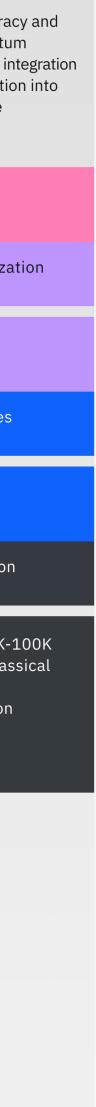
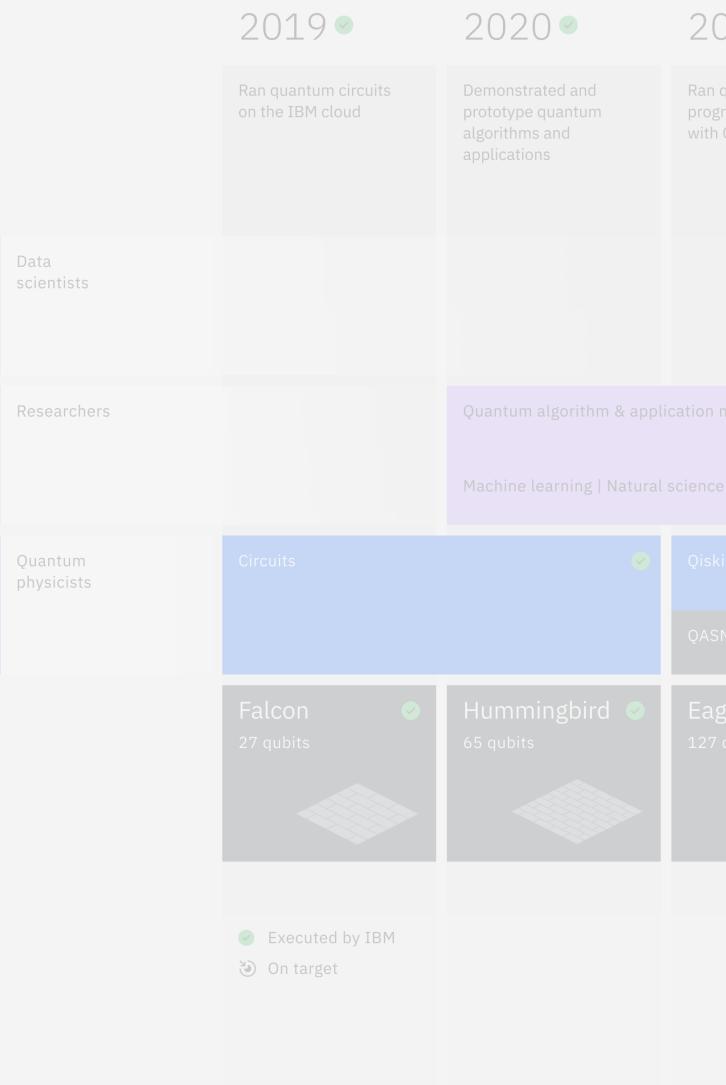

Development & Innovation Roadmap


Development roadmap

Back in 2020, IBM released an ambitious roadmap for maturing and scaling quantum technology.

This roadmap set us on course to deliver a 1,000+ qubit chip in just three years while developing software and services necessary to run applications on quantum systems.

		2019 🛛	2020 🛛	2021 🛛	2022 🛛	2023	2024	2025	2026
		Ran quantum circuits on the IBM cloud	Demonstrated and prototype quantum algorithms and applications	Ran quantum programs 100x faster with Qiskit Runtime	Brought dynamic circuits to Qiskit Runtime to unlock more computations	Enhance applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applications with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy speed of quantum workflows with inte of error correction Qiskit Runtime
	Data scientists					Prototype quantum 👌 software functions		Quantum software functior	15
								Machine learning Natural	science Optimizati
R	Researchers		Quantum algorithm & appli	antum algorithm & application modules					
			Machine learning Natural	science Optimization	 ✓ 	Quantum Serverless 🕑	Intelligent orchestration	Circuit knitting toolbox	Circuit libraries
	Quantum physicists	Circuits		Qiskit Runtime					
				QASM 3 🥪	Dynamic circuits 🛛 😔	Threaded primitives 🕹	Error suppression & mitiga	tion	Error correction
		Falcon 27 qubits Secured by IBM On target	<section-header></section-header>	QASM 3	Dynamic circuits Osprey 433 qubits •••	Threaded primitives Condor 1,121 qubits Interval of the second sec	Error suppression & mitigation Flamingo 1,386+ qubits	tion Kookaburra	Error correction Scaling to 10K-10 qubits with classi and quantum communication
		 27 qubits Second Second Se	65 qubits	<section-header></section-header>	Osprey 433 qubits	Condor 1,121 qubits Heron 133 qubits x p 33 qubits x p	Flamingo 1,386+ qubits	Kookaburra Image: Comparison of the second of the seco	Scaling to 10K-10 qubits with classi and quantum communication
		 27 qubits Second Second Se	65 qubits	<section-header></section-header>	Osprey 🤗	Condor 1,121 qubits Heron 133 qubits x p 33 qubits x p	Flamingo 1,386+ qubits	Kookaburra Image: Comparison of the second of the seco	Scaling to 10K-10 qubits with classi and quantum communication



Development roadmap

By 2023, our research and development work made it possible to use quantum computers as tools to run circuits beyond the reach of brute-force classical computation. We could also begin thinking about implementing error correction.

We realized: it was time for a bigger roadmap.

021 🛛	2022 🖉	2023	2024	2025	2026
grams 100x faster n Qiskit Runtime	Brought dynamic circuits to Qiskit Runtime to unlock more computations	Enhance applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applications with circuit knitting toolbox controlling Qiskit Runtime	Increase accurac speed of quantun workflows with int of error correction Qiskit Runtime
		Prototype quantum software functions		Quantum software function	
				Machine learning Natural	science Optimizat
modules		Middleware 🥹			
e Optimization		Quantum Serverless 🥹			
		Threaded primitives 🕹			
gle 📀 7 qubits	Osprey 433 qubits	Condor 1,121 qubits	Flamingo 300 1,386+ qubits	Kookaburra 4,158+ qubits	Scaling to 10K-1 qubits with class and quantum communication
		Heron 33 qubits x p	Crossbill 408 qubits		

Development roadmap: Updated

Our updated development roadmap charts our course for delivering client-facing systems and services. It now focuses both on qubit count and on the size of the circuits that our systems can run, tracked by the number of gates in those circuits.

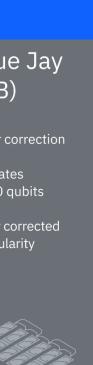
You can start exploring quantum utility today, and this roadmap shows how the quantum workload size available for that exploration will increase.

Our challenge is to develop the tools that users need to explore quantum utility and unlock the full power of quantum-centric supercomputing by 2033.

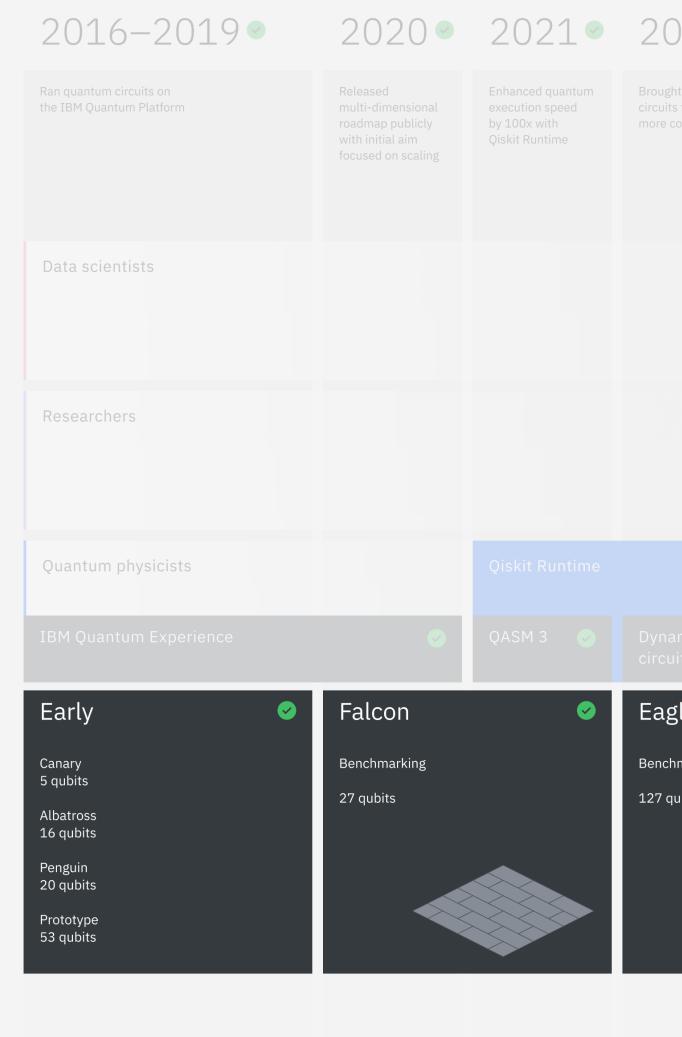
We will also incorporate advances in machine learning and generative AI to turbocharge our software's performance.

2020 2021 20 2016-2019 • Ran quantum circuits on Released Enhanced quantum Broug execution speed the IBM Quantum Platform multi-dimensional circu roadmap publicly by 100x with more with initial aim Qiskit Runtime focused on scaling Data scientists Researchers Quantum physicists Qiskit Runtime \checkmark IBM Quantum Experience QASM 3 Dyr circ Ea Early Falcon Canary Benchmarking Ben 5 qubits 27 qubits 127 Albatross 16 qubits Penguin 20 qubits Prototype 53 qubits Executed by IBM 🕑 On target

IBM Quantum


2022 🛛	2023 🛛	2024	2025	2026	2027	2028	2029	20
ought dynamic cuits to unlock re computations	Enhanced quantum execution speed by 5x with quantum serverless and execution modes	Improve quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhance quantum execution speed and parallelization with partitioning and quantum modularity	Improve quantum circuit quality to allow 7.5K gates	Improve quantum circuit quality to allow 10K gates	Improve quantum circuit quality to allow 15K gates	Improve quantum circuit quality to allow 100M gates	Beyond quantur superco will incl of logica unlockir power o comput
		Platform						
		Code 👌 assistant	Functions	Mapping collections	Specific libraries			Genera QC lib
	Middleware							
	Quantum 🔗 Serverless	Transpiler 👌 service	Resource management	Circuit knitting x p	Intelligent orchestration			Circui librari
vnamic 🥪 rcuits	Execution 🥪 modes	Heron う (5K)	Flamingo (5K)	Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)	Starling (100M)	Blue (1B)
agle	S	Error mitigation	Error mitigation	Error mitigation	Error mitigation	Error mitigation	Error correction	Error co
nchmarking		5k gates 133 qubits	5k gates 156 qubits	7.5k gates 156 qubits	10k gates 156 qubits	15k gates 156 qubits	100M gates 200 qubits	1B gate 2000 q
7 qubits		Classical modular	Quantum modular	Quantum modular	Quantum modular	Quantum modular	Error corrected	Error co
		Up to 133x3 = 399 qubits	Up to 156x7 = 1092 qubits	Up to 156x7 = 1092 qubits	Up to 156x7 = 1092 qubits	Up to 156x7 = 1092 qubits	modularity	modula

nd 2033, tum-centric rcomputers nclude 1000's gical qubits king the full er of quantum outing



What we have accomplished: Hardware

From 2020 to 2023, we focused on solving single-chip scaling with the IBM Quantum Falcon, Hummingbird, Eagle, Osprey, and Condor chips.

In 2023, we debuted the IBM Quantum Heron chip, which uses tunable couplers to achieve our lowest error rates yet. Heron will serve as the basis for modular scaling of quantum processors. In 2024, Heron will be capable of running 5,000 gates.

Executed by IBM

🕑 On target

IBM Quantum

022 🛛	2023 🔍	2024	2025	2026	2027	2028	2029	20
ught dynamic uits to unlock re computations	Enhanced quantum execution speed by 5x with quantum serverless and execution modes	Improve quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhance quantum execution speed and parallelization with partitioning and quantum modularity	Improve quantum circuit quality to allow 7.5K gates	Improve quantum circuit quality to allow 10K gates	Improve quantum circuit quality to allow 15K gates	Improve quantum circuit quality to allow 100M gates	Beyond 2 quantum supercor will inclu of logica unlockin power of computin
		Platform						
		Code 🥹 assistant	Functions	Mapping collections				
	Middleware							
		Heron 🕹 (5K)		Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)		
agle	S	Error mitigation						
nchmarking		5k gates 133 qubits						
7 qubits		Classical modular						
		Up to 133x3 = 399 qubits						

)33+

d 2033, um-centric computers clude 1000's cal qubits king the full of quantum uting

eral purpose braries

ries

ie Jay

corroctio

ites aubits

corrected

Ilarity

Looking forward: Hardware

Now, we use error mitigation and interconnects to run larger circuits so users can look for quantum advantages in their domains. Through classical and quantum modularity, we plan to achieve an IBM Quantum Flamingo system capable of running 15,000 gates with the help of error mitigation by 2028.

We foresee advances in quantum error correction allowing us to debut IBM Quantum Starling, a system capable of running circuits with 100 million gates on 200 logical qubits, by 2029. In 2033, we will debut IBM Quantum Blue Jay, a system capable of running circuits with a billion gates on 2,000 logical qubits.

As we roll out error correction, developers need not change how they write quantum programs. They will simply notice that they can run longer workloads.

2016-2019 •	2020 🛛	2021 •	20
Ran quantum circuits on the IBM Quantum Platform	Released multi-dimensional roadmap publicly with initial aim focused on scaling	Enhanced quantum execution speed by 100x with Qiskit Runtime	Brought circuits t more co
Data scientists			
Researchers			
Quantum physicists			
	•	QASM 3 📀	
Early 🥏	Falcon	v	Eagl
Canary 5 qubits	Benchmarking		Benchm
Albatross 16 qubits	27 qubits		127 qul
Penguin 20 qubits			
Prototype 53 qubits			
Executed by IBM			

🐌 On target

IBM Quantum

2022 🛛	2023 🛛	2024	2025	2026	2027	2028	2029	20
ought dynamic cuits to unlock re computations	Enhanced quantum execution speed by 5x with quantum serverless and execution modes	Improve quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhance quantum execution speed and parallelization with partitioning and quantum modularity	Improve quantum circuit quality to allow 7.5K gates	Improve quantum circuit quality to allow 10K gates	Improve quantum circuit quality to allow 15K gates	Improve quantum circuit quality to allow 100M gates	Beyond quantur superco will inclu of logica unlockir power o computi
		Platform						
		Code 🍪 assistant	Functions	Mapping collections	Specific libraries			
	Middleware							
		Heron 🥹 (5K)	Flamingo (5K)	Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)	Starling (100M)	Blue (1B)
agle	v	Error mitigation	Error mitigation	Error mitigation	Error mitigation	Error mitigation	Error correction	Error co
nchmarking		5k gates	5k gates	7.5k gates	10k gates	15k gates	100M gates	1B gate

156 qubits 156 qubits 156 qubits 200 qubits 133 qubits 156 qubits Classical modular Quantum modular Quantum modular Quantum modular Quantum modular modularity Up to 133x3 = Up to 156x7 = Up to 156x7 = Up to 156x7 = Up to 156x7 = 399 qubits 1092 qubits 1092 qubits 1092 qubits 1092 qubits

d 2033, computers clude 1000's cal qubits king the full r of quantum uting

eral purpose braries

uit ries

What we have accomplished: Execution and orchestration

Running quantum workloads requires infrastructure that coordinates quantum resources with near-time and real-time classical resources.

Since 2016, we have worked to create Qiskit and a variety of application libraries to show our users what coding a quantum computer looks like.

In 2021, we released Qiskit Runtime, a service allowing users to orchestrate their programs across IBM Quantum processors and the cloud.

In 2023, we introduced middleware for quantum tools to automate and optimize heterogeneous compute tasks. That included quantum serverless to provision users the exact quantum resources they need, when they need them.

2016-2019 •	2020 🛛	2021 •	20
Ran quantum circuits on the IBM Quantum Platform	Released multi-dimensional roadmap publicly with initial aim focused on scaling	Enhanced quantum execution speed by 100x with Qiskit Runtime	Brought c circuits to more con
Data scientists			
Researchers			
Quantum physicists		Qiskit Runtime	
	v	QASM 3 🥪	Dynam circuits
 Early Canary 5 qubits Albatross 16 qubits Penguin 20 qubits Prototype 53 qubits 	Falcon Benchmarking 27 qubits		Eagle Benchm 127 qub

IBM Quantum

022 🛛	2023 🛛	2024	2025	2026	2027	2028	2029	20
ught dynamic uits to unlock e computations	Enhanced quantum execution speed by 5x with quantum serverless and execution modes	Improve quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhance quantum execution speed and parallelization with partitioning and quantum modularity	Improve quantum circuit quality to allow 7.5K gates	Improve quantum circuit quality to allow 10K gates	Improve quantum circuit quality to allow 15K gates	Improve quantum circuit quality to allow 100M gates	Beyond 2 quantum supercor will inclu of logica unlockin power of computin
		Platform						
		Code 🥹 assistant	Functions	Mapping collections	Specific libraries			
	Middleware							
	Quantum <table-cell></table-cell>							
namic 🥪 cuits	Execution 🥥 modes	Heron う (5K)	Flamingo (5K)	Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)		
	0							

)33+

Looking forward: Execution and orchestration

In 2024, our AI-powered transpiler service will optimize circuits with fewer gates.

In 2025, we will introduce resource management tools to facilitate system partitioning and enable parallel execution.

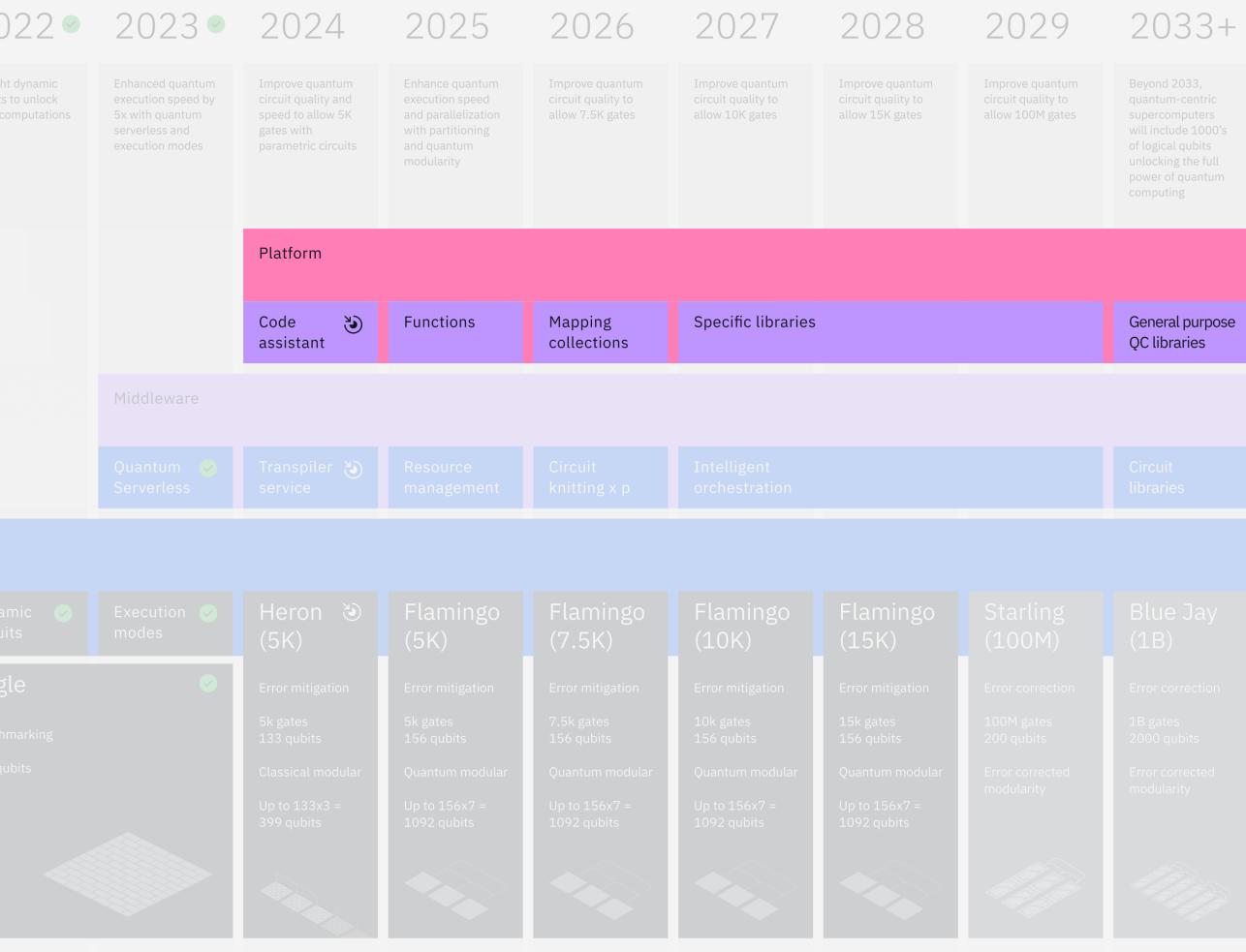
2026 will bring us circuit knitting across parallel quantum processors—the ability to decompose quantum circuits into shorter circuits, run them in parallel, and then stitch them back together with classical hardware. Circuit knitting will bring performance gains and let you run complex algorithms sooner.

From 2027 onward, we will focus on intelligent orchestration: optimizing workflows to combine classical and quantum efficiently, thus improving performance.

2016-2019 •	2020 🛛	2021 •	20
Ran quantum circuits on the IBM Quantum Platform	Released multi-dimensional roadmap publicly with initial aim focused on scaling	Enhanced quantum execution speed by 100x with Qiskit Runtime	Brought of circuits to more con
Data scientists			
Researchers			
Quantum physicists		Qiskit Runtime	
	<	QASM 3 📀	
IBM Quantum Experience Early Canary 5 qubits Albatross 16 qubits Penguin 20 qubits Prototype 53 qubits	Falcon Benchmarking 27 qubits	QASM 3	

IBM Quantum

022 <>	2023 🛛	2024	2025	2026	2027	2028	2029	20
ught dynamic uits to unlock re computations	Enhanced quantum execution speed by 5x with quantum serverless and execution modes	Improve quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhance quantum execution speed and parallelization with partitioning and quantum modularity	Improve quantum circuit quality to allow 7.5K gates	Improve quantum circuit quality to allow 10K gates	Improve quantum circuit quality to allow 15K gates	Improve quantum circuit quality to allow 100M gates	Beyond 2 quantum supercor will inclu of logica unlockin power of computin
		Platform						
		Code 🌏 assistant	Functions	Mapping collections	Specific libraries			
	Middleware							
	Quantum 🖌 Serverless	Transpiler 🌛 service	Resource management	Circuit knitting x p	Intelligent orchestration			Circuit librarie
namic < cuits	Execution 🕑 modes	Heron 🅹 (5K)	Flamingo (5K)	Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)	Starling (100M)	Blue (1B)


)33+

What we have accomplished: Software

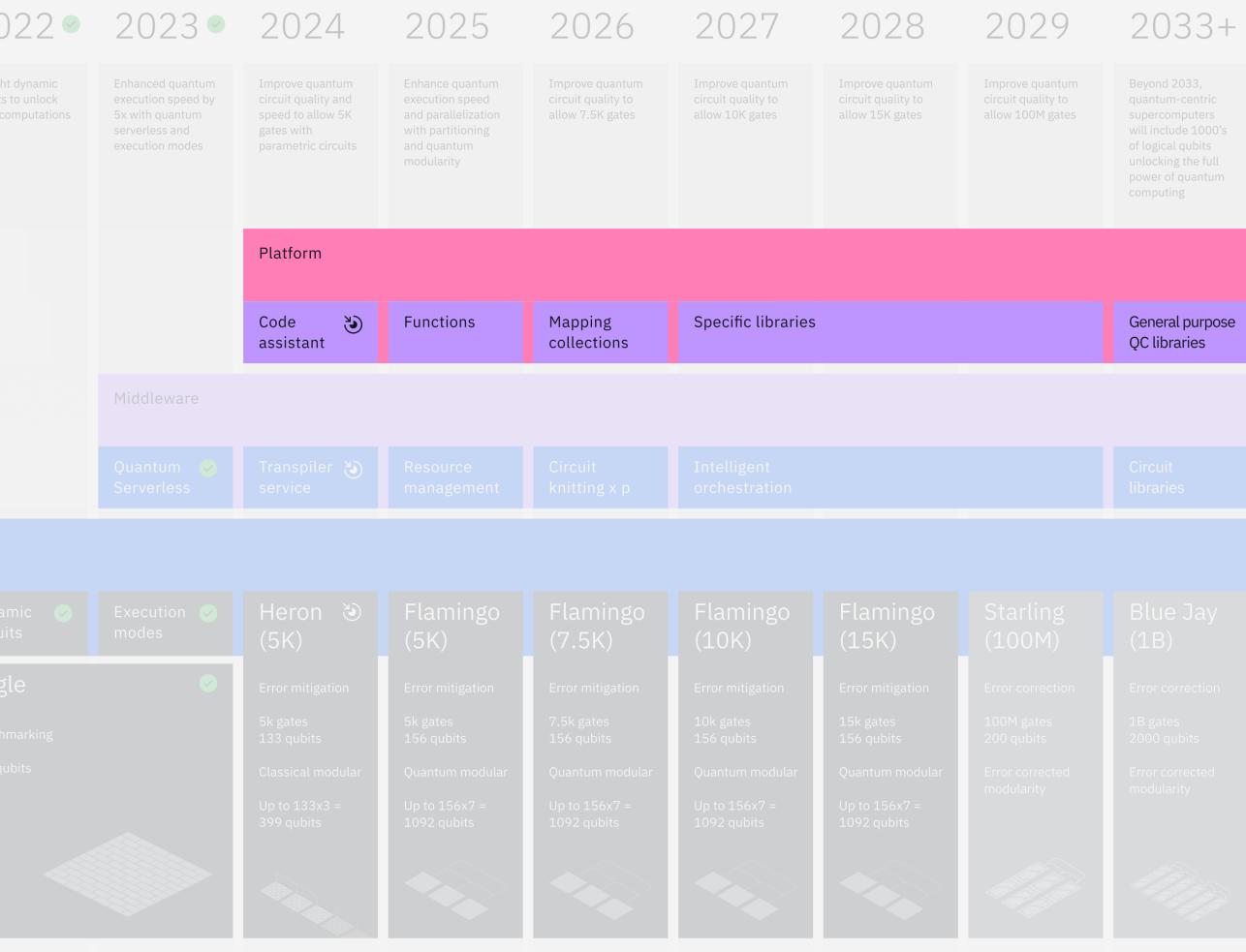
Useful quantum computing requires performant software. We're committed to maturing Qiskit into a software stack capable of running utility-scale circuits on cloud-based quantum resources. As we say, Qiskit + IBM Quantum systems = work.

In 2023, we aggregated Qiskit documentation and learning resources into the IBM Quantum Platform to create a single Qiskit source of truth.

	2016-2019	2020 •	2021 0	20
	Ran quantum circuits on the IBM Quantum Platform	Released multi-dimensional roadmap publicly with initial aim focused on scaling	Enhanced quantum execution speed by 100x with Qiskit Runtime	Brought circuits more co
	Data scientists			
	Researchers			
	Quantum physicists			
		0	QASM 3 🛛 🥪	
	 Early Canary 5 qubits Albatross 16 qubits Penguin 20 qubits Prototype 53 qubits 	Falcon Benchmarking 27 qubits		Eag Benchr 127 qu
	 Executed by IBM On target 			

Looking forward: Software

In 2025, we will introduce quantum functions so users can create and share reusable blocks of Qiskit code.


2026 will bring mapping collections so users can start automating the process of mapping their specific use cases to quantum circuits.

From 2027 onward, we will work alongside clients to build use-case-specific libraries as quantum advantages emerge for a variety of use cases.

By 2033, we expect to see general-purpose quantum computing libraries that users can incorporate into a wide variety of quantum applications.

2016-2019	2020 •	2021 •	20
Ran quantum circuits on the IBM Quantum Platform	Released multi-dimensional roadmap publicly with initial aim focused on scaling	Enhanced quantum execution speed by 100x with Qiskit Runtime	Brought circuits more co
Data scientists			
Researchers			
Quantum physicists			
IBM Quantum Experience	0	QASM 3 🛛 📀	
Early 📀	Falcon	e	Eag
Canary 5 qubits Albatross 16 qubits Penguin 20 qubits Prototype 53 qubits	Benchmarking 27 qubits		Benchr 127 qu

- 🕑 On target

Innovation roadmap

We remain committed to the transparent development of IBM quantum hardware and software. This includes showing off scientific discoveries required to clear roadblocks in the field.

Therefore, in 2023, we also announced our innovation roadmap. This roadmap features internal releases of hardware and software to enable the subsequent milestones on our development roadmap.

Some technologies on our innovation roadmap will be internal proofs-of-concept to inform future development. Others will be prototypes for eventual release.

2020 • 20 2016-2019 • Ran quantum circuits on Enhan Released the IBM Quantum Platform multi-dimensional execu by 100 roadmap publicly with initial aim Qiskit focused on scaling IBM Application < Qiskit \sim Software Quantum modules innovation Experience Circuit and Modules for operator API with domain specific compilation to multiple targets application and algorithm workflows Hummingbird 🥪 Eag Early Ø Falcon Hardware innovation Canary 5 qubits Demonstrate Dem scali Demonstrate scaling with I/O scaling with MLW multiplexing routing with Albatross bump bonds readout 16 qubits Penguin 20 qubits Prototype 53 qubits Executed by IBM 🕑 On target

IBM Quantum

021 🛛	2022 🛛	2023 🛛	2024	2025	2026	2027	2028	20
nanced quantum ocution speed 100x with kit Runtime	Brought dynamic circuits to unlock more computations	Enhanced quantum execution speed by 5x with quantum serverless and execution modes	Improve quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhance quantum execution speed and parallelization with partitioning and quantum modularity	Improve quantum circuit quality to allow 7.5K gates	Improve quantum circuit quality to allow 10K gates	Improve quantum circuit quality to allow 15K gates	Impro circui allow
skit Intime formance d abstraction ough mitives	Quantum Serverless Demonstrate concepts of quantum-centric supercomputing	AI- enhanced quantum Prototype demonstrations of AI-enhanced circuit transpilation	Resource management System partitioning to enable parallel execution	Scalable circuit knitting Circuit partitioning with classical reconstruction at HPC scale	Error correction decoder Demonstration of a quantum system with real-time error correction decoder			
gle 📀 monstrate aling with W and TSV	Osprey Solve the second	Condor Single system scaling and fridge capacity	Flamingo 🕑 Demonstrate scaling with modular connectors	Kookaburra Demonstrate scaling with nonlocal c-coupler	Demonstrate path to improved quality with logical memory	Cockatoo Demonstrate path to improved quality with logical communication	Starling Demonstrate path to improved quality with logical gates	
		Heron Constant of the second o	Crossbill Co Demonstrate m-couplers					

prove quantum cuit quality to ow 100M gates

Innovation roadmap

Our hardware innovations focus on building interconnects that allow us to scale processors and parallelize quantum workloads while laying a foundation for quantum error correction.

In 2024, we will demonstrate m-couplers to seam chips together and l-couplers to connect chips over longer distances with Crossbill and Flamingo, respectively.

In 2025 and 2026, we will develop c-couplers capable of linking distant qubits on the same chip as required by error correction schemes for a concept called Kookaburra.

2027 and 2028 further pave a path to error correction. Cockatoo will debut logical communication and Starling will be able to run logical gates on error-corrected logical qubits.

2020 20 2016-2019 Hummingbird 📀 Early Falcon Eag Hardware innovation Demonstrate Dem scali Canary Demonstrate 5 qubits scaling with I/O scaling with MLW routing with multiplexing Albatross bump bonds readout 16 qubits Penguin 20 qubits Prototype 53 qubits Executed by IBM 🕑 On target

IBM Quantum

021 •	2022 🛛	2023 🛛	2024	2025	2026	2027	2028	20
nanced quantum ocution speed 100x with kit Runtime	Brought dynamic circuits to unlock more computations	Enhanced quantum execution speed by 5x with quantum serverless and execution modes	Improve quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhance quantum execution speed and parallelization with partitioning and quantum modularity	Improve quantum circuit quality to allow 7.5K gates	Improve quantum circuit quality to allow 10K gates	Improve quantum circuit quality to allow 15K gates	Impro circui allow
skit Intime formance d abstraction ough mitives	Quantum Serverless	AI- enhanced quantum Prototype demonstrations of AI-enhanced circuit transpilation	Resource \mathfrak{D} management System partitioning to enable parallel execution	Scalable circuit knitting Circuit partitioning with classical reconstruction at HPC scale				
.gle 🕝	Osprey 🥪	Condor 🥪	Flamingo 🕹	Kookaburra		Cockatoo	Starling	
monstrate lling with W and TSV	Enabling scaling with high density signal delivery	Single system scaling and fridge capacity	Demonstrate scaling with modular connectors	Demonstrate scaling with nonlocal c-coupler	Demonstrate path to improved quality with logical memory	Demonstrate path to improved quality with logical communication	Demonstrate path to improved quality with logical gates	
monstrate lling with	with high density	scaling and	Demonstrate scaling with modular	scaling with	path to improved quality with	path to improved quality with logical	path to improved quality with	
monstrate lling with	with high density	scaling and	Demonstrate scaling with modular	scaling with	path to improved quality with	path to improved quality with logical	path to improved quality with	
monstrate lling with	with high density	scaling and fridge capacity	Demonstrate scaling with modular connectors	scaling with	path to improved quality with	path to improved quality with logical	path to improved quality with	
monstrate lling with	with high density	scaling and fridge capacity Heron Architecture based on	Demonstrate scaling with modular connectors	scaling with	path to improved quality with	path to improved quality with logical	path to improved quality with	

ve quantum quality to 100M gates

Innovation roadmap

Our software innovations will support the execution of large circuits on modular quantum computers and build the tools for a frictionless developer experience, rising to the Development Roadmap in the following years.

In 2023, we showed our plan to incorporate AI into quantum computing workflows with AIassisted circuit transpilation.

In 2024 and 2025, we will prototype new tools for resource management and scalable circuit knitting for parallel execution and classical reconstruction of circuits at the HPC scale.

In 2026, we will prototype a real-time error correction decoder for later error corrected systems.

2016-2019 2020 20 Application < IBM Qiskit \checkmark Software Quantum modules innovation Rι Experience Circuit and Modules for operator API with domain specific compilation to multiple targets application and algorithm workflows Hardware Executed by IBM 🕑 On target

IBM Quantum

021 •	2022 🛛	2023 🔍	2024	2025	2026	2027	2028	20
anced quantum cution speed LOOx with kit Runtime	Brought dynamic circuits to unlock more computations	Enhanced quantum execution speed by 5x with quantum serverless and execution modes	Improve quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhance quantum execution speed and parallelization with partitioning and quantum modularity	Improve quantum circuit quality to allow 7.5K gates	Improve quantum circuit quality to allow 10K gates	Improve quantum circuit quality to allow 15K gates	Impro circuit allow 2
skit ntime formance l abstraction ough mitives	Quantum Serverless Demonstrate concepts of quantum-centric supercomputing	AI- enhanced quantum Prototype demonstrations of AI-enhanced circuit transpilation	Resource management System partitioning to enable parallel execution	Scalable circuit knitting Circuit partitioning with classical reconstruction at HPC scale	Error correction decoder Demonstration of a quantum system with real-time error correction decoder			
gle 📀	Osprey 🥏	Condor 🥑	Flamingo 🕑	Kookaburra		Cockatoo		
		Heron 🤝	Crossbill 👌					

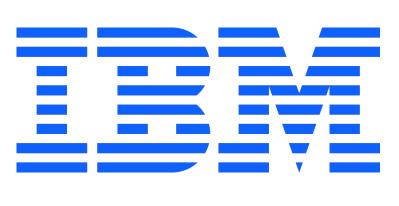
ve quantum quality to 100M gates

Development Roadmap

	2016-20	19 🛛	2020 🛛	2021 🛛	2022 🛛	2023
	Ran quantum circuits on the IBM Quantum Platform		Released multi- dimensional roadmap publicly with initial aim focused on scaling	Enhanced quantum execution speed by 100x with Qiskit Runtime	Brought dynamic circuits to unlock more computations	Enhanced qua execution spec with Quantum and execution
Data scientists						
Researchers						Middleware
						Quantum Serverless
Quantum physicists				Qiskit Runtime		
	IBM Quantum Experience	9	0	QASM 3 🥪	Dynamic 🔗 circuits	Execution modes
	Early	S	Falcon	0	Eagle	
	Canary Albatross 5 qubits 16 qubits	Penguin Prototype 20 qubits 53 qubits	Benchmarking 27 qubits		Benchmarking 127 qubits	
Innovation Roadma	p					
Software innovation	IBM <	Qiskit Circuit and operator API with compilation to multiple targets	Application modules Modules for domain specific application and algorithm workflows	Qiskit Runtime Performance and abstraction through primitives	Quantum Serverless Demonstrate concepts of quantum-centric supercomputing	AI-enhanced quantum Prototype demo of AI-enhanced transpilation
Hardware innovation	Early Canary Penguin 5 qubits 20 qubits Albatross Prototype 16 qubits 53 qubits	Falcon Composite scaling with I/O routing with bump bonds	Hummingbird Demonstrate scaling with multiplexing readout	Eagle <table-cell></table-cell>	Osprey Enabling scaling with high density signal delivery	Condor Single system s and fridge capa
						Heron Architecture ba tunable-couple

							101
3 🥥	2024	2025	2026	2027	2028	2029	203
antum eed by 5x n Serverless n modes	Improve quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhance quantum execution speed and parallelization with partitioning and quantum modularity	Improve quantum circuit quality to allow 7.5K gates	Improve quantum circuit quality to allow 10K gates	Improve quantum circuit quality to allow 15K gates	Improve quantum circuit quality to allow 100M gates	Beyond 20 centric sup will include logical qub the full pov quantum c
	Platform						
	Code 👌	Functions	Mapping collections	Specific libraries			General p QC librarie
•							
~	Transpiler 👌 service	Resource management	Circuit knitting x p	Intelligent orchestration			Circuit libraries
Ø	Heron 🍯 (5K)	Flamingo (5K)	Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)	Starling (100M)	Blue J (1B)
0	Error mitigation 5k gates 133 qubits Classical modular 133x3 = 399 qubits	Error mitigation 5k gates 156 qubits Quantum modular 156x7 = 1092 qubits	Error mitigation 7.5k gates 156 qubits Quantum modular 156x7 = 1092 qubits	Error mitigation 10k gates 156 qubits Quantum modular 156x7 = 1092 qubits	Error mitigation 15k gates 156 qubits Quantum modular 156x7 = 1092 qubits	Error correction 100M gates 200 qubits Error corrected modularity	Error corr 1B gates 2000 qub Error corre modularit
d	Resource management System partitioning to enable parallel execution	Scalable circuit knitting Circuit partitioning with classical reconstruction at HPC scale	Error correction decoder Demonstration of a quantum system with real-time error correction decoder				
Scaling acity	Flamingo 🕑 Demonstrate scaling with modular connectors	scaling with	Demonstrate path to improved quality with logical memory	Cockatoo Demonstrate path to improved quality with logical communication	Starling Demonstrate path to improved quality with logical gates		
	Crossbill						
ased on ers	Demonstrate m-couplers						
						IBM Quantum / ©) 2024 IBI

d 2033, quantumc supercomputers clude 1000's of qubits unlocking l power of


m computing

al purpose aries

5

- qubits
- corrected
- arity

