 749

750 Db2 12 for z/OS: Utility Guide and Reference

Chapter 34. TEMPLATE
The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the
data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.

Templates enable you to standardize data set names across the Db2 subsystem and to easily identify the
data set type when you use variables in the data set name.

The TEMPLATE control statement uses the z/OS DYNALLOC macro (SVC 99) to perform data set
allocation. Therefore, the facility is constrained by the limitations of this macro and by the subset of
DYNALLOC that is supported by TEMPLATE.

Related information:

MVS Programming: Assembler Services Guide

Output

The TEMPLATE control statement generates a dynamic allocation template with an assigned name for
later reference.

Authorization required

No privileges are required to execute this control statement. When a TEMPLATE is referenced by a specific
utility, privileges are checked at that time.

Execution phases of TEMPLATE

The TEMPLATE control statement executes entirely in the UTILINIT phase, which performs setup for the
subsequent utility.

Syntax and options of the TEMPLATE control statement
The TEMPLATE utility control statement, with its multiple options, defines the function that the utility job
performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram
TEMPLATE template-name

name-expression
1

common-options disk-options

tape-options SUBSYS-spec

path-expression

name-expression

© Copyright IBM Corp. 1983, 2024 751

https://www.ibm.com/docs/en/zos/2.5.0?topic=mvs-zos-programming-assembler-services-guide

DSN

.

qualifier-expression

( parenthetical-expression)

2

qualifier-expression

character-expression

& variable
3

( start

, length

)
4

.

common-options
UNIT SYSALLDA

UNIT name MODELDCB dsname

BUFNO 30

BUFNO integer

DATACLAS name MGMTCLAS name STORCLAS name

RETPD integer

EXPDL ' date ' VOLUMES (

,

volser)

VOLCNT integer UNCNT integer

GDGLIMIT 99

GDGLIMIT integer

DISP (NEW

OLD

SHR

MOD

, DELETE

KEEP

CATLG

UNCATLG

, DELETE

KEEP

CATLG

UNCATLG

)

LIMIT( n CYL

GB

MB

, new_template) TIME LOCAL

UTC

BLKSZLIM integer

K

M

G

disk-options

752 Db2 12 for z/OS: Utility Guide and Reference

SPACE CYL

SPACE

( primary , secondary)

CYL

TRK

MB

PCTPRIME 100

PCTPRIME integer

MAXPRIME integer

NBRSECND 10

NBRSECND integer DIR integer

DSNTYPE LIBRARY

PDS

HFS

NULL

BASIC

LARGE

EXTREQ

EXTPREF

EATTR

tape-options
STACK NO

STACK YES

TRTCH NONE

TRTCH COMP

NOCOMP

SUBSYS-spec
SUBSYS name LRECL int RECFM F

FB

V

VB

path-expression

Chapter 34. TEMPLATE 753

PATH pathname

FILEDATA RECORD RECFM VB LRECL 32756

FILEDATA TEXT

BINARY

RECFM VB

V

FB

F

LRECL int

PATHOPTS (ORDONLY
5

OCREAT,OWRONLY

)

PATHOPTS (

,

ORDONLY

OCREAT

OWRONLY

ONONBLOCK

)

PATHMODE (SIRUSR)

PATHMODE (

,

SIRUSR

SIWUSR

SIXUSR

SIRWXU

SIRGRP

SIWGRP

SIXGRP

SIRWXG

SIROTH

SIWOTH

SIXOTH

SIRWXO

)

PATHDISP (KEEP,KEEP)

PATHDISP (KEEP

DELETE

, KEEP

DELETE

)

Notes:
1 You can specify these options (name-expression, common-options, disk-options, tape-options, SUBSYS-
spec) in any order.
2 The entire name-expression represents one character string and cannot contain any blanks.
3 The &PA. variable cannot be used more than once.
4 If you use substring notation, the entire DSN operand must be enclosed in single quotation marks. For
example, the DSN operand 'P&PA(4,2).' uses substring notation, so it is enclosed in single quotation
marks.

754 Db2 12 for z/OS: Utility Guide and Reference

5 For LOAD, the default is PATHOPTS(ORDONLY). For UNLOAD, the default is PATHOPTS(OCREAT,OWRONLY).

Option descriptions

TEMPLATE template-name
Defines a data set allocation template and assigns to the template a name, template-name, for
subsequent reference on a Db2 utility control statement. The template-name can have up to eight
alphanumeric characters and must begin with an alphabetic character.

template-name has the following additional restrictions:

• Cannot be UTPRINT or SORTLIB
• Cannot begin with SORTWK or SYS
• Cannot be a utility keyword name

The template-name is followed by keywords that control the allocation of tape and disk data sets.
A single TEMPLATE statement cannot have both disk options and tape options. The UNIT keyword
specifies a generic unit name that is defined on your system. This value is used to determine if a disk
or tape data set is being allocated. All other keywords specified on the TEMPLATE control statement
must be consistent with the specified unit type.

DSN name-expression
Specifies the template for the z/OS data set name. You can specify the data set name, name-
expression, by using symbolic variables, non-variable alphanumeric, or national characters, or any
combination of these characters. The resulting name must adhere to the z/OS data set naming rules,
including those rules about name length, valid characters, name structure and qualifier length. You
must specify a DSN expression that is unique for each data set allocated by the utility and to each
invocation of the utility.

Templates for FlashCopy image copies should specify DSN name-expression and optionally
STORCLAS, MGMTCLAS, or both. Db2 does not use any other options in a TEMPLATE control
statement for FlashCopy image copies.

Data set names consists of a series of qualifiers, qualifier-expression, that are separated by a period
(.) and an optional parenthetical expression. No imbedded blanks are allowed. A partitioned data set
(PDS) cannot be defined by TEMPLATE for use as an input data set.

If the DSN name operand contains any special characters, it must be enclosed in single quotation
marks. For example, in the following TEMPLATE statement, the DSN operand contains the
parentheses special character, so the entire operand is enclosed in single quotation marks:

TEMPLATE X DSN 'A.GDG.VERSION(+1)'

Parentheses around the DSN name operand are optional. They are used in the following DSN
specification:

DSN(&DB..&TS..D&DATE.)

character-expression
Specifies the data set name or part of the data set name by using non-variable alphanumeric or
national characters.

parenthetical-expression
Specifies part of the data set name by using non-variable alphanumeric or national characters that
are enclosed in parentheses. For example, the expressions Q1.Q2.Q3(member) and Q1.Q2.Q3(+1)
use valid parenthetical expressions. No variable substitution is performed within the parenthetical
expression.

&variable.
Specifies the data set name or part of the data set name by using symbolic variables. See the
following tables for a list of variables that can be used.

Chapter 34. TEMPLATE 755

Each symbolic variable is substituted with its related value at execution time to form a specific data
set name. When used in a DSN expression, substitution variables begin with an ampersand sign (&)
and end with a period (.), as in the following example:

DSN &DB..&TS..D&JDATE..COPY&ICTYPE.

Using numeric variables alone generates an invalid data set qualifier for all numeric-type variables (all
date or time-type variables, and others, such as &SEQ. or &PART.). These variables must be preceded
by character constants to form valid DSN qualifiers. The following examples are valid specifications:

P&PART.

D&DATE.

Some substitution variables are invalid if you use TEMPLATE with an incompatible utility. For example,
ICTYPE is not meaningful if the TEMPLATE statement is used with LOAD SYSDISC. Other variables
assume default values when their values are not known.

You can also use substring notation for data set name variables. This notation can help you keep
the data set name from exceeding the 44 character maximum. If you use substring notation, the
entire DSN operand must be enclosed in single quotation marks. To specify a substring, use the form
&variable(start). or &variable(start,length).

start
Specifies the substring's starting byte location within the current variable base value at the time of
execution. start must be an integer from 1 to 128.

length
Specifies the length of the substring. If you specify start but do not specify length, length, by
default, is the number of characters from the start character to the last character of the variable
value at the time of execution. For example, given a five-digit base value, &PART(4). specifies the
fourth and fifth digits of the value. length must be an integer that does not cause the substring to
extend beyond the end of the base value.

For UNLOAD on a partitioned table space, if you use substring notation for the partition variable
(&PART. or &PA.) in the DSN argument, the data set name might not be unique for all partitions, so
Db2 cannot do parallel UNLOAD operations for the partitions. Therefore, Db2 uses a single UNLDDN
data set for all partitions. This action might cause duplicate data set errors on subsequent UNLOAD
jobs for other partitions of the same table space.

The following table contains a list of JOB variables and their descriptions.

Table 112. JOB variables

Variable Description

&JOBNAME. or &JO. The z/OS job name.

&STEPNAME. or &ST. The z/OS step name. This variable might be needed if data set
names from two different job steps conflict.

&USERID. or &US. The user ID of the person that is running the utility. The value is 1
to 8 characters long.

&UTILID. or &UT. The utility ID truncated to eight characters and checked for invalid
DSN characters.

&SSID. or &SS. Subsystem ID (non-data sharing) or group attachment name (data
sharing).

The following table contains a list of UTILITY variables and their descriptions.

756 Db2 12 for z/OS: Utility Guide and Reference

Table 113. UTILITY variables

Variable Description

&ICTYPE. or &IC. Single-character image copy type. This variable is valid only for
image copy templates. The substitution is governed by whether
a full image copy (F), an incremental image copy (I), or a
CHANGELIMIT image copy (C) is specified by the user.

&UTILNAME. or &UN. Special values are assigned to some utilities: CHECKD for CHECK
DATA, CHECKI for CHECK INDEX, CHECKL for CHECK LOB, REORGI
for REORG INDEX, and REORGT for REORG TABLESPACE. Utility
names that are longer than eight characters are truncated to eight
characters.

&SEQ. or &SQ. Sequence number of the LISTDEF list item being processed.

&LOCREM. or &LR. Indicator of whether ddname is for the local site (COPYDDN) or
the recovery site (RECOVERYDDN). Single character L is used when
the utility defines a COPYDDN ddname. The single character R is
used when the utility defines a RECOVERYDDN ddname. You can
replicate the SYSCOPY ICBACKUP column information by using
both the &LOCREM. and &PRIBAC. variables. This variable is valid
only for image copy templates.

&PRIBAC. or &PB. Indicator of whether ddname is for the primary (ddname1) or
backup (ddname2) copy data set. Single character P is used when
the utility defines a ddname1. The single character B is used when
the utility defines a ddname2. You can replicate the SYSCOPY
ICBACKUP column information by using both the &LOCREM. and
&PRIBAC. variables. This variable is valid only for image copy
templates.

The following table contains a list of OBJECT variables and their descriptions.

Table 114. OBJECT variables

Variable Description

&LIST. or &LI. The name of the list that is defined by using the LISTDEF control
statement and that is referenced on the same control statement
as this TEMPLATE. This variable is used with COPY FILTERDDN
templates. All objects in the list are copied to one data set, which
makes &TS. and &IS. meaningless.

&DB. Database name.

&TS.1 Table space name.

&IS. 1 Index space name.

&SN.1 Space name (table space or index space).

&PART. or &PA.2, 3, 4 Five-digit partition number, padded with leading zeros.

&DSNUM3, 4 Five-digit partition number for partitioned objects, or five-digit
piece number for linear objects, padded with leading zeroes.

Chapter 34. TEMPLATE 757

Table 114. OBJECT variables (continued)

Variable Description

Note:

1. When you specify the &TS., &IS., or &SN. variables in a template that is used by an UNLOAD
statement with BLOBF, CLOBF, or DBCLOBF, Db2 substitutes the name of the table space that
stores the LOB column value, not the base table space name. This substitution enables Db2 to
generate unique data set names for each LOB column with partitioned table spaces.

2. Use the &PA. variable when processing LISTDEF lists with the PARTLEVEL keyword or data-
partitioned secondary indexes. Otherwise, Db2 could generate duplicate data set names.

3. Templates for FlashCopy image copies can contain either &PART or &DSNUM. If you are copying
both partitioned and linear objects, use &DSNUM.

4. FlashCopy image copies are always made at the partition or piece level. This behavior occurs
even if you request FlashCopy image copies with DSNUM ALL on your COPY utility statement or
include them in a LISTDEF list without the PARTLEVEL keyword. Therefore, for templates with
the &PART., &PA., or &DSNUM. variables for FlashCopy image copies, the number and names of
data sets that result might differ from the result when the same templates are used by other
utilities. The result might also differ from the data set names that are displayed when you preview
the templates. (For information about previewing templates, see “Key TEMPLATE operations” on
page 767.)

The following table contains a list of DATE and TIME variables. and their descriptions.

Table 115. DATE and TIME variables

Variable Description

&DATE. or &DT. YYYYDDD

&TIME. or &TI. HHMMSS

&JDATE. or &JU. YYYYDDD

&YEAR. or &YE. YYYY portion of &DATE.

&MONTH. or &MO. MM

&DAY. or &DA. DD

&JDAY. or &JD. DDD portion of &DATE.

&HOUR. or &HO. HH portion of &TIME.

&MINUTE. or &MI. MM portion of &TIME.

&SECOND. or &SC. SS portion of &TIME.

&UNIQ. or &UQ. Unique eight characters that Db2 derives from the system clock
at the time of allocation. This set of characters begins with an
alphabetical character and is followed by seven alphabetical or
numeric characters.

Note: Date and time values are set with the STCK instruction. The value is in local time or
Coordinated Universal Time (UTC) depending on the TIME option or TEMPLATE_TIME subsystem
parameter. Except for the&UNIQ. and &UQ. variables, DATE and TIME values are captured in the
UTILINIT phase of each utility and remain constant until the utility terminates. &UNIQ. and &UQ. are
assigned a unique value for each allocation.

758 Db2 12 for z/OS: Utility Guide and Reference

SUBSYS name
Specifies the MVS BATCHPIPES SUBSYSTEM name. The SUBSYS operand must be a valid
BATCHPIPES SUBSYSTEM name and must not exceed eight characters in length. When SUBSYS is
specified, LRECL and RECFM are required. When SUBSYS is specified, TEMPLATE keywords that are
not compatible with SUBSYS (such as UNIT) are ignored.

Restriction: When using BATCHPIPES, TEMPLATE with the SUBSYS keyword, the utility cannot be
restarted and the LOAD DISCARDDN keyword is not supported.

LRECL int
Specifies the record length of the MVS BATCHPIPES SUBSYSTEM file or z/OS UNIX file. You must
specify LRECL if you specify SUBSYS.

LRECL does not have a default value except in the following situation: If you specify TEMPLATE PATH
and accept the default value FILEDATA RECORD, the default value for LRECL is 32756.

RECFM
Specifies the record format of the MVS BATCHPIPES SUBSYSTEM file or z/OSUNIX file. You must
specify RECFM if you specify SUBSYS.

Valid values for RECFM are F, FB, V, or VB

RECFM does not have a default value except in the following situation: If you specify TEMPLATE PATH
and accept the default value FILEDATA RECORD, the default value for RECFM is VB.

UNIT
Specifies the device-number, device-type (generic), or group-name for the data set. All other
TEMPLATE keywords are validated based on the specified type of unit (disk or tape).

You can specify either UNIT name or UNIT=name.

The default value is SYSALLDA.

MODELDCB dsname
Specifies the name of the data set on which the template is based. DCB information is read from this
model data set.

BUFNO integer
Specifies the number of BSAM buffers. The specified value must be in the range 0 - 99.

The default value is 30.

DATACLAS name
Specifies the SMS data class. The name value must be a valid SMS data class and must not exceed
eight characters in length.

The data set is cataloged if DATACLAS is specified. If this option is omitted, no DATACLAS is specified
to SMS.

MGMTCLAS name
Specifies the SMS management class. The name value must be a valid SMS management class and
must not exceed eight characters in length.

The data set is cataloged if MGMTCLAS is specified. If this option is omitted, no MGMTCLAS is
specified to SMS.

STORCLAS name
Specifies the SMS storage class. The name value must be a valid SMS storage class and must not
exceed eight characters in length.

The data set is cataloged if STORCLAS is specified. If this option is omitted, no STORCLAS is specified
to SMS.

RETPD integer
Specifies the retention period in days for the data set. The integer value must be in the range from 0 to
9999.

Chapter 34. TEMPLATE 759

If DATACLAS, MGMTCLAS, or STORCLAS is specified, the class definition might control the retention.
RETPD cannot be specified with EXPDL.

EXPDL 'date'
Specifies the expiration date for the data set, in the form YYYYDDD, where YYYY is the four-digit year,
and DDD is the three-digit Julian day. The 'date' value must be enclosed by single quotation marks.

If DATACLAS, MGMTCLAS, or STORCLAS is specified, the class definition might control the retention.
EXPDL cannot be specified with RETPD.

VOLUMES (vol1,vol2,...)
Specifies a list of volume serial numbers for this allocation. If the data set is not cataloged the list
is truncated, if necessary, when it is stored in SYSIBM.SYSCOPY. The specified number of volumes
cannot exceed the specified or default value of VOLCNT.

The first volume must contain enough space for the primary space allocation.

If an individual volume serial-number contains leading zeros, it must be enclosed in single quotation
marks.

VOLCNT (integer)
Specifies the maximum number of volumes that an output data set might require. The specified value
must be between 0 and 255.

The default value for tape templates is 95. For disk templates, the utility does not set a default value.
Operating system defaults apply.

UNCNT integer
Specifies the number of devices that are to be allocated. The specified value must in the range 0 - 59.

If UNIT specifies a specific device number, the value of UNCNT must either be 1 or be omitted.

GDGLIMIT (integer)
Specifies the number of entries that are to be created in a GDG base if a GDG DSN is specified and the
base does not already exist. If a GDG base does not already exist and you do not want to define one,
specify a GDGLIMIT of zero (0).

The default value is 99. The minimum value is 0. The maximum value depends on the z/OS release
on which the subsystem is being executed. For z/OS 2.1 or earlier, the maximum value is 255. For
z/OS 2.2 or later, the maximum value is 999. Before using values that are greater than 255, check with
your database administrator or system programmer to ensure that GDGEXTENDED(YES) is specified in
SYS1.PARMLIB(IGGCATxx). Otherwise, values that are greater than 255 will fail during allocation.

DISP (status, normal-termination, abnormal-termination)
Specifies the data set disposition by using three positional parameters: status, normal-termination,
and abnormal-termination. All three parameters must be specified.
status

Standard z/OS values are allowed: NEW, OLD, SHR, MOD.
normal-termination

Standard z/OS values are allowed: DELETE, KEEP, CATLG, UNCATLG.
abnormal-termination

Standard z/OS values are allowed: DELETE, KEEP, CATLG, UNCATLG.

Default values for DISP vary, depending on the utility and the data set that is being allocated. Defaults
for restarted utilities also differ from default values for new utility executions. Default values are
shown in the following tables.

The following table shows the data dispositions for dynamically allocated data sets for new utility
executions.

Note: It is possible that output from utilities that use piped data would not be dynamically allocated
for new utility executions.

760 Db2 12 for z/OS: Utility Guide and Reference

Table 116. Data dispositions for dynamically allocated data sets for new utility executions

ddname
CHECK
DATA

CHECK
INDEX or
CHECK LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSREC Ignored Ignored Ignored Ignored OLD
KEEP
KEEP

Ignored Ignored Ignored NEW CATLG
CATLG

NEW CATLG
CATLG

SYSDISC Ignored Ignored Ignored Ignored NEW
CATLG
CATLG

Ignored Ignored Ignored NEW CATLG
CATLG

Ignored

SYSPUNCH Ignored Ignored Ignored Ignored Ignored Ignored Ignored Ignored NEW CATLG
CATLG

NEW CATLG
CATLG

SYSCOPY Ignored Ignored NEW
CATLG
CATLG

Ignored NEW
CATLG
CATLG

NEW CATLG
CATLG

Ignored Ignored NEW CATLG
CATLG

Ignored

SYSCOPY2 Ignored Ignored NEW
CATLG
CATLG

Ignored NEW
CATLG
CATLG

NEW CATLG
CATLG

Ignored Ignored NEW CATLG
CATLG

Ignored

SYSRCPY1 Ignored Ignored NEW
CATLG
CATLG

Ignored NEW
CATLG
CATLG

NEW CATLG
CATLG

Ignored Ignored NEW CATLG
CATLG

Ignored

SYSRCPY2 Ignored Ignored NEW
CATLG
CATLG

Ignored NEW
CATLG
CATLG

NEW CATLG
CATLG

Ignored Ignored NEW CATLG
CATLG

Ignored

SYSUT1 NEW
DELETE
CATLG

NEW DELETE
CATLG

Ignored Ignored NEW
DELETE
CATLG

Ignored NEW
DELETE
CATLG

NEW CATLG
CATLG

NEW DELETE
CATLG

Ignored

SORTOUT NEW
DELETE
CATLG

Ignored Ignored Ignored NEW
DELETE
CATLG

Ignored Ignored NEW
DELETE
CATLG

NEW DELETE
CATLG

Ignored

SYSMAP Ignored Ignored Ignored Ignored NEW
CATLG
CATLG

Ignored Ignored Ignored Ignored Ignored

SYSERR NEW
CATLG
CATLG

Ignored Ignored Ignored NEW
CATLG
CATLG

Ignored Ignored Ignored Ignored Ignored

FILTERDDS Ignored Ignored NEW
DELETE
DELETE

Ignored Ignored Ignored Ignored Ignored Ignored Ignored

The following table shows data dispositions for dynamically allocated data sets on RESTART.

Table 117. Data dispositions for dynamically allocated data sets on RESTART

ddname
CHECK
DATA

CHECK
INDEX or
CHECK LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSREC Ignored Ignored Ignored Ignored OLD KEEP
KEEP

Ignored Ignored Ignored MOD
CATLG
CATLG

MOD CATLG
CATLG

SYSDISC Ignored Ignored Ignored Ignored MOD
CATLG
CATLG

Ignored Ignored Ignored MOD
CATLG
CATLG

Ignored

SYSPUNCH Ignored Ignored Ignored Ignored Ignored Ignored Ignored Ignored MOD
CATLG
CATLG

MOD CATLG
CATLG

SYSCOPY Ignored Ignored MOD CATLG
CATLG

Ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

Ignored Ignored MOD
CATLG
CATLG

Ignored

SYSCOPY2 Ignored Ignored MOD CATLG
CATLG

Ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

Ignored Ignored MOD
CATLG
CATLG

Ignored

SYSRCPY1 Ignored Ignored MOD CATLG
CATLG

Ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

Ignored Ignored MOD
CATLG
CATLG

Ignored

Chapter 34. TEMPLATE 761

Table 117. Data dispositions for dynamically allocated data sets on RESTART (continued)

ddname
CHECK
DATA

CHECK
INDEX or
CHECK LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSRCPY2 Ignored Ignored MOD CATLG
CATLG

Ignored MOD
CATLG
CATLG

MOD
CATLG
CATLG

Ignored Ignored MOD
CATLG
CATLG

Ignored

SYSUT1 MOD
DELETE
CATLG

MOD DELETE
CATLG

Ignored Ignored MOD
DELETE
CATLG

Ignored MOD
DELETE
CATLG

MOD
CATLG
CATLG

MOD
DELETE
CATLG

Ignored

SORTOUT MOD
DELETE
CATLG

Ignored Ignored Ignored MOD
DELETE
CATLG

Ignored Ignored MOD
DELETE
CATLG

MOD
DELETE
CATLG

Ignored

SYSMAP Ignored Ignored Ignored Ignored MOD
CATLG
CATLG

Ignored Ignored Ignored Ignored Ignored

SYSERR MOD
CATLG
CATLG

Ignored Ignored Ignored MOD
CATLG
CATLG

Ignored Ignored Ignored Ignored Ignored

FILTERDDS Ignored Ignored NEW
DELETE
DELETE

Ignored Ignored Ignored Ignored Ignored Ignored Ignored

LIMIT
Specifies template switching.
n

Specifies the maximum primary allocation quantity that is permitted using this TEMPLATE.
CYL

Cylinders
GB

Gigabytes
MB

Megabytes
new_template

Specifies a character string that specifies the name of a TEMPLATE to use if the size limit is
exceeded.

Db2 supports the LIMIT keyword only on TEMPLATE control statements reference by COPYDDN or
RECOVERYDDN keywords on the following utilities:

• COPY FULL YES|NO
• COPY CONCURRENT
• COPYTOCOPY
• MERGECOPY
• LOAD
• REORG

Restriction:

• You cannot switch to a DD card.
• The template control statement that LIMIT references must exist in SYSIN or SYSTEMPL and it

cannot refer to itself.
• Switching can only be performed a single time per allocation. Multiple switching cannot take place.
• The utility PREVIEW function ignores the LIMIT keyword, only the original TEMPLATE control

statement is previewed. The LIMIT keyword is ignored for new templates.

762 Db2 12 for z/OS: Utility Guide and Reference

TIME
Specifies time used in expansion of date and time DSN variables. The default TIME value is
determined by the TEMPLATE_TIME subsystem parameter.

Tip: Set all Db2 data sharing members to the same value.

LOCAL
Use local time at the Db2 server in the expansion of date and time in DSN variables.

UTC
Use Coordinated Universal Time (UTC) in the expansion of date and time in DSN variables.

BLKSZLIM integer
Specifies that large block interface (LBI) is to be used for the data set if permitted by the device. z/OS
determines the optimal block size during the dynamic allocation of the data set.

integer is the upper limit for the block size. Optionally, you can specify one of the following characters
after integer to indicate the unit of measurement:

K
Kilobytes

M
Megabytes

G
Gigabytes

If you do not specify one of these characters, bytes is used as the unit of measurement.

For information about the minimum and maximum values that you can specify for the block size limit,
see BLKSZLIM parameter (MVS JCL Reference). These values vary depending on the z/OS version.

SPACE (primary,secondary)
Specifies the z/OS disk space allocation parameters in the range 1 - 16777215. If you specify
(primary,secondary) value, these values are used instead of the Db2-calculated values. When
specifying primary and secondary quantities, you must either specify both values or omit both values.

Use the MAXPRIME option to set an upper limit on the primary quantity.

CYL
Specifies that allocation quantities, if present, are to be expressed in cylinders and that
allocation is to occur in cylinders. If SPACE CYL is specified, without (primary, secondary), the
Db2-calculated quantities are allocated in cylinders by using 3390 device capacities for byte
conversion. If TRK and MB are omitted, CYL is the default.

TRK
Specifies that allocation quantities, if present, are to be expressed in tracks and that allocation
is to occur in tracks. If SPACE TRK is specified, without (primary,secondary), the Db2-calculated
quantities are allocated in tracks by using 3390 device capacities for byte conversion.

MB
Specifies that allocation quantities, if present, are to be expressed in megabytes, and that
allocation is to occur in records. One megabyte is 1,048,576 bytes. If SPACE MB is specified,
the (primary,secondary) quantities that are specified, or the Db2-calculated quantities, might be
allocated in tracks or cylinders. Data sets with a primary or secondary allocation quantity greater
than 20 MB are allocated in cylinders. Smaller data sets are allocated in tracks. The 3390 device
capacities are used for TRK or CYL conversion.

PCTPRIME integer
Specifies the percentage of the estimated required space that is to be obtained as the primary
quantity.

The default value is 100.

Use the MAXPRIME option to set the upper limit of this value for large objects.

Chapter 34. TEMPLATE 763

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieab600/xblkszlim.htm

MAXPRIME integer
Specifies the maximum allowable primary space allocation, expressed in cylinders (CYL). This value
constrains the primary space value and the PCTPRIME calculation, as well as the size of each
secondary allocation.

NBRSECND integer
Specifies the division of secondary space allocations. After the primary space is allocated, an amount
of space equal to the estimated required space is divided into the specified number of secondary
allocations. Individual utilities might request larger secondary extents to compensate for localized
uncertainty in the space estimations.

The integer value must be in the range 1 - 10. The default value is 10.

DIR integer
Specifies the number of 256-byte records that are to be allocated for the directory of a new
partitioned data set. You must specify this operand if you are allocating a new partitioned data set.

If the template is being used in a UNLOAD statement with BLOBF, CLOBF, or DBCLOBF and you specify
a DSNTYPE of LIBRARY or PDS, but do not specify DIR, Db2 calculates the number of 256-byte
records to allocate by dividing the estimated number of records by 20.

DSNTYPE

Specifies the type of data set to be allocated.

LIBRARY
Specifies that a partitioned data set extended (PDSE) is to be allocated.

PDS
Specifies that a partitioned data set (PDS) is to be allocated.

HFS
Specifies that a hierarchical file system (HFS) file is to be allocated.

NULL
Specifies a null file. Use this value for a template with UNLOAD CLOBF, BLOBF, or DBCLOBF to
unload a null LOB value. In this case, the unload data set contains a null file name.

BASIC
Specifies a basic format data set. No more than 65535 tracks can be allocated.

LARGE
Specifies a large format data set. Greater than 65535 tracks can be allocated.

EXTREQ
Specifies an extended format data set is required.

EXTPREF
Specifies an extended format data set is preferred.

If you omit DSNTYPE, the type of data set is determined by other data set attributes, the data class for
the data set, or an installation default.

EATTR
Specifies that the data set can support extended attributes.

STACK
Specifies whether output data sets are to be stacked contiguously on the same tape volumes.
NO

Specifies that output data sets are not to be stacked contiguously on tape.
YES

Specifies that similar output data sets are to be stacked as successive files on one logical tape
volume, where a logical tape volume can consist of a multi-volume aggregate. Within one utility
execution, output data sets are stacked on a logical tape volume of the same usage type. For
example, local primary image copies are stacked separately from local backup image copies.

764 Db2 12 for z/OS: Utility Guide and Reference

Related information:

“Guidelines for templates and tape data sets” on page 769

TRTCH
Specifies the track recording technique for magnetic tape drives that have improved data recording
capability.
NONE

Specifies that the TRTCH specification is to be eliminated from dynamic allocation.
COMP

Specifies that data is to be written in compacted format.
NOCOMP

Specifies that data is to be written in standard format.
PATH

Specifies a z/OS UNIX file path name, which can be the name of a Unix System Services pipe, an HFS
file, or a zFS file.

Restrictions:

• If you specify PATH for a template, the utility that uses that template cannot be restarted.
• You can use a template with PATH only for input data sets for the LOAD utility (as indicated by the

INDDN option) and for output data sets for the UNLOAD utility (as indicated by the UNLDDN option).
You cannot use these templates for DISCARDDN data sets for the LOAD and REORG utilities.

When you specify PATH, adhere to the following requirements:

• Specify the path name in SBCS EBCDIC format.
• Do not specify a path name that is longer than 255 bytes.
• If the path name contains blanks, enclose it in single quotes.
• If you specify PATH and do not specify FILEDATA(RECORD), specify values for LRECL and RECFM.

FILEDATA
Specifies the content type of the z/OS UNIX file that is specified for the PATH option. Valid values
are TEXT, BINARY, and RECORD. RECORD indicates that the file contains both binary and text
data.

The default value is RECORD.

PATHOPTS
Specifies the access and status for the z/OS UNIX file that is specified for the PATH option.

You can specify one or more of the following z/OS options for PATHOPTS:

• ORDONLY
• OCREAT
• OWRONLY
• ONONBLOCK

For information about these options, see PATHOPTS parameter (MVS JCL Reference).

The default for LOAD is ORDONLY. The default for UNLOAD is OCREAT, OWRONLY.

PATHMODE
Specifies the file mode of the HFS file that is specified in the PATH option.

You can specify one or more of the following z/OS options for PATHMODE:

• SIRUSR
• SIWUSR
• SIXUSR
• SIRWXU

Chapter 34. TEMPLATE 765

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieab600/ddpoptc.htm

• SIRGRP
• SIWGRP
• SIXGRP
• SIRWXG
• SIROTH
• SIWOTH
• SIXOTH
• SIRWXO

For information about these options, see PATHMODE parameter (MVS JCL Reference).

The default value is SIRUSR.

PATHDISP
Specifies the disposition of the z/OS UNIX file that is specified for the PATH option.

You must specify two parameters for the PATHDISP:

• The first parameter specifies whether the file is to be kept or deleted when the job ends
normally.

• The second parameter specifies whether the file is to be kept or deleted when the job ends
abnormally.

The valid values for each parameter are KEEP or DELETE.

The default value is KEEP, KEEP.

Related reference
TEMPLATE TIME field (TEMPLATE_TIME subsystem parameter) (Db2 Installation and Migration)
Related information
DD statement (MVS JCL Reference)
DSNTYPE parameter (MVS JCL Reference)
EATTR parameter (MVS JCL Reference)

Before running TEMPLATE
Some Db2 utilities produce data sets during execution. These data sets are referenced in utility control
statements by a set of DD name keywords and are specified in the corresponding JCL. Alternatively, you
can use the TEMPLATE utility control statement to dynamically allocate utility data sets.

Options of the TEMPLATE utility allow you to specify the following information:

• The data set naming convention
• DFSMS parameters
• Disk or tape allocation parameters

You can specify a template in the SYSIN data set, immediately preceding the utility control statement that
references it, or in one or more TEMPLATE libraries.

A TEMPLATE library is a data set that contains only TEMPLATE utility control statements. You can
specify a TEMPLATE data set DD name by using the TEMPLATEDD option of the OPTIONS utility control
statement. This specification applies to all subsequent utility control statements until the end of input or
until Db2 encounters a new OPTIONS TEMPLATEDD(ddname) specification.

Any template that is defined within SYSIN overrides another template definition of the same name in a
TEMPLATE data set.

TEMPLATE utility control statements enable you to standardize data set allocation and the utility control
statements that reference those data sets, which reduces the need to customize and alter utility job
streams.

766 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieab600/ddpmoda.htm
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_templatetime.html
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieab600/ddst.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieab600/xdddsnty.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieab600/xddeattr.htm

Concurrency and compatibility for TEMPLATE
The TEMPLATE utility has certain concurrency and compatibility characteristics associated with it.

TEMPLATE is a control statement that is used to set up an environment for another utility to follow. The
template is stored until it is referenced by a specific utility. The list is expanded when it is referenced by
another utility. At that time, the concurrency and compatibility restrictions of that utility apply, and the
catalog tables that are necessary to expand the list must be available for read-only access.

Key TEMPLATE operations
A TEMPLATE control statement performs a setup operation in preparation for use by another utility.
Information is saved under the template name for the duration of the job step. For most utilities, you can
reference the information by substituting the template name for the DD name.

If a DD name and a TEMPLATE name conflict, the DD statement is used for allocation, and the TEMPLATE
is ignored. Minimally, a TEMPLATE statement consists of a name (similar to a DD name) and a data set
naming convention. If nothing else is specified, Db2 calculates the required data set size and uses default
data set attributes that are appropriate to the data set that is being created. Db2 then allocates a disk
data set with these defaults.

The required TEMPLATE statement might look something like the following TEMPLATE statement:

TEMPLATE tmp1 DSN(DB2.&TS..D&JDATE..COPY&ICTYPE.&LOCREM.&PRIBAC.)
 VOLUMES(vol1,vol2,vol3)
LISTDEF payroll INCLUDE TABLESPACE PAYROLL.*
 INCLUDE INDEXSPACE PAYROLL.*IX
 EXCLUDE TABLESPACE PAYROLL.TEMP*
 EXCLUDE INDEXSPACE PAYROLL.TMPIX*
COPY LIST payroll COPYDDN(tmp1,tmp1) RECOVERYDDN(tmp1,tmp1)

Database administrators can check utility control statements without executing them by using the
PREVIEW function. In PREVIEW mode, Db2 expands all TEMPLATE data set names in the SYSIN DD,
in addition to any data set name from the TEMPLATE DD that are referenced on a utility control statement.
Db2 then prints the information to the SYSPRINT data set and halts execution. You can specify PREVIEW
in one of two ways, either as a JCL PARM or on the OPTIONS PREVIEW utility control statement.

Choosing data set names
The data set naming convention that is specified on the DSN option of each TEMPLATE statement must
be appropriate for the data set that is being created. The data set naming convention must also be
coordinated with the other templates and DD statements in the same job step.

About this task
The data set name must be both unique and meaningful. Db2 does not check that the data set names are
unique until the execution of the utility that references the template. Ensure that the data set names are
unique when you define the data set naming convention on the TEMPLATE control statement.

Procedure
To choose a data set name, apply the following guidelines:
• Use a combination of static characters, national characters, and the provided variable names to form

valid z/OS data set qualifiers. Normal z/OS rules apply. Variables that produce numeric values must
be preceded by either a static character or a character variable. All qualifiers must start with an
alphabetic character. The qualifiers must consist of a maximum of eight characters and a maximum of
44 characters for the entire data set name. To help comply with this 44 character limit, you can use
variable substring notation.

• Use the two-character form of the DSN variables to save space.

Chapter 34. TEMPLATE 767

• Use two consecutive periods following all variables that precede the last qualifier (one to terminate the
variable, followed by a second static period to separate the qualifiers), as in the following example:

&DB..&TS.

• Use &DB. and &TS. to relate the data set to a database object.
• Use &PART. when executing PARTLEVEL lists. Preceed the variable with a static character or a

character variable to form a valid qualifier.
• Use &JO. and &ST. to eliminate conflicts with other jobs or job steps.
• Use &SS., &US., &UT., and &UN. if you have a need to know the subsystem, member, user, utility ID, or

name of the utility that produced the data set.
• Use &DATE. and &TIME. or the shorter substring variations to guarantee uniqueness. Preceed the

variable with a static character or a character variable to form a valid qualifier.
• Use &IC., &LR., and &PB. to identify image copy data sets. For example, the following template name

would make a meaningful seven-character data set qualifier:

COPY&IC.&LR.&PB.

• Use &DS for FlashCopy image copies for uniqueness when copying table spaces or index spaces at the
space level.

What to do next

You can check the data set names by using the PREVIEW function. In PREVIEW mode, Db2 expands all
TEMPLATE data set names in the SYSIN DD, in addition to any data set name from the TEMPLATE DD
that are referenced on a utility control statement. Db2 then prints the information to the SYSPRINT data
set and halts execution. You can specify PREVIEW in one of two ways, either as a JCL PARM or on the
OPTIONS PREVIEW utility control statement.

Related reference
“Syntax and options of the TEMPLATE control statement” on page 751
The TEMPLATE utility control statement, with its multiple options, defines the function that the utility job
performs.
“Syntax and options of the OPTIONS control statement” on page 381
The OPTIONS utility control statement, with its multiple options, defines the function that the utility job
performs.

Default space calculations for data set templates
Db2 calculates the space for data sets that are defined by the TEMPLATE utility based on the utility that is
using the template. For disk data sets, all of this space is allocated as a primary quantity by default.

Data set size
For disk data sets, Db2 estimates the size of the data set based on formulas that vary according to the
utility and the data set. These space estimation formulas are shown in the "Data sets that utility uses"
topics for each online utility. Alternatively, you can specify your own values for disk space by using the
SPACE option in the TEMPLATE utility control statement.

Db2 usually estimates the size of a data set based on the size of other existing data sets. However, if any
of the required data sets are on tape, Db2 is unable to estimate the size.

When Db2 is able to calculate size, it calculates the maximum size. This action can result in overly large
data sets. Db2 always allocates data set size with the RLSE (release) option so that unused space is
released on deallocation. However in some cases, the calculated size of required data sets is too large
for the DYNALLOC interface to handle. In this case, Db2 issues error message DSNU1034I, and you must

768 Db2 12 for z/OS: Utility Guide and Reference

allocate the data set by a DD statement. If the object is part of a LISTDEF list, you might need to remove it
from the list and process it individually.

Recommendation: To improve the accuracy of the default space estimation, run the RUNSTATS utility
with the UPDATE SPACE or UPDATE ALL option before you run any of the following utilities:

• CHECK DATA
• CHECK INDEX
• CHECK LOB
• REBUILD INDEX
• REORG INDEX
• REORG TABLESPACE
• UNLOAD

Extent allocation for disk data sets

By default, for data sets on disk, 100 percent of the required space that is estimated by Db2 is allocated
as a primary quantity. If this amount of space is typically not available on a single volume, specify the
PCTPRIME option with a value lower than 100. Alternatively, if you want the upper limit of the primary
quantity based on size instead of percentage, use the MAXPRIME option.

After the primary space is allocated, a secondary quantity that is equal to the estimated required space
is divided into the specified number of secondary extents. This number is identified by the NBRSECND
option. Individual utilities might request larger secondary extents to compensate for localized uncertainty
in the space estimations. If you specify either PCTPRIME or MAXPRIME, any secondary allocation
requests are limited to the size of the primary allocation.

Related reference
“Syntax and options of the TEMPLATE control statement” on page 751
The TEMPLATE utility control statement, with its multiple options, defines the function that the utility job
performs.
“RUNSTATS” on page 699
The RUNSTATS online utility gathers summary information about the characteristics of data in table
spaces, indexes, and partitions. Db2 records these statistics in the Db2 catalog and uses them to select
access paths to data during the bind process.
Related information
DSNU1034I (Db2 Messages)

Guidelines for templates and tape data sets
When you use the TEMPLATE utility to allocate tape data sets, use the STACK option to control tape
processing.

STACK NO specifies traditional, single-file processing. The data set is written, and the tape is rewound
and repositioned or even remounted. STACK YES specifies that successive files are to be written on a
single logical tape without repositioning or remounting.

When you specify STACK YES, Db2 has the following behavior:

• Db2 stacks files only within a single utility invocation. When that utility ends, the stack is terminated,
which means that the tape is rewound and unloaded. To allow more stacking, use the LISTDEF utility
to define a list and then specify that list in another utility control statement. Using a LISTDEF list forces
multiple objects to be processed under a single utility invocation.

• To preserve parallel processing, parallel tasks are written to different tape volumes. The specific volume
to which the data set is written can vary, depending on the following factors:

– The number of output data sets that are being produced

Chapter 34. TEMPLATE 769

https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu1034i.html

– The number of parallel processes that are requested
– The number of tape units that are available to the job step

If you specify STACK YES, take the following actions as needed:

• To avoid issues with mounting a tape volume on the wrong drive, specify UNCNT 1.
• To prevent conflicts between parallel processes, use a single process to write a file to a stack. (Parallel

processing can complicate stacking.)
• Ensure that only files of the same type are stacked on the same tape. For example, one tape might

contain local primary image copies whereas another tape might contain remote primary image copies.
The file types cannot be mixed.

• Ensure that the number of TEMPLATE utility control statements that specify STACK YES is no more than
85 for one invocation of the utility.

Restrictions: Do not use the STACK YES option in the following situations:

• For concurrent copies (copies that are made by the COPY utility with the CONCURRENT option)
• For inline image copies that are created by REORG TABLESPACE on a partition-by-growth base table

space with one or more LOB columns
• For data sets that might be redirected to disk by automatic class selection (ACS) rules
• FL 508For COPYDDN or RECOVERYDDN data sets when running REORG to materialize MOVE TABLE

operations

The data sets and utilities for which the STACK YES option are supported are listed in the following table.
"Yes" indicates that the specified utility supports tape stacking for the specified data set. "No" indicates
that the specified utility does not support tape stacking for the specified data set. "Ignored" indicates that
the specified data set does not apply to the specified utility.

Table 118. Supported data sets for tape stacking

ddname
CHECK
DATA

CHECK
INDEX or
CHECK LOB COPY

COPY-
TOCOPY LOAD

MERGE-
COPY

REBUILD
INDEX

REORG
INDEX

REORG
TABLE-
SPACE UNLOAD

SYSREC Ignored Ignored Ignored Ignored No Ignored Ignored Ignored Yes Yes

SYSDISC Ignored Ignored Ignored Ignored No Ignored Ignored Ignored Yes Ignored

SYSPUNCH Ignored Ignored Ignored Ignored Ignored Ignored Ignored Ignored Yes Yes

SYSCOPY Ignored Ignored Yes Yes No Yes Ignored Ignored Yes Ignored

SYSCOPY2 Ignored Ignored Yes Yes No Yes Ignored Ignored Yes Ignored

SYSRCPY1 Ignored Ignored Yes Yes No Yes Ignored Ignored Yes Ignored

SYSRCPY2 Ignored Ignored Yes Yes No Yes Ignored Ignored Yes Ignored

SYSUT1 No No Ignored Ignored No Ignored No No No Ignored

SORTOUT No Ignored Ignored Ignored No Ignored Ignored No No Ignored

SYSMAP Ignored Ignored Ignored Ignored No Ignored Ignored Ignored Ignored Ignored

SYSERR No Ignored Ignored Ignored No Ignored Ignored Ignored Ignored Ignored

FILTERDDS Ignored Ignored No Ignored Ignored Ignored Ignored Ignored Ignored Ignored

Related reference
“Syntax and options of the TEMPLATE control statement” on page 751
The TEMPLATE utility control statement, with its multiple options, defines the function that the utility job
performs.
“LISTDEF” on page 199

770 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_fl_v12r1m508.html

The LISTDEF utility enables you to group database objects into reusable lists. You can then specify these
lists in other utility control statements to indicate that the utility is to process all of the items in the list.

How TEMPLATE supports GDG data sets
When you use the TEMPLATE utility, you can specify both absolute version references and relative
references to generation data groups (GDGs) in the DSN name operand.

The first time that the data set is referenced, Db2 detects the absence of a GDG base. When (+1) or some
other parenthetical relative expression is used, Db2 creates the GDG base. By default, the new base has a
limit of 99 entries. Use the GDGLIMIT keyword to alter this value or prohibit this action.

After the base is created, you can specify either the absolute version G0000V00 or a relative version. If
you use the PREVIEW function on the OPTIONS utility control statement, Db2 displays the GDG relative
version references. GDG names are restricted to 35 characters.

A model data set, as defined in the MODELDCB option, might be required to allocate GDG data sets in your
environment.

Related reference
“Syntax and options of the TEMPLATE control statement” on page 751
The TEMPLATE utility control statement, with its multiple options, defines the function that the utility job
performs.
“Syntax and options of the OPTIONS control statement” on page 381
The OPTIONS utility control statement, with its multiple options, defines the function that the utility job
performs.

Template switching
Template switching is most commonly used to direct small data sets to disk and large data sets to tape,
but it can also be used to switch to templates that differ in DSNs or in HSN classes. The decision to switch
is made based on the estimated output data set size, which may differ from the actual final size of the
output data set. This difference is particularly true for incremental image copies that are estimated at
10% of the space required for a full image copy.

Termination or restart of TEMPLATE
You can terminate and restart a TEMPLATE utility job.

You can terminate a TEMPLATE utility job by using the TERM UTILITY command if you submitted the job
or have SYSOPR, SYSCTRL, or SYSADM authority.

You can restart a TEMPLATE utility job, but it starts from the beginning again.

If you are restarting this utility as part of a larger job in which TEMPLATE completed successfully, but a
later utility failed, see the information about restarting utilities with templates.

Related concepts
“How utilities restart with templates” on page 50
Unlike most other utility control statements, TEMPLATE utility control statements can be modified before
you restart a utility. In some cases, they must be modified to correct a prior failure.
Related tasks
“Restarting an online utility” on page 46

Chapter 34. TEMPLATE 771

If a utility finishes abnormally, you might be able to restart it. You need only resubmit the job and Db2
attempts to restart it. However, you might need or choose to make other changes before you resubmit the
job.

Sample TEMPLATE control statements
Use the sample control statements as models for developing your own TEMPLATE control statements.

Example 1: Specifying a basic template for an image copy on disk

The following TEMPLATE utility control statement defines a basic template that can be used to allocate an
image copy data set. The name of the template is COPYDS. Any subsequent COPY jobs that specify this
template for dynamically allocated data sets use the data set naming convention that is defined by the
DSN option.

TEMPLATE COPYDS DSN &DB..&TS..COPY&IC.&LR.&PB..D&DATE..T&TIME.

Example 2: Using variable substring notation to specify data set names

The following control statement defines template CP2. Variable substring notation is used in the DSN
option to define the data set naming convention.

Assume that in the year 2003 you make a full image copy of partition 00004 of table space DSN8S81D.
Assume that you specify the template CP2 for the data set for the local primary copy. Db2 gives the
following name to the image copy data set: DH173001.DSN8S81D.Y03.COPYLP.P004

Notice that every variable in the DSN option begins with an ampersand (&) and ends with a period (.).
These ampersands and periods are not included in the data set name. Only periods that do not signal the
end of a variable are included in the data set name.

TEMPLATE CP2 DSN 'DH173001.&SN..Y&YEAR(3)..COPY&LR.&PB..P&PART(3,3).'
 UNIT(SYSDA)

Example 3: Using COPY with TEMPLATE with variable substring notation

The following TEMPLATE utility control statement defines template SYSCOPY. Variable substring
notation is used in the DSN option to define the data set naming convention. The subsequent COPY
utility control statement specifies that Db2 is to make a local primary copy of the first partition
of table space DSN8D81A.DSN8S81E. COPY is to write this image copy to a data set that is
dynamically allocated according to the SYSCOPY template. In this case, the resulting data set name is
DSN8D81A.DSN8S81E.P001

TEMPLATE SYSCOPY DSN '&DB..&TS..P&PA(3).'

COPY TABLESPACE DSN8D81A.DSN8S81E DSNUM 1 COPYDDN(SYSCOPY)

Notice that you can change the part variable in the DSN operand from P&PA(3). to P&PA(3,3). The
resulting data set name is the same, because the length value of 3 is implied in the first specification.

Example 4: Specifying a template for tape data sets with an expiration date

The following control statement defines the TAPEDS template. Any data sets that are defined with this
template are to be allocated on device number 3590-1, as indicated by the UNIT option, and are to expire

772 Db2 12 for z/OS: Utility Guide and Reference

on 1 January 2100, as indicated by the EXPDL option. The DSN option indicates that these data set names
are to have the following three parts: database name, table space name, and date.

TEMPLATE TAPEDS DSN(&DB..&TS..D&DATE.)
 UNIT 3590-1 EXPDL '2100001'

Example 5: Specifying a disk template that gives space allocation parameters.

The following control statement defines the DISK template. Any data sets that are defined with this
template are to have 100 cylinders of primary disk space and 10 cylinders of secondary disk space, as
indicated by the SPACE and CYL options. The DSN option indicates that the data set names are to have the
following three parts: database name, table space name, and time.

TEMPLATE DISK DSN &DB..&TS..T&TIME.
 SPACE(100,10) CYL

Example 6: Specifying a disk template that uses a default size with constraints

The following control statement defines the DISK template. Because the SPACE option does not
specify quantities for primary and secondary space allocation, Db2 calculates these values with the
following constraint: the maximum allowable primary space allocation is 1000 cylinders. This constraint
is indicated by the MAXPRIME option. The DSN option indicates that the data set names are to have the
following three parts: database name, table space name, and time.

TEMPLATE DISK DSN(&DB..&TS..T&TIME.)
 SPACE CYL MAXPRIME 1000

Example 7: Using TEMPLATE with LISTDEF and COPY

In the following example, the LISTDEF utility control statement defines the CPY1 list. The TEMPLATE
control statement then defines the TMP1 template. The COPY utility control statement then specifies that
Db2 is to make local copies of the objects in the CPY1 list. Db2 is to write these copies to data sets that
are dynamically allocated according to the characteristics that are defined in the TMP1 template.

LISTDEF CPY1 INCLUDE TABLESPACES TABLESPACE DBA906*.T*A906*
 INCLUDE INDEXSPACES COPY YES INDEXSPACE ADMF001.I?A906*
TEMPLATE TMP1 UNIT SYSDA
 DSN (DH109006.&STEPNAME..&SN..T&TIME.)
 DISP (MOD,CATLG,CATLG)
COPY LIST CPY1 COPYDDN (TMP1) PARALLEL (2) SHRLEVEL REFERENCE

Parentheses for the DSN name-expression are optional.

Example 8: Use TEMPLATE to create a GDG data set

In the following example, the TEMPLATE control statement defines the COPYTEMP template. The
COPY utility control statement specifies that Db2 is to write a local image copy of the table space
DBLT2501.TPLT2501 to a data set that is dynamically allocated according to the characteristics that are
defined in the COPYTEMP template. According to the COPYTEMP template, this data set is to be named
JULTU225.GDG(+1) (as indicated by the DSN option) and is to have six entries created in the GDG base
(as indicated by the GDGLIMIT option). The control block information is to be the same as that in the
JULTU225.MODEL data set, as indicated by the MODELDCB option.

//**
//* COMMENT: Define a model data set. *
//**

Chapter 34. TEMPLATE 773

//STEP1 EXEC PGM=IEFBR14
//SYSCOPX DD DSN=JULTU225.MODEL,DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20)),VOL=SER=SCR03,
// DCB=(RECFM=FB,BLKSIZE=4000,LRECL=100)
//***
//* COMMENT: GDGLIMIT(6)
//***
//STEP2 EXEC DSNUPROC,UID='JULTU225.GDG',
// UTPROC='',
// SYSTEM='SSTR'
//SYSIN DD *
 TEMPLATE COPYTEMP
 UNIT SYSDA
 DSN 'JULTU225.GDG(+1)'
 MODELDCB JULTU225.MODEL
 GDGLIMIT(6)
 COPY TABLESPACE DBLT2501.TPLT2501
 FULL YES
 COPYDDN (COPYTEMP)
 SHRLEVEL REFERENCE
/*

Example 9: Using a template to copy a GDG data set to tape

In the following example, the OPTIONS statement causes the subsequent TEMPLATE statement to run
in PREVIEW mode. In this mode, Db2 checks the syntax of the TEMPLATE statement. If Db2 determines
that the syntax is valid, it expands the data set names. The OPTIONS OFF statement ends PREVIEW
mode processing. The subsequent COPY utility control statement executes normally. The COPY statement
specifies that Db2 is to write a local image copy of the table space DBLT4301.TPLT4301 to a data set
that is dynamically allocated according to the characteristics that are defined in the COPYTEMP template.
According to the COPYTEMP template, this data set is to be named JULTU243.GDG(+1) (as indicated by
the DSN option) and is to be stacked on the tape volume 99543 (as indicated by the UNIT, STACK, and
VOLUMES options). The data set dispositions are specified by the DISP option. The GDGLIMIT option
specifies that 50 entries are to be created in a GDG base.

/*
//***
//* COMMENT: COPY GDG DATA SET TO TAPE
//***
//STEP1 EXEC DSNUPROC,UID='JULTU243.GDG',
// UTPROC='',
// SYSTEM='SSTR'
//SYSIN DD *
 OPTIONS PREVIEW
 TEMPLATE COPYTEMP
 UNIT TAPE
 DSN 'JULTU243.GDG(+1)'
 VOLUMES (99543)
 GDGLIMIT(50)
 DISP(NEW,CATLG,CATLG)
 STACK YES
 OPTIONS OFF
 COPY TABLESPACE DBLT4301.TPLT4301
 FULL YES
 COPYDDN (COPYTEMP)
 SHRLEVEL REFERENCE
/*

Example 10: Creating a template that can be used for unloading LOB objects

The TEMPLATE statement in the following example defines a template called LOBFRV. The subsequent
UNLOAD statement specifies that each CLOB in the RESUME column is to be unloaded to files that are
dynamically allocated according to the characteristics defined for the LOBFRV template. In this case,
those files are to be partitioned data sets, as specified by the DSNTYPE option. Each data set is to have
the name UNLODTEST.database-name.LOB-table-space-name.RESUME, as specified by the DSN option.

774 Db2 12 for z/OS: Utility Guide and Reference

The names of each CLOB PDS is written to the unload data set. By default, the unload data set is defined
by the SYSREC DD statement or template.

TEMPLATE LOBFRV DSN 'UNLDTEST.&DB..&TS..RESUME'
 DSNTYPE(PDS) UNIT(SYSDA)

UNLOAD DATA
 FROM TABLE DSN8910.EMP_PHOTO_RESUME
 (EMPNO CHAR(6),
 RESUME VARCHAR(255) CLOBF LOBFRV)
 SHRLEVEL CHANGE

Example 11: Using template switching.

The following TEMPLATE control statement assumes that tables space SMALL.TS occupies 10 cylinders
and table space LARGE.TS occupies 100 cylinders. Both COPY statements use the SMALLTP template
which specifies a limit of 20 cylinders. Table space SMALL.TS is smaller than this limit so no switching
is performed. The output data set for table space SMALL.TS will be allocated on UNIT=SYSALLDA. Table
space LARGE.TS is larger than this limit so the template is switched to the LARGETP template. The output
data set for table space LARGE.TS will be allocated on UNIT=TAPE.

TEMPLATE LARGETP DSN &DB..&TS..D&DA..T&TI. UNIT=TAPE
TEMPLATE SMALLTP DSN &DB..&TS..D&DA..T&TI. UNIT=SYSALLDA LIMIT(20 CYL, LARGETP)
COPY TABLESPACE SMALL.TS COPYDDN(SMALLTP)
COPY TABLESPACE LARGE.TS COPYDDN(SMALLTP)

Example 12: Creating a template for image copy data sets on tape with LBI

The following TEMPLATE statement defines a template for a data set that is on tape and uses large block
interface (LBI) with a block size limit of 256 KB.

TEMPLATE COPY1_T1
 DSN 'DSNTDB2.P901.IMGC.&DB..&TS..P&PA(3,3)..D&JD.&HO.&MI.'
 UNIT(TAPE) STACK YES
 BLKSZLIM 256K

Example 13: Using template switching with LBI and the COPY utility

In the following example, assume that LARGE.TS is larger than the 20-cylinder limit that is specified in the
TEMPLATE statement for SMALLTP. Therefore, the image copy data set for LARGE.TS is switched from the
specified SMALLTP template to the LARGETP template. In this case, the output data set is on tape and
uses LBI with a block size limit of 256 KB.

TEMPLATE LARGETP
 DSN 'DSNTLDB2.P901.IMGC.&DB..&TS..P&PA(3,3)..D&JD.&HO.&MI.'
 UNIT(TAPE)
 BLKSZLIM 256K
TEMPLATE SMALLTP
 DSN 'DSNTSDB2.P901.IMGC.&DB..&TS..P&PA(3,3)..D&JD.&HO.&MI.'
 UNIT(SYSALLDA) LIMIT(20 CYL, LARGETP)
COPY TABLESPACE SMALL.TS COPYDDN(SMALLTP)
COPY TABLESPACE LARGE.TS COPYDDN(SMALLTP)

Chapter 34. TEMPLATE 775

776 Db2 12 for z/OS: Utility Guide and Reference

Chapter 35. UNLOAD
The UNLOAD online utility copies data from one or more source objects to one or more BSAM sequential
data sets in external formats. The output records that the UNLOAD utility writes are compatible as input to
the LOAD utility. Therefore, you can use this output to reload the original table or different tables.

Although the function of the UNLOAD utility is often referred to as unloading data, the data is not deleted
from the source object. The utility just makes a copy of the data. That copy includes the data only; it does
not include all of the pages, such as the system pages and header pages, that are included in an image
copy.

The source for UNLOAD can be Db2 table spaces or Db2 image copy data sets. The source cannot be a
concurrent copy or a FlashCopy image copy.

You can unload rows from an entire table space or select specific partitions or tables to unload. You can
also select columns by using the field specification list. If a table space is partitioned, you can unload
all of the selected partitions into a single data set. Alternatively, you can unload each partition in parallel
into physically distinct data sets, except for partition-by-growth (PBG) table spaces, which do not support
parallelism.

UNLOAD must be run on the system where the definitions of the table space and the table exist.

Output

UNLOAD generates an unloaded table space or partition.

Authorization required

To execute this utility, you must use a privilege set that includes one of the following authorities:

• Ownership of the tables
• UNLOAD privilege on the tables
• SELECT privilege on the tables (if the AUTH_COMPATIBILITY system parameter is set to the

SELECT_FOR_UNLOAD option)
• DBADM authority for the database. If the object on which the utility operates is in an implicitly created

database, DBADM authority on DSNDB04 or the implicitly created database is sufficient.
• DATAACCESS authority
• SYSADM authority
• SYSCTRL authority (catalog tables only)
• SQLADM authority (catalog tables only)
• System DBADM authority (catalog tables only)
• ACCESSCTRL authority (catalog tables only)
• SECADM authority (catalog tables only)

If you use RACF access control with multilevel security and UNLOAD is to process a table space that
contains a table that has multilevel security with row-level granularity, you must be identified to RACF and
have an accessible valid security label. Each row is unloaded only if your security label dominates the data
security label. If your security label does not dominate the data security label, the row is not unloaded,
but Db2 does not issue an error message.

Restrictions on running UNLOAD

© Copyright IBM Corp. 1983, 2024 777

• UNLOAD cannot be run on a table space during the period after RECOVER is run to a point in time before
materialization of pending definition changes and before REORG is run to complete the point-in-time
recovery process.

• A column in an ASCII or Unicode table cannot be unloaded as a Unicode column in an EBCDIC table. A
field specification for a Unicode column in an EBCDIC table includes CCSID 1200 or CCSID 1208.

Execution phases of UNLOAD

The UNLOAD utility operates in these phases:

1. UTILINIT initializes the environment.
2. UNLOAD unloads records to sequential data sets. One pass through the input data set is made. If

UNLOAD is processing a table space or partition, Db2 takes internal commits. These commits provide
commit points at which the utility can be restarted if the utility stops in this phase.

3. UTILTERM cleans up the environment.

Before running UNLOAD

If you plan to run UNLOAD on encrypted data, do not use the WHEN statement to filter encrypted fields;
UNLOAD cannot filter rows that contain encrypted data

If the table into which you are loading data has an index with these characteristics, the LOAD fails:

• The index was created on a VARBINARY column or a column with a distinct type that is based on a
VARBINARY data type.

• The index column has the DESC attribute.

To fix the problem, drop the index, or alter the column data type to BINARY, and then rebuild the index.

Data sets that UNLOAD uses

The following table lists the data sets that UNLOAD uses. The table lists the DD name that is used to
identify the data set, a description of the data set, and an indication of whether it is required. Include
statements in your JCL for each required data set and any optional data sets that you want to use.

Table 119. Data sets that UNLOAD uses

Data set Description Required?

SYSIN Input data set that contains the utility control
statement.

Yes

SYSPRINT Output data set for messages. Yes

SYSPUNCH One or more work data sets that contain the
generated LOAD statements for subsequently
reloading the data. The default DD name is
PUNCHDDN.

No1

Unload data set One or more work data sets that contain the
unloaded table rows. The default DD name is
SYSREC.

Yes

Note:

1. Required if you request that UNLOAD generate LOAD statements by specifying PUNCHDDN in the
utility control statement.

778 Db2 12 for z/OS: Utility Guide and Reference

The following object is named in the utility control statement and does not require a DD statement in the
JCL:

Table space
Table space that is to be unloaded. (If you want to unload only one partition of a table space, you must
specify the PART option in the control statement.)

Concurrency for UNLOAD

Db2 treats Individual data partitions as distinct source objects. Utilities that operate on different
partitions of the same table space are compatible.

Claims and drains for UNLOAD
The following table shows which claim classes UNLOAD drains and the restrictive states that the utility
sets.

Table 120. Claim classes of UNLOAD operations

Target UNLOAD UNLOAD PART

Table space or physical partition of a table space
with SHRLEVEL REFERENCE

DW/UTRO DW/UTRO

Table space or physical partition of a table space
with SHRLEVEL CHANGE

CR/UTRW CR/UTRW

Image copy* CR/UTRW CR/UTRW

Legend:

• DW: Drain the write claim class, concurrent access for SQL readers
• UTRO: Utility restrictive state, read-only access allowed
• CR: Claim read, concurrent access for SQL writers and readers
• UTRW: Utility restrictive state; read-write access allowed

Note: * If the target object is an image copy, the UNLOAD utility applies CR/UTRW to the corresponding
table space or physical partitions to prevent the table space from being dropped while data is being
unloaded from the image copy, even though the UNLOAD utility does not access the data in the table
space.

Compatibility for UNLOAD

The compatibility of the UNLOAD utility and the other utilities on the same target objects are shown in the
following table. If the SHRLEVEL REFERENCE option is specified, only SQL read operations are allowed
on the same target objects; otherwise SQL INSERT, DELETE, and UPDATE are also allowed. If the target
object is an image copy, INSERT, DELETE, and UPDATE are always allowed on the corresponding table
space. In any case, DROP or ALTER cannot be applied to the target object while the UNLOAD utility is
running.

Table 121. Compatibility of UNLOAD with other utilities

Action
UNLOAD SHRLEVEL
REFERENCE

UNLOAD SHRLEVEL
CHANGE FROM IMAGE COPY

CHECK DATA DELETE NO Yes Yes Yes

CHECK DATA DELETE
YES

No No No

Chapter 35. UNLOAD 779

Table 121. Compatibility of UNLOAD with other utilities (continued)

Action
UNLOAD SHRLEVEL
REFERENCE

UNLOAD SHRLEVEL
CHANGE FROM IMAGE COPY

CHECK INDEX Yes Yes Yes

CHECK LOB Yes Yes Yes

COPY INDEXSPACE Yes Yes Yes

COPY TABLESPACE Yes Yes Yes*

DIAGNOSE Yes Yes Yes

LOAD SHRLEVEL
CHANGE

No Yes Yes

LOAD SHRLEVEL NONE No No No

MERGECOPY Yes Yes No

MODIFY RECOVERY Yes Yes No

MODIFY STATISTICS Yes Yes Yes

QUIESCE Yes Yes Yes

REBUILD INDEX Yes Yes Yes

RECOVER (no options) No No No

RECOVER ERROR
RANGE

No No No

RECOVER TOCOPY or
TORBA

No No No

REORG INDEX Yes Yes Yes

REORG TABLESPACE
UNLOAD CONTINUE or
PAUSE

No No No

REORG TABLESPACE
UNLOAD ONLY or
EXTERNAL

Yes Yes Yes

REPAIR DUMP or VERIFY Yes Yes Yes

REPAIR LOCATE INDEX
PAGE REPLACE

Yes Yes Yes

REPAIR LOCATE KEY or
RID DELETE or REPLACE

No No No

REPAIR LOCATE
TABLESPACE PAGE
REPLACE

No No No

REPORT Yes Yes Yes

RUNSTATS INDEX Yes Yes Yes

RUNSTATS TABLESPACE Yes Yes Yes

STOSPACE Yes Yes Yes

780 Db2 12 for z/OS: Utility Guide and Reference

Table 121. Compatibility of UNLOAD with other utilities (continued)

Action
UNLOAD SHRLEVEL
REFERENCE

UNLOAD SHRLEVEL
CHANGE FROM IMAGE COPY

Note: If the same data set is used as the output from the COPY utility and as the input data set of the
UNLOAD utility, unexpected results can occur.

UNLOAD utility syntax and options
See “Syntax and options of the UNLOAD control statement ” on page 781.

Termination or restart of UNLOAD

If you terminate UNLOAD by using the TERM UTILITY command during the unload phase, the output
records are not erased. The output data set remains incomplete until you either delete it or restart the
utility job.

When the source is one or more table spaces, you can restart the UNLOAD job at the partition level or at
the table space level when data is unloaded from multiple table spaces by using the LIST option. When
you restart a terminated UNLOAD job, processing begins with the table spaces or partitions that had not
yet been completed. For a table space or partitions that were being processed at termination, UNLOAD
resets the output data sets and processes those table space or partitions again.

When the source is one or more image copy data sets (when FROMCOPY or FROMCOPYDDN is specified),
UNLOAD always starts processing from the beginning.

Related concepts
Multilevel security (Managing Security)

Syntax and options of the UNLOAD control statement
The UNLOAD utility control statement, with its multiple options, defines the function that the utility job
performs.

You can create a control statement with the ISPF/PDF edit function. After creating it, save it in a
sequential or partitioned data set. When you create the JCL for running the job, use the SYSIN DD
statement to specify the name of the data set that contains the utility control statement.

Syntax diagram

UNLOAD DATA FROM-TABLE-spec

FROM-TABLE-spec

source-spec

FROM-TABLE-spec

LIST listdef-name

unload-spec

CLONE

source-spec

Chapter 35. UNLOAD 781

https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_mls.html

TABLESPACE

database-name .

tablespace-name

PART integer

int1 : int2

FROMCOPY data-set-name

FROMVOLUME CATALOG

vol-ser

FROMSEQNO n

FROMCOPYDDN ddname

unload-spec

782 Db2 12 for z/OS: Utility Guide and Reference

PUNCHDDN SYSPUNCH

PUNCHDDN ddname

template-name

UNLDDN SYSREC

UNLDDN ddname

template-name

EBCDIC

ASCII

UNICODE
CCSID(

,

 integer)

NOSUBS

NOPAD

SPANNED NO

SPANNED YES FORMAT INTERNAL

DELIMITED

COLDEL ' , '

COLDEL coldel

CHARDEL ' " '

CHARDEL chardel

DECPT ' . '

DECPT decpt

FLOAT S390

FLOAT IEEE

MAXERR 1

MAXERR integer

SHRLEVEL CHANGE ISOLATION CS

SHRLEVEL CHANGE ISOLATION CS SKIP LOCKED DATA

SHRLEVEL CHANGE ISOLATION UR
REGISTER YES

REGISTER NO

SHRLEVEL REFERENCE

DECFLOAT_ROUNDMODE ROUND_CEILING

ROUND_DOWN

ROUND_FLOOR

ROUND_HALF_DOWN

ROUND_HALF_EVEN

ROUND_HALF_UP

ROUND_UP

IMPLICIT_TZ ' timezone-string '

PARALLEL 0

PARALLEL num-subtasks

FROM-TABLE-spec: The syntax diagram and option descriptions for the FROM-TABLE-spec are presented
in the section “FROM-TABLE-spec syntax diagram and option descriptions” on page 793.

Option descriptions

Chapter 35. UNLOAD 783

DATA
Identifies the data that is to be selected for unloading with table-name in the from-table-spec. The
DATA keyword is mutually exclusive with TABLESPACE, PART, and LIST keywords.

When you specify the DATA keyword, or you omit either the TABLESPACE or the LIST keyword, you
must also specify at least one FROM TABLE clause.

TABLESPACE
Specifies the table space (and, optionally, the database to which it belongs) from which the data is to
be unloaded.
database-name

The name of the database to which the table space belongs. The name cannot be DSNDB01 or
DSNDB07.

The default value is DSNDB04.

tablespace-name
The name of the table space from which the data is to be unloaded. The specified table space
must not be a LOB or XML table space.

PART
Identifies a partition or a range of partitions from which the data is to be unloaded. This keyword
applies only if the specified table space is partitioned. You cannot specify PART with LIST. The
maximum is 4096.
integer

Designates a single partition. integer must identify an existing physical partition number within
the table space.

int1:int2
Designates a range of partitions from physical partition number int1 to physical partition
number int2. int1 must be a positive integer that is less than the highest partition number
within the table space. int2 must be an integer that is greater than int1 and less than or equal
to the highest partition number.

If no PART keyword is specified in an UNLOAD control statement, the data from the entire table
space is unloaded into a single unload data set.

FROMCOPY data-set-name
Indicates that data is to be unloaded from an image copy data set. When you specify FROMCOPY,
the UNLOAD utility processes only the specified image copy data set. Alternatively, you can use the
FROMCOPYDDN keyword where multiple image copy data sets can be concatenated under a single DD
name.
data-set-name

The name of the image copy data set. You can find this name in the DSNAME field in
SYSIBM.SYSCOPY.

Related information:

“Unloading data from image copy data sets” on page 819

FROMVOLUME
Identifies the volume where the image copy data set resides.
CATALOG

Indicates that the data set is cataloged. Use this option only for an image copy that was created as
a cataloged data set, which means that its volume serial is not recorded in SYSIBM.SYSCOPY (the
DSVOLSER column in the SYSCOPY record is blank).

vol-ser
Identifies the data set by an alphanumeric volume serial identifier of its first volume. Use this
option only for an image copy that was created as a non-cataloged data set.

784 Db2 12 for z/OS: Utility Guide and Reference

You can find the volume serial identifier in the DSVOLSER column in SYSIBM.SYSCOPY. For a data
set that is stored on multiple tape volumes, specify the first DSVOLSER value in the SYSCOPY
record.

FROMSEQNO n
Identifies the image copy data set by its file sequence number.

If SYSIBM.SYSCOPY contains multiple records that match the specified image copy data
set name and volume serial number, specify FROMSEQNO to ensure that UNLOAD uses the
correct image copy. Otherwise, UNLOAD uses the file sequence number of the first matching
image copy that it finds in SYSIBM.SYSCOPY.

n
Specifies the file sequence number. You can find this number in the FILESEQNO column in
SYSIBM.SYSCOPY.

FROMCOPYDDN ddname
Indicates that data is to be unloaded from one or more image copy data sets that are associated
with the specified ddname. Multiple image copy data sets (primarily for the copy of pieces) can be
concatenated under a single DD name.
ddname

Identifies a DD name with which one or more image copy data sets are associated.

Related information:

“Unloading data from image copy data sets” on page 819

LIST listdef-name
Identifies the name of a list of objects that are defined by a LISTDEF utility control statement. The list
can include table spaces, index spaces, databases, a tables, an index, and partitions. The list cannot
include index spaces, LOB table spaces, and directory objects. You cannot use the LIST option to
specify image copy data sets.

When you specify the LIST option, the referenced LISTDEF identifies:

• The table spaces from which the data is to be unloaded. You can use the pattern-matching feature
of LISTDEF.

• The partitions (if a table space is partitioned) from which the data is to be unloaded (defined by the
INCLUDE, EXCLUDE, and PARTLEVEL keywords in the LISTDEF statement).

The UNLOAD utility associates a single table space with one output data set, except when partition-
parallelism is activated. When you use the LIST option with a LISTDEF that represents multiple table
spaces, you must also define a data set TEMPLATE that corresponds to all of the table spaces and
specify the template-name in the UNLDDN option.

If you want to generate the LOAD statements, you must define another TEMPLATE for the PUNCHDDN
data set that is similar to UNLDDN. Db2 then generates a LOAD statement for each table space. This
utility will only process clone data if the CLONE keyword is specified. The use of CLONED YES on the
LISTDEF statement is not sufficient.

The partitions or partition ranges can be specified in a list.

PUNCHDDN
Specifies the DD name for a data set or a template name that defines one or more data set names that
are to receive the LOAD utility control statements that the UNLOAD utility generates.
ddname

Specifies the DD name.

The default value is SYSPUNCH.

template-name
Identifies the name of a data set template that is defined by a TEMPLATE utility control statement.

Chapter 35. UNLOAD 785

If the specified name is defined both as a DD name (in the JCL) and as a template name (in a
TEMPLATE statement), it is treated as the DD name.

When you run the UNLOAD utility for multiple table spaces and you want to generate corresponding
LOAD statements, you must have multiple output data sets that correspond to the table spaces so
that Db2 retains all of the generated LOAD statements. In this case, you must specify an appropriate
template name to PUNCHDDN. If you omit the PUNCHDDN specification, the LOAD statements are not
generated.

If the partition variable (&PART. or &PA.) is included in a TEMPLATE for PUNCHDDN, Db2 replaces the
&PART. or &PA variable with the lowest partition number in the list of partitions to be unloaded. The
partition number is in the form nnnnn.

UNLDDN
Specifies the DD name for a data set or a template name that defines one or more data set names into
which the data is to be unloaded.
ddname

Specifies the DD name.

The default value is SYSREC.

template-name
Identifies the name of a data set template that is defined by a TEMPLATE utility control statement.

If the specified name is defined both as a DD name (in the JCL) and as a template name (in a
TEMPLATE statement), it is treated as the DD name.

When you run the UNLOAD utility for a partitioned table space, the selected partitions are unloaded in
parallel if the following conditions are true:

1. You specify a template name for UNLDDN.
2. The template data set name contains the partition as a variable (&PART. or &PA.) without substring

notation. This template name is expanded into multiple data sets that correspond to the selected
partitions.

3. The TEMPLATE control statement does not contain all of the following options:

• STACK(YES)
• UNIT(TAPE)
• An UNCNT value that is less than or equal to one.

If conditions 1 and 2 are true, but condition 3 is false, partition parallelism is not activated and all
output data sets are stacked on one tape.

Db2 cannot do parallel UNLOAD operations for partitions if you use substring notation for the partition
variable (&PART. or &PA.) in the DSN argument, because the data set name might not be unique for
all partitions. Therefore, Db2 uses a single UNLDDN data set for all partitions. This action might cause
duplicate data set errors on subsequent UNLOAD jobs for other partitions of the same table space.

When you run the UNLOAD utility for multiple table spaces, the output records are placed in data sets
that correspond to the respective table spaces. Therefore the output data sets must be physically
distinctive, and you must specify an appropriate template name to UNLDDN. If you omit the UNLDDN
specification, the SYSREC DD name is not used, and an error occurs.

If the partition variable (&PART. or &PA.) is included in the TEMPLATE DSN statement when partition
parallelism is not applicable (when the source is non-partitioned or a partition-by-growth table space
or FROMCOPY, FROMCOPYDDN, or SPANNED YES is specified), message DSNU1252I is issued.

EBCDIC
Specifies that all output data of the character type is to be in EBCDIC. If a different encoding scheme
is used for the source data, the data (except for bit strings) is converted into EBCDIC.

If you do not specify EBCDIC, ASCII, UNICODE, or CCSID, the encoding scheme of the source data is
preserved.

786 Db2 12 for z/OS: Utility Guide and Reference

See the description of the CCSID option for this utility.

ASCII
Specifies that all output data of the character type is to be in ASCII. If a different encoding scheme is
used for the source data, the data (except for bit strings) is converted into ASCII.

If you do not specify EBCDIC, ASCII, UNICODE, or CCSID, the encoding scheme of the source data is
preserved.

See the description of the CCSID option for this utility.

UNICODE
Specifies that all output data of the character type (except for bit strings) is to be in Unicode. If a
different encoding scheme is used for the source data, the data is converted into Unicode.

If you do not specify EBCDIC, ASCII, UNICODE, or CCSID, the encoding scheme of the source data is
preserved.

See the description of the CCSID option of this utility.

CCSID(integer1,integer2,integer3)
Specifies up to three coded character set identifiers (CCSIDs) that are to be used for the data of
character type in the output records, including data that is unloaded in the external character formats.

integer1 specifies the CCSID for SBCS data. integer2 specifies the CCSID for mixed data. integer3
specifies the CCSID for DBCS data. This option is not applied to data with a subtype of BIT.

If you specify both FORMAT DELIMITED and UNICODE, all output data is in CCSID 1208, UTF-8; any
other specified CCSID is ignored.

The following specifications are also valid:

CCSID(integer1)
Indicates that only an SBCS CCSID is specified.

CCSID(integer1,integer2)
Indicates that an SBCS CCSID and a mixed CCSID are specified.

integer
Specifies either a valid CCSID or 0.

If you specify a value of 0 for one of the arguments or omit a value, the encoding scheme that is
specified by EBCDIC, ASCII, or UNICODE is assumed for the corresponding data type (SBCS, MIXED,
or DBCS).

If you do not specify EBCDIC, ASCII, or UNICODE:

• If the source data is of character type, the original encoding scheme is preserved. When CCSID is
not specified in a field specification, the CCSID of the column is preserved.

• For character strings that are converted from numeric, date, time, or timestamp data, the default
encoding scheme of the table is used. For more information, see the CCSID option of the CREATE
TABLE statement in

If you specify EBCDIC, ASCII, or UNICODE, the CCSIDs specified for SBCS, DBCS, and MIXED must be
valid CCSIDs for the specified encoding scheme, or 0.

When a CCSID conversion is requested, CCSID character substitutions can occur in the output string.
Use the NOSUBS option to prevent possible character substitutions during CCSID conversion.

NOSUBS
Specifies that CCSID code substitution is not to be performed during unload processing.

When a string is converted from one CCSID to another (including EBCDIC, ASCII, and Unicode), a
substitution character is sometimes placed in the output string. For example, this substitution occurs
when a character (referred to as a code point) that exists in the source CCSID does not exist in the
target CCSID. You can use the NOSUBS keyword to prevent the UNLOAD utility from allowing this
substitution.

Chapter 35. UNLOAD 787

If you specify the NOSUBS keyword and character substitution is attempted while data is being
unloaded, this action is treated as a conversion error. The record with the error is not unloaded, and
the process continues until the total error count reaches the number that is specified by MAXERR.

NOPAD
Specifies that the variable-length columns in the unloaded records are to occupy the actual data
length without additional padding. As a result, the unloaded or discarded records might have varying
lengths. If XML columns are unloaded without the use of file reference variables, NOPAD is the
default.

When you do not specify NOPAD:

• Default UNLOAD processing pads variable-length columns in the unloaded records to their
maximum length, and the unloaded records have the same length for each table.

• The padded data fields are preceded by the length fields that indicate the size of the actual data
without the padding.

• When the output records are reloaded with the LOAD utility, padded data fields are treated as
varying-length data.

If you specify DELIMITED, the NOPAD option is the default for variable-length columns. For fixed-
length columns, the normal padding rules apply.

Although LOAD processes records with variable-length columns that are unloaded or discarded by
using the NOPAD option, these records cannot be processed by applications that process only fields
in fixed positions. For example, the LOAD statement that is generated for the EMP sample table would
look similar to the LOAD statement that is generated by the REORG TABLESPACE utility with the
NOPAD option. See “ NOPAD ” on page 553.

SPANNED
Indicates whether records are to be unloaded into a VBS data set in spanned record format.
YES

Records are to be unloaded in spanned record format.

When you specify SPANNED YES, the source object and UNLOAD statement must satisfy the
following requirements:

• The source table must have at least one XML or LOB column. If the table does not have any XML
or LOB columns, SPANNED YES is ignored.

• If you specify multiple FROM TABLE statements to unload multiple tables, all tables must
contain at least one LOB or XML column. Otherwise, none of the tables are unloaded in spanned
record format.

• The UNLOAD statement must include a field specification list that specifies all LOB and XML data
at the end of the record. The data type must be specified for the LOB and XML columns. Do not
include a length or POSITION value for the LOB and XML columns. If no field specifications are
included or the data type is not included in the field specification, SPANNED YES is ignored.

• Do not specify the following options with SPANNED YES:

– DELIMITED
– FROMCOPY or FROMCOPYDDN
– LIST (If you specify LIST, SPANNED YES is ignored.)

In the cases where SPANNED YES is ignored, the unload data set is created with VB (variable-
length blocked) record format, which does not allow records that are greater than 32 KB.

When you specify SPANNED YES, UNLOAD also takes the following actions:

• Ignores the RECFM attribute of the data set.
• Uses the NOPAD option.
• Ignores the TRUNCATE option.
• Ignores large block interface (LBI) if used by any output data sets.

788 Db2 12 for z/OS: Utility Guide and Reference

If you also specify PUNCHDDN, the generated LOAD statement lists the LOB and XML data in a
field specification list in the same order as the UNLOAD field specification list.

NO
Records are not to be unloaded in spanned record format.

Related information:

“Unloading data in spanned record format” on page 817
Large Block Interface (LBI) (z/OS DFSMS Using Data Sets)

FORMAT INTERNAL
Specifies that the output record format is Db2 internal format. UNLOAD does no field procedure
processing, data conversion, or CCSID conversion on the data. If the UNLOAD control statement
contains a field specification, it is ignored.

When FORMAT INTERNAL is specified:

• UNLOAD does not unload data for LOB or XML columns. UNLOAD issues a warning message that
indicates that LOB or XML data was not unloaded.

• UNLOAD does not add trailing blanks to output from variable-length columns.
• UNLOAD decompresses the data and does decoding that is specified by edit procedures.
• UNLOAD ignores any field specifications in the UNLOAD utility control statement.

Restrictions:

• Data that is unloaded with FORMAT INTERNAL should be loaded only into the same table, or
into a table that exactly matches the unloaded table definition, including having the same field
procedures.

• FORMAT INTERNAL cannot be specified with any of the following options:

– ASCII
– CCSID
– DECFLOAT_ROUNDMODE
– DELIMITED
– EBCDIC
– FLOAT
– HEADER
– NOPAD
– NOSUBS
– UNICODE

DELIMITED
Specifies that the output data file is in a delimited format. When data is in a delimited format, all fields
in the output data set are character strings or external numeric values. In addition, each column in a
delimited file is separated from the next column by a column delimiter character.

For each of the delimiter types that you can specify, you must ensure that the delimiter character
is specified in the code page of the target data. The delimiter character can be specified as either
a character or hex constant. For example, to specify # as the delimiter, you can specify either
COLDEL '#' or COLDEL X'23'. If the utility statement is coded in a character type that is different
from the output file, such as a utility statement that is coded in EBCDIC and output data that is in
Unicode, specify the delimiter character in the utility statement as a hex constant, or the result is
unpredictable.

You cannot specify the same character for more than one type of delimiter (COLDEL, CHARDEL, and
DECPT).

If you specify the FORMAT DELIMITED option:

Chapter 35. UNLOAD 789

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idad400/lbi99999.htm

• You cannot specify HEADER CONST or use any of the multiple FROM TABLE statements.
• UNLOAD ignores any specified POSITION statements within the UNLOAD utility control statement.
• UNLOAD does not unload data from EBCDIC tables with Unicode columns.

For delimited output, UNLOAD does not add trailing padded blanks to variable-length columns, even
if you do not specify the NOPAD option. For fixed-length columns, the normal padding rules apply.
For example, if a VARCHAR(10) field contains ABC, UNLOAD DELIMITED unloads the field as "ABC".
However, for a CHAR(10) field that contains ABC, UNLOAD DELIMITED unloads it as "ABC ".

For information about using delimited output and delimiter restrictions, see “Unloading delimited
files” on page 826. For more information about delimited files see Appendix G, “Delimited file
format,” on page 1061.
COLDEL

Specifies the column delimiter that is used in the output file. The default is a comma (,). For most
ASCII and UTF-8 data, this value is X'2C', and for most EBCDIC data, this value is a X'6B'.

CHARDEL
Specifies the character string delimiter that is used in the output file. The default is a double
quotation mark ("). For most ASCII and UTF-8 data, this value is X'22', and for most EBCDIC data,
this value is X'7F'.

The UNLOAD utility adds the CHARDEL character before and after every character string. To
delimit character strings that contain the character string delimiter, the UNLOAD utility repeats the
character string delimiter where it used in the character string. The LOAD utility then interprets
any pair of character delimiters that are found between the enclosing character delimiters as a
single character. For example, the phrase what a “nice warm” day is unloaded as “what a
““nice warm”” day”, and LOAD interprets it as what a “nice warm” day. The UNLOAD
utility recognizes these character pairs for only CHAR, VARCHAR, and CLOB fields.

DECPT
Specifies the decimal point character that is used in the output file. The default is a period (.). For
most ASCII and UTF-8 data, this value is X'2E', and for most EBCDIC data, this value is X'4B'.

FLOAT
Specifies the output format of the numeric floating-point data. This option applies to the binary output
format only.
S390

Indicates that the binary floating point data is written to the output records in the S/390® internal
format (also known as the hexadecimal floating point, or HFP).

IEEE
Indicates that the binary floating-point data is written to the output records in the IEEE format
(also known as the binary floating point, or BFP).

MAXERR integer
Specifies the maximum number of records in error that are to be allowed; the unloading process
terminates when this value is reached.
integer

Specifies the number of records in error that are allowed. When the error count reaches this
number, the UNLOAD utility issues message DSNU1219 and terminates with return code 8.

The default value is 1, which indicates that UNLOAD stops when the first error is encountered. If
you specify 0 or any negative number, execution continues regardless of the number of records
that are in error.

If multiple table spaces are being processed, the number of records in error is counted for each table
space. If the LIST option is used, you can add OPTION utility control statement (EVENT option with
ITEMERROR) before the UNLOAD statement to specify that the table space in error is to be skipped
and the subsequent table spaces are to be processed.

The MAXERR option is ignored when the UNLOAD utility encounters errors that prevent it from
continuing to process data. For example, if you receive message DSNU283I, SQLCODE -452, and

790 Db2 12 for z/OS: Utility Guide and Reference

reason code 7 when unloading LOB or XML data using file reference variables, the UNLOAD utility
terminates regardless of what you specified for MAXERR.

SHRLEVEL
Specifies whether other processes can access or update the table space or partitions while the data is
being unloaded.

UNLOAD ignores the SHRLEVEL specification when the source object is an image copy data set.

The default value is SHRLEVEL CHANGE ISOLATION CS.

CHANGE
Specifies that rows can be read, inserted, updated, and deleted from the table space or partition
while the data is being unloaded.
ISOLATION

Specifies the isolation level with SHRLEVEL CHANGE.
CS

Indicates that the UNLOAD utility is to read rows in cursor stability mode. With CS, the
UNLOAD utility assumes CURRENTDATA(NO).

UR
Indicates that uncommitted rows, if they exist, are to be unloaded. The unload operation is
performed with minimal interference from the other Db2 operations that are applied to the
objects from which the data is being unloaded.

SKIP LOCKED DATA
Specifies that the UNLOAD utility is to skip rows on which incompatible locks are held by other
transactions. This option applies to a row level or page level lock.

REGISTER
Specifies whether, when ISOLATION UR and SHRLEVEL CHANGE behaviors are in effect, pages
that are read by the UNLOAD utility in a data sharing environment are registered with the
coupling facility. The default is REGISTER YES.
NO

Indicates that pages that are read by the UNLOAD utility are not registered with the
coupling facility. Use of this option reduces data sharing overhead because only data that
is written to disk is unloaded. However, it might cause UNLOAD utility processing to miss
data changes that are present in the group or local buffer pools. The missed data changes
can result in reduced data currency in the result data set.

YES
Indicates that pages that are read by the UNLOAD utility are registered with the coupling
facility.

REFERENCE
Specifies that during the unload operation, rows of the tables can be read, but cannot be inserted,
updated, nor deleted by other Db2 threads.

When you specify SHRLEVEL REFERENCE, the UNLOAD utility drains writers on the table space
from which the data is to be unloaded. When data is unloaded from multiple partitions, the drain
lock is obtained for all of the selected partitions in the UTILINIT phase.

DECFLOAT_ROUNDMODE
Specifies the rounding mode to be used when DECFLOATs are manipulated. The following rounding
modes are supported:
ROUND_CEILING

Round toward +infinity. The discarded digits are removed if they are all zero or if the sign is
negative. Otherwise, the result coefficient should be incremented by 1 (rounded up).

ROUND_DOWN
Round toward 0 (truncation). The discarded digits are ignored.

Chapter 35. UNLOAD 791

ROUND_FLOOR
Round toward -infinity. The discarded digits are removed if they are all zero or positive. Otherwise,
the sign is negative and the result coefficient should be incremented by 1 (rounded up).

ROUND_HALF_DOWN
Round to the nearest number. If equidistant, round down. If the discarded digits are greater than
0.5, the result coefficient should be incremented by 1 (rounded up). The discarded digits are
ignored if they are 0.5 or less.

ROUND_HALF_EVEN
Round to the nearest number. If equidistant, round so that the final digit is even. If the discarded
digits are greater than .05, the result coefficient should be incremented by 1 (rounded up). The
discarded digits are ignored if they are less than 0.5. If the result coefficient is .05 and the
rightmost digit is even, the result coefficient is not altered. If the result coefficient is .05 and the
rightmost digit is odd, the result coefficient should be incremented by 1 (rounded up).

ROUND_HALF_UP
Round to nearest. If equidistant, round up. If the discarded digits are greater than or equal to 0.5,
the result coefficient should be incremented by 1 (rounded up). Otherwise the discarded digits are
ignored.

ROUND_UP
Round away from 0. If all of the discarded digits are 0, the result is unchanged. Otherwise, the
result coefficient should be incremented by 1 (rounded up).

If the user does not specify DECFLOAT_ROUNDMODE, the default value of the
DECFLOAT_ROUNDMODE option is DECFLOAT ROUNDING MODE from the DECP.

IMPLICIT_TZ
Specifies the implicit time zone to use when timestamp values are being unloaded from a TIMESTAMP
column with no time zone, and the field specification for the column is TIMESTAMP WITH TIME ZONE
EXTERNAL.
'timezone-string'

Specifies the implicit time zone value. The time zone is the difference (in hours and minutes)
between local time and UTC. The range of the hour component is -12 to 14, and the minute
component is 00 to 59. The time zone is specified in the form ±th:tm, with values ranging from
-12:59 to +14:00.

IMPLICIT_TZ is a required keyword when the unload timestamp without time zone column to a
timestamp with time zone column is used.

PARALLEL

Specifies the maximum number of subtasks that are to be used in parallel to process the unloading of
a partitioned table space. If the PARALLEL keyword is omitted, the maximum number of subtasks is
limited by the number of partitions being unloaded.

(num-subtasks)

Specifies the maximum number of subtasks that are to be processed in parallel. The value must
be an integer between 0 and 32767, inclusive. If the specified value for num-subtasks is greater
than 32767, the UNLOAD statement fails. If 0 or no value is specified for num-subtasks, the
UNLOAD utility uses the optimal number of parallel subtasks after applying constraints. If the
specified value for num-subtasks is greater than the calculated optimal number, the UNLOAD
utility limits the number of parallel subtasks to the optimal number.

The specified number of subtasks for PARALLEL always overrides the specification of the
PARAMDEG_UTIL subsystem parameter, so PARALLEL can be smaller or larger than the value
of PARAMDEG_UTIL.

CLONE
Indicates that UNLOAD is to unload data from only clone tables in the specified table spaces. This
utility will only process clone data if the CLONE keyword is specified. The use of CLONED YES on the

792 Db2 12 for z/OS: Utility Guide and Reference

LISTDEF statement is not sufficient. If you specify the name of the clone table in the FROM TABLE
clause, you do not need to specify the CLONE keyword.

FROM-TABLE-spec syntax diagram and option descriptions

More than one table or partition for each table space can be unloaded with a single invocation of the
UNLOAD utility. One FROM TABLE statement for each table that is to be unloaded is required to identify:

• A table name from which the rows are to be unloaded
• A field to identify the table that is associated with the rows that are to be unloaded from the table by

using the HEADER option
• Sampling options for the table rows
• A list of field specifications for the table that is to be used to select columns that are to be unloaded
• Selection conditions, specified in the WHEN clause, that are to be used to qualify rows that are to be

unloaded from the table

All tables that are specified by FROM TABLE statements must belong to the same table space. If rows
from specific tables are to be unloaded, a FROM TABLE clause must be specified for each source table. If
you do not specify a FROM TABLE clause for a table space, all the rows of the table space are unloaded.

Use a list of field specifications to specify the following characteristics:

• Column selection. Specifies the column names of a table that is to be unloaded. If a list of field
specifications is given, only the listed columns are unloaded.

• Column ordering. Specifies the order of fields that are to be placed in the output records. If a list of field
specifications is given, data of the listed columns is unloaded in the order of listed column names.

• Output field attributes and format. Specifies the data type, length, and format of the data in the output
records.

If you omit a list of field specifications, all columns of the source table are unloaded in the defined column
order for the table. The default output field types that correspond to the data types of the columns are
used.

When unloading XML or LOB columns to a VBS data set, the LOB and XML values are written at the end of
the record in their column definition order, as specified by the required field specification list. This order is
the same order that the LOAD utility uses when reading XML and LOB values from a VBS data set.

In a FROM TABLE clause, you can use parentheses in only two situations: to enclose the entire field
selection list, and in a WHEN selection clause. This usage avoids potential conflict between the keywords
and field-names that are used in the field selection list. A valid sample of a FROM TABLE clause
specification follows:

UNLOAD …
 FROM TABLE tablename SAMPLE x (c1,c2) WHEN (c3>0)

You cannot specify FROM TABLE if the LIST option is already specified.

FROM-TABLE-spec

Chapter 35. UNLOAD 793

FROM TABLE table-name
HEADER OBID

HEADER NONE

CONST ' string '

X' hex-string '

SAMPLE decimal LIMIT integer

(

,

field-specification)

WHEN (selection condition)

field-specification

794 Db2 12 for z/OS: Utility Guide and Reference

field-name

POSITION(*)

POSITION( start)

CHAR

( length) TRUNCATE

CCSID 1208

CLOBF spec

CCSID 1208

VARCHAR

( length) strip spec

CCSID 1208

CLOBF spec

CCSID 1208

GRAPHIC

EXTERNAL

CCSID 1200

( length) TRUNCATE

VARGRAPHIC

( length)

strip spec

CCSID 1200

SMALLINT

INTEGER

EXTERNAL

( length)

BIGINT

BINARY

( length) TRUNCATE

VARBINARY

BINARY VARYING

strip spec

DECIMAL
PACKED

ZONED

EXTERNAL ( length
,0

, scale

)

FLOAT

EXTERNAL ( length)

DOUBLE

REAL

DATE EXTERNAL

( length)

TIME EXTERNAL

( length)

TIMESTAMP EXTERNAL

( length)

TIMESTAMP WITH TIME ZONE EXTERNAL

( length)

CONSTANT ' string '

X' hex-string '

ROWID

BLOB

( length) TRUNCATE

CLOB

( length) TRUNCATE CCSID 1208

DBCLOB

( length) TRUNCATE CCSID 1200

decfloat spec

XML

BINARYXML

CLOBF spec

Chapter 35. UNLOAD 795

DBCLOBF

CCSID 1200

CLOBF

CCSID 1208

BLOBF

template-name

BINARYXML

strip spec

STRIP
BOTH

TRAILING

LEADING
' strip-char '

1

X' strip-char '

TRUNCATE

decfloat spec

DECFLOAT

(34)

(16)

EXTERNAL

( length)

selection condition

predicate

(selection condition) AND

OR

predicate

(selection condition)

predicate
basic predicate

BETWEEN predicate

IN predicate

LIKE predicate

NULL predicate

basic predicate
column-name =

<>

>

<

>=

<=

constant

labeled-duration-expression

BETWEEN predicate
column-name

NOT

BETWEEN constant

labeled-duration-expression

AND

constant

labeled-duration-expression

796 Db2 12 for z/OS: Utility Guide and Reference

IN predicate

column-name

NOT

IN (

,

constant)

LIKE predicate
column-name

NOT

LIKE string-constant

ESCAPE string-constant

NULL predicate
column-name IS

NOT

NULL

labeled-duration-expression
CURRENT_DATE

CURRENT_TIMESTAMP

WITH TIME ZONE

 +
 -

constant YEAR

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

Notes:
1 If you specify VARGRAPHIC, BINARY, or VARBINARY, you cannot specify 'strip-char'. You can specify only
X'strip-char'.

Option descriptions for FROM TABLE

table-name
Identifies a Db2 table from which the rows are to be unloaded and to which the options in the FROM
TABLE clause are to be applied.

If the table name is not qualified by a schema name, the authorization ID of the invoker of the utility
job step is used as the schema qualifier of the table name. Enclose the table name in quotation marks
if the name contains a blank.

Chapter 35. UNLOAD 797

If you specify a dropped table on the FROM TABLE option, the UNLOAD utility terminates with return
code 4.

HEADER
Specifies a constant header field, at the beginning of the output records, that can be used to associate
an output record with the table from which it was unloaded.

If you specify a header field, it is used as the field selection criterion of the WHEN clause (a part of the
INTO-TABLE specification) in the LOAD statement that is generated.

OBID
Specifies that the object identifier (OBID) for the table (a 2-byte binary value) is to be placed in the
first 2 bytes of the output records that are unloaded from the table.

If you omit the HEADER option, HEADER OBID is the default, except for delimited files.

With HEADER OBID, the first 2 bytes of the output record cannot be used by the unloaded data.
For example, consider the following UNLOAD statement:

UNLOAD …
 FROM TABLE table-name HEADER OBID …

The preceding UNLOAD statement generates a LOAD statement that is similar to the following
example:

LOAD …
 INTO TABLE table-name WHEN (1:2)=X'hh' …

In this example, X'hh' is the hexadecimal notation of the OBID of table table-name.

NONE
Indicates that no record header field is to be created. HEADER NONE is the default value for a
delimited file.

If HEADER NONE is specified in a FROM TABLE clause, the corresponding INTO TABLE clause
in the generated LOAD statement does not have a WHEN specification. Therefore, if rows from
multiple tables are unloaded and HEADER NONE is specified in one or more FROM TABLE clauses,
rows that are unloaded from those tables are not able to be reloaded until you edit the generated
LOAD statement. If you use the generated statement directly with the LOAD utility, the results
might be unpredictable.

CONST
Specifies that a constant string is to be used as the record header. The given string operand
determines the length of the header field. The string value must be enclosed by a pair of single
quote characters.

For example, consider the following UNLOAD statement:

UNLOAD …
 FROM TABLE table-name HEADER CONST 'abc' …

The preceding UNLOAD statement generates a LOAD statement that is similar to the following
example:

LOAD …
 INTO TABLE table-name WHEN (1:3)='abc' …

In this example, the given string is assumed to be in SBCS EBCDIC format. The output string of
the HEADER field is in the specified or the default encoding scheme. If the encoding scheme that
is used for output is not EBCDIC, the SBCS CCSID conversion is applied to the given string before
it is placed in the output records. If the output SBCS encoding scheme is not EBCDIC, the WHEN
condition in the generated LOAD statement contains a hexadecimal string.

798 Db2 12 for z/OS: Utility Guide and Reference

You can also use the hexadecimal form, X'hex-string', to represent a string constant. If you
want to specify a CONST string value in an encoding scheme other than SBCS EBCDIC, use the
hexadecimal form. No CCSID conversion is performed if the hexadecimal form is used.

SAMPLE decimal
Indicates that only sampled rows of the table are to be unloaded. If selection conditions are specified
by a WHEN clause within the same FROM TABLE clause, sampling is applied to the rows that are
qualified by the WHEN selection conditions.
decimal

Specifies the percentage of the rows that are to be sampled in the decimal format. The precision is
ddd.dddd, and the valid range is 0 <= decimal <= 100.

If the number of rows to which the sampling is to be applied is N:

• decimal × N / 100 rows are unloaded. (The fraction might be rounded to the nearest whole
number.)

• If decimal > 0 and N > 0, at least one row is unloaded.
• If decimal = 100, all rows from the table are unloaded.
• If the given decimal = 0 or N = 0, no row is unloaded from the table.

The sampling is applied for each individual table. If the rows from multiple tables are unloaded with
sampling enabled, the referential integrity between the tables might be lost.

LIMIT integer
Specifies the maximum number of rows that are to be unloaded from a table. If the number of
unloaded rows reaches the specified limit, message DSNU1201 is issued for the table, and no more
rows are unloaded from the table. The process continues to unload qualified rows from the other
tables.

When partition parallelism is activated, the LIMIT option is applied to each partition instead of to the
entire table.

integer
Indicates the maximum number of rows that are to be unloaded from a table. If the specified
number is less than or equal to zero, no row is unloaded from the table.

Like the SAMPLE option, if multiple tables are unloaded with the LIMIT option, the referential integrity
between the tables might be lost.

field-name
Identifies a column name that must exist in the source table.

POSITION(start)
Specifies the field position in the output record. You can specify

the position parameter as follows:

*
An asterisk, indicating that the field starts at the first byte after the last position of the previous
field.

start
A positive integer that indicates the start column of the data field.

The default value is POSITION(*).

The first column (byte position) of an output record corresponds to POSITION(1). If you specify
HEADER NONE in the FROM TABLE clause, the item that is specified by the HEADER option is placed
at the beginning of all the records that are unloaded from the table. You must account for the space
for the record header:

• HEADER OBID (the default case): 2 bytes from position 1.
• HEADER CONST 'string' or X'hex-string' case: The length of the given string from position 1.

Chapter 35. UNLOAD 799

If the source table column can be null, the utility places a NULL indicator byte at the beginning of the
data field in the output record. For BLOBF, CLOBF, or DBCLOBF columns, null values are indicated by
a byte at the beginning of the file name. The start parameter (or *) points to the position of the NULL
indicator byte. In the generated LOAD statement, start is shifted by 1 byte to the right (as start+1) so
that, in the LOAD statement, the start parameter of the POSITION option points to the next byte past
the NULL indicator byte.

For a varying-length field, a length field precedes the actual data field (after the NULL indicator byte,
if applicable). For BLOBF, CLOBF, or DBCLOBF columns, the length of the file name is indicated by two
bytes at the beginning of the file name. If the value cannot be null, the start parameter (or *) points to
the first byte of the length field. The size of the length field is either 4 bytes (BLOB, CLOB, or DBCLOB)
or 2 bytes (VARCHAR or VARGRAPHIC).

When you explicitly specify the output field positions by using start parameters (or using the * format)
of the POSITION option, you must consider the following items as a part of the output field:

• For a field whose value can be null, a space for the NULL indicator byte
• For varying-length data, a space for the length field (either 2 bytes or 4 bytes)

“Layout of output fields” on page 824 illustrates the field layout in conjunction with the POSITION
option, NULL indicator byte, the length field for a varying-length field, the length parameter, and the
actual data length.

The POSITION option is useful when the output fields must be placed at specific positions in the
output records. The use of the POSITION parameters, however, can restrict the size of the output data
fields. Use care when explicitly specifying start parameters for nullable and varying-length fields. The
TRUNCATE option might be required, if applicable, to fit a data item in a shorter space in an output
record.

If you omit the POSITION option for the first field, the field starts from position 1 if HEADER NONE
is specified. Otherwise, the field starts from the next byte position past the record header field. If
POSITION is omitted for a subsequent field, the field is placed next to the last position of the previous
field without any gap.

If NOPAD is specified and POSITION parameters are given for certain fields, the effect of the NOPAD
option might be lost because the fields with start parameters (other than the default *) always start at
the fixed positions in the output records.

The POSITION option is ignored for delimited output files.

CHAR
Indicates that the output field is a character type with fixed length. You can use CHARACTER in place
of CHAR. If the source table column can be null, a NULL indicator byte is placed at the beginning of the
output field for a non-delimited output file.

If you specify the EBCDIC, ASCII, UNICODE, or CCSID options, the output data that corresponds to
the specified option, is encoded in the CCSID, depending on the subtype of the source data (SBCS or
MIXED). If the subtype is BIT, no conversion is applied.

(length)
Specifies the size of the output data in bytes.

If followed by BLOBF, CLOBF, or DBCLOBF, the length specifies the size of the expanded template
name in bytes.

If the length parameter is omitted, the default is the maximum length that is defined on the source
table column or the length in bytes of the expanded template name if BLOBF, CLOBF, or DBCLOBF
follows the CHAR keyword. When the length parameter is specified:

• If the length is less than the size of the table column, the data is truncated to the length if the
TRUNCATE keyword is present; otherwise, a conversion error occurs.

• For the case where BLOBF, CLOBF, or DBCLOBF immediately follows, an error will occur if the
length is less than the size of the expanded template name.

800 Db2 12 for z/OS: Utility Guide and Reference

• If the length is larger than the size of the table column, the output field is padded by the default
pad characters to the specified length.

BLOBF
Specifies that the output field is to contain the name of the file to which the BLOB or XML is to be
unloaded without CCSID conversion.
BINARYXML Specifies that the XML document is to be unloaded using file reference variables in
Extensible Dynamic Binary XML Db2 Client/Server Binary XML Format (binary XML) format. This
option is only supported when unloading an XML column.

CLOBF
Specifies that the output field is to contain the name of the file to which the CLOB or XML is to be
unloaded with any required CCSID conversion.
CCSID 1208

Specifies that the data is to be unloaded into the CLOB file in CCSID 1208 (UTF-8). CCSID
1208 can be specified only to unload data from a Unicode column in an EBCDIC table. This
option does not apply to XML columns.

DBCLOBF
Specifies that the output field is to contain the name of the file to which the DBCLOBF or XML is to
be unloaded with any required CCSID conversion.
CCSID 1200

Specifies that the data is to be unloaded into the CLOB file in CCSID 1200 (UTF-16). CCSID
1200 can be specified only to unload data from a Unicode column in an EBCDIC table. This
option does not apply to XML columns.

TRUNCATE
Indicates that a character string (encoded for output) is to be truncated from the right, if the
data does not fit in the available space for the field in the output record. Truncation occurs at the
character boundary. See “Specifying TRUNCATE and STRIP options for output data” on page 829
for the truncation rules that are used in the UNLOAD utility. Without TRUNCATE, an error occurs
when the output field size is too small for the data.

CCSID 1208
Specifies that the data is to be unloaded in CCSID 1208 (UTF-8). CCSID 1208 can be specified
only to unload data from a Unicode column in an EBCDIC table.

VARCHAR
Specifies that the output field type is character of varying length. A 2-byte binary field indicating the
length of data in bytes is prepended to the data field. If the table column can be null, a NULL indicator
byte is placed before this length field for a non-delimited output file.

If you specify the EBCDIC, ASCII, UNICODE, or CCSID options, the output data is encoded in the
CCSID corresponding to the specified option, depending on the subtype of the source data (SBCS or
MIXED). If the subtype is BIT, no conversion is applied.

(length)
Specifies the maximum length of the actual data field in bytes. If you also specify NOPAD, it
indicates the maximum allowable space for the data in the output records; otherwise, the space of
the specified length is reserved for the data.

If followed by BLOBF, CLOBF, or DBCLOBF, length specifies the size of the expanded template
name in bytes. If the length is less than the size of the expanded template name an error will
occur.

If the length parameter is omitted, the default is the smaller of 255 and the maximum length that
is defined on the source table column.

BLOBF
Specifies that the output field is to contain the name of the file to which the BLOB or XML is to be
unloaded without CCSID conversion.

Chapter 35. UNLOAD 801

BINARYXML Specifies that the XML document is to be unloaded using file reference variables in
binary XML format. This option is only supported when unloading an XML column.

CLOBF
Specifies that the output field is to contain the name of the file to which the CLOB or XML is to be
unloaded with any required CCSID conversion.
CCSID 1208

Specifies that the data is to be unloaded into the CLOB file in CCSID 1208 (UTF-8). CCSID
1208 can be specified only to unload data from a Unicode column in an EBCDIC table. This
option does not apply to XML columns.

DBCLOBF
Specifies that the output field is to contain the name of the file to which the DBCLOBF or XML is to
be unloaded with any required CCSID conversion.
CCSID 1200

Specifies that the data is to be unloaded into the CLOB file in CCSID 1200 (UTF-16). CCSID
1200 can be specified only to unload data from a Unicode column in an EBCDIC table. This
option does not apply to XML columns.

STRIP
Specifies that UNLOAD is to remove binary zeroes (the default) or the specified string from the
beginning, the end, or both ends of the data. UNLOAD adjusts the VARCHAR length field (for the
output field) to the length of the stripped data.

The STRIP option is applicable if the subtype of the source data is BIT. In this case, no CCSID
conversion is performed on the specified strip character (even if it is given in the form 'strip-char').

The effect of the STRIP option is the same as the SQL STRIP scalar function.

BOTH
Indicates that UNLOAD is to remove occurrences of blank or the specified strip character from
the beginning and end of the data. The default is BOTH.

TRAILING
Indicates that UNLOAD is to remove occurrences of blank or the specified strip character from
the end of the data.

LEADING
Indicates that UNLOAD is to remove occurrences of blank or the specified strip character from
the beginning of the data.

'strip-char'
Specifies a single-byte character that is to be stripped. Specify this character value in EBCDIC.
Depending on the output encoding scheme, UNLOAD applies SBCS CCSID conversion to the
strip-char value before it is used in the strip operation. If you want to specify a strip-char
value in an encoding scheme other than EBCDIC, use the hexadecimal form. UNLOAD does not
perform CCSID conversion if the hexadecimal form is used.

X'strip-char'
Specifies a single-byte character that is to be stripped. It can be specified in the hexadecimal
form, X'hex-string', where hex-string is two hexadecimal characters that represent a single
SBCS character. If the strip-char operand is omitted, the default is the blank character, which
is coded as follows:

• X'40', for the EBCDIC-encoded output case
• X'20' for the ASCII-encoded output case
• X'20' the Unicode-encoded output case

The strip operation is applied after the character code conversion, if the output character
encoding scheme is different from the one that is defined on the source data. Therefore, if a
strip character is specified in the hexadecimal format, you must specify the character in the
encoding scheme that is used for output.

802 Db2 12 for z/OS: Utility Guide and Reference

TRUNCATE
Indicates that a character string (encoded for output) is to be truncated from the right, if the
data does not fit in the available space for the field in the output records. Truncation occurs at a
character boundary. See “Specifying TRUNCATE and STRIP options for output data” on page 829
for the truncation rules that are used in the UNLOAD utility. Without TRUNCATE, an error occurs
when the output field size is too small for the data.

CCSID 1208
Specifies that the data is to be unloaded in CCSID 1208 (UTF-8). CCSID 1208 can be specified
only to unload data from a Unicode column in an EBCDIC table.

GRAPHIC
Specifies that the output field is of the fixed-length graphic type. If the table column can be null, a
NULL indicator byte is placed before the actual data field for any non-delimited output file.

If the output is in EBCDIC, the shift-in and shift-out characters are not included at the beginning and
at the end of the data.

(length)
Specifies the number of DBCS characters (the size of the output data in bytes is twice the given
length). If the given length is larger than the source data length, the output field is padded with the
default pad character.

TRUNCATE
Indicates that a graphic character string (encoded for output) is to be truncated from the right, if
the data does not fit in the available space for the field in the output records. Truncation occurs at
a character (DBCS) boundary. Without TRUNCATE, an error occurs when the output field size is too
small for the data.

CCSID 1200
Specifies that the data is to be unloaded in CCSID 1200 (UTF-16). CCSID 1200 can be specified
only to unload data from a Unicode column in an EBCDIC table.

GRAPHIC EXTERNAL
Specifies that the data is to be written in the output records as a fixed-length field of the graphic type
with the external format; that is, the shift-out (SO) character is placed at the starting position, and the
shift-in (SI) character is placed at the ending position. The byte count of the output field is always an
even number.

GRAPHIC EXTERNAL is supported only in the EBCDIC output mode (by default or when the EBCDIC
keyword is specified).

If the start parameter of the POSITION option is used to specify the output column position, it points
to the (inserted) shift-out character at the beginning of the field. The shift-in character is placed at the
next byte position past the last double-byte character of the data.

(length)
Specifies a number of DBCS characters, excluding the shift characters (as in the graphic type
column definition that is used in a CREATE TABLE statement) nor the NULL indicator byte if the
source column can be null. If the length parameter is omitted, the default output field size is the
length that is defined on the corresponding table column, plus two bytes (shift-out and shift-in
characters).

If the specified length is larger than the size of the data, the field is padded on the right with the
default DBCS padding character.

TRUNCATE
Indicates that a graphic character string is to be truncated from the right by the DBCS characters,
if the data does not fit in the available space for the field in the output records. Without
TRUNCATE, an error occurs when the output field size is too small for the data. An error can
also occur with the TRUNCATE option if the available space is less than 4 bytes (4 bytes is
the minimum size for a GRAPHIC EXTERNAL field; shift-out character, one DBCS, and shift-in
character); or fewer than 5 bytes if the field is can be null (the 4 bytes plus the NULL indicator
byte).

Chapter 35. UNLOAD 803

VARGRAPHIC
Specifies that the output field is to be of the varying-length graphic type. A 2-byte binary length field
is prepended to the actual data field. If the table column can be null, a NULL indicator byte is placed
before this length field for any non-delimited output file.
(length)

Specifies the maximum length of the actual data field in the number of DBCS characters. If you
also specify NOPAD, it indicates the maximum allowable space for the data in the output records;
otherwise, the space of the specified length is reserved for the data.

If the length parameter is omitted, the default is the smaller of 127 and the maximum defined
length of the source table column.

STRIP
Indicates that UNLOAD is to remove binary zeroes (the default) or the specified string from the
unloaded data. UNLOAD adjusts the VARGRAPHIC length field (for the output field) to the length of
the stripped data (the number of DBCS characters).

The effect of the STRIP option is the same as the SQL STRIP scalar function.

BOTH
Indicates that UNLOAD is to remove occurrences of blank or the specified strip character from
the beginning and end of the data. The default is BOTH.

TRAILING
Indicates that UNLOAD is to remove occurrences of blank or the specified strip character from
the end of the data.

LEADING
Indicates that UNLOAD is to remove occurrences of blank or the specified strip character from
the beginning of the data.

X'strip-char'
Specifies a DBCS character that is to be stripped in the hexadecimal format, X'hhhh', where
hhhh is four hexadecimal characters that represent a DBCS character. If this operand is
omitted, the default is a DBCS blank in the output encoding scheme (for example, X'4040' for
the EBCDIC-encoded output or X'8140' for CCSID 301).

The strip operation is applied after the character code conversion, if the output character
encoding scheme is different from the one that is defined on the source data. Therefore, if you
specify a strip character, it must be in the encoding scheme that is used for the output.

TRUNCATE
Indicates that a graphic character string (encoded for output) is to be truncated from the right, if
the data does not fit in the available space for the field in the output records. Truncation occurs at
a DBCS character boundary. Without TRUNCATE, an error occurs when the output field size is too
small for the data.

CCSID 1200
Specifies that the data is to be unloaded in CCSID 1200 (UTF-16). CCSID 1200 can be specified
only to unload data from a Unicode column in an EBCDIC table.

SMALLINT
Specifies that the output field is a 2-byte binary integer (a negative number is in two's complement
notation). To use the external format, specify INTEGER EXTERNAL.

If the source data type is INTEGER, DECIMAL, FLOAT, BIGINT, or DECFLOAT (either 4-byte or 8-byte
format), an error occurs when the data is greater than 32,767 or less than -32,768.

A SMALLINT output field requires 2 bytes, and the length option is not available.

INTEGER
Specifies that the output field is a 4-byte binary integer (a negative number is in two's complement
notation).

804 Db2 12 for z/OS: Utility Guide and Reference

If the original data type is DECIMAL, FLOAT, BIGINT, or DECFLOAT (either 4-byte or 8-byte format), an
error occurs when the original data is greater than 2,147,483,647 or less than -2,147,483,648.

An INTEGER output field requires 4 bytes, and the length option is not available.

INTEGER EXTERNAL
Specifies that the output field is to contain a character string that represents an integer number.
(length)

Indicates the size of the output data in bytes, including a space for the sign character. When the
length is given and the character notation does not fit in the space, an error occurs. The default is
20 characters (including a space for the sign).

If the value is negative, a minus sign precedes the numeric digits. If the output field size is larger than
the length of the data, the output data is left justified and blanks are padded on the right.

If the source data type is DECIMAL, FLOAT (either 4-byte or 8-byte format), or DECFLOAT
(either 8-byte or 16-byte format), an error occurs when the original data is greater than
9,223,372,036,854,775,807 or less than -9,223,372,036,854,775,808.

BIGINT
Specifies that the output field is an 8-byte binary integer (a negative number is in two's complement
notation). To use the external format, specify INTEGER EXTERNAL.

If the original data type is DECIMAL, FLOAT, or DECFLOAT (either 4-byte or 8-byte format),
an error occurs when the original data is greater than 9,223,372,036,854,775,807 or less than
-9,223,372,036,854,775,808.

BINARY(length)
Indicates that the output field is a binary string type with a fixed length. If the source table column
can be null, a NULL indicator byte is placed at the beginning of the output field for a nondelimited
output file. No data conversion is applied to the field. The default for X'strip-char' is hexadecimal zero
(X'00').
TRUNCATE

Indicates that the output binary string (encoded for output) is to be truncated from the right, if the
data does not fit in the available space for the field in the output records. Without TRUNCATE, an
error occurs when the output field size is too small for the data.

VARBINARY
Indicates that the output field is a binary string type with varying length. A 2-byte binary field
indicating the length of data in bytes is prepended to the data field. If the table column can be
null, a NULL indicator byte is placed before the length field for a non-delimited output file. No data
conversion is applied to the field. The default for X'strip-char' is hexadecimal zero (X'00').
STRIP

Specifies that UNLOAD is to remove binary zeroes (the default) or the specified string from the
beginning, the end, or both ends of the data. UNLOAD adjusts the VARBINARY length field (for the
output field) to the length of the stripped data.
BOTH

Indicates that UNLOAD is to remove occurrences of binary zeroes or the specified strip
character from the beginning and end of the data. The default is BOTH.

TRAILING
Indicates that UNLOAD is to remove occurrences of binary zeroes or the specified strip
character from the end of the data.

LEADING
Indicates that UNLOAD is to remove occurrences of binary zeroes or the specified strip
character from the beginning of the data.

X'strip-char'
Specifies a single-byte character that is to be stripped. It can be specified only in
the hexadecimal form, X'hex-string', where hex-string is two hexadecimal characters that
represent a single SBCS character.

Chapter 35. UNLOAD 805

TRUNCATE
Indicates that a binary string (encoded for output) is to be truncated from the right, if the data
does not fit in the available space for the field in the output records. Without TRUNCATE, an error
occurs when the output field size is too small for the data.

DECIMAL
Specifies that the output data is a number that is represented by the indicated decimal format (either
PACKED, ZONED, or EXTERNAL). If you specify the keyword DECIMAL by itself, packed-decimal format
is assumed.
PACKED

Specifies that the output data is a number that is represented by the packed-decimal format. You
can use DEC or DEC PACKED as an abbreviated form of the keyword.

The packed-decimal representation of a number is of the form ddd...ds, where d is a decimal digit
that is represented by 4 bits, and s is a 4-bit sign character (hexadecimal A, C, E, or F for a positive
number, and hexadecimal B or D for a negative number).

length
Specifies the number of digits (not including the sign digit) that are to be placed in the output
field. The length must be between 1 and 31. If the length is odd, the size of the output data
field is (length+1) / 2 bytes; if even, (length / 2)+1 byte.

If the source data type is DECIMAL and the length parameter is omitted, the default length is
determined by the column attribute defined on the table. Otherwise, the default length is 31
digits (16 bytes).

scale
Specifies the number of digits to the right of the decimal point. (Note that, in this case, a
decimal point is not included in the output field.) The number must be an integer that is
greater than or equal to zero and less than or equal to the length.

The default depends on the column attribute that is defined on the table. If the source data
type is DECIMAL, the defined scale value is the default value; otherwise, the default value is 0.

If you specify the output field size as less than the length of the data, an error occurs. If the
specified field size is greater than the length of data, X'0' is padded on the left.

ZONED
Specifies that the output data is a number that is represented by the zoned-decimal format. You
can use DEC ZONED as an abbreviated form of the keyword.

The zoned-decimal representation of a number is of the form znznzn...z/sn, where n denotes a
4 bit decimal digit (called the numeric bits); z is the digit's zone (left 4 bits of a byte); s is the
right-most operand that can be a zone (z) or can be a sign value (hexadecimal A, C, E, or F for a
positive number, and hexadecimal B or D for a negative number).

length
Specifies the number of bytes (that is the number of decimal digits) that are placed in the
output field. The length must be between 1 and 31.

If the source data type is DECIMAL and the length parameter is omitted, the default length is
determined by the column attribute that is defined on the table. Otherwise, the default length
is 31 bytes.

scale
Specifies the number of digits to the right of the decimal point. (Note that, in this case, a
decimal point is not included in the output field.) The number must be an integer greater than
or equal to zero and less than or equal to the length.

The default depends on the column attribute that is defined on the table. If the source data
type is DECIMAL, the defined scale value is the default value; otherwise, the default value is 0.

If you specify the output field size as less than the length of the data, an error occurs. If the
specified field size is greater than the length of data, X'F0' is padded on the left.

806 Db2 12 for z/OS: Utility Guide and Reference

EXTERNAL
Specifies that the output data is a character string that represents a number in the form of
±dd...d.ddd...d, where d is a numeric character 0-9. (The plus sign for a positive value is omitted.)
length

Specifies the overall length of the output data (the number of characters including a sign, and
a decimal point if scale is specified).

If the source data type is DECIMAL and the length parameter is omitted, the default length is
determined by the column attribute that is defined on the table. Otherwise, the default length
is 33 (31 numeric digits, plus a sign and a decimal point). The minimum value of length is 3 to
accommodate the sign, one digit, and the decimal point.

scale
Specifies the number of digits to the right of the decimal point. The number must be an integer
that is greater than or equal to zero and less than or equal to length - 2 (to allow for the sign
character and the decimal point).

If the source data type is DECIMAL and the length parameter is omitted, the default scale is
determined by the column attribute that is defined on the table. Otherwise, the default value is
0.

An error occurs if the character representation of a value does not fit in the given or default
field size (precision). If the source data type is floating point and a data item is too small for
the precision that is defined by scale, the value of zero (not an error) is returned.

FLOAT(length)
Specifies that the output data is a binary floating-point number (32-bit or single-precision FLOAT if the
length is between one and 21 inclusive; 64-bit or double-precision FLOAT if the length is between 22
and 53 inclusive). If the length parameter is omitted, the 64-bit format is assumed (output field size is
8 bytes). Note that the length parameter for the FLOAT type does not represent the field size in bytes.

The format of the binary floating-point output is controlled by the global FLOAT option. The default
is S/390 format (Hexadecimal Floating Point or HFP). If you specify FLOAT(IEEE), all the binary
floating-point output is in IEEE format (Binary Floating Point or BFP). When you specify FLOAT(IEEE)
and the source data type DOUBLE is unloaded as REAL, an error occurs if the source data cannot be
expressed by the IEEE (BFP) 32-bit notation.

EXTERNAL(length)
Specifies that the output data is a number that is represented by a character string in floating-
point notation, ±d.ddd...dddE±nn, where d is a numeric character (0-9) for the significant digits; nn
after the character E, and the sign consists of two numeric characters for the exponent.
(length)

Specifies the total field length in bytes, including the first sign character, the decimal point,
the E character, the second sign character, and the two-digit exponent. If the number of
characters in the result is less than the specified or the default length, the result is padded to
the right with blanks. The length, if specified, must be greater than or equal to 8.

The default output field size is 14 if the source data type is the 32-bit FLOAT; otherwise, the
default is 24.

A FLOAT EXTERNAL output field requires a space of at least seven characters in the output record
to accommodate the minimal floating point notation. Otherwise, an error occurs.

DOUBLE
Specifies that the output data is in 64-bit floating point notation. If DOUBLE is used, the length
parameter must not be specified.

REAL
Specifies that the output data is in 32-bit floating point notation. If REAL is used, the length parameter
must not be specified.

Chapter 35. UNLOAD 807

DATE EXTERNAL
Specifies that the output field is for a character string representation of a date. The output format of
date depends on the Db2 installation.
(length)

Specifies the size of the data field in bytes in the output record. A DATE EXTERNAL field requires a
space of at least 10 characters. If the space is not available, an error occurs. If the specified length
is larger than the size of the data, blanks are padded on the right.

TIME EXTERNAL
Specifies that the output field is for a character string representation of a time. The output format of
time depends on the Db2 installation.
(length)

Specifies the size of the data field in bytes in the output record. A TIME EXTERNAL field requires
a space of at least eight characters. If the space is not available, a conversion error occurs. If the
specified length is larger than the size of the data, blanks are padded on the right.

TIMESTAMP EXTERNAL
Specifies that the output field is for a character string representation of a timestamp.
(length)

Specifies the size of the data field in bytes in the output record. A TIMESTAMP EXTERNAL field
requires a space of at least 19 characters. If the space is not available, an error occurs. The length
parameter, if specified, determines the output format of the TIMESTAMP. If the specified length is
larger than the size of the data, the field is padded on the right with the default padding character.

TIMESTAMP WITH TIMEZONE EXTERNAL
Specifies that the output field is for a character string representation of a timestamp.
(length)

Specifies the size of the data field in bytes in the output record. A TIMESTAMP WITH TIME ZONE
EXTERNAL field requires a space of at least 26 characters. If the space is not available, an error
occurs. The length parameter, if specified, determines the output format of the TIMESTAMP WITH
TIME ZONE. If the specified length is larger than the size of the data, the field is padded on the
right with the default padding character.

CONSTANT
Specifies that the output records are to have an extra field containing a constant value. The field name
that is associated with the CONSTANT keyword must not coincide with a table column name (the field
name is for clarification purposes only). A CONSTANT field always has a fixed length that is equal to
the length of the given string.
'string'

Specifies the character string that is to be inserted in the output records at the specified or default
position. A string is the required operand of the CONSTANT option. If the given string is in the form
'string', it is assumed to be an EBCDIC SBCS string. However, the output string for a CONSTANT
field is in the specified or default encoding scheme. (That is, if the encoding scheme used for
output is not EBCDIC, the SBCS CCSID conversion is applied to the given string before it is placed
in output records.)

X'hex-string'
Specifies the character string in hexadecimal form, X'hex-string', that is to be inserted in the
output records at the specified or default position. If you want to specify a CONSTANT string value
in an encoding scheme other than SBCS EBCDIC, use the hexadecimal form. No CCSID conversion
is performed if the hexadecimal form is used.

For a CONSTANT field, no other field selection list options should be specified.

If a CONSTANT field is inserted, it will not be included in the generated LOAD statement (the LOAD
statement is generated so that the CONSTANT field is skipped).

If you specify both FORMAT DELIMITED and CONSTANT, the generated LOAD statement is not usable.

808 Db2 12 for z/OS: Utility Guide and Reference

ROWID
Specifies that the output data is of type ROWID. The field type ROWID can be specified if and only
if the column that is to be unloaded is of type ROWID. The keyword is provided for consistency
purposes.

ROWID fields have varying length and a 2-byte binary length field is prepended to the actual data
field.

For the ROWID type, no data conversion nor truncation is applied. If the output field size is too small
to unload ROWID data, an error occurs.

If the source is an image copy and a ROWID column is selected, and if the page set header page is
missing in the specified data set, the UNLOAD utility terminates with the error message DSNU1228I.
This situation can occur when the source is an image copy data set of DSNUM that is greater than one
for a nonpartitioned table space that is defined on multiple data sets.

BLOB
Indicates that the column is to be unloaded as a binary large object (BLOB). No data conversion is
applied to the field.

When you specify the BLOB field type, a binary length field is placed in the output record prior to the
actual data field. This length field is 2 bytes if SPANNED NO is specified and 4 bytes if SPANNED YES
is specified. If the source table column can be null, a NULL indicator byte is placed before the length
field.

(length)
Specifies the maximum length of the actual data field in bytes. If you specify NOPAD, it indicates
the maximum allowable space for the data in the output records; otherwise, the space of the
specified length is reserved for the data.

The maximum allowable value is 32767.

The default is the maximum length that is defined on the source table column.

TRUNCATE
Indicates that a BLOB string is to be truncated from the right, if the data does not fit in the
available space for the field in the output record. For BLOB data, truncation occurs at a byte
boundary. Without TRUNCATE, an error occurs when the output field size is too small for the data.

CLOB
Indicates that the column is to be unloaded as a character large object (CLOB).

When you specify the CLOB field type, a 4-byte binary length field is placed in the output record prior
to the actual data field. If the source table column can be null, a NULL indicator byte is placed before
the length field.

If you specify the EBCDIC, ASCII, UNICODE, or CCSID options, the output data is encoded in the
CCSID corresponding to the specified option, depending on the subtype of the source data (SBCS or
MIXED). No conversion is applied if the subtype is BIT.

(length)
Specifies the maximum length of the actual data field in bytes. If you specify NOPAD, it indicates
the maximum allowable space for the data in the output records; otherwise, the space of the
specified length is reserved for the data.

The maximum allowable value is 32767.

The default is the maximum length that is defined on the source table column.

TRUNCATE
Indicates that a CLOB string (encoded for output) is to be truncated from the right, if the data does
not fit in the available space for the field in the output record. For CLOB data, truncation occurs
at a character boundary. See “Specifying TRUNCATE and STRIP options for output data” on page
829 for the truncation rules that are used in the UNLOAD utility. Without TRUNCATE, an error
occurs when the output field size is too small for the data.

Chapter 35. UNLOAD 809

CCSID 1208
Specifies that the data is to be unloaded in CCSID 1208 (UTF-8). CCSID 1208 can be specified
only to unload data from a Unicode column in an EBCDIC table.

DBCLOB
Indicates that the column is to be unloaded as a double-byte character large object (DBCLOB).

If you specify the DBCLOB field type, a 4-byte binary length field is placed in the output record prior to
the actual data field. If the source table column can be null, a NULL indicator byte is placed before the
length field.

If you specify the EBCDIC, ASCII, UNICODE, or CCSID options, the output data is encoded in the
CCSID corresponding to the specified option; DBCS CCSID is used.

(length)
Specifies the maximum length of the actual data field in the number of DBCS characters. If you
specify NOPAD, it indicates the maximum allowable space for the data in the output records;
otherwise, the space of the specified length is reserved for the data.

The maximum allowable value is 32767.

The default is the maximum length that is defined on the source table column.

TRUNCATE
Indicates that a DBCS string (encoded for output) is to be truncated from the right, if the
data does not fit in the available space for the field in the output record. For a DBCLOB data,
truncation occurs at a character (DBCS) boundary. See “Specifying TRUNCATE and STRIP options
for output data” on page 829 for the truncation rules that are used in the UNLOAD utility. Without
TRUNCATE, an error occurs when the output field size is too small for the data.

CCSID 1200
Specifies that the data is to be unloaded in CCSID 1200 (UTF-16). CCSID 1200 can be specified
only to unload data from a Unicode column in an EBCDIC table.

DECFLOAT (length)
Specifies either a 128-bit decimal floating-point number or a 64-bit decimal floating-point number.
The value of the length must be either 16 or 34. If the length is 16, the number is in 64 bit decimal
floating-point number format. If the length is 34, the number is in 128 bit decimal floating-point
format. The default length is determined by the column attribute defined on the table. Otherwise, the
default length is 34 (16 bytes).

DECFLOAT EXTERNAL
Specifies a string of characters that represent a number. The format is an SQL numeric constant.
(length)

Specifies the total field length in bytes. This length includes the first sign character, the decimal
point, the E character, the second sign character, and the exponent if in the string. If the number of
characters in the result is less than the specified or the default length, the result is padded to the
right with blanks. The character representation of a value must fit in the given or default field size.

The default output field size is 23 if the source data type is the DECFLOAT(16). Otherwise, the
default is 42.

XML
Specifies that an XML column is being unloaded directly to the output record.
BINARYXML Specifies that the XML document is to be unloaded in binary XML format.

WHEN
Indicates which records in the table space are to be unloaded. If no WHEN clause is specified for a
table in the table space, all of the records are unloaded.

The option following WHEN describes the conditions for unloading records from a table.

Data in the table can be in EBCDIC, ASCII, or Unicode. If the target table is in Unicode and the
character constants are specified in the utility control statement as EBCDIC, the UNLOAD utility
converts these constants to Unicode. To use a constant when the target table is ASCII, specify the

810 Db2 12 for z/OS: Utility Guide and Reference

hexadecimal form of the constant (instead of the character string form) in the condition for the WHEN
clause.

selection condition
Specifies a condition that is true, false, or unknown about a given row. When the condition is true, the
row qualifies for UNLOAD. When the condition is false or unknown, the row does not qualify.

The result of a selection condition is derived by application of the specified logical operators (AND and
OR) to the result of each specified predicate. If logical operators are not specified, the result of the
selection condition is the result of the specified predicate.

Selection conditions within parentheses are evaluated first. If the order of evaluation is not specified
by parentheses, AND is applied before OR.

If the control statement is in the same encoding scheme as the input data, you can code character
constants in the control statement. Otherwise, if the control statement is not in the same encoding
scheme as the input data, you must code the condition with hexadecimal constants. For example, if
the table space is in EBCDIC and the control statement is in UTF-8, use (1:1) = X'31' in the condition
rather than (1:1) = '1'.

If the wildcard character '%' is used, the hexadecimal value of the wildcard character must be in
EBCDIC. For example, in the following statement, x'41' means 'A' in UNICODE and ASCII and x'6C'
means '%' in EBCDIC: COL1 LIKE X'416C'.

Restriction: UNLOAD cannot filter rows that contain encrypted data.

predicate
Specifies a condition that is true, false, or unknown about a row.

In the predicate, you cannot specify a DECFLOAT constant or a column of any of the following types:

DECFLOAT
LONG VARCHAR
LONG VARGRAPHIC
ROWID
CLOB
BLOB
DBCLOB

You can specify an XML column only with IS NULL or IS NOT NULL.

You can specify a VARCHAR column only with the following predicates:

• IS NULL
• IS NOT NULL
• A comparison with a HEX or fixed-length CHAR value

You can specify a VARGRAPHIC column only with the following predicates:

• IS NULL
• IS NOT NULL
• A comparison with a HEX or fixed-length GRAPHIC value

Column names in the predicate are case-sensitive. For example, if a column in the source table is
named SALARY, SALARY=20000 is a valid predicate, but salary=20000 is not a valid predicate.

basic predicate
Specifies the comparison of a column with a constant. If the value of the column is null, the result
of the predicate is unknown. Otherwise, the result of the predicate is true or false.
column = constant

The column is equal to the constant or labeled duration expression.
column < > constant

The column is not equal to the constant or labeled duration expression.

Chapter 35. UNLOAD 811

column > constant
The column is greater than the constant or labeled duration expression.

column < constant
The column is less than the constant or labeled duration expression.

column > = constant
The column is greater than or equal to the constant or labeled duration expression.

column < = constant
The column is less than or equal to the constant or labeled duration expression.

Note: The following alternative comparison operators are available:

!= or ¬= for not equal.
!> or ¬> for not greater than.
!< or ¬< for not less than.

The symbol ¬ representing "not" is supported for compatibility purposes. Use ! where possible.

BETWEEN predicate
Indicates whether a given value is between two other given values that are specified in ascending
order. The values can be constants or labeled duration expressions. Each of the predicate's
two forms (BETWEEN and NOT BETWEEN) has an equivalent search condition, as shown in the
following table. When relevant, the table also shows any equivalent predicates.

Table 122. BETWEEN predicates and their equivalent search conditions

Predicate Equivalent predicate Equivalent search condition

column BETWEEN value1 AND
value2 None (column >= value1 AND

column <= value2)

column NOT BETWEEN value1
AND value2

NOT(column BETWEEN value1
AND value2)

(column < value1 OR column >
value2)

Note: The values can be constants or labeled duration expressions.

For example, the following predicate is true for any row when salary is greater than or equal
10000 and less than or equal to 20000:

SALARY BETWEEN 10000 AND 20000

IN predicate
Specifies that a value is to be compared with a set of values. In the IN predicate, the second
operand is a set of one or more values that are specified by constants. Each of the predicate's two
forms (IN and NOT IN) has an equivalent search condition, as shown in the following table.

Table 123. IN predicates and their equivalent search conditions

Predicate Equivalent search condition

value1 IN (value1, value2,…, valuen) (value1 = value2 OR … OR value1 = valuen)

value1 NOT IN (value1, value2,…, valuen) value1 ¬= value2 AND … AND value1 ¬= valuen)

Note: The values can be constants.

For example, the following predicate is true for any row whose employee is in department D11,
B01, or C01:

WORKDEPT IN ('D11', 'B01', 'C01')

LIKE predicate
Specifies the qualification of strings that have a certain pattern.

812 Db2 12 for z/OS: Utility Guide and Reference

Within the pattern, a percent sign or underscore can have a special meaning, or it can represent
the literal occurrence of a percent sign or underscore. To have its literal meaning, it must be
preceded by an escape character. If it is not preceded by an escape character, it has its special
meaning. The underscore character (_) represents a single, arbitrary character. The percent sign
(%) represents a string of zero or more arbitrary characters.

The ESCAPE clause designates a single character. That character, and only that character, can
be used multiple times within the pattern as an escape character. When the ESCAPE clause is
omitted, no character serves as an escape character, so that percent signs and underscores in the
pattern always have their special meanings.

The following rules apply to the use of the ESCAPE clause:

• The ESCAPE clause cannot be used if x is mixed data.
• If x is a character string, the data type of the string constant must be character string. If x is

a graphic string, the data type of the string constant must be graphic string. In both cases, the
length of the string constant must be 1.

• The pattern must not contain the escape character except when followed by the escape
character, '%' or '_'. For example, if '+' is the escape character, any occurrence of '+' other
than '++', '+_', or '+%' in the pattern is an error.

When the pattern does not include escape characters, a simple description of its meaning is:

• The underscore sign (_) represents a single arbitrary character.
• The percent sign (%) represents a string of zero or more arbitrary characters.
• Any other character represents a single occurrence of itself.

Let x denote the column that is to be tested and y the pattern in the string constant. The following
rules apply to predicates of the form "x LIKE y...". If NOT is specified, the result is reversed.

• When x and y are both neither empty nor null, the result of the predicate is true if x matches the
pattern in y and false if x does not match the pattern in y.

• When x or y is null, the result of the predicate is unknown.
• When y is empty and x is not empty, the result of the predicate is false.
• When x is empty and y is not empty, the result of the predicate is false unless y consists only of

one or more percent signs.
• When x and y are both empty, the result of the predicate is true.

The pattern string and the string that is to be tested must be of the same type. That is, both x and
y must be character strings, or both x and y must be graphic strings. When x and y are graphic
strings, a character is a DBCS character. When x and y are character strings and x is not mixed
data, a character is an SBCS character and y is interpreted as SBCS data regardless of its subtype.

Strings and patterns

The string y is interpreted as a sequence of the minimum number of substring specifiers such that
each character of y is part of exactly one substring specifier. A substring specifier is an underscore,
a percent sign, or any non-empty sequence of characters other than an underscore or percent
sign.

The string x matches the pattern y if a partitioning of x into substrings exists, such that:

• A substring of x is a sequence of zero or more contiguous characters, and each character of x is
part of exactly one substring.

• If the nth substring specifier is an underscore, the nth substring of x is any single character.
• If the nth substring specifier is a percent sign, the nth substring of x is any sequence of zero or

more characters.
• If the nth substring specifier is neither an underscore nor a percent sign, the nth substring of x is

equal to that substring specifier and has the same length as that substring specifier.
• The number of substrings of x is the same as the number of substring specifiers.

Chapter 35. UNLOAD 813

When escape characters are present in the pattern string, an underscore, percent sign, or escape
character represents a single occurrence of itself if and only if it is preceded by an odd number of
successive escape characters.

The way a pattern is matched to evaluate the LIKE predicate depends on whether blanks
at the end of fixed length strings are significant, or if the blanks are ignored. When the
LIKE_BLANK_INSIGNIFICANT subsystem parameter is enabled, the LIKE predicate can produce
different results.

Mixed data patterns: If x is mixed data, the pattern is assumed to be mixed data, and its special
characters are interpreted as follows:

• A single-byte underscore refers to one single-byte character; a double-byte underscore refers to
one double-byte character.

• A percent sign, either single-byte or double-byte, refers to any number of characters of any type,
either single-byte or double-byte.

• Redundant shift bytes in x or y are ignored.

Related information:

LIKE predicate (Db2 SQL)

NULL predicate
Specifies a test for null values.

If the value of the column is null, the result is true. If the value is not null, the result is false. If NOT
is specified, the result is reversed. (That is, if the value is null, the result is false, and if the value is
not null, the result is true.)

labeled duration expression
Specifies an expression that begins with special register CURRENT DATE or special register
CURRENT TIMESTAMP (the forms CURRENT_DATE and CURRENT_TIMESTAMP are also
acceptable). For CURRENT TIMESTAMP, if the comparison is with a timestamp column, the
timestamp precision of the special register will be the same as the column timestamp precision.
Otherwise default timestamp precision will be used. This special register can be followed
by arithmetic operations of addition or subtraction. These operations are expressed by using
numbers that are followed by one of the seven duration keywords: YEARS, MONTHS, DAYS,
HOURS, MINUTES, SECONDS, or MICROSECONDS. (The singular form of these keywords is also
acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and MICROSECOND.)

Utilities always evaluate a labeled duration expression as a timestamp and implicitly convert to a
date if the comparison is with a date column.

Incrementing and decrementing CURRENT DATE: The result of adding a duration to a date,
or of subtracting a duration from a date, is itself a date. (For the purposes of this operation, a
month denotes the equivalent of a calendar page. Adding months to a date, then, is like turning
the pages of a calendar, starting with the page on which the date appears.) The result must fall
between the dates January 1, 0001 and December 31, 9999 inclusive. If a duration of years is
added or subtracted, only the year portion of the date is affected. The month is unchanged, as
is the day, unless the result would be February 29 of a non-leap-year. In this situation, the day
portion of the result is set to 28.

Similarly, if a duration of months is added or subtracted, only months and, if necessary, years are
affected. The day portion of the date is unchanged unless the result would be invalid (September
31, for example). In this case the day is set to the last day of the month.

Adding or subtracting a duration of days affects the day portion of the date, and potentially the
month and year.

Date durations, whether positive or negative, can also be added to and subtracted from dates. As
with labeled durations, the result is a valid date.

When a positive date duration is added to a date, or a negative date duration is subtracted from a
date, the date is incremented by the specified number of years, months, and days.

814 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_likepredicate.html

When a positive date duration is subtracted from a date, or a negative date duration is added to a
date, the date is decremented by the specified number of days, months, and years.

Adding a month to a date gives the same day one month later, unless that day does not exist in
the later month. In that case, the day in the result is set to the last day of the later month. For
example, January 28 plus one month gives February 28; one month added to January 29, 30, or
31 results in either February 28 or, for a leap year, February 29. If one or more months is added to
a given date and then the same number of months is subtracted from the result, the final date is
not necessarily the same as the original date.

The order in which labeled date durations are added to and subtracted from dates can affect the
results. When you add labeled date durations to a date, specify them in the order of YEARS +
MONTHS + DAYS. When you subtract labeled date durations from a date, specify them in the order
of DAYS - MONTHS - YEARS. For example, to add one year and one day to a date, specify the
following code:

When the labeled duration expression begins with special register CURRENT TIMESTAMP, the
CURRENT TIMESTAMP is compared with the time zone column. The timestamp precision of the
special register will be the same as the column timestamp precision. Otherwise the default
timestamp precision will be used. The time zone of CURRENT TIMESTAMP is the value of special
register CURRENT TIMEZONE. The comparison is done by comparing the UTC portion.

CURRENT DATE + 1 YEAR + 1 DAY

To subtract one year, one month, and one day from a date, specify the following code:

CURRENT DATE - 1 DAY - 1 MONTH - 1 YEAR

Incrementing and decrementing timestamps: The result of adding a duration to a timestamp, or
of subtracting a duration from a timestamp, is itself a timestamp. Date and time arithmetic is
performed as previously defined, except that an overflow or underflow of hours is carried into the
date part of the result, which must be within the range of valid dates.

Related reference
EDITPROCs and VALIDPROCs for handling basic and reordered row formats (Db2 Administration Guide)
CREATE TABLE (Db2 SQL)
Related information
Converting basic row format table spaces with edit and validation routines to reordered row format (Db2
Administration Guide)

Unloading partitions
You can unload partitions in one of two ways.

About this task
Regardless of the method, the unloaded data can be stored in a single data set for all selected partitions
or in one data set for each selected partition. If you want to unload to a single output data set, specify a
DD name to UNLDDN. If you want to unload into multiple output data sets, specify a template name that
is associated with the partitions. You can process multiple partitions in parallel if the TEMPLATE definition
contains the partition as a variable, for example &PA.

You cannot specify multiple output data sets with the FROMCOPY or the FROMCOPYDDN option.

Procedure
If the source table space is partitioned, use only one of the following methods to select the partitions to
unload:
• Use the LIST keyword with a LISTDEF that contains PARTLEVEL specifications.

Chapter 35. UNLOAD 815

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_procs4rfmttype.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createtable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_convertrowformattable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_convertrowformattable.html

Partitions can be either included or excluded by the use of the INCLUDE and the EXCLUDE features of
LISTDEF.

• Specify the PART keyword to select a single partition or a range of partitions.

Unloading XML data
You can unload XML data in one of two ways.

About this task
XML columns can be unloaded with either of the following methods:

• The XML column can be unloaded to the output records. XML column value can be placed in the
OUTPUT record with or without any other unloading column values. The output record can be in
delimited or non-delimited format. For a non-delimited format, the XML column is handled like a
variable character with a 2-byte length preceding the XML value. For a delimited format there are no
length bytes present. If the total output record length is more than 32 KB, unload the record in spanned
record format by specifying the SPANNED YES option.

• The XML column can be unloaded to a separate file whether the XML column length is less than 32K or
not.

To unload XML data directly to output record:

Specify XML as the output field type. If the output is a non-delimited format, a 2-byte length will precede
the value of the XML. For delimited output, no length field is present. XML is the only acceptable field type
when unloading the XML directly to the output record. No data type conversion applies and you cannot
specify FROMCOPY.

If the input data is in Extensible Dynamic Binary XML Db2 Client/Server Binary XML Format (binary XML
format), you need to specify BLOBF BINARYXML.

To unload XML data to a separate file:

• In the UNLOAD utility control statement, specify BLOBF, CLOBF or DBCLOBF. These keywords indicate
that the output column contains the name of a file to which the XML value is to be unloaded. Also
specify either CHAR or VARCHAR instead of XML. Do not specify FROMCOPY.

For example, the following UNLOAD statement specifies that the data from the XML column
ORDER_CREATE_XML1 is to be unloaded to the file that is defined by template BLOBFC1.

UNLOAD DATA FROM TABLE SCQA0000.TB_ORDER_PBR
 (ORDER_CREATE_XML1 POSITION(*) VARCHAR BLOBF BLOBFC1
 ,ORDER_ALL_LOCAL POSITION(*) INTEGER
)

• Use the template control statement to create the XML output file and filename. If data sets are not
created and the DSN type is not specified on the template, UNLOAD will use PDS as the data set type.
PDS has a limit of single volume. The output file uses multiple volumes, so you must specify HFS as the
DSN type.

Unloading LOB data
You can unload LOB data in one of two ways.

About this task
LOB columns can be unloaded with either of the following methods:

• The LOB column can be unloaded to the output records. The LOB column value can be placed in
the OUTPUT record with or without any other unloading column values. The output record can be
in delimited or non-delimited format. For a non-delimited format, the LOB column is handled like a
variable character with a length value preceding the LOB value. (This length field is 2 bytes if SPANNED

816 Db2 12 for z/OS: Utility Guide and Reference

NO is specified and 4 bytes if SPANNED YES is specified.) For a delimited format there are no length
bytes present. If the total output record length is more than 32 KB, unload the record in spanned record
format by specifying the SPANNED YES option.

• The LOB column can be unloaded to a separate file whether the LOB column length is less than 32K or
not.

Procedure
To unload LOB data, use one of the following methods:
• To unload LOB data directly to output record:

Specify LOB as the output field type. LOB is the only acceptable field type when unloading the LOB
data directly to the output record. No data type conversion applies and you cannot specify FROMCOPY.

• To unload LOB data to a separate file:

– Create an UNLOAD utility control statement. Specify BLOBF, CLOBF or DBCLOBF to indicate that
the output column contains a filename which the LOB value is to be unloaded. You cannot specify
FROMCOPY.

– Use the template control statement to create the LOB output file and filename. If data sets are not
created and the DSN type is not specified on the template, UNLOAD will use PDS as the data set
type. PDS has a limit of single volume. The output file uses multiple volumes, so you must specify
HFS as the DSN type.

If you unload data to a separate file, and the LOB column from which you unload is empty, the data set
that is specified by UNLDDN contains one of the following items:

– A blank file name if the source column is specified as CHAR CLOBF, CHAR BLOBF, or CHAR DBCLOBF
– A file name with length 0 if the source column is specified as VARCHAR CLOBF, VARCHAR BLOBF, or

VARCHAR DBCLOBF

The UNLOAD utility does not create a data set or file for the empty LOB.

Unloading data in spanned record format
If you want to unload data from a table that has large LOB or XML fields, consider unloading the data in
spanned record format to improve the performance of read/write operations.

About this task
When you unload data in spanned record format, all LOB and XML data for a table space or table space
partition can be written to an individual sequential file. This file can reside on DASD and can span multiple
volumes. Having such a single sequential file can improve the performance of read/write operations.

UNLOAD SPANNED YES ignores large block interface (LBI) if used by any output data sets.

Procedure
Specify the SPANNED YES option. Specify in the field specification list that all LOB and XML data are to be
at the end of the record.

For example, the following UNLOAD statement specifies that the data from table TB1 is to be unloaded in
spanned record format. Notice that in the field specification list, the CLOB columns are listed at the end
and POSITION is not specified.

UNLOAD TABLESPACE TESTDB1.CLOBBASE SPANNED YES
 FROM TABLE TB1
 (ID
 ,C1 INTEGER
 ,C2 INTEGER
 ,C3 CHAR(100)
 ,C4 CHAR(100)
 ,C5 INTEGER

Chapter 35. UNLOAD 817

 ,C6 CHAR(100)
 ,C7 CHAR(100)
 ,C8 CHAR(100)
 ,CLOB1 CLOB
 ,CLOB2 CLOB
 ,CLOB3 CLOB)

Results
The following code shows a conceptual example of a spanned record that was unloaded.

.----------------.------------------.-------------------------------------.
| C1 | C2 | C3| C4 | C5 | C6 | C7 | C8 | Start of CLOB 1 |
+----------------+------------------+------------.------------------------+
| The rest of CLOB 1 | Start of CLOB 2 |
+--+------------------------+
| more of CLOB 2 |
+----------------------.--+
| the rest of CLOB 2 | CLOB 3 |
+----------------------+--+
| The next row........................
+---

What to do next
When you run LOAD on data that was unloaded in spanned record format, use the LOAD statements
that are in the SYSPUNCH data sets after UNLOAD runs. Those LOAD statements include SORTKEYS
parameters with accurate values. During LOAD, Db2 cannot estimate the size of the sort work data sets by
checking the contents of the SYSREC data sets that are produced during UNLOAD with SPANNED YES.
Related information
Large Block Interface (LBI) (z/OS DFSMS Using Data Sets)

Selecting tables and rows to unload
If a table space contains multiple tables, you can select specific tables to unload.

About this task
To select tables and rows to unload:

Procedure
In the UNLOAD utility control statement, use the FROM TABLE specification clause.
Use one instance of the FROM TABLE clause for each table that is to be unloaded.

Within a FROM TABLE clause, you can specify one or more of the following criteria:

• Row and column selection criteria by using the field specification list
• Row selection conditions by using the WHEN specification clause
• Row sampling specifications

If you do not specify at least one FROM TABLE clause, the rows from all the tables in the table space are
unloaded.

If you specify one or more FROM TABLE clauses for a table space, only the qualified rows from the
specified tables are unloaded.

Related information
“FROM-TABLE-spec syntax diagram and option descriptions” on page 793

818 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.idad400/lbi99999.htm

Selecting and ordering columns to unload
Use a field specification list in a FROM TABLE clause to unload specified columns in the listed order. If you
omit a field specification list, all the columns in the row are unloaded in the order of the columns that are
defined on the table.

About this task
You can specify a format conversion option for each field in the field specification list.

If you select a LOB column in a list of field specifications or select a LOB column by default (by omitting
a list of field specifications), LOB data is materialized in the output. However, you cannot select LOB
columns from image copy data sets.

Unloading data from image copy data sets
In addition to unloading data from table spaces and partitions, you can also unload data from one or more
image copy data sets. The UNLOAD utility accepts full image copies, incremental image copies, and copies
of pieces as valid input sources.

Before you begin
Ensure that the image copy data set that you want to unload from meets the following requirements:

• The source image copy data set must be created by one of the following utilities:

– COPY
– COPYTOCOPY
– LOAD inline image copy
– MERGECOPY
– REORG TABLESPACE inline image copy
– DSN1COPY

• The image copy data set must be for a single table space.
• If you want to unload a ROWID column, the image copy must contain the page set header page.
• If you want to use UNLOAD to process image copies from different versions, the copy must be created

with the SYSTEMPAGES YES option.
• If you want to unload compressed records, the image copy can be a full image copy or an incremental

image copy. In either case, the copy must be created with the SYSTEMPAGES YES option. If the image
copy data set is an incremental image copy or a copy of a partition or partitions, the same data set must
contain the dictionary pages for decompression. If an image copy data set contains a compressed row
and a dictionary is not available, Db2 issues an error message.

• The copy cannot be a VSAM FlashCopy image copy. If the object does not require system pages in front,
you can create an image copy as a workaround. Use the COPY utility or COPYTOCOPY utility to create
a sequential format image copy from the FlashCopy image copy. Then, use the sequential format image
copy as input for UNLOAD.

• If an image copy contains data for columns that no longer exist in the catalog because the columns
were dropped, UNLOAD cannot unload from this image copy. UNLOAD issues message DSNU1227I with
return code 8.

• If the page size for the table space has changed since the image copy was taken, UNLOAD cannot
unload from this image copy.

About this task
Restriction: You cannot unload LOB data or XML data from copies.

Chapter 35. UNLOAD 819

Procedure
Specify either the FROMCOPY or FROMCOPYDDN option in the UNLOAD utility control statement as
follows:
FROMCOPY

Use the FROMCOPY option to unload rows from a single image copy data set.

You can use the FROMCOPY option to specify a full or incremental copy of partitions of a segmented
(non-UTS) table space that consists of multiple data sets. However, if a mass delete operation
occurred for a table in the table space before you created the copy, the utility might not unload
the deleted rows. The utility unloads deleted rows only if the space map pages that indicate the
mass delete are not included in the data set that corresponds to the specified copy. Therefore, where
possible, use the FROMCOPYDDN option to concatenate the copy of table space partitions.

FROMCOPYDDN
Use the FROMCOPYDDN option to unload data from one or more image copy data sets that are
associated with the specified DD name.

You can use this option to concatenate the copy of table space partitions under a DD name to form
a single input data set image. When you use the FROMCOPYDDN option, concatenate the data sets
in the order of the data set number; the first data set must be concatenated first. If the data sets
are concatenated in the wrong order or if different generations of image copies are concatenated, the
results might be unpredictable. For example, if the most recent image copy data sets and older image
copies are intermixed, the results might be unpredictable.

You can also use the FROMCOPYDDN option to concatenate a full image copy and incremental image
copies for a table space, a partition, or a piece. However, duplicate rows are also unloaded. Instead,
consider using the MERGECOPY utility to generate an updated full image copy as the input to UNLOAD.

When you specify the FROMCOPY or the FROMCOPYDDN option, you can specify only one output data set.

You can select specific rows and columns to unload just as you would for a table space. You can specify
the selection criteria with either the PART keyword, the FROM TABLE clause, or both, to qualify tables and
rows that are to be unloaded. However, do not include LOB columns in the field specification list. You can
unload rows that contain LOB columns only when the LOB columns are excluded.

Specify the table space name in the TABLESPACE option. The specified table space must exist when you
run UNLOAD. (The table space cannot have been dropped since the image copy was taken.) If an image
copy contains rows from dropped tables, UNLOAD ignores these rows.

After you run UNLOAD, the image copy data is unloaded to the output data set. However, certain
situations can affect the output as follows:

• Suppose that the image copy contains a table to which ALTER ADD COLUMN was applied after the image
copy was taken. In this case, UNLOAD sets the system or user-specified default value for the added
column when the data is unloaded from such an image copy.

• If an image copy was created by an inline copy operation, the image copy can contain duplicate pages.
If duplicate pages exist, UNLOAD issues a warning message, and all the qualified rows in duplicate
pages are unloaded into the output data set.

• If the image copy was taken with the SHRLEVEL CHANGE option specified, rows might be updated or
moved. As a result, data that is unloaded from such a copy might contain duplicates of these rows.

The later two situations can be prevented by using an image copy that was taken from a consistent
FlashCopy.

Related reference
“Syntax and options of the COPY control statement” on page 125
The COPY utility control statement, with its multiple options, defines the function that the utility job
performs.
“Syntax and options of the COPYTOCOPY control statement” on page 172

820 Db2 12 for z/OS: Utility Guide and Reference

The COPYTOCOPY utility control statement, with its multiple options, defines the function that the utility
job performs.
“Syntax and options of the MERGECOPY control statement” on page 354
The MERGECOPY utility control statement, with its multiple options, defines the function that the utility
job performs.
“Syntax and options of the UNLOAD control statement ” on page 781
The UNLOAD utility control statement, with its multiple options, defines the function that the utility job
performs.
“Sample UNLOAD control statements” on page 831
Use the sample control statements as models for developing your own UNLOAD control statements.

Data type conversion with the UNLOAD utility
You can convert one data type to another compatible data type by using the UNLOAD utility. The source
type is used for user-defined distinct types.

For example, you can convert columns of a numeric type (SMALLINT, INTEGER, FLOAT, DOUBLE, REAL,
and DECIMAL) from the Db2 internal format to the S/390 or an external format.

When you unload a floating-point type column, you can specify the binary form of the output to either the
S/390 format (hexadecimal floating point, or HFP), or the IEEE format (binary floating point, or BFP).

You can also convert a varying-length column to a fixed-length output field, with or without padding
characters. In either case, unless you explicitly specify a fixed-length data type for the field, the data itself
is treated as a varying-length data, and a length field is appended to the data.

For certain data types, you can unload data into fields with a smaller length by using the TRUNCATE or
STRIP options. In this situation, if a character code conversion is applied, the length of the data in bytes
might change due to the code conversion. The truncation operation is applied after the code conversion.

You can perform character code conversion on a character type field, including converting numeric
columns to the external format and the CLOB type. Be aware that when you apply a character code
conversion for mixed-data fields, the length of the result string in bytes can be shorter or longer than the
length of the source string. Character type data is always converted if you specify any of the character
code conversion options (EBCDIC, ASCII, UNICODE, or CCSID).

DATE, TIME, or TIMESTAMP column types are always converted into the external formats based on the
DATE, TIME, and TIMESTAMP formats of your installation.

Output field types
An output field can have a different data type from the one that is defined on a source table column if the
data types are compatible. The UNLOAD utility follows the general Db2 rules and conventions for the data
type attributes and the compatibility among the data types.

If you specify a data type in the UNLOAD control statement, the field type information is included in the
generated LOAD utility statement. For specific data type compatibility information, refer to the following
table. These tables show the compatibility of the data type of the source column (input data type) with the
data type of the output field (output data type). A Y indicates that the input data type can be converted to
the output data type.

The following table shows the compatibility of converting numeric data types.

Table 124. Compatibility of converting numeric data types

Input data types

Output data types

SMALLINT
INTEGER
(external)

BIGINT DECIMAL
(external)

FLOAT
(external)

DOUBLE or
REAL

FLOAT/REAL

SMALLINT Y Y1 Y Y1 Y1 Y Y

INTEGER Y2 Y1 Y Y1 Y1 Y Y

Chapter 35. UNLOAD 821

Table 124. Compatibility of converting numeric data types (continued)

Input data types

Output data types

SMALLINT
INTEGER
(external)

BIGINT DECIMAL
(external)

FLOAT
(external)

DOUBLE or
REAL

FLOAT/REAL

BIGINT Y2 Y2 Y2 Y Y N Y

DECIMAL Y2 Y1, 2 Y2 Y1 Y1 Y Y

FLOAT, DOUBLE, or
REAL

Y2 Y1, 2 Y2 Y1, 2 Y1 Y Y

DECFLOAT Y2 Y1, 2 Y2 Y1, 2 Y1, 2 N2 Y3

Note:

1. Subject to the CCSID conversion, if specified (EXTERNAL case).
2. Potential overflow (conversion error).
3. When converting from DECFLOAT(34) to DECFLOAT(16), you might encounter overflow, underflow, subnormal number, or inexact.

However, there will be no conversion error.

The following table shows the compatibility of converting character data types.

Table 125. Compatibility of converting character data types

Input data
types

Output data types

BLOB CHAR
VAR-
CHAR CLOB GRAPHIC

GRAPHIC
EXTER-
NAL

VAR-
GRAPHIC

DB-
CLOB BINARY

VAR-
BINARY

BLOB Y N N N N N N N N N

CLOB N Y1, 2 Y1, 2 Y N N N N N N

DBCLOB N N N N Y1, 2 Y1, 2, 3 Y1, 2 Y1 N N

CHAR N Y1 Y1 Y1, 4 N N N N Y Y

VARCHAR
or
LONG
VARCHAR

N Y1,2 Y1 Y1, 4 N N N N Y Y

GRAPHIC N N N N Y1 Y1, 3 Y1 Y1 N N

VAR-
GRAPHIC or
LONG VAR-
GRAPHIC

N N N N Y1, 2 Y1, 2, 3 Y1 Y1 N N

BINARY Y N N N N N N N Y Y

VARBINARY Y N N N N N N N Y Y

Note:

1. Subject to the CCSID conversion, if specified.
2. Results in an error if the field length is too small for the data unless you specify the TRUNCATE option. Note that a LOB has a 4-byte

length field; any other varying-length type has a 2-byte length field.
3. Only in the EBCDIC output mode.
4. Not applicable to BIT subtype data.

The following table shows the compatibility of converting time data types.

822 Db2 12 for z/OS: Utility Guide and Reference

Table 126. Compatibility of converting time data types

Input data types

Output data types

DATE EXTERNAL TIME EXTERNAL
TIMESTAMP
EXTERNAL

TIMESTAMP WITH
TIME ZONE
EXTERNAL

DATE Y1 N Y1, 2 Y1,2

TIME N Y1 N N

TIMESTAMP Y1, 3 Y1, 3 Y1 Y1,2

TIMESTAMP WITH
TIME ZONE

Y1,4 Y1,4 Y1,4 Y1

Note:

1. Subject to the CCSID conversion, if specified.
2. Zeros in the time portion. IMPLICIT_TZ in time zone portion if the output data type is

TIMESTAMP WITH TIME ZONE.
3. DATE or TIME portion of the timestamp.
4. DATE, TIME or TIMESTAMP portion of the timestamp with time zone.

Related concepts
Data types (Db2 SQL)
Related reference
“Syntax and options of the UNLOAD control statement ” on page 781
The UNLOAD utility control statement, with its multiple options, defines the function that the utility job
performs.

Output field positioning and size
By default, output data is always placed in an output record in the order of the defined columns over
the selected tables. You can choose to specify the order of the output fields by using a list of field
specifications.

Use the POSITION option to specify field position in the output records. You can also specify the size
of the output data field by using the length parameter for a particular data type. The length parameter
must indicate the size of the actual data field. The start parameter of the POSITION option indicates the
starting position of a field, including the NULL indicator byte (if the field can be null) and the length field (if
the field is varying length).

Using the POSITION parameter, the length parameter, or both can restrict the size of the data field in the
output records. Use care when specifying the POSITION and length parameters, especially for nullable
fields and varying length fields. If a conflict exists between the length parameter and the size of the field
in the output record that is specified by the POSITION parameters, Db2 issues an error message, and the
UNLOAD utility terminates. If an error occurs, the count of the number of records in error is incremented.
See the description of the MAXERR option of UNLOAD for more information.

If you specify a length parameter for a varying-length field and you also specify the NOPAD option,
length indicates the maximum length of data that is to be unloaded. Without the NOPAD option, UNLOAD
reserves a space of the given length instead of the maximum data size.

If you explicitly specify start parameters for certain fields, they must be listed in ascending order in the
field selection list. Unless you specify HEADER NONE for the table, a fixed-length record header is placed
at the beginning of each record for the table, and the start parameter must not overlap the record header
area.

Chapter 35. UNLOAD 823

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_datatypesintro.html

The TRUNCATE option is available for certain output field types. For the output field types where the
TRUNCATE option is not applicable, enough space must be provided in the output record for each field.

Related concepts
“Field specification errors” on page 831
If the UNLOAD utility detects any inconsistency relating to the field specification, Db2 issues an error
message. For example, the UNLOAD utility might detect a data conversion problem or an encoding
problem that occurs during the unloading of a row.
“Layout of output fields” on page 824
The layout of output fields vary based on a variety of factors, including whether the field is varying-length
or fixed-length and whether the field is nullable.
“Specifying TRUNCATE and STRIP options for output data” on page 829
You can unload certain types of data into output fields that are shorter than the length of the output data.
This data truncation occurs only when you explicitly specify the TRUNCATE option. Any CCSID conversion
is applied first, and then truncation is applied to encoded data for output.
Related reference
“Syntax and options of the UNLOAD control statement ” on page 781
The UNLOAD utility control statement, with its multiple options, defines the function that the utility job
performs.

Layout of output fields
The layout of output fields vary based on a variety of factors, including whether the field is varying-length
or fixed-length and whether the field is nullable.

Output fields can have the following layouts:

• Fixed-length
• Nullable fixed-length
• Varying-length field
• Varying-length field without the NOPAD option
• Nullable varying-length field with the NOPAD option
• Nullable varying-length field without the NOPAD option

The following figure shows the layout of a fixed-length field that cannot be null. This diagram shows that
the data field begins at a specified position, or at the next byte position past the end of the previous
data field. The data field then continues for the specified length or the length of the column in the table
definition. For GRAPHIC EXTERNAL data, shift-in and shift-out characters are inserted before and after
the data.

Figure 12. Layout of a fixed-length field (NOT NULL)

The following figure shows the layout of a fixed-length field that can be null. This diagram shows that a
null indicator byte is stored before the data field, which begins at the specified position or at the next byte
position past the end of the previous data field.

824 Db2 12 for z/OS: Utility Guide and Reference

Figure 13. Layout of a nullable fixed-length field

If you are running UNLOAD with the NOPAD option and need to determine the layout of a varying-length
field that cannot be null, see the layout diagram in the following figure. The length field begins at the
specified position or at the next byte position past the end of the previous data field.

Figure 14. Layout of a varying-length field (NOT NULL) with the NOPAD option

For UNLOAD without the NOPAD option, the layout of a varying-length field that cannot be null is depicted
in the following figure.

Figure 15. Layout of a varying-length field (NOT NULL) without the NOPAD option

For UNLOAD with the NOPAD option, the layout of a varying-length field that can be null is depicted in the
following figure. The length field begins at the specified position or at the next byte position past the end
of the previous data field.

Chapter 35. UNLOAD 825

Figure 16. Layout of a nullable varying-length field with the NOPAD option

For UNLOAD without the NOPAD option, the layout of a varying-length field that can be null is depicted in
the following figure. The length field begins at the specified position or at the next byte position past the
end of the previous data field.

Figure 17. Layout of a nullable varying-length field without the NOPAD option

Output for special values Infinity, sNaN, or NaN
When you run UNLOAD against a DECFLOAT column that contains the special values Infinity, sNaN, or
NaN, the output is in uppercase.

Infinity, sNaN, and NaN are unloaded as INFINITY, SNAN, and NAN, respectively.

Unloading delimited files
You can use the DELIMITED option to specify that UNLOAD is to produce an output file in delimited
format. All fields in the output data set are either in character string or numeric external format. Each
column is separated from the next by a column delimiter, and character strings are marked by character
string delimiters.

Recommendation: If a delimited file is to be transferred to or from a platform other than z/OS or between
Db2 for z/OS systems that use different EBCDIC or ASCII CCSIDs, use Unicode as the encoding scheme
for the delimited file. Using Unicode avoids possible CCSID translation problems.

You are responsible for ensuring that the chosen delimiters are not part of the data in the file. If the
delimiters are part of the file's data, unexpected errors can occur.

826 Db2 12 for z/OS: Utility Guide and Reference

Restrictions: The following general restrictions apply to the use of delimiters:

• You cannot specify the same character for more than one type of delimiter (COLDEL, CHARDEL, and
DECPT).

• You can specify a character constant for a delimiter if the utility control statement is coded in the same
encoding scheme as the output file. For example, the utility control statement is coded in Unicode and
the output data is also coded in Unicode.

• Use the hex representation for non-default delimiters if the utility control statement is coded in a
different encoding scheme than the output file. For example, the utility control statement is coded in
Unicode and the output file is coded in EBCDIC. In this case, if you do not use the hex representation for
the non-default delimiters, the results can be unpredictable.

• You cannot specify HEADER OBID and ROWID for output fields in delimited output format. Because a
header is not allowed, output must be from a single table.

• When you specify the DELIMITED option, the utility ignores the POSITION keyword. The utility overrides
field data type specifications according to the specifications of the delimited format. (For example,
length values for CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, CLOB, DBCLOB, and BLOB data are the
delimited lengths of each field in the output data set, and the utility unloads all numeric types in
external format.)

• You cannot specify a binary 0 (zero) for any delimiter.
• No null byte is present for a delimited output file. A null value is indicated by the absence of a cell value

where one would normally occur. For example, two successive column delimiters or a missing column at
the end of a record indicate a null value.

• You cannot use the default decimal point as a character string delimiter (CHARDEL) or a column string
delimiter (COLDEL).

• Shift-in and shift-out characters cannot be specified as EBCDIC MBCS delimiters.
• In the DBCS environment, the pipe character (|) is not supported.
• If the output is coded in ASCII or Unicode, you cannot specify any of the following values for any

delimiter: X'0A', X'0D', X'2E'.
• If the output is coded in EBCDIC, you cannot specify any of the following values for any delimiter: X'15',

X'0D', X'25'.
• If the output is coded in EBCDIC DBCS or MBCS, you cannot specify any of the following values for

character string delimiters: X'0D', X'15', X'25', X'4B'.

The following table lists by encoding scheme the default hex values for the delimiter characters.

Table 127. Default delimiter values for different encoding schemes

Character EBCDIC SBCS
EBCDIC DBCS/
MBCS

ASCII/Unicode
SBCS

ASCII/Unicode
MBCS

Character string
delimiter

X'7F' X'7F' X'22' X'22'

Decimal point
character

X'4B' X'4B' X'2E' X'2E'

Column delimiter X'6B' X'6B' X'2C' X'2C'

In most EBCDIC code pages, the hex values in the previous table represent a double quotation mark(") for
the character string delimiter, a period(.) for the decimal point character, and a comma(,) for the column
delimiter.

The following table lists by encoding scheme the maximum allowable hex values for any delimiter
character.

Chapter 35. UNLOAD 827

Table 128. Maximum delimiter values for different encoding schemes

Encoding scheme Maximum allowable value

EBCDIC SBCS None

EBCDIC DBCS/MBCS X'3F'

(X'7F', X'4B', X'6B' are also allowed.)

ASCII/Unicode SBCS None

ASCII/Unicode MBCS X'7F'

The following table identifies the acceptable data type forms for the delimited file format that the LOAD
and UNLOAD utilities use.

Table 129. Acceptable data type forms for delimited files

Data type
Acceptable form for loading a
delimited file

Form that is created by unloading
a delimited file

CHAR, VARCHAR A delimited or non-delimited
character string

Character data that is enclosed by
character delimiters. For VARCHAR,
length bytes do not precede the
data in the string.

GRAPHIC (any type) A delimited or non-delimited
character stream

Data that is unloaded as a delimited
character string. For VARGRAPHIC,
length bytes do not precede the
data in the string.

INTEGER (any type) A stream of characters that
represents a number in EXTERNAL
format

Numeric data in external format.

Decimal (any type) A character stream that represents
a number in EXTERNAL format

A string of characters that
represents a number.

FLOAT Representation of a number in the
range -7.2E + 75 to 7.2E +
75in EXTERNAL format

A string of characters that
represents a number in floating-
point notation.

BLOB, CLOB A delimited or non-delimited
character string

Character data that is enclosed by
character delimiters. Length bytes
do not precede the data in the
string.

DBCLOB A delimited or non-delimited
character string

Character data that is enclosed by
character delimiters. Length bytes
do not precede the data in the
string.

DATE A delimited or non-delimited
character string that contains a date
value in EXTERNAL format

A string of characters that
represents a date.

TIME A delimited or non-delimited
character string that contains a time
value in EXTERNAL format

A string of characters that
represents a time.

828 Db2 12 for z/OS: Utility Guide and Reference

Table 129. Acceptable data type forms for delimited files (continued)

Data type
Acceptable form for loading a
delimited file

Form that is created by unloading
a delimited file

TIMESTAMP A delimited or non-delimited
character string that contains a
timestamp value in EXTERNAL
format

A string of characters that
represents a timestamp.

XML A delimited or non-delimited XML
character string

A string of characters that
represents an XML document.

Related concepts
“Loading delimited files” on page 304
You can load a delimited file by using the FORMAT DELIMITED option. A delimited file contains cell values
that are separated by delimiters. Delimiters are predefined characters that separate data. The column
delimiter separates one column value from the next. Character string delimiters identify the beginning and
end of a single cell value and are required only if the cell value contains the column delimiter.
Related reference
“Delimited file format” on page 1061
A delimited file is a sequential file with column delimiters. Each delimited file is a stream of records, which
consists of fields that are ordered by column.

Specifying TRUNCATE and STRIP options for output data
You can unload certain types of data into output fields that are shorter than the length of the output data.
This data truncation occurs only when you explicitly specify the TRUNCATE option. Any CCSID conversion
is applied first, and then truncation is applied to encoded data for output.

For bit strings, truncation occurs at a byte boundary. For character type data, truncation occurs at a
character boundary (a multi-byte character is not split). If a mixed-character type data is truncated
in an output field of fixed size, the truncated string can be shorter than the specified field size. In
this case, blanks in the output CCSID are padded to the right. If the output data is in EBCDIC for a
mixed-character type field, truncation preserves the SO (shift-out) and the SI (shift-in) characters around
a DBCS substring.

The TRUNCATE option of the UNLOAD utility truncates string data, and it has a different purpose than the
SQL TRUNCATE scalar function.

For VARCHAR and VARGRAPHIC, and VARBINARY output fields, in addition to the TRUNCATE option, the
STRIP option is provided to remove the specified characters, or the leading blanks, the trailing blanks,
or both. The strip operation is applied on the encoded data for output. If both the TRUNCATE and STRIP
options are specified, the truncation operation is applied first, and then strip is applied. For example, the
output for an UNLOAD job in which you specify both the TRUNCATE and STRIP options for a VARCHAR(5)
output field is shown in the following table. In this table, an underscore represents a character that is to
be stripped. In all cases, the source string is first truncated to '_ABC_' (a five-character string to fit in the
VARCHAR(5) field), and then the strip operation is applied.

Table 130. Results of specifying both the TRUNCATE and STRIP options for UNLOAD

Specified STRIP option Source string
Truncated string

Output string
Specified
length

STRIP BOTH '_ABC_DEF' '_ABC_' 'ABC' 3

STRIP LEADING '_ABC_DEF' '_ABC_' 'ABC_' 4

Chapter 35. UNLOAD 829

Table 130. Results of specifying both the TRUNCATE and STRIP options for UNLOAD (continued)

Specified STRIP option Source string
Truncated string

Output string
Specified
length

STRIP TRAILING
'_ABC_DEF' '_ABC_' '_ABC'

4

The following control statement shows an example of using the STRIP option.

In the example, STRIP TRAILING '_' is included in the field specification for the TEXT column. The
TEXT column contains variable character data with a maximum length of 8 characters, as specified by
VARCHAR(8). When the UNLOAD utility unloads the table, all occurrences of the '_' (underscore) character
at the end of the data from the TEXT column are stripped from the data.

 UNLOAD TABLESPACE DB.TS
 PUNCHDDN SYSPUNCH
 UNLDDN UNLDD2
 FROM TABLE TB
 (EMPNO POSITION(*) CHAR(6),
 TEXT POSITION(*) VARCHAR(8) STRIP TRAILING '_',
 DEPTNO POSITION(*) CLOB(4),
 ROWID POSITION(*) ROWID,
 LAST_UPDATE POSITION(*) TIME EXTERNAL)

The following table further illustrates the STRIP option.

Table 131. Example of the results of specifying the STRIP option for UNLOAD

Original data STRIP specification Data after stripping Final length

'_ABC_' STRIP LEADING '_' 'ABC_' 4

'_ABC_' STRIP TRAILING '_' '_ABC' 4

'_ABC_' STRIP BOTH '_' 'ABC' 3

LOAD statements that are generated by UNLOAD
The UNLOAD utility can generate one or more LOAD utility statements that you can later use to load
the unloaded data into either the original table or different tables. The generated LOAD statements are
written to the data set that is specified by the PUNCHDDN option. By default, that data set is SYSPUNCH.

To request that UNLOAD generate a LOAD statement, perform one of following actions:

• Include a SYSPUNCH DD statement or SYSPUNCH template in the utility job.
• Specify the PUNCHDDN option with a different DD name or template name and include that DD

statement or template in the utility job.

If PUNCHDDN is not specified and the SYSPUNCH DD name does not exist, the LOAD statement is not
generated.

If multiple table spaces are to be unloaded and you want UNLOAD to generate a LOAD statement for each
table space, specify a physically distinct data set for each table space. To do so, specify the PUNCHDDN
option with a template that contains the table space as a variable (&TS.).

Make any necessary changes to the generated LOAD statement. For example, by default, the generated
LOAD statement includes WHEN and INTO TABLE specifications that identify the table where the rows are
to be reloaded. These specifications are not included if the HEADER NONE option was specified in the
UNLOAD statement. If you intend to load the UNLOAD output data into different tables than the original
ones, you need to edit the generated LOAD statement.

You can use this generated LOAD statement as input to the DSNUTILU stored procedure. You can specify
the SYSPUNCH data set in the utstmt input parameter. However, you must first change the data set as
instructed in the description of utstmt.

830 Db2 12 for z/OS: Utility Guide and Reference

Related tasks
“Loading tables with special column types by using generated LOAD statements” on page 298
When you run the UNLOAD utility or the REORG utility with the UNLOAD EXTERNAL or DISCARD option,
Db2 generates a LOAD statement for the unloaded data. You can then use this LOAD statement to load the
unloaded data into any table that has a compatible format.
Related reference
“TEMPLATE” on page 751
The TEMPLATE online utility control statement lets you allocate data sets, without using JCL DD
statements, during the processing of a LISTDEF list. The TEMPLATE control statement defines the
data set naming convention. TEMPLATE control statements can also be written to contain allocation
parameters that define data set size, location, and attributes.
DSNUTILU stored procedure (Db2 SQL)

Unloading compressed data
You can unload compressed rows from an image copy data set only when the dictionary for
decompression has been retrieved. If a row is compressed and the dictionary pages have not been
read when the row is encountered, the UNLOAD utility ignores this row, issues a warning message, and
increments the error count.

About this task
If the error count reaches the limit that is specified by the MAXERR option, UNLOAD terminates with an
error message.

If the image copy data set is an incremental copy or a copy of pieces that does not contain a dictionary,
the FROMCOPYDDN option can be used for a DD name to concatenate the data set with the corresponding
full image copy that contains the dictionary. If SYSTEMPAGES YES is used, a dictionary will always be
available in the incremental copies or pieces.

Field specification errors
If the UNLOAD utility detects any inconsistency relating to the field specification, Db2 issues an error
message. For example, the UNLOAD utility might detect a data conversion problem or an encoding
problem that occurs during the unloading of a row.

If the MAXERR option specifies a number that is greater than zero, the UNLOAD utility continues
processing until the total number of the records in error reaches the specified MAXERR number. Db2
issues one message for each record in error and does not unload the record.

Sample UNLOAD control statements
Use the sample control statements as models for developing your own UNLOAD control statements.

Example 1: Unloading all columns of specified rows

The following UNLOAD statement specifies that all columns of rows that meet the following criteria are to
be unloaded from table DSN8810.EMP in table space DSN8D12A.DSN8S71E:

• The value in the WORKDEPT column is D11.
• The value in the SALARY column is greater than 25,000.

//STEP1 EXEC DSNUPROC,UID='SMPLUNLD',UTPROC='',SYSTEM='DSN'
//SYSREC DD DSN=USERID.SMPLUNLD.SYSREC,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(2,1))
//SYSPUNCH DD DSN=USERID.SMPLUNLD.SYSPUNCH,
// DISP=(NEW,CATLG,CATLG),

Chapter 35. UNLOAD 831

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_dsnutilu.html

// UNIT=SYSDA,SPACE=(TRK,(1,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 UNLOAD TABLESPACE DSN8D12A.DSN8S81E
 FROM TABLE DSN8C10.EMP
 WHEN (WORKDEPT = 'D11' AND SALARY > 25000)

Example 2: Unloading specific columns by using a field specification list

The following control statement specifies that columns EMPNO, LASTNAME, and SALARY are to be
unloaded, in that order, for all rows that meet the specified conditions. These conditions are specified
in the WHEN clause and are the same as those conditions in example 1. The SALARY column is to be
unloaded as type DECIMAL EXTERNAL. The NOPAD option indicates that variable-length fields are to be
unloaded without any padding.

UNLOAD TABLESPACE DSN8D12A.DSN8S81E NOPAD
 FROM TABLE DSN8C10.EMP
 (EMPNO, LASTNAME, SALARY DECIMAL EXTERNAL)
 WHEN (WORKDEPT = 'D11' AND SALARY > 25000)

The output from this example might look similar to the following output:

000060@@STERN# 32250.00
000150@@ADAMSON# 25280.00
000200@@BROWN# 27740.00
000220@@LUTZ# 29840.00
200220@@JOHN# 29840.00

In this output:

• '@@' before the last name represents the 2-byte binary field that contains the length of the VARCHAR
field LASTNAME (for example, X'0005' for STERN).

• '#' represents the NULL indicator byte for the nullable SALARY field.
• Because the SALARY column is declared as DECIMAL (9,2) on the table, the default output length of the

SALARY field is 11 (9 digits + sign + decimal point), not including the NULL indicator byte.
• LASTNAME is unloaded as a variable-length field because the NOPAD option is specified.

Example 3: Unloading data from an image copy

The FROMCOPY option in the following control statement specifies that data is to be unloaded from a
single image copy data set, JUKWU111.FCOPY1.STEP1.FCOPY1.

PUNCHDDN SYSPUNCH specifies that the UNLOAD utility is to generate LOAD utility control statements
and write them to the data set that is defined by the SYSPUNCH DD statement; SYSPUNCH is the default.
UNLDDN SYSREC specifies that the data is to be unloaded to the data set that is defined by the SYSREC
DD statement; SYSREC is the default.

UNLOAD TABLESPACE DBKW1101.TPKW1101
 FROMCOPY JUKWU111.FCOPY1.STEP1.FCOPY1
 PUNCHDDN SYSPUNCH UNLDDN SYSREC

Example 4: Unloading a sample of rows and specifying a header.

The following control statement specifies that a sample of rows is to be unloaded from table
ADMF001.TBKW1605. Unloading a sample of rows is useful for building a test system. The SAMPLE
option indicates that 75% of the rows are to be sampled. The HEADER option indicates that the string
'sample' is to be used as the header field in the output file. The PUNCHDDN option indicates that UNLOAD

832 Db2 12 for z/OS: Utility Guide and Reference

is to generate LOAD utility control statements and write them to the SYSPUNCH data set, which is the
default. UNLOAD specifies the header field as a criterion in the WHEN clause of these LOAD statements.

UNLOAD TABLESPACE DBKW1603.TPKW1603
 PUNCHDDN SYSPUNCH UNLDDN SYSREC
 FROM TABLE ADMF001.TBKW1605
 HEADER CONST 'sample'
 SAMPLE 75

Example 5: Unloading data from two tables in a segmented (non-UTS) table space

The following control statement specifies that data from table ADMF001.TBKW1504 and
table ADMF001.TBKW1505 is to be unloaded from the segmented (non-UTS) table space
DBKW1502.TSKW1502. The PUNCHDDN option indicates that UNLOAD is to generate LOAD utility control
statements and write them to the SYSPUNCH data set, which is the default. The UNLDDN option specifies
that the data is to be unloaded to the data set that is defined by the SYSREC DD statement, which is also
the default.

UNLOAD TABLESPACE DBKW1502.TSKW1502
 PUNCHDDN SYSPUNCH UNLDDN SYSREC
 FROM TABLE ADMF001.TBKW1504
 FROM TABLE ADMF001.TBKW1505

Example 6: Unloading data in parallel from a partitioned table space

The following UNLOAD statement specifies that data from table TCRT.TTBL is to be unloaded to data
sets that are defined by the UNLDDS template. These data sets are to be dynamically allocated and
named according to the naming convention that is defined by the DSN option of the TEMPLATE utility
control statement. This naming convention indicates that a data set is to be allocated for each table space
partition.

Assume that table space TDB1.TSP1, which contains table TCRT.TTBL, has three partitions. Because the
table space is partitioned and each partition is associated with an output data set that is defined by the
UNLDDS template, the UNLOAD job runs in parallel in a multi-processor environment. The number of
parallel tasks are determined by the number of available processors.

//STEP1 EXEC DSNUPROC,UID='SMPLUNLD',UTPROC='',SYSTEM='DSN'
//SYSPUNCH DD DSN=USERID.SMPLUNLD.SYSPUNCH,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 TEMPLATE UNLDDS DSN &USERID..SMPLUNLD.&TS..P&PART.
 UNIT SYSDA DISP (NEW,CATLG,CATLG) SPACE (2,1) CYL
 UNLOAD TABLESPACE TDB1.TSP1
 UNLDDN UNLDDS
 FROM TABLE TCRT.TTBL

Assume that the user ID is USERID. This UNLOAD job creates the following three data sets to store the
unloaded data:

• USERID.SMPLUNLD.TSP1.P00001 ... contains rows from partition 1.
• USERID.SMPLUNLD.TSP1.P00002 ... contains rows from partition 2.
• USERID.SMPLUNLD.TSP1.P00003 ... contains rows from partition 3.

Example 7: Using a LISTDEF utility statement to specify partitions to unload

The following UNLOAD statement specifies that data that is included in the UNLDLIST list is to be
unloaded. UNLDLIST is defined in the LISTDEF utility control statement and contains partitions one and

Chapter 35. UNLOAD 833

three of table space TDB1.TSP1. The LIST option of the UNLOAD statement specifies that the UNLOAD
utility is to use this list.

The data is to be unloaded to data sets that are defined by the UNLDDS template.

//SAMPJOB JOB ...
//STEP1 EXEC DSNUPROC,UID='SMPLUNLD',UTPROC='',SYSTEM='DSN'
//SYSPUNCH DD DSN=USERID.SMPLUNLD.SYSPUNCH,
// DISP=(NEW,CATLG,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(1,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 LISTDEF UNLDLIST
 INCLUDE TABLESPACE TDB1.TSP1 PARTLEVEL(1)
 INCLUDE TABLESPACE TDB1.TSP1 PARTLEVEL(3)
 TEMPLATE UNLDDS DSN &USERID..SMPLUNLD.&TS..P&PART.
 UNIT SYSDA DISP (NEW,CATLG,CATLG) SPACE (2,1) CYL
 UNLOAD LIST UNLDLIST -- LIST name
 UNLDDN UNLDDS -- TEMPLATE name

Assume that the user ID is USERID. This UNLOAD job creates the following two data sets to store the
unloaded data:

• USERID.SMPLUNLD.TSP1.P00001 ... contains rows from partition 1.
• USERID.SMPLUNLD.TSP1.P00003 ... contains rows from partition 3.

Example 8: Unloading multiple table spaces by using LISTDEF

The following UNLOAD statement specifies that data from multiple table spaces is to be unloaded. These
table spaces are specified in the LISTDEF utility control statement. Assume that the database TDB1
contains two table spaces that can be expressed by the pattern-matching string 'TSP*', (for example,
TSP1 and TSP2). These table spaces are both included in the list named UNLDLIST, which is defined in the
LISTDEF statement. The LIST option of the UNLOAD statement specifies that the UNLOAD utility is to use
this list.

The UNLDDN option specifies that the data is to be unloaded to data sets that are defined by the UNLDDS
template. The PUNCHDDN option specifies that UNLOAD is to generate LOAD utility control statements
and write them to the data sets that are defined by the PUNCHDS template.

//SAMPJOB JOB ...
//STEP1 EXEC DSNUPROC,UID='SMPLUNLD',UTPROC='',SYSTEM='DSN'
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 LISTDEF UNLDLIST
 INCLUDE TABLESPACE TDB1.TSP*
 TEMPLATE UNLDDS DSN &USERID..SMPLUNLD.&TS.
 UNIT SYSDA DISP (NEW,CATLG,CATLG) SPACE (2,1) CYL
 TEMPLATE PUNCHDS DSN &USERID..SMPLPUNC.&TS.
 UNIT SYSDA DISP (NEW,CATLG,CATLG) SPACE (1,1) CYL
 UNLOAD LIST UNLDLIST
 PUNCHDDN PUNCHDS -- TEMPLATE name
 UNLDDN UNLDDS -- TEMPLATE name

Assume that the user ID is USERID. This UNLOAD job creates the following two data sets to store the
unloaded data:

• USERID.SMPLUNLD.TSP1 ... contains rows from table space TDB1.TSP1.
• USERID.SMPLUNLD.TSP2 ... contains rows from table space TDB1.TSP2.

Example 9: Unloading data into a delimited file.

The following UNLOAD statement specifies that data from the specified columns (RECID, CHAR7SBCS,
CHAR7BIT, VCHAR20, VCHAR20SBCS, VCHAR20BIT) in table TBQB0501 is to be unloaded into a

834 Db2 12 for z/OS: Utility Guide and Reference

delimited file. This output format is indicated by the DELIMITED option. The POSITION(*) option indicates
that each field in the output file is to start at the first byte after the last position of the previous field.

The column delimiter is specified by the COLDEL option as a semicolon (;), the character string delimiter is
specified by the CHARDEL option as a pound sign (#), and the decimal point character is specified by the
DECPT option as an exclamation point (!).

PUNCHDDN SYSPUNCH specifies that UNLOAD is to generate LOAD utility control statements and store
them in the SYSPUNCH data set, which is the default. UNLDDN SYSREC indicates that the data is to be
unloaded to the SYSREC data set, which is the default.

The EBCDIC option indicates that all output character data is to be in EBCDIC.

//*
//STEP3 EXEC DSNUPROC,UID='JUQBU105.UNLD1',
// UTPROC='',
// SYSTEM='SSTR'
//UTPRINT DD SYSOUT=*
//SYSREC DD DSN=JUQBU105.UNLD1.STEP3.TBQB0501,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSPUNCH DD DSN=JUQBU105.UNLD1.STEP3.SYSPUNCH
// DISP=(MOD,CATLG,CATLG)
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD*
 UNLOAD TABLESPACE DBQB0501.TSQB0501
 DELIMITED CHARDEL '#' COLDEL ';' DECPT '!'
 PUNCHDDN SYSPUNCH
 UNLDDN SYSREC EBCDIC
 FROM TABLE ADMF001.TBQB0501
 (RECID POSITION(*) CHAR,
 CHAR7SBCS POSITION(*) CHAR,
 CHAR7SBIT POSITION(*) CHAR(7),
 VCHAR20 POSITION(*) VARCHAR,
 VCHAR20SBCS POSITION(*) VARCHAR,
 VCHAR20BIT POSITION(*) VARCHAR)
 /*

Example 10: Converting character data

For this example, assume that table DSN8810.DEMO_UNICODE contains character data in Unicode. The
UNLOAD control statement specifies that the utility is to unload the data in this table as EBCDIC data.

UNLOAD
 EBCDIC
 TABLESPACE DSN8D81E.DSN8S81U
 FROM TABLE DSN8810.DEMO_UNICODE

Example 11: Unloading LOB data to a file

The following UNLOAD statement specifies that the utility is to unload data from table
DSN8910.EMP_PHOTO_RESUME into the data set that is identified by the SYSREC DD statement. Data
in the EMPNO field is six bytes of character data, as indicated by the CHAR(6) option, and is unloaded
directly into the SYSREC data set. Data in the RESUME column is CLOB data as indicated by the CLOBF
option. This CLOB data is to be unloaded to the files identified by the LOBFRV template, which is defined
in the preceding TEMPLATE statement. If these files do not already exist, Db2 creates them. The names of
these files are stored in the SYSREC data set. The length of the file name to be stored in this data set can
be up to 255 bytes as specified by the VARCHAR option.

TEMPLATE LOBFRV DSN 'UNLDTEST.&DB..&TS..RESUME'
 DSNTYPE(PDS) UNIT(SYSDA)

UNLOAD DATA
 FROM TABLE DSN8910.EMP_PHOTO_RESUME
 (EMPNO CHAR(6),

Chapter 35. UNLOAD 835

 RESUME VARCHAR(255) CLOBF LOBFRV)
 SHRLEVEL CHANGE

Example 12: Unloading data from clone tables

The UNLOAD control statement specifies that the utility is to unload data from only clone tables in the
specified table spaces. The PUNCHDDN option specifies that the SYSPUNCH data set is to receive the
LOAD utility control statements that the UNLOAD utility generates.

UNLOAD TABLESPACE DBKQRE01.TPKQRE01
 FROM TABLE ADMF001.TBKQRE01_CLONE
 PUNCHDDN SYSPUNCH UNLDDN SYSREC
 CLONE

836 Db2 12 for z/OS: Utility Guide and Reference

Part 3. Db2 stand-alone utilities
The stand-alone utilities run as batch jobs that are independent of Db2. The only way to run these utilities
is to use JCL.

© Copyright IBM Corp. 1983, 2024 837

838 Db2 12 for z/OS: Utility Guide and Reference

Chapter 36. Invoking stand-alone utilities
To invoke a stand-alone utility, you must use JCL. Some stand-alone utilities read the utility control
statements from an input stream; other utilities obtain the function definitions from JCL EXEC PARM
parameters.

Before you begin
Make sure that you are authorized to run the utility that you want to invoke.

Procedure
To invoke a stand-alone utility:
1. Prepare the necessary data sets.

For information about the data sets that are required for the utility that you want to invoke, see the
information for that utility:

• Chapter 38, “DSNJCNVT,” on page 845
• Chapter 39, “DSNJLOGF (preformat active log),” on page 847
• Chapter 40, “DSNJU003 (change log inventory),” on page 849
• Chapter 41, “DSNJU004 (print log map),” on page 873
• Chapter 43, “DSN1COMP,” on page 893
• “Data sets that DSN1COPY uses” on page 920
• Chapter 45, “DSN1LOGP,” on page 935
• Chapter 46, “DSN1PRNT,” on page 953
• Chapter 47, “DSN1SDMP,” on page 963

2. Invoke the utility by creating a JCL job with the following information:

• Specify the utility name on the EXEC statement, in the PGM parameter.
• Specify the utility options as follows:

DSN1COMP, DSN1COPY, and DSN1PRNT
For these utilities, specify the utility options on the EXEC statement, in the PARM parameter.
For more information about how to specify these options and sample JCL for each utility, see
“Specifying options for stand-alone utilities by using the JCL EXEC PARM parameter” on page
840.

DSNJU003, DSNJU004, DSN1LOGP, andDSN1SDMP
For these utilities, create a utility control statement in an in-stream data set. For more
information about these utility control statements, the DD name to use for the in-stream data
set, and sample JCL for each utility, see “Stand-alone utility control statements” on page 840.

DSNJCNVB, DSNJCNVT, and DSNJLOGF
These utilities do not have any options. For sample JCL for these utilities, see the following
information:

– Chapter 38, “DSNJCNVT,” on page 845
– Chapter 39, “DSNJLOGF (preformat active log),” on page 847

Related concepts
“Basic information about Db2 utilities” on page 1
Use IBM Db2 utilities to help maintain data in your Db2 for z/OS databases.
What is JCL? (z/OS basic skills)
JCL DD statement: ddnames that are reserved for specific uses (z/OS basic skills)

© Copyright IBM Corp. 1983, 2024 839

https://www.ibm.com/docs/zosbasics/com.ibm.zos.zconcepts/zconc_whatisjcl.htm
https://www.ibm.com/docs/zosbasics/com.ibm.zos.zjcl/zjclc_jclDDreserved.htm

Coding JCL: Data set types and name syntax (z/OS Basic Skills)

Specifying options for stand-alone utilities by using the JCL EXEC
PARM parameter

Use the EXEC PARM parameter to specify function options for the following stand-alone utilities:
DSN1COMP, DSN1COPY, and DSN1PRNT.

Procedure
To specify options for stand-alone utilities by using the JCL EXEC PARM parameter:
• Ensure that the parameters that you specify obey the following JCL EXEC PARM parameter

specification rules:

– Enclose multiple subparameters in single quotation marks or parentheses and separate the
subparameters with commas, as in the following example:

//name EXEC PARM='ABC,...,XYZ'

– Ensure that the total length of the parameter specification does not exceed 100 characters.
– Do not use blanks within the parameter specification.

• To specify the parameter across multiple lines:

1. Enclose it in parentheses.
2. End the first line with a subparameter, followed by a comma.
3. Continue the subparameters on the next line, beginning before column 17.

The following example shows a parameter that spans multiple lines:

//stepname EXEC PARM=(ABC,...LMN,
 OPQ,...,XYZ)

Example
For sample JCL, see the following information:

• “Sample DSN1COMP control statements” on page 901
• “Sample DSN1COPY control statements ” on page 930
• “Sample DSN1PRNT control statements” on page 960

Related reference
EXEC PARM parameter (MVS JCL Reference)

Stand-alone utility control statements
Utility control statements include parameters that define the function that a utility job performs. Only
some stand-alone utilities require utility control statements. For the other stand-alone utilities, you
specify the utility parameters in the PARM parameter of the EXEC statement.

The following table lists the stand-alone utilities that read utility control statements from an in-stream
data set. Use the listed DD name for the in-stream data set.

Table 132. Stand-alone utilities that read utility control statements

Utility DD name

DSNJU003 (change log inventory) SYSIN

DSNJU004 (print log map) SYSIN (optional)

840 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/zosbasics/com.ibm.zos.zjcl/zjclt_dstypesNnames.htm
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieab600/xexparm.htm

Table 132. Stand-alone utilities that read utility control statements (continued)

Utility DD name

DSN1LOGP SYSIN

DSN1SDMP SDMPIN

The statements must conform to the following rules:

• The logical record length (LRECL) must be 80 characters. Columns 73 through 80 are ignored.
• The records are concatenated into a single stream before they are parsed. No concatenation character

is necessary.
• The SYSIN stream can contain multiple utility control statements.

For sample JCL with utility control statements, see the following information:

• “Sample DSNJU003 control statements” on page 870
• “Sample DSNJU004 control statement” on page 875
• “Sample DSN1LOGP control statements” on page 945
• “Sample DSN1SDMP control statements” on page 970

Related concepts
JCL DD statement: ddnames that are reserved for specific uses (z/OS basic skills)
Coding JCL: Data set types and name syntax (z/OS Basic Skills)
Related tasks
“Specifying options for stand-alone utilities by using the JCL EXEC PARM parameter” on page 840
Use the EXEC PARM parameter to specify function options for the following stand-alone utilities:
DSN1COMP, DSN1COPY, and DSN1PRNT.

Chapter 36. Invoking stand-alone utilities 841

https://www.ibm.com/docs/zosbasics/com.ibm.zos.zjcl/zjclc_jclDDreserved.htm
https://www.ibm.com/docs/zosbasics/com.ibm.zos.zjcl/zjclt_dstypesNnames.htm

842 Db2 12 for z/OS: Utility Guide and Reference

Chapter 37. DSNJCNVB
The DSNJCNVB stand-alone conversion utility converts the bootstrap data set (BSDS) so that it can
support up to 10,000 archive log volumes and 93 active log data sets per log copy.

Environment

Execute the DSNJCNVB utility as a batch job only when Db2 is not running.

Authorization required

The authorization ID of the DSNJCNVB job must have the requisite RACF authorization.

Prerequisite actions

If you have migrated to a new version of Db2, you need to create a larger BSDS before converting it.
For a new installation, you do not need to create a larger BSDS. Db2 provides a larger BSDS definition in
installation job DSNTIJIN; however, if you want to convert the BSDS, you must still run DSNJCNVB.

Required and optional data sets

DSNJCNVB recognizes DD statements with the following DD names:

SYSUT1
Specifies the BSDS copy 1 data set that DSNJCNVB is to use as input. This statement is required.

SYSUT2
Specifies the BSDS copy 2 data set that DSNJCNVB is to use as input. This statement is optional.

Specify this statement if you are using dual BSDSs and you want to convert both with a single
execution of DSNJCNVB. You can run DSNJCNVB separately for each copy.

SYSPRINT
Specifies a data set or print spool class for print output. This statement is required. The logical record
length (LRECL) is 125.

Running DSNJCNVB

Use the following EXEC statement to execute this utility:

//EXEC PGM=DSNJCNVB

Sample DSNJCNVB control statement

The following statements specify that DSNJCNVB is to convert the BSDS so that it can manage up to
10,000 archive log volumes and 93 active log data sets per log copy. The SYSUT1 and SYSUT2 statements
identify the bootstrap data sets. Only the SYSUT1 statement is required. The SYSUT2 statement is
optional. Specify SYSUT2 only if you are using dual BSDSs and you want to convert both with a single
execution of DSNJCNVB.

//DSNJCNVB EXEC PGM=DSNJCNVB
//STEPLIB DD DISP=SHR,DSN=DSNC810.SDSNEXIT

© Copyright IBM Corp. 1983, 2024 843

// DD DISP=SHR,DSN=DSNC810.SDSNLOAD
//SYSUT1 DD DISP=OLD,DSN=DSNC810.BSDS01
//SYSUT2 DD DISP=OLD,DSN=DSNC810.BSDS02
//SYSPRINT DD SYSOUT=*

DSNJCNVB output

The following example shows sample DSNJCNVB output:

CONVERSION OF BSDS DATA SET - COPY 1, DSN=DSNC810.BSDS01
 SYSTEM TIMESTAMP - DATE=2003.199 LTIME= 9:40:58.74
 UTILITY TIMESTAMP - DATE=2003.216 LTIME=14:26:02.21
 PREVIOUS HIKEY - 04000053
 NEW HIKEY - 040002F0
 RECORDS ADDED - 669
DSNJ260I DSNJCNVB BSDS CONVERSION FOR DDNAME=SYSUT1 COMPLETED SUCCESSFULLY
DSNJ200I DSNJCNVB CONVERT BSDS UTILITY PROCESSING COMPLETED SUCCESSFULLY

Related tasks
Adding a second BSDS (Db2 Installation and Migration)

844 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_add2ndbsds.html

Chapter 38. DSNJCNVT
The DSNJCNVT stand-alone conversion utility converts the bootstrap data set (BSDS) records that are
necessary to support 10-byte RBA and LRSN fields.

At migration to Db2 12, you cannot start Db2 12 until the BSDS is converted to use the 10-byte RBA and
LRSN formats. You can convert the BSDS before or during the Db2 12 migration process.

In data sharing, you must convert the BSDS for each Db2 member separately.

Attention: In Db2 subsystems that are not data sharing members, if Db2 is already at risk of
reaching the 6-byte RBA limit, it is strongly recommended that you first convert all catalog and
directory objects, then convert all user objects to the 10-byte RBA format, before you convert the
BSDS.

In Db2 subsystems that are not data sharing members, always convert all Db2 catalog, directory, and user
objects to use the extended 10-byte RBA format before you convert the BSDS, especially if Db2 is close
to reaching the logging limit for the 6-byte RBA. Failure to convert page sets to the 10-byte RBA format
before Db2 reaches the 6-byte logging limit results in failed updates with reason code 00C2026D. No
updates are allowed for any object that is still in the 6-byte format.

In data sharing, if any Db2 member is approaching the logging limit for the 6-byte RBA but the LRSN
is not approaching the limit of the 6-byte range, converting the BSDS of just that member sufficient to
resolve the immediate problem and prevent outages. However, if the LRSN is also approaching the end of
the 6-byte range, you must continue and convert page sets to use the 10-byte format before the limit is
reached.

For instructions, see Convert BSDS records to the extended 10-byte format: DSNTIJCB (Db2 Installation
and Migration).

Environment

Run the DSNJCNVT utility as a batch job only when Db2 is not running.

Authorization required

The authorization ID of the DSNJCNVT job must have the required RACF authorization and read/write
access to the new BSDSs and read access to the old BSDSs.

Required and optional data sets

DSNJCNVT recognizes DD statements with the following DD names:

SYSUT1
Specifies the old BSDS that is to be converted. This statement is required.

SYSUT2
Specifies the second copy of the old BSDS that is to be converted. This statement is optional.

SYSUT3
Specifies the new, converted BSDS. This statement is required.

SYSUT4
Specifies the second copy of the converted BSDS. This statement is required if the installation uses
dual BSDSs; otherwise, it is optional.

SYSPRINT
Contains the output messages from the conversion utility. This statement is required.

© Copyright IBM Corp. 1983, 2024 845

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_convertbsdsinst.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_convertbsdsinst.html

Running DSNJCNVT

Use the following EXEC statement to run this utility:

//EXEC PGM=DSNJCNVT

Considerations for running DSNJCNVT
• The Db2 subsystem that owns the BSDSs that are to be converted must be stopped. DSNJCNVT is a

stand-alone utility.
• In a data-sharing environment, allow Db2 utilities that read the logs of peer members to finish before

converting the BSDSs.
• In a data-sharing environment, stop data replication products before the conversion to ensure that

the old BSDSs can be successfully renamed and replaced by the converted BSDSs. The recommended
procedure is to stop the replication product first and then stop the Db2 system that is to have its
BSDSs converted. This procedure allows sharing systems to deallocate the BSDSs when the state of the
member changes to inactive.

• The RACF user ID that is running DSNJCNVT must have read/write access to the new BSDSs and read
access to the old BSDSs.

• Conversion to the new BSDS format is required to write new format log records and remove the 6-byte
RBA and LRSN limits.

Sample DSNJCNVT control statement

The following statements specify that DSNJCNVT is to convert the BSDS that is needed to support
10-byte RBA and LRSN fields.

//CONVERT EXEC PGM=DSNJCNVT,REGION=64M
//SYSUT1 DD DSN=DB2A.OLD.BSDS01,DISP=SHR
//SYSUT2 DD DSN=DB2A.OLD.BSDS02,DISP=SHR
//SYSUT3 DD DSN=DB2A.BSDS01,DISP=OLD
//SYSUT4 DD DSN=DB2A.BSDS02,DISP=OLD
//SYSPRINT DD SYSOUT=*

You can view another example of using DSNJCNVT in job DSNTIJCB in prefix.SDSNSAMP.

DSNJCNVT output

The following example shows sample DSNJCNVT output:

CRCR convert started
DSNJ200I DSNJCNVT CONVERT UTILITY PROCESSING COMPLETED SUCCESSFULLY
FOR MEMBER 'xxxxxxxx'

Related concepts
How RBA and LRSN values are displayed (Db2 Administration Guide)
The extended 10-byte RBA and LRSN (Db2 for z/OS What's New?)
Related tasks
What to do before RBA or LRSN limits are reached (Db2 Administration Guide)

846 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_rbalrsnvaluesdisplayed.html
https://www.ibm.com/docs/SSEPEK_12.0.0/wnew/src/tpc/db2z_aboutexpandedrbalrsn.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_rbalrsnlimitsreached.html

Chapter 39. DSNJLOGF (preformat active log)
When writing to an active log data set for the first time, Db2 must preformat a VSAM control area before
writing the log records. The DSNJLOGF stand-alone utility avoids this delay by preformatting the active log
data sets before bringing them online to Db2.

The following EXEC statement is used to invoke DSNJLOGF:

//stepname EXEC PGM=DSNJLOGF

Environment

Run DSNJLOGF as a z/OS job.

Required and optional data sets

All SYSUTx DD statements are optional, but at least one must be specified.

DSNJLOGF recognizes DD statements with the following DD names.

SYSUT0
Defines the newly defined active log data set that is to be preformatted. The data set must be an
empty VSAM linear data set.

SYSUT1
Defines a newly defined active log data set that is to be preformatted. This statement is optional.

SYSUT2
Defines a newly defined active log data set that is to be preformatted. This statement is optional.

SYSUT3
Defines a newly defined active log data set that is to be preformatted. This statement is optional.

SYSUT4
Defines a newly defined active log data set that is to be preformatted. This statement is optional.

SYSUT5
Defines a newly defined active log data set that is to be preformatted. This statement is optional.

SYSUT6
Defines a newly defined active log data set that is to be preformatted. This statement is optional.

SYSUT7
Defines a newly defined active log data set that is to be preformatted. This statement is optional.

SYSUT8
Defines a newly defined active log data set that is to be preformatted. This statement is optional.

SYSUT9
Defines a newly defined active log data set that is to be preformatted. This statement is optional.

SYSPRINT
Defines the print spool class or data set for print output. The logical record length (LRECL) is 132.

Sample DSNJLOGF control statement

The control statements in the following example specify that DSNJLOGF is to preformat the active log
data sets that are identified by the DD statements.

//MULTFMT EXEC PGM=DSNJLOGF,REGION=64M
//SYSPRINT DD SYSOUT=*

© Copyright IBM Corp. 1983, 2024 847

//SYSUT0 DD DSN=DSNTEMP.LOGCOPY1.DS00,DISP=SHR
//SYSUT1 DD DSN=DSNTEMP.LOGCOPY1.DS01,DISP=SHR
//SYSUT2 DD DSN=DSNTEMP.LOGCOPY1.DS02,DISP=SHR
//SYSUT3 DD DSN=DSNTEMP.LOGCOPY1.DS03,DISP=SHR
//SYSUT4 DD DSN=DSNTEMP.LOGCOPY1.DS04,DISP=SHR
//SYSUT5 DD DSN=DSNTEMP.LOGCOPY1.DS05,DISP=SHR
//SYSUT6 DD DSN=DSNTEMP.LOGCOPY1.DS06,DISP=SHR
//SYSUT7 DD DSN=DSNTEMP.LOGCOPY1.DS07,DISP=SHR
//SYSUT8 DD DSN=DSNTEMP.LOGCOPY1.DS08,DISP=SHR
//SYSUT9 DD DSN=DSNTEMP.LOGCOPY1.DS09,DISP=SHR

DSNJLOGF output

The following sample shows the DSNJLOGF output for the second data set in the previous sample control
statement shown above.

DSNJ991I DSNJLOGF START OF LOG DATASET PREFORMAT FOR JOB LOGFRMT STEP1
DSNJ992I DSNJLOGF LOG DATA SET NAME = DSNC111.LOGCOPY1.DS01
DSNJ996I DSNJLOGF LOG PREFORMAT COMPLETED SUCCESSFULLY, 00015000
 RECORDS FORMATTED

848 Db2 12 for z/OS: Utility Guide and Reference

Chapter 40. DSNJU003 (change log inventory)
The DSNJU003 stand-alone utility changes the bootstrap data sets (BSDSs).

You can use the utility to:

• Add or delete active or archive log data sets
• Add or delete checkpoint records
• Create a conditional restart control record to control the next start of the Db2 subsystem
• Change the VSAM catalog name entry in the BSDS
• Modify the communication record in the BSDS
• Modify the value for the highest-written log RBA value (relative byte address within the log) or the

highest-offloaded RBA value
• Deactivate a member of a data sharing group
• Destroy a member from a data sharing group
• Reactivate a deactivated member of a data sharing group

Environment

Execute the change log inventory utility only as a batch job when Db2 is not running. Changing a BSDS
for a data-sharing member by using DSNJU003 might cause a log read request from another data-sharing
member to fail. The failure occurs only if the second member tries to access the changed BSDS before the
first member is started.

Authorization required

The authorization ID of the DSNJU003 job must have the requisite RACF authorization.

Required and optional data sets

DSNJU003 recognizes DD statements with the following DD names:

SYSUT1
Specifies and allocates the bootstrap data set. This statement is required.

SYSUT2
Specifies and allocates a second copy of the bootstrap data set. This statement is required if you use
dual BSDSs.

Dual BSDSs and DSNJU003: With each execution of DSNJU003, the BSDS timestamp field is updated
with the current system time. If you run DSNJU003 separately for each copy of a dual copy BSDS,
the timestamp fields are not synchronized, and Db2 fails at startup. If you change the contents of
the BSDS copy by running DSNJU003, Db2 issues error message DSNJ122I. Therefore, if you use
DSNJU003 to update dual copy BSDSs, update both BSDSs within a single execution of DSNJU003.

SYSPRINT
Specifies a data set for print output. This statement is required. The logical record length (LRECL) is
125.

SYSIN
Specifies the input data set for control statements. This statement is required. The logical record
length (LRECL) is 80.

© Copyright IBM Corp. 1983, 2024 849

Running DSNJU003

Execute the utility with the following statement, which can be included only in a batch job:

//EXEC PGM=DSNJU003

DSNJU003 utility control statements

DSNJU003 uses multiple statements that you submit in separate jobs. The statements are:

• NEWLOG
• DELETE
• CRESTART
• NEWCAT
• DDF
• CHECKPT
• HIGHRBA
• DELMBR
• RSTMBR

Each change log inventory control statement can be entered in a single input record or multiple input
records. If the length of a control statement is greater than 80 bytes, it must be entered in multiple
records. The following example shows a change log inventory statement that spans multiple records:

SYSIN DD *
DDF LOCATION=USIBMSTODB22,PORT=33275,RESPORT=34522,ALIAS=MYALIAS1:33720,
MYALIAS2:33722

DSNJU003 (change log inventory) syntax diagram

NEWLOG statement
NEWLOG DSNAME=  data-set-name new active log

new archive log

STARTIME=  startime ,ENDTIME=  endtime

new active log
,COPY1

,COPY2 ,STARTRBA=  startrba ,ENDRBA=  endrba

new archive log
,COPY1VOL=  vol-id

,COPY2VOL=  vol-id

,STARTRBA=  startrba ,ENDRBA=  endrba ,UNIT=  unit-id

,CATALOG=NO

,CATALOG=YES STRTLRSN=  startlrsn ,ENDLRSN=  endlrsn

850 Db2 12 for z/OS: Utility Guide and Reference

DELETE statement
DELETE DSNAME=  data-set-name

,COPY1VOL=  vol-id

,COPY2VOL=  vol-id

CCSIDS

CRESTART statement
CRESTART CREATE create-spec

CANCEL

create-spec

,STARTRBA=  startrba ,ENDRBA=  endrba

,ENDLRSN=  endlrsn

,SYSPITR=  log-truncation-point

,ENDTIME=  log-truncation-timestamp

,SYSPITRT=  log-truncation-timestamp

,CHKPTRBA=  chkptrba

,FORWARD=YES

,FORWARD=NO

,BACKOUT=YES

,BACKOUT=NO

,CSRONLY

NEWCAT statement
NEWCAT VSAMCAT=  catalog-name

DDF statement
DDF ip-spec

lu-spec

no-spec

ip-spec

Chapter 40. DSNJU003 (change log inventory) 851

,
1

LOCATION=  locname

PORT= port

RESPORT=  resport

SECPORT=  secport

ALIAS=

,

alias-name

: alias-port

: alias-port : alias-secport

IPNAME=  ipname

,
2

IPV4= IPV4-address

,GRPIPV4=  group-ipv4-addr

IPV6= IPV6-address

,GRPIPV6=  group-ipv6-addr

lu-spec

,
1

LOCATION=  locname

LUNAME=  luname

PASSWORD=  password

GENERIC=  gluname

PORT= port

RESPORT=  resport

ALIAS=

,

alias-name

: alias-port

no-spec

852 Db2 12 for z/OS: Utility Guide and Reference

NOPASSWD

NGENERIC

NOALIAS

NOIPV4 , NGRPIPV4

NOIPV6 , NGRPIPV6

NGRPIPV4

NGRPIPV6

NOIPNAME

NOLUNAME

Notes:
1 You can specify each option (such as LOCATION or PORT) only once.
2 You can specify each option (IPV4 and IPV6) only once.

CHECKPT statement
CHECKPT STARTRBA=  startrba

,ENDRBA=  endrba ,TIME=  time

,ENDLRSN=  endlrsn

,CANCEL

HIGHRBA statement
HIGHRBA STARTRBA=  startrba

,OFFLRBA=  offlrba

,TIME=  time

OFFLRBA=  offlrba

DELMBR statement
DELMBR DEACTIV

DESTROY

,MEMBERID=  member-id

RSTMBR statement
RSTMBR MEMBERID=  member-id

DSNJU0003 option descriptions

NEWLOG

Declares one of the following data sets:

• A VSAM data set that is available for use as an active log data set.

Use only the keywords DSNAME=, COPY1, and COPY2.
• An active log data set that is replacing one that encountered an I/O error.

Use only the keywords DSNAME=, COPY1, COPY2, STARTRBA=, and ENDRBA=.
• An archive log data set volume.

Use only the keywords DSNAME= ,COPY1VOL=, COPY2VOL=, STARTRBA=, ENDRBA=, UNIT=,
CATALOG=, STRTLRSN=, and ENDLRSN=.

Chapter 40. DSNJU003 (change log inventory) 853

If you create an archive log data set and add it to the BSDS with this utility, you can specify
a name that Db2 might also generate. Db2 generates archive log data set names of the form
DSNCAT.ARCHLOGx.Annnnnnn where:

– DSNCAT and ARCHLOG are parts of the data set prefix that you specified on installation panels
DSNTIPA2 and DSNTIPH.

– x is 1 for the first copy of the logs, and 2 is for the second copy.
– Annnnnnn represents the series of low-level qualifiers that Db2 generates for archive log data set

names, beginning with A0000001, and incrementing to A0000002, A0000003, and so forth.

For data sharing, the naming convention is DSNCAT.ARCHLOG1 or DSNCAT.DSN1.ARCLG1.

If you do specify a name by using the same naming convention as Db2, you receive a dynamic
allocation error when Db2 generates that name. The error message, DSNJ103I, is issued once. Db2
then increments the low-level qualifier to generate the next data set name in the series and offloads
to it the next time Db2 archives. (The active log that previously was not offloaded is offloaded to this
data set.)

The newly defined active logs cannot specify a start and end LRSN. When Db2 starts, it reads the
new active log data sets with an RBA range to determine the LRSN range, and updates the start
and end LRSN in the BSDS for the new log data sets. The start and end LRSN for new active logs
that contain active log data are read at Db2 start-up time from the new active log data sets that are
specified in the change log inventory NEWLOG statements. For new archive logs that are defined
with change log inventory, the user must specify the start and end RBAs. For data sharing, the user
must also specify the start and end LRSNs. Db2 startup does not attempt to find these values from
the new archive log data sets.

DSNAME= data-set-name

Specifies a log data set.

data-set-name can be up to 44 characters long.

COPY1

Makes the data set an active log copy-1 data set.

COPY2

Makes the data set an active log copy-2 data set.

STARTRBA= startrba

Identifies a hexadecimal number of up to 20 characters. If you use fewer than 20 characters, leading
zeros are added. startrba must end with '000'; otherwise Db2 returns a DSNJ4381 error message. You
can obtain the RBA from messages or by printing the log map.

On the NEWLOG statement, startrba gives the log RBA of the beginning of the replacement active log
data set or the archive log data set volume that is specified by DSNAME.

On the CRESTART statement, startrba is the earliest RBA of the log that is to be used during restart.
If you omit STARTRBA, Db2 determines the beginning of the log range.

On the CHECKPT statement, startrba indicates the start checkpoint log record.

STARTRBA is required when STARTIME is specified.

On the HIGHRBA statement, startrba denotes the log RBA of the highest-written log record in the
active log data sets.

ENDRBA= endrba

854 Db2 12 for z/OS: Utility Guide and Reference

endrba is a hexadecimal number of up to 20 characters. If you use fewer than 20 characters, leading
zeros are added. endrba must end with '000' or Db2 returns a DSNJ4381 error message.

On the NEWLOG statement, endrba gives the log RBA (relative byte address within the log) of the end
of the replacement active log data set or the archive log data set volume that is specified by DSNAME.

On the CRESTART statement, endrba is the last RBA of the log that is to be used during restart, and
it is also the starting RBA of the next active log that is written after restart. Any log information in the
bootstrap data set, the active logs, and the archive logs with an RBA that is greater than endrba is
discarded. If you omit ENDRBA, Db2 determines the end of the log range.

The value of ENDRBA must be a multiple of 4096. (The hexadecimal value must end in 000.) Also, the
value must be greater than or equal to the value of STARTRBA. If STARTRBA and ENDRBA are equal,
the next restart is a cold start; that is, no log records are processed during restart. The specified RBA
becomes the beginning RBA of the new log.

On the CHECKPT statement, endrba indicates the end checkpoint log record that corresponds to the
start checkpoint log record.

COPY1VOL= vol-id

vol-id is the volume serial of the copy-1 archive log data set that is specified after DSNAME.

COPY2VOL=vol-id

vol-id is the volume serial of the copy-2 archive log data set that is specified after DSNAME.

UNIT=unit-id

unit-id is the device type of the archive log data set that is named after DSNAME.

CATALOG

Indicates whether the archive log data set is to be cataloged.

NO

Indicates that the archive log data set is not to be cataloged. All subsequent allocations of the
data set are made using the unit and volume information that is specified on the statement.

YES

Indicates that the archive log data set is to be cataloged. All subsequent allocations of the data
set are made using the catalog.

Db2 requires that all archive log data sets on disk be cataloged. Select CATALOG=YES if the
archive log data set is on disk.

STRTLRSN= startlrsn

On the NEWLOG statement, startlrsn identifies the LRSN in the log record header of the first
complete log record on the new archive data set. startlrsn is a hexadecimal number of up to
20 characters. If you use fewer than 20 characters, leading zeros are added. In a data sharing
environment, run the print log map utility to find an archive log data set and start and end RBAs and
LRSNs.

ENDLRSN=endlrsn

endlrsn is a hexadecimal number of up to 20 characters. If you use fewer than 20 characters, leading
zeros are added. In a data sharing environment, run the print log map utility to find an archive log data
set and start and end RBAs and LRSNs.

Chapter 40. DSNJU003 (change log inventory) 855

For the NEWLOG and CHECKPT statements, the ENDLRSN option is valid only in a data sharing
environment. For the CRESTART statement, the ENDLRSN option is valid in both data sharing and
non-data sharing environments. This option cannot be specified with STARTRBA or ENDRBA.

On the NEWLOG statement, endlrsn is the LRSN in the log record header of the last log record on the
new archive data set.

On the CRESTART statement, in a data sharing environment, endlrsn is an LRSN value that is to be
used as the log truncation point. A valid log truncation point is any LRSN value for which there exists a
log record with an LRSN that is greater than or equal to the specified LRSN value. Any log information
in the bootstrap data set, the active logs, and the archive logs with an LRSN greater than endlrsn is
discarded. If you omit ENDLRSN, Db2 determines the end of the log range.

In a non-data sharing environment, endlrsn is the RBA value that matches the start of the last log
record that is to be used during restart. Any log information in the bootstrap data set, the active logs,
and the archive logs with an RBA that is greater than endlrsn is discarded. If the endlrsn RBA value
does not match the start of a log record, Db2 restart fails. If you omit ENDLRSN, Db2 determines the
end of the log range.

On the CHECKPT statement, endlrsn is the LRSN of the end checkpoint log record.

STARTIME=startime

Enables you to record the start time of the RBA in the BSDS. This field is optional.

startime specifies the start time in the following timestamp format:

yyyydddhhmmsst

In this format:

yyyy
Indicates the year (1989-2099).

ddd
Indicates the day of the year (0-365; 366 in leap years).

hh
Indicates the hour (0-23).

mm
Indicates the minutes (0-59).

ss
Indicates the seconds (0-59).

t
Indicates tenths of a second.

If fewer than 14 digits are specified for the STARTIME or ENDTIME parameter, trailing zeros are
added.

If STARTIME is specified, the ENDTIME, STARTRBA, and ENDRBA options must also be specified.

ENDTIME= endtime

Enables you to record the end time of the RBA in the BSDS. This field is optional.

endtime specifies the end time in the same timestamp format as the STARTIME option. The ENDTIME
value must be greater than or equal to the value of STARTIME.

DELETE

Deletes either CCSID information or log data set information from the bootstrap data sets. To delete
CCSID information, specify the CCSIDS option. To delete all information for a specified log data set or
volume, specify the DSNAME option.

856 Db2 12 for z/OS: Utility Guide and Reference

CCSIDS

Deletes CCSID information from the BSDS. CCSID information is stored in the BSDS to ensure that you
do not accidentally change the CCSID values.

Use this option under the direction of IBM Support when the CCSID information in the BSDS is
incorrect. After you run a DSNJU003 job with the DELETE CCSIDS option, the CCSID values from the
application defaults load module are recorded in the BSDS the next time Db2 is started.

CRESTART

Controls the next restart of Db2, either by creating a new conditional restart control record or by
canceling the one that is currently active.

CREATE

Creates a new conditional restart control record. When the new record is created, the previous control
record becomes inactive.

SYSPITR=log-truncation-point

Specifies the log RBA (non-data sharing system) or the log LRSN (data sharing system) that represents
the log truncation point for the point-in-time for system recovery. Before you run the RESTORE
SYSTEM utility to recover system data, you must use the SYSPITR option of DSNJU003. This option
enables you to create a conditional restart control record to truncate the logs for system point-in-time
recovery. You can also specify a value of FFFFFFFFFFFFFFFFFFFF to cause a point-in-time recovery to
occur without log truncation.

log-truncation-point specifies the log RBA, log LRSN, or log FFFFFFFFFFFFFFFFFFFF. In a non-data
sharing environment, log-truncation point is the RBA value that matches the start of the last log record
that is to be used during restart. If the RBA value does not match the start of a log record, Db2 restart
fails. In a data sharing environment, log-truncation point is an LRSN value that is a valid log truncation
point. A valid log truncation point is any LRSN value for which there exists a log record with an LRSN
that is greater than or equal to the specified LRSN value. Use the same LRSN value for all members of
the data sharing group that require log truncation.

You cannot specify any other option with CREATE, SYSPITR.

ENDTIME= log-truncation-timestamp

Specifies an end time value that is to be used as the log truncation point. A valid truncation point
is any UTC timestamp for which there exists a log record with a timestamp that is greater than or
equal to the specified timestamp value. Any log information in the bootstrap data set, the active logs,
and the archive logs with a timestamp greater than the ENDTIME is discarded. If you do not specify
ENDTIME, Db2 determines the end of the log range.

You cannot specify any other option with CREATE, ENDTIME.

SYSPITRT= log-truncation-timestamp

Specifies the timestamp value that represents the point-in-time log truncation point for system
recovery. Before you run the RESTORE SYSTEM utility to recover system data, you must use the
SYSPITR or SYSPITRT option of DSNJU003. The options enable you to create a conditional restart
control record to truncate the logs for system point-in-time recovery.

Log-truncation-timestamp specifies a timestamp value that is to be used as the log truncation point.
A valid log truncation point is any UTC timestamp for which there exists a log record with a timestamp
that is greater than or equal to the specified timestamp value. Any log information in the bootstrap
data set, the active logs, and the archive logs with a timestamp greater than SYSPITRT is discarded.

Chapter 40. DSNJU003 (change log inventory) 857

If you omit SYSPITRT, Db2 determined the end of the log range. Use the same timestamp value for all
members of the data sharing group that require log truncation.

You cannot specify any other option with CREATE, SYSPITRT.

Note: The startime keyword specifies the start time in the yyyydddhhmmsst timestamp format. See
the STARTIME option for details about the timestamp.

CANCEL

On the CRESTART statement, deactivates the currently active conditional restart control record. The
record remains in the BSDS as historical information.

No other keyword can be used with CANCEL on the CRESTART statement.

On the CHECKPT statement, deletes the checkpoint queue entry that contains a starting RBA that
matches the parameter that is specified by the STARTRBA keyword.

Attention: This statement can override DB2's efforts to maintain data in a consistent state. Do
not use this statement without understanding the conditional restart process.

CHKPTRBA= chkptrba

Identifies the log RBA of the start of the checkpoint record that is to be used during restart.

If you use STARTRBA or ENDRBA, and you do not use CHKPTRBA, the DSNJU003 utility selects the
RBA of an appropriate checkpoint record. If you do use CHKPTRBA, you override the value that is
selected by the utility.

chkptrba must be in the range that is determined by startrba and endrba or their default values.

If possible, do not use CHKPTRBA; let the utility determine the RBA of the checkpoint record.

CHKPTRBA=0 overrides any selection by the utility; at restart, Db2 attempts to use the most recent
checkpoint record.

FORWARD=

Indicates whether to use the forward-log-recovery phase of Db2 restart, which reads the log in a
forward direction to recover any units of recovery that were in one of the following two states when
Db2 was last stopped:

• Indoubt (the units of recovery had finished the first phase of commit, but had not started the second
phase)

• In-commit (had started but had not finished the second phase of commit)

YES

Allows forward-log recovery.

If you specify a cold start (by using the same value for STARTRBA and ENDRBA), no recovery
processing is performed.

NO

Terminates forward-log recovery before log records are processed. If a very old unit of recovery
exists, specify this option to avoid a lengthy restart. Db2 does not go back in the log to the
beginning of units of recovery to complete forward phase of Db2 restart. Instead, it marks them
as bypassed and completed in the log. Database writes that are pending at the end of the log,
including updates from other units of recovery, are written out during the forward phase of restart.
However, Db2 skips page rewrites for non-GBP dependent page sets for committed URs and may
skip page rewrites for any uncomitted URs that exist. The missing log apply for such URs might
cause inconsistencies. Any updates that must be rolled-back, such as for an in-flight or in-abort
unit of recovery, are done during the backout phase of restart. However, if the backward phase is

858 Db2 12 for z/OS: Utility Guide and Reference

not skipped, it might encounter log apply errors for in-flight or in-abort URs because forward log
apply was skipped for those URs.

Important: FORWARD=NO does not process any log records during forward log phase in restart,
including log records for committed, in-flight or in-abort, and indoubt URs. If you want to avoid
processing log records for long running in-doubt URs, but you want to process log records for all
other URs, then you can use the following approach instead:

CRESTART CREATE,STARTRBA=rba-value

For rba-value, specify either the second prior checkpoint at the time of the restart, or possibly
a checkpoint before the oldest in-flight or in-abort UR. If you want to use this approach and are
unsure which option to choose, contact IBM Support.

BACKOUT=

Indicates whether to use the backward-log-recovery phase of Db2 restart, which rolls back any units
of recovery that were in one of the following two states when Db2 was last stopped:

• Inflight (did not complete the first phase of commit)
• In-abort (had started but not finished an abort)

YES
Allows backward-log recovery.

If you specify a cold start (by using the same value for STARTRBA and ENDRBA), no recovery
processing is performed.

NO
Terminates backward-log recovery before log records are processed.

CSRONLY

Performs only the first and second phases of restart processing (log initialization and current-status
rebuild). After these phases, the system status is displayed, and restart terminates. Some parts of the
log initialization are not performed, including any updating of the log and display of STARTRBA and
ENDRBA information.

When Db2 is restarted with this option in effect, the conditional restart control record is not
deactivated. To prevent the control record from remaining active, use the DSNJU003 utility again
with CRESTART CANCEL, or with CRESTART CREATE to create a new active control record.

NEWCAT

Changes the VSAM catalog name in the BSDS.

VSAMCAT= catalog-name

Changes the VSAM catalog name entry in the BSDS.

catalog-name can be up to eight characters long. The first character must be alphabetic, and the
remaining characters can be alphanumeric.

DDF

Updates the LOCATION, LUNAME, and other DDF related information values in the BSDS. If you use
this statement to insert new values into the BSDS, you must include at least the LOCATION in the DDF
statement. To update an existing set of values, you need to include only those values that you want
to change. The DDF record cannot be deleted from the BSDS after it has been added; it can only be
modified.

Chapter 40. DSNJU003 (change log inventory) 859

LOCATION= location-name

Changes the LOCATION value in the BSDS.

location-name specifies the name of your local Db2 site.

PORT

Identifies the TCP/IP port number that is used by DDF to accept incoming connection requests. This
value must be a decimal number between 0 and 65535, including 65535; 0 indicates that DDF TCP/IP
support is to be deactivated. Set PORT to 0 if DDF needs to use only VTAM®, and will not use TCP/IP.

If Db2 is part of a data sharing group, all the members of the Db2 data sharing group must have the
same value for PORT.

If the same port number is specified for the TCP/IP port and secure port, Db2 accepts only secure
TCP/IP connection requests that are protected by SSL.

RESPORT

Identifies the TCP/IP port number that is used by DDF to accept incoming DRDA two-phase commit
resynchronization requests. This value must be a decimal number between 0 and 65535, including
65535; zero indicates that DDF's TCP/IP support is to be deactivated. If RESPORT is non-zero, it must
not use the same value that is supplied for PORT or SECPORT.

For data sharing Db2 systems, RESPORT must be uniquely assigned to each Db2 member, so that no
two Db2 members use the same TCP/IP port for two-phase commit resynchronization.

SECPORT

Identifies the TCP/IP port number that is used by DDF to accept inbound secure DRDA connection
requests. This value must be a decimal number between 0 and 65535, including 65535; zero
indicates that DDF's secure connection support for TCP/IP is deactivated.

If the same port number is specified for the TCP/IP port and secure port, Db2 accepts only secure
TCP/IP connection requests that are protected by SSL. For more information, see Configuring the Db2
server for SSL (Managing Security).

ALIAS= alias-name :alias-port :alias-secport

Specifies one or more alias names for the location. An alias name is a name besides the location name
that connect processing can accept. Specifying an alias name does not change the location identifier
for a database object.

Important: ALIAS applies to DRDA connections only.

You can specify and modify as many as eight location aliases by using the DSNJU003 utility. To specify
more than 8 aliases, use the MODIFY DDF command with the ALIAS option.

alias-name specifies from 1 to 16 characters for the location name. alias-name cannot be one of the
valid DSNJU003 keywords.

:alias-port specifies a TCP/IP port number for the alias that can be used by DDF to accept distributed
requests. This value must be a decimal number between 1 and 65535, including 65535. The value
must be different from the values for the PORT, RESPORT, and SECPORT options and any value that
was specified for alias-port or alias-secport of any other defined alias. The value can be the same
value that is specified for :alias_secport of the same location alias. Specify a value for alias-port when
you want to identify a subset of data sharing members to which a distributed request can go.

:alias-secport specifies a secure TCP/IP port number for the alias that can be used by DDF to accept
secure distributed requests using SSL. This value must be a decimal number between 1 and 65535,
including 65535. The value must be different from the values for the SECPORT, PORT, and RESPORT

860 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_configssl4serv.html
https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_configssl4serv.html

options, and any value that was specified for alias-port or alias-secport of any other defined alias.
The value can be the same value that is specified for :alias_port of the same location alias. Specify a
value for alias-secport when you want to identify a subset of data sharing members to which a secure
distributed request can go.

You can add or replace aliases by respecifying the ALIAS option. The new list of names replaces the
existing list.

Related information:

-MODIFY DDF (Db2) (Db2 Commands)

IPNAME=ipname

Identifies and associates an IPNAME value with DDF.

ipname can be up to 8 bytes in length and must be an alphanumeric string, beginning with
a letter. When you specify this option, DDF activates only its TCP/IP communications support,
regardless of whether or not there is a value for LUNAME. Only inbound and outbound DRDA
protocol communications over TCP/IP are allowed. Db2 makes no attempt to activate SNA/APPC
communications support.

The value specified must be either unique to this Db2 subsystem within an enterprise, or if the Db2
subsystem is configured to be a member of a data sharing group, unique to the data sharing group
for which this Db2 subsystem is a member. All members of a data sharing group must be defined
with the same IPNAME value if all the members are to activate only their TCP/IP communications
support. If some members of a data sharing group activate their SNA/APPC (as well as TCP/IP
communications support), then the IPNAME value chosen for the TCP/IP only members must match
the GENERIC value specified for the members which activate their SNA/APPC as well as their TCP/IP
communications support.

Db2uses the IPNAME value as the network-ID portion of a unit-of-work identifier. A unit-of-work
identifier has traditionally been made up of a network-ID, an LU name, a 6-byte unique identifier
created from a timestamp, and a 2-byte current commit count value. When running with an
IPNAME value, the LU name portion of the unit-of-work identifier is created from a 4-byte character
representation of the hexadecimal notation of the value specified for the TCP/IP resync port
(RESPORT).

Do not confuse IPNAME with a TCP/IP external such as a hostname or domain name. The value you
give IPNAME is only used internally by Db2 or in a DRDA exchange with another DRDA server. It
cannot be referenced by any TCP/IP external, such as ping. Also, the hostname of the system upon
which the Db2 is running is a poor choice for IPNAME because more than one Db2 could run on the
same system, and the IPNAME value given to any Db2 or Db2 data sharing group must be unique
within an enterprise.

IPV4= ipv4-address

Identifies and associates a constant IPv4 IP address with DDF to accept incoming connection
requests to this specific subsystem only. This address must be entered in dotted decimal form. If
an IP address is not specified, Db2 will automatically determine the IP address from TCP/IP.

When Db2 is a member of a data sharing group, it is strongly recommended that you refer to a
dynamic virtual IP address (DVIP). A group IP address, GRPIPV4, should also be specified.

IPV6= ipv6-address

Identifies and associates a constant IPv6 IP address with DDF to accept incoming connection
requests to this specific subsystem only. This address must be entered in colon hexadecimal form. If
an IP address is not specified, Db2 will automatically determine the IP address from TCP/IP.

When Db2 is a member of a data sharing group, it is strongly recommended that you refer to a
dynamic virtual IP address (DVIP). A group IP address, GRPIPV6, should also be specified.

Chapter 40. DSNJU003 (change log inventory) 861

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_modifyddf.html

GRPIPV4

Identifies and associates a constant IPv4 IP address with the data sharing group for which this DDF
is a member. The IP address is used to accept incoming connection requests that can be serviced
by any member of the data sharing group. This address must be entered in dotted decimal form.
An associated IPv4 subsystem/member address must also be specified in order to identify the IP
address associated with this specific member of the group. If an IP address is not specified, Db2 will
automatically determine the IP address from TCP/IP.

It is strongly recommended that you refer to a sysplex distributor owned distributing dynamic virtual
IP address (DVIPA).

GRPIPV6

Identifies and associates a constant IPv6 IP address with the data sharing group for which this DDF
is a member. The IP address is used to accept incoming connection requests that can be serviced
by any member of the data sharing group. This address must be entered in colon hexadecimal form.
An associated IPv6 subsystem/member address must also be specified in order to identify the IP
address associated to this specific member of the group. If an IP address is not specified, Db2 will
automatically determine the IP address from TCP/IP.

It is strongly recommended that you refer to a sysplex distributor owned distributing dynamic virtual
IP address (DVIPA).

LUNAME= luname

Changes the LUNAME value in the BSDS.

luname specifies the LUNAME value. The LUNAME in the BSDS must always contain the value that
identifies your local Db2 subsystem to the VTAM network.

PASSWORD=

The DDF password follows VTAM convention, but Db2 restricts it to one to eight alphanumeric
characters. The first character must be either a capital letter or an alphabetic extender. The remaining
characters can consist of alphanumeric characters and alphabetic extenders.

password

Optionally assigns a password to the distributed data facility communication record that
establishes communications for a distributed data environment. The PRTCT=password option on
the APPL definition statement is used to define Db2 to VTAM.

GENERIC= gluname

Replaces the value of the Db2 GENERIC LUNAME subsystem parameter in the BSDS.

gluname specifies the GENERIC LUNAME value.

NOPASSWD

Removes the archive password protection for all archives that are created after this operation. It also
removes a previously existing password from the DDF record. No other keyword can be used with
NOPASSWD.

NGENERIC

Changes the Db2 GENERIC LUNAME to binary zeros in the BSDS, indicating that no VTAM generic LU
name support is requested.

862 Db2 12 for z/OS: Utility Guide and Reference

NOALIAS

Indicates that no alias names exist for the specified location. Any alias names that were specified in a
previous DSNJU003 utility job are removed.

NOIPV4

Removes the constant IPv4 address from the BSDS. The NGRPIPV4 keyword must also be specified to
ensure that the associated group address, if any, is also removed.

NOIPV6

Removes the constant IPv6 address from the BSDS. The NGRPIPV6 keyword must also be specified to
ensure that the associated group address, if any, is also removed.

NGRPIPV4

Removes the constant data sharing group IPv4 address from the BSDS.

NGRPIPV6

Removes the constant data sharing group IPv6 address from the BSDS.

NOIPNAME

Removes the IPNAME value from the DDF record. No other keyword can be used with NOIPNAME.

NOLUNAME

Removes the LUNAME value from the DDF record. No other keyword can be used with NOLUNAME.

CHECKPT

Allows updating of the checkpoint queue with the start checkpoint and end checkpoint log records.

Attention: This statement can override the effort ot Db2 to maintain data in a consistent
state. Do not use the statement without understanding the conditional restart and checkpoint
processing processes.

TIME= time

On the CHECKPT statement, specifies the time that the start checkpoint record was written.

On the HIGHRBA statement, TIME specifies when the log record with the highest RBA was written to
the log.

time specifies the time value. For timestamp format, see the STARTIME option description.

HIGHRBA

Updates the highest-written log RBA in either the active or archive log data sets.

Attention: This statement can override the effort of Db2 to maintain data in a consistent state.
Do not use the statement without understanding the conditional restart process.

OFFLRBA= offlrba

Specifies the highest-offloaded RBA in the archive log.

Chapter 40. DSNJU003 (change log inventory) 863

offlrba is a hexadecimal number of up to 20 characters. If you use fewer than 20 characters, leading
zeros are added. The value must end with hexadecimal X'FFF'.

DELMBR

Deactivates or destroys a member of a data sharing group.

DEACTIV

Marks a member of a data sharing group for deactivation. Deactivation is the first step in deletion of a
member from a data sharing group.

Before the member can be deactivated, it must be quiesced and have no outstanding work. The logs
and BSDS must exist.

DESTROY

Completes the deletion of a member from a data sharing group.

After a member is destroyed, its member ID can be reused, and the logs and BSDS can be deleted.

RSTMBR

Restores a deactivated member of a data sharing group to the quiesced state.

MEMBERID= member-id

Specifies the data sharing group member that is to be deactivated, destroyed, or restored.

member-id is a number in the range 1 - 32. This number is the member ID that shown in the output
from the DISPLAY GROUP command or the DSNJU004 (print log map) utility.

Related information:

“DSNJU004 (print log map) output” on page 875
DSN7100I (Db2 Messages)

Related concepts
Member-specific access (Db2 Data Sharing Planning and Administration)
Phase 3: Forward log recovery (Db2 Administration Guide)
Timestamp (Db2 SQL)
Related tasks
Deleting data sharing members (Db2 Data Sharing Planning and Administration)
Performing conditional restart (Db2 Administration Guide)
Restoring deactivated data sharing members (Db2 Data Sharing Planning and Administration)
Related information
PRTCT (SNA Resource Definition Reference)

Making changes for active logs
You can add, delete, record, enlarge, and encrypt active logs.

Adding active logs

If an active log is in stopped status, it is not reused for output logging; however, it continues to be used for
reading. To add a new active log:

1. Use the Access Method Services DEFINE command to define new active log data sets.

864 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsn7100i.html
https://www.ibm.com/docs/SSEPEK_12.0.0/dshare/src/tpc/db2z_memberspecaccessds.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_restartforwardlogrecovery.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_timestampvalues.html
https://www.ibm.com/docs/SSEPEK_12.0.0/dshare/src/tpc/db2z_deletingdsmembers.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_performconditionalrestart.html
https://www.ibm.com/docs/SSEPEK_12.0.0/dshare/src/tpc/db2z_restoringdsmembers.html
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.istrdr0/swtprt.htm

2. Use DSNJLOGF to preformat the new active log data sets.

If you do not preformat these logs with the DSNJLOGF utility, Db2 needs to preformat them the first
time that they are used, and performance might be impacted. Empty data sets and data sets with
residual data need to be preformatted.

3. Use DSNJU003 to register the new data sets in the BSDS.

For example, specify the following statements:

NEWLOG DSNAME=DSNC111.LOGCOPY1.DS04,COPY1
NEWLOG DSNAME=DSNC111.LOGCOPY2.DS04,COPY2

To copy the contents of an old active log data set to the new one, you can also give the RBA range and the
starting and ending timestamp on the NEWLOG statement.

To archive to disk when the size of your active logs has increased, you might find it necessary to increase
the size of your archive log data set primary and secondary space quantities by increasing the values
of subsystem parameters PRIQTY and SECQTY. See Active log data sets storage requirements (Db2
Installation and Migration) for more information.

Deleting active logs

To delete information about an active log data set from the BSDS, you might specify the following
statements:

DELETE DSNAME=DSNC111.LOGCOPY1.DS01
DELETE DSNAME=DSNC111.LOGCOPY2.DS01

Recording active logs

To record information about an existing active log data set in the BSDS, you might specify the following
statement:

NEWLOG DSNAME=DSNC111.LOGCOPY2.DS05,COPY2,STARTIME=19910212205198,
 ENDTIME=19910412205200,STARTRBA=43F8000,ENDRBA=65F3FFF

You can insert a record of that information into the BSDS for any of these reasons:

• The data set has been deleted and is needed again.
• You are copying the contents of one active log data set to another data set (copy 1 to copy 2).
• You are recovering the BSDS from a backup copy.

Enlarging active logs

When Db2 is inactive (down), use one of the following procedures.

If you can use the Access Method Services REPRO command, follow these steps:

1. Stop Db2. This step is required because Db2 allocates all active log data sets when it is active.
2. Use the Access Method Services ALTER command with the NEWNAME option to rename your active log

data sets.
3. Use the Access Method Services DEFINE command to define larger active log data sets. Refer to

installation job DSNTIJIN to see the definitions that create the original active log data sets.

By reusing the old data set names, you don't need to run the change log inventory utility to establish
new names in the BSDSs. The old data set names and the correct RBA ranges are already in the
BSDSs.

Chapter 40. DSNJU003 (change log inventory) 865

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_activelogdsstgreqs.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_activelogdsstgreqs.html

4. Use the Access Method Services REPRO command to copy the old (renamed) data sets into their
respective new data sets.

5. Start Db2.

If you cannot use the Access Method Services REPRO command, follow this procedure:

1. Ensure that all active log data sets except the current active log data sets have been archived. Active
log data sets that have been archived are marked REUSABLE in print log map utility (DSNJU004)
output.

2. Stop Db2.
3. Rename or delete the reusable active logs. Allocate new, larger active log data sets with the same

names as the old active log data sets.
4. Run the DSNJLOGF utility to preformat the new log data sets.
5. Run the change log inventory utility (DSNJU003) with the DELETE statement to delete all active logs

except the current active logs from the BSDS.
6. Run the change log inventory utility with the NEWLOG statement to add to the BSDS the active logs

that you just deleted. So that the logs are added as empty, do not specify an RBA range.
7. Start Db2.
8. Issue the ARCHIVE LOG command to cause Db2 to truncate the current active logs and switch to one

of the new sets of active logs.
9. Repeat steps “2” on page 866 through “7” on page 866 to enlarge the active logs that were just

archived.

Although all log data sets do not need to be the same size, from an operational standpoint using the same
size is more consistent and efficient. If the log data sets are not the same size, tracking your system's logs
can be more difficult. Space can be wasted if you are using dual data sets of different sizes because they
fill only to the size of the smallest, not using the remaining space on the larger one.

If you are archiving to disk and the size of your active logs has increased, you might need to increase the
size of your archive log data sets. However, because of DFSMS disk management limits, you must specify
less than 64,000 tracks for the primary space quantity. See Active log data sets storage requirements
(Db2 Installation and Migration) for more information.

Related tasks
Encrypting log, catalog, and directory data sets with z/OS DFSMS data set encryption (Managing Security)
Related reference
PRIMARY QUANTITY field (PRIQTY subsystem parameter) (Db2 Installation and Migration)
SECONDARY QTY field (SECQTY subsystem parameter) (Db2 Installation and Migration)

Making changes for archive logs
You can add and delete archive logs.

Adding: When the recovery of an object depends on reading an existing archive log data set, the BSDS
must contain information about that data set, so that the recovery job can find it. To register information
about an existing archive log data set in the BSDS, you might specify the following statement:

NEWLOG DSNAME=DSNC111.ARCHLOG1.D89021.T2205197.A0000015,COPY1VOL=DSNV04,
UNIT=TAPE,STARTRBA=3A190000,ENDRBA=3A1F0FFF,CATALOG=NO

Deleting: To delete an entire archive log data set from one or more volumes, you might specify the
following statement:

DELETE DSNAME=DSNC111.ARCHLOG1.D89021.T2205197.A0000015,COPY1VOL=DSNV04

866 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_activelogdsstgreqs.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_activelogdsstgreqs.html
https://www.ibm.com/docs/SSEPEK_12.0.0/seca/src/tpc/db2z_dataencryptwithtde.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_priqty.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_secqty.html

A conditional restart control record
You can create a conditional restart control record in the BSDS.

To create a new conditional restart control record in the BSDS, you must execute the change log inventory
utility and use the CRESTART control statement. For example, to truncate the log, to specify the earliest
log RBA, and to bypass backout, use a statement similar to the following statement:

CRESTART CREATE,STARTRBA=28000,ENDRBA=58000,BACKOUT=NO

To specify a cold start, make the values of STARTRBA and ENDRBA equal with a statement similar to the
following statement:

CRESTART CREATE,STARTRBA=4A000,ENDRBA=4A000

In most cases when doing a cold start, you should make sure that the STARTRBA and ENDRBA are set to
an RBA value that is greater than the highest used RBA.

To truncate the Db2 logs via conditional restart by specifying a timestamp rather than an RBA value, use a
statement similar to the following statement:

CRESTART CREATE,ENDTIME=20051402030068

An existing conditional restart control record governs any START Db2 operation until one of these events
occurs:

• A restart operation completes.
• A CRESTART CANCEL statement is issued.
• A new conditional restart control record is created.

Deleting log data sets with errors
If an active log data set encounters an I/O error, use the DSNJU003 (change log inventory) utility to delete
the log data sets with errors.

Procedure
To delete log data sets with errors:
1. If you use dual active log data sets, check if the data from the bad active log data set is saved in the

other active log. If it is, you can use the other active log.
2. If you cannot use the other active log or if the active log is in the STOPPED status, fix the problem

manually by taking the following steps
a) Check whether the data set was offloaded.

For example, check the list of archive log data sets to see whether one has the same RBA range as
the active log data set. This list can be created by using the DSNJU004 (print log map) utility.

b) If the data set was not offloaded, copy the data to a new VSAM data set. If the data set was
offloaded, create a new VSAM data set that is to be used as an active log data set.

c) Run the change log inventory utility with the DELETE and NEWLOG statements.

Important: If misused, the change log inventory utility can compromise the viability and integrity of
the Db2 subsystem. Only highly skilled people, such as the Db2 system administrator, should use
this utility, and then only after careful consideration.

The DELETE statement removes information about the bad data set from the BSDS. The NEWLOG
statement identifies the new data set as the new active log. The DELETE and NEWLOG operations
can be performed by the same job step. The DELETE statement precedes the NEWLOG statement in
the SYSIN input data set.

Chapter 40. DSNJU003 (change log inventory) 867

To ensure consistent results, run the change log inventory utility on the same z/OS system on which
the Db2 online subsystem runs.

Use the print log map utility before and after you run the change log inventory utility to ensure
correct execution and to document changes.

When you use dual active logs, choose a naming convention that distinguishes primary and
secondary active log data set. The naming convention should also identify the log data sets within
the series of primary or secondary active log data sets. For example, the default naming convention
that is established at Db2 installation time is as follows:

prefix.LOGCOPYn.DSmm

In this convention, n=1 for all primary log data sets, n=2 for all secondary log data sets, and mm is
the data set number within each series.

If a naming convention such as the default convention is used, pairs of data sets with equal mm
values are usually used together. For example, prefix.LOGCOPY1.DS02 and prefix.LOGCOPY2.DS02
are used together.

However, after you run the change log inventory utility with the DELETE and NEWLOG statements,
the primary and secondary series can become unsynchronized. This situation can occur even if
the NEWLOG data set name that you specify is the same as the old data set name. To avoid this
situation, always do maintenance on both data sets of a pair in the same change log inventory
execution:

• Delete both data sets together.
• Define both data sets together with NEWLOG statements.

The data sets themselves do not require deletion and redefinition.
3. Delete the bad data set by using VSAM Access Method Services.

What to do next
Before you initiate a conditional restart or cold restart, consider making backup copies of all disk volumes
that contain any Db2 data sets. These backup copies enable a possible fallback. The backup data sets
must be generated when Db2 is not active.

Related reference
“DSNJU004 (print log map)” on page 873
The DSNJU004 (print log map) stand-alone utility generates a variety of information that can be useful in
backup and recovery situations.
“DSNJU003 (change log inventory)” on page 849
The DSNJU003 stand-alone utility changes the bootstrap data sets (BSDSs).

Altering references to log data sets in the BSDS
You can add or delete active or archive log data sets in the bootstrap data set (BSDS) by using the
DSNJU003 utility.

About this task
Introductory concepts

Bootstrap data set (Introduction to Db2 for z/OS)

When you alter references to log data sets in the BSDS, the log data sets are not changed. And you do not
need to make any changes to the referenced log data sets.

868 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/intro/src/tpc/db2z_bootstrapdataset.html

Procedure
To alter references to log data sets in the BSDS:
• To add a reference to a data set in the BSDS, use the NEWLOG statement of the DSNJU003 utility.
• To delete a reference to a data set in the BSDS, use the DELETE statement of the DSNJU003 utility.

Related reference
“DSNJU003 (change log inventory)” on page 849
The DSNJU003 stand-alone utility changes the bootstrap data sets (BSDSs).

Defining the high-level qualifier for catalog and directory objects
You can define the high-level qualifier for catalog and directory objects.

Procedure
Use the NEWCAT statement to define the high-level qualifier that is to be used for the following objects:

• Catalog table spaces and index spaces
• Directory table spaces and index spaces

At startup, the Db2 system checks that the name that is recorded with NEWCAT in the BSDS is the
high-level qualifier of the Db2 system table spaces that are defined in the load module for subsystem
parameters.

NEWCAT is normally used only at installation time.

When you change the high-level qualifier by using the NEWCAT statement, you might specify the following
statements:

//S2 EXEC PGM=DSNJU003
//SYSUT1 DD DSN=DSNC120.BSDS01,DISP=OLD
//SYSUT2 DD DSN=DSNC120.BSDS02,DISP=OLD
//SYSPRINT DD SYSOUT=*
 NEWCAT VSAMCAT=DBP1

After you run the change log inventory utility with the NEWCAT statement, the utility generates output
similar to the following output:

NEWCAT VSAMCAT=DBP1
DSNJ210I OLD VASAM CATALOG NAME=DSNC120, NEW CATALOG NAME=DBP1
DSNJ225I NEWCAT OPERATION COMPLETED SUCCESSFULLY
DSNJ200I DSNJU003 CHANGE LOG INVENTORY UTILITY
 PROCESSING COMPLETED SUCCESSFULLY

Related tasks
“Renaming Db2 system data sets” on page 869
Occasionally, you might want to rename the Db2 system table spaces

Renaming Db2 system data sets
Occasionally, you might want to rename the Db2 system table spaces

Procedure
To rename Db2 system data sets:
1. Stop Db2 in a consistent state.
2. Create a full system backup so that you can recover from operational errors.
3. Execute the change log inventory utility with NEWCAT.

Chapter 40. DSNJU003 (change log inventory) 869

4. Rename the BSDS and all Db2 directory and catalog table spaces and index spaces with IDCAMS.
5. Reassemble DSNZPARM to redefine the high-level qualifier for the system table spaces.
6. Update the BSDS name in the Db2 startup procedure.
7. Start Db2.
8. Drop and re-create the work file database.
9. Optionally use the ALTER command for table spaces in DSNDB04 and user databases.

Renaming Db2 active log data sets
When you rename system data sets, you might also want to rename the log data sets.

About this task
To rename Db2 active log data sets:

Procedure
1. Stop Db2 in a consistent state.
2. Create a full system backup so that you can recover from operational errors.
3. Delete the reusable active log data sets with IDCAMS, but keep the current active log.
4. Define a new set of active log data sets with IDCAMS.
5. Execute the change log inventory utility to remove names of deleted active log data sets and to define

the new active log data set names in the BSDS.
6. Start and use Db2 normally.

Results
When the current active log is archived and becomes reusable, you can delete it.

Renaming Db2 archive log data sets
You do not need to rename archive log data sets because old archive logs are replaced as a part of
the normal maintenance cycle and the RECOVER utility works with archive logs that contain different
high-level qualifiers.

To modify the high-level qualifier for archive log data sets, you need to reassemble DSNZPARM.

Sample DSNJU003 control statements
Use the sample control statements as models for developing your own DSNJU003 control statements.

Example 1: Adding a new archive log data set

The following control statement specifies that the DSNJU003 utility is to add the data set
DSNREPAL.A0001187 to the BSDS. The volume serial number for the data set is DSNV04, as indicated by
the COPY1VOL option. The device type is SYSDA, and the data set is not to be cataloged. The RBA of the
beginning of the archive log data set volume is 3A190000, and the end RBA is 3A1F0FFF.

//STEP5 EXEC PGM=DSNJU003,COND=EVEN
//SYSUT1 DD DSN=DSNCAT.BSDS01,DISP=SHR
//SYSUT2 DD DSN=DSNCAT.BSDS02,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
NEWLOG DSNAME=DSNREPAL.A0001187,COPY1VOL=DSNV04,UNIT=SYSDA,
STARTRBA=3A190000,ENDRBA=3A1F0FFF,CATALOG=NO
/*

870 Db2 12 for z/OS: Utility Guide and Reference

Example 2: Deleting a data set

The following control statement specifies that DSNJU003 is to delete data set DSNREPAL.A0001187 from
the BSDS. The volume serial number for the data set is DSNV04, as indicated by the COPY1VOL option.

DELETE DSNAME=DSNREPAL.A0001187,COPY1VOL=DSNV04

Example 3: Creating a new conditional restart control record

The following statement specifies that DSNJU003 is to create a new conditional restart control record,
which controls the next restart of Db2. BACKOUT=NO indicates that Db2 is not to execute the backward-
log-recovery phase when it restarts. The ENDRBA option indicates that 000000010000 is the last RBA of
the log that is to be used during restart. Any log information in the bootstrap data set, the active logs, and
the archive logs with an RBA that is greater than this RBA is discarded.

CRESTART CREATE,BACKOUT=NO,ENDRBA=000000010000

Example 4: Adding a communication record to the BSDS

The following control statement specifies that DSNJU003 is to add a new communication record to the
BSDS. The location, LU name, and password values are all provided.

DDF LOCATION=USIBMSTODB22,LUNAME=STL#M08,PASSWORD=$STL@290

Example 5: Updating a communication record with a secure TCP/IP port number in the BSDS

The following control statement specifies that DSNJU003 is to update the communication record in the
BSDS to specify a secure TCP/IP port.

DDF LOCATION=XYZ,SECPORT=448

Example 6: Adding a communication record with an alias to the BSDS

The following control statement specifies that DSNJU003 is to add a communication record to the BSDS.
The location, alias, LU name, and password values are all provided.

DDF LOCATION=USIBMSTODB22,ALIAS=STL715A1,STL715A2,LUNAME=STL#M08,PASSWORD=$STL@290

Note: The alias is an SQL identifier and should follow the rules of SQL identifiers. The identifier can not
include special characters when you are naming a location alias.

Example 7: Adding multiple aliases and alias ports to the BSDS

The following control statement specifies five alias names for the communication record in the BSDS
(MYALIAS1, MYALIAS2, MYALIAS3, MYALIAS4, and MYALIAS5). Only MYALIAS2 and MYALIAS5 support
subsets of a data sharing group. Any alias names that were specified in a previous DSNJU003 utility job
are removed.

DDF ALIAS=MYALIAS1,MYALIAS2:8002,MYALIAS3,MYALIAS4,MYALIAS5:10001

Chapter 40. DSNJU003 (change log inventory) 871

Example 8: Specifying a point in time for system recovery

The following control statement specifies that DSNJU003 is to create a new conditional restart control
record. The SYSPITR option specifies an end RBA value as the point in time for system recovery for a
non-data sharing system. For a data sharing system, use an end LRSN value instead of an end RBA value.
This point in time is used by the RESTORE SYSTEM utility.

//JOBLIB DD DSN=USER.TESTLIB,DISP=SHR
// DD DSN=DSN910.SDSNLOAD,DISP=SHR
//STEP01 EXEC PGM=DSNJU003
//SYSUT1 DD DSN=DSNC910.BSDS01,DISP=OLD
//SYSUT2 DD DSN=DSNC910.BSDS02,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 CRESTART CREATE,SYSPITR=04891665D000
/*

To indicate that a SYSPITR restart is to be done without log truncation, specify a SYSPITR value of all 'FFs
in the DSNJU003 job with the CRESTART parameter.

//STEP1 EXEC PGM=DSNJU003
//SYSUT1 DD DSN=DSNC910.BSDS01,DISP=OLD
//SYSUT2 DD DSN=DSNC910.BSDS02,DISP=OLD
//SYSPRINT DD SYSOUT=
//SYSIN DD
CRESTART CREATE,SYSPITR=FFFFFFFFFFFFFFFFFFFF
/*

During the subsequent restart, the user will be asked to confirm the conditional restart with the following:

DSNJ256I) DSNJW6 CONDITIONAL RESTART RECORD INDICATES SYSPITR
 RESTART WITH NO LOG TRUNCATION
DSNJ11I) CONDITIONAL RESTART RECORD 1 CREATED AT 7.214 7:56
 WAS FOUND. REPLY Y TO USE, N TO CANCEL

Example 9: Removing aliases from a communication record

The following control statement specifies that no alias names apply. Any alias names that were specified
in a previous DSNJU003 utility job are removed.

DDF NOALIAS

Example 10: Deactivating a data sharing member

The following control statement specifies that DSNJU003 is to deactivate a data sharing member.

DELMBR DEACTIV,MEMBERID=3

872 Db2 12 for z/OS: Utility Guide and Reference

Chapter 41. DSNJU004 (print log map)
The DSNJU004 (print log map) stand-alone utility generates a variety of information that can be useful in
backup and recovery situations.

The print log map (DSNJU004) utility lists the following information:

• Log data set name, log RBA association, and log LRSN for both copy 1 and copy 2 of all active and
archive log data sets

• Active log data sets that are available for new log data
• Status of all conditional restart control records in the bootstrap data set
• Contents of the queue of checkpoint records in the bootstrap data set
• The communication record of the BSDS, if one exists
• Contents of the quiesce history record
• System and utility timestamps
• Contents of the checkpoint queue
• Archive log command history
• BACKUP SYSTEM utility history
• System CCSID information
• System-level backup information
• Information about deactivated and destroyed data sharing members

In a data sharing environment, the DSNJU004 utility can list information from any or all BSDSs of a data
sharing group.

Environment

The DSNJU004 program runs as a batch job.

This utility can be executed either when Db2 is running and when it is not running. However, to ensure
consistent results from the utility job, the utility and the Db2 online subsystem must both be executing
under the control of the same operating system.

Authorization required

The user ID of the DSNJU004 job must have requisite RACF authorization.

Required and optional data sets

DSNJU004 recognizes DD statements with the following DD names:

SYSUT1
Specifies and allocates the bootstrap data set. This statement is required. It allocates the BSDS. If the
BSDS must be shared with a concurrently executing Db2 online subsystem, use DISP=SHR on the DD
statement.

SYSPRINT
Specifies a data set or print spool class for print output. This statement is required. The logical record
length (LRECL) is 125.

© Copyright IBM Corp. 1983, 2024 873

SYSIN (optional)
Contains the control statement. If you do not specify the SYSIN DD statement, BSDS information is
printed only from the BSDS data set that is identified by the SYSUT1 DD statement.

GROUP
Names a single BSDS. Db2 can use this BSDS to find the names of all BSDSs in the group. Ensure that
the BSDS name that you specify is not the BSDS of a member that has been quiesced since before
new members joined the group. This statement is required if the control statement specifies either of
these options:

• MEMBER *
• MEMBER(member-name)

MnnBSDS
Names the BSDS data set of a group member whose information is to be listed. You must specify one
such DD statement for each member. The statements are required if the control statement specifies
MEMBER DDNAME. nn represents a two-digit number. You must use consecutive two-digit numbers
from 01 to the total number of required members. If a break occurs in the sequence of numbers, any
number after the break is ignored.

Running the DSNJU004 utility

Use the following EXEC statement to execute this utility:

// EXEC PGM=DSNJU004

Recommendations

• For dual BSDSs, execute the print log map utility twice, once for each BSDS, to compare their contents.
• To ensure consistent results for this utility, execute the utility job on the same z/OS system on which the

Db2 online subsystem executes.
• Execute the print log map utility regularly, possibly daily, to keep a record of recovery log data set usage.
• Use the print log map utility to document changes that are made by the change log inventory utility.

Related concepts
Management of the bootstrap data set (Db2 Administration Guide)
Conditional restart (Db2 Administration Guide)
Related tasks
Deleting data sharing members (Db2 Data Sharing Planning and Administration)
Restoring deactivated data sharing members (Db2 Data Sharing Planning and Administration)

Syntax and options of the DSNJU004 control statement
Using the SYSIN data set allows you to list information from any or all BSDSs of a data sharing group.

DSNJU004 (print log map) syntax diagram
MEMBER *

MEMBER DDNAME

(

,

member-name)

874 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_bsdsmanagement.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_conditionalrestart.html
https://www.ibm.com/docs/SSEPEK_12.0.0/dshare/src/tpc/db2z_deletingdsmembers.html
https://www.ibm.com/docs/SSEPEK_12.0.0/dshare/src/tpc/db2z_restoringdsmembers.html

Option descriptions

The following keywords can be used in an optional control statement on the SYSIN data set:

MEMBER
Specifies which member's BSDS information to print.
*

Prints the information from the BSDS of each member in the data sharing group.
DDNAME

Prints information from only those BSDSs that are pointed to by the MxxBSDS DD statements.
(member-name)

Prints information for only the named group members.

Sample DSNJU004 control statement
Use the sample control statements as models for developing your own DSNJU004 control statements.

The following statement specifies that DSNJU004 is to print information from the BSDS for each member
in the data sharing group:

//PLM EXEC PGM=DSNJU004
//GROUP DD DSN=DBD1.BSDS01,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 MEMBER *

DSNJU004 (print log map) output
The output of the DSNJU004 (print log map) utility is various backup and recovery information for a
subsystem or data sharing members.

Specifically, DSNJU004 output includes the following information:

• The data set name (DSN) of the BSDS.
• The system date and time (SYSTEM TIMESTAMP), and the date and time that the BSDS was last

changed by the change log inventory utility (UTILITY TIMESTAMP). For more information about these
timestamp values in the output, see “Timestamps in the BSDS” on page 882.

• The integrated catalog facility (ICF) catalog name that is associated with the BSDS.
• The highest-written RBA. The value is updated each time the log buffers are physically written to disk.
• The highest RBA that was offloaded.
• Log RBA ranges (STARTRBA and ENDRBA) and data set information for active and archive log data sets.

The last active log data set that is listed in the output is the current active log.
• Information about each active log data set. This information includes the starting and ending RBAs

within the data set, the date and time the data set was created, and the data set name (DSN) and status.
You might see consecutive active or archive log data sets with an end LRSN value that is the same as the
beginning LRSN value of the next data set. For a description of the active log data set information in the
output, see “Active log data set status” on page 883.

• Information about each archive log data set. This information includes the starting and ending RBAs
within the data set, the date and time the data set was created, and the data set name (DSN), unit and
volume of storage, and status. You might see consecutive active or archive log data sets with an end
LRSN value that is the same as the beginning LRSN value of the next data set.

• Conditional restart control records. For a description of this output, see “Reading conditional restart
control records” on page 884.

• The contents of the checkpoint description queue.

Chapter 41. DSNJU004 (print log map) 875

• Archive log command history. For a description of this output, see “Archive log command history” on
page 884.

• The distributed data facility (DDF) communication record. This record contains the location name as
defined by Db2, any alias names for the location name, and the LU name as defined by VTAM. Db2 uses
this information to establish the distributed database environment.

• The tokens for all BACKUP SYSTEM utility records. The token identifies each backup version that was
created. For a description of this output, see “System-level backup information” on page 886.

• The ENFM START RBA/LRSN field contains one of the following values:

– In a non-data sharing environment, the RBA when the most recent enabling-new-function mode job
started on the subsystem. If the enabling-new-function mode job was never run on the subsystem,
this field contains zeroes.

– In a data sharing environment, the LRSN when the most recent enabling-new-function mode job
started on a member. If the enabling-new-function mode job was never run on a member, this field
contains zeroes.

• Information about members of a data sharing group, including deactivated members and destroyed
members whose slots were reclaimed.

The following figures show example output from the DSNJU004 (print log map) utility.

Example DSNJU004 output for a subsystem
The sample print log map utility output in the following figure is for a non-data-sharing subsystem.

* *
* LOG MAP OF THE BSDS DATA SET BELONGING TO MEMBER 'NO NAME ' OF GROUP 'NO NAME '. *
* *

DSNJCNVB CONVERSION PROGRAM HAS RUN DDNAME=SYSUT1
DSNJCNVT CONVERSION PROGRAM HAS NOT RUN DDNAME=SYSUT1
 LOG MAP OF BSDS DATA SET COPY 1, DSN=DSNC000.DB2A.BSDS01
 LTIME INDICATES LOCAL TIME, ALL OTHER TIMES ARE GMT.
 DATA SHARING MODE IS OFF
 SYSTEM TIMESTAMP - DATE=2012.256 LTIME=13:50:24.23
 UTILITY TIMESTAMP - DATE=2012.256 LTIME=11:50:58.15
 VSAM CATALOG NAME=DSNC000
 HIGHEST RBA WRITTEN 0000000000007FA798CE 2012.256 20:50:57.4
 HIGHEST RBA OFFLOADED 0000000000007FA6AFFF
 RBA WHEN CONVERTED TO V4 00000000000069957FFF
 THIS BSDS HAS MEMBER RECORDS FOR THE FOLLOWING MEMBERS:
 HOST MEMBER NAME:
 MEMBER ID: 0
 GROUP NAME:
 BSDS COPY 1 DATA SET NAME:
 BSDS COPY 2 DATA SET NAME:
 ENFM START RBA/LRSN: 00000000000000000000
 **** DISTRIBUTED DATA FACILITY ****
 COMMUNICATION RECORD
 20:51:19 SEPTEMBER 12, 2012
LOCATION=STLEC1 IPNAME=(NULL) PORT=NULL SPORT=NULL RPORT=NULL
ALIAS=(NULL)
IPV4=NULL IPV6=NULL
GRPIPV4=NULL GRPIPV6=NULL
LUNAME=SYEC1DB2 PASSWORD=DB2PW1 GENERICLU=(NULL)

ACTIVE LOG COPY 1 DATA SETS
 START RBA/TIME END RBA/TIME DATE/LTIME DATA SET INFORMATION
 ---------------------- ---------------------- ---------- --------------------
 0000000000007FA6B000 0000000000007FA6FFFF 2011.110 DSN=DSNC000.DB2A.LOGCOPY1.DS02
 2012.256 20:50:44.8 2012.256 20:50:49.3 9:17 STATUS=TRUNCATED, REUSABLE
 0000000000007FA70000 0000000000007FA73FFF 2011.110 DSN=DSNC000.DB2A.LOGCOPY1.DS03
 2012.256 20:50:49.3 2012.256 20:50:57.4 9:17 STATUS=TRUNCATED, REUSABLE
 0000000000007FA74000 00000000000080E23FFF 2011.110 DSN=DSNC000.DB2A.LOGCOPY1.DS01
 2012.256 20:50:57.4 9:17 STATUS=REUSABLE
ARCHIVE LOG COPY 1 DATA SETS
NO ARCHIVE DATA SETS DEFINED FOR THIS COPY
ACTIVE LOG COPY 2 DATA SETS
NO ACTIVE DATA SETS DEFINED FOR THIS COPY
ARCHIVE LOG COPY 2 DATA SETS
NO ARCHIVE DATA SETS DEFINED FOR THIS COPY
 CONDITIONAL RESTART CONTROL RECORD

876 Db2 12 for z/OS: Utility Guide and Reference

 20:51:19 SEPTEMBER 12, 2012
 **** ACTIVE CRCR RECORD ****
 NO CRCR RECORDS ARE ACTIVE

 CRCR IDENTIFIER 0002
 USE COUNT 1
 RECORD STATUS
 CRCR NOT ACTIVE
 PROCESSING STATUS
 COLD START (STARTRBA = ENDRBA)
 FORWARD = NO
 BACKOUT = NO
 STARTRBA 000000000000000FE000
 ENDRBA 000000000000000FE000
 ENDLRSN NOT SPECIFIED
 ENDTIME NOT SPECIFIED
 EARLIEST REQUESTED RBA 00000000000000000000
 FIRST LOG RECORD RBA 00000000000000000000
 ORIGINAL CHECKPOINT RBA 00000000000000000000
 NEW CHECKPOINT RBA (CHKPTRBA) NOT SPECIFIED
 CRCR CREATED 19:51:36 SEPTEMBER 12, 2012
 BEGIN RESTART 20:49:12 SEPTEMBER 12, 2012
 RESTART PROGRESS STARTED ENDED
 ======= =====
 CURRENT STATUS REBUILD NO NO
 FORWARD RECOVERY PHASE NO NO
 BACKOUT RECOVERY PHASE NO NO
 CRCR IDENTIFIER 0001
 USE COUNT 1
 RECORD STATUS
 CRCR NOT ACTIVE
 SUCCESSFUL RESTART
 PROCESSING STATUS
 COLD START (STARTRBA = ENDRBA)
 FORWARD = NO
 BACKOUT = NO
 STARTRBA 00000000000069958000
 ENDRBA 00000000000069958000
 ENDLRSN NOT SPECIFIED
 ENDTIME NOT SPECIFIED
 EARLIEST REQUESTED RBA 00000000000000000000
 FIRST LOG RECORD RBA 00000000000000000000
 ORIGINAL CHECKPOINT RBA 00000000000000000000
 NEW CHECKPOINT RBA (CHKPTRBA) NOT SPECIFIED
 CRCR CREATED 16:17:06 APRIL 20, 2011
 BEGIN RESTART 16:19:39 APRIL 20, 2011
 END RESTART 16:19:48 APRIL 20, 2011
 RESTART PROGRESS STARTED ENDED
 ======= =====
 CURRENT STATUS REBUILD YES YES
 FORWARD RECOVERY PHASE YES YES
 BACKOUT RECOVERY PHASE YES YES
 CHECKPOINT QUEUE
 20:51:19 SEPTEMBER 12, 2012

 TIME OF CHECKPOINT 14:10:13 JUNE 22, 2012
 BEGIN CHECKPOINT RBA 0000000000007AD2C562
 END CHECKPOINT RBA 0000000000007AD2ECBE
 END CHECKPOINT STCK 00C9C2079978DA000000
 TIME OF CHECKPOINT 17:06:49 JUNE 13, 2012
 BEGIN CHECKPOINT RBA 0000000000007AD1FE4B
 END CHECKPOINT RBA 0000000000007AD2B2BE
 END CHECKPOINT STCK 00C9B6DE530C48000000
 SHUTDOWN CHECKPOINT
 TIME OF CHECKPOINT 22:46:33 JUNE 12, 2012
 BEGIN CHECKPOINT RBA 0000000000007ACFBB93
 END CHECKPOINT RBA 0000000000007AD02A9E
 END CHECKPOINT STCK 00C9B5E85C1961000000
 TIME OF CHECKPOINT 22:46:29 JUNE 12, 2012
 BEGIN CHECKPOINT RBA 0000000000007AC0F000
 END CHECKPOINT RBA 0000000000007AC6D6B4
 END CHECKPOINT STCK 00C9B5E8582489000000
 ARCHIVE LOG COMMAND HISTORY
 20:51:19 SEPTEMBER 12, 2012
 DATE TIME RBA MODE WAIT TIME
------------ ---------- -------------------- ------- ---- -----
SEP 12, 2012 20:50:57.4 0000000000007FA73A2E QUIESCE YES 5 D
SEP 12, 2012 20:50:49.3 0000000000007FA6F35E
SEP 12, 2012 20:50:44.8 0000000000007FA6ACC2 QUIESCE NO 5 D
SEP 12, 2012 20:50:39.9 0000000000007FA66543

Chapter 41. DSNJU004 (print log map) 877

DSNJ401I DSNUPBHR BACKUP SYSTEM UTILITY HISTORY RECORD NOT FOUND
 SYSTEM CCSIDS
 20:51:19 SEPTEMBER 12, 2012
 SYSTEM CCSIDS

 ASCII SBCS = 1252
 ASCII MIXED = 65534
 ASCII DBCS = 65534
 EBCDIC SBCS = 37
 EBCDIC MBCS = 65534
 EBCDIC DBCS = 65534
 UNICODE SBCS = 367
 UNICODE MBCS = 1208
 UNICODE DBCS = 1200
DSNJ200I DSNJU004 PRINT LOG UTILITY PROCESSING COMPLETED SUCCESSFULLY

Example DSNJU004 output for a data sharing member
The sample print log map utility output in the following figure is for a member of a data sharing group.

 **
 * *
 * LOG MAP OF THE BSDS DATA SET BELONGING TO MEMBER 'DL51 ' OF GROUP 'DSNL5 '. *
 * *
 **
 DSNJCNVT CONVERSION PROGRAM HAS RUN DDNAME=GROUP
 LOG MAP OF BSDS DATA SET COPY 1, DSN=DSNL5LOG.DL51.BSDS01
 LTIME INDICATES LOCAL TIME, ALL OTHER TIMES ARE GMT.
 DATA SHARING MODE IS ON
 SYSTEM TIMESTAMP - DATE=2013.164 LTIME=13:17:24.34
 UTILITY TIMESTAMP - DATE=2013.098 LTIME= 1:06:04.02
 VSAM CATALOG NAME=DSNL5SYS
 HIGHEST RBA WRITTEN 000000004C45C60F9E9E 2013.164 20:17:47.3
 HIGHEST RBA OFFLOADED 000000004C45ACB5CFFF
 RBA WHEN CONVERTED TO V4 00000000000000000000
 MAX RBA FOR TORBA 00000000000000000000
 MIN RBA FOR TORBA 00000000000000000000
 STCK TO LRSN DELTA 00000000000000000000
 THIS BSDS HAS MEMBER RECORDS FOR THE FOLLOWING MEMBERS:
 HOST MEMBER NAME: DL51
 MEMBER ID: 1
 GROUP NAME: DSNL5
 BSDS COPY 1 DATA SET NAME: DSNL5LOG.DL51.BSDS01
 BSDS COPY 2 DATA SET NAME: DSNL5LOG.DL51.BSDS02
 ENFM START RBA/LRSN: 00C72DC5B25477000000
 MEMBER NAME: DL53
 MEMBER ID: 2
 GROUP NAME: DSNL5
 BSDS COPY 1 DATA SET NAME: DSNL5LOG.DL53.BSDS01
 BSDS COPY 2 DATA SET NAME: DSNL5LOG.DL53.BSDS02
 MEMBER NAME: DL52
 MEMBER ID: 3
 GROUP NAME: DSNL5
 BSDS COPY 1 DATA SET NAME: DSNL5LOG.DL52.BSDS01
 BSDS COPY 2 DATA SET NAME: DSNL5LOG.DL52.BSDS02
 MEMBER NAME: DL54
 MEMBER ID: 4
 GROUP NAME: DSNL5
 BSDS COPY 1 DATA SET NAME: DSNL5LOG.DL54.BSDS01
 BSDS COPY 2 DATA SET NAME: DSNL5LOG.DL54.BSDS02
 MEMBER NAME: DL55
 MEMBER ID: 5
 GROUP NAME: DSNL5
 BSDS COPY 1 DATA SET NAME: DSNL5LOG.DL55.BSDS01
 BSDS COPY 2 DATA SET NAME: DSNL5LOG.DL55.BSDS02
 THIS MEMBER WAS QUIESCED ON 2013.161 AT 14:23:22.9
 MEMBER NAME: DL56
 MEMBER ID: 6
 GROUP NAME: DSNL5
 BSDS COPY 1 DATA SET NAME: DSNL5LOG.DL56.BSDS01
 BSDS COPY 2 DATA SET NAME: DSNL5LOG.DL56.BSDS02
 THIS MEMBER WAS QUIESCED ON 2013.133 AT 18:30:06.9
 MEMBER NAME: DESTROYED
 MEMBER ID: 7
 GROUP NAME: DSNL5
 BSDS COPY 1 DATA SET NAME:
 BSDS COPY 2 DATA SET NAME:
 THIS MEMBER WAS DESTROYED ON 2012.150 AT 17:54:09.5
 THIS MEMBER ID IS AVAILABLE FOR REUSE
 **** DISTRIBUTED DATA FACILITY ****
 COMMUNICATION RECORD

878 Db2 12 for z/OS: Utility Guide and Reference

 20:17:49 JUNE 13, 2013
 LOCATION=DSNL5 IPNAME=(NULL) PORT=50200 SPORT=50290 RPORT=50201
 ALIAS=DSNL5NETT01,DSNL5NETT02,DSNL5NETT03,
 DSNL5NETT04,DSNL5NETT05
 IPV4=9.30.178.71 IPV6=ABCD::91E:B247
 GRPIPV4=9.30.178.50 GRPIPV6=ABCD::91E:B232
 LUNAME=STBDL51 PASSWORD=(NULL) GENERICLU=STBDL5G

 ACTIVE LOG COPY 1 DATA SETS
 START RBA/LRSN/TIME END RBA/LRSN/TIME DATE/LTIME DATA SET INFORMATION
 ---------------------- ---------------------- ---------- --------------------
 000000004C444BBDD000 000000004C44A455CFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY1.DS03
 00CB81C00D9C43400400 00CB81C3CE783A060000 9:41 STATUS=REUSABLE
 2013.164 16:35:33.3 2013.164 16:52:20.9
 000000004C44A455D000 000000004C44FC39CFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY1.DS05
 00CB81C3CE783A060000 00CB81C962BC23D21200 9:41 STATUS=TRUNCATED, REUSABLE
 2013.164 16:52:20.9 2013.164 17:17:18.5
 000000004C44FC39D000 000000004C45541DCFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY1.DS04
 00CB81C962BC23D21200 00CB81CE3D7E49E72400 10:16 STATUS=REUSABLE
 2013.164 17:17:18.5 2013.164 17:39:01.6
 000000004C45541DD000 000000004C45ACB5CFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY1.DS01
 00CB81CE3D7E49E72400 00CB81D320A86B598000 9:41 STATUS=REUSABLE
 2013.164 17:39:01.6 2013.164 18:00:53.6
 000000004C45ACB5D000 000000004C46054DCFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY1.DS02
 00CB81D320A86B598000 9:41 STATUS=NOTREUSABLE
 2013.164 18:00:53.6
 ARCHIVE LOG COPY 1 DATA SETS
 START RBA/LRSN/TIME END RBA/LRSN/TIME DATE/LTIME DATA SET INFORMATION
 ---------------------- ---------------------- ---------- --------------------
 000000003ECDEE9AE000 000000003ECE4732DFFF 2013.074 DSN=DSNL5AR1.DL51.D13074.T0753360.A0165898
 00CB108020450A8B8600 00CB10817DEBA05B8000 7:54 VOL=ARX081 UNIT=SYSDA
 2013.074 14:47:52.2 2013.074 14:53:58.8
 CATALOGUED
 000000003ECE4732E000 000000003ECE9FCADFFF 2013.074 DSN=DSNL5AR1.DL51.D13074.T0800383.A0165899
 00CB10817DEBA05B8000 00CB10831082B6008800 8:01 VOL=ARX030 UNIT=SYSDA
 2013.074 14:53:58.8 2013.074 15:01:01.0
 CATALOGUED
...
000000004C44A455D000 000000004C44FC39CFFF 2013.164 DSN=DSNL5AR1.DL51.D13164.T1016560.A0176325
 00CB81C3CE783A060000 00CB81C962BC23D21200 10:17 VOL=ARX054 UNIT=SYSDA
 2013.164 16:52:20.9 2013.164 17:17:18.5
 CATALOGUED
 000000004C44FC39D000 000000004C45541DCFFF 2013.164 DSN=DSNL5AR1.DL51.D13164.T1038388.A0176326
 00CB81C962BC23D21200 00CB81CE3D7E49E72400 10:39 VOL=ARX755 UNIT=SYSDA
 2013.164 17:17:18.5 2013.164 17:39:01.6
 CATALOGUED
 000000004C45541DD000 000000004C45ACB5CFFF 2013.164 DSN=DSNL5AR1.DL51.D13164.T1100310.A0176327
 00CB81CE3D7E49E72400 00CB81D320A86B598000 11:01 VOL=ARX224 UNIT=SYSDA
 2013.164 17:39:01.6 2013.164 18:00:53.6
 CATALOGUED
 ACTIVE LOG COPY 2 DATA SETS
 START RBA/LRSN/TIME END RBA/LRSN/TIME DATE/LTIME DATA SET INFORMATION
 ---------------------- ---------------------- ---------- --------------------
 000000004C444BBDD000 000000004C44A455CFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY2.DS03
 00CB81C00D9C43400400 00CB81C3CE783A060000 9:41 STATUS=REUSABLE
 2013.164 16:35:33.3 2013.164 16:52:20.9
 000000004C44A455D000 000000004C44FC39CFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY2.DS05
 00CB81C3CE783A060000 00CB81C962BC23D21200 9:41 STATUS=REUSABLE
 2013.164 16:52:20.9 2013.164 17:17:18.5
 000000004C44FC39D000 000000004C45541DCFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY2.DS04
 00CB81C962BC23D21200 00CB81CE3D7E49E72400 10:16 STATUS=REUSABLE
 2013.164 17:17:18.5 2013.164 17:39:01.6
 000000004C45541DD000 000000004C45ACB5CFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY2.DS01
 00CB81CE3D7E49E72400 00CB81D320A86B598000 9:41 STATUS=REUSABLE
 2013.164 17:39:01.6 2013.164 18:00:53.6
 000000004C45ACB5D000 000000004C46054DCFFF 2011.193 DSN=DSNL5LOG.DL51.LOGCOPY2.DS02
 00CB81D320A86B598000 9:41 STATUS=NOTREUSABLE
 2013.164 18:00:53.6

 ARCHIVE LOG COPY 2 DATA SETS
 NO ARCHIVE DATA SETS DEFINED FOR THIS COPY
 CONDITIONAL RESTART CONTROL RECORD
 20:17:51 JUNE 13, 2013
 **** ACTIVE CRCR RECORD ****
 NO CRCR RECORDS ARE ACTIVE

 CRCR IDENTIFIER 0003
 USE COUNT 1
 RECORD STATUS
 CRCR NOT ACTIVEf

Chapter 41. DSNJU004 (print log map) 879

 SUCCESSFUL RESTART
 PROCESSING STATUS
 FORWARD = YES
 BACKOUT = NO
 STARTRBA NOT SPECIFIED
 ENDRBA NOT SPECIFIED
 ENDLRSN NOT SPECIFIED
 ENDTIME NOT SPECIFIED
 EARLIEST REQUESTED RBA 00000000000000000000
 FIRST LOG RECORD RBA 00000000000000000000
 ORIGINAL CHECKPOINT RBA 00000000000000000000
 NEW CHECKPOINT RBA (CHKPTRBA) NOT SPECIFIED
 CRCR CREATED 14:55:09 JANUARY 04, 2012
 BEGIN RESTART 14:55:38 JANUARY 04, 2012
 END RESTART 14:56:37 JANUARY 04, 2012
 RESTART PROGRESS STARTED ENDED
 ======= =====
 CURRENT STATUS REBUILD YES YES
 FORWARD RECOVERY PHASE YES YES
 BACKOUT RECOVERY PHASE YES YES
 CRCR IDENTIFIER 0002
 USE COUNT 1
 RECORD STATUS
 CRCR NOT ACTIVE
 SUCCESSFUL RESTART
 PROCESSING STATUS
 COLD START (STARTRBA = ENDRBA)
 FORWARD = NO
 BACKOUT = NO
 STARTRBA 0000000011BE80000000
 ENDRBA 0000000011BE80000000
 ENDLRSN NOT SPECIFIED
 ENDTIME NOT SPECIFIED
 EARLIEST REQUESTED RBA 00000000000000000000
 FIRST LOG RECORD RBA 00000000000000000000
 ORIGINAL CHECKPOINT RBA 00000000000000000000
 NEW CHECKPOINT RBA (CHKPTRBA) NOT SPECIFIED
 CRCR CREATED 21:24:13 OCTOBER 16, 2011
 BEGIN RESTART 21:51:25 OCTOBER 16, 2011
 END RESTART 21:59:35 OCTOBER 16, 2011
 RESTART PROGRESS STARTED ENDED
 ======= =====
 CURRENT STATUS REBUILD YES YES
 FORWARD RECOVERY PHASE YES YES
 BACKOUT RECOVERY PHASE YES YES
 CRCR IDENTIFIER 0001
 USE COUNT 1
 RECORD STATUS
 CRCR NOT ACTIVE
 SUCCESSFUL RESTART
 PROCESSING STATUS
 FORWARD = NO
 BACKOUT = YES
 STARTRBA NOT SPECIFIED
 ENDRBA NOT SPECIFIED
 ENDLRSN NOT SPECIFIED
 ENDTIME NOT SPECIFIED
 EARLIEST REQUESTED RBA 00000000000000000000
 FIRST LOG RECORD RBA 00000000000000000000
 ORIGINAL CHECKPOINT RBA 00000000000000000000
 NEW CHECKPOINT RBA (CHKPTRBA) NOT SPECIFIED
 CRCR CREATED 17:48:37 MARCH 23, 2010
 BEGIN RESTART 17:49:57 MARCH 23, 2010
 END RESTART 17:51:28 MARCH 23, 2010
 RESTART PROGRESS STARTED ENDED
 ======= =====
 CURRENT STATUS REBUILD YES YES
 FORWARD RECOVERY PHASE YES YES
 BACKOUT RECOVERY PHASE YES YES
 CHECKPOINT QUEUE
 20:17:51 JUNE 13, 2013
 TIME OF CHECKPOINT 20:16:43 JUNE 13, 2013
 BEGIN CHECKPOINT RBA 000000004C45C2CE07F2
 END CHECKPOINT RBA 000000004C45C2D9AA15
 END CHECKPOINT LRSN 00CB81F17D7369468E00
 TIME OF CHECKPOINT 20:14:43 JUNE 13, 2013
 BEGIN CHECKPOINT RBA 000000004C45BF6B54F0
 END CHECKPOINT RBA 000000004C45BF781379
 END CHECKPOINT LRSN 00CB81F10AEDE3280400
 TIME OF CHECKPOINT 20:12:43 JUNE 13, 2013
 BEGIN CHECKPOINT RBA 000000004C45B97FCACF
 END CHECKPOINT RBA 000000004C45B98AFE56

880 Db2 12 for z/OS: Utility Guide and Reference

 END CHECKPOINT LRSN 00CB81F0984E2858AC00

 TIME OF CHECKPOINT 17:02:21 JUNE 13, 2013
 BEGIN CHECKPOINT RBA 000000004C44CCDE6D2F
 END CHECKPOINT RBA 000000004C44CCE8B409
 END CHECKPOINT LRSN 00CB81C60AC5C633A600
 TIME OF CHECKPOINT 17:00:21 JUNE 13, 2013
 BEGIN CHECKPOINT RBA 000000004C44C50572CF
 END CHECKPOINT RBA 000000004C44C50FB946
 END CHECKPOINT LRSN 00CB81C598549EB09000
 TIME OF CHECKPOINT 16:58:21 JUNE 13, 2013
 BEGIN CHECKPOINT RBA 000000004C44BBDF62C0
 END CHECKPOINT RBA 000000004C44BBE9CC54
 END CHECKPOINT LRSN 00CB81C525E39E4CAE00
 TIME OF CHECKPOINT 16:56:21 JUNE 13, 2013
 BEGIN CHECKPOINT RBA 000000004C44B36E23A6
 END CHECKPOINT RBA 000000004C44B3787B59
 END CHECKPOINT LRSN 00CB81C4B372E7DD0400
 TIME OF CHECKPOINT 16:54:21 JUNE 13, 2013
 BEGIN CHECKPOINT RBA 000000004C44ACA3882B
 END CHECKPOINT RBA 000000004C44ACB70485
 END CHECKPOINT LRSN 00CB81C441338C1B2600
 ARCHIVE LOG COMMAND HISTORY
 MEMBER DL51
 DATA SHARING GROUP DSNL5 CONTAINS 7 MEMBERS
 20:17:51 JUNE 13, 2013
 DATE/SDATE TIME/STIME RBA MODE WAIT TIME SCOPE CMD ORIGIN
STATUS ACTIVE
 ------------ ---------- -------------------- ------- ---- ----- ----- ----------
------ ------
 JUN 10, 2013 13:25:41.9 000000004B744729CE22 QUIESCE NO 5 D G DL51
ORIGINATOR 5
 JUN 03, 2013 15:12:07.0 000000004A22F3390BE4 QUIESCE NO 5 D G DL51
ORIGINATOR 5
 MAY 20, 2013 15:54:03.1 00000000485391AC2858 QUIESCE NO 5 D G DL51
ORIGINATOR 5
 MAY 13, 2013 16:20:31.7 0000000047B36F159850 QUIESCE NO 5 D G DL51
ORIGINATOR 5
 MAY 06, 2013 13:25:22.9 000000004666B2D550FF QUIESCE NO 5 D G DL51
ORIGINATOR 5
 APR 29, 2013 16:26:52.2 000000004576BE7884CA QUIESCE NO 5 D G DL51
ORIGINATOR 5
 APR 22, 2013 14:12:22.4 00000000445250177700 QUIESCE NO 5 D G DL51
ORIGINATOR 5
 APR 15, 2013 13:25:32.3 00000000435BF4740EC7 QUIESCE NO 5 D G DL51
ORIGINATOR 5
 APR 08, 2013 13:25:58.9 00000000422B9CEA328A QUIESCE NO 5 D G DL51
ORIGINATOR 5
 APR 01, 2013 19:04:21.2 0000000040CD3F8A2AA1 QUIESCE NO 5 D G DL51
PARTICIPANT 5
 MAR 24, 2013 18:31:45.1 000000003F805C3E4A6C QUIESCE NO 5 D G DL51
PARTICIPANT 5
 MAR 11, 2013 13:25:27.1 000000003DD42CA2D062 QUIESCE NO 5 D G DL51
ORIGINATOR 5
 DSNJ401I DSNUPBHR BACKUP SYSTEM UTILITY HISTORY RECORD NOT FOUND
 SYSTEM CCSIDS
 20:17:51 JUNE 13, 2013
 SYSTEM CCSIDS

 ASCII SBCS = 1252
 ASCII MIXED = 65534
 ASCII DBCS = 65534
 EBCDIC SBCS = 37
 EBCDIC MBCS = 65534
 EBCDIC DBCS = 65534
 UNICODE SBCS = 367
 UNICODE MBCS = 1208
 UNICODE DBCS = 1200
 DSNJ200I DSNJU004 PRINT LOG UTILITY PROCESSING COMPLETED SUCCESSFULLY

Chapter 41. DSNJU004 (print log map) 881

Example DSNJU004 output for deactivated and destroyed members
The sample print log map utility output in the following figure is for a deactivated member and a
destroyed member of a data sharing group.

DSNJCNVB CONVERSION PROGRAM HAS RUN DDNAME=SYSUT1
DSNJCNVT CONVERSION PROGRAM HAS NOT RUN DDNAME=SYSUT1
 LOG MAP OF BSDS DATA SET COPY 1, DSN=DSNC000.DB2B.BSDS01
 LTIME INDICATES LOCAL TIME, ALL OTHER TIMES ARE GMT.
 DATA SHARING MODE IS ON
 SYSTEM TIMESTAMP - DATE=2012.256 LTIME=11:35:42.52
 UTILITY TIMESTAMP - DATE=2012.256 LTIME=10:40:27.07
 VSAM CATALOG NAME=DSNC000
 HIGHEST RBA WRITTEN 0000000000000000682A 0000.000 00:00:00.0
 HIGHEST RBA OFFLOADED 00000000000010000FFF
 RBA WHEN CONVERTED TO V4 00000000000012F04FFF
 MAX RBA FOR TORBA 00000000000012F04FFF
 MIN RBA FOR TORBA 00000000000000000000
 STCK TO LRSN DELTA 00000000000000000000
 THIS BSDS HAS MEMBER RECORDS FOR THE FOLLOWING MEMBERS:
 HOST MEMBER NAME: DB2B
 MEMBER ID: 2
 GROUP NAME: DSNCAT
 BSDS COPY 1 DATA SET NAME: DSNC000.DB2B.BSDS01
 BSDS COPY 2 DATA SET NAME: DSNC000.DB2B.BSDS02
 ENFM START RBA/LRSN: 00000000000000000000
 MEMBER NAME: DB2A
 MEMBER ID: 1
 GROUP NAME: DSNCAT
 BSDS COPY 1 DATA SET NAME: DSNC000.DB2A.BSDS01
 BSDS COPY 2 DATA SET NAME: DSNC000.DB2A.BSDS02
 MEMBER NAME: DESTROYED
 MEMBER ID: 3
 GROUP NAME: DSNCAT
 BSDS COPY 1 DATA SET NAME:
 BSDS COPY 2 DATA SET NAME:
 THIS MEMBER WAS DESTROYED ON 2012.109 AT 04:12:30.2
 THIS MEMBER ID IS AVAILABLE FOR REUSE
 MEMBER NAME: DB2D
 MEMBER ID: 4
 GROUP NAME: DSNCAT
 BSDS COPY 1 DATA SET NAME: DSNC000.DB2D.BSDS01
 BSDS COPY 2 DATA SET NAME: DSNC000.DB2D.BSDS02
 THIS MEMBER WAS DEACTIVATED ON 2012.109 AT 01:46:52.4

Timestamps in the BSDS

The output of the DSNJU004 (print log map) utility includes many timestamps that are recorded in the
BSDS. Those timestamps record the date and time of various system events.

Timestamps in the output column LTIME are in local time. All other timestamps are in Coordinated
Universal Time (UTC).

The following timestamps are included in the header section of the reports:

System timestamp
Reflects the date and time that the BSDS was last updated. The BSDS can be updated by several
events:

• Db2 startup.
• The write threshold is reached during log write activities.

The BSDS might be updated several times a second, or it might not be updated for several seconds,
minutes, or even hours. The frequency of updates depends on the number of output buffers that you
specified and the system activity rate.

• An error situation where Db2 drops into single-BSDS mode from its normal dual BSDS mode. This
action might occur when a request to get, insert, point to, update, or delete a BSDS record is
unsuccessful. When this error occurs, Db2 updates the timestamp in the remaining BSDS to force a
timestamp mismatch with the disabled BSDS.

882 Db2 12 for z/OS: Utility Guide and Reference

Utility timestamp
The date and time that the contents of the BSDS were altered by the change log inventory
(DSNJU003) utility.

The following timestamps are included in the active and archive log data sets of the reports:

Active log date
The date on which the active log data set was originally allocated on the Db2 subsystem.

Active log time
The time at which the active log data set was originally allocated on the Db2 subsystem.

Archive log date
The date of creation (not allocation) of the archive log data set.

Archive log time
The time of creation (not allocation) of the archive log data set.

The following timestamps are included in the conditional restart control record portion of the report that
is shown in “DSNJU004 (print log map) output” on page 875:

Conditional restart control record
The current time and date. This data is reported for information only and is not kept in the BSDS.

CRCR created
The time and date of creation of the CRCR by the CRESTART option in the change log inventory utility.

Begin restart
The time and date that the conditional restart was attempted.

End restart
The time and date that the conditional restart ended.

STARTRBA (timestamp)
The time at which the control interval was written.

ENDRBA (timestamp)
The time at which the last control interval was written.

Time of checkpoint
The time and date that are associated with the checkpoint record that was used during the conditional
restart process.

The following timestamps are included in the checkpoint queue and the DDF communication record
sections of the report.

Checkpoint queue
The current time and date. This data is reported for information only and is not kept in the BSDS.

Time of checkpoint
The time and date that the checkpoint was taken.

DDF communication record (heading)
The current time and date. This data is reported for information only, and is not kept in the BSDS.

Active log data set status

The BSDS records the status of an active log data set as one of the status values that are listed in the
following table.

Table 133. Statuses of active log data sets

Status Meaning

NEW The data set was defined but never used by Db2, or the log is truncated at a point before
the data set was created. In either case, the data set starting and ending RBA values are
reset to zero.

Chapter 41. DSNJU004 (print log map) 883

Table 133. Statuses of active log data sets (continued)

Status Meaning

REUSABLE Either the data set is new and has no records, or the data set was offloaded. In the print
log map output, the start RBA value for the last REUSABLE data set is equal to the start
RBA value of the last archive log data set.

NOT REUSABLE The data set contains records that have not been offloaded.

STOPPED The offload processor encountered an error while reading a record, and that record could
not be obtained from the other copy of the active log. Alternatively, an error occurred
during truncation of the data set following a write I/O error.

TRUNCATED One of these conditions exists:

• An I/O error occurred, and Db2 stopped writing to this data set. The active log data
set is offloaded, beginning with the starting RBA and continuing to the last valid record
segment in the truncated active log data set. (The RBA of the last valid record segment
is less than the ending RBA of the active log data set.) Logging is switched to the next
available active log data set and continues uninterrupted.

• The log was truncated by a conditional restart at a point within the data set RBA range.
• The Db2 ARCHIVE LOG command was issued while this data set was the current active

log data set.

The status value for each active log data set is displayed in the print log map utility output, as shown in
the following example output:

ACTIVE LOG COPY 1 DATA SETS
 START RBA/LRSN/TIME END RBA/LRSN/TIME DATE/LTIME DATA SET INFORMATION
 ---------------------- ---------------------- ---------- --------------------
 00000000000026A05000 00000000000027DB4FFF 2011.122 DSN=DSNC000.DB2A.LOGCOPY1.DS02
 00C9FAE422D486000000 00C9FAE427BF40000000 16:49 STATUS=REUSABLE
 2012.219 19:35:03.9 2012.219 19:35:09.0
 00000000000027DB5000 00000000000028B65FFF 2011.122 DSN=DSNC000.DB2A.LOGCOPY1.DS03
 00C9FAE427BF40000000 00CA28653CDD94000000 16:49 STATUS=TRUNCATED, REUSABLE
 2012.219 19:35:09.0 0000.000 00:00:00.0
 00000000000028B66000 00000000000029F15FFF 2011.122 DSN=DSNC000.DB2A.LOGCOPY1.DS01
 00CA28653CDD94000000 16:49 STATUS=REUSABLE
 2012.256 00:12:15.8

Archive log command history

The print log map utility output also displays the archive log command history, as shown in the following
example output.

 ARCHIVE LOG COMMAND HISTORY
 20:51:19 SEPTEMBER 12, 2012
 DATE TIME RBA MODE WAIT TIME
------------ ---------- -------------------- ------- ---- -----
SEP 12, 2012 20:50:57.4 0000000000007FA73A2E QUIESCE YES 5 D
SEP 12, 2012 20:50:49.3 0000000000007FA6F35E
SEP 12, 2012 20:50:44.8 0000000000007FA6ACC2 QUIESCE NO 5 D
SEP 12, 2012 20:50:39.9 0000000000007FA66543

The values in the TIME column represent the time that the ARCHIVE LOG command was issued. This
time value is saved in the BSDS and is converted to printable format at the time that the print log map
utility is run. Therefore, this value, when printed, can differ from other time values that were recorded
concurrently. Some time values are converted to printable format when they are recorded, and then they
are saved in the BSDS. These printed values remain the same when the printed report is run.

Reading conditional restart control records

884 Db2 12 for z/OS: Utility Guide and Reference

The print log map utility also lists information about each conditional restart control record and each
checkpoint. A sample description of a checkpoint record in the queue is shown in the following example
output.

 CHECKPOINT QUEUE
 19:31:37 SEPTEMBER 12, 2012
 TIME OF CHECKPOINT 19:31:26 SEPTEMBER 12, 2012
 BEGIN CHECKPOINT RBA 00000000000028C12842
 END CHECKPOINT RBA 00000000000028C16B7A
 END CHECKPOINT LRSN 00CA296855DA8EB58000
 TIME OF CHECKPOINT 19:31:20 SEPTEMBER 12, 2012
 BEGIN CHECKPOINT RBA 00000000000028C0C280
 END CHECKPOINT RBA 00000000000028C1057A
 END CHECKPOINT LRSN 00CA29684FE13EFAC000
 TIME OF CHECKPOINT 19:31:06 SEPTEMBER 12, 2012
 BEGIN CHECKPOINT RBA 00000000000028C059FE
 END CHECKPOINT RBA 00000000000028C09C7A
 END CHECKPOINT LRSN 00CA29684275C34C4000
 ...
 TIME OF CHECKPOINT 19:34:52 AUGUST 06, 2012
 BEGIN CHECKPOINT RBA 000000000000243F3D36
 END CHECKPOINT RBA 000000000000243F8C26
 END CHECKPOINT LRSN 00C9FAE41852F2000000

A sample description of a conditional restart control record is shown in the following example output.

CRCR IDENTIFIER 0001
 USE COUNT 0
 RECORD STATUS
 CRCR NOT ACTIVE
 CRCR NOT USED
 PROCESSING STATUS
 FORWARD = YES
 BACKOUT = YES
 STARTRBA NOT SPECIFIED
 ENDRBA NOT SPECIFIED
 ENDLRSN NOT SPECIFIED
 ENDTIME NOT SPECIFIED
 EARLIEST REQUESTED RBA 00000000000000000000
 FIRST LOG RECORD RBA 00000000000000000000
 ORIGINAL CHECKPOINT RBA 00000000000000000000
 NEW CHECKPOINT RBA (CHKPTRBA) 00000FF00000000FF000
 CRCR CREATED 18:13:54 SEPTEMBER 12, 2012
 RESTART PROGRESS STARTED ENDED
 ======= =====
 CURRENT STATUS REBUILD NO NO
 FORWARD RECOVERY PHASE NO NO
 BACKOUT RECOVERY PHASE NO NO
 CRCR IDENTIFIER 0002
 USE COUNT 1
 RECORD STATUS
 CRCR NOT ACTIVE
 SUCCESSFUL RESTART
 PROCESSING STATUS
 COLD START (STARTRBA = ENDRBA)
 FORWARD = NO
 BACKOUT = NO
 STARTRBA 00000000000012F05000
 ENDRBA 00000000000012F05000
 ENDLRSN NOT SPECIFIED
 ENDTIME NOT SPECIFIED
 EARLIEST REQUESTED RBA 00000000000000000000
 FIRST LOG RECORD RBA 00000000000000000000
 ORIGINAL CHECKPOINT RBA 00000000000000000000
 NEW CHECKPOINT RBA (CHKPTRBA) NOT SPECIFIED
 CRCR CREATED 23:49:14 MAY 02, 2011
 BEGIN RESTART 23:51:43 MAY 02, 2011
 END RESTART 23:52:04 MAY 02, 2011
 RESTART PROGRESS STARTED ENDED
 ======= =====
 CURRENT STATUS REBUILD YES YES
 FORWARD RECOVERY PHASE YES YES
 BACKOUT RECOVERY PHASE YES YES

Chapter 41. DSNJU004 (print log map) 885

System-level backup information

The print log map utility also displays information about system-level backup copies that are created by
the BACKUP SYSTEM utility. An example of system-level backup information is shown in the following
figure.

 BACKUP SYSTEM UTILITY HISTORY
 SUBSYSTEM ID DB2A
 17:04:03 AUGUST 08, 2014
 START STCK DATA COMPLETE DATA/LOG COMPLETE
 DATA LOG RBLP LRSN DATE LTIME
---------------- ---------------- -------------------- -------------------- --------------------
CD931537CA6A07E4 CD931538D10F85B8 000000000000A5140114 000000000000A51A0411 2014/08/08 09:53:19
 TOKEN = C4C2F2C1CD931537CA6A07E40000A5140114 TYPE=I
 Z/OS 2.01 CAT=YES
 LOCATION NAME = ALTERNATE1
CD93150C1F3D0740 CD93150DADBC3348 000000000000A5102AC5 000000000000A515079F 2014/08/08 09:52:34
 TOKEN = C4C2F2C1CD93150C1F3D07400000A5102AC5 TYPE=I
 Z/OS 2.01 CAT=YES
 LOCATION NAME = ALTERNATE1
CD93124D9A983334 0000000000000000 000000000000A50079AA 000000000000A50C458B 2014/08/08 09:40:18
 TOKEN = C4C2F2C1CD93124D9A9833340000A50079AA
 Z/OS 2.01 CAT=YES
 LOCATION NAME = ALTERNATE1

For each system-level backup, you can use the listed location name to determine the copy pool that is
associated with it. In the preceding example, the first system-level backup that is listed uses copy pool
DSN$ALTERNATE1$DB, which is an alternate database copy pool. For more information about the Db2
naming convention for copy pools, see “Copy pools” on page 57.

When a log copy pool is restored, accurate date and time values are not displayed for the system-level
backup that is used to restore the copy pool. Instead, the DATA/LOG DATE value is displayed as
0000/00/00, and the COMPLETE LTIME value is displayed as 00:00:00. The reason is that this information
is not recorded in the BSDS until after the system-level backup is complete. Therefore, this information is
not available at the time that the backup copy of the BSDS is made.

The following figure shows an example of an incremental system-level backup. TYPE applies to only the
database copy pool history entries.

 BACKUP SYSTEM UTILITY HISTORY
 SUBSYSTEM ID DB2A
 00:05:08 SEPTEMBER 14, 2012
 START STCK DATA COMPLETE
 DATA LOG RBLP LRSN
---------------- ---------------- -------------------- --------------------
CA2AC09F0F4456A0 0000000000000000 0000000000007FADA6AC 0000000000007FB42C2C
 TOKEN = C4C2F2C1CA2AC09F0F4456A000007FADA6AC
 Z/OS 1.13 CAT=YES
 LOCATION NAME = STLEC1
CA2AC09B25879868 0000000000000000 0000000000007FAB97E2 0000000000007FB0B9B4
 TOKEN = C4C2F2C1CA2AC09B2587986800007FAB97E2
 Z/OS 1.13 CAT=YES
 LOCATION NAME = STLEC1
CA2AC096C479E0E8 0000000000000000 0000000000007FA5C090 0000000000007FAD1A28
 TOKEN = C4C2F2C1CA2AC096C479E0E800007FA5C090 TYPE=I
 Z/OS 1.13 CAT=YES
 LOCATION NAME = STLEC1

Related concepts
Management of the bootstrap data set (Db2 Administration Guide)
Conditional restart (Db2 Administration Guide)
Related tasks
Deleting data sharing members (Db2 Data Sharing Planning and Administration)
Restoring deactivated data sharing members (Db2 Data Sharing Planning and Administration)
Related reference
“BACKUP SYSTEM” on page 53

886 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_bsdsmanagement.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_conditionalrestart.html
https://www.ibm.com/docs/SSEPEK_12.0.0/dshare/src/tpc/db2z_deletingdsmembers.html
https://www.ibm.com/docs/SSEPEK_12.0.0/dshare/src/tpc/db2z_restoringdsmembers.html

The online BACKUP SYSTEM utility invokes z/OS DFSMShsm to copy the volumes on which the Db2 data
and log information resides. These system-level backups can be taken for either a Db2 subsystem or data
sharing group. You can later run the RESTORE SYSTEM utility to recover the subsystem or data sharing
group.

Chapter 41. DSNJU004 (print log map) 887

888 Db2 12 for z/OS: Utility Guide and Reference

Chapter 42. DSNJU008 (print CDDS)
The DSNJU008 (print CDDS) stand-alone utility prints the compression dictionary data set (CDDS).

Environment
The DSNJU008 program runs as a batch job.

This utility can be executed when Db2 is running or when it is not running. DSNJU008 can be executed on
the source Db2 data sharing group or the proxy Db2 data sharing group in an implementation of the GDPS
Continuous Availability with zero data loss solution.

Authorization required
The user ID of the DSNJU008 job must have requisite RACF authorization.

Required data sets
DSNJU008 recognizes DD statements with the following DD names:

SYSUT1
Specifies and allocates the compression dictionary data set (CDDS). This statement is required. If the
CDDS must be shared with a concurrently executing Db2 online subsystem, use DISP=SHR in the DD
statement.

If the CDDS must be shared on the proxy Db2 data sharing group, also specify
ROACCESS=(ALLOW,TRKLOCK) in the DD statement.

SYSPRINT
Specifies a data set or print spool class for print output. This statement is required. The logical record
length (LRECL) is 132.

SYSIN
Contains the control statement for the DSNJU008 utility.

Running the DSNJU008 utility
Use the following EXEC statement to execute this utility:

// EXEC PGM=DSNJU008

Related tasks
Reading complete log data for the GDPS Continuous Availability with zero data loss solution (Db2
Administration Guide)
Related information
DD statement (MVS JCL Reference)

© Copyright IBM Corp. 1983, 2024 889

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_readlogcompleteforgdpsaa2.html
https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_readlogcompleteforgdpsaa2.html
https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieab600/ddst.htm

Syntax and options of the DSNJU008 control statement
The DSNJU008 control statement that is specified in the SYSIN data set allows you to specify the records
that are printed, and how the records are formatted.

DSNJU008 (print CDDS) syntax diagram

DBID( hex-constant) PSID( hex-constant) PART( hex-constant)

VER( integer-constant)

DUMP(NO)

DUMP(YES)

SYSTEM(NO)

SYSTEM(YES

ONLY

) LIMIT( integer-constant)

Option descriptions

The following keywords can be used in a control statement in the SYSIN data set:

DBID(hex-constant)
Specifies a hexadecimal database identifier (DBID). DSNJU008 prints only the records in the
compression dictionary data set (CDDS) that are associated with that DBID. Specify this keyword
no more than once in the job.

hex-constant is a hexadecimal value that consists of one to four characters. Leading zeros are not
required.

You can find the DBID in the following ways:

• The DBID is displayed in many Db2 messages.
• You can find the DBID in the Db2 catalog for a specific object (for example, in the column that is

named DBID of the SYSIBM.SYSTABLESPACE catalog table).

When you select a DBID from a catalog table, the value is displayed in decimal format. Use the SQL
HEX function in a SELECT statement to convert a DBID to hexadecimal format. The following SQL
statements show this use of the HEX function:

SELECT NAME, DBNAME, HEX(DBID), HEX(PSID)
FROM SYSIBM.SYSTABLESPACE
WHERE NAME ='table-space-name'

• You can use the DSN1PRNT utility to format the data sets for tables or indexes, and find the DBID in
the first two bytes of HPGOBID.

PSID(hex-constant)
Specifies a hexadecimal page set identifier (PSID) of a table space. If you specify the PSID keyword,
you must also specify the DBID keyword. DSNJU008 prints only the expansion dictionary records that
are associated with the DBID and the PSID. Specify this keyword no more than once in the job.

hex-constant is a hexadecimal value that consists of one to four characters. Leading zeros are not
required.

You can find the PSID in the following ways:

890 Db2 12 for z/OS: Utility Guide and Reference

• Whenever Db2 changes the data, the log record that describes the change identifies the
database by the DBID and the table space by the PSID. You can find the PSID column in the
SYSIBM.SYSTABLESPACE catalog table.

When you select a PSID from a catalog table, the value is displayed in decimal format. Use the SQL
HEX function in a SELECT statement to convert the PSID to hexadecimal format.

• You can use the DSN1PRNT utility to format the data sets for tables, and find the PSID in the last
two bytes of HPGOBID.

PART(hex-constant)
Specifies a hexadecimal partition number identifier, which is associated with a database identifier
(DBID) and a data page set identifier (PSID). DSNJU008 prints only the records that are associated
with the specified partition number.

hex-constant is a hexadecimal value that consists of one to four characters. Leading zeros are not
required.

Specify the PART keyword no more than once in the job. When you specify the PART keyword,
you must also specify the DBID and the PSID keywords that correspond to the partitions that are
identified by the PART keyword. If the PART keyword is not specified, records for all partitions that are
associated with the DBID and PSID are printed.

VER(integer-constant)
Specifies the version of the expansion dictionary that is to be printed. This value must be 1, 2, or 3.

Up to three versions of the expansion dictionary are kept in the CDDS for an object. Version 1 is
the most recent expansion dictionary. When you specify the VER keyword, DSNJU008 prints only the
records for the specified expansion dictionary version.

Specify the VER keyword no more than once in the job. If you do not specify the VER keyword,
DSNJU008 prints the records for all expansion dictionary versions.

DUMP(YES|NO)
Specifies whether hexadecimal output for each expansion dictionary record is printed.
YES

Specifies that hexadecimal output of expansion dictionary records is printed.
NO

Specifies that hexadecimal output of expansion dictionary records is not printed. NO is the default.

Specify the DUMP keyword no more than once in the job.

SYSTEM(YES|NO|ONLY)
Specifies whether hexadecimal output of system records in the CDDS is printed. System records are
used for managing the CDDS. The output of the system records is for use by IBM Support.
YES

Specifies that hexadecimal output of system records in the CDDS is printed.
NO

Specifies that hexadecimal output of system records is not printed. NO is the default.
ONLY

Specifies that hexadecimal output of only the system records in the CDDS is printed. expansion
dictionary records are not printed.

When SYSTEM(YES) or SYSTEM(ONLY) is specified, hexadecimal output of system records is printed,
regardless of the DUMP setting.

Specify the SYSTEM keyword no more than once in the job.

LIMIT(integer-constant)
Specifies the maximum number of lines of output that the DSNJU008 utility prints.

integer-constant is an integer value of one to 10 characters. The maximum value is 4294967295,
which is also the default.

Chapter 42. DSNJU008 (print CDDS) 891

DSNJU008 always prints complete expansion dictionary records, which can cause the number of lines
that are printed to exceed integer-constant. If part of a record is not printed when integer-constant is
reached, DSNJU008 prints the rest of that record.

Specify the LIMIT keyword no more than once in the job.

DSNJU008 examples
Use the DSNJU008 examples to learn how to write your own DSNJU008 jobs.

Example DSNJU008 input and output

The following statement specifies that DSNJU008 is to print information from CDDS data set
TEST.CDDS about the most recent version of the expansion dictionary for database ID (DBID) x'011D'
and page set ID (PSID) x'0002'.

//PLM8 EXEC PGM=DSNJU008
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=TEST.CDDS,DISP=SHR
//SYSIN DD *
 DBID(011D) PSID(0002) VER(1)

The output from this job looks similar to the following output.

COMPRESSION DICTIONARY DATA SET
(CDDS)
CDDS STATE
ACTIVE
NUMBER OF MEMBERS
002
HIGH MEMBER ID
002
NUMBER OF ACTIVE MEMBERS
002
CDDS LAST UPDATE 2018.072
20:27:46.5
CDDS STATE LAST UPDATE 2018.072
19:58:32.2
DICTIONARY LAST UPDATE 2018.072
20:06:01.5
STCK TO LRSN DELTA
0

MID MEMBER STATE LAST START DB2 LAST STOP DB2
BSDS
--- -------- -------- ------------------- -------------------
--
001 DB2A ACTIVE 2018.072 20:26:35.1 2018.072 20:26:23.0
DSNC000.DB2A.BSDS01
002 DB2B ACTIVE 2018.072 20:27:46.5 2018.072 20:27:32.5
DSNC008.DB2B.BSDS01

KEY DBID PSID PART V TABLE SPACE DICT VERSION LRSN DICT VERSION TIME CDDS UPDATE LRSN CDDS
UPDATE TIME
---------------- ---- ---- ---- -- ----------------- -------------------- ----------------- --------------------

0E01011D00020008 011D 0002 0008 01 DBB .TSS 00D405D06AD648981600 2018.072 15:16:25 00D405D06AF336B40800
2018.072 15:16:25

NUMBER OF RECORDS PRINTED
1
 DICTIONARY RECORDS PRINTED
1
 SYSTEM RECORDS PRINTED
0
DSNJ225I PRINT OPERATION COMPLETED
SUCCESSFULLY
DSNJ200I DSNJU008 PRINT CDDS UTILITY PROCESSING COMPLETED
SUCCESSFULLY

892 Db2 12 for z/OS: Utility Guide and Reference

Chapter 43. DSN1COMP
The DSN1COMP stand-alone utility estimates space savings that are to be achieved by data compression
in table spaces, including LOB table spaces, and indexes. You can estimate the space savings for fixed-
length Db2 data compression, Huffman compression, or both.

You can run this utility on the following types of data sets:

• Db2 full image copy data sets
• VSAM data sets that contain Db2 table spaces
• Sequential data sets that contain Db2 table spaces (for example, DSN1COPY output)

These data sets can contain compressed or uncompressed data.

Restrictions:

• You cannot run DSN1COMP on concurrent copies.
• If you run DSN1COMP on a table space in which the data is the same for all rows, message DSN1941I is

issued. In this case, DSN1COMP does not compute any statistics.
• Do not run DSN1COMP on table spaces in DSNDB01, DSNDB06, or DSNDB07.

Environment

Run DSN1COMP as a z/OS job.

You can run DSN1COMP even when the Db2 subsystem is not operational. Before you use DSN1COMP
when the Db2 subsystem is operational, issue the Db2 STOP DATABASE command. Issuing the STOP
DATABASE command ensures that Db2 has not allocated the Db2 data sets.

Authorization required

DSN1COMP does not require authorization. However, if any of the data sets are RACF-protected, the
authorization ID of the job must have RACF authority.

If any of the data sets are encrypted using ICSF key label, the authorization ID of the job must have
access to the key label.

Required data sets

DSN1COMP uses the following data definition (DD) statements:

SYSPRINT
Defines the data set that contains output messages from DSN1COMP and all hexadecimal dump
output.

SYSUT1
Defines the input data set, which can be a sequential data set or a VSAM data set.

Specify the disposition for this data set as OLD (DISP=OLD) to ensure that it is not in use by Db2.
Specify the disposition for this data set as SHR (DISP=SHR) only in circumstances where the Db2
STOP DATABASE command does not work.

The requested operation takes place only for the specified data set. . In the following situations,
ensure that you specify the data set name for the partition or first piece:

• The input data set belongs to a nonpartitioned table space.

© Copyright IBM Corp. 1983, 2024 893

• The index space is larger than 2 GB.
• The table space or index space is partitioned.

If you are running the online REORG utility with FASTSWITCH behavior, verify the data set name
before running the DSN1COMP utility. The fifth-level qualifier in the data set name alternates between
'I0001' and 'J0001' when using FASTSWITCH. If the table space has cloning, the fifth-level qualifier
can be 'n0002.' You cannot specify FASTSWITCH YES if the table space has cloning; however, a
FASTSWITCH YES REORG might have been done before the clone was created so you might still
have a mixture of 'I' and 'J' data sets. Specify the correct fifth-level qualifier in the data set name
to successfully execute the DSN1COMP utility. To determine the correct fifth-level qualifier, query
the IPREFIX column of SYSIBM.SYSTABLEPART for each data partition or the IPREFIX column of
SYSIBM.SYSINDEXPART for each index partition. If the object is not partitioned, use zero as the value
for the PARTITION column in your query.

DSN1DICT
DSN1DICT is required only if you specify the EXTNDICT parameter to create an external copy of the
compression dictionary that DSN1COMP produces.

DSN1DICT defines the output data set to which the external copy of the compression dictionary is
written. This data set must:

• Be a sequential data set or a member of a partitioned data set
• Have fixed record format with a record length of 80

The data set or data set member that is produced is an object module that can be link-edited into a
program.

Recommendation
Before using DSN1COMP, make sure that you know the page size and data set size (DSSIZE) for the table
space. Use the following query on the Db2 catalog to get the information that you need. This example is
for the DEPT table:

SELECT T.CREATOR,T.NAME,S.NAME AS TABLESPACE,S.PARTITIONS,S.PGSIZE,
 CASE S.DSSIZE
 WHEN 0 THEN
 CASE WHEN S.TYPE = 'G' THEN 4194304
 WHEN S.TYPE = 'O' THEN 4194304
 WHEN S.TYPE = 'P' THEN 4194304
 WHEN S.TYPE = 'R' THEN 4194304
 ELSE
 CASE WHEN S.PARTITIONS > 254 THEN
 CASE WHEN S.PGSIZE = 4 THEN 4194304
 WHEN S.PGSIZE = 8 THEN 8388608
 WHEN S.PGSIZE = 16 THEN 16777216
 WHEN S.PGSIZE = 32 THEN 33554432
 ELSE NULL
 END
 WHEN S.PARTITIONS > 64 THEN 4194304
 WHEN S.PARTITIONS > 32 THEN 1048576
 WHEN S.PARTITIONS > 16 THEN 2097152
 WHEN S.PARTITIONS > 0 THEN 4194304
 ELSE 2097152
 END
 END
 ELSE S.DSSIZE
 END
 AS DSSIZE
 FROM SYSIBM.SYSTABLES T,
 SYSIBM.SYSTABLESPACE S
 WHERE
 T.NAME = 'DEPT' AND
 T.TSNAME = S.NAME;

Related concepts
Contents of the log (Db2 Administration Guide)

894 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_logcontent.html

Syntax and options of the DSN1COMP control statement
The DSN1COMP utility control statement, with its multiple options, defines the function that the utility job
performs.

DSN1COMP syntax diagram
DSN1COMP syntax for table spaces:

DSN1COMP

32K

PAGESIZE (4K

8K

16K

32K

)

DSSIZE (integer G)

LARGE

NUMPARTS( integer)

FREEPAGE( integer) PCTFREE( integer) FULLCOPY

REORG ROWLIMIT( integer) MAXROWS( integer)

EXTNDICT( dictionary-name) LOB

COMPTYPE (FIXED

HUFFMAN

ALL

)

DSN1COMP syntax for indexes:
DSN1COMP

LEAFLIM( integer)

Option descriptions

To run DSN1COMP, specify one or more of the following parameters on the EXEC statement to run
DSN1COMP. If you specify more than one parameter, separate each parameter by a comma. You can
specify parameters in any order.

32K
Specifies that the input data set, SYSUT1, has a 32-KB page size. If you specify this option and the
SYSUT1 data set does not have a 32-KB page size, DSN1COMP might produce unpredictable results.

The recommended option for performance is PAGESIZE(32K).

PAGESIZE
Specifies the page size of the input data set that is defined by SYSUT1. Available page size values are
4K, 8K, 16K, or 32K. If you specify an incorrect page size, DSN1COMP might produce unpredictable
results.

Chapter 43. DSN1COMP 895

If you omit PAGESIZE, DSN1COMP tries to determine the page size from the input data set. Db2
issues an error message if DSN1COMP cannot determine the input page size. This might happen if the
header page is not in the input data set, or if the page size field in the header page contains an invalid
page size.

If information on this value is available in the input data set header page, the header page information
is the default.

DSSIZE(integer G)
Specifies the data set size, in gigabytes, for the input data set. If you omit DSSIZE, Db2 obtains the
data set size from the data set header page.

If you specify DSSIZE, integer must match the DSSIZE value that was specified when the table space
was defined.

LARGE
Specifies that the input data set is a table space that was defined with the LARGE option. If you
specify LARGE, Db2 assumes that the data set has a 4-GB boundary.

The recommended method of specifying a table space defined with LARGE is DSSIZE(4G).

If you omit the LARGE or DSSIZE(4G) option when it is needed, or if you specify LARGE for a table
space that was not defined with the LARGE option, the results from DSN1COMP are unpredictable.

If information on this value is available in the input data set header page, the header page information
is the default.

NUMPARTS(integer)
Specifies the number of partitions that are associated with the input data set. Valid specifications
range 1 - 4096. If you omit NUMPARTS or specify it as 0, DSN1COMP assumes that your input file is
not partitioned. If you specify a number greater than 64, DSN1COMP assumes that the data set is for
a partitioned table space that was defined with the LARGE option, even if the LARGE keyword is not
specified.

DSN1COMP cannot always validate the NUMPARTS parameter. If you specify it incorrectly,
DSN1COMP might produce unpredictable results.

DSN1COMP terminates and issues message DSN1946I when it encounters an image copy that
contains multiple partitions; a compression report is issued for the first partition.

This parameter is not used if the target table space is a universal table space. DSSIZE is used instead.

This parameter is deprecated.

FREEPAGE(integer)
Specifies how often to leave a page of free space when calculating the percentage of saved pages. You
must specify an integer in the range 0 to 255. If you specify 0, no pages are included as free space
when DSN1COMP reports the percentage of pages saved. Otherwise, one free page is included after
every n pages, where n is the specified integer.

The default value is 0.

Specify the same value that you specify for the FREEPAGE option of the SQL statement CREATE
TABLESPACE or ALTER TABLESPACE.

PCTFREE(integer)
Indicates what percentage of each page to leave as free space when calculating the percentage
of pages saved. You must specify an integer in the range 0 to 99. When calculating the savings,
DSN1COMP allows for at least n percent of free space for each page, where n is the specified integer.

The default value is 5.

Specify the same value that you specify for the PCTFREE option of the SQL statement CREATE
TABLESPACE or ALTER TABLESPACE.

896 Db2 12 for z/OS: Utility Guide and Reference

FULLCOPY
Specifies that a Db2 full image copy (not a DFSMSdss concurrent copy) of your data is to be used
as input. Omitting this parameter when the input is a full image copy can cause error messages or
unpredictable results. If this data is partitioned, also specify the NUMPARTS parameter to identify the
number of partitions.

REORG
Provides an estimate of compression savings that are comparable to the savings that the REORG
utility would achieve. If this keyword is not specified, the results are similar to the compression
savings that the LOAD utility would achieve.

REORG does not apply if the input data set is a LOB table space.

ROWLIMIT(integer)
Specifies the maximum number of rows to evaluate in order to provide the compression estimate. This
option prevents DSN1COMP from examining every row in the input data set. Valid specifications range
from 1 to 99000000.

Use this option to limit the elapsed time and processor time that DSN1COMP requires. An analysis
of the first 5 to 10 MB of a table space provides a fairly representative sample of the table space for
estimating compression savings. Therefore, specify a ROWLIMIT value that restricts DSN1COMP to
the first 5 to 10 MB of the table space. For example, if the row length of the table space is 200 bytes,
specifying ROWLIMIT(50000) causes DSN1COMP to analyze approximately 10 MB of the table space.

MAXROWS(integer)
Specifies the maximum number of rows that DSN1COMP is to consider when calculating the
percentage of pages saved. You must specify an integer in the range 1 to 255.

The default value is 255.

Specify the same value that you specify for the MAXROWS option of the SQL statement CREATE
TABLESPACE or ALTER TABLESPACE.

EXTNDICT(dictionary-name)
Specifies the name of an external copy of the compression dictionary that DSN1COMP produces.
dictionary-name must:

• Be eight bytes
• Contain only uppercase alphanumeric characters
• Begin with an alphabetic character

The external copy of the compression dictionary is primarily for use by the IBM Data Encryption for
IMS and Db2 tool.

When EXTNDICT is specified, a DSN1DICT DD statement must be included in the JCL for running
DSN1COMP.

LOB
Specifies that the input data set is a LOB table space or an image copy data set of a LOB table space.
When LOB is specified, DSN1COMP will estimate the space savings and compression ratio for a LOB
table space using the zEnterprise® data compression (zEDC) hardware.

If the LOB table space is not compressed, DSN1COMP will calculate the compression savings that
would occur if the table space is defined using the COMPRESS YES option. DSN1COMP will collect
data up to the average LOB size (or 1 MB as the maximum size) and pass the collected data to the
zEDC card (if zEDC hardware is installed), which will return the compressed information and statistics
for the DSN1COMP report.

If the LOB table space is already compressed (the table space is defined with the COMPRESS YES
option), DSN1COMP will collect statistics of the individual LOB metadata from the LOB map page
without collecting and compressing data using the zEDC card again.

If you specify LOB, you cannot specify any other DSN1COMP options.

Chapter 43. DSN1COMP 897

COMPTYPE
Specifies the type of compression for which DSN1COMP is to estimate the space savings. You can
specify one of the following values:
HUFFMAN

Huffman compression. You can specify HUFFMAN for only universal table spaces.
FIXED

Fixed-length compression
ALL

Both Huffman compression and fixed-length compression

If you do not specify the COMPTYPE option, the compression type for which DSN1COMP provides
space estimates depends on the hardware. If DSN1COMP is run on IBM z14® or later hardware, the
utility provides estimates for both Huffman compression and fixed-length compression. Otherwise,
DSN1COMP provides estimates for fixed-length compression only.

Related information:

Using Huffman compression to compress your data (Db2 Performance)
Using fixed-length compression to compress your data (Db2 Performance)

LEAFLIM(integer)
Specifies how many index leaf pages should be evaluated to determine the compression estimate.
This option prevents DSN1COMP from processing all index leaf pages in the input data set. Valid
specifications range from 1 to 99000000.

If the LEAFLIM parameter is not specified, the entire index will be scanned and all leaf pages will be
examined.

In a compressed index, only leaf pages are compressed. All other page types remain uncompressed.

Related information
IBM InfoSphere Guardium Data Encryption for Db2 and IMS Databases

Before running DSN1COMP
If you run DSN1COMP on a segmented (non-UTS) table space, you must first determine the current
instance qualifier so that you can code the correct data set name in the JCL.

To determine the current instance qualifier, query the IPREFIX column in the SYSTABLEPART catalog
table, as shown in the following example query:

SELECT DBNAME, TSNAME, PARTITION, IPREFIX
 FROM SYSIBM.SYSTABLEPART
 WHERE DBNAME = 'DBMC0731' AND TSNAME = 'TPMC0731'
 ORDER BY TSNAME, PARTITION;

The preceding query produces the following result:

 +---+
 | DBNAME | TSNAME | PARTITION | IPREFIX |
 +---+
1_| DBMC0731 | TPMC0731 | 1 | J |
2_| DBMC0731 | TPMC0731 | 2 | J |
3_| DBMC0731 | TPMC0731 | 3 | J |
4_| DBMC0731 | TPMC0731 | 4 | J |
5_| DBMC0731 | TPMC0731 | 5 | J |
 +---+

Notice that the current instance qualifier is J. You can use this value to code the data set name in the
DSN1COMP JCL as follows.

//STEP1 EXEC PGM=DSN1COMP
//SYSUT1 DD DSN=vcatname.DSNDBC.DBMC0731.J0001.A001,DISP=SHR
//SYSPRINT DD AYAOUT=*
//SYSUDUMP DD AYAOUT=*

898 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdatahuffman.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_compressdatafixed.html
https://www.ibm.com/docs/SSEPH2_15.2.0/com.ibm.ims152.doc.rpg/ims_tlsenh_db_dataencrypt.htm

Related information
SYSTABLEPART catalog table (Db2 SQL)

How to estimate compression savings achieved with option REORG
If you run DSN1COMP with the REORG option on small data sets, the resulting estimates might vary
greatly from the estimates that are produced without the default REORG option. Alternatively, if you run
DSN1COMP and specify a small number (n) for ROWLIMIT, the estimates might vary greatly from the
estimates that are produced without REORG.

DSN1COMP does not try to convert data to the latest version before it compresses rows and derives a
savings estimate.

Without the REORG option, DSN1COMP uses the first n rows to fill the compression dictionary.
DSN1COMP processes the remaining rows to provide the compression estimate. If the number of rows
that are used to build the dictionary is a significant percentage of the data set rows, little savings result.
With the REORG option, DSN1COMP processes all the rows, including those that are used to build the
dictionary, which results in greater compression.

The DSN1COMP utility determines possible saving estimates at the data set level for a unique partition
only. Therefore, if DSN1COMP is run against an image copy data set that contains several partitions or
against a single partition of partition-by-growth table spaces (PBGs), the results will be different from
what the REORG utility would produce.

Free space in compression calculations on table space
The DSN1COMP utility considers the PCTFREE and FREEPAGE values when making compression
estimates unless the input data set is a LOB table space or image copy data set of a LOB table space. The
PCTFREE and FREEPAGE values do not apply to LOBs.

DSN1COMP reports the PCTFREE and FREEPAGE values used and the amount of uncompressed data, as
shown in the following examples. Note that if you specify PCTFREE or FREEPAGE values for DSN1COMP
that are different than the values that were specified in the SQL to create or alter the table space, the
DSN1COMP output includes a different value for uncompressed pages.

The following example shows the DSN1COMP output for compressed data:

DSN1998I INPUT DSNAME = DB2SMS.DSNDBC.DSN03686.ZZINSRZY.I0001.A001 ,
VSAM
DSN1944I DSN1COMP INPUT
PARAMETERS
 INPUT DATA SET CONTAINS COMPRESSED
DATA
 USING HUFFMAN COMPRESSION TYPE
 INPUT DICTIONARY WAS BUILT BY
INSERT
 4,096 DICTIONARY SIZE
USED
 0 FREEPAGE VALUE
USED
 5 PCTFREE VALUE
USED
 COMPTYPE(ALL)
REQUESTED
 NO ROWLIMIT WAS
REQUESTED
 ESTIMATE BASED ON DB2 LOAD
METHOD
 255 MAXROWS VALUE USED

DSN1940I DSN1COMP COMPRESSION
REPORT
 HARDWARE SUPPORT FOR HUFFMAN COMPRESSION IS
AVAILABLE
 +-----------------------------------+------------------+------------------+------------------
+------------------+
 | | | Estimated state | Estimated state
| Calculated |
 | | UNCOMPRESSED | Compressed | Compressed

Chapter 43. DSN1COMP 899

https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsystableparttable.html

| Compressed from |
 | | | FIXED | HUFFMAN
| INPUT DICTIONARY |
 +-----------------------------------+------------------+------------------+------------------
+------------------+
 | DATA (IN KB) | 1,659,179 | 434,603 | 222,697
| 436,780 |
 | PERCENT SAVINGS | | 73%|
86%| 73%|
 | | | |
| |
 | AVERAGE BYTES PER ROW | 1,701 | 448 | 231
| 450 |
 | PERCENT SAVINGS | | 73%|
86%| 73%|
 | | | |
| |
 | DATA PAGES NEEDED | 500,000 | 125,000 | 62,500
| 125,000 |
 | PERCENT DATA PAGES SAVED | | 75%|
87%| 75%|
 | | | |
| |
 | DICTIONARY PAGES REQUIRED | 0 | 64 | 64
| 64 |
 | ROWS SCANNED TO BUILD DICTIONARY | | 81 | 81
| N/A |
 | ROWS SCANNED TO PROVIDE ESTIMATE | | 1,000,000 | 1,000,000
| N/A |
 | DICTIONARY ENTRIES | | 4,096 | 4,080
| 4,096 |
 | | | |
| |
 | TOTAL PAGES (DICTIONARY + DATA) | 500,000 | 125,064 | 62,564
| 125,064 |
 | PERCENT SAVINGS | | 74%|
87%| 74%|
 +-----------------------------------+------------------+------------------+------------------
+------------------+

DSN1994I DSN1COMP COMPLETED SUCCESSFULLY, 118,475 PAGES PROCESSED

The following example shows the DSN1COMP output for uncompressed data:

DSN1999I START OF DSN1COMP FOR JOB DSN1CMP COMPTS1
DSN1998I INPUT DSNAME = DSNC000.DSNDBC.EMPDB.EMPSPACE.I0001.A001 , VSAM
DSN1944I DSN1COMP INPUT PARAMETERS
 INPUT DATA SET CONTAINS NON-COMPRESSED DATA
 4,096 DICTIONARY SIZE USED
 30 FREEPAGE VALUE USED
 45 PCTFREE VALUE USED
 COMPTYPE(FIXED) REQUESTED
 NO ROWLIMIT WAS REQUESTED
 ESTIMATE BASED ON DB2 REORG METHOD
 255 MAXROWS VALUE USED

DSN1940I DSN1COMP COMPRESSION REPORT
 HARDWARE SUPPORT FOR HUFFMAN COMPRESSION IS NOT AVAILABLE
 +-----------------------------------+------------------+------------------+
		Estimated state
	UNCOMPRESSED	Compressed
		FIXED
+-----------------------------------+------------------+------------------+		
DATA (IN KB)	224	142
PERCENT SAVINGS		36%
AVERAGE BYTES PER ROW	48	32
PERCENT SAVINGS		33%
DATA PAGES NEEDED	145	113
PERCENT DATA PAGES SAVED		22%
DICTIONARY PAGES REQUIRED	0	16
ROWS SCANNED TO BUILD DICTIONARY		1,969
ROWS SCANNED TO PROVIDE ESTIMATE		5,000
DICTIONARY ENTRIES		4,096
TOTAL PAGES (DICTIONARY + DATA)	145	129
PERCENT SAVINGS		11%

900 Db2 12 for z/OS: Utility Guide and Reference

 +-----------------------------------+------------------+------------------+

DSN1994I DSN1COMP COMPLETED SUCCESSFULLY, 63 PAGES PROCESSED

Sample DSN1COMP control statements
Use the sample control statements as models for developing your own DSN1COMP control statements.

Example 1: Estimating space savings from data compression for a full image copy

The following statement specifies that the DSN1COMP utility is to report the estimated space savings that
are to be achieved by compressing the full image copy that is identified by the SYSUT1 DD statement. In
this statement, the DSN value specifies the data set name of the image copy that is to be used as input.
Because the input is a full image copy, the FULLCOPY parameter must be specified.

//jobname JOB acct information
//COMPEST EXEC PGM=DSN1COMP,PARM='FULLCOPY'
//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=COPY001F.IFDY01,DISP=SHR

Example 2: Providing intended free space when estimating space savings

In the following sample statement, STEP1 specifies that DSN1COMP is to report the estimated space
savings that are to be achieved by compressing the data in the data set that is identified by the SYSUT1
DD statement, DSNC810.DSNDBD.DB254SP4.TS254SP4.I0001.A00. When calculating these estimates,
DSN1COMP considers the values passed by the PCTFREE and FREEPAGE options. The PCTFREE value
indicates that 20% of each page is to be left as free space. The FREEPAGE value indicates that every fifth
page is to be left as free space. This value must be the same value that you specified for the FREEPAGE
option of the SQL statement CREATE TABLESPACE or ALTER TABLESPACE.

STEP2 specifies that DSN1COMP is to report the estimated space savings that are to achieved
by compressing the data in the data set that is identified by the SYSUT1 DD statement,
DSNC810.DSNDBD.DB254SP4.TS254SP4.I0001.A0001. When providing the compression estimate,
DSN1COMP is to evaluate no more than 20,000 rows, as indicated by the ROWLIMIT option. Specifying
the maximum number of rows to evaluate limits the elapsed time and processor time that DSN1COMP
requires.

//DSN1COMP JOB MSGLEVEL=(1,1),CLASS=A,MSGCLASS=A,REGION=3000K,
// USER=SYSADM,PASSWORD=SYSADM
/*ROUTE PRINT STLXXXX.USERID
//STEP1 EXEC PGM=DSN1COMP,PARM='PCTFREE(20),FREEPAGE(5)'
//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=DSNC111.DSNDBD.DB254SP4.TS254SP4.I0001.A001,DISP=SHR
/*
//STEP2 EXEC PGM=DSN1COMP,PARM='ROWLIMIT(20000)'
//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=DSNC111.DSNDBD.DB254SP4.TS254SP4.I0001.A001,DISP=SHR
/*
//

Example 3: Estimating space savings that are comparable to what the REORG utility would achieve.

The following statement specifies that DSN1COMP is to report the estimated space savings that are to
be achieved by compressing the data in the data set that is identified by the SYSUT1 DD statement,
DSNCAT.DSNDBD.DBJT0201.TPJTO201.I0001.A254. This input data set is a table space that was defined
with the LARGE option and has 254 partitions, as indicated by the DSN1COMP options LARGE and
NUMPARTS.

Chapter 43. DSN1COMP 901

The REORG option indicates that DSN1COMP is to provide an estimate of compression savings that is
comparable to the savings that the REORG utility would achieve, rather than what the LOAD utility would
achieve.

When calculating these estimates, DSN1COMP considers the values passed by the PCTFREE and
FREEPAGE options. The PCTFREE value indicates that 30% of each page is to be left as free space.
The FREEPAGE value indicates that every thirtieth page is to be left as free space. This value must be the
same value that you specified for the FREEPAGE option of the SQL statement CREATE TABLESPACE or
ALTER TABLESPACE. DSN1COMP is to evaluate no more than 20,000 rows, as indicated by the ROWLIMIT
option.

//STEP2 EXEC PGM=DSN1COMP,
// PARM='LARGE,PCTFREE(30),FREEPAGE(30),NUMPARTS(254),
// REORG,ROWLIMIT(1000)'
//STEPLIB DD DSN='USER.TESTLIB',DISP=SHR
// DD DSN='DB2A.SDSNLOAD',DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBD.DBJT0201.TPJT0201.I0001.A254,DISP=SHR
//SYSUT2 DD SYSOUT=A
/*

Example 4: Building an Object Module from the DSN1COMP generated dictionary.

In the sample statement, BUILD specifies that DSN1COMP is to externalize the compression dictionary
that it generated. This behavior is indicated by the EXTNDICT option, which requires that a DSN1DICT DD
statement be provided. DSN1DICT identifies the output data set to which the generated object module is
written and stored for additional processing.

//BUILD EXEC PGM=DSN1COMP,
// PARM='DSSIZE(4G),EXTNDICT(dictname)'
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBD.DBIA2401.TPIA2401.I0001.A254,
// DISP=SHR
//DSN1DICT DD DSN=&&OBJ,
// DISP=(,PASS),
// UNIT=SYSALLDA,SPACE=(TRK,(8,4)),
// DCB=(LRECL=80,BLKSIZE=4000,RECFM=FB)

Example 5: Estimating space savings and LOB compression rations for a LOB table space.

The following statement specifies that DSN1COMP is to report the estimated space savings that are to
be achieved by compressing the LOB data in the data set that is identified by the SYSUT1 DD statement,
DB2SMS.DSNDBC.DBP27940.TAP27901.I0001.A001. This input data set is a LOB table space that is not
defined with the COMPRESS YES option.

//STEP2 EXEC PGM=DSN1COMP,
// PARM='LOB'
//STEPLIB DD DSN='USER.TESTLIB',DISP=SHR
// DD DSN='DB2A.SDSNLOAD',DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=DB2SMS.DSNDBC.DBP27940.TAP27901.I0001.A001,DISP=SHR
//SYSUT2 DD SYSOUT=A
/*

Example 6: Estimating space savings for Huffman compression and fixed-length compression.

The following statement specifies that DSN1COMP is to report the estimated space savings that are to be
achieved by both Huffman compression and fixed-length compression.

//COMPTS2 EXEC PGM=DSN1COMP,
// PARM='COMPTYPE(ALL),REORG'
//STEPLIB DD DSN=USER.TESTLIB,DISP=SHR
// DD DSN=DB2A.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A

902 Db2 12 for z/OS: Utility Guide and Reference

//SYSDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DISP=SHR,DSN=DSNC000.DSNDBC.EMPDB.EMPSPACE.I0001.A001
/*

DSN1COMP output
The DSN1COMP utility generates a report that includes the estimated space savings that can be achieved
by using compression.

The first part of the report lists the input parameters in message DSN1944I. For table spaces, this
message also reports whether the input data set was compressed and if so, the type of compression
used. For example:

INPUT DATA SET CONTAINS COMPRESSED DATA
USING HUFFMAN COMPRESSION TYPE

If a compression dictionary exists, this message also reports whether the existing dictionary was built by
an insert operation or by a utility. For example:

INPUT DICTIONARY WAS BUILT BY INSERT

Message DSN1940I then lists the requested compression estimates. For table spaces, this message also
reports whether the hardware required for Huffman compression (IBM z14 or later) is available.

For table space reports, the following fields contain the indicated values:

DATA PAGES NEEDED
The number of pages that are needed for data. For the columns that report compression information,
this value is calculated based on the percent of savings from the estimated total uncompressed data.

DICTIONARY PAGES REQUIRED
The estimated number of pages required to build dictionary pages. For segmented (non-UTS) table
spaces or universal table spaces (UTS), these pages are calculated based on the segment boundary.
The entire segment is allocated for the dictionary pages and the SEGSIZE value contributes to the
number of pages that are reserved for the dictionary pages. DICTIONARY PAGES REQUIRED does not
reflect the actual number of pages used for the dictionary.

TOTAL PAGES
The total number of pages. For the columns that report compression information, this value is
calculated based on the percent of savings from the estimated total uncompressed data.

Message DSN1994I reports the number of physical pages that are processed from the input file.

Tip: If you receive message DSN1941I, use a data set with more rows as input, or specify a larger value
for ROWLIMIT.

Sample DSN1COMP reports for a table space

The following four sample reports show the DSN1COMP output for a table space based on the type of
compression estimate (COMPTYPE) requested where the input data set is uncompressed.

COMPTYPE not specified: The following sample report shows the output when COMPTYPE is not
specified. In this case, DSN1COMP was run on IBM z14 or later hardware. (If DSN1COMP is run on
earlier hardware, the report omits the Huffman compression estimate.)

DSN1999I START OF DSN1COMP FOR JOB DSN1CMP COMPTS4
DSN1998I INPUT DSNAME = DSNC000.DSNDBC.EMPDB.EMPSPACE.I0001.A001 , VSAM
DSN1944I DSN1COMP INPUT PARAMETERS
 INPUT DATA SET CONTAINS NON-COMPRESSED DATA
 4,096 DICTIONARY SIZE USED
 0 FREEPAGE VALUE USED
 5 PCTFREE VALUE USED
 COMPTYPE NOT SPECIFIED
 NO ROWLIMIT WAS REQUESTED
 ESTIMATE BASED ON DB2 LOAD METHOD
 255 MAXROWS VALUE USED

Chapter 43. DSN1COMP 903

https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsn1941i.html

DSN1940I DSN1COMP COMPRESSION REPORT
 HARDWARE SUPPORT FOR HUFFMAN COMPRESSION IS AVAILABLE
 +-----------------------------------+------------------+------------------+------------------+
		Estimated state	Estimated state
	UNCOMPRESSED	Compressed	Compressed
		FIXED	HUFFMAN
 +-----------------------------------+------------------+------------------+------------------
+
 | DATA (IN KB) | 224 | 178 | 173 |
 | PERCENT SAVINGS | | 20%| 22%|
 | | | | |
 | AVERAGE BYTES PER ROW | 48 | 39 | 38 |
 | PERCENT SAVINGS | | 18%| 20%|
 | | | | |
 | DATA PAGES NEEDED | 63 | 68 | 70 |
 | PERCENT DATA PAGES SAVED | | 7%| 11%|
 | | | | |
 | DICTIONARY PAGES REQUIRED | 0 | 16 | 20 |
 | ROWS SCANNED TO BUILD DICTIONARY | | 1,969 | 1,969 |
 | ROWS SCANNED TO PROVIDE ESTIMATE | | 5,000 | 5,000 |
 | DICTIONARY ENTRIES | | 4,096 | 4,080 |
 | | | | |
 | TOTAL PAGES (DICTIONARY + DATA) | 63 | 84 | 90 |
 | PERCENT SAVINGS | | 33%| 42%|
 +-----------------------------------+------------------+------------------+------------------+

DSN1994I DSN1COMP COMPLETED SUCCESSFULLY, 63 PAGES PROCESSED

COMPTYPE(ALL) The following sample report shows the output for a table space when COMPTYPE(ALL)
is specified. It includes the estimated space savings for both fixed-length and Huffman compression.

DSN1999I START OF DSN1COMP FOR JOB DSN1CMP STEP2
DSN1998I INPUT DSNAME = DSNC000.DSNDBC.DB1.TS1.I0001.A001 , VSAM
DSN1944I DSN1COMP INPUT PARAMETERS
 INPUT DATA SET CONTAINS NON-COMPRESSED DATA
 4,096 DICTIONARY SIZE USED
 0 FREEPAGE VALUE USED
 5 PCTFREE VALUE USED
 NO ROWLIMIT WAS REQUESTED
 ESTIMATE BASED ON DB2 LOAD METHOD
 255 MAXROWS VALUE USED
 255 MAXROWS VALUE USED

DSN1940I DSN1COMP COMPRESSION REPORT
Hardware support for Huffman compression is available
 +-----------------------------------+------------------+------------------+------------------+
		Estimated state	Estimated state
	UNCOMPRESSED	Compressed	Compressed
		FIXED	HUFFMAN
 +-----------------------------------+------------------+------------------+------------------
+
 | Data (in KB) | 1,758 | 1,232 | 1,278 |
 | Percent savings | | 29%| 27%|
 | | | | |
 | Average Bytes per row | 38 | 28 | 29 |
 | Percent savings | | 26%| 23%|
 | | | | |
 | Data Pages needed | 496 | 381 | 398 |
 | Percent Data pages saved | | 23%| 19%|
 | | | | |
 | Dictionary pages required | 0 | 16 | 19 |
 | Rows scanned to build dictionary | | 5,311 | 5,311 |
 | Rows scanned to provide estimate | | 50,000 | 50,000 |
 | Dictionary Entries | | 4,096 | 4,080 |
 | | | | |
 | Total Pages (Dictionary + Data) | 496 | 397 | 417 |
 | Percent savings | | 19%| 15%|
 +-----------------------------------+------------------+------------------+------------------+

DSN1994I DSN1COMP COMPLETED SUCCESSFULLY, 475 PAGES PROCESSED

COMPTYPE(FIXED) The following sample report shows the output for a table space when
COMPTYPE(FIXED) is specified. It includes the estimated space savings for only fixed-length
compression.

DSN1999I START OF DSN1COMP FOR JOB DSN1CMP STEP2
DSN1998I INPUT DSNAME = DSNC000.DSNDBC.DB1.TS1.I0001.A001 , VSAM

904 Db2 12 for z/OS: Utility Guide and Reference

DSN1944I DSN1COMP INPUT PARAMETERS
 INPUT DATA SET CONTAINS NON-COMPRESSED DATA
 4,096 DICTIONARY SIZE USED
 0 FREEPAGE VALUE USED
 5 PCTFREE VALUE USED
 NO ROWLIMIT WAS REQUESTED
 ESTIMATE BASED ON DB2 LOAD METHOD
 255 MAXROWS VALUE USED
 255 MAXROWS VALUE USED

DSN1940I DSN1COMP COMPRESSION REPORT
Hardware support for Huffman compression is available
 +-----------------------------------+------------------+------------------+
		Estimated state
	UNCOMPRESSED	Compressed
		FIXED
+-----------------------------------+------------------+------------------+		
Data (in KB)	1,758	1,232
Percent savings		29%
Average Bytes per row	38	28
Percent savings		26%
Data Pages needed	496	381
Percent Data pages saved		23%
Dictionary pages required	0	16
Rows scanned to build dictionary		5,311
Rows scanned to provide estimate		50,000
Dictionary Entries		4,096
Total Pages (Dictionary + Data)	496	397
Percent savings		19%
 +-----------------------------------+------------------+------------------+

DSN1994I DSN1COMP COMPLETED SUCCESSFULLY, 475 PAGES PROCESSED

COMPTYPE(HUFFMAN) The following sample report shows the output for a table space when
COMPTYPE(HUFFMAN) is specified. It includes the estimated space savings for only Huffman
compression.

DSN1999I START OF DSN1COMP FOR JOB DSN1CMP STEP2
DSN1998I INPUT DSNAME = DSNC000.DSNDBC.DB1.TS1.I0001.A001 , VSAM
DSN1944I DSN1COMP INPUT PARAMETERS
 INPUT DATA SET CONTAINS NON-COMPRESSED DATA
 4,096 DICTIONARY SIZE USED
 0 FREEPAGE VALUE USED
 5 PCTFREE VALUE USED
 NO ROWLIMIT WAS REQUESTED
 ESTIMATE BASED ON DB2 LOAD METHOD
 255 MAXROWS VALUE USED
 255 MAXROWS VALUE USED

DSN1940I DSN1COMP COMPRESSION REPORT
Hardware support for Huffman compression is available
 +-----------------------------------+------------------+------------------+
		Estimated state
	UNCOMPRESSED	Compressed
		HUFFMAN
+-----------------------------------+------------------+------------------+		
Data (in KB)	1,758	1,278
Percent savings		27%
Average Bytes per row	38	29
Percent savings		23%
Data Pages needed	496	398
Percent Data pages saved		19%
Dictionary pages required	0	19
Rows scanned to build dictionary		5,311
Rows scanned to provide estimate		50,000
Dictionary Entries		4,080
Total Pages (Dictionary + Data)	496	417
Percent savings		15%
 +-----------------------------------+------------------+------------------+

DSN1994I DSN1COMP COMPLETED SUCCESSFULLY, 475 PAGES PROCESSED

Chapter 43. DSN1COMP 905

Compressed input: The following sample report shows the output for a table space when the input data
set is compressed. The output includes an extra column with information from the input compression
dictionary.

DSN1999I START OF DSN1COMP FOR JOB DSN1CMP STEP2
DSN1998I INPUT DSNAME = DB2DUMP.DSNDBD.DBPBR2.TSPBR2.I0001.A001 , SEQ
DSN1944I DSN1COMP INPUT PARAMETERS
 INPUT DATA SET CONTAINS COMPRESSED DATA
 USING FIXED-LENGTH COMPRESSION TYPE
 INPUT DICTIONARY WAS BUILT BY INSERT
 4,096 DICTIONARYSIZE USED
 0 FREEPAGE VALUE USED
 5 PCTFREE VALUE USED
 COMPTYPE NOT SPECIFIED
 NO ROWLIMIT WAS REQUESTED
 ESTIMATE BASED ON DB2 LOAD METHOD
 255 MAXROWS VALUE USED
DSN1940I DSN1COMP COMPRESSION REPORT
 HARDWARE SUPPORT FOR HUFFMAN COMPRESSION IS AVAILABLE
+-----------------------------------+------------------+------------------+------------------
+------------------+
| | | Estimated state | Estimated state
| Calculated |
| | UNCOMPRESSED | Compressed | Compressed
| Compressed from |
| | | FIXED | HUFFMAN
| INPUT DICTIONARY |
+-----------------------------------+------------------+------------------+------------------
+------------------+
| DATA (IN KB) | 1,659,179 | 434,603 |
222,697 | 436,780 |
| PERCENT SAVINGS | | 73%|
86%| 73%|
| | | |
| |
| AVERAGE BYTES PER ROW | 1,701 | 448 |
231 | 450 |
| PERCENT SAVINGS | | 73%|
86%| 73%|
| | | |
| |
| DATA PAGES NEEDED | 500,000 | 125,000 |
62,500 | 125,000 |
| PERCENT DATA PAGES SAVED | | 75%|
87%| 75%|
| | | |
| |
| DICTIONARY PAGES REQUIRED | 0 | 64 |
64 | 64 |
| ROWS SCANNED TO BUILD DICTIONARY | | 81 |
81 | N/A |
| ROWS SCANNED TO PROVIDE ESTIMATE | | 1,000,000 |
1,000,000 | N/A |
| DICTIONARY ENTRIES | | 4,096 |
4,080 | 4,096 |
| | | |
| |
| TOTAL PAGES (DICTIONARY + DATA) | 500,000 | 125,064 |
62,564 | 125,064 |
| PERCENT SAVINGS | | 74%|
87%| 74%|
+-----------------------------------+------------------+------------------+------------------
+------------------+
DSN1994I DSN1COMP COMPLETED SUCCESSFULLY, 118,475 PAGES PROCESSED

Sample DSN1COMP report for an index

When you run DSN1COMP on an index, the generated report includes the estimated reduction in leaf page
space, as shown in the following sample report:

DSN1999I START OF DSN1COMP FOR JOB DSN1COMP STEP2
DSN1998I INPUT DSNAME = TESTCAT.DSNDBD.DB1COMPR.I1.I0001.A001 , VSAM

DSN1944I DSN1COMP INPUT PARAMETERS
 PROCESSING PARMS FOR INDEX DATASET:
 NO LEAFLIM WAS REQUESTED

906 Db2 12 for z/OS: Utility Guide and Reference

DSN1940I DSN1COMP COMPRESSION REPORT

 38 Index Leaf Pages Processed
 3,000 Keys Processed
 3,000 Rids Processed
 401 KB of Key Data Processed
 106 KB of Compressed Keys Produced

 EVALUATION OF COMPRESSION WITH DIFFERENT INDEX PAGE SIZES:

 --
 8 K Page Buffer Size yields a
 51 % Reduction in Index Leaf Page Space
 The Resulting Index would have approximately
 49 % of the original index's Leaf Page Space
 No Bufferpool Space would be unused
 --

 --
 16 K Page Buffer Size yields a
 74 % Reduction in Index Leaf Page Space
 The Resulting Index would have approximately
 26 % of the original index's Leaf Page Space
 3 % of Bufferpool Space would be unused to
 ensure keys fit into compressed buffers
 --

DSN1994I DSN1COMP COMPLETED SUCCESSFULLY, 38 PAGES PROCESSED

Sample DSN1COMP report for an uncompressed LOB table space

When you run DSN1COMP on an uncompressed LOB table space, the generated report includes the
estimated data pages saved for each page size, as shown in the following sample report:

DSN1944I DSN1COMP INPUT PARAMETERS
 PROCESSING PARMS FOR LOB DATASET:

 LOB

DSN1940I DSN1COMP COMPRESSION REPORT
 DSN1COMP run on uncompressed LOB table space

 LOB table space statistics

 Number of LOBs 15 LOBs
 Minimum LOB size 5 KB
 Maximum LOB size 148 KB
 Average LOB size 59 KB

 LOB compression ratio

 Total LOB data compressed 656 KB
 Total LOB data uncompressed 887 KB
 Percentage of KB saved 27 %

 Minimum System pages required 36 Pages
 Data pages needed for compressed LOB table space 149 Pages
 Data pages needed for uncompressed LOB table space 210 Pages
 Percentage of Data pages saved 30 %

 Current page size 4 KB

 EVALUATION OF COMPRESSION WITH DIFFERENT PAGE SIZES
 Note: System Pages may contain LOB data!

 4K page size:
 Minimum System pages required 36 Pages
 Additional Data pages needed for compressed LOBs 149 Pages
 Additional Data pages needed for uncompressed LOBs 210 Pages
 Data pages saved (not including system pages) 30 %

 8K page size:
 Minimum System pages required 36 Pages
 Additional Data pages needed for compressed LOBs 81 Pages
 Additional Data pages needed for uncompressed LOBs 102 Pages

Chapter 43. DSN1COMP 907

 Data pages saved (not including system pages) 21 %

 16K page size:
 Minimum System pages required 36 Pages
 Additional Data pages needed for compressed LOBs 41 Pages
 Additional Data pages needed for uncompressed LOBs 49 Pages
 Data pages saved (not including system pages) 17 %

 32K page size:
 Minimum System pages required 36 Pages
 Additional Data pages needed for compressed LOBs 20 Pages
 Additional Data pages needed for uncompressed LOBs 20 Pages
 Data pages saved (not including system pages) 0 %

DSN1994I DSN1COMP COMPLETED SUCCESSFULLY, 2,520 PAGES PROCESSED

Sample DSN1COMP report for a compressed LOB table space

When you run DSN1COMP on a compressed LOB table space, the generated report includes the estimated
data pages saved for each page size, as shown in the following sample report:

DSN1944I DSN1COMP INPUT PARAMETERS
 PROCESSING PARMS FOR LOB DATASET:

 LOB

DSN1940I DSN1COMP COMPRESSION REPORT
 DSN1COMP run on compressed LOB table space

 LOB table space statistics

 Number of LOBs 15 LOBs
 Minimum LOB size 5 KB
 Maximum LOB size 148 KB
 Average LOB size 28 KB

 Table space with compression (in KB)

 Total uncompressed data 0 KB
 Total compressed data 241 KB
 Total LOB data 241 KB

 Table space if uncompressed (in KB)

 Total uncompressed data 428 KB
 Total compressed data 0 KB
 Total LOB data 428 KB

 LOB compression ratio

 Total LOB data compressed 241 KB
 Total LOB data uncompressed 428 KB
 Percentage of KB saved 44 %

 Minimum System pages required 36 Pages
 Data pages needed for compressed LOB table space 47 Pages
 Data pages needed for uncompressed LOB table space 95 Pages
 Percentage of Data pages saved 51 %

 Current page size 4 KB

 EVALUATION OF COMPRESSION WITH DIFFERENT PAGE SIZES
 Note: System Pages may contain LOB data!

 4K page size:
 Minimum System pages required 36 Pages
 Additional Data pages needed for compressed LOBs 47 Pages
 Additional Data pages needed for uncompressed LOBs 95 Pages
 Data pages saved (not including system pages) 51 %

 8K page size:
 Minimum System pages required 36 Pages
 Additional Data pages needed for compressed LOBs 23 Pages
 Additional Data pages needed for uncompressed LOBs 45 Pages

908 Db2 12 for z/OS: Utility Guide and Reference

 Data pages saved (not including system pages) 49 %

 16K page size:
 Minimum System pages required 36 Pages
 Additional Data pages needed for compressed LOBs 7 Pages
 Additional Data pages needed for uncompressed LOBs 18 Pages
 Data pages saved (not including system pages) 62 %

 32K page size:
 Minimum System pages required 36 Pages
 Additional Data pages needed for compressed LOBs 3 Pages
 Additional Data pages needed for uncompressed LOBs 4 Pages
 Data pages saved (not including system pages) 25 %

DSN1994I DSN1COMP COMPLETED SUCCESSFULLY, 2,520 PAGES PROCESSED

Chapter 43. DSN1COMP 909

910 Db2 12 for z/OS: Utility Guide and Reference

Chapter 44. DSN1COPY
You can use the DSN1COPY stand-alone utility to copy Db2 VSAM data sets.

With the DSN1COPY stand-alone utility, you can copy:

• Db2 VSAM data sets to sequential data sets
• DSN1COPY sequential data sets to Db2 VSAM data sets
• Db2 image copy data sets to Db2 VSAM data sets
• Db2 VSAM data sets to other Db2 VSAM data sets
• DSN1COPY sequential data sets to other sequential data sets

A Db2 VSAM data set is one of the following items:

• A single piece of a nonpartitioned table space or index
• a single partition of a partitioned table space or index
• A FlashCopy image copy data set

The input must be a single z/OS sequential or VSAM data set. Concatenation of input data sets is not
supported.

You can also use DSN1COPY to perform the following actions:

• Print hexadecimal dumps of Db2 data sets and databases
• Check the validity of data or index pages (including dictionary pages for compressed data)
• Translate database object identifiers (OBIDs) to enable moving data sets between different systems
• Reset to 0 the log RBA that is recorded in each index page or data page.

You cannot run DSN1COPY on concurrent copies.

DSN1COPY can operate on both base and clone objects.

In most cases, specify a VSAM cluster rather than a specific data component. The only exception is
when you use DSN1COPY for a specific data component. (For example, specify the data component
when printing or copying that specific component and not the entire cluster.) In the following data set
name format, the bold "C" indicates a cluster. A "D" in that place of the data set name indicates a data
component.

catname.DSNDBC.dbname.psname.y001.z001

You can use the DSN1COPY utility on LOB table spaces by specifying the LOB keyword and omitting the
SEGMENT and INLCOPY keywords.

Db2-managed data sets can be moved from hard disk drives to solid state drives by using DSN1COPY.

Output

The first time that the CHECK INDEX, CHECK DATA, COPY, REBUILD INDEX, REORG TABLESPACE,
RUNSTATS, or UNLOAD utility physically opens a data set after DSN1COPY populates the data set, Db2
checks for any data and catalog inconsistencies. Those checks are the same ones that REPAIR CATALOG
performs.

The first time that an SQL data manipulation statement or query physically opens a data set after
DSN1COPY populates the data set, Db2 checks for any data and catalog inconsistencies for the following
items:

• DBID, PSID, and OBID
• Attributes that are defined by SEGSIZE, BUFFERPOOL (page size), and PAGENUM options

© Copyright IBM Corp. 1983, 2024 911

• Table space type
• Table schema

Db2 checks this item only if the table space contains a system page for the table.

Db2 reports any inconsistencies with a -904 SQL code, and you cannot access the data.

Db2 does not check these items for LOB or XML table spaces or for index spaces. Db2 also does not
validate record row format or RBA format.

Db2 does not check for data and catalog inconsistencies during the following situations:

• Db2 is restarting.
• The header page is not formatted yet.
• The REPAIR utility is operating on the header page. (The REPAIR utility closes the page set when it is
finished. Therefore, validation can be done the next time that the data set is physically opened.)

• The LOGAPPLY phase of the RECOVER utility is running.
• The LOAD utility is running.

By not checking for inconsistencies during these situations, Db2 limits any performance impact.

You can correct some of the reported inconsistencies by using the REPAIR utility with the CATALOG
option. The REPAIR CATALOG output indicates which inconsistencies it can fix.

Related information:

Table space types and characteristics in Db2 for z/OS (Introduction to Db2 for z/OS)
“Syntax and options of the REPAIR control statement” on page 632

Environment

Run DSN1COPY as a z/OS job when the Db2 subsystem is either active or not active.

If you run DSN1COPY when Db2 is active, use the following procedure:

1. Start the source table space in read-only mode by issuing the -START DATABASE command for the
table space.

2. Run the QUIESCE utility with the WRITE (YES) option on the source table space to externalize all data
pages and index pages.

3. Run DSN1COPY.
4. Start the source table space in read/write mode by issuing the -START DATABASE command.

Authorization required

DSN1COPY does not require authorization. However, if any of the data sets is protected by RACF, the
authorization ID of the job must have RACF authority.

If any of the data sets is encrypted using ICSF key label, the authorization ID of the job must have access
to the key label.

Restrictions

DSN1COPY does not alter data set structure. For example, DSN1COPY does not convert a partitioned or
segmented (non-UTS) table space to a simple table space if you copy the contents of a partitioned or
segmented (non-UTS) table space to a simple table space. The output data set is a page-for-page copy of
the input data set. If the intended use of DSN1COPY is to move or restore data, ensure that definitions for
the source and target table spaces, tables, and indexes are identical. Otherwise, unpredictable results can
occur.

912 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_typesofdb2tablespaces.html

DSN1COPY cannot copy Db2 recovery log data sets. The format of a Db2 log page is different from
the format of a table or index page. If you try to use DSN1COPY to recover log data sets, DSN1COPY
abnormally terminates.

All the target data sets must exist. You can use Access Method Services to define them.

For a compressed table space, DSN1COPY does not reset the dictionary version for the following items:

• An inline image copy
• An incremental image copy that was created with the SYSTEMPAGES=YES COPY utility option

To reset the dictionary version for an inline image copy, use the inline image copy as input to DSN1COPY
with a VSAM intermediate data set as output. This intermediate data set can then be used as input to
DSN1COPY RESET to copy the intermediate data set to the real target data set.

DSN1COPY issues an error and terminates in the following situations:

• DSN1COPY can verify that the LOB option is specified, but the data set is not a LOB data set.
• The LOB option is omitted for a data set that is a LOB data set.

To avoid problems, always specify the LOB option if the input data set SYSUT1 is a LOB table space, and
make sure that the LOB option is not specified for non LOB table spaces.

If compressed LOB data is copied to a target subsystem that does not have the zEnterprise data
compression (zEDC) hardware, SQLCODE -904 will be issued when the LOB table space is accessed.

DSN1COPY cannot copy a source object of 4 GB or greater in size when it is full unless the target object
is EA-enabled. For example, the source is full when it is not the last piece of a multi-piece non-partitioned
object with a DSSIZE of 4 GB or greater. To avoid VSAM errors and limit each piece to 2 GB so that the
target object has more pieces than the original source:

• Define the target data set as EA-enabled and use DSN1COPY to copy the data, one piece at a time, from
the source that is not EA-enabled to the target.

• If it is not possible to define the target data set as EA-enabled:

1. Take a full image copy of the entire source object by running the COPY utility and specifying DSNUM
ALL.

2. Create the target object by specifying DSSIZE 2GB for table spaces and PIECESIZE 2GB for indexes.
See “Copying tables from one subsystem to another” on page 929.

3. Define the partition number data sets (2 GB each) with the IDCAMS command. Define enough pieces
to hold the entire source.

4. Run the DSN1COPY utility with the image copy as the source (SYSUT1), the target object as SYSUT2,
and specify DSSIZE 2G.

DSN1COPY cannot be used to restore data to a point in time before materialization of pending definition
changes.

For partition-by-growth table spaces, DSN1COPY can be used only if the number of active partitions of the
source and the target table space are the same. If the number of partitions in the source table space and
the target table space are not the same, take one of the following actions:

• If the number of partitions in the source table space is greater than the number of partitions in the
target table space, issue SQL statement ALTER TABLE with the ADD PARTITION option on the table in
the target table space to make the number of partitions the same in the source and target table spaces.
Then use DSN1COPY to copy the contents of the source table space to the target table space.

• Use the UNLOAD utility to unload the data from the source table space, and use the LOAD utility to
reload the data into the target table space.

Chapter 44. DSN1COPY 913

Syntax and options of the DSN1COPY control statement
The DSN1COPY utility control statement, with its multiple options, defines the function that the utility job
performs.

DSN1COPY syntax diagram
DSN1COPY

CHECK 32K

PAGESIZE(4K

8K

16K

32K

)

FULLCOPY

INCRCOPY

SEGMENT

INLCOPY

LARGE

LOB

DSSIZE (integer G)

PIECESIZ( integer K

M

G

) NUMPARTS( integer)

PRINT

( hexadecimal-constant , hexadecimal-constant)

EBCDIC
1

ASCII

UNICODE

VALUE(string

hexadecimal-constant

) OBIDXLAT RESET

Notes:
1 EBCDIC is not necessarily the default if the first page of the input data set is a header page. If the first page
is a header page, DSN1COPY uses the format information in the header page as the default format.

Option descriptions

To run DSN1COPY with invocation parameters, specify one or more of the following parameters on the
EXEC statement. If you specify more than one parameter, separate each parameter by a comma. You can
specify parameters in any order.

Default settings for DSN1COPY options are taken from the input data set header page. This default
processing is recommended when running DSN1COPY because incorrect parameter settings can result in
unpredictable results.

When non-default user values are specified, DSN1COPY compares the input data set header page settings
against user-specified values whenever possible. If a mismatch is detected, message DSN1930I is
issued. The processing is performed with the user-specified values

CHECK
Checks each page from the SYSUT1 data set for validity. The validity checking operates on one
page at a time and does not include any cross-page checking. If an error is found, a message is

914 Db2 12 for z/OS: Utility Guide and Reference

issued describing the type of error, and a dump of the page is sent to the SYSPRINT data set. If an
unexpected page number is encountered, validity checking continues to the end and a report will be
printed of all unexpected page numbers. If you do not receive any messages, no errors were found. If
more than one error exists in a given page, the check identifies only the first of the errors. However,
the entire page is dumped. DSN1COPY does not check system pages for validity.

An index with BUSINESS_TIME period columns appended to the key for BUSINESS TIME WITHOUT
OVERLAPS bypasses checking for orderly keys.

32K
Specifies that the SYSUT1 data set has a 32-KB page size. If you specify this option and the SYSUT1
data set does not have a 32-KB page size, DSN1COPY might produce unpredictable results that might
be undetected until later.

PAGESIZE
Specifies the page size of the input data set that is defined by SYSUT1. Available page size values are
4K, 8K, 16K, or 32K. If you specify an incorrect page size, DSN1COPY might produce unpredictable
results.

If you do not specify the page size, DSN1COPY tries to determine the page size from the input data
set if the first page of the input data set is a header page. Db2 issues an error message if DSN1COPY
cannot determine the input page size. This might happen if the header page is not in the input data
set, or if the page size field in the header page contains an invalid page size.

FULLCOPY
Specifies that a Db2 full image copy (not a DFSMSdss concurrent copy) of your data is to be used as
input. If this data is partitioned, specify NUMPARTS to identify the total number of partitions. If you
specify FULLCOPY without NUMPARTS, DSN1COPY determines the NUMPARTS value from the header
page if possible; otherwise, DSN1COPY assumes that your input file is not partitioned.

Specify FULLCOPY when using a full image copy as input. Omitting the parameter can cause error
messages or unpredictable results.

Do not specify FULLCOPY if you are using a FlashCopy image copy data set as input.

The FULLCOPY parameter requires SYSUT2 (output data set) to be either a Db2 VSAM data set or a
DUMMY data set.

INCRCOPY
Specifies that an incremental image copy of the data is to be used as input. DSN1COPY with the
INCRCOPY parameter updates existing data sets; do not redefine the existing data sets. INCRCOPY
requires that the output data set (SYSUT2) be a Db2 VSAM data set.

Before you apply an incremental image copy to your data set, you must first apply a full image copy
to the data set by using the FULLCOPY parameter. Make sure that you apply the full image copy in a
separate execution step because you receive an error message if you specify both the FULLCOPY and
the INCRCOPY parameters in the same step. Then, apply each incremental image copy in a separate
step, starting with the oldest incremental image copy.

Specifying neither FULLCOPY nor INCRCOPY implies that the input is not an image copy data set.
Therefore, only a single output data set is used.

SEGMENT
Specifies that you want to use a segmented (non-UTS) table space as input to DSN1COPY. Pages
with all zeros in the table space are copied, but no error messages are issued. You cannot specify
FULLCOPY or INCRCOPY if you specify SEGMENT.

If you are using DSN1COPY with the OBIDXLAT to copy a Db2 data set to another Db2 data set, the
source and target table spaces must have the same SEGSIZE attribute.

You cannot specify the SEGMENT option with the LOB parameter.

INLCOPY
Specifies that the input data is an inline copy data set. The INLCOPY parameter requires SYSUT2
(output data set) to be either a VSAM data set or a DUMMY data set.

Chapter 44. DSN1COPY 915

You cannot specify the INLCOPY option with the LOB parameter.

DSSIZE(integer G)
Specifies the data set size, in gigabytes, for the input data set. If you omit DSSIZE, Db2 obtains the
data set size from the data set header page.

If you specify DSSIZE, integer must match the DSSIZE value that was specified when the table space
was defined.

LARGE
Specifies that the input data set is a table space that was defined with the LARGE option, or an index
on such a table space. If you specify the LARGE keyword, Db2 assumes that the data set has a 4-GB
boundary. The recommended method of specifying a table space that was defined with the LARGE
option is DSSIZE(4G).

If you omit the LARGE or DSSIZE(4G) option when it is needed, or if you specify LARGE for a table
space that was not defined with the LARGE option, the results from DSN1COPY are unpredictable.

If you specify LARGE, you cannot specify LOB or DSSIZE.

LOB
Specifies that SYSUT1 data set is a LOB table space. Empty pages in the table space are copied, but
no error messages are issued. You cannot specify the SEGMENT and INLCOPY options with the LOB
parameter.

DSN1COPY attempts to determine if the input data set is a LOB data set. If it can be clearly
verified that the LOB option is specified, but the data set is not a LOB data set, or that the LOB
option is omitted for a data set that is a LOB data set, DSN1COPY issues an error message and
terminates. Otherwise, if the LOB option isn't specified or omitted correctly the results of DSN1COPY
are unpredictable.

If you specify LOB, you cannot specify LARGE.

If compressed LOB data is copied to a target subsystem that does not have the zEnterprise data
compression (zEDC) hardware, SQLCODE -904 will be issued when the LOB table space is accessed.

NUMPARTS(integer)
Specifies the number of partitions that are associated with the input data set. Valid specifications
range 1 - 4096. If you omit NUMPARTS or specify it as 0, DSN1COPY assumes that your input file is
not partitioned. If you specify a number greater than 64, DSN1COPY assumes that the data set is for
a partitioned table space that was defined with the LARGE option, even if the LARGE keyword is not
specified.

DSN1COPY cannot always validate the NUMPARTS parameter. If you specify it incorrectly, DSN1COPY
might produce unpredictable results.

DSN1COPY terminates and issues message DSN1946I when it encounters an image copy that
contains multiple partitions; a compression report is issued for the first partition.

This parameter is not used if the target table space is a universal table space. DSSIZE is used instead.

This parameter is deprecated.

PRINT(hexadecimal-constant,hexadecimal-constant)
Causes the SYSUT1 data set to be printed in hexadecimal format on the SYSPRINT data set.
You can specify the PRINT parameter with or without the page range specifications (hexadecimal-
constant,hexadecimal-constant). If you do not specify a range, all pages of the SYSUT1 are printed. If
you want to limit the range of pages that are printed, indicate the beginning and ending page. If you
want to print a single page, supply only that page number. In either case, your range specifications
must be from one to eight hexadecimal characters in length.

The following example shows how you code the PRINT parameter if you want to begin printing at page
X'2F0' and stop at page X'35C':

PRINT(2F0,35C)

916 Db2 12 for z/OS: Utility Guide and Reference

Because the CHECK and RESET options and the copy function run independently of the PRINT range,
these options apply to the entire input file, regardless of whether a range of pages is being printed.

You can indicate the format of the row data in the PRINT output by specifying EBCDIC, ASCII, or
UNICODE.

EBCDIC
Indicates that the row data in the PRINT output is to be displayed in EBCDIC. The default value is
EBCDIC if the first page of the input data set is not a header page.

If the first page is a header page, DSN1COPY uses the format information in the header page as
the default format. However, if you specify EBCDIC, ASCII, or UNICODE, that format overrides the
format information in the header page. The unformatted header page dump is always displayed in
EBCDIC, because most of the fields are in EBCDIC.

ASCII
Indicates that the row data in the PRINT output is to be displayed in ASCII. Specify ASCII when
printing table spaces that contain ASCII data.

UNICODE
Indicates that the row data in the PRINT output is to be displayed in Unicode. Specify UNICODE
when printing table spaces that contain Unicode data.

PIECESIZ(integer)
Specifies the maximum piece size (data set size) for nonpartitioned indexes. The value that you
specify must match the value that was specified when the nonpartitioning index was created or
altered. The defaults for PIECESIZ are 2G (2 GB) for indexes that are backed by non-large table
spaces and 4G (4 GB) for indexes that are backed by table spaces that were defined with the LARGE
option. This option is required if the piece size is not one of the default values. If PIECESIZ is omitted
and the index is backed by a table space that was defined with the LARGE option, the LARGE option is
required for DSN1COPY.

The subsequent keyword K, M, or G indicates the unit of the value that is specified in integer.

K
Indicates that the integer value is to be multiplied by 1 KB to specify the maximum piece size in
bytes. integer must be either 256 or 512.

M
Indicates that the integer value is to be multiplied by 1 MB to specify the maximum piece size in
bytes. integer must be a power of two, between 1 and 512.

G
Indicates that the integer value is to be multiplied by 1 GB to specify the maximum piece size in
bytes. integer must be a power of two, between 1 and 256.

Valid values for piece size are:

• 1 MB or 1 GB
• 2 MB or 2 GB
• 4 MB or 4 GB
• 8 MB or 8 GB
• 16 MB or 16 GB
• 32 MB or 32 GB
• 64 MB or 64 FB
• 128 MB or 128 GB
• 256 KB, 256 MB, or 256 GB
• 512 KB or 512 MB

VALUE
Causes each page of the SYSUT1 input data set to be scanned for the character string that you specify
in parentheses following the VALUE parameter. Each page that contains that character string is printed

Chapter 44. DSN1COPY 917

in the SYSPRINT data set. You can specify the VALUE parameter in conjunction with any of the other
DSN1COPY parameters.

string can consist of 1 to 20 alphanumeric characters.

hexadecimal-constant can consist of 2 to 40 hexadecimal characters. Specify two apostrophe
characters before and after the hexadecimal character string.

If you want to search your input file for the string '12345', your JCL should look similar to the following
JCL:

//STEP1 EXEC PGM=DSN1COPY,PARM='VALUE(12345)'

Alternatively, you might want to search for the equivalent hexadecimal character string. If you are
processing Unicode or ASCII input files, you must specify the string in hexadecimal. Your JCL should
look similar to the following JCL:

//STEP1 EXEC PGM=DSN1COPY,PARM='VALUE(''3132333435'')'

OBIDXLAT
Specifies that OBID translation must be done before the Db2 data set is copied. OBID translation is
needed when the source and target OBIDs do not match.

This parameter requires additional input from the SYSXLAT file by using the DD statements.
DSN1COPY can translate only up to 10000 record OBIDs.

If you specify OBIDXLAT, CHECK processing is performed, regardless of whether you specify the
CHECK option.

Related information:

“The effects of not specifying the OBIDXLAT option” on page 925

RESET
Causes the log RBAs in each index page or data page and the high-formatted page number in the
header page to be reset to 0. If you specify this option, CHECK processing is performed, regardless of
whether you specify the CHECK option.

Use RESET when the output file is used to build a Db2 table space that is to be processed on a Db2
subsystem with a different recovery log than the source subsystem. Failure to specify RESET in such a
case can result in an abend during subsequent update activity. The abend reason code of 00C200C1
indicates that the specified RBA value is outside the valid range of the recovery log. A condition code
of 0 indicates successful completion.

Do not specify the RESET parameter for page sets that are in group buffer pool RECOVER-pending
(GRECP) status.

For a compressed table space, DSN1COPY does not reset the dictionary version for an inline image
copy, or for an incremental image copy that was created with the SYSTEMPAGES=YES COPY utility
option.

If you do not specify RESET when copying a table space from one Db2 system to another, a down-
level ID check might result in abend reason code 00C2010D when the table space is accessed.

Related information
Recovering from a down-level page set problem (Db2 Administration Guide)

Before running DSN1COPY
Certain activities might be required before you run the DSN1COPY utility, depending on your situation.

Attention: Do not use DSN1COPY in place of COPY for both backup and recovery. Improper use of
DSN1COPY can result in unrecoverable damage and loss of data.

918 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_recoverdownlevelpageset.html

Recommendations
Printing with DSN1PRNT instead of DSN1COPY

If you require only a printed hexadecimal dump of a data set, use DSN1PRNT rather than DSN1COPY.
Copying a table space with DSN1COPY with row formats

When you use a DSN1COPY of a table space to populate another table space, the row formats of the
two table spaces must match. If the row formats do not match, the results are unpredictable and
could cause integrity problems.

To determine the source table space and target table space row format, run the following query
against your Db2 catalog:

 SELECT DBNAME, TSNAME, PARTITION, FORMAT
 FROM SYSIBM.SYSTABLEPART
 WHERE (DBNAME = 'source-database-name'
 AND TSNAME='source-table-space-name')
 OR (DBNAME = 'target-database-name'
 AND TSNAME='target-table-space-name')

If the FORMAT column has a value of 'R', then the table space or partition is in RRF (reordered row
format). If the FORMAT column has a blank value, then the table space or partition is in BRF (basic row
format).

Determining page size and DSSIZE

Before using DSN1COPY, ensure that you know the page size and data set size (DSSIZE) for the page
set. Use the following query on the Db2 catalog to get the information you need in this example for
table 'DEPT':

SELECT T.CREATOR,T.NAME,S.NAME AS TABLESPACE,S.PARTITIONS,S.PGSIZE,
 CASE S.DSSIZE
 WHEN 0 THEN
 CASE WHEN S.TYPE = 'G' THEN 4194304
 WHEN S.TYPE = 'O' THEN 4194304
 WHEN S.TYPE = 'P' THEN 4194304
 WHEN S.TYPE = 'R' THEN 4194304
 ELSE
 CASE WHEN S.PARTITIONS > 254 THEN
 CASE WHEN S.PGSIZE = 4 THEN 4194304
 WHEN S.PGSIZE = 8 THEN 8388608
 WHEN S.PGSIZE = 16 THEN 16777216
 WHEN S.PGSIZE = 32 THEN 33554432
 ELSE NULL
 END
 WHEN S.PARTITIONS > 64 THEN 4194304
 WHEN S.PARTITIONS > 32 THEN 1048576
 WHEN S.PARTITIONS > 16 THEN 2097152
 WHEN S.PARTITIONS > 0 THEN 4194304
 ELSE 2097152
 END
 END
 ELSE S.DSSIZE
 END
 AS DSSIZE
 FROM SYSIBM.SYSTABLES T,
 SYSIBM.SYSTABLESPACE S
 WHERE
 T.NAME = 'DEPT' AND
 T.TSNAME = S.NAME;

Using the OBIDXLAT option with DSN1COPY

When you use DSN1COPY with the OBIDXLAT option to move objects from one system to another
system, ensure that the version information on the target system matches the version information on
the source version.

Chapter 44. DSN1COPY 919

Copying a partition-by-range or partition-by-growth table space
When you use DSN1COPY on a partition-by-range or partition-by-growth space, use the SEGMENT
option to process the table space.

Copying when pending alterations exist
Before you use DSN1COPY, ensure that the schema of the source and target objects match.

You might also need to run the REORG TABLESPACE utility to materialize pending alterations
depending on the following conditions:

• If the pending alterations are for an added or dropped column, run REORG TABLESPACE.
• If the pending alteration are for a changed data type, you need to either insert or update at least one

row or run REORG TABLESPACE.

After you run DSN1COPY, run REPAIR CATALOG.

Related information:

“Syntax and options of the REPAIR control statement” on page 632

Copying a versioned XML table space

Before using DSN1COPY to copy a versioned XML table space, ensure that the definitions of the XML
columns START_TS and END_TS match.

Altering a table

When you use ALTER TABLE ADD COLUMN, the table does not change; only the description of the
table changes. Before you run DSN1COPY on the table space, run REORG on the table space (so that
the data matches its description).

Related concepts
Table space versions (Db2 Administration Guide)
Related tasks
“Copying tables from one subsystem to another” on page 929
You can copy tables from one subsystem to another by using the DSN1COPY utility. When you copy these
tables, ensure that the object metadata on the target subsystem matches the object metadata on the
source subsystem. Object metadata includes items such as the number of columns, column type, table
space type, and version information.

Data sets that DSN1COPY uses
The DSN1COPY utility uses a number of data sets during its operation.

Required data sets
DSN1COPY uses the following data sets:

Input data set
Input to DSN1COPY. The DD name is SYSUT1.

Output data set
Output from DSN1COPY. The DD name is SYSUT2. Optional.

Message data set
Data set for output messages. The DD name is SYSPRINT.

OBIDXLAT data set
Data set that defines the OBID translation values. The DD name is SYSXLAT.

DSN1COPY uses the following DD statements:

SYSPRINT
Defines the data set that contains output messages from the DSN1COPY program and all hexadecimal
dump output.

920 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_tablespaceversions.html

SYSUT1

Defines the input data set. This data set can be a sequential data set that is created by the DSN1COPY
or COPY utilities, or a VSAM data set, including a FlashCopy image copy data set.

Specify the data set's disposition as DISP=OLD to ensure that it is not in use by Db2. Specify the data
set's disposition as DISP=SHR only when the Db2 STOP DATABASE command does not work.

The requested operation takes place only for the specified data set. If the input data set
is a partitioned table space or index, ensure that you specify the NUMPARTS parameter and
the correct data set. For example, to print a page range in the second partition of a four-
partition table space, specify NUMPARTS(4) and the data set name of the second data set.
This second data set is in the group of VSAM data sets, and the VSAM data set name
is DSNCAT.DSNDBD.TESTDB.TS01.I0001.A002. The last qualifier (A002) represents the partition
number 2.

To copy the data sets for a segmented (non-UTS) table space that consists of multiple data sets, you
need to run multiple DSN1COPY jobs. Run one job for each data set in the table space.

If running the online REORG utility with the FASTSWITCH option, verify the data set name before
running the DSN1COPY utility. The fifth-level qualifier in the data set name alternates between I0001
and J0001 when using FASTSWITCH. If the table space has cloning or ever had cloning, the fifth-level
qualifier can be I0002 or J0002. You cannot specify FASTSWITCH YES if the table space has cloning;
however, a FASTSWITCH YES REORG might have been done before the clone was created so you
might still have a mixture of 'I' and 'J' data sets. Specify the correct fifth-level qualifier in the data
set name to successfully execute the DSN1COPY utility. To determine the correct fifth-level qualifier,
query the IPREFIX column of SYSIBM.SYSTABLEPART for each data partition or the IPREFIX column
of SYSIBM.SYSINDEXPART for each index partition. If the object is not partitioned, use zero as the
value for the PARTITION column in your query.

To determine the instance number to use for a fifth-level qualifier, query the INSTANCE column of
SYSIBM.SYSTABLESPACE. The returned value is the instance number that represents the current
base objects. The clone objects would be represented by the other instance number. If a query of
SYSTABLESPACE.INSTANCE returns a value of 2, then the base objects are represented by instance
number 2 data sets and the clone objects by instance number 1 data sets. This process can be used to
determine the instance number even if there is no active cloning.

SYSUT2
Defines the output data set. This data set can be a sequential data set, a VSAM data set, or a DUMMY
data set.

What you specify for SYSUT2 is restricted if both of the following conditions are true:

• SYSUT1 is an image copy of an entire partitioned table space or an image copy of all data sets of a
multi-piece object

• The data is to be copied to a Db2 table space or Db2 index space

In this case, SYSUT2 must be the name of first data set (of the first partition or of the first piece)
for the table space or index space. For example, the last part of the name must identify the data set
number A001.

DSN1COPY identifies the appropriate output data set by the page number and allocates other data
sets for additional partitions. The names of these data sets also follow the Db2 data set naming
conventions. For example, these data set names end with A002, A003, and so on.

All target data sets must be defined. To define the data sets for a multi-piece object, create first the
table space or index with DEFINE YES and specify appropriate primary and secondary quantities. If
-1 is specified for primary and/or secondary quantity DSN1COPY may run out of extents because Db2
defines the first data set with small primary and/or secondary extents in this case. Db2 then defines
the first data set. The subsequent data sets can be defined by using Access Method Services. See
“Copying tables from one subsystem to another” on page 929 for more information.

DSN1COPY assumes that the output data sets are empty (that is, the program adds the blocks)
except when you specify INCRCOPY. Before you run DSN1COPY, define your VSAM output data sets

Chapter 44. DSN1COPY 921

as REUSE. If you have not defined the data sets, you must redefine all VSAM output data sets you
are restoring by using Access Method Services. Ensure that these data sets are empty before you run
DSN1COPY.

You might want to specify a DUMMY SYSUT2 DD statement if you are dumping or checking pages.

To enable Db2 to obtain necessary information from the integrated catalog facility catalog when using
VSAM data sets, do not code the unit-serial parameter and volume-serial parameter.

If running the online REORG utility with the FASTSWITCH option, verify the data set name before
running the DSN1COPY utility. The fifth-level qualifier in the data set name alternates between I0001
and J0001 when using FASTSWITCH. Specify the correct fifth-level qualifier in the data set name to
successfully execute the DSN1COPY utility.

SYSXLAT
Defines for translation the DBIDs, OBIDs, data page set identifiers (PSIDs), or index page set
identifiers (ISOBIDs).

If you have dropped a table without a subsequent REORG of the table space, you must reorganize
the source table space before running DSN1COPY with the OBIDXLAT option. This action removes any
previously dropped records from the table space.

A non-numeric character must separate each record in the SYSXLAT file, and each record must
contain a pair of decimal integers. The first integer of each record pertains to the source, and the
second integer pertains to the target. The first record in the SYSXLAT file contains the source DBIDs
and the target DBIDs; the values can range from -32767 to 65535. The second record contains the
source and target PSIDs or ISOBIDs; the values can range from 0 to 32767. All subsequent records
in the SYSXLAT data set are for table OBIDs. For an index, the SYSXLAT data set must contain the
index fan set OBID, in addition to the DBID and ISOBID. Sample data in a SYSXLAT file follows (with
an indication of how each record translates shown in parentheses):

260,280 (source DBID 260 translates to target DBID 280)
2,10 (source PSID 2 translates to target PSID 10)
3,55 (source table OBID 3 translates to target table OBID 55)
6,56 (source table OBID 6 translates to target table OBID 56)
7,57 (source table OBID 7 translates to target table OBID 57

To obtain the names, DBIDs, PSIDs, ISOBIDs, and OBIDs, run the DSNTEP2 sample application on
both the source and target systems. The following SQL statements yield the preceding information.

The example for indexes yields output that is similar to the preceding example, but with an additional
column of data.

For table spaces use the following statements:

SELECT DBID, PSID FROM SYSIBM.SYSTABLESPACE
 WHERE NAME='tablespace_name'
 AND DBNAME='database_name';
SELECT NAME, OBID FROM SYSIBM.SYSTABLES
 WHERE TSNAME='tablespace_name'
 AND CREATOR='creator_name';

For index spaces use the following statement:

SELECT DBID, ISOBID, OBID FROM SYSIBM.SYSINDEXES
 WHERE NAME='index_name'
 AND CREATOR='creator_name';

Several examples of using DSN1COPY follow:

• Create a backup copy of a Db2 data set:

– SYSUT1: DB2-VSAM
– SYSUT2: Sequential data set

922 Db2 12 for z/OS: Utility Guide and Reference

• Restore a backup copy of a Db2 data set:

– SYSUT1: DSN1COPY sequential data set
– SYSUT2: DB2-VSAM

• Move a Db2 data set to another Db2 data set:

– SYSUT1: DB2-VSAM
– SYSUT2: DB2-VSAM
– Parameters: OBIDXLAT, RESET

• Perform validity checking on a Db2 data set:

– SYSUT1: DB2-VSAM
– SYSUT2: DUMMY
– Parameter: CHECK

• Perform validity checking on and print a Db2 data set:

– SYSUT1: DB2-VSAM
– SYSUT2: DUMMY
– Parameters: CHECK, PRINT

• Restore a table space from a nonpartitioned image copy data set or page set:

– SYSUT1: Db2 full image copy
– SYSUT2: DB2-VSAM
– Parameter: FULLCOPY

• Restore a table space from a partitioned image copy data or page set:

– SYSUT1: Db2 full image copy
– SYSUT2: DB2-VSAM
– Parameters: FULLCOPY, NUMPARTS(nn)

• Perform RBA RESET on a Db2 data set:

– SYSUT1: DB2-VSAM or DSN1COPY sequential data set
– SYSUT2: DB2-VSAM
– Parameter: RESET

Defining the input data set
The SYSUT1 data set can be any of the following types:

• A Db2 table space data set
• A Db2 index space data set
• A sequential full image copy
• An incremental image copy
• An inline image copy
• A sequential data set that was previously created by DSN1COPY
• A FlashCopy image copy data set

Define SYSUT1 with DISP=OLD to ensure that DSN1COPY uses it exclusively. If SYSUT1 is a table space or
index space, use the following procedure before using DSN1COPY:

1. Issue the following command to determine if the object is stopped:

Chapter 44. DSN1COPY 923

-DISPLAY DATABASE (database_name) SPACENAM(space_name) RESTRICT

2. If Db2 has not stopped the object, issue the following command to stop the object:

-STOP DATABASE (database_name) SPACENAME(space_name)

Db2 allows input of only one DSN1COPY data set. Db2 does not permit the input of concatenated data
sets. For a table space that consists of multiple data sets, ensure that you specify the correct data set. For
example, if you specify the CHECK option to validate pages of a partitioned table space's second partition,
code the second data set of the table space for SYSUT1.

Defining the output data set
The SYSUT2 data set can be any of the following types:

• A sequential data set
• A Db2 table space data set
• A Db2 index space data set
• A DUMMY data set

Specify a DUMMY SYSUT2 DD statement if you are using DSN1COPY to check or dump a page. The table
spaces and index spaces must either be empty or defined with VSAM REUSE. STOGROUP-defined table
spaces and index spaces have the REUSE attribute, except when you are applying the INCRCOPY option.

When you use the RESET option to reset page log RBAs, you need to ensure that the output data set
for the RESET operation has the same name as the original Db2 data set. Use either of the following
techniques to do that:

• Method 1:

1. Make a backup copy of your original Db2 data set by using DSN1COPY to copy the original data set to
a sequential data set.

2. If you defined your original Db2 data set without the REUSE parameter, delete and redefine the
original data set.

3. Run DSN1COPY with the RESET option. Specify the output data set from step 1 as the input data set
for the RESET operation.

Use your original Db2 data set or the redefined version of the original data set as the output data set
for the RESET operation.

• Method 2:

1. Run DSN1COPY with the RESET option. Use your original Db2 data set as the input data set. Define
a new VSAM data set as the output data set. The output data set must have the same data set
characteristics as the input data set.

2. Delete the input data set from step 1.
3. Rename the output data set from step 1 to the same name as the input data set.

Adding additional volumes for SYSUT2
When you create a table space or index space by using STOGROUP, the ICF catalog entry has only one
volume in the volume list. If the SYSUT2 data set that DSN1COPY restores requires more than one
volume, use the IDCAMS command, ALTER ADDVOLUMES, to add additional volume IDs to the integrated
catalog entry. The extension to new volumes uses the primary size on each new volume. This is the
normal VSAM extension process. If you want the data set to use the secondary size on the candidate
volumes, follow these steps:

1. Run DSN1COPY.

924 Db2 12 for z/OS: Utility Guide and Reference

2. Run REORG, or make a full image copy and recover the table space.

Performing these steps resets the data set and causes normal extensions through Db2.

Related reference
Data set naming conventions (Db2 Administration Guide)

Inconsistent data checks
When critical data is involved, use the CHECK option of DSN1COPY to prevent the undetected copying of
inconsistent data to the output data set. The CHECK option performs validity checking on one page at a
time.

You must run a CHECK utility job on the table space that is involved to ensure that no inconsistencies exist
between data and indexes on that data:

• Before using DSN1COPY to save critical data that is indexed
• After using DSN1COPY to restore critical data that is indexed

The CHECK utility performs validity checking between pages.

The effects of not specifying the OBIDXLAT option
If you use DSN1COPY to load data into a table space or index without specifying the OBIDXLAT option, be
careful not to invalidate embedded Db2 internal identifiers.

Those OBIDs can become invalid in the following circumstances:

• When you drop and re-create tables after the input data set to DSN1COPY was created.
• When a difference exists among the following attributes between the target subsystem and the source

subsystem:

– Table space attributes of BUFFERPOOL or NUMPARTS
– Table attributes other than table name, table space name, and database name
– The order of the table spaces, indexes, and tables that the user defined or dropped in the source and

target databases

To protect against invalidating the OBIDs, specify the OBIDXLAT parameter for DSN1COPY. The
OBIDXLAT parameter translates OBID, DBID, PSID, or ISOBID before DSN1COPY copies the data.

Requirements for using an image copy as input to DSN1COPY
To use image copies (full sequential or incremental) as input to DSN1COPY, you must use the COPY utility
with SHRLEVEL REFERENCE to produce those image copies.

Using the FULLCOPY parameter ensures that the data that is contained in your image copies is consistent.
DSN1COPY accepts an index image copy as input when you specify the FULLCOPY option. If you want to
use inline image copies as input to DSN1COPY, you must produce those image copies by using the REORG
utility or LOAD utility.

If you want to use a FlashCopy image copy data set as input, do not specify the FULLCOPY option.

Copying from an image copy
You can use DSN1COPY to copy data from an image copy of the data sets of a table space to the data sets
of a table space on the same subsystem or another subsystem.

Procedure

• If SYSUT1 is an image copy of a single partition, ensure that the SYSUT2 DD statement refers to
the first data set of the table space. DSN1COPY determines the correct target data set. Code the

Chapter 44. DSN1COPY 925

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_datasetnamingconventions.html

NUMPARTS(nn) parameter, where nn is the number of partitions in the entire table space. However, if
the partitioned table space is defined with more than one VCAT name (for example, a unique VCAT for
different partitions), use SYSUT2 as the name of the data set for that partition.

• If SYSUT1 is an image copy of an entire partitioned table space, ensure that the SYSUT2 DD
statement refers to the first data set of the table space. In this case, DSN1COPY allocates all of the
target data sets. However, you must have previously defined the target data sets either by creating the
partitioned table space with DEFINE YES or by using Access Method Services. Code the NUMPARTS
parameter as described in the first bullet when the table space is partitioned. When multiple VCAT
names are used for different partitions of a partitioned table space, DSN1COPY cannot restore the
entire table space by using as input a single full image copy of the table space. In this case, when you
use DSN1COPY, you must restore individual copies of each partition by using the name of the data
sets for that partition. Code the NUMPARTS(nn) parameter, where nn is the number of partitions in the
entire table space.

• If SYSUT1 is an image copy of a single data set of a multiple data set nonpartitioned table space,
ensure that the SYSUT2 DD statement refers to the actual (not the first) output data set of the table
space. Do not specify NUMPARTS because this parameter is only for partitioned table spaces.

• If SYSUT1 is an image copy of an entire multiple data set nonpartitioned table space, ensure that
the SYSUT2 DD statement refers to the first data set of the table space. DSN1COPY allocates all target
data sets. However, you must have previously defined the target data sets by using Access Method
Services. If the source data sets are less than the target data sets it is recommended to either delete
all rows from the target table space or to do a LOAD REPLACE with DD DUMMY on the target table
space first, before running DSN1COPY.

• If SYSUT1 is an image copy of a single data set of a multiple data set LOB table space, ensure that
the SYSUT2 DD statement refers to the actual (not the first) data set of the table space. Do not specify
NUMPARTS because this parameter is only for partitioned table spaces.

• If SYSUT1 is an image copy of an entire multiple data set LOB table space, ensure that the SYSUT2
DD statement refers to the first data set of the table space. DSN1COPY allocates all target data sets.
However, you must have previously defined the target data sets by using Access Method Services.

What to do next
Important: After you use DSN1COPY to copy data from an image copy, you need to ensure that the
version information in the source and target table spaces matches. To do that, run REPAIR CATALOG on
the target table space immediately after you run DSN1COPY.

Related tasks
“Copying tables from one subsystem to another” on page 929
You can copy tables from one subsystem to another by using the DSN1COPY utility. When you copy these
tables, ensure that the object metadata on the target subsystem matches the object metadata on the
source subsystem. Object metadata includes items such as the number of columns, column type, table
space type, and version information.

Restoring indexes with DSN1COPY
When a table space is restored using either the TOCOPY option of RECOVER or the DSN1COPY utility,
restore the indexes.

Procedure
To restore indexes with DSN1COPY, use one of the following methods:
• Use the RECOVER utility, if you have a full image copy available, and the index was defined with the

COPY YES option.
• Use DSN1COPY on the indexes, if a copy is available. If you specified the OBIDXLAT option for the

data, you must also specify the OBIDXLAT option for the indexes. Also, the indexes must all have been
copied at the same time as the data; otherwise, inconsistencies might exist.

926 Db2 12 for z/OS: Utility Guide and Reference

• If you do not have an image copy of the index, use the REBUILD INDEX utility, which reconstructs the
indexes from the data.

Related concepts
“The effects of not specifying the OBIDXLAT option” on page 925
If you use DSN1COPY to load data into a table space or index without specifying the OBIDXLAT option, be
careful not to invalidate embedded Db2 internal identifiers.
Related reference
“REBUILD INDEX” on page 399
The REBUILD INDEX online utility reconstructs indexes or index partitions from the table that they
reference.
“RECOVER” on page 425
The RECOVER utility recovers data to the current state or to a previous point in time by restoring a copy
and then applying log records. The RECOVER utility can also recover data to a previous point in time by
backing out committed work.

Restoring table spaces with DSN1COPY
In certain cases, you cannot use the RECOVER utility for an image copy data set. In these cases, consider
using the DSN1COPY utility to restore the table space or data set instead.

About this task
You cannot use RECOVER TOCOPY for an image copy data set that is not referenced by SYSIBM.SYSCOPY
for that table space or data set. An attempt to do so results in message DSNU519I "TOCOPY DATASET
NOT FOUND". The MODIFY utility might have removed the row in SYSIBM.SYSCOPY. If the row was
removed and the image copy is a full image copy with SHRLEVEL REFERENCE, use DSN1COPY to restore
the table space or data set.

Restriction: If you use DSN1COPY for point-in-time recovery, the table space is not recoverable with
the RECOVER utility. Because DSN1COPY runs outside of the control of Db2, Db2 is not aware that you
recovered to a point in time. If possible, use DSN1COPY to recover the affected table space after a
point-in-time recovery. Then perform the following steps:

1. Remove old image copies by using the MODIFY RECOVERY utility with the AGE option.
2. Create one or more full image copies by using the COPY utility with the SHRLEVEL REFERENCE option.

Procedure
To restore table spaces with DSN1COPY:
1. Delete data in any excess partitions from the table space before you apply the DSN1COPY utility.

You can use the DSN1COPY utility to restore a partition or an entire table space for a partition-by-
growth table space. The total number of partitions in the DSN1COPY input data set might not be
consistent with the number of partitions that are defined on the current table space. To avoid residual
data, delete data in the excess partitions from the table space before you apply the DSN1COPY utility.

2. If the table space is organized by hash, ensure that the following values are the same in the source and
target tables spaces:

• SYSTABLESPACE.HASHDATAPAGES (IF PBG)
• SYSTABLEPART.HASHDATAPAGES (IF PBR-UTS)

3. If you are restoring an XML table space by using a data set that was generated by DSN1COPY before
DB2 10 new-function mode, complete the following steps before you run DSN1COPY:
a) Alter the target XML table space so that the SEGSIZE value matches the SEGSIZE value of the

original XML table space. Use the following statement:

ALTER TABLESPACE mytablespace SEGSIZE 4

Chapter 44. DSN1COPY 927

b) Run the REORG TABLESPACE utility on the target XML table space.
4. Run the DSN1COPY utility. Make sure that you provide the correct sequence of image copies to

DSN1COPY.

DSN1COPY can restore the object to an incremental image copy, but it must first restore the previous
full image copy and any intermediate incremental image copies. These actions ensure data integrity.
You are responsible for providing the correct sequence of image copies. Db2 cannot ensure the
appropriate sequence.

5. Ensure that the associated indexes are also rebuilt or restored.
This action applies to all user-defined indexes and all indexes that are generated by Db2. For example,
this action applies to the document ID index of a table with XML columns or the overflow index of a
hash access table space.

Related reference
“Syntax and options of the DSN1COPY control statement ” on page 914
The DSN1COPY utility control statement, with its multiple options, defines the function that the utility job
performs.
“MODIFY RECOVERY” on page 363
Run the MODIFY RECOVERY utility regularly to remove outdated information from SYSIBM.SYSCOPY and
SYSIBM.SYSLGRNX. These tables, particularly SYSIBM.SYSLGRNX, can become very large and take up a
considerable amount of space. By deleting outdated information from these tables, you can help improve
the performance of processes that access data from these tables.
“Syntax and options of the COPY control statement” on page 125
The COPY utility control statement, with its multiple options, defines the function that the utility job
performs.
“Syntax and options of the REORG TABLESPACE control statement” on page 526
The REORG TABLESPACE utility control statement, with its multiple options, defines the function that the
utility job performs.
SYSCOPY catalog table (Db2 SQL)
SYSTABLESPACE catalog table (Db2 SQL)
ALTER TABLESPACE (Db2 SQL)
Related information
SYSTABLEPART catalog table (Db2 SQL)
DSNU519I (Db2 Messages)

Printing with DSN1COPY
If you want to print one or more pages without invoking the utility’s copy function, use DSN1PRNT to
avoid unnecessary reading of the input file.

About this task
When you use DSN1COPY for printing, you must specify the PRINT parameter. The requested operation
takes place only for the specified data set. If the input data set belongs to a nonpartitioned table space or
index space that is larger than 2 GB, specify the correct data set. Alternatively, if it is a partitioned table
space or partitioned index, specify the correct data set. For example, DSN1COPY prints a page range in
the second partition of a four-partition table space. DSN1COPY does this by specifying NUMPARTS(4) and
the data set name of the second data set in the VSAM group (DSN=...A002).

To print a full image copy data set (rather than recovering a table space), specify a DUMMY SYSUT2 DD
statement, and specify the FULLCOPY parameter.

928 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsyscopytable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsystablespacetable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsystableparttable.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu519i.html

Copying tables from one subsystem to another
You can copy tables from one subsystem to another by using the DSN1COPY utility. When you copy these
tables, ensure that the object metadata on the target subsystem matches the object metadata on the
source subsystem. Object metadata includes items such as the number of columns, column type, table
space type, and version information.

About this task
Recommendation: Do not use DSN1COPY to copy XML table spaces from one subsystem to another.
Documents in XML table spaces have dependencies on Db2 catalog tables and on tables in the XML
schema repository database (DSNXSR). In particular, XML documents in XML table spaces have unique
strings IDs that must match values in catalog table SYSIBM.SYSXMLSTRINGS. Documents might also
have XSR object IDs that must match values in XML schema repository table SYSIBM.XSROBJECTS. If you
copy XML table spaces to from one subsystem to another, the string IDs and XSR object IDs in the XML
documents will not match the values in SYSIBM.SYSXMLSTRINGS or SYSIBM.XSROBJECTS on the target
subsystem.

Procedure
To copy a table space and its tables from one subsystem to another:

1. Check for and insert missing system pages into the table space on the source system by following the
procedure in “Checking for missing system pages” on page 657.

Important: This step makes the tables in the table space self-describing. When a table space is
self-describing, Db2 does not need to search the catalog or directory for table format information,
which lessens the possibility of errors after a table is copied to the target subsystem.

2. If a table space or table does not exist on the target subsystem, create it.

If a table has an identity column, specify that column as follows:

a) Issue a SELECT statement on the source subsystem to query the SYSIBM.SYSSEQUENCES entry
that corresponds to the identity column for the table on the source subsystem.

b) Add the INCREMENT value to the MAXASSIGNEDVAL value to determine the next value (nv) for
the identity column.

c) For the table on the target subsystem, specify nv for the START WITH value.
d) Make all of the attributes for the identity column on the target table the same as the identity

column attributes for the source table.
3. If the table space or table exists on the target subsystem, examine the table space, table, and

column definitions in the catalog to ensure that the definitions are the same on the source and target
subsystems.

4. Query the DBID, PSID, and OBID of the object in the target subsystem. If the values are not the
same as the source object, specify the DBID, PSID, and OBID as part of the OBIDXLAT data set for
DSN1COPY.

5. Stop the table space on the source and target subsystems.
6. Run the DSN1COPY utility with the OBIDXLAT and RESET options. In the SYSXLAT data set, specify

the proper mapping of table database object identifiers (OBIDs) for the table space from the source
to the target subsystem.

7. Start the table space on the source and target subsystems for read/write access.
8. Run REPAIR CATALOG TEST on the table space on the target subsystem to ensure that the catalog

information matches the page set information.

Take one of the following actions:

• If REPAIR CATALOG TEST ends with return code 0, continue to the next step.
• If REPAIR CATALOG TEST ends with return code 4, run REPAIR CATALOG to fix any mismatches.

Chapter 44. DSN1COPY 929

• If REPAIR CATALOG TEST ends with return code 8, go to step “3” on page 929 to begin the process
of copying the data again.

REPAIR CATALOG updates the following columns:

• OLDEST_VERSION in SYSTABLEPART
• VERSION in SYSTABLES
• OLDEST_VERSION and CURRENT_VERSION in SYSTABLESPACE

9. If there are any indexes that are defined on the table on the source subsystem, but are not defined on
the table on the target subsystem, create those indexes.

10. Run REBUILD INDEX on all indexes that are defined on the table on the target subsystem.

Related reference
“Syntax and options of the REPAIR control statement” on page 632
The REPAIR utility control statement, with its multiple options, defines the function that the utility job
performs.
“Data sets that DSN1COPY uses” on page 920
The DSN1COPY utility uses a number of data sets during its operation.
“Syntax and options of the REBUILD INDEX control statement” on page 400
The REBUILD INDEX utility control statement, with its multiple options, defines the function that the
utility job performs.
CREATE INDEX (Db2 SQL)
Related information
DSNU667I (Db2 Messages)
DSNU692I (Db2 Messages)

Sample DSN1COPY control statements
Use the sample control statements as models for developing your own DSN1COPY control statements.

If you run online REORG with FASTSWITCH behavior, the fifth-level qualifier in the data set name can be
either I0001 or J0001. For clone tables, the data set can also be I0002 or J0002. These examples use
I0001.

Example 1: Checking input data set before copying

The following statement specifies that the DSN1COPY utility is to copy the data set that is identified
by the SYSUT1 DD statement to the data set that is identified by the SYSUT2 DD statement. Before
DSN1COPY copies this data, the utility is to check the validity of the input data set.

//RUNCOPY EXEC PGM=DSN1COPY,PARM='CHECK'
//* COPY VSAM TO SEQUENTIAL AND CHECK PAGES
//STEPLIB DD DSN=PDS CONTAINING DSN1COPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBC.DSNDB01.SYSUTILX.I0001.A001,DISP=OLD
//SYSUT2 DD DSN=TAPE.DS,UNIT=TAPE,DISP=(NEW,KEEP),VOL=SER=UTLBAK

Example 2: Translating the Db2 internal identifiers

The statement in this example specifies that DSN1COPY is to copy the data set that is identified by the
SYSUT1 DD statement to the data set that is identified by the SYSUT2 DD statement. The OBIDXLAT
option specifies that DSN1COPY is to translate the OBIDs before the data set is copied. The OBIDs are
provided as input on the SYSXLAT DD statement. Because the OBIDXLAT option is specified, DSN1COPY
also checks the validity of the input data set, even though the CHECK option is not specified.

//EXECUTE EXEC PGM=DSN1COPY,PARM='OBIDXLAT'
//STEPLIB DD DSN=PDS CONTAINING DSN1COPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=DSNC111.DSNDBC.DSN8D12P.DSN8S12C.I0001.A001,
// DISP=OLD

930 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_createindex.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu667i.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsnu692i.html

//SYSUT2 DD DSN=DSNC910.DSNDBC.DSN8D12P.DSN8S12C.I0001.A001,
// DISP=OLD
//SYSXLAT DD *
260,280
2,10
3,55
6,56
7,57
/*

Example 3: Printing a single page of a partitioned table space

The following statement specifies that DSN1COPY is to print page 2002A1 of the table space in the data
set that is identified by the SYSUT1 DD statement. This table space has eight partitions, as indicated by
the NUMPARTS option.

//PRINT EXEC PGM=DSN1COPY,PARM='PRINT(2002A1),NUMPARTS(8)'
//* PRINT A PAGE IN THE THIRD PARTITION OF A TABLE SPACE CONSISTING
//* OF 8 PARTITIONS.
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DUMMY
//SYSUT1 DD DSN=DSNCAT.DSNDBD.MMRDB.PARTEMP1.I0001.A003,DISP=OLD

Example 4: Printing 16 pages of a nonpartitioning index

The following statement specifies that DSN1COPY is to print 16 pages of a nonpartitioning index in the
data set that is identified by the SYSUT1 DD statement. The pages range from page F0000 to page F000F,
as indicated by the PRINT option. The maximum data set size is 64 MB, as indicated by the PIECESIZ
option.

//PRINT2 EXEC PGM=DSN1COPY,PARM=(PRINT(F0000,F000F),PIECESIZ(64M))
//* PRINT THE FIRST 16 PAGES IN THE 61ST PIECE OF AN NPI WITH PIECE SIZE OF 64M
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DUMMY
//SYSUT1 DD DISP=OLD,DSN=DSNCAT.DSTDBD.MMRDB.NPI1.I0001.A061

Example 5: Copying individual partitions of a partitioned table space

In the example in the following figure, the two job steps specify that DSN1COPY is to copy partitions
1501 and partition 1502 from image copy data sets into a partitioned table space. In the two SYSUT2
DD statements, the fifth-level qualifier in the data set names can differ, because each job step lists an
individual partition. The FULLCOPY option is used in both steps to indicate that the input data set is a
full image copy. The NUMPARTS option indicates that the input data set has 1600 partitions. The RESET
option resets to 0 the high-formatted page number in the header page. Because this option is specified,
DSN1COPY checks the validity of the input data, even though the CHECK option is not specified.

//STEP1 EXEC PGM=DSN1COPY,
// PARM='NUMPARTS(1600),RESET,FULLCOPY'
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=SHR,DSN=PROD.IMAGE.COPY.PART1501
//SYSUT2 DD DISP=OLD,DSN=DSNCAT.DSNDBD.TESTDB.TS01.I0001.B501
//STEP2 EXEC PGM=DSN1COPY,
// PARM='NUMPARTS(1600),RESET,FULLCOPY'
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=SHR,DSN=PROD.IMAGE.COPY.PART1502
//SYSUT2 DD DISP=OLD,DSN=DSNCAT.DSNDBD.TESTDB.TS01.J0001.B502

Example 6: Copying all partitions of a partitioned table space

The following statement specifies that DSN1COPY is to copy data into all partitions of a partitioned table
space by using a full image copy of the table space as input. The input image copy has 16 partitions, as
indicated by the NUMPARTS option. You must ensure that the fifth-level qualifier in the data set name is

Chapter 44. DSN1COPY 931

the same, either I0001 or J0001, for all partitions of the output table space before running this type of job
stream.

//DSN1COPY EXEC PGM=DSN1COPY,
// PARM='NUMPARTS(16),RESET,FULLCOPY'
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=SHR,DSN=PROD.IMAGE.COPY.DSNUMALL
//SYSUT2 DD DISP=OLD,DSN=DSNCAT.DSNDBD.TESTDB.TS01.I0001.A001

Example 7: Using DSN1COPY with UTS table spaces

The following statements specify that DSN1COPY is to copy a UTS table space vsam data set to a
sequential data set.

//**
//* COMMENT: RUN DSN1COPY FOR THE TABLESPACE Part 1
//**
//STEP1 EXEC PGM=DSN1COPY,
// PARM='SEGMENT,RESET'
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBD.DBKQBG01.TPKQBG01.I0001.A001,DISP=SHR
//SYSUT2 DD DSN=JUKQU2BG.DSN1COPY.D1P1,DISP=(NEW,CATLG,CATLG),
// VOL=SER=SCR03,UNIT=SYSDA,SPACE=(TRK,(55,1))
/*
//**
//* COMMENT: RUN DSN1COPY FOR THE TABLESPACE Part 2
//**
//STEP2 EXEC PGM=DSN1COPY,
// PARM='SEGMENT,RESET'
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBD.DBKQBG01.TPKQBG01.I0001.A002,DISP=SHR
//SYSUT2 DD DSN=JUKQU2BG.DSN1COPY.D1P2,DISP=(NEW,CATLG,CATLG),
// VOL=SER=SCR03,UNIT=SYSDA,SPACE=(TRK,(55,1))
/*

Example 8: Specifying Unicode output for DSN1COPY

When you specify the UNICODE option for DSN1COPY, you are not going to see non-Latin Unicode
characters, such as Japanese characters, in your output. When you specify the UNICODE option,
DSN1COPY takes the hexadecimal data and formats it as ASCII instead of the default EBCDIC.

A problem might arise when the data that you want DSN1COPY to handle is in UTF-16. In the case of
UTF-16 data, DSN1COPY takes only the second byte of the data and formats that part of the data as
ASCII. Thus, the output might not be correct. For example, the UTF-16 hexadecimal values X'0030' and
X'1130' are both output as 0, because the first byte of each ("00" and "11" respectively) is ignored. The
remaining part ("30") is interpreted as an ASCII 0. In UTF-16, X'0030' is the hexadecimal value for 0, but
X'1130' is the hexadecimal value for a Hangul character.

In the following DSN1COPY example, notice the three bold hexadecimal values: X'0041', X'0141', and
X'0241'. The output for all three of these values is A.A.A, even though they each correspond to different
characters in UTF-16. (X'0041' is A, X'0141' is Ł, and X'0241' is the Latin capital character for glottal
stop.)

//STEP1 EXEC PGM=DSN1COPY,
// PARM='CHECK,PRINT(002),UNICODE'
//STEPLIB DD DSN=DB2A.DSNLOAD,DISP=SHR
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=TESTCAT.DSNDBC.DBED2101.TPED2101.I0001.A001,DISP=SHR
//SYSUT2 DD DSN=DUMMY
/*

932 Db2 12 for z/OS: Utility Guide and Reference

DSN1999I START OF DSN1COPY FOR JOB RUNCPYI1 RUNCPYI1
DSN1989I DSN1COPY IS PROCESSED WITH THE FOLLOWING OPTIONS:
CHECK/ PRINT/ 4K/NO IMAGECOPY/NON-SEGMENT/NUMPARTS= 0/NO OBIDXLAT/NO VALUE/NO RESET/ / / /
DSSIZE= /PIECESIZ= /UNICODE/
DSN1998I INPUT DSNAME = TESTCAT.DSNDBC.DBED2101.TPED2101.I0001.A001 , VSAM
DSN1997I OUTPUT DSNAME = NULLFILE , SEQ

Contents of the input data set in hexadecimal:

0000 10000075 8C945500 00000200 0FC90033 00000101 02001F00 03018000 00010000
0020 41014102 41002000 20002000 20002000 20002000 00000000 00000000 00000000
.... LINES ARE ALL ZERO.
0FE0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 001400D5

Contents of the input data set in ASCII:

...u..U........3................
A.A.A.
.... LINES ARE ALL ZERO.
................................

Related information:

UTFs (Db2 Internationalization Guide)

Example 9: Defining output data sets for multi-piece nonpartitioned table spaces

The following statements specify that DSN1COPY is to copy data into all pieces of a segmented (non-UTS)
table space by using a full image copy of another segmented (non-UTS) table space as input.

1. Create the target segmented (non-UTS) table space by specifying appropriate primary and secondary
quantities.

2. Define data sets for all subsequent pieces.

In the following example, the data set for the second piece is
'DSNCAT.DSNDBC.TESTDB.TS01.I0001.A002'. Use the MODEL option, which causes the new data set
to be created like the first data set.

//ALCVSAM EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER +
 (NAME('DSNCAT.DSNDBC.TESTDB.TS01.I0001.A002') +
 MODEL('DSNCAT.DSNDBC.TESTDB.TS01.I0001.A001')) +
 DATA +
 (NAME('DSNCAT.DSNDBD.TESTDB.TS01.I0001.A002') +
 MODEL('DSNCAT.DSNDBD.TESTDB.TS01.I0001.A001'))
/*

3. Run DSN1COPY.

//DSN1COPY EXEC PGM=DSN1COPY,
// PARM='FULLCOPY'
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=SHR,DSN=PROD.IMAGE.COPY.DSNUMALL
//SYSUT2 DD DISP=OLD,DSN=DSNCAT.DSNDBD.TESTDB.TS01.I0001.A001

Chapter 44. DSN1COPY 933

https://www.ibm.com/docs/SSEPEK_12.0.0/char/src/tpc/db2z_utf.html

934 Db2 12 for z/OS: Utility Guide and Reference

Chapter 45. DSN1LOGP
The DSN1LOGP stand-alone utility formats the contents of the recovery log for display.

The two recovery log report formats are:

• A detail report of individual log records. This information helps IBM Support personnel analyze the log in
detail. (This information does not include a full description of the detail report.)

• A summary report, which helps you:

– Perform a conditional restart
– Resolve indoubt threads with a remote site
– Detect problems with data propagation

You can specify the range of the log to process and select criteria within the range to limit the records in
the detail report. For example, you can specify:

• One or more units of recovery that are identified by URID
• A single database

By specifying a URID and a database, you can display recovery log records that correspond to the use of
one database by a single unit of recovery.

DSN1LOGP can print the log records for both base and clone table objects.

Environment

DSN1LOGP runs as a batch z/OS job.

DSN1LOGP runs on archive data sets, but not active data sets, when Db2 is running.

Authorization required

DSN1LOGP does not require authorization. However, if any of the data sets is RACF-protected, the
authorization ID of the job must have RACF authority.

If any of the data sets is encrypted using ICSF key label, the authorization ID of the job must have access
to the key label.

Required data sets

When you execute DSN1LOGP, provide the following data definition (DD) statements:

SYSPRINT
DSN1LOGP writes all error messages, exception conditions, and the detail report to the SYSPRINT file.
The logical record length (LRECL) is 131.

SYSIN
DSN1LOGP specifies keywords in this file. The LRECL must be 80. Keywords and values must appear
in characters 1 through 72. DSN1LOGP allows specification of as many as 50 control statements for a
given job. DSN1LOGP concatenates all records into a single string.

SYSSUMRY
DSN1LOGP writes the formatted output of a summary report to the SYSSUMRY file. The LRECL is 131.

DSN1LOGP identifies the recovery log by DD statements that are described in the stand-alone log
services.

© Copyright IBM Corp. 1983, 2024 935

Identifying log data sets

You must identify to DSN1LOGP the log data sets that are to be processed by including at least one of the
following DD statements.

BSDS
The BSDS identifies and provides information about all active log data sets and archive log data sets
that exist in your Db2 subsystem. When you identify the BSDS to DSN1LOGP, you must provide the
beginning and ending RBAs for the range of the recovery log that you want displayed. DSN1LOGP then
associates the beginning RBA specifications and the ending RBA specifications with the appropriate
data set names.

ACTIVEn
If the BSDS is not available, and if the active log data sets that are involved were copied and sent
to you, use ACTIVE DD statements. Use one or more ACTIVE DD statements to specify the set of
active log data sets that are to be processed by DSN1LOGP. If you used the REPRO command of
Access Method Services for copying the active log, you must identify this data set in an ARCHIVE DD
statement.

Each DD statement that you include identifies another active log data set. If you identify more than
one active log data set, you must list the ACTIVEn DD statements in ascending log RBA sequence. For
example, ACTIVE1 must identify a portion of the log that is less than ACTIVE2, and ACTIVE2 must
identify a portion of the log that is less than ACTIVE3. If you do not specify these DD statements
correctly, errors that DSN1LOGP does not detect can occur. You can specify up to 16 of these active
log data sets.

When you identify active log data sets, you do not need to use the RBASTART and RBAEND keywords
(as you do when you identify the BSDS). DSN1LOGP scans all active log data sets that the job
indicates only when the data sets are in the correct log RBA sequence.

ARCHIVE
If the BSDS is not available (as previously described under ACTIVEn), you can specify which archive
log data sets are to be processed by specifying one ARCHIVE DD statement, concatenated with one or
more DD statements.

Each DD statement that you include identifies another archive log data set. If you identify more than
one archive log data set, you must list the DD statements that correspond to the multiple archive log
data sets in ascending log RBA sequence. If you do not specify this correctly, errors that DSN1LOGP
does not detect can occur.

When you identify archive log data sets, you do not need to use the RBASTART and RBAEND
keywords. DSN1LOGP scans all archive log data sets that are indicated by the job only when the
data sets are in the correct log RBA sequence.

Data sharing requirements

When selecting log records from more than one Db2 subsystem, you must use all or one of the following
DD statements to locate the log data sets:

GROUP
MxxBSDS
MxxARCHV
MxxACTn

If you use GROUP or MxxBSDSs to locate the log data sets, you must use LRSNSTART to define the
selection range.

Related tasks
Reading log records with OPEN, GET, and CLOSE (Db2 Administration Guide)

936 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_readlogrecordopengetclose.html

Syntax and options of the DSN1LOGP control statement
The DSN1LOGP utility control statement, with its multiple options, defines the function that the utility job
performs.

DSN1LOGP syntax diagram

RBASTART( hex-constant)

RBAEND (FFFFFFFFFFFFFFFFFFFF)

RBAEND (hex-constant)

LRSNSTART( hex-constant)

LRSNEND (FFFFFFFFFFFFFFFFFFFF)

LRSNEND (hex-constant)

DATAONLY (NO)

DATAONLY (YES)

SYSCOPY (NO)

SYSCOPY (YES) DBID( hex-constant)

OBID( hex-constant) PAGE( hex-constant)

RID( hex-constant) URID( hex-constant)

PART( hex-constant) LUWID( luwid)

TYPE (hex-constant)

SUBTYPE (hex-constant)

value/offset statement

SUMMARY (NO)

SUMMARY (YES

ONLY

)

FILTER

CHECK(DATA)

value/offset statement
VALUE/OFFSET

VALUE( hex-constant) OFFSET( hex-constant)

Option descriptions

To run DSN1LOGP, construct a batch job. Include the utility name, DSN1LOGP, on the EXEC statement.

Chapter 45. DSN1LOGP 937

Specify keywords in up to 50 control statements in the SYSIN file. Each control statement can have up to
72 characters. To specify no keywords, either use a SYSIN file with no keywords following it, or omit the
SYSIN file from the job JCL.

If you specify more than one keyword, separate them by commas. You can specify the keywords in any
order. You can include blanks between keywords, and also between the keywords and the corresponding
values.

RBASTART(hex-constant)
Specifies the hexadecimal log RBA from which to begin reading. If the value does not match the
beginning RBA of one of the log records, DSN1LOGP begins reading at the beginning RBA of the next
record. Specify this keyword only once in the job. Alternative spellings: STARTRBA, ST.

hex-constant is a hexadecimal value that consists of 1 - 12 characters (6 bytes) or 1 - 20 characters
(10 bytes) if the BSDS was converted by using the DSNJCNVT conversion program. Leading zeros are
not required.

The default value is 0.

Db2 issues a warning if the value is not within the range of log records that is covered by the input log
record information.

RBAEND(hex-constant)
Specifies the last valid hexadecimal log RBA to extract. If the specified RBA is in the middle of a log
record, DSN1LOGP continues reading the log in an attempt to return a complete log record.

To read to the last valid RBA in the log up to the point of the 6 byte maximum,
specify RBAEND(FFFFFFFFFFFF). To read to the last valid RBA in the log, specify
RBAEND(FFFFFFFFFFFFFFFFFFFF). Specify this keyword only once in the job. Alternative spellings:
ENDRBA, EN.

hex-constant is a hexadecimal value that consists of 1 - 12 characters (6 bytes) or 1 - 20 characters
(10 bytes) if the BSDS was converted by using the DSNJCNVT conversion program. Leading zeros are
not required.

The default value is FFFFFFFFFFFFFFFFFFFF.

Db2 issues a warning if the value is not within the range of log records that is covered by the input log
record information.

RBAEND can be specified only if RBASTART is specified.

LRSNSTART(hex-constant)
Specifies the log record sequence number (LRSN) from which to begin the log scan. DSN1LOGP starts
its processing on the first log record that contains an LRSN value that is greater than or equal to the
LRSN value that is specified on LRSNSTART. The default LRSN is the LRSN at the beginning of the data
set. Alternative spellings: STARTLRSN, STRTLRSN, and LRSNSTRT.

Specify this keyword only once in the job.

You must specify this keyword to search the member BSDSs and to locate the log data sets from more
than one Db2 subsystem. You can specify either the LRSNSTART keyword or the RBASTART keyword
to search the BSDS of a single Db2 subsystem and to locate the log data sets.

If you specify both LRSNSTART and LRSNEND, values greater than 12 characters must be the same
length.

Db2 issues a warning if the value is not within the range of log records that is covered by the input log
record information.

LRSNEND(hex-constant)
Specifies the LRSN value of the last log record that is to be scanned if LRSNSTART is also
specified. If LRSNEND is not specified, the LRSNEND value is either current end of the log
(X'FFFFFFFFFFFFFFFFFFFF') or the LRSN value for the end of the data set.

DSN1LOGP ends its processing on the last log record that contains an LRSN value that is greater than
or equal to the LRSN value that is specified on LRSNEND.

938 Db2 12 for z/OS: Utility Guide and Reference

An alternative spelling for LRSNEND is ENDLRSN.

Specify this keyword only once in the job.

If you specify both LRSNSTART and LRSNEND, values greater than 12 characters must be the same
length.

Db2 issues a warning if the value is not within the range of log records that is covered by the input log
record information.

DATAONLY
Limits the log records in the detail report to those records that represent data changes (such as insert,
page repair, and update space map).

The default value is DATAONLY(NO).

(YES)
Extracts log records for data changes only. For example, DATAONLY(YES), together with a DBID
and OBID, reads only the log records that modified data for that DBID and OBID.

(NO)
Extracts all record types.

SYSCOPY
Limits the detail report to SYSCOPY log records.

The default value is SYSCOPY(NO).

(YES)
Includes only SYSCOPY log records in the detail report.

(NO)
Does not limit records to SYSCOPY records only.

DBID(hex-constant)
Specifies a hexadecimal database identifier (DBID). DSN1LOGP extracts only the records that are
associated with that DBID. Specify this keyword only once in the job.

hex-constant is a hexadecimal value that consists of one to 4 characters. Leading zeros are not
required.

You can find the DBID in any of the following ways:

• The DBID is displayed in many Db2 messages.
• You can find the DBID in the Db2 catalog for a specific object (for example, in the column that is

named DBID of the SYSIBM.SYSTABLESPACE catalog table).
• When you select a DBID from a catalog table, the value is displayed in decimal format. Use the SQL

HEX function in a SELECT statement to convert a DBID to hexadecimal format. The following SQL
statements show this use of the HEX function:

SELECT NAME, DBNAME, HEX(DBID), HEX(PSID)
FROM SYSIBM.SYSTABLESPACE
WHERE NAME ='table space name'

SELECT NAME, DBNAME, HEX(DBID), HEX(ISOBID)
FROM SYSIBM.SYSINDEXES
WHERE NAME ='index name'

• You can use the DSN1PRNT utility to format the data sets for tables or indexes, and find the DBID in
first 2 bytes of HPGOBID.

OBID(hex-constant)
Specifies a hexadecimal database object identifier, either a data page set identifier (PSID) or an
index page set identifier (ISOBID). DSN1LOGP extracts only the records that are associated with that
identifier.

hex-constant is a hexadecimal value that consists of one to 4 characters. Leading zeros are not
required.

Chapter 45. DSN1LOGP 939

Whenever Db2 changes the data, the log record that describes the change identifies the database
by DBID and the table space by page set ID (PSID). You can find the PSID column in the
SYSIBM.SYSTABLESPACE catalog table.

You can also find a column that is named OBID in the SYSIBM.SYSTABLESPACE catalog table. That
column contains the OBID of a file descriptor; do not confuse this value with the PSID, which is the
information that you must include when you run DSN1LOGP.

Whenever Db2 changes an index, the log record that describes the change identifies the database (by
DBID) and the index space (by index space OBID or ISOBID). You can find the ISOBID for an index
space in the column that is named ISOBID in the SYSIBM.SYSINDEXES catalog table.

You can also find a column that is named OBID in the SYSIBM.SYSINDEXES catalog table. This column
contains the identifier of a fan set descriptor; do not confuse this value with the ISOBID, which is the
information that you must include when you run DSN1LOGP.

When you select either the PSID or the ISOBID from a catalog table, the value is displayed in decimal
format. Use the SQL HEX function in your select statement to convert them to hexadecimal.

Alternatively, you can use the DSN1PRNT utility to format the data sets for tables or indexes, and find
the PSID or ISOBID in the last 2 bytes of HPGOBID.

You can specify the OBID keyword up to 10 times for a single DSN1LOGP job. If you specify OBID, you
must also specify DBID.

PAGE(hex-constant)
Specifies a hexadecimal page number. When data or an index is changed, a recovery log record is
written to the log, identifying the object identifier and the page number of the changed data page
or index page. Specifying a page number limits the search to a single page; otherwise, all pages for
the combination of DBID and OBID are extracted. The log output also contains page set control log
records for the specified DBID and OBID, and system event log records, unless DATAONLY(YES) is also
specified.

hex-constant is a hexadecimal value that consists of a maximum of 8 characters.

You can specify a maximum of 100 PAGE keywords in a single DSN1LOGP job. You must also specify
the DBID and OBID keywords that correspond to those pages.

The PAGE and RID keywords are mutually exclusive.

RID(hex-constant)
Specifies a record identifier, which is a hexadecimal value that consists of 10 characters, with the first
8 characters representing the page number and the last 2 characters representing the page ID map
entry number. The option limits the log records that are extracted to those records that are associated
with that particular record. The log records that are extracted include the following records:

• Those records that are directly associated with the RID, such as insert and delete
• The control records that are associated with the DBID and OBID specifications, such as page set

open, page set close, set write, reset write, page set write, data set open, and data set close

You can specify a maximum of 40 RID keywords in a single DSN1LOGP job. You must also specify the
DBID and OBID keywords that correspond to the specified records.

The PAGE and RID keywords are mutually exclusive.

URID(hex-constant)
Specifies a hexadecimal unit of recovery identifier (URID). Changes to data and indexes occur in the
context of a Db2 unit of recovery, which is identified on the log by a BEGIN UR record. In the summary
DSN1LOGP report, the URID is listed in the STARTRBA field in message DSN1162I. In the detail
DSN1LOGP report, look for the subtype of BEGIN UR; the URID is listed in the URID field. Using the log
RBA of that record as the URID value limits the extraction of information from the Db2 log to that unit
of recovery.

940 Db2 12 for z/OS: Utility Guide and Reference

hex-constant is a hexadecimal value that consists of 1 - 12 characters (6 bytes) or 1 - 20 characters
(10 bytes) if the BSDS was converted by using the DSNJCNVT conversion program. Leading zeros are
not required.

You can specify a maximum of 10 URID keywords in a single DSN1LOGP job.

PART(hex-constant)
Specifies a hexadecimal part number identifier, which is associated with either a database identifier
(DBID) and a data page set identifier (PSID) or an index page set identifier (ISOBID). DSN1LOGP
extracts only the records that are associated with the specified part number for that identifier.

hex-constant is a hexadecimal value that consists of 1 - 4 characters. Leading zeros are not required.

You can specify a maximum of 10 PART keywords in a single DSN1LOGP job. You must also specify the
DBID and OBID keywords that correspond to those partitions.

LUWID(luwid)
Specifies up to 10 LUWIDs that DSN1LOGP is to include information about in the summary report.

luwid consists of three parts: an LU network name, an LUW instance number, and a commit sequence
number. If you supply the first two parts, the summary report includes an entry for each commit that
is performed in the logical unit of work (within the search range). If you supply all three parts, the
summary report includes an entry for only that LUWID.

The LU network name consists of a one- to eight-character network ID, a period, and a one- to
eight-character network LU name. The LUW instance number consists of a period, followed by
12 hexadecimal characters. The last element of the LUWID is the commit sequence number of 4
hexadecimal characters, preceded by a period.

TYPE(hex-constant)
Limits the log records that are extracted to records of a specified type. The TYPE and SUBTYPE
options are mutually exclusive.

If you specify TYPE, DSN1LOGP ignores the values that you specify for the other keywords except for
RBASTART, RBAEND, LRSNSTART, and LRSNEND.

hex-constant indicates the type, as follows:
Constant

Description
2

Page set control record
4

SYSCOPY utility record
10

System event record
20

UR control record
100

Checkpoint record
200

UR-UNDO record
400®

UR-REDO record
800

Archive quiesce record
1000 - 8000

Assigned by the resource manager

Chapter 45. DSN1LOGP 941

SUBTYPE(hex-constant)
Restricts formatting to a particular subtype of unit of recovery undo and redo log records (types 200
and 400). The TYPE and SUBTYPE options are mutually exclusive.

hex-constant indicates the subtype, as follows:
Constant

Description
1

Update data page
2

Format page or update space map
3

Update space map bits
4

Update to index space map
5

Update to index page
6

DBA table update log record
7

Checkpoint DBA table log record
9

DBD virtual memory copy
A

Exclusive lock on page set partition or DBD
B

Format file page set
C

Format index page set
F

Update by repair (first half if 32 KB)
10

Update by repair (second half if 32 KB)
11

Allocate or deallocate a segment entry
12

Undo/redo log record for modified page or redo log record for formatted page
14

Savepoint
15

Other Db2 component log records that are written for RMID 14
17

Checkpoint record of modified page set
19

Type 2 index update
1A

Type 2 index undo/redo or redo log record
1B

Type 2 index change notification log record

942 Db2 12 for z/OS: Utility Guide and Reference

1C
Type 2 index space map update

1D
DBET log record with exception data

1E
DBET log record with LPL/GRECP data

65
Change Data Capture diagnostic log

81
Index dummy compensation log record

82
START DATABASE ACCESS (FORCE) log record

The VALUE and OFFSET options must be used together. You can specify a maximum of 10 VALUE-
OFFSET pairs. The SUBTYPE parameter is required when you specify the VALUE and OFFSET options.
VALUE(hex-constant)

Specifies a value that must appear in a log record that is to be extracted.

hex-constant is a hexadecimal value that consists of a maximum of 64 characters and must be an
even number of characters.

The SUBTYPE keyword must be specified before the VALUE option.

OFFSET(hex-constant)
Specifies an offset from the log record header at which the value that is specified in the VALUE
option must appear.

hex-constant is a hexadecimal value that consists of a maximum of 8 characters.

If you specify the OFFSET option, you must specify the SUBTYPE keyword.

SUMMARY
Summarizes all recovery information within the RBASTART and RBAEND specifications. You can use
summary information to determine what work is incomplete when Db2 starts. You cannot limit the
output of the summary report with any of the other options, except by using the FILTER option with a
URID or LUWID specification.

The default value is SUMMARY(NO).

(YES)
Generates both a detail and summary report.

(NO)
Generates only a detail report.

(ONLY)
Generates only a summary report.

FILTER
Restricts the summary report to include messages for only the specified URIDs and LUWIDs. Specify
this option only once.

The SUMMARY keyword must be specified before FILTER.

CHECK(DATA)
Specifies that DSN1LOGP is to check the specified range of data pages for page regression. Any page
regression errors are displayed in the detail and summary reports.

Related concepts
“DSN1LOGP output” on page 947

Chapter 45. DSN1LOGP 943

One intended use of this utility is to aid in determining and correcting system problems. When diagnosing
Db2 problems, you might need to refer to licensed documentation to interpret output from this utility.
Related reference
“Sample DSN1LOGP control statements” on page 945
Use the sample control statements as models for developing your own DSN1LOGP control statements.

Determining the PSID for base and clone objects
You can determine the PSID for base and clone objects by querying the SYSIBM.SYSTABLESPACE catalog
table. You can specify the PSID on the DBID and OBID keywords of the DSN1LOGP utility control
statement.

Procedure
To determine the PSID to specify for base or clone objects:
1. Determine the PSID by querying the SYSIBM.SYSTABLESPACE catalog table.

The value is displayed in decimal format. Use the SQL HEX function in your select statement to convert
the value to hexadecimal.

2. Determine the instance number of the clone or base object.
You can determine the instance number in two ways:

• Look at the TYPE column in the DISPLAY DATABASE command output. The output indicates the base
and clone objects with a 'B' or a 'C' character respectively along with the data set instance number.

• Look at the Db2 catalog. The SYSIBM.SYSTABLESPACE catalog table INSTANCE column indicates the
current instance number of the base table.

3. Determine whether to alter the PSID value or leave the PSID value the same.
For example, if the PSID value of the base or clone is '0009'X and the instance number is 1, specify
a PSID value of '0009'X to DSN1LOGP. If the PSID of the base or clone is '0009'X and the instance
number is 2, specify a PSID value of '8009'X to DSN1LOGP.

Related reference
-DISPLAY DATABASE (Db2) (Db2 Commands)
SYSTABLESPACE catalog table (Db2 SQL)

Archive log data sets on tape
If you store your archive logs on tape, the offload task constructs two files on tape during the archiving
process. The first file is the BSDS, and the second file is a dump of the active log that the offload task is
currently archiving.

If a failure occurs during the time that the offload task is archiving the BSDS, Db2 might omit the BSDS. In
this case, the first file contains the active log.

If you perform archiving on tape, the first letter of the lowest-level qualifier varies for both the first and
second data sets. The first letter of the first data set is B (for BSDS), and the first letter of the second data
set is A (for archive). Hence, the archive log data set names all end in Axxxxxxx, and the DD statement
identifies each of them as the second data set on the corresponding tape:

LABEL=(2,SL)

When reading archive log data sets on tape (or copies of active log data sets on tape), add one or more of
the following Job Entry Subsystem (JES) statements:

For the JES3 environment:

JES3 environment JCL
Description

944 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displaydatabase.html
https://www.ibm.com/docs/SSEPEK_12.0.0/cattab/src/tpc/db2z_sysibmsystablespacetable.html

//*MAIN SETUP=JOB
Alert the z/OS operator to mount the initial volumes before the job executes.

//*MAIN HOLD=YES
Place the job in HOLD status until the operator is ready to release the job.

TYPRUN=HOLD
Perform the same function as //*MAIN HOLD=YES. The system places the JCL on the JOB statement.

For the JES2 environment:

JES2 environment JCL
Description

/*SETUP
Alert the z/OS operator to prepare to mount a specified list of tapes.

/*HOLD
Place the job in HOLD status until the operator has located the tapes and is ready to release the job.

TYPRUN=HOLD
Perform the same function as /*HOLD. The system places the JCL on the JOB statement.

Alternatively, submit the job to a z/OS initiator that your operations center has established for exclusive
use by jobs that require tape mounts. Specify the initiator class by using the CLASS parameter on the JOB
statement, in both JES2 and JES3 environments.

Related information
MVS JCL Reference

Sample DSN1LOGP control statements
Use the sample control statements as models for developing your own DSN1LOGP control statements.

Example 1: Extracting information from the recovery log with an available BSDS

The following example shows how to extract information from the recovery log when you have the BSDS
available. The extraction starts at the log RBA of X'00000FC000000000A000' and ends at the log RBA
of X'00000FC000000000B000'. The DSN1LOGP utility identifies the table or index space by the DBID of
X'10A' (266 decimal) and the OBID of X'1F' (31 decimal).

//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//BSDS DD DSN=DSNCAT.BSDS01,DISP=SHR
//SYSIN DD *
 RBASTART (00000FC000000000A000)
 RBAEND (00000FC000000000B000)
 DBID (10A) OBID(1F)
/*

You can think of the Db2 recovery log as a large sequential file. When recovery log records are written,
they are written to the end of the log. A log RBA is the address of a byte on the log. Because the recovery
log is larger than a single data set, the recovery log is physically stored on many data sets. Db2 records
the RBA ranges and their corresponding data sets in the BSDS. To determine which data set contains a
specific RBA, read the information about the DSNJU004 utility. During normal Db2 operation, messages
are issued that include information about log RBAs.

Example 2: Extracting information from the active log when the BSDS is not available

The following example shows how to extract the information from the active log when the BSDS is not
available. The extraction includes log records that apply to the table space or index space that is identified
by the DBID of X'10A' and the OBID of X'1F'. The only information that is extracted is information that
relates to page numbers X'3B' and X'8C', as identified by the PAGE options. You can omit beginning and
ending RBA values for ACTIVEn or ARCHIVE DD statements because the DSN1LOGP search includes all

Chapter 45. DSN1LOGP 945

https://www.ibm.com/docs/SSLTBW_2.5.0/com.ibm.zos.v2r5.ieab600/abstract.htm

specified ACTIVEn DD statements. The DD statements ACTIVE1, ACTIVE2, and ACTIVE3 specify the log
data sets in ascending log RBA range. Use the DSNJU004 utility to determine what the log RBA range is
for each active log data set. If the BSDS is not available and you cannot determine the ascending log RBA
order of the data sets, you must run each log data set individually.

//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//ACTIVE1 DD DSN=DSNCAT.LOGCOPY1.DS02,DISP=SHR RBA X'A000' - X'BFFF'
//ACTIVE2 DD DSN=DSNCAT.LOGCOPY1.DS03,DISP=SHR RBA X'C000' - X'EFFF'
//ACTIVE3 DD DSN=DSNCAT.LOGCOPY1.DS01,DISP=SHR RBA X'F000' - X'12FFF'
//SYSIN DD *
 DBID (10A) OBID(1F) PAGE(3B) PAGE(8C)
/*

Example 3: Extracting information from the archive log when the BSDS is not available

The following example shows how to extract the information from archive logs when the BSDS is not
available. The extraction includes log records that apply to a single unit of recovery (whose URID is
X'61F321'). Because the BEGIN UR is the first record for the unit of recovery and is at X'61F321', the
beginning RBA is specified to indicate that it is the first RBA in the range from which to extract recovery
log records. Also, because no ending RBA value is specified, all specified archive logs are scanned for
qualifying log records. The specification of DBID(4) limits the scan to changes that the specified unit of
recovery made to all table spaces and index spaces in the database whose DBID is X'4'.

//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//ARCHIVE DD DSN=DSNCAT.ARCHLOG1.A0000037,UNIT=TAPE,VOL=SER=T10067,
// DISP=(OLD,KEEP),LABEL=(2,SL)
// DD DSN=DSNCAT.ARCHLOG1.A0000039,UNIT=TAPE,VOL=SER=T30897,
// DISP=(OLD,KEEP),LABEL=(2,SL)
// DD DSN=DSNCAT.ARCHLOG1.A0000041,UNIT=TAPE,VOL=SER=T06573,
// DISP=(OLD,KEEP),LABEL=(2,SL)
//SYSIN DD *
 RBASTART (61F321)
 URID (61F321) DBID(4)
/*

Example 4: Use DSN1LOGP with the SUMMARY option

The DSN1LOGP SUMMARY option allows you to scan the recovery log to determine what work is
incomplete at restart time. You can specify this option either by itself or when you use DSN1LOGP to
produce a detail report of log data. Summary log results appear in SYSSUMRY; therefore, you must include
a SYSSUMRY DD statement as part of the JCL with which you execute DSN1LOGP.

The following example produces both a detail and a summary report that uses the BSDS to identify
the log data sets. The summary report summarizes all recovery log information within the RBASTART
and RBAEND specifications. You cannot limit the output of the summary report with any of the other
options, except by using the FILTER option with a URID or LUWID specification. RBASTART and RBAEND
specification use depends on whether a BSDS is used.

This example is similar to Example 1, in that it shows how to extract the information from the recovery
log when you have the BSDS available. However, this example also shows you how to specify a summary
report of all logged information between the log RBA of X'AF000' and the log RBA of X'B3000'. This
summary is generated with a detail report, but it is printed to SYSSUMRY separately.

//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT DD SYSOUT=A
//SYSSUMRY DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//BSDS DD DSN=DSNCAT.BSDS01,DISP=SHR
//SYSIN DD *
 RBASTART (AF000) RBAEND (B3000)

946 Db2 12 for z/OS: Utility Guide and Reference

 DBID (10A) OBID(1F) SUMMARY(YES)
/*

Example 5: Use DSN1LOGP on all members of a data sharing group

The following example shows how to extract log information that pertains to the table space that is
identified by DBID X'112' and OBID X'1D' from all members of a data sharing group.

//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT SYSOUT=A
//SYSABEND SYSOUT=A
//GROUP DD DSN=DSNDB0G.BSDS01,DISP=SHR
//SYSIN DD *
 DATAONLY (YES)
 LRSNSTART (00CA21F57927B1D48000)
 LRSNEND (00CA21F57927B2BBB000)
 DBID (112) OBID(1D)
/*

Example 6: Use DSN1LOGP on a single member of a data sharing group

The following example shows how to extract log information that pertains to the table space that is
identified by DBID X'112' and OBID X'1D' from a single member of a data sharing group.

//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT SYSOUT=A
//SYSABEND SYSOUT=A
//M01BSDS DD DSN=DSNDB0G.DB1G.BSDS01,DISP=SHR
//SYSIN DD *
 DATAONLY (YES)
 LRSNSTART (A7951A001AD5) LRSNEND (A7951A003B6A)
 DBID (112) OBID(1D)
/*

Example 5: Use DSN1LOGP on all members of a data sharing group

The following example shows how to extract log information that pertains all log records matching DBID
X'112' and OBID X'1D' from the data sharing group after the LRSN X'00CAFFFFFFFFF1D48000'.

//STEP1 EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=PDS containing DSN1LOGP
//SYSPRINT SYSOUT=A
//SYSABEND SYSOUT=A
//GROUP DD DSN=DSNDB0G.BSDS01,DISP=SHR
//SYSIN DD *
 DATAONLY (YES)
 LRSNSTART (00CAFFFFFFFFF1D48000)
 LRSNEND (FFFFFFFFFFFFFFFFFFFF)
 DBID (112) OBID(1D)
/*

Related reference
“DSNJU004 (print log map)” on page 873
The DSNJU004 (print log map) stand-alone utility generates a variety of information that can be useful in
backup and recovery situations.

DSN1LOGP output
One intended use of this utility is to aid in determining and correcting system problems. When diagnosing
Db2 problems, you might need to refer to licensed documentation to interpret output from this utility.

Reviewing DSN1LOGP output
With the SUMMARY option, you can produce a summary report, a detail report, or both. You can also use
the CHECK(DATA) option to produce a summary and detail report of page regression errors.

Chapter 45. DSN1LOGP 947

For data sharing, you might see multiple log records with the same LRSN value on a single Db2 data
sharing member.

Description of the summary report

The following summary report contains a summary of completed events, consisting of an entry for each
completed unit of work. Each entry shows, among other information, the start time, user, and all page sets
that were modified. When possible, the report shows whether an object is LOGGED or NOT LOGGED.

The summary report is divided into two distinct sections:

• The first section is headed by the following message:

DSN1150I SUMMARY OF COMPLETED EVENTS

• The second section is headed by the following message:

DSN1157I RESTART SUMMARY

The first section lists all completed units of recovery (URs) and checkpoints within the range of the log
that is scanned. Events are listed chronologically, with URs listed according to when they were completed
and checkpoints listed according to when the end of the checkpoint was processed. The page sets that
are changed by each completed UR are listed. If a log record that is associated with a UR is unavailable,
the attribute INFO=PARTIAL is displayed for the UR. Otherwise, the UR is marked INFO=COMPLETE. A log
record that is associated with a UR is unavailable if the range of the scanned log is not large enough to
contain all records for a given UR.

The DISP attribute can be one of the following values: COMMITTED, ABORTED, INFLIGHT, IN-COMMIT,
IN-ABORT, POSTPONED ABORT, or INDOUBT. The DISP attributes COMMITTED and ABORTED are used in
the first section; the remaining attributes are used in the second section.

The list in the second section shows the work that is required of Db2 at restart as it is recorded in
the log that you specified. If the log is available, the checkpoint that is to be used is identified, as is
each outstanding UR, together with the page sets it changed. Each page set with pending writes is also
identified, as is the earliest log record that is required to complete those writes. If a log record that is
associated with a UR is unavailable, the attribute INFO=PARTIAL is displayed, and the identification of
modified page sets is incomplete for that UR.

DSN1212I DSN1LGRD FIRST LOG LRSN ENCOUNTERED 00CA21F57927B1D48000

==
DSN1150I SUMMARY OF COMPLETED EVENTS

DSN1151I DSN1LPRT MEMBER=DB2A UR CONNID=DB2A CORRID=021.OPNLGR00 AUTHID=SYSOPR PLAN=SYSTEM
 START DATE=00.161 TIME=11:27:30 DISP=COMMITTED INFO=COMPLETE
 STARTRBA=0000000000002BB36475 ENDRBA=0000000000002BB37024
 STARTLRSN=00CA21F57945B9AE2000 ENDLRSN=00CA21F57953A83EC000
 NID=* LUWID=DSNCAT.SYEC1DB2.CA21F5792E8A.0001
 COORDINATOR=* PARTICIPANTS=*
 DATA MODIFIED:
 DATABASE=0001=DSNDB01 PAGE SET=00CF=SYSLGRNX
 DATABASE=0001=DSNDB01 PAGE SET=0087=DSNLLX01
 DATABASE=0001=DSNDB01 PAGE SET=0086=DSNLLX02

DSN1151I DSN1LPRT MEMBER=DB2A UR CONNID=DB2A CORRID=021.OPNLGR00 AUTHID=SYSOPR PLAN=SYSTEM
 START DATE=00.161 TIME=11:27:30 DISP=COMMITTED INFO=COMPLETE
 STARTRBA=0000000000002BB374EF ENDRBA=0000000000002BB37C81
 STARTLRSN=00CA21F57956411DE000 ENDLRSN=00CA21F5795841E68000
 NID=* LUWID=DSNCAT.SYEC1DB2.CA21F5795571.0001
 COORDINATOR=* PARTICIPANTS=*
 DATA MODIFIED:
 DATABASE=0001=DSNDB01 PAGE SET=00CF=SYSLGRNX
 DATABASE=0001=DSNDB01 PAGE SET=0087=DSNLLX01
 DATABASE=0001=DSNDB01 PAGE SET=0086=DSNLLX02

....
DSN1213I DSN1LGRD LAST LOG RBA ENCOUNTERED 0000000000002BBC97A6

DSN1213I DSN1LGRD LAST LOG LRSN ENCOUNTERED 00CA21F5849F250A8000

948 Db2 12 for z/OS: Utility Guide and Reference

DSN1224I SPECIFIED LOG LRSNEND 00CA21F586A6D2000000 COULD NOT BE LOCATED FOR MEMBER DB2A

DSN1214I NUMBER OF LOG RECORDS READ 0000000000002571

==
DSN1157I RESTART SUMMARY

DSN1153I DSN1LSIT CHECKPOINT MEMBER=DB2A
 STARTRBA=0000000000002BBB8CAC ENDRBA=0000000000002BBC59E8
 STARTLRSN=00CA21F58479D042C000 ENDLRSN=00CA21F58480E67E4000
 DATE=12.250 TIME=14:20:29

DSN1162I DSN1LPRT MEMBER=DB2A UR CONNID=BATCH CORRID=ARCHIVE AUTHID=SYSADM
PLAN=ARCHIVE
 START DATE=00.161 TIME=11:27:30 DISP=INFLIGHT INFO=COMPLETE
 STARTRBA=0000000000002BBC888E STARTLRSN=00CA21F5849D6B88E000 NID=*
 LUWID=DSNCAT.SYEC1DB2.CA21F58084CF.0003 COORDINATOR=*
 PARTICIPANTS=*
 DATA MODIFIED:
 DATABASE=0119=JACKDB PAGE SET=0002=JACKTS
 DATABASE=0119=JACKDB PAGE SET=0005=TESTIX

DSN1160I DATABASE WRITES PENDING:
 DATABASE=0001=DSNDB01 PAGE SET=0008=DSNDB01X START=0000000000002BB8BC60
 DATABASE=0001=DSNDB01 PAGE SET=001F=DBD01 START=0000000000002BB8BED8
 DATABASE=0006=DSNDB06 PAGE SET=006C=DSNADX01 START=0000000000002BB8EE55
 DATABASE=0006=DSNDB06 PAGE SET=0787=DSNADH02 START=0000000000002BB8E858
 DATABASE=0006=DSNDB06 PAGE SET=0076=DSNUCX01
....

Description of the detail report

The following detail report includes the following records:

• Redo and undo log records
• System events log records, including begin and end checkpoint records, begin current status rebuild

records, and begin forward and backward recovery records
• Page set control log records, including open and close page set log records, open and close data set log

records, set write, reset write, and page set write log records
• UR control log records for the complete or incomplete unit of recovery

You can reduce the volume of the detail log records by specifying one or more of the optional keywords in
the DSN1LOGP utility control statement.

00000000000023C9EAF6 MEMBER(DB2A) TYPE(DBE TABLE CHECKPOINT - DBGC READ)
 LRSN(00C9C1231139FA000000) DBID(002B) OBID(0000)
 SUBTYPE(DBE TABLE WITH EXCEPTION DATA)

 LRH 007A007A 4100001D 0E800000 00000000 000023C9 EA7C0826 000023C9 EA7CC9C1
 231139FA 0001
 0000 00000054 03100000 00000000 00000000 00000000 00000000 00000000 0EC7C4C2
 0020 C5E3002B 00000000 00000000 00000000 C7000000 00C9B6DE A8263200 00000000
 0040 00000000 00000000 00000000 002B0000 00C80000

 HASH RECORD - CHAIN: 43, LRSN: 00C9B6DEA82632000000

00000000000023C9EB70 MEMBER(DB2A) TYPE(DBE TABLE CHECKPOINT - DBGC READ)
 LRSN(00C9C1231139FB000000) DBID(002C) OBID(0000)
 SUBTYPE(DBE TABLE WITH EXCEPTION DATA)
 LRH 007A007A 4100001D 0E800000 00000000 000023C9 EAF60826 000023C9 EAF6C9C1
 231139FB 0001
 0000 00000054 03100000 00000000 00000000 00000000 00000000 00000000 0EC7C4C2
 0020 C5E3002C 00000000 00000000 00000000 C7000000 00C9B6DE A8268A00 00000000
 0040 00000000 00000000 00000000 002C0000 00C80000

 HASH RECORD - CHAIN: 44, LRSN: 00C9B6DEA8268A000000
0000000000023C9EBEA MEMBER(DB2A) TYPE(DBE TABLE CHECKPOINT - DBGC READ)
 LRSN(00C9C1231139FC000000) DBID(002D) OBID(0000)
 SUBTYPE(DBE TABLE WITH EXCEPTION DATA)
 LRH 007A007A 4100001D 0E800000 00000000 000023C9 EB700826 000023C9 EB70C9C1
 231139FC 0001
 0000 00000054 03100000 00000000 00000000 00000000 00000000 00000000 0EC7C4C2

Chapter 45. DSN1LOGP 949

 0020 C5E3002D 00000000 00000000 00000000 C7000000 00C9B6DE A826BC00 00000000

 0040 00000000 00000000 00000000 002D0000 00C80000

Description of data propagation information in the summary report
The following sample output shows information from the DSN1LOGP summary report about log records of
changes to Db2 tables that were defined with DATA CAPTURE CHANGES.

The fields show the following information:

• START RBA and END RBA show the first and last RBAs that are captured for the unit of recovery that
was not retrieved. The range that the start and end RBA encompass can include one or all of the SQL
statements within the scope of the unit of recovery.

• TABLE LIST OVERFLOW indicates whether more than 10 distinct data capture table IDs were updated
by this unit of recovery. This example indicates that no overflow occurred.

• LR WRITTEN shows the number of written log records that represented changes to tables that were
defined for data capture and were available to the DB2CDCEX routine. Recursive SQL changes from
DB2CDCEX and changes from other attachments that are not associated with DB2CDCEX are not
included. If you receive a value of 2147483647, an overflow occurred and the count is not valid.

• LR RETRIEVED is the number of captured RBAs that were retrieved by DB2CDCEX. If you receive a value
of 2147483647, an overflow occurred and the count is not valid.

• LR NOT RETRIEVED is the difference between the number of written log records (LR WRITTEN) and
the number of retrieved log records (LR RETRIEVED). The following example output shows that four log
records were written, and none were retrieved.

DATA PROPAGATION INFORMATION:
 START RBA=000004A107F4 END RBA=000004A10A5C TABLE LIST OVERFLOW=NO
 LR WRITTEN=0000000000000004 LR RETRIEVED=0000000000000000 LR NOT RETRIEVED=0000000000000004
 DATABASE=0112=DBCS1701 PAGESET=0002=TSCS1701 TABLE OBID=0005

Description of the report on page regression errors

DSN1LOGP reports page regression errors when you specify the CHECK(DATA) option. The value of the
SUMMARY option determines whether the utility creates a detail report, a summary report, or both.

A detail report contains the following information for each page regression error:

• DBID
• OBID
• Page number
• Current LRSN or RBA
• Member name
• Previous level
• Previous update
• Date
• Time

A summary report contains the total number of page regressions that the utility found as well as the
following information for each table space in which it found page regression errors:

• Database name
• Table space name
• DBID
• OBID

950 Db2 12 for z/OS: Utility Guide and Reference

If no page regression errors are found, DSN1LOGP outputs a single message that no page regression
errors were found.

The sample output in the following figure shows the detail report when page regression errors are found.

Page regression detected:
DBID(0001) OBID(001F) PAGE(00000003)
Current LRSN = C93AA29FC3D1
Previous level from current log record = C93AA290845E
Previous update to data page found on log = C93AA29FC3D0

Page regression detected:
DBID(0001) OBID(001F) PAGE(00000002)
Current LRSN = C93AA2E1EDEA
Previous level from current log record = C93AA2D380F7
Previous update to data page found on log = C93AA2E1EDE9

Page regression detected:
DBID(0001) OBID(001F) PAGE(00000002)
Current LRSN = C93BBD7CD15E
Previous level from current log record = C93BBD7CCA7C
Previous update to data page found on log = C93BBD7CD15B

Command text in DSN1LOGP output
Command text is logged automatically. When you run DSN1LOGP with TYPE(0010), the output includes
records for commands. Command record output has TYPE(SYSTEM EVENT) and SUBTYPE(TRACE
RECORD). The data is in the form of an IFCID 0090 trace record. For example, the following output
from DSN1LOGP shows a -STOP DB2 command:

00006BFBE999 LRSN(C6CD403EB3AF) TYPE(SYSTEM EVENT)
 SUBTYPE(TRACE RECORD)

LRH 01400034 00100041 10800000 00000000 00000000 00000726 00000000 00000000 0000C6CD
* F
 403EB3AF 0000
*
0000 011A0000 00000028 00F20001 00000014 00130001 000B60E2 E3D6D740 E3D6D740 C4C2F216 *
2 -STOP DB2
0020 81AB2000 00000040 00560117 005A02A1 16180930 C4E2D5C1 C6CD403E C6CD403E B392DDEE
*a ! DSNAF k
0040 00000006 00000006 00000000 E2E3D3C5 C3F14040 40404040 40404040 40404040 C4E2D5C1 *
STLEC1 DSNA
0060 40404040 E2E8C5C3 F1C4C2F2 C6CD403E B3770001 00000000 0000F3F0 0000F3F0 F9F0009C *
SYEC1DB2F 3090
0080 0200E2E8 E2D6D7D9 4040F0F2 F34BC7C3 E2C3D5F6 F0F2E5C1 F1C14040 F1C14040 40404040 * SYSOPR
023.GCSCN602VA1A
00A0 40404040 4040E2E8 E2D6D7D9 40400000 00000000 00000000 00000000 00000000 00000000 *
SYSOPR
00C0 00000000 00000000 00004040 40404040 40404040 40404040 40404040 40404040 40404040
*
00E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
*
0100 40404040 40404040 40404040 00000000 00000000 00000000 0000

Interpreting error codes

When an error occurs, DSN1LOGP formats a reason code from the Db2 stand-alone log service in the
SYSPRINT output.

DSN1LOGP can abnormally terminate with a user abend code of X'099'. DSN1LOGP finds the
corresponding abend reason code in register 15 (at the time of error). If the specified RBA or LRSN
range was not found in the input data sets DSN1LOGP will terminate with return code 4.

Related reference
Registers and return codes (Db2 Administration Guide)

Chapter 45. DSN1LOGP 951

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_logrecordregister.html

952 Db2 12 for z/OS: Utility Guide and Reference

Chapter 46. DSN1PRNT
With the DSN1PRNT stand-alone utility, you can print Db2 VSAM data sets. These data sets can contain
table spaces or index spaces, image copy data sets, and sequential data sets that contain Db2 table
spaces or index spaces.

A Db2 VSAM data set is a single piece of a nonpartitioned table space or index, a single partition of a
partitioned table space or index, or a FlashCopy image copy data set. The input must be a single z/OS
sequential or VSAM data set. Concatenation of input data sets is not supported.

Using DSN1PRNT, you can print hexadecimal dumps of Db2 data sets and databases. If you specify the
FORMAT option, DSN1PRNT formats the data and indexes for any page that does not contain an error that
would prevent formatting. If DSN1PRNT detects such an error, it prints an error message just before the
page and dumps the page without formatting. Formatting resumes with the next page.

Compressed records (including the compressed data of dictionary pages) are printed in compressed
format.

DSN1PRNT is especially useful when you want to identify the contents of a table space or index. You can
run DSN1PRNT on image copy data sets and on table spaces and indexes. DSN1PRNT accepts an index
image copy as input when you specify the FULLCOPY option.

You cannot run DSN1PRNT on concurrent copies.

DSN1PRNT is compatible with LOB table spaces, when you specify the LOB keyword and omit the
INLCOPY keyword.

DSN1PRNT does not decrypt any encrypted data. However, if the data set that is to be printed is
encrypted using z/OS DFSMS data set encryption, DFSMS decrypts the data before returning it to
DSN1PRNT. In that case, DSN1PRNT prints the decrypted data.

Output

One intended use of this utility is to aid in determining and correcting system problems. When diagnosing
Db2, you might need to refer to licensed documentation to interpret output from this utility.

Environment

Run DSN1PRNT as a z/OS job.

You can run DSN1PRNT even when the Db2 subsystem is not operational. If you choose to use
DSN1PRNT when the Db2 subsystem is operational, ensure that the Db2 data sets that are to be printed
are not currently allocated to Db2.

To make sure that a data set is not currently allocated to Db2, issue the Db2 STOP DATABASE command,
specifying the table spaces and indexes that you want to print.

Authorization required

No special authorization is required. However, if any of the data sets is RACF protected, the authorization
ID of the job must have RACF authority.

If any of the data sets is encrypted using ICSF key label, the authorization ID of the job must have access
to the key label.

Required data sets

© Copyright IBM Corp. 1983, 2024 953

DSN1PRNT uses the following DD statements:

SYSPRINT
Defines the data set that contains output messages from DSN1PRNT and all hexadecimal dump
output.

SYSUT1
Defines the input data set. That data set can be a sequential data set or a VSAM data set.

Disposition for this data set must be specified as OLD (DISP=OLD) to ensure that it is not in use by
Db2. Specify the disposition for this data set as SHR (DISP=SHR) only in circumstances where the Db2
STOP DATABASE command does not work.

The requested operation takes place only for the specified data set. If the input data set belongs to a
nonpartitioned table space or index space that is larger than 2 GB, or if it is a partitioned table space
or index space, you must ensure the correct data set is specified. For example, to print a page range
in the second partition of a four-partition table space, specify NUMPARTS(4) and the data set name of
the data set in the group of VSAM data sets comprising the table space. The following code shows the
data set name:

DSN=...A002

If you run the online REORG utility with FASTSWITCH behavior, verify the data set name before
running the DSN1PRNT utility. The fifth-level qualifier in the data set name alternates between I0001
and J0001 when using FASTSWITCH. If the table space has cloning, the fifth-level qualifier can be
I0002 or J0002. Specify the correct fifth-level qualifier in the data set name to successfully execute
the DSN1PRNT utility. To determine the correct fifth-level qualifier, query the IPREFIX column of
SYSIBM.SYSTABLEPART for each data partition or the IPREFIX column of SYSIBM.SYSINDEXPART for
each index partition. If the object is not partitioned, use zero as the value for the PARTITION column
in your query.

954 Db2 12 for z/OS: Utility Guide and Reference

Syntax and options of the DSN1PRNT control statement
The DSN1PRNT utility control statement, with its multiple options, defines the function that the utility job
performs.

DSN1PRNT syntax diagram

32K

PAGESIZE (4K

8K

16K

32K

)

FULLCOPY

INCRCOPY

INLCOPY

LARGE

LOB

DSSIZE (integer G) PIECESIZ( integer K

M

G

)

NUMPARTS( integer)

PRINT EBCDIC
1

PRINT

( hexadecimal-constant , hexadecimal-constant)

EBCDIC
1

ASCII

UNICODE

VALUE(string

hexadecimal-constant

)

FORMAT

EXPAND NODATA

NODATPGS

PART(integer

hex-constant

)

Notes:
1 EBCDIC is not necessarily the default if the first page of the input data set is a header page. If the first page
is a header page, DSN1PRNT uses the format information in the header page as the default format.

Option descriptions

If you have the need to run DSN1PRNT with invocation parameters specify one or more of the following
options on the EXEC statement.

Important: If you specify more than one parameter:

Chapter 46. DSN1PRNT 955

• Separate them by commas (no blanks).
• Specify them in any order.

Default settings for DSN1PRNT options are taken from the input data set header page. This default
processing is recommended when running DSN1PRNT because incorrect parameter settings can result in
unpredictable results.

When non-default user values are specified, DSN1PRNT compares the input data set header page settings
against the user-specified values whenever possible. If a mismatch is detected, message DSN1930I is
issued. The processing is performed with the user-specified values

32K
Specifies that the SYSUT1 data set has a 32-KB page size. If you specify this option and the SYSUT1
data set does not have a 32-KB page size, DSN1COPY might produce unpredictable results.

PAGESIZE
Specifies the page size of the input data set that is defined by SYSUT1. Available page size values are
4K, 8K, 16K, or 32K. If you specify an incorrect page size, DSN1PRNT might produce unpredictable
results.

If you do not specify the page size, DSN1PRNT tries to determine the page size from the input data
set if the first page of the input data set is a header page. Db2 issues an error message if DSN1PRNT
cannot determine the input page size. This might happen if the header page is not in the input data
set, or if the page size field in the header page contains an invalid page size.

Related information:

“Determining the page size and data set size for DSN1PRNT” on page 960

FULLCOPY
Specifies that a Db2 full image copy (not a DFSMSdss concurrent copy) of your data is to be used
as input. If this data is partitioned, you also need to specify the NUMPARTS parameter to identify
the number and length of the partitions. If you specify FULLCOPY without including a NUMPARTS
specification, DSN1PRNT assumes that the input file is not partitioned.

The FULLCOPY parameter must be specified when you use an image copy as input to DSN1PRNT.
Omitting the parameter can cause error messages or unpredictable results.

Do not specify FULLCOPY if the input image copy is a FlashCopy image copy data set.

INCRCOPY
Specifies that an incremental image copy of the data is to be used as input. If the data is partitioned,
also specify NUMPARTS to identify the number and length of the partitions. If you specify INCRCOPY
without NUMPARTS, DSN1PRNT assumes that the input file is not partitioned.

The INCRCOPY parameter must be specified when you use an incremental image copy as input to
DSN1PRNT. Omitting the parameter can cause error messages or unpredictable results.

INLCOPY
Specifies that the input data is to be an inline copy data set.

When DSN1PRNT is used to print a page or a page range from an inline copy that is produced by LOAD
or REORG, DSN1PRNT prints all instances of the pages. The last instance of the printed page or pages
is the last one that is created by the utility.

The INLCOPY parameter must be specified when an inline image copy is used as input to DSN1PRNT.
Omitting the INLCOPY parameter can cause error messages or unpredictable results.

LARGE
Specifies that the input data set is a table space that was defined with the LARGE option, or an index
on such a table space. If you specify LARGE, Db2 assumes that the data set has a 4-GB boundary.
The recommended method of specifying a table space that was defined with the LARGE option is
DSSIZE(4G).

If you omit the LARGE or DSSIZE(4G) option when it is needed, or if you specify LARGE for a table
space that was not defined with the LARGE option, the results from DSN1PRNT are unpredictable.

956 Db2 12 for z/OS: Utility Guide and Reference

If you specify LARGE, you cannot specify LOB or DSSIZE.

LOB
Specifies that the SYSUT1 data set is a LOB table space.

You cannot specify the INLCOPY option with the LOB parameter.

If you specify LOB, you cannot specify LARGE.

Db2 attempts to determine if the input data set is a LOB data set. If you specify the LOB option but the
data set is not a LOB data set, or if you omit the LOB option but the data set is a LOB data set, Db2
issues an error message and DSN1PRNT terminates.

If the LOB table space is compressed, DSN1PRNT will not decompress the data and will display the
LOB data in its compressed format.

DSSIZE(integer G)
Specifies the data set size, in gigabytes, for the input data set. If you omit DSSIZE, Db2 obtains the
data set size from the data set header page.

If you specify DSSIZE, integer must match the DSSIZE value that was specified when the table space
was defined.

Related information:

“Determining the page size and data set size for DSN1PRNT” on page 960

PIECESIZ(integer)
Specifies the maximum piece size (data set size) for nonpartitioned indexes. The value that you
specify must match the value that is specified when the secondary index was created or altered.

The defaults for PIECESIZ are 2G (2 GB) for indexes that are backed by non-large table spaces and
4G (4 GB) for indexes that are backed by table spaces that were defined with the LARGE option. This
option is required if a print range is specified and the piece size is not one of the default values. If
PIECESIZ is omitted and the index is backed by a table space that was defined with the LARGE option,
the LARGE keyword is required for DSN1PRNT.

The subsequent keyword K, M, or G, indicates the units of the value that is specified in integer.

K
Indicates that the integer value is to be multiplied by 1 KB to specify the maximum piece size in
bytes. integer must be either 256 or 512.

M
Indicates that the integer value is to be multiplied by 1 MB to specify the maximum piece size in
bytes. integer must be a power of 2, between 1 and 512.

G
Indicates that the integer value is to be multiplied by 1 GB to specify the maximum piece size in
bytes. integer must be a power of two, between 1 and 256.

Valid values for piece size are:

• 1 MB or 1 GB
• 2 MB or 2 GB
• 4 MB or 4 GB
• 8 MB or 8 GB
• 16 MB or 16 GB
• 32 MB or 32 GB
• 64 MB or 64 FB
• 128 MB or 128 GB
• 256 KB, 256 MB, or 256 GB
• 512 KB or 512 MB

Chapter 46. DSN1PRNT 957

NUMPARTS(integer)
This parameter is not used if the target table space is a universal table space. DSSIZE is used instead.

PRINT(hexadecimal-constant,hexadecimal-constant)
Causes the SYSUT1 data set to be printed in hexadecimal format on the SYSPRINT data set. This
option is the default for DSN1PRNT.

You can specify the PRINT parameter with or without page range specifications. If you do not specify
a range, all pages of the SYSUT1 are printed. If you want to limit the range of pages that are printed,
you can do so by indicating the beginning and ending page numbers with the PRINT parameter or,
if you want to print a single page, by indicating only the beginning page. In either case, your range
specifications must be from one to eight hexadecimal characters in length.

The following example shows how to code the PRINT parameter if you want to begin printing at page
X'2F0' and to stop at page X'35C':

PRINT(2F0,35C)

The relationship between the page size and the number of pages in a 4-GB data set is shown in the
following table.

Table 134. Relationship between page size and the number of pages in a 4-GB data set

Page size Number of pages

4 KB X'100000'

8 KB X'80000'

16 KB X'40000'

32 KB X'20000'

For example, if PAGESIZE is 4 KB, the page number of the first page of the third data set is
2*X'100000' = X'200000'.

To print only the header page for a nonpartitioned table space, specify PRINT(0).

You can indicate the format of the row data in the PRINT output by specifying EBCDIC, ASCII, or
UNICODE. The part of the output that is affected by these options is in bold in the following example:

RECORD: XOFFSET='0014'X PGSFLAGS='00'X PGSLTH=65 PGSLTH='0041'X PGSOBD='0003'X PGSBID='01'X
C5C5F0F6 C1404040 40404040 F1F34040 40C1E2D6 F1F3F5E7 40404040 40404040 EE06A 13 ASO135X
C1C6F3F1 C587C6F0 01800000 14199002 01174522 00000080 000000 AF31E.F0...................

RECORD: XOFFSET='0055'X PGSFLAGS='00'X PGSLTH=65 PGSLTH='0041'X PGSOBD='0003'X PGSBID='02'X
C5C5F0F6 C1404040 40404040 F1F34040 40C1E2D6 F1F3F5E7 40404040 40404040 EE06A 13 ASO135X
C1C6F5F2 D487C5F0 09800000 78199002 01174522 00000080 000000 AF52M.E0...................

EBCDIC
Indicates that the row data in the PRINT output is to be displayed in EBCDIC.

The default value is EBCDIC if the first page of the input data set is not a header page.

If the first page is a header page, DSN1PRNT uses the format information in the header page as
the default format. However, if you specify EBCDIC, ASCII, or UNICODE, that format overrides the
format information in the header page. The unformatted header page dump is always displayed in
EBCDIC, because most of the fields are in EBCDIC.

ASCII
Indicates that the row data in the PRINT output is to be displayed in ASCII. Specify ASCII when
printing table spaces that contain ASCII data.

UNICODE
Indicates that the row data in the PRINT output is to be displayed in Unicode. Specify UNICODE
when printing table spaces that contain Unicode data.

958 Db2 12 for z/OS: Utility Guide and Reference

VALUE
Causes each page of the input data set SYSUT1 to be scanned for the character string that you
specify in parentheses following the VALUE parameter. Each page that contains that character string is
then printed in SYSPRINT. You can specify the VALUE parameter in conjunction with any of the other
DSN1PRNT parameters.
(string)

Can consist of from 1 to 20 alphanumeric EBCDIC characters. For non-EBCDIC characters, use
hexadecimal characters.

(hexadecimal-constant)
Consists of from 2 to 40 hexadecimal characters. You must specify two apostrophe characters
before and after the hexadecimal character string.

If, for example, you want to search your input file for the string '12345', your JCL should look like the
following JCL:

//STEP1 EXEC PGM=DSN1PRNT,PARM='VALUE(12345)'

Alternatively, you might want to search for the equivalent hexadecimal character string. If you are
processing Unicode or ASCII input files, you must specify the string in hexadecimal. Your JCL should
look like the following JCL:

//STEP1 EXEC PGM=DSN1PRNT,PARM='VALUE(''3132333435'')'

FORMAT
Causes the printed output to be formatted. Page control fields are identified, and individual records
are printed. Empty fields are not displayed.
EXPAND

Specifies that the data is compressed and causes DSN1PRNT to expand it before formatting. This
option is intended to be used only under the direction of IBM Support.

When DSN1PRNT is run with the FORMAT EXPAND option, and the input data sets constitute a full
image copy, the input data sets need to contain all pages of the original table space, including all
dictionary pages.

FORMAT EXPAND cannot be specified if the INCRCOPY or INLCOPY options are specified.

If FORMAT EXPAND is specified with the LOB keyword for a compressed LOB table space, EXPAND
is ignored and DSN1PRNT will display the LOB data in its compressed format.

NODATA
Suppresses printing of table row data. The row headers are formatted and printed. Specify
NODATA to reduce the volume of the output when the contents of the rows are not important.

NODATPGS
Suppresses all data pages of a table space. Specify NODATPGS to format and print only non-data
pages to reduce the volume of the output when only certain page types are of interest (for
example, LOB space map pages). Alternatively, you can specify NODHDR.

DSN1PRNT cannot format a leaf or nonleaf page for an index page set that contains keys with altered
columns. When it encounters this situation, DSN1PRNT generates the following message:

KEY WITH ALTERED COLUMN HAS BEEN DETECTED-UNABLE TO FORMAT PAGE

DSN1PRNT generates unformatted output for the page.

FORMAT attempts to format a broken page and dumps the unformatted version of the page following
the formatted version.

PART
Specifies an integer or hexadecimal part number identifier (1 - based) that is associated with an object
that uses relative page numbering. If the object does not use relative page numbering, the PART
keyword is ignored.. Only one partition can be specified.

Chapter 46. DSN1PRNT 959

Related concepts
“Using VERIFY with REPLACE and DELETE operations” on page 657
If any data area does not contain the value that is required by a VERIFY statement, all REPLACE and
DELETE operations in the same locate block are inhibited. VERIFY and REPLACE statements that follow
the next LOCATE statement are not affected.

Printing with DSN1PRNT instead of DSN1COPY
If you want to print information about a data set, use the DSN1PRNT utility rather than the DSN1COPY
utility. DSN1COPY scans the entire SYSUT1 data set, but DSN1PRNT might be able to stop scanning
before the end of the data set. Also, the DSN1PRNT utility can write a formatted dump.

Determining the page size and data set size for DSN1PRNT
Before you run the DSN1PRNT utility, you must determine the page size and data set size (DSSIZE) for the
page set.

Procedure
Issue a query against the Db2 catalog.
For example, the query that is shown in the following figure returns this information for the DEPT table:

SELECT T.CREATOR,T.NAME,S.NAME AS TABLESPACE,S.PARTITIONS,S.PGSIZE,
 CASE S.DSSIZE
 WHEN 0 THEN
 CASE WHEN S.TYPE = 'G' THEN 4194304
 WHEN S.TYPE = 'L' THEN 4194304
 WHEN S.TYPE = 'O' THEN 4194304
 WHEN S.TYPE = 'P' THEN 4194304
 WHEN S.TYPE = 'R' THEN 4194304
 ELSE
 CASE WHEN S.PARTITIONS > 254 THEN
 CASE WHEN S.PGSIZE = 4 THEN 4194304
 WHEN S.PGSIZE = 8 THEN 8388608
 WHEN S.PGSIZE = 16 THEN 16777216
 WHEN S.PGSIZE = 32 THEN 33554432
 ELSE NULL
 END
 WHEN S.PARTITIONS > 64 THEN 4194304
 WHEN S.PARTITIONS > 32 THEN 1048576
 WHEN S.PARTITIONS > 16 THEN 2097152
 WHEN S.PARTITIONS > 0 THEN 4194304
 ELSE 2097152
 END
 END
 ELSE S.DSSIZE
 END
 AS DSSIZE
 FROM SYSIBM.SYSTABLES T,
 SYSIBM.SYSTABLESPACE S
 WHERE
 T.NAME = 'DEPT' AND
 T.TSNAME = S.NAME;

Related reference
“Data sets that REORG INDEX uses ” on page 506
The REORG INDEX utility uses a number of data sets during its operation.

Sample DSN1PRNT control statements
Use the sample control statements as models for developing your own DSN1PRNT control statements.

Example 1: Printing a data set and formatting the output

The following example specifies that the DSN1PRNT utility is to print the data set that is identified by the
SYSUT1 DD statement and the output is to be formatted. This data set is to be printed on the data set that

960 Db2 12 for z/OS: Utility Guide and Reference

is identified by the SYSPRINT DD statement. The fifth-level qualifier in the data set name can be either
I0001 or J0001. This example uses I0001.

//jobname JOB acct info
//RUNPRNT EXEC PGM=DSN1PRNT,PARM='PRINT,FORMAT'
//STEPLIB DD DSN=prefix.SDSNLOAD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBC.DSNDB01.SYSUTILX.I0001.A001,DISP=SHR

Example 2: Printing a nonpartitioning index with a 64-MB piece size

The following example specifies that DSN1PRNT is to print the first 16 pages of the 61st piece of
an nonpartitioned index with a piece size of 64 MB. The pages that are to be printed are identified
by the PRINT option. These page values are determined as follows: A data set of size 64 MB
contains X'4000' 4-KB pages. Decimal 61 is X'3D'. The page number of the first page of the 61st
piece is 4000*(3D-1) = 4000*3C = F0000. To print the last 16 pages of the 61st piece, specify
PARM=(PRINT(F3FF0,F3FFF), ...).

The fifth-level qualifier in the data set name can be either I0001 or J0001. This example uses I0001.

//PRINT2 EXEC PGM=DSN1PRNT,
// PARM=(PRINT(F0000,F000F),FORMAT,PIECESIZ(64M))
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=OLD,DSN=DSNCAT.DSNDBD.MMRDB.NPI1.I0001.A061

Example 3: Printing a single page of an image copy

The following example specifies that DSN1PRNT is to print one page of an image copy. The image copy
is identified by the SYSUT1 DD statement. The PRINT option specifies that the only page to be printed is
X'1'.

//STEP2 EXEC PGM=DSN1PRNT,
// PARM='PRINT(1),FORMAT,INLCOPY'
//STEPLIB DD DSN=DB2A.SDSNLOAD,DISP=SHR
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=HUHYU205.L1.STEP1.DD2,DISP=SHR

Example 4: Printing a partitioned data set

The following example specifies that DSN1PRNT is to print the data set that is identified by the SYSUT1
DD statement. Because this data set is a table space that was defined with the LARGE option, the
DSSIZE(4G) option is specified in the parameter list for DSN1PRNT. You could specify the LARGE option in
this list instead, but specifying DSSIZE(4G) is recommended. This input table space has 260 partitions, as
indicated by the NUMPARTS option.

//RUNPRNT1 EXEC PGM=DSN1PRNT,
// PARM='DSSIZE(4G),PRINT,NUMPARTS(260),FORMAT'
//STEPLIB DD DSN=DB2A.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=DSNCAT.DSNDBC.DBOM0301.TPOM0301.I0001.A259,DISP=SHR
/*

Example 5: Printing a page range of a specific partition

It is difficult to determine page numbers for a specific partition of a partitioned table space.

This example describes a simple way of using DSN1PRNT without needing to calculate page numbers.

1. Run DSN1PRNT on the partition you want to process without specifying a PRINT range. Set the
FORMAT option to NODATPGS. Data pages are not printed reducing the use of spool space.

Chapter 46. DSN1PRNT 961

// EXEC PGM=DSN1PRNT,
// PARM='FORMAT,NODATPGS,NUMPARTS(8)'
//SYSUT1 DD DSN=DSNT6USR.DSNDBC.V9DS306.XV9D0000.I0001.A008,DISP=SHR

The printout includes page numbers. Use these page numbers to setup another DSN1PRNT job using
the appropriate page numbers.

2. Run DSN1PRNT on partition 8 specifying your PRINT range

// EXEC PGM=DSN1PRNT,
// PARM='PRINT(xx000000,xx000020),FORMAT,NUMPARTS(8)'
//SYSUT1 DD DSN=DSNT6USR.DSNDBC.V9DS306.XV9D0000.I0001.A008,DISP=SHR

The page range must be specified in hexadecimal format.

Example 6: Specifying Unicode output for DSN1PRNT

When you specify the UNICODE option for DSN1PRNT, you are not going to see non-Latin Unicode
characters, such as Japanese characters, in your output. When you specify the UNICODE option,
DSN1PRNT takes the hexadecimal data and formats it as ASCII instead of the default EBCDIC.

A problem might arise when the data that you want DSN1PRNT to handle is in UTF-16. In the case of
UTF-16 data, DSN1PRNT takes only the second byte of the data and formats that part of the data as
ASCII. Thus, the output might not be correct. For example, the UTF-16 hexadecimal values X'0030' and
X'1130' are both output as 0, because the first byte of each ("00" and "11" respectively) is ignored. The
remaining part ("30") is interpreted as an ASCII 0. In UTF-16, X'0030' is the hexadecimal value for 0, but
X'1130' is the hexadecimal value for a Hangul character.

In the following DSN1PRNT example, notice the three bold hexadecimal values: X'0041', X'0141', and
X'0241'. The output for all three of these values is A.A.A, even though they each correspond to different
characters in UTF-16. (X'0041' is A, X'0141' is Ł, and X'0241' is the Latin capital character for glottal
stop.)

//STEP1 EXEC PGM=DSN1PRNT,
// PARM='FORMAT,PRINT(002),UNICODE'
//STEPLIB DD DSN=DB2A.DSNLOAD,DISP=SHR
//SYSUDUMP DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
//SYSUT1 DD DSN=TESTCAT.DSNDBC.DBED2101.TPED2101.I0001.A001,DISP=SHR
/*

DSN1999I START OF DSN1PRNT FOR JOB DSN1PRNT RUNPRNT9
DSN1989I DSN1PRNT IS PROCESSED WITH THE FOLLOWING OPTIONS:
4K/NO IMAGECOPY/NUMPARTS = 0/ FORMAT/NO EXPAND/ PRINT/NO VALUE/ / /
DSSIZE= /PIECESIZ= /UNICODE/
DSN1998I INPUT DSNAME = TESTCAT.DSNDBC.DBED2101.TPED2101.I0001.A001 , VSAM

PAGE: # 00000002 --
DATA PAGE: PGCOMB='10'X PGLOGRBA='0000758C9455'X PGNUM='00000002'X PGFLAGS='00'X PGFREE=4041
PGFREE='0FC9'X PGFREEP=51 PGFREEP='0033'X PGHOLE1='0000'X PGMAXID='01'X PGNANCH=1
PGTAIL: PGIDFREE='00'X PGEND='N'

ID-MAP FOLLOWS:
01 0014
RECORD: XOFFSET='0014'X PGSFLAGS='02'X PGSLTH=31 PGSLTH='001F'X PGSOBD='0003'X PGSBID='01'X
80000001 00004101 41024100 20002000 20002000 20002000 20 A.A.A.

DSN1994I DSN1PRNT COMPLETED SUCCESSFULLY, 00000001 PAGES PROCESSED

Related information:

UTFs (Db2 Internationalization Guide)

962 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/char/src/tpc/db2z_utf.html

Chapter 47. DSN1SDMP
IBM Support might advise you to use the IFS selective dump (DSN1SDMP) stand-alone utility. DSN1SDMP
enables you to force dumps when selected Db2 trace events occur, write Db2 trace records to user-
defined z/OS data sets, or start another Db2 trace.

To ensure that you do not take action on an IFCID 4 or IFCID 5 start or stop trace record, it is good
practice to add

P4,00
DR,04,X'hhhh'

to your control statement, where hhhh is the hex representation of the IFCID that you are trying to trigger
on.

Output
One intended use of this utility is to aid in determining and correcting system problems. When diagnosing
Db2, you might need to refer to licensed documentation to interpret output from this utility.

Environment
Run DSN1SDMP as a z/OS job, and execute it with the DSN TSO command processor. To execute
DSN1SDMP, the Db2 subsystem must be running.

The z/OS job completes only under one of the following conditions:

• The TRACE and any additional selection criteria that are started by DSN1SDMP meet the criteria
specified in the FOR parameter.

• The TRACE that is started by DSN1SDMP is stopped by using the STOP TRACE command.
• The job is canceled by the operator.

If you must stop DSN1SDMP, use the STOP TRACE command.

Authorization required

To execute this utility, the privilege set of the process must include one of the following privileges or
authorities:

• TRACE system privilege
• SYSOPR authority
• SYSADM authority
• MONITOR1 or MONITOR2 privileges (if you are using user-defined data sets)
• SQLADM authority
• System DBADM authority
• SECADM authority

The user who executes DSN1SDMP must have EXECUTE authority on the plan that is specified in the
trace-parameters of the START TRACE keyword.

Required data sets

DSN1SDMP uses the following DD statements:

© Copyright IBM Corp. 1983, 2024 963

SDMPIN
Defines the control data set that specifies the input parameters to DSN1SDMP. This DD statement is
required. The LRECL is 80. Only the first 72 columns are checked by DSN1SDMP.

SDMPPRNT
Defines the sequential message data set that is used for DSN1SDMP messages. If the SDMPPRNT DD
statement is omitted, no messages are written. The LRECL is 131.

SYSABEND
Defines the data set that is to contain an ABEND dump in case DSN1SDMP abends. This DD statement
is optional.

SDMPTRAC
Defines the sequential Db2 trace record data set that Db2 returns to DSN1SDMP. The DD statement is
required only if trace data is written to an OPX trace destination. If the destination is anything other
than an OPX buffer, SDMPTRAC is ignored.

Trace records that Db2 writes to SDMPTRAC are of the same format as SMF or GTF records except that
the SDMPTRAC trace record headers contain the monitor header (that is mapped by DSNDQWIW). The
The DCB parameters are VB, BLKSIZE=32760, LRECL=32756.

SYSTSIN
Defines the DSN commands to connect to Db2 and to execute an IFC selective dump:

DSN SYSTEM(subsystem name)
RUN PROG(DSN1SDMP) LIB('prefix.SDSNLOAD') PLAN(DSNEDCL)

The Db2 subsystem name must be filled in by the user. The DSN RUN command must specify a plan
for which the user has execute authority. DSN1SDMP dump does not execute the specified plan; the
plan is used only to connect to Db2.

When no plan name is specified on the DSN RUN command, the default plan name is the program
name. When DSN1SDMP is executed without a plan, DSN generates an error if no DSN1SDMP plan
exists for which the user has execute authority.

Related reference
Trace data record format (Db2 Performance)

964 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_ifitracedatarecordformat.html

Syntax and options of the DSN1SDMP control statement
The DSN1SDMP utility control statement, with its multiple options, defines the function that the utility job
performs.

DSN1SDMP syntax diagram
START TRACE ( trace-parameters)

SELECT function , offset , data-specification

ACTION ( action
(X'00E60100')

( abend-code)

)

(STTRACE

,  action
(X'00E60100')

( abend-code)

) second-trace-spec
1

AFTER (1)

AFTER ( integer)

FOR (1)

FOR ( integer)

second-trace-spec

ACTION2(action

(X'00E60100')

( abend-code)

)

FILTER(ACE

EB

)

COMMAND command

AFTER2 (1)

AFTER2 ( integer)

FOR2 (1)

FOR2 ( integer)

SELECT2 function , offset , data-specification

Notes:
1 The options in the second-trace-spec do not have to be specified immediately following the STTRACE
option. However, they can be specified only if the STTRACE option is also specified.

Option descriptions

START TRACE (trace-parameters)
Indicates the start of a DSN1SDMP job. START TRACE is a required keyword and must be the first
keyword that is specified in the SDMPIN input stream.

Chapter 47. DSN1SDMP 965

If the START TRACE command in the SDMPIN input stream is not valid, or if the user is not properly
authorized, the IFI (instrumentation facility interface) returns an error code and START TRACE does
not take effect. DSN1SDMP writes the error message to the SDMPPRNT data set.

Trace Destination: If Db2 trace data is to be written to the SDMPTRAC data set, the trace destination
must be an IFI online performance (OP) buffer. OP buffer destinations are specified in the DEST keyword
of START TRACE. Eight OP buffer destinations exist, OP1 to OP8. The OPX trace destination assigns the
next available OP buffer. Any record destined for the exclusive internal trace table (RES) is not eligible to
be evaluated. For example, if you start IFCID(0) DEST(RES), this will not execute DSN1SDMP logic and
cannot be acted upon.

The Db2 output text from the START TRACE command is written to SDMPPRNT.

START TRACE and its associated keywords must be specified first. Specify the remaining selective dump
keywords in any order following the START TRACE command.

SELECT function,offset,data-specification
Specifies selection criteria in addition to those that are specified on the START TRACE command.
SELECT expands the data that is available for selection in a trace record and allows more specific
selection of data in the trace record than using START TRACE alone. You can specify a maximum of
eight SELECT criteria.

The selection criteria use the concept of the current-record pointer. Db2 initializes the current-record
pointer to zero, that is, at the beginning of the trace record. For this instance of the DSN1SDMP trace,
the trace record begins with the self-defining section. The current-record pointer can be modified by
Px and LN functions, which are described in the list of functions below.

You can specify the selection criteria with the following parameters:

function
Specifies the type of search that is to be performed on the trace record. The specified value must
be two characters. The possible values are:
DR

Specifies a direct comparison of data from the specified offset. The offset is always calculated
from the current-record pointer.

GE
Specifies a comparison of data that is greater than or equal to the value of the specified offset.
The offset is always calculated from the current-record pointer. The test succeeds if the data
from the specified offset is greater than or equal to data-specification, which you can specify
on the SELECT option.

LE
Specifies a comparison of data that is less than or equal to the value of the specified offset.
The offset is always calculated from the current-record pointer. The test succeeds if the data
from the specified offset is less than or equal to data-specification, which you specify on the
SELECT option.

P1, P2, or P4
Selects the 1-, 2-, or 4-byte field that is located offset bytes past the start of the record. The
function then moves the current-record pointer that number of bytes into the record. P1, P2,
and P4 always start from the beginning of the record (plus the offset that you specify).

This offset is saved as the current-record pointer that is to be used on subsequent DR, LE, GR,
and LN requests.

For example, suppose that the user knows that the offset to the standard header is 4 bytes
long and is located in the first 4 bytes of the record. P4,00 reads that offset and moves the
current-record pointer to the start of the standard header.

LN
Advances the current-record pointer by the number of bytes that are indicated in the 2-byte
field that is located offset bytes from the previous current-record pointer.

966 Db2 12 for z/OS: Utility Guide and Reference

This offset is saved as the current-record pointer that is to be used on subsequent DR, LE, GR,
and LN requests.

offset
Specifies the number (in decimal) of bytes into the trace record where the comparison with the
data-specification field begins. The offset starts from the beginning of the trace record after a P1,
P2, or P4, and from the current-record pointer after a GE, LE, LN, or DR.

The format of the Db2 trace record at data-specification comparison time is shown in the following
figure.

Figure 18. Format of the Db2 trace record at data specification comparison time

• The format of the self-defining section depends on the trace type.
• The format and content of the data sections depend on the IFCID that is being recorded. Each

record can have one or more data sections. Each data section can have multiple repeating
groups.

• The format and content of the trace header section depends on the trace type.

data-specification
Specifies that the data can be hexadecimal (for example, X'9FECBA10') or character (C'FIELD').

ACTION
Specifies the action to perform when a trace record passes the selection criteria of the START TRACE
and SELECT keywords.

Attention: The purpose of the ACTION keyword is to facilitate problem analysis. You should
use it with extreme caution because you might damage existing data. Not all abends are
recoverable, even if the ABENDRET parameter is specified. Some abends might force the
Db2 subsystem to terminate, particularly those abends that occur during end-of-task or end-
of-memory processing due to the agent having experienced a previous abend.

action(abend-code)
Specifies a particular action to perform. Possible values for action are:
ABENDRET

ABEND and retry the agent.
ABENDTER

ABEND and terminate the agent.

An abend reason code can also be specified on this parameter. The codes must be in the range
X'00E60100' to X'00E60199'. The default value is X'00E60100'.

STTRACE
Specifies that a second trace is to be started when a trace record passes the selection criteria.

If you do not specify action or STTRACE, the record is written and no action is performed.

AFTER(integer)
Specifies that the ACTION is to be performed after the trace point is reached integer times.

integer must be between 1 and 32767.

The default value is AFTER(1).

FOR(integer)
Specifies the number of times that the ACTION is to take place when the specified trace point is
reached. After integer times, the trace is stopped, and DSN1SDMP terminates.

integer must be between 1 and 32767 and includes the first action. If no SELECT criteria are specified,
use an integer greater than 1; the START TRACE command automatically causes the action to take
place one time.

Chapter 47. DSN1SDMP 967

The default value is FOR(1).

ACTION2
Specifies the action to perform when a trace record passes the selection criteria of the START TRACE,
SELECT, and SELECT2 keywords.

Attention: The ACTION2 keyword, like the ACTION keyword, should be used with extreme
caution, because you might damage existing data. Not all abends are recoverable, even if the
ABENDRET parameter is specified. Some abends might force the Db2 subsystem to terminate,
particularly those that occur during end-of-task or end-of-memory processing due to the agent
having experienced a previous abend.

action(abend-code)
Specifies a particular action to perform. Possible values for action are:
ABENDRET

ABEND and retry the agent.
ABENDTER

ABEND and terminate the agent.

An abend reason code can also be specified on this parameter. The codes must be in the range
X'00E60100-00E60199'. If no abend code is specified, X'00E60100' is used.

If you do not specify action, the record is written and no action is performed.

FILTER
Specifies that DSN1SDMP is to filter the output of the second trace based on either an ACE or an EB.
(ACE)

Specifies that DSN1SDMP is to include trace records only for the agent control element (ACE) that
is associated with the agent when the first action is triggered and the second trace is started.

(EB)
Specifies that DSN1SDMP is to include trace records only for the execution block (EB) that is
associated with the agent when the first action is triggered and the second trace is started.

COMMAND
Indicates that the specified command is to be issued when a trace record passes the selection criteria
for the first trace and a second trace is started. You can start a second trace by specifying the
STTRACE option.
command

Specifies a specific command to be issued.
FOR2(integer)

Specifies the number of times that the ACTION2 is to take place when the specified second trace
point is reached. After integer times, the second trace is stopped, and DSN1SDMP terminates.

integer must be between 1 and 32767 and includes the first action. If no SELECT2 criteria are
specified, use an integer greater than 1; the STTRACE option automatically causes the action to take
place one time.

The default value is FOR2(1).

AFTER2(integer)
Specifies that the ACTION2 is to be performed after the second trace point is reached integer times.

integer must be between 1 and 32767.

The default value is AFTER2(1).

SELECT2 function,offset,data-specification
Specifies selection criteria for the second trace. This option functions like the SELECT option, except
that it pertains to the second trace only. You can start a second trace by specifying the STTRACE
option.

968 Db2 12 for z/OS: Utility Guide and Reference

Related reference
-START TRACE (Db2) (Db2 Commands)
Trace field descriptions (Db2 Performance)

Assigning buffers
You must specify the OPX destination for all traces that are being recorded to an OPn buffer for the
DSN1SDMP utility to use. By specifying the OPX destination, you avoid the possibility of starting a trace to
a buffer that is already assigned.

If a trace is started to an OPn buffer that has already been assigned, DSN1SDMP waits indefinitely
until the trace is manually stopped. The default for MONITOR-type traces is the OPX destination (the
next available OP buffer). Other trace types must be explicitly directed to OP destinations via the DEST
keyword of the START TRACE command. DSN1SDMP interrogates the IFCAOPN field after the START
TRACE COMMAND call to determine if the trace was started to an OP buffer.

Trace Destination: If Db2 trace data is to be written to the SDMPTRAC data set, the trace destination
must be an IFI online performance (OP) buffer. OP buffer destinations are specified in the DEST keyword
of START TRACE. Eight OP buffer destinations exist, OP1 to OP8. The OPX trace destination assigns the
next available OP buffer. Any record destined for the exclusive internal trace table (RES) is not eligible to
be evaluated. For example, if you start IFCID(0) DEST(RES), this will not execute DSN1SDMP logic and
cannot be acted upon.

Trace records are written to the SDMPTRAC data set when the trace destination is an OP buffer. The
instrumentation facilities component (IFC) writes trace records to the buffer and posts DSN1SDMP to
read the buffer when it fills to half of the buffer size.

You can specify the buffer size on the BUFSIZE keyword of the START TRACE command. All returned
records are written to SDMPTRAC.

If the number of generated trace records requires a larger buffer size than was specified, you can lose
some trace records. If this happens, error message DSN2724I is issued.

Conditions for generating a dump
DSN1SDMP generates a Db2 dump when certain events occur.

DSN1SDMP generates a Db2 dump when all of the following events occur:

• Db2 produces a trace record that satisfies all of the selection criteria.
• You specify an abend action (ABENDRET or ABENDTER).
• The AFTER and FOR conditions for the trace are satisfied.

If all three events occur, an 00E601xx abend occurs. xx is an integer between 1 and 99 that Db2 obtains
from the user-specified value on the ACTION keyword.

Stopping or modifying DSN1SDMP traces
You can stop and modify DSN1SDMP traces.

Procedure
Issue a STOP TRACE command.
For example, if the DSN1SDMP utility does not finish, you can might stop it by issuing the following
command:

-STOP TRACE=P CLASS(32)

DSN1SDMP executes as a stand-alone batch utility without requiring external intervention from the
console operator or other programs. During execution, DSN1SDMP issues an IFI READA request to obtain

Chapter 47. DSN1SDMP 969

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_starttrace.html
https://www.ibm.com/docs/SSEPEK_12.0.0/perf/src/tpc/db2z_tracefields.html

the data from the OPn buffer and a STOP TRACE command to terminate the original trace that is started
by DSN1SDMP.

A STOP TRACE or MODIFY TRACE command that is entered from a console for the trace that is started by
DSN1SDMP causes immediate abnormal termination of DSN1SDMP processing. The IFI READA function
terminates with an appropriate IFI termination message and reason code. Additional error messages and
reason codes that are associated with the DSN1SDMP STOP TRACE command vary depending on the
specific trace command that is entered by the console operator.

If the console operator terminates the original trace by using the STOP TRACE command, the subsequent
STOP TRACE command that is issued by DSN1SDMP fails.

If the console operator enters a MODIFY TRACE command and processing of this command completes
before the STOP TRACE command is issued by DSN1SDMP, the modified trace is also terminated.

Related reference
-STOP TRACE (Db2) (Db2 Commands)
-MODIFY TRACE (Db2) (Db2 Commands)

Sample DSN1SDMP control statements
Use the sample control statements as models for developing your own DSN1SDMP control statements.

Example 1: Creating the JCL for DSN1SDMP

This example shows the skeleton JCL for a DSN1SDMP job.

//DSN1J018 JOB 'IFC SD',CLASS=A,
// MSGLEVEL=(1,1),USER=SYSADM,PASSWORD=SYSADM,REGION=1024K
//**
//*
//* THIS IS A SKELETON OF THE JCL USED TO RUN DSN1SDMP.
//* YOU MUST INSERT SDMPIN DD.
//*
//**
//IFCSD EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//STEPLIB DD DISP=SHR,DSN=prefix.SDSNLOAD
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SDMPPRNT DD SYSOUT=*
//SDMPTRAC DD DISP=(NEW,CATLG,CATLG),DSN=IFCSD.TRACE,
// UNIT=SYSDA,SPACE=(8192,(100,100)),DCB=(DSORG=PS,
// LRECL=32756,RECFM=VB,BLKSIZE=32760)
//SDMPIN DD *
//**
//*
//* INSERT SDMPIN DD HERE. IT MUST BEGIN WITH A VALID
//* START TRACE COMMAND (WITHOUT THE SUBSYSTEM RECOGNITION CHAR)
//*
//**

 (VALID SDMPIN GOES HERE)

/*
//**
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DSN)
 RUN PROG(DSN1SDMP) PLAN(DSNEDCL)
 END
//*

Example 2: Abending and retrying agent on -904 SQL CODE

This example specifies that Db2 is to start a performance trace (which is indicated by the letter P) and
activate IFCID 53, 58. To start only those IFCIDs that are specified in the IFCID option, use trace classes
30-32. In this example, trace class 32 is specified. The IFCID 53 and 58 are started and inspected to see
if they match the SELECT criteria.

970 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_stoptrace.html
https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_modifytrace.html

The SELECT option indicates additional criteria for data in the trace record. In this example, the P4,00
positions the current record pointer to the product section. The GE, 04,X'0005' ensures that the IFCID
being traced is either an IFCID 53 or 58 and is not an IFCID4 which is automatically generated via the
START TRACE command. The P4,08 positions the current record pointer to data section 1 of the IFCID 53
or 58. A direct comparison is then made at decimal offset 74 for SQL code X''FFFFFC78''.

When a trace record passes the selection criteria of the START TRACE command and SELECT keywords,
DSN1SDMP is to perform the action that is specified by the ACTION keyword. In this example, the job is
to abend and try again with reason code 00E60188. This action is to take place only once, as indicated by
the FOR option. FOR(1) is the default, and is therefore not required to be explicitly specified.

//SDMPIN DD *
 START TRACE=P CLASS(32) IFCID(53,58) DEST(OPX)
 FOR(1)
 AFTER(1)
 ACTION(ABENDRET(00E60188))
 SELECT
 * Position to the product section
 P4,00
 * Ensure QWHSIID = 58 or 53 (not IFCID 4)
 GE,04,X'0005'
 * Position to the data section 1
 P4,08
 * Compare SQLCODE in QW0058SQ or QW0053SQ
 DR,74,X'FFFFFC78'
/*

Example 3: Abending and retrying on RMID 20

This example specifies that Db2 is to start a performance trace (which is indicated by the letter P) and
activate all IFCIDs in classes 3 and 8. The trace output is to be recorded in a generic destination that
uses the first free OPn slot, as indicated by the DEST option. The TDATA (TRA) option specifies that a CPU
header is to be placed into the product section of each trace record.

The SELECT option indicates additional criteria for data in the trace record. In this example, the SELECT
option first specifies that the current-record pointer is to be placed at the 4-byte field that is located at
the start of the record. The current record pointer is then to be advanced the number of bytes that are
indicated in the 2-byte field that is located at the current record pointer. The utility is then to directly
compare the data that is 4 bytes from the current-record pointer with the value X'0025'.

When a trace record passes the selection criteria of the START TRACE command and SELECT keywords,
DSN1SDMP is to perform the action that is specified by the ACTION keyword. In this example, the job is to
abend and retry the agent.

//* ABEND AND RETRY AN AGENT WHEN EVENT ID X'0025'
//* (AGENT ALLOCATION) IS RECORDED BY RMID 20 (SERVICE
//* CONTROLLER).
//*
//SDMPIN DD *
* ENSURE ONLY THE TRACE HEADER IS APPENDED WITH THE STANDARD HEADER
* VIA THE TDATA KEYWORD ON START TRACE
 START TRACE=P CLASS(3,8) RMID(20) DEST(OPX) TDATA(TRA)
* ABEND AND RETRY THE AGENT WITH THE DEFAULT ABEND CODE (00E60100)
 ACTION(ABENDRET)
* SPECIFY THE SELECT CRITERIA FOR RMID.EID
 SELECT
* OFFSET TO THE STANDARD HEADER
 P4,00
* ADD LENGTH OF STANDARD HEADER TO GET TO TRACE HEADER
 LN,00
* LOOK FOR EID 37 AT OFFSET 4 IN THE TRACE HEADER
 DR,04,X'0025'
/*

Example 4: Generating a dump on SQLCODE -811 RMID16 IFCID 5

This example specifies that Db2 is to start a performance trace (which is indicated by the letter P) and
activate all IFCIDs in class 3. The trace output is to be recorded in the system management facility (SMF).

Chapter 47. DSN1SDMP 971

The TDATA (COR,TRA) option specifies that a trace header and a CPU header are to be placed into the
product section of each trace record.

The SELECT option indicates additional criteria for data in the trace record. In this example, the SELECT
option first specifies that the current-record pointer is to be placed at the 4-byte field that is located
at the start of the record. The utility is then to directly compare the data that is 2 bytes from the
current-record pointer with the value X'0116003A'. The current record pointer is then to be moved to
the 4-byte field that is located 8 bytes past the start of the current record. The utility is then to directly
compare the data that is 74 bytes from the current-record pointer with the value X'FFFFFCD5'.

When a trace record passes the selection criteria of the START TRACE command and SELECT keywords,
DSN1SDMP is to perform the action that is specified by the ACTION keyword. In this example, the job is to
abend with reason code 00E60188 and retry the agent. This action is to take place only once, as indicated
by the FOR option. FOR(1) is the default, and is therefore not required to be explicitly specified. AFTER(1)
indicates that this action is to be performed the first time the trace point is reached. AFTER(1) is also the
default.

//SDMPIN DD *
 START TRACE=P CLASS(3) RMID(22) DEST(SMF) TDATA(COR,TRA)
 AFTER(1)
 FOR(1)
 SELECT
* POSITION TO HEADERS (QWHS IS ALWAYS FIRST)
 P4,00
* CHECK QWHS 01, FOR RMID 16, IFCID 58
 DR,02,X'0116003A'
* POSITION TO SECOND SECTION (1ST DATA SECTION)
 P4,08
* COMPARE SQLCODE FOR 811
 DR,74,X'FFFFFCD5'
 ACTION(ABENDRET(00E60188))
/*

Example 5: Starting a second trace

This example job starts a trace on IFC 196 records. An IFC 196 record is written when a lock timeout
occurs. In this example, when a lock timeout occurs, DSN1SDMP is to start a second trace, as indicated
by the ACTION(STTRACE) option. This second trace is to be an accounting trace, as indicated by the
COMMAND START TRACE(ACCTG) option. This trace is to include records only for the ACE that is
associated with the agent that timed out, as indicated by the FILTER(ACE) option. When the qualifying
accounting record is found, DSN1SDMP generates a dump.

//SDMPIN DD *
* START ONLY IFCID 196, TIMEOUT
 START TRACE=P CLASS(32) IFCID(196) DEST(SMF)
 AFTER(1)
* ACTION = START ACCOUNTING TRACE
 ACTION(STTRACE)
* FILTER ON JUST 196 RECORDS...
 SELECT
 P4,00
 DR,04,X'00C4'
* WHEN ACCOUNTING IS CUT, ABEND
 ACTION2(ABENDRET(00E60188))
* START THE ACCOUNTING TRACE FILTER ON THE ACE OF THE AGENT
* THAT TIMED OUT
 COMMAND
 START TRACE(ACCTG) CLASS(32) IFCID(3) DEST(SMF)
* Filter can be for ACE or EB
 FILTER(ACE)
 /*

Related reference
-STOP TRACE (Db2) (Db2 Commands)

972 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_stoptrace.html

Appendix A. Supplied stored procedures for utility
operations

Db2 provides some stored procedures that you can call in application programs to perform a number of
utility functions. Typically, these procedures are created during installation or migration.

The following supplied stored procedures are particularly useful for utility operations:

• DSNUTILV stored procedure (Db2 SQL)
• DSNUTILU stored procedure (Db2 SQL)
• DSNACCOX stored procedure (Db2 SQL)

For the complete list of stored procedures that are provided with Db2, see Procedures that are supplied
with Db2 (Db2 SQL).

Related concepts
Sample callers of utilities stored procedures (Db2 Installation and Migration)
Migration step: Configure Db2 for running stored procedures and user-defined functions (optional) (Db2
Installation and Migration)
Related tasks
“Invoking Db2 online utilities” on page 17
To invoke Db2 online utilities, Db2 must be up and running.
Migration step: Set up Db2-supplied routines (Db2 Installation and Migration)
Installing Db2-supplied routines during installation (Db2 Installation and Migration)
Implementing Db2 stored procedures ()

© Copyright IBM Corp. 1983, 2024 973

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_dsnutilv.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_dsnutilu.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_dsnaccox.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_suppliedstoredprocedures.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_suppliedstoredprocedures.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ivpdsnutils.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_configuredb2fordb2routinesmigr.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_setupdb2routinesmigr.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_installdb2routinesinst.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sproc/src/tpc/db2z_implementstoredprocedure.html

974 Db2 12 for z/OS: Utility Guide and Reference

Appendix B. Advisory or restrictive states
To control access and help ensure data integrity, Db2 can set a restrictive or nonrestrictive (advisory)
status on certain objects. However, you can take steps to correct each status.

Use the DISPLAY DATABASE command to display the current status for an object.

In addition to the states mentioned in this topic, the output from the DISPLAY DATABASE command
might also indicate that an object is in logical page list (LPL) status. This state means that the pages that
are listed in the LPL PAGES column are logically in error and are unavailable for access. Db2 writes entries
for these pages in an LPL.

Important: If you need to remove a restrictive state without correcting the problem, you can use the
REPAIR utility with the SET statement or start the database with ACCESS(FORCE). However, use these
options with caution, as they do not correct the underlying problem that caused the object to be placed in
the restrictive state.

Related tasks
Removing pages from the logical page list (Db2 Administration Guide)
Related reference
-DISPLAY DATABASE (Db2) (Db2 Commands)

Auxiliary CHECK-pending status
When auxiliary CHECK-pending (ACHKP) restrictive status is set on a base table space, that table space is
unavailable for processing by SQL.

The following situations are examples of when ACHKP status is set on a base table space:

• The CHECK DATA utility is run with the AUXERROR REPORT option, and at least one LOB column error is
detected but not invalidated.

• A base table space and its LOB table spaces are recovered to the current point in time in the same
RECOVER utility invocation, and both the base table space and the LOB table spaces are defined with
the NOT LOGGED attribute.

ACHKP status is set on an XML table space when CHECK DATA is run with the XMLERROR REPORT option,
and the utility finds an error in an XML table space, the corresponding base table space, or an index space
for the node ID.

To reset ACHKP status, take the actions that are described in the following table.

© Copyright IBM Corp. 1983, 2024 975

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_removepagesfromlogicalpagelist.html
https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displaydatabase.html

Table 135. Resetting auxiliary CHECK-pending status

Status Abbreviation Object affected Corrective action

Auxiliary
CHECK-
pending

ACHKP Base table space 1. Update or delete invalid LOBs and XML objects
by using SQL.

2. Run the CHECK DATA utility with the appropriate
SCOPE option to verify the validity of LOBs and
XML objects and reset ACHKP status.

If a table space is in both REORG-pending status
and auxiliary CHECK-pending status (or CHECK-
pending status), run the REORG TABLESPACE utility
first and then run CHECK DATA to reset the
respective states.

You can use the REPAIR utility to reset the ACHKP
status, but use caution, as it does not correct the
underlying problem that caused the restrictive state
to be set. If you do run REPAIR, run CHECK DATA
afterward.

Related reference
“Syntax and options of the CHECK DATA control statement” on page 72
The CHECK DATA utility control statement, with its multiple options, defines the function that the utility
job performs.

Auxiliary warning status
A base table space or LOB table space in auxiliary warning (AUXW) status remains available for processing
by SQL even though it contains invalid LOBs.

Db2 can access all rows of a base table space that is in AUXW status. SQL can update the invalid LOB
column and delete base table rows, but it cannot retrieve the value of the LOB column. If Db2 attempts to
access an invalid LOB column, a -904 SQL code is returned. The AUXW status remains on the base table
space even when SQL deletes or updates the last invalid LOB column.

The following situations are examples of when AUXW status is set:

• The CHECK DATA utility is run with the AUXERROR INVALIDATE option, and at least one LOB column has
an invalidated LOB.

• CHECK DATA is run with the AUXERROR REPORT option and encounters only invalid LOB columns and
no other LOB column errors. In this case, the base table space is set to AUXW status.

• A base table space and its LOB table spaces are recovered to the current point in time in the same
RECOVER utility invocation, and both the base table space and the LOB table spaces are defined with
the NOT LOGGED attribute. In this case, if updates were made to the LOB table spaces after the
recoverable point, AUXW status is set on the LOB table spaces.

• An invalid LOB column is found by the RECOVER utility after the following series of events:

1. The LOB table space was defined with the NOT LOGGED attribute.
2. The LOB table space was recovered.
3. The LOB was updated since the last image copy.

To reset AUXW status, take the actions that are described in the following table.

976 Db2 12 for z/OS: Utility Guide and Reference

Table 136. Resetting auxiliary warning status

Status Abbreviation Object affected Corrective action

Auxiliary
warning

AUXW Base table space 1. Update or delete invalid LOBs and XML objects
by using SQL.

2. If an orphan LOB exists or a version mismatch
exists between the base table and the auxiliary
index, use the REPAIR utility to delete the LOB
from the LOB table space.

3. Run the CHECK DATA utility to verify the validity
of LOBs and XML objects and reset AUXW
status.

Auxiliary
warning

AUXW LOB table space 1. Update or delete invalid LOBs and XML objects
by using SQL.

2. If an orphan LOB exists or a version mismatch
exists between the base table and the auxiliary
index, use the REPAIR utility to delete the LOB
from the LOB table space.

3. Run the CHECK LOB utility to verify the validity
of LOBs and reset AUXW status.

Related reference
“Syntax and options of the CHECK DATA control statement” on page 72
The CHECK DATA utility control statement, with its multiple options, defines the function that the utility
job performs.
“Syntax and options of the CHECK LOB control statement” on page 114
The CHECK LOB utility control statement, with its multiple options, defines the function that the utility job
performs.

CHECK-pending status
CHECK-pending (CHKP) restrictive status indicates that an object might be in an inconsistent state and
must be checked.

The following situations are examples of when CHKP status is set:

• The following utilities set CHKP status on a table space if referential integrity constraints are
encountered:

– LOAD with ENFORCE NO
– RECOVER for a point-in-time recovery
– CHECK LOB
– REORG DISCARD

Db2 ignores informational referential integrity constraints and does not set CHKP status for them.
• A table space or partition is placed in CHKP status in any of the following situations that might introduce

table check violations:

– A check constraint is defined on a populated table by using the ALTER TABLE statement, and the
value of the CURRENT RULES special register is DB2.

– The LOAD utility is run with ENFORCE NO, and check constraints are defined on the table.
– The CHECK DATA utility is run on a table that contains violations of check constraints.
– A point-in-time recovery introduces violations of check constraints.

Appendix B. Advisory or restrictive states 977

• An index might be placed in CHKP status in the following recovery situations:

– An index was recovered to a specific RBA or LRSN based on a copy and then applying log records, but
the table space was not recovered in the same list.

– A table space and index were recovered, but the recovery point in time was not a point of consistency.
(A point of consistency is established by running the QUIESCE utility or the COPY utility with
SHRLEVEL REFERENCE.)

• CHKP status for an XML table space is set only if a new XML schema for an XML type modifier was added
or removed.

To reset CHKP status, take the actions that are described in the following table.

Table 137. Resetting CHECK-pending status

Status Abbreviation Object affected Corrective action

CHECK-
pending

CHKP Table space or base table
space

Run CHECK DATA. See “Resetting CHECK-pending
status” on page 91.

If a table space is in both REORG-pending and
CHECK-pending status (or auxiliary CHECK-pending
status), run the REORG TABLESPACE utility first
and then run CHECK DATA to reset the respective
states.

CHECK-
pending

CHKP Partitioning index,
nonpartitioning index,
index, XML index on the
auxiliary table

Run the CHECK INDEX utility on the index. If any
errors are found, use the REBUILD INDEX utility to
rebuild the index from existing data.

CHECK-
pending

CHKP LOB table space Run the CHECK LOB utility. See “Resetting CHECK-
pending status for a LOB table space” on page 120.

CHECK-
pending

CHKP XML table space Run CHECK DATA to check the XML table space. If
any errors are found, take the following actions:

1. Correct any defects that are found in the XML
table space by using the REPAIR utility.

2. Run CHECK DATA again to reset the CHECK-
pending status.

Related reference
“Syntax and options of the CHECK DATA control statement” on page 72
The CHECK DATA utility control statement, with its multiple options, defines the function that the utility
job performs.
“Syntax and options of the CHECK INDEX control statement” on page 98
The CHECK INDEX utility control statement, with its multiple options, defines the function that the utility
job performs.
“Syntax and options of the CHECK LOB control statement” on page 114
The CHECK LOB utility control statement, with its multiple options, defines the function that the utility job
performs.
“Syntax and options of the REORG TABLESPACE control statement” on page 526
The REORG TABLESPACE utility control statement, with its multiple options, defines the function that the
utility job performs.
“Syntax and options of the REBUILD INDEX control statement” on page 400

978 Db2 12 for z/OS: Utility Guide and Reference

The REBUILD INDEX utility control statement, with its multiple options, defines the function that the
utility job performs.
“Syntax and options of the REPAIR control statement” on page 632
The REPAIR utility control statement, with its multiple options, defines the function that the utility job
performs.
-DISPLAY DATABASE (Db2) (Db2 Commands)

COPY-pending status
COPY-pending (COPY) restrictive status indicates that the affected object must be copied.

To reset COPY status, take the action that is described in the following table.

Table 138. Resetting COPY-pending status

Status Abbreviation Object affected Corrective action

COPY-
pending

COPY Table space or table space
partition

Take an image copy of the affected object.

Related reference
“Syntax and options of the COPY control statement” on page 125
The COPY utility control statement, with its multiple options, defines the function that the utility job
performs.

DBETE status
DBETE advisory status identifies objects that need special attention. Those objects can be table spaces,
table space partitions, index spaces, index partitions, or logical index partitions.

Db2 places objects in DBETE status as a result of certain DBET abends or page set access error abends
during restart or RESTORE SYSTEM. The affected objects are also placed in a restrictive state (RECP,
RBDP or PSRBD), so that they are required to be recovered. By placing these objects in DBETE status, Db2
can avoid outages.

To reset DBETE status, take the actions that are described in the following table.

Appendix B. Advisory or restrictive states 979

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_displaydatabase.html

Table 139. Resetting OBJECT error status

Status Abbreviation Object affected Corrective action

OBJECT
error

DBETE Table space, table space
partition, index space,
index partition, or logical
index partition

Use one of the following utilities to recover or
rebuild the object:

• RECOVER
• LOAD with the REPLACE option
• REBUILD

If a table space or index space that contains
partitions has a status of DBETE and RECP and is
also listed as being of type UN (unknown type), you
can still use the utilities in the preceding list to
recover or rebuild the entire space.

The DBETE status is reset when the RECP, RBDP, or
PSRBD status is reset.

DBETE, RECP, RBDP, and PSRBD status can also be
reset by issuing the following command:

-START DB(db name) SP(space name)
ACCESS(FORCE)

However, use caution, as this method does not
correct the underlying problem that caused the
restrictive state to be set.

Contact IBM Support to report the problem. Db2
log records need to be analyzed to diagnose
the cause of the problem and determine further
actions.

Related reference
“REBUILD-pending status” on page 982
A REBUILD-pending restrictive status indicates that the affected index or index partition is broken and
must be rebuilt from the data.
“RECOVER-pending status” on page 983
RECOVER-pending (RECP) restrictive status indicates that a table space, table space partition, index
space, or index on an auxiliary table is broken and must be recovered.
“Syntax and options of the LOAD control statement” on page 223
The LOAD utility control statement, with its multiple options, defines the function that the utility job
performs.
“Syntax and options of the REBUILD INDEX control statement” on page 400
The REBUILD INDEX utility control statement, with its multiple options, defines the function that the
utility job performs.
“Syntax and options of the RECOVER control statement” on page 427
The RECOVER utility control statement, with its multiple options, defines the function that the utility job
performs.

Group buffer pool RECOVER-pending status
Group buffer pool RECOVER-pending (GRECP) restrictive status is set when a coupling facility fails with
pages that were not externalized. The affected object must be recovered.

Db2 automatically initiates recovery of an index that is in GRECP or LPL status. Indexes become available
immediately after GRECP or LPL recovery. In some rare cases, when you run the RECOVER utility or

980 Db2 12 for z/OS: Utility Guide and Reference

RESTORE SYSTEM utility, an index might be left in REBUILD-pending status. In these cases, you must
rebuild the index by running the REBUILD INDEX utility.

You must explicitly recover any objects that are in GRECP status and associated with a group buffer pool
that is not defined with AUTOREC(YES).

To reset GRECP status, take the actions that are described in the following table.

Table 140. Resetting group buffer pool RECOVER-pending status

Status Abbreviation Object affected Corrective action

Group buffer
pool
RECOVER-
pending

GRECP Object Recover the object or use the START DATABASE
command to recover the object.

Tip: To avoid issuing START DATABASE for every
member, wait until a DSNI049I message is issued
from each restarting member. Then issue START
DATABASE to recover objects with GRECP status.

Related reference
-START DATABASE (Db2) (Db2 Commands)
“Syntax and options of the RECOVER control statement” on page 427
The RECOVER utility control statement, with its multiple options, defines the function that the utility job
performs.
Related information
DSNI049I (Db2 Messages)

Informational COPY-pending status
Informational COPY-pending (ICOPY) advisory status indicates that the affected object should be copied.

To reset ICOPY status, take the actions that are described in the following table.

Table 141. Resetting informational COPY-pending status

Status Abbreviation Object affected Corrective action

Informationa
l COPY-
pending

ICOPY NOT LOGGED table spaces Copy the affected table space.

Informationa
l COPY-
pending

ICOPY Partitioning index,
nonpartitioning index, or
index on the auxiliary table

Copy the affected index.

Related reference
“Syntax and options of the COPY control statement” on page 125
The COPY utility control statement, with its multiple options, defines the function that the utility job
performs.

PRO restricted status
Persistent Read Only (PRO) restricted status indicates that only read access by SQL or utilities is allowed
for the table space partition; all updates to the partition are prohibited.

SQL or utilities that attempt to update a partition that is in PRO status receive a resource unavailable error.
When one or more partitions are in PRO status, run utilities that update data at the partition level.

Appendix B. Advisory or restrictive states 981

https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_startdatabase.html
https://www.ibm.com/docs/SSEPEK_12.0.0/msgs/src/tpc/dsni049i.html

PRO status is turned on by a system administrator or database administrator or by a product that runs
with Db2 for z/OS. PRO status can be set on a partition by using the REPAIR utility SET statement.

Table 142. Resetting PRO restricted status

Status Abbreviation Object affected Corrective action

Persistent
Read Only

PRO Table space partition Run REPAIR SET TABLESPACE with NOPRO.

Important: Do not reset PRO status without the
consent of the system administrator or database
administrator, because updates to the partition
might cause data loss.

Related reference
“Syntax and options of the REPAIR control statement” on page 632
The REPAIR utility control statement, with its multiple options, defines the function that the utility job
performs.

REBUILD-pending status
A REBUILD-pending restrictive status indicates that the affected index or index partition is broken and
must be rebuilt from the data.

The following REBUILD-pending states can be set:

REBUILD-pending (RBDP) status
Indicates that the physical or logical index partition is inaccessible and must be rebuilt.

For example, RBDP status is set on a data-partitioned secondary index if you create the index after
performing the following actions:

• Create a partitioned table space.
• Create a partitioning index.
• Insert a row into a table.

In this situation, the last partition of the table space is set to REORG-pending (REORP) restrictive
status.

REBUILD-pending star (RBDP*) status
Indicates that a logical partition of a nonpartitioned secondary index is unavailable for read-write
access and the entire index is unavailable for read access. The related table is unavailable for insert
or update operation if the index is unique and one or more logical partitions in the index is in
REBUILD-pending star status.

Page set REBUILD-pending (PSRBD) status
Indicates that an entire nonpartitioned secondary index or index on the auxiliary table is unavailable
for read-write access.

Advisory REBUILD-pending (ARBDP) status
Indicates that the index should be rebuilt. For example, ARBDP status is set when indexes with
varying length columns are changed from VARYING NO to VARYING YES.

To reset REBUILD-pending status, take the actions that are described in the following table.

982 Db2 12 for z/OS: Utility Guide and Reference

Table 143. Resetting REBUILD-pending status

Status Abbreviatio
n

Object affected Corrective action Notes®

REBUILD-
pending

RBDP Physical or logical index
partition

Run the REBUILD INDEX utility on the affected
index partitions.

1, 3, 4

REBUILD-
pending
star

RBDP* Logical partition
of nonpartitioned
secondary indexes

Run REBUILD INDEX PART or the RECOVER
utility on the affected logical partitions.

1, 2, 3, 4

Page set
REBUILD-
pending

PSRBD Nonpartitioned
secondary index (NPSI)
or index on the auxiliary
table

Run RECOVER or REBUILD INDEX on the
entire affected index. (You cannot run REBUILD
INDEX PART to rebuild one logical partition of
an NPI in PSRBD.)

1, 2, 3, 4

Advisory
REBUILD-
pending

ARBDP Index Run REBUILD INDEX. Alternatively, if the
ARBDP was set as a result of an ALTER
statement, run the REORG INDEX utility.

1, 3

Notes:

1. Rebuilding an index and thereby resetting the REBUILD-pending status invalidates the dynamic
statement cache for the related table.

2. If you alter the data type of a column to a numeric data type, RECOVER INDEX cannot complete. You
must rebuild the index.

3. You can also reset ARBDP, RBDP, RBDP*, or PSRBD status by running REORG TABLESPACE on the
associated table space or LOAD REPLACE on the table space or partition. (The LOAD REPLACE method
assumes that replacing the data is acceptable for your situation.)

4. If you need to remove the RBDP, RBDP*, or PSRBD status only, without correcting the underlying
problem that caused the object to be placed in a restrictive state, you can take one of the following
actions:

• Run the REPAIR utility SET INDEX statement with NORBDPEND on the index partition. Use the
CHECK INDEX utility to identify inconsistencies between the index and table space and the CHECK
DATA utility to check referential integrity constraints.

• Start the database that contains the index space with ACCESS FORCE.

Be aware that these actions do not correct the data inconsistency in the index or index partition.

Related reference
“Syntax and options of the REBUILD INDEX control statement” on page 400
The REBUILD INDEX utility control statement, with its multiple options, defines the function that the
utility job performs.
“Syntax and options of the RECOVER control statement” on page 427
The RECOVER utility control statement, with its multiple options, defines the function that the utility job
performs.

RECOVER-pending status
RECOVER-pending (RECP) restrictive status indicates that a table space, table space partition, index
space, or index on an auxiliary table is broken and must be recovered.

If a single logical partition is in RECP status, the partition is treated as RECP status for SQL access. A
single logical partition in RECP status does not restrict utility access to other logical partitions that are not
in RECP status. RECP status is reset by recovering only the single logical partition.

To reset RECP status, take the actions that are described in the following table.

Appendix B. Advisory or restrictive states 983

Table 144. Resetting RECOVER-pending status

Status Abbreviatio
n

Object affected Corrective action Notes

RECOVER-
pending

RECP Table space Run the RECOVER utility on the affected table
space.

1, 2

RECOVER-
pending

RECP Table space partition Run RECOVER on the affected partition. 1, 2

RECOVER-
pending

RECP Index on the auxiliary
table

Run one of the following utilities on the
affected index:

• REBUILD INDEX
• RECOVER INDEX

1, 2

RECOVER-
pending

RECP Index space Run one of the following utilities on the
affected index space:

• REBUILD INDEX
• RECOVER INDEX

1, 2

Notes:

1. You can also reset RECP status by running LOAD REPLACE on the table space or partition. (The LOAD
REPLACE method assumes that replacing the data is acceptable for your situation.)

2. If you need to remove the RECP status only, without correcting the underlying problem that caused the
object to be placed in a restrictive state, you can take one of the following actions:

• Run the REPAIR utility SET statement with NORCVRPEND on the table space, partition, or index.
• Start the database that contains the table space or index space with ACCESS FORCE.

Be aware that these actions do not correct the data inconsistency in the index or index partition.

Related reference
“Syntax and options of the REBUILD INDEX control statement” on page 400
The REBUILD INDEX utility control statement, with its multiple options, defines the function that the
utility job performs.
“Syntax and options of the RECOVER control statement” on page 427
The RECOVER utility control statement, with its multiple options, defines the function that the utility job
performs.

REFRESH-pending status
When Db2 marks an object in REFRESH-pending (REFP) status, it also puts the object in RECOVER-
pending (RECP) or REBUILD-pending (RBDP or PSRBD) status.

To reset REFP status, take the actions that are described in the following table.

Table 145. Resetting REFRESH-pending status

Status Abbreviation Object affected Corrective action

REFRESH-
pending

REFP Table space Run the RECOVER utility or the LOAD utility with
REPLACE.

REFRESH-
pending

REFP Index Run the REBUILD INDEX utility.

984 Db2 12 for z/OS: Utility Guide and Reference

Related reference
“REBUILD-pending status” on page 982
A REBUILD-pending restrictive status indicates that the affected index or index partition is broken and
must be rebuilt from the data.
“RECOVER-pending status” on page 983
RECOVER-pending (RECP) restrictive status indicates that a table space, table space partition, index
space, or index on an auxiliary table is broken and must be recovered.
“Syntax and options of the LOAD control statement” on page 223
The LOAD utility control statement, with its multiple options, defines the function that the utility job
performs.
“Syntax and options of the REBUILD INDEX control statement” on page 400
The REBUILD INDEX utility control statement, with its multiple options, defines the function that the
utility job performs.
“Syntax and options of the RECOVER control statement” on page 427
The RECOVER utility control statement, with its multiple options, defines the function that the utility job
performs.

REORG-pending status
REORG-pending status indicates that an object either must or should be reorganized.

The following REORG-pending states can be set:

REORG-pending (REORP) restrictive status
Indicates that the object must be reorganized to apply definition changes before the data is
accessible. REORP status must be reset for all adjacent logical partitions that are in REORP status.

REORG-pending (AREO*) advisory status
Indicates that the object needs to be reorganized for optimal performance. AREO* status can be reset
on a single partition, regardless of whether adjacent partitions are also in AREO* status. The affected
objects are not restricted and can be accessed by both readers and writers.

REORG-pending (AREOR) advisory status:
Indicates that the object should be reorganized to apply pending definition changes. AREOR status
must be reset for all adjacent logical partitions that are in AREOR status. The affected objects are not
restricted and can be accessed by both readers and writers. The affected objects are not modified
until a REORG utility job is run to materialize the definition changes.

To reset REORG-pending status, take the actions that are described in the following table.

Appendix B. Advisory or restrictive states 985

Table 146. Resetting REORG-pending status

Status Abbreviation Object affected Corrective action

REORG-
pending

REORP Table space or partition Run one of the following utilities on the table space
or one or more partitions:

• REORG TABLESPACE
• LOAD with the REPLACE option

If a table space is in both REORG-pending and
CHECK-pending status (or auxiliary CHECK-pending
status), run REORG first and then run the CHECK
DATA utility to clear the respective states.

If one or more partitions are in REORP status,
you must include all adjacent logical partitions that
are in REORP status in the same REORG or LOAD
job. For example, suppose that a partitioned table
space has logical partitions in the following states:
P1

REORP
P2

REORP
P3

RW
P4

REORP
P5

REORP

In this case, the partition range P1:P2 must be in
the same utility job, and the partition range P4:P5
must be in the same utility job. You can either
include both of these ranges in one utility job or run
two separate jobs, one for each range. Alternatively,
you can specify the REORG option SCOPE PENDING
so that the utility includes both ranges in REORP
status.

Advisory
REORG-
pending

AREO* Table space or partition Run one of the following utilities on the table space
or one or more partitions:

• REORG TABLESPACE
• LOAD with the REPLACE option

If one or more partitions are in AREO* status, you
can reset AREO* for a specific partition without
being restricted by another AREO* status for an
adjacent partition. AREO* status does not have to
be reset for all affected partitions at the same time.

986 Db2 12 for z/OS: Utility Guide and Reference

Table 146. Resetting REORG-pending status (continued)

Status Abbreviation Object affected Corrective action

Advisory
REORG-
pending

AREO* Index space or partition Run one of the following utilities on the index space
or one or more partitions:

• REORG TABLESPACE
• LOAD with the REPLACE option
• REORG INDEX
• REBUILD INDEX

If one or more partitions are in AREO* status, you
can reset AREO* for a specific partition without
being restricted by another AREO* status for an
adjacent partition. AREO* status does not have to
be reset for all affected partitions at the same time.

Advisory
REORG-
pending

AREOR Table space or partition Run REORG TABLESPACE on the table space or all
affected partitions.

When AREOR is set at the partition level, you must
include all adjacent logical partitions that have
this status in the same REORG job. For example,
suppose that you change partition limits or change
the page size and as a result, the table space has
partitions in the following states:

P1
AREOR

P2
AREOR

P3
RW

P4
AREOR

P5
AREOR

In this case, the partition range P1:P2 must be
in the same REORG job, and the partition range
P4:P5 must be in the same REORG job. You
can either include both of these ranges in one
REORG job or run two separate jobs, one for each
range. Alternatively, you can specify the SCOPE
PENDING option so that REORG includes both
ranges in AREOR status. (You can run REORG
on the individual partitions and not the entire
adjacent range in AREOR. However, in that case,
REORG does not materialize any pending definition
changes and the AREOR status is not reset.)

If you want to drop any pending definition changes,
use the ALTER TABLESPACE statement with the
DROP PENDING CHANGES clause. This statement
removes the pending changes and resets the
AREOR status.

Appendix B. Advisory or restrictive states 987

Table 146. Resetting REORG-pending status (continued)

Status Abbreviation Object affected Corrective action

Advisory
REORG-
pending

AREOR Index space or partition Run one of the following utilities on the index space
or all affected partitions:

• REORG TABLESPACE
• REORG INDEX

When AREOR is set at the partition level, you must
include all adjacent logical partitions that have this
status in the same REORG job. See the example
in the preceding row for table spaces. (You can
run REORG on the individual partitions and not
the entire adjacent range in AREOR. However, in
that case, REORG does not materialize any pending
definition changes and the AREOR status is not
reset.)

Related reference
ALTER TABLESPACE (Db2 SQL)
“Syntax and options of the REORG TABLESPACE control statement” on page 526
The REORG TABLESPACE utility control statement, with its multiple options, defines the function that the
utility job performs.
“Syntax and options of the REORG INDEX control statement” on page 488
The REORG INDEX utility control statement, with its multiple options, defines the function that the utility
job performs.
“Syntax and options of the LOAD control statement” on page 223
The LOAD utility control statement, with its multiple options, defines the function that the utility job
performs.
Related information
Pending data definition changes (Db2 Administration Guide)

Restart-pending status
Restart-pending status indicates that an object has backout work pending at the end of a Db2 restart.
Backout activity against the objects must be completed.

In a non-data-sharing environment, objects with backout work pending are set to restart-pending (RESTP)
restrictive status. In a data-sharing environment, these objects are set to advisory restart-pending
(AREST) status

Objects in RESTP status are unavailable. You cannot use LOAD REPLACE on an object that is in the RESTP
status. You also cannot run any utilities against page sets or partitions with RESTP status. Any attempt to
access a page set or partition with RESTP status terminates with return code 8.

Utilities are not restricted by the AREST status, but any write claims that are held by postponed-abort
units of recovery (URs) on the objects in AREST status prevent draining utilities from accessing that page
set.

To reset restart-pending status, take the actions that are described in the following table.

988 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sql_altertablespace.html
https://www.ibm.com/docs/en/SSEPEK_12.0.0/admin/src/tpc/db2z_pendingchanges.html

Table 147. Resetting restart-pending status

Status Abbreviation Object affected Corrective action

Restart-
pending

RESTP Table space, table space
partitions, index spaces,
and physical index space
partitions

Perform one of the following actions:

• Use the RECOVER POSTPONED command.
• Restart the Db2 subsystem with the LBACKOUT

subsystem parameter set to AUTO.

Delay running REORG TABLESPACE SHRLEVEL
CHANGE until all RESTP statuses are reset.

Advisory
restart-
pending

AREST Table space, table space
partitions, index spaces,
and physical index space
partitions

Use the same actions that are described in the
preceding row.

Related tasks
Starting a table space or index space that has restrictions (Db2 Administration Guide)
Related reference
LIMIT BACKOUT field (LBACKOUT subsystem parameter) (Db2 Installation and Migration)
-RECOVER POSTPONED (Db2) (Db2 Commands)

Appendix B. Advisory or restrictive states 989

https://www.ibm.com/docs/SSEPEK_12.0.0/admin/src/tpc/db2z_starttableorspacewithrestrictions.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_ipf_lbackout.html
https://www.ibm.com/docs/SSEPEK_12.0.0/comref/src/tpc/db2z_cmd_recoverpostponed.html

990 Db2 12 for z/OS: Utility Guide and Reference

Appendix C. DSN1SMFP
The DSN1SMFP utility processes Db2 trace data into reports that are useful for evaluating and auditing
the evaluated configuration.

DSN1SMFP accepts data that SMF collects in standard SMF format and produces from one
to eighteen reports. DSN1SMFP accepts all SMF record types, but it processes only type 101 (Db2
Accounting) and 102 (Db2 Performance) records. DSN1SMFP checks each type 101 and 102 record for
Db2 audit trace types of theseDb2 trace records:

• 003: Accounting - DDF Data by Location (security-relevant fields only)
• 004: Trace Start
• 005: Trace Stop
• 023: Utility Start
• 024: Utility Change
• 025: Utility End
• 083: Identify End
• 106: System Parameters (security-relevant fields only)
• 140: Audit Authorization Failures
• 141: Audit DDL Grant/Revoke
• 142: Audit DDL Create/Alter/Drop
• 143: Audit First Write
• 144: Audit First Read
• 145: Audit DML Statement
• 269: Trusted Connection
• 270: Trusted Context
• 350: SQL Statement
• 361: Audit Administrative Authorities
• 362: Trace Start and Stop with AUDITPOLICY.

IFCIDs: Each such trace type is extracted and outputted in report format to a dedicated DD for that trace
type.

Important: At a minimum, ensure that the following traces are started when you collect SMF records for
input to DSN1SMFP.

Table 148. Traces to start for DSN1SMFP

Trace type Class IFCID

Accounting 1 3

Accounting 1 106

Audit 1 140

Audit 2 141

Audit 3 142

Audit 4 143

Audit 5 144

© Copyright IBM Corp. 1983, 2024 991

Table 148. Traces to start for DSN1SMFP (continued)

Trace type Class IFCID

Audit 6 145

Audit 7 83

Audit 8 23

Audit 8 24

Audit 8 25

Audit 10 269

Audit 10 270

Audit 11 361

Audit 362

Performance 30 350

IFCIDs 4 and 5 are started automatically when you start or stop any other trace, and IFCID 362 is started
automatically when you start an audit policy trace.

DSN1SMFP also counts and reports the following values in the end-of-job summary:

• Total SMF records that are read
• Total SMF type 101 records
• Total SMF type 102 records
• Separate totals for IFCID 0003, 0004, 0005, 0023, 0024, 0025, 0083, 0106, 0140, 0141, 0142, 0143,

0144, 0145, 0269, 0270, 0350, 0361, 0362, and other IFCID records that are read
• Separate totals for formatted IFCID 0003, 0004, 0005, 0023, 0024, 0025, 0083, 0106, 0140, 0141,

0142, 0143, 0144, 0145, 0269, 0270, 0350, 0361, 0362 records that are written
• Total formatted records that are written

You can allocate each output DD of interest to a print device, data set, or held output.

DSN1SMFP loads an application defaults module to obtain the EBCDIC CCSID for conversion of Unicode-
encoded strings. That application defaults module is DSNHDECP, unless you specify PARM='DECP(decp-
name)' when you invoke DSN1SMFP. You need to ensure that the library where the application defaults
module resides (typically prefix.SDSNEXIT) is available and allocated ahead of prefix.SDSNLOAD in
the JOBLIB or STEPLIB DD concatenation.

When DSN1SMFP encounters an IFCID 0106 trace record, if the EBCDIC CCSID that is used by Db2 does
not agree with the CCSID that is loaded from DSNHDECP, DSN1SMFP reports a warning message and
ends with a minimum return code of 4.

Related tasks
“Running DSN1SMFP” on page 993
Related reference
“Before running DSN1SMFP” on page 993
You need to know the required environment, authorization, and control statement of the DSN1SMFP
utility before you run it.
“Sample DSN1SMFP control statement” on page 994
“DSN1SMFP output” on page 994

992 Db2 12 for z/OS: Utility Guide and Reference

Before running DSN1SMFP
You need to know the required environment, authorization, and control statement of the DSN1SMFP
utility before you run it.

Environment

DSN1SMFP runs as a batch z/OS job. Db2 does not need to be started.

Required authorization

DSN1SMFP does not require authorization. However, if any of the SMF records are RACF-protected, the
authorization ID of the job must have READ RACF authority.

Control statement

See “Sample DSN1SMFP control statement” on page 994 for an example of using DSN1SMFP to extract,
format, and print the SMF records.

Required input

• Specify the SMF records to extract, format, and print in a data set that is specified by an SMFIN DD
statement.

• Specify the data set that contains the application defaults load module for the subsystem in the JOBLIB
DD statement concatenation or the STEPLIB DD statement concatenation, before the prefix.SDSNLOAD
data set. If the application defaults load module is not named DSNHDECP, you need to specify
PARM=DECP(decp-name) in the EXEC statement for DSN1SMFP. For example, if the application
defaults load module is named MYDECP, specify an EXEC statement like this one:

TEJCCS02 EXEC PGM=DSN1SMFP,PARM='DECP(MYDECP)'

Restriction: The DSN1SMFP utility cannot process compressed trace records. If your SMF trace records
are compressed as a result of a YES setting on the SMFCOMP subsystem parameter, use the DSNTSMFD
utility to decompress compressed trace records prior to running DSN1SMFP. If you attempt to run
DSN1SMFP on compressed trace records, an abend occurs.

Running DSN1SMFP

About this task
Sample job DSNTEJCC provides the basic JCL framework that is needed to run DSN1SMFP. See the

DSNTEJCC prolog for directions on how to customize it for use at your site.

Procedure
Use the following EXEC statement:

//stepname EXEC PGM=DSN1SMFP,PARM='DECP(decp-name)'

Include PARM='DECP(decp-name)' if you want DSN1SMFP to obtain the EBCDIC CCSID that is used
for conversion of Unicode trace data to EBCDIC from the application defaults load module with name
decp-name. If you do not specify PARM='DECP(decp-name)', DSN1SMFP uses the default application
defaults module.

Appendix C. DSN1SMFP 993

Sample DSN1SMFP control statement
The following statements specify that DSN1SMFP is to extract, format, and print the SMF records

that are specified in the SMFIN DD statement.

//DSN1SMFP EXEC PGM=DSN1SMFP,COND=(4,LT)
//STEPLIB DD DISP=SHR,DSN=prefix.SDSNEXIT <- req'd for local DSNHDECP
// DD DISP=SHR,DSN=prefix.SDSNLOAD
//SMFIN DD DISP=SHR,DSN=SMF records with DB2 trace data
//SYSPRINT DD SYSOUT=* <- messages and EOJ summary
//IFCID003 DD ...
//IFCID004 DD ...
//IFCID005 DD ...
//IFCID023 DD ...
//IFCID024 DD ...
//IFCID025 DD ...
//IFCID083 DD ...
//IFCID106 DD ...
//IFCID140 DD ...
//IFCID141 DD ...
//IFCID142 DD ...
//IFCID143 DD ...
//IFCID144 DD ...
//IFCID145 DD ...
//IFCID269 DD ...
//IFCID270 DD ...
//IFCID350 DD ...
//IFCID361 DD ...
//IFCID362 DD ...

DSN1SMFP output
Use this utility to aid in determining and correcting system security problems. When diagnosing

Db2, you might need to refer to licensed documentation to interpret output from this utility.

DSN1SMFP generates up to nineteen types of reports, according to the input, plus an end-of-job summary
report. Each type of report is triggered by a particular IFCID type. Each occurrence of a recognized IFCID
type causes a new report to be appended to any earlier report that was generated in the same run. Each
report begins with a standard report header. When all records have been processed, an end of job report
summarizes the input that was received, which records were processed, and any error messages that
were encountered along the way.

DSN1SMFP creates the following dedicated report DDs:

Table 149. DSN1SMFP dedicated report DDs

DD name Description
Record
format Record structure

IFCID003 DD Extracted IFCID 003 (DDF Location) records RECFM=FBA See “IFCID003: DDF Location”
on page 997

IFCID004 DD Extracted IFCID 004 (Trace Start) records RECFM=FBA See “IFCID004: Trace Start”
on page 998

IFCID005 DD Extracted IFCID 005 (Trace Stop) records RECFM=FBA See “IFCID005: Trace Stop”
on page 999

IFCID023 DD Extracted IFCID 023 (Utility Start) records RECFM=FBA See “IFCID023: Utility Start”
on page 999

994 Db2 12 for z/OS: Utility Guide and Reference

Table 149. DSN1SMFP dedicated report DDs (continued)

DD name Description
Record
format Record structure

IFCID024 DD Extracted IFCID 024 (Utility Change) records RECFM=FBA See “IFCID024: Utility
Change” on page 1002

IFCID025 DD Extracted IFCID 025 (Utility End) records RECFM=FBA See “IFCID025: Utility End”
on page 1003

IFCID083 DD Extracted IFCID 083 (Identify End) records RECFM=FBA See “IFCID083: Identify End”
on page 1004

IFCID106 DD Extracted IFCID 106 (System Parameters)
records (security-relevant fields only)

RECFM=FBA See “IFCID106: System
Parameters (security-relevant
fields only)” on page 1005

IFCID140 DD Extracted IFCID 140 (Audit Authorization
Failures) records

RECFM=FBA See “IFCID140: Audit
Authorization Failures” on
page 1013

IFCID141 DD Extracted IFCID 141 (Audit DDL Grant/Revoke)
records

RECFM=FBA See “IFCID141: Audit DDL
Grant/Revoke” on page 1019

IFCID142 DD Extracted IFCID 142 (Audit DDL Create/Alter/
Drop) records

RECFM=FBA See “IFCID142: Audit DDL
Create/Alter/Drop” on page
1020

IFCID143 DD Extracted IFCID 143 (Audit First Write)
records

RECFM=FBA See “IFCID143: Audit First
Write” on page 1022

IFCID144 DD Extracted IFCID 144 (Audit First Read) records RECFM=FBA See “IFCID144: Audit First
Read” on page 1023

IFCID145 DD Extracted IFCID 145 (Audit DML Statement)
records

RECFM=FBA See “IFCID145: Audit DML
Statement” on page 1023

IFCID269 DD Extracted IFCID 269 (Trusted Connection)
records

RECFM=FBA See “IFCID269: Trusted
Connection” on page 1025

IFCID270 DD Extracted IFCID 270 (Trusted Context) records RECFM=FBA See “IFCID270: Trusted
Context” on page 1026

IFCID350 DD Extracted IFCID 350 (SQL Statement) records RECFM=FBA See “IFCID350: SQL
Statement” on page 1027

IFCID361 DD Extracted IFCID 361 (Audit Administrative
Authorities) records

RECFM=FBA See “IFCID361: Audit
Administrative Authorities” on
page 1028

IFCID362 DD Extracted IFCID 362 (Trace Start and Stop
with AUDITPOLICY) records

RECFM=FBA See “IFCID362: Trace Start
with Audit Policy” on page
1032

SYSPRINT DD Runtime messages and EOJ summary RECFM=FBA See “SYSPRINT: Runtime
messages and end-of-job
summary” on page 1034

For details about the record structure of the DSN1SMFP output, see “DSN1SMFP output record structure”
on page 996.

Appendix C. DSN1SMFP 995

DSN1SMFP output record structure
The DSN1SMFP utility extracts, formats, and prints SMF records to dedicated report records. Each trace
type report record has a different structure.

Standard report header
Each report, except the end-of-job report, begins with the standard report header.

Fields
The standard report header has the following fields:

PRIMAUTH
The authorization ID under which the transaction is running.
Field Name: QWHCAID

ORIGAUTH
The original authorization ID under which the transaction started.
Field Name: QWHCOPID

PLANNAME
The Db2 plan name.
Field Name: QWHCPLAN

CONNECT
The connection ID.
Field Name: QWHCCN

CORRNAME
The correlation name.
Field Name: QWHCCV

CORRNMBR
The correlation number.
Field Name: QWHCCV

INSTANCE
The unique number that is assigned to a thread.
Field Name: QWHSLUUV

CONNTYPE
The type of connection that is being used to interface with Db2.
Field Name: QWHATYP

END_USER
The user ID of the workstation user.
Field Name: QWHCEUID

RECORD TIME
The timestamp that is contained in the trace record. The format is hours, minutes, seconds, and
hundred-millionths of a second.
Field Name: QWHSSTCK

TCB CPU TIME
The CPU time that is stored in the trace record. The format is minutes, seconds, and hundred-
millionths of a second.
Field Name: QWHUCPU

WS_NAME
The name of the workstation.
Field Name: QWHCEUWN

996 Db2 12 for z/OS: Utility Guide and Reference

DESTNO
The destination sequence number.
Field Name: QWHSWSEQ

IFCID
The instrumentation facility component identification (Db2 trace record type).
Field Name: QWHSIID

DESCRIPTION
A brief description of the IFCID record. The description indicates whether the record contains
accounting, statistics, or performance data. For performance data, the description also indicates the
event.

TRANSACT
The name of the workstation transaction.
Field Name: QWHCEUTX

Example

PRIMAUTH CONNECT INSTANCE END_USER WS_NAME TRANSACT
ORIGAUTH CORRNAME CONNTYPE RECORD TIME DESTNO IFC DESCRIPTION DATA
PLANNAME CORRNMBR TCB CPU TIME ID
-------- -------- ------------ -------------------------- --- -------------- ---------------
SYSADM BATCH X'BFE0F0E22787'
SYSADM CCTRACE4 TSO 01:02:39 0000006030 003 DDF Data by Location
DSNBIND 'BLANK'

IFCID003: DDF Location
The IFCID003 DD contains the extracted IFCID 003 (DDF Location) records. Only IFCID 0003 records that
contain a distributed data facility statistics (DSNDQLAC) block are reported; other IFCID 0003 records are
ignored. Only selected IFCID 0003 fields are used.

Fields
The IFCID003 DD has the following fields:

REMOTE LOCATION
The name of the remote location that this information is associated with. If the local location is the
requester, this field is a server location. If the local location is a server location, this field is the
requester location. An allied thread is created at a Db2 requester, and a database access thread is
created at a Db2 server. An accounting record is for either a requester or a server, but not for both.
Field Name: QLACLOCN

COMMIT SENT
The number of single-phase commit requests that are sent to the server location. This value is
maintained at the requester location.
Field Name: QLACCOMS

COMMIT RECEIVED
The number of single-phase commit requests that are received from the requester location. This value
is maintained at the server location.
Field Name: QLACCOMR

REQ.ELAPSED TIME
The elapsed time at the requester location until the database access agent completed its work,
including Db2 processing time and network time. This value is maintained at the requester location
and is calculated by accumulating the difference between the store clock values that are obtained
before and after each network request.
Field Name: QLACCPUL

Appendix C. DSN1SMFP 997

ROLLBK SENT
The number of rollback requests that were sent to the server location (single-phase commit
operations only). This value is maintained at the requester location.
Field Name: QLACABRS

SER.ELAPSED TIME
The elapsed database access agent time at the server location. This time is updated at the requester
location and is reported only for Db2 private protocol. If the agent uses both methods to communicate
with the server location, only the elapsed time that is associated with the Db2 private protocol is
reported, and this time can be misleading. If only DRDA is used, this value is 0.
Field Name: QLACCPUR

ROLLBK RECEIVED
The number of rollback requests that are received from the requester location (single-phase commit
operations only). This value is maintained at the server location.
Field Name: QLACABRR

Example

 DDF DATA BY LOCATION
REMOTE LOCATION COMMIT SENT
 COMMIT RECEIVED
REQ.ELAPSED TIME ROLLBK SENT
SER.ELAPSED TIME ROLLBK RECEIVED

STLEC1B 0000000000
 0000000000
09:48:00 0000000000
09:48:00 0000000000

IFCID004: Trace Start
The IFCID004 DD contains the extracted IFCID 004 (Trace Start) records.

Fields
The IFCID004 DD has the following fields:

MESSAGE
The start trace message.
Field Name: QW0004MS

QW0004CM
For serviceability only.
Field Name: QW0004CM

Example

MESSAGE : -START TRACE (AUDIT)AUDTPLCY (VLDPLCY)CLASS (*)RMID (*)DEST (SMF)PLAN (*)AUTHID (*)IFCID (*)BUFSIZE
(*)USERID (*
)APPNAME (*)WRKSTN (*)PKGLOC (*)PKGCOL (*)PKGPROG (*)CONNID (*)CORRID (*)ROLE
(*)..
QW0004CM: X'60E2E3C1D9E340E3'

998 Db2 12 for z/OS: Utility Guide and Reference

IFCID005: Trace Stop
The IFCID005 DD contains the extracted IFCID 005 (Trace Stop) records.

Fields
The IFCID005 DD has the following fields:

MESSAGE
The stop trace message.
Field Name: QW0004MS

QW0005CM
For serviceability only.
Field Name: QW0005CM

Example

MESSAGE : -STOP TRACE (AUDIT)CLASS (*)RMID (*)PLAN (*)AUTHID (*)TNO (*)USERID (*)APPNAME (*)WRKSTN (*)PKGLOC
(*)PKGCOL (*
)PKGPROG (*)CONNID (*)CORRID (*)ROLE
(*)..
QW0005CM: X'60E2E3D6'

IFCID023: Utility Start
The IFCID023 DD contains the extracted IFCID 023 (Utility Start) records.

Fields
The IFCID023 DD has the following fields:

DBID
The database ID.
Field Name: QW0023DB

UTILITY NAME
The utility name.
Field Name: QW0023NM

OBID
The object ID.
Field Name: QW0023PD

UTILITY PHASE
The phase name of the utility.
Field Name: QW0023PH

RQSTASK
The number of requested subtasks.
Field Name: QW0023R1

UTILITY ID
The identifier of the utility.
Field Name: QW0023ID

REORG KEEPDICTIONARY
The REORG utility is specified with the KEEPDICTIONARY keyword.
Field Name: QW0023D1

Appendix C. DSN1SMFP 999

LOAD KEEPDICTIONARY
The LOAD utility is specified with the KEEPDICTIONARY keyword.
Field Name: QW0023B1

COPY CONCURRENT
The COPY utility is specified with the CONCURRENT keyword.
Field Name: QW0023A1

REBUILD REUSE
The REBUILD utility is specified with the REUSE keyword.
Field Name: QW0023F1

REORG REUSE
The REORG utility is specified with the REUSE keyword.
Field Name: QW0023D2

LOAD REUSE
The LOAD utility is specified with the REUSE keyword.
Field Name: QW0023B2

COPY SHRLEVEL CHANGE
The COPY utility is specified with the SHRLEVEL(CHANGE) keyword.
Field Name: QW0023A2

REBUILD SORTKEYS
The REBUILD utility is specified with the SORTKEYS keyword.
Field Name: QW0023F2

REORG LOG NO
The REORG utility is specified with the LOG(NO) keyword.
Field Name: QW0023D3

LOAD LOG NO
The LOAD utility is specified with the LOG(NO) keyword.
Field Name: QW0023B3

COPY PARALLEL
The COPY utility is specified with the PARALLEL keyword.
Field Name: QW0023A3

REBUILD STATISTICS
The REBUILD utility is specified with the STATISTICS keyword.
Field Name: QW0023F3

REORG SORTKEYS
The REORG utility is specified with the SORTKEYS keyword.
Field Name: QW0023D4

LOAD SORTKEYS
The LOAD utility is specified with the SORTKEYS keyword.
Field Name: QW0023B4

COPY CHECKPAGE
The COPY utility is specified with the CHECKPAGE keyword.
Field Name: QW0023A4

REBUILD WORKDDN
The REBUILD utility is specified with the WORKDDN keyword.
Field Name: QW0023F4

REORG SORTDATA
The REORG utility is specified with the SORTDATA keyword.

1000 Db2 12 for z/OS: Utility Guide and Reference

Field Name: QW0023D5
LOAD SHRLEVEL CHANGE

The LOAD utility is specified with the SHRLEVEL(CHANGE) keyword.
Field Name: QW0023B5

REORG NOSYSREC
The REORG utility is specified with the NOSYSREC keyword.
Field Name: QW0023D6

LOAD COPYDDN
The LOAD utility is specified with the COPYDDN keyword.
Field Name: QW0023B6

RECOVER REUSE
The RECOVER utility is specified with the REUSE keyword.
Field Name: QW0023A7

RUNSTATS SAMPLE
The RUNSTATS utility is specified with the SAMPLE keyword.
Field Name: QW0023G1

REORG SHRLEVEL CHANGE
The REORG utility is specified with the SHRLEVEL(CHANGE) keyword.
Field Name: QW0023D7

LOAD STATISTICS
The LOAD utility is specified with the STATISTICS keyword.
Field Name: QW0023B7

RECOVER PARALLEL
The RECOVER utility is specified with the PARALLEL keyword.
Field Name: QW0023A8

RUNSTATS SHRLEVEL CHANGE
The RUNSTATS utility is specified with the SHRLEVEL(CHANGE) keyword.
Field Name: QW0023G2

REORG SHRLEVEL REFERENCE
The REORG utility is specified with the SHRLEVEL(REFERENCE) keyword.
Field Name: QW0023D8

LOAD PART INDDN
The LOAD utility is specified with the PART(INDDN) keyword.
Field Name: QW0023B8

REORG COPYDDN
The REORG utility is specified with the COPYDDN keyword.
Field Name: QW0023E1

UNLOAD SHRLEVEL REFERENCE
The UNLOAD utility is specified with the SHRLEVEL(REFERENCE) keyword.
Field Name: QW0023H1

REORG STATISTICS
The REORG utility is specified with the STATISTICS keyword.
Field Name: QW0023E2

UNLOAD SHRLEVEL CHANGE ISOLATION CS
The UNLOAD utility is specified with the SHRLEVEL(CHANGE ISOLATION CS) keyword.
Field Name: QW0023H2

Appendix C. DSN1SMFP 1001

REORG FASTSWITCH
The REORG utility is specified with the FASTSWITCH keyword.
Field Name: QW0023E3

UNLOAD SHRLEVEL CHANGE ISOLATION UR
The UNLOAD utility is specified with the SHRLEVEL(CHANGE ISOLATION UR) keyword.
Field Name: QW0023H3

Example

DBID : 00000 UTILITY NAME :
REORG
OBID : 00000 UTILITY PHASE:
UTILINIT
RQSTASK: 0000000000 UTILITY ID :
NNCCC1A3.REORG1
REORG KEEPDICTIONARY : NO LOAD KEEPDICTIONARY : NO COPY CONCURRENT : NO REBUILD REUSE :
NO
REORG REUSE : NO LOAD REUSE : NO COPY SHRLEVEL CHANGE: NO REBUILD SORTKEYS :
NO
REORG LOG NO : YES LOAD LOG NO : NO COPY PARALLEL : NO REBUILD STATISTICS:
NO
REORG SORTKEYS : YES LOAD SORTKEYS : NO COPY CHECKPAGE : NO REBUILD WORKDDN :
NO
REORG SORTDATA : YES LOAD SHRLEVEL CHANGE:
NO
REORG NOSYSREC : YES LOAD COPYDDN : NO RECOVER REUSE : NO RUNSTATS SAMPLE :
NO
REORG SHRLEVEL CHANGE : NO LOAD STATISTICS : NO RECOVER PARALLEL : NO RUNSTATS SHRLEVEL
CHANGE: NO
REORG SHRLEVEL REFERENCE: YES LOAD PART INDDN :
NO
REORG COPYDDN : YES UNLOAD SHRLEVEL REFERENCE :
NO
REORG STATISTICS : YES UNLOAD SHRLEVEL CHANGE ISOLATION CS:
NO
REORG FASTSWITCH : YES UNLOAD SHRLEVEL CHANGE ISOLATION UR: NO

IFCID024: Utility Change
The IFCID024 DD contains the extracted IFCID 024 (Utility Change) records.

Fields
The IFCID024 DD has the following fields:

DBID
The database ID.
Field Name: QW0024DB

UTILITY NAME
The utility name.
Field Name: QW0024NM

OBID
The object ID.
Field Name: QW0024PD

UTILITY PHASE
The phase name of the utility.
Field Name: QW0024PH

ITEMS
The number of items processed by the utility.
Field Name: QW0024DN

1002 Db2 12 for z/OS: Utility Guide and Reference

UTILITY ID
The identifier of the utility.
Field Name: QW0024ID

DBNAME
The database name.
Field Name: QW0024NA

OBJECT NAME
The table space name or index name.
Field Name: QW0024PN

PART/DATASET#
The number of the partition or data set if the utility is operating on one partition or data set.
Otherwise, the value of this field is 0.
Field Name: QW0024PN

Example

DBID : 00269 UTILITY NAME : REORG
OBID : 00002 UTILITY PHASE: UNLOAD
ITEMS : 00000000000000000000 UTILITY ID : NNCCC1A3.REORG1
DBNAME: DBCCDB2A OBJECT NAME : TSCCDB2A
PART/DATA SET#: 0000000000

IFCID025: Utility End
The IFCID025 DD contains the extracted IFCID 025 (Utility End) records.

Fields
The IFCID025 DD has the following fields:

DBID
The database ID.
Field Name: QW0025DB

UTILITY NAME
The utility name.
Field Name: QW0025NM

OBID
The object ID.
Field Name: QW0025PD

UTILITY PHASE
The phase name of the utility.
Field Name: QW0025PH

ITEMS
The number of items that are processed by the utility.
Field Name: QW0025DN

UTILITY ID
The identifier of the utility.
Field Name: QW0025ID

Appendix C. DSN1SMFP 1003

Example

DBID : 00269 UTILITY NAME : REORG
OBID : 00002 UTILITY PHASE:
ITEMS: 00000000000000000004 UTILITY ID : NNCCC1A3.REORG1

IFCID083: Identify End
The IFCID083 DD contains the extracted IFCID 083 (Identify End) records.

Fields
The IFCID083 DD has the following fields:

RECOPT
The record coordination option specification.
Field Name: QW0083RO

ACCESS
Whether the access was successful.
Field Name: QW0083AD

CURR SQLID
The current SQL authorization ID.
Field Name: QW0083QD

ORIG AUTHID
The original primary authorization ID.
Field Name: QW0083OP

SECONDARY AUTHORIZATION IDS
The list of the secondary authorization IDs. This list is only produced if there are secondary
authorization IDs.
Field Name: QW0083SA

ACEE UTOKEN
The ACEE UTOKEN.
Field Name: QW0083UT

RETURN CODE
The return code.
Field Name: QW0083RT

REASON CODE
The reason code.
Field Name: QW0083RS

CONNECTION TYPE
The connection type.
Field Name: QW0083CT

Example

END RECOPT : '...'
 ACCESS : SUCCESSFUL
 CURR SQLID : USRT005
 ORIG AUTHID: USRT005
 SECONDARY AUTHORIZATION IDS:
 ACEE UTOKEN: &.....H.SYSHIGH STLVM3 JES2 STLVM3 SYS1 RDR1 USRT005 SYS1
 RETURN CODE: 0000000000

1004 Db2 12 for z/OS: Utility Guide and Reference

 REASON CODE: 0000000000
 CONNECTION TYPE: X'C2C1E3C3C8404040'

IFCID106: System Parameters (security-relevant fields only)
The IFCID106 DD contains the extracted IFCID106 (System Parameters) records.

The IFCID106 DD has the following five sections for the security-relevant fields:

• System initialization parameters
• Miscellaneous installation parameters
• Distributed Data Facility (DDF) parameters
• Data sharing parameters
• Application programming defaults

Fields for system initialization parameters
The IFCID106 DD has the following fields for system initialization parameters:
WTO ROUTE CODES

The MVS console routing codes. These codes are assigned to messages that are not solicited from a
specific console. Up to 16 comma-separated codes can be shown.
Install parameter: WTO ROUTE CODES on panel DSNTIPO
DSN6SYSP parameter: ROUTCDE
Field Name: QWP1SMRC

MONITOR BUFFER SIZE
The default number of bytes allocated for the monitor trace buffer.
Install parameter: MONITOR SIZE on panel DSNTIPN
DSN6SYSP parameter: MONSIZE
Field Name: QWP1MONS

AUDIT CLASSES
Shows whether the audit trace is started automatically when Db2 is started. When a value of YES is
specified, the audit trace is started for the default class (class 1) whenever Db2 is started. When a
value of ALL is specified, an audit trace is automatically started for all classes.
Install parameter: AUDIT TRACE on panel DSNTIPN
DSN6SYSP parameter: AUDITST
Field Name: QWP1AUDT

EXT. SECURITY
Extended security options. When the recommended value of YES is specified, detailed reason codes
are returned to a DRDA level 3 client when a DDF connection request fails because of security errors.
When using SNA protocols, the requester must have included a product that supports the extended
security sense codes, such as Db2 Connect version 5 and subsequent releases. RACF users can
change their passwords using the DRDA change password function. This support is only for DRDA
level 3 requesters that have implemented support for changing passwords. A value of YES allows
properly-enabled DRDA clients to determine the cause of security failures without requiring Db2
operator support. When a value of NO is specified, generic error codes are returned to the clients and
RACF users are prevented from changing their passwords.
Install parameter: EXTENDED SECURITY on panel DSNTIPR
DSN6SYSP parameter: EXTSEC
Field Name: QWP1SCER

Appendix C. DSN1SMFP 1005

UNICODE IFCIDS
Shows whether output from IFC records should contain character data in Unicode or EBCDIC. Only a
subset of the character fields (identified in the IFCID record definition by a %U in the comment area to
the right of the field declaration in the DSNDQWxx copy files) are encoded in Unicode. The remaining
fields maintain the same encoding of previous releases.
Install parameter: UNICODE IFCIDS on panel DSNTIPN
DSN6SYSP parameter: UIFCIDS
Field Name: QWP1_UNICODE

Example for system initialization parameters

 SYSTEM INITIALIZATION
PARAMETERS
WTO ROUTE CODES : X'8000' MONITOR BUFFER SIZE: 0001048576 AUDIT CLASSES: X'00000000' EXT. SECURITY:
NO
DATABASE PROTOCOL: D UNICODE IFCIDS : NO

Fields for miscellaneous installation parameters
The IFCID106 DD has the following fields for miscellaneous installation parameters:
COMCRIT

Indicates whether the Db2 environment for Common Criteria is enabled.
Install parameter: None
DSN6SPRM parameter: COMCRIT
Field name: QWP4COMC

DDL REGISTRATION FLAG
The DDL registration facility flag. It summarizes four settings for data definition control support:
Data definition control

Indicates whether DDL statements are validated by data definition control support.
Install parameter: INSTALL DD CONTROL SUPT on panel DSNTIPZ
DSN6SPRM parameter: RGFINSTL

Application control
Indicates whether the Db2 system is controlled by a set of closed applications whose application
identifiers are identified in the application registration table. Closed applications require their Db2
objects to be managed solely through the plans or packages of the closed application that is
registered in the application registration table.
Install parameter: CONTROL ALL APPLICATIONS on panel DSNTIPZ
DSN6SPRM parameter: RGFDEDPL

Full names required
Indicates whether registered objects require fully-qualified names.
Install parameter: REQUIRE FULL NAMES on panel DSNTIPZ
DSN6SPRM parameter: RGFFULLQ

Unregistered DDL action
Indicates whether DDL that names an unregistered object is to be rejected, rejected if the current
application is not registered, or accepted.
Install parameter: UNREGISTERED DDL DEFAULT on panel DSNTIPZ
DSN6SPRM parameter: RGFDEFLT

DDL REGISTRATION FLAG can have one of the following values:

1006 Db2 12 for z/OS: Utility Guide and Reference

Setting Interpretation

Data definition
control

Application
control

Full names
required

Unregistered DDL
action

00 No No No Reject

08 Application

10 Accept

20 Yes Reject

28 Application

30 Accept

40 Yes No Reject

48 Application

50 Accept

60 Yes Reject

68 Application

70 Accept

80 Yes No No Reject

88 Application

90 Accept

A0 Yes Reject

A8 Application

B0 Accept

C0 Yes No Reject

C8 Application

D0 Accept

E0 Yes Reject

E8 Application

F0 Accept

Field Name: QWP4REGF
INSTALL SYSADM

One of two authorization IDs with SYSADM authority. SYSADM users can access to Db2 in all cases.
Install parameter: SYSTEM ADMIN 1 on panel DSNTIPP1
DSN6SPRM parameter: SYSADM
Field Name: QWP4SADM

DEFAULT USERID
The authorization ID used if RACF is not available for batch access and USER= is not specified in the
job statement.
Install parameter: UNKNOWN AUTHID on panel DSNTIPP1
DSN6SPRM parameter: DEFLTID
Field Name: QWP4DFID

Appendix C. DSN1SMFP 1007

SYSADM ID 2
One of two authorization IDs with SYSADM authority. SYSADM users can access to Db2 in all cases.
Install parameter: SYSTEM ADMIN 2 on panel DSNTIPP1
DSN6SPRM parameter: SYSADM2
Field Name: QWP4ADM2

SITE TYPE
Shows whether this system is at a local site or a recovery site.
LOCALSITE

This is the site of the current system. Multiple image copies are made and are operational here.
This is the default.

RECOVERYSITE
This an alternative site for recovery purposes.

Install parameter: SITE TYPE on panel DSNTIPO
DSN6SPRM parameter: SITETYP
Field Name: QWP4MSTY

SYSOPER ID
One of two authorization IDs with SYSOPR authority. SYSOPR users can access Db2 even if the Db2
catalog is unavailable.
Install parameter: SYSTEM OPERATOR 1 on panel DSNTIPP1
DSN6SPRM parameter: SYSOPR1
Field Name: QWP4OPR1

SYSOPER ID 2
One of two authorization IDs with SYSOPR authority. SYSOPR users can access Db2 even if the Db2
catalog is unavailable.
Install parameter: SYSTEM OPERATOR 2 on panel DSNTIPP1
DSN6SPRM parameter: SYSOPR2
Field Name: QWP4OPR2

ENABLE Db2 AUTHORIZATION
Shows whether Db2 performs authorization checking. When all authorization checking by Db2 is
disabled, the GRANT statement is also disabled (granting every privilege to PUBLIC); this is not
recommended.
Install parameter: USE PROTECTION on panel DSNTIPP
DSN6SPRM parameter: AUTH
Field Name: QWP4AUTH

CACHE DYNAMIC SQL
Indicates whether prepared dynamic use by eligible application processes.
Install parameter: CACHE DYNAMIC on panel DSNTIP8
DSN6SPRM parameter: CACHEDYN
Field Name: QWP4CDYN

AUTH. CACHE SIZE
The size of the authorization cache to use if no CACHESIZE is specified on the BIND PLAN
subcommand. A value of 0 means authorization caching is not used.
Install parameter: PLAN AUTH CACHE on panel DSNTIPP
DSN6SPRM parameter: AUTHCACH
Field Name: QWP4AUCA

1008 Db2 12 for z/OS: Utility Guide and Reference

PACK AUTH CACHE
The amount of storage that is allocated for caching authorization information for all packages on this
Db2 member.
Install parameter: PACKAGE AUTH CACHE on panel DSNTIPP
DSN6SPRM parameter: CACHEPAC
Field Name: QWP4PAC

DBADM CREATE VIEW
Shows whether a Db2 administrator can create a view or alias for another user. Possible values are
YES or NO. The default value is NO.
Install parameter: DBADM CREATE AUTH on panel DSNTIPP1
DSN6SPRM parameter: DBACRVW
Field Name: QWP4CRVW

EDM STATEMNT CACHE
The size of the statement cache that can be used by the Environmental Descriptor Manager (EDM).
Install parameter: EDM STATEMENT CACHE on panel DSNTIPC
DSN6SPRM parameter: EDMSTMTC
Field Name: QWP4ESTC

ONL SYSPARM TYPE
The type of Db2 system parameter that was changed by the last SET SYSPARM statement.
Install parameter: None
DSN6SPRM parameter: None
Field Name: QWP4OZTP

ONL SYSPARM USER ID
The user ID that made the last online change to Db2 system settings.
Install parameter: None
DSN6SPRM parameter: None
Field Name: QWP4OZUS

ONL SYSPARM CORID
The correlation ID of the online application that made the last change to Db2 system settings.
Install parameter: None
DSN6SPRM parameter: None
Field Name: QWP4OZCI

ONL SYSPARM TIME
Time of the last online change made to Db2 system settings.
Install parameter: None
DSN6SPRM parameter: None
Field Name: QWP4OZTM

SECURITY ADMIN 1 TYPE
Specifies whether the entry in the SECURITY ADMIN 1 field is an authorization ID or a role.
Install parameter: SEC ADMIN 1 TYPE field on panel DSNTIPP1
DSN6SPRM parameter: SECADM1_TYPE
Field Name: QWP4SECA1_Type

SECURITY ADMIN 2 TYPE
Specifies whether the entry in the SECURITY ADMIN 2 field is an authorization ID or a role.
Install parameter: SEC ADMIN 2 TYPE field on panel DSNTIPP1
DSN6SPRM parameter: SECADM2_TYPE

Appendix C. DSN1SMFP 1009

Field Name: QWP4SECA2_Type
SECURITY TASKS

Specifies whether Db2 security administrator duties are to be separated from system administrator
duties for this subsystem. You must set the SEPARATE_SECURITY system parameter to YES in the
evaluated configuration.
Install parameter: SEPARATE SECURITY field on panel DSNTIPP1
DSN6SPRM parameter: SEPARATE_SECURITY
Field Name: QWP4SEPSD

REVOKE DEP. PRIVILEGES
Specifies whether revoking a privilege from a user is to cause dependent privileges to be revoked. If
dependent privileges are to be revoked, revoking a privilege from a user also revokes the privilege
from anyone that the user has granted that privilege to.
Install parameter: REVOKE DEP PRIV field on panel DSNTIPP1
DSN6SPRM parameter: REVOKE_DEP_PRIVILEGES
Field Name: QWP4RVDPR

SECURITY ADMIN 1
The first of two authorization IDs or roles that are assigned to have Db2 security administrator
authority.
Install parameter: SECURITY ADMIN 1 on panel DSNTIPP1
DSN6SPRM parameter: SECADM1
Field Name: QWP4SECA1

SECURITY ADMIN 2
The second of two authorization IDs or roles that are assigned to have Db2 security administrator
authority.
Install parameter: SECURITY ADMIN 2 on panel DSNTIPP1
DSN6SPRM parameter: SECADM2
Field Name: QWP4SECA2

Example for miscellaneous installation parameters

 MISCELLANEOUS INSTALLATION
PARAMETERS
COMMON CRITERIA ENVIRON : YES DDL REGISTRATION FLAG: X'30' INSTALL SYSADM : SYSADM1 DEFAULT
USERID : IBMUSER
SYSADM ID 2 : SYSADM2 SITE TYPE : LOCAL SYSOPER ID : SYSOPR1 SYSOPER ID
2 : SYSOPR2
ENABLE DB2 AUTHORIZATION: YES CACHE DYNAMIC SQL : NO AUTH. CACHE SIZE:
01024
PACK AUTH CACHE : 0000000000 DBADM CREATE VIEW : YES EDM STMT CACHE : 0000005000 ONL SYSPARM
TYPE : N/A
ONL SYSPARM CORID : ONL SYSPARM USER ID : ONL SYSPARM TIME:
08:26:40
SECURITY ADMIN 1 TYPE : AUTH ID SECURITY ADMIN 2 TYPE: AUTH ID SECURITY TASKS : SYSADM/SYSCTRL CANNOT GRANT/
REVOKE
REVOKE DEP. PRIVILEGES : SPECIFIED IN REVOKE
STATEMENT
SECURITY ADMIN 1 :
SECADM
SECURITY ADMIN 2 : SECADM

 MISCELLANEOUS INSTALLATION PARAMETERS
COMMON CRITERIA ENVIRON : NO DDL REGISTRATION FLAG: X'30' INSTALL SYSADM : SYSADM DEFAULT
USERID : IBMUSER
SYSADM ID 2 : SYSADM SITE TYPE : LOCAL SYSOPER ID : SYSOPR SYSOPER ID
2 : SYSOPR
ENABLE DB2 AUTHORIZATION: YES CACHE DYNAMIC SQL : NO AUTH. CACHE SIZE: 01024 HOP SITE
AUTHORIZ.: YES
PACK AUTH CACHE : 0000032768 DBADM CREATE VIEW : NO EDM STMT CACHE : 0005120000 ONL SYSPARM
TYPE : N/A
ONL SYSPARM CORID : ONL SYSPARM USER ID : ONL SYSPARM TIME: 08:26:40

1010 Db2 12 for z/OS: Utility Guide and Reference

Fields for DDF parameters
The IFCID106 DD has the following fields for DDF parameters:
FACILITY NAME

The name of the DDF facility.
Install parameter: None
DSN6FAC parameter: None
Field Name: QWP9NAME

RESYNCH.INTERVAL
The number of minutes between resynchronization periods.
Install parameter: RESYNC INTERVAL on panel DSNTIPR
DSN6FAC parameter: RESYNC
Field Name: QWP9RYC

TCP/IP VERIFIED
Indicates whether Db2 accepts TCP/IP connection requests containing only a user ID.
Install parameter TCP/IP ALREADY VERIFIED on panel DSNTIP5
DSN6FAC parameter: TCPALVER
Field Name: QWP9TCPA

FACILITY START
Indicates whether DDF is loaded, and if so, how it was started.
Install parameter DDF STARTUP OPTION on panel DSNTIPR
DSN6FAC parameter: DDF
Field Name: QWP9STRT

DBAT STATUS
Shows whether Db2 inactivates threads that have successfully committed or rolled back, and hold no
cursors.
Install parameter DDF THREADS on panel DSNTIPR
DSN6FAC parameter: CMTSTAT
Field Name: QWP9CMST

TCP/IP KEEPALIVE
Indicates whether the TCP/IP configuration KeepAlive value has been overwritten.
Install parameter TCP/IP KEEPALIVE on panel DSNTIP5
DSN6FAC parameter: TCPKPALV
Field Name: QWP9TCKA

Example for DDF parameters

 DISTRIBUTED DATA FACILITY PARAMETERS
FACILITY NAME: DDF RESYNCH.INTERVAL: 00002 TCP/IP VERIFIED: NO FACILITY START: AUTO
DBAT STATUS : INACTIVE TCP/IP KEEPALIVE: ENABLE

Fields for data sharing parameters
The IFCID106 DD has the following fields for data sharing parameters:
GROUP NAME

The name of the Db2 data-sharing group. A value of N/A indicates that this Db2 is not part of a
data-sharing group.
Install parameter: GROUP NAME on panel DSNTIPK
DSN6GRP parameter: GRPNAME
Field Name: QWPAGRPN

Appendix C. DSN1SMFP 1011

MEMBER NAME
The member name of this Db2. A value of N/A indicates that this Db2 is not part of a data-sharing
group.
Install parameter: MEMBER NAME on panel DSNTIPK
DSN6GRP parameter: MEMBNAME
Field Name: QWPAMBRN

DATA SHARING ENABLED
Indicates whether data sharing is enabled.
Install parameter: DATA SHARING on panel DSNTIP0A
DSN6GRP parameter: DSHARE
Field Name: QWPADSHR

PAR.COORD
Shows whether this Db2 member can coordinate parallel processing on other members of the group.
A value of N/A indicates that this Db2 is not part of a data-sharing group.
Install parameter: COORDINATOR on panel DSNTIPK
DSN6GRP parameter: COORDNTR
Field Name: QWPACOOR

PAR.ASSIST
Shows whether this Db2 member can assist a parallelism coordinator with parallel processing. A value
of N/A indicates that this Db2 is not part of a data-sharing group.
Install parameter: ASSISTANT on panel DSNTIPK
DSN6GRP parameter: ASSIST
Field Name: QWPAASST

Example for data sharing parameters

 DATA SHARING PARAMETERS
GROUP NAME: DSNCAT MEMBER NAME: DB2A DATA SHARING ENABLED: NO PAR.COORD: NO
PAR.ASSIST: NO

Fields for application programming defaults
The IFCID106 DD has the following fields for application programming defaults:
VERSION

The version, release, and modification level.
Install parameter: None
DSNHDECP parameter: None
Field Name: QWPBREL

DEFAULT SUBSYSTEM
The MVS subsystem name for Db2.
Install parameter: SUBSYSTEM NAME on panel DSNTIPM
DSNHDECP parameter: SSID
Field Name: QWPBSSID

EBCDIC SBCS CCSID
The EBCDIC single-byte coded character set ID.
Install parameter: EBCDIC CCSID on panel DSNTIPF
DSNHDECP parameter: SCCSID
Field Name: QWPBSID

1012 Db2 12 for z/OS: Utility Guide and Reference

DECIMAL POINT OPTION
Indicates whether the decimal contains a comma (,) or a period (.).
Install parameter: DECIMAL POINT IS on panel DSNTIPF
DSNHDECP parameter: DECIMAL
Field Name: QWPBDE

DEFAULT ENCODING SCHEME
The default encoding scheme, which can be ASCII, EBCDIC, or UNICODE.
Install parameter: DEF ENCODING SCHEME on panel DSNTIPF
DSNHDECP parameter: ENSCHEME
Field Name: QWPBENS

Example for application programming defaults

 APPLICATION PROGRAMMING DEFAULTS
VERSION : 1210 DEFAULT SUBSYSTEM : DB2A EBCDIC SBCS CCSID: 00037
DECIMAL POINT OPTION: PERIOD DEFAULT ENCODING SCHEME: EBCDIC

IFCID140: Audit Authorization Failures
The IFCID140 DD contains the extracted IFCID 140 (Audit Authorization Failures) records.

Fields
The IFCID140 DD has the following fields:

AUTH CHECKED
The authorization ID that is being checked.
Field Name: QW0140UR

AUTHID TYPE
The authorization ID type.
Field Name: QW0140AT

REASON
The user-defined reason code from the access control authorization exit routine.
Field Name: QW0140RS

STATMNT LENGTH
The length of the failing SQL statement plus 4. It has a value of zero if no SQL statement exists.
Field Name: QW0140LL

RETCOD
The return code from the access control authorization exit routine.
Field Name: QW0140RC

PRIV CHECKED
The privilege that is being checked. It can have the following values:

• ALL ON PACKAGES
• ALLPKAUT
• ALTER
• ALTER BUFFERPOOL
• ALTER INDEX
• ALTERIN
• ARCHIVE

Appendix C. DSN1SMFP 1013

• BIND ADD
• BIND, REBIND OR FREE
• BINDAGENT
• CHECK DATA UTILITY
• CHECK UTILITY
• COMMENT ON
• COMMENT ON INDEX
• COPY
• COPY PACKAGE
• CREATE ALIAS
• CREATE GLOBAL TEMPORARY TABLE (CREATETMTAB)
• CREATE IN
• CREATE INDEX
• CREATE SECURE OBJECT
• CREATE STOGROUP
• CREATE SYNONYM
• CREATE TABLE
• CREATE TABLESPACE
• CREATE VIEW
• CREATEDBA
• CREATEDBC
• CREATEIN
• DBADM
• DBCTRL
• DBMAINT
• DDF COMMAND - START, STOP, OR CANCEL
• DEBUG SESSION
• DELETE
• DESCRIBE TABLE
• DIAGNOSE UTILITY
• DISPLAY
• DISPLAY ARCHIVE
• DISPLAY BUFFERPOOL
• DISPLAY DATABASE
• DISPLAY PROFILE
• DISPLAY RLIMIT
• DISPLAY THREAD OR DISPLAY DB
• DISPLAY UTILITY
• DROP
• DROP ALIAS
• DROP INDEX
• DROP SYNONYM
• DROPIN

1014 Db2 12 for z/OS: Utility Guide and Reference

• EXECUTE
• EXPLAIN
• EXPLAIN MONITOR
• EXPLICIT QUALIFIER USE
• INSERT
• LOAD
• LOCK TABLE
• MERGECOPY UTILITY
• MLS READWRITE
• MODIFY UTILITY
• MONITOR1
• MONITOR2
• OTHER
• PACKADM
• QUERY TUNING
• QUIESCE UTILITY
• READ
• RECOVER (UTILITY)
• RECOVER BSDS
• RECOVER INDOUBT
• REFERENCES
• RENAME INDEX
• RENAME TABLE
• REORG
• REPAIR
• REPAIR DBD UTILITY
• REPORT UTILITY
• RUNSTATS UTILITY
• SECADM
• SELECT
• SET ARCHIVE
• SQLADM
• START
• START DATABASE
• START DB2, STOP DB2, START DB(*) OR STOP DB(*)
• START PROFILE
• START RLIMIT
• STOP
• STOP DATABASE
• STOP OR START TRACE
• STOP PROFILE
• STOP RLIMIT
• STOSPACE UTILITY

Appendix C. DSN1SMFP 1015

• SUBPKAUT
• SYSADM
• SYSCTRL
• SYSOPR
• SYSOPR SYSCTRL SYSADM SECADM
• TERM UTILITY
• TERMINATE UTILITY ON DATABASE
• TRIGGER
• UPDATE
• USAGE
• USE
• VALIDATE SECLABEL
• WRITE

Field Name: QW0140PR
OBJECT

The object type. N/A is printed if there is no object type. OBJECT can have the following values:

• ACEE
• APPLICATION PLAN
• BUFFERPOOL
• COLLECTION
• DATABASE
• DISTINCT TYPE
• FUNCTION
• SESSION VARIABLE
• JAR
• PACKAGE
• PROCEDURE
• ROLE
• ROW
• SCHEMA
• SEQUENCE
• STORAGE GROUP
• TABLE OR VIEW
• TABLESPACE
• TRUSTED CONTEXT
• USER AUTH (System privileges, such as SYSADM or SYSOPR)
• N/A

Field Name: QW0140OB
OPTIONS

The options that are used in the host to check the SQL statement. The bits of this field are used as
indicators. If all bits are 0, the statement is not an SQL statement. OPTIONS has the following values:

• Bit 1 Host language character string delimiter

– 0 Apostrophe

1016 Db2 12 for z/OS: Utility Guide and Reference

– 1 Quote
• Bit 2 Decimal point symbol

– 0 Period
– 1 Comma

• Bit 3 SQL character string delimiter

– 0 Apostrophe
– 1 Quote

• Bit 4 Mixed character string indicator

– 0 No
– 1 Yes

• Bit 5 Host language options indicator

– 0 Do not use host language options
– 1 Use host language options

• Bits 6 to 8 Host language indicator

– 001 Assembler
– 010 COBOL
– 011 PL/I
– 100 None - Dynamic SQL
– 101 FORTRAN
– 110 COBOL II
– 111 Null - See bits 17 to 24 for the language

• Bits 9 to 16 Character set that is being used

– 00000000 Alphanumeric
– 00000001 Katakana

• Bits 17 to 24 Alternate host language field

– B Assembler
– C COBOL
– P PL/I
– F Fortran 2
– 2 COBOL II
– 3 IBM COBOL
– 4 C++
– D C

• Bits 25 to 28 Time option

– 0000 None
– 1000 Local
– 0100 JIS
– 0010 ISO/EUR
– 0001 USA

• Bits 29 to 32 Date option

– 0000 None
– 1000 Local

Appendix C. DSN1SMFP 1017

– 0100 EUR
– 0010 ISO/JIS
– 0001 USA

• Bit 33 Decimal

– 0 No
– 1 Yes

• Bits 34 to 40 Unused
• Bits 41 to 48 Remote option

– 00000001 SQL(ALL)
– 00000010 SQL(Db2)

• Bits 49 to 56 SQL flag option

– 00000000 No SQLFLAG option
– 00000001 SQLFLAG(SAA)

Field Name: QW0140HO
SOURCE OBJECT

The source object name.
Field Name: QW0140SN

SOURCE OWNER
The source object owner.
Field Name: QW0140SC

TARGET OBJECT
The target object name.
Field Name: QW0140TN

TARGET OWNER
The target object owner.
Field Name: QW0140TC

SQL STMT
The SQL statement text. Long SQL text can be truncated.
Field Name: QW0140TX

ACEE UTOKEN
Shows the ACEE UTOKEN, if it is available. If it is not available, the first word of this field contains one
of the following values:

• UNABLE TO GET TOKEN
• ABEND ACCESSING ACEE

Field Name: QW0140UT
RID OF ROW

Shows the row ID (RID) of the row that is updated or deleted if the table has multilevel security.
Field Name: QW0140ID

SECLABEL OF ROW
Shows the security label of the row for a table with multilevel security.
Field Name: QW0140RL

Example

AUTH CHECKED :
USRT004
AUTHID TYPE : PRIMARY OR SECONDARY AUTH
ID

1018 Db2 12 for z/OS: Utility Guide and Reference

REASON : 0000000000 STATMNT LENGTH :
0000000176
RETCOD : 00008 PRIV CHECKED :
SELECT
OBJECT : TABLE OR VIEW OPTIONS :
X'0400000000000000'
SOURCE OBJECT:
SYSAUDITPOLICIES
SOURCE OWNER :
SYSIBM
TARGET
OBJECT:

TARGET
OWNER :

SQL STMT: SELECT AUDITPOLICYNAME, CHECKING, VALIDATE, OBJMAINT, EXECUTE, CONTEXT, SECMAINT, OBJECTSCHEMA, OBJECTTYPE,
OBJECTNAME FRO
 YSAUDITPOLICIES ORDER BY
AUDITPOLICYNAME
ACEE UTOKEN : &.....H.L3C234 STLVM3 JES2 STLVM3 SYS1 RDR1 USRT004
SYS1
RID OF
ROW :

SECLABEL OF ROW:

IFCID141: Audit DDL Grant/Revoke
The IFCID141 DD contains the extracted IFCID 141 (Audit DDL Grant/Revoke) records.

Fields
The IFCID141 DD has the following fields:

GRANTOR/REVOKER
The authorization ID of the user who gave or revoked the access.
Field Name: QW0141AC and QW0141OR

REASON
The reason why access was granted or revoked.
Field Name: QW0141RE

RETURN
The SQL return code.
Field Name: QW0141CO

AUTHID TYPE
The authorization ID type. AUTHID TYPE can have the following values:

• PRIMARY OR SECONDARY AUTH ID
• ROLE

Field Name: QW0141OT
OBJECT

The object type. OBJECT can have the following values:

• ACEE
• APPLICATION PLAN
• BUFFERPOOL
• COLLECTION
• DATABASE
• DISTINCT TYPE
• FUNCTION
• SESSION VARIABLE

Appendix C. DSN1SMFP 1019

• JAR
• PACKAGE
• PROCEDURE
• SCHEMA
• SEQUENCE
• STORAGE GROUP
• ROLE
• ROW
• TABLE OR VIEW
• TABLESPACE
• TRUSTED CONTEXT
• USER AUTH
• N/A

Field Name: QW0141OB
OPTIONS

The options that were used in the host to check the SQL statement. The bits of this field are used
as indicators. If all bits are 0, the statement is not an SQL statement. See the OPTIONS field of
“IFCID140: Audit Authorization Failures” on page 1013 for a full description of the bits of this field.
Field Name: QW0141HO

SQL STMT
The SQL statement text. Long SQL text can be truncated.
Field Name: QW0141TX

Example

GRANTOR : SYSADM REASON : N/A RETURN: 0000000562
AUTHID TYPE: PRIMARY OR SECONDARY AUTH ID
OBJECT : APPLICATION PLAN OPTIONS: X'0400000000000000'
SQL STMT: GRANT BIND, EXECUTE ON PLAN DSNTEP2 TO PUBLIC

IFCID142: Audit DDL Create/Alter/Drop
The IFCID142 DD contains the extracted IFCID 142 (Audit DDL Create/Alter/Drop) records, which contain
the record of CREATE, ALTER, and DROP statements against tables that are audited or that have multilevel
security defined at the row level.

Fields
The IFCID142 DD has the following fields:

AUDIT DDL
ALTER, CREATE, or DROP.
Field Name: QW0142AC

TABLE NAME
The table name that is being created, altered, or dropped.
Field Name: QW0142TN

TABLE OWNER
The table owner (same as table qualifier).
Field Name: QW0142OW

1020 Db2 12 for z/OS: Utility Guide and Reference

TABLE OWNER TYPE
The table owner type. TABLE OWNER TYPE can have the following values:

• PRIMARY OR SECONDARY AUTH ID
• ROLE

Field Name: QW0142OR
TABLE CREATOR

The table creator.
Field Name: QW0142CR

OPTIONS
The options used in the host to check the SQL statement. The bits of this field are used as indicators.
If all bits are 0, the statement is not an SQL statement. See the OPTIONS field of “IFCID140: Audit
Authorization Failures” on page 1013 for a full description of the bits of this field.
Field Name: QW0142HO

DATABASE
The database ID.
Field Name: QW0142DB

TABLE OBID
The object ID.
Field Name: QW0142OB

SECLABEL OF MLS TABLE
The security label of the Multilevel Security (MLS) table.
Field Name: QW0142SL

MULTILEVEL SECURITY
Shows the multilevel security (MLS) status as follows:

• Y (on CREATE or DROP of an MLS Table, or ALTER to add a SECLABEL column)
• N (on ALTER of an MLS table)
• NON-MLS
• N/A

Field Name: QW0142ML
ROW/COLUMN ACCESS CONTROL

Shows the row and column access control status. The field can have one of the following values:

• ACTIVATE ROW ACCESS CONTROL
• ACTIVATE COLUMN ACCESS CONTROL
• ACTIVATE ROW AND COLUMN ACCESS CONTROL
• NO ACCESS CONTROL
• N/A

Field Name: QW0142RC
SQL STMT

The SQL statement text. Long SQL text can be truncated.
Field Name: QW0142TX

Example

AUDIT
DDL
ALTER TABLE NAME :
TBCCDB2A
 TABLE OWNER :

Appendix C. DSN1SMFP 1021

SCCCDB2A
 TABLE OWNER TYPE:
N/A
 TABLE CREATOR:
USRT001
 OPTIONS :
X'0400000000000000'
 DATABASE :
00269
 TABLE OBID :
00003
 SECLABEL OF MLS TABLE:
L3C234
 MULTILEVEL SECURITY : N (on ALTER of an MLS
table)
 ROW/COLUMN ACCESS CONTROL: NO ACCESS
CONTROL
 SQL STMT: ALTER TABLE SCCCDB2A.TBCCDB2A ALTER COLUMN NAME SET DATA TYPE
VARCHAR(10)

IFCID143: Audit First Write
The IFCID143 DD contains the extracted IFCID 143 (Audit First Write) records.

Fields
The IFCID143 DD has the following fields:

DATABASE
The database ID.
Field Name: QW0143DB

LOGRBA
The identifier of the unit of recovery.
Field Name: QW0143UR

PAGESET
The page set name or decimal identifier.
Field Name: QW0143PS

TABLE OBID
The object ID.
Field Name: QW0143OB

STATEMENT ID
The statement ID. This field can contain one of the following values:

• SQL statement ID
• 0

Field Name: QW0143SI

Example

DATABASE: 00269 LOGRBA : X'0000000000001EE006FD'
PAGE SET: 00002 TABLE OBID: 00004
STATEMENT ID: 00000000000000036343

1022 Db2 12 for z/OS: Utility Guide and Reference

IFCID144: Audit First Read
The IFCID144 DD contains the extracted IFCID 144 (Audit First Read) records.

Fields
The IFCID144 DD has the following fields:

DATABASE
The database ID.
Field Name: QW0144DB

LOGRBA
The identifier of the unit of recovery.
Field Name: QW0144UR

PAGESET
The page set name or decimal identifier.
Field Name: QW0144PS

TABLE OBID
The object ID.
Field Name: QW0144OB

STATEMENT ID
The statement ID. This field can contain one of the following values:

• SQL statement ID
• 0

Field Name: QW0144SI

Example

DATABASE: 00269 LOGRBA : X'0000000000001EE006FD'
PAGE SET: 00002 TABLE OBID: 00004
STATEMENT ID: 00000000000000000000

IFCID145: Audit DML Statement
The IFCID145 DD contains the extracted IFCID 145 (Audit DML Statement) records.

Fields
The IFCID145 DD has the following fields:

LOCATION NAME
The location name.
Field Name: QW0145LN

PKG COLLCT ID
The package collection identifier.
Field Name: QW0145PC

PROGRAM NAME
The program name.
Field Name: QW0145PN

TIME
The hexadecimal value of the precompiler timestamp.
Field Name: QW0145TS

Appendix C. DSN1SMFP 1023

TYPE
The SQL statement type.
Field Name: QW0145ST

STMT#
The precompiler statement number.
Field Name: QW0145SN

STATEMENT ID
The statement ID. This field can contain one of the following values:

• SQL statement ID
• 0

Field Name: QW0145SI
HOST OPTIONS

The options used in the host to check the SQL statement. The bits of this field are used as indicators.
If all bits are 0, the statement is not an SQL statement. See the OPTIONS field of “IFCID140: Audit
Authorization Failures” on page 1013 for a full description of the bits of this field.
Field Name: QW0145HO

SQL TEXT
The SQL statement text.
Field Name: QW0145RT_Var

DATABASE
The database ID.
Field Name: QW0145DB

TABLE OBID
The object ID.
Field Name: QW0145OB

ISOLATION
The isolation level of the DML statement. ISOLATION can have the following values:

• RR Repeatable read
• CS Cursor stability
• RS Read stability
• UR Uncommitted read
• RRX Repeatable read with X lock
• RSX Read stability with X lock

Field Name: QW0145IS
ACCESS SCHEMA

Field Name: QW0145AS_D
ACCESS OBJECT

The access control object name
Field Name: QW0145AO_D

Example

 LOCATION NAME: STLEC1
 PKG COLLCT ID: PKCC1A3
 PROGRAM NAME : MCC1A3
 TIME : 02:22:12
 TYPE : INSERT STMT#: 0000000014
 STATEMENT ID : 00000000000000036343
 HOST OPTIONS : X'0300D70010020000'
 DATABASE : 00269 TABLE OBID: 00004

1024 Db2 12 for z/OS: Utility Guide and Reference

 ISOLATION : CS
 SQL TEXT: INSERT INTO SCCC1A31 . TBCC1A31 (ID , NAME) VALUES (1 , 'X')

IFCID269: Trusted Connection
The IFCID269 DD contains the extracted IFCID 269 (Trusted Connection) records.

Fields
The IFCID269 DD has the following fields:

CONNECTION TYPE
The type of trusted connection. CONNECTION TYPE can have the following values:

• ESTABLISHED
• REUSED

Field Name: QW0269TY
STATUS

The status of the trusted connection. This value indicates a success if a trusted connection was
established or reused successfully. It indicates a failure if a trusted connection failed when it was tried
to be established or reused. STATUS can have the following values:

• FAILED
• SUCCESS

Field Name: QW0269ST
SQLCODE

The SQLCODE that is returned after running the SQL statement.
Field Name: QW0269SQ

TRUSTED CONTEXT NAME
The trusted context name.
Field Name: QW0269TC

SYSTEM AUTHID USED
The system authorization ID that is used to establish the trusted connection.
Field Name: QW0269SA

ROLE ASSOCIATED
The default role that is associated with the context.
Field Name: QW0269RC

OBJECT OWNER
The owner of the objects that are created using the trusted context. This value indicates whether a
ROLE or an AUTHORIZATION ID created the objects. OBJECT OWNER can have the following values:

• AUTHID
• ROLE

Field Name: QW0269OT
SECURITY LABEL

The security label.
Field Name: QW0269SL

TCP/IP ADDRESS
The communication TCP/IP address that is used for connection.
Field Name: QW0269AD

Appendix C. DSN1SMFP 1025

SERVAUTH NAME
The SERVAUTH name of the TCP/IP security zone.
Field Name: QW0269SR

ENCRYPTION
The encryption value that is to be associated with the encryption trust attribute for a trusted context.
Field Name: QW0269EC

JOB NAME
The job name for a local application.
Field Name: QW0269JN

REUSE AUTHID
The authorization ID under which a trusted connection is reused.
Field Name: QW0269RA

USER ROLE
The user role.
Field Name: QW0269RU

PROFILE NAME
The profile name.
Field Name: QW0269PR

Example

CONNECTION TYPE : ESTABLISHED
STATUS : SUCCESS SQLCODE: 0000000000
TRUSTED CONTEXT NAME: CTXCC1A33
SYSTEM AUTHID USED : USRT003
ROLE ASSOCIATED : ROLECC1A3_SYSADM
OBJECT OWNER : ROLE
SECURITY LABEL :
TCP/IP ADDRESS : 9.30.89.162
SERVAUTH NAME :
ENCRYPTION : NONE
JOB NAME :
REUSE AUTHID :
USER ROLE : ROLECC1A3_SYSADM
PROFILE NAME :

IFCID270: Trusted Context
The IFCID270 DD contains the extracted IFCID 270 (Trusted Context) records.

Fields
The IFCID270 DD has the following fields:

STATEMENT TYPE
The type of trusted context. STATEMENT TYPE can have the following values:

• ALTER
• CREATE

Field Name: QW0270TY
SQLCODE

The SQL return code from the CREATE or ALTER TRUSTED CONTEXT statement.
Field Name: QW0270SQ

SQL STMT LENGTH
The length of the SQL statement.

1026 Db2 12 for z/OS: Utility Guide and Reference

Field Name: QW0270SL
SQL STATEMENT

The SQL statement.
Field Name: QW0270SS

Example

STATEMENT TYPE :
CREATE
SQLCODE :
0000000000
SQL STMT LENGTH:
0000000236
SQL STATEMENT : CREATE TRUSTED CONTEXT CTXCC1A33 BASED UPON CONNECTION USING SYSTEM AUTHID USRT003 ATTRIBUTES(ADDRESS
'9.30.89
 .162') DEFAULT ROLE ROLECC1A3_SYSADM WITH ROLE AS OBJECT OWNER AND QUALIFIER ENABLE WITH USE FOR
USRT003 ROLE
 ROLECC1A3_SYSADM

IFCID350: SQL Statement
The IFCID350 DD contains the extracted IFCID 350 (SQL Statement) records.

Fields
The IFCID350 DD has the following fields:

OPTIONS
Shows the parser options and host language.
Field Name: QW0350OT

HOST LANG
Shows the host language. HOST LANG can have the following values:

• ASSEMBLER
• COBOL
• C
• FORTRAN
• PL/I
• COBOL II
• IBM COBOL
• C++
• N/A

Field Name: QW0350HL
SOURCE CCSID

Field Name: QW0350CC
SQL SEGMENT

Shows a segment of the SQL statement. SQL SEGMENT can have the following values:
FIRST

The first segment of the SQL statement.
LAST

The last segment of the SQL statement.
COMPLETE

The entire SQL statement.

Appendix C. DSN1SMFP 1027

OTHER
Some other segment of the SQL statement.

Field Name: QW0350FG
SQL LENGTH

The total length of the SQL statement.
Field Name: QW0350TL

SQL STATEMENT
Shows the complete SQL statement that is being parsed or only a part of it. Note: Host variables in this
field are represented by :h..
Field Name: QW0350SP

SQL STATEMENT ID
Field Name: QW0350SI

SQL STATEMENT TYPE
Field Name: QW0350TY

Example

OPTIONS : X'04' HOST LANG : N/A
SQL STATEMENT TYPE: DYNAMIC
SQL STATEMENT ID : 00000000000000000000
SOURCE CCSID : 00037
SQL SEGMENT : FIRST SQL LENGTH: 0000117158
SQL STATEMENT: INSERT INTO CCC501TAB ...

IFCID361: Audit Administrative Authorities
The IFCID361 DD contains the extracted IFCID 361 (Audit Administrative Authorities) records.

Fields
The IFCID361 DD has the following fields:

AUTHORITY TYPE
The type of administrative authority.

ROLE or AUTHID
The label that indicates the type of authorization followed by the role or authid that has the authority
Field Name: QW0361IT and QW0361ID_Var

PRIVILEGE CHECKED
The privilege that is checked. PRIVILEGE CHECKED can have the following values:

• ALL ON PACKAGES
• ALLPKAUT
• ALTER
• ALTER BUFFERPOOL
• ALTER INDEX
• ALTERIN
• ARCHIVE
• BIND ADD
• BIND, REBIND OR FREE
• BINDAGENT
• CHECK DATA UTILITY

1028 Db2 12 for z/OS: Utility Guide and Reference

• CHECK UTILITY
• COMMENT ON
• COMMENT ON INDEX
• COPY
• COPY PACKAGE
• CREATE ALIAS
• CREATE GLOBAL TEMPORARY TABLE (CREATETMTAB)
• CREATE IN
• CREATE INDEX
• CREATE SECURE OBJECT
• CREATE STOGROUP
• CREATE SYNONYM
• CREATE TABLE
• CREATE TABLESPACE
• CREATE VIEW
• CREATEDBA
• CREATEDBC
• CREATEIN
• DBADM
• DBCTRL
• DBMAINT
• DDF COMMAND - START, STOP, OR CANCEL
• DEBUG SESSION
• DELETE
• DESCRIBE TABLE
• DIAGNOSE UTILITY
• DISPLAY
• DISPLAY ARCHIVE
• DISPLAY BUFFERPOOL
• DISPLAY DATABASE
• DISPLAY PROFILE
• DISPLAY RLIMIT
• DISPLAY THREAD OR DISPLAY DB
• DISPLAY UTILITY
• DROP
• DROP ALIAS
• DROP INDEX
• DROP SYNONYM
• DROPIN
• EXECUTE
• EXPLAIN
• EXPLAIN MONITOR
• EXPLICIT QUALIFIER USE

Appendix C. DSN1SMFP 1029

• INSERT
• LOAD
• LOCK TABLE
• MERGECOPY UTILITY
• MLS READWRITE
• MODIFY UTILITY
• MONITOR1
• MONITOR2
• OTHER
• PACKADM
• QUERY TUNING
• QUIESCE UTILITY
• READ
• RECOVER (UTILITY)
• RECOVER BSDS
• RECOVER INDOUBT
• REFERENCES
• RENAME INDEX
• RENAME TABLE
• REORG
• REPAIR
• REPAIR DBD UTILITY
• REPORT UTILITY
• RUNSTATS UTILITY
• SECADM
• SELECT
• SET ARCHIVE
• SQLADM
• START
• START DATABASE
• START DB2, STOP DB2, START DB(*) OR STOP DB(*)
• START PROFILE
• START RLIMIT
• STOP
• STOP DATABASE
• STOP OR START TRACE
• STOP PROFILE
• STOP RLIMIT
• STOSPACE UTILITY
• SUBPKAUT
• SYSADM
• SYSCTRL
• SYSOPR

1030 Db2 12 for z/OS: Utility Guide and Reference

• SYSOPR SYSCTRL SYSADM SECADM
• TERM UTILITY
• TERMINATE UTILITY ON DATABASE
• TRIGGER
• UPDATE
• USAGE
• USE
• VALIDATE SECLABEL
• WRITE

Field Name: QW0361PR
SOURCE QUALIFIER

The source qualifier.
Field Name: QW0361SC_Var

SOURCE OBJECT
The source object name or original subsystem parameter value.
Field Name: QW0361SN_Var

TARGET QUALIFIER
The target qualifier.
Field Name: QW0361TC_Var

TARGET OBJECT
The target object name or modified z-parm value.
Field Name: QW0361TN_Var

OBJECT TYPE
The object type. OBJECT TYPE can have the following values:

• ACEE
• APPLICATION PLAN
• BUFFERPOOL
• COLLECTION
• DATABASE
• DISTINCT TYPE
• FUNCTION
• SESSION VARIABLE
• JAR
• PACKAGE
• PROCEDURE
• ROLE
• ROW
• SCHEMA
• SEQUENCE
• STORAGE GROUP
• TABLE OR VIEW
• TABLESPACE
• TRUSTED CONTEXT
• USER AUTH (System privileges, such as SYSADM or SYSOPR)

Appendix C. DSN1SMFP 1031

• N/A

Field Name: QW0361OT
OTHER OBJECT

The other object name or subsystem parameter value.
Field Name: QW0361ON_Var

SQL LENGTH
The length of the SQL statement.
Field Name: QW0361LL

SQL STATEMENT
The SQL statement (truncated at 4000 max) .
Field Name: QW0361SQ

Example

AUTHORITY TYPE : U
AUTHID : USER000
PRIVILEGE CHECKED: STOP OR START TRACE
OBJECT TYPE : USER AUTH
SQL LENGTH : 0000000022
SQL STATEMENT : -STOP TRACE(AUDIT)

IFCID362: Trace Start with Audit Policy
The IFCID362 DD contains the extracted IFCID 362 (Trace Start with Audit Policy) records.

Fields
The IFCID362 DD has the following fields:

STATUS
The status of trace start. This value indicates a success if the trace was started successfully. It
indicates a failure if the trace was not started.
Field Name: QW0362ST

TYPE
The type
Field Name: QW0362TY

REASON CODE
The reason code.
Field Name: QW0362RN

CHECKING CATEGORY
The category CHECKING.
Field Name: QW0362CH

VALIDATE CATEGORY
The category VALIDATE.
Field Name: QW0362VA

OBJMAINT CATEGORY
The category OBJMAINT.
Field Name: QW0362OB

EXECUTE CATEGORY
The category EXECUTE.
Field Name: QW0362EX

1032 Db2 12 for z/OS: Utility Guide and Reference

CONTEXT CATEGORY
The category CONTEXT.
Field Name: QW0362CX

SECMAINT CATEGORY
The category SECMAINT.
Field Name: QW0362SM

Db2 START
Db2 startup.
Field Name: QW0362DS

DATABASE NAME
The Database name.
Field Name: QW0362DB

OBJECT TYPE
The object type.
Field Name: QW0362OT

AUDIT POLICY NAME
The audit policy name.
Field Name: QW0362AP_Var

TABLE SCHEMA NAME
The table schema name.
Field Name: QW0362TS_Var

TABLE NAME
The table name.
Field Name: QW0362TB_Var

SYSADMIN CATEGORY
The SYSADM categories.
Field Name: QW0362SA_Var

DBADMIN CATEGORY
The DBADM categories.
Field Name: QW0362DA_Var

COLLECTION ID
The collection ID.
Field Name: QW0362CO_Var

LIKE TABLES
The total number of tables that match the LIKE clause.
Field Name: QW0362TT

LIKE TABLES TRACED
The number of LIKE tables that are traced.
Field Name: QW0362TR

LIKE TABLE #
The name of the LIKE table that is traced.
Field Name: QW0362TN

Example

STATUS : SUCCESS
TYPE : START TRACE
REASON CODE : 0000000000
CHECKING CATEGORY :
VALIDATE CATEGORY : A

Appendix C. DSN1SMFP 1033

OBJMAINT CATEGORY :
EXECUTE CATEGORY :
CONTEXT CATEGORY :
SECMAINT CATEGORY :
DB2 START :
DATABASE NAME :
OBJECT TYPE : ALL SUPPORTED
AUDIT POLICY NAME : VLDPLCY
LIKE TABLES : 00000
LIKE TABLES TRACED: 00000

SYSPRINT: Runtime messages and end-of-job summary
The SYSPRINT DD contains any warning and error messages that were generated during processing, plus
a breakdown of the records that were read and processed.

Example

DSN1SMFP - End of job summary

 Read Written
 ---------------------- ----------------------
Total records:........................... 33 31
 SMF Type 101 records:..................... 0 0
 Type 101 from DB2 Version 12:........... 0
 IFCID 003 for distributed data:... 0 0
 Other IFCID 003:.................. 0
 Other Type 101 IFCIDs:............ 0
 Type 101 from other DB2 releases:....... 0

 SMF Type 102 records:..................... 31 31
 Type 102 from DB2 Version 12:........... 31
 IFCID 004:........................ 2 2
 IFCID 005:........................ 2 2
 IFCID 023:........................ 0 0
 IFCID 024:........................ 0 0
 IFCID 025:........................ 0 0
 IFCID 083:........................ 0 0
 IFCID 106:........................ 0 0
 IFCID 140:........................ 0 0
 IFCID 141:........................ 0 0
 IFCID 142:........................ 0 0
 IFCID 143:........................ 0 0
 IFCID 144:........................ 0 0
 IFCID 145:........................ 12 12
 IFCID 269:........................ 0 0
 IFCID 270:........................ 0 0
 IFCID 350:........................ 15 15
 IFCID 361:........................ 0 0
 IFCID 362:........................ 0 0
 Other Type 102 IFCIDs:............ 0
 Type 102 from other DB2 releases:....... 0

 Other SMF records:............................ 2

 Invalid IFCID Records:........................ 0

Attention: This figure indicates the number of input records that were counted under a particular
IFCID type but that were subsequently rejected because subsequent processing has revealed
problems such as missing sections. The Invalid IFCID Records count, therefore, is not part of the
Total Records Read count.

1034 Db2 12 for z/OS: Utility Guide and Reference

Appendix D. DSNADMSB
The DSNADMSB program collects information about a Db2 subsystem and its objects and applications. It
calls the ADMIN_INFO_SQL stored procedure.

Tip: You can run the DSNTEJ6I sample job that is supplied with Db2 in the prefix.SDSNSAMP data set to
run this program. For more information, see DSNTEJ6I (Db2 Programming samples).

IBM Support can use the information that DSNADMSB gathers to duplicate a customer environment to
diagnose and resolve problems. This capability is especially useful for re-creating performance problems.

Output

Output from the DSNADMSB program consists of files that contain one or more of the following items:

• Data definition statements for re-creating user objects
• Statistics from the Db2 catalog
• INSERT statements for inserting rows into tables:

– DSN_PROFILE_ATTRIBUTES
– DSN_PROFILE_TABLE
– PLAN_TABLE
– SYSACCELERATEDTABLES
– SYSACCELERATORS

• Output from:

– DSN_DETCOST_TABLE
– DSN_PREDICAT_TABLE
– DSN_PROFILE_TABLE
– DSN_PROFILE_ATTRIBUTES
– PLAN_TABLE
– SYSACCELERATEDTABLES
– SYSACCELERATORS

• Subsystem parameter settings and module entry point list (MEPL) information
• Module entry point list (MEPL) information that relates to query processing
• Status information from stored procedure ADMIN_INFO_SQL

The output from ADMIN_INFO_SQL is intended primarily for the use of IBM Support. The format and
content of the output might change at any time.

Authorization required

To execute DSNADMSB, you must have the following Db2 privileges or authorities:

• EXECUTE authority on plan DSNADMSB
• One of the following privileges or authorities:

– The EXECUTE privilege on the ADMIN_INFO_SQL stored procedure
– Ownership of the ADMIN_INFO_SQL stored procedure
– SYSADM authority

© Copyright IBM Corp. 1983, 2024 1035

https://www.ibm.com/docs/SSEPEK_12.0.0/appdevsamp/src/tpc/db2z_samp_dsntej6i.html

In addition, if you direct DSNADMSB to write its output to data sets, you need to be authorized to perform
either of the following tasks:

• Create data sets
• Write to already existing data sets

Related tasks
Collecting service SQL documentation ()
Related reference
ADMIN_INFO_SQL stored procedure (Db2 SQL)
DSNTEJ6I (Db2 Programming samples)

Parameters of the DSNADMSB program
The parameters of the DSNADMSB program determine the types of information that the program gathers,
and the destination to which the information is written.

The output from DSNADMSB is primarily for the use of IBM Software Support. The output might change at
any time.

All parameters are positional and required, and no parameter value can be NULL. Specify parameters in
a data set that is associated with the INPUTP DD statement, with one parameter value in each record. A
single parameter can span multiple records. Indicate continuation of the text for a parameter with a plus
sign (+) in column one of all records after the first one. DSNADMSB trims blanks at the end of all lines.
DSNADMSB does not trim blanks within the parameter text.

Parameter descriptions
table-creator

The qualifier for the table, table list table (LIST_TABLE-list-table), or PLAN_TABLE for which
DSNADMSB gathers information. The maximum length of table-creator is 128 bytes. table-creator
cannot be null.

table-name
One of the following values:

• The name of a single user object that has table-creator as its qualifier. The name must identify one
of the following types of objects:

– Base table
– View
– Alias
– Clone table
– Created temporary table
– History table
– Materialized query table
– Implicitly created table for an XML column

• LIST_TABLE-list-table

list-table identifies a Db2 table on the local subsystem that has table-creator as the qualifier. The
table must contain two columns, named CREATOR and TABLE. Each row of list-table identifies a
table or view for which DSNADMSB is to gather information. The types of tables that are specified in
LIST_TABLE-list-table are the same as the types of tables that can be specified by table-name.

• PLAN_TABLE

1036 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/trbshoot/src/tpc/db2z_collectservicesql.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_admininfosql.html
https://www.ibm.com/docs/SSEPEK_12.0.0/appdevsamp/src/tpc/db2z_samp_dsntej6i.html

Specifies that DSNADMSB uses table-creator.PLAN_TABLE and the plan-info parameter to
determine the tables about which information is gathered. The referenced PLAN_TABLE must be
a base table.

Recommendation: When you specify PLAN_TABLE, ensure that the view reference table,
DSN_VIEWREF_TABLE, exists before you execute EXPLAIN. The existence of DSN_VIEWREF_TABLE
is especially important if the queries about which you are collecting information contain views.
If DSN_VIEWREF_TABLE exists and has been populated by EXPLAIN, you can use DSNADMSB to
collect view data that is specific to the queries of interest, instead of collecting data on all view
dependencies. The DSN_VIEWREF_TABLE must have the same qualifier as the plan table. This
qualifier is the first DSNADMSB input parameter, table-creator.

The maximum length of table-name is 128 bytes.

If the table name is a delimited identifier, do not include the delimiters in table-name.

catalog-creator
The qualifier for the Db2 catalog, or DEFAULT, which indicates that the catalog qualifier is SYSIBM.

The maximum length of catalog-creator is 128 bytes.

plan-info
If the table that is specified by table-name is PLAN_TABLE, plan-info is a value of the following form,
or NONE:

program-begin-queryno-end-queryno

The meanings of these variables are:

program
A value from the PROGNAME column of the PLAN_TABLE, or a pattern that specifies a set of
PROGNAME values in the PLAN_TABLE. Any pattern that is valid in a LIKE predicate can be
specified. program represents programs or packages for which DSNADMSB collects PLAN_TABLE
information.

begin-queryno
A value from the QUERYNO column of the PLAN_TABLE. The value represents the lowest
statement number for which DSNADMSB collects PLAN_TABLE information.

end-queryno
A value from the QUERYNO column of the PLAN_TABLE. The value represents the highest
statement number for which DSNADMSB collects PLAN_TABLE information.

If table-name does not specify PLAN_TABLE, the plan-info value must be NONE.

The maximum length of plan-info is 150 bytes.

collect-ddl
Specifies whether DSNADMSB returns the data definition language statements that were used to
create the input tables or views that are specified by table-name, and data definition language
statements for related objects. The length of collect-ddl is 1 byte.

When the input table is not PLAN_TABLE, possible values are:

N
Do not return the data definition language statements that created the objects.

Y
Return the data definition language statements that created:

• The input objects
• Foreign keys that reference the input objects
• Views on the input objects

0
Return the data definition language statements that created:

Appendix D. DSNADMSB 1037

• The input objects. Statements that create views on the input objects or foreign keys that
reference the input objects are not collected.

1
Return the data definition language statements that created:

• The input objects
• Views on the input objects

2
Return the data definition language statements that created:

• The input objects
• Foreign keys that reference the input objects

3
Return the data definition language statements that created:

• The input objects
• Foreign keys that reference the input objects
• Views on the input objects
• Other objects that depend on the input objects, such as materialized query tables

This option can result in a large amount of data. Do not use this option for data collection that is
requested by IBM Support.

4
Return the same data definition language statements that are returned when option Y is specified.

When the input table is PLAN_TABLE, possible values are:

N
Do not return the data definition language statements that created the objects.

Y
Return the data definition language statements that created:

• The objects that are identified by plan-info
• Foreign keys that reference the objects that are identified by plan-info
• If DSN_VIEWREF_TABLE exists and is populated, views or materialized query tables that are

used to process the queries that are identified by plan-info.
• If DSN_VIEWREF_TABLE does not exist, views on objects that are identified by plan-info.

DSNADMSB requires more time to gather data if DSN_VIEWREF_TABLE is not available than
if DSN_VIEWREF_TABLE is available.

0
Return the data definition language statements that created:

• The objects that are identified by plan-info only. Statements that create views on the objects or
foreign keys that reference the objects that are identified by plan-info are not collected.

1
Return the data definition language statements that created:

• The objects that are identified by plan-info
• If DSN_VIEWREF_TABLE exists and is populated, views or materialized query tables that are

used to process the queries that are identified by plan-info.
• If DSN_VIEWREF_TABLE does not exist, views on objects that are identified by plan-info.

DSNADMSB requires more time to gather data if DSN_VIEWREF_TABLE is not available than
if DSN_VIEWREF_TABLE is available.

2
Return the data definition language statements that created:

1038 Db2 12 for z/OS: Utility Guide and Reference

• Foreign keys that reference the objects that are identified by plan-info

3
Return the data definition language statements that created:

• The objects that are identified by plan-info
• Foreign keys that reference the objects that are identified by plan-info
• Views on objects that are identified by plan-info
• Other objects that depend on the objects that are identified by plan-info, such as materialized

query tables

This option can result in a large amount of data. Do no specify this option for problem analysis by
IBM Software Support unless they direct you to do so.

4
Return the data definition language statements that created:

• The objects that are identified by plan-info
• Foreign keys that reference the objects that are identified by plan-info
• Views on objects that are identified by plan-info

This option does not use information from DSN_VIEWREF_TABLE. DSNADMSB requires more time
to gather data if you choose option 4 than if you choose option Y, and DSN_VIEWREF_TABLE is
available.

collect-stats
Specifies whether DSNADMSB returns statistical information from Db2 catalog tables about the tables
that are specified by table-name and related objects. Possible values are:
Y

Return statistical information about tables from the Db2 catalog.
N

Do not return statistical information about tables from the Db2 catalog.

Important: Setting a collect-stats value of Y might generate large amounts of data. Set collect-stats to
N unless you specifically need statistical information from Db2 catalog tables.

The length of collect-stats is 1 byte.

collect-colstats
Specifies whether DSNADMSB returns statistical information from Db2 catalog tables about the
columns in tables that are specified by table-name and related objects. Possible values are:
Y

Return statistical information about columns from the Db2 catalog.
N

Do not return statistical information about columns from the Db2 catalog.

Important: Setting a collect-colstats value of Y might generate large amounts of data. Set collect-
colstats to N unless you specifically need statistical information from Db2 catalog tables.

The length of collect-colstats is 1 byte.

edit-ddl
Specifies whether DSNADMSB modifies the data definition language statements that it generates so
that the data definition language statements can be more easily executed by IBM Support. Examples
of changes that DSNADMSB makes are:

• Setting the STOGROUP to SYSDEFLT
• Setting PRIQTY and SECQTY to their minimum values
• Setting DEFINE to NO
• Commenting out foreign key definitions

Appendix D. DSNADMSB 1039

Possible values are:
Y

Edit the data definition language statements that DSNADMSB produces.

Y is the recommended value if you do not send data to populate the tables that are specified by
table-name to IBM Support.

N
Do not edit the data definition language statements that DSNADMSB produces.

The length of edit-ddl is 1 byte.

edit-version-mode
Specifies that the output format for a different version and mode of Db2 for z/OS than is currently
running when collecting information. In most cases, specify NONE, so that the output is not converted
to another format. Otherwise, you must specify the version number and the mode.

Valid values for mode are C for conversion mode and N for new-function mode. For example, if you
want to generate the output in the format used by Db2 11 new-function mode, specify 11-N.

This is an input parameter of type CHAR(4) and cannot be null.

partition-rotation
Specifies whether DSNADMSB checks the amount of rotation that a partitioned table has undergone.
DSNADMSB determines the number of partition rotations that are needed to synchronize logical
partitions with physical partitions. Possible values are:
Y

Check for the amount of partition rotation.

Y is valid only for partitioned tables.

N
Do not check for the amount of partition rotation.

The length of partition-rotation is 1 byte.

output-method
Specifies the type of destination for DSNADMSB output. Possible values are:
R

Output is returned in the job stream. In most cases, R should be used.
Q

Output is returned in data sets that DSNADMSB creates. You supply the qualifier name and
primary and secondary allocation quantities for those data sets in the output-info parameter.

Important: The data sets are temporary data sets that are created on scratch packs. Depending
on how the z/OS system is configured, the data sets might be deleted after a short time.

N
Output is returned in existing data sets that are allocated by the WLM environment startup
procedure. You supply the data set names in the output-info parameter.

D
Output is returned in data sets that DSNADMSB creates. You supply the data set names and
primary and secondary allocation quantities for those data sets in the output-info parameter.

The length of output-method is 1 byte.

output-info
Specifies output data set information. The information depends on the value of output-method.

output-
method
value output-info value

R NONE

1040 Db2 12 for z/OS: Utility Guide and Reference

output-
method
value output-info value

Q A string of this form:

qualifier-primary-secondary

qualifier
A string of up to 29 bytes, or DEFAULT. DSNADMSB appends a string that defines the type of
output data set. If qualifier is not DEFAULT, qualifier must conform to the rules for z/OS data
set names. If qualifier is DEFAULT, DSNADMSB generates a qualifier value of the following
form:

PMnnnnn.Dyymmdd.Thhmmss

nnnnn is the PMR number. yymmdd and hhmmss are the date and time when DSNADMSB
ran.

The strings that DSNADMSB appends to qualifier are:

• .DDL for the data set that contains data definition statements for user tables or the
PLAN_TABLE

• .SQL for the data set that contains SQL statements that populate PLAN_TABLE,
DSN_PROFILE_TABLE, DSN_PROFILE_ATTRIBUTES, and SYSACCELERATORS

• .STATS for the data set that contains SQL statements that populate Db2 catalog tables with
statistical information about tables

• .COLST for the data set that contains SQL statements that populate Db2 catalog tables
with statistical information about columns

• .EXPL for the data set that contains output from tables
PLAN_TABLE, DSN_PREDICAT_TABLE, DSN_DETCOST_TABLE, DSN_PROFILE_TABLE,
DSN_PROFILE_ATTRIBUTES, and SYSACCELERATORS

• .PARM for the data set that contains subsystem parameter settings

primary
The primary allocation quantity for the output data sets, or DEFLT. If you specify DEFLT, the
primary allocation quantity is 200 tracks.

secondary
The secondary allocation quantity for the output data sets, or DEFLT. If you specify DEFLT,
the secondary allocation quantity is 200 tracks.

Appendix D. DSNADMSB 1041

output-
method
value output-info value

N A string of this form:

ddldd-sqldd-statsdd-colstdd-colstdd-parmdd

Each part of the string is the DD name for a data set that is defined in the WLM startup procedure
for the WLM environment in which the ADMIN_INFO_SQL stored procedure runs. The DD names
are:

• ddldd for the data set that contains data definition statements for user tables or the
PLAN_TABLE

• sqldd for the data set that contains SQL statements that populate PLAN_TABLE,
DSN_PROFILE_TABLE, DSN_PROFILE_ATTRIBUTES, and SYSACCELERATORS

• statsdd for the data set that contains SQL statements that populate Db2 catalog tables with
statistical information about tables

• colstdd for the data set that contains SQL statements that populate Db2 catalog tables with
statistical information about columns

• expldd for the data set that contains output from tables PLAN_TABLE, DSN_PREDICAT_TABLE,
DSN_DETCOST_TABLE, DSN_PROFILE_TABLE, DSN_PROFILE_ATTRIBUTES, and
SYSACCELERATORS

• parmdd for the data set that contains subsystem parameter settings

D Records of this form:

DDL;dsname;volser;allocunits;primary;secondary-
+SQL;dsname;volser;allocunits;primary;secondary-
+STATS;dsname;volser;allocunits;primary;secondary-
+COLST;dsname;volser;allocunits;primary;secondary-
+EXPL;dsname;volser;allocunits;primary;secondary-
+PARM;dsname;volser;allocunits;primary;secondary

1

The plus (+) signs are not part of the output-info value. You need to put a plus (+) sign in column
1 when you continue the output-info value in a new record.

Note:

1. The meanings of the items in the string are:
DDL, SQL, STATS, COLST, EXPL, PARM

Identifies the type of output that DSNADMSB puts in the data set:

• DDL for the data set that contains data definition statements for user tables or the
PLAN_TABLE

• SQL for the data set that contains SQL statements that populate PLAN_TABLE,
DSN_PROFILE_TABLE, DSN_PROFILE_ATTRIBUTES, and SYSACCELERATORS

• STATS for the data set that contains SQL statements that populate Db2 catalog tables with
statistical information about tables

• COLST for the data set that contains SQL statements that populate Db2 catalog tables with
statistical information about columns

• EXPL for the data set that contains output from tables PLAN_TABLE, DSN_PREDICAT_TABLE,
DSN_DETCOST_TABLE, DSN_PROFILE_TABLE, DSN_PROFILE_ATTRIBUTES, and
SYSACCELERATORS

• PARM for the data set that contains subsystem parameter settings

1042 Db2 12 for z/OS: Utility Guide and Reference

dsname
The fully qualified name of the data set that DSNADMSB allocates, or DEFAULT.

If you specify DEFAULT and pmr-info specifies a support case ID, the data set names are
created with the following format, with the case ID numbers split into two parts:

Tnnnnn.Snnnn.Ddddddd.Ttttttt.VXX.COLST
Tnnnnn.Snnnn.Ddddddd.Ttttttt.VXX.DDL
Tnnnnn.Snnnn.Ddddddd.Ttttttt.VXX.EXPL
Tnnnnn.Snnnn.Ddddddd.Ttttttt.VXX.PARM
Tnnnnn.Snnnn.Ddddddd.Ttttttt.VXX.SQL
Tnnnnn.Snnnn.Ddddddd.Ttttttt.VXX.STATS

For example, for support case 123456789, the data sets are generated with names in the
following format: T123456.S6789.D190903.T170318.VXX.type

If you specify DEFAULT and pmr-info specifies a PMR number, the data set names are created
with the following format:

PMnnnnn.Dyymmdd.Thhmmss.Vn.COLST
PMnnnnn.Dyymmdd.Thhmmss.Vn.DDL
PMnnnnn.Dyymmdd.Thhmmss.Vn.EXPL
PMnnnnn.Dyymmdd.Thhmmss.Vn.PARM
PMnnnnn.Dyymmdd.Thhmmss.Vn.SQL
PMnnnnn.Dyymmdd.Thhmmss.Vn.STATS

nnnnn is the PMR number, without the branch code or country code.

yymmdd is the date and hhmmss is the time when DSNADMSB ran.

n is a release indicator.

For example, for PMR 12345, the data sets are generated with names in the following format:
PMR12345.D190903.T170318.VXX.type

volser
The volume serial on which the data set is created.

allocunits
Valid values are TRK or CYL.

primary
The primary allocation quantity for the output data set.

secondary
The secondary allocation quantity for the output data set.

The maximum length of output-info is 1024 bytes.

pmr-info
Identifies the support case or the number of the PMR for which the data is being collected in one of
the following forms:

• The 9-digit support case ID number.
• The number of the PMR in number.branch-code.country-code format

Related reference
“Examples of DSNADMSB invocation” on page 1046
Use the DSNADMSB invocation examples as models for generating your own DSNADMSB output.
“Data sets that DSNADMSB uses” on page 1044
The DSNADMSB utility uses a number of data sets during its operation.
PLAN_TABLE (Db2 Performance)

Appendix D. DSNADMSB 1043

https://www.ibm.com/docs/SSEPEK_12.0.0/usrtab/src/tpc/db2z_plantable.html

Before running DSNADMSB
Certain activities might be required before you run the DSNADMSB program.

Before you run DSNADMSB, perform the following actions:

• Check that the SYSPROC.ADMIN_INFO_SQL stored procedure that is supplied by Db2 is installed. In
general, this activity is performed during the installation process.

Installation job DSNTIJRT installs all Db2-supplied routines and sets up the WLM environments for
them.

• Check that the plan for DSNADMSB is bound. In general, this activity is performed during the installation
process. Installation job DSNTIJRT binds the package and plan for DSNADMSB.

• Ensure that enough space is available for the output. DSNADMSB might generate large amounts of data.
The average is 2 - 3 MB of space, but larger workloads might generate up to 20 MB of data.

• Prepare a job for running DSNADMSB. The easiest way to do that is to customize a copy of sample job
DSNTEJ6I, which is in data set prefix.SDSNSAMP. The job prolog has detailed instructions on how to
customize the job.

• Recommendation: If you are running DSNADMSB to collect information from the plan table,
PLAN_TABLE, ensure that the view reference table, DSN_VIEWREF_TABLE, also exists before you
execute EXPLAIN. The existence of DSN_VIEWREF_TABLE is especially important if the queries about
which you are collecting information contain views. If DSN_VIEWREF_TABLE exists and has been
populated by EXPLAIN, you can use DSNADMSB to collect view data that is specific to the queries
of interest, instead of collecting data on all view dependencies. The DSN_VIEWREF_TABLE must have
the same qualifier as the plan table. This qualifier is the first DSNADMSB input parameter, table-creator.

Related concepts
Job DSNTIJRT (Db2 Installation and Migration)
Related reference
“Data sets that DSNADMSB uses” on page 1044
The DSNADMSB utility uses a number of data sets during its operation.
“Parameters of the DSNADMSB program” on page 1036
The parameters of the DSNADMSB program determine the types of information that the program gathers,
and the destination to which the information is written.
Job DSNTIJSG (Db2 Installation and Migration)
ADMIN_INFO_SQL stored procedure (Db2 SQL)
DSN_VIEWREF_TABLE (Db2 Performance)

Data sets that DSNADMSB uses
The DSNADMSB utility uses a number of data sets during its operation.

DSNADMSB runs under the DSN Db2 command processor. The following table lists the data sets that
DSNADMSB uses, in addition to the standard data sets that are required for running an application under
DSN.

Table 150. Data sets that DSNADMSB uses

Data set type DD name Description Required?

Input INPUTP Contains the DSNADMSB parameters.
The INPUTP data set must have a
logical record length of 80. Only bytes
1 through 71 can contain input data.

Yes

1044 Db2 12 for z/OS: Utility Guide and Reference

https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_jobdsntijrt.html
https://www.ibm.com/docs/SSEPEK_12.0.0/inst/src/tpc/db2z_jobdsntijsg.html
https://www.ibm.com/docs/SSEPEK_12.0.0/sqlref/src/tpc/db2z_sp_admininfosql.html
https://www.ibm.com/docs/SSEPEK_12.0.0/usrtab/src/tpc/db2z_dsnviewreftable.html

Table 150. Data sets that DSNADMSB uses (continued)

Data set type DD name Description Required?

Output None Up to six data sets that contain
the diagnostic data that DSNADMSB
generates. The data set names and
characteristics are determined by
the values that you specify for the
output-method and output-info input
parameter values.

Yes

Copying the data that DSNADMSB and ADMIN_INFO_SQL collect to
another subsystem

The jobs that DSNADMSB and ADMIN_INFO_SQL produce are primarily intended for the use of IBM
Software Support. However, you can modify those jobs so that you can run them on your own test systems
to reproduce a problem environment.

Procedure
1. Ensure that your test system does not contain data that conflicts with the data that DSNADMSB or

ADMIN_INFO_SQL collects.

Recommendation: Use a newly installed Db2 subsystem for testing.
2. Customize the jobs:

a) Modify the JOB statement for your test system.
b) Change the subsystem name to the subsystem name for your test system.
c) Change the steps that run TSOBATCH so that they run IKJEFT01.

For example, suppose that the original code looks like this:

//SETUP EXEC TSOBATCH,DB2LEV=DB2A

You need to change the code to something like this:

//SETUP EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *

d) Change the steps that run DSNTEP3 so that they run DSNTEP2.
For example, suppose that the original code looks like this:

//SYSTSIN DD *
 DSN S(SSTR) R(1) T(1)
 RUN PROGRAM(DSNTEP3)
 END

You need to change the code to something like this:

//SYSTSIN DD *
 DSN S(SSTR) R(1) T(1)
 RUN PROGRAM(DSNTEP2) PLAN(DSNTEPC1) +
 LIB('DSNC10.RUNLIB.LOAD')
 END

3. Set the subsystem parameters on the test system as indicated in the output file that contains
subsystem parameter values (PARM file).

If DSNADMSB or ADMIN_INFO_SQL output is returned in a single job stream (output-method is R), the
subsystem parameter output is at the end of the job output.

Appendix D. DSNADMSB 1045

4. In the data definition language job (the job that contains ** DDL Information **), make these
changes:
a) Modify the -ALTER BUFFERPOOL statements at the end of the job to contain settings that are

appropriate for your test system.
b) Remove the asterisks (**) in front of the -ALTER BUFFERPOOL statements.
c) Move the -ALTER BUFFERPOOL statements to the place in the job that says:

**BUFFERPOOL INFORMATION GOES HERE

5. Run the remainder of the jobs, in the following order:

a. Data definition language job (contains ** DDL Information **)
b. Statistics INSERTs job (contains ** Stats inserts **)
c. Column statistics INSERTs job (contains ** Column Stats inserts **)
d. Plan, profile and accelerator INSERTs job (contains ** Plan, Profile and Accelerator
Inserts **)

Examples of DSNADMSB invocation
Use the DSNADMSB invocation examples as models for generating your own DSNADMSB output.

Example: Collecting data from a PLAN_TABLE

Suppose that you want DSNADMSB to retrieve data from plan table SYSADM.PLAN_TABLE rows for which
PROGNAME is APROGRAM and 1<=QUERYNO<=12345. You want DSNADMSB to create the output in data
sets whose names and characteristics you specify. The parameter values that you specify are:

Parameter Value Explanation

table-creator SYSADM These two parameters direct
DSNADMSB to collect data
from SYSADM.PLAN_TABLE.table-name PLAN_TABLE

catalog-creator DEFAULT For catalog queries, directs
DSNADMSB to use the default
catalog table qualifier of
SYSIBM.

plan-info APROGRAM-1-12345 Directs DSNADMSB to collect
data only for rows for which
PROGNAME is 'APROGRAM'
and QUERYNO is between 1
and 12345, inclusive.

collect-ddl Y Directs DSNADMSB to
collect the data definition
statements that created
SYSADM.PLAN_TABLE and
associated objects.

collect-stats Y Directs DSNADBMSB to collect
statistics about tables from the
Db2 catalog.

collect-colstats N Directs DSNADBMSB not to
collect statistics about table
columns from the Db2 catalog.

1046 Db2 12 for z/OS: Utility Guide and Reference

Parameter Value Explanation

edit-ddl Y Directs DSNADMSB to modify
the data definition language
statements that it generates
so that the data definition
language statements can be
more easily executed by IBM
Support.

edit-version-mode NONE Directs DSNADMSB not to
modify its output to run on a
different Db2 version from the
version for which the data was
collected.

partition-rotation N Directs DSNADMSB not to
check partition rotation.

output-method D These two parameters direct
DSNADMSB to write data
to output data sets that
DSNADMSB allocates on
volume EDSDMP, with the
specified data set names and
space allocations.

output-info DDL;SYSADM.DDL.P12345;EDSDMP;TRK;200;200-
+SQL;SYSADM.SQL.P12345;EDSDMP;TRK;200;200-
+STATS;SYSADM.STATS.P12345;EDSDMP;TRK;200;2
00- +COLST;DEFAULT;EDSDMP;TRK;50;50-
+EXPL;SYSADM.EXPL.P12345;EDSDMP;TRK;200;20
0-
+PARM;SYSADM.PARM.P12345;EDSDMP;TRK;200;2
00

pmr-info TS123456789 This value is the 9-digit
support case ID number for
the problem that requires data
collection.

The JCL for the step that executes DSNADMSB looks like this:

//DSNADMSB EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=4096)
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DSN)
 RUN PROGRAM(DSNADMSB) PLAN(DSNADMSB)
//INPUTP DD *
SYSADM
PLAN_TABLE
DEFAULT
APROGRAM-1-12345
Y
Y
N
Y
NONE
N
D
DDL;SYSADM.DDL.P12345;EDSDMP;TRK;200;200-
+SQL;SYSADM.SQL.P12345;EDSDMP;TRK;200;200-
+STATS;SYSADM.STATS.P12345;EDSDMP;TRK;200;200-
+COLST;DEFAULT;EDSDMP;TRK;50;50-
+EXPL;SYSADM.EXPL.P12345;EDSDMP;TRK;200;200-
+PARM;SYSADM.PARM.P12345;EDSDMP;TRK;200;200
TS123456789

Example: Collecting data for all rows in a PLAN_TABLE

Appendix D. DSNADMSB 1047

Suppose that you want DSNADMSB to retrieve data about all rows in a PLAN_TABLE. You want
DSNADMSB to generate the names for the output data sets. The generated names are:

• T12345.S6789.Dyymmdd.Dhhmmss.VXX.COLST
• T12345.S6789.Dyymmdd.Dhhmmss.VXX.DDL
• T12345.S6789.Dyymmdd.Dhhmmss.VXX.EXPL
• T12345.S6789.Dyymmdd.Dhhmmss.VXX.PARM
• T12345.S6789.Dyymmdd.Dhhmmss.VXX.SQL
• T12345.S6789.Dyymmdd.Dhhmmss.VXX.STATS

TS123456789 is the case ID number. This number is split across the first two qualifiers. yymmdd and
hhmmss are the date and time when DSNADMSB ran.

The parameter values that you specify are:

Parameter Value Explanation

table-creator SYSADM These two parameters direct
DSNADMSB to collect data
about SYSADM.PLAN_TABLE.table-name PLAN_TABLE

catalog-creator DEFAULT For catalog queries, directs
DSNADMSB to use the default
catalog table qualifier of
SYSIBM.

plan-info %-0-999999 This parameter tells
DSNADMSB to collect
data for all rows in
SYSADM.PLAN_TABLE by
requesting all rows for
which PROGNAME='%' and
0<=QUERYNO<=999999.

collect-ddl Y Directs DSNADMSB to
collect the data definition
statements that created
SYSADM.PLAN_TABLE and
associated objects.

collect-stats Y Directs DSNADBMSB to collect
statistics about tables from the
Db2 catalog.

collect-colstats N Directs DSNADBMSB not to
collect statistics about table
columns from the Db2 catalog.

edit-ddl Y Directs DSNADMSB to modify
the data definition language
statements that it generates
so that the data definition
language statements can be
more easily executed by IBM
Support.

edit-version-mode NONE Directs DSNADMSB not to
modify its output to run on a
different Db2 version from the
version for which the data was
collected.

1048 Db2 12 for z/OS: Utility Guide and Reference

Parameter Value Explanation

partition-rotation N Directs DSNADMSB not to
check partition rotation.

output-method Q Q directs DSNADMSB to write
output data to data sets that
DSNADMSB creates. All output
data sets have a data set
qualifier of SYSADM, a primary
allocation quantity of 200, and
a secondary allocation quantity
of 200.

output-info DEFAULT-200-200

pmr-info TS123456789 This value is the 9-digit
support case ID number for
the problem that requires data
collection.

The JCL for the step that executes DSNADMSB looks like this:

//DSNADMSB EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=4096)
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DSN)
 RUN PROGRAM(DSNADMSB) PLAN(DSNADMSB)
//INPUTP DD *
SYSADM
PLAN_TABLE
DEFAULT
%-0-999999
Y
Y
N
Y
NONE
N
Q
DEFAULT-200-200
TS123456789

Example: Collecting data using a table list as input

Suppose that you want DSNADMSB to retrieve data about the DSN8C10.EMP table and the
DSN8C10.VDEPT view. You want DSNADMSB to send the output to the job stream.

Before you run DSNADMSB, you need to create a Db2 table with a CREATOR and a TABLE column, and
insert rows that contain the qualifiers and names of the tables or views for which you want DSNADMSB to
collect data. Use SQL statements like these:

CREATE TABLE TL1 (CREATOR VARCHAR(128),
 TABLE VARCHAR(128));
INSERT INTO TL1 VALUES ('DSN8C10','EMP');
INSERT INTO TL1 VALUES ('DSN8C10','VDEPT');

The parameter values that you specify are:

Appendix D. DSNADMSB 1049

Parameter Value Explanation

table-creator SYSADM These two parameters
direct DSNADMSB to collect
data about the tables
whose names are in table
SYSADM.LIST_TABLE-TL1.

table-name LIST_TABLE-TL1

catalog-creator DEFAULT For catalog queries, directs
DSNADMSB to use the default
catalog table qualifier of
SYSIBM.

plan-info NONE This value must be NONE,
because PLAN_TABLE data is
not being collected.

collect-ddl Y Directs DSNADMSB to
collect the data definition
statements that created
SYSADM.PLAN_TABLE and
associated objects.

collect-stats Y Directs DSNADBMSB to collect
statistics about tables from the
Db2 catalog.

collect-colstats N Directs DSNADBMSB not to
collect statistics about table
columns from the Db2 catalog.

edit-ddl Y Directs DSNADMSB to modify
the data definition language
statements that it generates
so that the data definition
language statements can be
more easily executed by IBM
Support.

edit-version-mode NONE Directs DSNADMSB not to
modify its output to run on a
different Db2 version from the
version for which the data was
collected.

partition-rotation N Directs DSNADMSB not to
check partition rotation.

output-method R R directs DSNADMSB to write
output data to the job stream.
When output-method is R,
output-info must be NONE.

output-info NONE

pmr-info TS123456789 This value is the 9-digit
support case ID number for
the problem that requires data
collection.

The JCL for the step that executes DSNADMSB looks like this:

//DSNADMSB EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=4096)

1050 Db2 12 for z/OS: Utility Guide and Reference

//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DSN)
 RUN PROGRAM(DSNADMSB) PLAN(DSNADMSB)
//INPUTP DD *
SYSADM
LIST_TABLE-TL1
DEFAULT
NONE
Y
Y
N
Y
NONE
N
R
NONE
TS123456789

Example: Collecting environment data

Suppose that you want DSNADMSB to retrieve environment data about the ASCHEMA.ATABLE user table.
You want DSNADMSB to send the output to the job stream.

The parameter values that you specify are:

Parameter Value Explanation

table-creator ASCHEMA These two parameters direct
DSNADMSB to collect data
about table ASCHEMA.ANAME.table-name ATABLE

catalog-creator DEFAULT For catalog queries, directs
DSNADMSB to use the default
catalog table qualifier of
SYSIBM.

plan-info NONE This value must be NONE,
because PLAN_TABLE data is
not being collected.

collect-ddl Y Directs DSNADMSB to collect
the data definition statements
that created ASCHEMA.ANAME
and associated objects.

collect-stats Y Directs DSNADBMSB to collect
statistics about tables from the
Db2 catalog.

collect-colstats N Directs DSNADBMSB to collect
statistics about table columns
from the Db2 catalog.

edit-ddl Y Directs DSNADMSB to modify
the data definition language
statements that it generates
so that the data definition
language statements can be
more easily executed by IBM
Support.

Appendix D. DSNADMSB 1051

Parameter Value Explanation

edit-version-mode NONE Directs DSNADMSB not to
modify its output to run on a
different Db2 version from the
version for which the data was
collected.

partition-rotation N Directs DSNADMSB not to
check partition rotation.

output-method R R directs DSNADMSB to write
output data to the job stream.
When output-method is R,
output-info must be NONE.

output-info NONE

pmr-info TS123456789 This value is the 9-digit
support case ID number for
the problem that requires data
collection.

The JCL for the step that executes DSNADMSB looks like this:

//DSNADMSB EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=4096)
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DSN)
 RUN PROGRAM(DSNADMSB) PLAN(DSNADMSB)
//INPUTP DD *
ASCHEMA
ATABLE
DEFAULT
NONE
Y
Y
N
Y
NONE
N
R
NONE
TS123456789

Collecting data for a table with a long table name with embedded blanks

Suppose that you want to collect the same data as in the previous example for a table with the schema
name SYSADM, and the following name, which is 85 bytes long:

A234567891 234567892 234567893 234567894 234567895 234567896 234567897-
 234567898 2345

The record length of the INPUTP data set is 80 bytes, but only the first 71 bytes can contain input data,
so you need to split the schema name and table name across input records. You can split the table name
after any non-blank character in the record. DSNADMSB trims blanks at the end of each record.

The INPUTP data set might look like this. The table name is split across three records, after positions 50
and 65.

SYSADM
A234567891 234567892 234567893 234567894 234567895
+ 234567896 2345
+67897 234567898 2345
DEFAULT
NONE

1052 Db2 12 for z/OS: Utility Guide and Reference

Y
Y
N
Y
NONE
N
R
NONE
TS123456789

The first continued line must contain a blank after the plus sign, because the character at position 51 of
the table name is a blank. The second continued line must not contain a blank after the plus sign, because
the character at position 66 of the table name is not a blank.

Appendix D. DSNADMSB 1053

1054 Db2 12 for z/OS: Utility Guide and Reference

Appendix E. DSNTSMFD
The DSNTSMFD program decompresses Db2 trace records that were compressed when they were written
to SMF.

Trace records are compressed when subsystem parameter SMFCOMP is set to ON.

Authorization required
You need no special authorization is needed to run DSNTSMFD.

Input
Input to the DSNTSMFD program is one or more data sets that contain Db2 trace records in standard SMF
format. The data sets can contain SMF records of all types, but DSNTSMFD decompresses only SMF type
100, 101, or 102 records.

The input data sets are allocated to DD name SMFINDD.

Output

The DSNTSMFD program produces the following output:

• A data set that contains all of the Db2 trace records that are in the input data set. SMF type 100, 101, or
102 records are decompressed in the output data set.

If DSNTSMFD cannot decompress the SMF type 100, 101, or 102 records, DSNTSMFD writes the
compressed records to the output data set and issues a warning.

This output data set is allocated to DD name SMFOUTDD.
• A data set that contains details about decompression, such as the number of records that were

decompressed, and the amount of space that was saved through compression.

This output data set is allocated to DD name SYSPRINT.

Before running DSNTSMFD
Certain activities might be required before you run the DSNTSMFD program.

Before running DSNTSMFD:

• Prepare DSNTSMFD for execution.

Customize and run job DSNTEJDS to do that. The job prolog contains instructions for customization.
• Dump SMF data to sequential data sets.

Use a utility such as IFASMFDP to do that.

Data sets that DSNTSMFD uses
The DSNTSMFD utility uses a number of data sets during its operation.

The following table lists the data sets that DSNTSMFD uses.

© Copyright IBM Corp. 1983, 2024 1055

Table 151. Data sets that DSNTSMFD uses

Data set type DD name Description Required?

Input SMFINDD One or more data sets that contain
Db2 trace records in standard SMF
format. The data sets are sequential
data sets that contain the output of an
SMF dump utility, such as IFASMFDP.

Yes

Output SMFOUTDD A data set into which DSNTSMFD
writes the trace records that are in the
input data sets, with SMF type 100,
101, and 102 records decompressed.
This data set must have the same
data set characteristics as the input
data set, but must be larger than
the total size of all input data sets,
to accommodate the decompressed
records.

Yes

Output SYSPRINT A data set into which DSNTSMFD
writes a report about SMF record
decompression, such as the number
of records that were decompressed,
and the amount of space that was
saved through compression.

Yes

Examples of DSNTSMFD invocation
Use the DSNTSMFD invocation examples as models for generating your own DSNTSMFD output.

Example: Decompression of Db2 trace records

Suppose that an SMF data set contains compressed Db2 trace records of SMF type 100, 101, or 102. You
have dumped the data into sequential data set DSN1210.SMFDATA. You want to write all of the SMF data
to data set DSN1210.SMFOUT, and you want any compressed SMF type 100, 101, or 102 records to be
decompressed in DSN1210.SMFOUT.

The JCL for the step that executes DSNTSMFD looks like this:

//RUNSMFD EXEC PGM=DSNTSMFD
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SMFINDD DD DSN=DSN1210.SMFDATA,
// DISP=SHR
//SMFOUTDD DD DSN=DSN1210.SMFOUT,
// LIKE=DSN1210.SMFDATA,
// DISP=(,CATLG),
// UNIT=SYSDA,
// SPACE=(TRK,(1200,200))

The output looks like this:

*** DSNTSMFD *** STARTING 2011/06/27 15:55:39
--
Total records read:................................. 146232
 Total DB2 records read:........................... 146183
 Total DB2 compressed records read:.............. 146183
 Total DB2 compressed records decompressed:...... 146183
 Total non-DB2 records read:....................... 49

Aggregate size of all input records:................ 60334251 57M
 Aggregate size of all input DB2 records:.......... 60323008 57M

1056 Db2 12 for z/OS: Utility Guide and Reference

 Aggregate size of all DB2 compressed records:... 60323008 57M
 Aggregate size of all output DB2 records:......... 102449084 97M
 Aggregate size of all DB2 expanded records:..... 102449084 97M
 Aggregate size of all non-DB2 input records:...... 11243 10K

 Percentage saved using compression.............. 41%

Details by DB2 subsystem
 Subsystem ID: DB2A
 Number of records:.......................... 146183
 Number of compressed records:............... 146183
 Aggregate size of DB2 records:.............. 60323008 57M
 Aggregate size of DB2 compressed records:... 60323008 57M
 Aggregate size of DB2 expanded records:..... 102449084 97M
 Percentage saved using compression.......... 41%
--

Appendix E. DSNTSMFD 1057

1058 Db2 12 for z/OS: Utility Guide and Reference

Appendix F. How real-time statistics are used by Db2
utilities

Db2 utilities use real-time statistics to optimize data processing and operations.

Utilities can use real-time statistics to calculate how data processing is done. This is more efficient than
using statistics typically gathered by the RUNSTATS utility or stored in catalogs.

The use of real-time statistics eliminates some of the dependency on regularly running the RUNSTATS
utility, which is processing intensive and time consuming.

Restriction: Real-time statistics does not generate statistics for certain items in the directory, such as the
SYSLGRNX table space and its corresponding indexes DSNLLX01 and DSNLLX02, for example.

Using third-party vendor solutions that do not correctly manage real-time statistics can cause unexpected
errors.

If real-time statistics are available, the following utilities use real-time statistics to help determine how
data is processed:

• CHECK DATA
• CHECK INDEX
• REBUILD INDEX
• REORG TABLESPACE
• RUNSTATS

Db2 issues messages DSNU3350I and DSNU3351I to indicate the estimated and actual sort quantity
for each utility sort task. It also issues DSNU3357I and these values are summarized for each utility
invocation when it completes.

The REORG TABLESPACE utility also uses real-time statistics to determine the size of a hash space when
reorganizing a hash table space and AUTOESTSPACE YES is specified.

Additionally, the RUNSTATS utility uses real-time statistics when determining the number of records to
include when collecting a sampling of statistics.

Db2 issues message DSNU3343I if there are no real-time statistics available. This message can be issued
for either table spaces or indexes. When message DSNU3343I is returned, Db2 tries to gather real-time
statistics either from associated indexes or table spaces, depending on what kind of real-time statistics
were not available. If no real-time statistics are available, Db2 uses RUNSTATS based estimations.

When real-time statistics are not available, and a RUNSTATS control statement with TABLESAMPLE
SYSTEM n is run, RUNSTATS issues a message, and continues with TABLESAMPLE SYSTEM AUTO
behavior. If real-time statistics are not available when RUNSTATS is run with TABLESAMPLE SYSTEM
AUTO, RUNSTATS sets the sampling rate to 100 and continues to run.

Table space and index characteristics
Utilities regularly gather information about table space or index characteristics. The information is used to
calculate statistics that help determine how a utility processes data.

Utilities read the totals number of rows from the column TOTALROWS in the table
SYSIBM.SYSTABLESPACESTATS and the number of associated index keys from column TOTALENTRIES
in the table SYSIBM.SYSINDEXSPACESTATS. The statistics that are calculated from this information are
used to estimate the number of records that need to be sorted and the size of the required sort work data
sets.

Recommendation: To prevent utilities from using incorrect values when table spaces are replaced by
utilities such as DSN1COPY or other utilities that are not controlled by Db2, column information can be

© Copyright IBM Corp. 1983, 2024 1059

set to NULL. When information for the columns is set to NULL, the number of records is estimated based
on statistics that are gathered by RUNSTATS. The columns are then re-initialized the next time REORG
TABLESPACE, LOAD REPLACE, or REBUILD INDEX runs. Alternatively, running RUNSTATS with SHRLEVEL
REFERENCE re-initializes the real-time statistics column values.

1060 Db2 12 for z/OS: Utility Guide and Reference

Appendix G. Delimited file format
A delimited file is a sequential file with column delimiters. Each delimited file is a stream of records, which
consists of fields that are ordered by column.

Each record contains fields for one row. Within each row, individual fields are separated by column
delimiters. All fields must be delimited character strings, non-delimited character strings, or external
numeric values. Delimited character strings can contain column delimiters and can also contain character
string delimiters when two successive character string delimiters are used to represent one character.

All characters in all records are in the same CCSID. If EBCDIC or ASCII data contains DBCS characters,
the data must be in an appropriate mixed CCSID. If the data is Unicode it must be in CCSID 1208.

The following figure describes the format of delimited files that can be loaded into or unloaded from
tables by using the LOAD and UNLOAD utilities.

Delimited file ::= Row 1 data ||
 Row 2 data ||
 .
 .
 .
 Row n data

Row i data ::= Cell value(i,1) || Column delimiter ||
 Cell value(i,2) || Column delimiter ||
 .
 .
 .
 Cell value(i,m)

Column delimiter ::= Character specified by COLDEL option;
 the default value is a comma (,)

Cell value(i,j) ::= Leading spaces ||
 External numeric values ||
 Delimited character string ||
 Non-delimited character string ||
 Trailing spaces

Non-delimited character string ::= A set of any characters except
 a column delimiter

Delimited character string ::= A character string delimiter ||
 A set of any characters except a
 character string delimiter unless
 the character string delimiter is
 part of two successive character
 string delimiters ||
 A character string delimiter ||
 Trailing garbage

Character string delimiter ::= Character specified by CHARDEL option; the default
 value is a double quotation mark (")

Trailing garbage ::= A set of any characters except a column delimiter

Related concepts
“Loading delimited files” on page 304
You can load a delimited file by using the FORMAT DELIMITED option. A delimited file contains cell values
that are separated by delimiters. Delimiters are predefined characters that separate data. The column
delimiter separates one column value from the next. Character string delimiters identify the beginning and
end of a single cell value and are required only if the cell value contains the column delimiter.
“Unloading delimited files” on page 826
You can use the DELIMITED option to specify that UNLOAD is to produce an output file in delimited
format. All fields in the output data set are either in character string or numeric external format. Each

© Copyright IBM Corp. 1983, 2024 1061

column is separated from the next by a column delimiter, and character strings are marked by character
string delimiters.

Data types in delimited files
The LOAD and UNLOAD utilities can process delimited files. When you load a delimited file, LOAD requires
that the data in the file be in a certain form depending on the data type. Similarly, when you unload data to
a delimited file, UNLOAD writes the data in a certain form depending on the data type.

The following table identifies the acceptable data type forms for the delimited file format that the LOAD
and UNLOAD utilities use.

Table 152. Acceptable data type forms for delimited files

Data type
Acceptable form for loading a
delimited file

Form that is created by
unloading a delimited file

CHAR, VARCHAR A delimited or non-delimited
character string

Character data that is enclosed
by character delimiters. For
VARCHAR, length bytes do not
precede the data in the string.

GRAPHIC (any type)4 A delimited or non-delimited
character stream

Data that is unloaded as a
delimited character string. For
VARGRAPHIC, length bytes do
not precede the data in the string.

INTEGER (any type)1 A stream of characters that
represents a number in
EXTERNAL format

Numeric data in external format.

DECIMAL (any type) 2 A character string that represents
a number in EXTERNAL format

A string of characters that
represents a number.

DECFLOAT EXTERNAL A character string that represents A SQL numeric constant.

FLOAT 3 A representation of a number in
the range -7.2E+75 to 7.2E+75
in EXTERNAL format

A string of characters that
represents a number in floating-
point notation.

BINARY, VARBINARY A delimited or non-delimited
character string

Character data that is enclosed
by character delimiters. Length
bytes do not precede the data in
the string.

BLOB, CLOB A delimited or non-delimited
character string

Character data that is enclosed
by character delimiters. Length
bytes do not precede the data in
the string.

DBCLOB A delimited or non-delimited
character string

Character data that is enclosed
by character delimiters. Length
bytes do not precede the data in
the string.

DATE A delimited or non-delimited
character string that contains a
date value in EXTERNAL format

Character string representation of
a date.

TIME A delimited or non-delimited
character string that contains a
time value in EXTERNAL format

Character string representation of
a time.

1062 Db2 12 for z/OS: Utility Guide and Reference

Table 152. Acceptable data type forms for delimited files (continued)

Data type
Acceptable form for loading a
delimited file

Form that is created by
unloading a delimited file

TIMESTAMP A delimited or non-delimited
character string that contains a
timestamp value in EXTERNAL
format

Character string representation of
a timestamp.

TIMESTAMP WITH TIME ZONE A delimited or non-delimited
character string that contains a
timestamp with time zone value
in EXTERNAL format

Character string representation of
a timestamp with time zone.

Note:

1. Field specifications of INTEGER or SMALLINT are treated as INTEGER EXTERNAL.
2. Field specifications of DECIMAL, DECIMAL PACKED, or DECIMAL ZONED are treated as DECIMAL

EXTERNAL.
3. Field specifications of FLOAT, REAL, or DOUBLE are treated as FLOAT EXTERNAL.
4. EBCID graphic data must be enclosed in shift-out and shift-in characters.

Examples of delimited files
Use the examples as models to specify your own delimited files.

Example 1: Delimited file with delimited character strings
The following figure shows an example of a delimited file with delimited character strings. In this
example, the column delimiter is a comma (,). Because the character strings contain the column delimiter
character, they must be delimited with character string delimiters. In this example, the character string
delimiter is a double quotation mark (").

"Smith, Bob",4973,15.46
"Jones, Bill",12345,16.34
"Williams, Sam",452,193.78

Example 2: Delimited file with non-delimited character strings
The following figure shows an example of a delimited file with non-delimited character strings. In this
example, the column delimiter is a semicolon (;). Because the character strings do not contain the column
delimiter character, they do not need to be delimited with character string delimiters.

Smith, Bob;4973;15.46
Jones, Bill;12345;16.34
Williams, Sam;452;193.78

Appendix G. Delimited file format 1063

1064 Db2 12 for z/OS: Utility Guide and Reference

Information resources for Db2 12 for z/OS and related
products

Information about Db2 12 for z/OS and products that you might use in conjunction with Db2 12 is
available online in IBM Documentation.

You can find the complete set of product documentation for Db2 12 for z/OS in IBM Documentation.

You can also download other PDF format manuals for Db2 12 for z/OS from IBM Documentation in PDF
format manuals for Db2 12 for z/OS (Db2 for z/OS in IBM Documentation).

© Copyright IBM Corp. 1983, 2024 1065

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/db2z_12_prodhome.html
https://www.ibm.com/docs/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html
https://www.ibm.com/docs/SSEPEK_12.0.0/home/src/tpc/db2z_pdfmanuals.html

1066 Db2 12 for z/OS: Utility Guide and Reference

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

© Copyright IBM Corp. 1983, 2024 1067

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as shown below:

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. (enter the year or years).

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
This information is intended to help you to use Db2 for z/OS utilities. This information also documents
General-use Programming Interface and Associated Guidance Information and Product-sensitive
Programming Interface and Associated Guidance Information provided by Db2 12 for z/OS.

General-use Programming Interface and Associated Guidance Information
General-use Programming Interfaces allow the customer to write programs that obtain the services of
Db2 12 for z/OS.

General-use Programming Interface and Associated Guidance Information is identified where it occurs by
the following markings:

General-use Programming Interface and Associated Guidance Information…

Product-sensitive Programming Interface and Associated Guidance Information
Product-sensitive Programming Interfaces allow the customer installation to perform tasks such as
diagnosing, modifying, monitoring, repairing, tailoring, or tuning of this IBM software product. Use of such
interfaces creates dependencies on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these specialized purposes. Because
of their dependencies on detailed design and implementation, it is to be expected that programs written
to such interfaces may need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is identified where it
occurs by the following markings:

Product-sensitive Programming Interface and Associated Guidance Information...

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks

1068 Db2 12 for z/OS: Utility Guide and Reference

of IBM or other companies. A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at: http://www.ibm.com/legal/copytrade.shtml.

Linux® is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions:

Applicability: These terms and conditions are in addition to any terms of use for the IBM website.

Personal use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions, licenses or rights are
granted, either express or implied, to the publications or any information, data, software or other
intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies”

Notices 1069

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details

and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

1070 Db2 12 for z/OS: Utility Guide and Reference

http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy

Glossary

The glossary is available in IBM Knowledge Center.

See the Glossary topic for definitions of Db2 for z/OS terms.

© Copyright IBM Corp. 1983, 2024 1071

http://www-01.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/com.ibm.db2z.doc.gloss/src/gloss/db2z_gloss.dita

1072 Db2 12 for z/OS: Utility Guide and Reference

Index

Numerics
32K

option of DSN1COMP 895
option of DSN1COPY 915
option of DSN1PRNT 956

A
abend

forcing 193
ABEND

option of DIAGNOSE 190
Access Method Services, new active log definition 864
accessibility

keyboard xvii
shortcut keys xvii

ACCESSPATH
option of MODIFY STATISTICS 377
option of REORG TABLESPACE 560

ACTION
option of DSN1SDMP 967

ACTION2
option of DSN1SDMP 968

active
utility status 41

active log
adding to BSDS 864
data set with I/O error, deleting
867
deleting from BSDS 865
enlarging 865
recording from BSDS 865

active logs
preformatting 847

ADMIN_INFO_SQL
modifying output 1045

advisory state 975
AFTER

option of DSN1SDMP 967
AFTER2

option of DSN1SDMP 968
AGE

option of MODIFY STATISTICS 377
ALIAS

option of DSNJU003 860
aliases

adding to communication record in BSDS
example 871

removing from communication record in BSDS
example 872

ALL
option of LISTDEF 206
option of REBUILD INDEX 403
option of RUNSTATS INDEX 716

ALLDUMPS
option of DIAGNOSE 189

alternate copy pool
for BACKUP SYSTEM 55

alternate copy pools
example 62

ALTERNATE_CP
option of BACKUP SYSTEM 55
option of RECOVER 435
option of RESTORE SYSTEM 691

ARCHIVE
option of LISTDEF 207

archive log
adding to BSDS 866
deleting from BSDS 866

archive log data set
adding

example 870
deleting

example 871
archive tables

reporting
example 681

ARCHLOG
option of REPORT 668

ASCII
option of LOAD 249
option of UNLOAD 787

audit administrative authority records 1028
audit authorization failure records 1013
audit DDL create/alter/drop records 1020
audit DDL grant/revoke records 1019
audit DML statement records 1023
audit first read records 1023
audit first write records 1022
authorization ID

changing to a role 67
naming convention xviii

authorization IDs
utilities 7

AUTOESTSPACE
option of REORG TABLESPACE 541

AUX
option of REORG TABLESPACE 549

AUXERROR INVALIDATE
option of CHECK DATA 92

AUXERROR REPORT
option of CHECK DATA 92

AUXERROR, option of CHECK DATA 77
auxiliary CHECK-pending (ACHKP) status

description 975
resetting 93, 975

auxiliary index
reorganizing after loading data 337

auxiliary warning (AUXW) status
description 976
resetting 976

Index 1073

B
BACKOUT

option of DSNJU003 859
option of LOAD 234
option of RECOVER 439

backup
example of dump class 62
example of overwriting 61

backup system
recovering

example 696
recovering after database volumes restored

example 697
recovering from alternate copy pool

example 698
BACKUP SYSTEM utility

authorization 53
compatibility 59
data sets 58
description 53
dumping 59
examples 60
execution phases 53
history, printing 873
options 55
output 53
prerequisite actions 57
restarting 60
syntax 54
terminating 60

backup to tape
example 61

BASE
option of LISTDEF 206

BASIC
option of LISTDEF 207

basic predicate 555
BETWEEN predicate 555
BIGINT

option of LOAD 274
option of UNLOAD FROM TABLE 805

BINARY
option of LOAD 274
option of UNLOAD FROM TABLE 805

BLOB
option of LOAD 280
option of UNLOAD FROM TABLE 809

BOTH
option of RUNSTATS INDEX 717
option of RUNSTATS TABLESPACE 709

BSDS
active log data set status 883
communication records, printing 873
converting 843
data set references, adding and deleting 868
GENERIC LUNAME parameter, updating 862
LOCATION value, updating 859
LUNAME value, updating 859
PASSWORD value, updating 859
updating 849
VSAM catalog name, changing 859

BSDS timestamps
DSNJU004 output 882

BUFNO
option of TEMPLATE 759

C
CANCEL

option of DSNJU003 858
catalog

checking for inaccuracies
example 660

repairing 657
RUNSTATS utility 727
updating 63

CATALOG
option of DSNJU003 855
option of UNLOAD 784
statement of REPAIR utility 646

catalog and directory
comparing DBDs

example 659, 660
creating recovery point of consistency 459
defining high-level qualifier 869
deleting rows 369
reorganizing 592
REPORT 669

catalog and directory objects
copying 151
quiescing 394

catalog indexes
rebuilding 420

catalog name
changing for objects 68

catalog SPACE columns
updating

example 748
updating for all storage groups

example 749
updating for several storage groups

example 749
catalog table spaces

corresponding directory table spaces 593
catalog tables

data collected by STOSPACE utility 747
loading data into 283
order of recovering objects 452
outdated information, removing 363
SPACE column 748
SPACEF column 748
statistics history, clearing outdated information 375
statistics, deleting 379
SYSCOPY

deleting rows 369
SYSINDEXES

updating space information 748
SYSLGRNX

deleting rows 369
SYSTABLESPACE

updating space information 748
updating for installation 67
updating for migration 67

CATMAINT utility
authorization 63
data sets needed 63
description 63

1074 Db2 12 for z/OS: Utility Guide and Reference

CATMAINT utility (continued)
execution phases 63
options 64
output 63
restarting 66
syntax 64
terminating 66

CCSID
option of LOAD 249
option of UNLOAD 787

CCSID information, deleting from BSDS 857
CCSIDS

option of DSNJU003 857
CHANGELIMIT

option of COPY 129, 154
CHAR

option of LOAD 268
option of UNLOAD FROM TABLE 800

CHARDEL
option of LOAD 247
option of UNLOAD 790

CHECK
option of DSN1COPY 914

CHECK DATA utility
authorization 71
compatibility 86
correct constraint violations 90
correcting XML data 91
data sets 82
description 71
examples 94
exception table, creating 88
execution phases 72
finding violations 89
LOB column errors 92
LOB columns 81
options 74
output 71
prerequisite actions 81
restarting 93
shadow data sets 84
specifying scope 89
syntax 72
terminating 93
use after LOAD REPLACE 334

CHECK DATAXML errors 90
CHECK INDEX utility

after loading table with indexes 336
authorization 97
compatibility 104
data sets 101
description 97
examples 110
execution phases 98
LISTDEF

example 111
options 98
output 97, 109
parallel checking 106
partitions 99
restarting 109
shadow data sets 102
single logical partition 106
syntax 98

CHECK INDEX utility (continued)
terminating 109

CHECK LOB
prerequisite actions 116

CHECK LOB utility
authorization 113
compatibility 119
data sets 116
description 113
examples 121
execution phases 113
LOB violations 119
options 114
output 113
restarting 120
shadow data sets 117
syntax 114
terminating 120

CHECK-pending (CHECKP) status
LOB table space

resetting 120
CHECK-pending (CHKP) status

after LOAD 334
CHECK DATA utility 71
description 977
resetting 91, 334, 978

CHECK(DATA)
option of DSN1LOGP 943

checking all indexes
example 110

checking clone tables
example 112

checking index partitions
example 111

checking list of indexes
example 111

checking more than one index
example 111

checking multiple table spaces
example 96

checking one index
example 110

Checking syntax
OPTIONS example 386

CHECKPAGE
option of COPY 131

checkpoint queue
printing contents 873
updating 863

CHECKPT
option of DSNJU003 863

CHKPTRBA
option of DSNJU003 858

CLOB
option of LOAD 280
option of UNLOAD FROM TABLE 809

CLONE
option of CHECK DATA 75
option of CHECK INDEX 99
option of CHECK LOB 116
option of COPY 127
option of COPYTOCOPY 176
option of DIAGNOSE 190
option of MERGECOPY 355

Index 1075

CLONE (continued)
option of MODIFY RECOVERY 366
option of QUIESCE 391
option of REBUILD INDEX 405
option of RECOVER 438
option of REORG INDEX 493
option of REORG TABLESPACE 536
option of REPAIR 636
option of UNLOAD 792

clone copies
merging

example 361
clone data

displaying
DIAGNOSE example 193

clone objects
COPYTOCOPY

example 185
recovering 461

clone table space
repairing

example 660
clone tables

example of checking 96
CLONED

option of LISTDEF 205
cold start

example, creating a conditional restart control record
867

COLDEL
option of LOAD 247
option of UNLOAD 790

COLGROUP
option of REORG TABLESPACE 560
option of RUNSTATS TABLESPACE 708

COLUMN
option of RUNSTATS TABLESPACE 708

columns
unloading all

example 831
unloading specific

example 832
COMMAND

option of DSN1SDMP 968
communication record

adding
example 871

adding to BSDS
example 871

updating
example 871

comparison operators 555
compatibility

BACKUP SYSTEM 59
CHECK DATA 86
CHECK INDEX 104
CHECK LOB 119
COPY 137
COPYTOCOPY 178
DEFINE NO objects 11
EXEC SQL 195
LISTDEF 208
LOAD 292
MERGECOPY 357

compatibility (continued)
MODIFY STATISTICS 378
OPTIONS 384
QUIESCE 393
REBUILD INDEX 412
RECOVER 441
REORG INDEX 510
REORG TABLESPACE 582
REPAIR 651
REPORT 669
RESTORE SYSTEM 695
RUNSTATS 724
STOSPACE 746
TEMPLATE 767
UNLOAD 779

compressed data
unloading 831

compression
estimating disk savings 893
LOB changes 611

concatenating input records
LOAD

example 342
CONCURRENT

option of COPY 133, 152
concurrent copies

COPYTOCOPY utility restriction 171
invoking 133
making 152

conditional copy
example 166

conditional restart control record
creating

example 871
reading 884
status printed by DSNJU004 873

connection-name
naming convention xviii

CONSTANT
option of LOAD 267
option of UNLOAD FROM TABLE 808

CONSTANTIF
option of LOAD 267

constraint violations
checking 71

CONTINUEIF
option of LOAD 251

CONTROL
option of DSNU CLIST 32

control interval
LOAD REPLACE effect on 338
LOAD REPLACE, effect of 296
REORG TABLESPACE, effect of 617

control statement 20
Control Statement Data Set Names panel 27
conversion of data types, LOAD utility 317
copies

clone table data
example 168

for local site and recovery site
example 160

full image copy
example 160

incremental image copy

1076 Db2 12 for z/OS: Utility Guide and Reference

copies (continued)
incremental image copy (continued)

example 165
list of objects

example 161
LISTDEF

example 165
LOB table spaces

example 167
merging

example 361
merging incremental

example 360
parallel processing

example 163
templates

example 164
updated objects only

example 168
copy

XML schema repository objects 152
COPY

option of LISTDEF 202
real-time statistics 155

copy consistency 143
copy pool 53
copy pools

description 57
COPY utility

adding conditional code 154
allowing other programs to access data 134
authorization 123
catalog table, copying 141
checking pages 131
compatibility 137
consistency 143
COPY-pending 149
COPY-pending status, resetting 123
data sets 135
description 123
directory, copying 141
examples 160
execution phases 124
full image copies 140
generation data groups, defining 158
incremental image copy 141
informational COPY-pending status, resetting 123
list of objects 148
MERGECOPY utility, when to use 359
multiple image copies 142
multiple statements 150
naming data sets 142
options 127
output 123
output data sets

JCL parameters 136
partition, copying 141
performance recommendations 157
prerequisite actions 135
processing in parallel

description 131
recovery, preparing for 156
REPORTONLY

examples 166

COPY utility (continued)
restarting 159
restricted states 137
simultaneous jobs 150
syntax 125
terminating 158

COPY-pending status
description 979
LOAD 333
resetting 333, 979

COPY1
option of DSNJU003 854

COPY1VOL
option of DSNJU003 855

COPY2
option of DSNJU003 854

COPY2VOL
option of DSNJU003 855

COPYDDN
option of COPY 128
option of COPYTOCOPY 175
option of LOAD 236, 312
option of MERGECOPY 356
option of REORG TABLESPACE 539, 598

COPYDICTIONARY
option of LOAD 231

COPYDSN
option of DSNU CLIST 32

COPYDSN2
option of DSNU CLIST 32

copying cataloged image copy data set
example 184

copying image copy data set
example 184

copying last copy
example 183

copying last full copy
example 183

copying uncataloged image copy data set
example 184

COPYTOCOPY utility
authorization 171
compatibility 178
copying from specific image copy 179
copying from tape 181
data sets 176
description 171
determining input copy 180
examples 183
execution phases 172
FlashCopy 179
generation data groups, defining 181
incremental image copy 178
JCL parameters 177
lists of objects 173
making copies 178
multiple statements 179
options 173
output 171
output data sets

size 177
partitions, copying 174
restarting 182
syntax 172

Index 1077

COPYTOCOPY utility (continued)
SYSIBM.SYSCOPY records 180
tape mounts, retaining 177
templates, using 180
terminating 182

correlation ID
naming convention xviii

COUNT
option of REBUILD INDEX 405
option of REORG INDEX 500
option of RUNSTATS TABLESPACE 709, 710

COUNT option
option of RUNSTATS INDEX 717

CREATE
option of DSNJU003 857

creating a table
EXEC SQL example 197

creator
renaming 67

CRESTART
option of DSNJU003 857

cross loader 311
cross loader function 195
CSRONLY

option of DSNJU003 859
CURRENT

option of REPORT 667
current restart 46
CURRENTCOPYONLY

option of RECOVER 433
cursor

LOAD
example 348

naming convention xviii

D
damaged data

replacing
example 659

data
adding to a table 300
deleting all 300

DATA
option of CHECK DATA 74
option of LOAD 229
option of REPAIR DUMP 642
option of REPAIR REPLACE 640
option of REPAIR VERIFY 639
option of UNLOAD 784

data compression
description 309
dictionary 309
REORG TABLESPACE utility 559

DATA ONLY
option of BACKUP SYSTEM 55

data set
name format in ICF catalog 130
name limitations 767

data set definitions
changing during REORG 596

Data Set Names panel 26
data set templates

extent allocations 769

data set templates (continued)
space calculations 768

data sets
BACKUP SYSTEM 58
CATMAINT utility 63
change log inventory utility (DSNJU003) 849
CHECK DATA 82
CHECK INDEX 101
CHECK LOB 116
concatenating 19
COPY 135
COPYTOCOPY 176
disposition 19
DSN1COPY 920
DSNADMSB 1044
DSNJCNVB utility 843
DSNJCNVT utility 845
DSNTSMFD 1055
for copies, naming 142
input 18
LOAD 285
MERGECOPY 356
MODIFY STATISTICS 378
naming convention xviii
online utilities 18
output 18
QUIESCE 392
REBUILD INDEX 410
RECOVER 440
REORG INDEX 506
REORG TABLESPACE 574
REPAIR 650
REPORT 668
RESTORE SYSTEM 694
RUNSTATS 722
security 20
STOSPACE 746
UNLOAD 778

data sharing
backing up group 53

data sharing member
deactivating

example 872
data type, specifying with LOAD utility 268
data-only backup

description 55
example 61

data-partitioned secondary indexes
statistics 728

database
naming convention xviii

DATABASE
option of LISTDEF 203
option of REPAIR DBD 644

database copy pool
recovering

example 697
DATACLAS

option of TEMPLATE 759
DATAONLY

option of DSN1LOGP 939
option of REPAIR DELETE 641

DATE
option of MODIFY STATISTICS 378

1078 Db2 12 for z/OS: Utility Guide and Reference

DATE EXTERNAL
option of LOAD 277
option of UNLOAD FROM TABLE 808

Db2 internal format
LOAD 294

Db2 Utilities Suite for z/OSDb2
utilities

packaging 3
Db2-supplied stored procedures 973
DB2I

invoking online utilities 23
option of DSNU CLIST 32

DBBSG
option of BACKUP SYSTEM 55

DBCLOB
option of LOAD 280
option of UNLOAD FROM TABLE 810

DBD
reclaiming space 370
statement of REPAIR utility 644

DBD01 directory table space
MERGECOPY restrictions 353, 355
order of recovering 453

DBETE status
resetting 979

DBID
option of DSN1LOGP 939
option of DSNJU008 890
option of REPAIR DBD 644

DBRM (database request module)
member naming convention xviii
partitioned data set naming convention xviii

DD name
naming convention xviii

DDF
option of DSNJU003 859

DDF Location records 997
DDNAME

option of DSNJU004 875
DEACTIV

option of DSNJU003 864
DEADLINE

option of REORG INDEX 494
option of REORG TABLESPACE 544

DECFLOAT
option of LOAD 280
option of UNLOAD FROM TABLE 810

DECFLOAT EXTERNAL
option of LOAD 280
option of UNLOAD FROM TABLE 810

DECFLOAT_ROUNDMODE
option of LOAD 252
option of UNLOAD 791

DECIMAL
option of UNLOAD FROM TABLE 806

DECIMAL EXTERNAL
option of LOAD 275
option of UNLOAD FROM TABLE 807

DECIMAL PACKED
option of LOAD 275
option of UNLOAD FROM TABLE 806

DECIMAL ZONED
option of the LOAD 275
option of UNLOAD FROM TABLE 806

declared temporary table
utility compatibility 9

declaring a cursor
EXEC SQL example 197

decompressing SMF trace records
DSNTSMFD 1055

DECPT
option of LOAD 248
option of UNLOAD 790

DEFAULTIF
LOAD

example 351
DEFINE NO objects

LOAD
example 351

utility compatibility 11
DEFINE NO table space, loading data 301
DEFINEAUX

LOAD
example 351

DEFINED
option of LISTDEF 205

DELAY
option of REBUILD INDEX 404
option of REORG INDEX 496
option of REORG TABLESPACE 546

DELETE
option of CHECK DATA 79, 90
option of DSNJU003 856
option of MODIFY RECOVERY 366
option of MODIFY STATISTICS 377
statement of REPAIR utility 640

DELETE PROFILE
option of RUNSTATS TABLESPACE 707

DELETEDS
option of MODIFY RECOVERY 367

deleting
log data sets with errors 867

DELIMITED
option of LOAD 247
option of UNLOAD 789

delimited file format
acceptable data types 305
data types 1062
default delimiter values 305, 827
description 1061
examples 1063
LOAD

example 341
loading 247, 304
maximum delimiter values 305

delimited files
acceptable data type forms for LOAD and UNLOAD 828
unloading to 826

delimiters
column 1061
restrictions 827
string 1061

DELMBR
option of DSNJU003 864

DESTROY
option of DSNJU003 864

DFSMS (Data Facility Storage Management Subsystem)
concurrent copies 152

Index 1079

DFSMS (Data Facility Storage Management Subsystem) (continued)
invoking with COPY utility 133
using with DB2 158, 181

DFSMSdss concurrent copy
example 166, 167

DFSMSdss COPY operation with utilities
refining with subsystem parameters 42

DIAGNOSE
option of REPAIR DBD 645

DIAGNOSE utility
ABEND statement

description 190
authorization 187
compatibility 191
data sets 191
description 187
DISPLAY statement

description 189
examples 191
forcing an abend 193
options 189
output 187
restarting 191
syntax 187
terminating 191
WAIT statement

description 190
diagnosis

specific type
DIAGNOSE example 192

DIR
option of TEMPLATE 764

directory
MERGECOPY restrictions 353
order of recovering objects 452
RUNSTATS utility 727

disability xvii
DISCARD

option of REORG TABLESPACE 568
DISCARDDN

option of LOAD 250
option of LOAD PART 263
option of REORG TABLESPACE 566

DISCARDS
option of LOAD 250

DISCDSN
option of DSNU CLIST 32

DISP
option of TEMPLATE 760

DISPLAY
option of DIAGNOSE 189

DISPLAY UTILITY command
description 41
RESTORE SYSTEM 695

displaying status of Db2 utilities 41
disposition, data sets 19
DOUBLE

option of UNLOAD FROM TABLE 807
DRAIN

option of REORG INDEX 495
option of REORG TABLESPACE 546

DRAIN_ALLPARTS
option of REORG TABLESPACE 547

DRAIN_WAIT

DRAIN_WAIT (continued)
option of CHECK DATA 76
option of CHECK INDEX 100
option of CHECK LOB 115
option of LOAD 253
option of REBUILD INDEX 404
option of REORG INDEX 495
option of REORG TABLESPACE 544

DROP
option of REPAIR DBD 644

DROP_PART
option of REORG TABLESPACE 538

DSN
option of TEMPLATE 755

DSN1COMP utility
authorization required 893
compression estimates 899
compression savings 899
data set size, specifying 896
data sets required 893
DD statements

SYSPRINT 893
SYSUT1 893

description 893
environment 893
estimate compression savings 897
examples 901
free pages, specifying 896
free space

specifying 896
full image copy, specifying 897
LARGE data sets, specifying 896
maximum number of rows to evaluate 897
option descriptions 895
output 903
page size of input data set, specifying 895
partitions, specifying number 896
prerequisite actions 898
REORG option 899
syntax 895

DSN1COPY
copying from image copy 925

DSN1COPY utility
additional volumes, for SYSUT2 921
altered table 920
authorization required 912
checking validity of input 914
comparison to DSN1PRNT 919
copying a table space 919
copying identity column tables 929
copying tables to other subsystems 929
data set size 916
data set size, determining 919
data sets 920
DD statements 920
description 911
environment 912
examples 930
full image copy 915
image copy, using as input 925
inconsistent data

checking for 925
incremental copy 915
inline copy 915

1080 Db2 12 for z/OS: Utility Guide and Reference

DSN1COPY utility (continued)
LARGE input data set 916
LOB table space 916
maximum piece size 917
OBID translation 918
OBIDXLAT 919, 925
option descriptions 914
output 911
page size of input data set 915
page size, determining 919
partitions, specifying number 916
prerequisite actions 918
printing data sets 928
printing in hexadecimal format 916
resetting log RBAs 918
restoring indexes 926
restoring table spaces 927
restrictions 912
scanning input data set for value 917
segmented (non-UTS) table space 915
subsystem, copying tables from one to another 929
syntax 914

DSN1LOGP utility
archive log data sets on tape, reading 944
authorization 935
data changes 939
data sets required 935
data sharing example 945
data sharing requirements 936
database identifier, using to limit report 939
DBID 939
DD statements

ACTIVE 936
ARCHIVE 936
BSDS 936
SYSIN 935
SYSPRINT 935
SYSSUMRY 935

description 935
detail report 949
environment 935
error codes, interpreting 951
examples 945
log data sets, identifying 936
LUWIDs, reporting on 941
options 937
output 947
page regression report 950
page, limiting report to 940
RID, using to limit report 940
summary report 943, 948
syntax 937
SYSCOPY log records 939
type of log records, limiting report by 941
unit of recovery identifier, using to limit report 940
value in log record, limiting report by 943

DSN1PRNT utility
authorization required 953
comparison with DSN1COPY utility 960
data set size 957
data set size, determining 960
data sets required 953
DD statements

SYSPRINT 954

DSN1PRNT utility (continued)
DD statements (continued)

SYSUT1 954
description 953
environment 953
examples 960
filtering pages by value 959
formatting output 959
full image copy 956
incremental copy 956
inline copy 956
LARGE data set 956
LOB table space 957
number of partitions 958
options 955
output 953
page size 956
page size, determining 960
piece size 957
syntax 955
SYSUT1 data set 958

DSN1SDMP utility
action 967
action, specifying 968
authorization required 963
buffers, assigning 969
DD statements

SDMPIN 963
SDMPPRNT 963
SDMPTRAC 963
SYSABEND 963
SYSTSIN 963

description 963
dump, generating 969
environment 963
examples 970
options 965
output 963
required data sets 963
selection criteria 966
syntax 965
trace destination 966
traces

modifying 970
stopping 969

DSN1SMFP
trace data 991

DSN1SMFP utility
authorization 993
control statement 993
dedicated report DDs 994
environment 993
examples

extracting, formating, and printing SMF records 994
JCL requirements 993
output

IFCID003 DD 997
IFCID004 DD 998
IFCID005 DD 999
IFCID023 DD 999
IFCID024 DD 1002
IFCID025 DD 1003
IFCID083 DD 1004
IFCID106 DD 1005

Index 1081

DSN1SMFP utility (continued)
output (continued)

IFCID140 DD 1013
IFCID141 DD 1019
IFCID142 DD 1020
IFCID143 DD 1022
IFCID144 DD 1023
IFCID145 DD 1023
IFCID269 DD 1025
IFCID270 DD 1026
IFCID350 DD 1027
IFCID361 DD 1028
IFCID362 DD 1032
standard report header 996
SYSPRINT DD 1034

output record structure 996
prerequisite actions 993
running 993

DSNADMSB
authorization 1035
data sets 1044
description 1035
examples 1046
modifying output 1045
output 1035
prerequisite actions 1044
syntax 1036

DSNAME
option of DSNJU003 854

DSNDB01.DBD01
copying restrictions 142
recovery information 669

DSNDB01.SYSCOPYs
copying restrictions 142

DSNDB01.SYSUTILX
copying restrictions 142
recovery information 669
reinitializing 460

DSNDB06.SYSTSCPY
recovery information 669

DSNDB07
REORG TABLESPACE restriction 523

DSNJCNVB utility
authorization required 843
control statement 843
data sets 843
DD names

SYSPRINT 843
SYSUT1 843
SYSUT2 843

description 843
dual BSDSs, converting 843
environment 843
example 843
output 844
prerequisite actions 843
running 843

DSNJCNVT utility
authorization required 845
control statement 846
data sets 845
DD names

SYSPRINT 845
SYSUT1 845

DSNJCNVT utility (continued)
DD names (continued)

SYSUT2 845
SYSUT3 845
SYSUT4 845

description 845
environment 845
example 846
output 846
running 846

DSNJLOGF utility
data sets required 847
DD names

SYSPRINT 847
SYSUTx 847

description 847
environment 847
example 847
output 848

DSNJU003 utility
active logs

adding 864
changing 864
deleting 865
enlarging 865
recording 865

archive logs
adding 866
deleting 866

authorization required 849
BSDS timestamp field, updating 849
changing log data sets in the BSDS 868
control statements 850
data sets

cataloging 855
declaring 853

DD names
SYSIN 849
SYSPRINT 849
SYSUT1 849
SYSUT2 849

description 849
environment 849
examples

changing high-level qualifier 869
NEWCAT statement 869
options 853
renaming active log data sets 870
renaming system data sets 869
running 850
syntax 850
updating dual copy BSDSs 849

DSNJU004 utility
authorization required 873
data sets 873
DD names

GROUP 873
MnnBSDS 873
SYSIN 873
SYSPRINT 873
SYSUT1 873

description 873
environment 873
example 875

1082 Db2 12 for z/OS: Utility Guide and Reference

DSNJU004 utility (continued)
example output 884
example output with checkpoints 885
options 875
output 875
recommendations 874
running 874
syntax 874

DSNJU008 utility
description 889
example 892
options 890
syntax 890

DSNTIJIC job
copy catalog and directory objects 151

DSNTSMFD
data sets 1055
description 1055
example 1056
output 1055
prerequisite actions 1055

DSNTYPE
option of TEMPLATE 764

DSNU CLIST command
invoking utilities 27
options 32
output 35
syntax 30

DSNU473I 396
DSNUM

option of COPY 130
option of COPYTOCOPY 174
option of MERGECOPY 355
option of MODIFY RECOVERY 365
option of RECOVER 431
option of REPORT 666

DSNUPROC JCL procedure
description 36
options 36
sample 37

DSSIZE
option of DSN1COMP 896
option of DSN1COPY 916
option of DSN1PRNT 957

dump
generating 969

DUMP
option of BACKUP SYSTEM 56
option of DSNJU008 891
statement of REPAIR utility 641

DUMPCLASS
option of BACKUP SYSTEM 56

dumping copy to tape
BACKUP SYSTEM 59

DUMPONLY
option of BACKUP SYSTEM 56

E
EATTR

option of TEMPLATE 764
EBCDIC

option of LOAD 248
option of UNLOAD 786

EDIT
option of DSNU CLIST 33

edit routine
LOAD 221

encrypted data
running utilities on 13

END
option of DIAGNOSE 191

END FCINCREMENTAL
option of BACKUP SYSTEM 56

ENDLRSN
option of DSNJU003 855

ENDRBA
option of DSNJU003 854

ENDTIME
option of DSNJU003 856, 857

ENFORCE
option of LOAD 249, 308
option of RECOVER 438

environment data
collecting

DSNADMSB example 1051, 1052
ERRDDN

option of CHECK DATA 80
option of LOAD 250

error data set
CHECK DATA 80

error range
recovery 450

ERROR RANGE
option of RECOVER 437

ESCAPE clause 558
ESTABLISH FCINCREMENTAL

option of BACKUP SYSTEM 56
EVENT

option of OPTIONS 383
examples

BACKUP SYSTEM 60
CHECK DATA 94
CHECK INDEX 110
CHECK LOB 121

exception table
auxiliary columns 89
columns 88
creating 88
definition 83
example 94

exception tables
example 94

EXCEPTIONS
option of CHECK DATA 80
option of CHECK LOB 115

exceptions for CHECK DATA
example 96

exceptions, specifying the maximum number
CHECK DATA 80
CHECK LOB 115

EXCLUDE
option of LISTDEF 201, 209

EXEC SQL utility
authorization 195
compatibility 195
cursors 196
declare cursor statement 196

Index 1083

EXEC SQL utility (continued)
description 195
dynamic SQL statements 196
examples 196
execution phase 195
output 195
restarting 196
syntax 195
terminating 196

EXEC statement
description 38

executing
utilities

by creating JCL 38
by using DSNUPROC 36

utilities, DB2I 23
exit procedure

LOAD 323
EXPDL

option of TEMPLATE 760
EXTENDED

option of LISTDEF 208
EXTNDICT

option of DSN1COMP 897
extracted key, calculating, LOAD utility 290

F
fallback recovery 473, 571
FAROFFPOSF column of SYSINDEXPART catalog table

catalog query to retrieve value for 588
FASTSWITCH

option of REORG INDEX 498
option of REORG TABLESPACE 551

FCCOPYDDN
option of COPY 133
option of REORG INDEX 503
option of REORG TABLESPACE 541

field positions
LOAD

example 339
field procedure

LOAD 323
field specification errors

UNLOAD 831
FILTER

option of DSN1LOGP 943
option of DSN1SDMP 968

filter data set, determining size 136
FILTERDDN

option of COPY 133
FlashCopy

COPYTOCOPY 179
creating with LOAD 313
creating with REBUILD INDEX 420
creating with REORG INDEX 514
creating with REORG TABLESPACE 599
during REORG INDEX

example 520
recovering with 448

FLASHCOPY
option of COPY 132
option of REBUILD INDEX 408
option of REORG INDEX 503

FLASHCOPY (continued)
option of REORG TABLESPACE 540

FlashCopy image copies
description 144

FLASHCOPY ONLY
option of MODIFY RECOVERY 366

FlashCopy relationship
with BACKUP SYSTEM 56

FLASHCOPY_PPRCP
option of RECOVER 435
option of RESTORE SYSTEM 692

FLOAT
option of LOAD 248, 276
option of UNLOAD 790
option of UNLOAD FROM TABLE 807

FLOAT EXTERNAL
option of LOAD 276

FOR
option of DSN1SDMP 967

FOR EXCEPTION
option of CHECK DATA 79

FOR2
option of DSN1SDMP 968

FORCE
option of BACKUP SYSTEM 56
option of REORG INDEX 498
option of REORG TABLESPACE 549

FORCEROLLUP
option of REBUILD INDEX 405
option of REORG INDEX 500
option of REORG TABLESPACE 560
option of RUNSTATS INDEX 719
option of RUNSTATS TABLESPACE 713

forcing dump
DIAGNOSE example 192

Forcing RC 0
OPTIONS example 386

FORMAT
option of DSN1PRNT 959
option of LOAD 245

FORMAT INTERNAL
LOAD 294
option of LOAD 246
option of UNLOAD 789

FORMAT SQL/DS
option of LOAD 246

FORMAT UNLOAD
option of LOAD 246

FORWARD
option of DSNJU003 858

free space
LOAD 323
REORG INDEX utility 518

FREEPAGE
option of DSN1COMP 896

FREQVAL
option of REBUILD INDEX 405
option of REORG INDEX 500
option of REORG TABLESPACE 560
option of RUNSTATS INDEX 717
option of RUNSTATS TABLESPACE 709, 710

FROM TABLE
option of REORG TABLESPACE 554
option of UNLOAD 793

1084 Db2 12 for z/OS: Utility Guide and Reference

FROMCOPY
option of COPYTOCOPY 175
option of the COPYTOCOPY 179
option of UNLOAD 784, 820

FROMCOPYDDN
option of UNLOAD 785, 820

FROMDUMP
option of RESTORE SYSTEM 691

FROMLASTCOPY
option of COPYTOCOPY 175

FROMLASTFLASHCOPY
option of COPYTOCOPY 175

FROMLASTFULLCOPY
option of COPYTOCOPY 175

FROMLASTINCRCOPY
option of COPYTOCOPY 175

FROMSEQNO
option of UNLOAD 785

FROMVOLUME
option of COPYTOCOPY 175
option of UNLOAD 784

FULL
option of BACKUP SYSTEM 55
option of COPY 128

full backup
description 55
example 60

full image copies
merging with increment image copies 355

FULLCOPY
option of DSN1COMP 897
option of DSN1COPY 915
option of DSN1PRNT 956

G
GDGLIMIT

option of TEMPLATE 760
GDGs

copies
example 168

defining 158, 181
general-use programming information, described 1068
generation data groups

defining 158, 181
using with conditional copy 155

GENERIC
option of DSNJU003 862

GRAPHIC
option of LOAD utility 272
option of UNLOAD FROM TABLE 803

GRAPHIC EXTERNAL
option of LOAD 272
option of UNLOAD FROM TABLE 803

GRECP
description 980

group buffer pool RECOVER-pending (GRECP) status
description 980
resetting 980

GRPIPV4
option of DSNJU003 862

GRPIPV6
option of DSNJU003 862

GUPI symbols 1068

H
HALT

option of OPTIONS 383
HEADER

option of UNLOAD FROM TABLE 798
hexadecimal-constant

naming convention xix
hexadecimal-string

naming convention xix
HIGHRBA

option of DSNJU003 863
HISTOGRAM

option of REBUILD INDEX 405
option of REORG INDEX 500
option of REORG TABLESPACE 560
option of RUNSTATS INDEX 717
option of RUNSTATS TABLESPACE 709, 711

HISTORY
option of LISTDEF 207
option of REBUILD INDEX 405
option of REORG INDEX 500
option of REORG TABLESPACE utility 560
option of RUNSTATS INDEX 719
option of RUNSTATS TABLESPACE 712

HISTORY ACCESSPATH
option of RUNSTATS TABLESPACE 714

I
ICBACKUP column

SYSIBM.SYSCOPY 142
ICLIMIT_DASD

option of REORG TABLESPACE 540
ICLIMIT_TAPE

option of REORG TABLESPACE 540
ICUNIT column

SYSIBM.SYSCOPY 142
identify end records 1004
identity columns 337
identity columns, loading 298
IFCID003 DD 997
IFCID004 DD 998
IFCID005 DD 999
IFCID023 DD 999
IFCID024 DD 1002
IFCID025 DD 1003
IFCID083 DD 1004
IFCID106 DD

application programming defaults 1012
data sharing parameters 1011
DDF parameters 1011
description 1005
installation parameters 1006
system initialization parameters 1005

IFCID140 DD 1013
IFCID141 DD 1019
IFCID142 DD 1020
IFCID143 DD 1022
IFCID144 DD 1023
IFCID145 DD 1023
IFCID269 DD 1025
IFCID270 DD 1026
IFCID350 DD 1027

Index 1085

IFCID361 DD 1028
IFCID362 DD 1032
IGNORE

option of LOAD 252
IGNOREFIELDS

option of LOAD 260
image copies

unloading data from 819
image copy

cataloging 136, 177
conditional 154
copying 171
copying from 925
copying specific 179
creating 123
data sets 156
deleting all 370
FlashCopy 144
full

making 128
incremental

conditions 143
COPY 141
COPYTOCOPY 178
performance advantage 142

list of objects 148
making after loading a table 333
merging 353
multiple, creating 142
obtaining information about 154
on tape 158, 181

image copy data set
determining size 136

IMPLICIT_TZ
option of LOAD 254
option of UNLOAD 792

IN predicate 557
INCLUDE

option of LISTDEF 201, 209
inconsistent data indicator, resetting 640
INCRCOPY

option of DSN1COPY 915
option of DSN1PRNT 956

INCURSOR
option of LOAD 230
option of LOAD PART 263

INDDN
option of LOAD 229
option of LOAD PART 262

index
building during LOAD 320
checking 97
checking after loading table 336
determining when to reorganize 512
inline statistics while reorganizing

example 519
naming convention xix
rebuilding 399
rebuilding in parallel 416
recoverability after rebuilding 420
reorganizing

example 519
restrictive status

resetting 654

index (continued)
update statistics while reorganizing

example 519
INDEX

option of COPY 127
option of COPYTOCOPY 174
option of LISTDEF 204
option of MODIFY STATISTICS 377
option of REPAIR 636
option of REPAIR CATALOG 647
option of REPAIR LEVELID 646
option of REPAIR SET 643
option of REPORT 666
option of RUNSTATS TABLESPACE 710

INDEX
option of RECOVER 431

INDEX ALL
option of REPORT 666

INDEX NONE
option of REPORT 666

index partitions, rebuilding 415
index space

recovering 399
index statistics

updating
example 739, 742

INDEXDEFER
option of LOAD PART 261
option of LOAD utility 251

indexes
copying 152
rebuilding 416

INDEXSPACE
option of COPY 127
option of COPYTOCOPY 174
option of LISTDEF 204
option of MODIFY STATISTICS 377
option of REBUILD INDEX 402
option of RECOVER 430
option of REORG INDEX 492
option of REPAIR 636
option of REPAIR CATALOG 648
option of REPAIR LEVELID 646
option of REPAIR SET 643
option of REPORT 666

INDEXSPACES
option of LISTDEF 202

INDREFLIMIT
option of REORG TABLESPACE 551

INDSN
option of DSNU CLIST 32

informational COPY-pending (ICOPY) status
description 981
resetting 157, 981

informational referential constraints
LOAD 221

INITCDDS
option of REORG TABLESPACE 535

INLCOPY
option of DSN1COPY 915
option of DSN1PRNT 956

inline copies
LOAD

example 344, 345

1086 Db2 12 for z/OS: Utility Guide and Reference

inline copies (continued)
MERGECOPY 358

inline COPY
LOAD 312
REORG TABLESPACE 598

inline statistics
LOAD

example 346
inserting rows

EXEC SQL example 197
INSERTVERSIONPAGES

option of REPAIR system pages 648
INSTANCE

option of DIAGNOSE 190, 194
INTEGER

option of LOAD 274
option of UNLOAD FROM TABLE 804

INTEGER EXTERNAL
option of LOAD 274
option of UNLOAD FROM TABLE 805

INTO TABLE, option of LOAD utility 256
invalid data

example of deleting 94
invalid LOB 93
INVALIDATECACHE

option of REBUILD INDEX 405
option of REORG INDEX 500
option of REORG TABLESPACE 560
option of RUNSTATS INDEX 719
option of RUNSTATS TABLESPACE 712

invalidated packages
identifying 69

Invalidating statements in the dynamic statement cache
example 742

IPNAME
option of DSNJU003 861

IPV4
option of DSNJU003 861

IPV6
option of DSNJU003 861

ISPF (Interactive System Productivity Facility)
Control Statement Data Set Names panel 27
Data Set Names panel 26
utilities panel 24

ITEMERROR
option of OPTIONS 383

J
JCL PARM statement 382

K
KEEPDICTIONARY

example 310
option of LOAD 243, 310
option of LOAD PART 262
option of REORG TABLESPACE 559

key
calculating, LOAD utility 290
foreign, LOAD operation 307
primary, LOAD operation 307

KEY

KEY (continued)
option of OPTIONS 384
option of REPAIR LOCATE TABLESPACE 638

key label information
reporting

example 688
KEYCARD

option of REBUILD INDEX 405
option of REORG INDEX 500
option of REORG TABLESPACE 560
option of RUNSTATS INDEX 716
option of RUNSTATS TABLESPACE 710

L
LARGE

option of DSN1COMP 896
option of DSN1COPY 916
option of DSN1PRNT 956

LEAFDISTLIMIT
option of REORG INDEX 498

LEAFLIM
option of DSN1COMP 898

LEAST
option of RUNSTATS INDEX 717
option of RUNSTATS TABLESPACE 709

LENGTH
option of REPAIR DUMP 642

LEVEL
option of CATMAINT 64

level identifier, resetting 645
LEVELID

statement of REPAIR utility 645
LGBSG

option of BACKUP SYSTEM 56
LIB

option of DSNU CLIST 34
option of DSNUPROC 36

library of LISTDEF statements 213
LIKE predicate 558
LIMIT

option of DSNJU008 891
option of TEMPLATE 762
option of UNLOAD FROM TABLE 799

links
non-IBM Web sites
1069

LIST
option of CHECK INDEX 99
option of COPY 127
option of COPYTOCOPY 173
option of LISTDEF 203
option of MERGECOPY 355
option of MODIFY RECOVERY 365
option of MODIFY STATISTICS 376
option of QUIESCE 390
option of REBUILD INDEX 403
option of RECOVER 430
option of REORG INDEX 492
option of REORG TABLESPACE 534
option of REPORT INDEX 666
option of REPORT INDEXSPACE 666
option of REPORT TABLESPACE 665
option of RUNSTATS INDEX 716

Index 1087

LIST (continued)
option of RUNSTATS TABLESPACE 705
option of UNLOAD 785

LISTDEF
objects

excluding 209
including 209

LISTDEF library
example 386

LISTDEF library, specifying 385
LISTDEF utility

authorization 199
catalog and directory objects, specifying 211
CHECK INDEX

example 111
compatibility 208
control statement

placement 213
COPY NO indexes, specifying 202
COPY YES indexes, specifying 202
description 199
examples

using LIST 213
execution phases 199
indexes, specifying 202
LOB indicator keywords 206
LOB objects, including 206
options 200
OPTIONS 215
output 199
partitions, specifying 204
pattern-matching expressions 211
previewing 212
RECOVER

example 483
referencing lists 213
restarting 216
restrictions 210
statement library 213
syntax 199
templates, using 215
terminating 216

LISTDEFDD
option of OPTIONS 382

LISTPARTS
option of REORG TABLESPACE 534

lists
adding related objects 210
COPYTOCOPY

example 185
creating 199
defining

examples 216
objects

excluding 209
including 209

previewing 212
processing order 214
restarting utilities with 51
using with other utilities 213

LOAD INTO PART 301
LOAD INTO TABLE

options 259
LOAD statements

LOAD statements (continued)
generated by UNLOAD 830

LOAD utility
actions after running 331
adding data 300
authorization 221
BINARYXML 280
building indexes 320
catalog tables 283
CHECK-pending (CHKP) status 334
compatibility 292
compressing data 309
COPY-pending status 333
cross loader 311
cursors

identifying 263
data sets 285
data type compatibility 317
data type conversion 317
data type, specifying 268
data with referential constraints 307
defects, calculating number 291
DEFINE NO table space 301
deleting all data 300
delimited file format 304
description 221
discarded rows, statistics 327
duplicate keys, effects 295
effects 337
ENFORCE NO

consequences 308
enforcing constraints 249
error, calculating 291
examples 339
EXEC SQL statements 311
exit procedure 323
failed

recovering data 336
field names, specifying 265
field specifications 265
FlashCopy 313
foreign keys

calculating 290
invalid values 307

free space 323
identity columns 298, 337
informational referential constraints 221
inline copies 332
inline COPY 312
inline statistics 327
input data set, specifying 229
input data, preparing 283
input fields, specifying 319
into-table spec 256
keys

calculating 290
limiting logging 327
LOB column 324
LOB table space

logging 325
logging 244
map, calculating 291
multilevel security restriction on REPLACE option 221
multiple tables, loading 256

1088 Db2 12 for z/OS: Utility Guide and Reference

LOAD utility (continued)
null values, setting criteria for 282
options 229
ordering records 295
output 221
parallel index build 320
partitions

loading 260, 300
performance recommendations 314
prerequisite actions 283
primary key

duplicate values 307
missing values 308

REBUILD-pending status 323, 333
RECOVER-pending (RECP) status 333
RECOVER-pending status 323
recycling version numbers 337
reorganizing auxiliary index 337
REPLACE

restrictive states 296
replacing data 236
restarting 329
restricted status 332
row change timestamp columns 298
row selection criteria 263
ROWID columns 298, 323
skipping fields 260
SORTKEYS NO 295
syntax 223
temporal table columns 298
terminating 328
Unicode data 249
variable-length data 295
work data sets

estimating size 288
XML column 325
XML table space

logging 326
loading

catalog tables 283
data

cursors 284
dynamic SQL 311
generated by REORG UNLOAD EXTERNAL 298
generated by UNLOAD 298
large amounts 221

partition-by-growth 303
partitions 300
referential constraints 307
variable-length data 295
XML data 303

loading different data types
example 341

loading multiple tables
example 340

loading null values
example 342

loading selected records
example 340

LOB
LOAD

example 349
option of DSN1COMP 897
option of DSN1COPY 916

LOB (continued)
option of DSN1PRNT 957
option of LISTDEF 206

LOB (large object)
checking 78
invalid 93
missing 92
orphan 92
out-of-synch 93
recovering 461

LOB changes, compression 611
LOB column

checking data 81
errors 92
loading 324

LOB data
unloading 816
unloading to spanned record format 817

LOB table space
copying 171
LOAD LOG 325
REORG LOG 325
reorganizing 607

LOB violations
resolving 119

LOBERROR
option of CHECK DATA 78

LOBERROR INVALIDATE
option of CHECK DATA 92

LOBERROR REPORT
option of CHECK DATA 92

LOBs
example of checking 95

local backup copy
COPYTOCOPY

example 183
LOCALSITE

option of RECOVER 438
option of REPORT 667

LOCATE DELETE statement of REPAIR utility 640
LOCATE DUMP statement of REPAIR utility 641
LOCATE INDEX statement of REPAIR utility 638
LOCATE INDEXSPACE statement of REPAIR utility 638
LOCATE REPLACE statement of REPAIR utility 640
LOCATE TABLESPACE statement of REPAIR utility 637
LOCATE VERIFY statement of REPAIR utility 639
LOCATION

option of DSNJU003 860
location name

naming convention xix
log

active
data set status 883
printing available data sets 873

backward recovery 859
command history, printing 873
data set

printing names 873
forward recovery 858
record structure, types 941

LOG
option of CHECK DATA 79
option of LOAD 244
option of REORG TABLESPACE 538

Index 1089

LOG (continued)
option of REPAIR 635

log copy pools
system-level backups 60

log data sets
active, renaming 870
archive, renaming 870

log data sets with errors, deleting 867
logical partition, checking 106
logical unit name

naming convention xix
LOGONLY

option of RECOVER 436
option of RESTORE SYSTEM 690

LOGRANGES
option of RECOVER 439
option of REORG INDEX 496
option of REORG TABLESPACE 547

LONGLOG
option of REBUILD INDEX 404
option of REORG INDEX 496
option of REORG TABLESPACE 546

LPL status 975
LRECL

option of TEMPLATE 759
LRSNEND

option of DSN1LOGP 938
LRSNSTART

option of DSN1LOGP 938
LUNAME

option of DSNJU003 862
LUWID

option of DSN1LOGP 941

M
MAP

option of REPAIR DUMP 642
MAPDDN

option of LOAD 250
mapping table

REORG TABLESPACE
example 626

MAPPINGDATABASE
option of REORG TABLESPACE 545

MAPPINGTABLE
option of REORG TABLESPACE 545

MAXASSIGNEDVAL
LOAD utility 337

MAXERR
option of UNLOAD 790

MAXPRIME
option of TEMPLATE 764

MAXRO
option of REBUILD INDEX 404
option of REORG INDEX 495
option of REORG TABLESPACE 545

MAXROWS
option of DSN1COMP 897

media failure
resolving 120

MEMBER
option of DSNJU004 875

member name

member name (continued)
naming convention xix

MEMBERID
option of DSNJU003 864

MEPLs
displaying

DIAGNOSE example 192
MERGCOPY utility

inline copies 358
MERGECOPY utility

authorization 353
compatibility 357
COPY utility, when to use 359
data sets 356
DBD01 353, 355
description 353
different types of copies, merging restrictions 358
directory table spaces 353
examples 360
lists, using 355
log information, deleting 359
LOG RBA inconsistencies, avoiding 359
options 354
output 353
partitions, merging copies 355
phases of execution 354
restarting 360
restrictions 353
syntax 354
SYSDBDXA 353, 355
SYSTSCPY 353, 355
SYSUTILX 353, 355
terminating 360
type of copy 358
which copies are used 358

merging copies of data sets 358
MESSAGE

option of DIAGNOSE 190
MGMTCLAS

option of TEMPLATE 759
missing LOB 92
MIXED

option of LOAD 280
MODELDCB

option of TEMPLATE 759
MODIFY RECOVERY utility

authorization 364
compatibility 368
copies, deleting 370
data sets 368
DBD, reclaiming space 370
description 363
examples 372
lists

example 372
output 363
phases of execution 364
prerequisites 368
recycling version numbers 371
REORG after adding column, improving performance
371
restarting 369
syntax 364
SYSCOPY, deleting rows 369

1090 Db2 12 for z/OS: Utility Guide and Reference

MODIFY RECOVERY utility (continued)
SYSLGRNX, deleting rows 369
terminating 369

MODIFY STATISTICS utility
authorization 375
compatibility 378
data sets 378
description 375
examples 379
lists, using 376
options 376
output 375
phases of execution 375
restarting 379
statistics history, deleting 379
syntax 376
terminating 379

monitoring
utility status 41

MOST
option of RUNSTATS INDEX 717
option of RUNSTATS TABLESPACE 709

multilevel security with row-level granularity
authorization restrictions for utilities 7
LOAD REPLACE authorization restrictions 221
REORG TABLESPACE authorization restrictions 524
UNLOAD authorization restrictions 777

multiple input data sets
LOAD

example 350

N
naming conventions xviii
NBRSECND

option of TEMPLATE 764
NEAROFFPOSF column of SYSINDEXPART catalog table

catalog query to retrieve value for 588
NEWCAT

option of DSNJU003 859
NEWCOPY

option of MERGECOPY 355
NEWLOG

option of DSNJU003 853
NEWMAXRO

option of REORG INDEX 498
option of REORG TABLESPACE 548

NGENERIC
option of DSNJU003 862

NGRPIPV4
option of DSNJU003 863

NGRPIPV6
option of DSNJU003 863

NOALIAS
option of DSNJU003 863

NOAREORPEND
option of REPAIR SET 644

NOAREORPENDSTAR
option of REPAIR SET 644

NOAUXCHKP
option of REPAIR SET 644

NOAUXWARN
option of REPAIR SET 644

NOCHECKPAGE

NOCHECKPAGE (continued)
option of COPY 132

NOCHECKPEND
option of LOAD 249
option of REPAIR SET 643

NOCOPYPEND
option of LOAD 244
option of MODIFY RECOVERY 368
option of REPAIR SET 643

NODUMPS
option of DIAGNOSE 189

NOIPNAME
option of DSNJU003 863

NOIPV4
option of DSNJU003 863

NOIPV6
option of DSNJU003 863

NOLUNAME
option of DSNJU003 863

nonindexed row
removing

example 659
NOPAD

option of REORG TABLESPACE 553
option of UNLOAD 788

NOPASSWD
option of DSNJU003 862

NOPRO
option of REPAIR SET 644

NORBDPEND
option of REPAIR SET 643

NORCVRPEND
option of REPAIR SET 643

NOSUBS
option of LOAD 249
option of UNLOAD 787

NOSYSCOPY
option of RECOVER 436

NOSYSREC
option of REORG TABLESPACE 539

NOT LOGGED table spaces
LOAD 338
recovering 451
REORG TABLESPACE 617

not sign, problems with 555
NULL predicate 559
null values

LOAD
example 342

NULLIF
option of LOAD 282

NUMCOLS
option of REBUILD INDEX 405
option of REORG INDEX 500
option of RUNSTATS INDEX 717
option of RUNSTATS TABLESPACE 710

NUMPARTS
option of DSN1COMP 896
option of DSN1COPY 916
option of DSN1PRNT 958

NUMQUANTILES
option of REORG TABLESPACE 560
option of RUNSTATS INDEX 717
option of RUNSTATS TABLESPACE 709, 711

Index 1091

NUMRECS
option of LOAD

example 340

O
OBID

option of DSN1LOGP 939
OBIDs

invalid 925
OBIDXLAT

option of DSN1COPY 918
OBJECT

option of REPAIR 635
object lists

creating 199
object status

displaying 975
OFF

option of OPTIONS 384
OFF, option of OPTIONS statement 383
OFFLRBA

option of DSNJU003 863
OFFPOSLIMIT

option of REORG TABLESPACE 551
OFFSET

option of DSN1LOGP 943
option of REPAIR DUMP 642
option of REPAIR REPLACE 640
option of REPAIR VERIFY 639

OLDEST_VERSION column
updating 371

online utilities
definition 1
invoking 17

option of LOAD
FCCOPYDDN 133, 238, 503, 541
FLASHCOPY 132, 237, 408, 503, 540

OPTIONS utility
altering return codes 385
authorization 381
compatibility 384
description 381
errors, handling 383
examples 385
execution phases 381
LISTDEF 215
LISTDEF definition library, specifying 382
options 382
output 381
PREVIEW with LISTDEF 382
PREVIEW with TEMPLATE 382
restarting 385
syntax 381
TEMPLATE definition library, specifying 383
terminating 385

order of records
loading 295

orphan LOB 92
out-of-space condition

COPYTOCOPY 182
restarting utilities 50

out-of-synch LOB 93
OUTDDN

OUTDDN (continued)
option of REPAIR DBD 645

output fields
UNLOAD 821, 823

OVERRIDE
option of LOAD 253

owner
renaming 67

OWNER FROM
option of CATMAINT 65

ownership of objects
changing from an authorization ID to a role 67

P
page

checking 131
damaged, repairing 655
recovering 450

PAGE
option of DSN1LOGP 940
option of RECOVER 432
option of REPAIR LOCATE INDEX 639
option of REPAIR LOCATE TABLESPACE 637

page set REBUILD-pending (PSRBD) status
description 982
resetting 982

PAGES
option of REPAIR DUMP 642

PAGESIZE
option of DSN1COMP 895
option of DSN1COPY 915
option of DSN1PRNT 956

panel
Control Statement Data Set Names 27
Data Set Names 26
DB2 Utilities 24

PARALLEL
option of CHECK INDEX 101
option of COPY 131
option of LOAD

example 349
option of RECOVER 433
option of REORG TABLESPACE 534
option of UNLOAD 792

parallel index build
LOAD

example 344
PART

option of CHECK DATA 74
option of CHECK INDEX 99
option of DSN1LOGP 941
option of DSN1PRNT 959
option of DSNJU008 891
option of LOAD 260, 301
option of QUIESCE 391
option of REBUILD INDEX 403
option of REORG INDEX 493
option of REORG TABLESPACE 536
option of REPAIR 636
option of REPAIR LEVELID 646
option of REPAIR LOCATE INDEX 639
option of REPAIR LOCATE TABLESPACE 637
option of REPAIR SET 643

1092 Db2 12 for z/OS: Utility Guide and Reference

PART (continued)
option of RUNSTATS INDEX 716
option of RUNSTATS TABLESPACE 705, 710
option of UNLOAD 784

partition
copying 141

partition parallelism
LOAD

example 347
partition-by-growth table space

loading 303
partition-by-growth table spaces

copying 151
rebuilding indexes 415
reorganizing 605

partitioned table space
loading 300
unloading 815
updating statistics 727

partitioned table spaces
reorganizing 605

partitions
LOAD

example 350
rebalancing with REORG 597
redistributing 597
unloading 815

PARTLEVEL
option of LISTDEF 204

PASSWORD
option of DSNJU003 862

PATH
option of TEMPLATE 765

pattern-matching characters
LISTDEF 211

PCTFREE, option of DSN1COMP 896
PCTPRIME

option of TEMPLATE 763
pending column alterations

LOAD 222
pending definition changes

reorganizing with 609
performance

affected by
I/O activity 588

COPY 157
LOAD 314
REBUILD INDEX 415
RECOVER 471
REORG INDEX 515
REORG TABLESPACE 371, 600

Persistent Read Only (PRO) restricted status
description 981
resetting 982

phase restart 46
phases of execution

BACKUP SYSTEM 53
CATMAINT 63
CHECK DATA 72
CHECK INDEX 98
CHECK LOB utility 113
COPY utility 124
COPYTOCOPY utility 172
EXEC SQL 195

phases of execution (continued)
LISTDEF 199
LOAD 222
MERGECOPY 354
MODIFY RECOVERY 364
MODIFY STATISTICS 375
OPTIONS 381
QUIESCE 389
REBUILD INDEX 399
RECOVER 426
REORG INDEX 488
REORG TABLESPACE 525
REPAIR 632
REPORT 664
RESTORE SYSTEM 689
RUNSTATS 700
STOSPACE 745
TEMPLATE 751
UNLOAD 778

PIECESIZ
option of DSN1COPY 917
option of DSN1PRNT 957

plan table
retrieving data from

DSNADMSB example 1046, 1047
point-in-time recovery

backout 463
for catalog and directory objects 458
performing 462

PORT
option of DSNJU003 860

POSITION
option of LOAD 267
option of UNLOAD FROM TABLE 799

predicate
basic 555
BETWEEN 555
IN 557
LIKE 558
NULL 559

PREFORMAT
option of LOAD 230
option of LOAD PART 261
option of REORG INDEX 502
option of REORG TABLESPACE 567

preformatting active logs
example 847

PRESERVE WHITESPACE
option of LOAD 269, 271

PRESORTED
option of LOAD 231

PREVIEW
option of OPTIONS 382
with LISTDEF utility 212

preview mode
executing utilities 384

PREVIEW mode, executing utilities in 768
previewing lists

example 385
previewing templates

example 385
PRINT

option of DSN1COPY 916
option of DSN1PRNT 958

Index 1093

privileges
utilities 7

PRO
option of REPAIR SET 644

processor time
by utilities

monitoring 42
product-sensitive programming information, described 1068
programming interface information, described 1068
PSID

determining 944
option of DSNJU008 890

PSPI symbols 1068
PSRBDPEND

option of REPAIR SET 644
PUNCHDDN

option of CHECK DATA 80
option of CHECK LOB 116
option of REORG TABLESPACE 565
option of UNLOAD 785

PUNCHDSN
option of DSNU CLIST 33

Q
qualifier-name

naming convention xix
quiesce point

clone objects
example 398

establishing 395
list of objects

example 397
multiple table spaces

example 397
not writing changes to disk

example 398
table space set

example 398
quiesce point, establishing 389
QUIESCE utility

authorization 389
catalog and directory objects 394
compatibility 393
creating point of consistency for catalog and directory
459
data sets 392
description 389
example with lists 218
examples 397
failure to write to disk 396
history record, printing 873
LISTDEF

example 397
lists 390
options 390
output 389
partitions 391
phases of execution 389
prerequisite actions 392
restarting 396
restrictive states, compatibility 396
syntax 390
table space set 391

QUIESCE utility (continued)
terminating 396
writing changed pages to disk 391

R
RBA (relative byte address), range printed by print log map
875
RBAEND

option of DSN1LOGP 938
RBALRSN_CONVERSION

option of LOAD 234
option of REORG INDEX 503
option of REORG TABLESPACE 567

RBASTART
option of DSN1LOGP 938

RBDPEND
option of REPAIR SET 644

RC0
option of OPTIONS 383

RC4
option of OPTIONS 384

RC8
option of OPTIONS 384

RC8, option of OPTIONS statement 383
RCPYDSN1

option of DSNU CLIST 32
RCPYDSN2

option of DSNU CLIST 33
REAL

option of UNLOAD FROM TABLE 807
real-time statistics

COPY 155
used by utilities 1059

REBALANCE
option of REORG TABLESPACE 537

rebalancing partitions
example 597

rebinding, after LOAD 327
REBUILD

option of REPAIR DBD 645
REBUILD INDEX utility

access, specifying 414
authorization 399
building indexes in parallel 416
catalog indexes 420
compatibility 412
data sets 410
description 399
DRAIN_WAIT, when to use 416
dynamic sort and SORTDATA allocation, overriding 419
examples 422
FlashCopy 420
index partitions 415
options 402
partition-by-growth table spaces 415
performance recommendations 415
phases of execution 399
prerequisite actions 410
recoverability of rebuilt index 420
recycling version numbers 421
restarting 421
several indexes

performance 415

1094 Db2 12 for z/OS: Utility Guide and Reference

REBUILD INDEX utility (continued)
SHRLEVEL CHANGE

when to use 416
slow log processing 415
sort subtasks for parallel build 419
syntax 400
terminating 421
work data sets, calculating size 411

REBUILD-pending (RBDP) status
description 982
resetting 982
set by LOAD utility 333

REBUILD-pending status
LOAD 323

rebuilding index
clone tables 424
example 422–424
restrictive state 423
SHRLEVEL CHANGE 424

rebuilding index partitions
example 422

rebuilding indexes 416
RECDS

option of DSNU CLIST 33
RECFM

option of TEMPLATE 759
RECLUSTER

option of REORG TABLESPACE 539
records

order when loading 295
RECOVER utility

authorization 425
backout

point-in-time recovery 463
catalog and directory objects 452
CHECK-pending status, resetting 468
compatibility 441
compressed data, recovering 469
concurrent copies, improving recovery performance 433
damaged media, avoiding 474
data sets 440
description 425
DFSMShsm data sets 472
effects 481
error range 450
examples 482
fallback 473
FlashCopy 448
hierarchy of dependencies 457
incremental image copies 448
indexes

REBUILD-pending status 481
JES3 environment 473
lists of objects 447
lists, using 430
LOB data 461
LOGAPPLY phase, optimizing 471
non-Db2 data sets 451
NOT LOGGED table spaces 451
objects accessed 457
options 430
output 425
pages, recovering 432, 450
parallel recovery 433

RECOVER utility (continued)
partitions, recovering 431, 448
performance recommendations 471
phases of execution 426
point-in-time recovery

for catalog and directory objects 458
prerequisite actions 439
RBA, recovering to 432
rebalancing partitions with REORG 463
recovery status 465
restarting 480
restrictions 426
skipping copy or data set 470
syntax 427
tape mounts, retaining 473
terminating 480
XML data 461

RECOVER-pending (RECP) status
description 983
resetting 984
set by LOAD utility 333

RECOVER-pending status
LOAD 323

recovery
alternate copy pool

example 484
backout 463
catalog objects 452
clone objects 461
clone tables

example 484
compressed data 469
consistency, ensuring 468
data set 448
database

LOB table space 157
RECOVER utility 425

directory objects 452
error range 450
FlashCopy image copies 448
from concurrent copies

example 483
from image copy

example 484
from system-level backup

example 484
index

example 482
JES3 environment 473
list of objects

example 483
log copy pool backups 60
page 450
parallel

example 483
partition

example 482
point in time

example 482
preparing for with copies 156
REBUILD INDEX 399
redirected

example 485
REORG makes image copies invalid 140

Index 1095

recovery (continued)
table space

example 482
tape devices

example 483
to last image copy

example 482
RECOVERY

option of REPORT 665
recovery base 445
recovery index rows, deleting 370
recovery information

reporting
example 674

reporting for index
example 678

reporting for partition
example 677

where it is stored 457
recovery information, reporting 665
recovery log

backward 859
forward 858

recovery point of consistency
creating for catalog and directory 459

recovery preparations
QUIESCE 389

RECOVERY utility
point-in-time recovery 462

RECOVERYDDN
option of COPY 128
option of COPYTOCOPY 176
option of LOAD 237, 312
option of MERGECOPY 356
option of REORG TABLESPACE 540, 598

RECOVERYSITE
option of RECOVER 438
option of REPORT 668

redirected recovery
example 485

referential constraint
loading data 307
violations 308

referential constraints
LOAD

example 343
REFRESH-pending (REFP) status 984
REGISTER

option of RUNSTATS TABLESPACE 711
option of UNLOAD 791

REGISTER YES
option of RUNSTATS INDEX 718

RELOAD phase
REORG TABLESPACE

error 605
remote site recovery 142
REORG

option of DSN1COMP 897
REORG INDEX utility

access, allowing 493
access, specifying 513
authorization 487
catalog updates 518
CHECK-pending status, compatibility 505

REORG INDEX utility (continued)
compatibility 510
data sets 506
data-sharing 505
description 487
drain behavior, specifying 495
DRAIN_WAIT, when to use 516
examples 519
fallback recovery 505
FlashCopy 514
inline statistics

gathering 499
reporting 500

interrupting 515
lists, using 492
long logs, actions for 496
no action 499
options 492
output 487, 518
partitions, specifying 493
performance 515
phases of execution 488
preformatting pages 502
prerequisite actions 505
REBUILD-pending status, compatibility 505
RECOVER-pending status, compatibility 505
recycling version numbers 518
region size 505
report only 499
restart-pending status, compatibility with SHRELEVEL
CHANGE 505
restarting 517
retries, specifying maximum number 495
shadow data sets 508
SHRLEVEL CHANGE

when to use 515
SHRLEVEL option 513
slow log processing, operator actions 513
SWITCH phase deadline, specifying 494
syntax 488
terminating 516
time for log processing, specifying 495
timeout condition, actions for 496
unload data sets

specifying 502
unloading data, action after 499
waiting time when draining for SQL 495

REORG TABLESPACE utility
access, specifying 542, 589
actions after running 615
authorization 524
building indexes in parallel 602
catalog and directory 569, 592
compatibility

with CHECK-pending status 571
with REBUILD-pending status 570
with RECOVER-pending status 570
with REORG-pending status 571

compression dictionary
not building new 559

data set
copy, specifying 539
discard, specifying 566

data sets

1096 Db2 12 for z/OS: Utility Guide and Reference

REORG TABLESPACE utility (continued)
data sets (continued)

unload 577
unload, specifying name 566
work 578

deadline for SWITCH phase, specifying 544
description 523
drain behavior, specifying 546
DRAIN_WAIT, when to use 601
dynamic sort work data set allocation, overriding 596
effects 616
encrypted data 572
examples 618
failed job, recovering 612
fallback recovery 571
FlashCopy 599
indexes

building in parallel 602
inline copy 598
inline statistics 560
interrupting 596
lists, using 534
LOB table space

phases of execution 525
log processing, specifying max time 545
logging, specifying 538
long logs 546
LONGLOG action, specifying interval 546
mapping table

specifying name 545
multilevel security restrictions 524
options 534
output 523, 615
parallel unloading and reloading 598
partition-by-growth table spaces 605
partitioned table spaces 605
pending definition changes 609
performance

after adding column 371
performance recommendations 474, 600
phases of execution 525
preformatting pages 567
prerequisite actions 569
rebalancing 572
rebalancing partitions 597
reclaiming space from dropped tables 592
records, discarding 568
recycling version numbers 616
redistributing partitions 597
region size recommendation 569
RELOAD phase 607
RELOAD phase error 605
reload, skipping 592
restarting 612
sample generated LOAD statement 553
scope, specifying 536
segmented (non-UTS) table spaces 606
selection condition 554
shadow data sets 579
SHRLEVEL

specifying 589
SHRLEVEL CHANGE

compatibility with restart-pending status 570
performance implications 601

REORG TABLESPACE utility (continued)
SHRLEVEL CHANGE (continued)

when to use 601
slow processing, operator actions 591
sort device type, specifying 566
sort program messages, specifying destination 578
sort subtasks

allocation 604
determining number 603

sort work file, estimating size 604
syntax 526
temporary data sets, specifying number 566
terminating 611
time to wait for drain, specifying 544
timeout, specifying action 547
unload, specifying action 552
unloading data, methods of 605
XML table space 608

REORG utility
compressing data 310

REORG-pending (AREO*) status
description 985
resetting 985

REORG-pending (AREOR) status
description 985
resetting 985

REORG-pending (REORP) status
description 985
resetting 985

reorganization
determining when to perform 512

reorganizing
after SQL completes

example 622
clone indexes

example 520
clone tables

example 629
conditionally

example 621
deadline for SWITCH phase

example 619
determining when

example 621
discarding records

example 627
indexes 512
inline FlashCopy

example 628
list of indexes

example 519
parallel index build

example 618
partition

example 618
range of partitions

example 620
read-write access

example 619
REORG-pending partitions

example 628
reporting statistics

example 620
specifying maximum processing time

Index 1097

reorganizing (continued)
specifying maximum processing time (continued)

example 619
specifying unload data set

example 618
table space

example 618
table spaces, determining when to reorganize 587
updating statistics

example 620
REPAIR utility

actions after running 658
authorization 631
CATALOG statement 646
catalog, repairing 657
CHECK-pending status 658
compatibility 651
damaged page, repairing 655
data sets 650
DBD statement 644, 655
DELETE statement 640
description 631
DUMP statement 641
encrypted data 650
examples 659
LEVELID statement 645
LOCATE statement 636
logging, specifying 635
options 635
output 631, 658
output data sets

calculating size 650
partitions 646
phases of execution 632
prerequisite actions 649
REPLACE statement 640
resetting states, options 643
rows, locating by key 656
SET statement 642
syntax 632
system pages statement 648
terminating 658
VERIFY statement 639, 657
WRITELOG statement 649

REPLACE
option of LOAD 236
option of LOAD PART 262
statement of REPAIR utility 640

replacing data
LOAD

example 340
replacing data in a table space 296
REPORT

option of REBUILD INDEX 405
option of REORG INDEX 500
option of REORG TABLESPACE 560
option of RUNSTATS INDEX 718
option of RUNSTATS TABLESPACE 712

REPORT utility
authorization 663
catalog and directory 669
compatibility 669
data sets 668
description 663

REPORT utility (continued)
examples 674
options 665
output 663
phases of execution 664
RECOVERY

output 669
recovery information, reporting 665
restarting 669
syntax 664
TABLESPACESET

output 669
terminating 669

reporting
LOB columns

example 676
REPORTONLY

option of COPY 130, 154
option of REORG INDEX 499
option of REORG TABLESPACE 551

RESET
option of DSN1COPY 918

RESET ACCESSPATH
option of RUNSTATS TABLESPACE 713

resetting
auxiliary CHECK-pending (ACHKP) pending status 975
auxiliary warning (AUXW) warning status 976
DBETE status 979
pending status

CHECK-pending (CHKP) 978
COPY-pending 979
group buffer pool RECOVER-pending (GRECP) 980
informational COPY-pending (ICOPY) 981
page set REBUILD-pending (PSRBD) 982
REBUILD-pending (RBDP) 982
RECOVER-pending (RECP) 984
REFRESH-pending (REFP) 984
REORG-pending (AREO*) 985
REORG-pending (AREOR) 985
REORG-pending (REORP) 985
restart-pending 988

Persistent Read Only (PRO) restricted status 982
RESPORT

option of DSNJU003 860
REST

option of REPAIR REPLACE 640
restart

conditional control record
reading 884

RESTART
option of DSNU CLIST 33

restart-pending (RESTP) status
description 988
resetting 988

restarting
performing first two phases only 859
utilities

by using DSNUPROC 37
COPY 159
current restart 46
default value 47
LOAD 329
out-of-space condition 50
overriding default behavior 49

1098 Db2 12 for z/OS: Utility Guide and Reference

restarting (continued)
utilities (continued)

phase restart 46
REORG INDEX 517
REORG TABLESPACE 612
with lists 51
with templates 50

RESTORE SYSTEM utility
actions after running 696
authorization 689
compatibility 695
creating system point in time for 857
data sets 694
description 689
DISPLAY UTILITY command 695
effects of running 696
examples 696
options 690
output 689
phases of execution 689
prerequisite actions 692
REBUILD-pending status 696
restarting 695
syntax 690
terminating 695

RESTOREBEFORE
option of RECOVER 434
option of RESTORE SYSTEM 691

restricted status
after running LOAD 332

restrictive state 975
restrictive states

resetting
example 660

restrictive status
resetting 654

RESUME
option of LOAD 234, 300
option of LOAD PART 261

RETAIN
option of MODIFY RECOVERY 367

RETPD
option of TEMPLATE 759

RETRY
option of CHECK DATA 76
option of CHECK INDEX 100
option of CHECK LOB 115
option of LOAD 254
option of REBUILD INDEX 404
option of REORG INDEX 495
option of REORG TABLESPACE 545

RETRY_DELAY
option of CHECK DATA 76
option of CHECK INDEX 100
option of CHECK LOB 115
option of LOAD 254
option of REBUILD INDEX 405

return code, CHANGELIMIT 154
return codes

altering 385
REUSE

option of LOAD 244
option of LOAD PART 262
option of REBUILD INDEX 405

REUSE (continued)
option of RECOVER 433
option of REORG INDEX 493
option of REORG TABLESPACE 536

RI
option of LISTDEF 206

RID
option of DSN1LOGP 940
option of REPAIR LOCATE TABLESPACE 637

role
changing to 67

row change timestamp columns
LOAD

example 349
row change timestamp columns, loading 298
row format

REORG TABLESPACE, effect of 617
ROWFORMAT

option of LOAD 233
option of REORG TABLESPACE 567

ROWID
option of LOAD 280
option of REPAIR LOCATE TABLESPACE 638
option of UNLOAD FROM TABLE 809

ROWID columns
loading 298, 323

ROWLIMIT
option of DSN1COMP 897

RSTMBR
option of DSNJU003 864

running
utilities

by creating JCL 38
RUNSTATS INDEX utility

syntax 714
RUNSTATS utility

access, specifying 711, 717
after LOAD 328
aggregation of statistics, specifying 713, 719
authorization 700
catalog table spaces 727
catalog table updates 731
COLGROUP option 699
column frequency statistics, gathering 709
column information, gathering 708
compatibility 724
data sets 722
description 699
device type for sort program, specifying 713, 718
directory objects 727
distribution statistics for column groups 726
examples 739
grouping columns 708
HISTOGRAM option 699
index frequency statistics, gathering 710
INDEX option 699
index partitions, specifying 716
INDEX syntax diagram 714
key column combinations, gathering information 710
lists, using 705, 716
LOB table space, space statistics 729
options for RUNSTATS INDEX 716
output 700, 731
page registration, specifying 711

Index 1099

RUNSTATS utility (continued)
partitioned table space 727
phases of execution 700
prerequisites 699
profile syntax 720
reporting information 712, 718
restarting 701
sample of columns, gathering statistics 706
sort work data sets, specifying number 713, 718
statistics history 728
table space partitions, gathering statistics 705
TABLESPACE option 699
TABLESPACE options 705
TABLESPACE syntax 701
terminating 701
updating catalog information 712, 718
work data sets

frequency statistics 728
XML table space, collect statistics 729

RUNTSTATS utility
resetting access path statistics 736

S
SAMPLE

option of REORG TABLESPACE 560
option of RUNSTATS TABLESPACE 706
option of UNLOAD FROM TABLE 799

schema
renaming 67

SCHEMA SWITCH
option of CATMAINT 65

SCOPE
option of CHECK DATA 77, 89
option of COPY 134
option of REBUILD INDEX 405
option of RECOVER 438
option of REORG TABLESPACE 536

SECPORT
option of DSNJU003 860

security
data sets 20
utilities 7

SEGMENT
option of DSN1COPY 915

segmented (non-UTS) table spaces
reorganizing 606

SELECT
option of DSN1SDMP 966

SELECT2
option of DSN1SDMP 968

service level
finding

DIAGNOSE example 192
SET

statement of REPAIR utility 642
SET PROFILE

option of RUNSTATS TABLESPACE 708
SETCURRENTVERSION

option of REPAIR system pages 648
shadow data sets

CHECK DATA 84
CHECK INDEX 102
CHECK LOB 117

shadow data sets (continued)
REORG INDEX 508
REORG TABLESPACE 579

shortcut keys
keyboard xvii

SHOWKEYLABEL
option of REPORT 668

SHRLEVEL
option of CHECK DATA 75
option of CHECK INDEX 99
option of CHECK LOB 115
option of COPY 134, 149
option of LOAD 235
option of REBUILD INDEX 403, 414
option of REORG INDEX 493
option of REORG TABLESPACE 542
option of REPAIR LOCATE TABLESPACE 638
option of RUNSTATS INDEX 717
option of RUNSTATS TABLESPACE 711
option of UNLOAD 791

SHRLEVEL CHANGE
CHECK DATA, example 96
option of REPAIR system pages 649

SIZE
option of DSNUPROC 36

SKIP
option of OPTIONS 383

skipping errors
OPTIONS example 386

SMALLINT
option of LOAD 274
option of UNLOAD FROM TABLE 804

sort program
data sets for REORG TABLESPACE, specifying device
type 566
messages from REORG TABLESPACE, specifying
destination 578

SORTCLUSTER
option of REORG TABLESPACE 537

SORTDATA
option of REORG TABLESPACE 538

SORTDEVT
option of CHECK DATA 80
option of CHECK INDEX 100
option of CHECK LOB 116
option of LOAD 251
option of REBUILD INDEX 405
option of REORG INDEX 502
option of REORG TABLESPACE 566
option of RUNSTATS INDEX 718
option of RUNSTATS TABLESPACE 713

SORTKEYS
option of LOAD 245

SORTNPSI
option of REORG TABLESPACE 549

SORTNUM
option of CHECK DATA 81
option of CHECK INDEX 100
option of CHECK LOB 116
option of LOAD 251
option of REBUILD INDEX 405
option of REORG INDEX 502
option of REORG TABLESPACE 566
option of RUNSTATS INDEX 718

1100 Db2 12 for z/OS: Utility Guide and Reference

SORTNUM (continued)
option of RUNSTATS TABLESPACE 713

SORTOUT
LOAD utility, estimating size 289

space
DBD, reclaiming 370
unused, finding for nonsegmented table space 588

SPACE
option of MODIFY STATISTICS 377
option of TEMPLATE 763

SPACE column
analyzing values 748

SPACEF column
analyzing values 748

SPANNED
option of LOAD 248
option of UNLOAD 788

spanned record format
unloading in 817

SQL statement records 1027
STACK

option of TEMPLATE 764
stand-alone utilities

control statements 840
definition 1
invoking 839
JCL EXEC PARM, using to specify options 840
specifying options 840

standard report header
CONNECT field 996
CONNTYPE field 996
CORRNAME field 996
CORRNMBR field 996
DESCRIPTION field 997
DESTNO field 997
END_USER field 996
IFCID field 997
INSTANCE field 996
ORIGAUTH field 996
PLANNAME field 996
PRIMAUTH field 996
RECORD TIME field 996
TCB CPU TIME field 996
TRANSACT field 997
WS_NAME field 996

START TRACE
option of DSN1SDMP 965

STARTIME
option of DSNJU003 856

STARTRBA
option of DSNJU003 854

STATCLGMEMSRT
option of RUNSTATS TABLESPACE 711

statistics
access path, updating

example 740
data-partitioned secondary indexes 728
deleting access path records

example 380
deleting for index space

example 380
deleting history records

example 379
deleting space-tuning records

statistics (continued)
deleting space-tuning records (continued)

example 380
gathering 699
generating report only

example 740
histogram

example 743
history 728
prohibiting updates while gathering

example 739
retrieving least frequently occurring values

example 742
retrieving most frequently occurring values

example 741
updating

example 739
updating and generating report

example 740
updating catalog and history tables

example 741
updating for a column group

example 741
updating for column group

example 742
updating for partition

example 740
updating for several tables

example 739
updating for table space

example 740
updating frequently occurring values

example 741
Statistics

access paths
resetting 736

STATISTICS
option of LOAD 238
option of REBUILD INDEX 405
option of REORG INDEX 499
option of REORG TABLESPACE 560

statistics history
deleting specific entries 379
reasons to delete 379

status
CHECK-pending

resetting 334
COPY-pending

resetting 333
displaying 975
utilities 41

status of utility
active 41
stopped 41
terminated 41

STOGROUP
option of STOSPACE 746

stopped
utility status 41

storage group
monitoring disk space 747

storage group name
with spaces

STOSPACE example 749

Index 1101

STORCLAS
option of TEMPLATE 759

stored procedures
Db2-supplied 973

STOSPACE utility
authorization 745
availability of objects, ensuring 747
compatibility 746
data sets 746
description 745
examples 748
monitoring disk space for a storage group 747
options 746
output 745
phases of execution 745
restarting 748
statistical information, obtaining 747
syntax 746
terminating 748

string
naming convention xix

STRIP
option of LOAD 319
option of UNLOAD FROM TABLE VARBINARY 805
option of UNLOAD FROM TABLE VARCHAR 802
option of UNLOAD FROM TABLE VARGRAPHIC 804
VARCHAR 319

STRTLRSN
option of DSNJU003 855

STTRACE
option of DSN1SDMP 967

SUBMIT
option of DSNU CLIST 33

substring notation, TEMPLATE utility 756
SUBSYS

option of TEMPLATE 759
subsystem

backing up 53
collecting information 1035
naming convention xix
restoring 689

subsystem parameters
DFSMSdss COPY operation with utilities 42

SUBTYPE
option of DSN1LOGP 942

SUMMARY
option of DSN1LOGP 943
option of REPORT 667

switching
templates 771

SWITCHTIME
option of LOAD 254
option of REORG INDEX 497
option of REORG TABLESPACE 548

syntax
BACKUP SYSTEM 54
CATMAINT 64
CHECK DATA 72
CHECK INDEX 98
CHECK LOB 114
COPY 125
COPYTOCOPY 172
DIAGNOSE 187
DSN1COMP 895

syntax (continued)
DSN1COPY 914
DSN1LOGP 937
DSN1PRNT 955
DSN1SDMP 965
DSNADMSB 1036
DSNJU003 850
DSNJU004 (print log map) 874
DSNJU008 (print CDDS utility) 890
DSNU CLIST command 30
EXEC SQL 195
LISTDEF 199
LOAD 223
MERGECOPY utility 354
MODIFY RECOVERY 364
MODIFY STATISTICS 376
OPTIONS 381
QUIESCE utility 390
REBUILD INDEX 400
RECOVER utility 427
REORG INDEX utility 488
REORG TABLESPACE utility 526
REPAIR 632
REPORT 664
RESTORE SYSTEM 690
RUNSTATS INDEX 714
RUNSTATS profile 720
RUNSTATS TABLESPACE 701
STOSPACE 746
TEMPLATE 751
UNLOAD 781

syntax diagram
how to read xx
RUNSTATS INDEX 714

SYSCOPY
deleting clone records

example 373
deleting FlashCopy image copies

example 373
deleting records

example 372
deleting records by age

example 372
deleting records by date

example 372
deleting records for partitions

example 372
option of DSN1LOGP 939
removing outdated information 363
retaining GDG records

MODIFY RECOVERY example 373
retaining records

MODIFY RECOVERY example 373
SYSCOPY, deleting rows 369
SYSDBDXA directory table space

MERGECOPY restrictions 353, 355
SYSDISC data set

LOAD utility, estimating size 289
SYSERR data set

LOAD utility, estimating size 289
SYSIBM.SYSCOPY

copying 141
COPYTOCOPY 180
ICBACKUP column 142

1102 Db2 12 for z/OS: Utility Guide and Reference

SYSIBM.SYSCOPY (continued)
ICUNIT column 142

SYSIBM.SYSCOPY catalog table
FlashCopy image copies 146

SYSIBM.SYSLGRNX
copying 141

SYSIBM.SYSUTILX
copying 141

SYSLGRNX
deleting clone records

example 373
deleting records by age

example 372
deleting records by date

example 372
removing outdated information 363
retaining GDG records

MODIFY RECOVERY example 373
retaining records

MODIFY RECOVERY example 373
SYSLGRNX, deleting rows 369
SYSMAP data set

LOAD utility, estimating size 289
SYSPITR

option of DSNJU003 857
SYSPITRT

option of DSNJU003 857
SYSPRINT DD

DSN1SMFP 1034
SYSTEM

option of DSNJU008 891
option of DSNU CLIST 33
option of DSNUPROC 36

system data sets
renaming 869

system pages
statement of REPAIR utility 648

system parameter records 1005
system point in time, creating 857
system recovery

specifying a point in time
DSNJU003 example 872

system-level backup
recovering from older

example 698
system-level backups

determining which ones are used for recovery 444
DSNJU004 output 886
recovering with 444

system-level-backups
determining whether on disk or tape 445

system-period temporal table spaces
reporting

example 680
SYSTEMPAGES

option of COPY 132
SYSTSCPY directory table space

MERGECOPY restrictions 353, 355
SYSUT1 data set

LOAD utility, estimating size 289
SYSUTILX directory table space

MERGECOPY restrictions 353, 355
order of recovering 453

T
table

adding data 300
dropping, reclaiming space 592
exception, creating 88
multiple, loading 256
replacing data 296
retrieving data about

DSNADMSB example 1049
TABLE

option of LISTDEF 204
option of REORG TABLESPACE 560
option of RUNSTATS TABLESPACE 706

table name
naming convention xix

table space
checking 71
determining when to reorganize 512, 587
merging copies 353
naming convention xx
nonsegmented, finding unused space 588
recovering 446
status, resetting 654

table space set
reporting

example 679
TABLESAMPLE SYSTEM

option of RUNSTATS TABLESPACE 707
TABLESPACE

option of CHECK DATA 74
option of CHECK INDEX 99
option of CHECK LOB 114
option of COPY 127
option of COPYTOCOPY 174
option of LISTDEF 203
option of MERGECOPY 355
option of MODIFY RECOVERY 365
option of MODIFY STATISTICS 376
option of QUIESCE 391
option of REBUILD INDEX 403
option of RECOVER 430
option of REPAIR 636
option of REPAIR CATALOG 647
option of REPAIR LEVELID 645
option of REPAIR SET 643
option of REPAIR system pages 648
option of REPORT 665
option of RUNSTATS INDEX 716
option of UNLOAD 784

TABLESPACES
option of LISTDEF 201

TABLESPACESET
option of QUIESCE 391
option of REPORT 668

TAPEUNITS
option of COPY 131
option of RECOVER 434
option of RESTORE SYSTEM 691

template
BLKSZLIM

example 775
for disk

example 773

Index 1103

template (continued)
for image copy

example 772
for tape data sets

example 772
for unloading LOB objects

example 774
GDG data set

example 773, 774
switching

example 775
variable substring notation

example 772
with LISTDEF

example 773
TEMPLATE library

example 386
TEMPLATE library, specifying 385
template switching

COPY
example 163

COPYTOCOPY
example 185

example 360
TEMPLATE utility

authorization 751
BSAM buffers, specifying number 759
compatibility 767
data set names

convention for specifying 755
creating 767

data set size
default space calculations 768
extent allocations 769

description 751
devices

specifying number 760
disposition of data set

specifying 760
examples 772
expiration date for data set, specifying 760
GDG base, specifying number of entries 760
GDGs 771
model data set, specifying 759
operations 767
options 755
output 751
phases of execution 751
prerequisite actions 766
PREVIEW mode, executing in 767
previewing data set names 768
restarting 771
retention period for data set, specifying 759
scope of control statement 767
SMS data class, specifying 759
SMS management class, specifying 759
SMS storage class, specifying 759
space parameters, specifying 763
substring notation 756
switching 771
syntax 751
tape 769
terminating 771
track recording technique, specifying 765

TEMPLATE utility (continued)
variables

DATE 758
TIME 758
using in the data set name 755

volume serial numbers, specifying 760
volumes, specifying maximum number 760

TEMPLATEDD
option of OPTIONS 383

temporal table columns, loading 298
TERM UTILITY command

BACKUP SYSTEM 60
COPY 158
COPYTOCOPY 182
description 44
LISTDEF 216
LOAD 328
MERGECOPY 360
MODIFY STATISTICS 379
OPTIONS 385
QUIESCE 396
REBUILD INDEX 421
RECOVER 480
REORG INDEX 516
REORG TABLESPACE 611
REPAIR 658
REPORT 669
STOSPACE 748
TEMPLATE 771

terminated
utility status 41

terminating
online utilities 44
utilities

BACKUP SYSTEM 60
CATMAINT 66
CHECK DATA 93
CHECK INDEX 109
CHECK LOB 120
COPY 158
COPYTOCOPY 182
data sharing 45
DIAGNOSE 191
EXEC SQL 196
LISTDEF 216
LOAD 328
MERGECOPY 360
MODIFY STATISTICS 379
OPTIONS 385
QUIESCE 396
REBUILD INDEX 421
RECOVER 480
REORG INDEX 516
REORG TABLESPACE 611
REPAIR 658
REPORT 669
RESTORE SYSTEM 695
STOSPACE 748
TEMPLATE 771
UNLOAD 781

TEST
option of REPAIR CATALOG 648
option of REPAIR DBD 645

TIME

1104 Db2 12 for z/OS: Utility Guide and Reference

TIME (continued)
option of DSNJU003 863
option of TEMPLATE 763

TIME EXTERNAL
option of LOAD 278
option of UNLOAD FROM TABLE 808

TIMEOUT
option of REORG INDEX 496
option of REORG TABLESPACE 547

TIMESTAMP EXTERNAL
option of LOAD 278
option of UNLOAD FROM TABLE 808

TIMESTAMP WITH TIME ZONE EXTERNAL
option of LOAD 279

TIMESTAMP WITH TIMEZONE EXTERNAL
option of UNLOAD FROM TABLE 808

timestamp, BSDS
DSNJU004 output 882

timestamps, printing system and utility 873
TOCOPY

option of RECOVER 436
TOKEN

option of BACKUP SYSTEM 56
TOLASTCOPY

option of RECOVER 437
TOLASTFULLCOPY

option of RECOVER 437
TOLOGPOINT

option of RECOVER 433
TORBA

option of RECOVER 432
TOSEQNO

option of RECOVER 437
TOVOLUME

option of RECOVER 436
trace records

decompressing
DSNTSMFD 1055
example 1056

trace start records 998
Trace Start with Audit Policy records 1032
trace stop records 999
TRACEID

option of DIAGNOSE 191, 194
traces

assigning to buffers 969
tracing

processor use by utilities 42
TRTCH

option of TEMPLATE 765
TRUNCATE

option of LOAD 319
VARCHAR 319

trusted connection records 1025
trusted context

utilities 7
trusted context records 1026
TYPE

option of DIAGNOSE 189
option of DSN1LOGP 941

U
UID

UID (continued)
option of DSNU CLIST 33
option of DSNUPROC 37

UNCNT
option of TEMPLATE 760

UNICODE
option of LOAD 249
option of UNLOAD 787

Unicode data
LOAD

example 347
UNIT

option of DSNJU003 855
option of DSNU CLIST 34
option of TEMPLATE 759

UNLDDN
option of CATMAINT 65
option of REORG TABLESPACE 566
option of UNLOAD 786

UNLOAD
option of REORG INDEX 499
option of REORG TABLESPACE 552

UNLOAD utility
access, specifying 791
ASCII format, specifying 787
authorization 777
blanks in VARBINARY fields, removing 805
blanks in VARCHAR fields, removing 802
blanks in VARGRAPHIC fields, removing 804
BLOB data type, specifying 809
BLOB strings, truncating 809
CCSID, specifying 787
CHAR data type, specifying 800
character string representation of date, specifying 808
character string representation of time, specifying 808
character strings, truncating 801
CLOB data type, specifying 809
CLOB strings, truncating 809
compatibility 779
compressed data 831
constant field, specifying 808
converting data types 821
CURRENT DATE, incrementing and decrementing value
814
data sets 778
data type compatibility 821
DBCLOB format, specifying 810
DBCS string, truncating 810
DD statement for image copy, specifying 785
decimal format, specifying 806
delimited files 826
delimited format

decimal point character 790
delimited format, specifying 789
delimiters

column 790
string 790

description 777
EBCDIC format, specifying 786
encrypted data

running UNLOAD on 778
examples 831
field position, specifying 799
field specification errors 831

Index 1105

UNLOAD utility (continued)
field specifications 793
floating-point data, specifying format 807
FROM TABLE clause

compatibility with LIST 793
FROM TABLE options 797
FROM TABLE syntax diagram 793
graphic type, specifying 803
graphic type, truncating 803
header field, specifying 798
image copies

concatenating 820
unloading from 819

image copy, specifying 784
Infinity 826
integer format, specifying 804
internal format, specifying 789
lists, specifying 785
LOAD statements, generating 830
LOAD statements, specifying data set for 785
LOB data 816
maximum errors allowed, specifying 790
maximum number of rows to unload, specifying 799
multilevel security restrictions 777
multiple tables, unloading 793
NaN 826
options 783
output 777
output columns

ordering 819
output fields

layout 824
position and size 823
types 821

padding for variable length data, not using 788
partitions 815
partitions, identifying 784
phases of execution 778
prerequisites 778
processing encrypted data 778
restarting 781
restrictions 777
ROWID type, specifying for output data 809
sampling rows 799
selection condition 811
small integer, specifying 804
sNaN 826
source tables, selecting 818
spanned record format 817
substitutions, not using 787
syntax 781
table space, specifying 784
terminating 781
timestamp, incrementing and decrementing value 815
truncating data 829
Unicode format, specifying 787
unload data set, specifying 786
varying-length data format, specifying 801
varying-length graphic type, specifying 804
WHEN clause 810
XML data 816

unloading
converting data

example 835

unloading (continued)
field specification list

example 832
from clone tables

example 836
from image copy

example 832
from partitioned table space in parallel

example 833
from two tables

example 833
LOB data

example 835
methods 605
multiple table spaces

example 834
sample of rows

example 832
segmented (non-UTS) table space

example 833
to delimted file

example 834
Unicode data to EBCDIC

example 835
with lists

example 833, 834
UPDATE

option of CATMAINT 64
option of REBUILD INDEX 405
option of REORG INDEX 500
option of REORG TABLESPACE 560
option of RUNSTATS INDEX 718
option of RUNSTATS TABLESPACE 712

UPDATE PROFILE
option of RUNSTATS TABLESPACE 708

URID (unit of recovery ID)
option of DSN1LOGP 940

USE PROFILE
option of REORG TABLESPACE 560
option of RUNSTATS TABLESPACE 706

utilities
authorization IDs 7
controlling 41
declared temporary tables 9
enabling 5
executing

by using DSNUPROC 36
DB2I 23
JCL 38

invoking
DSNU CLIST command 27

mixed-release data sharing environment, operating in 4
monitoring 41
online

BACKUP SYSTEM 53
CATMAINT 63
CHECK DATA 71
CHECK INDEX 97
CHECK LOB 113
COPY 123
COPYTOCOPY 171
DIAGNOSE 187
EXEC SQL 195
invoking 17

1106 Db2 12 for z/OS: Utility Guide and Reference

utilities (continued)
online (continued)

LISTDEF 199
LOAD 221
MERGECOPY 353
MODIFY RECOVERY 363
MODIFY STATISTICS 375
OPTIONS 381
QUIESCE 389
REBUILD INDEX 399
RECOVER 425
REORG INDEX 487
REORG TABLESPACE 523
REPAIR 631
REPORT 663
RESTORE SYSTEM 689
RUNSTATS 699
STOSPACE 745
TEMPLATE 751
UNLOAD 777

overview 1
packaging 3
phase, determining 41
privileges 7
real-time statistics 1059
restarting 46
running in preview mode 384
stand-alone

DSN1COMP 893
DSN1COPY 911
DSN1LOGP 935
DSN1PRNT 953
DSN1SDMP 963
DSNJCNVB 843
DSNJCNVT 845
DSNJLOGF (preformat active log) 847
DSNJU003 (change log inventory) 849
DSNJU004 (print log map) 873
DSNJU008 (print CDDS) 889
invoking 839

trusted context 7
UTILITIES panel 24
UTILITY

option of DSNU CLIST 32
utility abend

forcing
DIAGNOSE example 192

utility change records 1002
utility control statements

overview 20
parsing rules 20
stand-alone utilities 840

utility end records 1003
utility execution

suspending
DIAGNOSE example 193

utility failure
determining reason 44

utility start records 999
utility-id

naming convention xx
UTILX

option of CATMAINT 66
UTPROC

UTPROC (continued)
option of DSNUPROC 37

V
validation routine

LOAD 221
VALUE

option of DSN1COPY 917
option of DSN1LOGP 943
option of DSN1PRNT 959

VARBINARY
option of LOAD 275
option of UNLOAD FROM TABLE 805

VARCHAR
data type, loading 295
option of LOAD 270
option of UNLOAD FROM TABLE 801

VARGRAPHIC
data type, loading 295
option of LOAD 273
option of UNLOAD FROM TABLE 804

varying-length rows, relocated to other pages, finding
number of 588
VCAT SWITCH

option of CATMAINT 65
VER

option of DSNJU008 891
VERIFY

statement of REPAIR utility 639
VERIFYSET

option of RECOVER 437
VERSION

option of REPAIR LOCATE TABLESPACE 638
version numbers

recycling
LOAD 337
MODIFY RECOVERY 371
REBUILD INDEX 421
REORG INDEX 518
REORG TABLESPACE 616

versioning relationships
reporting

example 680
violations

correct 90
finding 89

VOLCNT
option of TEMPLATE 760

VOLUME
option of DSNU CLIST 34

VOLUMES
option of TEMPLATE 760

VSAM (Virtual Storage Access Method)
used by STOSPACE 747

VSAMCAT
option of DSNJU003 859

W
WAIT

option of DIAGNOSE 190
WARNING

Index 1107

WARNING (continued)
option of OPTIONS 383

WHEN
option of LOAD 263
option of REORG TABLESPACE 554
option of UNLOAD FROM TABLE 810

work data sets
CHECK DATA 80
CHECK DATA utility 83
LOAD utility 288

WORKDDN
option of CHECK DATA 80
option of LOAD 245
option of MERGECOPY 355
option of REORG INDEX 502

WRITE
option of QUIESCE 391

WRITELOG
statement of REPAIR utility 649

X
XML

option of LISTDEF 207
option of LOAD 280
option of UNLOAD FROM TABLE 810

XML column
loading 325

XML columns
example of checking 96
reporting

example 679
XML data

collecting statistics 729
correcting after CHECK INDEX 110
loading 303
recovering 461
unloading 816
unloading to spanned record format 817

XML schema repository
copying 152

XML table space
copying 151, 171
LOAD LOG 326
reorganizing 608

XMLCHECK DATA 90
XMLERROR

option of CHECK DATA 78

1108 Db2 12 for z/OS: Utility Guide and Reference

IBM®

Product Number: 5650-DB2
 5770-AF3

SC27-8860-02

	Contents
	About this information
	Who should read this information
	Db2 Utilities Suite for z/OS
	Terminology and citations
	Accessibility features for Db2 12 for z/OS
	How to send your comments about Db2 for z/OS documentation
	Naming conventions used in this information
	How to read syntax diagrams

	Part 1. Basic information about Db2 utilities
	Chapter 1. Db2 utilities packaging
	Chapter 2. Enabling the Db2 Utilities Suite for z/OS product
	Chapter 3. Privileges and authorization IDs for Db2 utilities
	Chapter 4. Utilities that can be run on declared temporary objects
	Chapter 5. Effect of utilities on objects that have the DEFINE NO attribute
	Chapter 6. Effect of utilities on encrypted data

	Part 2. Db2 online utilities
	Chapter 7. Invoking Db2 online utilities
	Data sets that online utilities use
	Utility control statements
	Invoking an online utility by using the DB2 Utilities panel in DB2I
	DB2 Utilities panel
	Data Set Names panel
	Control Statement Data Set Names panel
	Invoking a Db2 utility by using the DSNU CLIST command in TSO
	DSNU CLIST command syntax
	DSNU CLIST command output

	The supplied JCL procedure (DSNUPROC) for invoking a Db2 online utility
	Invoking a Db2 online utility by creating the JCL data set yourself

	Chapter 8. Monitoring and controlling online utilities
	Monitoring utilities
	Monitoring processor use by utilities
	Subsystem parameters for refining DFSMSdss COPY operation with utilities
	Determining why a utility failed to complete
	Terminating an online utility
	Restarting an online utility
	Overriding the default utility restart behavior by using the RESTART parameter
	Restarting a utility after the output data set is full
	How utilities restart with templates
	How utilities restart with lists

	Chapter 9. BACKUP SYSTEM
	Syntax and options of the BACKUP SYSTEM control statement
	Before running BACKUP SYSTEM
	Copy pools
	Data sets that BACKUP SYSTEM uses
	Concurrency and compatibility for BACKUP SYSTEM

	Dumping a fast replication copy to tape
	Backups of log copy pools
	Termination or restart of BACKUP SYSTEM
	Sample BACKUP SYSTEM control statements

	Chapter 10. CATMAINT
	Updating the catalog for installation or migration to Db2 12
	Renaming the owner, creator, and schema of database objects
	Changing the ownership of objects from an authorization ID to a role
	Changing the catalog name used by storage groups or index spaces and table spaces
	Identifying invalidated packages after the owner, creator, or schema name of an object is renamed

	Chapter 11. CHECK DATA
	Syntax and options of the CHECK DATA control statement
	Before running CHECK DATA
	Data sets that CHECK DATA uses
	Defining work data sets
	Shadow data sets for CHECK DATA

	Concurrency and compatibility for CHECK DATA

	Exception tables for the CHECK DATA utility
	Exception processing for tables with auxiliary columns
	Specifying the scope of CHECK DATA
	How violations are identified
	Detection and correction of constraint violations
	CHECK DATA XML error detection
	Correcting XML data after running CHECK DATA
	Resetting CHECK-pending status
	LOB column errors
	Resetting auxiliary CHECK-pending status
	Termination and restart of CHECK DATA
	Sample CHECK DATA control statements

	Chapter 12. CHECK INDEX
	Syntax and options of the CHECK INDEX control statement
	Data sets that CHECK INDEX uses
	Shadow data sets for CHECK INDEX

	Concurrency and compatibility for CHECK INDEX
	Single logical partitions
	Indexes in parallel
	Reviewing CHECK INDEX output
	Termination or restart of CHECK INDEX
	Correcting XML data after running CHECK INDEX
	Sample CHECK INDEX control statements

	Chapter 13. CHECK LOB
	Syntax and options of the CHECK LOB control statement
	Before running CHECK LOB
	Data sets that CHECK LOB uses
	Shadow data sets for CHECK LOB

	Concurrency and compatibility for CHECK LOB

	How CHECK LOB identifies violations
	Resetting CHECK-pending status for a LOB table space
	Resolving media failure
	Termination or restart of CHECK LOB
	Sample CHECK LOB control statements

	Chapter 14. COPY
	Syntax and options of the COPY control statement
	Before running COPY
	Data sets that COPY uses
	Concurrency and compatibility for COPY

	Full image copies
	Incremental image copies
	Multiple image copies
	FlashCopy image copies
	Backing up data efficiently by using FlashCopy image copies
	Copies of lists of objects
	Using more than one COPY statement
	Copying partitions or data sets simultaneously
	Copies of partition-by-growth table spaces
	Copies of XML table spaces
	Copying catalog and directory objects
	Make copies of XML schema repository objects
	Copies of indexes
	Using DFSMSdss concurrent copy
	Specifying conditional image copies
	How COPY uses real-time statistics
	Allocation of sequential image copy data sets
	Preparing for recovery by using the COPY utility
	Improving performance of the COPY utility
	Generation data group definitions for the COPY utility
	Using Db2 with DFSMS products
	Image copies on tape
	Termination of COPY
	Restart of COPY
	Sample COPY control statements

	Chapter 15. COPYTOCOPY
	Syntax and options of the COPYTOCOPY control statement
	Data sets that COPYTOCOPY uses
	Concurrency and compatibility for COPYTOCOPY
	Full or incremental image copies with COPYTOCOPY
	Incremental image copies with COPYTOCOPY
	Using more than one COPYTOCOPY statement
	Copying from a specific image copy
	Copying a FlashCopy image copy by using COPYTOCOPY
	Using TEMPLATE with COPYTOCOPY
	SYSCOPY records that are updated by COPYTOCOPY
	How COPYTOCOPY determines which input copy to use
	Generation data group definitions for the COPYTOCOPY utility
	Using Db2 with DFSMS products
	Image copies on tape
	Copies of lists of objects from tape
	Termination or restart of COPYTOCOPY
	Sample COPYTOCOPY control statements

	Chapter 16. DIAGNOSE
	How to force a utility abend

	Chapter 17. EXEC SQL
	Chapter 18. LISTDEF
	Syntax and options of the LISTDEF control statement
	Concurrency and compatibility for LISTDEF
	Creating the LISTDEF control statement
	How to include objects in a list
	Previewing the contents of a list
	Creating LISTDEF libraries
	Referencing LISTDEF lists in other utility jobs
	Using the TEMPLATE utility with LISTDEF
	Using the OPTIONS utility with LISTDEF
	Termination or restart of LISTDEF
	Sample LISTDEF control statements

	Chapter 19. LOAD
	Syntax and options of the LOAD control statement
	Before running LOAD
	Data sets that LOAD uses
	Concurrency and compatibility for LOAD
	Preparing Db2 internal format input records that are not generated by UNLOAD for LOAD

	When to use SORTKEYS NO
	Loading variable-length data
	How LOAD orders loaded records
	Replacing data with LOAD
	Loading tables with special column types by using generated LOAD statements
	Adding more data to a table or partition
	Deleting all the data in a table space
	Loading partitions
	Loading partition-by-growth table spaces
	Loading data containing XML columns
	Loading delimited files
	Loading data with referential constraints
	Referential constraint violations
	Compressing data by using the LOAD utility
	Loading data by using the cross-loader function
	Taking an inline COPY with LOAD
	Creating a FlashCopy image copy with LOAD
	Improving LOAD performance
	Conversion of input data
	Specifying input fields
	Specifying the TRUNCATE and STRIP options
	How LOAD builds indexes while loading data
	Building indexes in parallel for LOAD
	How LOAD leaves free space
	Loading with RECOVER-pending or REBUILD-pending status
	Exit procedures
	Loading ROWID and row change timestamp columns
	Loading a LOB column
	LOAD LOG on a LOB table space
	Loading an XML column
	LOAD LOG on an XML table space
	Running LOAD RESUME YES SHRLEVEL CHANGE without logging
	Collecting inline statistics while loading a table
	Termination of LOAD
	Restart of LOAD
	After running LOAD
	Copying the loaded table space or partition
	Resetting restricted status after running the LOAD utility
	Resetting COPY-pending status
	REBUILD-pending and RECOVER-pending status after LOAD
	CHECK-pending status after running LOAD

	Running CHECK INDEX after loading a table that has indexes
	Recovering data after a failed LOAD job
	Reorganization of an auxiliary index after LOAD

	Effects of running LOAD
	Sample LOAD control statements

	Chapter 20. MERGECOPY
	Syntax and options of the MERGECOPY control statement
	Data sets that MERGECOPY uses
	Concurrency and compatibility for MERGECOPY
	Full or incremental image copy
	How MERGECOPY determines which input copy to use
	Using MERGECOPY with individual data sets
	Using MERGECOPY or COPY
	Avoiding MERGECOPY LOG RBA inconsistencies
	Termination or restart of MERGECOPY
	Sample MERGECOPY control statements

	Chapter 21. MODIFY RECOVERY
	How MODIFY RECOVERY deletes rows
	Reclaiming space in the DBD
	Improving REORG performance after adding a column
	The effect of MODIFY RECOVERY on version numbers
	Sample MODIFY RECOVERY control statements

	Chapter 22. MODIFY STATISTICS
	Syntax and options of the MODIFY STATISTICS control statement
	Data sets that MODIFY STATISTICS uses
	Concurrency and compatibility for MODIFY STATISTICS
	Guidelines for deciding which statistics history rows to delete
	Deletion of specific statistics history rows
	Termination or restart of MODIFY STATISTICS
	Sample MODIFY STATISTICS control statements

	Chapter 23. OPTIONS
	Syntax and options of the OPTIONS control statement
	Concurrency and compatibility for OPTIONS
	Executing statements in preview mode
	Specifying LISTDEF and TEMPLATE libraries
	Overriding standard utility processing behavior
	Termination or restart of OPTIONS
	Sample OPTIONS control statements

	Chapter 24. QUIESCE
	Syntax and options of the QUIESCE control statement
	Before running QUIESCE
	Data sets that QUIESCE uses
	Concurrency and compatibility for QUIESCE

	Use of QUIESCE on catalog and directory objects
	Common quiesce points
	Running QUIESCE on a table space in pending status
	Reasons why QUIESCE fails to write to disk
	Termination and restart of QUIESCE
	Sample QUIESCE control statements

	Chapter 25. REBUILD INDEX
	Syntax and options of the REBUILD INDEX control statement
	Before running REBUILD INDEX
	Data sets that REBUILD INDEX uses
	Concurrency and compatibility for REBUILD INDEX

	Access with REBUILD INDEX SHRLEVEL
	Rebuilding index partitions
	Rebuilding indexes on partition-by-growth table spaces
	How to improve performance when rebuilding index partitions
	Rebuilding multiple indexes
	Rebuilding critical catalog indexes
	Recoverability of a rebuilt index
	Creating a FlashCopy image copy with REBUILD INDEX
	Termination or restart of REBUILD INDEX
	The effect of REBUILD INDEX on index version numbers
	Sample REBUILD INDEX control statements

	Chapter 26. RECOVER
	Syntax and options of the RECOVER control statement
	Before running RECOVER
	Data sets that RECOVER uses
	Concurrency and compatibility for RECOVER

	Recovering with a system-level backup
	How to determine which system-level backups Db2 recovers
	Determining which recovery base Db2 uses
	Determining whether the system-level backups reside on disk or tape
	Recovering a table space or index space
	Recovering a list of objects
	Recovering a data set or partition
	Recovery with incremental copies
	Recovering with FlashCopy image copies
	Recovering a page
	Recovering an error range
	Effect on RECOVER of the NOT LOGGED or LOGGED table space attributes
	Recovering with a data set copy that is not made by Db2
	Recovering catalog and directory objects
	Objects that contain recovery information
	Point-in-time recovery of the catalog, directory, and all user objects
	Creating a point of consistency for catalog and directory objects

	Reinitializing DSNDB01.SYSUTILX
	Recovering a table space that contains LOB or XML data
	Recovering a table space that contains clone objects
	Point-in-time recovery
	Avoiding specific image copy data sets during a recovery
	How to improve RECOVER performance
	Optimizing the LOGAPPLY phase
	Recovering image copies in a JES3 environment
	How the RECOVER utility performs fallback recovery
	How the RECOVER utility retains tape mounts
	Avoiding damaged media
	Running a redirected recovery
	Termination or restart of RECOVER
	Effects of running RECOVER
	Sample RECOVER control statements

	Chapter 27. REORG INDEX
	Syntax and options of the REORG INDEX control statement
	Before running REORG INDEX
	Data sets that REORG INDEX uses
	Shadow data sets for REORG INDEX

	Concurrency and compatibility for REORG INDEX

	Determining which indexes require reorganization
	Using the LEAFDISTLIMIT and REPORTONLY options to determine when reorganization is needed
	Access with REORG INDEX SHRLEVEL
	Creating a FlashCopy image copy with REORG INDEX
	Temporarily interrupting REORG
	Improving performance with REORG INDEX
	Termination of REORG INDEX
	Restart of REORG INDEX
	Review of REORG INDEX output
	Effect of REORG INDEX on index version numbers
	Sample REORG INDEX control statements

	Chapter 28. REORG TABLESPACE
	Syntax and options of the REORG TABLESPACE control statement
	Before running REORG TABLESPACE
	Data sets that REORG TABLESPACE uses
	Shadow data sets for REORG TABLESPACE

	Concurrency and compatibility for REORG TABLESPACE

	Determining whether an object requires reorganization
	Access with REORG TABLESPACE SHRLEVEL
	Unloading without reloading
	Reclaiming space from dropped tables
	Reorganizing the catalog and directory
	Changing data set definitions
	Temporarily interrupting REORG
	How to override dynamic sort work data set allocation
	Redistributing data across partitions by using REORG
	How partitions can be unloaded and reloaded in parallel
	How to use inline copy with REORG TABLESPACE
	Creating a FlashCopy image copy with REORG TABLESPACE
	Improving REORG TABLESPACE performance
	Parallel index building for REORG TABLESPACE
	How Db2 unloads data
	Failure during the RELOAD phase
	Reorganization of partitioned table spaces
	Reorganization of partition-by-growth table spaces
	Reorganization of segmented (non-UTS) table spaces
	Comparison of the numbers of loaded and unloaded records
	Reorganization of a LOB table space
	Reorganization of an XML table space
	Reorganization with pending definition changes
	Compression after materialization of inline LOB changes
	Termination of REORG TABLESPACE
	Restart of REORG TABLESPACE
	Review of REORG TABLESPACE output
	After running REORG TABLESPACE
	Effects of running REORG TABLESPACE
	Sample REORG TABLESPACE control statements

	Chapter 29. REPAIR
	Syntax and options of the REPAIR control statement
	Before running REPAIR
	Data sets that REPAIR uses
	Concurrency and compatibility for REPAIR

	Resetting table space status
	Resetting index space status
	Repairing a damaged page
	Repairing DBDs
	Locating rows by key
	Using VERIFY with REPLACE and DELETE operations
	Repairing critical catalog table spaces and indexes
	Checking for missing system pages
	Termination or restart of REPAIR
	Review of REPAIR output
	After running REPAIR
	Sample REPAIR control statements

	Chapter 30. REPORT
	Syntax and options of the REPORT control statement
	Data sets that REPORT uses
	Concurrency and compatibility for REPORT
	Running REPORT on the catalog and directory
	Termination or restart of REPORT
	REPORT output
	Sample REPORT control statements

	Chapter 31. RESTORE SYSTEM
	Syntax and options of the RESTORE SYSTEM control statement
	Before running RESTORE SYSTEM
	While running RESTORE SYSTEM
	After running RESTORE SYSTEM
	Sample RESTORE SYSTEM control statements

	Chapter 32. RUNSTATS
	RUNSTATS TABLESPACE syntax and options
	RUNSTATS INDEX syntax and options
	Statistics profile syntax
	Data sets that RUNSTATS uses
	Concurrency and compatibility for RUNSTATS
	Collecting distribution statistics for column groups
	Updating statistics for a partitioned table space
	Collection of statistics on the Db2 catalog and directory
	Collecting frequency statistics for data-partitioned secondary indexes
	Collecting statistics history
	Collection of statistics on LOB table spaces
	Collection of statistics on XML objects
	Review of RUNSTATS output
	Resetting access path statistics
	Sample RUNSTATS control statements

	Chapter 33. STOSPACE
	Syntax and options of the STOSPACE control statement
	Data sets that STOSPACE uses
	Concurrency and compatibility for STOSPACE
	How STOSPACE ensures availability of objects it STOSPACE requires
	Obtaining statistical information with STOSPACE
	Analysis of the values in a SPACE or SPACEF column
	Termination or restart of STOSPACE
	Sample STOSPACE control statement

	Chapter 34. TEMPLATE
	Syntax and options of the TEMPLATE control statement
	Before running TEMPLATE
	Concurrency and compatibility for TEMPLATE

	Key TEMPLATE operations
	Choosing data set names
	Default space calculations for data set templates
	Guidelines for templates and tape data sets
	How TEMPLATE supports GDG data sets
	Template switching
	Termination or restart of TEMPLATE
	Sample TEMPLATE control statements

	Chapter 35. UNLOAD
	Syntax and options of the UNLOAD control statement
	Unloading partitions
	Unloading XML data
	Unloading LOB data
	Unloading data in spanned record format
	Selecting tables and rows to unload
	Selecting and ordering columns to unload
	Unloading data from image copy data sets
	Data type conversion with the UNLOAD utility
	Output field types
	Output field positioning and size
	Layout of output fields
	Output for special values Infinity, sNaN, or NaN
	Unloading delimited files
	Specifying TRUNCATE and STRIP options for output data
	LOAD statements that are generated by UNLOAD
	Unloading compressed data
	Field specification errors
	Sample UNLOAD control statements

	Part 3. Db2 stand-alone utilities
	Chapter 36. Invoking stand-alone utilities
	Specifying options for stand-alone utilities by using the JCL EXEC PARM parameter
	Stand-alone utility control statements

	Chapter 37. DSNJCNVB
	Chapter 38. DSNJCNVT
	Chapter 39. DSNJLOGF (preformat active log)
	Chapter 40. DSNJU003 (change log inventory)
	Making changes for active logs
	Making changes for archive logs
	A conditional restart control record
	Deleting log data sets with errors
	Altering references to log data sets in the BSDS
	Defining the high-level qualifier for catalog and directory objects
	Renaming Db2 system data sets
	Renaming Db2 active log data sets
	Renaming Db2 archive log data sets
	Sample DSNJU003 control statements

	Chapter 41. DSNJU004 (print log map)
	Syntax and options of the DSNJU004 control statement
	Sample DSNJU004 control statement
	DSNJU004 (print log map) output

	Chapter 42. DSNJU008 (print CDDS)
	Syntax and options of the DSNJU008 control statement
	DSNJU008 examples

	Chapter 43. DSN1COMP
	Syntax and options of the DSN1COMP control statement
	Before running DSN1COMP
	How to estimate compression savings achieved with option REORG
	Free space in compression calculations on table space
	Sample DSN1COMP control statements
	DSN1COMP output

	Chapter 44. DSN1COPY
	Syntax and options of the DSN1COPY control statement
	Before running DSN1COPY
	Data sets that DSN1COPY uses

	Inconsistent data checks
	The effects of not specifying the OBIDXLAT option
	Requirements for using an image copy as input to DSN1COPY
	Copying from an image copy
	Restoring indexes with DSN1COPY
	Restoring table spaces with DSN1COPY
	Printing with DSN1COPY
	Copying tables from one subsystem to another
	Sample DSN1COPY control statements

	Chapter 45. DSN1LOGP
	Syntax and options of the DSN1LOGP control statement
	Determining the PSID for base and clone objects
	Archive log data sets on tape
	Sample DSN1LOGP control statements
	DSN1LOGP output

	Chapter 46. DSN1PRNT
	Syntax and options of the DSN1PRNT control statement
	Printing with DSN1PRNT instead of DSN1COPY
	Determining the page size and data set size for DSN1PRNT
	Sample DSN1PRNT control statements

	Chapter 47. DSN1SDMP
	Syntax and options of the DSN1SDMP control statement
	Assigning buffers
	Conditions for generating a dump
	Stopping or modifying DSN1SDMP traces
	Sample DSN1SDMP control statements

	Appendix A. Supplied stored procedures for utility operations
	Appendix B. Advisory or restrictive states
	Auxiliary CHECK-pending status
	Auxiliary warning status
	CHECK-pending status
	COPY-pending status
	DBETE status
	Group buffer pool RECOVER-pending status
	Informational COPY-pending status
	PRO restricted status
	REBUILD-pending status
	RECOVER-pending status
	REFRESH-pending status
	REORG-pending status
	Restart-pending status

	Appendix C. DSN1SMFP
	Before running DSN1SMFP
	Running DSN1SMFP
	Sample DSN1SMFP control statement
	DSN1SMFP output
	DSN1SMFP output record structure
	Standard report header
	IFCID003: DDF Location
	IFCID004: Trace Start
	IFCID005: Trace Stop
	IFCID023: Utility Start
	IFCID024: Utility Change
	IFCID025: Utility End
	IFCID083: Identify End
	IFCID106: System Parameters (security-relevant fields only)
	IFCID140: Audit Authorization Failures
	IFCID141: Audit DDL Grant/Revoke
	IFCID142: Audit DDL Create/Alter/Drop
	IFCID143: Audit First Write
	IFCID144: Audit First Read
	IFCID145: Audit DML Statement
	IFCID269: Trusted Connection
	IFCID270: Trusted Context
	IFCID350: SQL Statement
	IFCID361: Audit Administrative Authorities
	IFCID362: Trace Start with Audit Policy
	SYSPRINT: Runtime messages and end-of-job summary

	Appendix D. DSNADMSB
	Parameters of the DSNADMSB program
	Before running DSNADMSB
	Data sets that DSNADMSB uses
	Copying the data that DSNADMSB and ADMIN_INFO_SQL collect to another subsystem
	Examples of DSNADMSB invocation

	Appendix E. DSNTSMFD
	Before running DSNTSMFD
	Data sets that DSNTSMFD uses
	Examples of DSNTSMFD invocation

	Appendix F. How real-time statistics are used by Db2 utilities
	Appendix G. Delimited file format
	Data types in delimited files
	Examples of delimited files

	Information resources for Db2 12 for z/OS and related products
	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	Privacy policy considerations

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

