
IBM XL C/C++ for Linux, V13.1.2

Language Reference
for Little Endian Distributions
Version 13.1.2

SC27-6550-01

IBM

IBM XL C/C++ for Linux, V13.1.2

Language Reference
for Little Endian Distributions
Version 13.1.2

SC27-6550-01

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 57.

First edition

This edition applies to IBM XL C/C++ for Linux, V13.1.2 (Program 5765-J08; 5725-C73) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

© Copyright IBM Corporation 1998, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Who should read this document v
How to use this document. v
How this document is organized v
Conventions v
Related information ix

IBM XL C/C++ information ix
Standards and specifications x
Other IBM information x
Other information x

Technical support x
How to send your comments xi

Chapter 1. Language levels and
language extensions 1

Chapter 2. IBM extension features . . . 3
IBM extension features for both C and C++ 3

General IBM extensions. 3
Extensions for GNU C compatibility 6
Extensions for vector processing support . . . 39

IBM extension features for C only 47
Extensions for GNU C compatibility 47
Extensions for vector processing support . . . 50

IBM extension features for C++ only 50
Extensions for C99 compatibility 50
Extensions for C11 compatibility 51
Extensions for GNU C++ compatibility 51

Chapter 3. Standard features 55

Notices 57
Trademarks 59

Index 61

© Copyright IBM Corp. 1998, 2015 iii

iv XL C/C++: Language Reference for Little Endian Distributions

About this document

This document describes the syntax, semantics, and IBM® XL C/C++ for Linux
implementation of the C and C++ programming language extensions. Although the
XL C/C++ compiler conforms to the specifications maintained by the ISO
standards for the C and C++ programming languages, the compiler also
incorporates many extensions to the core languages. These extensions have been
implemented to enhance usability in specific operating environments, support
compatibility with other compilers, and support new hardware capabilities. For
example, many language constructs have been added for compatibility with the
GNU Compiler Collection (GCC), to maximize portability between the two
development environments.

Note: Detailed descriptions of standard features are no longer provided in this
document. Instead, a list of the standard features that the compiler currently
supports is provided in Standard features. For a description of these standard
features, see the C and C++ language standards.

Who should read this document
This document is a reference for users who want to learn about IBM extension
features. Users can also access the list of standard features that the compiler
currently supports.

How to use this document
This document contains detailed descriptions for IBM extension features. It does
not include the following topics:
v Detailed descriptions of standard C and C++ features. For a description of these

standard features, see the C/C++ standard.
v Standard C and C++ library functions and headers. For information on the

standard C and C++ libraries, refer to your operating system information.
v Compiler pragmas, predefined macros, and built-in functions. These are

described in the XL C/C++ Compiler Reference.

How this document is organized
v Chapter 1 provides a brief introduction to language levels and language

extensions.
v Chapter 2 describes all the IBM extension features that are categorized in

different groups.
v Chapter 3 lists all the standard features that the compiler currently supports.

Conventions
Typographical conventions

© Copyright IBM Corp. 1998, 2015 v

The following table shows the typographical conventions used in the IBM XL
C/C++ for Linux, V13.1.2 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc and xlC
(xlc++), along with several other
compiler invocation commands to
support various C/C++ language
levels and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

C only begins
C

C

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

C++ only begins
C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

IBM extension begins
IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

vi XL C/C++: Language Reference for Little Endian Distributions

Table 2. Qualifying elements (continued)

Qualifier/Icon Meaning

C11 begins
C11

C11

C11 ends

The text describes a feature that is introduced into standard C
as part of C11.

C++11 begins
C++11

C++11

C++11 ends

The text describes a feature that is introduced into standard
C++ as part of C++11.

C++14 begins
C++14

C++14

C++14 ends

The text describes a feature that is introduced into standard
C++ as part of C++14.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
helps you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

About this document vii

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

viii XL C/C++: Language Reference for Little Endian Distributions

Related information
The following sections provide related information for XL C/C++:

IBM XL C/C++ information
XL C/C++ provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL C/C++ for Linux, V13.1.2. It is located by default in the XL C/C++ directory
and in the \quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory, and in the root directory and subdirectories of the
installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for Linux, V13.1.2 Installation
Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.2/
com.ibm.compilers.linux.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27036675.
The following files comprise the full set of XL C/C++ product information:

Table 3. XL C/C++ PDF files

Document title
PDF file
name Description

IBM XL C/C++ for Linux,
V13.1.2 Installation Guide,
GC27-6540-01

install.pdf Contains information for installing XL C/C++
and configuring your environment for basic
compilation and program execution.

Getting Started with IBM
XL C/C++ for Linux,
V13.1.2, GI13-2875-01

getstart.pdf Contains an introduction to the XL C/C++
product, with information about setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL C/C++ for Linux,
V13.1.2 Compiler Reference,
SC27-6570-01

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in functions.

IBM XL C/C++ for Linux,
V13.1.2 Language Reference,
SC27-6550-01

langref.pdf Contains information about language extensions
for portability and conformance to
nonproprietary standards.

IBM XL C/C++ for Linux,
V13.1.2 Optimization and
Programming Guide,
SC27-6560-01

proguide.pdf Contains information about advanced
programming topics, such as application
porting, interlanguage calls with Fortran code,
library development, application optimization,
and the XL C/C++ high-performance libraries.

About this document ix

http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.2/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.2/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27036675
http://www.ibm.com/support/docview.wss?uid=swg27036675

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL C/C++, including IBM Redbooks® publications,
white papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27036675.

For more information about C/C++, see the C/C++ café at https://
www.ibm.com/developerworks/community/groups/service/html/
communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3.

Standards and specifications
XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards and specifications for precise definitions of some of the
features found in this information.
v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also

known as C89.
v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also

known as C99.
v Information Technology - Programming languages - C, ISO/IEC 9899:2011, also

known as C11.
v Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also

known as C++98.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also

known as Standard C++.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also

known as C++11 (Partial support).
v Information Technology - Programming languages - C++, ISO/IEC 14882:2014, also

known as C++14 (Partial support).
v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification

for vector data types, to support vector processing technology, is available at
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v OpenMP Application Program Interface Version 3.1 (full support) and OpenMP

Application Program Interface Version 4.0 (partial support), available at
http://www.openmp.org

Other IBM information
v ESSL product documentation available at http://www.ibm.com/support/

knowledgecenter/SSFHY8/essl_welcome.html?lang=en

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support
Additional technical support is available from the XL C/C++ Support page at
http://www.ibm.com/support/entry/portal/overview/software/rational/
xl_c~c++_for_linux. This page provides a portal with search capabilities to a large
selection of Technotes and other support information.

x XL C/C++: Language Reference for Little Endian Distributions

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036675
http://www.ibm.com/support/docview.wss?uid=swg27036675
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.openmp.org
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html?lang=en
http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html?lang=en
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_c~c++_for_linux
http://www.ibm.com/support/entry/portal/overview/software/rational/xl_c~c++_for_linux

If you cannot find what you need, you can send an email to
compinfo@cn.ibm.com.

For the latest information about XL C/C++, visit the product information site at
http://www.ibm.com/software/products/us/en/xlcpp-linux/.

How to send your comments
Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments by email to compinfo@cn.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL C/C++, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

About this document xi

http://www.ibm.com/software/products/us/en/xlcpp-linux/

xii XL C/C++: Language Reference for Little Endian Distributions

Chapter 1. Language levels and language extensions

The C and C++ languages described in this reference are based on the standards
listed in “Standards and specifications” on page x.

We refer to the following language specifications as "base language levels" in order
to introduce the notion of an extension to a base. In this context the base language
levels refer to the following specifications:
v C++11
v C++03
v C++98
v C11
v C99
v C89

This information uses the term K&R C to refer to the C language plus the generally
accepted extensions produced by Brian Kernighan and Dennis Ritchie that were in
use prior to the ISO standardization of C.

Note: Detailed descriptions of standard features are no longer provided in the
Language Reference. Instead, a list of the standard features that the compiler
currently supports is provided in Standard features. For a description of these
standard features, see the C and C++ language standards.

In addition to the features supported by the base levels, XL C/C++ contains
language extensions that enhance usability and facilitate porting programs to
different platforms, including:
v “Extensions to C++ to support C99 and C11 standard features” on page 2
v “Extensions related to GNU C and GNU C++” on page 2
v “Extensions supporting and extending the AltiVec Programming Interface” on

page 2

You can control the language level to be used for compilation through several
mechanisms, including:
v various invocation commands in the XL C/C++ Compiler Reference

v the -std (-qlanglvl) option in the XL C/C++ Compiler Reference

With a few exceptions, almost all of the language extensions are supported when
you compile using the basic invocation commands xlc (for C) and xlc++ or xlC (for
C++).

The default language level for the xlc invocation command is extc99, which
includes all of the features introduced by the C99 standard, and most of the IBM
extensions described in this information.

The language level for the xlC or xlc++ invocation command is extended, which
includes most of the IBM extensions described in this information, as well as many
C99 features.

© Copyright IBM Corp. 1998, 2015 1

For information on the various methods for controlling the language level for
compilation, see Invoking the compiler in the XL C/C++ Compiler Reference and
-std (-qlanglvl) in the XL C/C++ Compiler Reference.

Extensions to C++ to support C99 and C11 standard features

The C++03 language specification does not include many of the features specified
in the C99 and C11 language standards. To promote compatibility and portability
between C++ and C99 or between C++ and C11, the XL C++ compiler enables
many of the C99 and C11 features that are supported by the XL C compiler.
Because these features extend the C++ standard, they are considered extensions to
the base language. In this reference, unless the text is marked to indicate that a
feature is supported in C, C99, or C11 only, C99 and C11 features also apply to
C++. A complete list of C99 and C11 features supported in XL C++ is provided in
“Extensions for C99 compatibility” on page 50 and “Extensions for C11
compatibility” on page 51.

Extensions related to GNU C and GNU C++

Certain language extensions that correspond to GNU C and GNU C++ features are
implemented to facilitate portability. These include extensions to C89, C99, C++98,
and C++03. Throughout this information, the text indicates the IBM extensions that
have been implemented for compatibility with GNU C and GNU C++; a complete
list of these is provided in “Extensions for GNU C compatibility” on page 6,
“Extensions for GNU C compatibility” on page 47, and “Extensions for GNU C++
compatibility” on page 51.

Extensions supporting and extending the AltiVec Programming
Interface

XL C/C++ supports and extends AltiVec vector types when vector support is
enabled. These language extensions exploit the SIMD capabilities of the PowerPC®

processor, and facilitate the associated optimization techniques. The IBM
implementation of the AltiVec Programming Interface specification is an extended
implementation, which, for the most part, matches the syntax and semantics of the
GNU C implementation. In addition to the text provided throughout this
information that describes the behavior of the vector extensions, a list of the IBM
extensions to the AltiVec Programming Interface is also provided in “Extensions for
vector processing support” on page 39.

2 XL C/C++: Language Reference for Little Endian Distributions

Chapter 2. IBM extension features

This chapter describes features that are IBM extensions to the standard language
specifications.

Note: In a topic that describes both standard language elements and IBM
extension features, the IBM extension information is indicated in one of the
following ways. If there are none of these indicators in the topic, the entire topic
describes an IBM extension.
v Enclosed in icons IBM

and IBM

v Marked with (IBM extension) in the section title
v Specified as IBM extension in main text

IBM extension features for both C and C++
This section describes IBM extension features for both the C and C++ languages
that are listed in the following categories. The topic of the extension feature is
appended under only one category if it belongs to more than one category; in the
other categories that the feature belongs to, only a link to the feature is provided.
v “General IBM extensions”
v “Extensions for GNU C compatibility” on page 6
v “Extensions for vector processing support” on page 39

General IBM extensions
The following feature is disabled by default at all language levels. It also can be
enabled or disabled by an individual option.

Table 4. General IBM extensions with individual option controls

Language feature Discussed in: Individual option controls

Extra text after #endif or
#else

“Extension of #endif and
#else” on page 4

-Wno-extra-tokens

C The following feature is enabled by default with the xlc, cc and c99
invocation commands when the extc99, stdc99, extc1x, or stdc11 language level is
not in effect. C

C++ The following feature is enabled with the -qlanglvl=extended option.
C++

Table 5. General IBM extensions

Language feature Discussed in:

Non-C99 IBM long long extension “Types of integer literals that are supported in
pre-C99 and pre-C++11 modes” on page 4

C The following feature is enabled by default with the xlc, cc and c99
invocation commands when the extc99, stdc99, extc1x, or stdc11 language level is
in effect. C

© Copyright IBM Corp. 1998, 2015 3

C++ The following feature is enabled with the -qlanglvl=extended0x or
-qlanglvl=extended1y option. C++

Table 6. General IBM extensions

Language feature Discussed in:

C99 long long feature with the associated
IBM extensions

Types of integer literals in C99 and C++11

Extension of #endif and #else
The C and C++ language standards do not support extra text after #endif or #else.
XL C/C++ compiler complies with the standards. When you port code from a
compiler that supports extra text after #endif or #else, you can specify option
-Wno-extra-tokens to suppress the warning message that is emitted.

One use is to comment on what is being tested by the corresponding #if or
#ifdef. For example:
#ifdef MY_MACRO
...
#else MY_MACRO not defined
...
#endif MY_MACRO

In this case, if you want the compiler to be silent about this deviation from the
standards, you can suppress the message by specifying option -Wno-extra-tokens.

Integer literals

The long long features

There are two long long features:
v the C99 long long feature
v the non-C99 long long feature

Note: The syntax of integer literals is the same for both of the long long features.

Types of integer literals that are supported in pre-C99 and pre-C++11
modes

The following table lists the integer literals and shows the possible data types
when the C99 long long feature is not enabled.

Table 7. Types of integer literals that are supported in pre-C99 and pre-C++11 modes1

Representation Suffix Possible data types

int unsigned
int

long
int

unsigned long
int

IBM

long long
int

IBM

unsigned
long long
int

Decimal None + + +2

Octal, Hex None + + + +

All u or U + +

Decimal l or L + +

Octal, Hex l or L + +

4 XL C/C++: Language Reference for Little Endian Distributions

Table 7. Types of integer literals that are supported in pre-C99 and pre-C++11
modes1 (continued)

Representation Suffix Possible data types

All Both u
or U
and l
or L

+

Decimal ll
or LL

+ +

Octal, Hex ll or
LL

+ +

All Both u
or U
and ll
or LL

+

Note:

1. When none of the long long features are enabled, types of integer literals include all
the types in this table except the last two columns.

2. IBM The unsigned long int type is not required here in the C++98 and C++03
standards. The C++ compiler includes the type in the implementation for compatibility
purposes only.

Types of integer literals that are supported in C99 and C++11

When both the C99 and non-C99 long long features are disabled, integer literals
that have one of the following suffixes cause a severe compile-time error:
v ll or LL
v Both u or U and ll or LL

C++11 To strictly conform to the C++11 standard, the compiler introduces the
extended integer safe behavior to ensure that a signed value never becomes an
unsigned value after a promotion. After you enable this behavior, if a decimal
integer literal that does not have a suffix containing u or U cannot be represented
by the long long int type, the compiler issues a warning message to indicate that
the value of the literal is out of range. You can change the severity of the message
from warning to error with the -Werror=implicitly-unsigned-literal option. The
extended integer safe behavior is the only difference between the C99 long long
feature with the associated IBM extensions and the C99 long long feature. C++11

The following table lists the integer literals and shows the possible data types
when the C99 long long feature is enabled.

Table 8. Types of integer literals that are supported in C99 and C++11

Representation Suffix Possible data types

int unsigned
int

long int unsigned
long int

long
long int

unsigned
long
long int

Decimal None + + +1, 2

Octal, Hex None + + + +

All u or U + +

Decimal l or L + +1, 2

Chapter 2. IBM extension features 5

Table 8. Types of integer literals that are supported in C99 and C++11 (continued)

Representation Suffix Possible data types

Octal, Hex l or L + +

All Both u or U
and l or L

+

Decimal ll or LL + +1, 2

Octal, Hex ll or LL + +

All Both u or U
and ll or
LL

+

Note:

1. C++11 The compiler does not support this type if the extended integer safe behavior
is enabled.

2. IBM All integer literals can be represented by the unsigned long long int type if
they can fit into this type. A decimal literal without a u or U in the suffix is represented
by the unsigned long long int type if both of the following conditions are satisfied. In
this case, the compiler generates a message to indicate that the value of the literal is too
large for any signed integer type.

v The value of the literal can fit into the unsigned long long int type.

v The value cannot fit into any of the possible data types that are not marked as an
IBM extension in the table.

3. The C/C++ standard defines the following rules:

v When long int is a possible data type, long long int is also a possible data type.

v When unsigned long int is a possible data type, unsigned long long int is also a
possible data type.

However, in 64-bit mode, the additional cases that are defined by the rules are never
encountered.

Related reference:

See -std (-qlanglvl) in the XL C/C++ Compiler Reference

Extensions for GNU C compatibility
The following features are enabled by default at all language levels:

Table 9. Default IBM XL C and C++ extensions for GNU C compatibility

Language feature Discussed in:

__alignof__ operator N/A

__attribute__ keyword “Variable attributes” on page 32, “Function
attributes” on page 9

__complex__ keyword N/A

__extension__ keyword N/A

__imag__ and __real__ complex type
operators

N/A

__restrict__ keyword N/A

__thread storage class specifier “The __thread storage class specifier” on
page 28

__typeof__ keyword “The typeof keyword” on page 29

#include_next preprocessor directive “The #include_next directive” on page 27

6 XL C/C++: Language Reference for Little Endian Distributions

Table 9. Default IBM XL C and C++ extensions for GNU C compatibility (continued)

Language feature Discussed in:

#warning preprocessor directive N/A

Alternate keywords N/A

asm inline assembly-language statements “Inline assembly statements” on page 19

asm labels N/A

Complex literal suffixes N/A

Computed goto statements N/A

Dollar signs in identifiers “Characters in identifiers” on page 8

Function attributes “Function attributes” on page 9

Initialization of static variables by
compound literals

“Compound literal expressions” on page 8

Labels as values N/A

Postfix and unary operators on complex
types (increment, decrement, and complex
conjugation)

N/A

Statements and declarations in expressions
(statement expressions)

N/A

Static initialization of flexible array members
of aggregates

“Flexible array members of structures” on
page 8

Structures with flexible array members being
members of another structure

“Flexible array members of structures” on
page 8

Type attributes “Type attributes” on page 29

Variable attributes “Variable attributes” on page 32

Variadic macro extensions “Variadic macros” on page 38

Zero-extent arrays N/A

C The following features are enabled by default when you compile with any
of the following commands:
v the xlc invocation command
v the -qlanglvl=extc99 | extc89 | extc1x | extended options

C

C++ The following features are enabled by default at all language levels:
C++

Some features can also be enabled or disabled by specific compiler options, which
are listed in the below table:

Table 10. IBM XL C and C++ extensions for GNU C compatibility with individual option
controls

Language feature Discussed in:
Individual option
controls

typeof keyword “The typeof keyword” on page 29 N/A

Visibility function attribute1 “visibility” on page 18 -fvisibility (-qvisibility)

Visibility variable attribute1 “The visibility variable attribute” on
page 37

-fvisibility (-qvisibility)

Chapter 2. IBM extension features 7

Table 10. IBM XL C and C++ extensions for GNU C compatibility with individual option
controls (continued)

Language feature Discussed in:
Individual option
controls

Note:

1. You can use the -fvisibility option to specify visibility attributes for variables and
functions if they do not get visibility attributes from pragma directives, explicitly
specified attributes, or propagation rules. This option cannot be used to disable
visibility attributes for variables or functions.

Characters in identifiers
The dollar sign can appear in identifier names at all language levels. When you
compile with either the -fno-dollars-in-identifiers or the -qnodollar option,
the compiler issues errors for dollar signs in identifier names.

Other specialized identifiers, such as characters in national character sets, can also
be allowed to appear in an identifier depending on compiler options.

Compound literal expressions
For compatibility with GNU C, a static variable can be initialized with a
compound literal of the same type, provided that all the initializers in the
initializer list are constant expressions.

Flexible array members of structures

To be compatible with GNU C/C++, the XL C/C++ compiler extends Standard C
and C++, to ease the restrictions on flexible array members and allow the
following situations:
v Structures containing flexible array members can be members of other structures.
v C Flexible array members can be statically initialized only if either of the

following two conditions is true:
– The flexible array member is the last member of the structure, for example:

struct f {
int a;
int b[];

} f1 = {1,{1,2,3}}; // Fine.

struct a {
int b;
int c[];
int d[];

} e = { 1,{1,2},3}; // Error, c is not the last member
// of structure a.

– Flexible array members are contained in the outermost structure of nested
structures. Members of inner structures cannot be statically initialized, for
example:
struct b {
int c;
int d[];

};

struct c {
struct b f;
int g[];

} h ={{1,{1,2}},{1,2}}; // Error, member d of structure b is
// in the inner nested structure.

8 XL C/C++: Language Reference for Little Endian Distributions

C

Function attributes
Function attributes are extensions implemented to enhance the portability of
programs developed with GNU C. Specifiable attributes for functions provide
explicit ways to help the compiler optimize function calls and to instruct it to
check more aspects of the code. Others provide additional functionality.

IBM XL C/C++ compiler implements a subset of the GNU C function attributes.
For a particular function attribute that is not implemented, the compiler issues
diagnostics and ignores the attribute specification.

A function attribute is specified with the keyword __attribute__ followed by the
attribute name and any additional arguments the attribute name requires. A
function __attribute__ specification is included in the declaration or definition of
a function. The syntax takes the following forms:

Function attribute syntax: function definition (form 1)

►► return_type __attribute__ ▼

,

((attribute name))
__ attribute_name __

►

► function_declarator ►◄

Function attribute syntax: function definition (form 2)

►► __attribute__ ►

► ▼

,

((attribute_name)) return_type function_declarator ;
__ attribute_name __

►◄

Function attribute syntax: function definition (form 3)

►► return_type function_declarator __attribute__ ►

► ▼

,

((attribute_name)) ;
__ attribute_name __

►◄

You can specify attribute_name with or without leading and trailing double
underscore characters; however, using the double underscore characters reduces
the likelihood of name conflicts with macros of the same name. These language
features are collectively available when compiling in any of the extended language
levels.

Chapter 2. IBM extension features 9

The following function declarations are all valid:
int __attribute__((attribute_name)) func(int i); //Form 1
__attribute__((attribute_name)) int func(int); //Form 2
int func() __attribute__((attribute_name)); //Form 3

The following function attributes are supported:
v “alias”
v “always_inline” on page 11
v “const” on page 11
v “constructor and destructor” on page 12
v “format” on page 12
v “format_arg” on page 13
v “gnu_inline” on page 14
v “malloc” on page 15
v “noinline” on page 16
v “noreturn” on page 16
v “pure” on page 16
v “The section function attribute” on page 16
v “used” on page 17
v “weak” on page 17
v “weakref” on page 17
v “visibility” on page 18
Related reference:
“Variable attributes” on page 32
“Type attributes” on page 29

alias:
The alias function attribute causes the function declaration to appear in the object
file as an alias for another symbol. This language feature provides a technique for
coping with duplicate or cumbersome names.

alias function attribute syntax

►► __attribute__ ((alias ("original_function_name")))
__alias__

►◄

C The aliased function can be defined after the specification of its alias with
this function attribute. C also allows an alias specification in the absence of a
definition of the aliased function in the same compilation unit.

The following code declares func1 to be an alias for __func2:
void __func2(){ /* function body */ }
void func1() __attribute__((alias("__func2")));

C

C++ The original_function_name must be the mangled name.

The following code declares func1 to be an alias for __func2

10 XL C/C++: Language Reference for Little Endian Distributions

extern "C" __func2(){ /* function body */ }
void func1() __attribute__((alias("__func2")));

C++

The compiler does not check for consistency between the declaration of func1 and
definition of __func2. Such consistency remains the responsibility of the
programmer.
Related reference:
“The weak variable attribute” on page 37

always_inline:
The always_inline function attribute instructs the compiler to inline a function.
This function can be inlined when all of the following conditions are satisfied:
v The function is an inline function that satisfies any of the following conditions:

– The function is specified with the inline or __inline__ keyword.
– C++ The function is defined within a class declaration. C++

v The function is not specified with the noinline or __noinline__ attribute.
v The number of functions to be inlined does not exceed the limit of inline

functions that can be supported by the compiler.

always_inline function attribute syntax

►► __attribute__ ((always_inline))
__always_inline__

►◄

The noinline attribute takes precedence over the always_inline attribute. The
always_inline attribute takes precedence over inlining compiler options only if
inlining is enabled. The always_inline attribute is ignored if inlining is disabled.

C++ The compiler might not inline a virtual function even when the function
is specified with the always_inline attribute. The compiler will not issue an
informational message to indicate that a virtual function is not inlined.

When you specialize a function template that is specified with the always_inline
attribute, this attribute is propagated to the template specification. If you apply the
always_inline attribute to the template specification, the duplicate always_inline
attribute is ignored. See the following example.
template<class T> inline __attribute__((always_inline)) T test(){

return (T)0;
}

// The duplicate attribute "always_inline" is ignored.
template<> inline __attribute__((always_inline)) float test<float>(){

return (float)0;
}

C++

Related reference:
“noinline” on page 16

const:
The const function attribute allows you to tell the compiler that the function can
safely be called fewer times than indicated in the source code. The language

Chapter 2. IBM extension features 11

feature provides you with an explicit way to help the compiler optimize code by
indicating that the function does not examine any values except its arguments and
has no effects except for its return value.

const function attribute syntax

►► __attribute__ ((const))
__const__

►◄

The following kinds of functions should not be declared const:
v A function with pointer arguments which examines the data pointed to.
v A function that calls a non-const function.

Note: GNU C has a non-attribute method that uses the const keyword to achieve
the const function attribute, but the XL C/C++ compiler does not support this
method.
Related reference:

See -qisolated_call in the XL C/C++ Compiler Reference

constructor and destructor:
The constructor and destructor function attributes provide the ability to write a
function that initializes data or releases storage that is used implicitly during
program execution. A function to which the constructor function attribute has
been applied is called automatically before execution enters main. Similarly, a
function to which the destructor attribute has been applied is called automatically
after calling exit or upon completion of main.

When the constructor or destructor function is called automatically, the return
value of the function is ignored, and any parameters of the function are undefined.

constructor and destructor function attribute syntax

►► __attribute__ ((constructor))
destructor
__constructor__
__destructor__

►◄

A function declaration containing a constructor or destructor function attribute
must match all of its other declarations.

format:
The format function attribute provides a way to identify user-defined functions
that take format strings as arguments so that calls to these functions will be
type-checked against a format string, similar to the way the compiler checks calls
to the functions printf, scanf, strftime, and strfmon for errors.

format function attribute syntax

12 XL C/C++: Language Reference for Little Endian Distributions

►► ▼

,

__attribute__ ((format (printf , string_index , first_to_check)))
__format__ scanf

strftime
strfmon
__printf__
__scanf__
__strftime__
__strfmon__

►◄

where

string_index
Is a constant integral expression that specifies which argument in the
declaration of the user function is the format string argument. C++ In
C++, the minimum value of string_index for nonstatic member functions is
2 because the first argument is an implicit this argument. This behavior is
consistent with that of GNU C++. C++

first_to_check
Is a constant integral expression that specifies the first argument to check
against the format string. If there are no arguments to check against the
format string (that is, diagnostics should only be performed on the format
string syntax and semantics), first_to_check should have a value of 0. For
strftime-style formats, first_to_check is required to be 0.

It is possible to specify multiple format attributes on the same function, in which
case, all apply.
void my_fn(const char* a, const char* b, ...)

__attribute__((__format__(__printf__,1,0), __format__(__scanf__,2,3)));

It is also possible to diagnose the same string for different format styles. All styles
are diagnosed.
void my_fn(const char* a, const char* b, ...)

__attribute__((__format__(__printf__,2,3),
__format__(__strftime__,2,0),
__format__(__scanf__,2,3)));

format_arg:
The format_arg function attribute provides a way to identify user-defined
functions that modify format strings. Once the function is identified, calls to
functions like printf, scanf, strftime, or strfmon, whose operands are a call to the
user-defined function can be checked for errors.

format_arg function attribute syntax

►► __attribute__ ((format_arg (string_index)))
__format_arg__

►◄

where string_index is a constant integral expression that specifies which argument
is the format string argument, starting from 1. C++ For non-static member
functions in C++, string_index starts from 2 because the first parameter is an
implicit this parameter. C++

It is possible to specify multiple format_arg attributes on the same function, in
which case, all apply.

Chapter 2. IBM extension features 13

extern char* my_dgettext(const char* my_format, const char* my_format2)
__attribute__((__format_arg__(1))) __attribute__((__format_arg__(2)));

printf(my_dgettext("%","%"));
//printf-style format diagnostics are performed on both "%" strings

gnu_inline: The gnu_inline attribute instructs the compiler to modify the inlining
behavior of a function. When this function attribute is used, the compiler imitates
the GNU legacy inlining extension to C.

This function attribute is only enabled if used in conjunction with an inline
keyword (__inline__, inline, __inline, etc.).

gnu_inline function attribute syntax

►► inline __attribute__ ((gnu_inline)) ►◄

Note: The behavior of the gnu_inline function attribute is the same when used in
conjunction with either the inline or __inline__ keywords.

The semantics of the GNU legacy inlining extension to C are as follows:

C

extern gnu_inline:
extern inline __attribute__((gnu_inline)) func() {...};

This definition of func is used only for inlining. It is not compiled as a
standalone function.

static gnu_inline:
static inline __attribute__((gnu_inline)) func() {...};

If the function is generated, it is generated with internal linkage.

plain gnu_inline:
inline __attribute__((gnu_inline)) func() {...};

The definition is used for inlining when possible. It is compiled as a
standalone function (emitted as a strong definition) and emitted with
external linkage.

C

C++

extern gnu_inline:
[extern] inline __attribute__((gnu_inline)) func() {...};

This definition of func is used only for inlining. It is not compiled as a
standalone function. Note that member functions (including static ones and
ones with no linkage) marked with function attribute gnu_inline has
"extern" behavior.

static gnu_inline:
static inline __attribute__((gnu_inline)) func() {...};

14 XL C/C++: Language Reference for Little Endian Distributions

If the function is generated, it is generated with internal linkage. Note that
static behavior only applies to non-member static functions.

C++

The gnu_inline attribute can be specified inside double parentheses with keyword
__attribute__ in a function declaration. See the following example.

inline int func() __attribute__((gnu_inline));

As with other GCC function attributes, the double underscores on the attribute
name are optional. The gnu_inline attribute should be used with a function that is
also declared with the inline keyword.

malloc: With the function attribute malloc, you can instruct the compiler to treat a
function as if any non-NULL pointer it returns cannot alias any other valid
pointers. This type of function (such as malloc and calloc) has this property, hence
the name of the attribute. As with all supported attributes, malloc will be accepted
by the compiler without requiring any particular option or language level.

The malloc function attribute can be specified inside double parentheses via
keyword __attribute__ in a function declaration.

malloc function attribute syntax

►► __attribute__ ((malloc))
__malloc__

►◄

As with other GCC function attributes, the double underscores on the attribute
name are optional.

Note:

v Do not use this function attribute unless you are sure that the pointer returned
by a function points to unique storage. Otherwise, optimizations performed
might lead to incorrect behavior at run time.

v If the function does not return a pointer or C++ reference return type but it is
marked with the function attribute malloc, a warning is emitted, and the
attribute is ignored.

Example

A simple case that should be optimized when attribute malloc is used:
#include <stdlib.h>
#include <stdio.h>
int a;
void* my_malloc(int size) __attribute__ ((__malloc__))
{

void* p = malloc(size);
if (!p) {
printf("my_malloc: out of memory!\n");
exit(1);

}
return p;

}
int main() {

int* x = &a;
int* p = (int*) my_malloc(sizeof(int));
*x = 0;

Chapter 2. IBM extension features 15

*p = 1;
if (*x) printf("This printf statement to be detected as unreachable

and discarded during compilation process\n");
return 0;

}

noinline:
The noinline function attribute prevents the function to which it is applied from
being inlined, regardless of whether the function is declared inline or non-inline.
The attribute takes precedence over inlining compiler options, the inline keyword,
and the always_inline function attribute.

noinline function attribute syntax

►► __attribute__ ((noinline))
__noinline__

►◄

Other than preventing inlining, the attribute does not remove the semantics of
inline functions.

noreturn:
The noreturn function attribute allows you to indicate to the compiler that the
function will not return the control to its caller. The language feature provides the
programmer with another explicit way to help the compiler optimize code and to
reduce false warnings for uninitialized variables.

The return type of the function should be void.

noreturn function attribute syntax

►► __attribute__ ((noreturn))
__noreturn__

►◄

Registers saved by the calling function may not necessarily be restored before
calling the nonreturning function.

pure:
The pure function attribute allows you to declare a function that can be called
fewer times than what is literally in the source code. Declaring a function with the
attribute pure indicates that the function has no effect except a return value that
depends only on the parameters, global variables, or both.

pure function attribute syntax

►► __attribute__ ((pure))
__pure__

►◄

Related reference:

See -qisolated_call in the XL C/C++ Compiler Reference

The section function attribute:
The section function attribute specifies the section in the object file in which the
compiler should place its generated code. The language feature provides the ability
to control the section in which a function should appear.

16 XL C/C++: Language Reference for Little Endian Distributions

section function attribute syntax

►► __attribute__ ((section ("section_name")))
__section__

►◄

where section_name is a string literal.

Each defined function can reside in only one section. The section indicated in a
function definition should match that in any previous declaration. The section
indicated in a function definition cannot be overwritten, whereas one in a function
declaration can be overwritten by a later specification. Moreover, if a section
attribute is applied to a function declaration, the function will be placed in the
specified section only if it is defined in the same compilation unit.
Related reference:
“The section variable attribute” on page 36

used: When a function is referenced only in inline assembly, you can use the used
function attribute to instruct the compiler to emit the code for the function even if
it appears that the function is not referenced.

The used function attribute can be specified inside double parentheses via keyword
__attribute__ in a function declaration, for example, int foo() __attribute__
((__used__)); As with other GCC function attributes, the double underscores on
the attribute name are optional.

used function attribute syntax

►► __attribute__ ((used))
__used__

►◄

If the function attribute gnu_inline is specified in such a way that the function is
discarded, and is specified together with the function attribute used, the
gnu_inline attribute wins, and the function definition is discarded.

weak:
The weak function attribute causes the symbol resulting from the function
declaration to appear in the object file as a weak symbol, rather than a global one.
The language feature provides the programmer writing library functions with a
way to allow function definitions in user code to override the library function
declaration without causing duplicate name errors.

weak function attribute syntax

►► __attribute__ ((weak))
__weak__

►◄

Related reference:
“alias” on page 10

weakref: weakref is an attribute attached to function declarations which must
specify a target name. The target name might also be specified through the
attribute alias in any declaration of the function.

References to the weakref function are converted into references of the target name.
If the target name is not defined in the current translation unit and it is not

Chapter 2. IBM extension features 17

referenced directly or otherwise in a way that requires a definition of the target, for
example if it is only referenced by using weakref functions, the reference is weak.
In the presence of a definition of the target in the current translation unit,
references to a weakref function resolve directly to said definition. The weakref
attribute does not otherwise affect definitions of the target. A weakref function
must have internal linkage.

The weakref attribute, as with other GCC attributes, can be expressed in a pre-fix
or post-fix syntax:

pre-fix syntax
static __attribute__((weakref("bar"))) void foo(void);

post-fix syntax
static void foo(void) __attribute__((weakref("bar")));

Functions with weakref or alias attributes may refer to other such functions. The
name referred to is that of the last, i.e., non-weakref and non-alias target.

Rules

If a weakref function is declared without the keyword static, an error message is
emitted when the compiler is configured with GCC version 4.3 or later.

The target name specified in the weakref function declaration cannot directly or
indirectly point to itself.

Using the weakref attribute without providing a target name is not recommended.

If a body is provided in a weakref function declaration with a pre-fix syntax, the
attribute is ignored. A warning message reporting this situation will be emitted.

Examples

The following examples illustrates various declarations of weakref functions:
static void foo() __attribute__((weakref("bar")));

void foo() __attribute__((weakref("bar")));

static void foo() __attribute__((weakref,alias("bar")));

static void foo() __attribute__((alias("bar"),weakref));

visibility:
The visibility function attributes describe whether and how a function defined in
one module can be referenced or used in other modules. By using this feature, you
can make a shared library smaller and decrease the possibility of symbol collision.
For details, see Using visibility attributes in the XL C/C++ Optimization and
Programming Guide.

visibility function attribute syntax

►► __attribute__ ((visibility ("default")))
__visibility__ "protected"

"hidden"
"internal"

►◄

18 XL C/C++: Language Reference for Little Endian Distributions

Example

In the following example, the visibility attribute of function void f(int i, int j)
is hidden:
void __attribute__((visibility("hidden"))) f(int i, int j);

Related reference:
“The visibility variable attribute” on page 37
“The visibility type attribute” on page 52
“The visibility namespace attribute” on page 52

See Using visibility attributes in the XL C/C++ Optimization and
Programming Guide

See -fivisibility (-qvisibility) in the XL C/C++ Compiler Reference

See -shared (-qmkshrobj) in the XL C/C++ Compiler Reference

See #pragma GCC visibility push (visibility), #pragma GCC visibility pop in
the XL C/C++ Compiler Reference

Inline assembly statements
Under extended language levels, the compiler provides support for embedded
assembly code fragments among C and C++ source statements. This extension has
been implemented for use in general system programming code, and in the
operating system kernel and device drivers, which were originally developed with
GNU C.

The keyword asm stands for assembly code. When strict language levels are used
in compilation, the C compiler treats asm as a regular identifier and reserves __asm
and __asm__ as keywords. The C++ compiler always recognizes the asm, __asm, and
__asm__ keywords.

The syntax is as follows:

asm statement syntax — statement in local scope

►► asm
__asm
__asm__

volatile
►

► (code_format_string)
:

output :
input :

clobbers

►◄

input:

▼

,

constraint (C_expression)
modifier

output:

Chapter 2. IBM extension features 19

▼

,

modifier constraint (C_expression)

volatile
The qualifier volatile instructs the compiler to perform only minimal
optimizations on the assembly block. The compiler cannot move any
instructions across the implicit fences surrounding the assembly block. See
Example 1 for detailed usage information.

code_format_string
The code_format_string is the source text of the asm instructions and is a
string literal similar to a printf format specifier.

Operands are referred to in the %integer format, where integer refers to the
sequential number of the input or output operand. See Example 1 for
detailed usage information.

To increase readability, each operand can be given a symbolic name
enclosed in brackets. In the assembler code section, you can refer to each
operand in the %[symbolic_name] format, where the symbolic_name is
referenced in the operand list. You can use any name, including existing C
or C++ symbols, because the symbolic names have no relation to any C or
C++ identifiers. However, no two operands in the same assembly
statement can use the same symbolic name. See Example 2 for detailed
usage information.

output
The output consists of zero, one or more output operands, separated by
commas. Each operand consists of a constraint(C_expression) pair. The
output operand must be constrained by the = or + modifier (described
below), and, optionally, by an additional % or & modifier.

input The input consists of zero, one or more input operands, separated by
commas. Each operand consists of a constraint(C_expression) pair.

clobbers

clobbers is a comma-separated list of register names enclosed in double
quotes. If an asm instruction updates registers that are not listed in the
input or output of the asm statement, the registers must be listed as
clobbered registers. The following register names are valid :

r0 to r31
General purpose registers

f0 to f31
Floating-point registers

lr Link register

ctr Loop count, decrement and branching register

fpscr Floating-point status and control register

xer Fixed-point exception register

cr0 to cr7
Condition registers. Example 3 shows a typical use of condition
registers in the clobbers.

v0 to v31
Vector registers (on selected processors only)

20 XL C/C++: Language Reference for Little Endian Distributions

In addition to the register names, cc and memory can also be used in the list
of clobbered registers. The usage information of cc and memory is listed as
follows:

cc Add cc to the list of clobbered registers if assembler instructions
can alter the condition code register.

memory

Add memory to the clobber list if assembler instructions can change
a memory location in an unpredictable fashion. The memory clobber
ensures that the compiler does not to move the assembler
instruction across other memory references and ensures that any
data that is used after the completion of the assembly statement is
valid.

However, the memory clobber can result in many unnecessary
reloads, reducing the benefits of hardware prefetching. Thus, the
memory clobber can impose a performance penalty and should be
used with caution. See Example 4 and Example 1 for the detailed
usage information.

modifier

The modifier can be one of the following operators:

= Indicates that the operand is write-only for this instruction. The
previous value is discarded and replaced by output data. See
Example 5 for detailed usage information.

+ Indicates that the operand is both read and written by the
instruction. See Example 6 for detailed usage information.

& Indicates that the operand may be modified before the instruction
is finished using the input operands; a register that is used as
input should not be reused here.

% Declares the instruction to be commutative for this operand and
the following operand. This means that the order of this operand
and the next may be swapped when generating the instruction.
This modifier can be used on an input or output operand, but
cannot be specified on the last operand. See Example 7 for detailed
usage information.

constraint

The constraint is a string literal that describes the kind of operand that is
permitted, one character per constraint. The following constraints are
supported:

b Use a general register other than zero. Some instructions treat the
designation of register 0 specially, and do not behave as expected if
the compiler chooses r0. For these instructions, the designation of
r0 does not mean that r0 is used. Instead, it means that the literal
value 0 is specified. See Example 8 for detailed usage information.

c Use the CTR register.

d Use a floating-point register.

f Use a floating-point register. See Example 7 for detailed usage
information.

g Use a general register, memory, or immediate operand. In the

Chapter 2. IBM extension features 21

POWER® architecture, there are no instructions where a register,
memory specifier, or immediate operand can be used
interchangeably. However, this constraint is tolerated where it is
possible to do so.

h Use the CTR or LINK register.

i Use an immediate integer or string literal operand.

l Use the CTR register.

m Use a memory operand supported by the machine. You can use
this constraint for operands of the form D(R), where D is a
displacement and R is a register. See Example 9 for detailed usage
information.

n Use an immediate integer.

o Use a memory operand that is offsetable. This means that the
memory operand can be addressed by adding an integer to a base
address. In the POWER architecture, memory operands are always
offsetable, so the constraints o and m can be used interchangeably.

r Use a general register. See Example 5 for detailed usage
information.

s Use a string literal operand.

v Use a vector register.

0, 1, ...8, 9
A matching constraint. Allocate the same register in output as in
the corresponding input.

I, J, K, L, M, N, O, P
Constant values. Fold the expression in the operand and substitute
the value into the % specifier. These constraints specify a maximum
value for the operand, as follows:
v I — signed 16-bit
v J — unsigned 16-bit shifted left 16 bits
v K — unsigned 16-bit constant
v L — signed 16-bit shifted left 16 bits
v M — unsigned constant greater than 31
v N — unsigned constant that is an exact power of 2
v O — zero
v P — signed whose negation is a signed 16-bit constant

C_expression

The C_expression is a C or C++ expression whose value is used as the
operand for the asm instruction. Output operands must be modifiable
lvalues. The C_expression must be consistent with the constraint specified
on it. For example, if i is specified, the operand must be an integer
constant number.

Related reference:

See -fstrict-aliasing (-qalias=ansi) in the XL C/C++ Compiler Reference

Supported and unsupported constructs:

22 XL C/C++: Language Reference for Little Endian Distributions

Supported constructs

The inline assembly statements support the following constructs:
v All the instruction statements listed in the Assembler Language Reference
v All extended instruction mnemonics
v Label definitions
v Branches to labels

Unsupported constructs

The inline assembly statements do not support the following constructs:
v Pseudo-operation statements, which are assembly statements that begin with a

dot (.), such as .function
v Branches between different asm blocks

In addition, some constraints originating from the GNU compiler are not
supported, but are tolerated where it is possible. For example, constraints S and T
are treated as immediates, but the compiler issues a warning message stating that
they are unsupported.

Restrictions on inline assembly statements:
The following restrictions are on the use of inline assembly statements:
v The assembler instructions must be self-contained within an asm statement. The

asm statement can only be used to generate instructions. All connections to the
rest of the program must be established through the output and input operand
list.

v Referencing an external symbol directly without going through the operand list
is not supported.

v Assembler instructions requiring a pair of registers are not specifiable by any
constraints, and are therefore not supported. For example, you cannot use the %f
constraint for a long double operand.

v The shared register file between the floating-point scalar and the vector registers
are not modelled as shared in inline assembly statements. You must specify
registers f0-f31 and v0-v31 in the clobbers list. There is no combined x0-x63.

v Operand replacements (such as %0, %1, and so on) can use an optional x before
the number or symbolic name to indicate that a vsx register reference must be
used. For example, a vector operand %1 allocated to register v0 is replaced with 0
(for use in VMX instructions). The same operand used as %x1 in the assembly
text is replaced with 32 (for use in VSX instructions). Note that this restriction
applies only for architectures that support VSX architecture extension.

Related reference:

See -fasm (-qasm) in the XL C/C++ Compiler Reference

Examples of inline assembly statements:
Example 1: The following example illustrates the usage of the volatile keyword.
#include <stdio.h>

inline bool acquireLock(int *lock){
bool returnvalue = false;
int lockval;
asm volatile(

/*--------a fence here-----*/

Chapter 2. IBM extension features 23

" 0: lwarx %0,0,%2 \n" // Loads the word and reserves
// a memory location for the subsequent
// stwcx. instruction.

" cmpwi %0,0 \n" // Compares the lock value to 0.
" bne- 1f \n" // If it is 0, you can acquire the

// lock. Otherwise, you did not get the
// lock and must try again later.

" ori %0,%0,1 \n" // Sets the lock to 1.
" stwcx. %0,0,%2 \n" // Tries to conditionally store 1

// into the lock word to acquire
// the lock.

" bne- 0b \n" // Reservation was lost. Try again.

" isync \n" // Lock acquired. The isync instruction
// implements an import barrier to
// ensure that the instructions that
// access the shared region guarded by
// this lock are executed only after
// they acquire the lock.

" ori %1,%1,1 \n" // Sets the return value for the
// function acquireLock to true.

" 1: \n" // Did not get the lock.
// Will return false.

/*------a fence here------*/

: "+r" (lockval),
"+r" (returnvalue)

: "r" (lock) // "lock" is the address of the lock in
// memory.

: "cr0" // cr0 is clobbered by cmpwi and stwcx.
);

return returnvalue;
}
int main()
{

int myLock;
if(acquireLock(&myLock)){

printf("got it!\n");
}else{

printf("someone else got it\n");
}
return 0;

}

In this example, %0 refers to the first operand "+r"(lockval), %1 refers to the
second operand "+r"(returnvalue), and %2 refers to the third operand "r"(lock).

The assembly statement uses a lock to control access to the shared storage; no
instruction can access the shared storage before acquiring the lock.

The volatile keyword implies fences around the assembly instruction group, so
that no assembly instructions can be moved out of or around the assembly block.

Without the volatile keyword, the compiler can move the instructions around for
optimization. This might cause some instructions to access the shared storage
without acquiring the lock.

24 XL C/C++: Language Reference for Little Endian Distributions

It is unnecessary to use the memory clobber in this assembly statement, because the
instructions do not modify memory in an unexpected way. If you use the memory
clobber, the program is still functionally correct. However, the memory clobber
results in many unnecessary reloads, imposing a performance penalty.

Example 2: The following example illustrates the use of the symbolic names for
input and output operands.
int a ;
int b = 1, c = 2, d = 3 ;
__asm(" addc %[result], %[first], %[second]"

: [result] "=r" (a)
: [first] "r" (b),
[second] "r" (d)

);

In this example, %[result] refers to the output operand variable a, %[first] refers
to the input operand variable b, and %[second] refers to the input operand variable
d.

Example 3: The following example shows a typical use of condition registers in the
clobbers.

asm (" add. %0,%1,%2 \n"
: "=r" (c)
: "r" (a),

"r" (b)
: "cr0"
);

In this example, apart from the registers listed in the input and output of the
assembly statement, the add. instruction also affects the condition register field 0.
Therefore, you must inform the compiler about this by adding cr0 to the clobbers.

Example 4: The following example shows the usage of the memory clobber.
asm volatile (" dcbz 0, %0 \n"

: "=r"(b)
:
: "memory"
);

In this example, the instruction dcbz clears a cache block, and might have changed
the variables in the memory location. There is no way for the compiler to know
which variables have been changed. Therefore, the compiler assumes that all data
might be aliased with the memory changed by that instruction.

As a result, everything that is needed must be reloaded from memory after the
completion of the assembly statement. The memory clobber ensures program
correctness at the expense of program performance, because the compiler might
reload data that had nothing to do with the assembly statement.

Example 5: The following example shows the usage of the = modifier and the r
constraint.
int a ;
int b = 100 ;
int c = 200 ;
asm(" add %0, %1, %2"

: "=r" (a)
: "r" (b),

"r" (c)
);

Chapter 2. IBM extension features 25

The add instruction adds the contents of two general purpose registers. The %0, %1,
and %2 operands are substituted by the C expressions in the output/input operand
fields.

The output operand uses the = modifier to indicate that a modifiable operand is
required; it uses the r constraint to indicate that a general purpose register is
required. Likewise, the r constraint in the input operands indicates that general
purpose registers are required. Within these restrictions, the compiler is free to
choose any registers to substitute for %0, %1, and %2.

Note: If the compiler chooses r0 for the second operand, the add instruction uses
the literal value 0 and yields an unexpected result. Thus, to prevent the compiler
from choosing r0 for the second operand, you can use the b constraint to denote
the second operand.

Example 6: The following example shows the usage of the + modifier and the K
constraint.
asm (" addi %0,%0,%2"

: "+r" (a)
: "r" (a),

"K" (15)
);

This assembly statement adds operand %0 and operand %2, and writes the result to
operand %0. The output operand uses the + modifier to indicate that operand %0
can be read and written by the instruction. The K constraint indicates that the value
loaded to operand %2 must be an unsigned 16-bit constant value.

Example 7: The following example shows the usage of the % modifier and the f
constraint.
asm(" fadd %0, %1, %2"

: "=f" (c)
: "%f" (a),

"f" (b)
);

This assembly statement adds operands a and b, and writes the result to operand
c. The % modifier indicates that operands a and b can be switched if the compiler
can generate better code in doing so. Each operand has the f constraint, which
indicates that a floating point register is required.

Example 8: The following example shows the usage of the b constraint.
char res[8]={’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’};
char a=’y’;
int index=7;

asm (" stbx %0,%1,%2 \n" \
: \
: "r" (a),

"b" (index),
"r" (res)

);

In this example, the b constraint instructs the compiler to choose a general register
other than r0 for the input operand %1. The result string of this program is
abcdefgy. However, if you use the r constraint and the compiler chooses r0 for %1,

26 XL C/C++: Language Reference for Little Endian Distributions

this instruction produces an incorrect result string ybcdefgh. For instructions that
treat the designation of r0 specially, it is therefore important to denote the input
operands with the b constraint.

Example 9: The following example shows the usage of the m constraint.
asm (" stb %1,%0 \n" \

: "=m" (res) \
: "r" (a)
);

In this example, the syntax of the instruction stb is stb RS,D(RA), where D is a
displacement and R is a register. D+RA forms an effective address, which is
calculated from D(RA). By using constraint m, you do not need to manually
construct effective addresses by specifying the register and displacement separately.

You can use a single constraint m or o to refer to the two operands in the
instruction, regardless of what the correct offset should be and whether it is an
offset off the stack or off the TOC (Table of Contents). This allows the compiler to
choose the right register (r1 for an automatic variable, for instance) and apply the
right displacement automatically.

The #include_next directive
The preprocessor directive #include_next behaves like the #include directive,
except that it specifically excludes the directory of the including file from the paths
to be searched for the named file. All search paths up to and including the
directory of the including file are omitted from the list of paths to be searched for
the included file. This allows you to include multiple versions of a file with the
same name in different parts of an application; or to include one header file in
another header file with the same name (without the header including itself
recursively). Provided that the different file versions are stored in different
directories, the directive ensures you can access each version of the file, without
requiring that you use absolute paths to specify the file name.

#include_next directive syntax

►► # include_next " file_name "
file_path

< file_name >
file_path

►◄

The directive must only be used in header files, and the file specified by the
file_name must be a header file. There is no distinction between the use of double
quotation marks and angle brackets to enclose the file name.

As an example of how search paths are resolved with the #include_next directive,
assume that there are two versions of the file t.h: the first one, which is included
in the source file t.c, is located in the subdirectory path1; the second one, which is
included in the first one, is located in the subdirectory path2. Both directories are
specified as include file search paths when t.c is compiled.
/* t.c */

#include "t.h"

int main()
{
printf(", ret_val);
}

Chapter 2. IBM extension features 27

/* t.h in path1 */

#include_next "t.h"

int ret_val = RET;

/* t.h in path2 */

#define RET 55;

The #include_next directive instructs the preprocessor to skip the path1 directory
and start the search for the included file from the path2 directory. This directive
allows you to use two different versions of t.h and it prevents t.h from being
included recursively.

The __thread storage class specifier
The __thread storage class marks a static variable as having thread-local storage
duration. This means that, in a multithreaded application, a unique instance of the
variable is created for each thread that uses it, and destroyed when the thread
terminates. The __thread storage class specifier can provide a convenient way of
assuring thread-safety: declaring an object as per-thread allows multiple threads to
access the object without the concern of race conditions, while avoiding the need
for low-level programming of thread synchronization or significant program
restructuring.

The tls_model attribute allows source-level control for the thread-local storage
model used for a given variable. The tls_model attribute must specify one of
local-exec, initial-exec, local-dynamic, or global-dynamic access method, which
overrides the -ftls-model (-qtls) option for that variable. For example:
__thread int i __attribute__((tls_model("local-exec")));

The tls_model attribute allows the linker to check that the correct thread model
has been used to build the application or shared library. The linker/loader
behavior is as follows:

Table 11. Link time/runtime behavior for thread access models

Access method Link-time diagnostic Runtime diagnostic

local-exec Fails if referenced symbol is
imported.

Fails if module is not the
main program. Fails if
referenced symbol is
imported (but the linker
should have detected the
error already).

initial-exec None. dlopen() fails if referenced
symbol is not in the module
loaded at execution time.

local-dynamic Fails if referenced symbol is
imported.

Fails if referenced symbol is
imported (but the linker
should have detected the
error already).

global-dynamic None. None.

The specifier can be applied to variables with static storage duration. It cannot be
applied to function-scoped or block-scoped automatic variables or non-static data
members.

28 XL C/C++: Language Reference for Little Endian Distributions

The thread specifier can be either preceded or followed by the static or extern
specifier.
__thread int i;
extern __thread struct state s;
static __thread char *p;

C++ A thread variable must be initialized with a constant expression. C++

Applying address operator (&) to a thread-local variable returns the runtime
address of the current thread's instance of the variable. That thread can pass this
address to any other thread; however, when the first thread terminates, any
pointers to its thread-local variables become invalid.
Related reference:

See -ftls-model (-qtls) in the XL C/C++ Compiler Reference

The typeof keyword
The typeof and __typeof__ keywords are supported as follows:

v C The __typeof__ keyword is recognized at all language levels. The
typeof token is not a keyword at the stdc89 and stdc99 language levels. At all
other language levels, typeof is treated as a keyword.

v C++ The typeof and __typeof__ keywords are recognized by default.

Type attributes
Type attributes are language extensions provided to facilitate compilation of
programs developed with the GNU C/C++ compilers. These language features
allow you to use named attributes to specify special properties of data objects. Any
variables that are declared as having that type will have the attribute applied to
them.

A type attribute is specified with the keyword __attribute__ followed by the
attribute name and any additional arguments the attribute name requires.
Although there are variations, the syntax of a type attribute is of the general form:

Type attribute syntax

►► type_name __attribute__ ▼

,

((attribute name))
__attribute name__

►

►
tag_identifier

{ member_definition_list } ; ►◄

Type attribute syntax — typedef declarations

►► typedef type_declaration type_name ►

Chapter 2. IBM extension features 29

► ▼

,

__attribute__ ((attribute name)) ;
__attribute name__

►◄

You can specify attribute name with or without leading and trailing double
underscore characters; however, using the double underscore characters reduces
the likelihood of name conflicts with macros of the same name. For unsupported
attribute names, the XL C/C++ compiler issues diagnostics and ignores the
attribute specification. Multiple attribute names can be specified in the same
attribute specification.

The following type attributes are supported:
v “The aligned type attribute”
v “The packed type attribute” on page 32
v “The may_alias type attribute” on page 31
v “The transparent_union type attribute (C only)” on page 49
v “The visibility type attribute” on page 52
Related reference:
“Variable attributes” on page 32
“Function attributes” on page 9

The aligned type attribute:
With the aligned type attribute, you can override the default alignment mode to
specify a minimum alignment value, expressed as a number of bytes, for a
structure, C++ classes C++ , union, enumeration, or other user-defined type
created in a typedef declaration. The aligned attribute is typically used to increase
the alignment of any variables declared of the type to which the attribute applies.

aligned type attribute syntax

►► __attribute__ ((aligned))
__aligned__ (alignment_factor)

►◄

The alignment_factor is the number of bytes, specified as a constant expression that
evaluates to a positive power of 2. If you omit the alignment factor (and its
enclosing parentheses), the compiler automatically uses 16 bytes. You can specify a
value up to a maximum 268435456 bytes. If you specify an alignment factor greater
than the maximum, the compiler issues an error and the compilation fails.

The alignment value that you specify is applied to all instances of the type. Also,
the alignment value applies to the variable as a whole; if the variable is an
aggregate, the alignment value applies to the aggregate as a whole, not to the
individual members of the aggregate.

Example

In all of the following examples, the aligned attribute is applied to the structure
type A. Because a is declared as a variable of type A, it also receives the alignment
specification, as any other instances declared of type A.

30 XL C/C++: Language Reference for Little Endian Distributions

struct __attribute__((__aligned__(8))) A {};

struct __attribute__((__aligned__(8))) A {} a;

typedef struct __attribute__((__aligned__(8))) A {} a;

Related reference:
“The aligned variable attribute” on page 33

See Aligning data in the XL C/C++ Optimization and Programming Guide

The may_alias type attribute:
You can specify the may_alias type attribute for a type so that lvalues of the type
can alias objects of any type, similar to a char type. Types with the may_alias
attribute are not subject to type-based aliasing rules.

may_alias type attribute syntax

►► __attribute__ ((may_alias))
__may_alias__

►◄

You can specify the may_alias type attribute in the following ways:
struct __attribute__((__may_alias__)) my_struct {} *ps;
typedef long __attribute__((__may_alias__)) t_long;
typedef struct __attribute__((__may_alias__)) my_struct {} t_my_struct;

Instead of specifying -fno-strict-aliasing, you can alternatively specify the
may_alias type attribute for a type to violate the ANSI aliasing rules when
compiling expressions that contain lvalues of that type. For example:
#define __attribute__(x) // Invalidates all __attribute__ declarations
typedef float __attribute__((__may_alias__)) t_float;

int main (void){
int i = 42;
t_float *pa = (t_float *) &i;
*pa = 0;
if (i == 42)
return 1;

return 0;
}

If you compile this code with the -fstrict-aliasing (-qalias=ansi) option at a
high optimization level, such as -O3, the executable program returns 1. Because the
lvalue *pa is of type float, according to the ANSI aliasing rules, the assignment to
lvalue *pa cannot modify the value of i, which is of type int.

If you remove the #define __attribute__(x) statement and compile the code with
the same options as before, the executable program returns 0. Because the type of
*pa is float __attribute__((__may_alias__)), *pa can alias any other object of
any type, and the assignment to lvalue *pa can modify the value of i to 0.

The use of the may_alias type attribute can result in less pessimistic aliasing
assumptions by the compiler, leading to more optimization opportunities,
compared to usage of the -fno-strict-aliasing (-qalias=noansi) compiler
option.

C This attribute is supported at the extc89, extc99, extended, and extc1x
language levels. C

Chapter 2. IBM extension features 31

C++ This attribute is supported at the extended, extended0x, and extended1y
language levels. C++

Related reference:

See -qalias in the XL C/C++ Compiler Reference

The packed type attribute:
The packed type attribute specifies that the minimum alignment should be used for
the members of a structure, class, union, or enumeration type. For structure, class,
or union types, the alignment is one byte for a member and one bit for a bit field
member. For enumeration types, the alignment is the smallest size that will
accomodate the range of values in the enumeration. All members of all instances of
that type will use the minimum alignment.

packed type attribute syntax

►► __attribute__ ((packed))
__packed__

►◄

Unlike the aligned type attribute, the packed type attribute is not allowed in a
typedef declaration.
Related reference:
“The packed variable attribute” on page 35

See Aligning data in the XL C/C++ Optimization and Programming Guide

Variable attributes
Variable attributes are language extensions provided to facilitate the compilation of
programs developed with the GNU C/C++ compilers. These language features
allow you to use named attributes to specify special properties of data objects.
Variable attributes apply to the declarations of simple variables, aggregates, and
member variables of aggregates.

A variable attribute is specified with the keyword __attribute__ followed by the
attribute name and any additional arguments the attribute name requires. A
variable __attribute__ specification is included in the declaration of a variable,
and can be placed before or after the declarator. Although there are variations, the
syntax generally takes either of the following forms:

Variable attribute syntax: post-declarator

►► declarator __attribute__ ▼

,

((attribute name))
__attribute name__

►◄

Variable attribute syntax: pre-declarator

►► type specifier __attribute__ ▼

,

((attribute name))
__attribute name__

►

32 XL C/C++: Language Reference for Little Endian Distributions

► declarator
initializer

►◄

You can specify attribute name with or without leading and trailing double
underscore characters; however, using the double underscore characters reduces
the likelihood of name conflicts with macros of the same name. For unsupported
attribute names, the XL C/C++ compiler issues diagnostics and ignores the
attribute specification. Multiple attribute names can be specified in the same
attribute specification.

In a comma-separated list of declarators on a single declaration line, if a variable
attribute appears before all the declarators, it applies to all declarators in the
declaration. If the attribute appears after a declarator, it only applies to the
immediately preceding declarator. For example:
struct A{

int b __attribute__((aligned)); // typical placement of variable attribute
int __attribute__((aligned)) c; // variable attribute can also be placed here
int d, e, f __attribute__((aligned)); // attribute applies to f only
int g __attribute__((aligned)), h, i; // attribute applies to g only
int __attribute__((aligned)) j, k, l; // attribute applies to j, k, and l

};

The following variable attributes are supported:
v “The aligned variable attribute”
v “The common and nocommon variable attributes” on page 34
v “The init_priority variable attribute” on page 51
v “The mode variable attribute” on page 35
v “The packed variable attribute” on page 35
v “The section variable attribute” on page 36
v “The tls_model attribute” on page 36
v “The weak variable attribute” on page 37
v “The visibility variable attribute” on page 37
Related reference:
“Type attributes” on page 29
“Function attributes” on page 9

The aligned variable attribute:
With the aligned variable attribute, you can override the default memory
alignment mode to specify a minimum memory alignment value, expressed as a
number of bytes, for any of the following types of variables:
v Non-aggregate variables
v Aggregate variables (such as a structures, classes, or unions)
v Selected member variables

The attribute is typically used to increase the alignment of the given variable.

aligned variable attribute syntax

►► __attribute__ ((aligned))
__aligned__ (alignment_factor)

►◄

Chapter 2. IBM extension features 33

The alignment_factor is the number of bytes, specified as a constant expression that
evaluates to a positive power of 2. You can specify a value up to a maximum of
268435456. If you omit the alignment factor, and its enclosing parentheses, the
compiler automatically uses 16 bytes. If you specify an alignment factor greater
than the maximum, the compiler issues an error and the compilation fails.

When you apply the aligned attribute to a member variable in a bit field structure,
the attribute specification is applied to the bit field container. If the default
alignment of the container is greater than the alignment factor, the default
alignment is used.

Example

In the following example, the structures first_address and second_address are set
to an alignment of 16 bytes:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

} first_address __attribute__((__aligned__(16))) ;

struct address second_address __attribute__((__aligned__(16))) ;

In the following example, only the members first_address.prov and
first_address.postal_code are set to an alignment of 16 bytes:
struct address {

int street_no;
char *street_name;
char *city;
char *prov __attribute__((__aligned__(16))) ;
char *postal_code __attribute__((__aligned__(16))) ;

} first_address ;

Related reference:

See Aligning data in the XL C/C++ Optimization and Programming Guide
“The aligned type attribute” on page 30

The common and nocommon variable attributes:
The variable attribute common allows you to specify that an uninitialized global
variable or a global variable explicitly initialized to 0 should be allocated in the
common section of the object file. The variable attribute nocommon specifies that an
uninitialized global variable should be allocated in the data section of the object
file. The variable is automatically initialized to zero.

nocommon and common variable attribute syntax

►► __attribute__ (())
nocommon
__nocommon__
common
__common__

►◄

For example:
int i __attribute__((nocommon)); /* allocate i at .data */
int k __attribute__((common)); /* allocate k at .comm */

34 XL C/C++: Language Reference for Little Endian Distributions

You can only apply the variable attributes to global scalar or aggregate variables. If
you try to assign either attribute to a static or automatic variable or structure or
union member, the attribute is ignored and a warning is issued.

Note that using nocommon to allocate uninitialized global variables in the data
section can dramatically increase the size of the generated object. Also, specifying
nocommon on a global variable that is simultaneously defined in different object files
will cause an error at link time; such variables should be defined in one file and
referred to in other files with an extern declaration.

The attributes take precedence over the -fcommon | -fno-common (-qcommon |
-qnocommon) compiler option.

If multiple specifications of the attribute appear in the same attribute statement,
the last one specified will take effect. For example:
int i __attribute__((common, nocommon)); /* allocate i at .data */
int k __attribute__((common, nocommon, common)); /* allocate k at .comm */

If both the common or nocommon attribute and the section attribute are applied to
the same variable, the section attribute takes precedence.
Related reference:

See -qcommon in the XL C/C++ Compiler Reference

The mode variable attribute:
The variable attribute mode allows you to override the type specifier in a variable
declaration, to specify the size of a particular integral type.

mode variable attribute syntax

►► __attribute__ ((mode (byte)))
__mode__ word

pointer
__byte__
__word__
__pointer__

►◄

The valid argument for the mode is any of the of the following type specifiers that
indicates a specific width:
v byte means a 1-byte integer type
v word means a 4-byte integer type
v pointer means an 8-byte integer type

The packed variable attribute:
The variable attribute packed allows you to override the default alignment mode,
to reduce the alignment for all members of an aggregate, or selected members of
an aggregate to the smallest possible alignment: one byte for a member and one bit
for a bit field member.

packed variable attribute syntax

►► __attribute__ ((packed))
__packed__

►◄

Related reference:

Chapter 2. IBM extension features 35

See Aligning data in the XL C/C++ Optimization and Programming Guide

The section variable attribute:
The section variable attribute specifies the section in the object file in which the
compiler should place its generated code. The language feature provides the ability
to control the section in which a variable should appear.

section variable attribute syntax

►► declarator ►

► __attribute__ ((section (" section_name ")))
__section__

►◄

The section_name specifies a named section as a string literal, maximum length of
16 characters, not counting spaces. Spaces in the string are ignored.

The section variable attribute can be applied to a declaration or definition of the
following types of variables:
v initialized or static global or namespace variables
v static local variables
v C++ uninitialized global or namespace variables
v C++ static structure or class member variables

A section attribute applied to a local variable with automatic storage duration is
ignored with a warning because such variables are stored on the stack.

C

A section attribute applied to a structure member is ignored with a

warning. A section attribute applied to an uninitialized global variable is ignored
without a warning; the symbols for uninitialized global variables are always placed
in the common section. C

When multiple section attributes are applied to a variable declaration, the last
specification prevails. The section indicated in the prevailing variable declaration
should match that of the variable definition because a variable definition cannot be
overwritten. Each defined variable can reside in only one section.

The section attribute overrides the -fcommon | -fno-common (-qcommon |
-qnocommon) compiler option and the common|nocommon attribute. That is, if both
attributes are specified for the same variable, the section attribute takes priority.

A named section can be used for multiple variables, but not for both variables and
functions in the same compilation unit.
Related reference:
“The section function attribute” on page 16
“The common and nocommon variable attributes” on page 34

See -qcommon in the XL C/C++ Compiler Reference

The tls_model attribute:
The tls_model attribute allows source-level control for the thread-local storage
model used for a given variable. The tls_model attribute must specify one of

36 XL C/C++: Language Reference for Little Endian Distributions

local-exec, initial-exec, local-dynamic, or global-dynamic access method, which
overrides the -ftls-model (-qtls) option for that variable. For example:
__thread int i __attribute__((tls_model("local-exec")));

The tls_model attribute allows the linker to check that the correct thread model
has been used to build the application or shared library. The linker/loader
behavior is as follows:

Table 12. Link time/runtime behavior for thread access models

Access method Link-time diagnostic Runtime diagnostic

local-exec Fails if referenced symbol is
imported.

Fails if module is not the
main program. Fails if
referenced symbol is
imported (but the linker
should have detected the
error already).

initial-exec None. dlopen() fails if referenced
symbol is not in the module
loaded at execution time.

local-dynamic Fails if referenced symbol is
imported.

Fails if referenced symbol is
imported (but the linker
should have detected the
error already).

global-dynamic None. None.

The weak variable attribute:
The weak variable attribute causes the symbol resulting from the variable
declaration to appear in the object file as a weak symbol, rather than a global one.
The language feature provides the programmer writing library functions with a
way to allow variable definitions in user code to override the library declaration
without causing duplicate name errors.

weak variable attribute syntax

►► __attribute__ ((weak))
__weak__

►◄

Related reference:
“weak” on page 17

The visibility variable attribute:
The visibility variable attribute describes whether and how a variable defined in
one module can be referenced or used in other modules. The visibility attribute
affects only variables with external linkage. By using this feature, you can make a
shared library smaller and decrease the possibility of symbol collision. For details,
see Using visibility attributes in the XL C/C++ Optimization and Programming
Guide.

visibility variable attribute syntax

►► __attribute__ ((visibility ("default")))
__visibility__ "protected"

"hidden"
"internal"

►◄

Chapter 2. IBM extension features 37

Example

In the following example, the visibility attribute of variable a is protected, and that
of variable b is hidden:
struct str{

int var;
};
int a __attribute__((visibility("protected")));
struct str __attribute__((visibility("hidden"))) b;

Related reference:
visibility
“The visibility type attribute” on page 52
“The visibility namespace attribute” on page 52

See Using visibility attributes in the XL C/C++ Optimization and
Programming Guide

See -fvisibility (-qvisibility) in the XL C/C++ Compiler Reference

See -shared (-qmkshrobj) in the XL C/C++ Compiler Reference

See #pragma GCC visibility push (visibility), #pragma GCC visibility pop in
the XL C/C++ Compiler Reference

Variadic macros

More complex than object-like macros, a function-like macro definition declares the
names of formal parameters within parentheses, separated by commas. An empty
formal parameter list is legal: such a macro can be used to simulate a function that
takes no arguments. C99 adds support for function-like macros with a variable
number of arguments. XL C++ supports function-like macros with a variable
number of arguments, as a language extension for compatibility with C and as part
of C++11.

IBM

Variadic macro extensions

Variadic macro extensions refer to two extensions to C99 and Standard C++ related
to macros with variable number of arguments. One extension is a mechanism for
renaming the variable argument identifier from __VA_ARGS__ to a user-defined
identifier. The other extension provides a way to remove the dangling comma in a
variadic macro when no variable arguments are specified. Both extensions have
been implemented to facilitate porting programs developed with GNU C and C++.

The following examples demonstrate the use of an identifier in place of
__VA_ARGS__. The first definition of the macro debug exemplifies the usual usage of
__VA_ARGS__. The second definition shows the use of the identifier args in place of
__VA_ARGS__.
#define debug1(format, ...) printf(format, ## __VA_ARGS__)
#define debug2(format, args ...) printf(format, ## args)

Invocation Result of macro expansion

debug1("Hello %s/n", "World"); printf("Hello %s/n", "World");
debug2("Hello %s/n", "World"); printf("Hello %s/n", "World");

38 XL C/C++: Language Reference for Little Endian Distributions

The preprocessor removes the trailing comma if the variable arguments to a
function macro are omitted and the comma followed by ## precedes the variable
argument identifier in the function macro definition.

IBM

Extensions for vector processing support
The vector extensions are only accepted when all of the following conditions are
met:
v The -mcpu option is set to a target architecture that supports vector processing

instructions. For example, an architecture that supports the VSX instruction set
extensions, such as POWER8®, requires -mcpu=pwr8.

v The -qaltivec option is in effect.

For more information on these options, see the XL C/C++ Compiler Reference.

Table 13. IBM XL C and C++ extensions to support the AltiVec Application Programming
Interface specification

Language feature Discussed in:

Vector programming language extensions “Vector types” on page 44, “Vector literals”
on page 40

The following features are IBM extensions to the AltiVec Application Programming
Interface specification:

Table 14. IBM XL C and C++ extensions to the AltiVec Application Programming Interface
specification

Language extension Discussed in:

Indirection operator * applied to vector
types

“Indirection operator *”

__pixel, pixel, __vector, and vector
keywords

N/A

Initialization of vectors “Initialization of vectors”

vector types as arguments to vec_step “The vec_step operator” on page 40

Vector subscripting operator [] “Vector subscripting operator []” on page
44

Indirection operator *
The indirection operator * has been extended to handle pointer to vector types ,
provided that vector support is enabled. A vector pointer should point to a
memory location that has 16-byte alignment. However, the compiler does not
enforce this constraint. Dereferencing a vector pointer maintains the vector type
and its 16-byte alignment. If a program dereferences a vector pointer that does not
contain a 16-byte aligned address, the behavior is undefined.

Initialization of vectors
A vector type is initialized by a vector literal or any expression having the same
vector type. For example:
vector unsigned int v = (vector unsigned int)(10);

The AltiVec specification allows a vector type to be initialized by an initializer list.
This feature is an extension for compatibility with GNU C.

Chapter 2. IBM extension features 39

Unlike vector literals, the values in the initializer list do not have to be constant
expressions except in contexts where a constant value is required; C the
initialization of a global vector variable is one such context. C

Thus, the

following code is legal:
int i=1;
int function() { return 2; }
int main()
{

vector unsigned int v1 = {i, function()};
return 0;

}

The vec_step operator
The vec_step operator takes a vector type operand and returns an integer value
representing the amount by which a pointer to a vector element should be
incremented in order to move by 16 bytes (the size of a vector). The following
table provides a summary of values by data type.

Table 15. Increment value for vec_step by data type

vec_step expresssion Value

vec_step(vector unsigned char)

vec_step(vector signed char)

vec_step(vector bool char)

16

vec_step(vector unsigned short)

vec_step(vector signed short)

vec_step(vector bool short)

8

vec_step(vector unsigned int)

vec_step(vector signed int)

vec_step(vector bool int)

4

vec_step(vector unsigned long long)

vec_step(vector signed long long)

vec_step(vector bool long long)

2

vec_step(vector pixel) 8

vec_step(vector float) 4

vec_step(vector double) 2

For complete information about the vec_step operator, see the AltiVec Technology
Programming Interface Manual, available at http://www.freescale.com/files/32bit/
doc/ref_manual/ALTIVECPIM.pdf

Vector literals

A vector literal is a constant expression for which the value is interpreted as a
vector type. The data type of a vector literal is represented by a parenthesized
vector type, and its value is a set of constant expressions that represent the vector
elements and are enclosed in parentheses or braces. When all vector elements have
the same value, the value of the literal can be represented by a single constant
expression. You can initialize vector types with vector literals.

40 XL C/C++: Language Reference for Little Endian Distributions

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

Vector literal syntax

►► (vector_type) (literal_list)
{ literal_list }

►◄

literal_list:

▼

,

constant_expression

The vector_type is a supported vector type; see “Vector types” on page 44 for a list
of these.

The literal_list can be either of the following expressions:
v A single expression.

If the single expression is enclosed with parentheses, all elements of the vector
are initialized to the specified value. If the single expression is enclosed with
braces, the first element of the vector is initialized to the specified value, and the
remaining elements of the vector are initialized to 0.

v A comma-separated list of expressions. Each element of the vector is initialized
to the respectively specified value.
The number of constant expressions is determined by the type of the vector and
whether it is enclosed with braces or parentheses.
If the comma-separated list of expressions is enclosed with braces, the number of
constant expressions can be equal to or less than the number of elements in the
vector. If the number of constant expressions is less than the number of elements
in the vector, the values of the unspecified elements are 0.
If the comma-separated list of expressions is enclosed with parentheses, the
number of constant expressions must match the number of elements in the
vector as follows:

2 For vector long long, vector bool long long, and vector double types.

4 For vector int and vector float types.

8 For vector short and vector pixel types.

16 For vector char types.

The following table shows the supported vector literals and how the compiler
interprets them to determine their values.

Table 16. Vector literals

Syntax Interpreted by the compiler as

(vector unsigned char)(unsigned int)

(vector unsigned char){unsigned int}

A set of 16 unsigned 8-bit quantities that
all have the value of the single integer.

(vector unsigned char)(unsigned int, ...)

(vector unsigned char){unsigned int, ...}

A set of 16 unsigned 8-bit quantities with
the value specified by each of the 16
integers.

(vector signed char)(int)

(vector signed char){int}

A set of 16 signed 8-bit quantities that all
have the value of the single integer.

Chapter 2. IBM extension features 41

Table 16. Vector literals (continued)

Syntax Interpreted by the compiler as

(vector signed char)(int, ...)

(vector signed char){int, ...}

A set of 16 signed 8-bit quantities with the
value specified by each of the 16 integers.

(vector bool char)(unsigned int)

(vector bool char){unsigned int}

A set of 16 unsigned 8-bit quantities that
all have the value of the single integer.

(vector bool char)(unsigned int, ...)

(vector bool char){unsigned int, ...}

A set of 16 unsigned 8-bit quantities with
a value specified by each of 16 integers.

(vector unsigned short)(unsigned int)

(vector unsigned short){unsigned int}

A set of 8 unsigned 16-bit quantities that
all have the value of the single integer.

(vector unsigned short)(unsigned int, ...)

(vector unsigned short){unsigned int, ...}

A set of 8 unsigned 16-bit quantities with
a value specified by each of the 8 integers.

(vector signed short)(int)

(vector signed short){int}

A set of 8 signed 16-bit quantities that all
have the value of the single integer.

(vector signed short)(int, ...)

(vector signed short){int, ...}

A set of 8 signed 16-bit quantities with a
value specified by each of the 8 integers.

(vector bool short)(unsigned int)

(vector bool short){unsigned int}

A set of 8 unsigned 16-bit quantities that
all have the value of the single integer.

(vector bool short)(unsigned int, ...)

(vector bool short){unsigned int, ...}

A set of 8 unsigned 16-bit quantities with
a value specified by each of the 8 integers.

(vector unsigned int)(unsigned int)

(vector unsigned int){unsigned int}

A set of 4 unsigned 32-bit quantities that
all have the value of the single integer.

(vector unsigned int)(unsigned int, ...)

(vector unsigned int){unsigned int, ...}

A set of 4 unsigned 32-bit quantities with
a value specified by each of the 4 integers.

(vector signed int)(int)

(vector signed int){int}

A set of 4 signed 32-bit quantities that all
have the value of the single integer.

(vector signed int)(int, ...)

(vector signed int){int, ...}

A set of 4 signed 32-bit quantities with a
value specified by each of the 4 integers.

(vector bool int)(unsigned int)

(vector bool int){unsigned int}

A set of 4 unsigned 32-bit quantities that
all have the value of the single integer.

(vector bool int)(unsigned int, ...)

(vector bool int){unsigned int, ...}

A set of 4 unsigned 32-bit quantities with
a value specified by each of the 4 integers.

(vector unsigned long long)(unsigned long long)

(vector unsigned long long){unsigned long long}

A set of 2 unsigned 64-bit quantities that
both have the value of the single long
long.

(vector unsigned long long)(unsigned long long,
...)

(vector unsigned long long){unsigned long long,
...}

A set of 2 unsigned 64-bit quantities
specified with a value by each of the 2
unsigned long longs.

42 XL C/C++: Language Reference for Little Endian Distributions

Table 16. Vector literals (continued)

Syntax Interpreted by the compiler as

(vector signed long long)(signed long long)

(vector signed long long){signed long long}

A set of 2 signed 64-bit quantities that
both have the value of the single long
long.

(vector signed long long)(signed long long, ...)

(vector signed long long){signed long long, ...}

A set of 2 signed 64-bit quantities with a
value specified by each of the 2 long
longs.

(vector bool long long)(unsigned long long)

(vector bool long long){unsigned long long}

A set of 2 boolean 64-bit quantities with a
value specified by the single unsigned
long long.

(vector bool long long)(unsigned long long, ...)

(vector bool long long){unsigned long long, ...}

A set of 2 boolean 64-bit quantities with a
value specified by each of the 2 unsigned
long longs.

(vector float)(float)

(vector float){float}

A set of 4 32-bit single-precision
floating-point quantities that all have the
value of the single float.

(vector float)(float, ...)

(vector float){float, ...}

A set of 4 32-bit single-precision
floating-point quantities with a value
specified by each of the 4 floats.

(vector double)(double)

(vector double){double}

A set of 2 64-bit double-precision
floating-point quantities that both have
the value of the single double.

(vector double)(double, double)

(vector double){double, double}

A set of 2 64-bit double-precision
floating-point quantities with a value
specified by each of the 2 doubles.

(vector pixel)(unsigned int)

(vector pixel){unsigned int}

A set of 8 unsigned 16-bit quantities that
all have the value of the single integer.

(vector pixel)(unsigned int, ...)

(vector pixel){unsigned int, ...}

A set of 8 unsigned 16-bit quantities with
a value specified by each of the 8 integers.

Note: The value of an element in a vector bool is FALSE if each bit of the element
is set to 0 and TRUE if each bit of the element is set to 1.

For example, for an unsigned integer vector type, the literal could be either of the
following:
(vector unsigned int)(10) /* initializes all four elements to a value of 10 */
(vector unsigned int)(14, 82, 73, 700) /* initializes the first element

to 14, the second element to 82,
the third element to 73, and the
fourth element to 700 */

You can cast vector literals with the cast operator (). Enclosing the vector literal to
be cast in parentheses can improve the readability of the code. For example, you
can use the following code to cast a vector signed int literal to a vector unsigned
char literal:
(vector unsigned char)((vector signed int)(-1, -1, 0, 0))

Related reference:
“Vector types” on page 44
“Initialization of vectors” on page 39

Chapter 2. IBM extension features 43

Vector subscripting operator []
Access to individual elements of a vector data type is provided through the use of
square brackets, similar to how array elements are accessed. The vector data type
is followed by a set of square brackets containing the position of the element. The
position of the first element is 0. The type of the result is the type of the elements
contained in the vector type.

Example:
vector unsigned int v1 = {1,2,3,4};
unsigned int u1, u2, u3, u4;
u1 = v1[0]; // u1=1
u2 = v1[1]; // u2=2
u3 = v1[2]; // u3=3
u4 = v1[3]; // u4=4

Note: You can also access and manipulate individual elements of vectors with the
following intrinsic functions:
v vec_extract

v vec_insert

v vec_promote

v vec_splats

Vector types
XL C/C++ supports vector processing technologies through language extensions.
XL C/C++ implements and extends the AltiVec Programming Interface
specification. In the extended syntax, type qualifiers and storage class specifiers
can precede the keyword vector (or its alternative spelling, __vector) in a
declaration.

Most of the legal forms of the syntax are captured in the following diagram. Some
variations have been omitted from the diagram for the sake of clarity: type
qualifiers such as const and storage class specifiers such as static can appear in
any order within the declaration, as long as neither immediately follows the
keyword vector (or __vector).

Vector declaration syntax

►► ▼

type_qualifier
storage_class_specifier

►

► vector bool char
__vector signed short

unsigned int
int
long long

pixel
__pixel
float
double

►◄

Notes:

44 XL C/C++: Language Reference for Little Endian Distributions

1. The keyword vector is recognized in a declaration context only when used as a
type specifier and when vector support is enabled. The keywords pixel,
__pixel and bool are recognized as valid type specifiers only when preceded
by the keyword vector or __vector.

2. Duplicate type specifiers are ignored in a vector declaration context.

The following table lists the supported vector data types, the size and possible
values for each type.

Table 17. Vector data types

Type Interpretation of content Range of values

vector unsigned char 16 unsigned char 0..255

vector signed char 16 signed char -128..127

vector bool char 16 unsigned char 0, 255

vector unsigned short 8 unsigned short 0..65535

vector unsigned short int

vector signed short 8 signed short -32768..32767

vector signed short int

vector bool short 8 unsigned short 0, 65535

vector bool short int

vector unsigned int 4 unsigned int 0..232-1

vector signed int 4 signed int -231..231-1

vector bool int 4 unsigned int 0, 232-1

vector unsigned long long 2 unsigned long long 0..264-1

vector bool long long 0, 264-1

vector signed long long 2 signed long long -263..263-1

vector float 4 float IEEE-754 single (32 bit)
precision floating-point
values

vector double 2 double IEEE-754 double (64 bit)
precision floating-point
values

vector pixel 8 unsigned short 1/5/5/5 pixel

All vector types are aligned on a 16-byte boundary. An aggregate that contains one
or more vector types is aligned on a 16-byte boundary, and padded, if necessary, so
that each member of vector type is also 16-byte aligned.

Vector data type operators

Vector data types can use some of the unary, binary, and relational operators that
are used with primitive data types. Note that all operators require compatible
types as operands unless otherwise stated. These operators are not supported at
global scope or for objects with static duration, and there is no constant folding.

For unary operators, each element in the vector has the operation applied to it.

Chapter 2. IBM extension features 45

Table 18. Unary operators

Operator Integer vector types Vector double Bool vector types

++ Yes Yes No

−− Yes Yes No

+ Yes Yes No

− Yes (except unsigned
vectors)

Yes No

~ Yes No Yes

For binary operators, each element has the operation applied to it with the same
position element in the second operand. Binary operators also include assignment
operators.

Table 19. Binary operators

Operator Integer vector types Vector double Bool vector types

+ Yes Yes No

− Yes Yes No

* Yes Yes No

/ Yes Yes No

% Yes No No

& Yes No Yes

| Yes No Yes

^ Yes No Yes

<< Yes No Yes

>> Yes No Yes

[] Yes Yes Yes

Note: The [] operator returns the vector element at the position specified. If the
position specified is outside of the valid range, the behavior is undefined.

For relational operators, each element has the operation applied to it with the same
position element in the second operand and the results have the AND operator
applied to them to get a final result of a single value.

Table 20. Relational operators

Operator Integer vector types Vector double Bool vector types

== Yes Yes Yes

!= Yes Yes Yes

< Yes Yes No

> Yes Yes No

<= Yes Yes No

>= Yes Yes No

For the following code:

46 XL C/C++: Language Reference for Little Endian Distributions

vector unsigned int a = {1,2,3,4};
vector unsigned int b = {2,4,6,8};
vector unsigned int c = a + b;
int e = b > a;
int f = a[2];
vector unsigned int d = ++a;

c would have the value (3,6,9,12), d would have the value (2,3,4,5), e would
have a non-zero value, and f would have the value 3.

Pointer arithmetic

Pointer arithmetic is defined for pointer to vector types. Given:
vector unsigned int *v;

the expression v + 1 represents a pointer to the vector following v.

Vector type casts

Vector types can be cast to other vector types. The cast does not perform a
conversion: it preserves the 128-bit pattern, but not necessarily the value. A cast
between a vector type and a scalar type is not allowed.

Vector pointers and pointers to non-vector types can be cast back and forth to each
other. When a pointer to a non-vector type is cast to a vector pointer, the address
should be 16-byte aligned. The referenced object of the pointer to a non-vector type
can be aligned on a 16-byte boundary by using __attribute__((aligned(16))).
Related reference:
Vector literals
“Initialization of vectors” on page 39
“The aligned variable attribute” on page 33

IBM extension features for C only
This section describes IBM extension features for the C language only in the
following categories:
v “Extensions for GNU C compatibility”
v “Extensions for vector processing support” on page 50

Extensions for GNU C compatibility
The following features are enabled by default when you compile with any of the
following commands:
v the xlc invocation command
v the -qlanglvl=extc99 | extc89 | extended options

Table 21. Default IBM XL C extensions for GNU C compatibility

Language feature Discussed in:

Cast to a union type “Cast to union type” on page 48

The transparent_union type attribute “The transparent_union type attribute (C
only)” on page 49

Chapter 2. IBM extension features 47

Cast to union type
Casting to a union type is the ability to cast a union member to the same type as
the union to which it belongs. Such a cast does not produce an lvalue. The feature
is supported as an extension to C99, implemented to facilitate porting programs
developed with GNU C.

Only a type that explicitly exists as a member of a union type can be cast to that
union type. The cast can use either the tag of the union type or a union type name
declared in a typedef expression. The type specified must be a complete union
type. An anonymous union type can be used in a cast to a union type, provided
that it has a tag or type name. A bit field can be cast to a union type, provided that
the union contains a bit field member of the same type, but not necessarily of the
same length. The following code shows an example of a simple cast to union:
#include <stdio.h>

union f {
char t;
short u;
int v;
long w;
long long x;
float y;
double z;

};

int main() {
union f u;
char a = 1;
u = (union f)a;
printf("u = %i\n", u.t);

}

The output of this example is:
u = 1

Casting to a nested union is also allowed. In the following example, the double
type dd can be cast to the nested union u2_t.
int main() {

union u_t {
char a;
short b;
int c;
union u2_t {

double d;
}u2;

};
union u_t U;
double dd = 1.234;
U.u2 = (union u2_t) dd; // Valid.
printf("U.u2 is %f\n", U.u2);

}

The output of this example is:
U.u2 is 1.234

A union cast is also valid as a function argument, part of a constant expression for
initialization of a static or non-static data object, and in a compound literal
statement. The following example shows a cast to union used as part of an
expression for initializing a static object:

48 XL C/C++: Language Reference for Little Endian Distributions

struct S{
int a;

}s;

union U{
struct S *s;

};

struct T{
union U u;

};

static struct T t[] = { {(union U)&s} };

Related reference:
“The transparent_union type attribute (C only)”

The transparent_union type attribute (C only)
The transparent_union attribute applied to a union definition or a union typedef
definition indicates the union can be used as a transparent union. The union must
be a complete union type.

Whenever a transparent union is the type of a function parameter and that
function is called, the transparent union can accept an argument of any type that
matches that of one of its members without an explicit cast. Arguments to this
function parameter are passed to the transparent union, using the calling
convention of the first member of the union type. Because of this, all members of
the union must have the same machine representation. Transparent unions are
useful in library functions that use multiple interfaces to resolve issues of
compatibility.

transparent_union type attribute syntax

►► __attribute__ ((transparent_union))
__transparent_union__

►◄

When the transparent_union type attribute is applied to the outer union of a
nested union, the size of the inner union (that is, its largest member) is used to
determine if it has the same machine representation as the other members of the
outer union. For example:
union u_t{

union u2_t{
char a;
short b;
char c;
char d;

}u;
int a1;

}__attribute__((__transparent_union__));

The attribute is ignored because the first member of union u_t, which is itself a
union, has a machine representation of 2 bytes, whereas the other member of
union u_t is of type int, which has a machine representation of 4 bytes.

The same rationale applies to members of a union that are structures. When a
member of a union to which type attribute transparent_union has been applied is
a struct, the machine representation of the entire struct is considered, rather than
members.

Chapter 2. IBM extension features 49

All members of the union must have the same machine representation as the first
member of the union. This means that all members must be representable by the
same amount of memory as the first member of the union. The machine
representation of the first member represents the maximum memory size for any
remaining union members. For instance, if the first member of a union to which
type attribute transparent_union has been applied is of type int, then all
following members must be representable by at most 4 bytes. Members that are
representable by 1, 2, or 4 bytes are considered valid for this transparent union.

Floating-point types (float, double, float _Complex, or double _Complex) types or
vector types can be members of a transparent union, but they cannot be the first
member. The restriction that all members of the transparent union have the same
machine representation as the first member still applies.

Extensions for vector processing support
The following feature is an IBM extension to the AltiVec Application Programming
Interface specification:

Table 22. IBM XL C extension to the AltiVec Application Programming Interface specification

Language extension Discussed in:

bool keyword N/A

IBM extension features for C++ only
This section describes IBM extension features for the C++ language only in the
following categories:
v “Extensions for C99 compatibility”
v “Extensions for C11 compatibility” on page 51
v “Extensions for GNU C++ compatibility” on page 51

Extensions for C99 compatibility
IBM XL C++ adds support for the following C99 language features. All of these
features are enabled by default.
v _Complex keyword
v __func__ predefined identifier
v Complex data type
v Compound literals
v C standard pragmas
v Duplicate type qualifiers
v Flexible array members at the end of a structure or union
v Hexadecimal floating-point literals
v The restrict type qualifier
v Universal character names
v Variable length arrays

Note: The _Imaginary keyword is reserved for possible future use. For complex
number functionality, use _Complex.

50 XL C/C++: Language Reference for Little Endian Distributions

Extensions for C11 compatibility
IBM XL C++ adds support for some C11 language features.

The following features are enabled by default:
v _Noreturn function specifier
v Composite types for variable length arrays
v Conversions between pointers and floating types
v Generic selection
v Static assertions
v Temporary lifetime extensions
v typedef redeclarations
v Unicode and UTF-8 literals

The complex type initializations feature is enabled when you specify the
-qlanglvl=extended or -qlanglvl=extended0x option.

Extensions for GNU C++ compatibility
The following GNU C++ language extensions are enabled by default.

Table 23. IBM XL C++ language extensions for compatibility with GNU C++

Language feature Discussed in:

__decltype keyword N/A

init_priority variable attribute “The init_priority variable attribute”

The following GNU C++ language extensions are enabled by default. They can
also be enabled or disabled by specific compiler options, listed in the below table:

Table 24. IBM XL C++ language extensions for compatibility with GNU C++, with individual
option controls

Language feature Discussed in: Individual option control

Visibility namespace
attribute

“The visibility
namespace attribute” on
page 52

-fvisibility

Visibility type attribute “The visibility type
attribute” on page 52

-fvisibility

Note: You can use the -fvisibility option to specify visibility attributes for types and
namespaces if they do not get visibility attributes from pragma directives, explicitly
specified attributes, or propagation rules. This option cannot be used to disable visibility
attributes for types or namespaces.

The init_priority variable attribute
The variable attribute init_priority is an extension to C++ that allows you to
control the initialization order of static objects defined in namespace scope across
multiple compilation units.

init_priority variable attribute syntax

►► __attribute__ (())
init_priority (relative_priority)
__init_priority__

►◄

Chapter 2. IBM extension features 51

The relative_priority is a constant integral expression between 101 and 65535,
inclusive. A lower number indicates a higher priority.

The visibility namespace attribute
The visibility namespace attribute is a language extension that allows you to
control whether and how the entities within a namespace defined in one module
can be referenced or used in other modules. By using this feature, you can make a
shared library smaller and decrease the possibility of symbol collision. For details,
see Using visibility attributes in the XL C/C++ Optimization and Programming
Guide.

visibility namespace attribute syntax

►► namespace identifier __attribute__ ►

► ((visibility ("default")))
__visibility__ "protected"

"hidden"
"internal"

{ namespace_body } ►◄

You can specify the attribute name visibility with or without leading and trailing
double underscore characters; however, using the double underscore characters
reduces the likelihood of name conflicts with macros of the same name.

Example

In the following example, function fun() is defined in namespace A , and the
visibility attribute of fun() is default:
namespace A __attribute__((visibility("default"))) {

void fun(){}
}

Related reference:
“The visibility variable attribute” on page 37
visibility
“The visibility type attribute”

See Using visibility attributes in the XL C/C++ Optimization and
Programming Guide

See -fvisibility (-qvisibility) in the XL C/C++ Compiler Reference

See -shared (-qmkshrobj) in the XL C/C++ Compiler Reference

See #pragma GCC visibility push (visibility), #pragma GCC visibility pop in
the XL C/C++ Compiler Reference

The visibility type attribute
With the visibility type attributes, you can control whether and how a
structure/union/class or an enumeration that is defined in one module can be
referenced or used in other modules. Visibility attributes affect only types with
external linkage. By using this feature, you can make a shared library smaller and
decrease the possibility of symbol collision. For details, see Using visibility
attributes in the XL C/C++ Optimization and Programming Guide.

52 XL C/C++: Language Reference for Little Endian Distributions

visibility type attribute syntax

►► __attribute__ ((visibility ("default")))
__visibility__ "protected"

"hidden"
"internal"

►◄

Example

In the following example, the visibility attribute of class A is protected, and that of
enumeration E is hidden:
class __attribute__((visibility("protected"))) A {};
enum __attribute__((visibility("hidden"))) E {e1,e2} e;

Related reference:
“The visibility variable attribute” on page 37
visibility
“The visibility namespace attribute” on page 52

See Using visibility attributes in the XL C/C++ Optimization and
Programming Guide

See -fvisibility (-qvisibility) in the XL C/C++ Compiler Reference

See -shared (-qmkshrobj) in the XL C/C++ Compiler Reference

See #pragma GCC visibility push (visibility), #pragma GCC visibility pop in
the XL C/C++ Compiler Reference

Chapter 2. IBM extension features 53

54 XL C/C++: Language Reference for Little Endian Distributions

Chapter 3. Standard features

The compiler fully supports the following language standards:
v C++03
v C++98
v C99
v C89
v C11

Besides these standards, the compiler also supports the following C++11 and
C++14 features:

C++11 features

Note: IBM supports the majority of C++11 features, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard.
v Alignment
v Auto type deduction
v C99 long long
v C99 preprocessor features adopted in C++11
v constexpr - generalized constant expressions
v Defaulted and deleted functions
v Delegating constructors
v Explicit conversion operators
v Explicit instantiation declarations
v Explicit overrides and final
v Extended friend declarations
v Forward declaration of enumerations
v Generalized attributes
v Inheriting constructors
v Inline namespace definitions
v Local and unnamed types as template arguments
v Monomorphic lambda expressions
v New character types
v New definitions of POD types
v noexcept

v Non-static data member initializers
v nullptr

v Range-based for
v Raw string literals
v ref-qualifiers
v Reference collapsing
v Right angle brackets
v Rvalue references

© Copyright IBM Corp. 1998, 2015 55

v Scoped enumerations
v static_assert

v Template aliases
v Trailing comma allowed in enum declarations
v Trailing return type
v Unicode names (UCN) and unicode literals
v Uniform initialization
v Unrestricted unions
v User-defined literals
v Variadic templates

C++14 features

Note: IBM supports selected features of C++14 standard. IBM will continue to
develop and implement the features of this standard. The implementation of the
language level is based on IBM's interpretation of the standard. Until IBM's
implementation of all the C++14 features is complete, including the support of a
new C++14 standard library, the implementation might change from release to
release. IBM makes no attempt to maintain compatibility, in source, binary, or
listings and other compiler interfaces, with earlier releases of IBM's implementation
of the new C++14 features.
v Polymorphic lambda expressions
v Variable templates

56 XL C/C++: Language Reference for Little Endian Distributions

Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL C/C++ for Linux.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1998, 2015 57

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

58 XL C/C++: Language Reference for Little Endian Distributions

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2015.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 59

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

60 XL C/C++: Language Reference for Little Endian Distributions

Index

Special characters
__VA_ARGS__ 38
_thread storage class specifier 28
$ 8
* (indirection operator) 39
[] (vector subscript operator) 44

A
alias function attribute 10
alignment 33, 35

structures 33
allocation

uninitialized global variables 34
always_inline function attribute 11
arguments

macro 38
trailing 38

arrays
flexible array member 8

asm
statements 19

assembly
statements 19

B
basic example, described viii
bool 44

C
cast expressions 40, 44

union type 48
vector literal 40

compatibility
XL C and GCC 6, 47
XL C/C++ and GCC 1
XL C++ and C11 51
XL C++ and C99 1, 50
XL C++ and GCC 51

compound
literal 8

const 44
const function attribute 11

D
data types

vector 44
declarations

vector types 44
dereferencing operator 39
dollar sign 8

E
ellipsis

in macro argument list 38
examples

inline assembly statements 23

F
file inclusion 27
flexible array member 8
format function attribute 12
funciton attribute

noinline 16
function attribute

always_inline 11
const 11
constructor 12
destructor 12
format 12
format_arg 13
noreturn 16
pure 16
section 16
weak 17

function attributes 9
alias 10

function-like macro 38
functions

specifiable attributes 9

G
global variable

uninitialized 34

I
identifiers 8
include_next preprocessor directive 27
incomplete type

as structure member 8
indirection operator (*) 39, 44
initialization

order of 51
static object 8
vector types 39

initializer lists 8, 39
initializers

vector types 39
inline

assembly statements 19
integer

literals 4

L
language extensions 1
linkage

weak symbols 37

literals
compound 8
integer 4
vector 40

long long
types of integer literals in C99 and

C++11 4
types of integer literals outside of C99

and C++11 4
long long type specifier 44

M
macro

function-like 38
invocation 38
variable argument 38

O
operators

* (indirection) 39
[] (vector subscripting) 44

P
packed

variable attribute 35
pixel 44
pointers

pointer arithmetic 44
vector types 44

S
statements

inline assembly
restrictions 23

static 44
storage class specifiers

_thread 28
tls_model attribute 28

structures
flexible array member 8
members

incomplete types 8
subscripting operator 44
suffix

integer literal constants 4

T
tls_model attribute 36
type attributes 29

aligned 30
may_alias 31
packed 32
transparent_union 49

© Copyright IBM Corp. 1998, 2015 61

type specifiers
overriding 35
vector data types 44

U
unions

cast to union type 48

V
variable attributes 32

section 36
vector

literals 40
subscripting operator 44

vector data types 44
vector literal

cast expressions 40
vector processing support 1, 39, 50
vector types

cast 44
literals 40
pointer arithmetic 44

visibility attributes
class 52
enumeration 52
function 18
namespace 52
structure 52
union 52
variable 37

W
weak symbol 37

62 XL C/C++: Language Reference for Little Endian Distributions

IBM®

Product Number: 5765-J08; 5725-C73

Printed in USA

SC27-6550-01

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other IBM information
	Other information

	Technical support
	How to send your comments

	Chapter 1. Language levels and language extensions
	Chapter 2. IBM extension features
	IBM extension features for both C and C++
	General IBM extensions
	Extension of #endif and #else
	Integer literals

	Extensions for GNU C compatibility
	Characters in identifiers
	Compound literal expressions
	Flexible array members of structures
	Function attributes
	Inline assembly statements
	The #include_next directive
	The __thread storage class specifier
	The typeof keyword
	Type attributes
	Variable attributes
	Variadic macros

	Extensions for vector processing support
	Indirection operator *
	Initialization of vectors
	The vec_step operator
	Vector literals
	Vector subscripting operator []
	Vector types

	IBM extension features for C only
	Extensions for GNU C compatibility
	Cast to union type
	The transparent_union type attribute (C only)

	Extensions for vector processing support

	IBM extension features for C++ only
	Extensions for C99 compatibility
	Extensions for C11 compatibility
	Extensions for GNU C++ compatibility
	The init_priority variable attribute
	The visibility namespace attribute
	The visibility type attribute

	Chapter 3. Standard features
	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	O
	P
	S
	T
	U
	V
	W

