

Copyright IBM Corp. 1990, 1995, 2018

Character Data Representation

Architecture

Character Data Representation Architecture (CDRA) is an IBM architecture which

defines a set of identifiers, resources and APIs for identifying character data and

maintaining data integrity during data conversion processes. The reference

publication provides the reader with the framework for the identifiers, descriptions of

the supporting resources and APIs, as well as methods for data conversions. CDRA is

applicable to country specific data encodings such as the ISO-8859 series as well as

large character sets such as Unicode.

Edition Notice: Updated in 2018, this document is a revised, on-line version of the

original IBM publication. This version of the document contains many typographical

and editorial corrections. A section on the Unicode Encoding Structure has been

added in Appendix A. Also, Appendix K has been added to document the CDRA

identifiers defined in support of Unicode. Likewise, Appendix J, has been updated

with information on how to obtain CDRA conversion table resources on-line. Appendix

L was added containing the EBCDIC control code definitions.

Overview

• Chapter 1. Introduction
• Chapter 2. Architecture Strategy

Architecture Definition

• Chapter 3. CDRA Identifiers
• Chapter 4. Services
• Chapter 5. CDRA Interface Definitions
• Chapter 6. Difference Management
• Chapter 7. CDRA Resources and Their Management

Appendices

• Appendix A. Encoding Schemes
• Appendix B. Conversion Methods
• Appendix C. CCSID Repository
• Appendix D. Platform Support of CDRA
• Appendix E. Graphic Character Identification

Copyright IBM Corp. 1990, 1995, 2018

• Appendix F. Character Sets and Code Pages
• Appendix G. Control Character Mappings
• Appendix H. CDRA and IBM i (Formerly OS/400)
• Appendix I. DFSMS/MVS Considerations
• Appendix J. CDRA Conversion Resources
• Appendix K. CDRA and Unicode

• Appendix L. EBCDIC control character definitions

Resources

• Glossary

Chapter 1. Introduction

This chapter introduces readers to the Character Data Representation Architecture.

The architecture objectives, challenges, coverage and concepts are presented to form

the basis for understanding the following chapters.

Definition of Character Data Representation Architecture

Character Data Representation Architecture (CDRA) is an IBM* architecture that

defines a set of identifiers, services, supporting resources, and conventions to achieve

consistent representation, processing, and interchange of graphic character data in

data processing environments.

Objectives

The overall objective of CDRA is to define a method of assigning and preserving the

meaning and rendering of coded graphic characters through various stages of

processing and interchange.

The Objectives intro paragraph is followed by these paragraphs that you have already:

• Define the necessary supporting services (such as tagging) to allow consistent

support of various coded graphic character sets, both within and across

environments

• Select a minimum number of coded graphic character sets that satisfies most

of today's text and data-processing applications and provide the necessary

definitions for them so that they can be consistently supported in all

applications, services, and devices within and across different environments

Data integrity challenges

Character Data Representation Architecture is used by products and systems to

address the following data integrity challenges:

• Proliferation of Different Character Codes

The primary problem in handling coded character sets is the variety of sets of

characters and encoding schemes used to represent them. Technology has

increased the variety of applications using computers, and the coded character

support for these applications has been provided without an overall strategy.

• Graphic Character Data Recognition

The abilities to properly distinguish graphic character data in a universal

manner and to attach a tag to the data are available only in some specific

architected environments. The available architected methods are often

inconsistent, have lagged behind worldwide requirements, and are constrained

by the supporting products.

• Inconsistent or Incomplete Set of Identifiers

Few applications have consistent character support. Operating system

environments rarely provide the necessary services to identify coded character

data, leaving this responsibility to the applications.

• Use of Absolute Values (Hard-coding)

Many applications were designed to operate in specific environments with

specific terminal characteristics. The internal representations of frequently

used characters have been coded using absolute values. Character data

misinterpretation occurs when environment changes are made and the initial

character processing functions are no longer valid.

• Non-tagged Data

Traditional data processing environments were closed systems, and the coded

character support was primarily governed by the device character handling

capabilities. Data was rarely tagged.

The most visible end-user impact of all these concerns is in data interchange within

and across system environments. For example:

• The set of graphic characters supported on the IBM Personal Computer (PC)

cannot be fully processed in non-PC environments. (Character set mismatch.)

• When a "dollar symbol" is sent in text from a U.S. mainframe computer to a U.K.

mainframe computer, it often appears as a "pound sterling symbol" to the U.K.

user. (Conversion based on byte integrity.)

• When a "lowercase a" is sent to a Katakana terminal in Japan, it appears as a

"Katakana character" or gets irreversibly converted to an "uppercase A".

• Application and device code page differences may lead to users entering

characters from the keyboard that are different from those specified by the

application. For example, in Switzerland, the programmer must key "y-acute

capital" (Ý) and "dieresis" (¨) instead of "left square bracket" ([) and "right

square bracket" (]), even though the bracket symbols are supported and are

engraved on the Swiss keyboard.

• The variety of existing code point conversion tables produces inconsistent and

often unpredictable results between different environments. See Figure 1.

Figure 1. Character data platform domains

A character data domain may be described as an environment in which all character

data has the same coded representation. This can be shown in a broad sense with

respect to each category of system; midrange, mainframe, workstation and personal.

Data domains may be the same within a system, or may differ within a system, but

typically the view is one of a character data domain per system category. There are

well known examples of the problems encountered as character data moves between

data domains, leading to character data misrepresentation.

Businesses may spend a significant portion of their information technology budgets

circumventing, repairing, and educating to resolve the data integrity problems.

Coverage of CDRA

Character Data Representation Architecture defines:

• An identification or tagging system to uniquely and reliably identify the

representation of graphic character data

• A set of portable Application Programming Interfaces (APIs)

• A set of resources in support of the tags and services

• A set of conventions on the use of the tags and services

• A strategy for coded character set convergence.

This coverage is depicted in Figure 2.

Figure 2. Components of CDRA.

CDRA components are categorized as the data identification mechanism, functions,

resources and processing guidelines.

Character data focus

Data can be classified in many ways, such as character data, byte strings, integer

numbers, or floating-point numbers. Character data is further classifiable into control

character data and graphic character data. Control characters include, for example,

Horizontal Tab and Line Feed, which perform specific functions. Graphic characters

include uppercase and lowercase letters (with and without accent marks), numeric

digits 0 to 9, ideographs, and other symbols. Graphic character data streams can

include embedded code extension controls, such as Shift-Out or Shift-In, used in the

interpretation of the data following the controls. Figure 3 shows an example of these

classifications.

CDRA deals with character data; primarily with graphic character data, and to a

nominal extent with control character data.

Figure 3. Types of data in a string.

Various types of data may be contained in a data string. CDRA focuses on the coded

graphic character data.

Support for control functions

Control functions, as defined by either single control characters or sequences of code

points, can appear intermixed with graphic character data. From the CDRA point of

view, there are two categories of control functions:

• Code extension

These functions modify the interpretation of subsequent code points

representing graphic characters. Examples are: Shift-Out (SO), Shift-In (SI),

Single-Shift 2 (SS2).

• All other control functions

Applications or architectures are responsible for handling specific control

functions. CDRA provides an interface to query a set of control character

encodings and uses the code point assignments for SPACE and SUB in its

difference management functions.

CDRA conversion methods and functions support the concept of string types to handle

space-padded and null-terminated strings. All other aspects of control functions are

outside the scope of CDRA.

Architecture concepts

Tagging

Tagging is the primary method to identify the meaning and rendering of coded graphic

characters. It is the method by which:

• One or more CDRA identifiers can be associated with a coded graphic character

in a data object (such as a file, a database table, or a data stream)

• The graphic character handling capability of a device (such as a display

terminal) can be identified or selected

• The graphic character handling capability associated with a piece of processing

logic can be identified.

The tag field may be in a data structure that is logically associated with the data

object (explicit tagging), or it may be inherited from tag fields associated with other

objects or with the computing environment (implicit tagging).

Encoding scheme

Underlying each code used to represent graphic characters is an encoding scheme.

Encoding scheme definitions specify the coding space (number and allowable values

of code points), the allocation of the code space for control and graphic characters,

and other characteristics such as the number of bytes per code point and code

extension methods permitted in that scheme.

Graphic character integrity

The term integrity in CDRA means the preservation of a graphic character's meaning

and rendering as identified by its graphic character global identifier (GCGID) or

graphic character UCS identifier (GCUID).

Character sets

A character set is a specific collection of characters. There are many character sets in

use today and the content of these sets may be quite similar or vastly different.

CDRA recognizes two categories of character sets: interoperable sets and coexistence

and migration sets.

Interoperable sets are the largest character sets for a specific set of languages and

countries that:

• Do not contain environment-specific characters

• Do not contain application-unique characters

• Do not contain device-specific characters

• Ensure a high level of processing environment interoperability.

Coexistence and migration sets are those that:

• May contain environment-specific characters

• May contain application-unique characters

• May contain device-specific characters

• May be a subset or superset of an interoperable set

• May not be widely supported.

Services

Services in support of CDRA are collections of functions such as setting and querying

of tag values, manipulating tag values, defaulting tag values, or detecting differences

in tag values. These services are not architected interfaces defined by CDRA.

CDRA defined services

The CDRA-defined functions have architected call interfaces, called CDRA Application

Programming Interfaces (CDRA APIs), that facilitate application code portability across

environments. These services are callable using the conventions of any of the

supported high-level languages.

Difference management

Difference management is the process of managing different representations of

graphic character data. It involves the ability to determine if a difference exists, and to

deal with the difference in a predictable and consistent manner.

CDRA describes the general principles of how to manage the representation

differences in coded graphic characters, and the criteria for creating character-data

conversion tables. For consistency, a set of default conversion tables and conversion

methods have been defined. Further, to minimize the differences and thereby

minimize the potential data loss and data corruption problems, CDRA has identified

character sets for interoperability.

Resources

Resources are machine representations of definitions associated with CDRA identifiers

and supporting data for CDRA services. Collections of such CDRA resources are called

CDRA Resource Repositories. The internal representation of the resources is

implementation-specific.

Coexistence and migration

Coexistence and migration refers to the current customer environment containing

various levels of tagged and non-tagged data, and different levels of application

support. CDRA provides the following means by which the current environments can

coexist, and at the same time allow for a reasonable migration to a more architected

environment:

• Wherever possible, the CDRA-defined Coded Character Set Identifier (CCSID)

values are assigned to be the same as the corresponding code page identifiers.

• CDRA has defined CCSIDs for many coded character sets that are currently in

use but have not been identified as interoperable. These CCSIDs are called

Coexistence and Migration CCSIDs.

• CDRA provides many conversion tables that convert between the Coexistence

and Migration CCSIDs and the Interoperable CCSIDs.

Existing tagging methods

Some existing architectures and implementations have provisions for tagging. Some

of these recognize code page identifiers (CP) only, while others recognize character

set identifiers (CS) and code page identifiers (CP). These identification methods are

considered intermediate forms of CDRA's long-form identification, which is composed

of an encoding scheme, character set and code page pairs, and additional coding-

related required information.

Chapter 2. Architecture strategy

This chapter describes the overall strategy used by Character Data Representation

Architecture (CDRA) to address the data integrity concerns detailed in Chapter 1, and

to provide a solution. Details of the solution are described in the following chapters.

This solution can be used wherever graphic character data is handled.

Components of this strategy

The strategy used in CDRA:

• Categorizes and orders the overall problem of different character sets and the

associated architectural and development solutions

• Provides a starting base for implementations from which support for other

larger sets can be added in a controlled manner

• Recognizes the significant development effort that is needed to overcome the

widespread single-byte per character limitation, to address large character sets

on a global scale.

The three components of CDRA strategy, Architecture Base, Character Set Groups,

and Levels, are shown in Figure 4, and are detailed below.

Figure 4. CDRA Strategy

CDRA strategy encompasses the four basic elements of CDRA, the character set

groupings and levels of the architecture itself.

Architecture Base The first component of CDRA strategy is the architecture base. This

component provides a framework to solve current problems, and can be extended to

cover future requirements. It consists of:

• A comprehensive identification system and a set of identifiers for currently

used character sets; can be extended as required

• An initial set of services facilitating the use of CDRA identifiers; additional

services can be defined as the architecture evolves

• A set of resources required by the services; additional resources can be defined

as the architecture evolves

• A set of processing guidelines for functions that are affected by the

representation aspects of graphic character data, as an aid to users.

Character Set Groups The second component of CDRA strategy is the concept of

character set groups. Graphic character sets used in different countries to support

different languages have been grouped into sets with common properties. A selected

few of these are defined as Interoperable Character Sets within each group. To reduce

the proliferation of graphic character sets and code pages in use, IBM and various

standards organizations have collected and classified commonly used graphic

characters into a few specific sets. Each of these sets has the following

characteristics:

• It is a superset of many existing smaller graphic character sets

• It contains a base set of graphic characters required in a group of countries or

in a group of national languages having some common characteristics

• It can be used in a broad range of common applications

• It permits preservation of graphic character integrity for interworking

applications within a specific group of countries that use the set

• It is the target for convergence and migration in each country or group of

countries.

Special graphic character sets supporting specific applications (such as APL, scientific

word processing, or desktop publishing) are treated as extensions to the base sets.

Each graphic character set in all countries, with a few exceptions, contains a common

set of graphic characters: the uppercase English letters A to Z, the lowercase English

letters a to z, (4) the numerals 0 to 9, and 19 miscellaneous symbols. See Figure 45 in

Appendix A for a complete list. The implications of supporting character set groups

differ in the types of services and resources needed for each group. Character set

groups are shown in Figure 5, and are described in the following sections.

Figure 5. CDRA's Character Set Groupings

Commonly Used Character Sets

• Group 1 uses the Latin Alphabet Number 1 character set, which is represented

using single-byte encodings (SBCS). It satisfies the basic graphic character

requirements in the following geographic regions:

o Americas:

Canada

Latin America: (Argentina, Belize, Bolivia, Brazil, Chile, Colombia, Costa

Rica, Cuba, Ecuador, Guatemala, Guyana, Honduras, Mexico, Nicaragua,

Panama, Paraguay, Peru, El Salvador, Surinam, Uruguay, and Venezuela)

United States of America

o Western Europe:

Austria, Belgium, Denmark, Faroe Islands, Finland, France, Germany,

Iceland, Italy, Liechtenstein, Luxemburg, Netherlands, Norway, Portugal,

Spain, Sweden, Switzerland, and United Kingdom

o Other Parts of the World:

Australia, Hong Kong (Latin), and New Zealand

• Group 1a consists of several different graphic character sets that can be

represented using single-byte codes. These sets, called subgroups, include

non-Latin characters and some Latin characters that are not included in Latin

Alphabet Number 1. Each set is used in the following geographic regions:

o Arabic Scripts

Arabic: (Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Libya, Oman,

Qatar, Saudi Arabia, Sudan, Syria, United Arab Emirates, and Yemen)

Urdu: Pakistan

Farsi: Iran

Arabic-French: Maghreb Region -- Algeria, Morocco, and Tunisia.

o Latin Alphabet Number 2

Albania, Czech Republic, Slovakia, Hungary, Poland, Romania, and the

following republics of the former Yugoslavia: Croatia, Slovenia, and the

Muslim-Croat part of Bosnia/Hercegovina.

o Cyrillic

o Eastern Europe

Bulgaria and the following republics of the former Yugoslavia: the

"Former Yugoslav Republic of Macedonia", Serbia/Montenegro, and the

Serbian part of Bosnia/Hercegovina.

o Russian

Russia (and several other countries of the former Soviet Union)

o Greek (Greece)

o Turkish (Turkey)

o Hebrew (Israel)

• Group 2 covers the geographic regions in the Far East. These graphic character

sets are represented using multi-byte encoding (DBCS or MBCS). The following

subgroups used in different countries are included in this group:

o Japanese

o Korean

o Simplified Chinese (People's Republic of China, PRC)

o Traditional Chinese (Republic of China, ROC)

o Thai (7) (Thailand, device character sets).

The following are single-byte sets (8) that have the characteristics of Group 1a:

o Katakana (Japan), Korean (Korea, small set), Simplified Chinese (PRC,

small set), and Thai (Thailand, processing and interchange set). The

Katakana, Korean, and Simplified Chinese single-byte character sets are

often used along with corresponding larger double-byte character sets,

where a mixed single-byte and double-byte coding is used. Also,

Traditional Chinese (ROC, small set) uses a subset of Group 1 characters.

• Group Universal covers all the 'large' character sets used in supporting Unicode

and ISO-10646.

Universal character set

The IT industry largely supports the Universal Coded Character Set, known as

Unicode. CDRA supports Unicode as a defined character set encoding. Unicode is a

superset of the many earlier country or language specific character sets. The

character repertoire of Unicode, developed by the Unicode Consortium is kept in

synch with the ISO standard, ISO/IEC 10646, Information Technology-Universal

Coded Character Set (UCS). This character set is applicable to presentation,

processing, storage, transmission, interchange and representation of all of the world's

written forms of language and symbols. UCS assigns a unique number to every

character in all the living and archaic scripts and several symbols used in various

application domains. The architecture itself:

• specifies an encoding space of 17 x 2^16 numbers or code points;

• describes the general structure of the coding space;

• defines the structure of the coding space as seventeen planes, numbered from

0 to 16, each containing 2^16 code points.

• specifies the coded representations for control functions;

• assigns characters to code points in the different planes; each assigned

character is given a unique normative character name and a representative

glyph.

• reserves ranges of code points for Private Use and for other specified purposes.

• specifies three basic encoding forms of encoding, a 4-byte format known as

UCS-4 or UTF-32, a variable two or four-byte format known as UTF-16, and a

variable number of bytes (one to four) format known as UTF-8. A subset of

UTF-16 containing only the two-byte subset was called UCS-2 and is now

deprecated in the standard.

• specifies how future additions to the coded character set will be managed

Earlier editions of ISO/IEC 10646 standard had defined ranges of code points called

'zones' in the BMP. These have now been removed from the standard. The standard

also had definitions for 'levels of implementation' addressing ability to deal with

'combined character sequences' - these levels have also been removed from the

standard.

The Unicode standard, in addition to being kept identical with ISO/IEC 10646 for the

character set and assignments, defines properties and additional specifications on

how to use these properties during text processing.

For detailed information on how CDRA handles Unicode see Appendix K, CDRA and

Unicode.

CDRA Levels

The third component of the CDRA strategy shown in Figure 4 is the concept of Levels.

Levels are used to distinguish between specific sets of available elements from the

architecture base, as the architecture and the supporting implementations evolve

over time. The relationship between the levels has been depicted in the diagram

shown in Figure 6. Level 1 provided the initial seed of CDRA, which was substantially

extended with the release of Level 2. The growth in Level 2, noted as extensions in the

diagram, has been more of a series of enhancements rather than the pronounced type

of change that was seen from Level 1 to Level 2.

CDRA Level 1

CDRA Level 1 defined an initial set of elements from the architecture base. It

consisted of:

• A comprehensive identification system

• A set of CDRA identifiers for commonly used character sets

• A subset of these CDRA identifiers specifically for interoperability, to assist

customers in identifying the strategic direction for coded character sets

• Generic concepts of tagging and difference management.

Character Data Representation Architecture - Registry, SC09-1391 contained the

following:

• A set of graphic character data conversion tables for selected pairs of

identifiers

• The principles used in creating these tables, and the specific mismatch

management criteria associated with each.

CDRA Level 1 addressed all the commonly used character sets within:

• Latin Alphabet Number 1 in Group 1

• Single-byte graphic character sets in Group 1a

• Single- and double-byte graphic character sets in Group 2.

CDRA Level 1 satisfied these objectives:

• To achieve consistent character data processing and interworking between

different systems or system components within a country or within a specific

group of countries having a common character set. The graphic character sets

within each country will be those that apply across a wide range of basic

applications.

• To allow coexistence between countries or groups of countries with different

character sets. Interchange of data for storage and retrieval purposes or for

data pass-through will be possible.

• To allow limited interworking with systems outside the country or group of

countries. The extent of correct interworking between two countries will be

limited to the subset of characters that is common between the two character

set groups or subgroups.

CDRA is primarily concerned with the coded graphic character set boundaries within

and between different groups, rather than with political or geographical boundaries.

However, these different types of boundaries are indirectly related to each other

through the requirements for resources such as fonts, keyboards, and conversion

tables.

CDRA Level 2

CDRA Level 2 included all Level 1 elements. In addition, it included definitions of

functions called CDRA-Defined Services, along with the syntax for accessing these

functions. These APIs were designed to be callable from any supported high-level

language. Several CDRA resources were needed to support the functions defined in

Level 2. Level 2 included descriptions of the elements of those resources and some

general principles for managing them. The resource data structures and the resource

maintenance functions are implementation-specific.

Extensions

CDRA extensions now include support for:

• Encoding scheme, character set, and code page identifiers for Extended UNIX

Code (EUC), Transmission Control Protocol (TCP), and Universal Multiple-Octet

Coded Character Set (UCS)

• New conversion tables

• New conversion method definitions

• New ESID definitions

• New CCSIDs registered

Figure 6. Architecture levels

Chapter 3. CDRA Identifiers

Character Data Representation Architecture deals primarily with graphic character

data, and to a lesser extent with control character data. Graphic character data can

include imbedded code extension controls that influence the interpretation of the

data that follows. This chapter defines several identifiers related to graphic-character

data representation, and what it means to tag with these identifiers.

The following identifiers are defined:

• Graphic Character Global Identifier (GCGID) and Graphic Character UCS

Identifier (GCUID)

• Encoding Scheme Identifier (ESID)

• Coded Graphic Character Set Global Identifier (CGCSGID), consisting of:

o Graphic Character Set Global Identifier (GCSGID)

o Code Page Global Identifier (CPGID)

• Additional Coding-related Required Information (ACRI)

• Coded Character Set Identifier (CCSID).

These identifiers form the architectural basis for unique identification and

interpretation of coded graphic character data.

Coding of Graphic Character Data

Character data is represented in machines as code points, consisting of one or more

7-bit bytes (septets) or 8-bit bytes (octets) of data. Underlying each code is an

encoding scheme. In the terminology of coded character set standards, a code is a

system of bit patterns to which a specific graphic or control meaning has been

assigned. Each unique bit pattern defined by a code is called a code point. CDRA

identifiers provide the ability to unambiguously determine the graphic character

associated with a code point.

Elements of Character Data Representation

The identifiers associated with graphic character representation (see Figure 7) are:

• Graphic Character Global Identifier and Graphic Character UCS Identifier

• Long-form identification -- a set of identifiers consisting of:

o Encoding Scheme Identifier

o One or more Coded Graphic Character Set Global Identifiers, each of

which is a concatenation of:

A Graphic Character Set Global Identifier

A Code Page Global Identifier.

o Additional Coding-related Required Information, as specified by the

Encoding Scheme Identifier (for example, a list of valid first bytes of

double-byte code points, code points used for code extensions, or a set

of floating accents and a valid associated character).

• Short-form identification -- an identifier called Coded Character Set Identifier

(CCSID) is defined as an alternative to the variable-length long form.

These identifiers are detailed in the following sections.

Figure 7. CDRA Identifier Forms

Graphic Character Global Identifier

IBM has an established system to uniquely and uniformly identify and name graphic

characters. A graphic character global identifier (GCGID)or a graphic character UCS

identifier (GCUID) is used to convey the meaning of a graphic character in a code-

independent manner. They are used primarily in the representation of characters in

objects such as Character Set or Code Page resources. They are not used to tag the

data directly.

A GCGID is a 4- to 8-character alphanumeric identifier assigned to a graphic

character. A GCUID is an 8-character identifier of the form Unnnnnnn where nnnnnnn

is a 7-digit hexadecimal value.

Each graphic character that is to be assigned a code point must have a GCGID or a

GCUID. They are used wherever a graphic character is referenced in a code-

independent manner. They are also the basis of establishing correspondences

between code points in different representations.

Graphic Character Global Identifier (GCGID).

The GCGID identifies graphic characters defined by IBM. The GCGID definition

uniformly associates arbitrary graphic character shape with an eight-character

identifier GCGID. It also provides a short description for each GCGID.

Graphic Character UCS Identifier (GCUID).

The GCUID format is for defining additional characters and sets of characters that

(mostly) exist in the Universal Coded Character Set (UCS) defined in ISO/IEC 10646

and Unicode standards and need to be used in IBM resource definitions such as IBM

code pages. The format allows all current and future characters from UCS planes 0

through 16 to be described. It also allows for identifying characters and glyphs that

are not defined in UCS as well as glyph variants of the unified Han area of UCS.

For those characters that exist in the UCS, the standardized graphic character name is

used as a description for the GCUID.

Both GCGID and GCUID identifiers are compatible with each other since they share

the same basic format and provide identifiers that are globally unique. Unless there is

a special need to differentiate between GCGID and GCUID, both may be used

interchangeably.

The GCGID and GCUID are identifiers from two different systems to identify individual

members of the total collection of all characters. Since the two identifiers can point to

the same character, this system also establishes an equivalence for some of them

In CDRA, the terms graphic character identifier, character identifier, meaning of

graphic character, and rendering of graphic character are synonymous with GCGID.

IBM's GCGID system provides for distinguishing between two renderings of a graphic

character. When no specific rendering is indicated, a "nominal" rendering is assumed

with the character. Specific renderings can further be specified using another

identifier such as Font Global Identifier, FGID.

The rendering part of a GCGID is of significance primarily for presentation processing

such as formatting, displaying, or printing. GCGIDs with different renderings typically

appear in character sets and code pages that are primarily presentation-oriented.

However, some of these character sets and code pages are used for all aspects of

processing of graphic characters. If they are encountered by functions such as

comparison, depending on the context of use, graphic characters with two different

renderings may be equated.

When graphic characters with two different renderings are part of a character set and

are included in the same coded character set, different code points are assigned

different GCGIDs to represent the different renderings. Some examples of use of

GCGIDs for graphic characters with different renderings are:

• The different shapes of Arabic characters coded from CS 00235 in CP 00420 or

CP 00864

• The wide Latin alphabets (such as A through Z) of Far East double-byte code

pages (such as CP 00300), to distinguish them from "nominal" width A through

Z in single-byte code pages (such as CP 000290). CP 00290 and CP 00300 are

used together in mixed single-byte and double-byte codes (such as CCSID

05026).

Long-Form Identification

The long-form identification consists of an Encoding Scheme Identifier, one or more

Coded Graphic Character Set Global Identifiers (each consisting of a Graphic

Character Set Global Identifier and a Code Page Global Identifier), and any Additional

Coding-related Required Information that is required to complete the specification of

the representation.

Encoding Scheme Identifier

The Encoding Scheme Identifier, ESID, is a 4-digit hexadecimal number that identifies

the scheme used to code graphic character data. The following 3 elements have been

used where possible in ESID definitions.

The basic encoding structure (x)

This element identifies the basic structural characteristic that differentiates various

encoding schemes such as EBCDIC, ISO-8, IBM-PC Data, or others.

The number of bytes per code point (y)

When the encoding scheme permits a different number of 7-bit or 8-bit bytes per code

point, this element identifies the selection used.

The code extension method (zz)

Code extensions are techniques used to encode more characters than can be

accommodated in the basic encoding structure. An example is the use of SO (Shift-

Out) and SI (Shift-In) as controls to access an alternative assignment of graphic

characters to code points, and to show whether one byte or two bytes of the data

constitute a code point, in the EBCDIC mixed single-byte and double-byte encoding.

This element of the ESID identifies the method of code extension used from among

the many that may be allowed in the encoding scheme.

Note to developers: While efforts have been made to define ESIDs using these

elements, not all ESIDs follow the above pattern. It is essential that all encoding

scheme identifiers be defined by the owner of CDRA prior to being used.

Figure 8 shows the three components of the ESID. The component values and their

meanings are detailed in the following sections.

Figure 8. Encoding Scheme Identifier Format

The ESID makes the following possible:

• The selection of the correct algorithms (such as parsing) to be invoked to

process graphic character data.

• Identification of reserved code point(s) for allocation to some most-frequently

used characters such as SPACE (GCGID SP010000).

The ESID also determines the number and types of other CDRA identifiers needed in

the long form.

The term Encoding Scheme (ES) is synonymous with ESID.

Basic Encoding Structure (x)

The following values are defined for the first nibble (10) of the ESID to identify the

structure. The properties of each structure are detailed in Appendix A. Encoding

Schemes.

Hex Structure

0 Defaults to higher level in hierarchy

1 EBCDIC

2 IBM-PC Data

3 IBM-PC Display

4 ISO 8

5 ISO 7

6 EBCDIC presentation

7 UCS

8 UCS Display

9
8 bit, for a standalone, 7-bit EUC G-set that has been shifted into the right

half of the encoding space

A-C Reserved for future allocation by CDRA

D
Unique encoding. Details of the encoding structure are found in the related

CP and CCSID definitions.

E Reserved for extending ES id, when needed

F

For Private Use. Use of this value must be accompanied by a specification of

the structure, and the rules for usage with specific values of the other parts

of the ESID. Definition of the Private Use values is outside the scope of CDRA.

Number of Bytes Indicator (y)

An encoding scheme may permit specific variations in the number of bytes associated

with a code point (for example, EBCDIC single-byte versus EBCDIC double-byte).

These variations are shown using the second nibble of the ESID. The value of this

nibble is not the number of bytes per code point, but rather a pointer to the definition.

The value does not equate to the number of bytes in the code point. The values

representing a variable number of bytes identify what is allowed to appear in a string,

not what actually appears. The encoding scheme defines permitted values of this

nibble for the encoding structure used.

If the value of the first nibble defining the basic encoding structure element is zero,

the second nibble identifying the number of bytes must also be zero.

The following values are defined:

Hex Number of Bytes per Code Point

0 Reserved for use with zero value for the basic encoding structure

1 Fixed single-byte, SBCS

2 Fixed double-byte, DBCS (including ISO/IEC 10646-1 UCS-2)

3 IBM Far East style, mixed single-byte and double-byte

4 ISO 2022 schemes (EUC, TCP/IP)

5 UCS-4 or UTF-32

6 Reserved for future allocation by CDRA

7 Fixed triple-byte

8 UTF-n variable number of bytes, self describing (37)

9 Fixed 4-byte

A Mixed 1-byte, 2-byte, 4-byte (for GB 18030)

B BOCU-1, SCSU and similar Stateful Compression Schemes

C-E Reserved for future allocation by CDRA

F

For Private Use. The specification of Private Use must include the values

(and the specific meaning) of the encoding structure nibble with which it

can be used. Definition of the Private Use values is outside the scope of

CDRA.

Code Extension Method (zz)

The code extension method is described by the second byte of the ES identifier. This

byte indicates that a code point from an extended coded character set may appear in

the data; it does not mean that the extension method has actually been used in a

specific character string.

When the first two nibbles of the ESID are zeros, the code extension byte value must

be zero.

The following values are defined:

Hex Code Extension Method Hex Code Extension Method

00 No extensions are specified 0C
Unicode Standard Code

Compression Scheme

01

Locking Shifts (SO and SI, or

LS1 and LS0 (11) or UC and LC

locking controls)

0D
Compatibility Encoding Scheme

for UTF-16: 8-Bit (CESU-8)

02
Reserved for future allocation

by CDRA
0E

Binary Ordered Compression for

Unicode (BOCU-1)

03
IBM EUC scheme (ISO-2022-

based)
0F

UCS with Byte Order Mark (BOM)

to indicate Endianness; BE is

assumed in absence of BOM

04
TCP/IP scheme (ISO-2022-

based)

10 to

49

Reserved for future allocation by

CDRA

05
ISO-8 with possible graphics in

C1 area (X'80' to X'9F')
50

ISO-7 with possible graphics in

the C0 area (X'00'to X'1F')

06
Reserved for future allocation

by CDRA

51 to

54

Reserved for future allocation by

CDRA

07
UTF-8 Universal Transformation

Format
55

ISO-8 with possible graphics in C0

and C1 areas (X'00' to X'1F' and

X'80' to X'9F')

08
UTF-EBCDIC Universal

Transformation Format

56 to

FD

Reserved for future allocation by

CDRA

09
Used for an individual Unicode

plane
FE

Reserved for Private Use of Code

Extension. Definition of the Private

Use value is outside the scope of

CDRA.

0A
Reserved for future allocation

by CDRA
FF

Code Extension consideration

does not apply.

0B
Used to indicate Little Endian

Order for UCS

Code Extension States

When an encoding scheme uses an extension technique, it uses more than one

elementary coded character set to create a composite coded character set. The

scheme specifies one code extension switching state for each coded character set

used. While in a given state, the associated coded character set is used for

representing and interpreting the character data. The method for switching between

these states can be implicit or explicit, locking or single shifting. The number of

switching states and the method of switching between the states in a coded character

set are specified by the encoding scheme. State numbering begins at 1 and increases

by 1 for each coded character set. For example, in mixed single-byte, double-byte

encodings there are 2 states; the single-byte coded character set is state 1 and the

double-byte coded character set is state 2. Encoding schemes which define a single

coded character set have a single state; state 1.

The second nibble and the last byte of the ESID together identify the number of

switching states. The last byte of the ESID identifies the switching method employed

in an encoding scheme. The first and second nibbles identify the nature of the

elementary code structures used in the resulting composite structure.

ESID Values

ESID values and their semantics are listed in Figure 9.

ESID hex Interpretation

1100 EBCDIC, SBCS, No code extension is allowed Number of States = 1.

2100 IBM-PC Data, SBCS, No code extension is allowed. Number of States = 1.

3100 IBM-PC Display, SBCS, No code extension is allowed. Number of States = 1.

4100 ISO 8, SBCS, No code extension is allowed. Number of States = 1.

4105

ISO 8 (ASCII code), SBCS, Graphics in C1 Note that graphic characters may be

present in the area normally reserved for the C1 control codes. (ie X'80' to

X'9F') Number of States = 1.

4155
ISO 8 Presentation (ASCII code), SBCS, Graphics in C0 and C1. Number of

States = 1.

5100 ISO 7 (ASCII code), SBCS, No code extension is allowed. Number of States = 1.

5150 ISO 7 Presentation (ASCII code), SBCS, Graphics in C0. Number of States = 1.

6100
EBCDIC Presentation, SBCS, No code extension is allowed. Number of States =

1.

8100

8 bit, SBCS, used with a 7-bit code page, characters are shifted into the right

hand side of the encoding space, used only for single-byte EUC G-sets when

each G-set is treated as a standalone code. Number of States = 1.

D100
PTTC/BCDIC – 6 bit encoding, no code extension is allowed. Number of States =

1.

D101
Paper Tape Transmission Code (PTTC), 6 bit encoding, uppercase/lowercase

support using UC/LC code extension method. Number of States = 2.

1200 EBCDIC, DBCS, No code extension is allowed. Number of States = 1.

2200 IBM-PC Data, DBCS, No code extension is allowed. Number of States = 1.

3200 IBM-PC Display, DBCS, No code extension is allowed. Number of States = 1.

5200 ISO 7 (ASCII code), DBCS, No code extension is allowed. Number of States = 1.

6200 EBCDIC Double-byte Presentation Number of States = 1.

7200
Unicode, UCS-2, including UTF-16 to allow for support of surrogates, Big Endian

order. No code extension is allowed. Number of States = 1.

7209
Unicode pure double-byte. Used for any standalone, individual Unicode plane.

Number of States = 1.

720B
Unicode, UCS-2, including UTF-16 to allow for support of surrogates, Little

Endian order. No code extension is allowed. Number of States = 1.

720F

Unicode, UCS-2, including UTF-16 to allow for support of surrogates,

endianness is determined by byte order mark (BOM), assumed to be Big Endian

in absence of BOM. No code extension is allowed Number of States = 1.

8200 Unicode Display Number of States = 1.

9200

8 bit, DBCS, used with a 7-bit code page, characters are shifted into the right

hand side of the encoding space, used only for double-byte EUC G-sets when

each G-set is treated as a standalone code. Number of States = 1.

1301
EBCDIC, Mixed single-byte and double-byte, using SO/SI code extension

method. Number of States = 2.

2300
IBM-PC Data, Mixed single-byte and double-byte, with implicit code extension.

Number of States = 2.

2305
PC Data, Mixed single-byte and double-byte, with implicit code extension,

single-byte is Windows encoding. Number of States = 2.

3300
IBM-PC Display, Mixed single-byte and double-byte, with implicit code

extension. Number of States = 2.

4403 IBM EUC Number of States = 2-4.

5404
ISO 2022 TCP/IP using ESC sequences to designate code sets to G0. Number of

States = 2-4.

5409 ISO 2022 TCP/IP using SO/SI Number of States = 2.

540A ISO 2022 TCP/IP using SO, SI, SS2, and SS3. Number of States = 3-4.

7500
Unicode UTF-32, Big Endian order. No code extension is allowed. Number of

States = 1.

750B
Unicode UTF-32, Little Endian order. No code extension is allowed. Number of

States = 1.

750F

Unicode UTF-32, endianness is determined by byte order mark (BOM), assumed

to be Big Endian in absence of BOM. No code extension is allowed Number of

States = 1.

5700
ISO 7 Triple-byte Code Set, No code extension is allowed. Number of States =

1.

1808 UTF-EBCDIC, as defined in Unicode Technical Repot 16. Number of States = 1.

7807 UTF-8, UCS-2 transform, No code extension is allowed. Number of States = 1.

780D
Compatibility Encoding Scheme for UTF-16: 8-Bit (CESU-8), as defined in

Unicode Technical Report #26 . Number of States = 1.

2900 PC Data, fixed 4-byte Number of States = 1.

2A00

PC Data, mixed single-, double- and four-byte (Note: IBM PC or Windows code

pages may be used as the single-byte component of a CCSID using this ESID.)

Number of States = 3.

7B0C
Standard Compression Scheme for Unicode (SCSU) as defined in Unicode

Technical Standard 6.

7B0E
Binary Ordered Compression for Unicode (BOCU-1) as defined in Unicode

Technical Note 6.

Fxxx Private Use. User-defined encoding scheme.

xFxx Private Use. User-defined encoding scheme.

xxFE Private Use. User-defined encoding scheme.

Figure 9. ESID values

Coded Graphic Character Set Global Identifier

http://www.unicode.org/reports/tr16/
http://www.unicode.org/reports/tr26/
http://www.unicode.org/reports/tr6/
http://www.unicode.org/reports/tr6/
http://www.unicode.org/notes/tn6/
http://www.unicode.org/notes/tn6/

The Coded Graphic Character Set Global Identifier, CGCSGID, is a ten-digit decimal

number representing the concatenation of the Graphic Character Set Global Identifier

(GCSGID) followed by the Code Page Global Identifier (CPGID). GCSGID and CPGID

are described in the following sections. CGCSGID identifies a specific collection of

graphic characters and their assigned code points using an encoding scheme.

Many architectures and supporting implementations, such as Document Interchange

Architecture (DIA), have traditionally supported the CGCSGID. It has been assumed

that the encoding scheme information can always be reliably derived from the code

page identifier alone, but this assumption is not true for many registered PC code

pages. It will also be invalid if schemes such as the mixed single-byte and double-

byte encodings used by the IBM PCs in the Far East have to be represented.

The term GCID, used in some IBM architectures, is synonymous with CGCSGID.

Graphic Character Set Global Identifier

A Graphic Character Set Global Identifier, GCSGID, is a 5-digit decimal identifier

assigned to a collection of characters that is to be processed as an entity (a Graphic

Character Set). It uniquely identifies a specific collection of GCGIDs that are valid in

the set.

The range of GCSGID values is 00001 (X'0001') to 65534 (X'FFFE'). The values

X'FE00' to X'FEFF' are reserved for Request for Price Quotation (RPQ) use by IBM

products. The values X'FF00' to X'FFFE' are reserved for customer use.

A GCSGID is assigned to every Registered Graphic Character Set by IBM (or by a

customer organization).

See Special-Purpose Values for GCSGID and CPGID for use of 00000 (X'0000'),

65,535 (X'FFFF') and other special-purpose values for GCSGID.

The term Character Set (CS) is synonymous with GCSGID.

SPACE as a special character

By itself, the GCSGID does not specify either the inclusion or the exclusion of the

SPACE (GCGID = SP010000) character. Each encoding scheme reserves one or more

code points for allocation to the SPACE character. There are two possible code points

for it when using mixed SBCS and DBCS encoding schemes.

Code Page Global Identifier

A Code Page Global Identifier, CPGID, is a 5-digit decimal number assigned to a code

page.

A code page is a specification of code points from a defined encoding structure for

each graphic character in a collection of one or more graphic character sets.

A CPGID identifies a unique assignment of the graphic code points in an encoding

scheme to a specific set of GCGIDs. Many character sets may be contained in a code

page. When all of the code points in the graphic encoding space of a code page have

been assigned, then the character set containing this collection of GCGIDs is defined

to be full. Often, when a code page is first created and registered, some of the

assignable graphic code points may not have assigned GCGIDs. The character set

containing these assigned characters is defined to be maximal. As more code point

assignments are made, the maximal character set will change. Once all code points

have been assigned, the maximal set will be the full set.

A CPGID is assigned to every Registered Code Page by IBM. In some cases, the same

CPGIDs have been used when the encoding structures are similar.

The range of CPGID values is 00001 (X'0001') to 65534 (X'FFFE'). The values X'FE00'

to X'FEFF' are reserved for Request for Price Quotation (RPQ) use by IBM products.

The values X'FF00' to X'FFFE' are reserved for customer use.

The term Code Page (CP) is synonymous with CPGID.

Special-Purpose Values for GCSGID and CPGID

IBM standards reserve the values X'0000' and X'FFFF' for future assignments. In

practice, these identifier values have been used for a number of different special

purposes. Some values other than X'0000' and X'FFFF' that have been reserved for

special-purpose use are also included in this section. In the interest of providing

consistency between various implementations, the semantics of use of these values,

either in current use or for future use, are defined here.

Some known definitions are listed below, along with their semantics. Others will be

added as they become known to CDRA.

The CS value of X'0000' is used in several IBM architectures, such as Formatted Data

Object Content Architecture (FD:OCA), Mixed Object Document Content Architecture

(MO:DCA), and Document Interchange Architecture (DIA) Profiles, to facilitate

migration and coexistence between the use of only a CGCSGID (CS, CP pair) prior to

the advent of CDRA and the use of the CCSID identifier in different architecture

definitions.

In these architectures, if the CS portion of a structured field carrying a CGCSGID has a

value of X'0000', the value of the CP portion is interpreted as a CCSID. The following

definitions then apply:

1. CS X'0000' with CP X'0000'

The CP value of X'0000' is interpreted as CCSID X'0000'. This CCSID value

means that the tag value is to be inherited from a higher level in a hierarchical

structure.

2. CS X'0000' with CP X'FFFE'

The CP value of X'FFFE' is interpreted as CCSID X'FFFE'. This CCSID value

means that the tag value is to be obtained from a lower level in a hierarchical

structure.

3. CS X'0000' with CP X'FFFF'

The CP value of X'FFFF' is interpreted as CCSID X'FFFF'. This CCSID value

means that the tagged data is to be interpreted as "not graphic character data"

or "actual representation is unknown".

4. CS X'0000' with all other CP values

The CP value is interpreted as a CCSID.

The CS value of X'FFFF' can have the following special-purpose definitions.

1. CS X'FFFF' with CP X'0000'

Reserved for future definition in CDRA.

2. CS X'FFFF' with CP X'FFFF'

In FD:OCA, the combination is used to indicate inheritance from a higher level

in the structured object.

3. CS X'FFFF' with all other CP values

A CS value of X'FFFF' used with CP values from X'0001' to X'FFFE' identifies a

growing character set.

In the Intelligent Printer Data Stream* (IPDS*), both the GCSGID and CPGID are

carried but are not treated as a CGCSGID construct. In this case, the following

special-purpose values for GCSGID and CPGID are defined:

1. CS X'0000'

The CS value of X'0000' means that no value is supplied.

2. CP X'0000'

The CP value of X'0000' means that no value is supplied.

3. CP X'FFFF'

The CP value of X'FFFF' implies that the device default code page should be

used.

In IPDS and in MO:DCA the following special-purpose value is defined:

1. CS X'FFFF'

The CS value of X'FFFF' implies that the set of characters with assigned code

points in the resource definition of the selected code page is to be used.

Special CS and CP values are used to indicate "No CS, No CP" in the ACRI-EUC

structure defined in c. the following special-purpose value is defined:

1. CS X'FDFF'

The CS value of X'FDFF' implies that there is no character set, that is that the

corresponding G set is not used for this particular EUC CCSID.

2. CP X'FDFF'

The CP value of X'FDFF' implies that there is no code page, that is that the

corresponding G set is not used for this particular EUC CCSID.

Within CDRA the following CS/CP pair have been used in the definition of Unicode

CCSIDs.

1. CS X’FFF0’ (65520) and CP X’FFF0’ (65520)

This CS/CP pair is used to represent an empty plane of Unicode. By definition

CS 65520 is an empty set containing no characters and CP 65520 is a Unicode

plane with no characters defined.

Additional Coding-Related Required Information

Some encoding schemes require specifications beyond the CS and CP elements to

complete their definitions. Such specifications are called Additional Coding-related

Required Information (ACRI) elements.

Three types of ACRI are defined below.

ACRI PC Mixed Byte (ACRI-PCMB)

This type of ACRI applies to ES values X'2300', X'2305' or X'3300' (see semantics of

these ES values in Figure 9). It cannot be specified with any other ES values. It

consists of the specification of ranges of valid first bytes of double-bytes associated

with particular CS, CP pairs that are used with this encoding scheme. An ACRI-PCMB

has the following format:

N S1 E1 S2 E2 -- -- Sk Ek -- -- Sn En

where N is the number of ranges of valid first bytes, Sk is the starting byte and Ek is

the ending byte in the kth range, for all values of k from 1 to N. Sk and Ek are each in

the range 128 to 255.

For example, ACRI-PCMB associated with CCSID 00942 in the CCSID Registry (see

Appendix C: CCSID Repository) will be represented as:

2 129 159 224 252

In this example, there are two sets of valid first bytes (shown as their decimal values).

The first set of 31 values is in the range 129 to 159 (X'81' to X'9F'), and the second set

of 29 values in the range 224 to 252 (X'E0' to X'FC'). Thus, a total of 60 double-byte

wards (14) can be defined using this ACRI-PCMB.

Other formats, such as a bit-pattern representation, are also possible.

ACRI Type EUC (ACRI-EUC)

This type of ACRI applies to ES value X'4403' only. It specifies the number of coded

character sets and the width of each. It has the following format:

N W1 W2 W3 W4

where N is the number of coded graphic character sets, and Wn is the width of the nth

set. If a G set is not used then the value of W is 0 and the corresponding CS/CP entries

will be X'FDFF'.

ACRI Type TCP (ACRI-TCP)

This type of ACRI applies to ES value X'5404' only. It specifies the number of coded

character sets followed by a triplet for each consisting of the width of the code points

for the set, the length of the escape sequence used to designate the set into G0, and

the actual escape sequence. The format is as follows:

n W1 LD1 D1 W2 LD2 D2 ... Wn LDn Dn

where

n =number of CGCSGIDs associated with the CCSID

W =width of code points in the code page

LD =length of the designation escape sequence

D =actual designation sequence

For example, the ACRI-TCP for CCSID 00965 (TCP for Traditional Chinese) is:

03 01 03 ESC 28 42 02 04 ESC 24 29 30 02 04 ESC 24 29 31

In this example the ESC mnemonic is shown, rather than the hex value 1B, to allow for

ease of readability.

The format of the Escape Sequences is defined in ISO 2022. The "final byte," which

defines the actual coded character set to be used, is defined in the ISO document

International Register of Coded Character Sets to be used with Escape Sequences.

Short-Form Identification

Many implementations and architectures cannot accommodate variable-length tags

like the long-form identifier. To address this problem, an alternative short-form fixed-

length identifier called the Coded Character Set Identifier (CCSID) is defined.

Coded Character Set Identifier

A CCSID is a 16-bit identifier defined by CDRA. A CCSID, by definition, uniquely

defines a data encoding. Given a CCSID tag and a valid code point, the character

associated with that code point can be precisely identified. This is because the

definition of the CCSID is linked to the definition of the code page in the IBM

corporate registry. The definition of the control characters associated with a CCSID

are inherited from the definition of controls defined for the related encoding scheme.

CCSIDs can be defined as growing. A growing CCSID is defined when the related code

page is expected to be expanded. When the CCSID grows (i.e., more characters are

added to the related code page and character set), a non-growing, fixed, CCSID is

defined for the existing resources and the growing CCSID takes on the characteristics

of the expanded resources. The range of CCSID values is 00000 (X'0000') to 65535

(X'FFFF'). The bit allocations in a CCSID are shown in Figure 10.

Figure 10. Bit Allocations in the Coded Character Set Identifier (CCSID)

Each CCSID has a corresponding long-form identifier or has a predefined special

meaning. Figure 11 shows the allocation of CCSID values.

Value Purpose/Meaning

X'0000'

Inheritance This value is reserved to show that the value of CCSID is defaulted

and is to be taken from the next higher level in a defined hierarchy. It cannot

be used if there is no hierarchy or no higher level. The highest level in the

hierarchy cannot use this value. If a CCSID value of X'0000' is used when there

is no higher level or no hierarchy, it will resolve to X'FFFF' (CCSID is not

applicable).

X'0001' to

X'DFFF'

IBM Registered CCSIDs These values are for IBM use. They will be registered

and published in the CDRA documentation.

X'E000' to

X'EFFF'

Private-use CCSIDs These values are reserved for private use. Customers must

maintain their own organizational registries.

X'F000' to

X'F0FF'
Reserved for future allocation by CDRA

X'F100' to

X'F1FF'

Global Use CCSIDs These values are reserved for global use common character

sets, such as the Syntactic character set, associated with specific encoding

structures. This avoids the need to issue specific CCSIDs for usage of these

character sets with every code page registered. The CCSID Repository contains

a list of Global Use CCSIDs. Note: The use of Global Use CCSIDs is optional; it

is determined individually by each implementation.

X'F200' to

X'F2FF'

Reserved for RPQ use by products. Values in this range are specific to a

product and must be completely defined by that product.

X'F300' to

X'FFEF'
Reserved for future allocation by CDRA

X'FFF0' CCSID for Empty Code Page

X'FFF1' to

X'FFFB'
Reserved for future allocation by CDRA

X'FFFC' to

X'FFFD'
Special value CCSIDs reserved for use in DB2.

X'FFFE'

Lower Level in Hierarchy This value is reserved to show that a value for CCSID

at this level is not relevant. It should be obtained from the tag fields of

elements at a lower level in the defined hierarchy. If a hierarchy does not exist,

or if a CCSID value of X'FFFE' is specified at the lowest level, then the CCSID

resolves to X'FFFF' (CCSID is not applicable).

X'FFFF'

CCSID is Not Applicable This value means that the tagged data is to be

interpreted as "not graphic character data" or "actual representation is

unknown".

Figure 11. Allocation of CCSID values

Representation of CDRA Identifiers

Internal Representation of CCSID, GCSGID, and CPGID

The representation of the identifier values, the syntax, is specified by providers of the

tag fields that hold these identifier values. Each of these CDRA identifiers is a 16-bit

binary number. The CDRA recommendation is that the internal representations be

unsigned binary integers, rather than numeric character strings. If they are stored as

alphanumeric strings, they must be tagged (implicitly or explicitly) like any other

graphic character data.

Internal Representation of GCGID

The GCGID values are made up of uppercase A to Z, the digits 0 to 9, and a SPACE

(trailing). The method of encoding them in an object must be identified in the object

definition.

Internal Representation of ACRI

A variable-length array containing the value of each ACRI is needed to store the

information. Each element in the array is a positive integer with a maximum value of

255. These numbers should be stored as binary values rather than strings of digits, to

eliminate the need for tagging.

External Representation of Identifiers

CDRA identifiers may appear in documentation, display panels, program statements,

or other textual strings. For consistency, CDRA recommends:

• The CCSID, CPGID, and GCSGID values be represented as 5-digit decimal

numeric character strings; leading zeros may be replaced with spaces for

presentation

• The ES value be represented as a 4-digit hexadecimal character string

• The ACRI be presented as a variable-length array of hexadecimal numbers

• The GCGID values be represented as 4- to 8-character alphanumeric strings;

trailing zeros may be replaced with spaces for presentation.

As an aid to users, a descriptive name associated with each of the identifiers can also

be presented.

CCSID Values

The CCSID values are categorized as follows:

• Interoperable CCSIDs:

Interoperable CCSIDs have the following characteristics:

o The character set is an interoperable set

Supporting interoperable CCSIDs allows for:

o Data interchange across various environments within a country/language

(16) without data loss

o Data interchange across various environments and countries within

Group 1 without data loss.

o See Appendix C: CCSID Repository for access to a complete list of

CCSIDs.

• Global Use CCSIDs

Some CCSIDs are defined with character sets that are globally applicable.

These typically use the Syntactic Character Set (CS 640).

• Universal

This category encompasses all the encoding forms of UCS, it is a Large Multi-

Script Character set covering all the living languages of today, is the character

set of the world-wide web and is expected to be supported in all computing

environments. Its character set is a super set of the character sets of the non-

UCS CCSIDs.

• Coexistence and Migration CCSIDs

All other CCSIDs are classified as Coexistence and Migration CCSIDs. They may

be widely used within a country or environment but not have the properties of

an interoperable CCSID, or they may have a very specific, limited use such as a

7-bit symbols set.

Tagging in CDRA

When data is tagged with a CCSID, the GCGIDs assigned to the graphic character code

points must be those defined by the CCSID.

When a graphic character is represented in data using a CCSID tag:

• It is in one of the CS elements found in one of the CS,CP pairs identified by the

CCSID.

• The number of bytes in the code point is defined in the ESID element

associated with the CCSID. In the case of mixed encodings, the number of

bytes in the code point is defined by the respective CP element.

• The encoding scheme indicates if code extension controls (such as SO and SI)

are required.

When data is to be interpreted according to a CCSID value:

• Parsing logic that respects the ESID element of the CCSID tag is needed to

correctly process the data based on the number of bytes in each code point.

• The code point should be verified to be located in the graphic character

encoding space with an assigned GCGID for the appropriate CP element of the

CCSID.

• The GCGID must exist in the character set identified by the appropriate CS

element of the CCSID.

When data with no assigned graphic character meaning is found, it should be treated

as bytes.

These concepts are explained using two examples.

Example 1: Pure Single-Byte Case

In this example, let ESa, CSa, and CPa (in a single-byte encoding scheme) be the

Encoding Scheme, Character Set, and Code Page elements of CCSIDa. See Figure 12 .

Figure 12. Meaning of Tagging: A Single Byte Example

The encoding space defined by ESa is composed of C and G1, where C is the control

area and G1 is the graphic area. G1a represents all code points that have been

assigned to the GCGIDs found in character set CSa. Only code points found within G1a

can have graphic character meaning according to the definition of CCSIDa.

G1m represents all code points within CPa that have assigned GCGID values.

Example 2: Case of Mixed Single-Byte Double-Byte in PC

The example shown in Figure 13 uses a PC mixed single-byte and double-byte

encoding. Let the elements of CCSIDa be ESa, CSa1, CPa1, CSa2, CPa2, and Fa

(=ACRI-PCMB, ranges of valid first bytes).

Figure 13. Meaning of Tagging: A PC Mixed SB/DB Example

The encoding space defined by ESa is composed of C, G1, and G2, where C is the

control area, G1 is the single-byte graphic area, and G2 is the double-byte graphic

area. G1a represents all of the single-byte code points that have been assigned to the

GCGIDs found in character set CSa1. G2a represents all of the double-byte code

points that have been assigned to the GCGIDs found in character set CSa2. Only code

points found within G1a or G2a can have graphic character meaning according to the

definition of CCSIDa. G1m and G2m represent all code points within CPa1 and CPa2,

respectively, that have assigned GCGID values. Fa represents the set of valid first

bytes for double-byte code points found in G2a.

Meaning of Tagging in CDRA

CDRA has a dependency on other architectures, processes, or functions to provide

proper graphic character data processing. The tags can be used to set the meaning or

derive the meaning of code points in data to the extent defined above, when:

• Proper validation or filtering mechanisms to separate graphic character data

from others are in place

• The CDRA tags are not erroneously applied to interpret the meaning of the

bytes that do not have any graphic character meaning.

Relationship of Tags to Data Path

The data along with its tag may traverse many different systems through networks. In

the process the tag value may get changed to reflect any conversion of the data. The

tag values do not have any relationship to the data path.

Chapter 4. Services

This chapter describes several functions that are related to using the CDRA identifiers.

CDRA-defined services are functions that are needed to consistently and correctly

process graphic character data. These are detailed in "Chapter 5. CDRA Interface

Definitions". Other related services are also discussed.

Data Flow Models

To describe the needed functions and to understand where the CDRA services and

other related services may be used, a generic data flow model is used.

Figure 14. Data Flow Model

Figure 14 shows a model containing generic processing modules. This model does not

imply any product implementation. Its elements and their individual roles are

described below, identifying the CDRA functions that are needed.

Applications

A collection of processing functions that serve to execute a user application. Graphic

character data is exchanged between the application and the operating system, or

between the application and the providers of various types of services such as

presentation services, file management services, database management services, and

communication services.

Shared Services

A collection of functions provided in the operating system that is useful to several

components or applications in a system.

Presentation Services

A collection of functions that allow data exchanges between devices and applications.

The services that handle graphic character data have the following capabilities:

• They support graphic character data interchange at the application interface.

• They have logic to recognize the device capabilities and to manage any

difference between the encodings of application data strings and device

capabilities

• They provide their own specific interface to applications; and provide the

necessary tagging-related functions (such as set and query of tags) for graphic

character data entities (such as fields, panels, windows, or sessions) at the

application interface.

File Management Services

A collection of functions that allow applications to place data into organized data units

called files. The graphic-character handling capabilities of these services are:

• Using their own interfaces to applications, they allow the application to set and

query character data entities such as files, records, fields, or strings.

• They may provide automatic difference management functions to applications.

• In support of automatic difference management, they may have capabilities to

support a specific set of encodings in the application or data views.

Database Management Services

A collection of functions that allow organizing and managing data as well-defined

structures such as tables, columns, and rows. The graphic-character-data related

aspects of these services include the following:

• Using their own method and interfaces, they allow applications or database

administrators to set and query tags associated with graphic character data.

• They may provide transparent access to data from the database in a specified

list of encodings at the application interface.

Communications Services

A collection of functions that allow various modules to communicate with peer

modules or other modules in the same system or a different system.

• A minimum of a transparent data path is provided by these services.

• No automatic difference management functions are assumed to be present in

the communications services in this model.

Applications have a choice of using the difference management services provided in

the various service providers, where available. The list of encodings supported by

each of these must be known to the application. The application must restrict its data

across the service provider interfaces to one of these supported encodings. The

potential interface points where CDRA functions are required are shown in Figure 14.

If the service providers do not have support for a specific encoding the application

must manage the difference.

CDRA-Defined Services and Other Related Services

An implementation of CDRA will include a collection of CDRA-defined services and

other related services. Together they will provide the environment with a method of

identifying graphic character data and managing the differences in graphic character

data representations.

CDRA-defined services

CDRA-defined services have the following properties:

• Their semantics are definable and are equally applicable in all environments;

the function can be defined in a manner independent of the system's or

environment's unique methods or organizations.

• The function can be provided once per system, and will be of maximum benefit

to many callers from different layers in the system.

• The syntax of the functions can be common across all environments; the

common-service implementations will provide at least one function interface

using the defined syntax. They may provide other system-specific function

interfaces as well.

The CDRA-defined services can be grouped into four categories:

1. Functions for querying CCSID information

2. Functions for querying CCSID relationships

3. Functions related to difference management

4. Functions for identifying exception conditions.

A brief description of the functions in each group follows. Chapter 5, CDRA Interface

Definitions details each of the APIs.

Functions for querying CCSID information

To assist in migrating from the use of an intermediate form of tagging, the caller of a

CDRA service may obtain the various elements of a CCSID. Similarly, a caller may have

an intermediate form and need to find the equivalent CCSID. Additionally, the caller

may obtain control function assignment information. The following functions provide

these services.

CDRGESP Get Encoding Scheme, Character Set, and Code Page Elements

CDRSCSP Get Short Form (CCSID) from Specified ES (CS, CP)

CDRGESE Get Encoding Scheme Element and its Sub-elements

CDRGCTL Get Control Function Definition

CDRSMXC Get Short Form (CCSID) with Maximal CS for Specified ES, CP

Functions for querying CCSID relationships

When an environment deals with multiple encoding schemes (such as PC-Data and

PC-Display in the OS/2 environment, or the pure single-byte or mixed single-byte and

double-byte codes in systems supporting Group 2 character sets), special query

functions are needed to find different CCSIDs that have specific relationships. For

example, when data is received in a CCSID that is not native to a system environment,

such as PC-Data encoded data in an EBCDIC supporting iSeries* (aka AS/400*)

system, it is necessary to find a supported CCSID that best relates to the CCSID of the

received data. The following functions provide information on the relationships

between CCSIDs:

CDRGRDC Get Related Default CCSID

CDRGCCN Get CCSID for Normalization

Functions related to difference management

When different data representations, as described by the CCSIDs of two entities is

detected (using query functions), a conversion service can be called to convert data in

one CCSID to another. The conversion service is a collection of conversion methods

and supporting conversion tables. The concepts and criteria associated with

difference management, the selection of an appropriate conversion method, and the

creation of the contents of conversion tables are described in Chapter 6, Difference

https://www-01.ibm.com/software/globalization/cdra/chapter5.html
https://www-01.ibm.com/software/globalization/cdra/chapter5.html

Management and in Appendix B, Conversion Methods. The following functions are

defined for difference management:

CDRCVRT Convert a Graphic Character String

CDRMSCI Multiple-Step Convert Initialize

CDRMSCP Multiple-Step Convert Perform

CDRMSCC Multiple-Step Convert Clean Up

Function for identifying exception conditions

A service is provided for callers of the CDRA services who cannot use the feedback

structure. This service will provide the user with a status code and reason code as

separate elements. The following function is defined for identifying exception

conditions:

CDRXSRF Extract Status and Reason Codes from Feedback Code

Related Services

The related services include those functions that can potentially have a common

syntax, but whose semantics cannot be defined in a common manner across all

environments; for example, querying system defaults or the current session CCSID.

The resource management functions are contained in the group of related services.

These functions are system-specific because they deal with system-specific resource

structures, access, and storage; and they provide system-specific administration

facilities (utilities and their end-user interfaces).

Functions that are not common within a system are object-manager-specific (for

example, querying the CCSID of a relational database table). These functions may

have a common object-manager-specific syntax across systems. The functions and

their syntaxes cannot be supported as common services in all environments.

Brief descriptions of related services follow.

Setting Tag Values

Setting is the process of entering one or more tag values into the tag fields associated

with different graphic character data elements. The set function is provided as part of

the various object-manager-specific interfaces, or associated service functions.

Setting of tag fields on entities owned by the operating system is provided by the

system-specific interfaces. Setting is usually performed at object create time, and

may be modified if the data encoding changes.

Querying Tag Values

Querying is the process of reading or obtaining one or more tag values associated with

graphic character data elements. The query function is provided as part of various

object-manager-specific interfaces, or associated service functions. Querying of tag

fields in entities (or objects) owned by the operating system is provided by services in

the operating system, as part of the system-specific services.

The query function also resolves any unknown or default tag values such as a CCSID

value of X'0000'. Any hierarchy used for organizing the different elements owned by

the object managers is object-manager-specific. Different types of queries are

applicable to different object managers. For example, a file manager may provide for

querying all the CCSIDs that may be present within a file; a presentation manager may

provide for querying the CCSID used in a currently active window.

To assist in resolving the defaults in a hierarchy, a function may be provided to create

and maintain a resource of default values for an application, a user, or another

module. This resource is system-specific.

Resource Management Functions

Different systems have different structures and different methods of storing

information resources. The content of the CDRA-supporting resources is defined by

the architecture; however, the way the resources are stored is system-specific as are

the functions for maintaining (creating, updating, and querying) them. These

functions, when provided, are classed as related services.

The related services include those functions that can potentially have a common

syntax, but whose semantics cannot be defined in a common manner across all

environments; for example, querying system defaults or the current session CCSID.

The resource management functions are contained in the group of related services.

These functions are system-specific because they deal with system-specific resource

structures, access, and storage; and they provide system-specific administration

facilities (utilities and their end-user interfaces).

Functions that are not common within a system are object-manager-specific (for

example, querying the CCSID of a relational database table). These functions may

have a common object-manager-specific syntax across systems. The functions and

their syntaxes cannot be supported as common services in all environments.

Brief descriptions of related services follow.

Setting Tag Values

Setting is the process of entering one or more tag values into the tag fields associated

with different graphic character data elements. The set function is provided as part of

the various object-manager-specific interfaces, or associated service functions.

Setting of tag fields on entities owned by the operating system is provided by the

system-specific interfaces. Setting is usually performed at object create time, and

may be modified if the data encoding changes.

Querying Tag Values

Querying is the process of reading or obtaining one or more tag values associated with

graphic character data elements. The query function is provided as part of various

object-manager-specific interfaces, or associated service functions. Querying of tag

fields in entities (or objects) owned by the operating system is provided by services in

the operating system, as part of the system-specific services.

The query function also resolves any unknown or default tag values such as a CCSID

value of X'0000'. Any hierarchy used for organizing the different elements owned by

the object managers is object-manager-specific. Different types of queries are

applicable to different object managers. For example, a file manager may provide for

querying all the CCSIDs that may be present within a file; a presentation manager may

provide for querying the CCSID used in a currently active window.

To assist in resolving the defaults in a hierarchy, a function may be provided to create

and maintain a resource of default values for an application, a user, or another

module. This resource is system-specific.

Resource Management Functions

Different systems have different structures and different methods of storing

information resources. The content of the CDRA-supporting resources is defined by

the architecture; however, the way the resources are stored is system-specific as are

the functions for maintaining (creating, updating, and querying) them. These

functions, when provided, are classed as related services.

Chapter 5. CDRA Interface Definitions

This chapter contains the specifications of the CDRA-defined functions (Application

Programming Interfaces or APIs). These functions are provided as procedure calls

that are independent of programming languages.

Function Templates and Defined Conventions

The CDRA functions are described using a common template containing the following

information:

CDRXXXX - Descriptive Function Name

A single line title for the function definition, consisting of a short name and a

descriptive name for the function.

Function Description

A short description of what the function does.

Resources Used

A list of any resources used by the function.

Function Syntax

Conventions used for syntax are detailed in the next section. The following

information is included:

CDRXXXX (Input and Output Parameters, Feedback)

Input:

List of Input parameters

IPARM1: a description, variable type, and permitted values

IPARM2: - - - - -

- - - : - - - - -

Input/Output

List of Input/Output parameters

IOPARM1: a description, variable type, and permitted values

IOPARM2: - - - - -

- - - : - - - - -

Output:

List of Output parameters

OPARM1: a description, variable type, and permitted values

OPARM2: - - - - -

- - - : - - - - -

FB:

Feedback codes and their meanings

Usage Notes

Information that is considered to be useful to the caller of the function to provide a

better understanding of the function.

Syntax Conventions

The syntax for the CDRA functions has been defined in general terms so that the

functions and their associated parameters can be coded using all IBM high-level

languages (HLLs).

The following conventions are used:

FUNCTION-NAME (Parameters, Feedback)

with the following explanations:

1. FUNCTION NAME: name of the function to be performed. The function names

all begin with the prefix "CDR" standing for "Character Data Representation"

Function names can be up to seven characters, consisting only of uppercase

letters A to Z and digits 0 to 9. The first character of the name cannot be a digit.

This restriction accommodates the limitation on function names of all known

HLLs.

2. PARAMETERS: used to specify the desired input and output elements based

upon the function to be performed and the output desired.

1. Parameters are positional.

2. A comma (,) is used as a delimiter between parameters.

3. No optional parameters are permitted.

Status Reason Meaning

0000 0000 the function completed successfully

0001 0001 description of condition reported

4. All the parameter values are passed by reference. The parameters are of

the type "variable" or "address" (of a location in the caller's address

space). Passing constants as parameters is not permitted (for example,

X'01F4' or 500 as CCSID parameter value, or a literal string).

5. Space for variables and buffers is allocated by the "caller" of the

function. The caller always specifies the variable names or buffer names

in the function call. Any data that is exchanged between the caller and

the function is always passed in these variables or buffer areas.

6. Parameters that contain the input values are in general kept separate

from those that contain the output values or feedback code.

Note: If the same variable or buffer name is used for more than one call

parameter, the results of the function are not predictable.

7. The parameters are passed (in the input output stack between the caller

and the function) in the same order (sequentially from first to last) as

they appear in the function call.

8. The terms Input, Output, and Input/Output in the syntax descriptions

are based on what generates the data that is passed across the function

interface in the parameters -- variables or buffers.

1. Input variables or buffers contain data that is supplied by the

caller for use by the function.

2. Output variables or buffers contain data that is generated by the

function and returned to the caller.

3. Input/Output variables or buffers contain data that is supplied by

the caller for use by the function, and data that may be modified

and returned by the function.

9. CDRA does not place any restrictions on the number of characters or the

characters used in parameter names. The rules specified by the

appropriate programming language or other syntax parser used to parse

the caller's program source statements apply.

10. Parameter variables containing an integer value will be of the type "32-

bit, signed, two's complement, binary". This type is supported across

HLLs.

Length values (data-typed as integers) interchanged across a call

interface are constrained by programming language support

considerations to a maximum of +999,999,999.

3. FEEDBACK: The feedback code, FB, is a 96-bit structure (it can also be viewed

as an array of 12 bytes or an array of three 32-bit two's complement binary

numbers). It is used to communicate to the caller the conditions arising during

the execution of the function. FB is a required parameter in all function calls.

1. Of the 12 bytes of FB (see Figure 15), the first four are used to indicate a

status code (also known as a class code) and reason code (also known as

a cause code) associated with each condition that may arise. The

remaining eight are reserved for use by CDRA.

Figure 15. Structure of the feedback code (FB)

2. The status codes are described below under Status Code Convention . The

reason codes are function-specific. See the list of status and reason code

combinations under each function interface definition.

3. A zero value for each of the status and reason codes indicates that the

function performed as expected with no detected conditions. If the

status code is zero, the reason code must also be zero. A nonzero value

in the first 16 bits indicates there was some condition in execution and

the function may not have completed successfully.

4. The status code part of the feedback code indicates the class of problem

encountered. The associated reason code part of the feedback code

gives more information for error analysis and reporting.

5. Note:

1. The level of severity of the error and the follow-on action to be

taken are determined by the caller, depending on the specific

nature of the problem associated with the called function.

2. No explicit attempt is made in the CDRA definition to classify the

feedback codes into different classes such as INFORMATION,

WARNING, or ERROR.

3. Depending on the function and the feedback code value, the

calling function is responsible for handling the feedback code and

taking appropriate action, such as making the appropriate values

available to a message service: for example, CCSID= X'5234' was

not found.

6. All the feedback codes defined in CDRA are non-negative numbers. As a

result, the status code value that forms the most significant 16 bits of

the feedback code is restricted to a maximum of X'7FFF'.

4. Violations of the syntax for the functions are expected to be detected and

handled by the appropriate parser that is used to parse the function call

statements of the caller. An indication of a parsing error is expected to be

returned by the parser.

Status Code Convention

The status codes have the following generic meanings, and each function description

expands on the specifics of their use.

Status

(Hex)
Meaning

0000 to

00FF

Common to several functions and environments; specific values used in this

document are described later.

The following are specific values in this range with their assigned meanings:

 Status (Hex) Meaning

0000 function completed successfully

0100 to

07FF

Common to all environments but function-specific; use of these status code

values is documented in this chapter, along with the feedback code values of

the functions that use them.

Depending on the function, the status code is accompanied by a function-specific

reason code. The reason codes are detailed along with each function. A nonzero

status code is always accompanied by a nonzero reason code.

An attempt has been made to assign unique feedback codes for significantly different

conditions across the APIs. There are, however, several exceptions due to changes in

the architecture specifications.

Note: Status and reason code values that are not specifically listed under each

function are reserved for future allocation by CDRA.

Data Overflow Convention

Parameter lists for routines that have caller-allocated areas or arrays for receipt of

data (or for variable-length character strings) must contain a minimum of two counts:

one for the space allocated by the caller, and one for the space used by the function.

The size of the allocated area is passed to the called function, and the function returns

the size actually used in the caller-allocated area for the returned data.

When there is insufficient space allocated, a methodology is needed to deal with the

overflow situation. A common convention (followed by both the caller and the function

implementation) to deal with overflow situations is assumed for most CDRA callable

functions (the exceptions are conversion-related functions where an overflow

situation is dealt with by returning a truncated converted string).

The method described below is suitable for handling overflows when all the data to be

returned by the function is available to the function, and is static data as opposed to

dynamically computed data. (For example, it is information from a CCSID resource

definition versus the result of a conversion process, which is dynamically generated.)

For dynamically generated data, the output will have to be computed from the

beginning in order to return the next piece of data, especially since the assumptions

for the CDRA callable functions are that input, and output data transferred across the

call interface is all in the caller-allocated area (except for some local storage needs of

the function). Such re-computations can cause severe degradation of performance for

operations, such as the conversion of a long string. For this reason, the overflow-

handling method described here is applied only to those CDRA functions that deal

with static data.

In the following example the allocated space (variable N1) is 4, and the required

space is 15. The variable N2 contains the actually-used space. The resource has

N2max (N2max = 15 in this example) elements to be returned. Figure 16 shows the

values of N1, N2, and the remaining number of elements to be retrieved.

Event N1 N2 Remaining

First Call Invocation 4 0 0

 Return 4 15 11

Second Call Invocation 4 15 11

 Return 4 11 7

Third Call Invocation 4 11 7

 Return 4 7 3

Fourth Call Invocation 4 7 3

 Return 4 3 -

Figure 16. Example of Data Overflow Handling

The variable N2 in this example acts as an input/output variable. N2 is initialized to

zero by the caller. The roles of the performing function and that of the caller are

explained below:

The role of the performing function:

• It examines the value of N2 to determine where to start the output. If N1 is

insufficient to hold all the returned data, the data will be returned in segments

of size N1 until all of the data to be returned is exhausted.

• The function should see one of the following two relationships between N1 and

N2 when it is called:

o N2 is zero (set by the caller). The function returns the first piece of

maximum N1 elements of data and returns the value N2max in N2.

N2max is the total required space (N2max = 15 in the example shown in

Figure 16). When the returned value of N2 is greater than N1, there is

more data to be returned. A nonzero feedback code is returned,

indicating that there is more data to be returned.

o N2 is greater than N1. The function returns the next piece of maximum

N1 elements of requested data starting at S, where "S = N2max - (N2 -

N1) + 1" (elements are numbered starting at 1), and decrements N2 by

N1. If the resultant N2 is greater than N1, a nonzero feedback code

indicates that there is more data to be returned. If N2 is less than or

equal to N1, the last block of data containing N2 elements is returned,

along with a feedback code value of zero.

The caller has the following role:

• It calls the function with N2 initialized to zero.

• When the returned value of N2 is greater than N1 (along with the

corresponding nonzero feedback code indicating that there is more

data), the caller processes the returned segment of N1 elements and

calls the function again for the remaining data.

• The caller must not change the values of N1 or N2 between function

calls.

• When the returned value of N2 is less than or equal to N1, the function

has returned all the remaining elements (consisting of N2 valid

elements) of requested data. The feedback code returned with the last

block of data should be zero (unless some error condition other than

overflow is encountered by the function).

• The caller should examine the feedback code from each call to ensure

that there are no other conditions reported by the performing function. It

is insufficient to merely rely on the relationship between N1 and N2.

Error situations can arise. Specific errors are documented with the individual function

definitions.

Functions for Querying CCSID Information

CDRGESP - Get Encoding Scheme, Character Set, and

Code Page Elements

Function Description

The most frequently accessed elements of a CCSID are the Encoding Scheme and the

CS/CP elements. This function returns the value of the Encoding Scheme associated

with CCSID1 in ES, and the values of the CS and CP elements in CSCPL.

Resources Used

CCSID Resource – see the section in Chapter 7 on the CCSID resource.

Function Syntax

CDRGESP (CCSID1, N1, N2, ES, CSCPL, FB)

Input:

CCSID1: this variable contains the CCSID value referenced; field-type: 32-bit two's

complement binary; a positive number in the range 1 (X'00000001') to 65,279

(X'0000FEFF').

N1: this variable contains the size of the allocated area starting at CSCPL to contain

the return data. N1 is specified as a number of elements, and each CS, CP pair is

counted as two elements. Field type: 32-bit two's complement binary. It is an even

number greater than or equal to 2.

Input/Output:

N2: this variable contains the number of values (each pair of CS and CP is counted as

two values) associated with CCSID1 and returned in CSCPL providing that sufficient

space (N1) was allocated; field-type: 32-bit two's complement binary. The first

invocation of this function must have N2 initialized to zero. The function's handling of

the output and value of N2 returned is explained in section Data Overflow Convention

Data Overflow Convention Data Overflow Convention .

Output:

ES: this variable contains the ES associated with CCSID1; field-type: 32-bit two's

complement binary. It is a positive number in the range 4352 (X'00001100') to

65,534 (X'0000FFFE').

CSCPL: the field type of variable CSCPL is an array of 32-bit two's complement binary

numbers whose format is CS1, CP1, CS2, CP2, ... CSn, CPn.

FB: the function returns in this feedback array the processing status (and any

associated reason) for this function; field type: array of three 32-bit two's

complement binary values (12 bytes, or 96 bits); the status code is a non-negative

number in the first 16 bits, and the reason code is a non-negative number in the

second 16 bits. The following are specific meanings of the status code and associated

reason code values (in Hex) contained in the first 32 bits of FB:

Status Reason Meaning

0000 0000 the function completed successfully

0001 0001 CCSID1 value is not in the CCSID resource repository

0002 0001 CCSID1 value is 0, which is reserved for indicating a default in a

hierarchy. The invoker must resolve the default before invoking

this function.

0003 0001 CCSID1 has one of the special-purpose CCSID values in the range

65,280 (X'0000FF00') to 65,535 (X'0000FFFF').

0004 0001 the allocated length (value of N1) for the area to contain returned

values was insufficient to contain all the output data that is to be

returned. See Data Overflow Convention

0005 0002 N2 is greater than N1; however, the start of the next block of data

to be returned is outside the valid range 1 to N2max

0005 000A N2 is less than or equal to N1, but is not 0

0006 0001 the CCSID resource repository was not found

0006 0002 the CCSID resource repository is currently unavailable

0007 0001 the system CCSID resource repository accessed by the function

was found to be invalid in structure

Status Reason Meaning

0007 0004 there was no ES element definition in the CCSID resource for

CCSID1

0007 0006 there was no definition for CS, CP elements in the CCSID resource

for CCSID1

0008 0001 CCSID1 value is not in the range 0 (X'00000000') to 65,535

(X'0000FFFF')

0008 0002 N1 value is greater than the maximum allowed in this

implementation, or N1 is odd

0008 0003 N1 is less than 2

Usage Notes

The maximum number of CS, CP values depends on the ES. Most CCSIDs have only

one CS, CP pair. See the section on Encoding Scheme Identifiers in Chapter 3 for

further information. A caller can set N1 to 32, to accommodate up to 16 CS, CP pairs

without overflow.

CDRSCSP - Get Short Form (CCSID) from Specified ES

(CS, CP)

Function Description

This function gets the CCSID associated with the specified (CS, CP) pair(s) and ES. It

aids in coexistence and migration for products that deal with the short form (CCSID) of

identification on one side and the intermediate form (CGCSGID) on the other. The ES

is further required to distinguish between usage of the same CS, CP with two different

encoding schemes, (such as CS 00697 and CP 00850, with ES values of X'2100' and

X'3100'), and when more than one CGCSGID is associated with a CCSID (such as with

ES X'1301', X'2300', X'2305' and X'3300', for the CCSIDs registered to date. See

Appendix C for information on the CCSID Resource Repository.

Resources Used

Repository of CCSID Resources (see section on the CCSID Resource in Chapter 7).

Function Syntax

CDRSCSP (CSCPL, N1, ESIN, CCSIDR, ESR, FB)

Input:

CSCPL: this variable is an array of 32-bit two's compliment binary numbers whose

format is CS1, CP1 CS2, CP2, ... CSn, CPn. Each CS is a positive number in the range

1(X'00000001') to 65,535(X'0000FFFF'). Each CP is a positive number in the range

1(X'00000001') to 65,534 (X'0000FFFF'). Each is placed in a single CSCPL array

element.

N1: this variable contains the number of elements in CSCPL; field-type: 32-bit two's

complement binary; a positive number in the range 2 to 32 (can accommodate up to

16 CS and CP pairs).

ESIN: this variable contains the ES value referenced; field-type: 32-bit two's

complement binary; a zero, or a positive number in the range 4352 (X'00001100') to

65,534 (X'0000FFFE').

ESIN Meaning

0

the caller does not know the ESID value; the CCSID returned is the first

occurring in the CCSID resource repository whose CS and CP values

match those specified in CSCPL.

Other
the user specifies the ESID value. See Figure 9 for a complete list of

ESIDs and their associated meanings.

Output:

CCSIDR: this variable contains the returned CCSID value; field-type: 32-bit two's

complement

binary; a positive number in the range 1 (X'00000001') to 65,279 (X'0000FEFF'). A

value of 65,535 (X'0000FFFF') is returned when the function could not find the

requested CCSID.

ESR: this variable contains the ES value of the returned CCSID; field-type: 32-bit

two's complement binary; a zero, or a positive number in the range

4352(X'00001100') to 65,534(X'0000FFFE').

FB: the function returns in this feedback array the processing status (and any

associated reason) for this function; field type: array of three 32-bit two's

complement binary values (12 bytes, or 96 bits); the status code is a non-negative

number in the first 16 bits, and the reason code is a non-negative number in the

second 16 bits. The following are specific meanings of the status code and associated

reason code values (in Hex) contained in the first 32 bits of FB:

Status Reason Meaning

0000 0000 the function completed successfully

Status Reason Meaning

0001 0001 no entry was found in the CCSID resource repository for the

specified ESIN and CS, CP pair(s)

0001 0002 a single CCSID value with the specified CSCPL was found, but not

with the specified ESIN. The values of the CCSID found and its

associated ES are returned.

0002 0001 a CP value in CSCPL is zero

0002 0002 a CS value in CSCPL is zero

0003 0001 a CP value in CSCPL is 65,535 (X'0000FFFF')

0003 0002 Reserved

0005 0001 N1 is odd

0006 0001 the CCSID resource repository was not found

0006 0002 the CCSID repository is currently unavailable

0007 0001 the system CCSID resource repository accessed by the function

was found to be invalid in structure

0008 0001 a CS or CP value in CSCPL array is not in the range 0 (X'00000000')

to 65,535 (X'0000FFFF')

0008 0002 N1 is greater than the maximum permitted in this implementation

0008 0003 N1 is less than 2

0008 0004 ESIN value is nonzero and not in the range 4352 (X'00001100') to

65,534 (X'0000FFFE')

Usage Notes

1. Often it is required to find the CCSID when the ES and (CS, CP) values are

known. CS, CP (also known as CGCSGID or GCID) is used in many existing IBM

architectures and data streams and supporting products. Together with Get

Character Set and Code Page Elements (CDRGCSP), this function aids in

coexistence and migration for products that deal with the short form (CCSID) of

identification on one side and the intermediate form (CGCSGID) on the other.

Because of the intermediate forms are by themselves incomplete when used in

some encoding schemes, the function can return only a default value as defined

in the installation's resources, when the ESIN information is not known.

2. For the CCSIDs defined to date, the maximum number of CS, CP pairs is 4 (up

to eight values can be specified in CSCPL). Future CCSIDs may have more CS,

CP pairs.

3. When an ESIN value of zero is specified the function will return the first CCSID

encountered in the resource repository with matching CS, CP pairs. There may

be additional CCSIDs that meet the specified criteria.

CDRGESE - Get Encoding Scheme Element and its Sub-

elements

Function Description

This function gets the values of the Encoding Scheme identifier (ESID) element and

each of its sub-elements for a given CCSID value (CCSID1) from the CCSID resource

repository (see section "CCSID Resource" in Chapter 7). ESID has a two-byte

hexadecimal format. The two bytes are decomposed as follows: the first nibble (first 4

bits of the first byte) is the basic encoding structure, the second nibble is the number

of bytes indicator, and the second byte contains the code extension mechanism. The

first two are defined in terms of X'0' to X'F', and the third as X'00' to X'FF'. The

composite field is documented as its hexadecimal value and its unsigned decimal

equivalent (see section "Encoding Scheme Identifier" in Chapter 3 for possible

values).

Resources Used

CCSID Resource (see section "CCSID Resource" in Chapter 7).

Function Syntax

CDRGESE (CCSID1, ESEL, FB)

Input:

CCSID1: this variable contains the CCSID value referenced; field-type: 32-bit two's

complement binary; a positive number in the range 1 (X'00000001') to 65,279

(X'0000FEFF').

Output:

ESEL: the function returns the values of ES identifier and its three sub-elements in this

array of four elements; each element is a 32-bit two's complement binary number:

ESEL

Element Content and Range

1 value of ESID 4352 (X'00001100') to 65,534 (X'0000FFFE')

2
value of basic encoding structure sub-element 1 to 15 (X'00000001'

to X'0000000F')

3
value of number of bytes indicator sub-element 1 to 15

(X'00000001' to X'0000000F')

http://www.ibm.com/software/globalization/cdra/chapter7.html#HDRHCCSRDS

ESEL

Element Content and Range

4
value of code extension method sub-element 0 to 254 (X'00000000'

to X'000000FE')

FB: the function returns in this feedback array the processing status (and any

associated reason) for this function; field type: array of three 32-bit two's

complement binary values (12 bytes, or 96 bits); the status code is a non-negative

number in the first 16 bits, and the reason code is a non-negative number in the

second 16 bits. The following are specific meanings of the status code and associated

reason code values (in Hex) contained in the first 32 bits of FB:

Status Reason Meaning

0000 0000 the function completed successfully

0001 0001 the CCSID1 value is not in the CCSID resource repository

0002 0001 the CCSID1 value is 0, which is reserved for indicating a default in

hierarchy. The caller must resolve the default before calling this

function.

0003 0001 CCSID1 has one of the special-purpose CCSID values in the range

65,280 (X'0000F00') to 65,535 (X'0000FFFF')

0006 0001 the CCSID resource repository was not found

0006 0002 the CCSID resource repository is currently unavailable

0007 0001 the system CCSID resource repository accessed by the function was

found to be invalid in structure

0007 0004 there was no ES element definition in the CCSID resource for CCSID1

0008 0001 the CCSID1 value is not in the range 0 (X'00000000') to 65,535

(X'0000FFFF')

Usage Note

The caller selects the appropriate element(s) of ESEL array for his or her purposes.

CDRGCTL - Get Control Function Definition

Function Description

This function gets a requested control function definition associated with a given

CCSID from the CCSID resource repository (see section "CCSID Resource" in Chapter

7 for a model of the repository). The following control function definitions are defined

in the CCSID resource repository model:

• Substitute

http://www.ibm.com/software/globalization/cdra/chapter7.html#HDRHCCSRDS

• New Line

• Line Feed

• Carriage Return

• End of File

The SPACE (SP01) definition is included in this function. Each control function

definition is found as a triplet consisting of:

• The code point value allocated to the requested control function definition

• Its width in number of bytes

• The state number in which the code point is to be used

A triplet for each control function may be defined for each of the possible code

extension switching states associated with the CCSID.

A selection parameter (SEL) is used to identify which control function definition is to

be returned by the function.

Resources Used

CCSID Resource (see section "CCSID Resource" in Chapter 7).

Function Syntax

CDRGCTL (CCSID1, SEL, N1, N2, CTLFDF, FB)

Input:

CCSID1: this variable contains the CCSID value referenced; field-type: 32-bit, two's

complement binary; a positive number in the range 1 ('00000001') to 65,279

(X'0000FEFF').

SEL: this variable containing the selection specification; field-type: 32-bit two's

complement binary; a non-negative number in the range 0 to 255. If the selected

control function element is available in the resource definition for CCSID1, the

triplet(s) are returned in the area starting at CTLFDF. The following values are

currently defined for SEL:

SEL
Selected Control

Function

0 Space

1 Substitute

http://www.ibm.com/software/globalization/cdra/chapter7.html#HDRHCCSRDS

SEL
Selected Control

Function

2 New Line

3 Line Feed

4 Carriage Return

5 End of File

6 to 255 Reserved for CDRA

N1: this variable contains the size of the allocated area starting at CTLFDF to contain

the returned data. N1 is specified as a number of elements, each triplet is counted as

3 elements. field-type: 32-bit two's complement binary. It is a non-zero positive

number whose minimum value is 3.

Input/Output:

N2: this variable will contain the number of values returned in CTLFDF; field-type: 32-

bit two's complement binary. The first invocation of this function must have N2

initialized to zero. It is a non-negative integer and is a multiple of 3 (corresponding to

each triplet in CTLFDF). If no definition is found in the CCSID resource for the

requested element, a value of 0 is returned in N2. The function's handling of the

output and value of N2 returned is explained in section Data Overflow Convention .

Output:

CTLFDF: this variable contains the start of the area reserved for the return definition

element(s). Each element is a triplet of 3, field-type: 32-bit two's complement binary.

For each triplet the first value is the code point, the second is the code point width,

and the third value contains the switching state number. There is one triplet returned

for each switching state for CCSID1. An undefined element is indicated by a zero state

number in the corresponding CTLFDF entry.

FB: the function returns in this feedback array the processing status (and any

associated reason) for this function; field type: array of three 32-bit two's

complement binary values (12 bytes, or 96 bits); the status code is a non-negative

number in the first 16 bits, and the reason code is a non-negative number in the

second 16 bits. The following are specific meanings of the status code and associated

reason code values (in Hex) contained in the first 32 bits of FB:

Status Reason Meaning

0000 0000 the function completed successfully

0001 0001 the CCSID1 value is not in the CCSID resource repository

Status Reason Meaning

0001 0004 one or more of the requested control function definitions are

undefined (as indicated by a zero value for its corresponding state

number in CTLFDF)

0001 000A the requested control function definition element in the CCSID

resource for CCSID1 was not found

0002 0001 the CCSID1 value is 0, which is reserved for indicating a default in

a hierarchy. The invoker must resolve the default before invoking

this function.

0003 0001 CCSID1 has one of the special-purpose CCSID values in the range

65,280 (X'0000FF00') to 65,535 (X'0000FFFF')

0004 0001 the allocated length (value of N1) for the area to contain returned

values was insufficient to contain all the output data that is to be

returned. See Data Overflow Convention .

0005 0002 N2 is greater than N1; however, the start of the next block of data

to be returned is outside the valid range 1 to N2max

0005 0003 the value specified in the SEL parameter is not supported

0005 000A N2 is less than or equal to N1, but is not 0

0006 0001 the CCSID resource repository was not found

0006 0002 the CCSID resource repository is currently unavailable

0007 0001 the system CCSID resource repository accessed by the function

was found to be invalid in structure

0008 0001 CCSID1 value is not in the range 0 (X'00000000') to 65,535

(X'0000FFFF')

0008 0002 N1 is greater than the maximum permitted in this implementation

0008 000A N1 is less than 3.

0008 000B the SEL value is not in the range 0 to 255.

Usage Notes

1. The maximum number of code extension states (and the associated

corresponding code pages) for the CCSID depends on the ES. Most CCSIDs

have only one state. The maximum is four for the CCSIDs registered to date,

though some future CCSIDs may have more. An invoking function can set N1 to

48, to accommodate up to 16 triplets of information without overflow.

2. The code point value for any control function definition can be in the range

X'00000000' to X'7FFFFFFF', only up to four-byte code points can be defined.

The code point width values can be 1 to 4 (bytes).

CDRSMXC - Get Short Form (CCSID) with Maximal CS for

Specified ES, CP

Function Description

This function gets the CCSID with the largest CS, either maximal or full, for a given CP.

The function aids in coexistence and migration; it allows a caller to get an appropriate

CCSID when only the CP is known. The ES parameter may be specified to distinguish

between usage of the same CP with two different encoding schemes, such as PC

Display and PC Data.

The function is restricted to pure single-byte pure double-byte CCSIDs that have only

one CS, CP pair associated with them (for those registered to date).

The CCSID value returned by the function may differ from one implementation to

another, as it is dependent on the content of the CCSID resource and the various

implementations may support different CCSIDs.

Resources Used

Repository of CCSID Resources (see section "CCSID Resource" in Chapter 7).

Function Syntax

CDRSMXC (CPIN, ESIN, CCSIDR, ESR, FB)

Input:

CPIN: this variable contains the CP value referenced; field-type: 32-bit two's

complement binary; a positive number in the range 1 (X'00000001') to 65,534

(X'0000FFFE').

ESIN: this variable contains the ES value referenced;

ESIN Meaning

0

the caller does not know the ES value, and expects the first CCSID

encountered in the CCSID repository, with the specified CP and the "Full" or

"Maximal" CS, to be returned.

Other

the invoker specifies the ESID value; field-type: 32-bit two's complement

binary; a positive number in the range 4352 (X'00001100') to 65,534

(X'0000FFFE'). Only ESIDs that have a single (CS, CP) pair associated with

http://www.ibm.com/software/globalization/cdra/chapter7.html#HDRHCCSRDS

ESIN Meaning

them are valid for this function. See Figure 9 for a complete list of ESIDs and

their associated meanings.

Output:

CCSIDR: this variable contains the returned CCSID value; field-type: 32-bit two's

complement binary; a positive number in the range 1 (X'00000001') to 65,279

(X'0000FEFF')

ESR: this variable contains the ES value of the returned CCSID; field-type: 32-bit

two's complement binary; a zero, or a positive number in the range 4352

(X'00001100') to 65,534 (X'0000FFFE').

FB: the function returns in this feedback array the processing status (and any

associated reason) for this function; field type: array of three-bit two's complement

binary values (12 bytes, or 96 bits); the status code is a non-negative number in the

first 16 bits, and the reason code is a non-negative number in the second 16 bits. The

following are specific meanings of the status code and associated reason code values

(in Hex) contained in the first 32 bits of FB:

Status Reason Meaning

0000 0000 the function completed successfully

0001 0001 no entry was found in the CCSID resource repository for the

specified CPIN, ESIN combination

0001 0003 ESIN was specified as 0; the first CCSID encountered in the CCSID

repository, with the specified CP and the "Full" or "Maximal" CS was

returned; additional CCSIDs meeting the criteria may exist.

0001 0009 the ESIN specified indicates that more than one pair of CS, CPs are

associated with it, which is invalid for this function

0002 0001 the CPIN value is 0

0003 0001 the CPIN value is 65,535 (X'0000FFFF')

0006 0001 the CCSID resource repository was not found

0006 0002 the CCSID resource repository is currently unavailable

0007 0001 the system CCSID resource repository accessed by the function

was found to be invalid in structure

0008 0001 the CPIN value is not in the range 0 (X'00000000') to 65,535

(X'0000FFFF')

0008 0009 the ESIN value is nonzero and not in the range 4352 (X'00001100')

to 65,534 (X'0000FFFE')

Usage Notes

1. Some code page identifiers in use in the Far East refer to "pseudo" or

"combined" code pages with the PC Mixed and Host Mixed encoding schemes.

These identifiers are to be used as CCSIDs rather than CPGIDs. The CDRSMXC

function will not return the corresponding CCSIDs for these combined code

page identifier values.

2. When an ESIN value of zero is specified the function will return the first CCSID

in the resource with the specified CP and a Full or Maximal size. There may be

additional CCSIDs that meet the specified criteria.

Functions for querying CCSID relationships

CDRGRDC - Get Related Default CCSID

Function Description

A given CCSID may not be directly usable in many situations. This function allows the

invoker to get a nearest equivalent or best-fit related CCSID. The related default is

made available in the form of a resource table called Related Default CCSID Table

(RDCT) (see section "Related Default CCSID Table (RDCT) Resource" in Chapter 7 for

details). The caller supplies an ES value as an additional key to select the appropriate

related CCSID.

Resources Used

Related Default CCSID Table (RDCT) - see section "Related Default CCSID Table

(RDCT) Resource" in Chapter 7.

Function Syntax

CDRGRDC (CCSID1, ESIN, SEL, CCSIDR, FB)

Input:

CCSID1: this variable contains the CCSID value referenced; field-type: 32-bit two's

complement binary; a positive number in the range 1 (X'00000001') to 65,279

(X'0000FEFF').

ESIN: this variable contains the ES value referenced; field-type: 32-bit two's

complement binary; a positive number in the range 4352 (X'00001100') to 65,534

(X'0000FFFE'). See Figure 9 in Chapter 3 for the list of valid ESIDs and their

associated meanings.

SEL: This variable is reserved to identify any specific selection criteria as additional

input, for example, to select among two equally valid related defaults; field-type: 32-

bit two's complement binary; a non-negative number in the range 0 to 255.

SEL Meaning

0 Installation default

1 to 127 Reserved for use by CDRA

128 to 255 Reserved for customer use

Output:

CCSIDR: this variable contains the returned CCSID value; field-type: 32-bit two's

complement binary; a positive number in the range 1 (X'00000001') to 65,279

(X'0000FEFF'). If no related default is found, CCSIDR is set to CCSID1.

FB: the function returns in this feedback array the processing status (and any

associated reason) for this function; field type: array of three 32-bit two's

complement binary values (12 bytes, or 96 bits); the status code is a non-negative

number in the first 16 bits, and the reason code is a non-negative number in the

second 16 bits. The following are specific meanings of the status code and associated

reason code values (in Hex) contained in the first 32 bits of FB:

Status Reason Meaning

0000 0000 the function completed successfully

0001 0001 no entry was found in the Related Default CCSID Table(RDCT)

resource for the CCSID1, ESIN, and SEL combination specified. The

CCSID1 value is copied and returned in CCSIDR.

0002 0001 the CCSID1 value is 0, which is reserved for indicating a default in a

hierarchy. It must be resolved before this function is called.

0003 0001 CCSID1 has one of the special- purpose CCSID values in the range

65,280 (X'0000FF00') to 65,535 (X'0000FFFF'); it cannot have a

related default

0005 0001 the value of SEL specified is not supported

0006 0001 the RDCT resource was not found

0006 0002 the RDCT resource is currently unavailable

0007 0001 the system RDCT resource accessed by the function is found to be

invalid in structure

0008 0001 the CCSID1 value is not in the range 0 (X'0000000') to 65,535

(X'0000FFFF')

0008 0002 the ESIN value is not in the range 4352 (X'00001100') to 65,534

(X'0000FFFE'). The CCSID1 value is copied and returned in CCSIDR.

Status Reason Meaning

0008 000B the SEL value is not in the range 0 to 255.

CDRGCCN - Get CCSID for Normalization

Function Description

When certain operations, such as concatenation or comparison, are performed on

graphic character strings, the two strings are both in the same CCSID, or they are

normalized first to a single CCSID before concatenation. This function assists in

determining the CCSID for normalization given two CCSIDs. The returned CCSID may

equal one or both the input CCSIDs.

Resources Used

Normalization Support CCSID Table (NSCT) (see section "Normalization Support

CCSID Table (NSCT) Resource" in Chapter 7).

Function Syntax

CDRGCCN (CCSID1, CCSID2, CCSIDN, HINTV, FB)

Input:

CCSID1: this variable contains the CCSID value referenced; field-type: 32-bit two's

complement binary; a positive number in the range 1 (X'00000001') to 65,279

(X'0000FEFF').

CCSID2: this variable contains the second CCSID value referenced; field-type: 32-bit

two's complement binary; a positive number in the range 1 (X'00000001') to 65,279

(X'0000FEFF').

Output:

CCSIDN: this variable contains the returned CCSID value for normalization; field-type:

32-bit two's complement binary; a positive number in the range 1 (X'00000001') to

65,279 (X'0000FEFF').

HINTV: the function returns in this variable a number (field-type: 32-bit two's

complement binary) that conveys information to assist the calling function in its

subsequent processing. The following values and meanings are defined:

HINTV Meaning

0 No hints

1

CCSID1 and CCSID2 have both the same value for their CP element. The

returned CCSIDN has a character set which is a superset of or equals the

larger of the character sets of CCSID1 and CCSID2.

2

CCSIDN has the same CP element as CCSID2. The character set of CCSIDN is

a superset of or equals the character set of CCSID2. Only the string with

CCSID1 needs to be converted to CCSIDN.

3

CCSIDN has the same CP element as CCSID1. The character set of CCSIDN is

a superset of or equals the character set of CCSID1. Only the string with

CCSID2 needs to be converted to CCSIDN.

4-127 Reserved for use by CDRA.

128-

255
Reserved for customer use.

FB: the function returns in this feedback array the processing status (and any

associated reason) for this function; field type: array of three 32-bit two's

complement binary values (12 bytes, or 96 bits); the status code is a non-negative

number in the first 16 bits, and the reason code is a non-negative number in the

second 16 bits. The following are specific meanings of the status code and associated

reason code values (in Hex) contained in the first 32 bits of FB:

Status Reason Meaning

0000 0000 the function completed successfully

0001 0001 there is no entry in the resource -- Normalization Support CCSID

Table (NSCT) -- for the pair CCSID1, CCSID2

0002 0001 the CCSID1 value is 0, which is reserved to indicate defaulting to a

higher level in a hierarchy. The caller must resolve the default

before calling this function.

0002 0002 the CCSID2 value is 0, which is reserved to indicate defaulting to a

higher level in a hierarchy. The caller must resolve the default

before calling this function.

0003 0001 CCSID1 has one of the special-purpose CCSID values in the range

65,280 (X'0000FF00') to 65,535 (X'0000FFFF')

0003 0002 CCSID2 has one of the special-purpose CCSID values in the range

65,280 (X'0000FF00') to 65,535 (X'0000FFFF')

0006 0001 the NSCT resource was not found

0006 0002 the NSCT resource is currently unavailable

0007 0001 the system NSCT resource accessed by the function is found to be

invalid in structure

Status Reason Meaning

0008 0001 the CCSID1 value is not in the range 0 (X'00000000') to 65,535

(X'0000FFFF')

0008 0002 the CCSID2 value is not in the range 0 (X'00000000') to 65,535

(X'0000FFFF')

Usage Notes

The values returned by this function are implementation specific and may vary from

system to system.

Functions for character data conversion

CDRCVRT - Convert a Graphic Character String

Function Description

This function converts a graphic character data string of the identified string type

(ST1) represented in a specified "from" CCSID (CCSID1) to a graphic character data

string of the required string type (ST2) that is represented in another specified "to"

CCSID (CCSID2).

The function assumes that the entire string to be converted is known and is passed to

the function. Also, the caller has provided sufficient space for the returned converted

string. In case of an overflow situation, an orderly truncation would result.

To perform the conversion, a (CCSID1, ST1) to (CCSID2, ST2) entry must exist in the

Graphic Character Conversion Selection Table (GCCST), along with the conversion

method and conversion tables. See the description and model of this table in chapter 7.

An installation may need to support more than one conversion method or conversion

table(s) from a given (CCSID1, ST1) to (CCSID2, ST2). Each of these alternatives must

have an entry in the GCCST. The Graphic Character Conversion Alternative Selection

Number (GCCASN) differentiates the alternatives, if available, for pairs (CCSID1, ST1)

to (CCSID2, ST2) from one another.

Note:

The GCCASN is not to be confused with the options used in creating the conversion

tables following different criteria for mismatch management; it is used for selecting

the appropriate conversion method and associated table(s).

Resources Used

• CCSID Resource

• Graphic Character Conversion Table (GCCT) repository

• Graphic Character Conversion Selection Table (GCCST)

Function Syntax

CDRCVRT (CCSID1, ST1, S1, L1, CCSID2, ST2, GCCASN, L2, S2, L3, L4, FB)

Input

CCSID1: this variable contains the CCSID value for the input graphic character data

string being converted; field-type: 32-bit two's complement binary; a positive value in

the range 1 (X'00000001') to 65,279 (X'0000FEFF').

ST1: this variable contains the type of input string (types of strings are defined in

chapter 6); field-type: 32-bit two's complement binary; a non-negative number in the

range 0 to 255. The following types are defined:

Type Explanation

0 A Graphic Character String, as semantically defined by CCSID1.

1 A Graphic Character String, as semantically defined by CCSID1, and null-

terminated. Null-terminated strings are defined in chapter 6.

2 A Graphic Character String, as semantically defined by CCSID2, and

SPACE-padded. Padded strings are defined in chapter 6.

3 Special Newline Nextline Handling, a complete description is found in

chapter 6 under Types of Strings.

4-15 String types for bi-directional languages. Details of the characteristics of

these string types are found in chapter 6 under Types of Strings.

16-255 Reserved for future use by CDRA

S1: this variable contains the starting address of the area in the caller's address space

containing the graphic character data to be converted

L1: this variable contains the length (in number of bytes) of:

• the string to be converted when ST1=0 or

• the input buffer when ST1=1

contained in the area starting at S1; field-type: 32-bit two's complement binary; a

positive number whose maximum value is implementation-specific

CCSID2: this variable contains the CCSID value for the converted graphic character

data string; field-type: 32-bit two's complement binary; a positive value in the range 1

(X'00000001') to 65,279 (X'0000FEFF').

ST2: this variable contains the type of output string (types of strings are defined in

chapter 6); field-type: 32-bit two's complement binary; a non-negative number in the

range 0 to 255. The following types are defined:

Type Explanation

0 A Graphic Character String, as semantically defined by CCSID1.

1 A Graphic Character String, as semantically defined by CCSID1, and null-

terminated. Null-terminated strings are defined in chapter 6.

2 A Graphic Character String, as semantically defined by CCSID2, and

SPACE-padded. Padded strings are defined in chapter 6.

3 Special Newline Nextline Handling, a complete description is found in

chapter 6 under Types of Strings.

4-15 String types for bi-directional languages. Details of the characteristics of

these string types are found in chapter 6 under Types of Strings.

16-255 Reserved for future use by CDRA

GCCASN: this variable contains a number that identifies which conversion alternative

is to be selected to convert graphic character data from (CCSID1, ST1) to (CCSID2,

ST2); field-type: 32-bit two's complement binary; a non-negative number in the range

0 to 255.

Value Nature of the Conversion Alternative Selected

0 is used to select the designated "installation default" conversion

method and table(s) (see chapter 7 for a model).

1 is used to select the CDRA-defined default method and associated

conversion table(s). The difference management criterion used in

the creation of the selected tables is based on country requirements

to serve most applications using the selected CCSID pairs.

2-9 are reserved for future allocation by CDRA.

10-55 are reserved to select other CDRA-defined alternatives; each

conversion table selected is created using the round-trip mismatch

management criterion.

56-101 are reserved to select other CDRA-defined alternatives; each

conversion table selected is created using the enforced subset

mismatch management criterion.

Value Nature of the Conversion Alternative Selected

102-147 are reserved to select other CDRA-defined alternatives. These

alternatives may include conversions where:

• the mismatch management criterion used in creating any of

the selected tables is other than round trip or enforced subset

• multiple conversion tables are selected and unequal criteria

have been used when creating the different tables.

148-255 are reserved for selecting customer-defined alternatives. A customer

organization may establish and control ranges of GCCASN to

distinguish between different mismatch management criteria,

similar to the IBM-defined ones described above.

L2: this variable contains the byte-length of the allocated area starting at S2 to

contain the converted graphic character data; field-type: 32-bit two's complement

binary; a positive number whose maximum value is implementation-specific.

Output

S2: the converted graphic character data is placed in the area (in the invoker's

address space), whose starting address is specified by the invoker in S2; the area's

allocated length is given in L2.

Under certain error conditions the output may contain the results of converting only a

part of the input string.

L3: this variable contains the byte-length of the converted string returned in S2; field-

type: 32-bit two's complement binary; a positive number whose maximum value is

implementation-specific.

The byte-length includes any null termination or padding characters necessary to

retain the semantics of CCSID2 and ST2.

L4: this variable contains a byte-number in the input string; field-type: 32-bit two's

complement binary; a non-negative number whose maximum value is

implementation-specific. The value of L4 is dependent upon the manner in which the

convert function terminates. The values that may be returned are as follows:

• When the function detects an output buffer overflow condition, L4 is set to

the first byte of the code point representing the next character to be

converted in the input string S1.

• If the function detects an error in the input string, L4 contains the byte number

in the input string S1 that is being processed when the error is detected.

• When the conversion is error-free, a value of zero is returned in L4.

FB: the function returns in this feedback array the processing status (and any

associated reason) for this function; field type: array of three 32-bit two's

complement binary values (12 bytes, or 96 bits); the status code is a non-negative

number in the first 16 bits, and the reason code is a non-negative number in the

second 16 bits. The following are specific meanings of the status code and associated

reason code values (in Hex) contained in the first 32 bits of FB:

Status Reason Meaning

0000 0000 the function completed successfully

0001 0001 the requested conversion is not supported (there is no entry in

GCCST for the specified (CCSID1, ST1), (CCSID2, ST2), GCCASN

combination)

0001 0005 the requested conversion algorithm specified by GCCASN does not

support the specified (CCSID1, ST1) to (CCSID2, ST2) combination

0001 0006 the GCCASN value is 0; but an "installation default" was not found in

the GCCST for the pair (CCSID1, ST1) to (CCSID2, ST2)

0002 0001 the CCSID1 value is 0, which is reserved to indicate defaulting to a

higher level in a hierarchy. The caller must resolve the default before

calling this function.

0002 0002 the CCSID2 value is 0, which is reserved to indicate defaulting to a

higher level in a hierarchy. The caller must resolve the default before

calling this function.

0003 0001 CCSID1 has one of the special-purpose CCSID values in the range

65,280 (X'0000FF00') to 65,535 (X'0000FFFF')

0003 0002 CCSID2 has one of the special-purpose CCSID values in the range

65,280 (X'0000FF00') to 65,535 (X'0000FFFF')

0004 0001 the length value in L2 allocated for area S2 was too small for the

output data. A properly truncated and terminated converted string

that fits within the allocated maximum is returned in the area

starting at S2 with its byte-length in L3. The value in L4 is set to the

first byte of the code point representing the next character to be

converted in the input string S1.

0004 0002 the encoding scheme of CCSID1 is X'1301' (mixed Host SB/DB

encoding). The length value in L2 allocated for area S2 was too small

for the output data. A properly truncated and terminated converted

string that fits within the allocated maximum is returned in the area

starting at S2 with its byte-length in L3. The value in L4 is set to the

first byte of a double-byte character (between SO and SI code

points) that would have been converted next in the input buffer.

Status Reason Meaning

0005 0001 a pure double-byte CCSID1 was specified and either

• ST1=0 and L1 is odd, or

• vST1=1 and an orphan byte was found

0005 0004 ES of CCSID1 is X'1301', and a malformed string -- an odd number of

bytes between SO, SI code points -- was encountered

0005 0005 a null-terminated input string was specified using ST1=1; however,

there was no null-termination character in S1 within the length L1

specified.

0005 0006 a null-terminated output string was specified using ST2=1; however,

the output string contains one or more characters matching the null-

termination character, resulting from using the selected conversion

tables and methods.

0005 0007 a SPACE-padded output string was specified using ST2=2; however,

the definition for SPACE character could not be obtained (the CCSID

resource definition did not have an entry for SPACE character

definition, or the CCSID resource definition could not be found).

0005 0008 a pure double-byte CCSID2 with ST2=1 was specified, and an odd

value was specified for length L2 of the output buffer. The convert

function returns only an even number of bytes (maximum L2-1

bytes), including the null-termination character in S2.

0005 0009 a pure double-byte CCSID2 with ST2=2 (SPACE-padded string) was

specified, and an odd value was specified for length L2 of the output

buffer. The convert function returns L2-1 bytes, including the

SPACE-padding characters, in S2.

0005 000C ES of CCSID1 is X'1301', and a trailing SI bracket is missing.

0005 000D ES of CCSID1 is X'1301', and a trailing SI code point was

encountered without first encountering its corresponding leading SO

code point (the number of intervening code points may have been

odd or even; the code points would have been treated as single-byte

code points because the leading SO was missing)

0006 0001 the selection table (GCCST) could not be found.

0006 0002 a CDRA resource is currently unavailable.

0006 0003 the conversion method identified in the GCCST for the specified

selection is currently unavailable.

0006 0004 a conversion table identified in the GCCST for the specified selection

could not be found.

0007 0001 the system GCCST resource accessed by the function is found to be

invalid in structure.

0007 0002 the system GCCT resource accessed by the function is found to be

invalid in structure.

Status Reason Meaning

0007 0003 the table type of GCCT does not match the method selected from

GCCST.

0008 0001 the CCSID1 value is not in the range 0 (X'00000000') to 65,535

(X'0000FFFF').

0008 0002 the CCSID2 value is not in the range 0 (X'00000000') to 65,535

(X'0000FFFF').

0008 0003 the ST1 value is not in the range 0 to 255.

0008 0004 the ST2 value is not in the range 0 to 255.

0008 0005 L1 is outside the range permitted by this implementation.

0008 0006 L2 is outside the range permitted by this implementation.

0008 0007 GCCASN is not in the range 0 to 255.

0100 0001
one or more input graphic characters were replaced with a "SUB"

character specified for the output string.

0100 0002 the conversion specified has resulted in character mismatches.

Usage Notes

1. Some of the above status and reason code values are possible only when the

method selected and the tables used have the capabilities to indicate that a

character replacement has occurred (using shadow flags or other equivalent

means) or that a substitution with a SUB character was done.

2. When CDRCVRT terminates with a feedback code indicating that the area

allocated for output was insufficient, it is the responsibility of the caller to

ensure that the remaining portion of the input string is semantically correct

prior to making a subsequent call to complete the conversion. For example, in

the case of input data with an encoding scheme of X'1301' (mixed Host SB/DB

encoding), an SI is added at the end of the truncated output string if required;

however, no alteration is made to the input string. If a subsequent call is made

with the remainder of the input string, the function will terminate

unsuccessfully as an SI will be encountered without a leading SO.

3. When the encoding associated with a CCSID is such that all graphic character

code points are a fixed number of bytes (for example, two for pure double-

byte), the assumption is that there are no characters (control or graphic) with a

code point width different from that called for by the encoding scheme (other

than the termination characters appropriate for the specified input string type)

in the input string. The caller is responsible for filtering out any such characters

or sequences before calling the function.

CDRMSCI - Multiple-Step Convert Initialize

Function Description

This function is part of the triplet of functions used in a multiple step conversion. It is

the initializing function, CDRMSCP is the actual conversion function, and CDRMSCC is

the cleanup function.

CDRMSCI performs initialization in preparation for subsequent calls to CDRMSCP.

Initialization-related steps performed by the function include:

• Locate the appropriate method and conversion table(s)

• Allocate workspace

• Retrieve and move the method or tables into the execution workspace

• Resolve all the default values that are needed to perform the conversion,

applying any specified overrides for them

• Initialize all pointers, state flags, or other controlling information associated

with the conversion method.

For the conversion to be performed, an entry must exist for the specified set of:

From CCSID, To CCSID, From ST, To ST, and GCCASN

in the Graphic Character Conversion Selection Table (GCCST), along with the

conversion method and conversion table(s). This function returns a token, which can

be used to convert graphic character strings in subsequent calls to CDRMSCP

(perform conversion). The token corresponds to a control block (or other equivalent

mechanism) in the conversion service. The control block and all the allocated

resources and pointers are made available to the invoker for performing conversion

without incurring any initialization overhead.

Resources Used

• CCSID Resource (see chapter 7 for a description of the resource)

• Graphic Character Conversion Table (GCCT) repository (see chapter 7 for a

description of the resource)

• Graphic Character Conversion Selection Table (GCCST) (see chapter 7 for a

description of the resource)

Function Syntax

CDRMSCI (CCSID1, ST1, CCSID2, ST2, GCCASN, TOKEN, FB)

Input

CCSID1: this variable contains the CCSID value for the input graphic character data

string being converted; field-type: 32-bit two's complement binary; a positive value in

the range 1 (X'00000001') to 65,279 (X'0000FEFF').

ST1: this variable contains the type of input string (types of strings are defined in

chapter 6); field-type: 32-bit two's complement binary; a non-negative number in the

range 0 to 255. The following types are defined:

Type Explanation

0 A Graphic Character String, as semantically defined by CCSID1.

1 A Graphic Character String, as semantically defined by CCSID1, and null-

terminated. Null-terminated strings are defined in chapter 6.

2 A Graphic Character String, as semantically defined by CCSID2, and

SPACE-padded. Padded strings are defined in chapter 6.

3 Special Newline Nextline Handling, a complete description is found in

chapter 6 under Types of Strings.

4-15 String types for bi-directional languages. Details of the characteristics of

these string types are found in chapter 6 under Types of Strings.

16-255 Reserved for future use by CDRA

CCSID2: this variable contains the CCSID value for the converted graphic character

data string; field-type: 32-bit two's complement binary; a positive value in the range 1

(X'00000001') to 65,279 (X'0000FEFF').

ST2: this variable contains the type of output string (sting types are defined in chapter

6); field-type: 32-bit two's complement binary; a non-negative number in the range 0

to 255. The following types are defined:

Type Explanation

0 A Graphic Character String, as semantically defined by CCSID1.

1 A Graphic Character String, as semantically defined by CCSID1, and null-

terminated. Null-terminated strings are defined in chapter 6.

2 A Graphic Character String, as semantically defined by CCSID2, and

SPACE-padded. Padded strings are defined in chapter 6.

3 Special Newline Nextline Handling, a complete description is found in

chapter 6 under Types of Strings.

4-15 String types for bi-directional languages. Details of the characteristics of

these string types are found in chapter 6 under Types of Strings.

16-255 Reserved for future use by CDRA

GCCASN: this variable contains a number that identifies which conversion alternative

is to be selected to convert graphic character data from (CCSID1, ST1) to (CCSID2,

ST2); field-type: 32-bit two's complement binary; a non-negative number in the range

0 to 255.

Value Nature of the Conversion Alternative Selected

0 is used to select the designated "installation default" conversion

method and table(s) (see chapter 7 for a model).

1 is used to select the CDRA-defined default method and associated

conversion table(s). The difference management criterion used in

the creation of the selected tables is based on country requirements

to serve the majority of applications using the selected CCSID pairs.

2-9 are reserved for future allocation by CDRA.

10-55 are reserved to select other CDRA-defined alternatives; each

conversion table selected is created using the round-trip mismatch

management criterion.

56-101 are reserved to select other CDRA-defined alternatives; each

conversion table selected is created using the enforced subset

mismatch management criterion.

102-147 are reserved to select other CDRA-defined alternatives. These

alternatives may include conversions where:

• the mismatch management criterion used in creating any of

the selected tables is other than round trip or enforced subset

• more than one conversion table is selected and unequal

criteria have been used when creating the different tables.

148-255 are reserved for selecting customer-defined alternatives. A customer

organization may establish and control ranges of GCCASN to

distinguish between different mismatch management criteria,

similar to the IBM-defined ones described above.

Output

TOKEN: a 256-bit (eight 32-bit two's complement binary numbers) array to contain

the value of a token returned by the initialize function. This token must be passed

unchanged as an input parameter to subsequent CDRMSCP (Multiple-Step Convert

Perform) calls and a closing CDRMSCC (Multiple-Step Convert Clean Up) call.

FB: the function returns in this feedback array the processing status (and any

associated reason) for this function; field type: array of three 32-bit two's

complement binary values (12 bytes, or 96 bits); the status code is a non-negative

number in the first 16 bits, and the reason code is a non-negative number in the

second 16 bits. The following are specific meanings of the status code and associated

reason code values (in Hex) contained in the first 32 bits of FB:

Status Reason Meaning

0000 0000 the function completed successfully

0001 0001 requested conversion is not supported (there is no entry in GCCST for

the specified CCSID1, ST1, CCSID2, ST2, GCCASN combination)

0001 0005 the requested conversion algorithm specified by GCCASN does not

support the specified (CCSID1, ST1) to (CCSID2, ST2) combination

0001 0006 the GCCASN value is 0; but an "installation default" was not found in

the GCCST, for the pair (CCSID1, ST1) to (CCSID2, ST2)

0002 0001 CCSID1 value is 0, which is reserved to indicate defaulting to a higher

level in a hierarchy. The invoker must resolve the default before

invoking this function.

0002 0002 CCSID2 value is 0, which is reserved to indicate defaulting to a higher

level in a hierarchy. The invoker must resolve the default before

invoking this function.

0003 0001 CCSID1 has one of the special-purpose CCSID values in the range

65,280 (X'0000FF00') to 65,535 (X'0000FFFF')

0003 0002 CCSID2 has one of the special-purpose CCSID values in the range

65,280 (X'0000FF00') to 65,535 (X'0000FFFF')

0005 0007 a SPACE-padded output string was specified using ST2=2; however,

the definition for SPACE character could not be obtained -- the

CCSID resource definition did not have an entry for SPACE character

definition, or the CCSID resource definition could not be found.

0006 0001 the selection table (GCCST) was not found

0006 0002 a CDRA resource is currently unavailable

0006 0003 the conversion method identified in the GCCST for the specified

selection is currently unavailable

0006 0004 a conversion table identified in the GCCST for the specified selection

could not be found.

0006 0007 unable to generate TOKEN as requested

0007 0001 the system GCCST resource accessed by the function is found to be

invalid in structure

0007 0002 the system GCCT resource accessed by the function is found to be

invalid in structure

0007 0003 the table type of GCCT does not match the method selected from

GCCST.

0008 0001 the CCSID1 value is not in the range 0 (X'00000000') to 65,535

(X'0000FFFF')

0008 0002 CCSID2 value is not in the range 0 (X'00000000') to 65,535

(X'0000FFFF')

0008 0003 ST1 value is not in the range 0 to 255

0008 0004 ST2 value is not in the range 0 to 255

Status Reason Meaning

0008 0007 GCCASN is not in the range 0 to 255

Usage Notes

See Usage Notes under CDRCVRT.

CDRMSCP - Multiple-Step Convert Perform

Function Description

This function is part of the triplet of functions used in a multiple-step conversion.

CDRMSCI is the initializing function, this is the actual conversion function, and

CDRMSCC is the cleanup function.

CDRMSCP converts a graphic character data string using the previously allocated

control block (along with all the associated resources needed to perform the

conversion). The token received from a previous invocation of CDRMSCI (Multiple-

Step Convert Initialize) is the mechanism to access the allocated control block.

Resources Used

Graphic Character Conversion Table (GCCT) (see the description of this resource in

chapter 7).

Function Syntax

CDRMSCP (TOKEN, S1, L1, L2, S2, L3, L4, FB)

Input

TOKEN: a 256-bit (eight 32-bit binary) array that contains the value of a token

obtained by invoking the initialize function CDRMSCI (Multiple-Step Convert

Initialize).

S1: this variable contains the starting address of the area in the invoker's address

space containing the graphic character data to be converted

L1: this variable contains the length (in number of bytes) of:

• the string to be converted when ST1=0 or

• the input buffer when ST1=1

contained in the area starting at S1; field-type: 32-bit two's complement binary; a

positive number whose maximum value is implementation-specific

L2: this variable contains the byte-length of the allocated area starting at S2 to

contain the converted graphic character data; field-type: 32-bit two's complement

binary; a positive number whose maximum value is implementation-specific.

Output

S2: the converted graphic character data is placed in the area (in the invoker's

address space), whose starting address is specified by the invoker in S2; the area's

allocated length is given in L2.

Under certain error conditions the output may contain the results of converting only a

part of the input string.

L3: this variable contains the byte-length of the converted string returned in S2; field-

type: 32-bit two's complement binary; a positive number whose maximum value is

implementation-specific.

The byte-length includes any null termination or padding characters necessary to

retain the semantics of CCSID2 and ST2.

L4: this variable contains a byte-number in the input string; field-type: 32-bit two's

complement binary; a non-negative number whose maximum value is

implementation-specific. The value of L4 is dependent upon how the convert function

terminates. The values that may be returned are as follows:

• When the function detects an output buffer overflow condition, L4 is set to the first

byte of the code point representing the next character to be converted in the input

string S1.

• If the function detects an error in the input string, L4 contains the byte number in the

input string S1 that is being processed when the error is detected.

• When the conversion is error-free, a value of zero is returned in L4.

FB: the function returns in this feedback array the processing status (and any

associated reason) for this function; field type: array of three 32-bit two's

complement binary values (12 bytes, or 96 bits); the status code is a non-negative

number in the first 16 bits, and the reason code is a non-negative number in the

second 16 bits. The following are specific meanings of the status code and associated

reason code values (in Hex) contained in the first 32 bits of FB:

Status Reason Meaning

0000 0000 the function completed successfully

Status Reason Meaning

0004 0001 the length value in L2 allocated for area S2 was too small for the

output data. A properly truncated and terminated converted string

that fits within the allocated maximum is returned in the area starting

at S2 with its byte-length in L3. The value in L4 is set to the first byte

of the code point representing the next character to be converted in

the input string S1.

0004 0002 the encoding scheme of CCSID1 is X'1301' (mixed Host SB/DB

encoding). The length value in L2 allocated for area S2 was too small

for the output data. A properly truncated and terminated converted

string that fits within the allocated maximum is returned in the area

starting at S2 with its byte-length in L3. The value in L4 is set to the

first byte of a double-byte character (between SO and SI brackets)

that would have been converted next in the input buffer.

0005 0001 a pure double-byte CCSID1 was specified and either

• ST1=0 and L1 is odd, or

• ST1=1 and an orphan byte was found

0005 0004 ES of CCSID1 is X'1301', and a malformed string -- an odd number of

bytes between SO, SI bracket -- was encountered

0005 0005 a null-terminated input string was specified using ST1=1; however,

there was no null-termination character in S1 within the length L1

specified.

0005 0006 a null-terminated output string was specified using ST2=1; however,

the output string contains one or more characters matching the null-

termination character, resulting from using the selected conversion

tables and methods.

0005 0008 a pure double-byte CCSID2 with ST2=1 was specified, and an odd

value was specified for length L2 of the output buffer. The convert

function returns only an even number of bytes (maximum L2-1 bytes),

including the null-termination character in S2.

0005 0009 a pure double-byte CCSID2 with ST2=2 (SPACE-padded string) was

specified, and an odd value was specified for length L2 of the output

buffer. The convert function returns L2-1 bytes, including the SPACE-

padding characters, in S2.

0005 000C ES of CCSID1 is X'1301', and a trailing SI bracket is missing.

0005 000D ES of CCSID1 is X'1301', and a trailing SI code point was encountered

without first encountering its corresponding leading SO code point

(the number of intervening code points may have been odd or even;

the code points would have been treated as single-byte code points

because the leading SO was missing)

0006 0006 the token is invalid in structure.

Status Reason Meaning

0008 0005 L1 is outside the range permitted by this implementation.

0008 0006 L2 is outside the range permitted by this implementation.

0100 0001 one or more input graphic characters were replaced with a "SUB"

character specified for the output string.

0100 0002 the conversion specified have resulted in character mismatches.

Usage Notes

None

CDRMSCC - Multiple-Step Convert Clean Up

Function Description

This function is part of the triplet of functions used in a multiple-step conversion.

CDRMSCI is the initializing function, CDRMSCP is the actual c conversion function, and

this function is the cleanup function.

CDRMSCC releases the control block and all the allocated resources associated with

TOKEN, on behalf of the invoker. All intermediate state or other control information

for the conversion methods are also released once the control block (or equivalent

internal structures in the common service implementation) is released.

Resources Used

Graphic Character Conversion Table (GCCT) (see "Graphic Character Conversion Table

(GCCT) Resource" in chapter 7).

Function Syntax

CDRMSCC (TOKEN, FB)

Input/Output

TOKEN: a 256-bit (eight 32-bit binary) array that contains the value of a token that

was generated by an earlier invocation of the initialize function CDRMSCI (Multiple-

Step Convert Initialize). The token is filled with zeros and returned from a successful

cleanup.

Output

FB: the function returns in this feedback array the processing status (and any

associated reason) for this function; field type: array of three 32-bit two's

complement binary values (12 bytes, or 96 bits); the status code is a non-negative

number in the first 16 bits, and the reason code is a non-negative number in the

second 16 bits. The following are specific meanings of the status code and associated

reason code values (in Hex) contained in the first 32 bits of FB:

Status Reason Meaning

0000 0000 the function completed successfully

0006 0006 the token is invalid in structure

Usage Notes

An invalid token condition can be caused by:

• The caller did not call CDRMSCI to initialize conversion

• The TOKEN value got garbled in the invoker's address space between the

CDRMSCI call and the CDRMSCC call

• Some system service such as an idle or hung TOKEN cleanup routine may have

removed that token value from a list of active tokens.

Function for Identifying Exception Conditions

CDRXSRF - Extract Status and Reason Codes from

Feedback Code

Function Description

This function extracts the values of status and reason codes contained in the 96-bit

structure of an input Feedback code. Its purpose is to assist the caller of a function

dealing with the status and reason codes as individual values during error handling.

An error condition is indicated by a nonzero value in the first 32 bits (the first array

element) of the feedback code.

Resources Used

None

Function Syntax

CDRXSRF (INFB, STATUS, REASON, FB)

Input

INFB: this variable is the start of the area containing the input Feedback Code; it is an

array of three 32-bit two's complement binary values (96 bits) (see Figure 15).

Output

STATUS: this variable contains the status code (value in the first 16 bits of INFB); field

type: 32-bit two's complement binary.

REASON: this variable contains the reason code (value in the second 16 bits of INFB);

field type: 32-bit two's complement binary.

FB: the function returns in this array the processing status (and any associated

reason) for this function; field type: array of three 32-bit two's complement binary

values (12 bytes, or 96 bits); the status code is a positive number in the first 16 bits

and the reason code is a positive number in the second 16 bits. The following are

specific meanings of the status code and associated reason code values (in Hex)

contained in the first 32 bits of FB:

Status Reason Meaning

0000 0000 the function completed successfully

Usage Notes

None

Chapter 6. Difference Management

One of the key challenges in heterogeneous environments is to be able to deal with

different coded graphic character sets and code pages in a consistent manner.

Differences exist for reasons such as the origins of operating systems, the provision of

national language support in different countries, or an application's requirements.

Migration to interoperable character sets and code pages for different countries and

groups of countries will minimize, but not eliminate, the differences to be dealt with.

Applications will continue to face this challenge, but now with assistance from CDRA.

Four functions, CDRCVRT, CDRMSCI, CDRMSCP, and CDRMSCC, were defined earlier

(in "Chapter 5. CDRA Interface Definitions") in support of difference management. The

present chapter describes the concepts behind difference management, the

principles and criteria in designing the contents of conversion tables, and some

aspects of managing the selection of the required conversion methods and tables.

Concepts

Difference management is a process by which differences in coded graphic character

representation of data are recognized and dealt with. Difference-detection

mechanisms must be placed in appropriate locations within a system to determine if

such differences do exist.

Differences in the data representation and the processing capabilities of an

application are used to trigger a difference management action. The choices may be

to convert the graphic character data, to leave it as it is, or to terminate the current

function altogether. CDRA provides assistance when a choice to convert the data has

been made. Conversion is viewed as a tool in difference management. The results of

difference management within CDRA will be dependent upon the conversion tables

and the conversion methods chosen.

A general view of the difference management process is shown in Figure 17.

The query function (see Querying Tag Values in chapter 4) assists in finding the

relevant tag values to decide if a difference exists.

Figure 17. Difference management process flow

Do Not Convert

Potential reasons for not converting the data are as follows:

• The data can be processed as-is. Processing logic or a resource that can

process the data correctly is available and can be selected.

• The data is required to remain in its original form (retaining its associated tag

value). For example, when the context of use is simply store and retrieve, no

processing is to be done in the storage environment; thus, conversion is not

necessary. Note that this may not always be feasible, in that a receiving

component may have restrictions on the CCSID(s) for the data handled by that

component.

• The required conversion cannot be performed, as a necessary resource is not

available. Here, the "do not convert" decision is made after the conversion

function is called.

• The conversion results will be unsatisfactory. For example, the data loss or

integrity loss could be unacceptable.

Convert

The simplest form of conversion is the case where the input and output character sets

are equivalent, but the code point assignments for the characters are different. Here,

all the matched characters will only need to have their code points mapped.

The more general form of conversion must deal with input and output character sets

within which only a subset of the characters is equivalent.

During a conversion, only the common set of coded graphic characters can be

preserved. Management of the remaining unmatched characters depends on the

nature and context of the data. Conversion with mismatches can generate converted

data that may not have an assigned graphic character meaning in the output. Such

results of conversion may not be acceptable to an application.

CDRA has defined criteria for dealing with mismatches during the conversion process.

The specific criterion to be used is reflected in the content of the conversion tables

(and the logic that uses them) that are used in the conversion process. A set of default

conversion tables has been defined to map between specific pairs of CCSIDs

according to the most appropriate criterion, and are defined with consistency as the

goal. The use of such tables enhances the consistency among implementing products

when performing coded graphic character data conversion.

One of CDRA's goals is to minimize the loss of coded graphic character data during

conversion. The interoperable character sets and associated CDRA-defined

conversion tables help to address this goal by maximizing graphic character integrity

within a character-set group or subgroup.

Generic data conversion process

Once the decision to convert has been made, a generic data conversion process can

be used.

A generic data conversion process contains many elements, one of which is the

graphic character data conversion process. Figure 18 shows the elements of a typical

data conversion procedure.

The different elements and their functions are:

• A parser, which is selected based on the architecture of the input data stream

or on the description of the caller's view (input view) of the data. The parser is

responsible for separating the input data into different classifications or

substrings, such as graphic character data, control characters/functions,

floating-point numbers etc. These substrings, along with their characteristics,

are passed on to the converter.

• The converter is responsible for sending each substring to the appropriate

mapping module. Once mapped, each module returns the converted substring

back to the converter. These substrings are then passed on the output

generator.

• The mapping modules, accept substrings from the converter, perform the

appropriate mappings and return the new substrings to the converter.

• The output generator receives the converted data substrings from the

converter and puts them together as an output data stream made up of

substrings of different classes.

Figure 18. Generic data conversion process

CDRA defines only the graphic character data conversion part of the overall data

conversion process. A limited number of control characters are addressed as part of

handling different string types (see Types of Strings) and as part of control character

mappings (see Pairings of Code Points). Other control characters are treated as bytes,

and are dealt with according to mismatch management criteria.

Separation of Graphic Characters

For correct results, the caller of the CDRA conversion function should ensure that the

input string does not contain characters other than graphic character data.

Each one of these conversion modules may permit direct access by an application.

Here, the application assumes the responsibility for the functions of parsing and

output generation. For example, when an application creates a sequential file in the

PC, only it knows where the string of bytes is broken into logical substrings and which

of these substrings represent graphic character data. Conventions such as CR, LF to

show an end of record for organizing a file, must be known and handled by the parsing

logic and the output generator. Handling of the data organization for output is not

performed by the graphic character conversion function.

Misinterpretation of Data

If the separation of graphic character data from other classes of data is not done, the

graphic character conversion function can find byte strings that may or may not have

graphic character meanings. The criterion selected for mismatch management

specifies how to convert such byte strings if they appear in the input string. However,

the problem of possible misinterpretation cannot be entirely dealt with using the

CDRA conversion criteria alone.

For example, if the data byte was representing a counter value equal to 74, which is

the same bit configuration as the code point X'4A' for a left square bracket in a

System/370* CCSID 00500, it will get converted to another code point (X'5B')

representing the left square bracket in a PC using CCSID 00850. If this value is

interpreted as a count on the PC, the value is now 91. Neither the CDRA identifiers nor

the graphic character conversion process can deal with this kind of misinterpretation.

Types of Strings

A graphic character string may have several characteristics or properties associated

with it. Some of these characteristics or properties are inherited from the encoding

scheme such as the number of bytes per character. Others, such as how a string is

terminated, the orientation of the string or whether the characters are shaped or

unshaped cannot be determined by the CCSID tag or encoding scheme alone. The

following String Types are defined for use within the CDRA architecture.

String Type 0: CDRA Default

If there is no string type specified in a CCSID definition or as a parameter on an API

call then the string type is zero. A string type of 0 means that the character data string

is semantically defined by the CCSID. All the characteristics of the string can be

determined from the CCSID definition alone. No additional information is needed.

String Type 1: Null-terminated string

A variable-length graphic character string, which is terminated by a character whose

code point has a binary value of zero. The number of bits in the code point used to

represent the terminating character (the null terminator) is the smallest number of

bits allowed for code points in the encoding scheme used.

The above definition is used in the following examples to determine the null-

termination character:

• If the ES associated with CCSID1 indicates a "pure single-byte" or "mixed

single-byte and double-byte" encoding, X'00' is used to terminate the string. In

a mixed-byte string a null-termination can occur only in the single-byte

segment of the string.

• In a string encoded using ES X'1301' (host mixed), a null-termination can occur

only outside the SO and SI that surround the double-byte coded substring.

Thus, any double-byte code point that begins with X'00' (such as in 327x data

stream, where some EBCDIC control characters are represented in the data

stream with X'00' preceding their corresponding single-byte code points) or

ends with X'00' must not be interpreted to be a null-termination character.

• In a string using ES X'3300', X'2300' or X'2305', a double-byte code point can

never begin with or terminate with X'00'. This also implies that no data code

point in the string can be X'00'.

• If the encoding scheme indicates "pure double-byte" encoding, the null-

termination character is X'0000'. This implies that none of the data code points

in the string can be X'0000'.

The above definitions reflect the current usage and definitions of a null-terminated

string in the C programming language. A length value may additionally be provided for

the string; however, the null terminator takes precedence over the length value.

A null-terminated string is given a string type identifier of 1 in CDRA function calls and

in the Graphic Character Conversion Selection Table (GCCST).

String Type 2: Padded string

A graphic character string that is padded with one or more space characters. Padding

is done only when there is unused storage space available in an area containing the

unpadded string, and when it can be done without violating the semantics of the

encoding scheme of the CCSID of the string. The resultant space padded string will be

a well-formed string following the semantics of its encoding scheme.

Caution: When space padding is done as part of graphic character conversion, it is not

possible to distinguish (in the resultant output buffer) the space pad characters that

are generated as a result of conversion maps from those generated by the padding

process. If a subsequent string operation removes the space characters, there can be

a potential loss of the converted pad characters.

• If the encoding scheme of the string is either "pure single-byte" or "mixed

single-byte and double-byte", when the string occupies less than the area

allocated for it, the string is padded to fill the remaining area with SPACE

characters. The definition of SPACE is to be taken from the CCSID resource

definition. In a mixed string the padding must be done only in the single-byte

segment of the string.

• If the encoding scheme of the string is "pure double-byte", the SPACE

character will have a double-byte code point specified in the string's CCSID

resource definition.

String Type 3: "Special Newline Nextline Handling"

String type 3 has special meaning in certain IBM products. If a character data string is

defined as a string type 3 than it is semantically defined by the CCSID with the

additional property that any newline control characters in the string should be treated

as linefeed control characters and likewise, any linefeed control characters should be

treated as newline control characters.

String Types 4 - 15: String Types for Bidirectional Languages

In the case of bidirectional languages, the string type is used to describe

characteristics that are not implied by the CCSID or Encoding Scheme. The string

characteristics which are defined for the bidirectional string types are:

• Text Type

• Numeric Shaping

• Orientation

• Text Shaping

• Symmetrical Swapping.

Following is a brief description of each of these characteristics and their possible

values.

Text Type

The text type characteristic states what kind of algorithm is to be used when

transforming the text layout. The text type can be visual (reading sequence), implicit

(typing sequence), or explicit (includes directional control characters in the text

segments explicitly). A visual algorithm copies entire lines of text as they appear

without bothering about existing embedded directional segments. An implicit

algorithm recognizes directional segments based on the natural directionality of the

characters (i.e., right to left for Arabic characters and left to right for English

characters) and performs segment inversions accordingly. An explicit algorithm

recognizes directional segments and performs inversions based on special, explicit,

directional controls embedded in the text.

Example:

Visual, shaped text:

Implicit, unshaped text: Arabic implicit string

Numeric Shaping

The numeric shaping characteristic states whether the numbers embedded in a text

string will have the shapes that are used in English (called Arabic digits), or the

national numerical shapes. Possible values for this characteristic are Arabic, Hindi or

passthrough. When passthrough is specified numeric digits are left as they appear in

the data string (no numeric shaping occurs).

Orientation

The orientation of a data string together with the text type, indicates the storage or

display sequence of the Arabic and English characters. The possible values for this

characteristic are left to right (LTR), right to left (RTL), Contextual LTR and Contextual

RTL. The term contextual is used to indicate that the orientation should be taken from

the context of the data. The data may contain "strong" characters that are either

orientation left or orientation right. The term following contextual (LTR or RTL)

specifies what should be the default orientation when the data is orientation-neutral

(i.e. there are no strong characters).

Text Shaping

The text shaping characteristic of a bidirectional string type indicates whether text

shaping is performed. This is relevant for the scripts of Arabic languages (including

Farsi and Urdu), where characters assume different shapes (initial, medial, final, or

isolated) according to their position in a word and the connectivity traits of the

character and its surroundings.

Symmetrical Swapping

The symmetric swapping characteristic states whether, in a right-to-left text phrase

some directional pairs of characters (such as left and right parentheses, greater than

and lesser than signs, left and right brackets, left and right braces) will be

interchanged to preserve the logical meaning of the inverted text.

Each CCSID that is defined in support of a bidirectional language may have a default

string type associated with it. If a string is tagged with a CCSID for a bidirectional

language and no string type is explicitly specified than the default string type is to be

used. If no default string type has been specified then the string type is defined to be

0.

The following table shows the specific characteristics of each bidirectional string type

that have been defined to date.

String

Type

Text

Type
Numeric Shaping Orientation Text Shaping

Symmetrical

Swapping

4 Visual Passthrough LTR Shaped Off

5 Implicit Arabic LTR Unshaped On

6 Implicit Arabic RTL Unshaped On

7 Visual Passthrough Contextual Unshaped-Lig Off

8 Visual Passthrough RTL Shaped Off

9 Visual Passthrough RTL Shaped On

10 Implicit Arabic
Contextual

LTR
Unshaped On

11 Implicit Arabic
Contextual

RTL
Unshaped On

12 Implicit Arabic RTL Shaped Off

13 Visual
Hindi

Arabic-Indic
LTR Shaped Off

14 Visual
Hindi

Arabic-Indic
RTL Shaped Off

15 Visual
Hindi

Arabic-Indic
RTL Shaped On

16 Visual Contextual LTR Shaped Off

17 Visual Contextual RTL Shaped Off

Such strings are often interchanged in heterogeneous (or distributed) environments

between applications that can support these string types. If the data conversion

methods used for graphic character mapping are enhanced to deal with the parsing

and assembly aspects of converting between specific types of strings, a degree of

efficiency in performance can be attained. With this in view, provisions are made in

the graphic conversion functions of CDRA to allow string-type specifications to select

conversion methods that can deal with various string types besides converting the

graphic characters.

Generic Graphic Character Conversion

A generic graphic character conversion function (see Conversion functions) converts

an input graphic character string represented in a CCSID (the input CCSID) to an

output string according to the CCSID specified for the output (the output CCSID). The

interpretation of the input character string and the generation of the code points of

the output character string adhere to the definitions of CCSIDs (see “Tagging in

CDRA” in chapter 3).

The results of the conversion process will be the following:

• The meaning of all the graphic characters that are common (same GCGIDs)

between the input CS and output CS will be preserved

• All other input graphic and non-graphic characters will be converted to output

code points following the mismatch management criterion used. Their meaning

cannot be preserved in the output CCSID, but they may be retrievable by

mapping back to the input CCSID using an appropriate conversion table.

Conversion of strings between some CCSIDs cannot maintain the same byte-length

between the input and output strings. For example, the coded representation of a

string containing a mixture of Katakana characters (single-byte code points) and

Japanese ideographic characters (double-byte code points):

• Will have embedded shift-in and shift-out control characters between the

Katakana characters and the ideographic characters in a Japanese EBCDIC-

based system

• Will not have any embedded shift-in and shift-out control characters in a

Japanese PC-based system.

A function that converts the data between the two coding methods in this example

will find a byte-length difference of at least two bytes. Provisions must be made to

accommodate differences in byte lengths when developing and using conversion

functions.

The designer of the conversion program can reference the CCSID elements and their

definitions from CDRA documents. The logical steps in performing the conversion are:

1. Select an appropriate conversion method (see “Appendix B. Conversion

methods”) based on the encoding schemes associated with the input and the

output.

2. Select one or more conversion tables based on the CS and CP elements of the

input and output CCSIDs. The following section describes the criteria that can

be used for defining the contents of the conversion tables.

The various steps involved in selecting the conversion methods and the associated

tables for different conversion criteria are described in section “Graphic character

conversion selection table (GCCST) resource” in chapter 7.

Defining the contents of conversion tables

The input and output CCSIDs identify the CS, CP pairs. The content of a conversion

table is determined by the input and output CS, CP pairs to be mapped. When there is

more than one set of CS, CP pairs in the input to be matched with more than one set in

the output, the principles described in Pairings of Code Points are used to determine

the mapping.

If the input CS, CP pair has some common graphic characters that are split between

two output CSs, then the corresponding support in the conversion method and tables

of the appropriate type (see Appendix B. Conversion methods) are needed.

After the characters and their code point assignments are examined, they are

categorized, and decisions are made about pairing the input and output code points.

A code point can be placed into one of the following categories:

1. SPACE: the code point is assigned to the SPACE character GCGID SP010000

2. Valid Graphic: the code point is assignable to a graphic character in the

encoding structure, and is assigned a graphic character in the identified

character set

3. Code Extension: the code point is assignable to a control character, and its

assigned value is a valid code extension control character or the first character

of a multiple-character code extension control as determined by the encoding

scheme identified

4. Invalid Graphic: the code point is assignable to a graphic character in the

encoding structure, but either it is not assigned any graphic character or it is

assigned one that is not in the character set identified

5. Single Control: the code point is assignable to a control character, and is

assigned a permitted control character for the application

6. Start of Control: the code point is assignable to a control character, and is

assigned a permitted start of control sequence for the application

7. Invalid Control: the code point is assignable to a control character but is not

assigned any control character, or it is assigned a character that is valid neither

for the application nor as a code extension control defined in the encoding

scheme.

Pairings of Code Points

The following general principles are used in pairing the input and output code points:

• Matched Graphic Characters and SPACE

The graphic characters in the Valid Graphic category and the SPACE character

from the input are compared with the Valid Graphic and the SPACE character in

the output. For each Valid Graphic and SPACE character that is found in both

sets, the code point in the input code page is mapped to its corresponding code

point in the output code page. This set of characters is known as the "common

character set". Graphic characters are defined to be matching if they have the

same Graphic Character Global Identifier (GCGID).

• Code Extension Controls

Some input or output control character code points may be used for code

extension purposes. It is the responsibility of the conversion functions to

handle these code points correctly. An example of this can be found in Method3

for EBCDIC Mixed to PC Mixed.

• Matched Control Mnemonics

Some of the nongraphic characters can be commonly used control characters,

such as Horizontal Tab (HT) or Carriage Return (CR). If these are found in

graphic-character conversion, they will be handled on a "best-can-do" basis.

The mnemonic names associated with them will be used as a guide to pair

input and output code points in the control areas. The mnemonics may or may

not have identical functional meanings in the input and the output

environments.

• Remainder

The remaining code points are treated as bytes. Some of these bytes may be

graphic character code points outside the common character set, control

mnemonics that have no matching control in the output, or non-allocated input

code points. The character set mismatch management criterion is used to

specify how these remaining characters are mapped.

Criteria for character set mismatch management

Character set mismatch management is necessarily context- or application-sensitive:

what is best for one application may not be appropriate for another. Sometimes

arbitrary decisions must be made, depending on the specific set of mismatched

characters. Some general criteria for mismatch management are:

• Round trip integrity, where each byte value is preserved when data is returned

from the target to the source

• Character replacement, or irreversible substitution of characters with

appearance or meaning retention

• Enforced subset match, or irreversible substitution with SUB (substitute)

control or an equivalent loss indicator character.

The application of these criteria results in different pairings of input and output code

points for mismatched characters in conversion tables.

The above criteria are discussed in the following sections.

Round Trip Integrity

The objective of this criterion is to send data from one system to another one that has

different representations of character data, and retrieve it without loss. Often the "do

not convert" choice is not available. For example, data stored in a System/370

database is configured to have all its graphic character data in one CCSID. If it acts as

a remote repository for data from a PC application, or from an application in another

System/370 using a different CCSID, the data must be converted to the configured

CCSID. The data is intended to be retrieved by the same application without loss

when it is converted back for use in its original CCSID.

Interpretation of Converted Data in the Output CCSID

The tag associated with the converted data will be the CCSID of the output. The data

will be interpreted -- possibly misinterpreted -- in the output environment. In the

absence of any validation or filtering services, data that has been converted using the

round-trip criterion cannot be distinguished from data that has been created locally in

the system, or that has been converted from another CCSID using the round-trip

criterion. Data conversion is only one of the possible generators of code points that

have no graphic meaning in a data object tagged with a CCSID. An application that

generates hexadecimal constants and stores them along with other textual data is

another possible generator.

Feasibility of Round-trip

Round trip mapping is always feasible for a common set of graphic characters or for a

set of control characters with the same mnemonics, assuming there are no control

sequences involved. The common sets of graphic and control characters within the

initial input and output CCSIDs can be preserved irrespective of how many

intermediate CCSIDs may be involved, provided that all the intermediate CCSIDs

contain the same common sets.

The round trip of all remaining code points from a specific input to an output and back

is feasible only under the following conditions:

• There are equal numbers of unmatched code points between the input and

output.

• The bytes are mapped one-for-one from the input CCSID to the output CCSID.

• The same one-for-one relationship is used in the return path.

• If there are duplicate graphic characters in an input code (for example, CP 850)

and if the output has a matching graphic character in it, the conversion

preserves the byte value and not the graphic character meaning.

• If there are unequal numbers of input and output code points (such as between

the PC DBCS and host DBCS), round trip conversion is only possible from the

smaller of the two sets to the larger set and back. There is insufficient coding

space for all of the code points in the reverse direction. This situation also

exists between ISO-7 encodings (without code extensions) and any 8-bit SBCS

code.

When round trip mapping is not feasible or not desirable for a specific application,

other criteria must be used.

Pairing of Code Points Using Round-trip

In addition to the general principles described in Pairings of Code Points, the following

principles are used when the round-trip integrity criterion is chosen:

• An input graphic code point outside the common set is mapped to an output

graphic code point outside the common set

• An input control code point is mapped to an output control code point outside

the mnemonic-based common set

• If the graphic encoding space of the source is larger than the graphic encoding

space of the target, some graphic code points will be mapped to control code

points, and vice versa.

Character Replacements

When round trip integrity is not feasible or desired, an alternative is to permanently

replace each mismatched character in the input character set with its nearest

equivalent in the output character set. The criterion for determining the nearest

equivalent depends on the context within which the converted data will be used. For

display and printing purposes, the nearest visual representation may be chosen; for

processing purposes, a character with the nearest meaning may be selected. If

neither criterion applies, an arbitrary character may be chosen from the output

character set.

Pairing of Code Points Using Character Replacements

In addition to the general principles described in Pairings of Code Points, the following

additional principles are used when the character replacement criterion is chosen:

• An input graphic code point is mapped to an output graphic code point outside

the common set with the nearest shape or meaning. Any remaining input

graphic code points -- those with no nearest equivalent based on the criterion

being used -- are mapped arbitrarily.

• An input control code point is mapped to an output control code point outside

the mnemonic-based common set. Any remaining input control code points are

arbitrarily mapped (folded) to other output control code points.

• Any round tripping achieved is incidental.

Enforced Subset Match

The enforced subset match criterion guarantees the preservation of the subset of

characters that are common to both the input and output character sets. Any

character not in this common subset will be replaced with a unique character that

indicates that a substitution has occurred.

Wherever possible, CDRA recommends that the standardized control character SUB

(substitute) be used for this purpose. Alternatives for "substitution character" may be

declared as part of the CCSID resource definitions. The default SUB definition for each

CCSID is included as part of the CCSID definition found in Appendix C. CCSID

Repository.

In environments using the PC-Data or PC-Display encoding structures, X'7F' is

recommended as the default SUB. In single-byte EBCDIC environments, the defined

SUB is X'3F', and in ISO-7 and ISO-8 environments it is X'1A'.

Visualization of SUB Character

The SUB character should be visually represented by a uniquely distinguishable

character on presentation media. A warning flag should be returned to the caller of

the mapping service to show that a substitution has occurred.

Default SUB-Visualization Character

Some presentation devices and data streams specify a unique character to be

presented when a SUB code point is encountered in the presentation data. For

example: the 3270 Data Stream defines a "filled circle" as default; the PC displays it

as an "empty house symbol"; some printers print it as a "filled square".

When a presentation medium or a component interfacing to the presentation medium

is not capable of replacing the SUB character with a unique non-SPACE visual

character, the application sending data to be presented needs to convert the SUB

character to an appropriate graphic character. For consistency among different

implementations that do such a conversion, the Uppercase X (LX020000) (or its

equivalent) is defined as the CDRA-recommended default.

Products that perform such SUB character replacement should also provide a means

by which customers can select another graphic character of their choice as an

alternative.

Pairing of Code Points Using Enforced Subset Match

In addition to the general principles described in Pairings of Code Points, the following

additional principle is used when the enforced subset criterion is chosen:

All unmatched input graphic code points and mnemonically unmatched input control

code points are converted to the "substitution character" code point prescribed for

the output CCSID.

Conversion tables for CDRA level 2

Default conversion tables to be used for specific pairs of CCSIDs in different groups

are available. For information on how to obtain these tables see Appendix J. CDRA

Conversion Resources The pairs of CCSIDs are those that are required within each

character set group, and include both interoperable and coexistence and migration

sets.

Each table has its own difference management criterion. Where possible, the round-

trip integrity criterion has been used; in other instances, enforcement and character

replacement have been used.

Exceptions

The following exceptions to the basic mapping principles exist in some of the tables:

• In the SBCS-PC to EBCDIC tables for Group 2 countries, SO and SI Code

Extension controls are substituted with substitution code point (X'3F') to avoid

the potential risk of generating invalid SO-SI pairs.

• Some PC code pages such as 00850 and 00863 assign two code points for the

symbols GCGID SM240000 and SM250000, in both graphic and control code

range (PC-Data Encoding Scheme). Both symbols are included in Group 1

Interoperable Character Set 00697 and in the associated EBCDIC code pages.

The other PC code pages derived from 00437 (for example, CP 00437, 00860)

contain the symbols in control code range without duplication.

• The following rules are applied to the default tables in Group-1 and Group-1A

Co-existance and Migration sets for SM240000 and SM250000:

For Code Pages such as 00850 and 00863:

The code points assigned to the symbols in the graphic code range (PC-Data

Encoding Scheme) are treated as graphics. The code points in the control code

range are treated as control code points, and are mapped based on the

mnemonic names.

For other PC code pages containing SM240000 and SM250000 only in control

code range:

The code points are treated as valid graphics, and are mapped based on GCGID

when the symbols are included in the common graphic set between the CCSID

pair. Otherwise, they are mapped based on the control mnemonic names.

Alternatives to conversion defaults

The default tables defined in CDRA are based on specified criteria for mismatch

management. These tables may not suit all application requirements; IBM products

have used different tables for data conversion based on the criteria most suited to

their customer. It may be necessary for the products to continue to support such

tables.

Customers may have the need to continue using existing conversion tables or

methods. Such methods or tables may produce conversion results that are different

from those obtained using the default conversion tables.

Based on individual product and customer requirements, the ability to select

alternative conversion methods or tables for a pair of CCSIDs may be supported by

products as an option. If a product supports custom modifications, its documentation

should describe the procedure for selecting the alternative method or table.

Guidelines to prevent undesirable effects caused by such modifications should also

be documented by the individual products.

Conversion functions

All the concepts described above can be incorporated into a collection of conversion

methods and related conversion tables. The management aspects can also be

embodied along with this collection. A single-step convert function and a three-part

multiple-step conversion are defined in Chapter 5. CDRA interface definitions.

Chapter 7. CDRA Resources and Their Management

A CDRA resource is a collection of information that is needed by a CDRA function or

used by several modules within a system in the correct processing of graphic

character data in the system. CDRA resources can be machine representations of

CCSID definitions, tables defining relationships between different CCSIDs, and the

various tables associated with graphic-character-data conversions. A collection of

resources of the same type is called a "resource repository".

The data structures of these resources are implementation-specific. This chapter

defines the different elements (and their semantics) that these resources must

contain. It includes definitions of the following resources:

• CCSID resource

• Graphic Character Conversion Table (GCCT) resource

• Graphic Character Conversion Selection Table (GCCST) resource

• Normalization Support CCSID Table (NSCT) resource

• Related Default CCSID Table (RDCT) resource

This chapter also describes the resource management considerations that must be

given by implementations that support the CDRA resources.

Common Conventions

The elements of each resource are grouped into three categories:

Semantic Elements

Those elements that are required to complete the semantic definition of the identifier

are listed and defined. Some of these elements must always be present, while others

are conditional on contents of some other element. (For example, an ACRI-PCMB

element is present only when the value of the ESID element of a CCSID resource is

X'2300', X'2305' or X'3300'.)

Graphic Character String Elements

These elements consist of strings of graphic characters. They are mostly non-

semantic in the sense that they are not required for completing the semantic

definition of the identifier.

To provide consistency among different implementations, CDRA defines the format

and maximum length values for these string elements. The two formats of this

element are: short and long.

The short format is restricted to a maximum of 256 bytes consisting of:

Bytes Meaning

1 - 16 reserved for implementation-specific use

17 - 18 the length of the string

19 - 20 CCSID of the string

21 - 256 character string

The long format is restricted to a maximum of 1024 bytes consisting of:

Bytes Meaning

1 - 16 reserved for implementation-specific use

17 - 18 the length of the string

19 - 20 CCSID of the string

21 - 1024 character string

Other Elements

All other information associated with the identifier are lumped together under this

category. They are mostly non-semantic in the sense that they are not required for

completing the semantic definition of the identifier. Some of them may be required for

some functions that depend on them for their success.

CCSID Resource

A CCSID resource is a machine representation of the elements associated with a

particular CCSID value. A collection of CCSID resources is a CCSID resource

repository. Some elements of a CCSID resource are accessed using call interfaces.

The CCSID resource elements are summarized in Figure 19.

The following CCSID resource elements are defined in this section:

• Semantic Elements

• The following elements are required to define a CCSID resource:

o CCSID

o ESID

o CS, CP pair

o ACRI-List

▪ ACRI-PCMB

▪ ACRI-EUC

▪ ACRI-TCP

• Other Elements

o The following elements convey specific values associated with a CCSID

that are of interest in different kinds of processing:

o Control Function Definitions

▪ SPACE Definition

▪ SUB Definition

▪ NEW LINE Definition

▪ LINE FEED Definition

▪ CARRIAGE RETURN Definition

▪ END OF FILE Definition

o F/M/S Indication

Semantic Elements of CCSID Resource

The CCSID resource elements described below are all required to completely define a

CCSID and its associated long-form.

CCSID Element of CCSID Resource:

This element contains the value of the CCSID that this resource definition pertains to.

It is used as the unique identifier of this resource. The CCSID value is used as the key

to access this resource in many functions that get the individual elements of a CCSID.

It is a number from 1 to 65,279 (X'0001' to X'FEFF'). All other values in the range

65,280 to 65535 (X'FF00' to X'FFFF') are reserved as special values and unlikely to

appear in a CCSID resource. See the sections in chapter 3 on “Coded character set

identifier”, “CCSID values”, and Figure 11 for more detailed information on these

values and how they are used.

ESID Element of CCSID Resource:

This element contains the ESID value associated with the CCSID of this resource.

Assigned values of ESID (in the range X'1100' to X'FFFE') are detailed in Figure 9 in

chapter 3.

CS, CP Pair Element of CCSID Resource:

Depending on the ESID value, a CCSID is associated with one or more CS, CP pairs.

This element contains the number of pairs, and the values of each CS, CP pair

associated with the CCSID of this resource.

Most CCSIDs registered to date have a maximum of four CS, CP pairs with the

exception of CCSIDs in support of Unicode which each have 18 CS, CP pairs (one

defined for each of planes 0 – 16 plus one for the PUA area of the BMP). Each CP value

is a number in the range 1 to 65,534 (X'0001' to X'FFFE'). Each CS value is a number

in the range 1 to 65,535 (X'0001' to X'FFFF').

ACRI-List Element of CCSID Resource:

Depending on the ESID value, a CCSID has associated additional coding-related

required information (ACRI) to make the definition of CCSID complete. The ACRI-List

element identifies the number and types of ACRI needed and their definitions (see the

section on “Additional coding-related required information” in chapter 3).

ACRI-PCMB Element:

ACRI-PCMB is required for CCSIDs having ESID values X'2300', X'2305' or X'3300'

(PC mixed single-byte and double-byte encodings).

ACRI-EUC Element:

ACRI-EUC is required for CCSIDs having an ESID value X'4403'.

ACRI-TCP Element:

ACRI-TCP is required for CCSIDs having an ESID value X'5404'.

Element Type and Value Range Description Used By

CCSID

A number in the range

1 to 65,279; see figure

11 in chapter 3.

Value of the CCSID that this resource definition

pertains to. Unique identifier of this CCSID

resource.

Most functions

The following are semantic elements associated with a CCSID. A CCSID definition is not unique without all these

elements, where defined. The number and type of elements in this set are prescribed by the semantics

associated with the ES id (see figure 9 in chapter 3).

ESID

A number in the range

4352 to 65,534; see

figure 9 in chapter 3.

The ESID element associated with this CCSID.

CDRGESP,

CDRSCSP, and

conversion

methods

CS, CP

Pairs of numbers; CS

can be in the range 1

to 65,535; CP can be

in the range 1 to

65,534.

The number and values of CS, CP pairs associated

with this CCSID. A CS value of 65,535 indicates

that the maximal character set of the code page is

defined within the installation's code page

resource definition.

CDRGESP, and

CDRSCSP

ACRI Variable Lists

The type of ACRI, and values associated with that

ACRI. The ACRI types defined in CDRA are

identified here. Future ESIDs may have other

types.

—

ACRI-

PCMB

Number of ranges,

pairs of From and To

first-byte ranges;

maximum 64 ranges;

each first byte value is

in the range 128 to

255.

ACRI-PCMB is valid only with CCSIDs using ESID

X'2300', X'2305' or X'3300' (see section “ACRI PC

mixed byte (ACRI-PCMB)” in chapter 3).

—

ACRI-EUC

Number of coded

graphic character

sets, width of each

set. Maximum 5

values; first value is

the number,

subsequent values are

corresponding widths.

ACRI-EUC is valid only with CCSIDs using ESID

X'4403' (see section “ACRI Type EUC (ACRI-

EUC)” in chapter 3).

—

ACRI-TCP

Number of coded

graphic character

sets, and a triplet for

each set made up of

the width of the set,

the length of the

designation escape

sequence, and the

actual escape

sequence.

ACRI-TCP is valid only with CCSIDs using ESID

X'5404' (see section “ACRI type TCP (ACRI-TCP)”

in chapter 3).

The following elements are "default" values associated with the CCSID. They are for use by different functions

such as conversion methods that need to know the appropriate code points for "substitution", "space padding"

or others. Informative elements such as F/M/S also belong in this group.

SUB Defn

Triplets of numbers:

Code Point, Width of

Code Point, and State

Number

One triplet entry for each state (corresponding to

each CS, CP pair) that appears in the CS, CP

element

CDRGCTL, and

some conversion

methods

SPACE

Defn

Triplets of numbers:

Code Point, Width of

Code Point, and State

Number

One triplet entry for each state (corresponding to

each CS, CP pair) that appears in the CS, CP

element

CDRGCTL, and

some conversion

methods

NL Defn

Triplets of numbers:

Code Point, Width of

Code Point, and State

Number

One triplet entry for each state (corresponding to

each CS, CP pair) that appears in the CS, CP

element. Meaningful only when the Encoding

Scheme defines this control character NEW LINE.

CDRGCTL

LF Defn

Triplets of numbers:

Code Point, Width of

Code Point, and State

Number

One triplet entry for each state (corresponding to

each CS, CP pair) that appears in the CS, CP

element. Meaningful only when the Encoding

Scheme defines this control character LINE FEED.

CDRGCTL

CR Defn

Triplets of numbers:

Code Point, Width of

Code Point, and State

Number

One triplet entry for each state (corresponding to

each CS, CP pair) that appears in the CS, CP

element. Meaningful only when the Encoding

Scheme defines this control character CARRIAGE

RETURN.

CDRGCTL

EOF Defn

Triplets of numbers:

Code Point, Width of

Code Point, and State

Number

One triplet entry for each state (corresponding to

each CS, CP pair) that appears in the CS, CP

element. Meaningful only when the Encoding

Scheme defines this control character END OF

FILE.

CDRGCTL

F/M/S 0, 1 or 2

Value indicating if the CS associated with the CP

in the CS/CP is a Full (2), Maximal (1), or Subset

(0).

CDRSMXC

Figure 19. CCSID resource elements

Other Elements of CCSID Resource

In addition to the semantic elements described above, other information assigned to a

CCSID may be queried. For example, a SPACE code point may be required for "SPACE-

padding". When more than one code page is involved, there can be more than one

SPACE code point associated with a CCSID. The default code points to be used for

specific purposes, such as SPACE in this example, can be kept in the CCSID resource,

to be accessed by functions as required.

The following elements are defined in this set:

SPACE Definition Element of CCSID Resource

The SPACE (GCGID SP010000) code point is used in conversion services; for example,

to pad output strings for SPACE-padded string types. The code point to be used for a

SPACE is usually reserved in an encoding scheme definition. However, there are cases

where it is code-page-specific; for example, a wide space or double-byte SPACE

(SP010080) in the case of CP 300.

When the ES associated with a CCSID specifies more than one CS, CP pair (multiple

states using explicit or implicit code extension techniques), the definitions of SPACE

code points are also defined by the encoding scheme semantics. The definition can be

one of the following:

1. A SPACE code point value is defined only for some code pages in the list of CS,

CP pairs associated with the CCSID. At least one of the code pages will have a

SPACE code point defined. In this instance a state change may be required to

access the SPACE code point. Where defined, it has the same code point width

as its corresponding code page.

Figure 20 shows several examples of the SPACE definitions.

Current

State

Value of

SPACE code

point (Hex)

Width of SPACE

code point

(number of

bytes)

State in which

SPACE code

point is used

CP used for

graphics

(example)

Encoding Scheme

1 40 1 1 00500 EBCDIC Single Byte

1 20 1 1 00850 PC-Data Single Byte

1 20 1 1 00819 ISO-8 Single Byte

1 40 1 1 00290 Host Mixed (Japan)

2 4040 2 2 00300 Host Mixed (Japan)

1 20 1 1 01041 PC-Data Mixed (Japan)

2 8140 2 2 00301 PC-Data Mixed (Japan)

Figure 20. Example of SPACE definitions in CCSID resource

The SPACE Definition element of a CCSID resource (shown in Figure 21) contains the

number of entries, and the information contained in the second, third, and fourth

columns of Figure 20, ordered (similar to the CS, CP pairs associated with the CCSID)

in ascending order by state. The State Number values start at 1 (the starting state). A

zero in the State in which SPACE code point is used indicates that there is no SPACE

definition entered in the CCSID resource for the current state.

Figure 21. Space definition element

SUB Definition Element of CCSID Resource

The SUB code point is used in conversion services, when the chosen mismatch

management criterion replaces all mismatched and invalid code points with a single

character, SUB. The code point to be used for a SUB is usually reserved in an encoding

scheme definition. However, there are many cases (such as PC-Display codes, where

a graphic character code point has been chosen for a SUB indication) where it is code-

page-specific.

When the ES associated with a CCSID specifies more than one CS, CP pair (multiple

states using explicit or implicit code extension techniques), the definitions of SUB

code points are also defined by the encoding scheme. The definition can be one of the

following:

1. A SUB code point value is defined for each code page, having the same number

of bytes as the code points in the code page. Whenever the switching

mechanism (such as the SO and SI used in ES X'1301') used to switch between

the different CS, CP pairs selects the code points from a particular code page,

the SUB code point associated with that code page is to be used without any

change in the "state". During the creation of conversion tables, the SUB code

point associated with a target code page is used, along with the state

associated with that code page in a given CCSID. For example, the PC Mixed

and Host Mixed encoding schemes each define one SUB code point for the

single-byte code page and one for the double-byte code page. These SUB code

point values can differ from one code page to another.

2. A SUB code point value is defined only for some code pages in the list of CS, CP

pairs associated with the CCSID. At least one of the code pages will have a SUB

code point defined. In this instance a state change may be required to access

the SUB code point. Where defined, it has the same code point width as its

corresponding code page.

Figure 22 shows several examples of the SUB definitions.

Current

State

Value of SUB

code point

(Hex)

Width of SUB

code point

(number of

bytes)

State in which

SUB code point

is used

CP used for

graphics

(example)

Encoding Scheme

1 3F 1 1 00500 EBCDIC Single Byte

1 7F 1 1 00850 PC-Data Single Byte

1 1A 1 1 00819 ISO-8 Single Byte

1 3F 1 1 00290 Host Mixed (Japan)

2 FEFE 2 2 00300 Host Mixed (Japan)

1 7F 1 1 01041 PC-Data Mixed (Japan)

2 FCFC 2 2 00301 PC-Data Mixed (Japan)

Figure 22. Example of SUB definitions in CCSID resource

The SUB Definition element of a CCSID resource (shown in Figure 23) contains the

number of entries, and the information contained in the second, third, and fourth

columns of Figure 22, ordered (similar to the CS, CP pair associated with the CCSID) in

ascending order by state. The State Number values start at 1 (the starting state). A

zero in the State in which SUB code point is used indicates that there is no SUB

definition entered in the CCSID resource for the current state.

Figure 23. Sub definition element

NEW LINE Definition Element of CCSID Resource

The NEW LINE code point is used by parsing services to identify substrings of a file.

The code point to be used for a NEW LINE is not defined for every CCSID, as it is

encoding-scheme-dependent. When the ES associated with a CCSID specifies more

than one CS, CP pair (multiple states using explicit or implicit code extension

techniques), the definition is the following:

• Whenever the switching mechanism (such as the SO and SI used in ES X'1301')

used to switch between the different CS, CP pairs is used, the NEW LINE code

point associated with the single-byte code page is to be used. A state change

and return may be required when using the NEW LINE definition.

Figure 24 shows several examples of the NEW LINE definitions.

Current State

Value of NEW

LINE code point

(Hex)

Width of NEW

LINE code point

(number of

bytes)

State in which

NEW LINE code

point is used

CP used for

graphics

(example)

Encoding Scheme

1 15 1 1 00500 EBCDIC Single Byte

1 0D0A 2 1 00850 PC-Data Single Byte

1 — 1 1 00819 ISO-8 Single Byte

1 15 1 1 00290 Host Mixed (Japan)

2 15 1 1 00300 Host Mixed (Japan)

1 0D0A 2 1 01041 PC-Data Mixed (Japan)

2 0D0A 2 1 00301 PC-Data Mixed (Japan)

Figure 24. Example of NEW LINE definitions in CCSID resource

The NEW LINE Definition element of a CCSID resource (shown in Figure 25) contains

the number of entries, and the information contained in the second, third, and fourth

columns of Figure 24, ordered (similar to the CS, CP pairs associated with the CCSID)

in ascending order by state. The State Number values start at 1 (the starting state). A

zero in the State in which NEW LINE code point is used indicates that there is no NEW

LINE definition entered in the CCSID resource for the current state.

Figure 25. New Line definition element

LINE FEED Definition Element of CCSID Resource

The LINE FEED code point is used by parsing services to identify substrings of a file.

The code point to be used for a LINE FEED is not defined for every CCSID, as it is

encoding-scheme-dependent. When the ES associated with a CCSID specifies more

than one CS, CP pair (multiple states using explicit or implicit code extension

techniques), the definition is the following:

• Whenever the switching mechanism (such as the SO and SI used in ES X'1301')

to switch between the different CS, CP pairs is used, the LINE FEED code point

associated with the single-byte code page is to be used. A state change and

return may be required when using the LINE FEED definition.

Figure 26 shows the LINE FEED definitions using several examples.

Current State

Value of LINE

FEED code point

(Hex)

Width of LINE

FEED code point

(number of

bytes)

State in which

LINE FEED is

used

CP used for

graphics

(example)

Encoding Scheme

1 25 1 1 00500 EBCDIC Single Byte

1 0A 1 1 00850 PC-Data Single Byte

1 0A 1 1 00819 ISO-8 Single Byte

1 25 1 1 00290 Host Mixed (Japan)

2 25 1 1 00300 Host Mixed (Japan)

1 0A 1 1 01041 PC-Data Mixed (Japan)

2 0A 1 1 00301 PC-Data Mixed (Japan)

Figure 26. Example of LINE FEED definitions in CCSID resource

The LINE FEED Definition element of a CCSID resource (shown in Figure 27) contains

the number of entries, and the information contained in the second, third, and fourth

columns of Figure 26, ordered (similar to the CS, CP pairs associated with the CCSID)

in ascending order by state. The State Number values start at 1 (the starting state). A

zero in the State in which LINE FEED code point is used indicates that there is no LINE

FEED definition entered in the CCSID resource for the current state.

Figure 27. Line Feed definition element

CARRIAGE RETURN Definition Element of CCSID Resource

The CARRIAGE RETURN code point is used by parsing services to identify substrings

of a file. The code point to be used for a CARRIAGE RETURN is not defined for every

CCSID, as it is encoding-scheme-dependent. When the ES associated with a CCSID,

specifies more than one CS, CP pair (multiple states using explicit or implicit code

extension techniques), the definition is the following:

• Whenever the switching mechanism (such as the SO and SI used in ES X'1301')

to switch between the different CS, CP pairs is used, the CARRIAGE RETURN

code point associated with the single-byte code page is to be used. A state

change and return may be required when using the CARRIAGE RETURN

definition.

Figure 28 shows several examples of the CARRIAGE RETURN definitions.

Current State

Value of

CARRIAGE

RETURN code

point (Hex)

Width of

CARRIAGE

RETURN code

point (number of

bytes)

State in which

CARRIAGE

RETURN code

point is used

CP used for

graphics

(example)

Encoding Scheme

1 0D 1 1 00500 EBCDIC Single Byte

1 0D 1 1 00850 PC-Data Single Byte

1 0D 1 1 00819 ISO-8 Single Byte

1 0D 1 1 00290 Host Mixed (Japan)

2 0D 1 1 00300 Host Mixed (Japan)

1 0D 1 1 01041 PC-Data Mixed (Japan)

2 0D 1 1 00301 PC-Data Mixed (Japan)

Figure 28. Example of CARRIAGE RETURN definitions in CCSID resource

The CARRIAGE RETURN Definition element of a CCSID resource (shown in Figure 29)

contains the number of entries, and the information contained in the second, third,

and fourth columns of Figure 28, ordered (similar to the CS, CP pairs associated with

the CCSID) in ascending order by state. The State Number values start at 1 (the

starting state). A zero in the State Number in which CARRIAGE RETURN code point is

used indicates that there is no CARRIAGE RETURN definition entered in the CCSID

resource for the current state.

Figure 29. Carriage Return definition element

END OF FILE Definition Element of CCSID Resource

The END OF FILE code point is used by parsing services to identify substrings of a file.

The code point to be used for a END OF FILE is not defined for every CCSID, as it is

encoding-scheme-dependent. When the ES associated with a CCSID specifies more

than one CS, CP pair (multiple states using explicit or implicit code extension

techniques), the definition is the following:

• Whenever the switching mechanism (such as the SO and SI used in ES X'1301')

to switch between the different CS, CP pairs is used, the END OF FILE code

point associated with the single-byte code page is to be used. A state change

and return may be required when using the END OF FILE definition.

Figure 30 shows several examples of the END OF FILE definitions.

Current State

Value of END OF

FILE code point

(Hex)

Width of END OF

FILE code point

(number of

bytes)

State in which

END OF FILE

code point is

used

CP used for

graphics

(example)

Encoding Scheme

1 1C 1 1 00500 EBCDIC Single Byte

1 1A 1 1 00850 PC-Data Single Byte

1 1A 1 1 00819 ISO-8 Single Byte

1 1C 1 1 00290 Host Mixed (Japan)

2 1C 1 1 00300 Host Mixed (Japan)

1 1A 1 1 01041 PC-Data Mixed (Japan)

2 1A 1 1 00301 PC-Data Mixed (Japan)

Figure 30. END OF FILE definitions in CCSID resource

The END OF FILE Definition element of a CCSID resource (shown in Figure 31)

contains the number of entries, and the information contained in the second, third,

and fourth columns of Figure 30, ordered (similar to the CS, CP pairs associated with

the CCSID) in ascending order by state. A zero in the State in which END OF FILE code

point is used indicates that there is no END OF FILE definition entered in the CCSID

resource for the current state.

Figure 31. END OF FILE definition element

Graphic Character Conversion Table (GCCT) Resource

In the CDRA model, this resource is assumed to be a repository of the supported

conversion tables. It is used by the following CDRA-defined services:

• CDRCVRT

• CDRMSCI

Appendix J, CDRA Conversion Resources, describes how users can obtain the

conversion tables defined in support of this architecture. The convert functions

defined in "Functions Related to Difference Management" use these tables to perform

the conversion. The conversion tables are represented in the machine in a suitable

format for the conversion methods implemented in each system. These machine

representations are "conversion table resources", and a collection of these is a

"conversion table resource repository".

In the CDRA model, this resource is assumed to be a repository of the supported

conversion tables. It is used by the following CDRA-defined services:

The various elements of a GCCT resource are shown below:

Figure 32. Graphic character conversion table (GCCT) resource

These elements can be divided into two groups -- semantic elements and graphic

character string elements.

Semantic Elements of GCCT Resource

The semantic elements of the GCCT resource are:

GCCT Table Type Element:

The CDRA conversion table registry, located on the CD included with this document,

details a variety of conversion tables including single-byte to single-byte, double-byte

to double-byte, single-byte to double-byte and others. Each of the various table types

are described in Appendix B, "Conversion Methods”, as are the conversion methods

which use them.

The table type element is used to identify the following:

• The organization and interpretation of the code point map element.

• The organization and interpretation of the shadow flag resource element.

GCCT Code Point Map Element:

The contents of the conversion tables from the CDRA registry are entered in this

element in a format suitable for the implementing system.

The structure and contents of this element can vary from being an array of 256 single-

bytes (for single- to single-byte map of type 1), to a collection of controlling sub

tables, a sub pool of single- to single-byte maps, and a sub pool of single- to double-

byte maps, to support Method 4 (mixed single-byte and double-byte conversions)

(see Appendix B. “Conversion Methods”).

The structure of this element is implementation-specific.

GCCT Shadow Flag Element:

The CDRA Registry uses a shadow flag technique to indicate that a graphic character

substitution (with another graphic character or with a SUB) has been made in the

conversion tables. When the conversion function supports issuing a feedback code

when such substitutions are detected, the shadow flag element must be available to

provide this information. It captures the indications such as: a character has been

replaced, substituted, or dropped, for each code point pairing, to supplement any

algorithmic method used to check for such conditions in the associated conversion

method. Figure 71 in Appendix B shows an example of how the shadow flag element

is used with a conversion method.

The structure and complexity of this element corresponds to that of the code point

map element described above.

Graphic Character String Elements of a GCCT Resource

Products or service functions may require access to GCCT descriptive information

such as names or copyright information. This information is in graphic character string

elements, encoded in an identified CCSID. Except for the Global Name, the contents

of these elements are implementation-specific.

The following graphic character string elements are defined for a GCCT resource:

Global Name Element of a GCCT Resource:

The global name element of a GCCT resource is a CDRA-defined string associated with

each GCCT. This element consists of the length, the CCSID used for encoding, and the

string representing the global name. The string will be encoded using one of the global

use CCSIDs, using the syntactic character set of CS 00640. If a system cannot support

the lowercase a through z, these characters will be mapped to the corresponding

uppercase A through Z.

The global name is used wherever there is a need to display a GCCT as a globally

readable and understood string of graphic characters.

This element is a short format Graphic Character String Element as defined above in

common conventions.

Local Name Element of a GCCT Resource:

The local name element is a string of graphic characters representing the local name

assigned to the GCCT resource defined within a system installation. It will be encoded

using one of the CCSIDs supported in the system.

This element is a short format Graphic Character String Element as defined above in

common conventions.

Copyright Information Element of a GCCT Resource:

The copyright information element of a GCCT resource is a string of graphic characters

that detail any copyright on the associated GCCT contents. If this string exists it

should be presented to the end user whenever information about this GCCT is

presented, according to the current information asset protection practices. The string

may be in whatever national language is most suited to that installation, and encoded

in an appropriate CCSID.

This element is a short format Graphic Character String Element as defined above in

common conventions.

Comments Information Element of a GCCT Resource:

The comments information element of a GCCT resource is a string of graphic

characters that conveys any descriptive information that will be useful to the end user

and is associated with the conversion table in the GCCT resource.

This element is a long format Graphic Character String Element as defined above in

common conventions.

Graphic Character Conversion Selection Table (GCCST)

Resource

This resource is used to access the correct conversion method and conversion tables

corresponding to the parameters that are associated with the input string to be

converted and with the output string to be created. This resource is used by the

following common service functions:

• CDRCVRT

In addition to the selection table contents corresponding to Figure 35, the GCCST

resource has a Local Name and Comments Information elements.

Local Name Element of a GCCST Resource:

The local name element is a string of graphic characters representing the local name

assigned to the GCCST resource defined within a system installation. It will be

encoded using one of the CCSIDs supported by the installation.

This element is a short format Graphic Character String Element as defined above in

common conventions.

Comments Information Element of a GCCST Resource:

The comments information element of a GCCST resource is a string of graphic

characters that conveys any descriptive information associated with the GCCST

resource.

This element is a long format Graphic Character String Element as defined above in

common conventions.

The contents of a GCCST resource depend on the conversion services supported, the

set of methods, and associated tables, in an installation. They must be alterable to

reflect the support in each installation.

Figure 33 illustrates a model called the Graphic Character Conversion Selection Table

(GCCST). In this model there is an entry for every supported conversion alternative

between each pair of From-CCSID and To-CCSID. The parameters needed to uniquely

identify an entry are the From-CCSID, the From-ST, the To-CCSID, the To-ST, and the

Graphic Character Conversion Alternative Selection Number (GCCASN).

A conversion function will use the input From-CCSID and To-CCSID values, the From-

ST and To-ST values, and the GCCASN to select the conversion method and the

associated conversion tables needed. These will be used to perform the conversion,

selecting the installation default alternative when necessary. The conversion function

may contain a method, or may access a method provided elsewhere (via a known call

interface). The columns in this table are defined as follows:

• The From-CCSID column contains the value of the "From" CCSID within which

the input string to be converted is represented

• The From-ST column contains the value of the string type of the input string.

See the section, “Types of Strings” in chapter 6 for a complete list of defined

string types.

ST Type of String

0 A Graphic Character String, as semantically defined by CCSID.

1 A Graphic Character String, as semantically defined by CCSID, and null-terminated.

• # The To-CCSID column contains the value of the "To" CCSID within which the

converted string is represented

• The To-ST column contains the value of the string type desired for the

converted string. See "Types of Strings".

ST Type of String

0 A Graphic Character String, as semantically defined by CCSID.

1 A Graphic Character String, as semantically defined by CCSID, and null-terminated.

2 A Graphic Character String, as semantically defined by CCSID, and SPACE-padded.

• The GCCASN column contains the GCCASN assigned to this entry. This number

is used to differentiate between alternatives of conversion for a given (From-

CCSID, ST) - (To-CCSID, ST) combination. The alternatives differ from one

another if:

o The conversion method is different and/or

o At least one of the conversion tables used is different.

The following alternative numbers are defined for the model:

Value Nature of the Conversion Alternative selected

0 not valid as an entry in this column

1

is used to select the CDRA-defined default method and

associated conversion table(s). The difference management

criterion used in the creation of the selected tables is based on

country requirements to serve the majority of applications using

the selected CCSID pairs.

2 to 9 are reserved for future allocation by CDRA

10 to 55

are reserved to select other CDRA-defined alternatives; each

conversion table selected is created using the round-trip

mismatch management criterion.

56 to 101

are reserved to select other CDRA-defined alternatives; each

conversion table selected is created using the enforced subset

mismatch management criterion.

102 to 147

are reserved to select other CDRA-defined alternatives. These

alternatives may include conversions where:

• the mismatch management criterion used in creating any

of the selected tables is other than round trip or enforced

subset

• more than one conversion table is selected and unequal

criteria have been used when creating the different

tables.

148 to 255

are reserved for selecting customer-defined alternatives. A

customer organization may establish and control ranges of

GCCASN to distinguish between different mismatch

Value Nature of the Conversion Alternative selected

management criteria, similar to the IBM-defined ones described

above.

Note: The value of 0 for GCCASN can only be used as a parameter in a function call to

a convert function. If a value of 0 is received, the conversion selection logic (that uses

this model) will scan the Def column instead of the GCCASN column, and select the

alternative that is marked as installation default (a 1 in the Def column). For all other

values of GCCASN, the selection is made by comparing the non-zero input GCCASN

value with the entries in the GCCASN column of the GCCST.

Note: The value of 0 for GCCASN can only be used as a parameter in a function call to

a convert function. If a value of 0 is received, the conversion selection logic (that uses

this model) will scan the Def column instead of the GCCASN column, and select the

alternative that is marked as installation default (a 1 in the Def column). For all other

values of GCCASN, the selection is made by comparing the non-zero input GCCASN

value with the entries in the GCCASN column of the GCCST.

• The Def column contains an entry "0" or "1". A "1" is used to show that this

alternative is the system or installation default for the given From-CCSID To-

CCSID pairing. This alternative can be selected either by specifying the

GCCASN associated with it, or by specifying a GCCASN value of 0 indicating that

the installation default alternative should be used when the conversion

function is called. When there is more than one alternative for a given pair of

CCSIDs, only one of these alternatives will have a "1" in this column. Entries for

the remaining alternatives will have a "0" in this column.

• The Method column shows the conversion method required (see Appendix B.

“Conversion Methods”). It must be compatible with the CCSIDs and the string

types shown in the appropriate column. Two or more conversion methods may

be used for some (CCSID, ST) pairs, depending on the criterion used for

difference management and assumptions made about the input strings.

• In the assumed model, the string types From-ST and To-ST are passed as

parameters to the method selected. These parameters are in turn used by the

method for parsing the input string and assembly of the output string during

conversion.

• The Number of Tables column shows the number of conversion tables that are

required by the method indicated in the Method column.

• The Local Table Name column shows the local names of the required

conversion tables to be used with the method for this alternative. The local

names -- the structure and any naming conventions or constraints -- are

implementation-dependent. If the method selected requires more than one

table, it is shown as having more than one table name in this column. The table

name must be unique within the sphere of control of the graphic character

conversion management process. The contents of the table follow the model

specified by the table type value, to match the capability of the conversion

method selected.

• The Table Type column is for information only; it shows the type of table (see

Appendix B. “Conversion Methods”) that must be used with the method

selected. If more than one table is needed, the type of each table is identified.

(Note: An implementation may choose to use this information to cross-check if

the table selected is of the appropriate type, and issue a warning to the caller.)

• The Remarks column contains some comments and references for this

architecture document, such as:

o How the same conversion table can be re-used

o How an installation default is marked

o Where the GCCASN is used.

From

CCSID

Fr

ST

To

CCSID

To

ST

GCCASN Def Method Number

of

Tables

Local

Table

Name

Tab

Type

Remarks

Note: This table is just a model used to describe the management related aspects of accessing and

selecting the appropriate conversion method and associated conversion table(s) for graphic

character data conversion.

Note: Appendix B. Conversion Methods describes models for different conversion methods and

associated conversion tables of different types,
00500 0 00037 0 1 1 Method

1

1 TT00001 1 See Method

1 for SBCS

and figure 69

in Appendix

B

00500 0 00037 0 2 1 Method

x

1 TT00005 1 This entry

indicates

that Method

x and the

table with

the local

name

TT00005

should be

used to

convert as

selected,

Figure 33. Sample Graphic Character Conversion Selection Table (GCCST)

Normalization Support CCSID Table (NSCT) Resource

This resource is used by the following CDRA-defined function:

• CDRGCCN

The various elements of an NSCT resource are shown below.

Figure 34. Normalization Support CCSID Table (NSCT) Resource

Local Name Element of an NSCT Resource:

The local name element of an NSCT resource is a string of graphic characters

representing the local name assigned to the NSCT resource. It will be encoded using

one of the CCSIDs supported in the system.

This element is a short format Graphic Character String Element as defined above in

common conventions.

Copyright Information Element of a NSCT Resource:

The copyright information element of a NSCT resource is a string of graphic characters

that represents any copyright on the associated NSCT contents. If this string exists it

should be presented to the end user whenever information about this NSCT is

presented, according to the current information asset protection practices. The string

may be in whatever national language is most suited to the installation, and encoded

in an appropriate CCSID.

This element is a short format Graphic Character String Element as defined above in

common conventions.

Comments Information Element of an NSCT Resource:

The comments information element of an NSCT resource is a string of graphic

characters that conveys any descriptive information associated with the NSCT

resource.

This element is a long format Graphic Character String Element as defined above in

common conventions.

In addition to the Character String Elements, the NSCT resource contains a number of

rows containing four values:

• CCSID1 (first CCSID of an input pair to be matched)

• CCSID2 (second CCSID of an input pair to be matched)

• CCSID for normalization

• Hint (CCSID relationship information)

Related Default CCSID Table (RDCT) Resource

This resource is used to provide a predetermined CCSID for an expected input CCSID.

This resource is used by the following CDRA-defined service:

• CDRGRDC

The various elements of an RDCT resource are shown below.

Figure 35. Related Default CCSID Table (RDCT) Resource

Local Name Element of an RDCT Resource:

The local name element of an RDCT resource is a string of graphic characters that is

defined within a system installation, referring to the RDCT. It will be encoded using

one of the CCSIDs supported in the system.

The local name element consists of the length, the CCSID used for encoding, and the

string of characters representing the local name assigned to the RDCT resource.

This element is a short format Character String Element as defined above in common

conventions.

Copyright Information Element of an RDCT Resource:

The copyright information element of an RDCT resource is a string of graphic

characters that represents any copyright on the associated RDCT contents. The string

may be in whatever national language is most suited to that installation, and encoded

in an appropriate CCSID.

The copyright information element consists of the length, the CCSID used for

encoding, and the string of characters representing the copyright information

assigned to the conversion table contents of the resource.

This element is a short format Graphic Character String Element as defined above in

common conventions.

Comments Information Element of an RDCT Resource:

The comments information element of an RDCT resource is a string of graphic

characters that conveys any descriptive information associated with the RDCT

resource.

The comments information element consists of the length, the CCSID used for

encoding, and the string of characters representing the comment information that is

related to the RDCT resource.

This element is a long format Character String Element as defined above in common

conventions.

A model of a Related Default CCSID Table is shown in Figure 36. RDCT is the primary

resource supporting the function CDRGRDC (see "CDRGRDC - Get Related Default

CCSID" for more details on how RDCT is used). The columns in the table are described

below:

Key ES (hex): this value is the encoding scheme (hex) that the user requires for the

returned CCSID

ES of CCSID-in (hex): this is the hex value of the encoding scheme of the input CCSID.

(This value is not required in an RDCT but is included to assist in understanding the

sample data.)

CCSID-in: this is the input CCSID. It is the value for which a related default is being

requested.

CCSID-out: this is the output CCSID. It is the CCSID determined by the

implementation to be the most appropriate CCSID with an encoding scheme of ES.

The model consists of pairs of CCSID values, organized with the ES of the output

CCSID as the primary key. The CCSID-in is used as the secondary key to determine

the CCSID-out.

The entries in this table are sample data only. The contents of an actual table on a

system are implementation specific.

Key ES (hex)
ES of CCSID-in

(hex)
CCSID-in CCSID-out Comments

1100 1100 00500 00500

Here a user is looking for a CCSID with an

encoding scheme of 1100 which is a related

default for CCSID 500. The table lookup

returns CCSID 500, indicating that for this

implementation CCSID 500 should be used.

1100 1100 01027 00290

Here a user is looking for a CCSID with an

encoding scheme of 1100 which is a related

default for CCSID 1027. The table lookup

returns CCSID 290, indicating that for this

implementation CCSID 290 should be used.

1100 2100 00850 00500

In this case the user is looking for an EBCDIC

CCSID (ES 1100) which is a related default

for the PC CCSID 850 (ES 2100). The table

lookup returns CCSID 500. Thus 500 is the

EBCDIC CCSID identified by this

implementation as 'best related' to CCSID

850.

1100 2100 00874 00838

The table shows that in this implementation

the EBCDIC CCSID (ES 1100) best related to

PC CCSID 874 (ES 2100) is CCSID 838.

1100 4100 00819 00500

The table shows that in this implementation

the EBCDIC CCSID (ES 1100) best related to

the ISO-8 CCSID 819 (ES 4100) is CCSID

500.

Figure 36. Model of a Related Default CCSID Table

CDRA Resource Management

Any implementation of CDRA resources will also require services to maintain and

manage them. The implementation and management of these resources are

implementation specific.

Appendix A. Encoding Schemes

This appendix contains descriptions of the encoding structures defined by CDRA

encoding schemes. The information is a summary of the definitions taken from

relevant standards or system documentation.

EBCDIC Single-byte Structures

IBM Extended Binary Coded Decimal Interchange Code (EBCDIC) is based on an 8-bit-

per-byte structure. The basic EBCDIC structure is shown in Figure 37.

Figure 37. Basic Structure of EBCDIC Code (ES=X'1yzz')

EBCDIC structure implies the following:

• The valid code point range is from X'00' to X'FF'.

• Code points in the range X'00' to X'3F' are reserved for control characters.

• A control function can be a single control character, or a sequence of

characters beginning with one of the appropriate control characters. The first

character of a control sequence must be a control character. However, the

parameters of the control sequence can take values from the entire coding

space.

• X'FF' is always assigned the character EIGHT ONES (EO).

• X'40' is reserved for the SPACE character.

• Code points in the range X'41' to X'FE' are reserved for representing graphic

characters.

• EBCDIC definition also permits use of more than one byte per code point to

represent graphic characters (see Figure 43).In a single-byte (coded) character

set (SBCS) EBCDIC code, a maximum coding space of 190 octets (X'41' to

X'FE') is available for assigning to graphic characters.

• The EBCDIC standard also prescribes the invariant code points allocated to the

syntactic character set CS 640, when the character set is coded in EBCDIC

SBCS codes (see Figure 43). However, it should be noted that there are some

EBCDIC-coded character sets (notably the Katakana and Extended Katakana

codes used in Japan) that do not follow this property of invariance.

The EBCDIC Presentation Structure

IBM Extended Binary Coded Decimal Interchange Code (EBCDIC) for presentation is

based on an 8-bit-per-byte structure. The basic EBCDIC presentation structure is

shown in Figure 38.

Figure 38. Basic Structure of EBCDIC Presentation Code (ES=X'6100)

Some products have modified the EBCDIC structure for presentation purposes. The

following describes the semantics of this encoding structure.

All the code points in the range X'00' to X'FF' are assignable to graphic characters

with the following considerations:

• If a character from CS 640 is included in the character set being encoded, it will

be assigned a code point respecting the invariance properties of CS 640 in the

EBCDIC encoding structure shown in Figure 37.

• The SPACE (SP010000) character can be assigned to a position other than the

traditional EBCDIC location of X'40'.

IBM PC Single-byte Structures

IBM-PC structure is an extension of the ISO 646 (ANSI version) 7-bit code structure to

an 8-bit structure. Unlike the EBCDIC and ISO structures, this structure is ill-defined,

especially in distinguishing control character codes and graphic character codes in a

context-independent manner.

The valid hexadecimal codes are in the range X'00' to X'FF'. When the codes are used

to represent graphic characters on displays, all the code points are allocated for

graphic characters. The range X'00' to X'1F' is reserved for control characters,

following the ISO 646 scheme, except for the code points X'14' and X'15', which are

used for graphic characters in some PC codes. Two basic structures, called IBM-PC

Data Code and IBM-PC Display Code, are described below.

More than one byte per code point can also be used with the IBM-PC structures (see

IBM-PC Data Code Structure).

IBM-PC Data Code Structure

The IBM-PC Data code is shown in Figure 39.

Figure 39. IBM-PC Data Code Structure (ES=X'2yzz')

It has the following characteristics:

• The range X'00' to X'1F' is reserved for control characters. Control functions

can be single characters or sequences. A control sequence must begin with a

control character. The parameters in the sequence can be any hexadecimal

value. Of these, X'1A' is allocated to the "END OF FILE" marker character.

• X'7F' is allocated the SUBSTITUTE (SUB) control character used to show or

map invalid or mismatched characters.

• X'20' is reserved for the SPACE character.

• X'21' to X'7E' and X'80' to X'FF' are assignable to graphic characters. A total of

222 code points are available to represent graphic characters in a single-byte

PC Data code.

• The PC Data codes assign invariant code points allocated to the syntactic

character set CS 640 (like ISO 646), when the character set is coded in PC Data

SBCS codes (see Figure 43). In PC and ISO 646 there is one more character,

the exclamation point, which is also assigned an invariant code point.

IBM-PC Display Code Structure

The IBM-PC Display Code, shown in Figure 40, has the following characteristics:

• X'01' to X'1F' and X'21'X'FF' are assignable to graphic characters. A total of 254

graphic code points are available in a single-byte IBM-PC Display code.

• X'00' is reserved for the control character NUL.

• X'20' is reserved for the SPACE character.

• Similar to ISO 646, the PC Display codes assign invariant code points allocated

to the syntactic character set CS 640, when the character set is part of the

character set coded as PC Display single-byte code (see Figure 43). In PC and

ISO 646 there is one more character, the exclamation point, which is also

assigned an invariant code point.

Figure 40. IBM-PC Display Code Structure (ES=X'3yzz')

ISO Single-byte Structures

The international standard ISO 2022, Information Processing - ISO 7-bit and 8-bit

Coded Character Sets - Code Extension Techniques specifies the general structures

and code extension schemes in the ISO 2022 environments. Other ISO standards,

such as ISO 646, ISO 4873, ISO 6429, ISO 6937, and ISO 8859, define further

specific use of subsets of the environments prescribed by ISO 2022. CCITT

recommendations on Telematics, such as T.61 and T.100, also use ISO 2022

techniques. (American Standard Code for Information Interchange, ASCII, is the US

national version of ISO 646 code; it is defined in the ANSI X3.4 standard.)

There are other encoding schemes outside ISO 2022, such as in the International

Telegraphic Alphabet Number 2 (ITA2), a 5-bit code with an Alpha-shift and a

Numeric-shift, which is used in international Telex services. Picture coding is another

example. ISO 2022 has defined a scheme to switch to such non-ISO 2022 codes.

ISO 7-bit Structure

The ISO 7-bit structure (see Figure 41) is characterized by:

• Septet (7-bit byte) values can range from X'00' to X'7F'.

• X'00' to X'1F' are reserved for control characters. The set of control characters

assigned to this range of code points is called a C0 set.

• X'21' to X'7E' are assignable to graphic characters. The set of graphic

characters assigned to this range is called a G0 set.

• X'20' is reserved for the SPACE character if it is part of the last invoked

character set.

• X'7F' is reserved for the DELETE character if it is part of the last invoked

character set.

• The registered ISO-7 G sets that are based on ISO 646 assign invariant code

points allocated to the syntactic character set CS 640 when the character set is

part of the character set in the G set (see Figure 43). There is one more

character, the exclamation point, which is also assigned an invariant code

point.

• ESID X'5150' is used to describe ISO 7-bit Presentation code where graphic

characters are found in the C0 control space (X'00' to X'1F").

Figure 41. ISO 7-Bit Code Structure (ES = X'5yzz')

ISO 8-bit Structure

The ISO 8-bit structure is shown in Figure 42.

It has the following characteristics:

• Octet (8-bit byte) values can range from X'00' to X'FF'.

• X'00' to X'1F' (called the C0 control set) and X'80' to X'9F' (called the C1

control set) are reserved for assigning to control characters.

• X'21' to X'7E' (the G0 graphic set), and X'A0' to X'FF' (the G1 graphic set) are

reserved for assigning to graphic characters.

• X'20' is reserved for the SPACE character if it is part of the last invoked

character set.

• X'7F' is reserved for the DELETE character if it is part of the last invoked

character set.

• X'A0' may be assigned to the SPACE character, and X'FF' may be assigned to

the DELETE character.

• The registered ISO G sets that are based on ISO 4873 assign invariant code

points allocated to the syntactic character set CS 640 when the character set is

part of the character set in the G set (see Figure 43). There is one more

character, the exclamation point, which is also assigned an invariant code

point.

• ESID X'4105' is used to describe an ISO 8-bit encoding where graphic

characters may be present in the C1 control space (X'80' to X'9F').

• ESID X'4155' is used to describe ISO 8-bit Presentation code where graphic

characters are found in both the C0 and C1 control spaces.

Figure 42. ISO 8-Bit Code Structure (ES = '4yzz')

The range of code positions X'20' to X'7F' are often referred to as the Left Half (GL)

and X'A0' to X'FF' as the Right Half (GR) of an ISO-8 code.

Figure 43 shows the invariance of the syntactic character set found in the basic single

byte (SBCS) encoding structures.

Character GCGID PC, ISO-7, ISO-8 EBCDIC

CAUTION: There are some coded character sets in use in which the invariant property is not

guaranteed. Among the ISO-7 and derived codes, one more character, the exclamation

mark (SP020000) is allocated the invariant code point X'21'. It is not included in this table,

since it is not in the syntactic character set (CS 640).
" (double quote) SP040000 22 7F

% (percent) SM020000 25 6C

& (ampersand) SM030000 26 50

' (apostrophe) SP050000 27 7D

('left parenthesis' SP060000 28 4D

) 'right parenthesis' SP070000 29 5D

* (asterisk) SM040000 2A 5C

+ (plus) SA010000 2B 4E

, (comma) SP080000 2C 6B

- (hyphen) SP100000 2D 60

. (period) SP110000 2E 4B

/ (slash) SP120000 2F 61

0 ND100000 30 F0

1 ND010000 31 F1

2 ND020000 32 F2

3 ND030000 33 F3

4 ND040000 34 F4

5 ND050000 35 F5

6 ND060000 36 F6

7 ND070000 37 F7

8 ND080000 38 F8

9 ND090000 39 F9

: (colon) SP130000 3A 7A

; (semi-colon) SP140000 3B 5E

< (less than) SA030000 3C 4C

= (equal) SA040000 3D 7E

> (greater than) SA050000 3E 6E

? (question mark) SP150000 3F 6F

A LA020000 41 C1

B LB020000 42 C2

C LC020000 43 C3

D LD020000 44 C4

E LE020000 45 C5

F LF020000 46 C6

G LG020000 47 C7

H LH020000 48 C8

I LI020000 49 C9

J LJ020000 4A D1

K LK020000 4B D2

L LL020000 4C D3

M LM020000 4D D4

N LN020000 4E D5

O LO020000 4F D6

P LP020000 50 D7

Q LQ020000 51 D8

R LR020000 52 D9

S LS020000 53 E2

T LT020000 54 E3

U LU020000 55 E4

V LV020000 56 E5

W LW020000 57 E6

X LX020000 58 E7

Y LY020000 59 E8

Z LZ020000 5A E9

_ (underscore) SP090000 5F 6D

a LA010000 61 81

b LB010000 62 82

c LC010000 63 83

d LD010000 64 84

e LE010000 65 85

f LF010000 66 86

g LG010000 67 87

h LH010000 68 88

i LI010000 69 89

j LJ010000 6A 91

k LK010000 6B 92

l LL010000 6C 93

m LM010000 6D 94

n LN010000 6E 95

o LO010000 6F 96

p LP010000 70 97

q LQ010000 71 98

r LR010000 72 99

s LS010000 73 A2

t LT010000 74 A3

u LU010000 75 A4

v LV010000 76 A5

w LW010000 77 A6

x LX010000 78 A7

y LY010000 79 A8

z LZ010000 7A A9

Figure 43. Invariance of Syntactic Character Set in Basic SBCS Encoding

Structures

EBCDIC Double and Mixed-byte Structures

The structure of IBM double-byte coded character sets is specified in IBM standards.

The double-byte EBCDIC code is called DBCS-HOST code. The basic EBCDIC structure

has allocated coding space for control characters and graphic characters separately.

The following describes the graphic character range of hexadecimal codes in the

DBCS-HOST structure. Figure 44 illustrates the DBCS-HOST graphic character coding

space. There are no 16-bit codes for control characters in the EBCDIC structure

definition. A DBCS-HOST graphic character code has the following characteristics:

• The first byte is in the range X'41' to X'FE'

• The second byte is also in the range X'41' to X'FE', for all currently defined code

pages

• X'4040' represents DBCS-HOST SPACE

• All other undefined 16-bit patterns are invalid as graphic characters.

Figure 44. EBCDIC DBCS Graphic Character Coding Space (ES = X'12zz' or

X'13zz')

A DBCS Ward

A section of a DBCS where the first bytes of all the code points belonging to it are the

same is called a ward. A set of wards can be registered with a unique character set

identifier, GCSGID, and the associated CPGID of the DBCS. This unique identifier,

CGCSGID, defines the valid graphic character code points belonging to that set of

wards.

EBCDIC Single/Double-Byte Mixed Encoding Structure

The coding space for EBCDIC Single/Double-byte mixed graphic characters is shown

in Figure 45. The encoding scheme is a hybrid of the two EBCDIC schemes: EBCDIC

SBCS, described earlier in Figure 37, and EBCDIC DBCS, described in and Figure 44.

This encoding scheme is a stateful encoding and uses a code extension technique to

change between SBCS mode and DBCS mode. The control codes used to identify this

change of state are X'0E' (shift out of SBCS) and X'0F' (shift into SBCS mode). The

default starting state for a string encoded using this encoding scheme is single-byte.

For a mixed string to begin in DBCS mode the first double-byte character must be

preceded by a X'0E' in order to 'shift out' of SBCS mode. A well-formed mixed host

string must have matching shift out, shift in (SO, SI) pairs. All well-formed mixed host

strings will end in single-byte mode. When in either mode, the behavior of this

encoding is as prescribed by the respective encoding scheme. All the semantics of the

two individual encoding schemes apply in this case as well.

The following are examples of well-formed mixed EBCDIC strings. In these examples

SO - represents a shift-out control, SI - represents a shift-in control, s - represents a

single-byte character and dd - represents a double-byte character.

ssssSOddddddddSIsssss - in this example the string begins in single-byte mode,

shifts to double-byte mode for 4 characters and then returns to single-byte mode.

SOddddddddSIsssss - in this example the string begins with double-byte characters,

thus the first character of the string must be the shift-out, following the double-byte

characters there is a shift-in to change to the single-byte state for the last 5

characters in the string.

ssssSOddddddddSI - in this example the string begins in single-byte mode, shifts to

double-byte mode and even though the string ends in double-byte mode the Shift-in

control is required to create a well-formed string.

SOSIssssSOddddddddSIsssss - in this example the SOSI at the beginning of the string

is treated as a no-op. This is true for a SOSI pair found anywhere in a mixed EBCDIC

string.

Figure 45. EBCDIC Mixed Single/Double-Byte Code Structure (ES =

X'1301')

IBM PC Double and Mixed-byte Structures

The coding space for DBCS-PC graphic characters is shown in Figure 46.

The DBCS-PC graphic character code has the following characteristics:

• The first byte is in the range X'81' to X'FE'

• The second byte is in the ranges X'40' to X'7E' or X'80' to X'FE', for all currently

defined code pages

Note: Application developers are cautioned to not rely on the absolute code

point range values as they may change in the future. The begin and end values

may be CCSID dependent.

• DBCS-PC SPACE is variant and CCSID-dependent

• All other undefined 16-bit patterns are invalid as graphic code points.

Note: It is not advised to rely on the specific values above X'40' (second byte value) to

denote the presence or absence of DBCS characters. These values will be encoding

scheme specific and can change over time.

Figure 46. IBM-PC DBCS Graphic Character Coding Space (ES = X'22zz',

X'32zz')

Note: In practice, the graphic characters of DBCS-PC are used with a single-byte PC

coded character set. The specific values in the allocated range to be used as the first

byte of a double-byte are detailed when the coded character set is registered. Other

values from this range may be defined to be used as single-byte code points, and

when so defined are not available for use as the first byte of a double-byte. Similarly,

when a code point is declared to be the first byte of a double-byte code point, it

cannot be used as a single-byte code point.

The control characters are all single-byte codes, as defined earlier for the IBM-PC

Display and IBM-PC Data code structure. The definition of a ward given above also

applies to DBCS-PC.

IBM-PC Mixed Single- and Double-Byte Structure

In the PC-Mixed scheme, both single-byte and double-byte code points may exist in

the same data stream, without any explicit demarcation points between them.

Each specific use of a PC-Mixed scheme (ES=X'23zz' or X'33zz') must have an

associated declaration of the specific single-byte code points to be used as the first

byte of the double-byte code point. This set of code points is equivalent to a set of

specific single-shift control code points in ISO (for example, Single-shift-2 (X'8E') as

defined in ISO 6429). Each single-shift control causes the meaning of the following

single-byte code point to be taken from a specific ward. The value of the first byte,

besides being a single-shift control, is equal to the ward number. Figure 47 illustrates

this definition.

Figure 47. IBM-PC Mixed Single/Double-Byte Graphic Character Coding

Space (ES = X'2300', X'3300')

Note: Application developers are cautioned to not rely on the absolute code point

range values as they may change in the future. The begin and end values may be

CCSID dependent.

The double-byte codes starting with a valid first byte follows the definition for IBM-PC

Double-byte code structure. All the bytes that are not in the valid list of first bytes will

have their single-byte code points assigned per IBM PC Single-Byte Data or Display

structure definition. In comparison, in a pure PC-DBCS scheme the single-byte

graphic code points of the base PC Encoding structure that are not used as the first

byte of a double-byte code point cannot be assigned a graphic character.

Note: The size of the maximal character set of the double-byte code page determines

the size of the double-byte coding space needed. This in turn governs the number of

wards needed, and the corresponding number of code points to be reserved for use as

the first byte of a double-byte code point. The character set of the single-byte code

page also influences the maximum number of single-byte code points needed, by

trading off with the maximum number of wards possible. The net result is that when a

specific single-byte code page and a specific double-byte code page are used with the

mixed encoding structure of the PC, the list of valid first bytes also gets fixed.

IBM Extended Unix Code (EUC)

IBM's adaptation of Extended Unix* Code (EUC) is called IBM EUC. It is also known (in

IBM AIX documentation) as Multiple Byte Character Set (MBCS). The structure of IBM

EUC coded character sets is specified in IBM Corporate Standard, Double-Byte

Character Set (DBCS), Terminology and Coding Scheme, C-S 3-3220-102, 1992-07.

The encoding scheme used in IBM EUC is shown in Figure 48.

Figure 48. Designation and Invocation of IBM-EUC (ES = X'4403')

IBM EUC is an adaptation of one of the several code extension techniques defined in

ISO 2022. It uses the 8-bit coding environment. The coded graphic character sets

used are a national version of ISO 646 designated as the G0 set, and at most three

additional G sets (G1, G2, and G3). The graphic character sets used correspond to the

national standards of the different countries in the Far East.

The 8-bit environment of ISO 2022 implicitly designates the G0 set into the left half

and the G1 set into the right half of the ISO-8 encoding structure (see section ISO 8-

bit Structure). Encoding scheme X''8100' has been defined to describe a G1 set in the

right-hand side of the ISO 8-bit encoding space when it is being used as a standalone

portion of an EUC encoding. The single-shift controls, Single-shift 2 (SS2) and Single-

shift 3 (SS3), are used for invoking the G2 and G3 sets into the right half of the 8-bit

code. IBM EUC omits all the announcer, invocation, and designation sequences of ISO

2022.

The resultant complete coded graphic character sets are often called EUC_J (for use

in Japan), EUC_K (for use in Korea), EUC_T (for use with Traditional Chinese), or

EUC_S (for use with Simplified Chinese).

The EUC scheme combines up to four coded graphic character sets. The collection

includes a basic character set (the G0 set of a national version of ISO 646), and one or

more of the following coded graphic character sets:

• ISO 7/8 bit -- SBCS-EUC

• double-byte -- DBCS-EUC

• triple-byte -- TBCS-EUC.

The valid ranges of graphic character code points for each one of these sets when

used in IBM EUC are given below:

• Basic Character Set is the G0 set of a national version of ISO 646, and is

implicitly designated and invoked into the code point range X'21' to X'7E' for

graphic characters.

• SBCS-EUC is a single-byte code page used with the code extension technique

of IBM EUC. Each graphic character code point can be in the range X'A0' to

X'FF' (called a 96-character G set in ISO 2022).

• DBCS-EUC is a double-byte coded graphic character set, which is used with the

code extension technique of IBM EUC. The valid set of graphic character code

points of DBCS-EUC is shown in Figure 49. Any graphic character code point of

DBCS-EUC meets the following criteria:

o Both bytes are in the range X'A0' to X'FF'

o Any two-byte pattern that includes a byte value outside the above range

is invalid.

Figure 49. IBM-EUC Double-Byte Code Structure

• TBCS-EUC is a triple-byte coded graphic character set, which is used with the

code extension technique of IBM EUC. The valid set of graphic character code

points of TBCS-EUC is shown in Figure 50. Any graphic character code point of

TBCS-EUC meets the following criteria:

o All three bytes are in the range X'A0' to X'FF'

o Any three-byte pattern that includes a byte value outside the above

range is invalid.

Any one of the SBCS-EUC, DBCS-EUC, or TBCS-EUC can be used as any of G1,

G2, or G3 sets.

• Each code point invoked from G2 is preceded by an SS2 control that has been

assigned X'8E' in C1.

• Each code point invoked from G3 is preceded by an SS3 control that has been

assigned X'8F' in C1.

The remaining code points in the space X'00' to X'1F', and X'7F' to X'9F', follow the

rules for an ISO 8-bit code (see ISO 8-bit Structure).

• The default SPACE (X'20'), DELETE (X'7F'), and control code point assignments

for C0 and C1 sets as defined in ISO 6429.

• The SS2 and SS3 controls are from the C1 set (X'8E' and X'8F').

• The default Substitute (SUB) code point is from the C0 set (X'1A').

• Additional SPACE and SUB control code points may also be specified to be used

with G1, G2, or G3 sets.

Figure 50. IBM-EUC Triple Byte Code Structure (ES = X'5700' standalone

or as part of ES = X'4403')

Notes:

1. EUC does not specify what happens when a control set that is designated and

invoked as a C1 set has SS2 and SS3 controls assigned to code points other than X'8E'

and X'8F' -- for example, the control sets of CCITT T.61 for Telematic Services.

2. IBM EUC specifies that the right half of the 8-bit coding space (GR) is the single-

shift area. The following announcer sequences of ISO 2022 correspond to the EUC

adaptation:

o ESC 20 43 announces an ISO-8 environment, with G0 on the left side

and G1 on the right side of the 8-bit code

o ESC 20 5A announces an additional G2 invoked using SS2

o ESC 20 5B announces an additional G3 invoked using SS3.

o ESC 20 5C announces the single-shift to be GR.

Unicode

Unicode is a universal character encoding scheme that has been developed by a

consortium made up of members of the worldwide IT community. The consortium is

committed to maintaining synchronization between Unicode and ISO/IEC 10646,

Information technology - Universal Coded Character Set (UCS). The encoding

structure defined here for use in CDRA is applicable to both Unicode and ISO/IEC

10646.

Unicode provides a means of encoding all of the characters used for the written

languages of the world. It has the capability to encode up to 216 x 17 characters.

Unicode has been accepted by many as the strategic direction towards multilingual

computing.

The basic encoding structure of Unicode is shown in Figure 51. Unicode is made up of

17 planes of 256 rows and 256 columns. Plane 0 is the Basic Multilingual Plane

(BMP). It contains most of the currently encoded characters. Plane 0 includes an area

reserved for Private Use Characters (PUA) and an area used for surrogate characters.

Plane 1 is the Supplementary Multilingual Plane. Its purpose is to encode characters

from archaic or obsolete writing systems. Plane 2 is the Supplementary Ideographic

Plane and is used for encoding rare and unusual Han characters (Chinese, Japanese,

Korean and Vietnamese unified Ideographs). Planes 3 through 13 are currently (and

expected to remain) unassigned. Plane 14 is reserved for special purpose characters

and is thus called the Supplementary Special-Purpose Plane. The final two planes, 15

and 16, are Private Use Planes to be used as an extension of the private use area

found in the BMP. Encoding scheme X'7209' has been defined to represent an

individual plane within the Unicode structure. This encoding scheme is used when

referencing a plane. Additional information about the Unicode encoding structure can

be found on the Unicode web site.

http://www.unicode.org/

Figure 51. Unicode Basic Code Structure

Unicode Encoding Formats

Unicode is unique and different from most character encodings in that there are

several formats defined for the encoding. The various encoding formats are identified

and described in chapter 2 of the Unicode standard. While the encoding space is well

structured and clearly defined, the Unicode Standard allows a number of different

encoding formats. Characters may be encoded in one, two or four-byte formats. Each

of these formats is briefly described below. For more detailed information refer to the

Unicode Standard V4.0 documentation or the Unicode web site. The Unicode encoding

structure can easily be defined using the standard CDRA Encoding Scheme Identifiers

(ESIDs). Several ESIDs have been defined in order to accurately define the various

encoding formats. To accurately interpret Unicode encoded data it is essential that

the encoding be known and clearly defined.

UTF-8 (ES = X'7807')

Unicode Transformation Format 8 (UTF-8) is a way of transforming all Unicode

characters into a variable length encoding of bytes. It has the advantages that the

Unicode characters corresponding to the standard 8-bit ASCII set have the same

values as ASCII, and that Unicode characters transformed into UTF-8 can often be

used with existing software without extensive software rewrites. The main

disadvantage of this encoding form is the overhead required to perform the

http://www.unicode.org/versions/Unicode6.2.0/ch02.pdf#G18461
http://www.unicode.org/

transformation from one of the other encoding formats into UTF-8. UTF-8 is

commonly used for file storage and as the default by the Internet Engineering Task

Force (IETF) and the World Wide Web Consortium (W3C) protocols. The CDRA defined

encoding scheme identifier for UTF-8 is 7807.

UTF-16 (ES = X'7200', X'720B', X'720F', X'8200)

Unicode Transformation Format 16 (UTF-16) is a reasonably compact encoding and

all the heavily used characters fit into a single, 16-bit code units in byte serialized

form. All other characters are available via pairs of 16-bit codes (surrogates). UTF-16

is the most commonly used encoding form for internal processing. When using UTF-16

the order of the bytes of the character can be either most-significant-byte-first (big-

endian, BE order) or least-significant-byte-first (little-endian, LE order). CDRA defines

four ESIDs for UTF-16. The first is 7200. 7200 indicates UTF-16 with BE order. The

second is 720B which indicates UTF-16 LE. The third ESID defined is 720F. 720F

indicates UTF-16 where the endian order is determined by a byte order mark (BOM). If

presents, a byte order mark will be found as the first two bytes of a data string. The

value of the BOM indicating BE order is x'FEFF' and indicating LE order is x'FFFE'. If no

BOM is found, the data is assumed to be big endian. The final encoding scheme

defined for UTF-16 is 8200. This encoding scheme is called 'Unicode Presentation'. It

is defined to be BE order in the absence of a BOM and is used exclusively by IBM

printing systems. 8200 is a derivation of Unicode. It defines the C0 and C1 space of

Unicode to be used for graphic characters.

UTF-32 (ES = X'7500', X'750B', X'750F')

Unicode Transformation Format 32 (UTF-32) provides fixed width, single code unit

access to all of the characters. Each Unicode character is encoded in a single 32-bit

code unit when using UTF-32. As is the case with UTF-16, UTF-32 can also be byte-

serialized in either big-endian (BE) or little-endian (LE) order. CDRA defines three

encoding schemes for UTF-32 format. 7500 is defined for UTF-32 BE. Encoding

scheme 750B explicitly defines the data to be UTF-32 LE. The third ESID is 750F.

750F indicates UTF-32 where the endian order is determined by a byte order mark

(BOM). The byte order mark for UTF-32 is X'0000FEFF' for indicating BE order and

X'FFFE0000' for indicating LE order. If no BOM is found, the data is assumed to be in

BE order.

UTF-EBCDIC (ES = X'1808')

Unicode Transformation Format EBCDIC (UTF-EBCDIC) provides an EBCDIC friendly

way of encoding Unicode. UTF-EBCDIC is defined in Unicode Technical Report 16.

UTF-EBCDIC defines a means of transforming Unicode characters to a form that is

http://www.unicode.org/unicode/reports/tr16/

safe for EBCDIC systems for the control characters and invariant characters. CDRA

defines encoding scheme 1808 for UTF-EBCDIC. UTF-EBCDIC is intended to be used

inside EBCDIC systems or in closed networks where there is a dependency on EBCDIC

hard-coding assumptions. UTF-EBCDIC is unsuitable for use over the Internet or for

data interchange.

Standard Compression Scheme for Unicode (SCSU) (ES = X'7B0C')

The Unicode Standard defines a compression scheme for storing and transmitting

Unicode data. The details of this encoding form can be found in Unicode Technical

Standard 6. The CDRA defined ESID for Unicode SCSU is 7B0C.

Binary Ordered Compression for Unicode (BOCU-1) (ES = X'7B0E)

The Unicode Standard defines this MIME compatible compression for Unicode. The

details of this encoding form can be found in Unicode Technical Note #6. The CDRA

defined ESID for Unicode BOCU-1 is 7B0E.

Compatibility Encoding Scheme for UTF-16: 8-Bit (ES = X'780D')

Unicode Technical Report 26 specifies an 8-bit Compatibility Encoding Scheme for

UTF-16 (CESU) that is intended for internal use within systems processing Unicode in

order to provide an ASCII-compatible 8-bit encoding that is similar to UTF-8 but

preserves UTF-16 binary collation. It is not intended nor recommended as an

encoding used for open information exchange. The CDRA defined ESID for Unicode

CESU-8 is 780D.

Chinese Standard GB18030

GB18030 is a Chinese Standard which was defined as a super set of previously

defined standards including GB 2312-80. It was defined to give customers the

capability of using and processing a greater number of Chinese characters which are

necessary for many applications used in organizations such as banks, insurance

companies and by the postal service. It currently contains all characters defined in

Unicode 3.0 including more than 27,000 Chinese characters. This standard provides

solutions for the urgent needs of Chinese characters used in names and addresses.

GB 18030 uses a combination of one-byte, two-byte and four-byte codes and has a

capacity of over 1.5 million code positions. The determination of character width (one,

two or four-byte) is handled implicitly using code point ranges as shown in Figure 52.

http://www.unicode.org/unicode/reports/tr6/
http://www.unicode.org/unicode/reports/tr6/
https://www.unicode.org/notes/tn6/
https://www.unicode.org/unicode/reports/tr26/

Number of Bytes Valid Byte Ranges Number of Codes

One-byte X'00'-X'80' 129 codes

Two-byte
First byte

X'81' ~ X'FE'

Second byte

X'40'~X'7E' X'80'~X'FE'
23,940 codes

Four-byte
First byte

X'81'~X'FE'

Second byte

X'30'~X'39'

Third byte

X'81'~X'FE'

Fourth byte

X'30'~X'39'
1,587,600 codes

Figure 52. GB18030 Structure (ES = X'2A00')

Lotus Multi-Byte Character Set (LMBCS)

LMBCS encoding is used exclusively by Lotus. It is defined as a multi-byte encoding

made up of one, two and three-byte values. The first byte is the Group Byte. The

Group Byte is a value between X'00' and X'1F' with meaning as described in Figure 53.

Following the group byte will be either one or two bytes identifying the character. For

optimization purposes, the group byte is omitted in Notes for single-byte values

between X'20' and X'FF'. For example, LMBCS is always optimized to group 0x01,

which means that any character where the first byte is greater than 0x1F, has an

implicit group byte of 0x01.

Group byte Character size (bytes) Description

0x00 Reserved for future use

0x01 2 Byte 2 = Codepage 850, i.e. Multilingual DOS

0x02 2 Byte 2 = CP 851 (Greek DOS)

0x03 2 Byte 2 = CP 1255 (Hebrew Windows)

0x04 2 Byte 2 = CP 1256 (Arabic Windows)

0x05 2 Byte 2 = CP 1251 (Cyrillic Windows)

0x06 2 Byte 2 = CP 852 (Latin-2 DOS)

0x07 1 BEL

0x08 2 Byte 2 = CP 1254 (Turkish Windows)

0x09 1 TAB

0x0A 1 NL

0x0B Reserved for future use

0x0C Reserved for future use

0x0D 1 CR

0x0E Reserved for future use

0x0F Reserved for future use

0x10 3 Bytes 2 & 3 = CP 932

Group byte Character size (bytes) Description

0x11 3 Bytes 2 & 3 = CP 949

0x12 3 Bytes 2 & 3 = CP 950

0x13 3 Bytes 2 & 3 = CP 936

0x14 3 Bytes 2 & 3 = UTF-16 bytes

0x15 - 0x1F Reserved for future use

Figure 53. LMBCS Structure (ES = X'9300')

Appendix B. Conversion Methods

Conversion tables alone do not ensure the transfer or sharing of data objects between different

computing environments: the proper selection and use of these tables is essential. Conversion

methods, as described in the following sections, are used with the tables referenced in Appendix

J. As with the selection of a table, the conversion method that is best for one application may not

be appropriate for another.

It is the responsibility of the person designing the conversion method to respect the

characteristics and requirements of the input and output data. An appropriate method can be

selected based on the encoding schemes (ESs) and string types (STs) of the input and output

data. The conversion method models described in the following sections are specifically for

coded graphic character strings whose semantics follow the respective ES definitions for the

character encodings. Necessary enhancements needed to deal with the following string types are

also briefly described:

• Input null-terminated.

• Output null-terminated.

• Output SPACE-padded.

Conversion methods are not supplied by CDRA, but are described here in the context of use with

the conversion tables created and supplied by CDRA.

Figure 54. Use of conversion methods

Figure 54 shows the use of the conversion methods and tables within the overall conversion

process. The conversion method first parses the input data string, and if necessary performs any

required substring operation. A substring operation may be required if the input data string

contains embedded code-extension controls, such as SO/SI controls in EBCDIC-mixed

SBCS/DBCS data. The rules for parsing the specified string type should also be followed. The

resulting substrings should contain code points that possess similar characteristics -- they are all

from the same CS, CP pair identified. Each substring is converted from input code points to

output code points using the appropriate conversion table. This table selection is based on the

characteristics of the input data and the desired characteristics of the output data including the

CS, CP pairs and ESs. Finally, the conversion method assembles the resulting output substrings

into the final output string. This process should include the insertion of any code extension

control characters that are required by the output ES. Rules for assembling the specified output

string type (ST) should also be followed.

Each of the CDRA conversion methods is explained in detail in the following pages.

• Method 1 for SBCS

• Method 2 for Pure DBCS

• Method 3 for EBCDIC Mixed to PC Mixed

• Method 4 for PC Mixed to EBCDIC Mixed

• Method 5 for Single-byte to Double-byte

• Method 6 for Double-byte to Single-byte

• Method 7 for Mixed Single/Double-byte to Double-byte

• Method 8 for Double-byte to Mixed Single/Double-byte

• EUC and 2022 TCP/IP Conversion Tables

• Method 9 for PC to EUC Conversions

• Method 10 for EUC to PC Conversions

• Method 11 for Host to EUC Conversions

• Method 12 for EUC to Host Conversions

• Method 13 for PC to TCP Conversions

• Method 14 for TCP to PC Conversions

• Method 15 for Host to TCP Conversions

• Method 16 for TCP to Host Conversions

• Conversions Methods in Support of GB18030

• Use of Shadow Flags - An Example

• Enhancements to Support String Types

Method 1 for SBCS

This method has the following characteristics:

• It is used for conversions between two pure single-byte CCSIDs.

• The valid encoding schemes for the input and output data are X'1100', X'2100',

X'3100', X'4100', X'4105', X'4155', X'6100' and X'8100'; this method can also

be used with ES X'5100' and X'5150' (single-byte 7-bit code) with

considerations for the 7-bit limit.

• The conversion table selected by this method will be a single-byte code point to

single-byte code point table from the input CS, CP pair to the output CS, CP pair

(known as a TYPE 1 table). Figure 55 shows a model for a TYPE 1 conversion

table.

• The contents of the table will reflect the criterion used for mismatch

management.

• All control characters are treated as pure single-byte controls, and are mapped

according to the mismatch management criterion.

• Handling of control function sequences is beyond the scope of this method.

The machine-readable format of the single-byte to single-byte conversion table is a

file containing a single 256-byte record. This allows for 256 single-byte output values.

Each character in the table corresponds to one input code point, X'00' through X'FF'.

The byte value of the character that is found in the location corresponding to the input

code point value is the output code point.

In the example shown in Figure 55, to find the output code point for the input code

point X'53', we look at offset X’53’ in the record. (The first position is offset X’00’ and

the final position is offset X’FF’.) The value that we find at offset X’53’ is the

corresponding output code point. In this example it is X'67'.

These tables are the standard distribution and storage format of CDRA.

Figure 55. Single-byte to Single-byte Conversion

Method 2 for pure DBCS

This method has the following characteristics:

• It is used for conversions between two pure double-byte CCSIDs.

• The valid encoding schemes for the input and output data are X'1200', X'2200',

X'3200', X'5200', X'6200', X'7200', X'8200' and X'9200'.

• The conversion table selected by this method will be a double-byte code point

to double-byte code point table from the input CS, CP pair to the output CS, CP

pair (known as a TYPE 2 table). Figure 56 shows a model for TYPE 2 conversion

table.

• Most double-byte codes do not use all the available first bytes as valid ward

numbers. Thus, the tables are organized as several sub tables, each containing

256 double-byte code point entries.

• The contents of the table will reflect the criterion used for mismatch

management.

• Any fragmented double-bytes or first-bytes that do not have an entry in the

conversion table are treated as errors in the data.

Figure 56. Method2: Double-byte to double-byte conversion

To understand the machine-readable format of the double-byte tables, you must first

understand the concept of a "ward". A ward is a section of a double-byte coded

character set, where the first byte of all code points contained in that section have the

same value. A ward is populated if there are any characters in the double-byte coded

character set whose first byte is the ward value. Conversely, a ward is not populated if

there are no characters in the double-byte coded character set that have that ward

value as the first byte. Each of the Far East double-byte coded character sets contains

many unpopulated wards.

The CDRA machine-readable format of the double-byte conversion tables is a

structure composed of many 512-byte records: a sub table pointer record, a

substitution character record, and one record for each populated ward. The sub table

record is the first record in the structure, and it is used as the index into the other

character records of the structure.

The first 256 bytes of the sub table record contains information, whereas the second

256 bytes contains zeros. Each of the 256 assigned bytes corresponds to the first byte

(the ward number) of an input code point. The byte values found in these locations are

pointers to subsequent records in the structure that contain the output code points.

Each of the subsequent records in the structure contain information in all 512 bytes in

the form of 256 double-byte code point values. The appropriate subsequent record is

selected from the structure using the value of the first byte of the input code point as

an index into the sub table pointer record. The value obtained from the sub table

pointer record points to the subsequent record required. The second byte of the input

code point is then multiplied by two to calculate the correct offset into the selected

record. Each output code point is two bytes in length, beginning at offset n into the

record, where n is 2 times the input code point value.

In Figure 56 the conversion process may be described as follows:

1. Input code value X'41C1'

2. Use X'41' as an index into the sub table pointer record

3. Retrieve record pointer "pp"

4. Use the second input byte, X'C1', as an index into record "pp" to retrieve the

output value X'43C4'.

Thus, the input code point X'41C1' maps to the output code point of X'43C4'.

The third record type in the structure is the substitution record. It is a 512-byte record

constructed from 256 two-byte values, all of which are the code point value for the

defined Substitute character for the target coded character set. The value retrieved

from the sub table pointer record for each unpopulated ward will point to this

substitution record.

Method 3 for EBCDIC mixed to PC mixed

This method has the following characteristics:

• It is used for conversion between an input EBCDIC mixed CCSID (with SO-SI

code extension controls) and a PC mixed CCSID.

• The valid encoding scheme for the input data is X'1301', and for the output data

the encoding schemes are X'2300', X'2305' and X'3300'.

• The input parser separates the double-byte strings contained within the SO-SI

pairs from the single-byte substrings. The SO-SI pair is discarded from the

input string. The single-byte and the double-byte substrings are converted

separately (shown in Figure 57).

• The input single-byte substrings are converted to corresponding output single-

byte substrings using the appropriate Type 1 table (shown in Figure 55).

• The input double-byte substrings are converted to corresponding output

double-byte substrings using the appropriate Type 2 table (shown in Figure

56).

• The output generator concatenates the converted substrings in the same order

as their corresponding input substrings.

• The contents of the conversion tables used govern the accuracy of the output

data.

• Handling of the single-byte controls within the input double-byte substrings is

beyond the scope of this method.

• The removal of the SO-SI code extension controls generally results in an output

string that is shorter in length than the corresponding input string.

Figure 57. Method 3: Host Mixed Single/Double-byte to PC Mixed

Single/Double-byte

Method 4 for PC mixed to EBCDIC mixed

This method has the following characteristics:

• It is used for conversion between an input PC mixed CCSID and an EBCDIC

mixed CCSID (with SO-SI code extension controls).

• The valid encoding schemes for the input data are X'2300', X'2305' and

X'3300', and for the output data is X'1301'.

• It uses a TYPE 3 conversion table (see Figure 58) consisting of:

- A control sub table

- A pool of single-byte to single-byte sub tables (Type S)

- A pool of single-byte to double-byte sub tables (Type D)

- There is an entry in the control sub table for each possible byte in the input

string

- The two-byte entry in the control sub table shows how many bytes are to be

taken from the input string (single- or double-byte), the pool from which the

conversion table is to be selected, and which conversion table to select.

Figure 58. Method 4: PC Mixed Single/Double-byte to Host Mixed

Single/Double-byte

• The list of valid first bytes associated with the input CCSID is used for

separating the double-byte code points from the single-byte code points. This

function is built into the control sub table of a TYPE 3 table when the table

contents are defined.

• This method can handle situations where the characters in an input CS are split

among multiple output CSs.

• The pure double-byte substrings are mapped using the tables indicated in the

control sub table. The first byte of each character is used as the index into the

control sub table. The corresponding control table entry identifies the

appropriate single-byte to double-byte table. The second byte is then used as

the index into the single- to double-byte table. The contents of this cell will be a

double-byte code point.

• The output double-byte substrings are bracketed within the SO-SI pair.

• The pure single-byte substrings are mapped using the appropriate single-byte

to single-byte sub table, as identified in the control sub table of a TYPE 3 table.

• The output generator concatenates the converted substrings in the same order

as their corresponding input substrings (the SO-SI pairs are part of the output

double-byte substrings).

• The contents of the conversion tables used governs the accuracy of the output

data.

• The addition of the SO-SI code extension controls generally results in an output

string that is longer in length than the corresponding input string.

• The conversion method will generate single-byte control code points only

outside the SO-SI pairs.

• All double-byte control code points will appear inside SO-SI pairs.

• The resultant output mixed string must be well formed. That is, all SO control

codes must be paired with a matching SI control code even if the SI is the last

character in the resultant string.

Method 5 for single-byte to double-byte

This method has the following characteristics:

• It is used for conversion between an input single-byte and an output double-

byte CCSID.

• The valid encoding schemes for the input data are X'1100', X'2100', X'3100',

X'4100', x'4105', X'4155'and X'6100', and for the output data are X'1200',

X'2200', X'3200', X'5200', X'6200', X'7200', X'8200' and X'9200' (21).

• It uses a TYPE 4 conversion table (see Figure 59) consisting of one 512-byte

record (this allows for 256 double-byte output values).

• The possible input, single-byte code point values are in the range X'00' through

X'FF'.

• The input code point is used as an offset into the conversion table. The 2-byte

entry beginning at this location is the actual output double-byte code point.

• The following steps are taken in order to convert a single-byte X'40' to a UCS-2

(double-byte) value, as shown in Figure 59:

- The input value of X'40', is used as an index into the conversion table.

- The X'40'th entry is found (remembering that each entry in the conversion

table is two bytes long).

- The two bytes found at this location comprise the output double-byte code

point value.

• The resultant output string will be twice the length of the input string (each

single-byte is converted to a double-byte).

• The content of the conversion table used governs the accuracy of the output

data.

Figure 59. Method 5: SBCS to UCS Conversion Table

Method 6 for double-byte to single-byte

This method has the following characteristics:

• It is used for conversion between an input double-byte and an output single-

byte CCSID.

• The valid encoding schemes for the input data are X'1200', X'2200', X'3200',

X'5200', X'6200', X'7200', X'8200' and X'9200' and for the output data are

X'1100', X'2100', X'3100', X'4100', X'4105', X'4155' and X'6100'.

• It uses a TYPE 5 conversion table (see Figure 59) consisting of:

• A 256-byte sub table pointer record.

• A pool of 256-byte sub tables.

• The method takes each input double-byte code point and separates it into a

first and second byte.

• The first byte is used as an offset into the sub table pointer record.

• The value found at this location "points" to the appropriate record in the pool of

sub tables.

• The second byte is then used as an offset into the selected sub table record.

• The value found at this location is the single-byte output code point.

• In the example shown in Figure 60 the following takes place:

• The first byte of the input value X'00' is taken and used as the offset.

• At location X'00' in the sub table pointer record the value 03 is found.

• The method locates record 03 in the sub table pool and uses the second byte of

the input value, X'41', as the offset.

• The value found at this location, X'C1', is the output single-byte value.

• The resultant output string will be half the length of the input string (each

double-byte is converted to a single-byte).

• The content of the conversion table used governs the accuracy of the output

data.

Figure 60. Method 6: DBCS to SBCS conversion table

Method 7 for Mixed Single/Double-byte to Double-byte

This method has the following characteristics:

• It is used for conversion between an input mixed single/double-byte and an output

double-byte CCSID.

• The valid encoding schemes for the input data are X'1301', X'2300', X'2305' and X'3300',

and for the output data are X'1200', X'2200', X'3200', X'5200', X'6200', X'7200', X'8200'

and X'9200'.

• It uses a TYPE 2 conversion table, as described earlier for double-byte to double-byte

conversions. See “Method 2 for Pure DBCS” for a description of the table and how it

works.

• This method requires that the input data is normalized such that each input code point is

two bytes long. This is done by prefixing each single-byte code point with a X'00'.

• Any code extension controls are also removed from the input data stream.

• The conversion then proceeds as any normal double-byte to double-byte conversion.

• This method is primarily used for converting data to UCS-2 (encoding scheme X'7200').

• The resultant output string will not necessarily be the same length as the input string,

(each single-byte code point from the mixed input string is converted to a double-byte).

• The content of the conversion table used governs the accuracy of the output data.

Method 8 for mixed single/double-byte to double-byte

This method has the following characteristics:

• It is used for conversion between an input double-byte and an output mixed

single/double-byte CCSID.

• The valid encoding schemes for the input data are X'1200', X'2200', X'3200', X'5200',

X'6200', X'7200', X'8200' and X'9200', and for the output data are X'1301', X'2300',

X'2305' and X'3300'.

• It uses a TYPE 2 conversion table, as described earlier for double-byte to double-byte

conversions. See “Method 2 for Pure DBCS” for a description of the table and how it

works.

• This method takes the two-byte input code points and uses the TYPE 2 conversion table

to produce normalized (two-byte) output code points.

• The output data is then denormalized by removing the leading X'00' found on the

normalized single-byte code points.

• Any necessary code extension controls are also added to the output data stream. The

resultant string must be well formed as defined by the appropriate encoding structure. For

more information see Appendix A.

• This method is primarily used for converting data from UCS-2 (encoding scheme

X'7200').

• The resultant output string will not necessarily be the same length as the input string,

(some of the input double-byte code points may map to single-byte code points in the

output mixed CCSID).

• The content of the conversion table used governs the accuracy of the output data.

EUC and 2022 TCP/IP conversion tables

The Extended Unix Code (EUC) conversion tables are used to convert EUC encoded

graphic character data from an EUC platform to or from a host or PC platform. The ISO

2022 TCP/IP (TCP) conversion tables are used to convert encoded graphic characters

from the specific ISO 2022 format used by TCP/IP to or from a host or PC platform.

It is assumed at this point that the reader has some knowledge of the code extension

techniques defined in the ISO 2022 standard. Both EUC and 2022 TCP/IP data

streams make use of these techniques.

The conversion tables are constructed to achieve optimum character integrity after

data conversion by using GCGID matching between source and target encodings. Both

schemes can define up to four, character set and code page pairs to better enhance

the character matching between source and target CCSIDs.

The EUC and TCP conversion tables use a normalized form of data. Input passed to

and output generated from the conversion tables is normalized. The PC code points

are normalized by placing a leading X'00' in front of each single-byte to yield a two-

byte form. Host (EBCDIC) data must have the SO-SI control characters deleted during

normalization and reinserted afterwards during denormalization. As with the PC data,

a leading X'00' is inserted in front of any single-byte data. The EUC and TCP code

points are normalized to four-byte values.

Figure 61. EUC and ISO 2022 TCP Conversion

Figure 61 shows the general use of the EUC and TCP conversion tables. The input byte

or bytes, up to a maximum of four bytes per code point, are first normalized and used

as input to the conversion table. The output (again, four bytes per code point

maximum) from the conversion table is also normalized data, which must be

denormalized prior to subsequent processing.

Normalization and denormalization services are not part of the CDRA-supplied

conversion tables.

EUC conversions

The EUC encoding technique uses up to four coded graphic character sets. Each must

be predefined, as the information is not carried in the text data stream. In CDRA, the

CCSID determines the group of coded graphic character sets being used. Code points

from the left half of the 8-bit encoding space (the high-order bit is OFF) are in the set

G0. Code points that lie in the right half of the encoding space (the high-order bit is

ON) are in the set G1. The single-shift control characters, called SS2 and SS3, are

used to invoke the other sets G2 and G3.

EUC conversions require that the EUC input or output contain not only the character to

be converted, but the shift control character when applicable. All input EUC data

needs to have the code point values padded with leading zeros to create a fixed

length, normalized, four-byte encoding. The following example shows how a code

point in G3 must be formatted for the conversion tables.

• Input code point X'A2C3' in set G3.

• SS3 character X'8F' must be present and included with the input value.

• Normalized input value becomes X'008FA2C3' (padded to a length of four

bytes).

This means that when dealing with EUC data, the parser must recognize which G-set

each character belongs to in order to build the correct normalized input for the

conversion process. When converting from EUC, the de-normalizing process must

strip off the leading zeros and concatenate the converted characters to build the

correct output string.

2022 TCP/IP conversions

Conversion tables for TCP/IP are very similar to those for EUC, except that only one G-

set is used, namely G0. To switch from one coded graphic character set to another

cannot be accomplished using the EUC technique of a single shift. An explicit escape

sequence is used to designate a new coded graphic character set being loaded into

the G0 set. The escape sequence value itself cannot be carried in the conversion table

entries, so the high-order byte of the TCP/IP code point value will be set to

correspond to the position of the CGCSID within the CCSID. For example, CCSID 956

is defined for Japanese TCP/IP and contains four CGCSIDs corresponding to JIS X

201 Roman, JIS X 208-1983, JIS X 201 Katakana, and JIS 212. For Japanese host to

TCP/IP conversion, a code point value from the JIS X 201 Katakana set would contain

a value of X'03' in the high-order byte.

In ISO 2022, control characters are not part of the coded graphic character set;

therefore, loading a new coded character set into G0 does not affect the set of control

characters in C0. It thus does not make sense to have the high-order byte setting

indicate a specific coded graphic character set. Control characters will then be

normalized as follows;

1. For Host or PC to 2022 TCP/IP, the converted value will have X'00' in the high-

order byte. This will indicate to the denormalization routine that it does not

matter what the currently designated coded graphic character set is -- the

control character may simply be placed directly into the output data stream.

2. For 2022 TCP/IP to Host or PC, the input normalized value may have X'00' as

the high-order byte, or it may contain any valid value for the table. The

normalization routine can then recognize the value as a control character and

place a X'00' in the high-order byte or it may use the current active value as a

result of the previous escape sequence.

Although the identifiers coded in the high-order bytes will correspond to the position

of the coded graphic character set within the CCSID, each table will also contain the

set of ESC sequences used to designate the coded graphic character set in the G0.

This mapping will be contained in the first record of the conversion table in the

following format:

L1 ESC1 L2 ESC2 ... Ln ESCn

where Li is a one-byte unsigned field containing the length of the following ESC

sequence, and ESCi is the ESC sequence associated with the high-order byte id "i" in

the table.

Method 9 for PC to EUC conversions

The method shown in Figure 62 has the following characteristics:

• It is used for conversion between an input PC CCSID and an output EUC CCSID.

• The valid encoding schemes for input are X'2100', X'3100', X'2200', X'2300',

X'2305', X'3200', and X'3300' while X'4403' is valid for the output CCSID.

• The PC input data is always normalized to two bytes per code point.

• The conversion table created will handle either single-byte or double-byte code

points from the input CS, CP pair to a possible single-byte, double-byte or

triple-byte output CS, CP, as determined by the EUC encoding scheme.

• The content of the table will reflect:

o CS, CP pair priorities for the EUC CCSID

o Matched GCGID priority within a CS, CP pair

o Mismatch management criteria

o Space character management.

• Since many double-byte encodings do not use all available first-byte values as

ward numbers, the conversion table will contain one record for each valid ward

and one additional record for all invalid wards. Each record will contain 256

four-byte entries.

• Invalid single-byte code points will be mapped into the single-byte G0 set

character SUB, at code point X'1A'. Invalid double-byte values will be mapped

into the double-byte G1 set as a SUB.

• Each of the four-byte values will contain the appropriate single-shift character

(SS2 or SS3), whenever the output is in G2 or G3.

Figure 62. Method 9: PC to EUC Conversion

Method 10 for EUC to PC conversions

The input values for the conversion in this case are four bytes, rather than the two

bytes used for the PC input in the previous example. This results in a conversion table

construction that is more complex than the PC-to-EUC case. The following description

applies equally to all tables dealing with four-byte input values, namely those of EUC

and TCP/IP CCSIDs.

There are four levels of tables within the constructed conversion table, where each

table corresponds to one input byte value of the four input bytes per character.

• Level 0 tables (B0): Only one table can be constructed at this level. Byte 0 (the

first byte) of the input code point is used to index into the B0 table and retrieve

a pointer to the B1 level tables. Table B0 is 256 bytes long.

• Level 1 tables (B1): There is one B1 table for each valid entry in the B0 table,

plus one table to contain all of the invalid entries for B0. The first four bytes of

each B1 table are used as a pointer, b2pt, to a corresponding group of B2

tables. The second byte of the input code point (byte 1) is used as an index into

B1 to retrieve the index number for the B2 table within the group of B2 tables

pointed to by the b2pt value. Each B1 table is 260 bytes long.

• Level 2 tables (B2): There is one group of B2 tables for each B1 table. The first

four bytes of each B2 table are used as a pointer, b3pt, to a corresponding

group of B3 tables. The third byte of the input code point (byte 2) is used as an

index into B2 to retrieve the index number for the B3 table within the group of

B3 tables pointed to by the b3pt value. Each B2 table is 260 bytes long.

• Level 3 tables (B3): There is one group of B3 tables for each B2 table. Use the

fourth byte of the input code point (byte 3, where byte 0 is the first byte) to

index into the B3 table to retrieve the final conversion value. Each B3 table is

512 bytes in length.

An index value of 0 corresponds to the first table in the group.

Figure 63. Method 10: EUC to PC Conversion

The method shown in Figure 63 has the following characteristics:

• It is used for the conversion of data between an input EUC CCSID and output

PC CCSID.

• The valid encoding scheme for input data is X'4403', while the valid schemes

for output data are X'2100', X'3100', X'2200', X'2300', X'2305' X'3200', and

X'3300'.

• The input bytes are always received in a normalized four-byte format.

• The conversion table will accept single-byte, double-byte, or triple-byte code

points from the input CS, CP pair as defined by the EUC encoding scheme to be

converted to a possible single-byte, double-byte CS, CP code-point output

value.

• The content of the table will reflect the criterion used for:

o Matched GCGID priority within the target CS, CP

o Mismatch management

o Space character management.

• For most EUC four-byte codes, only a certain range of code point values are

valid for the three high-order bytes, therefore the tables are organized as

several sub-tables. Sub-table pointer tables contain entries that point to a pool

of sub-tables. The lowest-level sub-table points to a series of records

containing 256 double-byte code point values used as output.

• Invalid single-byte input values will be mapped to the single-byte SUB

character for the PC, which is a X'7F'. All other invalid input values will be

mapped to the double-byte SUB for the respective PC mixed CCSID.

• Only a triple-byte CS, CP pair will use all four bytes of the input code point.

Method 11 for Host to EUC conversions

The method shown in Figure 64 has the following characteristics:

• It is used for conversion between an input Host CCSID and an output EUC

CCSID.

• The valid encoding schemes for input data are X'1100', X'1200', and X'1301'.

The valid output encoding scheme is X'4403'.

• Input is always expected in a normalized two-byte format.

• The conversion table created will handle either single-byte or double-byte code

points from the input CS, CP pair to a possible single-byte, double-byte or

triple-byte output CS, CP, as determined by the EUC encoding scheme.

• CS, CP pair priorities for the EUC CCSID

• Matched GCGID priority within a CS, CP pair

• Mismatch management criteria

• Space character management.

• Since many double-byte encodings do not use all available first-byte values as

ward numbers, the conversion table will contain one record for each valid ward

and one additional record for all invalid wards. Each record will contain 256

four-byte entries.

• Invalid single-byte code points (X'00xx') will be mapped into the single-byte G0

set character SUB, at code point X'1A'. Invalid double-byte values will be

mapped into the double-byte G1 set as a SUB.

• Host double-byte control characters will be mapped to the single-byte control

characters after denormalization.

Figure 64. Method 11: Host to EUC Conversion

Method 12 for EUC to Host conversions

The method shown in Figure 65 has the following characteristics:

• See “Method 10 for EUC to PC Conversion” for a description of the table format.

• It is used for conversion between an input EUC CCSID and an output HOST

CCSID.

• The valid encoding scheme for input data is X'4403'. The valid output encoding

schemes are X'1100', X'1200', X'1301'.

• Input is always expected in a normalized four-byte format.

• The conversion table created will handle either single-byte, double-byte or

triple-byte code points from the input CS, CP pair to a possible single-byte or

double-byte CS, CP code point output.

• CS, CP pair priorities for the EUC CCSID

• Matched GCGID priority within a CS, CP

• Mismatch management criteria

• Space character management.

• Since most EUC four-byte encodings only use a certain range for the three high-

order bytes, the conversion table is organized into several levels of sub-tables.

These sub-tables in turn point to a pool of records containing 256 double-byte

entries. There is a sub-table data record code point for each valid input code

point.

• Invalid single-byte code points (X'00xx') will be mapped into the single-byte G0

set character SUB, at code point X'3F'. Invalid multi-byte values will be

mapped into the double-byte host SUB, at X'FEFE'.

• Only a triple-byte CS, CP pair will use the high-order byte of the four-byte

encoding space.

Figure 65. Method 12: EUC to Host Conversion

Method 13 for PC to TCP conversions

The method shown in Figure 66 has the following characteristics:

• It is used for conversion between an input PC CCSID and an output TCP CCSID

• The valid encoding schemes for input data are X'2100', X'3100', X'2200',

X'2300', X'2305', X'3200', and X'3300'. The valid output encoding scheme is

X'5404'

• Input is always expected in a normalized two-byte format

• The conversion table created will handle either single-byte or double-byte code

points from the input CS, CP pair to a possible single-byte, double-byte or

triple-byte output CS, CP, as determined by the TCP encoding scheme

• CS, CP pair priorities for the TCP CCSID

• Matched GCGID priority within a CS, CP pair

• Mismatch management criteria

• Space character management.

• Since many double-byte encodings do not use all available first-byte values as

ward numbers, the conversion table will contain one record for each valid ward

and one additional record for all invalid wards. Each record will contain 256

four-byte entries

• Invalid single-byte code points (X'00xx') will be mapped into the single-byte

character SUB, at code point X'1A'. Invalid double-byte values will be mapped

into the following:

• Japan - X'747E'

• Korea - X'2F7E'

• Traditional Chinese - X'7D7E'

• Simplified Chinese - X'2121'

• The high-order byte of each output code point value will contain the identifier 1

to 4 for graphics or 0 for a control character.

Figure 66. Method 13: PC to TCP Conversion

Method 14 for TCP to PC conversions

The method shown in Figure 67 has the following characteristics:

• See “Method 10 for EUC to PC Conversions” for a description of the type of

table format used in this conversion method.

• It is used for conversion between an input TCP CCSID and an output PC CCSID

• The valid encoding scheme for input data is X'5404'. The valid output encoding

schemes are X'2100', X'3100', X'2200', X'2300', X'2305', X'3200', and X'3300'

• Input is always expected in a normalized four-byte format, and it includes the

identifier in the high-order byte indicating which coded graphic character set

the code point was taken from.

• The conversion table created will handle either single-byte, double-byte, or

triple-byte code points from the input CS, CP pair as defined by the TCP

encoding scheme to a possible single-byte, or double-byte output CS, CP code

point.

• Matched GCGID priority within a CS, CP

• Mismatch management criteria

• Space character management.

• For most TCP four-byte codes, only a certain range of values is valid for the

three high-order bytes. To handle this situation, the table is organized as a

series of sub-tables. Each sub-table level points to a lower level sub-table, until

the last sub-table level points to the actual output code point records. Each of

the records contain 256 double-byte code point values.

• Invalid single-byte code points will be mapped into the single-byte character

SUB, at code point X'7F'. All other invalid values will be mapped to the double-

byte SUB character for the respective country version of the encoding scheme.

• Only a triple-byte CS, CP pair will use all four bytes of the input code point.

Figure 67. Method 14: TCP to PC Conversion

Method 15 for Host to TCP conversions

The method shown in Figure 68 has the following characteristics:

• It is used for conversion between an input Host CCSID and an output TCP

CCSID.

• The valid encoding schemes for input data are X'1100', X'1200', and X'1301'.

The valid output encoding scheme is X'5404'.

• Input is always expected in a normalized two-byte format.

• The conversion table created will handle either single-byte or double-byte code

points from the input CS, CP pair to a possible single-byte, double-byte, or

triple-byte output CS, CP code point as defined by the TCP encoding scheme.

• CS, CP pair priorities for the TCP CCSID

• Matched GCGID priority within a CS, CP pair

• Mismatch management criteria

• Space character management.

• Most double-byte encodings do not use all the available first bytes as valid

ward numbers. To handle this situation and make effective use of table

resource space, the table is organized as a series of sub-tables. Each sub-table

contains 256 four-byte code point entries. There is a sub-table of output code

points for each valid ward number of the input code points, and a single sub-

table for the substitution entries for all of the invalid first-byte values.

• Invalid single-byte code points (X'00xx') will be mapped into the single-byte

character SUB, at code point X'1A'.

• Invalid double-byte values will be mapped as follows:

• Japan - X'747E'

• Korea - X'2F7E

• Traditional Chinese - X'7D7E'

• Simplified Chinese - X'2121'The high order byte of each output code point

contains the identifier from 1 to 4 for graphic characters, or 0 for control

characters.

• Host double-byte control characters will be mapped to single-byte control

characters after denormalization.

Figure 68. Method 15: Host to TCP Conversion

Method 16 for PC to TCP conversions

The method shown in Figure 69 has the following characteristics:

• See “Method 10 for EUC to PC Conversions” for a description of the type of

table format used in this conversion method.

• It is used for conversion between an input TCP CCSID and an output Host

CCSID.

• The valid encoding scheme for input data is X'5404'. The valid output encoding

schemes are X'1100', X'1200', and X'1301'.

• Input is always expected in a normalized four-byte format and includes the

identifier in the high-order byte that indicates the coded graphic character set

of the output code point.

• The conversion table created will handle either single-byte, double-byte, or

triple-byte code points from the input CS, CP pair as defined by the TCP

encoding scheme to a possible single-byte, double-byte, or triple-byte output

CS, CP code point.

• The content of the table will reflect:

- Matched GCGID priority within a CS, CP

- Mismatch management criteria

- Space character management.

• For most TCP four-byte codes, only a certain range of values are valid for the

three high-order bytes, causing the table to be organized as several sub-tables.

Each of the sub-tables contains pointers to subsequent records in the table.

Each of the subsequent records contains 256 double-byte output code point

entries.

• Invalid single-byte code points will be mapped into the single-byte character

SUB, at code point X'3F'.

• Invalid multi-byte input values will be mapped to the host double-byte SUB

value of X'FEFE'.

• Only a triple-byte CS, CP pair will use all four bytes of the four-byte input code

point value.

Figure 69. Method 16: TCP to Host Conversion

Conversion methods in support of GB18030

Chinese Standard GB18030 defines a complex code composed of one, two and four-

byte components. To convert between GB18030 and other encodings including

Unicode and mixed single- double-byte codes, conversion table methods and

structures have been defined. Specifics of the methods and table structures are

detailed below.

GB18030 Conversion Documentation

This document contains descriptions of conversion tables and associated methods for
converting data between Chinese Standard GB18030, Unicode and EBCDIC
encodings.

Table of Contents

Section 1: Introduction

 What is Unicode?
 What is GB18030?

Section 2: Conversions Between GB18030 and Unicode

 UTF-16 <-> GB18030 (1, 2 and 4-byte)
 Text Format Tables

 Combined GB18030 Tables
 Component GB18030 Tables

 Converting from UTF-16 to GB18030
 Combined GB18030 Tables

 2-byte to 4-byte Conversion
 Component GB18030 Tables

 Introduction
 Conversion Logic
 2-byte to 1-byte Conversion
 2-byte to 2-byte Conversion
 2-byte to 4-byte Conversion

 Converting from GB18030 to UTF-16
 Combined GB18030 Tables

 Introduction
 Detecting Valid (Single, Double, and Four-byte) or
Invalid Code Points
 1-byte to 2-byte Conversion
 2-byte to 2-byte Conversion
 4-byte to 2-byte Conversion

 Component GB18030 Tables
 Introduction
 UTF-16 to GB18030 Conversion Logic
 1-byte to 2-byte Conversion
 2-byte to 2-byte Conversion

 4-byte to 2-byte Conversion
 Transformations

 Transformation between GB18030 and UTF-32
 Transformation between UTF-32 and UTF-16 Encoding
Forms of UCS

Section 3: Conversions Between Unicode and Host Encodings

 Conversion Between UCS-2 (CCSID 17584) <---> HOST (1 and 2-byte,
CCSID 1388)

 Text Format Tables
 Combined GB18030 Host Tables
 Component GB18030 Host Tables

 Conversions From UCS-2 (CCSID 17584) to S-Ch Host Extended
(CCSID 1388)

 Combined S-Ch Host Conversion
 2-byte To 2-byte Conversion

 Component S-Ch Host Conversions
 Introduction
 UCS-2 to S-Ch Host Conversion Logic
 2-byte to 1-byte Conversion
 2-byte to 2-byte Conversion

 Conversions From S-Ch Host Extended (CCSID 1388) to UCS-2
(CCSID 17584)

 Combined S-Ch Host Conversion
 2-byte To 2-byte Conversion

 Component S-Ch Host Conversions
 Introduction
 S-Ch Host to UCS-2 Conversion Logic
 1-byte to 2-byte Conversion
 2-byte to 2-byte Conversion

Section 4: Conversions Between GB18030 and Host Encodings

 Conversion Between S-Ch Host Extended (CCSID 1388) <-> GB18030 (1,2
and 4-byte, CCSID 5488)

 Introduction
 Conversion From S-Ch Host (CCSID 1388) to GB18030 (CCSID
5488)

 Combined GB18030 Tables
 Conversion From GB18030 (CCSID 5488) to S-Ch Host (CCSID
1388)

 Combined GB18030 Tables
 Detect Valid Single, Double-byte, Four-byte or
Invalid code point
 1-byte to 2-byte Conversion
 2-byte to 2-byte Conversion

 4-byte to 2-byte Conversion

Section 5: Annexes

 ANNEX A - CCSIDs For Phase 1 and Phase 2 (as of 2001-06-14)
 GB 18030 - Phase 1
 GB 18030 - Phase 2
 Host Mixed S-Ch Extended (for GB18030 support)

 ANNEX B - Control Character Definitions
 ANNEX C - Encoding Scheme Identifiers

Introduction

What is Unicode?
Unicode is an international standard for the universal character encoding scheme for
written characters and text. It defines a consistent way of encoding multilingual text
that enables the exchange of text data internationally, while also creating the
foundation for global software. The Unicode standard is a superset of all characters
in widespread use today. It contains the characters from major international and
national standards as well as prominent industry character sets. Versions of the
Unicode Standard are fully compatible and synchronized with the corresponding
versions of International Standard ISO/IEC 10646. For example, Unicode 6.1
contains all the same characters and code points as ISO/IEC 10646:2012.The
Unicode Standard provides additional information about the characters and their
uses. Any implementation that is conformant to Unicode is also conformant to
ISO/IEC 10646

A complete description of Unicode including code point assignments, encoding forms
and the principles of the standard can be found on the Unicode web site.

What is GB18030?
GB 2312-80 (the primary collection of Chinese coded graphic characters published in
1981 as a national standard) covers only 6,763 Chinese characters. In 1995, GBK
(Chinese Internal Code Specification) for GB Extension was published. It is the
superset of GB and completely compatible with GB 2312-80. GBK expands its
character set to 20,902 characters.

GB18030 was defined in order to meet the needs of Chinese customers such as
financial institutions, insurance companies and postal services that require name and
address information. The characters included in this super set meet these needs.

http://www.unicode.org/

In GB 18030, one-byte, two-byte and four-byte encoding systems are adopted. The
total capability is over 1.5 million code positions. Currently, GB 18030 contains more
than 27,000 Chinese characters which have been defined in Unicode 3.0. This
standard provides a solution for the urgent need for the Chinese characters used in
names and addresses.

Table 1: Allocation of Code Ranges

Number
of Bytes

Space of Code Positions Number of
Codes

One-byte X'00'-X'80' 129 codes

First byte Second byte Two-byte
X'81'~X'FE' X'40'~X'7E'

X'80'~X'FE'

23,940 codes

Four-byte First byte Second
byte

Third byte Fourth byte 1,587,600 codes

 X' 81'~X'FE' X' 30'~X'39' X' 81'~X'FE' X' 30'~X'39'

Conversion Between GB18030 and
Unicode
The GB 18030 standard contains all characters defined in Unicode, but they have
completely different code assignments. All 1.1 million Unicode code points, U+0000-
U+10FFFF (except for surrogates U+D800-U+DFFF), map to and from GB 18030
code points. Most of these mappings can be done algorithmically, except for parts of
the BMP. This makes it an unusual mix of a Unicode encoding and a traditional code
page.

This document provides descriptions for two sets of tables and their associated
methods. The first set of tables and methods (identified as Combined GB18030 in
this document) are the default CDRA conversion tables and methods for mapping
between GB18030 and Unicode. The Combined GB18030 mapping uses three binary
tables (1:2 byte, 2:2 byte and 4:2 byte) as well as transformation logic to do the
conversion from GB18030 to Unicode. The conversion logic uses the Code Ranges
(see Table 1) to select the appropriate binary table from the three existing tables.
For the Unicode to GB18030 conversion, the Combined GB18030 method uses a
single binary table along with the transformation logic. The binary table is a 2:4 byte
mapping table where the input code is a 2 byte Unicode code and the output is a
normalized 4 byte GB18030 code.

The second set of tables and methods (identified as Components GB18030 in this
document) are custom CDRA conversion tables used by z/OS only. The Components
GB18030 uses three binary tables (1:2 byte, 2:2 byte and 4:2 byte) as well as
transformation logic to perform the conversion from GB18030 to Unicode. Another

three binary tables (2:1 byte, 2:2 byte and 2:4 byte) and the transformation logic
are used to perform the conversion from Unicode to GB18030. In this case, choosing
the appropriate binary table from the three available binary tables is done by trial
and error. The conversion logic is explained in detail later in this document.

UTF-16 <-> GB18030 (1, 2 and 4-byte)

This section contains information required to perform conversions between UTF-16
formatted Unicode data and GB18030. The tables referenced in the following sections
are available from the CDRA Conversion Table Repository.

Text Format Tables

The conversion table repository contains both text and binary conversion tables. The
following are the text, human readable, conversion tables for conversions between
UTF-16 and GB18030.

Combined GB18030 Tables

UCS_GB18030.TXT (2000-11-30) - Source mapping file between GB18030 and
UTF-16 from Chinese Government sources

157004B0.TPMAP100 - GB18030 (CCSID 5488) to UTF-16 (CCSID 1200)

04B01570.RPMAP100 - UTF-16 (CCSID 1200) to GB18030 (CCSID 5488)

157004B0.UPMAP100 - GB18030 (CCSID 5488) to and FROM UTF-16 (CCSID
1200)

Component GB18030 Tables

24E404B0.TPMAP100 - Text table from GB 1-byte part (CCSID 9444) to UTF-16
(CCSID 1200)

04B024E4.RPMAP100 - Text table from UTF-16 (CCSID 1200) to GB 1-byte part
(CCSID 9444)

24E404B0.UPMAP102 - Text table between GB 1-byte part (CCSID 9444) and
UTF-16 (CCSID 1200)

256904B0.TPMAP100 - Text table from GB 2-byte part (CCSID 9577) to UTF-16
(CCSID 1200)

04B02569.RPMAP100 - Text table from UTF-16 (CCSID 1200) to GB 2-byte part
(CCSID 9577)

256904B0.UPMAP102 - Text table between GB 2-byte part (CCSID 9577) and
UTF-16 (CCSID 1200)

156F04B0.TPMAP100 - Text table from GB 4-byte part (CCSID 5487) to UTF-16
(CCSID 1200)

04B0156F.RPMAP100 - Text table from UTF-16 (CCSID 1200) to GB 4-byte part
(CCSID 5487)

156F04B0.UPMAP102 - Text table between GB 4-byte part (CCSID 5487) and UTF-
16 (CCSID 1200)

Table files with the extension RPMAPnnn, TPMAPnnn, and UPMAPnnn contain human
readable formats. They have two columns containing the source code point value (in
Hex), and the target code point value (in Hex). Each file contains a brief header and
column descriptions. The header in each file contains information including the
values of the defined SUB characters as well as any special handling requirements.

Converting from UTF-16 to GB18030

Combined GB18030 Tables

In the combined tables, all GB code points are normalized to 4 bytes by adding
leading zero-bytes to the single and double-byte values. This normalization allows for
the conversion table to be a fixed 2-byte to 4-byte structure. The logic of the
associated conversion method strips out the leading zero-bytes before inserting
target code point into the output data stream. Each single-byte target code point has
3 leading zero bytes while each double-byte target code point has 2 leading zero
bytes. For example output target code point x’5B’ will be represented as x’0000005B’
in the conversion table while x’8147’ will be represented as x’00008147’.

2-byte to 4-byte Conversion

04B01570.UGN-R-D

When converting a UTF-16 data stream to GB18030, it is done on a character by
character basis. The first step when examining an input code point is to determine if
it is a valid high order surrogate value. If it is, then next code point is taken from the
input stream to determine if it is a valid low order surrogate value. If together the
two points comprise a valid surrogate pair then the UTF-16 to GB18030 algorithmic
transformation will be used to convert the pair to the appropriate GB18030 code.
Otherwise, the two bytes will be fed into the 2:4 binary table as described later (see
Method 2X).

In the algorithmic transformation the target code point is calculated as follows:
(Note: * = multiplication; / = division; % = modular operation; - = subtraction; + =
addition in the following equations)

index = (source_codepoint1 - X'D800')*1024+source_codepoint2-X'DC00';

b0=index/12600+X'90';

b1=index/1260%10+X'30';

b2=index/10%126+X'81';

b3=index%10+X'30';

target_code point=b0*X'1000000'+b1*X'10000'+b2*X'100'+b3;

For more details see the section on transformations.

Method 2X

The binary conversion table is similar to the tables used in existing CDRA Method 2,
but extended to handle the normalized GB18030 4-byte code. The input data stream
consists of UTF-16 2-byte code points. The output from the conversion table will be
4-byte normalized GB18030 code points. These 4-byte codes must be de-normalized
before being inserted into the output data stream.

Assumed normalization for GB18030:

GB Byte Normalized Comment

xx (Single byte) 000000xx Four byte, with 3 leading zero bytes

xxxx (Double byte) 0000xxxx Four byte, with 2 leading zero bytes

xxxxxxxx (Four byte) xxxxxxxx Four byte

To describe the conversion method we first define the concept of a "ward". A ward is
a section of a double-byte code page. It is equivalent to a "row" of code points in
ISO/IEC 10646 and in Unicode. All of the code points contained in a specific ward
begin with the same first byte. A ward is populated if there is at least one character
in the double-byte code page (UTF-16 in this case) whose first byte is the ward
value. There are 256 wards numbered X'00' to X'FF'.

This 2 to 4-byte binary conversion table is made up of several 1024-byte vectors.
The first vector acts as an index into the rest of the table. It contains 256 two-byte
vector numbers (corresponding to each of the 256 wards, for a total of 512 bytes)
and the remaining 512 bytes are unused (filled with zeros). There is one 1024-byte
vector for each populated ward in the source code page and one additional vector
used for mapping all unassigned and invalid wards.

The method extracts two bytes at a time from the input data stream. The first byte is
used as a pointer into the index vector (shown in Figure 1.1). Each vector number in
the index vector is two bytes long. Therefore the first byte from the input code point
is multiplied by two before calculating the offset into this index vector. The two-byte
value found at the corresponding position in the index vector gives the vector
number in which to perform the second lookup.

The second byte of the input code point is used as a pointer into the vector specified
by the index vector. When calculating the offset into this vector there are two things
to remember; first, the indexing starts at zero, and second, each entry is four bytes
long (normalized GB18030 code point).

In the example shown in Figure 1.1 the input code point is X'4E02'. Taking the first
byte, x’4E’ and multiplying by 2 you get x’9C’ as the pointer value into the index
vector. The index vector specifies x’0050’ as the vector where the output code point
will be found. Taking the second byte of the input code point, x’02’ and multiplying
by 4 (each output code point is 4-bytes long), indicates that the output code point
will be found in the specified vector (x’50’) at location x’0008’. In the example, the
resultant 4-byte output code point is x’00008140’. This value would subsequently be
de-normalized to the 2-byte value x’8140’ prior to being placed in the output data
stream.

In the example vector (X'0001') is used for handling code points from invalid or
unassigned wards in the input data. All of the 256 four-byte (normalized) code point
values found in this vector are those of the "Substitute" (SUB) character of the

target code page (X'8431A437' for GB18030). All of the entries in the index vector
for unused and invalid wards point to this "substitute" vector.

Figure 1.1 - UCS-2 to GB18030 Binary Table & Conversion Method

Note: For Phase 1, code points in the surrogate area (X'D800' through X'DFFF') for
UCS-2 are invalid. If there is a need to distinguish between invalid and unassigned
code points in the input, the method should detect and map input code points in this
range to output SUB code points. In Phase 2, the surrogate area will be used for
UTF-16 representation of Planes 1 to 16.

For the example shown in figure 1.1, the target four bytes could be found at the
following positions in the binary table.

Byte Value Position (hex) Position (decimal)

first 0 X'0050' * X'400' + X'0008' 80 * 1024 + 8 = 81928

second 0 X'0050' * X'400' + X'0008' + 1 80 * 1024 + 8 + 1 = 81929

third 81 X'0050' * X'400' + X'0008' + 2 80 * 1024 + 8 + 2 = 81930

fourth 40 X'0050' * X'400' + X'0008' + 3 80 * 1024 + 8 + 3 = 81931

De-normalization:

Since the resultant single-bytes and double-bytes in the table have been prefixed
with leading zero-bytes, when composing the output string the leading zero-bytes
are removed from the 4-byte output, (three zero-bytes for single-byte and two zero-
bytes for double-byte).

Components for GB18030

Introduction

z/OS implementation does not use the combined tables. In the z/OS environment a
call is made to CONVERT DATA indicating that the source is Unicode and the target
CCSID is 5488. The converter logic looks up CCSID 05488 and gets the component
conversion tables and sets up 2 to 1, 2 to 2 and 2 to 4 logic and resources. UTF-16
contains 2-byte code points and GB18030 contains 1, 2, and 4-byte code points.
According to the z/OS conversion method, in order to do conversions from UTF-16 to
GB18030 three binary tables are required. They are the following:

04B024E4.UG1-C0-A1 - Binary table that maps Unicode (1200) to GB 1-byte part
(9444)
(CDRA 2-bytes to 1-byte conversion method, with X'FF' as STOP)

04B02569.UG2-C0-A1 - Binary table that maps Unicode (1200) to GB 2-byte part
(9577)
(CDRA 2-byte to 2-byte conversion method, with X'FFFF' as STOP)

04B0156F.UG4-C0-A1 - Binary table that maps Unicode (1200) to GB 4-byte part
(5487)
(CDRA 2-byte to 4-byte conversion method for GB18030, with X'FFFFFFFF' as STOP)

All of the Unicode code points located beyond the basic multilingual plane (BMP) are
mapped to GB18030 4-byte code points. The GB18030 4-byte code points when
converted to Unicode must be represented as either UTF-16 surrogate pairs or as 4-
type, UTF-32 values.

The high level logic of this type of conversion is as follows:

The UTF-16 input stream (sequences of two-bytes) will be fed into the conversion
logic. Within the conversion logic, the UTF-16 input stream will be passed through
the following steps:

2:1 logic use UTF-16 to GB18030 single-byte binary table to get GB18030 single-
byte output (see 2-byte to 1-byte conversion for more details)

2:2 logic use UTF-16 to GB18030 double-byte binary table to get GB18030 double-
byte output (see 2-byte to 2-byte conversion for more details)

2:4 logic detects valid surrogate high and surrogate low pair, then use UTF-16 to
GB18030 transformation to get GB18030 four-byte output. (see 2-byte to 4-byte
conversion for more details)

2:4 logic use UTF-16 to GB18030 four-byte binary table to get GB18030 four-byte
output (see 2-byte to 4-byte conversion for more details)

All invalid and incomplete surrogate pairs are dealt with separately.

The structure of the binary tables used for simulating the z/OS logic is described
below:

The UTF-16 to single-byte GB18030 binary table consists of a collection of 256-byte
vectors. The first vector (00) acts as an index into the rest of the table and the
second vector (01) is the "substitute" vector (see 2-byte to 1-byte conversion for
more details).

The UTF-16 to double-byte GB binary table is made up of a collection 512-byte
vectors. The first vector (00) acts as an index into the rest of the table and the
second vector (01) is the "substitute" vector (see 2-byte to 2-byte conversion for
more details).

The UTF-16 to four-byte GB binary table is made up of a collection 1024-byte
vectors. The first vector (00) acts as an index into the rest of the table and the
second vector (01) is the "substitute" vector (see 2-byte to 4-byte conversion for
more details).

Conversion Logic

Figure 1.2 - UTF-16 to GB18030 Conversion Method

In understanding the UTF-16 to GB18030 z/OS conversion method, we refer to figure
1.2 for a graphical representation of the following description. Note that there exist 3
binary tables; separate tables for dealing with 2:1 byte, 2:2 byte and 2:4 byte
mappings. Any input code point that has no defined mapping within any of the three
tables will be detected and substitute. The precise means by which this is
accomplished is described later in detail.

In this model, the UTF-16 input stream will first be fed into the conversion logic. The
logic initially starts with the 2:1 mapping stage of the conversion operation. In this
stage of the conversion, each two-byte segment from the UTF-16 input stream is
entered into the 2:1 binary table in an attempt to convert. If the bytes are
successfully converted, a valid single-byte output code is found, the conversion
continues with the next two-byte input code point. This process continues until the

output code is the defined ‘stop’ (x’FF’) or the end of the input steam is encountered
or an error in the input stream is detected. If an end or error condition is
encountered, execution will be terminated. When a ‘stop’ character is encountered,
the stop handling logic will be executed and the process will go on to the 2:2
mapping stage of the conversion operation.

In the 2:2 stage of operation, each two-byte segment from the UTF-16 input stream
is entered into the 2:2 binary table in an attempt to convert. If the bytes are
successfully converted, a valid 2-byte output code is found, the conversion continues
with the next two-byte input code point. This process continues until the output code
is the defined ‘stop’ (x’FFFF’) or the end of the input steam is encountered or an
error in the input stream is detected. If an end or error condition is encountered,
execution will be terminated. When a ‘stop’ character is encountered, the stop
handling logic will be executed and the process will go on to the 2:4 mapping stage
of the conversion operation.

In the 2:4 stage of operation, the first two bytes from the input stream will be taken
to check whether it is valid surrogate high. If it is a valid surrogate high then the
next two bytes will be taken from the input stream to check whether it is a valid
surrogate low. If it is proven to be a valid surrogate low, then the UTF-16 to
GB18030 algorithmic transformation converts the pair of valid surrogates. Otherwise,
the two-byte segment from the UTF-16 input stream is entered into the 2:4 binary
table in an attempt to convert. If the bytes are successfully converted, a valid 4-
byte output code is found, the conversion continues with the next two-byte input
code point. This process continues until the output code is the defined ‘stop’
(x’FFFFFFFF’) or the end of the input steam is encountered or an error in the input
stream is detected. If an end or error condition is encountered, execution will be
terminated. When a ‘stop’ character is encountered, the stop handling logic will be
executed and the process will loop back to the 2:1 mapping stage of the conversion
operation.

Figure 1.3 shows the ‘stop handling’ logic in detail

Figure 1.3 - UTF-16 to GB18030 Conversion Method

The stop handling logic is an integral part of the algorithm's ability to determine
whether or not SUBs are to be output and detect the presence of regular mappings.
This task is accomplished with the assistance of a 'stop limit' counter that effectively
keeps track of the number of successive stops in the algorithm and 'last_good_stage'
flag. It also remembers the last successful stage of conversion, and takes
appropriate action.

In the stop handling logic, the logic first checks whether this stop is due to a regular
mapping or not. If it is due to a regular mapping, the stop count will be reset to 1
and the last successful stage of operation is also set to the current mode of
operation. The input pointer will be moved to the next position in the input stream
while the stop (X'FFFF') character goes to the output as a target code point.

An important point to be aware of in this logic is that stop handling logic is stage
dependent. The regular mapping could differ from stage to stage. So the stop
handling logic in each stage should take care of the cases related to that particular
stage.

If the stop is not due to the regular mapping, then the stop handling logic checks
whether any successful conversion has taken place in this stage of operation. This

can be done by checking whether the input pointer has moved or not. If there is any
successful conversion then the stop count will be reset to 1 and the last successful
stage of operation is also set to the current stage of operation before we move on to
the next stage of operation. If there is no mapping in this stage of operation then the
logic checks whether the stop limit has been reached or not. The stop limit has been
reached this indicates that each stage of the conversion operation (2:1, 2:2 and 2:4)
has been executed without finding a successful mapping for the input 2 byte value. If
this is the case then a sub is output as target according to the last successful stage
of conversion. The stop count will be reset to 1 and the input pointer will be
advanced to the next position.

If the stop limit is not reached, then the stop count will be incremented and the
execution goes to the next stage of operation.

2-byte to 1-byte Conversion

File: 04B024E4.UG1-C0-A1

This table with its associated method is used to find the target code point when it is
a single-byte.

Table format:

The binary conversion table is created by using the existing CDRA Method 6. Figure
1.4 illustrates the table format and the associated method.

The UCS-2 to single-byte table consists of a several 256-byte vectors (256 entries).
The first vector (00) acts as an index into the rest of the table and the second vector
(01) is the "substitute" vector. The method takes each double-byte source code point
and separates it into a first and second byte. The first byte is used as an offset into
the index vector. The value found at this location "points" to the appropriate vector
in the pool of vectors. The second byte is then used as an offset into the selected
vector. The value found at this location is the single-byte target code point. Each
target code point in the vector is one byte long. The binary conversion table is
equivalent to existing CDRA US-R-D binary tables.

Figure 1.4 - UTF-16 to GB18030 Single-byte Binary Table & Conversion
Method

2-byte to 2-byte Conversion

File: 04B02569.UG2-C0-A1

This table is used to find the target code point when the target code point is a
double-byte.

Table format:

The binary conversion table is created by using the existing CDRA Method 2, a two-
step vector lookup method. The conversion table and the associated method are
illustrated in Figure 1.5 below.

This 2-byte to 2-byte table is made up a collection of 512-byte vectors. The first
vector contains 256 single-byte pointers (vector numbers) into the rest of the table,
followed by 256 unused bytes. The second vector, (the "substitute" vector) contains
the mapping for code points in unassigned wards, and is filled with 256 2-byte SUB
code points (X'FFFF' stop code point in this case). These are followed by additional
512-byte vectors, one for each populated ward in the source encoding.

The table is used as follows. The first byte of the input code point is used as a
pointer into the index vector. The single-byte value found at the corresponding
position in the index is the vector number in which to perform the second lookup.
The second byte of the input code point is used as a pointer into the vector specified
by the index vector.

Figure 1.5 - UTF-16 to GB18030 Double-byte Binary Table & Conversion

Method

In Figure 1.5 the input code point is X'u1u2'. The first byte, x’u1’, is used as a
pointer into the index to determine which vector in the table to use to obtain the
output code point. In this case the output vector is x’pp’. The second byte, x’u2’ is
then used as a pointer into the specified vector to obtain the resultant double-byte
output code point. Note that this value must be multiplied by 2 before the lookup is
performed since each output entry is 2 bytes long.

The second vector mentioned for handling unassigned wards works as follows. All of
the 256 double-byte code point values found in this vector (vector X'01') are those of
the "Substitute (SUB)" character of the target encoding (in this case Stop character
X'FFFF'). All the entries in the index vector for unassigned wards point to this
"substitute" vector.

The binary conversion table is equivalent to existing CDRA UM-R-D binary tables.

2-byte to 4-byte conversion

File: 04B0156F.UG4-C0-A1

This binary table contains the mapping from UCS-2 to four-byte GB18030.

In this section before looking into the binary table, each UTF-16 input value is
checked to see whether it is a valid high surrogate. If it is then the next two bytes
segment will be taken from the input stream to check whether it is a valid low
surrogate. If the pair is determined to be a valid surrogate pair, then the UTF-16 to
GB18030 transformation will take place.

In the transformation the target code point will be calculated as follows:

(Note: * = multiplication; / = division; % = modular operation; - = subtraction; + =
addition in the following equations)

index = (source_codepoint1 - X'd800')*1024+source_codepoint2-X'dc00';

b0=index/12600+X'90';

b1=index/1260%10+X'30';

b2=index/10%126+X'81';

b3=index%10+X'30';

target_code point=b0*X'1000000'+b1*X'10000'+b2*X'100'+b3;

For more details on transformation please see the transformations section of this
document.

If the pair is not a valid surrogate pair, then the two bytes will be fed into the 2:4
binary table as described below.

Method 2X

The binary conversion table is similar to the tables used in existing CDRA Method 2,
but extended to handle the GB18030 4-byte code. The input data stream consists of
UTF-16 2-byte code points. The output from the conversion table will be 4-byte GB
code points.

To describe the conversion method we first define the concept of a "ward". A ward is
a section of a double-byte code page. It is equivalent to a "row" of code points in
ISO/IEC 10646 and in Unicode. All of the code points contained in a specific ward
begin with the same first byte. A ward is populated if there is at least one character
in the double-byte code page (UTF-16 in this case) whose first byte is the ward
value. There are 256 wards numbered X'00' to X'FF'.

This binary conversion table is made up of several 1024-byte vectors. The first
vector acts as in index into the rest of the table. It contains 256 two-byte vector
numbers (corresponding to each of the 256 wards for a total of 512 bytes) and the
remaining 512 bytes are unused (filled with zeros). There is one 1024-byte vector for
each populated ward in the source code page and one additional vector used for
mapping all unassigned and invalid wards.

The method extracts two bytes at a time from the input data stream. The first byte is
used as a pointer into the index vector (shown in Figure 1.6). Each vector number in
the index vector is two bytes long. Therefore the first byte from the input code point
is multiplied by two before calculating the offset into this index vector. The two-byte
value found at the corresponding position in the index vector gives the vector
number in which to perform the second lookup.

The second byte of the input code point is used as a pointer into the vector specified
by the index vector. When calculating the offset into this vector there are two things
to remember; first, the indexing starts at zero, and second, each entry is four bytes
long (GB18030 code point).

In the example shown in Figure 1.6 the input code point is X'4D02'. Taking the first
byte, x’4D’ and multiplying by 2 you get x’9A’ as the pointer value into the index
vector. The index vector specifies x’004F’ as the vector where the output code point
will be found. Taking the second byte of the input code point, x’02’ and multiplying
by 4 (each output code point is 4-bytes long), indicates that the output code point
will be found in the specified vector (x’4F’) at location x’0008’. In the example, the
resultant 4-byte output code point is x’8234F437’. This value would placed in the
output data stream.

The one additional vector (X'0001') mentioned for handling code points from invalid
or unassigned wards in the input data is used as follows. All of the 256 four-byte
code point values found in this vector are those of the "Substitute" (SUB) character
of the target code page (here in this case X'FFFFFFFF' stop character). All of the
entries in the index vector for unused and invalid wards point to this "substitute"
vector.

Figure 1.6 - UTF-16 to GB18030 Four-byte Binary Table & Conversion

Method

In the binary table, target four-bytes could be found at the following positions.

Byte Value Position (hex) Position (decimal)

first 82 X'004F' * X'400' + X'0008' 79 * 1024 + 8 = 80896

second 34 X'004F' * X'400' + X'0008' + 1 79 * 1024 + 8 + 1 = 80897

third F4 X'004F' * X'400' + X'0008' + 2 79 * 1024 + 8 + 2 = 80898

fourth 37 X'004F' * X'400' + X'0008' + 3 79 * 1024 + 8 + 3 = 80899

Converting from GB18030 to UTF-16

Combined GB18030 Tables

Introduction

Following is a description of a GB to UCS conversion, as an alternative to following
the CDRA's EUC normalization method and the resulting table structure. The
normalization steps of detecting when it is a single, double, or four-byte is followed.
However, instead of normalizing the data as in the EUC case, this method takes
three branches in the logic and comes up with associated data structures. The data
structures are linear arrays – one for each of the input types – single, double and
four-bytes. The indexing operations get into these arrays only for valid ranges of
code points. All other code points and broken multi-byte sequences are trapped and
are dealt with separately in the logic.

The high level logic is:

- Detect valid single, double or four-byte code points (see Detecting Valid (Single,
Double, and Four-byte) or Invalid Code Points for more details)

- Use single-byte to UCS-2 array for single-byte input (see 1-byte to 2-byte
conversion for more details)

- Use double-byte to UCS-2 array for double-byte input (see 2-byte to 2-byte
conversion for more details)

- Use four-byte to UCS-2 compact array for four-byte input (see 4-byte to 2-byte
conversion for more details)

- All invalid and incomplete sequences dealt with separately (see 2-byte to 4-byte
conversion for more details)

The main advantage of this method is to be able to keep the conversion tables as
compact as possible (especially for the 4-byte to 2-byte part) and to be able to get
at the converted UCS-2 code points in a relatively fast manner.

The single-byte to UCS-2 array consists of a single 512-byte vector (256 2-byte
entries).

The double-byte GB to UCS-2 array is made up of several 512-byte vectors. The first
vector (00) acts as an index into the rest of the table and the second vector (01) is
the "substitute" vector (see 2-byte to 2-byte conversion for more details)

The four-byte to UCS-2 compact array is made up of:

 256 bytes of flag values (followed by 3*256 bytes of unused bytes)
 Four 1024-byte long vectors, each containing 256 4-byte index values, and
 A long compact array containing target two-byte UCS-2 code points.

Detecting Valid (single, Double, and Four-byte) or Invalid Code Points

Refer to Figure 1.7 below. The method fetches one byte at a time from the input
stream. The first byte, b0, is checked to see whether it is in the valid range of single-
byte or start of a double-byte or four-byte code point. If it is not, then a SUB code
point (X'001A' in this case) is inserted in the output data stream, and the pointer to
the input stream is incremented by one.

If b0 is in the valid range of single-byte (X'00' - X'80'), then it is passed to the 1-
byte to 2-byte conversion as a valid single-byte code point. The resultant 2-byte
output is placed in the output buffer, and the pointer into the input stream is
incremented by one.

(Note: X'80' is a valid but unassigned code point, per confirmation received through
IBM China from Chinese sources. In one of the early conversion tables, it was
mapped to the EURO SIGN (U+20AC) in UCS-2. In subsequent tables this has been
removed.)

If b0 is in the range X'81' - X'FE' for a valid first byte of a double-byte or four-byte
code point, then the next byte, b1, is fetched and checked to see whether it is in the
valid range for a second byte of a double-byte (X'40' - X'7E' or X'80' - X'FE') or a
second byte of a four-byte (X'30' - X'39') code point. If it is not, then the SUB code
point X'001A' is inserted into the output stream and the pointer into the input stream
is incremented by one. The pointer should point to byte b1 now. The first byte b0 is
considered to be the start of a broken sequence of bytes in the input.

If b1 is within the valid range for a second byte of a double-byte code point (X'40' -
X'7E' or X'80' - X'FE'), the sequence b0 b1 (or the input pointer) is passed to the 2-
byte to 2-byte conversion (see 2-byte to 2-byte conversion). The resultant two-byte
output is placed in the output stream, and the pointer into the input stream is
incremented by two.

Figure 1.7 - Input Filter for GB18030-1 stream<

If b1 is within the valid range for a second byte of a four-byte code point (X'30' -
X'39'), then the next byte in the input stream, b2, is checked whether its in the valid
range for a third byte of a four-byte code point (X'81' - X'FE'). If it is not, then the
SUB code point X'001A' is inserted into the output stream and the pointer into the
input stream is incremented by one. The pointer should point to byte b1 now. The
first byte b0 is considered to be the start of a broken sequence of bytes in the input.

If b2 is within the valid range for a third byte of four-byte code point, the next input
byte, b3, is checked whether it is in the valid range for the fourth byte (X'30' -
X'39'). If it is not, then the SUB code point X'001A' is inserted into the output stream
and the pointer into the input stream is incremented by one. The pointer should
point to byte b1 now. The first byte b0 is considered to be the start of a broken
sequence of bytes in the input.

If b3 is within the valid range for the fourth byte then the sequence of bytes, b0 b1
b2 b3, (or the input pointer) is passed to the 4-byte to 2-byte conversion (see 4-byte
to 2-byte conversion) as valid four-byte code point. The resultant two-byte output is

placed in the output stream, and the conversion pointer into the input stream is
incremented by four.

The above steps are repeated until there is no more data in the input stream. If the
input stream is exhausted during fetching of any of the second, third or fourth bytes
in the above filtering logic, then the conversion logic cannot proceed and there will
be some unconverted data in the input stream. The pointer into to the input stream
indicates the first of the remaining bytes that have not been converted. An
implementation may choose to deal with such a situation in any suitable manner.

The insertion of X'001A' for the first byte of a broken sequence permits locating
where such a sequence might have been in the input by examining the output
stream.

1-byte to 2-byte Conversion

File: 157004B0.G1U-R-D

This table with its associated method is used to find the target code point when the
source code point is a valid single-byte GB18030 code.

Table format:

The binary conversion table is created by using the existing CDRA Method 5. Figure
1.8 illustrates the table format and the associated method.

The single-byte to UCS-2 table consists of one 512-byte vector (256 2-byte entries).
The source code point is used as a pointer to determine which 2 bytes in the vector
represent the target code point. Each target code point in the vector is two bytes
long. Therefore the input code point is multiplied by two before calculating the offset
into this vector. The binary conversion table is the same format as existing CDRA
SU-R-D binary tables.

Figure 1.8 - GB 1-byte to UCS-2 2-byte Table and Method

2-byte to 2-byte Conversion

File: 157004B0.G2U-R-D

This table is used to find the target code point when the source code point is a valid
double-byte GB18030 code.

Table format:

The binary conversion table is created by the existing CDRA Method 2, a two-step
vector lookup method. This is similar to the one described in 2-byte to 4-byte
conversion except here each vector is 512 bytes long (256 double-bytes) instead of
1024 bytes (256 four-bytes).

The conversion table and the associated method are illustrated in Figure 1.9 below.

This 2-byte to 2-byte table is made up of several 512-byte vectors. The first vector
contains 256 single-byte indices (vector numbers) into the rest of the table, followed
by 256 unused bytes. The second vector, the "substitute" vector contains the
mapping for code points in unassigned wards, and is filled with 256 2-byte SUB code
points (X'FFFD' in this case). These are followed by 512-byte vectors, one for each
populated ward in the source encoding.

The table is used as follows. The first byte of the input code point is used as a
pointer into the index vector. The single-byte value found at the corresponding
position in the index is the vector number in which to perform the second lookup.
The second byte of the input code point is used as a pointer into the vector specified
by the index vector.

Figure 1.9 - GB 2-byte to UCS-2 2-byte Table and Method

For example (see Figure 1.9) if the input code point is X'C1C2', you would find a
vector number at the X'C1' position in the index vector. The resultant double-byte
output code point is found in the specified vector number (x'42') beginning at
position X'0184' (which is two times X'C2'), counting into the vector starting at zero.

The second vector mentioned for handling unassigned wards works as follows. All of
the 256 double-byte code point values found in this vector (vector X'01') are those of

the "Substitute (SUB)" character of the target encoding (X'FFFD' for UCS-2). All the
entries in the index vector for unassigned wards point to this "substitute" vector.

The binary conversion table is the same format as existing CDRA MU-R-D binary
tables.

4-byte to 2-byte Conversion

File: 157004B0.G4U-R-D

Table format:

The binary conversion table format and the associated method are detailed below.

This binary table consists of five 1024-byte vectors followed by a large linear array
corresponding to the table structure as shown in Figure 1.10. There will be one
three-dimensional sub array for each first byte (b0) value used in the table
definition. Each sub array will contain the minimum number of cells - 12600 cells -
needed to map the valid ranges of the second (b1, 10 values), the third (b2, 126
values) and the fourth (b3, 10 values) bytes of four-byte code points in GB. Each cell
contains the corresponding 2-byte UCS-2 code point.

The first 256 bytes of this binary table, called the b0_used_array, is used to check if
a particular value of b0 byte is used in the conversion table definition. The next 768
bytes (=3*256) are unused. These are followed by four 1024-byte vectors, K40,
K41, K42, and K43. These vectors contain values used in computing an index into
the rest of the table to determine the location of the output code point.

Figure 1.10 - GB 4-byte to UCS-2 2-byte table structure

For a given 4-byte code point (b0 b1 b2 b3), if the b0 is not used then there will not
be a sub array populated for it. Therefore, before trying to find the target code point,
the b0 value is checked to confirm that it has been used. This is checked by using
the b0_used_array. As shown in Figure 1.11, b0 is used as an offset into
b0_used_array. If the b0 value has been used, then the corresponding entry in the
b0_used_array will be 01. If it has not been used the entry will be 00. If it is a 00,
then the code point (b0 b1 b2 b3) is unassigned and its mapping is not defined in the
conversion table. In this case a double-byte SUB code point (X'FEFE') is inserted by
the conversion logic into the output data stream and the pointer into the input
stream is incremented by 4.

Figure 1.11 - b0_used_array

If b0 is equal to 01, then proceed with the steps to find target code point, as
illustrated in Figure 1.12, and described below.

Get the computed index values from the four index vectors, K40, K41, K42, and K43
using b0, b1, b2, and b3 byte values of the input code point. Each byte of the valid
four-byte source code point is used as an offset into the corresponding K4x table to
get a part of the index value. When calculating the offset into these vectors there are
two things to remember; first, you must begin counting at zero, and second, each
entry is four bytes long. This means you have multiply the b0, b1, b2, or b3 by four
before looking into the vectors. The resulting 4 values are added to get the location
of the first byte of the target code point in the binary table.

The values in the index vectors are computed based on the following formulae:

K40(b0) = 25200 * (block number assigned to the b0 group)

K41(b1) = 2* (b1 - X'30') * (126 * 10)

K42(b2) = 2* (b2 - X'81') * 10

K43(b3) = 2* (b3 - X'30')

This eliminates the multiplication steps during conversion execution, improving the
performance. Once these indices are added it will be the index or pointer value to the
first byte of the cell containing the output code point in Figure 1.10. Figure 1.12
shows the mapping table of Figure 1.10 in as a linear structure.

Also, note that entries in these index arrays for illegal values of b0, b1, b2, or b3,
are filled with zero-bytes. They will never be accessed if the filter logic has been
followed correctly. Figure 1.12 also shows a possible entry for b0 = X'FD', Private
Use Area, as a possible fifth block. The binary table currently defined contains
mapping tables only for b0 values of X'81' to X'84', as defined in the conversion
requirements received from Chinese Government sources.

The two bytes of the output code point are inserted into the output data stream. The
pointer into the input data stream is incremented by four in the main filter logic
described earlier in the section on detecting valid (single, double, and four-byte) or
invalid code points.

Figure 1.12 - Use of Index Arrays in GB 4-byte to UCS-2 2-byte conversion
method

If b0 is not equal to 01 but the four-byte source code point is greater than
X'90308130' and less than X'E3329A35', then proceed with the steps to find target
code point using the GB18030 to UTF-16 transformation logic described below.

In this example i is a four-byte GB18030 code point.

(Note: * = multiplication; / = division; % = modular operation; - = subtraction; + =
addition in the above equations)

b0= (((i >> 24)- 0x90) * 12600);

b1= ((((i >> 16) & 0xFF) - 0x30)*1260);

b2= ((((i >> 8) & 0xFF) - 0x81)*10) ;

b3= ((i & 0xFF)- 0x30);

temp=b0+b1+b2+b3;

utf_32 = temp + 0x10000;

surrogate high=(temp >> 10)+0xD800;

surrogate low=(temp & 0x3FF)+0xDC00;

For more detail see the section on Transformations.

Component GB18030 Tables

Introduction

Gb18030 contains 1, 2, and 4-byte code points and UTF-16 contains 2-byte code
points. According to the z/OS logic, in order to do conversion from GB18030 to UTF-
16, three binary tables are required. They are the following:

24E404B0.G1U-C0-A1 - Binary table from GB 1-byte part (9444) to UCS (1200)

(CDRA 1-byte to 2-byte conversion method, with X'FFFF' as STOP character)

256904B0.G2U-C0-A1 - Binary table from GB 2-byte part (9577) to UCS (1200)

(CDRA 2-byte to 2-byte conversion method, with X'FFFF' as STOP character)

156F04B0.G4U-C0-A1 - Binary table from GB 4-byte part (5487) to UCS (1200)

(CDRA 4-byte to 2-byte conversion method for GB18030, with X'FFFF' as STOP
character)

GB18030 1-byte or 2-byte code points are mapped to the Unicode BMP (plane 0).
The GB18030 4-byte code points that map beyond the BMP can be transformed into
UTF-16 (surrogate high and low pair) or be represented as a 4-byte UTF-32 code
using pure calculations which will be described in detail later.

The high level logic is:

First, the GB18030 input stream (sequence of 1, 2 and 4-bytes) will be fed into the
conversion logic. Within the conversion logic, the GB18030 input stream will be
passed through the following logic:

- 1:2 logic use GB18030 single-byte to UTF-16 binary table to get UTF-16 double-
byte output (see 1-byte to 2-byte Conversion for more details)

- 2:2 logic use GB18030 double-byte to UTF-16 binary table to get UTF-16 double-
byte output (see 2-byte to 2-byte Conversion for more details)

- 4:2 logic detects valid four-byte GB18030 code which can be transformed to a valid
surrogate pair, using the transformation technique (see 4-byte to 2-byte Conversion
for more details).

- 4:2 logic use GB18030 four-byte to UTF-16 binary table to get UTF-16 double-byte
output (see 4-byte to 2-byte Conversion for more details)

- All invalid and incomplete sequences are dealt with separately.

The single-byte to UCS-2 array consists of a single 512-byte vector (256 2-byte
entries).

The double-byte GB to UCS-2 array is made up of several 512-byte vectors. The first
vector (00) acts as an index into the rest of the table and the second vector (01) is
the "substitute" vector (see 2-byte to 2-byte Conversion for more details).

The four-byte to UCS-2 compact array is made up of:

 256 bytes of flag values (followed by 3*256 bytes of unused bytes)
 Four 1024-byte long vectors, each containing 256 4-byte index values, and
 A long compact array containing target two-byte UCS-2 code points.

GB18030 to UTF-16 Conversion Logic

The following model is similar to the one described in the conversion logic for
conversions from UTF-16 to GB18030 except the reverse direction binary tables are
used in places where forward direction binary tables were used in the section
mentioned above.

Figure 1.13 - GB18030 to UTF-16 Conversion Method

In understanding the GB18030 to UTF-16 z/OS conversion method, we refer to figure
1.13 above in order to obtain a graphical representation of the following description.
Upon first glance at figure 1.13, note that there exists 3 binary tables for dealing
with 1:2 byte, 2:2 byte and 4:2 byte mappings respectively. The presence of input
that has no existing mapping within any of the three tables can be detected and

substituted upon passing input through the three stages. The precise means by
which this is accomplished is described later in detail.

In this model, first the GB18030 input stream will be fed into the conversion logic.
The conversion logic initially starts with the 1:2 stage of operation. In the step, the
GB18030 input stream will be run through the 1:2 binary table by fetching one byte
at a time from the input stream until it hits a stop character in the binary table or
End/Error condition. In the case of an End/Error condition, execution will be
terminated.

In the case that a stop character is encountered (X'FFFF' in this case) the stop
handling logic will be executed. Then the execution goes to the next step in the
process, which is 2:2 stage of operation.

In the 2:2 stage of operation, the remaining GB18030 input stream will be passed
through the 2:2 binary table by fetching two bytes at a time from the input stream
until it hits a stop character or End/Error condition. In the case of an End/Error
condition, execution will be terminated.

In the case that a stop character is encountered (X'FFFF' in this case) the stop
handling logic will be executed. Then the execution goes to the next step in the
process, which is 4:2 stage of operation in this case.

In the 4:2 stage of operation, the remaining GB18030 input stream will be passed
through the 4:2 conversion logic by fetching four bytes at a time from the input
stream. Before attempting to find a target code point for an input 4 byte code point
(b0 b1 b2 b3), the b0 value is checked to confirm that it has been used. This is
checked by using the b0_used_array (see 4-byte to 2-byte conversion). If the entry
corresponding to the b0 in b0_used_array is a 00, then the code point(b0 b1 b2 b3)
is unassigned and its mapping is not defined in the conversion logic. This will be
treated as hitting a stop character in the logic. If the entry corresponding to the b0
in b0_used_array is a 01, then the 4:2 binary table look up will take place by
fetching 4 bytes at a time from the input stream. If the entry corresponding to the
b0 in b0_used_array is a 02, then the GB18030 to UTF-16 transformation logic will
be executed to output valid surrogate high and low pair. These three types of
operations will take place until one of the three operations produce a stop character
or End/Error condition. In the case of an End/Error condition, the execution will
terminate.

In the case that a stop character is encountered (X'FFFF' in this case) the stop
handling logic will be executed. Then the execution loops back to the starting step of
the process, which is 1:2 stage of operation in this case. This loop of operations will
go on until the end of input stream is reached.

Figure 1.3 - UTF-16 to GB18030 Conversion Methods

The stop handling logic is illustrated in Figure 1.3 above (duplicate of Figure 1.3
presented here again for the reader's convenience). It is an integral part to the
algorithm's ability to determine whether or not SUBs are to be output and to detect
the presence of regular mappings. This task is accomplished with the assistance of a
'stop limit' counter that effectively keeps track of the number of successive stops in
the algorithm and 'last_good_stage' flag. It also remembers the last successful stage
of conversion, and takes appropriate action.

In the stop handling logic, the logic first checks whether this stop is due to a regular
mapping or not. If it is due to a regular mapping, the stop count will be reset to 1
and the last successful stage of operation is also set to the present stage of
operation. The input pointer will be moved to the next position in the input stream
while the stop (X'FFFF') character goes to the output as a target code point.

An important point to be aware of in this logic is that stop handling logic is stage
dependent. For example, GB18030 code point X'8437A439' maps to UTF-16 code
point X'FFFF' which is same as the stop code point in this case. So the stop handling
logic after 4:2 logic must check whether this stop is due to a regular mapping (for
input X'8431A439') or not. This regular mapping could differ from stage to stage.
This case has to be taken care of in the stop handling logic for each stage. (In the

OS390GB2U.C sample program this case has been taken care of in the 4:2 logic
which is slightly different than what is described in here).

If the stop is not due to the regular mapping, then the stop handling logic checks
whether any successful conversion has taken place in this stage of operation. This
can be done by checking whether the input pointer has moved or not. If there is any
successful conversion then the stop count will be reset to 1 and the last successful
stage of operation is also set to the current stage of operation before we move on to
the next stage of operation. If there is no mapping in this stage of operation then the
logic checks whether the stop limit has been reached or not. If the stop limit is
reached this indicates that each stage of the conversion operation (1:2, 2:2 and 4:2)
has been executed without finding a successful mapping for the input code point. In
this case a sub is output as target according to the last successful stage of
conversion. The stop count will be reset to 1 now and input pointer also advanced to
the next position.

If the stop limit is not reached, then the stop count will be incremented and the
execution goes to the next stage of operation.

1-byte to 2-byte Conversion

The conversion method used for converting GB 1-byte to UTF-16 2-byte is identical
to the previously mentioned method for converting GB 1-byte to UCS-2 2-byte.
Please refer to 1-byte to 2-byte Conversion for GB to UCS-2 for details.

2-byte to 2-byte Conversion

The conversion method used for converting GB 2-byte to UTF-16 2-byte is identical
to the previously mentioned method for converting GB 2-byte to UCS-2 2-byte.
Please refer to 2-byte to 2-byte Conversion for GB to UCS-2 for details.

4-byte to 2-byte Conversion

The conversion method used for converting GB 4-byte to UCS-2 2-byte has
previously been discussed in a prior section. Please refer to 4-byte to 2-byte
Conversion for GB to UCS-2 for details.

Transformations

Transformation between GB18030 and UTF-32

In UTF-32 the first byte is always 00, and the second byte represents the plane
number. Planes 0 through 16 are defined in UCS. GB18030 1-byte (all), 2-byte (all)
and some of the 4-byte (X'81308130' to X'8431A439') code points fill all of the
possible mapping points in UCS Plane 0. All of the UCS code points other than those
found in BMP/Plane 0 (that is all the code points from Plane 1-16) are mapped to
GB18030 4-byte code points only. No GB18030 1-byte or 2-byte code points are
mapped to the Plane 1-16 code points.

Figure 1.14: GB 4-byte to UTF-32 4-byte Mapping Structures

The mapping between GB18030 code points (4-byte subset) and the UCS code points
from Plane 1-16 are done algorithmically. Starting from X'90308130' up to
X'E3329A35', all the valid GB18030 4-byte code points are linearly mapped into the
UCS code points in Planes 1-16 starting from X'00010000' up to X'0010FFFF' (Please
refer to Figure 1.14).

GB18030 UTF-32

90308130 00010000

90308131 00010001

 : :

E3329A34 0010FFFE

E3329A35 0010FFFF

So given the valid GB18030 4-byte code point X'90308130', the corresponding UTF-
32 value is calculated as follows:

Let 4 bytes of the GB18030 code point be b0 b1 b2 b3.

u0 = (b0 - X'90') * number of possible b1 * number of possible b2 * number of
possible b3

u1 = (b1 - X'30') * number of possible b2 * number of possible b3

u2 = (b2 - X'81') * number of possible b3

u3 = (b3 - X'30')

UTF-32 code point = u0 + u1 + u2 + u3 + X'00010000'

Using the same principles for a UTF-32 code point in Plane 1 to Plane 16, the
corresponding GB18030 value can be calculated as follows:

Let b0 b1 b2 b3 be the 4 bytes of GB18030 code point.

Let UTF-32 code point - X'00010000' = u0 u1 u2 u3

b0 = u0/(number of possible b1 * number of possible b2 * number of possible b3) +
X'90'

b1 = u1/ (number of possible b2 * number of possible b3) % number of possible
b1+ X'30'

b2 = u2/ (number of possible b3) % number of possible b2+ X'81'

b3 = u3 % number of possible b3 + X'30'

4-byte GB18030 = b0b1b2b3

(Note: * = multiplication; / = division; % = modular operation; - = subtraction; + =
addition in the above equations)

Transformations between UTF-32 and UTF-16 Encoding Forms of Unicode

Each UTF-32 code point will be transformed into a UTF-16 surrogate pair as follows:

UTF-32 UTF-16

X'0000 0000' X'0000'

 : :

X'0000 FFFF' X'FFFF'

X'0001 0000' X'D800 DC00' (see Figure 1.15 below)

 : :

X'0010 FFFF' x'DBFF DFFF'

X'0011 0000' or greater unmapped

Figure 1.15 - UTF-32 (Supp. Planes) and UTF-16 (Surrogates)

Section 3: Conversions Between Unicode
and Host Encodings

Conversion Between UCS-2 (CCSID 17584) <--> Host(1
and 2-byte, CCSID 1388)

This Section contains a description of the conversion tables and associated methods
for converting data between S-Ch Host CCSID 1388 encodings and UCS-2 encodings.

Text Format Tables

Combined GB18030 Host Tables

056C44B0.TPMAP100 - S-Ch Host (CCSID 1388) To UCS-2 (CCSID 17584)

44B0056C.RPMAP100 - UCS-2 (CCSID 17584) To S-Ch Host (CCSID 1388)

056C44B0.UPMAP100 - S-Ch Host (CCSID 1388) To and FROM UCS-2
(CCSID 17584)

Component GB18030 Host Tables

334444B0.TPMAP100 - Text table from Host 1-byte part (4933) to UCS-2
(17584)

44B03344.RPMAP100 - Text table from UCS-2 (17584) to Host 1-byte part
(13124)

334444B0.UPMAP102 - Text table between Host 1-byte part (13124) and
UCS-2 (17584)

134544B0.TPMAP100 - Text table from Host 2-byte part (13124) to UCS-2
(17584)

44B01345.RPMAP100 - Text table from UCS-2 (17584) to Host 2-byte part
(13124)

134544B0.UPMAP102 - Text table between Host 2-byte part (13124) and
UCS-2 (17584)

Table files with the extension RPMAPnnn, TPMAPnnn, and UPMAPnnn contain
human readable formats. They have two columns containing the source code
point value (in Hex), and the target code point value (in Hex). Each file
contains a brief header and column descriptions. Please ensure you read the
header files for values of SUB used and any special handling required.

Conversion From UCS-2 (CCSID 17584) to S-Ch Host Extended
(CCSID 1388)

Combined S-Ch Host Conversion

To be able to indicate whether a double-byte UTF-16 code point is mapped to
a single-byte or double-byte code point in Host, in a binary conversion table,
some indication will be needed as to the width of the target code point. This is
accomplished by using a normalized Host code point in the conversion tables.
Each output code point entry will have two bytes, single-byte Host code point
values will be normalized by inserting a leading 00 byte. This permits a fixed
width 2-byte to fixed width 2-byte conversion method and associated table
structure to be used. The conversion logic strips out the leading zero-byte and
adds any necessary code extension controls (Shift-IN/Shift-Out) before
placing the value in the output stream. The following sections give more
details.

2-byte To 2-byte Conversion

File: 44B0056C.UM-E-D

This binary table maps UCS-2 to normalized S-Ch Host Extended.

Method 8:

The binary conversion table is same to the tables used in existing CDRA
Method 8. The input data stream consists of UCS-2 2-byte code points. The
output from the conversion table will be 2-byte normalized Host code points.
The resultant code points are de-normalized before being inserted into the
output data stream.

Assumed normalization:

Host Byte Normalized Comment

xx (Single byte) 00xx Two bytes, with 1 leading zero byte; SO/SI
removed.

xxxx (Double
byte)

xxxx Two bytes

To describe the conversion method we first define the concept of a "ward". A
ward is a section of a double-byte code page. It is equivalent to a "row" of
code points in ISO/IEC 10646 and in Unicode. All of the code points contained
in a specific ward begin with the same first byte. A ward is populated if there
is at least one character in the double-byte code page (UCS-2 in this case)
whose first byte is the ward value. There are 256 wards numbered X'00' to
X'FF'.

Figure 2.1 - UCS-2 to S-Ch Host Extended - Binary Table and

Conversion Method

The double-byte binary conversion table is made up of several 512-byte
vectors. The first vector contains 256 single-byte indices (vector numbers)
into the rest of the table, followed by 256 unused bytes. The second vector,
the "substitute" vector is used for mapping code points in unassigned wards,
and is filled with 256 2-byte SUB code points (X'FEFE' in this case). These are
followed by a collection of 512-byte vectors, one for each populated ward in
the source code page.

The table is used as follows. The first byte of the input code point is used as a
pointer into the index vector. The single-byte value found at the
corresponding position in the index is the vector number in which to perform
the second lookup. The second byte of the input code point is used as a
pointer into the specified vector.

For example in Figure 2.1 the input code point is X'0613'. Using x’06’ as a
pointer into the index vector, we find x’07’ as the specified vector in the table
structure. Then the second byte, x’13’ is used to calculate the pointer value
into the specified vector. The resultant double-byte output code point is
found in vector number x'07' beginning at position X'0026' (which is two

times X'13'), counting into the vector starting at zero. In this example the
output double-byte value is x’4770’.

The second vector mentioned for handling unassigned wards works as follows.
All of the 256 double-byte code point values found in this vector (vector
X'01') are those of the "Substitute (SUB)" character of the target code page
(X'FEFE' for S-Ch Host Extended). All the entries in the index vector for
unassigned wards point to this "substitute" vector.

The binary conversion table is the same format as the CDRA UM-E-D binary
tables.

Denormalization:

Since resultant single-byte values in the table have been normalized with a
leading zero-byte, when composing the output string the leading zero-bytes
must be removed. In a properly formed Host Mixed data stream the single-
byte strings and the double-byte strings must be bracketed with appropriate
controls (SO/SI). The denormalization process must perform both tasks.

Example: SO 41 41 40 40 SI 41 SO 72 01 SI

Component S-Ch Host Conversions

Introduction

The z/OS converter does not use the combined tables. In the z/OS
environment a call is made to CONVERT DATA tagged with CCSID 01388 to
Unicode CCSID. The converter logic looks up 01388 information and gets the
component conversion tables and sets up 2 to 1, 2 to 2 logic and resources
and starts executing the conversion. The z/OS implementation needs the
component tables not the combined ones. In this case two binary tables are
required to perform the conversion. They are the following:

44B03344.US-C0-A1 - Binary table from UCS (17584) to Host 1-byte part
(13124)
 (CDRA 2-bytes to 1-byte conversion method, with X'3F' as SUB/STOP)

44B01345.UM-C0-A1 - Binary table from UCS (17584) to Host 2-byte part
(4933)
 (CDRA 2-byte to 2-byte conversion method, with X'FEFE' as SUB/STOP)

The high level logic is:

The UCS-2 input stream (sequences of double-bytes) will be fed into the
conversion logic. Within the conversion logic, the UCS-2 input stream will be
passed through the following logic:

 - 2:1 logic use UCS-2 to S-Ch Host single-byte binary table to get S-Ch
Host single-byte output (see the section on 2-byte to 1-byte Conversion for
more details)

 - 2:2 logic use UCS-2 to S-Ch Host double-byte binary table to get S-Ch
Host double-byte output (see the section on 2-byte to 2-byte Conversion for
more details)

The UCS-2 to single-byte S-Ch Host binary table consists of several 256-byte
vectors. The first vector (00) acts as an index into the rest of the table and

the second vector (01) is the "substitute" vector (see the section on 2-byte to
1-byte Conversion for more details).

The UCS-2 to double-byte S-Ch Host binary table is made up of several 512-
byte vectors. The first vector (00) acts as an index into the rest of the table
and the second vector (01) is the "substitute" vector (see the section on 2-
byte to 2-byte Conversion for more details).

UCS-2 to S-Ch Host conversion Logic

To understand the UCS-2 to S-CH Host z/OS conversion method, refer to
figure 2.2 for a graphical representation of the following description. In figure
2.2, note that there exists 2 binary tables for dealing with 2:1 byte and 2:2
byte mappings respectively. The presence of input that has no existing
mapping within either of the two tables can be detected and substituted upon
passing input through the two stages. The precise means by which this is
accomplished is described later in detail.

Figure 2.2 - UCS-2 to S-Ch Host Conversion Method

In this model, the UCS-2 input stream will first be fed into the conversion
logic. The conversion logic initially starts with the 2:1 stage of operation. In
the 2:1 stage of operation, the UCS-2 input stream will be run through the
2:1 binary table by fetching two bytes at a time from the input stream until it
hits a stop character in the binary table or End/Error condition. In case of
End/Error condition, execution will be terminated.

In the case that a STOP/SUB character is encountered (X'3F' in this case) the
stop handling logic will be executed. Then the execution goes to the next
stage of operation, which is 2:2 stage of operation in this case.

In the 2:2 stage of operation, the UTF-16 input stream will be run through
the 2:2 binary table by fetching two bytes at a time from the input stream
until it hits a stop character or End/Error condition. In case of End/Error
condition, execution will be terminated.

In the case that a STOP/SUB character is encountered (X'FEFE' in this case)
the stop handling logic will be executed. Then the execution goes to the next
stage of operation, which is 2:1 stage of operation in this case.

Figure 2.3 - UCS-2 to S-Ch Host Conversion Methods

The stop handling logic is illustrated in Figure 2.3 above. It is an integral part
of the algorithm's ability to determine whether or not a SUB or an appropriate
control character (SI/SO) is to be output when a STOP/SUB character is
detected. This task is accomplished with the assistance of a 'stop limit'
counter that effectively keeps track of the number of successive stops in the

algorithm and 'last_good_stage' flag which remembers the last successful
stage of conversion.

In the stop handling logic, the logic first checks whether any successful
conversion has taken place in this stage of operation. This can be done by
checking whether the input pointer has moved or not. If there is any
successful conversion, then the stop count will be reset to 1. The last
successful stage of operation is also set to the current stage of operation and
the appropriate control character (SI/SO) is placed in the output stream
before we move on to the next stage of operation. If there is no mapping in
this stage of operation then the stop count will be incremented and the logic
checks whether the stop limit has been reached. If the stop limit has been
reached then a sub is output as target according to the last successful stage
of conversion. The stop count will be reset to 0 now and input pointer also
advanced to the next position. If the stop limit is not reached, then and the
execution goes to the next stage of operation after removing any
inappropriate control characters (SI/SO).

2-byte to 1-byte Conversion

The conversion method used for converting UCS-2 to S-Ch single-byte is
identical to the previously mentioned method for converting UTF-16 to
GB18030 single-byte. Please refer back to the earlier section on 2-byte to 1-
byte Conversion for details.

2-byte to 2-byte Conversion

The conversion method used for converting UCS-2 to S-Ch double-byte is
identical to the previously mentioned method for converting UTF-16 to
GB18030 double-byte. Please refer back to the earlier section on 2-byte to 2-
byte Conversion for details.

Conversion From S-Ch Host Extended (CCSID 1388) to UCS-2
(CCSID 17584)

Combined S-Ch Host

This table is used to find the target code point when the source code point is
single/double-byte. The method used to create this table requires that the
input data is normalized such that each input code point is two bytes long.
This is done by prefixing each single-byte code point with a zero-byte (X'00).
Any code extension controls (Shift-IN/Shift-Out) are removed from the input
data stream.

2-byte to 2-byte Conversion

File: 056C44B0.MU-R-D

Table format: The binary conversion table created by using the existing
CDRA Method 7 - a two-step vector lookup method.

Method 7:

The conversion table and the associated method are illustrated in Figure 2.6
below.

The double-byte binary conversion table is made up of several 512-byte
vectors. The first vector contains 256 single-byte indices (vector numbers)
into the rest of the table, followed by 256 unused bytes. The second vector,
the "substitute" vector is used for mapping code points in unassigned wards,
and is filled with 256 2-byte SUB code points (X'FFFD' in this case). These are
followed by 512-byte vectors, one for each populated ward in the source code
page.

The table is used as follows. The first byte of the input code point is used as a
pointer into the index vector. The single-byte value found at the
corresponding position in the index is the vector number in which to perform
the second lookup. The second byte of the input code point is used as a
pointer into the vector specified by the index vector.

For example in Figure 2.6 the input code point is X'4760'. The first byte of the
code point (x’47’) is used as a pointer into the index vector, resulting in x’0A’
being identified as the vector containing the output code point. The resultant
double-byte output code point is found in the specified vector number (x'0A')
by calculating the location from the second byte of the input code point. The
second byte x’60’ is multiplied by 2 (since each resultant code point is two
bytes long). Thus the output code point will be found beginning at position
X'00C0' (which is two time X'60'), in the specified vector. Following this
process results in an output code point of x’0603’.

Figure 2.6: Normalized S-Ch Host Extended 2-byte to UCS-2 2-byte Table

and Method

The second vector mentioned for handling unassigned wards works as follows.
All of the 256 double-byte code point values found in this vector (vector
X'01') are those of the "Substitute (SUB)") character of the target code page
(X'FFFD' for UCS-2). All the entries in the index vector for unassigned wards
point to this "substitute" vector.

The binary conversion table is the same format as CDRA MU-R-D binary
tables.

Components S-Ch Host (z/OS Usage)

Introduction

S-Ch contains 1, and 2-byte code points and UCS-2 contains 2-byte code
points. According to the z/OS logic, in order to do conversion from S-Ch to
UCS-2, there are two binary tables needed. They are the following:

334444B0.MU-C0-A1 - Binary table from S-Ch Host 1-byte part (13124) to
UCS-2 (17584)
 (CDRA 1-byte to 2-byte conversion method, with X'FFFD' as
STOP/SUB character)

134544B0.MU-C0-A1 - Binary table from S-Ch Host 2-byte part (4933) to
UCS-2 (17584)
 (CDRA 2-byte to 2-byte conversion method, with X'FFFD' as
STOP/SUB character)

The high level logic is:

The S-Ch Host input stream (sequence of 1 and 2-bytes) will be fed into the
conversion logic. Within the conversion logic, the S-Ch Host input stream will
be passed through the following logic:

 - 1:2 logic use S-Ch Host single-byte to UCS-2 binary table to get UCS-2
double-byte output

 - 2:2 logic use S-Ch Host double-byte to UCS-2 binary table to get UCS-2
double-byte output

The single-byte to UCS-2 array consists of a single 512-byte vector (256 2-
byte entries).

The double-byte GB to UCS-2 array is made up of several 512-byte vectors.
The first vector (00) acts as an index into the rest of the table and the second
vector (01) is the "substitute" vector (see section 1.3d for more details).

S-Ch to UCS-2 Conversion Logic

To understand the S-CH to UCS-2 Host z/OS conversion method, refer to
figure 2.7 for a graphical representation of the conversion. Looking at figure
2.7, note that there exist 2 binary tables for dealing with 1:2 byte and 2:2
byte mappings respectively. The presence of input that has no existing
mapping within any of the two tables can be detected and substituted upon
passing input through the two stages. The precise means by which this is
accomplished is described later in detail.

Figure 2.7 - S-Ch to UCS-2 Host Conversion Method

In this model, the S-Ch input stream will first be fed into the conversion logic.
The conversion logic initially starts with the 1:2 stage of operation. In the 1:2
stage of operation, the S-Ch input stream will be run through the 1:2 binary
table by fetching 1 byte at a time from the input stream until it hits a stop
character in the binary table or End/Error condition. In case of End/Error
condition, execution will be terminated.

In the case that a stop character is encountered (X'000E' in this case) the
stop handling logic will be executed. Then the execution goes to the next
stage of operation, which is 2:2 stage of operation in this case.

In the 2:2 stage of operation, the UTF-16 input stream will be run through
the 2:2 binary table by fetching two bytes at a time from the input stream
until it hits a stop character or End/Error condition. In case of End/Error
condition, execution will be terminated.

In the case that a stop character is encountered (X'FFFD' in this case) the
stop handling logic will be executed. Then the execution goes to the next
stage of operation, which is 2:1 stage of operation in this case.

Figure 2.8 - S-Ch to UCS-2 Host Conversion Method

The stop handling logic is illustrated in Figure 2.8 above. Unlike the previous
stop logic implementation, in performing UCS-2 to S-Ch conversions, the C-
Sh to UCS-2 stop logic is much simpler. Its sole objective is to determine
whether or not the stop was due to a control character (SI/SO). If it was due
to a control character (SI/SO), then execution continues to the appropriate
stage.

1-byte to 2-byte Conversion

The conversion method used for converting S-Ch Host 1-byte to UCS-2 2-byte
is identical to the previously mentioned method for converting GB 1-byte to
UCS-2 2-byte.

2-byte to 2-byte Conversion

The conversion method used for converting S-Ch Host 2-byte to UCS-2 2-byte
is identical to the previously mentioned method for converting GB 2-byte to
UCS-2 2-byte.

Section 4: Conversions Between
GB18030 and Host Encodings

S-Ch Host Extended (CCSID 1388) <-> GB18030
(1,2 and 4-byte, CCSID 5488)

Introduction

This document contains description of conversion tables and associated
methods for converting data between S-Ch Host extended CCSID 1388
encodings and GB 18030 (CCSID 5488) encodings. These (GB 18030 to and
from Host) conversion tables use a normalized form of data. The Host code
points are normalized by placing a leading zero-byte (X'00) in front of each
single-byte to yield a two-byte form. Host data must have the SO-SI control
characters deleted during normalization and reinserted afterwards during de-
normalization. The GB code points are normalized to four-bytes by inserting
leading zero-bytes for the single- and double-byte GB code point values.
Figure 3.1 shows the use of the Host to and from GB18030 conversion tables.

Figure 3.1 - Host and GB 18030 Conversion

The input byte or bytes, up to maximum of four bytes per code point, are first
normalized and used as input to the conversion table. The output (again, four
bytes per code point maximum) from the conversion table is also normalized
data, which must be de-normalized prior to subsequent processing. Host data
must have the SO-SI control characters deleted during normalization and
reinserted afterwards during de-normalization.

Source mapping file between GB18030 and Host

File: HOST2GB.ALL (2000-12-07)

File: GB2HOST.ALL (2000-12-07)

Conversion From S-Ch Host (CCSID 1388) to GB18030 (CCSID
5488)

Combined GB18030 Tables

The GB code points are normalized to four-bytes by inserting leading zero-
bytes for the single and double-byte GB code point values. The Host code
points are normalized to two-bytes by inserting a leading zero-byte for the
single-byte Host code point values.

2-byte to 4-byte Conversion

File 056C1570.MGN-R-D

This binary table contains the mapping from normalized Host to normalized
GB18030.

Method 2x:

The binary conversion table is similar to the tables used in existing CDRA
Method 2, but extended to handle the normalized GB18030-1 4-byte code.
The input data stream consists of normalized Host 2-byte code points. The
output from the conversion table will be 4-byte normalized GB code points
which are de-normalized before being inserted into the output data stream.

Assumed normalization for GB18030-1:

GB Byte Normalized Comment
xx (Single byte) 000000xx Four byte, with 3 zero byte leading zeros

xxxx (Double byte) 0000xxxx Four byte, with 2 zero byte leading zeros

xxxxxxxx (Four
byte)

xxxxxxxx Four byte

To describe the conversion method we first define the concept of a "ward". A
ward is a section of a double-byte code page. It is equivalent to a "row" of
code points in ISO/IEC 10646 and in Unicode. All of the code points contained
in a specific ward begin with the same first byte. A ward is populated if there
is at least one character in the double-byte code page (normalized Host in
this case) whose first byte is the ward value. There are 256 wards numbered
X'00' to X'FF'.

This binary conversion table is made up of several 1024-byte vectors. The
first vector acts as in index into the rest of the table. It contains 256 two-byte
vector numbers (corresponding to each of the 256 wards) and the remaining
512 bytes are unused (filled with zeros). There is one 1024-byte vector for
each populated ward in the source code page and one additional vector used
for mapping all unassigned and invalid wards.

The method fetches two bytes at a time from the input data stream. The first
byte is used as a pointer into the index vector -- as shown in Figure 3.2. Each
vector number in the index vector is two bytes long. Therefore the first byte
from the input code point is multiplied by two before calculating the offset
into this index vector. The two-byte value found at the corresponding position
in the index vector gives the vector number in which to perform the second
lookup.

The second byte of the input code point is used as a pointer into the vector
specified by the index vector. When calculating the offset into this vector

there are two things to remember -- first, the indexing starts at zero, and
second, each entry is four bytes long (normalized GB18030 code point).

Figure 3.2 -S-Ch Host to GB18030-1 - Binary Table & Conversion

Method

For example in Figure 3.2 the input code point is X'6041' you would find the
two-byte vector number (X'0023') starting at byte position X'00C0' (which is
two times X'60') in the index vector. The resultant four-byte output code
point would be found in the specified vector number (X'0023') beginning at
byte position X'0104' (which is four times X'41').

The one additional vector (X'0001') mentioned for handling code points from
invalid or unassigned wards in the input data is used as follows. All of the 256
four-byte (normalized) code point values found in this vector are those of the
"Substitute" (SUB) character of the target code page (X'0000A1A1' for
GB18030-1). All of the entries in the index vector for unused and invalid
wards point to this "substitute" vector.

In the binary table, target four-bytes could be found at the following
positions.

Byte Value Position (hex) Position (decimal)

first 0 X'0023' * X'400' + X'0104' 35 * 1024 + 260 = 36100

second 0 X'0023' * X'400' + X'0104' +
1

35 * 1024 + 260 + 1 =
36101

third DF X'0023' * X'400' + X'0104' +
2

35 * 1024 + 260 + 2 =
36102

fourth A1 X'0023' * X'400' + X'0104' +
3

35 * 1024 + 260 + 3 =
36103

Denormalization:

Since the resultant single-bytes and double-bytes in the table have been
prefixed with leading zero-bytes, when composing the output string the
leading zero-bytes must be removed from the 4-byte output (three zero-
bytes for single-byte and two zero bytes for double-byte).

Conversion From GB18030 (CCSID 5488) to S-Ch Host (CCSID
1388)

Combined GB18030 Tables

Following is a proposal for GB to HOST conversion, as an alternative to
following the CDRA's EUC normalization method and the resulting table
structure. The normalization steps for detecting when input is a single,
double, or four-byte are followed. However, instead of normalizing the data as
in the EUC case, the assumption here is to take three branches in the logic
and come up with associated data structures. The data structures are linear
arrays, one for each of the input types; single, double and four-byte. The
indexing operations get into these arrays only for valid ranges of code points.
All other code points and broken multi-byte sequences are trapped and are
dealt with separately in the logic.

The high level logic is:

- Detect valid single, double or four-byte code points

- Use single-byte to HOST array for single-byte input

- Use double-byte to HOST array for double-byte input

- Use four-byte to HOST compact array for four-byte input

- All invalid and incomplete sequences dealt with separately

The main advantage of this method is to be able to keep the conversion
tables as compact as possible (especially for the 4-byte to 2-byte part) and be
able to get at the converted HOST code points in a relatively fast manner.

The single-byte to HOST array consists of a single 512-byte vector (256
Single-byte entries with a leading zero byte).

The double-byte GB to HOST array is made up of several 512-byte vectors.
The first vector (00) acts as an index into the rest of the table and the second
vector (01) is the "substitute" vector (see section 1.3d for more details).

The four-byte to HOST compact array is made up of:

 One vector, 1024 bytes long, first 256 bytes contain flag values,
remaining 768 bytes are unused.

 Four vectors, 1024 bytes long, each containing 256 4-byte index
values, and

 A long compact array containing all of the target two-byte HOST code
points.

Detect a Valid Single-, Double-, Four-byte or Invalid
code point

Refer to Figure 3.3 below. The method fetches one byte at a time from
the input stream. The first byte, b0, is checked to see whether it is in
the valid range of single-byte or start of a double-byte or four-byte
code point. If it is not, then a SUB code point (X'003F' in this case) is
inserted in the output data stream, and the pointer to the input stream
is incremented by one.

If b0 is in the valid range of single-byte (X'00’ to X’80'), then it is
passed to the 1-byte to 2-byte conversion as a valid single-byte code
point. The resultant two-byte output is placed in the output buffer, and
the pointer into the input stream is incremented by one.

If b0 is in the range X'81’ to X’FE' for a valid first byte of a double-byte
or four-byte code point, then the next byte, b1, is checked to see
whether it is in the valid range for a second byte of a double-byte
(X'40’ to X’7E' or X'80’ to X’FE') or a second byte of a four-byte (X'30’
to X’39') code point. If it is not, then the SUB code point X'003F' is
inserted into the output stream and the pointer into the input stream
is incremented by one. The pointer should point to byte b1 now. The
first byte b0 is considered to be the start of a broken sequence of
bytes in the input.

If b1 is within the valid range for a second byte of a double-byte code
point (X'40’ to X’7E' or X'80’ to X’FE'), the sequence b0 b1 (or the
input pointer) is passed to the 2-byte to 2-byte conversion. The
resultant two-byte output is placed in the output buffer, and the
pointer into the input stream is incremented by two.

If b1 is within the valid range for a second byte of a four-byte code
point (X'30’ to X’39'), then the next byte in the input stream, b2, is
checked to determine whether it is in the valid range for a third byte of
a four-byte code point (X'81’ to X’FE'). If it is not, then the SUB code
point X'003F' is inserted into the output stream and the pointer into
the input stream is incremented by one. The pointer should point to
byte b1 now. The first byte b0 is considered to be the start of a broken
sequence of bytes in the input.

If b2 is within the valid range for a third byte of four-byte code point,
the next input byte, b3, is checked to determine whether it is in the
valid range for the fourth byte (X'30’ to X’39'). If it is not, then the
SUB code point X'003F' is inserted into the output stream and the
pointer into the input stream is incremented by one. The pointer
should point to byte b1 now. The first byte b0 is considered to be the
start of a broken sequence of bytes in the input.

If b3 is within the valid range for the fourth byte then the sequence of
bytes, b0 b1 b2 b3, (or the input pointer) is passed to the 4-byte to 2-
byte conversion as valid four-byte code point.

The resultant two-byte output is placed in the output buffer, and the
conversion pointer into the input stream is incremented by four.

Figure 3.3: Input Filter for GB18030-1 stream

The above steps are repeated until there is no more data in the input
stream. If the input stream is exhausted during fetching of any of
second, third or fourth bytes in the above filtering logic, the conversion
logic cannot proceed, and there will be some unconverted data in the
input stream. The pointer into the input stream indicates the first of
the remaining bytes that have not been converted. An implementation
may choose to deal with such a situation in any suitable manner.

The insertion of X'003F' for the first byte of a broken sequence permits
locating where such a sequence might have been in the input by
examining the output stream.

Denormalization:

Since the resultant single-bytes in the table have been prefixed with a
leading zero-byte, when composing the output string the leading zero-

byte must be removed. Also, all the single-byte sub-strings and the
double-byte sub-strings must be bracketed with appropriate controls
(SO/SI).

Example: SO 41 41 40 40 SI 41 SO 72 01 SI

1-byte to 2-byte Conversion

File: 1570056C.G1M-R-D

This table with its associated method is used to find the target code
point when the source code point is a valid single-byte.

Table format:

The binary conversion table is created by using the existing CDRA
Method 5. Figure 3.4 illustrates the table format and the associated
method.

Figure 3.4: GB 1-byte to normalized S-Ch HOST 2-byte Table
and Method

The single-byte to normalized HOST table consists of a single 512-byte
vector (256 2-byte entries). The source code point is used as a pointer
to determine which 2 bytes in the vector represent the target code
point. Each target code point in the vector is two bytes long. Therefore
the input code point is multiplied by two before calculating the offset
into this vector. The binary conversion table is equivalent to existing
CDRA SU-R-D binary tables.

2-byte to 2-byte Conversion

File: 1570056C.G2M-R-D

This table is used to find the target code point when the source code
point is a valid double-byte.

Table format:

The binary conversion table is created by using CDRA Method 2, a two-
step vector lookup method.

The conversion table and the associated method are illustrated in
Figure 3.5 below.

This 2-byte to 2-byte table is made up of several 512-byte vectors.
The first vector contains 256 single-byte indices (vector numbers) into
the rest of the table, followed by 256 unused bytes. The second
vector, the "substitute" vector contains the mapping for code points in
unassigned wards, and is filled with 256 2-byte SUB code points
(X'FEFE' in this case). These are followed by one 512-byte vector for
each populated ward in the source encoding.

Figure 3.5: GB 2-bytes to normalized S-Ch HOST 2-bytes Table
and Method

The table is used as follows. The first byte of the input code point is
used as a pointer into the index vector. The single-byte value found at
the corresponding position in the index is the vector number in which
to perform the second lookup. The second byte of the input code point
is used as a pointer into the vector specified by the index vector.

For example in Figure 3.5 the input code point is X'E0C0', you would
find a vector number at the X'E0' position in the index vector. The
resultant double-byte output code point is found in the specified vector
number (x'61') beginning at position X'0180' (which is two times
X'C0'), counting into the vector starting at zero.

The vector for handling unassigned wards works as follows. All of the
256 double-byte code point values found in this vector (vector X'01')
are those of the "Substitute (SUB)" character of the target encoding
(X'FEFE' for S-Ch Host). All the entries in the index vector for
unassigned wards point to this "substitute" vector.

The binary conversion table is equivalent to existing CDRA MU-R-D
binary tables.

4-byte to 2-byte Conversion

File: 1570056C.G4M-R-D

Table format:

The binary conversion table format and the associated method are
detailed below.

This binary table consists of five 1024-byte vectors followed by a large
linear array corresponding to the table structure as shown in Figure
3.6. There will be one three-dimensional sub array for each first byte
(b0) value used in the table definition. Each sub array will contain the
minimum number of cells -- 12600 cells -- needed to map the valid
ranges of the second (b1, 10 values), the third (b2, 126 values) and
the fourth (b3, 10 values) bytes of four-byte code points in GB. Each
cell contains the corresponding 2-byte normalized HOST code point.

Figure 3.6: GB 4-byte to S-Ch HOST 2-byte table structure

The first 256 bytes of this binary table, called the b0_used_array, is
used to check if a particular value of b0 byte is used in the conversion
table definition. The next 768 bytes (=3*256) are unused (for now,
may change later). These are followed by four 1024-byte vectors --
K40, K41, K42, and K43. These vectors contain values used in
computing an index into the rest of the table to get at the output code
point.

Figure 3.7: b0_used_array

For a given 4-byte code point (b0 b1 b2 b3), if the b0 is not used then
there will not be a sub array populated for it. Therefore, before trying
to find the target code point, the b0 value is checked to confirm that it
has been used. This is done using the b0_used_array shown in Figure
3.7. If the entry at the appropriate location in the b0_used_array is 01
it is valid, if it is 00 it is not used. If it is a 00, then the code point (b0
b1 b2 b3) is unassigned and its mapping is not defined in the
conversion table, a double-byte SUB code point (X'FEFE') is inserted
into the output data stream. The pointer into the input stream is
incremented by 4 in the main filter logic described earlier

If b0 has been used, then proceed with the steps to find target code
point, as illustrated in Figure 3.8, and described below.

Get the computed index values from the four index vectors, K40, K41,
K42, and K43 using b0, b1, b2, and b3 byte values of the input code
point respectively. Each byte of the valid four-byte source code point is
used as an offset into the corresponding K4x table to get a part of the
index value. When calculating the offset into these vectors there are
two things to remember; first, you must begin counting at zero, and
second, each entry is four bytes long. This means you have multiply
the b0, b1, b2, or b3 by four before looking into the vectors. The
resulting 4 values are added to get the location of the first byte of the
target code point in the binary table.

The values in the index vectors are computed based on the following
formulae:

 K40(b0) = 25200 * (block number assigned to the b0 group)

 K41(b1) = 2* (b1 - X'30') * (126 * 10)

 K42(b2) = 2* (b2 - X'81') * 10

 K43(b3) = 2* (b3 - X'30')

Figure 3.8: Use of Index Arrays in GB 4-byte to normalized S-Ch
HOST 2-byte conversion method

This eliminates the multiplication steps during conversion execution,
improving the performance. These values are added together to
calculate the index (or pointer) to the first byte of the cell containing
the output code point (see Figure 3.6). Figure 3.8 shows the mapping
table of Figure 6 in a linearized structure.

Also, note that entries in these index arrays for illegal values of b0, b1,
b2, or b3, are filled with zero-bytes. They will never be accessed if the
filter logic has been followed correctly. Figure 3.8 also shows a
possible entry for b0 = X'FD' -- Private Use Area - as a possible fifth
block. The binary table currently defined contains mapping tables only
for b0 values of X'81' to X'84', as defined in the conversion
requirements received from Chinese Government sources.

The two bytes of the output code point are inserted into the output
data stream. The pointer into the input data stream is incremented by
four in the main filter logic described earlier.

Section 5: Annexes

ANNEX A - CCSIDs for Phase 1 and
Phase 2 (as of 2001-06-14)
Note that complete definitions for all CCSIDs can be found in the CCSID
repository.

GB 18030 - Phase 1

CCSID

Decimal Hex

ESID

Comments

05488 1570 2A00 S-ch PC Data mixed for GB 18030

05487 156F 2900
S-ch 4 byte part PC Data for GB 18030(Fixed

UCS2 Subset)

09577 2569 2200
S-ch double-byte PC Data double-byte part of
GB 18030 (Fixed UCS2 Subset) (*Four-byte

SUB to be used)

09444 24E4 4105 S-ch single-byte part of GB 18030

GB 18030 - Phase 2

CCSID

Decimal Hex

ESID

Comments

01392 0570 2A00 S-ch PC Data mixed for GB 18030

01391 056F 2900
S-ch PC Data 4-byte part of GB

18030(Includes UCS Plane 1-16, and Plane 0
subset)

Host Mixed S-Ch Extended (for GB18030
support)

S-Ch DBCS-Host Data GBK mixed, all GBK character set and other
growing chars(GB18030 / Unicode 3.0)

CCSID

Decimal Hex

ESID

Comments

01388 056C 1301 S-Ch Host mixed for GB 18030-1

13124 3344 1100 S-Ch Host single-byte part of GB 18030-1

04933 1345 1200 S-Ch Host double-byte part of GB 18030-1

http://www-01.ibm.com/software/globalization/cdra/appendix_c.html
http://www-01.ibm.com/software/globalization/cdra/appendix_c.html

09580 256C 1301 S-Ch Host mixed for GBK

00836 0344 1100 S-CH Host single-byte part of GBK

13125 3345 1200 S-Ch Host double-byte part of GBK

Use of Shadow Flags

In chapter 7 under the definition of the Graphic Character Conversion Table (GCCT)

Resource, there is a section entitled GCCT Shadow Flag Element which describes the

shadow flags associated with a conversion table. The structure of the shadow flag

tables and the method of getting the shadow flag value are the same as the

associated conversion tables and methods, except that the entries in the shadow flag

sub-tables will always be single-bytes having one of the shadow flag values X'00' or

X'FF', where:

00 Characters match for this code point.

01 - FE Reserved

FF Characters do not match for this code point.

Figure 70 shows how the shadow flags are accessed and used in conjunction with a

Type 1 table. In this example the input code point X'53' is converted to X'67' as the

output code point using the conversion table. Using the associated shadow flag table,

the shadow flag entry of X'FF' indicates that the output character is not the same as

the input character. The GCGIDs do not match.

Figure 70. Method 1: Single-Byte to Single-Byte Conversion with Shadow

Flags

Figure 71 shows how shadow flags are accessed and used in conjunction with a

conversion method; Method 2 in this example, and tables to reflect exact matching of

input and output characters. This table can be used to verify that no character

replacement has occurred when converting a coded graphic character string.

Figure 71. Method 2: Double-Byte to Double-Byte Conversion with

Shadow Flags

Enhancements to support string types

Each of the methods described above can be enhanced to deal with different input

and output string types.

Null-Terminated

When the input is a null-terminated string, the input parsing step will be enhanced

with the necessary logic to sense the null-termination and take appropriate action.

Similarly, when the output string type is null-terminated, the output assembly step of

conversion will append a null-termination character to the end of the string. The

necessary error-checking logic to ensure that a null-termination character is not

encountered in the string converted using the conversion table should also be in

place.

See the "Null-terminated string" section in Chapter 6 for the semantics of a null-

terminated string.

SPACE Padding

A SPACE padding logic appends the appropriate number of SPACE code points from

the relevant CP at the end of the converted string. This enhancement must be added

to the output assembly step for these output string types.

See the "Padded string" section in Chapter 6 for the semantics of a SPACE-padded

string.

In addition to these two special string types, other string types have been defined in

support of bidirectional text. See "Types of strings" in Chapter 6 for specific

information.

Appendix C. CCSID Repository

The CCSID Repository is owned and managed by the IBM Globalization Center of

Competency (GCoC). If you have questions about specific CCSID values or would like

additional information, please contact the GCoC by email at: gcoc@ca.ibm.com. The

repository contains detailed information about each CCSID which IBM has registered.

Figure 72 shows the fields contained in each CSID record. A list of registered CCSIDs

including CCSID number and CCSID name is included below for your reference.

Field Explanation

CCSID

The value of the coded character set identifier (CCSID) assigned

by CDRA. Both decimal and hexadecimal forms are shown.

Note:

Wherever feasible, CCSID is assigned the same value as its

CPGID element, to facilitate coexistence and migration; however,

the one-to-one relationship between the two values cannot be

maintained in all situations.

Name A short, descriptive name for the CCSID.

SC
This indicates whether the CCSID is designated for interoperable

(I) use, or is required for coexistence and migration purposes (C).

FMS

This indicates whether the character set (CS) is full, maximal,

growing or subset.

Full (F)

Uses all the allocated graphic character space in the ES

Maximal (M)

Does not use all the allocated graphic character space, but is the

largest (maximal) set for the associated ES at the time of

registering the value of CCSID by CDRA

Growing (G)

This indicates that the CCSID has a growing CS. Use the current

maximal CS as the character repertoire.

Subset (S)

Does not use all the allocated graphic character space, and is a

subset of another full or maximal registered character set. The

number of individual graphic characters (excluding the character

SPACE, whose GCGID is SP010000) in the character set is shown

in parentheses as (Size).

Registration Date

This field contains the date on which the CCSID became officially

registered. Note that this value is not available for some CCSIDs

as originally registration dates were not recorded.

Description
A description of the CCSID (may contain the language, country or

standard that it is used to support).

Notes

The Notes field will contain additional information about a CCSID

such as CCSIDs it has superseded or if it has been replaced by a

newer CCSID.

Encoding scheme

The value of the encoding scheme identifier (ES), in hexadecimal

form. The number of other identifiers associated with ES

depends on this value.

Size
The number of coded graphic characters represented by the

CCSID.

MCCSID

The value of the Maximal CCSID. This is the CCSID with the

largest character repertoire for a specific Code Page. The

Maximal CCSID is always equal to or a superset of the CCSID.

ACRI

This indicates the type of Additional Coding-related Required

Information. The format is T-nn, where T is the type of ACRI

information, and nn references an entry in the Definition Table

for that ACRI Type. See the “Additional Coding-Related Required

Information” section in Chapter 3 for definitions of the formats

for these various ACRI types. The specific ACRI value definitions

are found in the CCSID Repository.

• (P) identifies the ACRI information as PCMB (PC Mixed

Byte).

• (EUC) identifies the ACRI information as EUC

• (TCP) identifies the ACRI information as TCP.

Group

Graphic character sets used in different countries to support

different languages have been grouped into sets with common

properties.

Number of code

pages

The number of code page, character set pairs associated with

this CCSID.

CS, CP and CCSID

The registered coded graphic character set global identifier

(CGCSGID): the GCSGID is in the CS column and the CPGID is in

the CP column. Decimal forms are shown. Depending on the ES

value, more than one pair of CS and CP may be listed.

When the character set associated with a code page is maximal,

the CS value associated with a CP may be entered as X'FFFF'

indicating a growing character set. The contents of the

associated code page resource definition in that installation

implicitly defines the associated maximal character set.

The CCSID column contains the CCSID associated with the

corresponding CS, CP pair. This is especially useful when dealing

with CCSIDs that contain more than one CS, CP pair.

Control Function

Definition

The default control function definitions associated with the

CCSID. The possible values for each of the Control Function

Definitions are found in the CCSID Repository.

• SP (Space) references an entry in the Space Character

Definition Table consisting of the code point value (hex),

the width in bytes of the code point, and the state in which

this code point of SPACE definition is used.

• SUB (Substitute) references an entry in the SUB Character

Definition Table consisting of the code point value (hex),

the width in bytes of the code point, and the state in which

this code point of SUB (Substitute) definition is used.

• NL (New Line) references an entry in the New Line

Character Definition Table consisting of the code point

value (hex), the width in bytes of the code point, and the

state in which this code point of NL (New Line) definition is

used.

• LF (Line Feed) references an entry in the Line Feed

Character Definition Table consisting of the code point

value (hex), the width in bytes of the code point, and the

state in which this code point of LF (Line Feed) definition is

used.

• CR (Carriage Return) references an entry in the Carriage

Return Character Definition Table consisting of the code

point value (hex), the width in bytes of the code point, and

the state in which this code point of CR (Carriage Return)

definition is used.

• EOF (End of File) references an entry in the End of File

Character Definition Table consisting of the code point

value (hex), value, the width in bytes of the code point,

and the state in which this code point of EOF (End of File)

definition is used.

Figure 72. CCSID element descriptions

List of registered CCSIDs

CCSID

(decimal)

CCSID

(hex)
Name

37 0025 COM EUROPE EBCDIC

256 0100 NETHERLAND EBCDIC

259 0103 SYMBOLS SET 7

273 0111 AUS/GERM EBCDIC

274 0112 BELGIUM EBCDIC

275 0113 BRAZIL EBCDIC

277 0115 DEN/NORWAY EBCDIC

278 0116 FIN/SWEDEN EBCDIC

280 0118 ITALIAN EBCDIC

281 0119 JAPAN EBCDIC

282 011A PORTUGAL EBCDIC

284 011C SPANISH EBCDIC

285 011D UK EBCDIC

286 011E AUS/GER 3270 EBCD

290 0122 JAPANESE EBCDIC

293 0125 APL

297 0129 FRENCH EBCDIC

300 012C JAPAN DB EBCDIC

301 012D JAPAN DB PC-DATA

310 0136 APL/TN

367 016F US ANSI X3.4 ASCII

420 01A4 ARABIC EBCDIC

421 01A5 MAGHREB/FRENCH EBCDIC

423 01A7 GREEK EBCDIC

424 01A8 HEBREW EBCDIC

425 01A9 Arabic/Latin EBCDIC

437 01B5 USA PC-DATA

500 01F4 INTL EBCDIC

720 02D0 MSDOS ARABIC

737 02E1 MSDOS GREEK

775 0307 MSDOS BALTIC

803 0323 HEBREW EBCDIC

806 0326 PC-ISCII - DV

808 0328 CYRILLIC PC-DATA

813 032D ISO 8859-7 Greek/Latin

819 0333 ISO 8859-1 ASCII

833 0341 KOREAN EBCDIC

834 0342 KOREAN DB EBCDIC

835 0343 T-CHINESE DB EBCD

CCSID

(decimal)

CCSID

(hex)
Name

836 0344 S-CHINESE EBCDIC

837 0345 S-CHINESE EBCDIC

838 0346 THAILAND EBCDIC

848 0350 UKRAINE PC-DATA

849 0351 BELARUS PC-DATA

850 0352 LATIN-1 PC-DATA

851 0353 GREEK PC-DATA

852 0354 LATIN-2 PC-DATA

853 0355 TURKISH PC-DATA

855 0357 CYRILLIC PC-DATA

856 0358 HEBREW PC-DATA

857 0359 TURKISH PC-DATA

858 035A LATIN-1E PC-DATA

859 035B LATIN-9 PC-DATA

860 035C PORTUGESE PC-DATA

861 035D ICELAND PC-DATA

862 035E HEBREW PC-DATA

863 035F CANADA PC-DATA

864 0360 ARABIC PC-DATA

865 0361 DEN/NORWAY PC-DAT

866 0362 CYRILLIC PC-DATA

867 0363 HEBREW PC-DATA

868 0364 URDU PC-DATA

869 0365 GREEK PC-DATA

870 0366 LATIN-2 EBCDIC

871 0367 ICELAND EBCDIC

872 0368 CYRILLIC PC-DATA

874 036A THAI PC-DATA

875 036B GREEK EBCDIC

876 036C OCR-A

878 036E KOI8-R CYRILLIC

880 0370 CYRILLIC EBCDIC

891 037B KOREA SB PC-DATA

892 037C Host OCR-A

893 037D Host OCR-B

895 037F JAPAN 7-BIT LATIN

896 0380 JAPAN 7-BIT KATAK

897 0381 JAPAN SB PC-DATA

899 0383 SYMBOLS - PC

901 0385 BALTIC ISO-8

902 0386 ESTONIA ISO-8

CCSID

(decimal)

CCSID

(hex)
Name

903 0387 S-CHINESE PC-DATA

904 0388 T-CHINESE PC-DATA

905 0389 TURKEY EBCDIC

912 0390 ISO 8859-2 ASCII

913 0391 ISO 8859-3 ASCII

914 0392 ISO 8859-4 ASCII

915 0393 ISO 8859-5 ASCII

916 0394 ISO 8859-8 ASCII

918 0396 URDU EBCDIC

920 0398 ISO 8859-9 ASCII

921 0399 ISO 8859-13

922 039A ESTONIA ISO-8

923 039B ISO 8859-15 ASCII

924 039C Latin 9 EBCDIC

926 039E KOREA DB PC-DATA

927 039F T-CHINESE PC-DATA

928 03A0 S-CHINESE PC-DATA

930 03A2 JAPAN MIX EBCDIC

931 03A3 JAPAN MIX EBCDIC

932 03A4 JAPAN MIX PC-DATA

933 03A5 KOREA MIX EBCDIC

934 03A6 KOREA MIX PC-DATA

935 03A7 S-CHINESE MIX EBC

936 03A8 S-CHINESE PC-DATA

937 03A9 T-CHINESE MIX EBC

938 03AA T-CHINESE MIX PC

939 03AB JAPAN MIX EBCDIC

941 03AD JAPAN OPEN

942 03AE JAPAN MIX PC-DATA

943 03AF JAPAN OPEN

944 03B0 KOREA MIX PC-DATA

946 03B2 S-CHINESE PC-DATA

947 03B3 T-CHINESE BIG-5

948 03B4 T-CHINESE PC-DATA

949 03B5 KOREA KS PC-DATA

950 03B6 T-CH MIX PC-DATA

951 03B7 IBM KS PC-DATA

952 03B8 JAPANESE EUC

953 03B9 JAPANESE EUC

954 03BA JAPANESE EUC

955 03BB JAPANESE TCP

CCSID

(decimal)

CCSID

(hex)
Name

956 03BC JAPANESE TCP

957 03BD JAPANESE TCP

958 03BE JAPANESE TCP

959 03BF JAPANESE TCP

960 03C0 T-CHINESE EUC

961 03C1 T-CHINESE EUC

963 03C3 T-CHINESE TCP

964 03C4 T-CHINESE EUC

965 03C5 T-CHINESE TCP

970 03CA KOREAN EUC

971 03CB KOREAN EUC

1002 03EA DCF R2

1004 03EC LATIN-1 PC-DATA

1006 03EE URDU ISO-8

1008 03F0 ARABIC ISO/ASCII

1009 03F1 ISO-7 OLD IRV

1010 03F2 FRENCH ISO-7 ASCI

1011 03F3 GERM ISO-7 ASCII

1012 03F4 ITALY ISO-7 ASCII

1013 03F5 UK ISO-7 ASCII

1014 03F6 SPAIN ISO-7 ASCII

1015 03F7 PORTUGAL ISO7 ASC

1016 03F8 NOR ISO-7 ASCII

1017 03F9 DENMK ISO-7 ASCII

1018 03FA FIN/SWE ISO-7 ASC

1019 03FB BELG/NETH ASCII

1020 03FC CANADA ISO-7

1021 03FD SWISS ISO-7

1023 03FF SPAIN ISO-7

1025 0401 CYRILLIC EBCDIC

1026 0402 TURKEY LATIN-5 EB

1027 0403 JAPAN LATIN EBCD

1040 0410 KOREA PC-DATA

1041 0411 JAPAN PC-DATA

1042 0412 S-CHINESE PC-DATA

1043 0413 T-CHINESE PC-DATA

1046 0416 ARABIC - PC

1047 0417 LATIN OPEN SYS EB

1051 041B HP EMULATION

1088 0440 KOREA KS PC-DATA

1089 0441 ARABIC ISO 8859-6

CCSID

(decimal)

CCSID

(hex)
Name

1097 0449 FARSI EBCDIC

1098 044A FARSI - PC

1100 044C MULTI EMULATION

1101 044D BRITISH ISO-7 NRC

1102 044E DUTCH ISO-7 NRC

1103 044F FINNISH ISO-7 NRC

1104 0450 FRENCH ISO-7 NRC

1105 0451 NOR/DAN ISO-7 NRC

1106 0452 SWEDISH ISO-7 NRC

1107 0453 NOR/DAN ISO-7 NRC

1112 0458 BALTIC EBCDIC

1114 045A T-CH SB PC-DATA

1115 045B S-CH GB PC-DATA

1122 0462 ESTONIA EBCDIC

1123 0463 UKRAINE EBCDIC

1124 0464 UKRAINE ISO-8

1125 0465 UKRAINE PC-DATA

1126 0466 Korean MS-WIN

1127 0467 ARABIC/FR PC-DATA

1129 0469 VIETNAMESE ISO8

1130 046A VIETNAMESE EBCDIC

1131 046B BELARUS PC-DATA

1132 046C LAO EBCDIC

1133 046D LAO ISO8

1137 0471 DEVANAGARI EBCDIC

1140 0474 COM EUROPE ECECP

1141 0475 AUS/GERM ECECP

1142 0476 DEN/NORWAY ECECP

1143 0477 FIN/SWEDEN ECECP

1144 0478 ITALIAN ECECP

1145 0479 SPANISH ECECP

1146 047A UK ECECP

1147 047B FRENCH ECECP

1148 047C INTL ECECP

1149 047D ICELAND ECECP

1153 0481 LATIN-2 EBCDIC

1154 0482 CYRILLIC EBCDIC

1155 0483 TURKEY LATIN-5

1156 0484 BALTIC EBCDIC

1157 0485 ESTONIA EBCDIC

1158 0486 UKRAINE EBCDIC

CCSID

(decimal)

CCSID

(hex)
Name

1159 0487 T-CHINESE EBCDIC

1160 0488 THAI SB EBCDIC

1161 0489 THAI SB PC-DATA

1162 048A THAI WINDOWS

1163 048B VIETNAMESE ISO8

1164 048C VIETNAMESE EBCDIC

1165 048D LATIN-2 OPEN SYS EB

1166 048E Cyrillic Multilingual - Kazakhstan

1167 048F KOI8-RU

1168 0490 KOI8-U

1174 0496 Windows Cyrillic (Kazakhstan)

1200 04B0 UTF-16 BE with IBM PUA

1201 04B1 UTF-16 BE

1202 04B2 UTF-16 LE with IBM PUA

1203 04B3 UTF-16 LE

1204 04B4 UTF-16 with IBM PUA

1205 04B5 UTF-16

1208 04B8 UTF-8 with IBM PUA

1209 04B9 UTF-8

1210 04BA UTF-EBCDIC with IBM PUA

1211 04BB UTF-EBCDIC

1212 04BC SCSU with IBM PUA

1213 04BD SCSU

1214 04BE BOCU-1 with IBM PUA

1215 04BF BOCU-1

1232 04D0 UTF-32 BE with IBM PUA

1233 04D1 UTF-32 BE

1234 04D2 UTF-32 LE with IBM PUA

1235 04D3 UTF-32 LE

1236 04D4 UTF-32 with IBM PUA

1237 04D5 UTF-32

1250 04E2 MS-WIN LATIN-2

1251 04E3 MS-WIN CYRILLIC

1252 04E4 MS-WIN LATIN-1

1253 04E5 MS-WIN GREEK

1254 04E6 MS-WIN TURKEY

1255 04E7 MS-WIN HEBREW

1256 04E8 MS-WIN ARABIC

1257 04E9 MS-WIN BALTIC

1258 04EA MS-WIN VIETNAM

1275 04FB APPLE LATIN-1

CCSID

(decimal)

CCSID

(hex)
Name

1276 04FC ADOBE STANDARD

1277 04FD ADOBE LATIN-1

1280 0500 APPLE GREEK

1281 0501 APPLE TURKEY

1282 0502 APPLE LATIN2

1283 0503 APPLE CYRILLIC

1284 0504 APPLE CROATIAN

1285 0505 APPLE ROMANIAN

1286 0506 APPLE ICELANDIC

1287 0507 DEC Greek 8-Bit

1288 0508 DEC Turkish 8-Bit

1350 0546 JISeucJP

1351 0547 JAPAN OPEN

1362 0552 KOREAN MS-WIN

1363 0553 KOREAN MS-WIN

1364 0554 KOREAN EBCDIC

1370 055A T-CH MIX PC-DATA

1371 055B T-CHINESE MIX EBC

1374 055E DB Big-5 extension for HKSCS

1375 055F Mixed Big-5 Ext for HKSCS

1376 0560 Host HKSCS DBCS growing

1377 0561 Mixed Host HKSCS Growing

1380 0564 S-CH GB PC-DATA

1381 0565 S-CH GB PC-DATA

1382 0566 S-CHINESE EUC

1383 0567 S-CHINESE EUC

1385 0569 S-CH GBK PC-DATA

1386 056A S-CH GBK PC-DATA

1388 056C S-CHINESE Mixed EBCDIC

1390 056E JAPAN MIX EBCDIC

1391 056F
S-ch 4 byte, growing CS, for GB

18030

1392 0570
S-ch PC Data mixed (growing)

GB18030

1393 0571 Shift_JISx0213 - Double-byte portion

1394 0572 Shift_JISx0213

1399 0577 JAPAN MIX EBCDIC

1400 0578 Unicode BMP

1401 0579 Unicode Plane 1

1402 057A Unicode Plane 2

1414 0586 Unicode Plane 14

CCSID

(decimal)

CCSID

(hex)
Name

1446 05A6 Unicode Plane 15

1447 05A7 Unicode Plane 16

1448 05A8 Unicode, Generic PUA of BMP

1449 05A9 Unicode, PUA of BMP, IBM Default

2105 0839 LCS 3800-1 TEXT 1 & 2

4133 1025 USA EBCDIC

4369 1111 AUS/GERMAN EBCDIC

4370 1112 BELGIUM EBCDIC

4371 1113 BRAZIL EBCDIC

4372 1114 CANADA EBCDIC

4373 1115 DEN/NORWAY EBCDIC

4374 1116 FIN/SWEDEN EBCDIC

4376 1118 ITALY EBCDIC

4378 111A PORTUGAL EBCDIC

4380 111C LATIN EBCDIC

4381 111D UK EBCDIC

4386 1122 JAPAN EBCDIC SB

4389 1125 APL

4393 1129 FRANCE EBCDIC

4396 112C JAPAN EBCDIC DB

4397 112D JAPAN DB PC-DATA

4516 11A4 ARABIC EBCDIC

4517 11A5 MAGHR/FREN EBCDIC

4519 11A7 GREEK EBCDIC 3174

4520 11A8 HEBREW EBCDIC

4533 11B5 SWISS PC-DATA

4596 11F4 LATIN AMER EBCDIC

4899 1323 HEBREW EBCDIC

4902 1326 PC-ISCII - DV

4904 1328 CYRILLIC MS-PC-DATA

4909 132D GREEK/LATIN ASCII with euro

4929 1341 KOREA SB EBCDIC

4930 1342 KOREAN DB EBCDIC

4931 1343 T-CHINESE DB EBCD

4932 1344 S-CHINESE EBCDIC

4933 1345 S-CHINESE EBCDIC

4934 1346 THAI SB EBCDIC

4944 1350 UKRAINE MS-PC-DATA

4945 1351 BELARUS MS-PC-DATA

4946 1352 LATIN-1 PC-DATA

4947 1353 GREEK PC-DATA

CCSID

(decimal)

CCSID

(hex)
Name

4948 1354 LATIN-2 PC-DATA

4949 1355 TURKEY PC-DATA

4951 1357 CYRILLIC PC-DATA

4952 1358 HEBREW PC-DATA

4953 1359 TURKEY PC-DATA

4954 135A LATIN-1E MS-PC-DATA

4955 135B LATIN-9 MS-PC-DATA

4956 135C PORTUGESE MS-PC-DATA

4957 135D ICELAND MS-PC-DATA

4958 135E HEBREW MS-PC-DATA

4959 135F CANADA MS-PC-DATA

4960 1360 ARABIC PC-DATA

4961 1361 DEN/NORWAY PC-DAT

4962 1362 CYRILLIC MS-PC-DATA

4963 1363 HEBREW MS-PC-DATA

4964 1364 URDU PC-DATA

4965 1365 GREEK PC-DATA

4966 1366 ROECE LATIN-2 EBC

4967 1367 ICELAND EBCDIC

4968 1368 CYRILLIC PC-DATA

4970 136A THAI SB PC-DATA

4971 136B GREEK EBCDIC

4976 1370 CYRILLIC EBCDIC

4992 1380 JAPANESE TCP- 2022

4993 1381 JAPAN SB PC-DATA

5012 1394 ISO 8859-8 ASCII

5014 1396 URDU EBCDIC

5023 139F T-CHINESE PC-DATA

5026 13A2 JAPAN MIX EBCDIC

5028 13A4 JAPAN MIX PC-DATA

5029 13A5 KOREA MIX EBCDIC

5031 13A7 S-CH MIXED EBCDIC

5033 13A9 T-CHINESE EBCDIC

5035 13AB JAPAN MIX EBCDIC

5037 13AD JAPAN OPEN

5038 13AE JAPAN HP15-J

5039 13AF JAPAN OPEN

5043 13B3 T-CHINESE BIG-5

5045 13B5 KOREA KS PC-DATA

5046 13B6 T-CHINESE BIG-5

5047 13B7 KOREA KS PC DATA

CCSID

(decimal)

CCSID

(hex)
Name

5048 13B8 JAPANESE EUC

5049 13B9 JAPANESE EUC

5050 13BA JAPANESE EUC

5052 13BC JAPANESE TCP

5053 13BD JAPANESE TCP

5054 13BE JAPANESE TCP

5055 13BF JAPANESE TCP

5056 13C0 T-Ch TCP-2022, G1-CNS

5057 13C1 T-CHINESE EUC

5060 13C4 T-CHINESE EUC

5066 13CA KOREAN EUC

5067 13CB KOREAN EUC

5100 13EC LATIN-1 PC-DATA

5104 13F0 ARABIC ISO/ASCII

5123 1403 JAPAN LATIN EBCD

5137 1411 JAPAN PC-DATA

5142 1416 ARABIC - PC

5143 1417 LATIN OPEN SYS

5210 145A S-CH SB PC-DATA

5211 145B S-CH GB PC-DATA

5222 1466 Korean MS-WIN

5233 1471
DEVANAGARI EBCDIC with

Rupee

5255 1487 T-CHINESE EBCDIC

5304 14B8 Unicode 2.0, UTF-8 with IBM PUA

5305 14B9 Unicode 2.0, UTF-8

5328 14D0
Unicode 4.0, UTF-32 BE with IBM

PUA

5346 14E2 MS-WIN LATIN-2

5347 14E3 MS-WIN CYRILLIC

5348 14E4 MS-WIN LATIN-1

5349 14E5 MS-WIN GREEK

5350 14E6 MS-WIN TURKEY

5351 14E7 MS-WIN HEBREW with euro

5352 14E8 MS-WIN ARABIC

5353 14E9 MS-WIN BALTIC

5354 14EA MS-WIN VIETNAM

5458 1552 KOREAN MS-WIN

5459 1553 KOREAN MS-WIN

5460 1554 KOREAN EBCDIC

5470 155E DB Big-5 ext for HKSCS-2001

CCSID

(decimal)

CCSID

(hex)
Name

5471 155F Mixed Big-5 ext for HKSCS-2001

5472 1560 Host HKSCS-2001, DB

5473 1561 Host Mixed HKSCS-2001

5476 1564 S-CH GB PC-DATA

5477 1565 S-CH GB PC-DATA

5478 1566 S-CHINESE EUC

5479 1567 S-CHINESE EUC

5481 1569 S-CH GBK PC-DATA

5482 156A S-CH GBK PC-DATA

5484 156C S-CHINESE MIX EBC

5486 156E JAPAN MIX EBCDIC

5487 156F S-ch 4 byte for GB 18030

5488 1570 S-ch PC Data mixed (fixed) GB18030

5495 1577 JAPAN MIX EBCDIC

5496 1578 Unicode 2.0, BMP

5497 1579 Unicode 4.0, Plane 1

5498 157A Unicode 4.0, Plane 2

5510 1586 Unicode 4.0, Plane 14

6201 1839 LCS 3800-1 Extended

8229 2025 INTL EBCDIC

8448 2100 INTL EBCDIC

8476 211C SPAIN EBCDIC

8482 2122 JAPAN EBCDIC SB

8489 2129 FRANCE EBCDIC

8492 212C JAPAN EBCDIC DB

8493 212D JAPAN HP15-J

8612 21A4 ARABIC EBCDIC

8616 21A8 HEBREW EBCDIC

8629 21B5 AUS/GERM PC-DATA

8692 21F4 AUS/GERMAN EBCDIC

9005 232D ISO 8859-7:2003 Greek/Latin

9025 2341 KOREA SB EBCDIC

9026 2342 KOREA DB EBCDIC

9027 2343 T-CHINESE DB EBCD

9028 2344 S-CHINESE EBCDIC

9029 2345 S-CHINESE EBCDIC

9030 2346 THAI SB EBCDIC

9042 2352 LATIN-1 MS-PC-DATA

9044 2354 LATIN-2 PC-DATA

9047 2357 CYRILLIC PC-DATA

9048 2358 HEBREW PC-DATA

CCSID

(decimal)

CCSID

(hex)
Name

9049 2359 TURKISH PC-DATA

9056 2360 ARABIC PC-DATA

9060 2364 URDU PC-DATA

9061 2365 GREEK PC-DATA

9064 2368 CYRILLIC MS-PC-DATA

9066 236A THAI SB PC-DATA

9067 236B Greek EBCDIC - 2005

9088 2380 Japanese EUC, G2-JIS

9089 2381 JAPAN PC-DATA SB

9122 23A2 JAPAN MIX EBCDIC

9124 23A4 JAPAN MIX PC-DATA

9125 23A5 KOREA MIX EBCDIC

9127 23A7 S-CH MIXED EBCDIC

9131 23AB JAPAN MIX EBCDIC

9133 23AD JAPAN DB PC

9135 23AF JAPAN MIXED PC

9139 23B3 T-CHINESE BIG-5

9142 23B6 T-CHINESE BIG-5

9144 23B8 Japanese TCP-2022, G1

9145 23B9 JAPANESE EUC

9146 23BA JAPANESE EUC

9148 23BC JAPANESE TCP

9163 23CB Korean EUC, G1

9219 2403 JAPAN LATIN EBCDIC

9238 2416 ARABIC - PC

9306 245A S-CH SB MS-PC-DATA

9400 24B8 CESU-8 with IBM PUA

9424 24D0
Unicode 4.1, UTF-32 BE with IBM

PUA

9444 24E4 S-Ch SB part of GB 18030

9447 24E7 MS-WIN HEBREW-2001

9448 24E8 MS-WIN ARABIC-2001

9449 24E9 MS-WIN BALTIC-2001

9554 2552 KOREAN MS-WIN

9555 2553 KOREAN MS-WIN

9563 255B T-CHINESE MIX EBC

9566 255E DB Big-5 ext for HKSCS-2004

9567 255F Mixed Big-5 ext for HKSCS-2004

9568 2560 DB, Host HKSCS-2004

9569 2561 Mixed Host HKSCS-2004

9572 2564 S-CH GB PC-DATA

CCSID

(decimal)

CCSID

(hex)
Name

9574 2566 S-CHINESE EUC

9575 2567 S-CHINESE TCP

9577 2569 S-CH GBK PC-DATA

9580 256C S-Ch Host mixed for GBK

9582 256E
JAPAN MIX EBCDIC - JIS

X0213:2004

9591 2577
JAPAN MIX EBCDIC - JIS

X0213:2004

9592 2578 Unicode 3.0, BMP

9593 2579 Unicode 4.1, Plane 1

9594 257A Unicode 5.2, Plane 2

12325 3025 CANADA EBCDIC

12544 3100 FRANCE EBCDIC

12578 3122 JAPAN EBCDIC SB

12588 312C JAPAN EBCDIC DB

12708 31A4 ARABIC EBCDIC

12712 31A8 HEBREW EBCDIC

12725 31B5 FRANCE PC-DATA

12788 31F4 ITALY EBCDIC

13121 3341 KOREA SB EBCDIC

13122 3342 KOREAN DB EBCDIC

13124 3344 S-CHINESE EBCDIC

13125 3345 S-Ch Host- double-byte for GBK

13140 3354 LATIN-2 MS-PC-DATA

13143 3357 CYRILLIC MS-PC-DATA

13144 3358 HEBREW PC-DATA

13145 3359 TURKISH MS-PC-DATA

13152 3360 ARABIC PC-DATA

13156 3364 URDU MS-PC-DATA

13157 3365 GREEK MS-PC-DATA

13162 336A THAI MS-PC-DATA

13184 3380 JAPAN 7-BIT KATAK

13185 3381 JAPAN PC-DATA SB

13218 33A2 JAPAN MIX EBCDIC

13219 33A3 JAPAN MIX EBCDIC

13221 33A5 KOREA MIX EBCDIC

13223 33A7 S-CH MIXED EBCDIC

13229 33AD JAPAN DB PC

13231 33AF JAPAN MIXED PC

13235 33B3 T-CHINESE BIG-5

13238 33B6 T-CHINESE BIG-5

CCSID

(decimal)

CCSID

(hex)
Name

13240 33B8 JAPANESE TCP-2022

13241 33B9 Japanese TCP-2022, G3

13242 33BA JAPANESE EUC

13259 33CB KOREAN EUC

13488 34B0
Unicode 2.0, UTF-16 BE with IBM

PUA

13489 34B1 Unicode 2.0, UTF-16 BE

13490 34B2
Unicode 2.0, UTF-16 LE with IBM

PUA

13491 34B3 Unicode 2.0, UTF-16 LE

13496 34B8 Unicode 3.0, UTF-8 with IBM PUA

13497 34B9 Unicode 3.0, UTF-8

13520 34D0
Unicode 5.0, UTF-32 BE with IBM

PUA

13650 3552 KOREAN MS-WIN

13651 3553 KOREAN MS-WIN

13662 355E DB Big-5 ext for HKSCS-2008

13663 355F Mixed Big-5 ext for HKSCS-2008

13664 3560 DB, Host HKSCS-2008

13665 3561 Mixed Host HKSCS-2008

13676 356C S-Ch Host mixed for GBK

13688 3578 Unicode 4.0, BMP

13689 3579 Unicode 5.0, Plane 1

13690 357A Unicode 6.0, Plane 2

16421 4025 CANADA EBCDIC

16684 412C JAPAN DB EBCDIC

16804 41A4 ARABIC EBCDIC

16821 41B5 ITALY PC-DATA

16884 41F4 FIN/SWEDEN EBCDIC

17218 4342 KOREAN DB EBCDIC

17219 4343 T-CHINESE DB EBCDIC

17221 4345 S-CH Host - double-byte for GBK

17240 4358 HEBREW MS-PC-DATA

17248 4360 ARABIC PC-DATA

17314 43A2 JAPAN MIX EBCDIC

17317 43A5 KOREA MIX EBCDIC

17325 43AD JAPAN DB PC

17331 43B3 T-CHINESE BIG-5

17336 43B8 JAPANESE TCP-2022

17337 43B9 Japanese TCP-2022 G3-JIS

17338 43BA JAPANESE EUC

CCSID

(decimal)

CCSID

(hex)
Name

17354 43CA KOREAN TCP

17584 44B0
Unicode 3.0, UTF-16 BE with IBM

PUA

17585 44B1 Unicode 3.0, UTF-16 BE

17586 44B2
Unicode 3.0, UTF-16 LE with IBM

PUA

17587 44B3 Unicode 3.0, UTF-16 LE

17592 44B8 Unicode 4.0, UTF-8 with IBM PUA

17593 44B9 Unicode 4.0, UTF-8

17616 44D0
Unicode 5.1, UTF-32 BE with IBM

PUA

17784 4578 Unicode 4.1, BMP

17785 4579 Unicode 5.1, Plane 1

20517 5025 PORTUGAL EBCDIC

20780 512C JAPAN DB EBCDIC

20917 51B5 UK PC-DATA

20980 51F4 DEN/NORWAY EBCDIC

21314 5342 Korean DB EBCDIC

21317 5345 S-CHINESE EBCDIC

21344 5360 ARABIC MS-PC-DATA

21427 53B3 T-CHINESE BIG-5

21432 53B8 JAPANESE EUC - growing

21433 53B9 JAPANESE EUC

21434 53BA JAPANESE EUC - growing

21450 53CA KOREAN TCP

21680 54B0
Unicode 4.0, UTF-16 BE with IBM

PUA

21681 54B1 Unicode 4.0, UTF-16 BE

21682 54B2
Unicode 4.0, UTF-16 LE with IBM

PUA

21683 54B3 Unicode 4.0, UTF-16 LE

21688 54B8 Unicode 4.1, UTF-8 with IBM PUA

21689 54B9 Unicode 4.1, UTF-8

21712 54D0
Unicode 5.2, UTF-32 BE with IBM

PUA

21880 5578 Unicode 5.0, BMP

21881 5579 Unicode 5.2, Plane 1

24613 6025 INTL EBCDIC

24876 612C Extended Japanese Host

24877 612D JAPAN DB PC-DISPL

25013 61B5 USA PC-DISPLAY

25076 61F4 DEN/NORWAY EBCDIC

CCSID

(decimal)

CCSID

(hex)
Name

25313 62E1 MSDOS GREEK

25351 6307 MSDOS BALTIC

25384 6328 CYRILLIC PC-DISP

25424 6350 UKRAINE PC-DISP

25425 6351 BELARUS PC-DISP

25426 6352 LATIN-1 PC-DISP

25427 6353 GREECE PC-DISPLAY

25428 6354 LATIN-2 PC-DISP

25429 6355 TURKEY PC-DISPLAY

25431 6357 CYRILLIC PC-DISP

25432 6358 HEBREW PC-DISPLAY

25433 6359 TURKEY PC-DISPLAY

25434 635A LATIN-1E PC-DISP

25435 635B LATIN-9 PC-DISP

25436 635C PORTUGAL PC-DISP

25437 635D ICELAND PC-DISP

25438 635E HEBREW PC-DISPLAY

25439 635F CANADA PC-DISPLAY

25440 6360 ARABIC PC-DISPLAY

25441 6361 DEN/NOR PC-DISP

25442 6362 CYRILLIC PC-DISP

25443 6363 HEBREW PC-DISPLAY

25444 6364 URDU PC-DISPLAY

25445 6365 GREECE PC-DISPLAY

25448 6368 CYRILLIC PC-DISP

25450 636A THAILAND PC-DISP

25467 637B KOREA SB PC-DISP

25473 6381 JAPAN SB PC-DISP

25477 6385 BALTIC ISO-8

25478 6386 ESTONIA ISO-8

25479 6387 S-CHIN SB PC-DISP

25480 6388 T-ChINESE PC-DISP

25488 6390 ISO 8859-2 ASCII

25491 6393 ISO 8859-5 ASCII

25497 6399 BALTIC ISO-8

25498 639A ESTONIA ISO-8

25502 639E KOREA DB PC-DISP

25503 639F T-CHINESE PC-DISP

25504 63A0 S-CHINESE PC-DISP

25505 63A1 THAILAND PC-DISP

25508 63A4 JAPAN PC-DISPLAY

CCSID

(decimal)

CCSID

(hex)
Name

25510 63A6 KOREA PC-DISPLAY

25512 63A8 S-CHINESE PC-DISP

25514 63AA T-CHINESE PC-DISP

25518 63AE JAPAN PC-DISPLAY

25520 63B0 KOREA PC-DISPLAY

25522 63B2 S-CHINESE PC-DISP

25524 63B4 T-CHINESE PC-DISP

25525 63B5 KOREA KS PC-DISP

25527 63B7 KOREA KS PC-DISP

25528 63B8 JAPANESE EUC

25530 63BA JAPANESE EUC

25546 63CA KOREAN TCP

25580 63EC LATIN-1 PC-DISPLAY

25616 6410 KOREA SB PC-DISP

25617 6411 JAPAN PC-DISPLAY

25618 6412 S-CHINESE PC-DISP

25619 6413 T-CHINESE PC-DISP

25664 6440 KOREA KS PC-DISP

25690 645A T-CH SB PC-DISP

25691 645B S-CH GB PC-DATA

25702 6466 Korean MS-WIN

25703 6467 ARABIC/FR PC-DISP

25776 64B0
Unicode 4.1, UTF-16 BE with IBM

PUA

25777 64B1 Unicode 4.1, UTF-16 BE

25778 64B2
Unicode 4.1, UTF-16 LE with IBM

PUA

25779 64B3 Unicode 4.1, UTF-16 LE

25784 64B8 Unicode 5.0, UTF-8 with IBM PUA

25785 64B9 Unicode 5.0, UTF-8

25808 64D0
Unicode 6.0, UTF-32 BE with IBM

PUA

25976 6578 Unicode 5.1, BMP

25977 6579 Unicode 6.0, Plane 1

28709 7025 T-CHINESE EBCDIC

29109 71B5 USA PC-DISPLAY

29172 71F4 BRAZIL EBCDIC

29522 7352 LATIN-1 PC-DISP

29523 7353 GREECE PC-DISPLAY

29524 7354 LATIN-2 PC-DISP

29525 7355 TURKEY PC-DISPLAY

CCSID

(decimal)

CCSID

(hex)
Name

29527 7357 CYRILLIC PC-DISP

29528 7358 HEBREW PC-DISPLAY

29529 7359 TURKEY PC-DISPLAY

29532 735C PORTUGAL PC-DISP

29533 735D ICELAND PC-DISP

29534 735E HEBREW PC-DISPLAY

29535 735F CANADA PC-DISPLAY

29536 7360 ARABIC PC-DISPLAY

29537 7361 DEN/NOR PC-DISP

29540 7364 URDU PC-DISPLAY

29541 7365 GREECE PC-DISPLAY

29546 736A THAILAND PC-DISP

29614 73AE JAPAN PC-DISPLAY

29616 73B0 KOREA PC-DISPLAY

29618 73B2 S-CHINESE PC-DISP

29620 73B4 T-CHINESE PC-DISP

29621 73B5 KOREA KS MIX PC

29623 73B7 KOREA KS PC-DISP

29626 73BA JAPANESE EUC

29712 7410 KOREA PC-DISPLAY

29713 7411 JAPAN PC-DISPLAY

29714 7412 S-CHINESE PC-DISP

29715 7413 T-CHINESE PC-DISP

29760 7440 KOREA KS PC-DISP

29786 745A S-CH SB PC-DISP

29872 74B0
Unicode 5.0, UTF-16 BE with IBM

PUA

29873 74B1 Unicode 5.0, UTF-16 BE

29874 74B2
Unicode 5.0, UTF-16 LE with IBM

PUA

29875 74B3 Unicode 5.0, UTF-16 LE

29880 74B8 Unicode 5.1, UTF-8 with IBM PUA

29881 74B9 Unicode 5.1, UTF-8

30072 7578 Unicode 5.2, BMP

32805 8025 JAPAN LATIN EBCDC

33058 8122 JAPAN EBCDIC

33205 81B5 SWISS PC-DISPLAY

33268 81F4 UK/PORTUGAL EBCDC

33618 8352 LATIN-1 PC-DISP

33619 8353 GREECE PC-DISPLAY

33620 8354 ROECE PC-DISPLAY

CCSID

(decimal)

CCSID

(hex)
Name

33621 8355 TURKEY PC-DISPLAY

33623 8357 CYRILLIC PC-DISP

33624 8358 HEBREW PC-DISPLAY

33625 8359 TURKEY PC-DISPLAY

33632 8360 ARABIC PC-DISPLAY

33636 8364 URDU PC-DISPLAY

33637 8365 GREECE PC-DISPLAY

33665 8381 JAPAN PC-DISPLAY

33698 83A2 JAPAN KAT/KAN EBC

33699 83A3 JAPAN LAT/KAN EBC

33700 83A4 JAPAN PC-DISPLAY

33717 83B5 KOREA KS PC-DISP

33722 83BA IBMeucJP

33968 84B0
Unicode 5.1, UTF-16 BE with IBM

PUA

33969 84B1 Unicode 5.1, UTF-16 BE

33970 84B2
Unicode 5.1, UTF-16 LE with IBM

PUA

33971 84B3 Unicode 5.1, UTF-16 LE

33976 84B8 Unicode 5.2, UTF-8 with IBM PUA

33977 84B9 Unicode 5.2, UTF-8

34168 8578 Unicode 6.0, BMP

37301 91B5 AUS/GERM PC-DISP

37364 91F4 BELGIUM EBCDIC

37716 9354 LATIN-2 PC-DISP

37719 9357 CYRILLIC PC-DISP

37720 9358 HEBREW PC-DISPLAY

37728 9360 ARABIC PC-DISPLAY

37732 9364 URDU PC-DISPLAY

37733 9365 GREECE PC-DISPLAY

37761 9381 JAPAN SB PC-DISP

37796 93A4 JAPAN PC-DISPLAY

37813 93B5 KOREA KS PC-DISP

37818 93BA JAPANESE EUC

38064 94B0
Unicode 5.2, UTF-16 BE with IBM

PUA

38065 94B1 Unicode 5.2, UTF-16 BE

38066 94B2
Unicode 5.2, UTF-16 LE with IBM

PUA

38067 94B3 Unicode 5.2, UTF-16 LE

38072 94B8 Unicode 6.0, UTF-8 with IBM PUA

38073 94B9 Unicode 6.0, UTF-8

CCSID

(decimal)

CCSID

(hex)
Name

41397 A1B5 FRANCE PC-DISPLAY

41460 A1F4 SWISS EBCDIC

41824 A360 ARABIC PC-DISPLAY

41828 A364 URDU PC-DISPLAY

42160 A4B0
Unicode 6.0, UTF-16 BE with IBM

PUA

42161 A4B1 Unicode 6.0, UTF-16 BE

42162 A4B2
Unicode 6.0, UTF-16 LE with IBM

PUA

42163 A4B3 Unicode 6.0, UTF-16 LE

45493 B1B5 ITALY PC-DISPLAY

45556 B1F4 SWISS EBCDIC

45920 B360 ARABIC PC-DISPLAY

49589 C1B5 UK PC-DISPLAY

49652 C1F4 BELGIUM EBCDIC

50016 C360 ARABIC PC-DISPLAY

53668 D1A4 Arabic EBCDIC - special

53685 D1B5 USA MS-PC-DATA

53748 D1F4 INTL EBCDIC

54189 D3AD Special - JAPAN DB PC

54191 D3AF Special - Japan Open

54289 D411 Special - JAPAN SB PC-DATA

61696 F100 GLOBAL SB EBCDIC

61697 F101 GLOBAL SB PC-DATA

61698 F102 GLOBAL PC-DISPLAY

61699 F103 GLBL ISO-8 ASCII

61700 F104 GLBL ISO-7 ASCII

61710 F10E GLOBAL USE ASCII

61711 F10F GLOBAL USE EBCDIC

61712 F110 GLOBAL USE EBCDIC

62251 F32B
Arabic/Latin EBCDIC for OS/390

OE

62337 F381 Special - JAPAN SB PC-DATA

62381 F3AD Special - JAPAN DB PC

62383 F3AF Special - JAPAN OPEN

65520 FFF0 Unicode, empty plane

Appendix D. Platform Support of CDRA

This appendix summarizes the CDRA support available on three IBM platforms. The

table lists the CDRA defined APIs and indicates on which platforms support is

provided. At the bottom of the table, the mechanism providing the support for the

platform is given.

 Platform

API IBM i z/OS AIX

CDRGESP * * *

CDRSCSP * * *

CDRGESE * *

CDRGCTL * * *

CDRSMXC * * *

CDRGRDC *

CDRGCCN *

CDRCVRT *

CDRMSCI * *

CDRMSCP * *

CDRMSCC * *

CDRXSRF * *

Figure 73. CDRA Implementation by Platform

Support Mechanism:

IBM i – with the operating system

z/OS – with DFSMS/MVS 1.3.0

AIX – with IBM COBOL Set for AIX, IBM PL/1 Set for AIX

A large bullet (*) indicates that support is provided on the platform for the

corresponding API. The APIs are documented in “Chapter 5. CDRA Interface

Definitions”. “Appendix H. CDRA and IBM I” details restrictions and deviations in the

IBM i implementation of the CDRA defined APIs. Likewise “Appendix I. DFSMS/MVS

Considerations” details the variances for the DFSMS support of CDRA which is

provided on z/OS

Appendix E. Graphic character identification

IBM has an established system to uniquely and uniformly identify and name graphic

characters. This system provides for character identification using one of the following

graphic character identifiers:

• Graphic Character Global Identifier (GCGID).

The GCGID identifies graphic characters defined by IBM. The GCGID definition

uniformly associates an arbitrary graphic character shape with an eight-

character identifier GCGID.

• Graphic Character UCS Identifier (GCUID).

The GCUID format is used for defining additional characters and sets of

characters that (mostly) exist in the Universal Coded Character Set (UCS)

defined in ISO/IEC 10646 and Unicode standards and need to be used in IBM

resource definitions such as IBM code pages. The format allows all current and

future characters from UCS planes 0 through 17 to be described. It also allows

for identifying characters and glyphs that are not defined in UCS as well as

glyph variants of the unified Han area of UCS.

The GCGID Registry contains the actual GCGIDs, GCUIDs, character glyphs and

character names. Direct access to the registry is restricted to IBM employees.

Requests for registry information from non-IBMers can be sent to the IBM

Globalization Center of Competency (GCoC) at gcoc@ca.ibm.com.

mailto:gcoc@ca.ibm.com

Appendix F: Character sets and code pages

IBM maintains character set and code page repositories. These repositories contain

the definitions of the character set and code page resources used and supported by

IBM products. Following are two lists. The first contains registered character set

number and name while the second contains registers code page number and name.

To obtain a copy of any character set or code page resource please contact your IBM

representative or email the IBM Globalization Center of Competency (GCoC) at

gcoc@ca.ibm.com.

List of Graphic Character Set Global Identifiers

GCSGID Name

00001 USA WP 96

00025 Latin America, Puerto Rico, Costa Rica WP 96

00029 Germany, Austria WP 96

00041 Italy WP 96

00053 Sweden, Finland WP 96

00055 Norway WP 96

00057 Denmark WP 96

00061 Brazil WP 96

00067 United Kingdom WP 96

00101 USA DP 94

00103 International DP 94 (ASCII)

00218 Greece

00235 Arabic Bilingual - 181

00236 Maghreb/French

00237 Maghreb/French

00265 Austria/Germany DP 94

00269 Belgium DP 94

00273 Brazil DP 94

00277 Canada (French) DP 94

00281 Denmark, Norway DP 94

00285 Finland, Sweden DP 94

00288 France DP 94

00289 France DP 94

00293 Italy DP 94

00301 Portugal DP 94

00309 Latin America (Spanish Speaking) DP 94

00313 United Kingdom DP 94

00317 Austria/Germany F.R., Alternate (3270)

00332 Japan (Katakana)

GCSGID Name

00337 MLP # 1

00340 Symbols, Set 7

00370 Japanese, Kanji DBCS including 1,880 UDCs

00380 APL/EBCDIC

00640 Syntactic Character Set

00650 Spain DP/TP - 118

00682 France 108

00684 Canada (Bilingual)

00687 Israel (Hebrew)

00695 Euro Country Extended Code Page (ECECP)

00697 Country Extended Code Page (CECP)

00700 Belgium - 167

00810 MS-DOS Greek (Max)

00811 MS-DOS Baltic Rim (Max)

00812 MS-DOS Greek (PC-Data)

00813 MS-DOS Baltic Rim (PC-Data)

00814 MS-DOS Arabic (Transparent ASMO)

00904 Switzerland, French/German - 116

00905 Canadian Bilingual - 124

00908 Switzerland - 131

00919 Personal Computer

00921 France, PC - 103

00922 Germany, PC - 104

00923 Italy, PC - 98

00924 United Kingdom, PC - 97

00925 Greece

00933 Korea

00934 Korean DBCS including 1,880 UDCs

00935 Traditional Chinese DBCS including 6,204 UDCs

00936 People's Republic of China (PRC)

00937 Simplified Chinese DBCS with UDCs

00938 Thailand

00941 Israel (Hebrew)

00948 Russian internet koi8-r

00959 Latin 2 - Multilingual

00960 Cyrillic, Multilingual

00963 Graphic Escape APL2/TN - 138

00965 Latin 3, Multilingual - 182

00966 Thailand - Personal Computer

00968 OCR A

00969 OCR B

00980 MLP - PC

GCSGID Name

00981 Greece - Personal Computer

00982 Latin 2 - Personal Computer

00983 Latin 3 - Personal Computer

00985 Cyrillic - Personal Computer

00986 Hebrew - PC

00988 PC-display multilingual with euro

00989 PC-data multilingual with euro

00990 Portugal - Personal Computer

00991 Iceland - Personal Computer

00992 Israel - Personal Computer

00993 Canadian French - Personal Computer

00994 Arabic-Personal Computer, Output Imaging-249

00995 Nordic - Personal Computer

00996 Cyrillic, Russian

00997 Urdu - Personal Computer, Output Imaging-253

00998 Greece - Personal Computer

01000 Japanese DBCS without UDCs

01001 Japanese, Kanji DBCS including 4,370 UDCs

01030 Traditional Chinese DBCS without UDCs

01050 Korean DBCS-PC including 1,880 UDCs

01051 DBCS-PC excluding 1880 UDCs, Wards A1-C8, CA-FD

01056 Korean DBCS, KSC 5601 Set including 188 UDCs, Wards A1-FE

01058 Japanese DBCS-EUC, JIS X 0208 Set including 940 UDCs

01059 Japanese DBCS-EUC, JIS X 0212 Set including IBM Selected + 940 UDCs

01060 Japanese DBCS-EUC IBM selected including 940 UDCs

01061 Japanese DBCS-EUC JIS X0208

01062 Japanese DBCS-EUC JIS X0212

01063 Japanese JIS X 0208 - 1978 set (6802 char)

01064 Japanese DBCS-TCP JIS X0208-1983

01066 Japanese DBCS PC for Open Environment

01070 Traditional Chinese DBCS-EUC CNS 11643 Primary Set

01071
Traditional Chinese TBCS-EUC CNS 11643 Remainder Set including 7650

CNS, 11643 secondary set, 325 IBM selected characters + 6,204 UDCs

01073 Traditional Chinese DBCS CNS 11643 Plane 2

01075 Traditional Chinese DBCS-PC equivalent to CNS 11643-1984

01080
Simplified Chinese DBCS equivalent to GB2312-80 (excluding IBM selected

& UDC)

01081 Simplified Chinese DBCS-EUC GB 2312-80

01084 GB 18030 Two-byte Code Set excluding Euro sign without UDCs

01085

GB 18030 DBCS excluding Euro sign, 206 Uygur characters, 193 Tibetan

characters, 155 Mongolian characters, 1165 Yi Syllables, 50 Yi Radical, 6530

CJK Unified Ideograph Extension-A,

GCSGID Name

01093

Korean DBCS excluding 623 unique characters and 1880 UDCs and Euro

currency sign(Ward 49) and Registered sign(Ward 49) (Common Set with

DBCS-PC) Wards 40 to D3

01094
Korean DBCS excluding 1880 UDCs and Euro currency sign(Ward 49) and

Registered sign(Ward 49) Wards 40 to D3

01101 Arabic - PC, Data Storage and Interchange - 153

01106 MLP - 222, PC

01114 Belgium - 160

01116 Portugal - 94

01117 Norway - 94

01118 United Kingdom - 94

01119 Spain - 94

01120 Japan 7-Bit Latin

01121 Japan 7-Bit Katakana

01122 Japan Alphanumeric and Katakana

01124 Greece - 180 (3174)

01125 Cyrillic - 180 (3174)

01126 Iceland - 181 (3174)

01128 Latin 2, ROECE - 181 (3174)

01129 France - 105

01132 DCF Release 2 Compatibility

01134 SNA Character Set, Type AR

01135 Denmark - 94

01136 Finland/Sweden - 94

01137 Netherlands - 94

01141 Arabic Bilingual - 136

01142 Arabic Bilingual - 133

01146 Latin-1 Extended, Desk Top Publishing/Windows

01147 Hebrew Character Set A

01150 Cyrillic, Multilingual

01151 Urdu-PC, Data Storage & Interchange - 217

01152 Latin #5, Turkey

01160 Urdu, Output Imaging - 190

01162 Arabic - 189

01164 Japan PC #1 - 181

01165 Korea - Personal Computer - 170

01166 People's Republic of China (PRC)-PC-118

01167 Taiwan - 118

01168 Urdu, Data Storage & Interchange - 154

01169 International Alphabet 5

01170 Japan Intersection (US English & PC)

01171 Japan Intersection (Katakana & PC)

GCSGID Name

01172 Japanese Extended (EBCDIC/PC Common)

01173 Korean Extended (EBCDIC/PC Common)

01174 Simplified Chinese Ext (EBCDIC/PC Common)

01175 Traditional Chinese Ext (EBCDIC/PC Common)

01176 Thai Extended (EBCDIC/PC Common)

01177 Arabic Extended, Output Imaging

01178 Arabic Extended, Data Storage & Interchange

01185 Simplified Chinese PC Data

01186 Korean PC Display Extended

01187 Japanese PC Display Extended

01188 Simplified Chinese PC Display Extended

01189 Traditional Chinese PC Display Extended

01190 Cyrillic, Russian

01192 Canadian (French) Variant

01193 Switzerland Variant

01195 Spain Variant

01201 H-P Emulation, Roman 8

01212 US - PC Data Character Set

01213 Portugese - PC Data Character Set

01214 Icelandic - PC Data Character Set

01215 Canadian French - PC Data Character Set

01216 Nordic - PC Data Character Set

01217 Hebrew - PC Data Characters Subset #1

01218 Hebrew - PC Data Characters Subset #2

01219 Farsi Bilingual - 190

01220 Country Extended Code Page (CECP)

01224 Korea - Personal Computer

01231 Greece - PC Data Character Set

01232 Latin 2 - PC Data Character Set

01233 Latin 3 - PC Data Character Set

01235 Cyrillic - PC Data Character Set

01237 Latin 5, Turkey - PC Data Character Set

01238 US PC Display Subset - 126

01239 Simplified Chinese Ext (EBCDIC/PC Common)

01240 US PC Display Subset - 129

01244 Arabic - PC Data Character Set

01248 Urdu - PC Data Character Set

01249 Greece - PC Data Character Set

01256 Latin 4

01267 Revised Korean, PC Display

01271 Arabic Character Set, Data Stor & Interchange

01274 Dualcase Printable Graphics of ASN.1

GCSGID Name

01278 Revised Korean, PC Data

01279 Thai with Low Tone Marks & Ancient Characters

01284 Japan Katakana Extended

01285 Farsi, PC Display

01286 Latin 3

01288 Farsi, PC Data

01290 Multinational Emulation

01291 British NRC Set

01292 Dutch NRC Set

01293 Finnish NRC Set

01295 Norwegian/Danish NRC Set

01296 Swedish NRC Set

01297 Norwegian/Danish NRC Alternate

01302 Latin 3 - Personal Computer

01303 Latin 3 - PC Data Character Set

01305 Baltic - Multilingual

01307 Estonia

01310 Symbols - Personal Computer

01326 Cyrillic, Ukraine

01331 Cyrillic, Ukrainian PC-display

01332 Cyrillic, Ukrainian PC data

01334 Arabic/French PC data

01336 Vietnamese

01337 Arabic/French PC display

01338 Cyrillic, Belorussian, PC display

01339 Cyrillic, Belorussian, PC data

01340 APL (USA)

01341 Lao

01344 Latin 2 ISO8 display

01345 Cyrillic 8-bit, ISO8 display

01346 Baltic ISO8 display

01347 Estonia ISO8 display

01349 Israel (Hebrew)

01350 Arabic Bilingual - 146 (incl Hindi numerics)

01351 Indian Script Code (ISCII-91)

01353 Latin 9

01354 PC Indian Script Code (ISCII-91)

01356 Israel (Hebrew)

01357 Hebrew Character Set A

01358 Hebrew - PC

01359 Hebrew - PC Data Characters Subset #2

01360 Israel - Personal Computer

GCSGID Name

01361 Hebrew - PC Data Characters Subset #1

01369 PC-display Latin 9

01370 PC-data Latin 9

01371 Greece with euro

01372 PC Data, Greece with euro

01373 PC display, Greece with euro

01375 Latin 2 - Multilingual with euro

01376 PC-data Latin 2 Multilingual with euro

01377 PC-display Latin 2 Multilingual with euro

01378 Turkey Latin 5 with euro

01379 PC-data, Latin 5, Turkey with euro

01380 PC-display, Latin #5, Turkey with euro

01381 Cyrillic, Multilingual with euro

01382 PC-data Cyrillic Multilingual with euro

01383 PC-display Cyrillic Multilingual with euro

01384 PC-data Cyrillic, Russian with euro

01385 PC-display Cyrillic, Russian with euro

01386 PC-data Cyrillic, Belorussian with euro

01387 PC-display Cyrillic, Belorussian with euro

01388 Cyrillic, Ukraine with euro

01389 PC-data, Cyrillic, Ukraine with euro

01390 PC-display Cyrillic, Ukrainian with euro

01391 Estonia with euro

01392 ISO-8 display Estonia with euro

01393 Baltic - Multilingual with euro

01394 ISO-8 display Baltic multilingual with euro

01395 Thai with Low Tone Marks & Ancient Characters

01396 Thai MS Windows

01397 Vietnamese

01398 Japanese Extended (EBCDIC/PC Common)

01399 Traditional Chinese Ext

01400 Windows, Latin 2

01401 Windows, Cyrillic

01402 Windows, Latin 1

01403 Windows, Greek

01404 Windows, Turkish

01405 Windows, Hebrew

01406 Windows, Arabic

01407 Windows, Baltic Rim

01408 Windows, Vietnamese

01410 Windows, Latin 2 + euro

01411 Windows, Cyrillic + euro

GCSGID Name

01412 Windows, Latin 1 + euro

01413 Windows, Greek + euro

01414 Windows, Turkish + euro

01415 Windows, Hebrew + euro

01416 Windows, Arabic + euro

01417 Windows, Baltic Rim + euro

01418 Windows, Vietnamese + euro

01419 Windows, Hebrew + Euro

01420 Windows, Arabic extended including euro

01421 Windows, Baltic Rim + Euro

01425 Apple Latin 1

01426 Postscript Standard Encoding

01427 Postscript Latin 1

01430 Apple Greek

01431 Apple Turkish

01432 Apple Central European (Latin-2)

01433 Apple Cyrillic

01434 Apple Croatian

01435 Apple Romanian

01436 Apple Icelandic

01437 DEC Greek

01438 DEC Turkish

01441 Cyrillic, Multilingual with euro

01461 Arabic Bilingual

01462 Arabic - PC Data

01463 Arabic-Personal Computer PC-display

01464 Arabic

01465 Arabic extended

01466 Israel (Hebrew)

01467 Devanagari EBCDIC

01468 Arabic - Data Storage & Interchange (Extended)

01469 Devanagari EBCDIC with Rupee Sign

01500 T-Ch/S-Ch Latin 1 PC-display subset

01502 OCR-B plus alt-m, euro, and vertical line

01508 Belarusian/Ukrainian KOI8-RU

01509 Ukrainian KOI8-U

01514 Latin/Greek - ISO

02059
Extended Japanese DBCS, including 12,237 Kanji characters, 2,585 Non-

Kanji characters, 6,205 UDCs

02081 GBK Host DBCS incl. 1894UDCs

02084 GB 18030 Two-byte Code Set

02085 GB 18030 Four-byte Code Set

GCSGID Name

02086 GB 18030 DBCS-Host including 206 Uygur characters and others

02087 GB 18030 DBCS-Host

02092 Extended Japanese DBCS-Host for JIS X0213

02096
Japanese DBCS-EUC, JIS X 0208 Set including 83 NEC selected chars and

940 UDCs

02110 DB Big-5 ext for HKSCS-2001

02111 Host HKSCS-2001, DB

02112 DB Big-5 ext for HKSCS-2004

02113 DB, Host HKSCS-2004

02114 DBCS PC for HKSCS-2008

02115 Host for HKSCS-2008

02131
T-Ch DBCS Fixed CS for additional CNS 11643 subset including 6395

UDCs

03001 ISO 10646 (Unicode 2.0)

03004 ISO 10646 (Unicode 3.0)

03005 Repertoire of Unicode V4.0 BMP (Plane 00)

03006 Repertoire of Unicode V4.0 SMP (Plane 01)

03007 Repertoire of Unicode V4.0 SIP (Plane 02)

03008 Repertoire of Unicode V4.0 SSP (Plane 0E)

03009 Repertoire of Unicode V 4.1 BMP (Plane 00)

03010 Repertoire of Unicode V 4.1 SMP (Plane 01)

03011 Repertoire of Unicode V 5.0 BMP (Plane 00)

03012 Repertoire of Unicode V 5.0 SMP (Plane 01)

03013 Repertoire of Unicode V 5.1 BMP (Plane 00)

03014 Repertoire of Unicode V 5.1 SMP (Plane 01)

03015 Repertoire of Unicode V 5.2 BMP (Plane 00)

03016 Repertoire of Unicode V 5.2 SMP (Plane 01)

03017 Repertoire of Unicode V5.2 SIP (Plane 02)

03018 Repertoire of Unicode V 6.0 BMP (Plane 00)

03019 Repertoire of Unicode V 6.0 SMP (Plane 01)

03020 Repertoire of Unicode V6.0 SIP (Plane 02)

03095 IBM Advanced Function Printing (AFP) PUA No. 1

03096 Repertoire of Unicode V4.0 PUP-15 (Plane 0F)

03097 Repertoire of Unicode V4.0 PUP-16 (Plane 10)

03098 Repertoire of Unicode V4.0 PUA of UCS-BMP (Generic UDC)

03099 IBM default PUA

65520 Empty Character Set

65535 Growing Character Set

List of Code Page Global Identifiers

CPGID Name

00037 USA/Canada - CECP

00256 International #1

00259 Symbols, Set 7

00273 Germany F.R./Austria - CECP

00274 Old Belgium Code Page

00275 Brazil - CECP

00276 Canada (French) - 94

00277 Denmark, Norway - CECP

00278 Finland, Sweden - CECP

00280 Italy - CECP

00281 Japan (Latin) - CECP

00282 Portugal - CECP

00284 Spain/Latin America - CECP

00285 United Kingdom - CECP

00286 Austria/Germany F.R., Alternate (3270)

00290 Japanese (Katakana) Extended

00293 APL (USA)

00297 France - CECP

00300 Japan (Kanji) - Host, DBCS

00301 Japan (Kanji) - PC, DBCS

00310 Graphic Escape APL/TN

00367 ASCII

00420 Arabic Bilingual

00421 Maghreb/French

00423 Greece - 183

00424 Israel (Hebrew)

00425 Arabic/Latin for OS/390 Open Edition

00437 Personal Computer

00500 International #5

00720 MS DOS Arabic (Transparent ASMO)

00737 MS DOS Greek

00775 MS DOS Baltic Rim

00803 Hebrew Character Set A

00806 PC Indian Script Code (ISCII-91)

00808 PC Data, Cyrillic, Russian with euro

00813 Greece ISO 8859-7

00819 ISO/ANSI Multilingual

00833 Korean Extended

00834 Korean Hangul - Host, DBCS with UDCs

00835 Traditional Chinese DBCS - Host

CPGID Name

00836 Simplified Chinese Extended

00837 Simplified Chinese DBCS-HOST

00838 Thai with Low Tone Marks & Ancient Characters

00848 PC, Cyrillic, Ukrainian with euro

00849 PC Data, Cyrillic, Belorussian with euro

00850 Personal Computer - Multilingual Page

00851 Greece - Personal Computer

00852 Latin 2 - Personal Computer

00853 Latin 3 - Personal Computer

00855 Cyrillic - Personal Computer

00856 Hebrew - Personal Computer

00857 Latin #5, Turkey - Personal Computer

00858 Personal Computer - Multilingual with euro

00859 PC Latin 9

00860 Portugal - Personal Computer

00861 Iceland - Personal Computer

00862 Israel - Personal Computer

00863 Canadian French - Personal Computer

00864 Arabic - Personal Computer

00865 Nordic - Personal Computer

00866 PC Data, Cyrillic, Russian

00867 Israel - Personal Computer

00868 Urdu - Personal Computer

00869 Greece - Personal Computer

00870 Latin 2 - EBCDIC Multilingual

00871 Iceland - CECP

00872 Cyrillic - PC with euro

00874 Thai with Low Tone Marks & Ancient Chars - PC

00875 Greece

00878 Russian internet koi8-r

00880 Cyrillic, Multilingual

00891 Korea - Personal Computer

00892 EBCDIC, OCR A

00893 EBCDIC, OCR B

00895 Japan 7-Bit Latin

00896 Japan 7-Bit Katakana Extended

00897 Japan PC #1

00899 Symbol - Personal Computer

00901 PC Baltic Multi with Euro

00902 8-bit Estonia with Euro

00903 People's Republic of China (PRC)-PC

00904 Taiwan - Personal Computer

CPGID Name

00905 Latin 3 - EBCDIC

00912 Latin 2 - ISO

00913 Latin 3 - ISO

00914 Latin 4

00915 Cyrillic, 8-Bit

00916 Hebrew (Latin)

00918 Urdu Bilingual

00920 Latin #5 - Turkey

00921 Baltic - Multilingual, superset of ISO 8859-13

00922 Estonia, similar to ISO 8859-1

00923 Latin 9

00924 Latin 9 EBCDIC

00926 Korean PC Data Double-Byte incl. 1880 UDC

00927 T-Ch PC Data Double-Byte incl. 6204 UDC

00928 S-Ch PC Data Double-Byte incl. 1880 UDC

00941 Japanese DBCS PC for Open environment

00947 Pure DBCS for Big-5

00951 Korean DBCS-PC (10104 characters)

00952 Japanese EUC for JIS X 0208 including 83 NEC selected chars + 940 UDC

00953 Japanese EUC for JIS X 0212 + IBM Select + UDC

00955 Japanese TCP, JIS X0208-1978

00960 Traditional Chinese DBCS-EUC SICGCC Primary set (1st plane)

00961 Traditional Chinese TBCS-EUC SICGCC Full set + IBM Select + UDC

00963 T-Ch TCP, CNS 11643 plane 2 only

00971 Korean EUC, DBCS EUC (G1, KSC 5601)

01002 DCF Release 2 Compatibility

01004 Latin-1 Extended, Desk Top Publishing/Windows

01006 Urdu, 8-Bit

01008 Arabic 8-Bit ISO/ASCII

01009 ISO IRV

01010 7-Bit France

01011 7-Bit Germany F.R.

01012 7-Bit Italy

01013 7-Bit United Kingdom

01014 7-Bit Spain

01015 7-Bit Portugal

01016 7-Bit Norway

01017 7-Bit Denmark

01018 7-Bit Finland/Sweden

01019 7-Bit Netherlands

01020 Canadian (French) Variant

01021 Switzerland Variant

CPGID Name

01023 Spain Variant

01025 Cyrillic, Multilingual

01026 Latin #5 - Turkey

01027 Japanese (Latin) Extended

01040 Korean Extended - Personal Computer

01041 Japanese Extended - Personal Computer

01042 Simplified Chinese Extended - PC

01043 Traditional Chinese Extended - PC

01046 Arabic Extended-Euro

01047 Latin 1/Open Systems

01051 H-P Emulation, Roman 8

01070 USA/Canada - CECP

01079 Spain/Latin America - CECP

01081 France - CECP

01084 International #5

01088 Revised Korean - Personal Computer

01089 Arabic Code Page, Data Storage & Interchange

01097 Farsi Bilingual - EBCDIC

01098 Farsi - Personal Computer

01100 Multinational Emulation

01101 British NRC Set

01102 Dutch NRC Set

01103 Finnish NRC Set

01104 French NRC Set

01105 Norwegian/Danish NRC Set

01106 Swedish NRC Set

01107 Norwegian/Danish NRC Alternate

01112 Baltic - Multilingual, EBCDIC

01114 Taiwan - Personal Computer

01115 People's Republic of China (PRC)-PC

01122 Estonia, EBCDIC

01123 Cyrillic, Ukraine

01124 Cyrillic, Ukraine

01125 PC, Cyrillic, Ukrainian

01126 Korean - Personal Computer for Windows

01127 Arabic/French - Personal Computer

01129 Vietnamese ISO-8

01130 Vietnamese EBCDIC

01131 PC Data, Cyrillic, Belorussian

01132 Lao EBCDIC

01133 Lao ISO-8

01137 Devanagari EBCDIC

CPGID Name

01140 USA, Canada, etc. ECECP

01141 Austria, Germany ECECP

01142 Denmark, Norway ECECP

01143 Finland, Sweden ECECP

01144 Italy ECECP

01145 Spain, Latin America (Spanish) ECECP

01146 UK ECECP

01147 France ECECP

01148 International ECECP

01149 Iceland ECECP

01153 EBCDIC Latin 2 Multilingual with euro

01154 EBCDIC Cyrillic, Multilingual with euro

01155 EBCDIC Turkey with euro

01156 EBCDIC Baltic Multi with euro

01157 EBCDIC Estonia with euro

01158 EBCDIC Cyrillic, Ukraine with euro

01159 T-Chinese EBCDIC

01160 Thai with Low Tone Marks & Ancient Characters

01161 Thai with Low Tone Marks & Ancient Chars - PC

01162 Thai MS Windows

01163 Vietnamese ISO-8 with euro

01164 Vietnamese EBCDIC with euro

01165 Latin 2 EBCDIC/Open Systems

01166 EBCDIC Cyrillic, Multilingual with euro

01167 Belarusian/Ukrainian KOI8-RU

01168 Ukrainian KOI8-U

01250 Windows, Latin 2

01251 Windows, Cyrillic

01252 Windows, Latin 1

01253 Windows, Greek

01254 Windows, Turkish

01255 Windows, Hebrew

01256 Windows, Arabic

01257 Windows, Baltic Rim

01258 Windows, Vietnamese

01275 Apple, Latin 1

01276 Adobe (PostScript) Standard Encoding

01277 Adobe (PostScript) Latin 1

01280 Apple Greek

01281 Apple Turkish

01282 Apple Central European

01283 Apple Cyrillic

CPGID Name

01284 Apple, Croatian

01285 Apple, Romanian

01286 Apple, Icelandic

01287 DEC Greek 8-Bit

01288 DEC Turkish 8-Bit

01351 DBCS-PC, including 940 HP UDCs, Japanese

01362 Korean Hangul - PC, DBCS with UDCs

01372 MS T-Chinese Big-5 (Special for DB2)

01374 DB Big-5 extension for HKSCS

01376 Traditional Chinese DBCS-Host extension for HKSCS

01380 Simplified Chinese GB PC-DATA

01382 Simplified Chinese EUC

01385
Simplified Chinese 2 Byte, growing CS for GB18030, also used for GBK

PC-DATA

01391 Simplified Chinese 4 Byte, growing CS for GB18030

01393 Shift_JISX0213 DBCS

01400 ISO 10646 UCS-BMP (Based on Unicode V6.0)

01401 ISO 10646 UCS-SMP (Based on Unicode V6.0)

01402 ISO 10646 UCS-SIP (Based on Unicode V6.0)

01414 ISO 10646 UCS-SSP (Based on Unicode 4.0)

01445 IBM AFP PUA No. 1

01446 ISO 10646 UCS-PUP15 (Based on Unicode 4.0)

01447 ISO 10646 UCS-PUP16 (Based on Unicode 4.0)

01448 UCS-BMP (Generic UDC)

01449 IBM default PUA

65520 Empty Unicode Plane

Appendix G. Control character mappings

This appendix contains the predefined default control character mappings used by

CDRA when creating single-byte to single-byte round trip conversion tables.

It is important to note that these mappings are applied only after the matched graphic

characters and matched control mnemonics have been mapped. If an output code

point found in these tables has already been mapped, the corresponding input code

point is added to the list of unmapped code points and mapped accordingly.

The EBCDIC control codes are defined in the IBM Corporate Standard, C-S 3-3220-

002. An excerpt from the standard can be found in Appendix L: EBCDIC control

definitions.

• IFS is X'1A' instead of X'1C' in ASCII.

• DEL is X'1C' instead of X'7F' in ASCII.

• SUB is X'7F' instead of X'1A' in ASCII.

These exceptions arise from the use of X'1A' as the End of File in the IBM-PC

operating systems, making X'1A' unsuitable as SUB.

Also note the use of X'14' and X'15' as graphic characters under exception conditions

as described in the “Exceptions” section of Chapter 6.

EBCDIC to IBM-PC

EBCDIC IBM-PC

Hex Abbreviation Character Name Hex Abbreviation Character Name

00 NUL Null 00 NUL Null

01 SOH Start of Heading 01 SOH Start of Heading

02 STX Start of Text 02 STX Start of Text

03 ETX End of Text 03 EXT End of Text

04 SEL Select DC graphic (1)

05 HT Horizontal Tab 09 HT

Horizontal/

Character

Tabulation

06 RNL Required New Line C3 graphic (1)

07 DEL Delete 1C DEL Delete (2)

08 GE Graphic Escape CA graphic (1)

09 SPS Superscript B2 graphic (1)

0A RPT Repeat D5 graphic (1)

0B VT Vertical Tab 0B VT
Vertical/Line

Tabulation

0C FF Form Feed 0C FF Form Feed

0D CR Carriage Return 0D CR Carriage Return

0E SO Shift Out 0E SO/LS1 (3)
Shift Out/Locking

Shift 1

0F SI Shift In 0F SI/LS0 (3)
Shift In/Locking

Shift 0

10 DLE Data Link Escape 10 DLE Data Link Escape

11 DC1 Device Control 1 11 DC1/XON (3)
Device Control

1/XON

12 DC2 Device Control 2 12 DC2 Device Control 2

13 DC3 Device Control 3 13 DC3/XOFF (3)
Device Control

3/XOFF

14 RES/ENP
Restore/Enable

Presentation
DB graphic (1)

15 NL New Line DA graphic (1)

16 BS Backspace 08 BS Backspace

17 POC
Program Operator

Communication
C1 graphic (1)

18 CAN Cancel 18 CAN Cancel

19 EM End of Medium 19 EM End of Medium

1A UBS Unit Backspace Hex C8 graphic (1)

1B CU1 Customer Use 1 F2 graphic (1)

1C IFS
Interchange File

Separator
1A IS4/FS (3)

Information

Separator Four (2) /

File Separator

1D IGS
Interchange Group

Separator
1D IS3/GS (3)

Information

Separator Three /

Group Separator

1E IRS
Interchange Record

Separator
1E IS2/RS (3)

Information

Separator Two /

Record Separator

1F IUS/ITB (3)

Interchange Unit

Separator/

Intermediate

Transmission Block

1F IS1/US (3)

Information

Separator One /

Unit Separator

20 DS Digit Select C4 graphic (1)

21 SOS. (4)
Start of

Significance
B3 graphic (1)

22 FS Field Separator C0 graphic (1)

23 WUS Word Underscore D9 graphic (1)

24 BYP/INP
Bypass or Inhibit

Presentation
BF graphic (1)

25 LF Line Feed 0A LF Line Feed

26 ETB
End of

Transmission Block
17 ETB

End of

Transmission Block

27 ESC Escape 1B ESC Escape

28 SA Set Attribute B4 graphic (1)

29 SFE
Start Field

Extended
C2 graphic (1)

2A SM/SW (3) Set Mode/Switch C5 graphic (1)

2B CSP
Control Sequence

Prefix
B0 graphic (1)

2C MFA
Modify Field

Attribute
B1 graphic (1)

2D ENQ Enquiry 05 ENQ Enquiry

2E ACK Acknowledge 06 ACK Acknowledge

2F BEL Bell 07 BEL Bell

30 xxx Reserved CD graphic (1)

31 xxx Reserved BA graphic (1)

32 SYN Synchronous Idle 16 SYN Synchronous Idle

33 IR Index Return BC graphic (1)

34 PP
Presentation

Position
BB graphic (1)

35 TRN Transparent C9 graphic (1)

36 NBS Numeric Backspace CC graphic (1)

37 EOT
End of

Transmission
04 EOT

End of

Transmission

38 SBS Subscript B9 graphic (1)

39 IT Indent Tab CB graphic (1)

3A RFF
Required Form

Feed
CE graphic (1)

3B CU3 Customer Use 3 DF graphic (1)

3C DC4 Device Control 4 14 DC4 Device Control 4

3D NAK
Negative

Acknowledge
15 NAK

Negative

Acknowledge

3E xxx Reserved FE graphic (1)

3F SUB Substitute 7F SUB Substitute (2)

FF EO Eight Ones 9F graphic (1)

Figure 74. Control Character Mapping - SBCS EBCDIC to IBM-PC

IBM-PC to EBCDIC

IBM-PC EBCDIC

Hex Abbreviation Character Name Hex Abbreviation Character Name

00 NUL Null 00 NUL Null

01 SOH Start of Heading 01 SOH Start of Heading

02 STX Start of Text 02 STX Start of Text

03 ETX End of Text 03 EXT End of Text

04 EOT End of Transmission 37 EOT End of Transmission

05 ENQ Enquiry 2D ENQ Enquiry

06 ACK Acknowledge 2E ACK Acknowledge

07 BEL Bell 2F BEL Bell

08 BS Backspace 16 BS Backspace

09 HT
Horizontal/ Character

Tabulation
05 HT Horizontal Tab

0A LF Line Feed 25 LF Line Feed

0B VT Vertical/Line Tabulation 0B VT Vertical Tab

0C FF Form Feed 0C FF Form Feed

0D CR Carriage Return 0D CR Carriage Return

0E SO/LS1 (3) Shift Out/Locking Shift 1 0E SO Shift Out

0F SI/LS0 (3) Shift In/Locking Shift 0 0F SI Shift In

10 DLE Data Link Escape 10 DLE Data Link Escape

11
DC1/XON

(3)
Device Control 1/XON 11 DC1 Device Control 1

12 DC2 Device Control 2 12 DC2 Device Control 2

13
DC3/XOFF

(3)
Device Control 3/XOFF 13 DC3 Device Control 3

14 DC4 Device Control 4 3C DC4 Device Control 4

15 NAK Negative Acknowledge 3D NAK Negative Acknowledge

16 SYN Synchronous Idle 32 SYN Synchronous Idle

17 ETB End of Transmission Block 26 ETB End of Transmission Block

18 CAN Cancel 18 CAN Cancel

19 EM End of Medium 19 EM End of Medium

1A IS4/FS (3)
Information Separator Four

(2)/ File Separator
1C IFS Interchange File Separator

1B ESC Escape 27 ESC Escape

1C DEL Delete (2) 07 DEL Delete

1D IS3/GS (3)
Information Separator

Three / Group Separator
1D IGS Interchange Group Separator

1E IS2/RS (3)
Information Separator Two

/ Record Separator
1E IRS Interchange Record Separator

IBM-PC EBCDIC

1F IS1/US (3)
Information Separator One /

Unit Separator
1F IUS/ITB (3)

Interchange Unit Separator/

Intermediate Transmission

Block

7F SUB Substitute (2) 3F SUB Substitute

Figure 75. Control Character Mapping - SBCS EBCDIC to IBM-PC

ISO-8 to IBM-PC

ISO-8 IBM-PC

Hex Abbreviation Character Name Hex Abbreviation Character Name

00 NUL Null 00 NUL Null

01 SOH Start of Heading 01 SOH Start of Heading

02 STX Start of Text 02 STX Start of Text

03 ETX End of Text 03 ETX End of Text

04 EOT End of Transmission 04 EOT End of Transmission

05 ENQ Enquiry 05 ENQ Enquiry

06 ACK Acknowledge 06 ACK Acknowledge

07 BEL Bell 07 BEL Bell

08 BS Backspace 08 BS Backspace

09 HT
Horizontal / Character

Tabulation
09 HT

Horizontal / Character

Tabulation

0A LF Line Feed 0A LF Line Feed

0B VT Vertical/ Line Tabulation 0B VT Vertical/ Line Tabulation

0C FF Form Feed 0C FF Form Feed

0D CR Carriage Return 0D CR Carriage Return

0E SO/LS1 (3) Shift Out/Locking Shift 1 0E SO/LS1 (3) Shift Out/Locking Shift 0

0F SI/LS0 (3) Shift In/Locking Shift 0 0F SI/LS0 (3) Shift In/Locking Shift 0

10 DLE Data Link Escape 10 DLE Data Link Escape

11
DC1/XON

(3)
Device Control 1/XON 11

DC1/XON

(3)
Device Control 1/XON

12 DC2 Device Control 2 12 DC2 Device Control 2

13
DC3/XOFF

(3)
Device Control 3/XOFF 13

DC3/XOFF

(3)
Device Control 3/XOFF

14 DC4 Device Control 4 14 DC4 Device Control 4

15 NAK Negative Acknowledge 15 NAK Negative Acknowledge

16 SYN Synchronous Idle 16 SYN Synchronous Idle

17 ETB
End of Transmission

Block
17 ETB

End of Transmission

Block

18 CAN Cancel 18 CAN Cancel

19 EM End of Medium 19 EM End of Medium

1A SUB Substitute 7F SUB Substitute (2)

1B ESC Escape 1B ESC Escape

1C IS4/FS (3)
Information Separator

Four / File Separator
1A IS4/FS (3)

Information Separator

Four (2)

ISO-8 IBM-PC

1D IS3/GS (3)
Information Separator

Three / Group Separator
1D IS3/GS (3)

Information Separator

Three / Group Separator

1E IS2/RS (3)
Information Separator

Two / Record Separator
1E IS2/RS (3)

Information Separator

Two / Record Separator

1F IS1/US (3)
Information Separator

One / Unit Separator
1F IS1/US (3)

Information Separator

One / Unit Separator

7F DEL Delete 1C DEL Delete (2)

80 xxx Reserved BA graphic (1)

81 xxx Reserved CD graphic (1)

82 BPH Break Permitted Here C9 graphic (1)

83 NBH No Break Here BB graphic (1)

84 IND Index C8 graphic (1)

85 NEL Next Line BC graphic (1)

86 SSA Start of Selected Area CC graphic (1)

87 ESA End of Selected Area B9 graphic (1)

88 HTS Character Tabulation Set CB graphic (1)

89 HTJ
Character Tabulation

with Justification
CA graphic (1)

8A VTS Line Tabulation Set CE graphic (1)

8B PLD Partial Line Forward DF graphic (1)

8C PLU Partial Line Backward DC graphic (1)

8D RI Reverse Line Feed DB graphic (1)

8E SS2 Single Shift Two FE graphic (1)

8F SS3 Single Shift Three F2 graphic (1)

90 DCS Device Control String B3 graphic (1)

91 PU1 Private Use One C4 graphic (1)

92 PU2 Private Use Two DA graphic (1)

93 STS Set Transmit State BF graphic (1)

94 CCH Cancel Character C0 graphic (1)

95 MW Message Waiting D9 graphic (1)

96 SPA Start of Guarded Area C3 graphic (1)

97 EPA End of Guarded Area B4 graphic (1)

98 SOS Start of String C2 graphic (1)

99 xxx Reserved C1 graphic (1)

9A SCI
Single Character

Introducer
C5 graphic (1)

ISO-8 IBM-PC

9B CSI
Control Sequence

Introducer
B0 graphic (1)

9C ST String Terminator B1 graphic (1)

9D OSC
Operating System

Command
B2 graphic (1)

9E PM Privacy Message D5 graphic (1)

9F APC
Application Program

Command
9F graphic (1)

Figure 76. Control Character Mapping – SBCS ISO-8 to IBM-PC

IBM-PC to ISO-8

IBM-PC ISO-8

Hex Abbreviation Character Name Hex Abbreviation Character Name

00 NUL Null 00 NUL Null

01 SOH Start of Heading 01 SOH Start of Heading

02 STX Start of Text 02 STX Start of Text

03 ETX End of Text 03 ETX End of Text

04 EOT End of Transmission 04 EOT End of Transmission

05 ENQ Enquiry 05 ENQ Enquiry

06 ACK Acknowledge 06 ACK Acknowledge

07 BEL Bell 07 BEL Bell

08 BS Backspace 08 BS Backspace

09 HT
Horizontal/ Character

Tabulation
09 HT

Horizontal/ Character

Tabulation

0A LF Line Feed 0A LF Line Feed

0B VT Vertical/Line Tabulation 0B VT Vertical/ Line Tabulation

0C FF Form Feed 0C FF Form Feed

0D CR Carriage Return 0D CR Carriage Return

0E SO/LS1 (3) Shift Out/Locking Shift 1 0E SO/LS0 (3) Shift Out/Locking Shift 0

0F SI/LS0 (3) Shift In/Locking Shift 0 0F SI/LS0 (3) Shift In/Locking Shift 0

10 DLE Data Link Escape 10 DLE Data Link Escape

11
DC1/XON

(3)
Device Control 1/XON 11

DC1/XON

(3)
Device Control 1

12 DC2 Device Control Two 12 DC2 Device Control Two

13
DC3/XOFF

(3)
Device Control 3/XOFF 13

DC3/XOFF

(3)
Device Control 3/XOFF

14 DC4 Device Control Four 14 DC4 Device Control Four

15 NAK Negative Acknowledge 15 NAK Negative Acknowledge

16 SYN Synchronous Idle 16 SYN Synchronous Idle

17 ETB
End of Transmission

Block
17 ETB

End of Transmission

Block

18 CAN Cancel 18 CAN Cancel

19 EM End of Medium 19 EM End of Medium

1A IS4/FS (3)
Information Separator

Four / File Separator (2)
1C IS4/FS (3)

Information Separator

Four / File Separator

1B ESC Escape 1B ESC Escape

1C DEL Delete (2) 7F DEL Delete

IBM-PC ISO-8

1D IS3/GS (3)
Information Separator

Three / Group Separator
1D IS3/GS (3)

Information Separator

Three / Group Separator

1E IS2/RS (3)
Information Separator

Two / Record Separator
1E IS2/RS (3)

Information Separator

Two / Record Separator

1F IS1/US (3)
Information Separator

One / Unit Separator
1F IS1/US (3)

Information Separator

One / Unit Separator

7F SUB Substitute (2) 1A SUB Substitute

Figure 77. Control Character Mapping - SBCS ISO-8 to IBM-PC

EBCDIC to ISO-8

EBCDIC ISO-8

Hex Abbreviation Character Name Hex Abbreviation Character Name

00 NUL Null 00 NUL Null

01 SOH Start of Heading 01 SOH Start of Heading

02 STX Start of Text 02 STX Start of Text

03 ETX End of Text 03 ETX End of Text

04 SEL Select 9C ST String Terminator

05 HT Horizontal Tab 09 HT
Horizontal/ Character

Tabulation

06 RNL Required New Line 86 SSA Start of Selected Area

07 DEL Delete 7F DEL Delete

08 GE Graphic Escape 97 EPA End of Guarded Area

09 SPS Superscript 8D RI Reverse Line Feed

0A RPT Repeat 8E SS2 Single Shift Two

0B VT Vertical Tab 0B VT
Vertical/Line

Tabulation

0C FF Form Feed 0C FF Form Feed

0D CR Carriage Return 0D CR Carriage Return

0E SO Shift Out 0F SO/LS1 (3)
Shift Out/Locking Shift

1

0F SI Shift In 0F SI/LS0 (3) Shift In/Locking Shift 0

10 DLE Data Link Escape 10 DLE Data Link Escape

11 DC1 Device Control 1 11
DC1/XON

(3)
Device Control 1/XON

12 DC2 Device Control 2 12 DC2 Device Control 2

13 DC3 Device Control 3 13
DC3/XOFF

(3)
Device Control 3/XOFF

14 RES/ENP
Restore/Enable

Presentation
9D OSC

Operating System

Command

15 NL New Line 85 NEL Next Line

16 BS Backspace 08 BS Backspace

17 POC
Program Operator

Communication
87 ESA End of Selected Area

18 CAN Cancel 18 CAN Cancel

19 EM End of Medium 19 EM End of Medium

1A UBS Unit Backspace Hex 92 PU2 Private Use Two

1B CU1 Customer Use 1 8F SS3 Single Shift Three

EBCDIC ISO-8

1C IFS Interchange File Separator 1C IS4/FS (3)
Information Separator

Four / File Separator

1D IGS
Interchange Group

Separator
1D IS3/GS (3)

Information Separator

Three / Group

Separator

1E IRS
Interchange Record

Separator
1E IS2/RS (3)

Information Separator

Two / Record

Separator

1F IUS/ITB

Interchange Unit

Separator/ Intermediate

Transmission Block

1F IS1/US (3)
Information Separator

One / Unit Separator

20 DS Digit Select 80 xxx Reserved

21 SOS. (4) Start of Significance 81 xxx Reserved

22 FS Field Separator 82 BPH Break Permitted Here

23 WUS Word Underscore 83 NBH No Break Here

24 BYP/INP
Bypass or Inhibit

Presentation
84 IND Index

25 LF Line Feed 0A LF Line Feed

26 ETB End of Transmission Block 17 ETB
End of Transmission

Block

27 ESC Escape 1B ESC Escape

28 SA Set Attribute 88 HTS
Horizontal/ Character

Tabulation Set

29 SFE Start Field Extended 89 HTJ
Character Tabulation

with Justification

2A SM/SW (3) Set Mode/Switch 8A VTS
Vertical/ Line

Tabulation Set

2B CSP Control Sequence Prefix 8B PLD Partial Line Forward

2C MFA Modify Field Attribute 8C PLU Partial Line Backward

2D ENQ Enquiry 05 ENQ Enquiry

2E ACK Acknowledge 06 ACK Acknowledge

2F BEL Bell 07 BEL Bell

30 xxx Reserved 90 DCS Device Control String

31 xxx Reserved 91 PU1 Private Use One

32 SYN Synchronous Idle 16 SYN Synchronous Idle

33 IR Index Return 93 STS Set Transmit State

34 PP Presentation Position 94 CCH Cancel Character

35 TRN Transparent 95 MW Message Waiting

EBCDIC ISO-8

36 NBS Numeric Backspace 96 SPA Start of Guarded Area

37 EOT End of Transmission 04 EOT End of Transmission

38 SBS Subscript 98 SOS Start of String

39 IT Indent Tab 99 xxx Reserved

3A RFF Required Form Feed 9A SCI
Single Character

Introducer

3B CU3 Customer Use 3 9B CSI
Control Sequence

Introducer

3C DC4 Device Control 4 14 DC4 Device Control 4

3D NAK Negative Acknowledge 15 NAK Negative Acknowledge

3E xxx Reserved 9E PM Privacy Message

3F SUB Substitute 1A SUB Substitute

FF EO Eight Ones 9F APC
Application Program

Command (5)

Figure 78. Control Character Mapping - SBCS EBCDIC to ISO-8

ISO-8 to EBCDIC

ISO-8 EBCDIC

Hex Abbreviation Character Name Hex Abbreviation Character Name

00 NUL Null 00 NUL Null

01 SOH Start of Heading 01 SOH Start of Heading

02 STX Start of Text 02 STX Start of Text

03 ETX End of Text 03 ETX End of Text

04 EOT End of Transmission 37 EOT End of Transmission

05 ENQ Enquiry 2D ENQ Enquiry

06 ACK Acknowledge 2E ACK Acknowledge

07 BEL Bell 2F BEL Bell

08 BS Backspace 16 BS Backspace

09 HT
Horizontal/ Character

Tabulation
05 HT Horizontal Tab

0A LF Line Feed 25 LF Line Feed

0B VT
Vertical/Line

Tabulation
0B VT Vertical Tab

0C FF Form Feed 0C FF Form Feed

0D CR Carriage Return 0D CR Carriage Return

0E SO/SL1 (3)
Shift Out/Locking Shift

1
0E SO Shift Out

ISO-8 EBCDIC

0F SI/LS0 (3) Shift In/Locking Shift 0 0F SI Shift In

10 DLE Data Link Escape 10 DLE Data Link Escape

11
DC1/XON

(3)
Device Control 1/XON 11 DC1 Device Control 1

12 DC2 Device Control 2 12 DC2 Device Control 2

13
DC3/XOFF

(3)
Device Control 3/XOFF 13 DC3 Device Control 3

14 DC4 Device Control 4 3C DC4 Device Control 4

15 NAK Negative Acknowledge 3D NAK Negative Acknowledge

16 SYN Synchronous Idle 32 SYN Synchronous Idle

17 ETB
End of Transmission

Block
26 ETB End of Transmission Block

18 CAN Cancel 18 CAN Cancel

19 EM End of Medium 19 EM End of Medium

1A SUB Substitute 3F SUB Substitute

1B ESC Escape 27 ESC Escape

1C IS4/FS (3)
Information Separator

Four / File Separator
1C IFS Interchange File Separator

1D IS3/GS (3)

Information Separator

Three / Group

Separator

1D IGS
Interchange Group

Separator

1E IS2/RS (3)

Information Separator

Two / Record

Separator

1E IRS
Interchange Record

Separator

1F IS1/US (3)
Information Separator

One / Unit Separator
1F IUS/ITB (3)

Interchange Unit

Separator/ Intermediate

Transmission Block

7F DEL Delete 07 DEL Delete

80 xxx Reserved 20 DS Digit Select

81 xxx Reserved 21 SOS. (4) Start of Significance

82 BPH Break Permitted Here 22 FS Field Separator

83 NBH No Break Here 23 WUS Word Underscore

25 IND Index 24 BYP/INP
Bypass or Inhibit

Presentation

85 NEL Next Line 15 NL New Line

86 SSA Start of Selected Area 06 RNL Required New Line

87 ESA End of Selected Area 17 POC
Program Operator

Communication

ISO-8 EBCDIC

88 HTS
Horizontal/ Character

Tabulation Set
28 SA Set Attribute

89 HTJ
Character Tabulation

with Justification
29 SFE Start Field Extended

8A VTS
Vertical/Line

Tabulation Set
2A SM/SW Set Mode/Switch

8B PLD Partial Line Forward 2B CSP Control Sequence Prefix

8C PLU Partial Line Backward 2C MFA Modify Field Attribute

8D RI Reverse Line Feed 09 SPS Superscript

8E SS2 Single Shift Two 0A RPT Repeat

8F SS3 Single Shift Three 1B CU1 Customer Use One

90 DCS Device Control String 30 xxx Reserved

91 PU1 Private Use One 31 xxx Reserved

92 PU2 Private Use Two 1A UBS Unit Backspace Hex

93 STS Set Transmit State 33 IR Index Return

94 CCH Cancel Character 34 PP Presentation Position

95 MW Message Waiting 35 TRN Transparent

96 SPA Start of Guarded Area 36 NBS Numeric Backspace

97 EPA End of Guarded Area 08 GE Graphic Escape

98 SOS Start of String 38 SBS Subscript

99 xxx Reserved 39 IT Indent Tab

9A SCI
Single Character

Introducer
3A RFF Required Form Feed

9B CSI
Control Sequence

Introducer
3B CU3 Customer Use 3

9C ST String Terminator 04 SEL Select

9D OSC
Operating System

Command
14 RES/ENP

Restore / Enable

Presentation

9E PM Privacy Message 3E xxx Reserved

9F APC
Application Program

Command
FF EO Eight Ones

Figure 79. Control Character Mapping - SBCS ISO-8 to EBCDIC

Footnotes:

(1) These code points are in the graphic character space for IBM-PC code pages. The actual

graphic characters vary from code page to code page. These code points are used for

mapping control code points for consistency. (Note that a graphic character match will

override the control character mapping.)

(2) These control points do not follow the definitions of ASCII in ANSI X3.4.

(3) Two mnemonics are specified when the standard has changed over time or the control

code may be used for different purposes depending on the context of use. Both

mnemonics are acceptable abbreviations.

(4) The mnemonic for the Start of Significance control character in EBCDIC has been

modified to include a dot (.) at the end (SOS.). This has been done to distinguish it from

the SOS mnemonic used in ISO-8 for the Start of String control character. The dot does

not alter the property of the control in any way.

(5) Prior to 1986, ISO-8 X'9F' (APC) mapped to EBCDIC X'E1'. This control code point is a

graphic code point. It was previously used as numeric space character in many EBCDIC

SBCS coded character sets, and with the latest revised CECPs, the numeric space

character has been replaced with DIVISION SYMBOL. The map shown in here is to

EBCDIC Eight Ones control, which is used as a filler character.

Appendix H. CDRA and IBM i (formerly OS/400)

IBM i, formerly OS/400, has supported CDRA for many years. Information on system

specific implementation of APIs can be found in the IBM Knowledge Center.

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i

Appendix I. DFSMS/MVS Considerations

CDRA API Considerations for DFSMS/MVS

This appendix provides additional information necessary to install and use the CDRA

APIs included in the DFSMS/MVS product. APIs are found in Chapter 5. CDRA

Interface Definitions; they are not duplicated in this appendix.

The CDRA support provided will function in the following environments:

• DFSMS/MVS 1.3.0

• All levels of MVS/SP that are consistent with DFSMS 1.3.0, which are currently

MVS/ESA 4.3, 5.1 and 5.2.

• The Language Environment/370 (LE/370) must be available for both the

installation and execution of the CDRA services code.

With MVS/ESA SP 5.2 or higher, these requirements are met if the C/C++ Language

support feature of MVS/ESA SP or the LE for MVS and VM program product is used.

With MVS/ESA SP 5.1, these requirements are met if the C/C++ Language support

feature of MVS/ESA SP or the LE/370 program product is used.

With MVS/ESA SP 4.3, these requirements are met if the LE/370 program product is

used.

Completing the Character Conversion Services Installation

Tailor the CDRAINIT member of SYS1.SAMPliB as required by your installation, then

run it to define the work data sets used by the various conversion routines.

The following data sets will be created as a result of running the CDRAINIT member:

SYS1.CDRASRVT

 The code page resource tables

SYS1.CDRSRVCI

 An index over the SYS1.CDRSRVCR data set

SYS1.CDRSRVCR

 The CCSID resource table

SYS1.CDRSRVGR

 The GCCST resource table

These data sets will occupy approximately 350 tracks of 33xx-type direct access

storage.

API Tracing

API tracing can be performed by coding a DD statement for CDRATRC in the job

control language for job steps invoking CDRA services. The trace statement can be

entered as follows:

//CDRATRC DD SYSOUT=*

Application Programming Considerations

The application program must ensure that the appropriate Language Environment run

time environment is enabled prior to calling any of the CDRA based services.

If CDRA is invoked without having performed the recommended installation process

that linkedits the CDRA component with SYS1.SCEELKED, the result will be an error

with a status code of 2048 and a reason code of 2, when the CDRA component

attempts to call a C runtime function. For more information on the Language

Environment, please see the Language Environment Programming Guide, SC26-4818.

The calling application program may or may not be APF authorized and can be running

in any non-zero protect key. The calling program must be AMODE(31) and must be in

TCB mode.

The CDRA services have been implemented using the C programming language, but

the functions themselves can be called in a language independent manner from any

high-level programming language.

Two programming examples are provided to show how an application program can

call the CDRA services. For applications written using AD/CYCLE C, the CDRA services

can be accessed in the same manner as other C functions are called. Click on ‘Sample

C Routine’ below to view the code. COBOL based applications can invoke the CDRA

services as shown in the COBOL programming example. Click on ‘Sample COBOL

Routine’ below to view the code. PL/I based applications can similarly invoke CDRA

services.

Sample C Routine

This routine demonstrates how to call the DFSMS/MVS CDRA services to perform the

multistep character data conversion using the C programming language.

Sample C Routine

#pragma runopts(STACK(16K,4K,BELOW),HEAP(64K,4K,BELOW))

#pragma title("CDRATEST")

#pragma options(RENT)

#pragma strings(readonly)

#pragma csect(code, "CDRATEST")

#pragma csect(static, "#CDRATST")

/*#pragma string(WRITABLE)*/

#include <stdio.h>

#include <stdlib.h>

#include <stddef.h>

#include <ctype.h>

#include <string.h>

/* Definitions required to call CDRA APIs */

typedef long CDRASRV_CCSID_T;

typedef struct { /* structure used to return a return code */

short Status;

short Reason;

long reserved1;

long reserved2;

} CDRASRV_FeedBack_T;

void CDRMSCI(const CDRASRV_CCSID_T * ccsid1,

const long * StringType1,

const CDRASRV_CCSID_T * ccsid2,

const long * StringType2,

const long * gccasn,

long * Token,

CDRASRV_FeedBack_T * FeedBack);

void CDRMSCP(const long * Token,

const char * String1,

const long * Length1,

const long * Length2,

char * String2,

long * OutLength,

long * ErrorByteNr,

CDRASRV_FeedBack_T * FeedBack);

void CDRMSCC(long * Token,

CDRASRV_FeedBack_T * FeedBack);

main(int argc, char* argv[])

{

const long inputST = 0; /* type of input string */

const long outputST = 1; /* type of input string */

const long cnvGCCASN = 0; /* conversion alternative */

const long lL1 = 26;

const long lL2 = 160;

int RecDataLen, /* Record Length */

NumRecs, /* Number of Records */

RC1,RC2; /* Return Code */

int RecRtnCnt, /* record return count */

RecordLen; /* record length */

long int Token[8]; /* CDRA token */

char instring [80];

char outstring [160];

long inputCCSID, /* input CCSID */

outputCCSID; /* output CCSID*/

CDRASRV_FeedBack_T FeedBack; /* feed back area */

int long lL3,lL4; /* string length */

printf(" program starting \n");

memcpy(instring,"ABCEDFGHIJKLMNOPQRSTUVWXYZ",26);

inputCCSID = 500;

outputCCSID = 437;

CDRMSCI(&inputCCSID, /* EBCDIC codepage */

&inputST, /* graphic char with length specify */

&outputCCSID, /* ASCII codepage */

&outputST, /* graphic char with length specify */

&cnvGCCASN, /* installation default */

(long int *)&Token, /* handle */

&FeedBack); /* feed back */

if(!FeedBack.Status && !FeedBack.Reason)

printf("Sucessfully initialize multiple-step conversion.\n");

else {

printf("Unsucessfully initialize multiple-step conversion.\n");

printf("Status: %d, Reason: %d\n",FeedBack.Status,FeedBack.Reason);

return(1);

}

CDRMSCP((long int *)&Token, /* handle */

instring, /* string to be converted */

&lL1, /* input string length */

&lL2, /* output string length */

outstring, /* result string */

&lL3, /* result string length */

&lL4, /* result string error */

&FeedBack); /* feed back */

if(!FeedBack.Status && !FeedBack.Reason) {

printf("Sucessfully perfom multiple-step conversion.\n");

printf("OUTSTREAM=%s\n",outstring);

}

CDRMSCC((long int *)&Token, /* handle */

&FeedBack); /* feed back */

if(!FeedBack.Status && !FeedBack.Reason)

printf("Sucessfully clean up multiple-step conversion.\n");

else

printf("Unsucessfully clean up multiple-step conversion.\n");

}

Sample COBOL Routine

This example shows how to call the DFSMS/MVS CDRA services to initialize, perform

data conversion on a character string, and cleanup, using the COBOL programming

language.

Sample Cobol Routine

IDENTIFICATION DIVISION.

PROGRAM-ID. CDRA.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 CCSID1 PIC 9(9) COMP VALUE 500.

01 STRTYP1 PIC 9(9) COMP VALUE 0.

01 CCSID2 PIC 9(9) COMP VALUE 437.

01 STRTYP2 PIC 9(9) COMP VALUE 0.

01 GCCASN PIC 9(9) COMP VALUE 0.

01 INSTR PIC X(26) VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

01 OUTSTR PIC X(26) VALUE " ".

01 STRLL1 PIC 9(9) COMP VALUE 26.

01 STRLL2 PIC 9(9) COMP VALUE 26.

01 STRLL3 PIC 9(9) COMP VALUE 0 .

01 STRLL4 PIC 9(9) COMP VALUE 0 .

01 TOKEN.

05 V OCCURS 8 TIMES.

10 V1 PIC 9(4) .

01 FB1 PIC 9(16) COMP.

01 FB2.

02 STAT PIC 9(4) COMP.

02 REASON PIC 9(4) COMP.

02 RES1 PIC 9(4) COMP.

02 RES2 PIC 9(4) COMP.

PROCEDURE DIVISION.

CALL "CDRMSCI" USING CCSID1, STRTYP1, CCSID2, STRTYP2,

GCCASN, TOKEN, FB2.

DISPLAY FB2 .

DISPLAY "RESULT" STAT, REASON.

CALL "CDRMSCP" USING TOKEN, INSTR, STRLL1, STRLL2,

OUTSTR, STRLL3, STRLL4, FB2.

DISPLAY "RESULT" STAT, REASON.

DISPLAY OUTSTR .

CALL "CDRMSCC" USING TOKEN, FB2.

DISPLAY "RESULT" STAT, REASON.

STOP RUN.

CDRA APIs in the DFSMS/MVS Product

The following CDRA APIs are included in the DFSMS/MVS product library:

• Get Encoding Scheme, Character Set, and Code Page Elements (CDRGESP)

• Get Short Form (CCSID) from Specified ES (CS, CP) (CDRSCSP)

• Get Encoding Scheme Element and its Sub-elements (CDRGESE)

• Get Control Function Definition (CDRGCTL)

• Get Short Form (CCSID) with Maximal CS for Specified ES, CP (CDRSMXC)

• Multiple-Step Convert Initialize (CDRMSCI)

• Multiple-Step Convert Perform (CDRMSCP)

• Multiple-Step Convert Clean Up (CDRMSCC)

• Extract Status and Reason Codes from Feedback Code (CDRXSRF)

CDRGESP - Get Encoding Scheme, Character Set, and Code Page Elements API

The following parameter ranges and functional differences apply when using the

CDRGESP API (as described in section “CDRGESP – Get Encoding Scheme, Character

Set, and Code Page Elements” of Chapter 5) with the DFSMS/MVS product.

GESP parameter difference

none

CDRSCSP - Get Short Form (CCSID) from Specified ES (CS, CP) API

The following parameter ranges and functional differences apply when using the

CDRSCSP API (as described in section “CDRSCSP – Get Short Form (CCSID) from

Specified ES (CS,CP)” of Chapter 5) with the DFSMS/MVS product.

SCSP parameter difference

none

CDRGESE - Get Encoding Scheme Element and its Sub-elements API

The following parameter ranges and functional differences apply when using the

CDRGESE API (as described in section “CDRGESE – Get Encoding Scheme Element

and its Sub-elements” of Chapter 5) with the DFSMS/MVS product.

GESE parameter difference

none

CDRGCTL - Get Control Function Definition API

The following parameter ranges and functional differences apply when using the

CDRGCTL API (as described in section “CDRGCTL – Get Control Function Definition” of

Chapter 5) with the DFSMS/MVS product.

GCTL parameter difference

none

CDRSMXC - Get Short Form (CCSID) with Maximal CS for Specified ES, CP API

The following parameter ranges and functional differences apply when using the

CDRSMXC API (as described in section “CDRSMXC – Get short Form (CCSID) with

Maximal CS for Specified ES, CP”) with the DFSMS/MVS product.

SMXC parameter difference

none

CDRMSCI - Multiple-Step Convert Initialize API

The following parameter ranges and functional differences apply when using the

CDRMSCI API (as described in section “CDRMSCI – Multiple-Step convert Initialize”

of Chapter 5) with the DFSMS/MVS product.

MSCI parameter difference

only values of 0 or 1 are supported and BOTH of these values will provide the IBM

defined defaults. The value 0 is used to select the designated installation default

conversion method and tables. The value of 1 is used to select the CDRA-defined

default method and conversion tables.

CDRMSCP - Multiple-Step Convert Perform API

The following parameter ranges and functional differences apply when using the

CDRMSCP API (as described in section “CDRMSCP – Multiple-Step Convert Perform”

of Chapter 5) with the DFSMS/MVS product.

MSCP parameter difference

none

CDRMSCC - Multiple-Step Convert Clean Up API

The following parameter ranges and functional differences apply when using the

CDRMSCC API (as described in section “CDRMSCC – Multiple-Step convert Clean Up”

of Chapter 5) with the DFSMS/MVS product.

MSCC parameter difference

none

CDRXSRF - Extract Status and Reason Codes from Feedback Code API

The following parameter ranges and functional differences apply when using the

CDRXSRF API (as described in section “CDRXSRF – Extract Status and Reason Codes

from Feedback Code” of Chapter 5) with the DFSMS/MVS product.

XSRF parameter difference

none

Appendix J. CDRA Conversion Resources

CDRA has defined many graphic character conversion tables to enable users to

convert data between various encodings. Tables are defined for single-byte, double-

byte, and mixed-byte encodings. There are many tables that convert legacy encodings

into Unicode. The conversion table resources and supporting documentation are

available from the internet via IBM developerWorks. They can be downloaded from

the IBM developerWorks site. The tables are found in the Downloads & products view,

under the heading Character Data Conversion Tables. Tables are also available by

contacting the GCoC at gcoc@ca.ibm.com.

http://www.ibm.com/developerworks/views/java/downloads.jsp

Appendix K. CDRA and Unicode

Character Data Representation Architecture (CDRA) defines a set of identifiers which

are used to uniquely identify graphic character data. The Coded Character Set

Identifier (CCSID) is a 16-bit integer that can be expanded to a long form identifier

which contains the following information:

• Encoding Scheme

• Code Page Identifier(s)

• Character Set Identifier(s)

• Additional Coding-Related Required Information (ACRI) (optional)

In the case of Unicode, several encoding schemes are defined and for each Unicode

CCSID there are multiple Code Page and Character Set pairs. The following figure

shows how the Unicode CCSIDs are formulated.

Figure 80. Unicode CCSID Structure

Unicode Identifiers

While Unicode is a very unique code in terms of how it is defined and the several

formats that it can be used in, it can still be well defined using the standard CDRA

identifiers listed above. The following sections describe how the IBM and CDRA

identifiers have been applied to handle Unicode.

Unicode Encoding Schemes

The Unicode encoding space is well defined within the standard as are the various

formats that Unicode data may be encoded using. Refer to the section in Appendix A

on the Unicode Code Structure for detailed information on the encoding structure and

related CDRA encoding schemes.

IBM Code Page Identifiers in Support of Unicode

Within the IBM corporate code page registry, the values in the range 01400 through

01499 have all been reserved for assignment to the individual components of Unicode

(ISO 10646). The following table shows which values have been assigned or reserved

for a specific purpose. The Unicode Standard deals with the Unicode character

repertoire as a single entity. For managing such a large set of characters, CDRA

defines a unique code page for each plane of Unicode.

Code Page Plane Comments

1400 0 - BMP
Basic Multilingual Plane (does not include PUA

area)

1401 1 - SMP Supplementary Multilingual Plane

1402 2 - SIP Supplementary Ideographic Plane

1403-1413 3 - 13
Currently unassigned - reserved for planes 3

through 13

1414 14 - SSP Supplementary Special-Purpose Plane

1415-1444 -
Not currently assigned, reserved for future

assignment for Unicode code page components

1445

IBM advanced

function print

PUA

Registered for private use area 1 of plane 15. See

code page definition for details.

Code Page Plane Comments

1446 15 Private Use Plane 15

1447 16 Private Use Plane 16

1448 PUA
Reserved for PUA area of BMP including corporate

zone

1449 IBM default PUA Registered IBM default for the PUA area of BMP

65520
Special Value

Empty Plane

Registered IBM Special value used to indicate an

empty Unicode Plane

Figure 81. Code Page Identifiers in Support of Unicode

Additionally, the values 1200 through 1249 in the code page registry have been

marked as reserved. This is to prevent these values from being used for code page

assignments as the corresponding values are used for the Unicode CCSIDs.

IBM Character Set Identifiers in Support of Unicode

The IBM corporate character set registry contains the definition for all graphic

character sets used within IBM as well as the definition of some special purpose

values. One of these special purpose values is X'FFFF' or 65535. When used in a

CCSID definition, in conjunction with a valid code page value, this value indicates that

the character set (CS) for this CCSID is growing. This means that from time to time

more characters will be added to the set and the character set to be used with this

CCSID is the current maximal set associated with the code page. When dealing with

Unicode identifiers this is a very useful value since the Unicode character set is still

growing at regular intervals. What this means is that a product that supports Unicode

can use a CCSID with a growing character set and not have to change the CCSID value

every time more characters are added to Unicode. There is also a fixed character set

that corresponds to the growing set at a given point in time; usually a specific version

of Unicode. This allows products that are concerned with precise definitions to use

exact identifiers while others can use the less specific growing values. The following

character set identifiers are used with the various code pages assigned for use in

Unicode CCSID definitions.

Character Set Plane Number Comments

3001 0 - BMP Unicode 2.0 character repertoire

3002-3003 - Reserved for future Unicode definitions

3004 0 - BMP Unicode 3.0 character repertoire

3005 0 - BMP Unicode 4.0 character repertoire

3006 1 Unicode 4.0 character repertoire for Plane 1

3007 2 Unicode 4.0 character repertoire for Plane 2

Character Set Plane Number Comments

3008 14 Unicode 4.0 character repertoire for Plane 14

3009 0 - BMP Unicode 4.1 character repertoire

3010 1 Unicode 4.1 character repertoire for Plane 1

3011 0 – BMP Unicode 5.0 character repertoire

3012 1 Unicode 5.0 character repertoire for Plane 1

3013 0 - BMP Unicode 5.1 character repertoire for Plane 0

3014 1 Unicode 5.1 character repertoire for Plane 1

3015 0 - BMP Unicode 5.2 character repertoire for Plane 0

3016 1 Unicode 5.2 character repertoire for Plane 1

3017 2 Unicode 5.2 character repertoire for Plane 2

3018 0 - BMP Unicode 6.0 character repertoire for Plane 0

3019 1 Unicode 6.0 character repertoire for Plane 1

3020 2 Unicode 6.0 character repertoire for Plane 2

3021 0 - BMP Unicode 6.2 character repertoire for Plane 0

3022 1 Unicode 6.1 character repertoire for Plane 1

3023 0 - BMP Unicode 8.0 character repertoire for Plane 0

3024 1 Unicode 8.0 character repertoire for Plane 1

3025 2 Unicode 8.0 character repertoire for Plane 2

3026 0 - BMP Unicode 9.0 character repertoire for Plane 0

3027 1 Unicode 9.0 character repertoire for Plane 1

3028 – 3094 - Reserved for future Unicode definitions

3095 15*
IBM Advanced Function Printing private use area

no. 1 (*for use in row FF of PUA plane 15)

3096 15 Unicode 4.0 generic PUA definition for Plane 15

3097 16 Unicode 4.0 generic PUA definition for Plane 16

3098 PUA of BMP
Reserved for BMP PUA full character set of CP

1448

3099 PUA of BMP IBM Default PUA definition

65535 any Growing character set, use the current maximal set

Figure 82. Character Set Identifiers in Support of Unicode

CCSIDs Defined in Support of Unicode

The basic principle of CDRA is to be able to unambiguously identify data based on a

unique, well defined identifier. The CDRA Coded Character Set IDentifier (CCSID) can

be used to do this for Unicode data. Figure 80 above shows how each Unicode CCSID

is composed. Each CCSID, can be expanded to a long form consisting of an Encoding

Scheme (ES), and a list of character set, code page pairs (CSn, CPn) and optionally

ACRI (Additional Coding-Related Required Information). Each CCSID also has a string

type (ST) characteristic associated with it which may be specified. In the case of

Unicode CCSIDs, if the ST is not specified it defaults to ST 10. These string types

cannot be enforced on incoming data, however any data originating within IBM should

comply to the string type properties. For more information on String types see “Types

of Strings” in chapter 6. In the case of Unicode, each full CCSID definition has 18 CS,

CP pairs. The first pair is for the basic multilingual plane (BMP or plane 0) not

including the private use area (PUA). The second CS, CP pair is for the PUA of the BMP.

The subsequent sets represent the character sets and code pages associated with

each of planes 1 through 16. Special CS and CP values of 65520 have been defined to

represent an 'empty' Unicode plane and are used for all planes that are unpopulated.

Empty planes may be omitted from any CCSID definition so long as the

implementation has a well-defined means of determining which planes are included in

the definitions and which ones have been omitted because they are unpopulated.

CDRA has used a combination of 'growing' and 'fixed' CCSIDs for Unicode. CCSID

1200 was the first Unicode CCSID defined. It is a growing CCSID with an encoding

scheme of 7200 and was initially defined using code page 1400 with a growing

character set (CS 65535) for the BMP (without the PUA) and code page 1449 with the

fixed set character set 3099. This character set has the IBM defined default PUA

characters in the last 256 positions of the PUA area and generic characters in all other

PUA positions. Planes 1 through 16 were all 'empty'. As this is a growing CCSID, over

time, as the definition of Unicode expanded so too did the definition of CCSID 1200.

Today CCSID 1200 includes the initial two code page and character set pairs but has

been expanded to include code pages 1401, 1402 and 1414 with growing character

sets for planes 1, 2 and 14 respectively. It also includes code pages 1446 and 1447

for planes 15 and 16 with default character set definitions of 3096 and 3097. Planes 3

through 13 inclusive remain undefined using the special 65520 code page and

character set in the full definition.

The following table presents a list of the Unicode CCSIDs currently defined. The full

definition for each of these CCSIDs can be found in the CDRA CCSID Repository.

CCSID

Decimal
Description

CCSID

Decimal
Description

1200 UTF-16 BE with IBM PUA 21681 Unicode 4.0, UTF-16

1201 UTF-16 BE 21682
Unicode 4.0, UTF-16 LE with

IBM PUA

1202 UTF-16 LE with IBM PUA 21683 Unicode 4.0, UTF-16 LE

1203 UTF-16 LE 21688
Unicode 4.1, UTF-8 with IBM

PUA

notes://d01dbr07.pok.ibm.com/n_dir/nlsccsid.nsf

CCSID

Decimal
Description

CCSID

Decimal
Description

1204 UTF-16 with IBM PUA 21689 Unicode 4.1, UTF-8

1205 UTF-16 21712
Unicode 5.2, UTF-32 BE with

IBM PUA

1208 UTF-8 with IBM PUA 21880 Unicode 5.0 BMP

1209 UTF-8 21881 Unicode 5.2, Plane 1

1210 UTF-EBCDIC with IBM PUA 25776
Unicode 4.1, UTF-16 with

IBM PUA

1211 UTF-EBCDIC 25777 Unicode 4.1, UTF-16

1212 SCSU with IBM PUA 25778
Unicode 4.1, UTF-16 LE with

IBM PUA

1213 SCSU 25779 Unicode 4.1, UTF-16 LE

1214 BOCU-1 with IBM PUA 25784
Unicode 5.0, UTF-8 with IBM

PUA

1215 BOCU-1 25785 Unicode 5.0 UTF-8

1232 UTF-32 BE with IBM PUA 25808
Unicode 6.0, UTF-32 BE with

IBM PUA

1233 UTF-32 BE 25976 Unicode 5.1, BMP

1234 UTF-32 LE with IBM PUA 25977 Unicode 6.0, Plane 1

1235 UTF-32 LE 29872
Unicode 5.0, UTF-16 with

IBM PUA

1236 UTF-32 with IBM PUA 29873 Unicode 5.0, UTF-16

1237 UTF-32 29874
Unicode 5.0, UTF-16 LE with

IBM PUA

1400 Unicode BMP 29875 Unicode 5.0, UTF-16 LE

1401 Unicode Plane 1 29880
Unicode 5.1, UTF-8 with IBM

PUA

1402 Unicode Plane 2 29881 Unicode 5.1, UTF-8

1414 Unicode Plane 14 29904
Unicode 6.2 UTF-32 BE with

IBM PUA

1446 Unicode Plane15 30072 Unicode 5.2, BMP

1447 Unicode Plane 16 30073 Unicode 6.1, Plane 1

1448 Unicode, Generic PUA of BMP 33968
Unicode 5.1, UTF-16 BE with

IBM PUA

1449
Unicode, PUA of BMP, IBM

Default
33969 Unicode 5.1, UTF-16 BE

5304
Unicode 2.0, UTF-8 with IBM

PUA
33970

Unicode 5.1, UTF-16 LE with

IBM PUA

CCSID

Decimal
Description

CCSID

Decimal
Description

5305 Unicode 2.0, UTF-8 33971 Unicode 5.1, UTF-16 LE

5328
Uncode 4.0, UTF-32 BE with

IBM PUA
33976

Unicode 5.2, UTF-8 with IBM

PUA

5329 Unicode 8.0, UTF0-32 BE 33977 Unicode 5.2, UTF-8

5496 Unicode 2.0 BMP 34000
Unicode 8.0, UTF-32 BE with

IBM PUA

5497 Unicode 4.0, Plane 1 34168 Unicode 6.0, BMP

5498 Unicode 4.0, Plane 2 34169 Unicode 8.0, Plane 1

5510 Unicode 4.0, Plane 14 38064
Unicode 5.2, UTF-16 BE with

IBM PUA

9400 CESU-8 with IBM PUA 38065 Unicode 5.2, UTF-16

9424
Unicode 4.1, UTF-32 BE with

IBM PUA
38066

Unicode 5.2, UTF-16 LE with

IBM PUA

9592 Unicode 3.0, BMP 38067 Unicode 5.2, UTF-16 LE

9593 Unicode 4.1, Plane 1 38072
Unicode 6.0, UTF-8 with IBM

PUA

9594 Unicode 5.2, Plane 2 38073 Unicode 6.0, UTF-8

13488
Unicode 2.0, UTF-16 IBM

PUA
38264 Unicode 6.2, BMP

13489 Unicode 2.0, UTF-16 38265 Unicode 9.0, Plane 1

13490
Unicode 2.0, UTF-16 LE with

IBM PUA
42160

Unicode 6.0, UTF-16 BE with

IBM PUA

13491 Unicode 2.0, UTF-16 LE 42161 Unicode 6.0, UTF-16 BE

13496
Unicode 3.0, UTF-8 with IBM

PUA
42162

Unicode 6.0, UTF-16 LE with

IBM PUA
 42163 Unicode 6.0, UTF-16 LE

13497 Unicode 3.0, UTF-8 42168
Unicode 6.2, UTF-8 with IBM

PUA

13520
Unicode 5.0, UTF-32 with

IBM PUA
42169 Unicode 6.2, UTF-8

13688 Unicode 4.0, BMP 42360 Unicode 8.0. BMP

13689 Unicode 5.0, Plane 1 46256
Unicode 6.2, UTF-16 BE with

IBM PUA

13690 Unicode 6.0, Plane 2 46257 Unicode 6.2, UTF-16 BE

17584
Unicode 3.0, UTF-16 with

IBM PUA
46258

Unicode 6.2, UTF-16 LE with

IBM PUA

17585 Unicode 3.0, UTF-16 46259 Unicode 6.2, UTF-16 LE

CCSID

Decimal
Description

CCSID

Decimal
Description

17586
Unicode 3.0, UTF-16 LE with

IBM PUA
46264

Unicode 8.0, UTF-8 with IBM

PUA

17587 Unicode 3.0, UTF-16 LE 46265 Unicode 8.0, UFT-8

17592
Unicode 4.0, UTF-8 with IBM

PUA
46456 Unicode 9.0, BMP

17593 Unicode 4.0, UTF-8 50352
Unicode 8.0, UTF-16 BE with

IBM PUA

17616
Unicode 5.1, Utf-32 BE with

IBM PUA
50353 Unicode 8.0, UTF-16 BE

17784 Unicode 4.1, BMP 50354
Unicode 8.0, UTF-16 LE with

IBM PUA

17785 Unicode 5.1, Plane 1 50355 Unicode 8.0, UTF-16 LE

17786 Unicode 8.0, Plane 2 54448
Unicode 9.0, UTF-16 BE with

IBM PUA

21680
Unicode 4.0, UTF-16 with

IBM PUA
65520 Unicode, empty plane

Figure 83. Unicode CCSIDs

In addition to the above CCSIDs, several 'special' CCSIDs have been defined for

exclusive use by several IBM customers. These CCSID values have been assigned

from the customer use range and are not intended for general use. The special CCSIDs

are used to allow customers to define their own character assignments for the private

use area (PUA).

Appendix L. EBCDIC control character

definitions.

The EBCDIC control codes are defined in the IBM Corporate Standard, C-S 3-3220-

002. Appendix L contains an excerpt from the standard which includes the definition

of each control character as well as supporting documentation which provides the

user with additional information related to the definition and use of the control

characters.

The EBCDIC control characters have been divided into eight major classifications

based on their function. Each classification is described in section G-1.1 below and

includes a list of those controls contained within the classification. Additionally, there

are three unassigned and unclassified control codes which have been reserved for

future use by IBM products.

Control character classification

Customer Use Control Characters

As the name suggests, these characters are used to designate customer assigned

functions. These control characters must not be implemented on IBM products. (CU1,

CU3)

Device Control Characters

These characters are used to control devices, or to control major functions of devices

(CSP, DC1, DC2, DC3, DC4, MFA, POC, SA, SEL, SFE, WUS).

Error Control Characters

These characters are used for error control, for indicating alarms, or for identifying or

requesting identification of stations in a communications system (ACK, BEL, CAN, DEL,

ENQ, EO, NAK, SUB).

Formatting or Editing Control Characters

Characters in this classification group are used for formatting, or for editing data (BS,

CR, DS, FF, FS, HT, IR, IT, LF, NBS, NL, PP, RFF, RNL, SBS, SOS, SPS, UBS, VT).

Characters SP, NSP, RSP and SHY are special characters within this group. Additional

information is provided with the specific control character definitions in section G-1.2

below.

Grouping Control Characters

These characters are used for grouping data or information. Depending on the actual

control character, they may be at the start of the data, at the end of a data-block, at

the start and end of a data-block (data-framing), at the end of communications control

block or procedure, etc., (EM, EOT, ETB, ETX, IFS, IGS, IR, IRS, ITB/IUS, SOH, STX,

TRN).

Mode Control Characters

These characters are used to set modes of operation, to change a mode of operation

or to restore previous mode of operation (BYP/INP, DLE, ESC, GE, IT, RES/ENP, RPT,

SI, SO, SM/SW).

Synchronization Control Characters

Characters in this classification group are used for synchronization of communications

systems, or for synchronization of data within a format or for synchronization of data

streams with certain timing characteristics of some device functions (EO, NUL, SYN).

Communication Control Characters

These characters (which also fall into the major function classifications above) are

reserved exclusively for communications control (ACK, DLE, ENQ, EOT, ETB, ETX,

IUS/ITB, NAK, SOH, STX, SYN). These controls must not be used for device control.

Control character definitions

Specific definitions for the control characters are given below. Each definition includes

the control mnemonic, control name, hexadecimal code assignment and a brief

description. Note that these are generalized descriptions. Specific architectures may

give more complete implementation details.

NUL - Null (Hex 00)

A synchronization control character, with an all-zeros bit-pattern, which may serve to

accomplish time and media fill.

SOH - Start of Heading (Hex 01)

A communication grouping control character which is used at the beginning of a

sequence of characters which constitute a machine-sensible address or routing

information. Such a sequence is referred to as the heading.

STX - Start of Text (Hex 02)

A communication grouping control character which precedes a sequence of

characters that is to be treated as an entity and entirely transmitted to the ultimate

destination. Such a sequence is referred to as the text. STX may be used to terminate

a sequence of characters started by SOH.

ETX - End of Text (Hex 03)

A communication grouping control character which is used to terminate a sequence of

characters started with STX and transmitted as an entity.

SEL - Select (Hex 04)

A device control character that is used with a one-byte parameter to control a function

within a device.

HT - Horizontal Tab (Hex 05)

A formatting control character that moves the active position horizontally to the next

tab stop setting.

RNL - Required New Line (Hex 06)

A formatting control character that causes a mandatory move of the active position to

the starting margin on the next line. Required New Line resets Indent Tab mode.

DEL - Delete (Hex 07)

An error control character which erases characters on perforated tape. Delete may

also apply to other devices such as displays.

GE - Graphic Escape (Hex 08)

A mode control character used to extend the standard graphic set of the code table. It

is a non-locking shift character which changes the graphic meaning of the next single

following bit-pattern.

SPS - Superscript (Hex 09)

A formatting control character that causes a fractional line feed vertically, bottom to

top. The value of the fraction is less than one line and is equal to the corresponding

Subscript movement.

RPT - Repeat (Hex 0A)

A mode control character that sets a mode of operation such as managing a printer

buffer to allow a device to print repeatedly the character string contained in that

buffer.

VT - Vertical Tab (Hex 0B)

A formatting control character that moves the active position vertically, to the next in

a series of predetermined lines.

FF - Form Feed (Hex 0C)

A formatting control character that moves the active position to the starting margin on

the first predetermined printing line on the next form or page.

CR - Carriage Return (Hex 0D)

A formatting control character that moves the active position to the starting margin on

the same line.

SO - Shift Out (Hex 0E)

A mode control character that indicates the bit-patterns which follow shall be

interpreted according to the most recently designated Shift Out set.

SI - Shift In (Hex 0F)

A mode control character that indicates the bit-patterns which follow shall be

interpreted according to the most recently designated Shift In set.

DLE - Data Link Escape (Hex 10)

A communication mode control character which will change the meaning of a limited

number of contiguously following characters. It is used exclusively to provide

supplementary controls in data communication networks.

DC1 - Device Control 1 (Hex 11)

A device control character that controls ancillary devices associated with data

processing or telecommunications systems.

DC2 - Device Control 2 (Hex 12)

A device control character that controls ancillary devices associated with data

processing or telecommunications systems.

DC3 - Device Control 3 (Hex 13)

A device control character that controls ancillary devices associated with data

processing or telecommunications systems.

RES/ENP - Restore/Enable Presentation (Hex 14)

A mode control character that terminates the Bypass/Inhibit Presentation mode of

operation and activates associated printers or displays.

NL - New Line (Hex 15)

A formatting control character that moves the active position to the starting margin on

the next line.

BS - Backspace (Hex 16)

A formatting control character that moves the active position horizontally to the next

position in the reverse direction.

POC - Program Operator Communication (Hex 17)

A device control character that is used with two one-byte parameters to provide a

communication protocol between end users. The first parameter defines the function

and the second defines a unit associated with the function (for example, indicator

light or function key).

CAN - Cancel (Hex 18)

An error control character that is used to indicate the data with which it is sent is in

error or is to be disregarded.

EM - End of Medium (Hex 19)

A grouping control character associated with the transmitted data that may be used to

identify physical end of medium, or the end of the used, or wanted, portion of

information recorded on a medium. (The position of this character does not

necessarily correspond to the physical end of the medium.)

UBS - Unit Backspace (Hex 1A)

A formatting control character that moves the active position horizontally in the

reverse direction a fraction of the space used for a graphic. It is used, for example, for

vertical alignment of line endings on a proportional spacing device.

CU1 - Customer Use 1 (Hex 1B)

A customer use control character sent into a system to designate a customer assigned

function. This control character must not be implemented by IBM products.

IFS - Interchange File Separator (Hex 1C)

A grouping control character that terminates an information block called a FILE. (See

definitions of IGS, IRS, IUS.)

When used in hierarchical order, the hierarchical order is ascending, IUS, IRS, IGS,

IFS.

An information block must not be split by a higher order separator, for example, a

RECORD may contain a whole number of UNITS, but may not contain a part of a UNIT.

IGS - Interchange Group Separator (Hex 1D)

A grouping control character that terminates an information block called a GROUP.

(See definition of IFS, Interchange File Separator.)

IRS - Interchange Record Separator (Hex 1E)

A grouping control character that terminates an information block called a RECORD.

(See definition of IFS, Interchange File Separator.)

IUS/ITB - Interchange Unit Separator, Intermediate Transmission Block (Hex 1F)

A grouping control character that terminates an information block called a UNIT. (See

definition of IFS, Interchange File Separator). In Binary Synchronous Communications

line control, this character is used to indicate the end of an intermediate block of data.

DS - Digit Select (Hex 20)

An editing control character that causes either a digit from the source field or a fill

character to be inserted in the result field, in CPU editing operations.

SOS - Start of Significance (Hex 21)

An editing control character that causes either a digit from the source field or a fill

character to be inserted in the result field, and also indicates, by setting a status

indicator, that the following digits are significant in CPU editing operations.

FS - Field Separator (Hex 22)

An editing control character that identifies individual fields in a multiple field CPU

editing operation.

WUS - Word Underscore (Hex 23)

A device control character that causes the entire word immediately preceding it to be

underscored.

BYP/INP - Bypass/Inhibit Presentation (Hex 24)

A mode control character that deactivates the associated printers or displays and

causes the succeeding control characters except the communication control

characters and Restore/Enable Presentation to be ignored. Restore/Enable

Presentation resets this mode.

LF - Line Feed (Hex 25)

A formatting control character that moves the active position vertically to the next

line.

ETB - End of Transmission Block (Hex 26)

A communication grouping control character that indicates the end of a block of data

for transmission purposes.

ESC - Escape (Hex 27)

A mode control character used to provide code extension in general information

exchange. The Escape character itself is a prefix affecting the interpretation of a

limited number of contiguously following characters.

Escape sequences are used to obtain additional control functions. Such control

functions must not be used as additional communication controls.

SA - Set Attribute (Hex 28)

A device control character that indicates the beginning of a fixed length control

sequence.

It is recommended that this control character not be implemented on future products,

unless such products are required to provide compatibility with a previously

announced product.

This control function can be provided by a CSP (hex 2B) control sequence.

SFE - Start Field Extended (Hex 29)

A device control character that indicates the beginning of a variable length control

sequence.

It is recommended that this control character not be implemented on future products,

unless such products are required to provide compatibility with a previously

announced product. This control function can be provided by a CSP (hex 2B) control

sequence.

SM/SW - Set Mode/Switch (Hex 2A)

A mode control character that sets a mode of operation such as switching between

two print buffers during a print operation.

CSP - Control Sequence Prefix (Hex 2B)

A control character that indicates the beginning of a variable length control sequence.

CSP sequences appear as:

CSP,CLASS,COUNT,TYPE,P1,P2,. . .,Pn.

where:

Class specifies a class or set of control functions which have a common purpose or

attribute.

The binary count indicates the number of bytes to the end of the CSP sequence,

including the count byte.

Minimum value of the count field is 2. If the count field is 2, then there is a type field

and no parameter field. If the count field is 3 or larger, then the sequence must

contain a type field and one or more parameter fields.

Type is a one-byte field; it specifies one control function within a class of control

functions.

P1 . . . Pn are parameters. The length of each parameter depends upon the class and

type fields.

The aggregate length of all the parameters may be in the range of 0 to 253.

MFA - Modify Field Attribute (Hex 2C)

A device control character that indicates the beginning of a variable length control

sequence.

It is recommended that this control character not be implemented on future products,

unless such products are required to provide compatibility with a previously

announced product.

This control function can be provided by a CSP (hex 2B) control sequence.

ENQ - Enquiry (Hex 2D)

A communication control character that is used in data communication systems as a

request for a response from a remote station. It may be used as a Who Are You (WRU)

to obtain identification, or may be used to obtain station status, or both.

ACK - Acknowledge (Hex 2E)

A communication control character that is transmitted by a receiver as an affirmative

response to a sender.

BEL - Bell (Hex 2F)

A control character that is used when there is a need to call for human attention. It

may control alarm or attention devices or cause a device to stop.

Reserved (Hex 30)

A control location reserved for assignment of future functions.

Reserved (Hex 31)

A control location reserved for assignment of future functions.

SYN - Synchronous Idle (Hex 32)

A communication synchronization control character that is used by a synchronous

transmission system in the absence of any other character to provide a signal from

which synchronism may be achieved or retained.

IR - Index Return (Hex 33)

As a formatting control character, it moves the active position to the starting margin

on the next line. As a grouping control character, it terminates an information block

called a unit.

PP - Presentation Position (Hex 34)

A formatting control character that is used with two one-byte parameters to move the

active position. The first parameter defines the function and the second parameter is

a binary number that denotes either a column or line number.

TRN - Transparent (Hex 35)

A grouping control character that is used with a one-byte parameter to denote the

start of a transparent data stream. The parameter is a binary count of the number of

bytes of transparent data not including the count byte.

NBS - Numeric Backspace (Hex 36)

A formatting control character that moves the active position horizontally, in the

reverse direction, a distance equal to the space used for digits (0-9) in the pitch being

used.

EOT - End of Transmission (Hex 37)

A communication grouping control character that is used to indicate the conclusion of

a transmission.

SBS - Subscript (Hex 38)

A formatting control character that causes a fractional line feed vertically, top to

bottom. The value of the fraction is less than one line and is equal to the

corresponding Superscript movement.

IT - Indent Tab (Hex 39)

A mode control character that causes a Horizontal Tab to be executed immediately

and following every subsequent New Line control character. This mode has the effect

of indenting the starting margin. Multiple Indent Tabs may be used for greater

indentation. Indent Tab mode is reset by Required New Line or Required Form Feed.

RFF - Required Form Feed (Hex 3A)

A formatting control character that causes a mandatory move of the active position to

the starting margin of the first line of the next page. Required Form Feed resets Indent

Tab mode.

CU3 - Customer Use 3 (Hex 3B)

A customer use control character sent into a system to designate a customer assigned

function. This control character must not be implemented by IBM products.

DC4 - Device Control 4 (Hex 3C)

A device control character that controls ancillary devices associated with data

processing or telecommunications systems, more especially switching devices on or

off. (If a single stop control is required to interrupt or turn off ancillary devices, DC4 is

the preferred assignment.)

NAK - Negative Acknowledge (Hex 3D)

A communication control character that is transmitted by a receiver as a negative

response to the sender.

Reserved (Hex 3E)

A control location reserved for assignment of future functions.

SUB - Substitute (Hex 3F)

A control character that replaces a character that is determined to be invalid or in

error, or, for graphic display devices is inserted at the end of a message to signify that

some character or characters in the message are invalid.

EO - Eight Ones (Hex FF)

A synchronization control character, with an all-ones bit-pattern, which may serve to

accomplish time and media fill.

G-1.3 Special graphic characters

Code points with hexadecimal reference numbers from 40 through FE inclusive are

reserved for assignment of graphic characters. Four of these code points are often

used for special characters which have the characteristics of control characters. Code

Point hexadecimal reference number 40 is always assigned to the Space Character

which is required in all EBCDIC code pages. The Required Space (RSP), Numeric

Space (NSP), and Syllable Hyphen (SHY) coded graphic characters are optional, but

when used, the preferred hexadecimal code points are: RSP (hexadecimal 41), NSP

(hexadecimal E1), and SHY (hexadecimal CA). Definitions of these graphic characters

are included below.

SP - Space (Hex 40)

A normally non-printing graphic character used to separate words. It is also a

formatting character that moves the active position horizontally one position in the

forward direction. This character can be eliminated by products that adjust text.

RSP - Required Space (preferred Hex 41)

A normally non-printing graphic character used to separate words. It is also a

formatting character that moves the active position horizontally one position in the

forward direction. This character cannot be eliminated by products that adjust text.

NSP - Numeric Space (preferred Hex E1)

A normally non-printing graphic character, on products with proportional spacing. It is

also a formatting character that moves the active position horizontally a distance in

the forward direction equal to the width of a numeric character.

SHY - Syllable Hyphen (preferred Hex CA)

A hyphen graphic character used at the end of a line after the syllable of a word that

must be split onto the next line. This character can be eliminated by products that

adjust text.

Glossary

This glossary includes definitions of terms and acronyms found in this document.

A

ACRI

See additional coding-related required information.

ACRI-PCMB

See additional coding-related required information – PC Mixed byte.

additional coding-related required information (ACRI)

The information, in addition to encoding scheme identifier, code page, and character

set global identifiers, that is required to complete the definition associated with using

particular encoding schemes. An example is the ranges of valid first bytes of double-

byte code points in a PC Mixed single-byte and double-byte code.

additional coding-related required information - PC mixed byte (ACRI-PCMB) A CDRA

identifier that defines the ranges of valid first bytes of double byte code points in a PC

Mixed SB/DB encoding scheme.

American Standard Code for Information Interchange (ASCII)

A standard code used for information exchange among data processing systems, data

communication systems, and associated equipment. ASCII uses a coded character

set consisting of 7-bit coded characters.

API

See application programming interface.

APL

See A programming language.

application programming interface (API)

An interface that allows an application program that is written in a high-level language

to use specific data or functions of the operating system or another program.

A programming language (APL)

A programming language based on mathematical notation that is used to develop

application programs. A is particularly useful for commercial data processing, system

design, mathematical and scientific computation, database applications, and teaching

mathematics.

Arabic numeral

One of the 10 numerals used in decimal notation: the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and

9. See also Hindi numeral.

ASCII

See American Standard Code for Information Interchange.

C

CCS

See coded character set.

CCSID

See coded character set identifier.

CCSID resource

A representation of the various elements associated with a CCSID in a system in a

machine-readable form.

CCSID resource repository

An organized collection of CCSID resources that are maintained by a service provider

in a system.

CDRA

See Character Data Representation Architecture.

CECP

See country extended code page.

CGCSGID

See coded graphic character set global identifier.

Character Data Representation Architecture (CDRA)

An IBM architecture that defines a set of identifiers, resources, services, and

conventions to achieve consistent representation, processing, and interchange of

graphic character data in heterogeneous environments.

coded character set (CCS)

A set of unambiguous rules that establishes a character set and the one-to-one

relationships between the characters of the set and their coded representations. See

also invariant character set.

coded character set identifier (CCSID)

A 16-bit number that includes a specific set of encoding scheme identifiers, character

set identifiers, code page identifiers, and other information that uniquely identifies the

coded graphic-character representation.

coded graphic character set

A set of graphic characters with their assigned code points.

coded graphic character set global identifier (CGCSGID)

A 4-byte binary or a 10-digit decimal identifier consisting of the concatenation of a

GCSGID and a CPGID. The CGCSGID identifies the code point assignments in the code

page for a specific graphic character set, from among all the graphic characters that

are assigned in the code page.

code extension method

A method prescribed in an encoding scheme for representing characters that cannot

be accommodated within the limits of the basic structure of the code. It prescribes a

method to alter the interpretation of one or more code points that follow a prescribed

single control character or a control sequence.

code page

A specification of code points from a defined encoding structure for each graphic

character in a set or in a collection of graphic character sets. Within a code page, a

code point can have only one specific meaning. See also invariant character set.

code page global identifier (CPGID) A 5-digit decimal or 2-byte binary identifier that is

assigned to a code page. The range of values is 00001 to 65534 (X'0001' to X'FFFE').

code point

A unique bit pattern defined in a code. Depending on the code, a code point can be 7-

bits, 8-bits, 16-bits, or other. Code points are assigned graphic characters in a code

page.

component

A hardware or software entity forming part of a system, or a piece of logic that

controls the operation of a device, modifies, or stops a control function.

control function

An element of a character set that affects the recording, processing, transmission, or

interpretation of data, and that has a coded representation of, one or more, bit

combinations (see ISO/IEC 6429).

conversion

The process of replacing a code point that is assigned to a character in one code with

its corresponding code point assigned in another code.

conversion method

An algorithm used during conversion. It includes the necessary logic to separate the

input code point string into appropriate substrings, converting the substrings and

assembling the resultant substrings, for a set of criteria to be used during conversion.

A conversion method may use associated conversion tables as resources during the

conversion.

conversion table

A resource used with a conversion method to perform conversion. Typically, a

conversion table contains a set of input code point values corresponding to a given set

of output code point values. Its structure and contents are designed to suit the

conversion algorithm with which it is to be used.

country extended code page (CECP)

A single-byte EBCDIC code page in the IBM corporate registry that contains the 190

characters found in character set 00697. While each CECP contains the same set of

characters (allowing for conversion of data without loss), the code point allocation of

the characters is not identical. For example, all CECPs contain the character

backwards slash, however in code page 500 it is located at code point x'E0' and in

code page 280 it is located at code point x'48'.

CPGID

See code page global identifier.

D

database (DB)

A collection of interrelated or independent data items that are stored together to

serve one or more applications.

data stream

The commands, control codes, data, or structured fields that are transmitted between

an application program and a device such as printer or nonprogrammable display

station.

DB

See database.

DBCS

See double-byte character set.

DCF

See Document Composition Facility.

Distributed Relational Database Architecture (DRDA)

The architecture that defines formats and protocols for providing transparent access

to remote data. DRDA defines two types of functions: the application requester

function and the application server function.

Document Composition Facility (DCF)

An IBM licensed program used to format input to a printer.

double-byte character set (DBCS)

A set of characters in which each character is represented by 2 bytes. These character

sets are commonly used by national languages, such as Japanese and Chinese, that

have more symbols than can be represented by a single byte.

double-wide character

A character, such as a Kanji ideogram, that requires twice the nominal width of other

characters, such as the letter A, for the character to be legible on a display screen or a

printer.

DRDA

See Distributed Relational Database Architecture.

E

even parity bit

A check bit that is usually generated or included in a parity-checking algorithm to

make the total number of bits in a bit pattern an even number. See also odd parity bit.

F

folding

The substitution of one graphic character for another. Folding generally maps a larger

character set into a subset, and may result in loss of information. Folding allows the

presentation of uppercase graphic characters when lowercase characters are not

available. See also mono-casing.

full character set

The maximal character set of a code page such that there are no more unassigned

graphic code points remaining in the associated encoding scheme. No other larger

character set can be represented in that code page. For example, CS 697 (the

maximal character set of CP 500 in encoding scheme ES 1100), contains 190 graphic

characters and is assigned all the 190 available graphic code points in ES 1100. See

also maximal character set and subset character set.

G

GCCASN

See graphic character conversion alternative selection number.

GCCST

See graphic character conversion selection table.

GCSGID

See graphic character set global identifier.

graphic character

A graphic symbol, such as a numeric, alphabetic, or special character (see C-S 3-

3220-019 Corporate Standard).

graphic character conversion alternative selection number (GCCASN) A parameter of

a function call to a graphic character data conversion process that facilitates selecting

a specific conversion method and associated conversion tables from different

alternatives.

graphic character conversion selection table (GCCST)

A table used in the graphic character data conversion process to manage the access

to the various conversion methods and associated conversion tables under its sphere

of control.

graphic character set

A defined set of graphic characters treated as an entity. No coded representation is

assumed.

graphic character set global identifier (GCSGID)

A unique five-digit decimal number assigned to a graphic character set in IBM

standards. The range of GCSGID values is 00001 to 65534 or x’0001’ to x’FFFE’ (see

C-S 3-3220-019 Corporate Standard).

H

hardcoded

Pertaining to software instructions that are statically encoded and not intended to be

altered.

high-level language (HLL)

A programming language that provides some level of abstraction from assembler

language and independence from a machine.

Hindi numeral

Any of the set of numerals used in many Arabic countries instead of, or in addition to,

the Arabic numerals. Hindi numeral shapes are ١٢٣٤٥٦٧٨٩, which correspond to the

Arabic numeral shapes of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively. See also Arabic

numeral.

HLL

See high-level language.

identity map

A special case of code point conversion in which all input code points are equal to the

output code points, thus eliminating the need for a conversion. When converting data

from one CCSID to another using the round-trip criterion, if the CCSIDs share the

same CPGID, an identity mapping condition exists.

I

IEC

See International Electrotechnical Commission.

International Electrotechnical Commission (IEC)

The international standards-setting organization responsible for electrical and

electrotechnical issues. IEC often cooperates with ISO via technical committees on

the definition of standards.

International Organization for Standardization (ISO)

An international body charged with creating standards to facilitate the exchange of

goods and services as well as cooperation in intellectual, scientific, technological, and

economic activity.

International Telegraphic Alphabet Number 2 (ITA-2)

A CCITT-defined coded character set used in the international Telex communication

services, worldwide.

invariant character set

A set of characters, such as the syntactic character set, having the same code point

assignments in all coded character sets or code pages using a given encoding scheme.

See also code page, coded character set and syntactic character set.

ISO

See International Organization for Standardization.

ISO environment

A coding structure defined in ISO 2022 that uses single (or multiple) septet(s) (7-bit)

or octet(s) (8-bit) per code point, with or without code extension controls.

ITA-2

See International Telegraphic Alphabet Number 2.

K

Katakana

A Japanese phonetic syllabary used primarily for foreign names and place names and

words of foreign origin.

L

Latin alphabet

An alphabet composed of the letters a - z and A - Z with or without accents and

ligatures. See also non-Latin-based alphabet.

Latin alphabet number 1

The 190 characters used in most of Western Europe, North America, Central and

South America. There are other Latin alphabets such as Latin-2 and Latin-3 that

correspond to some of the other ISO/IEC 8859 character sets. The numbering scheme

is neither rational nor orderly.

lowercase

Pertaining to the small alphabetic characters, whether accented or not, as

distinguished from the capital alphabetic characters. The concept of case also applies

to alphabets such as Cyrillic and Greek, but not to Arabic, Hebrew, Thai, Japanese,

Chinese, Korean, and many other scripts. Examples of lowercase letters are a, b, and

c.

M

machine-readable information (MRI)

All textual information contained in a program such as a system control program, an

application program, or microcode. MRI includes all information that is presented to

or received from a user interacting with a system. This includes messages, dialog

boxes, online manuals, audio output, animations, windows, help text, tutorials,

diagnostics, clip art, icons, and any presentation control that is necessary to convey

information to users.

maximal character set

The largest registered character set that is assigned to a registered code page

following an encoding scheme. See also full character set.

mono-casing

The translation of alphabetic characters from one case (usually the lowercase) to their

equivalents in another case (usually the uppercase). See also folding.

MRI

See machine-readable information.

N

national use graphics

Graphic characters on a coded character set that are not part of the invariant

character set.

nibble

A bit-pattern consisting of four bits.

non-Latin-based alphabet

An alphabet comprising letters other than the Latin-based ones, such as those used in

Greek and Arabic.

normalization support CCSID table (NSCT)

A table containing a default CCSID value associated with a pair of CCSIDs, which will

be used to normalize two strings (that are coded in two different CCSIDs), before a

string operation such as concatenation, comparison, or others is performed with the

two strings.

NSCT

See normalization support CCSID table.

O

octet

A byte composed of eight binary elements.

odd parity bit

A check bit that is usually generated or included in a parity-checking algorithm to

make the total number of bits in a bit pattern an odd number. See also even parity bit.

R

related default CCSID table

A table containing a default CCSID associated with another CCSID and an ESID. This

default CCSID is the nearest equivalent of its associated CCSID based on some

relationship between the two.

Revisable-Form-Text Document Content Architecture (RFTDCA)

The architectural specification for the information interchange of documents whose

text is in a revisable format. A Revisable-Form Text Document Content Architecture

document consists of structured fields, controls, and graphic characters that

represent the format and meaning of the document.

RFTDCA

See Revisable-Form-Text Document Content Architecture.

S

septet

A 7-bit byte.

session

A logical or virtual connection between two stations, software programs, or devices on

a network that allows the two elements to communicate and exchange data for the

duration of the session.

special character

A graphic character that is not a letter, a digit, or a space character and not an

ideogram.

subset character set

A set of characters that is completely contained in another larger set of characters.

See also full character set.

syntactic character set

A set of 81 graphic characters that are registered in the IBM registry as character set

00640. This set is used for syntactic purposes maximizing portability and

interchangeability across systems and country or region boundaries. It is contained in

most of the primary registered character sets, with a few exceptions. See also

invariant character set.

system

A set of individual components, such as people, machines, or methods, that work

together to perform a function.

T

tag

A mechanism used to identify certain attributes having some bearing on handling of

character data. Some examples are character set identifier, code page identifier,

language identifier, country identifier, and encoding scheme identifier.

U

UDC

See user-defined character.

uppercase

Pertaining to the capital alphabetic characters, as distinguished from the small

alphabetic characters. The concept of case also applies to alphabets such as Cyrillic

and Greek, but not to Arabic, Hebrew, Thai, Japanese, Chinese, Korean, and many

other scripts. Examples of capital letters are A, B, and C. See also lowercase.

user

Any individual, organization, process, device, program, protocol, or system that uses

the services of a computing system.

user-defined character (UDC)

A character which is defined by an individual user or organization for assignment in

one or more code pages. These characters are often ideographic characters, symbols

or logos. Some standards, including Unicode, reserve coding space for user defined

characters. The meaning of the user defined character can only be assured within the

closed environment of the defining organization or by private agreement among

cooperating users.

W

ward

A section of a double-byte character set (DBCS) where the first byte of each DBCS

code point belonging to that section is the same value.

	Table of Contents
	Introduction
	What is Unicode?
	What is GB18030?
	Conversion Between GB18030 and Unicode
	UTF-16 <-> GB18030 (1, 2 and 4-byte)
	Text Format Tables
	Combined GB18030 Tables
	Component GB18030 Tables

	Converting from UTF-16 to GB18030
	Combined GB18030 Tables
	2-byte to 4-byte Conversion
	Method 2X

	Components for GB18030
	Introduction
	Conversion Logic
	2-byte to 1-byte Conversion
	2-byte to 2-byte Conversion
	2-byte to 4-byte conversion
	Method 2X

	Converting from GB18030 to UTF-16
	Combined GB18030 Tables
	Introduction
	Detecting Valid (single, Double, and Four-byte) or Invalid Code Points
	1-byte to 2-byte Conversion
	2-byte to 2-byte Conversion
	4-byte to 2-byte Conversion

	Component GB18030 Tables
	Introduction
	GB18030 to UTF-16 Conversion Logic
	1-byte to 2-byte Conversion
	2-byte to 2-byte Conversion
	4-byte to 2-byte Conversion

	Transformations
	Transformation between GB18030 and UTF-32
	Transformations between UTF-32 and UTF-16 Encoding Forms of Unicode

	Section 3: Conversions Between Unicode and Host Encodings
	Conversion Between UCS-2 (CCSID 17584) <--> Host(1 and 2-byte, CCSID 1388)
	Text Format Tables
	Combined GB18030 Host Tables
	Component GB18030 Host Tables

	Conversion From UCS-2 (CCSID 17584) to S-Ch Host Extended (CCSID 1388)
	Combined S-Ch Host Conversion
	2-byte To 2-byte Conversion

	Component S-Ch Host Conversions
	Introduction
	UCS-2 to S-Ch Host conversion Logic
	2-byte to 1-byte Conversion
	2-byte to 2-byte Conversion

	Conversion From S-Ch Host Extended (CCSID 1388) to UCS-2 (CCSID 17584)
	Combined S-Ch Host
	2-byte to 2-byte Conversion

	Components S-Ch Host (z/OS Usage)
	Introduction
	S-Ch to UCS-2 Conversion Logic
	1-byte to 2-byte Conversion
	2-byte to 2-byte Conversion

	Section 4: Conversions Between GB18030 and Host Encodings
	S-Ch Host Extended (CCSID 1388) <-> GB18030 (1,2 and 4-byte, CCSID 5488)
	Introduction
	Conversion From S-Ch Host (CCSID 1388) to GB18030 (CCSID 5488)
	Combined GB18030 Tables
	2-byte to 4-byte Conversion

	Conversion From GB18030 (CCSID 5488) to S-Ch Host (CCSID 1388)
	Combined GB18030 Tables
	Detect a Valid Single-, Double-, Four-byte or Invalid code point
	1-byte to 2-byte Conversion
	2-byte to 2-byte Conversion
	4-byte to 2-byte Conversion

	Section 5: Annexes
	ANNEX A - CCSIDs for Phase 1 and Phase 2 (as of 2001-06-14)
	Note that complete definitions for all CCSIDs can be found in the CCSID repository.
	GB 18030 - Phase 1
	ESID
	Comments
	2A00
	S-ch PC Data mixed for GB 18030
	2900
	S-ch 4 byte part PC Data for GB 18030(Fixed UCS2 Subset)
	2200
	S-ch double-byte PC Data double-byte part of GB 18030 (Fixed UCS2 Subset) (*Four-byte SUB to be used)
	4105
	S-ch single-byte part of GB 18030
	GB 18030 - Phase 2
	ESID
	Comments
	2A00
	S-ch PC Data mixed for GB 18030
	2900
	S-ch PC Data 4-byte part of GB 18030(Includes UCS Plane 1-16, and Plane 0 subset)
	Host Mixed S-Ch Extended (for GB18030 support)
	ESID
	Comments
	1301
	S-Ch Host mixed for GB 18030-1
	1100
	S-Ch Host single-byte part of GB 18030-1
	1200
	S-Ch Host double-byte part of GB 18030-1
	1301
	S-Ch Host mixed for GBK
	1100
	S-CH Host single-byte part of GBK
	1200
	S-Ch Host double-byte part of GBK

